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ABSTRACT 

The instructive signals received by T cells during the programming stages of 

activation will determine the fate of effector and memory populations generated during 

an immune response. Members of the tumor necrosis factor (TNF) superfamily play an 

essential role in influencing numerous aspects of T cell adaptive immune responses 

including cell activation, differentiation, proliferation, survival, and apoptosis. My thesis 

dissertation describes the involvement of two such members of the TNF superfamily, 

TNF and FasL, and their influence on the fate of T cells early during responses to viral 

infections and to the induction of transplantation tolerance.  

TNF is a pleiotropic pro-inflammatory cytokine that has an immunoregulatory 

role in limiting the magnitude of T cell responses during a viral infection. Our laboratory 

discovered that one hallmark of naïve T cells in secondary lymphoid organs is their 

unique ability to rapidly produce TNF after activation and prior to acquiring other 

effector functions. I hypothesized that T cell-derived TNF will limit the magnitude of T 

cell responses. The co-adoptive transfer of wild type (WT) P14 and TNF-deficient P14 

TCR transgenic CD8
+
 T cells, that recognize the GP33 peptide of lymphocytic 

choriomeningitis virus (LCMV), into either WT or TNF-deficient hosts demonstrated that 

the donor TNF-deficient P14 TCR transgenic CD8
+
 T cells accumulate to higher 

frequencies after LCMV infection. Moreover, these co-adoptive transfer experiments 

suggested that the effect of T cell-derived TNF is localized in the microenvironment, 

since the TNF produced by WT P14 TCR transgenic CD8
+
 T cells did not prevent the 
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accumulation of TNF-deficient P14 TCR transgenic CD8
+
 T cells. To determine if T cell-

produced TNF is acting on professional APC to suppress the generation of virus-specific 

T cell responses, I performed co-adoptive transfer experiments with WT P14 TCR 

transgenic CD8
+
 and TNF-deficient P14 TCR transgenic CD8

+
 T cells into TNFR1/2 (1 

and 2) deficient mice. These experiments demonstrated that the absence of TNFR1/2 

signaling pathway in the host cells resulted in a greater accumulation of WT P14 TCR 

transgenic CD8
+
 T cells, thereby considerably diminishing the differences between donor 

WT P14 TCR transgenic CD8
+
 and donor TNF-deficient P14 TCR transgenic CD8

+
 T 

cells. The increased frequency and absolute numbers of WT P14 TCR transgenic CD8
+
 T 

cells in TNFR1/R2 deficient recipients suggests that one mechanism for the suppressive 

effect of T cell-derived TNF on antigen-specific T cells occurs as a result of TNFR 

signaling in the host cells. However, the donor TNF-deficient P14 TCR transgenic CD8
+
 

T cells still accumulated to higher frequency and numbers compared to their donor WT 

transgenic counterparts. Together, these findings indicate that T cell-produced TNF can 

function both in an autocrine and a paracrine fashion to limit the magnitude of anti-viral 

T cell responses.  

Given the immunoregulatory role of TNF and the ability of peripheral naïve T 

cells to produce this cytokine, I questioned at what stage of development do T cells 

become licensed to produce this cytokine. The peripheral naïve T cell pool is comprised 

of a heterogeneous population of cells at various stages of development, a process that 

begins in the thymus and is completed after a post-thymic maturation phase in the 

periphery. I hypothesized that naïve T cells emigrating from the thymus will be 
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competent to produce TNF only after undergoing a maturation process in the periphery. 

To test this hypothesis, I compared cytokine profiles of CD4
+ 

and CD8
+
 single positive 

(SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during 

TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared 

to splenic T cells despite expressing similar TCR levels and possessing comparable 

activation kinetics with respect to the upregulation of CD25 and CD69 following 

stimulation. The reduced ability of SP thymocytes to produce TNF correlated with a 

decreased level of detectable TNF message following stimulation when compared to 

splenic counterparts. Stimulation of SP thymocytes in the context of a splenic 

environment did not fully enable TNF production, suggesting an intrinsic defect in their 

ability to produce TNF as opposed to a defect in antigen presentation. Using a thymocyte 

adoptive transfer model, I demonstrate that the ability of T cells to produce TNF 

increases progressively with time in the periphery as a function of their maturation state. 

RTEs identified by the expression of green fluorescent protein (GFP) (NG-BAC 

transgenic mice), showed a significantly enhanced ability to express TNF relative to SP 

thymocytes, but not to the extent of MN T cells. Together, these findings suggest that 

TNF expression by naïve T cells is regulated via a gradual licensing process that requires 

functional maturation in peripheral lymphoid organs. This highlights the functional 

heterogeneity of the naïve T cell pool (with respect to varying degrees of TNF 

production) during early T cell activation that can contribute to the many subsequent 

events that shape the course of an immune response.  
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The productive activation of naïve T cells requires at least initial two signals; the 

first being through the TCR and the second is the engagement of co-stimulatory 

molecules on the surface of the T cells. T cells activated in the absence of co-stimulation 

become anergic or undergo cell death. Agents that block co-stimulation of antigen-

specific T cells are emerging as an alternative to immunosuppressive drugs to prolong 

allograft survival in transplant recipients. Targeted blockade of CD154-CD40 interactions 

using a !CD154 monoclonal antibody (MR1) with a simultaneous transfusion of 

allogeneic splenocytes (donor specific transfusion or DST) efficiently induces tolerance 

to allografts. This co-stimulation blockade-induced tolerance is characterized by the 

deletion of host alloreactive T cells within 24 hours of treatment. Toll-like receptor 

(TLR) agonists abrogate tolerance induced by co-stimulation blockade by impairing the 

deletion of host alloreactive T cells and resulting in allograft rejection. The goal of my 

study was to determine the underlying molecular mechanisms that protect host 

alloreactive T cells from early deletion after exposure to TLR agonists. I hypothesized 

that TLR ligands administered during co-stimulation blockade regimen differentially 

regulate the expression of pro- and anti-apoptotic molecules in alloreactive T cells, 

during the initial stages of activation thereby preventing deletion.  

To test this hypothesis, I used syngeneic bone marrow chimeric mice containing a 

trace population of alloreactive KB5 TCR transgenic CD8
+
 T cells (KB5 Tg CD8

+
 T 

cells) that recognize H-2K
b
 as an

 
alloantigen. I show here that KB5-CD8

+
 T cells 

downregulate CD127 (IL-7R!) and become apoptotic as early as 12 hrs after co-

stimulation blockade. In contrast, KB5 Tg CD8
+
 T cells from mice treated with bacterial 
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lipopolysaccaride (LPS) during co-stimulation blockade failed to become apoptotic, 

although CD127 was downregulated. Examination of the mRNA expression profiles of 

several apoptotic genes in purified KB5 CD8
+
 T cells from mice treated with DST+anti-

CD154 for 12 hrs revealed a significant upregulation of FasL mRNA expression 

compared to the untreated counterparts. However, in vitro FasL blockade or in vivo 

cytotoxicity experiments with mice deficient in Fas or FasL indicated that the Fas-FasL 

pathway might not be crucial for tolerance induction. Another pro-apoptotic molecule 

BIM was upregulated in alloreactive T cells during co-stimulation blockade. This 

suggests that both the Fas pathway and BIM may be playing complementary roles in 

inducing deletional tolerance. Although FasL expression was diminished in alloreactive T 

cells in the presence of LPS, BIM expression was not diminished, suggesting that 

alloreactive T cells may still be vulnerable to undergo apoptosis. Concomitantly, I also 

found that LPS treatment during co-stimulation blockade resulted in non-specific 

upregulation of Fas expression in alloreactive T cells and non-transgenic T cells (CD4
+
 

and CD8
+
). I demonstrate here that treatment with Fas agonistic antibody in vitro for 4 

hours can selectively induce apoptosis of alloreactive T cells that were believed to be 

refractory to apoptosis during LPS treatment.  I speculate that under these conditions, 

deletion may be occurring due to the involvement of both Fas and BIM. Further, the 

mRNA expression profile revealed interleukin-10 (IL-10) as a molecule induced in 

alloreactive T cells during LPS treatment. Analysis of serum confirmed the systemic 

expression of IL-10 protein in mice treated with LPS during co-stimulation blockade. I 

hypothesized that LPS-induced IL-10 can have an anti-apoptotic role in preventing the 
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deletion of alloreactive T cells and mediating allograft rejection. Contrary to my 

hypothesis, I found that IL-10 KO mice rejected allogeneic target cells similar to their 

WT counterparts, suggesting that IL-10 may not be required for LPS-mediated abrogation 

of tolerance induction. In addition to the systemic induction of IL-10, LPS also induced 

cytokines such as interleukin-6 (IL-6), TNF and interferon-" (IFN-"). 

These findings suggest that both Fas-FasL and BIM mediated apoptotic pathways 

may play complementary roles in inducing the early deletion of activated alloreactive T 

cells during tolerance induction. On the other hand, the mechanism of LPS mediated 

abrogation of tolerance induction can not be attributed to IL-10 alone as it may be 

playing a synergistic role along with other proinflammatory cytokines that may in turn 

result in the prevention of alloreactive T cell death during this process. Most importantly, 

these findings indicate that despite emerging from a pro-inflammatory cytokine milieu, 

alloreactive T cells are still susceptible to undergo Fas-mediated apoptosis during the first 

24 hours after co-stimulation blockade and LPS treatment. Therefore, targeting the Fas-

FasL pathway to induce deletion of alloreactive T cells during the peri-transplant period 

may still be a potential strategy to improve the efficacy of co-stimulation blockade 

induced transplantation tolerance during an environmental perturbation such as 

inflammation or infection. 
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Chapter 1: Introduction  

A. Rationale and thesis outline 

 Recent studies have highlighted the combined nature of signal 1 (T cell receptor -

TCR), signal 2 (co-stimulation) and signal 3 (cytokines) in influencing the early 

programming of naïve T cells to adopt various fates, whether productive or abortive. The 

members of the TNF superfamily have been shown to control and orchestrate various 

aspects of an immune response depending on the context of T cell activation. My thesis 

involves the study of two prototypic members of the TNF superfamily, TNF and FasL 

and their respective roles in influencing some of the earliest events of T cell activation 

during a viral infection and during the induction of peripheral transplantation tolerance. 

Several years ago, our lab discovered that TNF is one the earliest pro-

inflammatory cytokines that is produced by recently activated naïve T cells (1). However, 

the importance of T cell-derived TNF and the developmental stage when T cells become 

licensed to produce this cytokine were not known. TNF was recently shown to limit the 

magnitude of CD8
+
 effector T cell responses during acute LCMV infection (2).  

However, the cellular source of TNF causing this suppressive effect was not determined 

in these studies. I first hypothesized that T cell-derived TNF can suppress T cell 

responses during the course of an immune response. Recent studies have shown that 

developing T cells require emigration into the periphery and contact with secondary 

lymphoid organs to undergo functional maturation (3). Secondly, I hypothesized that 

developing T cells will acquire the ability to produce TNF as a consequence of 
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undergoing functional maturation in the periphery. I used the P14 TCR transgenic CD8
+
 

T cell system, that consist of T cells that recognize the GP33 peptide of LCMV, to 

address the above two questions in chapter 3 of my thesis. To study the 

immunoregulatory role of T cell-derived TNF, I used an in vivo experimental model 

where I co-adoptively transferred WT P14 and TNF-deficient P14 TCR transgenic CD8
+
 

T cells into WT, TNF-deficient and TNFR (1 and 2)-deficient hosts and analyzed the 

accumulation of donor T cells at day 8 post LCMV infection. To study the developmental 

stage when T cells become licensed to produce TNF efficiently, I studied the TNF 

producing ability of T cells (both transgenic and polyclonal) before and after thymic 

emigration into the periphery.  

 Previous studies by Thornely et. al demonstrated that there is abortive activation 

and early deletion of T cells responding to alloantigens in the absence of TNF family co-

stimulatory signals (CD154-CD40 blockade) (4). This deletion has been shown to be 

important for the prolonged allograft survival in mice.  Exposure to TLR agonists at the 

time of co-stimulation blockade [DST+ !CD154 (MR1)] prevented the deletion of 

alloreactive T cells leading to abrogation of tolerance a Type-1 IFN mediated pathway 

(5). I hypothesized that activation of TLRs (TLR4 agonist - LPS) prevent the abortive 

activation and the early deletion of alloreactive T cells, that occurs in the presence of 

CD154-CD40L blockade, by differentially regulating the expression of several pro- and 

anti-apoptotic genes. In chapter 4 of my thesis, I addressed this hypothesis with the use of 

a KB5 synchimeric mouse model, that consist of a trace population of KB5 Tg CD8
+
 T 

cells (that recognize H-2K
b
 as an

 
alloantigen), and studied their apoptotic molecular 
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signature by examining the expression of focused set of apoptotic genes using real-time 

PCR array, during co-stimulation blockade-induced tolerance and during TLR4 mediated 

abrogation of co-stimulation blockade-induced tolerance. 

B. T cell development: Conventional and unconventional lineages 

Of the many cells that constitute the immune system, T lymphocytes (T cells) 

form an important component of the adaptive immune system. T cell development begins 

when undifferentiated T cell precursors migrating from the bone marrow enter the 

thymus. T cell progenitors undergo sequential steps of development and education to 

become mature naïve T cells before they enter the circulation.  In the context of murine T 

cell development, the early T cell progenitors migrating into the thymic cortex do not 

express the CD4 and CD8 coreceptors and are referred to as double negative (DN) 

thymocytes. The classical model of T cell development, consists of immature thymocytes 

progressing through 4 stages, that are distinguished by the surface expression of CD44 

and CD25: DN1 (CD25
-
CD44

+
) ; DN2 (CD25

+
CD44

+
) ; DN3 (CD25

+
CD44

-/lo
) ; DN4 

(CD25
-
CD44

-
) (6-8). The precursors differentiate and rearrange their antigen receptor 

loci through a process referred to as V(D)J recombination. It is a site-specific 

recombination process directed by the lymphoid specific recombinases (recombination 

activating gene or Rag1 and Rag2) and DNA repair proteins (9, 10). The recombination 

signal sequences flanking the TCR variable (V), diversity (D) and joining (J) gene 

segments are the target sites for the Rag proteins, which create double stranded DNA 

breaks and subsequently result in non-homologous end joining of the gene segments (11). 
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Recombination of TCR !, TCR", TCR# occur between the DN2 and DN3 stages of T cell 

development, following which thymocytes commit to either "! or $# TCR lineages (11). 

Thymocytes possessing in frame TCR-" and TCR-! rearrangements and expressing 

mature "! TCR commit to the "! T cell lineage while remaining DN (12, 13). In contrast, 

thymocytes undergoing TCR# gene rearrangements are required to pass though a 

subsequent series of biological checkpoints in order to survive. 

The first checkpoint for $# TCR T cell development referred to as  “# selection” 

ensures the selection of a functional TCR# chain (14, 15). The TCR# chain is created by 

a well-ordered recombination event with D#-to-J# preceding V# to D#J# rearrangement 

(11). During “# selection”, the TCR# chain associates with a surrogate $ chain to form 

the pre-TCR complex, which drives thymocyte differentiation in a ligand independent 

manner (15). The assembly of a successful pre-TCR complex prevents cells from 

undergoing apoptosis and inhibits further rearrangement at the TCR# gene locus through 

a phenomenon known as “allelic exclusion” (15). Thereafter, cells transit from DN4 stage 

and undergo 6 to 8 cell divisions before entering into the CD4
+
CD8

+
 double positive 

(DP) stage, at which point the rearrangement of the TCR$ chain is initiated (16). The 

TCR$ chain continues to rearrange until a $# heterodimer is produced with sufficient 

avidity to bind self peptide-MHC complexes (9, 17). During this stage, DP cells 

expressing the successfully rearranged $# TCR undergo a process of selection where 

%90% of DP cells that develop are eliminated through “death by neglect” due to poor 

interactions of expressed TCRs with the available self-peptide MHC (major 
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histocompatibility) complexes (MHC-I in the context of CD8
+
 and MHC-II for CD4

+
) 

that fail to generate viable intracellular signals (18). Those thymocytes expressing TCRs 

that are able to bind self-peptide/MHC complexes adequately are selected to survive in a 

process know as “positive selection” (18). DP thymocytes expressing TCRs that bind 

self-peptide MHC complexes with strong affinity and potentially self-reactive are 

eliminated by a process of apoptosis referred to as “negative selection” (18, 19). Once 

thymocytes are successfully selected, they undergo lineage differentiation to become 

CD4
+
 or CD8

+
 single positive (SP) thymocytes (18). The CD4-CD8 lineage commitment 

is controlled by both TCR signal strength and temporally. Stronger and longer signals 

through the TCR and CD4-coreceptor lead to the development of CD4
+
 lineage whereas 

weaker and shorter signals through the TCR and CD8-coreceptor lead to the development 

of CD8
+
 lineage (20, 21). More recently, it was proposed that CD4

+
/CD8

+
 lineage 

commitment is in part regulated by the balance of two tyrosine kinases that act 

downstream of the TCR namely, Lck (Leukocyte specific protein tyrosine kinase) and 

ZAP70 (Zeta-chain associated protein kinase-70) (22). This model proposes that during 

positive selection, if DP cells recognize MHC-II by CD4 coreceptor, they receive a 

strong Lck-dependent signal and differentiate into SP CD4
+
 T cells. On the other hand, if 

DP cells recognize MHC-I by CD8 co-receptor, absence of strong Lck dependent signal 

prevents their differentiation into SP CD4
+
 T cells (22). Instead these DP cells increase 

the expression of ZAP70 and differentiate into SP CD8
+
 T cells (22).  

Along with the development of conventional !" TCR lymphocytes, 

unconventional lymphocytes also differentiate in the thymus. Commitment to the #$ 
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lineage occurs between the DN2 and DN4 stages and prior to the ! checkpoint (16, 23). 

Recent studies show that "!/#$ T cell lineage decisions do not depend on the nature of 

TCR complex, but rather the signal strength of the TCR (9). This model predicts that 

stronger and sustained signals lead to the generation of #$ T cells and that weaker and 

transient signals generate the "! T cell lineage (24, 25). In addition to #$ T cells, other 

unconventional lineages develop from the DP cells in the thymus, including the forkhead 

box P3 (Foxp3)
+
 CD4

+
 CD25

+
 T regulatory (Treg) cells and the innate -like CD4

+
 and 

CD8
+
 CD1d-specific natural killer T (NKT) cells (26, 27). Other cell lineages that 

develop from DP precursors include lymphocytes that express CD8"" homodimers 

instead of the conventional CD8"! heterodimers; these home to the gut tissue and are 

known as intraepithelial lymphocytes. The unconventional CD8
+
 cells and the NKT cells 

are referred to as  “innate-like lymphocytes”, as they acquire effector functions during 

their maturation in the thymus rather than in the periphery after activation (28). Unlike 

the selection of conventional "! TCR T cells that occurs by the recognition of classical 

MHC class-I and class-II molecules expressed on cortical thymic epithelial cells, the 

selection of innate-like lymphocytes occurs through interactions with molecules 

expressed on hematopoietic cells (29-34). Therefore, the thymus serves as a central site 

for the maturation of a variety of lymphocytes that eventually migrate into the peripheral 

organs. 
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C. T cell maturation and emigration 

It was initially believed that, after positive selection, SP thymocytes reside in the 

thymic medulla for 2 weeks before they emigrate out of the thymus (35, 36). This lengthy 

residency period was suggested to serve as an additional checkpoint for the induction of 

tolerance where selected thymocytes survey tissue specific antigens (TSAs) presented by 

the medullary thymic epithelial cells (mTEC) (37). During this period, immature SP 

thymocytes undergo sequential phenotypic and functional maturation that results in 

remarkable heterogeneity of the SP thymocytes at different stages of maturation (38, 39). 

Expression of CD69 and CD24 on early immature SP thymocytes (heat stable antigen; 

HSA), is gradually downregulated in a sequential manner and the expression of CD62L, 

!7 integrin and Qa2 (non-classical MHC class I) is upregulated (40). Consequently, the 

most mature cells (CD69
-
 CD24

- 
Qa2

hi
) possess the maximum proliferative capacity and 

have been shown to produce cytokines, such as IFN-", TNF and IL-2 (CD8
+
 SP 

thymocytes) upon phorbol myristate acetate (PMA) and ionomycin stimulation when 

compared to the least mature cells (CD69
+
 CD24

hi
 Qa2

-
)(38). 

Early studies on thymic emigration tracked thymocytes using techniques such as 

intra-thymic injection of fluorescein isothiocyanate (FITC), bromodeoxyuridine (BrdU) 

labeling or detection of non-replicative TCR rearrangement excision circles (TRECs) that 

are formed as byproduct of TCR gene rearrangements (41). These studies proposed that 

SP thymocytes required 2 weeks of residency before they emigrate. Recently, the Rag2 

(green fluorescent protein) GFP mouse model has been developed to allow the study of 
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thymic emigration in an unmanipulated setting (41). In the Rag2 GFP mouse model, GFP 

is expressed under the control of the Rag2 promoter such that the SP thymocytes are 

GFP-positive. The emigration process was thought to occur via a stochastic mechanism 

whereby some medullary SP thymocytes leave early and others leave late by a “lucky 

dip” process (42, 43). Through the use of the Rag2 GFP mouse model, it was revealed 

that naïve thymocytes emigrate from the thymus 4-5 days after becoming SP thymocytes 

via a strict “conveyor belt” mechanism where the most mature thymocytes leave first 

(43). After the final stages of differentiation, SP thymocytes enter the lymphatics and the 

blood vessels and are exported into the periphery at a rate of 1 to 2% of thymocytes per 

day (44).  

 It was proposed during the 1970s that the maturation of SP thymocytes is not 

completed within the thymus and that cells are required to migrate into the periphery to 

become fully mature (45). Studies done with the Rag2 GFP mouse model has confirmed 

that SP thymocytes continue to undergo post-thymic maturation (41). Rag2 is expressed 

by thymocytes, but this expression is shut down after successful recombination of the 

TCR.  However, GFP expressed by thymocytes in Rag2 GFP mice is stable and can be 

used to detect recent thymic emigrants. The level of GFP decays gradually in the 

peripheral T cells, allowing the GFP intensity to identify T cells at different stages of 

post-thymic maturation. The GFP
hi 

T cells indicate cells that have resided in the periphery 

for 0-7 days, GFP
lo 

T cells indicate cells that have resided in the periphery for 7-14 days 

and GFP
neg

 T cells have joined the MN T cell pool (> 14 days in the periphery) (41). 

These and other studies have revealed that post-thymic maturation of emigrating 
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thymocytes, both phenotypically and functionally, occurs in secondary lymphoid organs 

(3, 41). Additionally, CD8!"+
 TCR!" recent thymic emigrants can also home directly to 

the epithelium of the small intestine, where they have been shown to undergo 

differentiation and proliferation. The gut environment serves as another environment 

where RTEs can undergo further education and maturation (46). Collectively these 

findings show that thymic maturation and emigration of lymphocytes is a tightly 

regulated process that ensures a homeostatic maintenance of the peripheral T cell pool 

(47). 

D. T cell activation and signaling 

Activation of T cells begins when a T cell receptor engages its cognate peptide-

MHC complex on an antigen-presenting cell. This is a universal first signal that T cells 

respond to, whether it is during positive selection, negative selection in the thymus or 

when naïve T cells in the periphery respond to cognate antigenic ligands during the 

initiation of an immune response. Depending on the strength of TCR engagement and the 

stage of development, distinct downstream signaling cascade events are initiated that 

determine the biological outcome of the response. In addition to signal 1, T cells also 

require an augmenting second signal or co-stimulation that is mediated by accessory 

surface molecules. Thirdly, the presence of pro-inflammatory cytokines in the milieu also 

influences the programming of the responding T cells. In this section, the importance of 

the three-signal model for T cell activation is discussed.  
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Signal 1: TCR-peptide MHC interaction 

The TCR recognizes proteolytically processed peptides (8-15 amino acids) 

presented in the context of self-MHC complexes on the surface of antigen-presenting 

cells (48). The enigma of TCR recognition of antigen in a self-MHC restricted manner 

was analyzed at the atomic level in 1996 when Garboczi and colleagues showed the 

crystal structure of a human !"TCR in complex with a histocompatibility antigen (HLA-

A2) molecule presenting a peptide derived from the HTLV-1 Tax peptide (49). This was 

the same year when Rolf Zinkernagel and Peter Doherty were awarded the Nobel prize in 

Medicine for their ground breaking discovery in 1974, demonstrating that cytotoxic T 

cells lysed virus-infected target cells in a self-MHC restricted manner (50, 51). At this 

point in time however, the mechanism of TCR recognition was not clear, although they 

proposed the term “altered self” recognition by the TCR.  In the following years several 

significant discoveries were made, such as the resolution of TCR complex as a 

heterodimer composed of ! and " chains, as discovered by Mark Davis and other labs 

(52), studies that ruled out intact viral antigen expressed on the cell surface as a part of 

the ligand recognized by the TCR (53, 54) and work by Townsend and colleagues that 

showed that exposure to short peptide sequences can sensitize cells to be lysed by CTLs 

(55, 56), and studies that showed the crystal structure of human HLA class-I with a cleft 

that could accept peptides of 8 to 10 amino acids. Together, these pioneering studies 

paved the way to the final resolution of the TCR-peptide-MHC complex in 1996 (57-59). 
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The TCR complex is comprised of two subunits, namely the antigen binding 

subunit consisting of the ! and the " chains and the signal transduction subunit consisting 

of the CD3#, $, % and & chains that offers the primary intracellular signal (48, 60). The 

signal from the TCR is emanated downstream through phosphorylation of CD3#, $, % and 

& chains by Src kinases proximal to the TCR, namely, Lck and Fyn (48, 61). Once 

activated, the Src kinases recruit ZAP70 to the immunoreceptor tyrosine-based activation 

motif (ITAM) (48). Following its attachment to the ITAM motif, ZAP70 is 

phosphorylated by Lck and is activated (62). Additionally, ZAP70 and Lck also interact 

with each other, resulting in sustained ITAM phosphorylation that leads to the 

recruitment of additional ZAP70 molecules and kinases such as IL-2 inducible T cell 

kinase (ITK) (63). The stoichiometry of ITAM phosphorylation has been shown to be 

directly proportional to the affinity of the TCR for it peptide ligand (64, 65). This may be 

particularly instrumental in the discrimination of signals emanating downstream of the 

TCR binding to ligands with different affinities during selection in the thymus or while 

responding to pathogens in the periphery (66). The activity of Lck is believed to be 

controlled by CD45, a tyrosine phosphatase that associates with CD4 co-receptor that is 

attached to Lck (61). CD45 dephosphorylates Lck leading to changes in the conformation 

and activation of Lck (61). 

Kinases such as Lck, ZAP70 and tyrosine protein kinases such as Tec kinases are 

involved in the phosphorylation of two adaptor proteins, namely linker of activation of T 

cells (LAT) and SH-2 domain containing leukocyte protein of 76kDa (SLP-76) (61, 67). 

LAT is a type-III transmembrane protein that serves as a docking site for several sarcoma 
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(Src)-homology domain (SH2) proteins such as phospholipase C-!1  (PLC-!1) and 

phosphoinositidyl kinase-3 (PI-3K). LAT also stabilizes SLP-76 binding to the complex 

via proteins such as glutamic acid decarboxylase proteins (GADs). SLP-76 recruits a tec 

kinase that phosphorylates PLC-!1 (61). This in turn leads to the activation of PLC-!1, 

which then cleaves phosphotidyl inositol-4,5 biphosphate (PI-4,5-P2) into inositol-1,4,5 –

trisphosphate (IP3) and diacylglycerol (DAG). IP3 signaling leads to the release of Ca2
+
 

from the endoplasmic reticulum storage sites followed by an influx of external Ca
2+

 

through Ca
2+

 release-activated Ca
2+

 (CRAC) channels. The increase in Ca2
+
 leads to the 

activation of calcineurin, a calcium-calmodulin-dependent serine phosphatase that 

dephosphorylates nuclear factor of activated T cell (NFAT) transcription factor and leads 

to its nuclear translocation and the activation of transcription of cytokine genes such as 

interleukin-2 (IL-2) (68). TCR ligation also results in the activation of rat sarcoma 

(GTPase) (Ras). The Ras pathway is controlled by guanine exchange factors (GEFs), 

which activate Ras. Activated Ras complexes with Raf-1, a serine threonine kinase, and 

this interaction leads to the activation of the extracellular signal activated kinase (ERK) 

cascade involving several mitogen activated protein kinases (MAPKs). Once ERK is 

activated it leads to the activation of transcription factors activator protein-1 (AP-1) for 

the regulation of cytokine genes, such as IL-2 (61). GEFs regulates Ras pathway by 

activating GTPase–activating proteins that stimulate the intrinsic GTPase activity of Ras 

and lead guanosine triphosphate (GTP) hydrolysis and Ras inactivation (61). PI-3 kinase 

is another molecule that is recruited to LAT. It is involved in the phosphorylation of PI-

4,5 P2  and PI-4P to PI-3,4,5-P3 and PI-3,4 P2, respectively (61). These molecules further 
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interact with proteins such as PLC-! and help retain them at the membrane (61). 

Additionally, PI-3 kinase is involved in the activation of serine-threonine, protein kinase 

B (PKB also called Akt) which plays a role in cell survival (69). 

Signal 2: Co-stimulation 

 The second signal that T cells require for activation is a non-specific positive 

signal that is initiated by the interaction of co-stimulatory molecules between the T cells 

and antigen-presenting cells. CD28 was one of the first co-stimulatory molecules to be 

identified (70, 71). TCR engagement in the absence of CD28 signaling results in abortive 

activation of T cells leading to anergy (70, 71). Binding of CD28 to its ligands (B7-1 and 

B7-2) on the antigen-presenting cell leads to optimal T cell signaling events that trigger 

IL-2 production, clonal expansion and generation of effector and memory T cells (71, 

72). Following the identification of CD28 mediated co-stimulatory pathway, another 

structurally related molecule named cytotoxic T lymphocyte antigen-4 (CTLA4) was 

discovered (73). In contrast to CD28, CTLA-4 binds to B7-1 and B7-2 with much higher 

affinity and offers an inhibitory signal to the T cells. Recently, other co-stimulatory 

molecules related to CD28 family have been discovered, including the inducible co-

stimulator (ICOS)-ICOSL, and the programmed death (PD)-PD-L1/PD-L2 pathway (72). 

Similar to CD28, ICOS is a positive co-stimulatory signal induced upon T cell activation 

and is predominantly dependent upon CD28 co-stimulation (74). ICOS-ICOSL signaling 

results in the upregulation of CD40L by T cells that in turn stimulates the expression of 

B7-1 and B7-2 molecules on antigen-presenting cells (APCs) that provide a positive 
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feedback loop in sustaining CD28 co-stimulation (72). In contrast, the (PD)-PD-L1/PD-

L2 pathway is a negative co-stimulatory pathway that has been shown to play a role in 

self-tolerance. PD-1 is expressed on activated CD4
+ 

T cells, CD8
+ 

T cells, B cells, natural 

killer (NK) cells and macrophages (75). PD-L1 and PD-L2 are expressed by activated 

APCs and endothelial cells and constitutively expressed on parenchymal cells of non–

lymphoid organs such as heart, kidney and pancreas (76-78). The role of PD-1 in self-

tolerance is evident in PD-1 deficient mice, which exhibit an autoimmune phenotype with 

lupus like-glomerulonephritis and progressive arthritis (79). 

 Ligation of the CD28 co-stimulatory receptor augments the TCR signal by 

association with proximal tyrosine kinases such as Lck, Tec and ITK thereby increasing 

the generalized protein-tyrosine phosphorylation downstream of the TCR (80-82). 

Additionally, the CD28 signaling activates nuclear factor ! light chain enhancer of 

activated B cells (NF!B) and c-Jun NH(2)-terminal kinase (JNK) cascades, which 

stimulate IL-2 production (61). The activation of NF!B downstream of CD28 is believed 

to occur via the activation and phosphorylation of inhibitor of NF!B (I!B) kinase" 

(IKK") by protein kinase C# (PKC#) (83). The activation of the IKK complex ($," and 

noncatalytic subunit %) leads to the subsequent phosphorylation and degradation of I!B$ 

and I!B", and the nuclear translocation of NF!B (61). The inhibition of PKC# results in 

abrogation of NF!B activation and consequently IL-2 production (61, 83).  Another 

target of activation for the NF!B pathway is the B cell lymphoma extra-large (Bcl-xL) 
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promoter, which contains a NF!B response element. NF!B activation increases 

expression of Bcl-xL, which enhances survival of T cells during activation (84, 85). 

 In addition to the CD28:B7 family of co-stimulatory molecules, members of the 

TNF-TNFR superfamily members have also been shown to play a vital co-stimulatory 

role during T cell activation. These include the CD40-CD40L, OX40-40L, 4-1BB-4-

1BBL, CD27-CD70, CD30-CD30L and HVEM (herpes-virus entry mediator)-LIGHT 

(Lymphotoxin like inducible protein that competes with glycoprotein D for HVEM on T 

cells) members (86). CD40 is constitutively expressed on B cells, DCs, macrophages and 

thymic epithelium and is induced on endothelial cells and fibroblasts (87). CD40L 

(CD154) on the other hand, is expressed on activated T cells, NK cells and eosinophils. 

The binding of CD40L to CD40 initiates signaling in the APCs that in turn augments 

antigen presentation by the APC and enhances T cell activation (72). CD27 and HVEM 

are constitutively expressed on naïve T cells and are believed to play a role during early T 

cell activation (88, 89). Upon activation, CD27 expression is upregulated, reaching peak 

levels by 24 hours (90). HVEM, on the other hand, is downregulated after activation and 

is re-expressed when T cells reach the resting memory phase (86, 89). The expression of 

OX40, 4-1BB and CD30 is induced on activated T cells by the CD28-B7-1/B7-2 

(CD80/86) co-stimulatory pathway (86). Similar to the co-stimulatory receptors, 

expression of the ligands, including OX40L, 4-1BBL, CD70 and CD30L is also induced 

by 24 hours on activated T cells and lasts for several days after activation, suggesting that 

these signals function during an ongoing response (86). CD70 is expressed in thymic 

epithelium and B cells whereas OX-40L, 4-1BBL and CD30L are expressed on activated 
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dendritic cells (DCs) and B cells (72, 86).  In contrast, LIGHT is expressed on immature 

DCs and its expression is downregulated upon activation. 

 The downstream signaling via CD40, HVEM, CD27, 4-1BB and CD30 receptors 

have similar features. These co-stimulatory receptors bind TNFR associated factors 

(TRAFs), which serve as adaptor proteins. TRAF2 is a crucial adaptor protein that is used 

by all the TNFR molecules (86). The 3 major signaling cascades that are initiated 

downstream of TRAF2 involve the JNK and the AP1 (Fos/Jun) transcription factor, 

NF!B and the PI-3 kinase/PKB (Akt) signaling pathways. Activation of these pathways 

results in the up-regulation of anti-apoptotic molecules such as Bcl-2 and Bcl-xL and the 

induction of cytokines such as IL-2, IL-4 or IFN-" (86). Therefore both the CD28 and 

TNFR family co-stimulatory molecules share several of the downstream signaling 

pathways that are vital for optimal T cell activation. 

Signal 3: CD4
+
 T cell help and cytokines  

In addition to signal 1 (TCR) and signal 2 (co-stimulation), naïve CD8
+
 T cells 

are now believed to require a third signal for the optimal generation of effector and 

memory T cells, either as CD4
+
 T cell help or as the production of inflammatory 

cytokines (91). CD4
+
 T cell help is critical early during the activation of CD8

+
 T cells in 

order to generate functional memory (92). It was later shown that “helpless” memory 

CD8
+
 T cells produce TRAIL (tumor-necrosis factor-related apoptosis inducing ligand) 

upon restimulation, which mediates AICD of the responding memory population (93). 

CD4
+
 T cell help to T cells is thought to occur via two pathways. One pathway is through 
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interactions of CD40L expressed on the CD4
+
 T cell and CD40 expressed on the DCs. 

CD40 engagement on the APC enhances the expression of co-stimulatory molecules that 

in turn enhance activation of naïve CD8
+
 T cells (92). The second pathway is by the 

production of IL-2 by the CD4
+
 T cells. (91, 94-96). Studies in mice deficient in IL-2 

revealed that although the initial division of CD8
+
 T cells occurred in a IL-2 independent 

manner, IL-2 was required for sustained expansion of CD8
+
 T cells (97). Additionally, 

studies by William and colleagues showed that secondary responses were impaired in 

CD25-deficient CD8
+
 T cells, which cannot bind IL-2 with high affinity (98). The defect 

in memory T cells was rescued when mice were administered IL-2 and IL-2 specific 

antibody complex at the time of immunization and not during rechallenge (98, 99). These 

studies suggest that IL-2 signaling is vital for CD8
+
 T cell activation during the primary 

phase for optimal memory generation.  

The importance of cytokines as a third signal for T cell activation was first 

demonstrated with in vitro studies where the addition of IL-12 and type-1 IFN along with 

artificial APCs (class-I MHC/peptide complex on the surface of cell sized microspheres 

along with B7 ligands) stimulated a strong clonal expansion and cytolytic function of 

naïve T cells (100-102). The engagement of TLRs (by adjuvants) on antigen presenting 

cells triggers the production of type1-IFNs or IL-12 that in turn can provide the additional 

signaling needed for T cell activation (103, 104). Studies have demonstrated that T cells 

deficient in the cytokine receptors for Type I-IFNs and IL-12 show reduced expansion 

during infection (105-107). The molecular mechanisms behind the action of these 

cytokines on T cell responses is thought to be due to increased expression of pro-survival 
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molecules, such as Bcl-3 (108). In line with this, it is known that Type-1 IFNs induce the 

production of the !c cytokine IL-15 by DCs that are receptive to IL-15 (109). 

Additionally naive T cells also express IL-15R (110). Therefore it can be speculated that 

signaling of IL-15 on DCs and naïve T cells can optimize T cell activation (110).  

E. T cell programming for optimal effector and memory generation 

T cell responses in secondary lymphoid tissues occur in 4 stages, namely priming 

of naïve T cells, clonal expansion of effectors followed by a contraction phase and finally 

memory generation. The nature of the magnitude and quality of T cell responses 

generated by exposure to antigen are dependent upon various factors including the 

context in which T cells recognize an antigen (level of co-stimulation and inflammatory 

cytokines), the abundance of antigen and the duration of antigen exposure (111). CD4
+
 

and CD8
+
 T cells exhibit varying degrees of dependence on co-stimulation. For example, 

the absence of CD28, CD154 (CD40L) or OX-40 has shown to impair CD4
+ 

T cell 

responses but cause only a modest effect on CD8
+
 T cells (112). On the other hand 4-

1BB is required for CTL responses but not for CD4
+
 T cells (111, 113). The differential 

requirement for co-stimulatory molecules by CD4
+
 and CD8

+
 T cells suggests that CD4

+
 

and CD8
+
 T cells may have different thresholds of activation that may be influenced by 

both intrinsic and extrinsic factors (111). The duration of antigenic signal is an additional 

factor that can influence the generation of T cell responses. Studies have shown that 

naïve CD4
+
 T cells require at least 6 hours of antigenic stimulation in the presence of co-

stimulation for commitment to proliferation and at least 24 hours in the absence of co-
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stimulation (114-116). For CD8
+
 T cells, 2 to 24 hours of exposure to the antigen can 

enable them for 7-10 cell divisions (117). During the initial stages of activation, T cells 

require extended contact with antigen-presenting cells in the secondary lymphoid tissues 

(118). Two photon microscopy studies have revealed that the priming stage can be 

broadly classified into 3 successive phases. In phase one, T cells undergo short 

encounters with DCs for up to 8 hours, during which time they lose their motility and up-

regulate activation markers (118). This is followed by long-lasting stable interactions 

with DCs that can last for 12 hours as T cells begin to secrete cytokines such as IL-2 and 

IFN-! (118). Over the next 24 hours, T cells gain the capability to proliferate and exhibit 

high motility (118). It was determined that an initial short encounter of naïve CD8
+
 T 

cells with antigen was sufficient to program the daughter cells to proliferate in the 

absence of further stimulation (117). Collectively, these studies suggest that once a 

certain threshold of activation has been attained during the initial period of priming, naïve 

T cells embark on a proliferative response where they differentiate and clonally expand in 

a programmed fashion (111).  

The next phase of an immune response is the effector phase where activated T 

cells migrate to various tissues to remove virus-infected cells by producing effector 

cytokines such as TNF and IFN! and IL-2 and also exhibit cytolytic functions associated 

with the production of perforin and granzyme-B (119). With respect to the memory T cell 

generation, effector T cells are distinguished into two broad populations. One population 

is referred to as the memory precursor effector cells (MPECs) that is destined to persist 

into memory, and the other population is referred to as short lived effector cells (SLECs) 
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that do not survive into long-term memory. Of the many markers used to distinguish 

these populations, killer cell lectin-like receptor G1 (KLRG1) and IL-7R have become 

the standards where MPECs are identified as KLRG1
lo

 and IL7R
hi

 and SLECs are 

identified as KLRG1
hi

 and IL-7R
lo 

(120-122). However, this distinction between MPECs 

and SLECs using KLRG1 and IL-7R is not always absolute, as other studies have shown 

that some KLRG1
hi

 IL-7R
lo

 do persist into memory and some memory cells express both 

KLRG1
 
and IL-7R (120, 121). A recent study demonstrated a role for pro-inflammatory 

cytokines such as IL-12 in determining whether activated CD8
+
 T cells develop into 

SLECs or MPECS. The levels of IL-12 produced during the immune response were 

shown to control the expression of the transcription factor T-bet, with high levels driving 

the development of SLECs and low levels favoring MPECS (121). These findings 

suggest that the cytokine milieu can also influence the fate of effector T cells during an 

immune response. 

The effector phase is followed by a contraction phase where 90 to 95% of cells in 

the spleen undergo programmed cell death leaving a small population of cells that persist 

into memory. Several studies have suggested that the contraction phase is programmed 

early after infection and is not influenced by the duration of antigenic stimulation. In 

experiments with Listeria monocytogenes, where infected mice were treated with 

antibiotics two days after infection to reduce the antigen load, neither the onset or 

magnitude of T cell contraction was significantly different as compared to control 

infected animals (123). Additionally, the contraction phase during LCMV infection was 

independent of the magnitude of expansion, dose and duration of infection or amount of 
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antigen displayed (123). Several molecular mechanisms have been studied for a role in 

regulating the contraction phase. Studies using P14 TCR transgenic T cells deficient in 

TNFR1 and CD95 (both molecules required for activation induced cell death) have 

shown that both these molecules are dispensable for T cell contraction during a viral 

infection (124, 125). On the other hand, the absence of BIM  (Bcl-2 interacting mediator 

of cell death) results in defective contraction of activated T cells (126, 127). BIM 

mediates the apoptosis of IL-7R
lo

 effector T cells during a viral infection (128, 129). 

While some antigen-specific T cells  (GP33 and GP276) do undergo contraction during 

an LCMV infection of BIM deficient mice, other epitope-specific responses do not 

contract, such as NP396-specific CD8
+
 T cells, suggesting the existence of other 

mechanisms controlling contraction phase (130). Supporting this idea, recent studies on 

Fas and BIM double-deficient mice revealed there was 100-fold more accumulation of 

antigen-specific memory CD8
+
 T cells in Fas-BIM double-deficient mice compared to 

their WT counterparts after LCMV infection, suggesting a combined effect of these 

molecules during the contraction phase of an immune response (131). 

The cells that survive the contraction phase enter the memory pool. Memory T 

cells are a heterogeneous population of cells that require IL-7 and IL-15 for their survival 

and maintenance (110). Memory T cells are classified into two types of cells, namely 

CD62L
lo

 (Cysteine-Cysteine) C-C Chemokine Receptor-7 
lo

 (CCR7
lo

) effector memory 

and CD62L
hi

 CCR7
hi

 central memory T cells, and these 2 subsets have distinct homing 

properties (91). On one hand, central memory T cells primarily localize to secondary 

lymphoid tissues, and have low cytolytic function and migratory potential. In contrast, 
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effector memory T cells reside in non-lymphoid tissues, are cytolytic and exhibit 

circulatory potential (132). Studies in IL-12- deficient and T bet-deficient mice show that 

effector cells rapidly acquire memory characteristics, suggesting that the early production 

of inflammatory cytokines can influence the rate at which memory is generated (133, 

134). 

Several models for differentiation of effector and memory cells have been 

proposed that are not mutually exclusive. One of the simplest of the models is the 

uniform potential model, which proposes that all effector cells are homogenous with 

equal memory potential. Extrinsic factors such as growth factor withdrawal will 

determine the number of cells that enter memory (135, 136). The second model is the 

decreasing potential model that predicts that a shorter duration of antigenic stimulation 

leads to the formation of MPECs that give rise to central memory T cells whereas longer 

stimulation leads to terminal differentiation of effector T cells that lose memory potential 

(136). The prediction for this model is that the process will create heterogeneity in the 

effector T cell pool. The third model is the fixed lineage model, which predicts that T 

cells commit to either effector or memory phenotype early during activation. In this 

model, memory T cells are mature and can bypass the need to become effectors by 

directly entering the memory T cell pool (136). Supporting this model, it was shown that 

asymmetric first division of daughter T cells could determine the fate of the responding T 

cell with the proximal T cells becoming effector cells and the distal ones becoming the 

memory T cells (137). The fourth model is the fate commitment and progressive 

differentiation model, which suggests that the strength of signal determines the fate of T 
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cells during early activation. The MPECs acquire effector functions but also retain the 

ability to become SLECs and those that survive become central memory T cells (136).  

The SLECs undergo apoptosis and a few that survive become end-stage T effector 

memory T cells (136).  More recently two studies used in vivo transfer of single naïve 

CD8
+
 T cells and of naïve T cells with distinct genetic tags (barcodes generated by 

transduction of OT-1 thymocytes with retroviral library with nearly 3500 unique genetic 

tags and GFP) methods to decipher the developmental potential of naïve T cells (138, 

139). These studies support a model that one naïve T cell has multiple fates and that it 

can differentiate into both effector and memory T cells and is not determined by the 

nature of priming antigen presenting cell or the duration of the priming (138, 139). 

F. Role of TNF superfamily members in T cell immune regulation and homeostasis 

 Historical landmarks in the discovery of TNF/TNFR superfamily members  

The tumor necrosis factor (TNF)/TNF receptor superfamily is a collection of 

ligands and receptors that are key mediators in the regulation of immune responses (140, 

141). The action of TNF was first described by P.Bruns, a German physician who 

observed the regression of tumors in humans after a bacterial infection (141). Later, 

W.Coley used bacterial toxins for the treatment of human cancers (142). In 1944, LPS 

isolated from bacterial extracts was shown to be sufficient to mediate tumor regression 

(141, 143), Following this, in 1962, the role of LPS in the regression of the tumors was 

shown to be indirect and mediated by the induction of a serum factor named “tumor 

necrotizing factor”(144). Subsequently, in 1975, activated macrophages were also 
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described to be a source of this cytotoxic factor and the group renamed it as “tumor 

necrosis factor”(145). In 1983, it was found that even B lymphoblastoid cell lines were 

capable of producing TNF (146).  

In 1968, both Granger and Ruddle discovered that lymphotoxins (LTs) were 

produced by lymphocytes and could kill tumors (147-150). In 1985, the amino acid 

sequences of TNF and LT were described to be homologous by Aggarwal et al (151, 

152). Later, it was found that TNF and LT also share functional homology (153) in their 

ability to bind common receptors (TNFR1 and TNFR1) which led to renaming TNF as 

TNF! and LT as TNF" (141). It was discovered that LPS induced cachexia (wasting) 

was mediated by murine TNF! (154). Subsequently, Takeda and coworkers discovered 

that the TNF was the myeloid differentiation factor as well (155). Since then numerous 

molecules belonging to the family of TNF and LT (ligands for the TNFRs) have been 

discovered, and they have both unique and redundant roles in the immune system.  

TNF-TNFR family and signaling 

The TNF superfamily is comprised of at least 19 different ligands, including 

FasL, TRAIL, CD70, CD30L, CD40L, 4-1BBL,OX40L and LIGHT (141). With the 

exception of LT! and vascular endothelial cell-growth inhibitor (VEGI), all of the TNF 

ligands are type II transmembrane proteins with the carboxy terminus localized in the 

extracellular domain, the amino-terminus in the intracellular domain and containing a 

single transmembrane domain (141). The extracellular domain is referred to as the TNF 

homology domain and has 20 to 30% homology among the superfamily members. 
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TRAIL and FasL have the highest homology to TNF among all the TNF members and 

like TNF can induce apoptosis (141). All TNF family members form either soluble or 

membrane-bound homotrimers or trimerize with other members of the TNF family 

(LT!1"2 for example)(156).  

There are 29 receptors that belong to the TNF receptor superfamily (141), 

including TNFR1/2, Fas, TNF –related apoptosis-inducing ligand receptor (TRAIL-R), 

LT"R, receptor activator of NF#B (RANK), CD27, CD30, CD40, 4-1BB and OX40. The 

receptors in this family are all type-1 transmembrane proteins with the carboxy-terminus 

localized to the intracellular domain and the amino-terminus in the extracellular domain. 

One of the hallmark features of the TNFR superfamily is the presence of cysteine rich 

domains (CRDs) in the extracellular domains (157). The most common structure of the 

TNFR family consists of 3 CRD repeats (TNFR1 and TNFR2) but structures up to 6 

repeats (CD30) can also be found(157). The TNFR superfamily members preassemble on 

the surface of the cell prior to ligand binding, and this process requires the presence of 

the N-terminal domain called PLAD (preligand assembly domain) that is distinct from 

the domain required for ligand binding (141, 158). Some of the receptors such as Fas, 

TNFR1, TRAILR1, TRAILR2 and TRAILR4 contain the “death domains (DD)” in the 

cytoplasmic domain, while the other receptors such as TNFR2 do not (157). As described 

earlier, almost all the TNFRs including TNFR1, TNFR2, and CD40 bind to TRAFs, 

which can stimulate the activation of NF#B and JNK pathways (described above)(141). 

In the next section, I shall discuss the down stream signaling of TNFR1, TNFR2 and Fas. 
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TNFR1 is a 60 kDa protein that is expressed on most cell types and binds its 

ligand TNF (26 kDa transmembrane protein that can also be cleaved into a 12 kDa 

soluble TNF by metalloproteases) (159, 160). When TNF binds TNFR1, it triggers the 

association of complex I, which includes a death domain containing protein, TNFR-

associated death domain (TRADD) that recruits kinase receptor interacting protein 1 

(RIP1), cellular inhibitor of apoptosis (cIAP1) and TNF receptor associated factor 2 

(TRAF2) (161). TRAF2 stabilizes the cIAP proteins and prevents their autoubiquitination 

(161). The formation of complex-I leads to the activation of NF!B and MAPK pathways. 

RIP1 is K63 polyubiquitinated by cIAP proteins, resulting in the assembly of protein 

complex consisting of transforming growth factor"- activated kinase 1 (TAK1) and 

TAK1 binding protein 2/3 (TAB2/3) (161). This leads to the activation of the inhibitor 

!B kinase (IKK complex) that promotes NF!B activation. NF!B then translocates into 

the nucleus and induces the expression of genes required for cell survival and also 

initiates a negative feedback loop by up-regulating deubiquitinases of RIP1 (A20 and 

CYLD)(161).   

Under certain conditions, for example when RIP1 is deubiquitinated, complex I 

dissociates from TNFR1 to form a cytosolic complex, or complex II (DISC, death 

inducing signaling complex) that involves RIP1 and RIP3, TRADD, Fas associated death 

domain protein (FADD) and caspase-8 (recruited by FADD)(161). This results in 

cleavage of RIP1 and RIP3 and initiates an apoptotic death pathway. Alternatively, 

during reduced caspase activity (treatment with pan-caspase inhibitors carbobenzoxy-

valyl-alanyl-aspartyl-[o-methyl]-fluromethylketone (Z-VAD) or in the presence of 
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SMAC mimetics that degrade cIAPs and prevent RIP1 ubiquitination) the cleavage of 

RIP1 and RIP3 is prevented that results in the sensitization of cells to TNF induced 

necrosis (161).  

Along with TNFR1, TNF also binds TNFR2, a 80 kDa protein that is expressed 

predominantly on lymphoid and blood endothelial cells and does not contain a death 

domain in its cytoplasmic tail (159). TNFR2 directly interacts with TRAF2 that in turn 

interacts with NF!B-inducing kinase (NIK), which is a member of the serine-threonine 

mitogen-activated protein kinase kinase kinase (MEKK) family. NIK phosphorylates 

IKK and activates the NF!B pathway (160). Additionally, the TRAF proteins are 

involved in the activation of JNK, p38, extracellular signal related kinase (ERK) and the 

PI3K pathways that lead to the induction of genes involved in the cell survival and 

proliferation in activated T cells (162).  Recent work has suggested that there is a degree 

of cross talk between the signaling pathways triggered from TNFR1 and TNFR2 (163). 

For example, during cell stress, TNFR2 signaling can lead to the induction of apoptosis 

via RIP1-mediated recruitment of FADD (163). Another study showed that TNFR2 

induced cIAP-mediated ubiquitination of TRAF2 (164). These studies suggest that both 

TNFR1 and 2 can participate in both cell survival and apoptosis depending on the context 

of activation. 

Fas (CD95) is 45 kDa type I cell surface protein that binds FasL (CD95L) a 40 

kDa type II surface protein (165).  Activation of Fas causes the rapid assembly of the 

death-inducing complex (DISC). During the formation of this complex, Fas recruits 
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FADD (Fas associated death domain) via homotypic death domain interactions (165, 

166). FADD in turn recruits capsase-8 via the DED (death effector domains) interactions. 

This causes a conformational change in caspase-8 in the DISC that allows the caspase to 

attain full enzymatic function (166).  Activated caspase-8 undergoes an auto-proteolytic 

cleavage and leads to formation of a heterotetrameric form of the caspase-8 that results in 

the cleavage of caspase-3 and -7 (166).  These executioner caspases lead to proteolysis of 

several cellular proteins, such as lamins and ICAD (inhibitor of caspase activated 

DNAse), which inhibits CAD (caspase-activated DNAse) that causes DNA fragmentation 

(166).  Caspase-8 can also cleave BID, another pro-apoptotic member of the Bcl-2 family 

that is involved in the mitochondrial death pathway (discussed later), ultimately leading 

to cell death. 

Biological Role of TNF during immune responses 

TNF, LT!, LT" belong to a subfamily of a larger family of the TNF ligands 

members, with their genes linked within a compact 12-kb cluster inside the MHC 

complex locus (167). TNF is initially synthesized as membrane-bound trimer that is later 

cleaved by various metalloproteases into a soluble form. Both the soluble and membrane 

bound forms of TNF are bioactive and mediate their effect via interacting with TNFR1 

(p55) and TNFR2 (p75) (141, 168-170). TNFR1 is expressed by most cell-types, but 

TNFR2 is expressed by cells of haematopoitic origin and binds to membrane bound form 

of TNF more efficiently than the soluble form. TNF is produced by both lymphoid and 

non-lymphoid cells (171). LT! and LT" are produced by activated lymphocytes, NK 
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cells and a population of CD4
+
 CD3

-
 cells and play a role in lymph node organogenesis 

and peyer’s patches (172, 173). LT!3 and TNF share the TNFR1 and 2 while LT!1"2 

signals via the LT"R (174).  

TNF has been shown to have very unique functions during an immune response, 

depending on the cellular source (175). Targeted knockout of TNF revealed that TNF 

produced by monocytes and neutrophils is pro-inflammatory and pre-dominantly 

provides resistance to intracellular pathogens such as Listeria, at low, moderate and high 

bacterial doses, while T cell-produced TNF was important for bacterial resistence at 

higher bacterial loads (175). TNF is also important for formation of B cell germinal 

centers and follicular dendritic cells (FDCs) and for effective B cell responses to Listeria 

infection (176). LT! and LT" are also shown to play a role in the development of lymph 

nodes and peyers patches and the organization of white pulp in the spleen (177-181). 

Mice with triple LT"/TNF/LT! gene deficiency show a more profound alteration in 

splenic architecture than their single deficient counterparts, suggesting the involvement 

of these cytokines in the development and maintenance of lymphoid organs (167).  

In addition to being a major inducer of inflammation during innate immune 

responses, TNF signaling also mediates immunomodulatory effects in adaptive immune 

responses (175). For example, TNF signaling plays a vital role in the generation of 

functional T cell responses to tumor antigens, DNA vaccines and recombinant 

adenoviruses (182-185). More specifically, signaling through TNFR2 but not TNFR1 has 

a synergistic role with CD28 co-stimulation, reducing the threshold of activation for 
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optimal IL-2 expression during the initial stages of T cell activation (182, 186-188). In 

contrast, a recent study showed that TNF signaling via TNFR1 has a positive co-

stimulatory role after early TCR engagement as TNFR1-deficient T cells showed delayed 

kinetics of proliferation at 72 hours and delayed upregulation of IL-2 and CD25 

expression (189). However, by 96 hours TNFR1-deficient T cells showed enhanced 

levels of cytokines such as TNF, IFN-! and IL-2, suggesting a suppressive role at later 

time points in activation. Other studies have suggested a suppressive role for TNF in the 

generation of T cell responses after infection of mice with LCMV. For example, higher 

frequencies of LCMV-specific CD4
+
 and CD8

+ 
memory T cells are detectable in mice 

with defective TNF signaling pathways (190-192). These studies together indicate that 

effects of TNF signaling on the induction of adaptive immune responses are dependent 

on the nature of the antigenic challenge.  

Deregulation of TNF signaling pathways has been implicated in the pathogenesis 

of several diseases, including rheumatoid arthritis (RA), Crohn’s disease (CD), 

inflammatory bowel disease (IBD) and multiple sclerosis (MS), and hence therapeutic 

agents that target and block the activity of TNF have been developed for clinical use 

(170, 182, 193-197).  Agents that block TNF activity such as the anti-TNF antibody 

(infliximab), and the human TNFR2-Ig fusion protein ENBREL (etanercept), are being 

used for the treatment of Crohn’s disease and Rheumatoid arthritis (141). In addition to 

TNF blockade therapies, TNF therapeutics for the treatment of sarcomas and melanomas 

have been approved (198, 199). Short-term strategies using TNFR2 agonists have shown 

promise in their ability to kill autoreactive T cells in the blood samples of patients with 
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Type-I diabetes (163). These studies suggest that the dual role of TNF in regulating 

immune responses.   

Role of Fas and FasL in immune responses 

Fas is predominantly known to be a death receptor that binds FasL and induces 

apoptosis. Recent studies have demonstrated that the membrane-bound FasL is essential 

for Fas-induced apoptosis (200). In the early 1990s, two Fas mutations (lpr and lpr
cg

) and 

a FasL (gld) mutation were discovered, with the mutant mouse strains developing 

lymphoadenopathy and systemic lupus erythematosus (SLE) (201) that result in the 

accumulation of CD4-CD8- T cells (202, 203). It was later found that human patients 

with autoimmune lymphoproliferative syndrome (ALPS) have heterozygous mutations in 

the fas gene (204, 205). These studies suggested that Fas-FasL pathways played a vital 

role in maintaining immune homeostasis. Recently it was demonstrated that Fas receptor 

expression on germinal center B cells is required for maintaining T and B cell 

homeostasis, and B cells have been shown to be crucial for the development of ALPS 

(206-208). The fas gene in the lpr mutant mice has an early transposable element 

(consisting of poly A tail sequences) inserted within intron 2 that leads to early truncation 

of Fas transcript and therefore is prematurely spliced (209). However, the lpr mutation is 

leaky, and full length Fas mRNA has been detected in the thymus and livers of lpr mice 

(209). The lpr
cg

 mutation, on the other hand, results in the expression of the full length 

Fas mRNA with a mutation (T to A) in the cytoplasmic tail region that in turn results in 

an amino acid change, from isoleucine to asparagine. This mutation abrogates the ability 
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of Fas to mediate death signals to the cells (209).  The gld mutation is also a point 

mutation (T to C) near the C-terminus of the coding region of FasL. This results in the 

change of phenylalanine to leucine that abrogates the ability of FasL to bind to Fas (209). 

The Fas-FasL pathway has an important role at immune privileged sites such as eye, 

testis, placenta, brain, ovary and pregnant uterus by inducing apoptosis in Fas+ T cells 

that infiltrate these sites (201). Although the Fas-FasL pathway is vital for apoptosis, a 

process vital for T cell development, lpr and gld mice show normal thymic development, 

suggesting that other apoptotic pathways exist during thymic selection (209, 210). In the 

periphery, the Fas-FasL pathway has been shown to play a role in AICD and also in 

CTL-mediated cytotoxicity (209). In addition to a role in apoptosis, other studies have 

shown positive roles for Fas-FasL during T cell activation and proliferation. For example, 

OT-1 transgenic FasL
neg 

CD8
+ 

T cells have a diminished antigen-driven expansion 

compared to the WT counterparts in response to OVA peptide immunization, suggesting 

a co-stimulatory role for FasL (211). However, recent studies with human T cells 

stimulated with !CD3 and !CD28 antibodies along with plate bound FasL inhibited the 

activation of naïve T cells (212). The discrepancy between the studies may reflect 

differences for activation in vitro and in vivo. Together, these studies indicate the 

important contribution of the Fas-FasL pathway in controlling immune homeostasis and 

potentially in regulating immune responses. 
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G. Programmed cell death 

Programmed cell death occurs under normal circumstances during various stages 

of development and aging to maintain overall homeostasis (213). Specifically with regard 

to T cell homeostasis, there are two main events during the lifetime of T cells that 

represent the quintessential examples of programmed cell death.  The first is during T cell 

development when T cells that fail to undergo productive rearrangements of their TCRs 

or cells that have a strong affinity to their self-ligands are removed by apoptosis (214). A 

second instance is during the contraction phase of an immune response where the 

majority of effector cells die by apoptosis, leaving a small population of cells that survive 

into memory (125, 214). 

Programmed cell death can be broadly classified into three forms, namely, 

apoptosis, necrosis and autophagy (161). The characteristic morphological features of 

apoptosis are cell shrinkage, dense cytoplasm, dense packing of intact organelles, 

chromatin condensation, membrane blebbing and formation of apoptotic bodies and DNA 

fragmentation (213). This process of death is non-inflammatory, as the apoptotic bodies 

are quickly engulfed by macrophages (213). The second form of cell death is called 

necrosis and is characterized by the swelling of the organelles such as endoplasmic 

reticulum and mitochondria and the eventual rupture of cell membrane (161). The third 

form is autophagy, characterized by the sequestration of the cytoplasm and organelles 

into double or multi-membrane vesicles and delivery to the lysosomes for degradation 

(213). The hallmark of apoptosis is that it is caspase-dependent, whereas necrosis is 
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caspase-independent (161). TNF–TNFR family members play an important role in the 

induction of apoptosis as well necrosis (213). In the next section, I will discuss the two 

pathways involved in apoptosis. 

Apoptosis can occur via two pathways, the extrinsic pathway and intrinsic 

pathway.  The extrinsic pathway requires the activation of a death receptor such as Fas, 

which triggers the formation of the DISC and the activation of caspase-8 and cleavage of 

downstream caspases such as caspases 3 and 7 (214). On the other hand, factors such as 

extracellular stress, growth factor deprivation, cytotoxic drugs or irradiation can trigger 

the intrinsic or the mitochondrial pathway of apoptosis (214). This process is regulated by 

the members of the Bcl-2 family that consists of prosurvival proteins such as Bcl-2, Bcl-

xL (bcl-2l1), Bcl-w (bcl-2l2), Mcl1 and pro-apoptotic members such BAX, BAK, BAD, 

BIM (214).  Upon activation, BIM can directly activate pro-apoptotic proteins BAX (bcl-

2 associated X protein) and BAK (bcl2 antagonist/ killer) that lead to the loss of 

membrane potential of mitochondria and the release of cytochrome c. The anti-apoptotic 

proteins Bcl-2 and Bcl-xL prevent the loss of mitochondrial membrane permeability by 

inhibiting BAX and BAK. BIM can also interact with Bcl-2 and mediate the activation of 

BAX and BAK. Cytochrome-c binds apoptotic protease-activating factor-1 (Apaf-1) and 

pro-caspase-9, forming an apoptosome in the cytoplasm. Formation of the apoptosome 

activates casapse-9 that cleaves caspase 3, 6 and 7. The executioner caspases then cleave 

cellular substrates such as Poly ADP-ribose polymerase (PARP), cytosketal proteins, 

NUMA (nuclear protein), lamins, gelsolin and ICAD (inhibitor of caspase activated 

DNase) and cause cell death (213). The extrinsic and the intrinsic pathways are not 
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mutually exclusive, and there is cross talk between both the pathways. For example, 

activated caspase-8 can also cleave BID that is involved in the mitochondrial death 

pathway (214). 

Of the several members involved in the extrinsic and the intrinsic pathways, Fas and 

BIM are recognized as two major regulators of apoptosis (214). As with Fas (lpr) mice, 

BIM deficient mice (129-B6 genetic background) develop autoimmunity due to 

accumulation of lymphocytes (215). Studies with HY transgenic thymocytes (at the DP 

stage) from male mice showed that absence of BIM abrogated their deletion, suggesting 

the role of BIM during negative selection (216). However, recent studies have indicated 

that although BIM expression is essential for the apoptosis of DP thymocytes, it was not 

required for negative selection (217). In the periphery, BIM but not Fas has been shown 

to be important for the contraction phase of an immune response during herpes simplex 

virus (HSV) infection (127). As mentioned earlier BIM and Fas can also play 

complimentary roles in inducing programmed cell death of T cells during the contraction 

phase after LCMV infection (131). 

H. Principles of self-tolerance: The default response 

“Immunological tolerance” is defined as a state of unresponsiveness to a particular 

antigen (67) . The function of immunological self-tolerance is to prevent an individual’s 

immune system from attacking and destroying self-tissues. Self-tolerance is established 

by two distinct phenomena, namely central and peripheral tolerance. “Central tolerance” 

occurs in the thymus. During T cell development, maturing T cells whose TCRs exhibit 
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strong affinity towards self-peptide MHC complexes pose a threat of becoming auto-

reactive and therefore are centrally eliminated by the process of negative selection (218). 

Thymic epithelial cells (TECs) and dendritic cells (DCs) mediate negative selection by 

presenting endogenous and exogenous self-antigens (218). Importantly, the expression of 

autoimmune regulator (AIRE) gene expressed in TECs enables the constitutive 

presentation of several tissue-specific antigens that would be otherwise absent in the 

thymus, thereby mediating self-tolerance (219, 220).  

Although, negative selection provides stringent scrutiny of T cells in the thymus, 

some self-reactive T cells do escape selection and reach the periphery. Therefore, the 

immune system has developed several T cell intrinsic and extrinsic mechanisms to 

maintain “peripheral tolerance” (67, 218, 221). Anergy and clonal deletion are two 

examples of intrinsic mechanisms of tolerance induction. Anergy is a state of non-

functionality induced by exposure to very high doses of chronic antigen, whereas 

exposure to low doses results in clonal deletion (218, 222). An additional intrinsic 

mechanism is the expression of negative co-stimulatory molecules such as CTLA-4 and 

PD1 by T cells that attenuate responses and aid in T cell homeostasis in the periphery. 

CTLA-4 deficiency in mice leads to massive lymphoproliferation and lethality (223, 

224).  This may be due to the lack of CTLA-4 expression on normal T cells as well as 

due to an impaired Treg population (225, 226). As mentioned earlier, PD1 deficiency on 

C57BL/6 background leads to development of lupus like arthritis and glomerulonephritis 

(67, 227-229). Thus, there are multiple intrinsic mechanisms to maintain peripheral T cell 

tolerance that prevents the activation of auto-aggressive T cells. 
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One of the primary extrinsic mechanisms in the maintenance of peripheral tolerance 

involves CD4
+
CD25

+ 
T regulatory cells (Treg) that suppress the activity of T cells. Treg 

cells are generated in the thymus and express the Foxp3 transcription factor that is crucial 

for their function and development (230). The absence of Tregs leads to the induction of 

numerous autoimmune conditions. Mutations in Foxp3 cause an autoimmune disease in 

humans called Immunodysregulation, Polyendocrinopathy Enteropathy, X-linked (IPEX) 

syndrome and is homologous to scurfy mutation in mice that develop severe 

lymphoproliferative disorders and exhibit inflammatory pathologies (231). The 

suppressive effects of Treg cells are not only mediated by cell contact but also by 

secretion of anti-inflammatory cytokines such as IL-10 (232). Additionally, absence of 

inflammation and exposure to dying cells leads to generation of tolerogenic immature 

antigen presenting cells (iDCs) that are also shown to suppress and anergize T cells 

(233). These findings indicate the existence of multiple and robust self-regulatory 

mechanisms that protect against autoimmune disease. 

I. Transplantation tolerance: An acquired response 

  The “Holy Grail” of transplantation immunology has been to efficiently exploit 

the mechanisms of self-tolerance and to extend this tolerance to transplanted non-self 

tissues. There are several features of transplantation tolerance that are synonymous with 

self-tolerance. For instance, both phenomena require tolerization to a diverse array of 

antigens (234). In the case of self-recognition, there are a plethora of self-peptides 

generated from self-proteins that are recognized by T cells in the context of self-MHC 
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complexes. During allo-recognition, alloreactive T cells recognize a variety of donor 

antigens presented to them by both donor and host antigen presenting cells. There are 

central and peripheral mechanisms that induce transplantation tolerance, in a manner 

similar to self-tolerance. Central mechanisms of tolerance include the deletion of 

alloreactive T cells when allogeneic cells are injected into the thymus or during bone 

marrow transplantation. Peripheral mechanisms include anergy, deletion, induction of 

Tregs and iDCs.  I shall discuss some these mechanisms in detail in this section. 

Mechanisms of acquired transplantation tolerance. 

As described above, phenomena that operate during transplantation tolerance 

harness the mechanisms of central and peripheral self-tolerance that maintain immune 

homeostasis. Our initial understanding of the mechanisms involved in the central 

tolerance to alloantigens came from the studies by Ildstad and Sachs in animals receiving 

bone marrow transplantation with T cell-depleted donor and recipient bone marrow cells 

after lethal irradiation (235). These bone marrow chimeric mice received solid organ 

transplants and showed prolonged graft survival. This observation highlighted the 

concept of central tolerance in mixed allogeneic chimeras where the presence of donor 

cells in the thymus leads to the deletion of donor-reactive T cells and the continued 

presence of donor cells within the thymus ensures permanent tolerance to donor antigens 

(236). Direct evidence of central deletion of alloreactive T cells was shown by 

intrathymic injection of allogeneic cells in combination with peripheral T cell depletion, 

which led to prolonged allograft survival (237-239). These studies incorporated the 
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treatment of the recipients with anti-lymphocyte serum to deplete the pre-existing mature 

alloreactive T cells in the periphery (240). Both of these studies emphasize the 

importance of strategies that induce tolerance to alloantigens in the recipient thymus. 

Strategies to induce peripheral tolerance include preconditioning of recipients with donor 

cells and blocking co-stimulatory molecules (such as CD40L or CD28) and the use of 

drugs such as cyclosporine and rapamycin that block mature T cell activation. The 

induction of peripheral donor tolerance includes three basic mechanisms, peripheral T 

cell deletion, inactivation and the induction of Treg cells. 

a) Ignorance 

Ignorance is a mechanism that occurs when alloreactive T cells fail to be primed 

when they encounter donor antigens outside secondary lymphoid tissues (241). This 

situation arises in mice that do not contain lymph nodes (LT-deficient) and that have been 

splenectomized, resulting in extended cardiac graft survival (242). This is, however, not 

one of the dominant mechanisms of tolerance, as alloreactive T cells have been shown to 

be activated in the allograft, and memory T cells, that do not require secondary lymphoid 

tissues, can be reactivated and mediate graft rejection (243, 244). 

b) Immune deviation 

Another less dominant mechanism revolves around the Th1 and Th2 paradigm. In 

animals as well in humans, rejection is correlated with Th1 cytokines such as IFN! and 

tolerance with Th2 cytokines such as IL-4 and IL-10 (245). However, recent data suggest 

otherwise. For example IFN!–deficient mice rejected cardiac transplants, and IL4-
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deficient mice accepted allogeneic islets and hearts (246-248). It was shown that IFN! 

conditioning of naïve CD4
+
 T cells ex vivo prevents their diversion to Th2 and results in 

the up-regulation of Foxp3 and CD62L and converts them into T regulatory cells that 

resulted in skin and islet graft acceptance (249). In another study using a cardiac allograft 

model, IFN! induced both the survival of Foxp3+ Tregs and also induced graft 

endothelial cells to make indoleamine 2,3-dioxygenase (IDO), which has a role in T cell 

apoptosis and anergy (250). These studies highlight an unexpected role for IFN! in the 

induction of Treg cells that is being considered as another potential therapeutic target. 

Some studies however, still show the importance of a Th2 cytokine environment for 

prolongation of allograft survival (245). For example, neutralization of IL-4 and IL-10 

resulted in the rejection of allografts in mice receiving anti-LFA1 and anti-ICAM-1 

blockade (251). Additionally, there was increased expression of IL-4 and IL-10 in 

surviving heart allografts of mice receiving anti-CD4 antibody treatment (252). In 

contrast, absence of IFN!R expression can shift the response of alloreactive CD4
+
 T cells 

into a Th2 pathway that can result in eosinophilic inflammation, which can cause tissue 

damage (253).  Overall these studies suggest that the effects of Th1 and Th2 cytokines on 

transplantation tolerance will be determined by the specific environment, the timing and 

the nature of the transplanted tissue. 

c) Anergy 

Alloreactive cells that escape deletion during tolerance induction are in many 

instances anergic or unresponsive. The critical downstream signaling events of the TCR 
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vital for productive T cell activation do not occur in anergic cells.  There is no activation 

of kinases such as Lck and ZAP-70 or phosphorylation of the CD3 ! and " chains (67). 

Concomitantly, there is no activation of Ras, ERK, and JNK MAP kinases, although 

phosphorylation of Fyn, increases in Ca
2+

 levels, phosphorylation of PLC-# and increased 

levels of phosphotidylinositol 1,4,5 triphosphate are reported to be normal (67). During 

anergy, Rap1 (another GTP binding-protein of the Ras family) is activated that is shown 

to inhibit IL-2 gene transcription (254). Anergic cells are also functionally unresponsive 

to IL-2 signaling and produce reduced levels of IL-2 (241, 255, 256). In addition, anergic 

CD4
+
 T cells can inhibit the maturation of DCs, thereby leading to tolerance (257). T cell 

anergy can be prevented in the presence of #c cytokines such as IL-2 (258). These studies 

indicate the role of cytokines in the reversal of a T cell from a state of unresponsiveness. 

d) Passive and active deletion 

The T cell pool size hypothesis predicts that during tolerance induction, the 

balance of the alloreactive T cells to Tregs determines if immunity or tolerance is the 

outcome.  The precursor frequency of alloreactive T cells may be as high as 1 in 20 

peripheral T cells (259). Hence the deletion of activated alloreactive T cells by apoptosis 

is considered to be an important event for the induction of tolerance. There are 2 forms of 

apoptosis that I have previously described. The passive cell death (PCD) process is also 

referred to as the intrinsic apoptotic pathway, while the activation-induced cell death 

(AICD) process is mediated by death receptors of the extrinsic pathway such as Fas. 

AICD is triggered in the presence of strong antigenic stimulation and is enhanced by IL-
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2. IL-2-deficient mice given co-stimulation blockade have defects in AICD and hence 

reject grafts (240, 260, 261). The effect of IL-2 on activated T cells is believed to occur 

via the up-regulation of FasL and suppression of the caspase-8 inhibitory protein (FLIP), 

an inhibitor of Fas signaling pathway (262). Reagents such as Rapamycin have been 

shown to block the proliferative component of IL-2 signaling while keeping the IL-2 

mediated priming of AICD, thereby leading to prolonged islet graft survival (260). 

Growth factor deprival leads to the induction of PCD that is regulated by the anti-

and pro-apoptotic members of the Bcl-2 family of proteins such as Bcl-2 and BIM.  Two 

of the known mouse models used to study PCD include the human Bcl-2 expressing 

transgenic mice and BIM deficient mice that are both defective in PCD (215, 263). 

However, both Bcl-2 transgenic mice and BIM deficient mice given CTLA-4 Ig and anti-

CD154 (MR1) accept islet allografts, suggesting that blocking PCD alone does not 

prevent tolerance induction in certain situations (264). Bcl-xL is another pro-survival 

protein that is sustained by CD28-mediated co-stimulatory signals during T cell 

activation (265). Over-expression of Bcl-xL in T cells also prevents PCD. Administration 

of CD28 and CD154 blocking antibodies in Bcl-xL transgenic mice results in chronic 

rejection of cardiac allografts, indicating an important role for PCD in inducing cardiac 

allograft tolerance (260). Recent studies have highlighted the importance of both AICD 

and PCD in inducing tolerance. For example, studies in Fas-deficient or Bcl-xL 

transgenic mice receiving bone marrow transplants and !CD154 + CTLA-4 Ig therapy 

showed impaired alloreactive CD4
+
 T cell death in both mouse models (266). As 



"#

previously mentioned, these studies indicate that there may be involvement of both the 

pathways in inducing tolerance.  

e) Treg cells 

One of the major mechanisms operating in transplantation tolerance is CD4
+
 CD25

+
 

Tregs, and their relevance in transplantation was first demonstrated with their ability to 

reduce mouse graft versus host disease (GVHD), a condition where the T cells in the 

graft mount an immune response against host cells (240, 267, 268). There are two 

phenomena that are linked to the role of Treg cells, namely “ Linked suppression” and 

“Infectious tolerance”. In linked suppression, induction of tolerance to a particular 

antigen “A” can induce tolerance to a third party antigen “B” if it is processed and 

presented by the same APC.  Exposure to a single oral alloantigen (K
b
) was sufficient to 

induce tolerance to fully allogeneic cardiac allografts (H2
b
 : K

b
 +D

b 
+ L

b
 +IA

b
) through 

indirect antigen presentation (240, 269, 270). Studies have also demonstrated a 

phenomenon mediated by Tregs in a contact dependent manner termed “infectious 

tolerance” that is partly controlled by TGF! produced by the tolerant cells (271, 272). 

This is a mechanism of suppression where tolerance can be transferred into naive mice 

carrying donor allografts from mice that have been tolerized with the donor antigen 

(240).    

One of the limitations of Tregs is that they alone cannot induce tolerance across 

MHC-mismatched barriers. This may be attributed to the existence of high frequency of 

the number of alloreactive T cells that needs to be brought below a particular threshold 
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for tolerance to occur (234, 240). Deletion of alloreactive T cells and induction of Treg 

cells are both important mechanisms to establish productive tolerance.  

J. Historical overview to the field of transplantation tolerance 

There have been numerous attempts in the field of transplantation immunology, to 

breach the immunological barrier and attain successful allograft acceptance and donor 

specific tolerance with certain success stories and with concomitant failures. Despite 

obstacles, transplantation immunology as a discipline has made significant breakthrough 

discoveries in understanding the mechanisms of tolerance (described above) and devising 

ways to give life saving solutions to many patients with terminal end-stage organ 

diseases.  From renal transplantation in the 1950s to cranio facial transplantation to day, 

the field of transplantation has indeed come a long way.  

In 1954, Dr. J.E Murray received the Nobel Prize for the first successful 

transplantation in identical twins. Mrs. Edith Helm received the first kidney transplant 

from her twin sister Mrs. Wanda Foster and they are the longest surviving examples of a 

successful transplantation (273). Before this, there had been many significant studies that 

culminated to this point of time in history. In 1937, Dr. J. Brown observed permanent 

skin graft survival between monozygotic twins. In 1943, Gibson and Medawar 

demonstrated the “second set phenomenon” where the second allograft from the same 

donor was rejected more rapidly than the first, proving that rejection occurred via an 

immunological reaction (273-275). In 1946, Dr Owen discovered the coexistence of 

different blood types in twin freemartin cattle (free martin refers to the females of the 
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male-female twin pair), an observation that was previously demonstrated by F.R Lillie in 

1917.   

In 1948 came the breakthrough discovery by Gorer and Snell who identified the 

major-histocompatabiltiy complex that forms the basis of the complexity of alloantigens 

(275). In 1951, Anderson and his coworkers showed successful skin allograft survival 

between freemartin cattle (273). In 1951, French surgeons described surgical procedures 

of renal transplantation into pelvic location that is performed to this day unmodified 

(274). The concept of neonatal tolerance was established by Burnet and Fenner, who won 

the Nobel prize in medicine for their discovery showing that mice infected with LCMV 

during development will recognize it as self antigen and fail to mount an immune 

response resulting in a persistent infection (276). In 1953 Billingham, Brent and 

Medawar showed the presence of neonatal tolerance in mice that were tolerized to donor 

antigens from a genetically different mouse strain and tolerance was extended to donor 

skin grafts (273). Together all these discoveries in tolerance laid the foundation for the 

Nobel prize winning operation performed by Murray in 1954. 

Several other discoveries followed. In 1955 and 1956, attempts to reproduce tolerance 

in adult mice were being pursued with total body irradiation (TBI). In 1957, Billingham, 

Brent and Medawar discovered graft versus host disease (GVHD) in mice and chickens. 

In 1958, Dauseet and Van Rood discovered the human MHC antigens – human leukocyte 

antigen (HLA). In 1959 came the advent of immunosuppressive drug use by Schwartz 

and Dameshek, who used 6-mercaptopurine, an antimetabolite, to prevent rabbit antibody 
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production to human serum albumin. Modifications to mercaptopurine created more 

effective drugs, such as the imadozole derivatives Azathiopurine (Imarun). Despite 

having toxic side effects, this drug was widely marketed until other suitable alternatives 

were discovered. The late 1960s saw the advent of anti-lymphocyte antibodies raised in 

horse, rabbit and sheep for use in the clinic. 

The success of kidney transplants encouraged the transplantation of other organs. 

Liver transplantation was successfully performed in 1967, followed by the first heart 

transplantation by Dr. Christian Barnard in South Africa, although the patient did not 

survive long. Single and double lung transplants soon followed. Skin remained one of the 

most difficult organs to transplant. Work on the mechanisms of non-reactivity began in 

late 1960s, although it was only during the 1990’s that the basis of organ tolerance was 

established to involve microchimerism in bone marrow transplantation.  

K. Revolution of immunosuppressive drugs in transplantation tolerance  

The use of immunosuppressive drugs revolutionized the field of organ 

transplantation. The discovery of cyclosporine and tacrolimus by Borel and Goto, 

respectively, allowed the transplant of allogeneic tissues and are still used in the field at 

present. More efficient drugs, such as rapamycin, are continuing to be developed.  

Immunosuppressive drugs can be classified into various categories based on the 

primary site of action. These classifications include inhibitors of T cell activation, 

transcription, growth factor signal transduction, nucleotide synthesis and differentiation 

(277). Cyclosporine (fungal peptide) and tacrolimus (FK506) have similar mechanisms of 
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action in blocking T cell activation(277). Both drugs block Ca2+ dependent activation of 

calcineurin and thereby inhibit the translocation of NFAT into the nucleus and 

subsequent gene expression. Rapamycin (Sirolimus) blocks CD28-mediated signaling 

and IL-2-dependent signaling. Azothioprine, mizoribine and mycophenolate mofetil 

inhibit purine synthesis, inosine monophosphate dehydrogenase and prevents de novo 

guanosine and deoxyguanosine synthesis in lymphocytes. Corticosteroids inhibit cytokine 

synthesis. A recent development in the field is the use of FTY720 (an 

immunosuppressive fungal metabolite that binds and blocks sphinogosine 1 phosphate 

(S1P1) signaling) along with cyclosporine to induce tolerance to skin allografts as it 

results in the sequestration of alloreactive T cells to secondary lymphoid organs. 

L. Advent of alternative approaches in transplantation tolerance 

Although immunosuppressive drugs have advanced the field of transplantation, there 

are a number of side effects. The primary problem is the generalized immunosuppression 

and susceptibility of the patients to cancer and infections. Life long use of 

immunosuppressive drugs can also result in organ toxicity. Cyclosporine increases 

cholesterol levels, resulting in secondary complications. Rapamycin binds TOR (Target 

of Rapamycin) protein kinases and blocks T cell activation and proliferation, causing 

deletion of reactive T cells and the induction of Tregs. However, Phase III clinical trials 

with Rapamycin have shown side effects such as hypercholesterolemia, 

hypertriglyceridemia and hypertension.  
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Advancements in understanding the mechanisms of T cell activation have led to the 

development of many alternative approaches to extend allograft survival in transplant 

recipients. For example IL-2R! blocking antibody targets activated T cells, thereby 

blocking high affinity IL-2 binding. One of the concerns regarding the use of this 

approach is the expression of CD25 on Treg cells. Recent studies have shown that IL-

2R! blocking antibody does not affect Treg maintenance though concerns regarding its 

effect of Treg function remain to be investigated (278). OKT3 is a CD3-specific antibody 

that is given along with diptheria-derived immunotoxin to mediate profound T cell 

depletion (241). OKT3 was later administered along with deoxyspergualin, a polyamine 

antibiotic that inhibits APC function. Another antibody is CAMPATH-1H, which is a 

humanized antibody directed at CD52 that is present on T and B cells. This causes the 

depletion in primary as well as secondary lymphoid organs. It has been clinically tested 

in conjunction with rapamycin and sequestering anti-TNF antibody (236).  

M. Co-stimulation blockade to induce transplantation tolerance 

 Co-stimulation blockade protocols in regulating allo-specific immune responses 

are alternative approaches that have gained recent interest in the field of transplantation 

tolerance. As described earlier, there are broadly two classes of co-stimulatory molecules 

belonging to the CD28-B7 family and TNF-TNFR family respectively that can serve as 

potential targets for inhibiting T cell activation. Blockade of the CD28 pathway using 

CTLA-4-Ig that binds B7 molecules with high affinity prevents allograft rejection in 

cardiac allograft models (279, 280). Combination of CTLA4Ig along with donor-specific 
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transfusion (DST) results in promotion of allograft tolerance in comparison to CLTLA4 

monotherapy (281, 282). Studies in CD28 deficient mice that reject allografts suggest that 

in addition to this classical co-stimulatory molecule, other independent pathways may 

also serve as targets for tolerance induction (72, 283). Blocking of CD40 using !CD154 

(MR1) has been shown to prolong allograft survival (284, 285). In line with this finding, 

CD154-deficient mice do not reject cardiac allografts, although they do develop 

complications of vasculopathy (286). Additionally, !CD154 has been shown to prolong 

allograft (islet and renal) survival in some non-human primate models (287-290). 

 In addition to these classic models other novel pathways are being studied for 

their effect on transplantation tolerance. ICOS has emerged as an alternative target for 

tolerance (72). Blocking ICOS along with anti-CD154 and CTLA-4Ig induces donor 

specific tolerance without the development of chronic vasculopathy (291). Additionally, 

ICOS blockade along with DST induces apoptosis of donor-reactive CD4
+
 T cells and 

promotes tolerance (292). PD1 is a negative co-stimulatory molecule that plays a role in 

self-tolerance (76, 78, 79). Administration of anti-PDL1 antibody results in acceleration 

of the rejection cardiac allografts (293).  Other molecules which have shown promise for 

tolerance induction included CD134, 4-1BB and CD27 that synergize with CD28 

blockade to promote allograft survival (72). Therefore, blocking of co-stimulatory 

pathways is an attractive target for inducing tolerance. 
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N.  Immunological challenges in transplantation tolerance  

Despite the development and successful implementation of many immunological 

strategies to induce donor specific tolerance in rodent models and in humans, transplant 

immunologists are still faced with many challenges to attain successful allograft 

acceptance. There are a number of immunological barriers that impede successful 

transplantation of organs. Below are some of the known barriers to transplantation 

tolerance. 

a) Context of antigen recognition (direct vs indirect) 

In the context of allo-recognition, T cells recognize many donor antigens. This 

recognition occurs when they interact with either an intact donor MHC antigen on the 

transplanted tissue via the direct pathway or when T cells recognize the donor-antigens 

that are processed and presented in a self-restricted manner on host APC via the indirect 

pathway (240). There are currently two models for direct allo-recognition. One is the 

high-density determinant model, where an alloreactive T cell directly recognizes the 

donor MHC antigen irrespective of the peptide that is bound. Alternatively, the other 

model is the multiple-binary complex model, where an alloreactive T cell recognizes both 

the bound-peptide and the allo MHC complex. It is proposed that in reality, these models 

represent two extremes of a spectrum as allogeneic MHC, and the peptide ligand may 

contribute to varying degrees to the strength of ligand binding to the TCR (240).  The 

source of antigens in the indirect allorecognition pathway comes from either dying donor 

APCs in the draining secondary lymphoid tissues or when recipient APCs that are 
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migrating through the graft and take up donor antigens. The antigens are then processed 

and presented by recipient APCs in a classical MHC-II restricted fashion (240).  

CD8
+
 T cells are predominantly implicated in the direct pathway of allo-recognition 

and are involved in acute rejection of allografts. CD4
+
 T cells, on the other hand are 

involved in the indirect allo-recognition that has been shown to provide continuous 

antigens and result in chronic rejection (294). Additionally, cross presentation of 

exogenous alloantigenic peptides via MHC-I to CD8
+
 T cells via the indirect pathway can 

also occur (240). The role of CD4
+
 T cells in the indirect allo-recognition is dual, as it 

can also result in the induction of Treg cells (295). It was found that indirect alloantigen 

persists in the recipient’s lymph nodes and is suggested to be an important mechanism of 

tolerance induction (296). Alternatively, effector CD4
+
 T cells are also involved in the 

rejection of cardiac allografts via the direct allo-recognition (alloantigens presented by 

donor MHC-II molecules) (297, 298). 

The effects described so far for direct and indirect allo-recognition are instances of 

solid organ transplantation and graft rejection. Another phenomenon by which the donor 

immune system and the host interact is during allogeneic hematopoietic transplantation. 

Bone marrow transplantation has been used as a treatment for leukemia and lymphomas. 

However, a side effect of this procedure is the immune response mounted by the donor T 

cells to host antigens via the direct or the indirect pathway. This process is referred to as 

graft versus the host disease (GVHD) (299). Together these findings indicate that the 
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context of interactions between alloreactive T cells with donor antigens is an important 

mechanism that is involved in tolerance induction. 

b) Role of innate immunity in transplantation tolerance 

The relevance of innate immunity in organ transplantation came to light in 1994 

with the use of superoxide dismutase (SOD), as a free radical scavenger in patients 

receiving kidney transplants. These patients had reduced incidence of acute and chronic 

rejection events and increased long-term survival outcomes (300).  This highlighted the 

“injury hypothesis” and the “danger associated molecular patterns” (DAMPS) during 

reperfusion injury to the organs that activated the innate immunity. Since then, there has 

been accumulating evidence showing the role of the innate immune system in allograft 

rejection and tolerance. For example, It was shown by He and colleagues that in the 

absence of adaptive immune cells in Rag-/- mice, there was pro-inflammatory cytokine 

and chemokine receptor expression and infiltrating cells in the graft as with WT control 

mice suggesting a role for antigen independent inflammation in the transplanted tissues 

(253, 301, 302). In this section I will first provide a brief overview of the signaling 

components in the innate pathway and the role of these pathways in immunity and 

tolerance and then discuss in further detail the implications of TLR signaling in 

transplantation immunology. 
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c) Innate Pattern recognition receptors (PRRs) 

The innate immune system recognizes pathogens or danger signals via three germline 

encoded receptors namely, Toll like receptors (TLRs), Nod (nucleotide binding and 

oligomerization domain) like receptors (NLRs) and RIG-I (retinoic acid-inducible gene –

I) like receptors, RLRs. TLRs recognize a wide variety of pathogen associated molecular 

patterns (PAMPs) and DAMPS from pathogenic or endogenous danger ligands through 

receptors that are either membrane bound or in the endosomal compartment. The NLRs 

and RLRs recognize ligands in the cytoplasm of the cells. 

 TLR signaling 

Several cell types such as pDCs, monocytes, B cells, T cells, endothelial and 

parenchymal cells express TLRs on their surface (253, 303, 304). There are 11-12 TLRs 

that have been identified in mice and in humans. TLR1, 2, 4, 5, 6 and 11 are membrane 

bound that recognize microbial membrane ligands whereas the intracellular endosomal 

receptors, TLR3, 7, 8 and 9 recognize the microbial nucleic acids. The TLR1 and TLR2 

heterodimer and TLR2 and TLR6 heterodimer recognize tri-acylated and di-acylated 

lipopeptides from gram-positive bacteria, respectively (304). TLR2 has been shown to 

recognize the lipoprotein Pam3CSK4 from E coli. TLR2 ligation can also induce Type–I 

IFN upon vaccinia virus (VV) infection of monocytes. TLR5 and TLR11 recognize 

bacterial flagellin and uropathogenic bacteria respectively (304) and TLR4, recognizes 

bacterial LPS and respiratory syncytial virus (RSV) (304).   
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The intracellular TLR3 recognizes dsRNA of viruses such as RSV, encephalomyelitis 

virus and West Nile virus that is mimicked by polyinosinic:polycytidylic acid (Poly I:C) 

that induces Type-I IFN (304). TLR7 recognizes ssRNA of viruses such as Vesicular 

stomatitis virus (VSV) and Human immunodeficiency virus (HIV), Poly U containing 

RNA and small RNAs.  It also recognizes RNA of streptococcus. It was originally shown 

to recognize imidazoquinoline derivatives or guanosine analogs. TLR8 recognition is 

similar to TLR7. TLR9 recognizes unmethylated CpG DNA motifs of bacteria and 

viruses. TLR9 ligation can activate DCs, B cells and drive Th1 responses. It serves as a 

sensor for Herpes simplex viruses 1 and 2 (HSV1 and HSV2) and recognizes hemozoin, a 

byproduct of hemoglobin digestion by Plasmodium falciparum. 

 There are many adaptor proteins downstream of the TLRs. MyD88 (Myeloid 

differentiation primary response gene-88) is an adaptor protein that is required for 

signaling by IL-1/IL-18 and all the TLRs except for TLR3, which uses the adaptor 

molecule Toll/IL-1R domain containing adaptor-inducing IFN! (TRIF). Additionally, 

TLR4 also signals through the TRIF-mediated pathway. The MyD88-dependent pathway 

primarily stimulates the production of inflammatory cytokines, while the TRIF-dependent 

pathway induces the production of Type-1 IFN. MyD88 gets recruited to the TLR by the 

adaptor protein called Toll/IL-1R domain containing adaptor (TIRAP). MyD88 then 

recruits and activates IRAK4 (IL-1 receptor associated kinase-4), leading to sequential 

activation of IRAK1 and IRAK2. This activation recruits TRAF6 (TNF receptor 

associated factor), leading to its K63 (Lysine-63) linked polyubiquitination. The 

polyubiquitination chains bind regulatory proteins TAB2 and TAB3 to activate TAK1. 
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The K63 polyubiquitination chains also bind to NEMO (IKK). TAK1 forms a complex 

within the IKK and then phosphorylates IKK! that leads to subsequent phosphorylation 

of I"B and its degradation and NF"B activation. TAK1 can also activate the MAPK 

ERK1, ERK2 and JNK, leading to the activation of the transcription factor AP1. NF"B 

activation leads to the activation of many cytokine genes such as IL-6, IL-12p40 and 

TNF and other genes related to NF"B pathway (304). 

In the TRIF- mediated pathway, another adaptor protein TRAM (translocating-chain 

associating membrane protein) recruits TRIF to either TLR4 or TLR3. TRIF then recruits 

TRAF6 and results in TAK1 and NF"B activation. TRIF also recruits RIP1 through 

homotypic binding.  RIP1 undergoes K63 polyubiquitination and forms a complex with 

TRADD, leading to the activation of TAK1 and NF"B activation. Additionally, TRIF 

also results in the activation of IRF3 (Interferon-regulatory factor) that is important for 

synthesis of Type-I IFN. TRIF recruits TRAF3 followed by the activation of TBK and 

IKKi (non-canonical IKKs), leading to the phosphorylation of IRF3 and its nuclear 

translocation. During intracellular TLR7 and TLR9 signaling, both TLRs require MyD88 

for Type-I IFN production. There is a multi-complex formation with IRAK4, TRAF6, 

IRAK1, TRAF3 and IKK# that leads to the activation of IRF7 and its nuclear 

translocation for Type-I IFN induction (304). The induction of Type-I IFNs and other 

pro-inflammatory cytokines initiate and influence the adaptive immune responses. 
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Innate alloimmunity to endogenous ligands 

The innate arm of the immune response can be activated by either the presence of 

pathogens or by the presence of endogenous ligands. This is the basis of the danger 

hypothesis proposed by Matzinger as an extension of Janeway’s theory on the importance 

of the innate immune system for adaptive responses (305, 306). In the context of 

transplantation, not only are viral and bacterial infections a major threat to the abrogation 

of tolerance but the injury to the allograft during its procurement or during reperfusion 

can also result in the release of endogenous danger signals. Studies have shown that 

TLR2 and TLR4 are major TLRs that are activated in response to a variety of 

endogenous danger ligands such as hyaluronan, heparan sulfate, high motility group 

protein B1 (HMGB1), fibronectin extra domain A, !-glycan, heat shock proteins 60 and 

70 (Hsp 60 and 70) and gp96 (253, 307) that are present during organ reperfusion injury. 

Although there is skepticism with regard to these ligands due to possible contamination 

with LPS in the reagent preparation (308), there have been other studies showing the 

effect of these ligands in rejection (309, 310). 

 Innate alloimmunity to pathogenic ligands 

Several studies have used mice deficient in the expression of TLRs or the 

downstream adaptors such as MyD88 and TRIF to show the effect of TLR ligation 

pathways in transplantation tolerance models.  Studies by Goldstein et al showed that 

skin grafts from MyD88-deficient male mice were not rejected by the MyD88-deficient 

female mice (311). In contrast, grafts from TLR-2-deficient, TLR4 -deficient and 
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caspase-1-deficient male mice were rejected by the corresponding female mice.  This 

study showed the importance of MyD88 adaptor molecule in graft rejection across a 

minor mismatch model.  However, studies across fully mismatched skin and heart 

allografts showed that rejection occurred independent of MyD88 signaling, suggesting 

that other pathways may be involved in graft rejection (312). On the other hand, studies 

using skin graft models and co-stimulation blockade with MyD88-deficient mice resulted 

in prolonged allograft survival (313, 314). This was attributed to the inability of DCs to 

produce IL-6 in the absence of MyD88 and hence better suppressive ability of Tregs 

(315). Administration of TLR-4 and TLR-3 agonists at the time of co-stimulation 

blockade prevents the deletion of alloreactive T cells and abrogates tolerance and requires 

signaling via MyD88 (4, 5). Further, it was shown that LPS did not shorten allograft 

survival in Type-I IFNR–deficient mice given co-stimulation blockade, suggesting that 

TLR agonists abrogate tolerance induction in a Type-I IFN-dependent manner (5).  

Exposure to TLR-9 agonist (CpG) has also been shown to abrogate tolerance induction to 

cardiac allografts grafts (316).  Therefore, these studies suggest an important role of 

innate immunity in transplantation tolerance. 

e) Homeostatic proliferation of alloreactive T cells 

A major concern with lymphocyte depletion strategies is the problem of homeostatic 

proliferation of T cells. This is a property of T cells to expand and attain memory 

phenotype during conditions of lymphopenia. Homeostatic proliferation of alloreactive T 
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cells is considered a major obstacle in tolerance induction (317) as these expanded 

memory phenotype cells become resistant to co-stimulation blockade regimens.  

f) Heterologous immunity 

Memory T cells exhibit properties that are hard to circumvent for tolerance induction. 

For example, memory T cells have a lower threshold of activation, are less dependent on 

co-stimulatory molecules and do not require secondary lymphoid organs for priming, as 

they can home to and undergo activation in peripheral tissues (318). Also, memory T 

cells are not subject to the suppressive effects of Treg cells and the reason is still unclear 

(319). Whether the effect of Tregs on memory T cells may be quantitative or qualitative 

remains to be further investigated. 

Alloreactive memory T cells have been indentified in individuals who have never 

been exposed to alloantigens (320). Studies with infection models with viruses such as 

LCMV, Pichinde virus (PV), VV and murine cytomegalovirus (MCMV) and Epstein-

Barr virus (EBV) in humans have revealed the presence of allo-specific CD8
+
 T cells 

(320). T cells generated during viral infections that can react with alloantigens are termed 

cross-reactive. Recently, our group showed that cross-reactive LCMV-specific memory T 

cells proliferate in vivo in response to allogeneic skin grafts and potentially mediate graft 

rejection (321) . T cells generated in an individual in response to a virus consist of the 

usage of different TCR repertoires that is unique to that individual, a phenomenon that is 

referred to as “private specificity” (322). Our group also showed that the magnitude and 

hierarchy of epitope-specific responses of cross-reactive LCMV-specific memory T cells 
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responding to alloantigens vary with the private specificities of individual memory T cell 

repertoire (321).  

Another kind of cross-reactive T cells are alloreactive T cells that can also recognize 

viral antigens. Studies by our group and other labs have shown that acute and persistent 

viral infections result in the abrogation of co-stimulation blockade-induced tolerance that 

result in the rapid rejection of allografts (323-327). One of the mechanisms by which co-

stimulation blockade facilitates allograft acceptance is by the deletion of alloreactive T 

cells within 24 hours of treatment (4, 328). Viral infections at the time of co-stimulation 

blockade abrogate tolerance induction, by rescuing alloreactive T cells from deletion that 

then become activated and proliferate and eventually mediate graft rejection (4, 328). 

Interestingly, acute viral infections of mice at later time points after co-stimulation 

blockade treatment, for example 1 or 15 days post transplantation abrogated co-

stimulation blockade induced-tolerance despite the early deletion of alloreactive T cells 

(324, 326). However, administration of TLR3 ligand (polyI:C) that mimicks viral 

inflammation at 1 day post transplant did not abrogate co-stimulation blockade-induced 

tolerance suggesting that activation of innate immune responses after the loss of 

alloreactive T cells is not sufficient to abrogate tolerance (320, 324). These studies 

therefore suggested that viral infections at later time points may activate residual 

alloreactive T cells that fail to undergo deletion during co-stimulation blockade, that may 

cross-reactive with viral antigens and cause graft rejection. Together these studies 

indicate the heterologous immunity poses a difficult barrier to tolerance induction. 
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Chapter 2: Materials and Methods 

A. Mice 

Male and female Ly5.2 (CD45.2
+
) C57BL/6J (H-2

b
) mice were purchased 

from The Jackson Laboratory (Bar Harbor, ME) and used at 6-12 weeks of age. Male 

Ly5.1 (CD45.1
+
) B6.SJL-ptprc<a> model#004007 mice were purchased from 

Taconic Farms and used at 6-12 weeks of age. Male BALB/CJ (H-2
d
) mice were 

purchased from the Jackson Laboratory and used at 6- 12 weeks of age. Male SCID 

and !"#$ TCR KO and µMT (B cell) KO mice were bred at the University of 

Massachusetts Medical School (UMMS) Department of Animal Medicine and were 

used between 6-12 weeks of age. CD45.1
+
 P14 CD8

+
 TCR-transgenic mice, with T 

cells that recognize the D
b
-restricted, LCMV epitope GP 33-41 (329), CD45.1

+
 

SMARTA CD4
+
 TCR-transgenic mice, with T cells that recognize the IA

b
-restricted, 

LCMV epitope GP 61-80 (330) and CD45.2
+ 

HY TCR transgenic male and female 

mice, with T cells that recognize the D
b 

– restricted, HY epitope Smcy738-746 (331, 

332)were bred at the University of Massachusetts Medical School (UMMS) 

Department of Animal Medicine. CD45.1
+
 OT-1 CD8

+
 TCR-transgenic mice, with T 

cells that recognize the K
b
-restricted, ovalbumin epitope OVA 257-264 (333), and 

CD45.1
+
 OT-2 CD4

+ 
TCR-transgenic mice, with T cells that recognize the IA

b
-

restricted, ovalbumin epitope OVA 323-339 (334) were provided by Dr. Kenneth Rock 

(Department of Pathology, UMMS, Worcester, MA). The Ly5.2 (CD45.2
+
) TNF 
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deficient and Ly5.2 (CD45.2
+
) TNFR1/2 (1 and 2) deficient C57BL/6J (H-2

b
) mice 

were bred at the UMMS Department of Animal Medicine. The Ly5.2 (CD45.2
+
) 

TNFKO mice were intercrossed with Ly5.1 (CD45.1
+
) P14 CD8

+
 TCR transgenic 

mice to generate Ly5.1 (CD45.1
+
) Ly5.2 (CD45.2

+
) double positive TNFKO P14 

CD8
+
 TCR transgenic mice.  NOD (Non-obese diabetic) mice and NZB (New 

Zealand Black) mice and IL-10KO mice were obtained from Rossini/Greiner group 

(Department of Medicine, UMMS, Worcester, MA). NG-BAC transgenic mice, 

originally obtained from Dr. Michel Nussenzweig were backcrossed to the CD45.1
+
 

and CD45.2
+
 background and were used at 6-12 weeks of age (41, 335). Homozygous 

C57BL/6Ji-D
btm1

 N12 (H-2D
b
 KO) mice were purchased from Taconic Farms and 

used at 6 weeks of age. CBA/J (H-2
k
) mice were purchased from the Jackson 

laboratory and used for the generation of KB5 synchimeric mice at 6-12 weeks of age 

described later in this section.  (CBA/J X KB5.CBA/J) F1 CD8
+
 T cell transgenic 

male and female mice that consist of T cells restricted to H-2
k
 and recognizing H-2

b
 

as alloantigen (336-338) were bred at UMMS Department of Animal Medicine and 

used between 6 and 12 weeks of age. The B6.MRL-Fas lpr mice that were also bred 

at the UMMS Department of Animal Medicine and B6 Smn.C3-FasL<gld>/J that 

were purchased from the Jackson Laboratory were age and weight matched and used 

between 6-7 weeks of age before they developed lymphoproliferative disorders at 

later time points. All animals were housed and maintained within the Department of 

Animal Medicine at UMMS. All the experiments were done in compliance with the 
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institutional guidelines as approved by the Institutional Animal Care and Use 

Committee of UMMS.  

B. Generation of CD8
+
 KB5 TCR Transgenic Synchimeric CBA/J mice 

To study the mechanism of alloreactive T cell deletion during co-stimulation 

blockade-induced tolerance, I generated KB5 synchimeric mice as described 

previously (338). Briefly, non-transgenic CBA/J  (H2
k
) mice were sublethally 

irradiated with 200 cGy. The total body irradiation was performed using 
137

Cs source 

(GammaCell 40; Atomic energy of Canada, Ottawa, Ontario, Canada or Mark I-30 

series 2000 Ci; JL Shepherd and Associates, San Fernando, CA). After 4 hours of 

irradiation, mice were injected intravenously (i.v) with 0.5-1 x 10
6 

bone marrow cells 

(isolated from femurs and tibias) from either male or female (CBA/J X KB5.CBA/J) 

F1 CD8
+
 T cell transgenic mice. These transgenic mice contain CD8

+
 T cells that 

express TCR recognizing the B6 (H-2
b
) alloantigen.  At the end of 12-18 weeks post 

treatment, KB5 synchimeric mice are generated that consist of CD8
+
 KB5 TCR 

transgenic T cells constituting 5-8% of the circulating lymphocytes. These transgenic 

CD8
+
 T cells can be differentiated from their endogenous counterparts with a 

clonotypic mAb called DES (337).  

C. Media and chemical reagents 

All the cell preparations unless specified were cultured in RPMI 1640 (Gibco 

Invitrogen, Carlsbad, CA) that was supplemented with 10% FBS, 100U/ml penicillin, 

100µg/ml streptomycin sulfate (Gibco Invitrogen) and 2mM L-glutamine (Gibco 
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Invitrogen). For 24 hour long-term in vitro experiments, T cell media was prepared 

with RPMI 1640 containing 10% FBS, 100U/ml penicillin, 100µg/ml streptomycin 

sulfate and 2mM L-glutamine, 5 ml of (100X) non essential amino acids (Gibco 

Invitrogen, Carlsbad), 5 ml of 100mM (100X) sodium pyruvate, 5 ml of (1M) HEPES 

(Gibco invitrogen, Carlsbad, CA) and 2.5 ml of 10
-2 

M !-mercaptoethanol (diluted in 

RPMI). Adoptive transfer of cells into mice and CFSE labeling of cells were 

performed in HBSS buffer (Gibco Invitrogen). For surface and intracellular staining, 

fluorescence activated cell sorting (FACS) buffer containing 1X phosphate buffer 

saline (PBS), 2% fetal bovine serum (FBS) and 5 ml of 2% sodium azide solution was 

used. Dead cells were excluded using Live Dead Aqua Dead cell stain (Invitrogen; 

Molecular probes) using IX PBS. For cell purification and enrichment, magnetic cell 

sorting (MACS) buffer containing 1X PBS, 2% FBS and 2mM 

ethylenediaminetetraacetic acid (EDTA) was used. For phospho ERK and BIM 

staining experiments, incubation buffer containing 0.5% BSA in 1X PBS was made 

and methanol free formaldehyde was purchased from Thermo Scientific (Rockford, 

IL). For lysing red blood cells (RBCs) during immunostaining of blood samples, 1X 

BD lysing solution was used (stock 10X from BD Pharmingen). For bacterial cell 

transformation LB broth was used. For agarose gel electrophoresis, 1X Tris-acetate 

EDTA (TAE) buffer was prepared from a stock of 50X (Gibco Invitrogen).  

Actinomycin D (A9415) and cycloheximide (C7698 and C1988) were purchased 

from Sigma and used at final concentrations of 20µg/ml and 5µg/ml respectively. 

CFSE and brefeldin A were purchased from Sigma (suspended with DMSO).  



"#

D.Viruses  

Stocks of LCMV, strain Armstrong, and a LCMV variant GP1V virus that 

possesses an amino acid mutation at position 38 (F to L) in the GP33-41 epitope of 

LCMV Armstrong were used. This mutation results in the escape of the virus from 

recognition by LCMV specific D
b
-restricted CTL (339). Both LCMV stocks were 

prepared in baby hamster kidney cells (BHK21), as previously described, and mice 

were infected with 5 ! 10
4
 PFU of each virus strain intra peritoneally (i.p.) (1).  

E. TLR agonists 

Ultra Pure LPS from Escherichia coli (E.coli) 0111:B4 strain –TLR4 ligand 

was purchased from Invivogen (San Diego, CA) and stored at -20°C until use. The 

lyophilized LPS was suspended at 5mg/ml concentration in sterilized water, and the 

suspended solutions were stored at 4°C.  The working concentration of LPS solution 

was prepared to 500µg/ml, and each mouse was administered 200 µl of the working 

solution containing 100µg of LPS i.p along with donor specific transfusion (DST) and 

"CD154 (MR1). 

F. In vitro T cell stimulations 

Single cell suspensions of thymocytes and splenocytes were prepared in RPMI 

1640 supplemented with 10% FBS, 100U/ml penicillin, 100µg/ml streptomycin sulfate 

and 2mM L-glutamine and stimulated as indicated. For intracellular cytokine assays, 

lymphocytes (2 ! 10
6
 cells) were stimulated with either 1 µM of the indicated peptide or 



"#

with monoclonal antibodies specific for CD3e (0.25 µg/ml, 145-2C11, BD Pharmingen) 

along with antibodies to CD28 (2.5µg/ml, 37.51, BD Pharmingen) or with PMA (0.5 

µg/ml) and ionomycin (0.5µg/ml) in the presence of GolgiPlug
TM

 (0.1 µg/ml) for 4 hours 

at 37°C in 5% CO2. In co-culture experiments, thymocytes were co-cultured at 1:1 ratios 

with either splenocytes from the indicated mouse strains or with the indicated cell 

populations derived from the spleens of congenic B6 mice and stimulated simultaneously 

as described. For transwell experiments, 24 mm (diameter) 6 well transwell plates 

containing the standard transwell inserts with 0.4 µm polyester membranes with a pore 

density of 4! 10
6
 pores/ cm

3
 (Corning Life Sciences, Lowell, MA). 10 ! 10

6
 thymocytes 

were seeded in the upper compartment and 5 ! 10
6
 thymocytes and 5 ! 10

6
 splenocytes 

were seeded in the lower compartment. Cells in both the compartments were stimulated 

as described above for 4 hours. At the end of the stimulation, cells were harvested into a 

96 well plate and stained by the standard intracellular cytokine assay.  

G. Flow cytometry and intracellular cytokine assays 

After the incubation, cells were stained with monoclonal antibodies specific for 

congenic markers (CD45.1: A20) and (CD45.2: 104), CD4 (RM4-5), CD8"(53-6.7), 

CD8# (H35-17.2), CD25 (PC61), CD44 (IM7), CD62L (MEL-14), CD69 (H1.2F3), 

CD24 (M1/69), Qa2 (1-1-2), TCR V"2 mAb (B20.1) and V#8.1 mAb (MR5-2), Fas 

(Jo2), FasL (MFL3) and IL7R (A7R34) were purchased from BD Pharmingen and 

CD45RB (C363.16A) from eBioscience. Primary BIM (C34C5) rabbit mAb (Cat #2933 

at 22.8µg/ml), the corresponding rabbit (DA1E) mAb IgG XP
TM

 isotype control (Cat 
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#3900 at 2.5mg/ml) and the secondary Anti-Rabbit IgG (H+L), F(ab’)2 Fragment (Alexa 

Fluor! 647 Conjugate) were purchased from Cell Signaling. Following the surface stain, 

cells were either fixed using BD Cytofix solution and permeabilized using BD 

Cytofix/Cytoperm
TM

 solution and then stained for intracellular TNF (MP6-XT22 from 

BD Pharmingen) and CD4 as described previously (1). For immuno staining blood 

samples, blood collected in tubes containing 5µl (1000U/ml) heparin were washed with 

FACS buffer followed by surface staining similar to staining for cells in the culture. 

Following the surface staining, cells were suspended in 1X BD lysing solution (BD 

pharmingen) for 5-7 min at 37°C. Cells were finally washed with FACS buffer (2X). For 

analysis of lymphocytes from NG-BAC transgenic mice, GFP positive cells were 

determined on the basis of the fluorescence intensity found in SP thymocytes (41). 

Fixation slightly diminished the GFP signal during intracellular staining but lymphocytes 

could still be differentiated as GFP
hi+lo

 and GFP
neg

 cells in the thymus and the spleen. For 

tracking alloreactive KB5 transgenic CD8
+
 T cells in KB5 synchimeric mice, primary 

DES clonotypic antibody was used. This antibody identifies the TCR of KB5 transgenic 

CD8
+
 T cells that recognize the (H-2

b
) alloantigen. Staining with the primary antibody 

was performed for 20 min followed by staining with a secondary flourochrome 

conjugated IgG2a antibody (R19-15) purchased from BD biosciences. Samples were 

analyzed using a Becton Dickinson LSRII Flow Cytometer (BD Biosciences) and FlowJo 

software (Tree star Inc, Ashland, OR).  
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H. Cell purification and enrichment  

Single cell suspensions of thymocytes and splenocytes from the indicated mouse 

strains were purified by staining with anti-CD4, anti-CD8 and anti-CD44 antibodies in 

1X PBS with 2% FBS, 2mM EDTA and sorted for CD4
+
 CD8

-
 and CD4

-
 CD8

+ 
SP 

thymocytes and naïve (CD44
low

) splenic T cells to using the MoFlo
TM 

XDP cell sorter 

(Beckton Coulter). For cell enrichment, subsets of P14-CD8
+
 T cells were obtained by 

negative magnetic selection in 1X PBS with 2% FBS, 2mM EDTA. For this, thymocytes 

were depleted of CD4
+
 cells and splenocytes were depleted of CD4

+
 and CD19

+
 cells by 

initially staining the cells with biotinylated anti-CD4 (RM4-5; BD Pharmingen) and anti-

CD19 (ID3; BD Pharmingen) followed by selection with Streptavidin (SA) microbeads 

(Miltenyi Biotech, Auburn, CA). The purification of CD8
+
 cells after negative selection 

was nearly 70% from both tissues. To isolate cell subsets from the CD45.2
+ 

splenocytes 

for the co-culture experiments described above, B cells were positively selected using 

anti-CD19 microbeads and T cells were positively selected by Thy1.2 microbeads 

(Miltenyi Biotech). The cells remaining in the flow-through were used as a source of 

splenic APCs (20% CD11c
+
). To purify transgenic alloreactive T cells from KB5 

synchimeric mice, splenocytes were stained with Des clonotypic antibody and CD8! and 

sorted using the MoFlo
TM 

XDP cell sorter (Beckton Coulter). 

I. Analysis of RNA expression by RT PCR. 

Total RNA was isolated using a RNA isolation kit (Qiagen Valencia, CA). An 

additional step was incorporated to remove genomic DNA using a RNase-free DNase kit 
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(Qiagen). The concentration of recovered RNA was determined using either the Beckman 

Coulter DU! 530 Life Science UV/VIS spectrophotometer or the NanoDrop" ND-1000 

spectrophotometer (Thermo Scientific Willmington, DE). An equal amount of RNA was 

reverse transcribed into cDNA using a superscript
TM

 III first strand synthesis system 

(Invitrogen Carlsbad, CA) consisting of oligo (dT) primers. Amplification of the equal 

quantity of cDNA was performed using Platinum" Blue PCR SuperMix (Invitrogen 

Carlsbad, CA) with Mouse/Rat TNF primer pairs (Cat# RDP-60) and # actin primer pairs 

(Cat # RDP-105) (R&D systems, Minneapolis, MN). The predicted TNF and # actin 

cDNA product sizes were 585bp and 302bp respectively. RT PCR for FasL expression 

was done with FasL specific primers (Cat# RDP-58) purchased from R&D systems, 

Minneapolis, MN. The predicted size of FasL cDNA product is 239bp.The following 

program was used to amplify the cDNA by PCR, Cycle 1: (1X) step 1: 94°C for 3:00; 

Cycle 2: (35X) step 1: 94°C for 00:45; step 2: 55°C for 0:45; step 3: 72°C for 0:45; Cycle 

3: (1X) step 1: 72°C for 10:00; Cycle 4: (1X) Step 1: 4°C for $. For semiquantitative RT 

PCR, cDNA was synthesized as described above, and three serial dilutions of cDNA 

were used during the PCR with cycle 2 having only 30 instead of 35 cycles in order to 

better visualize the differences in RNA expression among samples.  

J. Agarose gel electrophoresis 

Agarose gel electrophoresis was performed using 1% agarose gel prepared in 1X 

Tris-acetate EDTA buffer (TAE) (Gibco invitrogen, Carlsbad, CA). To confirm the size 

of the bands, (0.1µg-0.5µg) of 100 bp ladder (500µg/ml) was used (New England 
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BioLabs or Invitrogen) with the loading buffer (Promega). The gels were stained with 1% 

ethidium bromide and photographed using the Bio Rad Molecular Imager! Gel Doc
TM

 

XR+ system. 

K. Real-time PCR  

T cell subsets purified either by sorting or enrichment were used as indicated. 

Total RNA was isolated using a RNA isolation kit (Qiagen Valencia, CA). An additional 

step was incorporated to remove genomic DNA using a RNAse-free DNAse kit (Qiagen). 

The concentration of recovered RNA was determined using the NanoDrop" ND-1000 

spectrophotometer (Thermo Scientific Willmington, DE). RNA (as indicated) was 

reverse-transcribed into cDNA using Superscript
TM

 III first strand synthesis system 

(Invitrogen Carlsbad, CA) using oligo (dT) primers. Amplification of the cDNA was then 

performed by Real time PCR with the SYBR" green mastermix (Applied Biosystems 

Foster City, CA) using MyiQ
TM

 BioRad icycler. The following TNF primers: FW 5’-

CAT CTT CTC AAA ATT CGA GTG ACA A-3’, RV 5’- TGG GAG TAG ACA AGG 

TAC AAC CC-3’ primers (annealing temp: 60°C and 175 bp product) (340); # actin 

primers: FW 5’-CGA GGC CCA GAG CAA GAG AG-3’, RV 5’- CGG TTGGCC TTA 

GGGTTC AG-3’ and (annealing temp: 62°C and 150 bp product) were used. To confirm 

the expression FasL in alloreactive T cells during co-stimulation blockade by RTPCR, 

FasL specific primers (Cat # PPM02926A) from Superarray were purchased. The 

predicted gene product size is 171bp. The following program was used for the real time 

PCR reaction, Cycle 1: (1X) step 1: 95°C for 10:00; Cycle 2: (40X) step 1: 95°C for 
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00:15; step 2: 60°C for 1:00; Cycle 3: (1X) step 1: 95°C for 1:00; Cycle 4: (80X) Step 1: 

55°C for 00:10. For absolute quantification of the data, standard curves were generated 

using serial dilution of pCR! 4 –TOPO TA plasmids containing cDNA clones of TNF 

and " actin.  

L. Quantification of TNF mRNA expression levels by real time PCR (preparation of 

TNF cDNA standards). 

Splenocytes (2 # 10
6
) from C57BL/6J mice were stimulated with monoclonal 

antibodies specific for CD3e (0.25 µg/ml, 145-2C11, BD Pharmingen) for 4 hours. RNA 

was isolated and cDNA synthesized and amplified using TNF specific primers (R&D 

systems; predicted TNF product size: 585bp) by RT PCR as described above. The PCR 

product was cloned into pCR! 4 –TOPO TA cloning vector according to the 

manufacturer’s protocol (Invitrogen, Carlsbad, CA). Briefly TOPO! cloning reaction 

mixture (6µl) containing the PCR product and the pCR! 4 –TOPO TA cloning vector 

were incubated for 5 min at room temperature (22-33°C). Following this, 2µl of the 

cloning mixture was mixed with 100µl of chemically competent DH5$TM
 –T1

R
 One 

shot!
 
E coli and incubated at 4°C for 30 min. Subsequently, heat shock was performed on 

the cells at 42°C for 1 min and the tubes were immediately transferred to 4°C where they 

were rested for another 2 min. At the end of this step, 1ml of LB broth was added to the 

mixture and the vial was positioned in the shaker at 37°C for 1 hour. The mixture was 

pelleted down at 5000 rpm for 5 min and the pellet was resuspended in 100µl of media. 

The resuspended cells were plated onto an LB plate containing ampicillin (50-100µg/ml) 
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and incubated overnight at 37°C. To analyze the positive clones, colony PCR was 

performed on 5 randomly picked colonies using TNF specific primers (585bp from R&D 

systems). Positive clones were picked and cultured overnight in LB media containing 

100µg/ml ampicillin followed by plasmid isolation (Qiagen QIA prep! Miniprep). DNA 

concentration was measured using the NanoDrop" ND-1000 spectrophotometer (Thermo 

Scientific Willmington, DE). The plasmid was sequenced at the sequencing facility at 

UMMS, Worcester, MA using M13 primers provided in the TOPO TA cloning kit from 

invitrogen. The sequence obtained was screened with VecScreen in Pubmed to identify 

and differentiate the PCR product sequence from the sequences that may be of vector 

origin.  The sequence was aligned using BLAST search and confirmed with the murine 

TNF gene sequence.  Following this, a stock concentration containing 1 # 10
10

 copies of 

the plasmid was determined by the following formula {(Molecular weight of the entire 

plasmid/6.023# 10
23

) 1# 10
10

}. Serial dilutions of the cDNA plasmid were performed and 

amplified by real-time PCR as described in the above section using the following real-

time PCR TNF primers: FW 5’-CAT CTT CTC AAA ATT CGA GTG ACA A-3’, RV 

5’- TGG GAG TAG ACA AGG TAC AAC CC-3’ primers (annealing temp: 60°C and 

175 bp product) that were obtained from IDTechnologies (340).  

M. Real time PCR array 

Alloreactive DES
+
CD8$+

 T cells were purified using the MoFlo
TM 

XDP cell 

sorter (Beckton Coulter) to >98% purity. Total RNA was isolated using a RNA isolation 

kit (Qiagen Valencia, CA). An additional step was incorporated to remove genomic DNA 
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using a RNase-free DNase kit (Qiagen). The concentration of recovered RNA was 

determined using the NanoDrop! ND-1000 spectrophotometer (Thermo Scientific 

Willmington, DE). Subsequently, RNA was subjected to another clean up step with total 

RNA mixed with 1/10
th

 volume of 3M Sodium acetate (NaoAc) pH-5.2 and 2.5 volume 

of 100% ethanol and 1µl glycoblue (15mg/ml) and kept at -20°C for " 1 hour.  This 

method is used to precipitate RNA as ethanol (having a lower dielectric constant) allows 

better interactions of Na+ ions with the PO3
-
 ions on nucleic acid backbone thereby 

making the RNA less hydrophilic. The glycoblue is a blue dye that is covalently linked to 

glycogen that helps in the sodium/ethanol precipitation of RNA by increasing the size 

and visibility of the pellet.  Following the incubation, the solutions were pelleted at " 

12000g for 20min at 4°C. This was followed by 2 washes with 80% ethanol at -20°C for 

5-10 min. The pellets were air-dried and the RNA was suspended in DEPC water. It was 

then reverse-transcribed into cDNA using RT
2 

PCR Array First Strand Kit (Superarray 

cat# C-02). Real time PCR was performed on the synthesized cDNA by mixing it RT
2 

Real-Time
TM 

SYBR Green/ ROX PCR master mix according to the manufacturer’s 

protocol (Superarray) and aliquoted across the Apoptotic PCR array. The array consists 

of primer sets for 84 apoptotic pathway specific genes, 5 housekeeping genes and 3 RNA 

and PCR quality control (PAMM-012). The following program was used for the real time 

PCR reaction, Cycle 1: (1X) step 1: 95°C for 10:00; Cycle 2: (40X) step 1: 95°C for 

00:15; step 2: 60°C for 1:00; Cycle 3: (1X) step 1: 95°C for 1:00; Cycle 4: (80X) Step 1: 

55°C for 00:10 using MyiQ
TM

 BioRad icycler. The Ct values obtained from the real time 

PCR were uploaded into the Superarray Web-based PCR array analysis software. The 
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gene expression changes were normalized to the house keeping genes and compared to 

the untreated group. The fold regulation was calculated by the software using the !!Ct 

method (Super array). The positive fold changes >1 indicated the fold upregulation and 

fold changes <1 were represented as negative inverse of fold change that indicated fold 

downregulation.  

N. Phospho-flow  

SP P14 CD8
+
 thymocytes and splenic T cells (1"10

6
) purified by cell enrichment 

were activated with 1 µM GP33 peptide in RPMI 1640 supplemented with 10% FBS, 

100U/ml penicillin, 100µg/ml streptomycin sulfate and 2mM L-glutamine for the 

indicated time points at 37°C. Stimulation with PMA (0.5 µg/ml) and ionomycin (0.5 

µg/ml) for 30 min was used as a positive control.  Cells were stained according to the 

manufacturer’s protocol (Cell Signaling Technology, Danvers, MA). Briefly, cells were 

fixed immediately after activation with 2% formaldehyde (methanol free) (Thermo 

Scientific Rockford, IL) for 10 min at 4°C. Cells were then pelleted and suspended 

slowly in 90% methanol and incubated for 30 min at 4°C or left at -20°C overnight. 

Following permeabilization, cells were rinsed twice with 2 ml of incubation buffer (0.5% 

BSA in 1X PBS). Mouse monoclonal antibodies to phosphorylated and total extracellular 

signal-regulated kinases (pERK and total ERK) conjugated to Alexa-647 (Cell Signaling 

Technology) were added along with antibodies to CD8, CD4 and CD44 and cells were 

incubated for 60 min in the dark at room temperature. Cells were rinsed and resuspended 

in 500µl incubation buffer and analyzed immediately on a LSR2 flow cytometer. 
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O. In-vivo brefeldin A (BfA) Assay  

This assay was modified from a previously published protocol (341) and used to 

detect TCR-transgenic T cells producing TNF in vivo. Briefly, unpurified thymocytes or 

splenocytes from Ly5.1 (CD45.1
+
) P14 and Ly5.2 (CD45.1

+
) SMARTA mice (mixed at a 

1:1 ratio) were treated in vitro with 0.5 µg/ml GolgiPlug
TM

 (BD biosciences) for 20 min 

at 37°C. Following the incubation, the cells were adoptively transferred into CD45.2
+
 B6 

hosts that were infected 2 days previously with 5 ! 10
4
 plaque forming units (Pfu) of 

LCMV Armstrong or GP1V CTL escape variant. Additionally each mouse received 250 

µg of BfA (Sigma) i.v. Four hours after transfer, host spleens were harvested and donor T 

cells were stained directly for TNF using the intracellular cytokine staining protocol as 

described above.  

P. Adoptive transfer of endogenous and transgenic SP thymocytes 

30 ! 10
6
 Ly5.1 (CD45.1

+
) B6 thymocytes were labeled with 2µM CFSE (HANKS 

buffer) were transferred into Ly5.2 (CD45.1
+
) B6 congenic mice. Host spleens were 

harvested 6 hours, 12 hours, day1, 2 and 4 and 8 followed by stimulations with "CD3 

(0.25µg/ml) and "CD28 (2.5µg/ml) for 4 hours in vitro followed by standard intracellular 

staining for cytokines. For transgenic cells, 20 ! 10
6
 P14 thymocytes and splenocytes 

were transferred separately into CD45.2
+
 B6 hosts. Host spleens were harvested 1, 2, 7 

and 14 days after transfer and stimulated in vitro with 1 µM GP33 peptide and "CD28 

(2.5µg/ml) in the presence of GolgiPlug
TM

 (0.1 µg/ml) for 4 hours at 37°C in 5% CO2 

incubator followed by standard intracellular cytokine staining protocol for TNF by donor 
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T cells as described above. Dead cells were excluded using Live Dead Aqua Dead cell 

stain (Invitrogen; Molecular probes Carlsbad, CA) for this experiment. Ly5.1 (CD45.1+) 

WT and Ly5.1 Ly5.2 (CD45.1
+
 and CD45.2

+
) TNF deficient CD8

+
 P14 TCR transgenic 

splenic T cells were co-transferred (1:1 ratio with 1! 10
4 

of each population) into Ly5.2 

(CD45.2
+
) WT, TNF deficient or TNFR1/2 deficient hosts. The mice were infected with 

5!10
4
 pfu of LCMV Armstrong i.p the following day. On day 8, recipient spleens were 

harvested and the cells were stained as indicated. 

Q. Tolerance induction regimen 

Recipient mice (specified strains) were given donor specific transfusion (DST) 

and anti-CD154 (MR1) antibody as described previously (4). Briefly, mice were given 

10! 10
6
 splenocytes from B6 (H-2

b
) or BALB/C (H-2

d
) mice as DST in 200µl volume 

HBSS i.v along with 500µg of anti-CD154 (MR1) antibody in 200µl volume i.p, on day -

7 prior to skin grafting or transferring allogeneic and syngeneic target cells for in vivo 

cytotoxicity assay on day 0. On day -4 and day -1, recipient mice also received extra 

doses of 500µg of anti-CD154 (MR1) antibody. To determine the effect of TLR 

activation at the time of tolerance induction, mice also received LPS (100µg/mouse) 

diluted in HBSS in 200µl volume i.p (as described above in TLR agonists section in 

Materials and Methods) along with DST and MR1 injection on day -7. To determine the 

fate of alloreactive T cells under these treatments in KB5 synchimeric mice, recipient 

spleens were harvested at 9,11, 12 or 15 hours post treatment (as indicated) followed by 
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surface staining for DES and CD8! to monitor alloreactive cell number or alloreactive T 

cells were sorted for Real time PCR array. 

R. Annexin-V, Active Capase3 and TUNEL staining 

To analyze the apoptotic profile of the T cells, annexin-V staining was performed. 

One of the features of early apoptosis is that the membrane phosphotidyl serine that is 

usually expressed in the inner leaflet of the plasma membrane is flipped out to the outer 

membrane in apoptotic cells. Spleens from the indicated mice were harvested after the 

indicated time points and the (1 " 10
6
) splenocytes were pre-incubated in 48 well flat 

bottom plate for 4 hours in vitro at either the physiological temperature 37 °C or at 4°C 

control.  Incubation at 37°C slows the scavenging activity of macrophages so that there 

could be better staining for apoptotic cells. After incubation, cells were transferred into a 

96 well plate and stained for surface markers for 20 min. This was followed by 15 min of 

incubation with 5µl of annexin-V (BD pharmingen) and 1µl of 7AAD (BD pharmingen) 

in 1X annexin-V buffer at room temperature in the dark. The cells were rinsed and 

washed with annexin-V buffer and immediately analyzed on a LSR2 flow cytometer.  

To corroborate the annexin-V profile in alloreactive T cells, active caspase-3 

(Casp GLOW
TM 

Fluorescein Active Caspase-3 staining kit; Cat# K183-25; Biovision) 

and terminal deoxynucleotidyl (TdT) dUTP nick end labeling (TUNEL) (ApoDIRECT In 

situ DNA fragmentation Assay kit Cat# K402-50; Biovision) staining were performed 

according to the manufacturer’s protocol. For activated caspase 3 staining, splenocytes 

isolated from KB5 synchimeric mice were pre- incubated for 3 hours at 37°C similar to 
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the method for annexin-V staining but in the presence or absence of caspase inhibitor 

ZVAD-FMK (1µl/well) (inhibits caspase 3 activation). At the end of the 3
rd

 hour, cells 

were stained for surface markers followed by the addition of (1µl/well) FITC DEVD-

FMK (that binds activated caspase 3). Samples were then incubated for another 1 hour at 

37°C. The cells were finally washed and stained for annexin-V and 7AAD. For TUNEL 

staining, splenocytes were pre-incubated for 4 hours in vitro at 37 °C followed by surface 

staining and fixation using BD cytofix (100µl/well) solution. Subsequently, cells were 

resuspended in 70% ethanol and stored at -20°C overnight. The following day, samples 

were washed and stained according to the Apo-DIRCET assay protocol (Biovision).  For 

counter staining, 7AAD was used instead of propidium iodide (PI). The samples were 

finally rinsed and analysed on the LSR2. 

S. Use of FasL antagonistic and Fas agonistic antibodies during in vitro cultures  

Splenocytes (1 ! 10
6
) isolated from KB5 synchimeric mice (after the indicated 

treatments) were pre-incubated in 48 well flat bottom plates for 4 hours in vitro at either 

the physiological temperature 37 °C or at 4°C control for annexin-V, caspase 3 and 

TUNEL staining. To determine the effect of FasL blockade on the apoptotic profile of 

alloreactive T cells, splenocytes were incubated with 20 µg/ml of FasL- blocking 

antibody (MFL-4; BD Biosciences) during the 4 hour culture period at 37 °C (342) 

followed by annexin-V, activated caspase3 or TUNEL staining. To determine the effect 

of Fas agonistic antibody on the apoptotic profile of alloreactive T cells, splenocytes were 
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incubated with 5, 2.5, 1.25 and 0.625 µg/ml of Fas (Jo2) antibody (BD Biosciences) for 4 

hours in vitro (343) followed by annexin-V staining. 

T. FasL and BIM staining   

The protocol for FasL surface staining was kindly provided by Mr. Ryan A. 

Langlois from The University of Iowa. All the steps were performed at 4 °C. Splenocytes 

(2 ! 10
6
) from KB5 synchimeric mice were incubated with Syrian hamster serum (1:100 

dilution), rat serum (1:100 dilution) purchased from Jackson Immunoresearch plus (1:400 

dilution) free streptavidin (SA) (Molecular probes Cat#S888) for 10 min at 4°C.  This 

blocking step with serum and free SA blocks the Fc receptors that could be bound by 

FasL antibody and the biotin expressed on the surface of cells respectively. Following the 

blocking step, cells were washed (2X) before staining with primary clonotypic DES and 

biotinylated "FasL (MFL-3) antibody for 25 min at 4°C. Subsequently, cells were stained 

with flourochrome-conjugated reagents or antibodies; for example, SA-PE (1:100 

dilution; BD biosciences) in case of FasL and FITC conjugated IgG2a (R19-15) for DES 

and incubated for 15-25 min at 4°C. Finally, the cells were thoroughly washed in FACS 

buffer (2X) and the samples were immediately analyzed on the LSR2. To confirm the 

staining protocol, splenocytes from day 9 LCMV Armstrong infected were stained for 

FasL. 

Staining for BIM was performed according to the manufacturer’s protocol (Cell 

Signaling). Briefly, splenocytes from the treated mice were either stained directly or 

incubated 4 hours before surface staining for the antibodies. Cells were immediately 
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fixed using 2-4% formaldehyde solution (methanol free) for 10 min at 37°C. This was 

followed by methanol permeabilization for 30 min at 4°C as described in manufacturer’s 

protocol. The cells were then washed with 1X incubation buffer (1X PBS with 0.5% 

BSA) followed by staining with primary BIM (C34C5) rabbit mAb (Cat #2933 at 

22.8µg/ml;Cell signaling) and the corresponding rabbit (DA1E) mAb IgG XP
TM

 isotype 

control (Cat #3900 at 2.5mg/ml; Cell Signaling) for 1 hour at room temperature.  The 

cells were washed at the end of the incubation and cells were re-incubated with secondary 

Anti-Rabbit IgG (H+L), F(ab’)2 Fragment (Alexa Fluor! 647 Conjugate; Cell signaling) 

for 30 min at room temperature. The cells were finally washed and analysed on the 

LSR2. 

U. In vivo cytotoxicity assay 

The in vivo cytotoxicity assay was performed as previously described(344). 

Briefly, the indicated mouse strains (H-2
b
) (B6 mice, lpr, gld and IL-10 KO) received 

10"10
6
 BALB/c (H-2

d
) splenocytes in the form of DST i.v along with (500µg/mouse) 

MR1 on day -7 i.p with respect to day 0 when the mice either received allogeneic target 

cells instead of skin grafts. With regard to the IL-10 KO (H-2
b
) mice also received 

(100µg/mouse) LPS i.p.  All mice received extra injections of MR1 on day-4 and day 0 

as per the tolerance induction regimen. To truly estimate the cytolytic ability of 

alloreactive CD8
+
 T cells, mice were given NK1.1 depleting antibody from purified 

ascites (1:20) on day -1, a day prior to receiving the target cells. On day 0, target 

syngeneic B6 (H-2
b
) and allogeneic BALB/c (H-2

d
) splenocytes were prepared as 
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described previously (345). Briefly, syngeneic B6 (H-2
b
) and allogeneic BALB/c (H-2

d
) 

splenocytes were incubated with 2.5µM and 0.5µM of CFSE respectively for 15-20 min 

at 37°C, with shaking every 5 min. The cells were washed with cold HBSS (2X). The 

syngeneic B6 (H-2
b
) and allogeneic BALB/c (H-2

d
) splenocytes were recounted and then 

mixed at equal ratios.  A total of 20! 10
6
 cells were adoptively transferred into each of 

recipient mice as indicated. Around 20 hours post injection of the target cells, the 

recipient mice were sacrificed and their splenocytes were analyzed for allogeneic target 

cell lysis based on CFSE detection. The percentage lysis was calculated according to the 

following formula: 100-{[(% allogeneic target population in experimental / % syngeneic 

target population in experimental) ÷ (% allogeneic target population in NK depleted 

naïve control / % syngeneic target population in NK depleted naïve control)] ! 100} as 

described previously (345, 346). 

V. Serum cytokine analysis using BD!  Cytometric Bead Array (CBA) 

Serum from blood of KB5 synchimeric mice that were either untreated or treated 

with DST, DST+MR1 or DST+MR1+ LPS for 8 hours was isolated. The following were 

the inflammatory cytokines measured in the serum: IL-6, IL-10, monocyte 

chemoattractant protein-1 (MCP-1), IFN-", TNF, and interleukin-12p70 (IL12p70). The 

quantity of each of inflammatory cytokines was measured using the BD# Cytometric 

Bead Array (CBA).  Briefly, the mouse inflammation standards containing the 

lyophilized mouse recombinant proteins were prepared as per the recommended protocol 

in the kit. Next, the capture bead mixture for every assay tube was prepared, containing 
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10 µl of each of the 6 capture beads possessing distinct fluorescence intensities (coated 

with the capture antibody for each cytokine in the kit). Then, the serum samples were 

diluted to 1:2 and 1:16 times in the appropriate volume of assay diluent (provided in the 

kit). Once these reagents were prepared, the capture beads were mixed with standards and 

the diluted samples. Subsequently, the PE detection reagent was added to the above 

mixed samples and the tubes were incubated for 2 hours at room temperature in the dark. 

The samples were washed with the wash buffer before resuspending the bead pellet in the 

wash buffer again. The samples were then analyzed with appropriate FITC and PE single 

color controls according to the protocol on the LSR2 in the FACS core facility at UMMS. 

X. Statistics  

Sample analyses were also done using Graph Pad Prism (Graph Pad Software). 

Samples were analyzed by unpaired t test wherever specified and P values are indicated.  

A one-way ANOVA with a Tukey post-test was used to compare multiple samples, with 

a P value of <0.05 considered significant.   
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Chapter 3: Maturation-dependent licensing of naïve T cells for rapid TNF production 

Chapter 3: Abstract 

TNF is a well-documented pro-inflammatory cytokine that has recently been 

shown to play an immunoregulatory function in limiting the magnitude of virus-specific T 

cell responses during a viral infection. Naïve T cells in secondary lymphoid organs 

(SLOs) exhibit a unique ability to produce TNF rapidly after activation and prior to 

acquiring other effector functions and hence serve as one of the sources of TNF during 

an immune response. My studies revealed that TNF deficiency in T cells could limit the 

magnitude of virus-specific T cell responses, suggesting the suppressive role of T cell-

derived TNF during a viral infection. Peripheral naive T cells are a heterogeneous 

population of cells at various stages of post-thymic development. Comparison of TNF 

cytokine profiles of single positive thymic T cells, splenic RTEs and MN T cells during 

TCR activation revealed that thymic T cells exhibited a poor ability to produce TNF when 

compared to splenic T cells, despite possessing a similar potential for activation. Splenic 

RTEs had a significantly enhanced ability to produce TNF relative to their SP thymic 

precursors, while MN T cells were the most efficient of TNF producers. Together, these 

findings suggest that the regulation of TNF expression by naïve T cells is influenced by 

the post-thymic maturation status of T cells. The hierarchical pattern of TNF production 

by different naïve T cell subsets in the periphery results in the establishment of functional 

heterogeneity in the naïve T cell pool that in turn might affect T cell fate decisions during 

the initiation phase of T cell responses. 
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Chapter 3: Introduction  

T cell development begins within the thymus and is driven to completion after 

single positive (SP) thymocytes exit the thymus and seed secondary lymphoid organs, 

where they undergo progressive phenotypic and functional maturation (3). The peripheral 

naïve T cell pool is therefore comprised of a heterogeneous population of cells at 

different stages of post-thymic development, encompassing T cell subsets from the fully 

mature to the most recently emigrated thymic T cells (347).  The recent thymic emigrants 

(RTEs) which are 0-2 weeks old in the periphery have a distinct phenotypic profile 

(CD24
high

, Qa2
low

, CD45RB
low

) relative to their mature naïve (MN) counterparts, that are 

resident in the periphery for > 3 weeks (CD24
low

, Qa2
high

, CD45RB
high

) (3, 41). RTEs 

have been shown to also differ functionally, producing less IL-2, exhibiting a decreased 

ability to proliferate upon 48 hours of in vitro TCR stimulation and producing less IFN-! 

after 7 days of infection with ovalbumin-expressing Listeria monocytogenes (rLM-OVA) 

(3, 41). Our laboratory has previously shown that recently activated naïve T cells in 

secondary lymphoid organs rapidly produce TNF within 4-5 hours of TCR engagement 

(1). The kinetics of TNF production by naïve T cells suggests that this potent 

immunomodulatory cytokine is released during the initial encounter between T cells and 

APCs, a critical phase in the programming of antigen-specific responses (117, 348-354). 

However, when and how naïve T cells acquire this unique capability to produce TNF 

during development is not known. 
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Given the important role of TNF in regulating immune responses and the ability 

of naïve T cells to produce this cytokine early during activation, I first determined the 

immunoregulatory role of T cell-derived TNF in shaping the immune response during the 

acute phase of LCMV infection using a co-adoptive transfer model of WT and TNF 

deficient P14 TCR transgenic CD8
+
 T cells into either WT, TNF deficient or TNFR1/2 

deficient hosts. These studies demonstrate that T cell-derived TNF plays a suppressive 

role in limiting the magnitude of CTL responses during the acute phase of an immune 

response. This suppressive effect of T cell-derived TNF is localized and is partly 

manifested through its paracrine effect on other surrounding cells. 

Subsequently, I determined the developmental stage when naïve T cells become 

competent to produce TNF by comparing the capability of SP naïve T cells to produce 

TNF before and after emigration from the thymus. Since, the ability of naïve T cells to 

produce TNF is primarily mediated by TCR signaling, I performed these studies 

comparing 2 modes of activation of T cells, namely with anti-CD3 antibody and peptide 

stimulation of polyclonal T cells and transgenic T cells, respectively. These studies reveal 

that CD4
+
 CD8

-
 and CD4

-
 CD8

+ 
SP thymocytes possess a poor ability to produce TNF 

upon stimulation when compared to their counterparts in secondary lymphoid organs. 

Contact with secondary lymphoid cells (spleen and lymph node) during TCR activation 

partially enables SP thymocytes to produce TNF in vitro by providing optimal antigen-

presentation. However, the frequency of TNF producing cells is still significantly lower 

than in the periphery. RTEs in the spleen on the other hand, display an intermediate TNF 

response, which is higher than their SP thymic precursors but lower relative to the MN T 
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cells. Interestingly, the difference in the TNF profile exhibited by these 3 populations of 

lymphocytes mirrors their distinctive maturation status. Moreover, as developing T cells 

mature in the periphery, they show a progressive increase in their capability to produce 

TNF upon TCR activation. Together, these findings suggest that naïve T cells become 

gradually licensed to efficiently produce TNF in a maturation-dependent manner that 

requires their localization to secondary lymphoid organs. 
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 Chapter 3: Results 

A. T cell-derived TNF limits the magnitude of CD8
+
 T cell responses during the 

effector phase of the immune response 

 TNF has been shown to have an immunoregulatory role during viral and some 

bacterial infections (191, 192). These studies showed that T cells from TNF-deficient 

mice exhibited reduced apoptosis during the contraction phase of the immune response 

suggesting a role for TNF in suppressing CD8
+
 T cell responses. However, these studies 

did not show the cellular source of TNF that was responsible for this suppressive effect. 

To test if T cell-derived TNF can limit effector CD8
+
 T cell responses, I adoptively 

transferred WT P14 and TNF-deficient P14 TCR transgenic CD8
+
 T cells (designated as 

P14 Tg CD8
+
 from here on) into mice that were either WT or TNF-deficient and infected 

them with LCMV the following day (Fig. 3.1 A). The only source of TNF in the TNF-

deficient hosts is the TNF that is produced by WT P14 Tg CD8
+
 T cells. I found that by 

day 8 of LCMV infection, TNF-deficient P14 Tg CD8
+
 T cells accumulated to higher 

levels both in frequency (average 33 ± 1.5 % P14 WT compared to 66 ± 1.5 % TNF-

deficient in WT host and average 19.2 ± 0.6 P14 WT compared to 80.8 ± 0.6 P14 TNF-

deficient in TNF deficient host) and absolute cell number (11.8 ± 1.9 ! 10
6
 P14 WT 

compared to 23.1 ± 2.6 ! 10
6
 P14 TNF-deficient in WT host and 4.8 ± 1.3! 10

6
 P14 WT 

compared to 19.8 ± 5.3! 10
6
 P14-TNF deficient in TNF deficient hosts) than the P14 WT 

counterparts  confirming previous reports that TNF has a suppressive role during LCMV 

infection (Fig 3.1 B). This was not attributed to the differences in clearance of the viral 
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antigen, as the viral titers in WT and TNFKO animals observed at day 8 have been shown 

to be similar(2). The TNF that is produced by the WT P14 Tg CD8
+
 T cells did not affect 

the TNF-deficient P14 Tg CD8
+
 cells, suggesting a localized effect of this cytokine. I also 

found that the ratio of donor TNF-deficient P14 Tg CD8
+
 T cells to the WT counterparts 

in the TNF-deficient host was higher than in the WT host (Fig 3.1D). The more 

pronounced differences in frequency of TNF-deficient P14 Tg CD8
+
 T cells to the WT 

P14 Tg CD8
+
 T cells in the TNF-deficient hosts suggests that TNF derived from cell 

types other than antigen-specific CD8
+
 T cells also contributes to the suppressive effect. 

Next, I hypothesized that accumulation of TNF-deficient P14 Tg CD8
+
 T cells could be 

due to reduced apoptosis. To test this, I performed annexin-V and 7AAD staining on 

splenocytes isolated from WT or TNF-deficient mice that received a co-transfer of P14 

WT and TNF-deficient Tg CD8
+
 T cells. I incubated the cells for 4 hours in vitro before 

staining for annexin-V and 7AAD. I observed no differences in percentages of annexin-V 

positive cells or the mean fluorescence intensities (MFI) of annexin-V in WT P14 or 

TNF-deficient P14 Tg CD8
+
 T cells that were transferred into either hosts on day 8 post 

infection. This indicated that TNF-deficient T cells are not resistant to apoptosis during 

this period (Fig 3.1C).  Together these results suggest that the absence of T-cell derived 

TNF leads to accumulation of antigen-specific T cells to higher frequencies during 

LCMV infection, and this increase in number is not due to reduced apoptosis of antigen-

specific T cells. 
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Figure 3.1. TNF-deficient P14 TCR transgenic (Tg) CD8
+
 T cells accumulate to higher 

frequencies than their WT counterparts after LCMV. 

P14 Ly5.1 (CD45.1
+
) WT and P14 Ly5.1 Ly5.2 (CD45.1

+
 and CD45.2

+
) TNF-deficient 

Tg CD8
+
 splenic T cells were co-transferred (1:1 ratio with 1! 10

4 
of each population) 

into either Ly5.2 (CD45.2
+
) WT or TNF-deficient hosts. The mice were infected with 

5!10
4
 pfu of LCMV Armstrong i.p.the following day. Panel A shows the experimental 

design of the co-transfer. Panel B shows the percentages and the absolute cell numbers 

of donor P14 WT and TNF-deficient Tg CD8
+
 T cells in either WT (N =5) or TNF-

deficient hosts (N =4) respectively.  Panel C shows the percentages of donor cells (WT- 

black histograms and TNF-deficient- red histograms) positive for annexin-V in WT or 

TNF-deficient hosts and their respective MFI. Panel D shows the comparison of ratio of 

the percentages of donor P14 TNF-deficient Tg CD8
+
T cells to donor P14 WT Tg CD8

+
 

T cells in the WT and TNF-deficient hosts. The values in each graph were compared 

using an unpaired test. P values are indicated in each graph. Error bars indicate SD. 
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B. The suppressive effect of T cell-derived TNF is in part mediated by its influence on 

host cells 

I next wanted to determine if the mechanism by which the localized effect of T 

cell-derived TNF occurred is via an autocrine or a paracrine phenomenon. To test this, I 

co-transferred WT P14 and TNF-deficient P14 Tg CD8
+
 T cells into either WT or TNF 

receptor ( TNFR 1 and 2 designated as TNFR1/2) -deficient hosts and infected them with 

LCMV Armstrong (Fig 3.2A). At day 8 post-infection, I observed higher percentages and 

absolute number of donor TNF-deficient P14 Tg CD8
+
 T cells compared to donor WT 

P14 Tg CD8
+
 T cells in both WT (average frequency 32.6 ± 1.1 % P14 WT compared to 

67.1 ± 1.2 % P14 TNF-deficient and average cell number 7.8 ± 0.5 ! 10
6
 P14 WT 

compared to 16.5 ± 1.6 ! 10
6
 P14 TNF-deficient) and TNFR1/2-deficient hosts (average 

frequency 40.4 ± 0.9 % P14 WT compared to 59.5 ± 0.9% P14 TNF-deficient and 

average cell number 37.1 ± 4 ! 10
6
 P14 WT compared to 55.8 ± 7.1 ! 10

6
 P14 TNF-

deficient) (Fig 3.2B). This suggests that the localized effect T cell-derived TNF may be 

occurring in an autocrine fashion at this stage of infection.  

Interestingly, I also observed that the donor WT P14 Tg CD8
+
 T cells 

accumulated to slightly higher frequencies in the TNFR1/2-deficient hosts although they 

were still lower compared to donor TNF-deficient P14 Tg CD8
+
 T cells (Fig 3.2B in 

TNFR1/2 deficient hosts right side columns). The average number of WT P14 Tg CD8
+
 

T cells in the WT host 7.8 ± 0.5 ! 10
6
 compared to 37.1 ± 4 ! 10

6
 in TNFR hosts. This 

suggests the donor WT P14 Tg CD8
+
 T cells were less suppressed in the TNFR1/2 
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deficient hosts.  This could mean that in addition to the autocrine effect of T cell-derived 

TNF, paracrine signaling via the TNFR1/2 on the surrounding cells may also be playing a 

role in mediating the suppression on antigen-specific T cells during an immune response. 

Consequently, I observed that the ratio of percentages of TNF-deficient P14 Tg CD8
+
 T 

cells to its WT counterparts was reduced in TNFR1/2 KO host relative to the WT host 

(Fig 3.2C). This was not attributed to the differences in clearance of the viral antigen, as 

the viral titers in WT and TNFR1/2 KO animals observed at day 8 have been shown to  

be similar(191). 

 Next, I performed annexin-V and 7-AAD staining on splenocytes from either WT 

or TNFR1/2 deficient mice that were co-transferred with WT P14 Tg or TNF-deficient 

P14 Tg CD8
+
 T cells. I observed no differences in percentage of annexin-V positive cells 

in P14 WT or TNF-deficient Tg CD8
+
 T cells (Fig 3.2C).  Together, these results suggest 

the effect of T cell-derived TNF is partly mediated by its effect on other cell types.
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Figure 3.2. The suppressive effect of T cell-derived TNF occurs due to both autocrine 

and paracrine signaling  

Ly5.1 (CD45.1
+
) WT and Ly5.1

+
 Ly5.2

+
 (CD45.1

+
 and CD45.2

+
) TNFR1/2-deficient 

CD8
+
 P14 TCR transgenic splenic T cells were cotransferred (1:1 ratio with 1! 10

4 
of 

each population) into Ly5.2 (CD45.2) WT (N=11) or TNFR1/2-deficient hosts (N=15). 

The mice were infected with 5!10
4
 pfu of LCMV Armstrong i.p. Panel A shows the 

experimental design of the cotransfer. Panel B show the percentages and the absolute 

cell numbers of donor P14 WT and P14 TNF-deficient cells in either WT or TNFR1/2-

deficient hosts. Panel C shows the percentages of P14 donor cells (WT and TNF-

deficient) positive for annexin-V in WT or TNFR1/2-deficient hosts and their respective 

MFI. Panel D shows the comparison of ratio of the percentages of P14 TNF-deficient T 

cells to WT donor T cells in the WT and TNFR1/2 deficient hosts. The values in each 

graph were compared using an unpaired test. P values are indicated in each graph. 

Error bars indicate SD. 
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C. Addition of !CD28 co-stimulation during !CD3 stimulation in vitro augments the 

TNF producing ability of polyclonal peripheral naïve (CD44
lo

) T cells. 

Previously, it was shown that naïve splenic CD44
lo

 polyclonal CD8
+
 and CD4

+
 T 

cells rapidly produce TNF upon in vitro !CD3 stimulation (1, 345). This indicated that 

the production of TNF by recently activated naïve T cells is a TCR-dependent 

phenomenon. Co-stimulation with !CD28 has been shown to augment TCR mediated 

signals for cytokine production such as IL-2 (61). Therefore, I wanted to determine if 

provision of !CD28 antibody would augment the production of TNF by naïve CD44
lo

 T 

cells stimulated with !CD3 antibody.  I found that addition of !CD28 along with !CD3 

antibody during the 4-hour stimulation period increased the percentages of naïve splenic 

CD8
+
 and CD4

+
 T cells that produced TNF when compared to cells that were stimulated 

with !CD3 antibody alone (Fig 3.3A and B). The addition of !CD28 did not enable the 

CD44
lo

 cells to produce IFN", though the CD44
hi

 cells had a higher percentage of cells 

producing IFN". Together, these results suggest that co-stimulation enhances the ability 

of naïve T cells to produce TNF more efficiently. 
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Figure 3.3. Enhanced production of TNF by recently activated naïve (CD44
lo

) 

polyclonal peripheral T cells stimulated with !CD3 + !CD28 for 4 hours in vitro. 

Splenocytes from naïve C57BL6 mice were stimulated as indicated for 4 hours in vitro 

followed by intracellular staining for TNF and IFN" by CD44
lo 

CD62L
lo 

CD8
+
 and CD4

+
 

T cells. Panel A and B show the percentages of CD8
+
 T cells and CD4

+
 T cells producing 

TNF and IFN" with respect to CD44 and CD62L expression. 
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D. Polyclonal naïve T cells produce TNF rapidly and transiently after !CD3 and 

!CD28 stimulation 

Antigen-specific effector T cells exhibit a transient TNF cytokine profile even in 

the continuous presence of antigen (355). To determine the kinetics of TNF production 

by naïve splenic polyclonal T cells, I performed a modified version of the intracellular 

cytokine assay. Briefly, splenocytes from B6 mice were stimulated with !CD3 and 

!CD28 co-stimulation in the presence of bfA for the indicated time periods to assess the 

production of TNF (plots on the left Fig 3.4A). Consistent with the previous findings, the 

percentage of CD44
lo

 recently activated naïve T cells producing TNF peaked at 4 to 5 

hours and reached a plateau by 7- 8 hours (Fig 3.4 Panel 1). This was associated with a 

similar increase in the TNF MFI observed in these CD44
lo

 recently activated naïve T 

cells. The addition of bfA throughout the culture period indicates the cumulative 

frequency of TNF producing cells and the amount of intracellular TNF accumulated on a 

per cell basis until each indicated time point. In order to determine the production of TNF 

on an hourly basis, cells were stimulated for the indicated time periods and bfA was 

added only during the last hour stimulation (plots on the far right Fig 3.4 Panel 3). The 

addition of bfA during the last hour of stimulation indicates that the percentage of cells 

producing TNF at that time point and the amount of TNF produced per cell peaked at 4 to 

5 hours and was rapidly extinguished by 7- 8 hours.  Both CD8
+
 and CD4

+
 T cells follow 

a similar trend for TNF production  (Fig 3.4 B Panels 1 and 3).  
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Since TNF is found in a membrane-bound form in addition to being secreted, the 

TNF detected in cultures containing bfA during the last hour of stimulation is a sum of 

both intracellular and surface bound forms of TNF. Therefore, I wanted to determine the 

surface expression of TNF in the absence of bfA (Fig 3.4 A and B, Panels 2). When I 

examined the expression of the membrane-bound TNF, I observed that there was minimal 

accumulation of TNF at the surface, which mirrored the transient profile of intracellular 

TNF (Fig 3.4 A and B, Panels 2). The peak of the surface expression of TNF and the 

percentage of cells producing the cytokine coincided at 4-5 hours and decreased by 7- 8 

hours. This confirmed that the TNF detected during the last hour of stimulation for every 

time point was an indicator of TNF production in that hour and not predominantly due to 

the accumulation of TNF at the surface. Additionally, these results confirm that co-

stimulation enhances the ability of naïve T cells to produce TNF (Fig 3.4 A and B). The 

controlled production of TNF by naïve T cells reflects its tight regulation that is 

consistent with the property exhibited by effector T cells at a later stage of an immune 

response. Together, these results indicate that there is a rapid and transient burst of TNF 

by activated naïve CD44
lo

 T cells that quickly is extinguished despite the continuous 

presence of stimulation.  
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Figure 3.4. Rapid and transient production of TNF by polyclonal naïve (CD44
lo

) CD8
+ 

and CD4
+
 splenic T cells. 

Splenocytes from naïve C57BL6 mice were stimulated in vitro as indicated for 4 hours in 

the presence or absence of bfA (Golgi Plug
TM

 0.1µg/ml). To assess the total production of 

TNF cytokine during 8 hours of stimulation, bfA was included for the entire length of the 

stimulation (graphs in the first column). To assess the production of TNF on the surface, 

bfA was not included in the culture period (graphs in the middle column), and finally to 

assess the kinetics of TNF production on an hourly basis, bfA was added in the last hour 

of each incubation period (graphs in the far right column). For example, if the cells were 

stimulated for 4 hours, bfA was added at the end of the 3
rd

 hour so that the production of 

TNF between 3
rd

 and the 4
th

 hour (last hour of stimulation) could be determined. Panel A 

and Panel B show the percentages by naïve CD44
lo

 splenic CD8
+
 and CD4

+
 T cells 

producing TNF at different time points and their respective MFI at each of the time point 

analyzed respectively$
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E. Polyclonal CD8
+
 and CD4

+
 single positive (SP) thymocytes exhibit a poor ability to 

produce TNF relative to their secondary lymphoid counterparts

Naïve CD4
+
 and CD8

+
 T lymphocytes (CD44

lo
) from secondary lymphoid organs 

rapidly and transiently produce TNF after TCR engagement and before gaining other 

effector functions. However, it is not known at what stage of development T cells acquire 

the ability to produce TNF. To determine this, thymocytes, and splenocytes from naïve 

non-transgenic B6 mice were stimulated using monoclonal antibodies to CD3 (!CD3) 

and antibodies to CD28 (!CD28; co-stimulation) for 4 hrs in vitro, respectively. Fig 3.5A 

and Fig 3.5C show that a significantly lower proportion of CD4
+
 CD8

-
 and CD4

-
 CD8

+ 

single positive (SP) thymocytes produced TNF when compared to naïve (CD44
lo

) splenic 

T cells during TCR stimulation. Addition of !CD28 co-stimulation did not further 

enhance the ability of thymocytes to produce TNF. PMA and ionomycin was used as a 

positive control for bypassing the effects of TCR activation. CD4
+
 SP thymocytes 

appeared more responsive to PMA and ionomycin but there was still a reduced frequency 

of CD4
+
 SP thymocytes to produce TNF upon activation. Fig 3.5B and D are summaries 

of 12 independent experiments showing the differences in the percentages of thymocytes 

producing TNF when compared to naïve T cells in the spleen. 
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Figure 3.5. Polyclonal CD8
+
 and CD4

+
 single positive (SP) thymocytes have a poor 

ability to produce TNF relative to their secondary lymphoid counterparts upon !CD3 + 

!CD28 stimulation. 

Thymocytes and splenocytes were stimulated with !CD3 (250ng/ml) in the absence or the 

presence of !CD28 (2.5µg/ml) as indicated. PMA (0.5µg/ml) and Ionomycin (0.5µg/ml) 

were used as a positive control to bypass a TCR requirement, as described in Materials 

and Methods. Panel A and C show the percentages of CD8
+
 SP and CD4

+
SP

 
thymocytes 

producing TNF with respect to their CD44 expression in the 2 subsets. Panel B and D 

shows comparison of the percentages of naïve (CD44 
lo

) CD8
+
 SP and CD4

+ 
SP 

thymocytes producing TNF relative to their splenic counterparts from a pool of 12 

experiments. The values were analyzed by one-way ANOVA with a Tukey post-test. The p 

value <0.0001
***

 between the groups compared. The error bars indicate SD. 



"#$

F. Varying the concentrations of either soluble or plate-bound !CD3 does not enhance 

the ability of polyclonal SP thymocytes to produce TNF.

I next hypothesized that increasing the concentration of !CD3 or offering a 

stronger signal to thymocytes with plate-bound !CD3 antibody will enable SP 

thymocytes to produce TNF. In order to address this question, I stimulated thymocytes 

with varying concentrations of either soluble !CD3 or plate-bound !CD3 in the presence 

or absence of !CD28. I found that varying the concentrations of !CD3 (soluble or plate-

bound) enabled neither CD8
+
 SP thymocytes nor CD4

+
 SP thymocytes to produce TNF 

(Fig 3.6A and B) respectively. The overall TNF response in T cells from the plate-bound 

!CD3 was slightly reduced compared to the soluble antibody stimulated T cells. 

Nonetheless, splenic CD8
+
 and CD4

+
 naive T cells still responded, whereas the CD8

+
 and 

CD4
+
 SP thymocytes did not. Together, these results indicate that increasing the TCR 

signal strength did not overcome the inability of thymocytes to produce TNF.  
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Figure 3.6. Varying either the concentrations of soluble or plate-bound !CD3 antibody 

does not promote the ability of SP thymocytes to produce TNF to the levels of naïve 

splenic T cells. 

Thymocytes and splenocytes from B6 mice were stimulated with varying concentrations 

of soluble !CD3 antibody or along with !CD28 as indicated for 4 hours in vitro as 

described in Materials and Methods. In case of plate-bound !CD3 stimulations, a 96 

well plate was coated with varying concentrations of !CD3 suspended in IX PBS 

overnight at 4°C. The following day, the PBS was decanted and soluble !CD28 antibody 

was added to the required wells before seeding the cells for stimulation. Panel A shows 

the percentages of CD8
+ 

SP thymocytes (orange bars) producing TNF after stimulation 

in comparison with CD8
+  

(CD44
lo

) splenic T cells (blue bars) with either soluble or plate 

bound antibody stimulation. Panel B shows the percentages of CD4
+ 

SP thymocytes  

(orange bars) and CD4
+
(CD44

lo
) splenic T cells (blue bars) producing TNF. 
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G. Polyclonal SP thymocytes exhibit a lower activation profile compared to their 

splenic counterparts 

In order to determine if the poor ability of SP thymocytes to produce TNF may be 

due to a defect in their activation, I examined the phenotypic changes in their activation 

profile.  While both CD8
+
 and CD4

+
 SP thymocytes showed up-regulation of CD25 and 

CD69 and a down-regulation of CD62L following stimulation, these changes were 

reduced compared to the splenic T cells (Fig 3.7). Together these results indicate that the 

defect in the ability of polyclonal thymocytes to produce TNF in response to !CD3 + 

!CD28 may be partly attributed to the generalized defect in activation of polyclonal 

thymocytes.
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Figure 3.7. Polyclonal SP thymocytes exhibit a lower activation profile relative to their 

splenic counterparts. 

Thymocytes and splenocytes were stimulated with !CD3+!CD28 for 4 hours in vitro. 

Panel A and Panel B show the differences in the surface expression of markers such as 

CD25, CD69, CD62L, CD44 and TNF in unstimulated (gray histograms) and stimulated 

(black line histograms) SP thymocytes and splenic T cells in the CD8
+ 

and CD4
+ 

subsets 

respectively. 
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H. The resting steady-state expression of TNF message is similar between polyclonal 

SP thymocytes and splenic naïve T cells 

I next wanted to determine if the differences in TNF production between SP 

thymocytes and splenic T cells may be correlated with differences in the steady state 

levels of TNF message in these subsets.  To test this, I sorted purified CD4
+ 

and CD8
+
 SP 

T cells from thymi and spleens of B6 mice and analyzed the expression of TNF mRNA in 

unstimulated cells using RT PCR. I found that DP cells in the thymus did not express 

TNF message, but CD4
+
 and CD8

+
 SP thymocytes expressed a similar level of TNF 

mRNA compared to their splenic counterparts (Fig 3.8A). In order to better quantify the 

steady state levels of TNF message in naïve T cells, I purified CD4
+
 and CD8

+ 
SP 

thymocytes and sorted for naïve CD44
lo

 splenic T cells (to avoid contamination with 

CD44
hi

 memory phenotype cells in my analysis). I performed real-time PCR to quantify 

the steady state levels of TNF message under unstimulated conditions. The levels of TNF 

message were similar between SP thymocytes and splenic naïve T cells in both CD4
+
 and 

CD8
+
 subsets (Fig 3.8B). I found that levels of TNF message were slightly higher in the 

CD44
hi

 memory phenotype cells though the difference was not significant. Together, 

these results indicate that inability of polyclonal SP thymocytes to produce TNF is not 

due to differences in the expression of TNF message under resting steady state 

(unstimulated conditions). 



""#



""#

Figure 3.8. Similar steady-state levels of TNF mRNA expression in polyclonal SP 

thymocytes relative to splenic naive T cells under unstimulated conditions. 

Panel A. CD4
+
 CD8

+
 DP thymocytes, CD4

+
 SP and CD8

+
 SP thymocytes were sorted to 

>90 % purity by a MoFlo cell sorter. In case of splenic T cells, CD4
+
 and CD8

+
 T cells 

were purified by MACS separation by positively selecting for CD4
+
 and CD8

+
 T cells 

containing both CD44
lo

 and CD44
hi 

populations.  RNA was isolated and cDNA was 

synthesized by RT PCR. cDNA synthesized from RNA isolated from unpurified 

splenocytes from B6 mice that express TNF message was used as a positive control. 

Splenocytes from TNF-deficient (indicated as TNF KO) mice were used as a negative 

control. Panel B. DP thymocytes, CD4
+
 SP and CD8

+
SP thymocytes were sorted to 

>98% purity. Concomitantly, naïve CD44
lo

 splenic CD4
+
 and CD8

+
 T cells were sorted 

from CD44
hi 

memory phenotype cells to > 98% purity. cDNA was synthesized from total 

RNA isolated from all the purified subsets of cells by real-time PCR. The copy number of 

TNF transcripts in 25ng of total RNA normalized to !-actin in the indicated populations 

at steady state is shown. These data are averages of 3 independent experiments that were 

analyzed using One-way ANOVA with a Tukey post-test. Error bars indicate SD$
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I. !CD3+!CD28 antibody mediated cross-linking of polyclonal thymocytes in the 

presence of secondary lymphoid cells results in a modest increase in the frequency of 

TNF producing polyclonal SP thymocytes.

Given the differences between SP thymocytes and splenic T cells in the ability to 

produce TNF, I questioned if this may be due to better stimulation of T cells in the 

presence of antigen presenting cells that enables T cells in the spleen to produce TNF. I 

hypothesized that SP thymocytes stimulated in the presence of splenocytes will be better 

able to produce TNF than when stimulated alone. To test this, I stimulated Ly5.1 

(CD45.1
+
) thymocytes with !CD3 and !CD3+!CD28 for 4 hours in the presence of 

Ly5.2 (CD45.2
+
) B6 splenocytes.  I found that there was a small increase in the 

percentage of SP thymocytes (CD8
+
 and CD4

+
) producing TNF when stimulated in the 

presence of splenocytes (Fig 3.9 A and C). Fig 3.9 B and D are a pool of 13 experiments 

showing SP thymocytes capable of producing TNF in the context of splenocytes. 

Together, these results suggest that although polyclonal SP thymocytes gain a partial 

ability to produce TNF, they are still poor producers of TNF compared to naïve splenic T 

cells. 
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Thymocytes
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Ly5.1 CD8+ thymocytes

+Ly5.2 splenocytes

Figure 3.9. Partial increase in the percentages of polyclonal  SP  thymocytes producing TNF when 

stimulated in the presence of splenocytes
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Figure 3.9. (Contd) Partial increase in the percentage of polyclonal  SP  thymocytes producing TNF when 

stimulated in the presence of splenocytes
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Figure 3.9. Small increase in the percentages of polyclonal SP thymocytes producing 

TNF stimulated in the presence of splenocytes.  

Ly5.1 (CD45.1
+
) thymocytes were either stimulated alone or in the presence of 

Ly5.2 (CD45.2
+
) splenocytes at (1:1 ratio) with indicated stimulations for 4 hours in 

vitro. Panel A and Panel C show the percentages of CD4
+ 

and CD8
+
SP thymocytes (the 

first 2 rows) or splenic T cells (last row in each panel) producing TNF. Panel B and D 

shows the average percentages of (CD4
+
 and CD8

+
) SP thymocytes producing TNF when 

stimulated alone or in the presence of splenocytes. These data are a pool of 13 

experiments. The values were analyzed by one-way ANOVA analysis with Tukey post-test. 

P value < 0.0001*** and error bars indicate SD. 
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J. The effect of the cells of secondary lymphoid organs on TNF production by 

polyclonal SP thymocytes is dose dependent and is mediated by splenic B cells and 

nonB/T cells in a contact-dependent manner. 

I next characterized the partial enhancement of TNF-production by thymocytes 

stimulated in the presence of splenocytes. To determine if the partial enhancement is 

dependent on cell dose, I stimulated thymocytes with varying numbers of splenocytes 

with !CD3 and !CD28. I found that the enhancement of TNF production by thymocytes 

was dependent on the number of splenocytes (Fig 3.10A and B).  I further determined 

which cell types in the splenocyte population enabled thymocytes to produce TNF. I 

stimulated Ly5.1 (CD45.1
+
) thymocytes in the presence of purified Ly5.2 (CD45.2

+
) 

splenic B cells and T cells and non-lymphocyte populations in the flow-through that 

contains B220+ and CD11c+ cells. I found that splenic B cells and the cells in the flow-

through enabled the modest increase in the percentages of thymocytes producing TNF 

(Fig 3.11). I next tested if the increase in TNF production by thymocytes enabled by 

splenic B cells and nonB/T cells in the flow-through was mediated by cell contact or by a 

soluble factor. To do this, I performed a transwell assay. Briefly, the top-wells were 

seeded with thymocytes and the bottom wells with thymocytes and splenocytes 

stimulated with !CD3 and !CD28 (Fig 3.12). I found that thymocytes in the top well did 

not produce TNF, whereas cells stimulated in the presence of splenocytes in the bottom 

well produced TNF (Fig 3.12). Together, these results indicate that contact with the cells 

of secondary lymphoid organs enables SP thymocytes to partially produce TNF.   
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Figure 3.10. The effect of splenocytes on TNF producing ability of polyclonal SP 

thymocytes during !CD3+!CD28 is dose-dependent. 

2 " 10
6 

Ly5.1 (CD45.1) thymocytes were stimulated as indicated in the presence of 2 " 

10
6 

Ly5.2 (CD45.2) splenocytes (1:1) and stimulated as indicated. Additionally, 

thymocytes were also stimulated with decreasing ratios of splenocytes at 2 " 10
5 

 (10:1) 

and 2 " 10
4
 (100:1) cells respectively. Panel A shows the percentages of SP CD8

+
 

thymocytes and Panel B shows the percentages of SP CD4+ thymocytes producing TNF. 

The values are averages of 3 experiments. Error bars indicate SD. 
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Figure 3.11. Resting splenic B cells and non-B and T cell subsets that contain CD11c+ 

cells are responsible for the modest increase in TNF production by SP thymocytes. 

Panel A, Ly5.2 (CD45.2
+
) splenocytes were dissected into purified splenic B cells 

(CD19
+
B220

+
), purified T cells (Thy1.2

+
CD3

+
) and non-B and T cells (CD11c

+
 cells in 

the flowthrough during purification). The cells were >96% pure in B and T cell subsets. 

Ly5.1 (CD45.1
+
) thymocytes were stimulated alone or with indicated purified 

populations of splenocytes or with control total splenocytes for 4 hours in vitro. Panel B 

and C, the percentages of CD62L
lo

 activated SP thymocytes (both CD8
+
 and CD4

+
) 

producing TNF in the context of the indicated cell populations are shown. 
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Figure 3.12. Polyclonal SP thymocytes stimulated in the presence of splenocytes 

acquire a modest ability to produce TNF in a contact-dependent manner. 

10! 10
6
 Ly5.1 (CD45.1

+
) thymocytes were seeded into the upper compartment of 6 

welled transwell plate followed by the lower compartment that was seeded with 5 ! 10
6
 

Ly5.1 (CD45.1
+
) thymocytes along with 5! 10

6
 (CD45.2

+
) splenocytes. Both the 

compartments were stimulated as indicated. Following stimulations, cells were aliquoted 

into smaller 96 well plates for intracellular staining for TNF. Panel A and Panel B show 

the percentages of TNF producing CD8
+
 and CD4

+
 SP thymocytes in the upper and the 

lower compartment in the transwell (First 2 rows). The bottom row shows the 

percentages of TNF producing control Ly5.2 (CD45.2
+
) splenic T cells in Panel A and 

Panel B. 
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K. Polyclonal splenic T cells require the presence of accessory cells from the spleen to 

produce TNF during !CD3+!CD28 stimulation.

To determine if stimulation in the presence of cells of the secondary lymphoid 

organs for optimal TNF production is an absolute necessity for naïve splenic polyclonal T 

cells to produce TNF or if it is a requirement solely of SP polyclonal thymocytes, I 

purified polyclonal splenic naïve T cells (CD8
+
 and CD4

+
) and stimulated them either 

alone or in the presence of cells other the spleen such as the thymus. Additionally, I also 

stimulated purified splenic T cells with the cells of spleen that were left in the 

flowthrough. I observed that during !CD3+!CD28 stimulation, the TNF producing 

ability of purified splenic T cells was reduced in the absence of splenocytes (APCs) 

[orange bars] or when splenic T cells were stimulated in an environment other than the 

splenic environment (the presence of thymocytes) [Green bars]. Stimulation of 

splenocytes containing splenic B cells and APCs restored the TNF producing capability 

of splenic T cells (Fig 3.13).  Purified splenic T cells however still retained the ability to 

produce TNF during PMA and ionomycin stimulation that bypasses the TCR activation. 

Together, these results indicated a requirement of splenic environment to enable SP 

thymocytes as well as naïve splenic T cells to be able to produce TNF during TCR 

activation. 
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Figure 3.13. Polyclonal splenic T cells require contact with cells of secondary lymphoid 

organs for optimal TNF production during !CD3+!CD28 stimulation . 

Ly5.1 (CD45.1
+
) unpurified splenocytes (blue bars) and Ly5.1 (CD45.1

+
) splenic T cells 

(orange bars) that were purified using Thy1.2 miltenyi microbeads (93% purity) were 

stimulated with !CD3+!CD28 or with PMA and ionomycin as described in Materials 

and Methods.  Additionally purified splenic T cells were stimulated either in the presence 

of Ly5.2 (CD45.2
+
) thymocytes (green bars) or Ly5.2 (CD45.2

+
) total splenocytes (black 

bars). Panel A and panel B show the percentages of Ly5.1 (CD45.1
+
) naïve (CD44

lo
) 

CD8
+
 and CD4

+
 splenic T cells producing TNF after 4 hours of stimulation in vitro. 
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L. Blockade of Fc receptors on splenocytes abrogates the TNF producing ability of 

polyclonal SP thymocytes during TCR stimulation. 

Given that thymocytes require cell contact with splenocytes to produce TNF upon 

!CD3+!CD28 stimulation, I wanted to determine the nature of the signal (constitutive or 

induced during activation) that is required to augment TCR activation. I used two 

approaches to address this question. Thymocytes were stimulated in the presence of 

splenocytes treated with either actinomycin D (that blocks new transcription) or 

paraformaldehyde (cytofix). I found that the ability of the thymocytes stimulated with 

actinomycin D-treated splenocytes to produce TNF was diminished slightly (Fig 3.14A), 

suggesting that there is not an absolute requirement for the induction of surface 

molecules on splenocytes to augment TNF production by SP thymocytes. Next, I 

questioned if any cell-surface molecule on splenocytes could be involved in the 

enhancement of TNF production by thymocytes. To test this, I treated splenocytes with 

cytofix solution containing 4% paraformaldehye that crosslinks proteins on the surface of 

splenocytes. I then stimulated thymocytes with !CD3+!CD28 antibodies along with 

cytofix-treated splenocytes. Thymocytes showed a marked reduction in TNF production 

when stimulated with cytofix treated splenocytes, suggesting a potential role for a surface 

molecule which may be affected by paraformaldehye treatment, in the enhancing the 

ability of thymocytes to produce TNF stimulated in the context of splenocytes (Fig 3.14 

B). 
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Given the above observation, I hypothesized that surface Fc receptors expressed 

on splenic B cells and APCs may be responsible for better cross-linking of the !CD3 and 

!CD28 antibodies, thereby providing a stronger TCR signal to the thymocytes. To 

determine this, I first pretreated splenocytes with a Fc-blocking antibody for 10 min at 

various dilutions (Fig 3.14 C and D) and then stimulated thymocytes with !CD3 and 

!CD28 antibodies in the presence of the Fc-blocked splenocytes. I found that use of Fc 

receptor-blocked splenocytes completely abrogated the production of TNF by SP 

thymocytes (CD8
+
 and CD4

+
) (Fig 3.15C). This suggests two possible mechanisms for 

the splenocyte-mediated stimulation of SP polyclonal thymocytes for TNF production. 

One is that the presence of Fc receptors resulted in better cross-linking of !CD3 and 

!CD28 antibodies. The second is that the interaction of the !CD3 and !CD28 antibodies 

with the Fc receptors may bring cells in close proximity, thus resulting in optimal 

clustering of accessory molecules that may enhance TNF production by thymocytes. 
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Figure 3.14. Evaluation of various parameters involved in splenocytes mediated 

enhancement of TNF production by polyclonal SP thymocytes during !CD3+!CD28 

stimulation.  

Panel A, Ly5.1 (CD45.1
+
) thymocytes were stimulated along with either control Ly5.2 

(CD45.2
+
) splenocytes or splenocytes that were pretreated with actinomycinD (20µg/ml) 

for 1 hour at 37°C. Panel B, Ly5.1 (CD45.1
+
) thymocytes were stimulated along with 

either control Ly5.2 (CD45.2) splenocytes or splenocytes that were pretreated with 

cytofix (1 ml) for 5-10 min at 4°C. Panel C, Ly5.1 (CD45.1
+
) thymocytes were stimulated 

along with either control Ly5.2 (CD45.2
+
) splenocytes or splenocytes that were 

pretreated with Fc block (2.5µg/ml) for 20 min at 37°C. The percentages of naïve CD44
lo

 

(CD8
+
 and CD4

+
) SP thymocytes producing TNF when stimulated with splenocytes from 

all the treatment are shown. Panel D. shows the percentages of TNF producing 

thymocytes stimulated with splenocytes that were pretreated with Fc block at varying 

dilutions as indicated. 
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M. Preconditioning of polyclonal thymocytes with splenic APCs prior to activation does 

not enhance their ability to produce TNF. 

 Naïve T cells in the periphery are known to require a low level of TCR-self MHC 

interactions to respond optimally upon antigen encounter (356). I hypothesized that pre-

conditioning of polyclonal thymocytes with splenocytes may enhance their ability to 

produce TNF upon stimulation with !CD3+!CD28 stimulation. Ly5.1 (CD45.1
+
) 

thymocytes were incubated with Ly5.2 (CD45.2
+
) B6 splenocytes for 3 and 6 hours 

before stimulating them with !CD3 and !CD28. Pre-incubation did not enhance the 

ability of thymocytes to produce TNF when compared to thymocytes stimulated with 

splenocytes without any pre-conditioning (Fig 3.16). This suggests that prior interactions 

with splenic cells, is not sufficient for thymocytes to increase their ability to produce 

TNF during stimulation.  
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Figure 3.15. Pre-conditioning of polyclonal SP thymocytes with splenocytes does not 

enhance their TNF producing capability in vitro. 

Ly5.1 (CD45.1
+
) thymocytes were pre-incubated with Ly5.2 (CD45.2

+
) splenocytes for 3 

hours or 6 hours before they were stimulated with !CD3+!CD28 for another 4 hours. 

Cells that were immediately stimulated for 4 hours were used as a control (0 hours pre-

incubation). Panel A and Panel B show the percentages of SP thymocytes (CD8
+
 and 

CD4
+
) producing TNF. 
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Interim Summary 

 In sections A and B, I studied the immunoregulatory role of T cell-derived TNF in 

limiting the magnitude of antigen-specific T cell responses during a viral infection. Given 

this and the ability of naïve T cells to produce TNF early during activation, I speculate 

the effect of T cell-derived TNF on T cells may be occurring early during activation, such 

that in the absence of TNF, there may be altered T cell programming resulting in higher 

accumulation at the peak of the immune response. I next sought to determine at what 

stage of development naïve T cells become competent to produce TNF.  

In sections C-M in this chapter, I studied the differential ability of TNF 

production by polyclonal SP thymocytes relative to their splenic counterparts in response 

to a general !CD3+!CD28 antibody mediated TCR stimulation. One disadvantage of 

polyclonal SP thymocytes is that they express a diverse array of TCR with varying 

affinities and many respond differently to TCR activation (section G; Fig 3.7). In 

addition, polyclonal thymocytes and splenic T cells require splenic APCs for providing 

optimal crosslinking of the !CD3+!CD28 antibodies during activation. Therefore it is 

difficult to deduce the T cell-intrinsic and extrinsic mechanisms that may result in the 

differential ability of TNF production between thymocytes and splenic T cells. 

To better determine the differences in TNF production between SP thymocytes 

and splenic T cells, I wanted to study the TNF producing capabilities of thymic and 

splenic T cells that have a monoclonal TCR with identical affinity that can be stimulated 

specifically with their cognate peptide ligands. In the following sections of this chapter, I 
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have used thymocytes and splenic T cells from P14 TCR transgenic mice whose CD8
+
 T 

cells recognize the GP33 peptide of LCMV in the context of H-2D
b
. Additionally, this is 

a good system as I have an in vivo infection model to test the differences in the TNF 

producing capability of SP thymocytes and splenic T cells in the presence of 

physiologically relevant levels of antigen during LCMV infection. 
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N. Co-stimulation augments the TNF producing capability of TCR transgenic CD8
+
 

and CD4
+
 naive T cells. 

Given the differences in the TNF producing capability of naïve polyclonal 

thymocytes and splenic T cells during TCR activation with respect to !CD3+!CD28 

mediated cross-linking, I next tested if this profile of TNF production recapitulates with 

TCR-transgenic (monoclonal) T cells stimulated with cognate peptide ligand. Previously, 

it was shown that the P14 TCR transgenic (Tg) CD8
+
 and SMARTA TCR transgenic 

CD4
+ 

splenic T cells produced TNF when stimulated with their cognate peptide. In order 

to test if co-stimulation enhances the production of TNF by Tg CD8
+
 and CD4

+
 naïve 

splenic T cells, I used splenic T cells from P14 TCR and SMARTA TCR Tg mice that 

recognize the GP33 peptide and GP61 peptide derived from LCMV, respectively. I found 

that the percentages of transgenic T cells producing TNF increased after stimulation with 

their cognate peptides and co-stimulation (Fig 3.16 A and B). There was, however, no 

increase in the production of IFN".  

My data with the polyclonal system suggest that the activation for polyclonal 

splenic T cells required the presence of splenic B cells and APCs (that offer better Fc 

receptor mediated cross-linking of antibodies) during activation of T cells (section K; Fig 

3.13). To determine if TCR-transgenic splenic T cells are also dependent upon a splenic 

environment (containing B cells and other APCs), I purified populations of transgenic 

P14 T cells and stimulated them with GP33 and GP33+!CD28 for 4 hours. I found that, 

in contrast to the polyclonal T cells stimulated with !CD3+!CD28 antibodies, purified 
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transgenic P14 Tg T cells stimulated with soluble peptide produced TNF upon 

stimulation (Fig 3. 17A). This suggested that the peptide-mediated stimulation of purified 

transgenic T cells is sufficient to activate purified T cells and enables them to produce 

TNF bypassing the requirement for splenic APCs.  This could be potentially occurring 

due to peptide presentation between T cells as P14 Tg T cells express the MHC-I (H-2D
b
) 

on their surface that is required for GP33 presentation. Addition of actinomycin D or 

cycloheximide completely abrogated the production TNF by purified P14 Tg T cells (Fig 

3.17B), suggesting that transcription and protein synthesis is required to occur in naïve T 

cells during stimulation. Together, these results indicate that P14 Tg naïve splenic T cells 

are capable of producing TNF in vitro without the requirement of splenic APCs, unlike 

polyclonal T cells. 
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Figure 3.16. Enhanced production of TNF by naïve (CD44
lo

) TCR transgenic 

peripheral T cells stimulated with cognate peptide + !CD28 for 4 hours in vitro. 

CD8
+
P14 TCR transgenic and CD4

+
 SMARTA TCR transgenic splenocytes were 

stimulated with LCMV derived GP33 and GP61 cognate peptides along with or without 

co-stimulation for 4 hours respectively in vitro followed by intracellular cytokine stain 

for TNF as described in Materials and Methods. PMA+ Ionomycin was used as positive 

control for bypassing the TCR mediated activation. Panel A and B shown the percentages 

of naïve (CD44
lo

) P14 and SMARTA TCR transgenic T cells producing TNF. 
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Figure 3.17. New transcription and translation is required for TNF production by 

purified naïve CD8
+
 P14-TCR transgenic T cells during GP33+!  CD28 stimulation. 

CD8
+
P14 TCR transgenic T cells were MACS sorted by positive selection to 95% purity. 

Cells were pretreated with either actinomycin D (20µg/ml) or cycloheximide (5µg/ml) for 

30 min at 37°C. The cells were then stimulated with 1µM GP33 peptide in absence or 

presence of co-stimulation !CD28 (2.5µg/ml) and bfA for 4 hours in vitro followed by 

intracellular staining for TNF. Cells are gated on CD8
+
 T cells for analysis. Panel A 

shows the percentages of unpurified and purified T cells producing TNF upon 

stimulation. Panel B shows percentages of T cells positive for TNF under actinomycin D 

and cycloheximide treatment. 
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O. CD8
+
 P14 TCR-transgenic SP thymocytes exhibit a poor ability to produce TNF 

after peptide stimulation. 

Next, I wanted to determine if CD8
+
 P14 TCR transgenic thymocytes also lack 

the ability to produce TNF with respect to CD8
+
 P14 TCR transgenic T cells in secondary 

lymphoid organs. CD8
+
 P14 thymocytes and splenocytes were stimulated with GP33 and 

GP33+!CD28. PMA and ionomycin was used as a positive control. CD8
+
 P14 TCR-

transgenic SP thymocytes showed a poor ability to produce TNF relative to splenic or 

lymph node T cells as shown in Fig 3.18 A and B. Varying the concentrations of GP33 

peptide did not increase the ability of P14 thymocytes to produce TNF in vitro. Addition 

of !CD28 did not further enhance the ability to produce TNF by thymocytes (Fig 3.19).  

To determine if the reduced production of TNF by SP TCR-transgenic 

thymocytes was due to a lower level of TCR expression(357-359), CD8
+
 P14 Tg SP 

thymocytes and CD8
+
 P14 Tg naïve (CD44

lo
) splenic T cells were stained with mAbs to 

TCR V!2 and TCR V"8.1. Fig. 3.20A shows that V!2 and V"8.1 expression in CD8
+ 

P14 Tg SP thymocytes and CD8
+ 

P14 Tg splenic T cells were similar at all dilutions of 

the antibodies, with the splenic T cells showing a slightly lower expression than their 

thymic counterparts. To determine if the reduced ability of CD8
+ 

P14 Tg SP thymocytes 

to produce TNF was due to a generalized defect in their activation, I examined the 

expression of activation markers CD25, CD69, CD44 and CD62L on the CD8
+ 

P14 Tg 

SP thymocytes and CD8
+ 

P14 Tg naive (CD44
lo

) splenic T cells. As shown in Fig. 3.20B, 

CD8
+ 

P14 Tg SP thymocytes and CD8
+ 

P14 Tg splenic T cells exhibited a comparable 
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level of activation at 4 hours, with the expression of CD25 and CD69 being up-regulated 

and the expression of CD62L down-regulated. These results together suggest that SP 

TCR-transgenic thymocytes are incompetent to produce TNF when compared to splenic 

T cells upon TCR stimulation despite exhibiting similar phenotypic changes in the 

expression of activation markers. This observation of a comparable activation profile 

between CD8
+ 

P14 Tg SP thymocytes with respect to their splenic counterparts upon 

peptide stimulation is in contrast to the observation made in the polyclonal system. In 

section G (Fig 3.7), I showed that polyclonal SP thymocytes exhibited lower activation 

profiles relative to their splenic counterparts during !CD3-mediated crosslinking. These 

differences between Tg T cells and polyclonal T cells may be attributed to two 

possibilities. 1) One possibility is that both polyclonal and Tg SP thymocytes may have 

similar levels of activation thresholds compared to their splenic counterparts, and it is the 

mode of stimulation (antibody vs peptide) that may dictate their activation response. In 

other words, the !CD3+!CD28-mediated stimulation may not be optimally activating 

polyclonal SP thymocytes when compared to peptide stimulation of Tg SP thymocytes 2) 

The second possibility is that polyclonal and Tg SP thymocytes may have different levels 

of activation thresholds that are reflected in the differences in their activation status after 

stimulation. Nonetheless, despite these differences, the common observation is that both 

polyclonal and Tg SP thymocytes are still poor producers of TNF relative to their splenic 

counterparts.  
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Figure 3.18. CD8
+
 P14 TCR transgenic SP thymocytes exhibit a poor ability to produce 

TNF relative to their counterparts in secondary lymphoid organs. 

CD8
+ 

P14 TCR transgenic SP thymocytes, splenocytes and lymph node cells were 

stimulated with GP33 peptide alone or along with co-stimulation (!CD28) for 4 hours in 

vitro. PMA+Ionomycin was added as a positive control to bypass the TCR mediated 

activation. Panel A shows the representative plots of percentages of TNF producing 

CD8
+
 SP thymocytes relative to T cells in the spleen and the lymph node with various 

stimulations. Panel B shows pool of 15 experiments for the thymocytes, 18 experiments 

for the splenocytes and 3 individual mice for the lymph node cells. The values were 

analyzed by one-way ANOVA analysis with Tukey post-test. P value <0.0001***. Error 

bars indicate SD. 
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Figure 3.19. Varying the concentrations of the peptide did not promote the ability of 

transgenic SP thymocytes to produce TNF to the levels of their secondary lymphoid 

counterparts. 

SP CD8
+
 P14 TCR transgenic thymocytes and splenocytes from 3 individual mice were 

stimulated with varying concentrations GP33 peptide (10
-10

 to 10
-5

 M) alone or along 

with constant !CD28 co-stimulation (2.5µg/ml) for 4 hours in vitro followed by 

intracellular staining for TNF cytokine. The splenic T cells stimulated with peptide alone 

are indicated by the light green line with green triangles and those stimulated with 

peptide and !CD28 are indicated by the black line with black circles. Similarly, 

thymocytes that are stimulated with peptide alone are indicated by the blue line with blue 

diamonds and those stimulated with peptide and !CD28 are indicated by the orange line 

with orange squares. The error bars indicate SD. The box indicating 10
-6

 M is the 

concentration that has been used for all the analysis for comparison between thymocytes 

and splenic T cells. 
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Figure 3.20. CD8
+
 P14 TCR transgenic SP thymocytes and splenic T cells exhibit 

similar TCR levels at resting state and comparable phenotypic changes in activation 

markers upon activation. 

Panel A. Resting CD8
+ 

P14 Tg thymocytes and naïve splenocytes were stained with mAbs 

to V!2 and V"8.1 at various dilutions as indicated. The profile for the SP thymocytes is 

shown in gray solid histograms and for splenic T cells in black line histograms. Panel B. 

P14-CD8
+ 

thymocytes and naïve splenocytes were either unstimulated (gray solid 

histograms) or stimulated (black line histograms) for 4 hours with GP33+!CD28 in vitro 

and stained with mAbs to the indicated surface molecules. 
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P. Reduced ERK phosphorylation in SP transgenic thymocytes relative to naïve splenic 

T cells upon TCR activation.  

TNF production induced by TCR engagement requires signaling through the 

mitogen activated protein kinase (MAPK) pathway (229). To determine if there are 

differences in the initial proximal signaling events downstream of the TCR between 

CD8
+ 

P14 Tg SP thymocytes and naïve (CD44
lo

) splenic T cells, I examined 

phosphorylation of the MAP kinases, ERK during the first hour of activation. 

Phosphorylated ERK was first detectable at 5 min post-stimulation and continued to 

increase during the stimulation period in both SP P14-CD8
+ 

thymocytes and naïve splenic 

T cells. However, the levels of phosphorylated ERK as well as the extent of 

phosphorylation on a per cell basis were higher in naïve splenic T cells than in CD8
+ 

P14 

Tg SP thymocytes between 20 min and 1 hour after stimulation (Fig.3.21 A and B). 

Similar levels of total ERK were detected in CD8
+ 

P14 Tg SP thymocytes and CD8
+ 

P14 

Tg naïve splenic T cells (data not shown). These results indicate that signaling via the 

ERK pathway is diminished in CD8
+ 

P14 Tg SP thymocytes when compared to their 

splenic counterparts, and may account for their reduced production of TNF. However, it 

is noteworthy to mention that CD8
+ 

P14 Tg SP thymocytes and CD8
+ 

P14 Tg naïve 

splenic T cells used in this experiment were not purified. Therefore there is a possibility 

that these differences between SP thymocytes and their splenic counterparts may be 

attributed to the presence of APCs in the splenic T cell cultures during stimulation. 
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Figure 3.21.CD8
+
 P14 TCR SP transgenic thymocytes exhibit slower and lower levels 

of ERK phosphorylation compared to splenic T cells after TCR stimulation.   

CD8
+
 SP thymocytes and CD8

+ 
splenic T cells from P14-CD8

+ 
TCR transgenic mice 

were purified by cell enrichment and stimulated with 1µM of GP33 peptide for the 

indicated time points. PMA and ionomycin stimulation for 30 min was used as a positive 

control (black histograms). Cells were immediately fixed and permeabilized before 

staining, as described in Materials and Methods. For analysis, cells were gated on CD8
+
 

CD44
lo

 cells. A, The differences in phosphorylation kinetics of ERK in SP P14-CD8
+
 

thymocytes and splenic T cells upon TCR activation from 0 to 60 min respectively are 

shown. B, The differences in the MFI of phosphorylated ERK between SP P14-CD8
+
 

thymocytes (black squares) and splenic T cells (white squares) are shown. This profile is 

representative of 4 individual experiments. 
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Q. Lower level of TNF transcription in CD8
+
 P14 TCR SP transgenic thymocytes   

relative to naïve splenic counterparts during TCR activation. 

I next hypothesized that the reduced ability of thymocytes to produce TNF may 

be correlated to the lower levels of mature TNF message levels within these cells. 

Therefore, I first quantified the resting steady-state levels of mature TNF mRNA in 

purified SP P14 thymocytes and their respective naïve splenic (CD44
lo

) counterparts. Fig. 

3.22A shows the copy number of TNF transcripts detected in the indicated groups by 

quantitative real-time PCR. The levels of mature TNF message in CD8
+ 

P14 Tg SP 

thymocytes and their naïve splenic counterparts were similar and the differences were not 

significant (Fig. 3.22A). This observation is similar with purified non-transgenic SP 

thymocytes and naïve (CD44
lo

) splenic T cells (section H; Fig. 3.8).  

To determine if the diminished ability of SP thymocytes to produce TNF protein is 

due to reduced transcription of the TNF gene upon stimulation, I compared the levels of 

TNF transcripts in purified CD8
+ 

P14 Tg SP thymocytes and CD8
+ 

P14 Tg naïve 

(CD44
lo

) splenic T cells that were either unstimulated or stimulated as indicated. I found 

that the levels of TNF mRNA were dramatically upregulated in (CD44
lo

) CD8
+ 

P14 Tg 

splenic T cells during GP33 and GP33+!CD28 stimulation relative to CD8
+ 

P14 Tg SP 

thymocytes. The levels of TNF transcripts increased in the thymic subsets as well but not 

to the extent detected in the splenic subset (Fig. 3.22B). Together these results indicate 

that despite having a basal level of TNF transcription of the TNF gene, SP thymocytes 
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appear to lack the ability to induce TNF transcription efficiently upon stimulation relative 

to naïve splenic T cells. 
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Figure 3.22. Reduced upregulation of TNF message in CD8
+
 P14 TCR transgenic SP 

thymocytes relative to naïve splenic counterparts upon TCR stimulation. 

Panel A and Panel B. CD8
+ 

P14 Tg SP thymocytes and (CD44
lo

) CD8
+ 

P14 Tg naïve 

splenic T cells were purified by cell sorting and stimulated in the presence of GP33 and 

GP33+!CD28 for 4 hours followed by RNA isolation and cDNA synthesis from 50 ng of 

RNA and then amplified using TNF specific primers by quantitative real time PCR from 

the indicated populations as described in Materials and Methods. The basal level of TNF 

transcripts in 50 ng of total RNA (normalized to a "-actin control) isolated from 

unstimulated CD8
+ 

P14 Tg SP thymocytes and (CD44
lo

) CD8
+ 

P14 Tg naïve splenic T 

cells is shown in Panel A. The increase in TNF message in these subsets upon stimulation 

with GP33 and GP33+!CD28 is shown in Panel B in terms of fold induction with respect 

to unstimulated SP thymocytes been (normalized to a "-actin control). This profile is 

representative of 3 individual experiments. 
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R. Stimulation in the presence of splenocytes enables a modest increase in the 

proportion of CD8
+
 P14 TCR-transgenic SP thymocytes producing TNF. 

 Similar to polyclonal SP CD8
+
 thymocytes, CD8

+ 
P14 Tg SP thymocytes were also 

identified to be poor producers of TNF. To determine if stimulation in the presence of 

appropriate APCs can enable P14 SP thymocytes to produce TNF upon stimulation, 

Ly5.1 (CD45.1
+
) CD8

+ 
P14 Tg SP thymocytes were co-cultured with wild type (WT) 

Ly5.2 (CD45.2
+
) B6 splenocytes and simultaneously stimulated with the GP33 for 4 

hours in vitro. There was a partial increase in the proportion of TNF producing CD8
+ 

P14 

Tg SP thymocytes that were stimulated in the presence of splenocytes compared to CD8
+ 

P14 Tg SP thymocytes stimulated alone (Fig. 3.23A). TNF production was enhanced in 

the presence of !CD28 antibody, indicating the importance of co-stimulation in 

enhancing TNF production. Fig 3.23B is a pool of 10 experiments showing the 

intermediate response of thymocytes producing TNF in the context of splenocytes. 

 I next wanted to determine if the ability of CD8
+ 

P14 Tg SP thymocytes to produce 

TNF in the context of splenocytes was dependent on the number of antigen presenting 

cells in the spleen. CD8
+ 

P14 Tg thymocytes were stimulated with varying numbers of 

splenocytes and the enhancement of TNF-production by the thymocytes was again a dose 

dependent phenomenon (Fig 3.24A). In order to identify the secondary lymphoid subsets 

that best stimulate CD8
+ 

P14 Tg SP thymocytes, purified splenic B cells, T cells or APCs 

(T cell and B cell depleted populations) were co-cultured separately with CD8
+ 

P14 Tg 

SP thymocytes and simultaneously stimulated with GP33+!CD28. Both purified splenic 



"#$

B cells and APCs but not T cells enabled CD8
+ 

P14 Tg SP thymocytes to produce TNF 

(!20% TNF positive, (Fig 3.24B). These results indicate that splenocytes (data not 

shown) can enable SP thymocytes to gain a partial ability to produce TNF. These data 

also suggest that the inherent defect of CD8
+ 

P14 Tg SP thymocytes to efficiently 

produce TNF during TCR activation cannot be completely rescued by optimal antigen-

presentation in vitro. Together, these results indicate that splenic B cells and APCs in the 

flowthrough offer better signals and enable more thymocytes to produce TNF. 
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Figure 3.23. Modest increase in the percentages of CD8
+
 P14 TCR transgenic SP 

thymocytes producing TNF when stimulated in the presence of cells from secondary 

lymphoid organs.  

Ly5.1 (CD45.1
+
)

 
CD8

+ 
P14 Tg SP thymocytes were either stimulated alone or in the 

presence of Ly5.2 (CD45.2
+
)

 
splenocytes at a 1:1 (responder:stimulator) ratio with 1µM 

of GP33 alone or along with !CD28 for 4 hours, followed by surface and standard 

intracellular staining for TNF cytokine, as described in Materials and Methods. For 

analysis, the cells were gated on Ly5.1 (CD45.1
+
) CD8

+
 cells. Panel A. The percentages 

of CD45.1
+
CD8

+ 
P14 Tg SP thymocytes alone, CD45.1

+
 CD8

+ 
P14 Tg SP thymocytes in 

the presence of CD45.2
+ 

splenocytes and splenic CD45.1
+
 CD8

+ 
P14 Tg T cells (both 

CD44
lo

 and CD44
hi

) staining positive for TNF after stimulation are shown. Panel B, 

shows the pool of 9 experiments showing the differences in the percentages of TNF 

producing CD8
+
P14 TCR transgenic SP thymocytes that are stimulated under the 

indicated conditions. P value <0.001*** and error bars indicate SD. 
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Figure 3.24. The effect of splenocytes on TNF producing ability of CD8
+ 

P14 Tg SP 

thymocytes is dose-dependent and is mediated by splenic B cells and a NonB/T cell 

population containing CD11c+ cells. 

Panel A. 2 ! 10
6
 CD8

+
P14 TCR transgenic thymocytes are stimulated with varying ratios 

of splenocytes as indicated. Cells were stimulated in the presence of either 1µM GP33 

peptide alone or along with "CD28 antibody followed by standard intra-cellular staining 

for TNF. Panel B. Ly5.2 (CD45.2
+
)

 
B6 splenocytes were magnetically separated into 

purified populations of splenic B cells (CD19
+
B220

+
-97.4%) and T cells (Thy1.2

+
CD3

+
- 

83.2 %) and into T cell and B cell depleted populations (CD11c
+
- 30.4%). Ly5.1 

(CD45.1
+
) CD8

+ 
P14 Tg SP thymocytes were stimulated with these subsets at 1:1 ratio 

with GP33 +"CD28 for 4 hours and then stained for intracellular TNF. The percentages 

of CD45.1
+
 CD8

+ 
P14 Tg SP thymocytes (CD44

lo
 and CD44

hi
) staining positive for TNF 

are shown!
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S. The differential ability of TNF production between thymocytes and splenic T cells 

exists in other TCR-transgenic systems. 

 In order to determine if the differential ability of SP thymocytes and splenic T cells to 

produce TNF was also evident in other TCR-transgenic T cells, I stimulated OT-I- CD8
+
, 

HY- CD8
+
, SMARTA- CD4

+
, and OT-II-CD4

+
 transgenic thymocytes with their cognate 

peptides and !CD28. Transgenic SP thymocytes from all these mice showed a poor 

capacity to produce TNF in contrast to their splenic counterparts (Fig 3.25 A, B, C and 

D). Stimulation in the presence of splenocytes enabled a small increase in the percentage 

of thymocytes producing TNF, but they were nevertheless still defective in their ability to 

produce TNF compared to their splenic counterparts. Together, these results suggest that 

the poor ability of SP thymocytes to produce TNF is applicable to other TCR-transgenic 

systems.
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Figure 3.25. The differential expression of TNF production between SP thymocytes 

and splenic T cells is observed in other TCR-transgenic systems. 

Thymocytes and splenocytes from naïve OT-I-CD8
+
, HY-CD8

+
 and SMARTA-CD4

+
 and 

OT-II-CD4
+
 TCR transgenic mice were stimulated in vitro as indicated for 4 hours and 

then stained for intracellular TNF cytokine, as described in Materials and Methods. For 

analysis, the cells were gated on either SP CD8
+
 CD4

-
 or SP CD4

+ 
CD8

-
 cells. Panel A 

and Panel B show the percentages of CD8
+ 

(both CD44
lo

 and CD44
hi

) T cells from thymi 

and spleens of OT-I-CD8
+
, HY-CD8

+
 TCR transgenic mice staining positive for TNF 

cytokine. Panel C and Panel D show the percentages of SP P14-CD4
+ 

thymocytes and 

splenic T cells (both CD44
lo

 and CD44
hi

) from SMARTA-CD4
+
 and OT-II-CD4

+
 TCR 

transgenic mice staining positive for TNF.  As indicated the percentages of TNF 

producing SP thymocytes that were stimulated in the presence of splenocytes are shown 

in the respective panels. 
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T. Appropriate TCR-MHC interactions with splenic APCs promote SP thymocytes to 

produce TNF during activation.  

 I next hypothesized that enhanced antigen-presentation by the splenocytes in the co-

culture enables SP P14-CD8
+
 thymocytes to produce TNF. To test this I used two 

approaches. First, purified Ly5.1 (CD45.1
+
) CD8

+ 
P14 Tg SP thymocytes were stimulated 

with GP33 peptide in the presence of control Ly5.2 (CD45.2
+
) H2

b
-positive B6 

splenocytes or in the presence of Ly5.2 (CD45.2
+
) H2

d
-positive BALB/c splenocytes. 

GP33 is presented by H2D
b
 and will not be presented by H2

d
 cells. I found that there was 

partial increase in the percentages of P14 thymocytes producing TNF in the presence of 

Ly5.2 (CD45.2
+
) B6 splenocytes. However, there was no increase in the percentage of 

Ly5.1 (CD45.1
+
) CD8

+ 
P14 Tg SP thymocytes producing TNF that were stimulated in the 

presence of Ly5.2 (CD45.2
+
) BALB/c splenocytes (Fig 3.26 A and B). As expected, 

Ly5.1 (CD45.1
+
) CD8

+ 
P14 Tg splenic T cells produced TNF in the presence of both B6 

and BALB/c splenocytes, highlighting the ability of mature splenic T cells in the 

periphery to present peptide to each other during stimulation. These findings suggest that 

a primary role for the splenocytes in the co-culture is to present antigen to the 

thymocytes. Although there was a trend for a modest increase in the proportion of CD8
+ 

P14 Tg SP thymocytes producing TNF in the presence of WT B6 splenocytes as opposed 

to BALB/c splenocytes, it was not statistically significant. This may be attributed to non-

specific peptide binding to cells in the BALB/c splenocyte cultures.  
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 To clearly the determine the role of antigen-presentation by splenocytes, I used a 

cleaner system where purified Ly5.1 (CD45.1
+
) CD8

+ 
P14 Tg SP thymocytes were 

stimulated in the presence of either WT Ly5.2 (CD45.2
+
) H2D

b
-positive B6 splenocytes 

or Ly5.2 (CD45.2
+
) H2D

b
-deficient B6 splenocytes. Ly5.1 (CD45.1

+
) CD8

+ 
P14 Tg SP 

thymocytes were partially enabled to rapidly produce TNF by WT B6 splenocytes (Fig. 

3.27 A and B), but this did not occur when they were stimulated with H2D
b
-deficient 

splenocytes. This indicated that TCR-MHC interactions provided by secondary lymphoid 

cells enabled SP thymocytes to produce TNF partially. Stimulation of CD8
+ 

P14 Tg SP 

thymocytes with irradiated B6 splenocytes did not impair the ability of SP thymocytes to 

produce TNF (Fig. 3.27C), indicating that viable splenocytes were not necessary for this 

effect. Together, these results indicated the importance of appropriate antigen 

presentation via MHC interactions for P14 thymocytes to produce TNF. 
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Figure 3.26. Antigenic stimulation in the presence of appropriate MHC molecule on 

splenocytes is required for modest increase in the percentages of CD8
+
P14 TCR 

transgenic SP thymocytes producing TNF.  

Panel A. Ly5.1 (CD45.1
+
) CD8

+
P14 TCR transgenic SP thymocytes were purified by 

negative selection and stimulated in the presence of Ly5.2 (CD45.2
+
) C57BL6 

splenocytes (H2
b
) splenocytes or Ly5.2 (CD45.2

+
) BALB/c splenocytes (H2

d
) at 1:1 ratio 

in the presence of 1µM GP33 peptide for 4 hours in vitro followed by intracellular 

staining for TNF. Panel B shows the average percentages of naïve (CD44
lo

) TNF 

producing thymocytes and splenic T cells under the indicated conditions from 4 

experiments. The values were analyzed by one-way ANOVA analysis with Tukey post-test. 

Error bars indicate SD and n.s. indicates not significant. 



"#$

 



"#$

Figure 3.27. Absence of appropriate MHC molecule abrogates splenocyte-mediated 

TNF production by CD8
+
 P14 TCR transgenic SP thymocytes during TCR activation.  

Panel A. Ly5.1 (CD45.1
+
)

 
SP P14-CD8

+
 thymocytes and splenic T cells were enriched by 

negative selection as described in Materials and Methods. Enriched thymocytes and 

splenic T cells were stimulated either with GP33 or GP33 +!CD28 for 4 hours. Panel B 

and C, Enriched cells were stimulated either in the presence of live or irradiated H2D
b
 

WT or H2D
b
 KO splenocytes respectively in parallel. Cells were gated on SP CD8

+
 T 

cells and the plots show the percentages of TNF producing naïve (CD44
lo

) thymocytes 

and splenic T cells.  
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U. Differential ability of SP thymocytes and naïve splenic T cells to produce TNF 

during TCR activation in vivo.  

 To first determine if naïve splenic T cells produced TNF in the presence of 

physiologically relevant levels of antigen, I performed an in vivo cytokine assay (341). 

Briefly, CD45.1
+ 

P14-CD8
+ 

and CD45.1
+ 

SMARTA-CD4
+ 

TCR-transgenic splenic T 

cells were treated in vitro with BfA, a Golgi transport inhibitor that captures cytokines 

within the producing cell. These cells were then mixed and co-transferred into recipients 

that were infected with either WT LCMV-Armstrong or a GP33-CTL escape variant of 

LCMV (GP1V) for 2 days previously. The spleens of recipient mice were recovered 4 

hours after transfer and directly stained for intracellular TNF by the donor T cells. Both 

P14-CD8
+
 and SMARTA-CD4

+
 donor T cells produced TNF in mice that were infected 

with WT LCMV Armstrong (Fig. 3.28A). Only T cells that had down-regulated CD62L, 

which is consistent with a TCR-mediated activation event, were able to produce TNF. In 

contrast, P14 -CD8
+
 donor T cells in mice that were infected with GP1V mutant virus 

were impaired in their ability to produce TNF (Fig. 3.28A), while SMARTA-CD4
+
 donor 

T cells were unaffected. These findings indicate that the in vivo production of TNF by 

naïve CD8
+ 

T cells during LCMV infection was specifically initiated by TCR-mediated 

signaling and was not due to non-specific effects on naïve T cells by virus-induced 

inflammation.  

 I next examined the ability of SP P14-CD8
+ 

thymocytes and SMARTA-CD4
+
 

thymocytes to produce TNF in the same scenario. A small but reproducible proportion of 
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both donor SP P14-CD8
+ 

and SMARTA-CD4
+ 

thymocytes produced TNF (4 to 6% TNF 

positive of total T cells) during LCMV infection (Fig. 3.28B). As expected, infection 

with GP1V mutant impaired the ability of the donor SP P14-CD8
+ 

thymocytes to produce 

TNF. Fig. 3.28C shows the average percentages of TNF producing SP P14-CD8
+ 

donor 

thymocytes and splenic T cells that had down-regulated their CD62L expression under 

the indicated conditions. Together, these results confirm our in vitro data indicating that 

SP thymocytes are impaired in their ability to produce TNF efficiently when compared to 

naïve splenic T cells during a viral infection. 
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Figure 3.28. CD8
+
 and CD4

+
 TCR transgenic SP thymocytes and their respective 

splenic counterparts exhibit a differential ability to produce TNF during in vivo TCR 

activation.  

Panel A and B, Ly5.1 (CD45.1
+
) P14-CD8

+
 and Ly5.1 (CD45.1

+
) SMARTA-CD4

+
 

splenocytes were mixed at a 1:1 ratio, treated with bfA and transferred into Ly5.2 

(CD45.2
+
) congenic hosts that were uninfected or infected with either WT LCMV 

Armstrong or the LCMV variant GP1V. Ly5.1 (CD45.1
+
) P14-CD8

+
 and Ly5.1 

(CD45.1
+
) SMARTA-CD4

+
 thymocytes were treated with bfA and transferred separately 

into Ly5.2 (CD45.2
+
) congenic hosts that were infected with either WT LCMV Armstrong 

or the viral variant GP1V. Spleens from all recipient mice were harvested 4 hours later 

and directly stained for intracellular TNF. The percentages of donor Ly5.1 (CD45.1
+
) 

P14-CD8
+
 and Ly5.1 (CD45.1

+
) SMARTA-CD4

+
 splenic T cells and Ly5.1 (CD45.1

+
) SP 

thymocytes that are TNF
 
positive and have down-regulated CD62L are shown. Panel C, 

The average percentages of CD62L
lo

TNF
+
 donor T cells detected ex vivo are shown. 

One-way ANOVA with Tukey post-test was used to compare the mice that received P14 

thymocytes or splenocytes and were either uninfected or infected with WT LCMV strain 

or the viral mutant strain (p<0.05). These data are a pool of 6 experiments. Error bars 

indicate SD!
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V. Preconditioning of CD8+ P14 TCR transgenic SP thymocytes with splenocytes 

providing appropriate TCR-self MHC interactions prior to activation does not enhance 

their ability to produce TNF during stimulation.

 Naïve T cells require low levels of TCR- MHC interactions for their survival in 

the periphery and to respond optimally to an antigen during activation (356). 

Preconditioning of polyclonal thymocytes with splenocytes for 6 hours in vitro did not 

enhance their ability to produce TNF. Given that, I hypothesized that conditioning of SP 

thymocytes with appropriate TCR-peptide/MHC interactions may be important for their 

ability to produce TNF. In order to test this hypothesis, purified P14 thymocytes were 

pre-incubated with B6 splenocytes or H-2D
b 

KO splenocytes for 6 hours and then 

stimulated with GP33-pulsed B6 splenocytes. I found no difference in the ability of 

thymocytes producing TNF between cells that were stimulated with B6 WT versus H-2D
b
 

KO splenocytes (Fig 3.31). These results suggest that conditioning of thymocytes with 

appropriate TCR-MHC interactions does not enhance the TNF producing ability of SP 

during stimulation. This is line with the observation made with polyclonal SP thymocytes 

(section M; Fig 3.15) that did not exhibit an enhancement in TNF production when they 

were preconditioned with splenocytes prior to stimulation. 
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Figure 3.29. Pre-conditioning of CD8+P14 TCR transgenic SP thymocytes for 6 hours 

with appropriate TCR-MHC interactions prior to stimulation does not boost their 

capability to produce TNF upon stimulation. 

Ly5.1 (CD45.1
+
) CD8

+
 P14 TCR transgenic thymocytes and splenocytes were stimulated 

either alone with GP33 peptide-pulsed and irradiated B6 (H-2
b
) stimulators at 1:1 ratio 

or in the presence of !CD28 for 4 hours as described in Materials and Methods (1
st
 and 

4
th

 row plots). Subsequently, CD8
+
 P14 TCR thymocytes were pre-incubated with either 

control B6 (H-2
b
 WT) splenocytes or B6 (H-2

b
 KO) splenocytes at 1:1 ratio for 6 hours in 

vitro at 37°C (2
nd

 and 3
rd

 row plots). The percentages of CD44
lo

 naïve T cells producing 

TNF under the described conditions are shown%
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X. TNF producing capability of CD8
+
 P14 TCR transgenic SP thymocytes correlates 

with their maturation state.  

 SP thymocytes are comprised of a heterogeneous population consisting of cells at 

different levels of maturity (43). Immature SP thymocytes express high levels of CD24 

(HSA), which is down-regulated as cells progress into maturity (360). This is 

accompanied by down-regulation of CD69 and the up-regulation of other markers such as 

CD62L, CD45RB and Qa2 (40, 361, 362). I first compared the maturation profile of the 

total TNF-producing thymocytes with their TNF non-producing counterparts. I broadly 

classified SP P14-CD8
+
 thymocytes based on their CD24 and Qa2 expression %&'( $

)*+,-(*.) (Fig 3.30A) &/0123 4*+,-(*. " 5678$9% :/82(; <(22(=1> +3 4*+,-(*. 8

5678$9%?%&' :/82(;@ 4*+,-(*. A 5678$2( :/82(; /&> <%&/223 4*+,-(*. $ 5678$2( :/89% ;

(38). The small population of CD8
+
 P14 Tg SP thymocytes that produced TNF displayed 

a more matured phenotypic profile with the majority of the TNF producers falling in 

subgroups 2 and 3 compared to the TNF non-producers that fell mostly in subgroups 1 

and 2. The maturation differences between the TNF-producing SP thymocytes and the 

non-producers were also seen in the MFI changes in CD24, CD45RB and Qa2 (dotted 

line histograms and gray histograms in Fig 3.30C). However, the TNF producing CD8
+
 

P14 Tg SP P14-CD8
+
 thymocytes possessed a less mature phenotype when compared to 

their splenic counterparts. As described in Fig 3.30A and Fig 3.30B, BCDE of the TNF 

producing thymocytes constituted subgroups 2 and A relative to the TNF producing 

splenic T cells that constituted >80% in subgroups A /&> $F The differences were also 

reflected in the MFI of maturation markers (dark line histograms and black histograms in 
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Fig. 3.30C). I next examined the TNF-producing capability of each of the 4 subgroups in 

the SP thymic subset individually. The subgroups showed increasing MFI of CD45RB, 

consistent with their maturation state (Fig 3.32D). There was a progressive increase in 

TNF production on a per cell basis that correlated with maturation with Subgroup 4 

%&'()* +%, %(*%,-+ percentage of TNF
+
 cells. Together, these results suggest that though 

the small population of TNF producing SP P14-CD8
+
 thymocytes is more mature than 

the TNF non-producing counterparts, these cells are still phenotypically less mature than 

P14-CD8
+
 naïve T cells localized in the spleen. 
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Figure 3.30. TNF producing CD8
+
 P14 TCR Tg SP thymocytes exhibit a lower 

maturation profile relative to their splenic counterparts. 

Panel A and B, Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP thymocytes were stimulated with 

GP33+!CD28 for 4 hours in vitro and then stained for maturation markers and 

intracellular TNF, as described in Materials and Methods. The TNF producers and non 

producers of the thymic and the splenic subsets were each classified into 4 subgroups 

based on their CD24 and Qa2 expression as shown namely Subgroup 1 (CD24
hi

 Qa2
lo

) 

followed by Subgroup 2 ( CD24
hi-int 

Qa2
lo 

), Subgroup 3 ( CD24
lo

 Qa2
lo

 ) and finally 

Subgroup 4 (CD24
lo

 Qa2
hi 

). Panel C, shows the histogram comparison of the small 

population of TNF producing SP thymocytes (dotted line histograms), the majority of SP 

thymocytes that are TNF non-producers (gray histograms) and TNF producing splenic T 

cells (solid dark line histograms) and TNF non-producing splenic T cells (black 

histograms). The MFIs of each of the maturation markers in TNF producing and non-

producing thymic and splenic T cells are indicated in the left hand side of the histograms 

respectively. Panel D, shows the maturation profile of the total CD8
+
 P14 Tg SP 

thymocytes based on their CD24 and Qa2 expression.  The proportion of cells capable of 

making TNF in the 4 subgroups is shown with respect to CD45RB expression. 
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Y. Adoptively transferred monoclonal transgenic SP thymocytes progressively gain the 

ability to produce TNF as function of time spent in the periphery. 

 The differences in TNF production between CD8
+
 P14 Tg SP thymocytes and naïve 

CD8
+
 P14 Tg splenic T cells upon TCR stimulation parallels the differences in the 

maturation status of T cells in these two compartments as shown in Fig 3.30. The 

functional maturation of developing T cells occurs progressively with time upon contact 

with secondary lymphoid organs after their exit from the thymus (3). Given this, I 

hypothesized that SP thymocytes migrating into the periphery will gradually acquire the 

capability to produce TNF efficiently upon TCR stimulation. To recapitulate thymic 

emigration, 20 ! 10
6
 Ly5.1 (CD45.1

+
) CD8

+
 P14 Tg SP thymocytes were adoptively 

transferred into uninfected Ly5.2 (CD45.2
+
) B6 congenic mice. Spleens were harvested 

from recipient mice at the indicated time points (Fig 3.31: plots iii,iv,v,vi) and stained for 

donor Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP thymocytes producing TNF upon in vitro TCR 

stimulation. The proportion of donor Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP thymocytes 

producing TNF upon TCR stimulation increased over the time of the experiment (boxed 

quadrants in Fig 3.31: plots iii,iv,v,vi). The donor Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP 

thymocytes capable of TNF production also exhibited an increasing maturation 

phenotype (down-regulation of CD24 and up-regulation of CD45RB, Qa2) that 

approached a level similar to that of splenic T cells by day 14 after transfer. While the 

recovery of donor cells diminished over time, as shown in Table I, I also observed 

increases in the mean fluorescence intensity (MFI) of the TNF signal in naïve (CD44
lo

) 

donor Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP thymocytes producing TNF from day 2 to day 



"#$

14 after transfer (Table I). This increase in expression of TNF on a per cell basis by donor 

Ly5.1 (CD45.1
+
) CD8

+
 P14 Tg SP thymocytes was significant (p<0.05) and was 

consistent with the increasing maturation phenotype observed at these time points (Fig 

3.31 and Table II). I next compared the changes in MFI of maturation markers in the 

TNF-producing and non-producing donor thymocytes at day 1 and 2 after transfer, as the 

TNF
negative

 populations were very small at later time points (Table II). The TNF-

producing cells were more mature, again suggesting that the changes in the maturation 

state of donor thymocytes correlated with increasing capability to produce TNF 

efficiently on a per cell basis. Stimulation of thymocytes ex vivo in the presence of Ly5.2 

(CD45.2
+
) B6 splenocytes in the co-culture did not affect their maturation status. 

Together, these results suggest that the progressive maturation of transferred Ly5.1 

(CD45.1
+
) CD8

+
 P14 Tg SP thymocytes in the periphery positively influences their 

capability to competently produce TNF upon TCR stimulation. 
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Figure 3.31. Post-thymic maturation status of naïve P14 transgenic T cells correlates 

with their TNF producing capability during stimulation.  

Female Ly5.1 (CD45.1
+
) P14-CD8

+
 thymocytes were transferred into female Ly5.2 

(CD45.2
+
) B6 congenic mice. Host spleens were recovered after the indicated time 

periods and were stimulated in vitro for 4 hours with GP33+!CD28 and donor CD45.1
+
 

T cells were stained for intracellular TNF as described in Materials and Methods. Dead 

cells were excluded using Live Dead Aqua Dead cell stain for this experiment.  For 

analysis, cells were gated on the live donor SP P14-CD8
+
 T cells and the maturation 

profile of donor cells that are TNF
+ 

(indicated by arrows in the boxed quadrants in plots 

iii,iv,v,vi) were compared at all the time points shown (corresponding histograms). 

Additionally, some CD45.1
+
 P14-CD8

+
 thymocytes were stimulated before transfer in the 

context of CD45.2
+
 B6 splenocytes in vitro for 4 hours with GP33+!CD28 and their 

maturation profile was compared to CD45.1
+
 P14-CD8

+
 thymocytes and splenocytes 

stimulated alone in vitro (plots i, ii and vii). 
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Z. Adoptively transferred polyclonal thymocytes progressively gain the capability to 

produce TNF with time spent in the periphery without a requirement for any cell 

division. 

 Adoptive transfer of SP thymocytes is a model of forced emigration. However SP 

thymocytes have been shown to exhibit similar expression of molecules such as high 

expression of CD62L and !E integrin and intermediate levels of !E"7 integrin and CCR9 

compared to their naturally emigrating thymic counterparts (46, 363). Additionally, both 

SP thymocytes and RTEs have also been showed have similar migratory potential (46, 

363). Given that transgenic T cells acquire the capability to produce TNF with time spent 

in the periphery, I next wanted to determine if this was true with the polyclonal T cells as 

well. Also, I wanted to determine if thymocytes undergo any cell division to eventually 

gain the capability to produce TNF.  In order to test this, I adoptively transferred CFSE 

labeled Ly5.1 (CD45.1
+
) B6 thymocytes into Ly5.2 (CD45.2

+
) congenic hosts for 6 and 

12 hours and 1, 2, 4 and 8 days and then stimulated the recovered cells with anti-CD3. I 

had determined previously that in vitro pre-conditioning of thymocytes for 6 hours with 

splenocytes did not increase the percentage of TNF producers relative to thymocytes 

stimulated with splenocytes for 4 hours without any preconditioning (section M; Fig 

3.15). Consistent with this finding, I observed that by 6 hours after adoptive transfer in 

vivo, 30% of the polyclonal thymocytes were TNF
+
,
 
and there was no CFSE dilution in 

these cells (Fig 3.32). At subsequent time points, no dilution of CFSE was detected in the 

thymocyte subsets. This was, however, accompanied by an increase in the proportion of 

TNF producing donor polyclonal thymocytes (Fig 3.32). Similar to transgenic SP 
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thymocytes in the previous section, the survival of the polyclonal thymocytes was also 

compromised at later time points, but the MFI of the TNF producers increased with time 

in the periphery (Table III). Together, these results suggest that, as with the transgenic T 

cells, polyclonal thymocytes also gain the ability to produce TNF with time in the 

periphery under conditions where they do not require any cell division. 
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Figure 3.32. Adoptively transferred polyclonal SP thymocytes gain the ability to 

produce TNF with time spent in the periphery without the requirement of cell division. 

Ly5.1 (CD45.1
+
) thymocytes were labeled with 2µM of CFSE as described in Materials 

and Methods. 30 ! 10
6
 cells were transferred into Ly5.2 (CD45.2

+
) congenic hosts for the 

indicated time periods. Host spleens were harvested after each time point and stimulated 

with "CD3 (250ng/ml) +"CD28 (2.5µg/ml) for 4 hours followed by intracellular 

staining for TNF. Shown are the percentages of TNF producing CD8
+
 and CD4

+
 

thymocytes with respect to their CFSE staining. 
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AA. Post-thymic maturation of naturally emigrating polyclonal SP thymocytes licenses 

them to produce TNF efficiently in the periphery. 

 I next wanted to directly test the ability of polyclonal RTEs that are naturally seeding 

into the periphery for their ability to produce TNF upon stimulation. For this, I used mice 

expressing GFP under the control of the Rag2 promoter (NG-BAC transgenic mice), 

which allow the study of unmanipulated RTEs. The level of GFP expression by T cells in 

the periphery of these mice can be used to identify T cells at different stages of post-

thymic maturation. The GFP
hi 

T cells have resided in the periphery for 0-7 days, GFP
lo 

T 

cells have resided in the periphery for 7-14 days and GFP
neg

 T cells have joined the 

mature naïve (MN) T cell pool (> 14 days in the periphery) (41).  

 I compared TNF expression (mRNA and protein) in three T cell subsets: SP 

thymocytes (GFP
hi

), RTEs (GFP
hi+lo

) in the spleen, and MN T cells (GFP
neg

) in the spleen 

(Fig.3.33A).  Previously, I had determined in section H (Fig 3.8) that there were similar 

levels of TNF message expressed at resting steady state between polyclonal SP 

thymocytes and bulk splenic naïve (CD44
lo

) T cells. To determine if there may be 

differences in TNF message levels between RTEs and MN T cells at resting state, I used 

GFP as an indicator to dissect the splenic subsets and examined the steady state levels of 

TNF message in unstimulated RTEs and MN T cells using semi-quantitative RTPCR. 

RTEs expressed similar steady state levels of TNF message as their mature naïve 

counterparts (Fig3.33B). The level of TNF mRNA appeared slightly lower in CD8
+
RTEs 
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when compared to CD8
+
 MN T cells. On the other hand, the levels of the TNF mRNA in 

CD4
+
 RTEs seemed similar to that of CD4

+
MN T cells (Fig3.33B).  

 A higher proportion of CD8
+ 

and CD4
+
 RTEs produced TNF in response to !CD3 

and !CD28 stimulation when compared to SP thymocytes (Fig.3.33C and D). However, 

the proportion of CD8
+ 

RTEs producing TNF was lower than MN CD8
+ 

T cell 

populations (Fig.3.33C). This hierarchical pattern of TNF production was also observed 

on a per cell basis in the three T cell subsets (Fig.3.33D). In contrast to the CD8
+
 T cell 

compartment, a similar frequency of CD4
+
 RTE and MN T cells produced TNF, but the 

MFI of the TNF signal was significantly higher in the CD4
+
 MN T cells relative to both 

CD4
+
 RTEs and SP CD4

+
 thymocytes (Fig. 3.33 C and D). Together, these results 

suggest that differences in TNF production between RTEs and MN T cells may not be 

correlated to the differences in TNF message observed prior to stimulation. Collectively, 

these data support the adoptive transfer model indicating that post-thymic maturation 

confers the complete licensing of naïve T cells to rapidly produce TNF after TCR 

engagement. 
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Figure 3.33. Post-thymic maturation status of naïve polyclonal T cells determines their 

TNF producing capability.  

 Panel A, shows the GFP profile of CD8
+
 and CD4

+
 T cells in the thymus and the spleen 

of NG-BAC mice. Panel B, RTEs (GFP hi and lo) and mature naïve T cells (GFP 

negative cells) were sorted (both CD8
+ 

and CD4
+
 subsets) and the resting steady state 

levels of TNF mRNA were measured using semi-quantitative RTPCR as described in 

Materials and Methods. Panel C, Thymocytes and splenocytes from NG-BAC transgenic 

mice were stimulated with !CD3+!CD28 for 4 hours and then stained for maturation 

markers and intracellular TNF. The GFP profile of SP thymocytes, RTEs and MN T cells 

in the CD8
+
 and CD4

+
 compartments is shown. C and D, The percentages of CD44

lo 
TNF 

producing cells in the 3 different T cell subsets and their respective average MFI for TNF 

expression are shown. The average MFIs of TNF expression were analyzed by one-way 

ANOVA with a Tukey post-test. The data are representative of 4 individual mice. The 

error bars indicate SD. 
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 Chapter 3: Summary 

1. T cell derived TNF plays an immunoregulatory role in limiting the magnitude of a 

virus-specific CD8
+
 T cell response. 

2. Naïve T cells in secondary lymphoid organs rapidly produce TNF upon activation 

of the antigen receptor. 

3. In contrast, SP thymocytes show a very poor ability to produce TNF when 

compared to naïve T cells in the spleen. 

• SP thymocytes share similar activation profile in terms of upregulation of 

CD25, CD69 and downregulation of CD62L relative to their splenic 

counterparts (in P14 Tg system). 

• SP thymocytes show impairment in one of the proximal TCR signaling 

events (pERK) relative to naïve splenic T cells. 

• SP thymocytes show reduced upregulation of TNF mRNA relative to 

splenic T cells upon activation. 

4. Despite their poor ability to produce TNF upon activation, SP thymocytes express 

mature TNF mRNA, suggesting a post-transcriptional regulation of TNF 

expression. 

5. Antigen-presentation in the splenic environment does not enable SP thymocytes 

to optimally produce TNF during activation. 

6. SP thymocytes gradually acquire full ability to produce TNF efficiently upon 

stimulation as a function of time spent in the periphery and without cell division. 

7. Post-thymic maturation of the naïve T cells in secondary lymphoid organs 

completes the licensing for rapid TNF production during activation. 
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Chapter 3: Discussion  

 TNF is the earliest known cytokine produced by naïve T cells in secondary lymphoid 

organs after TCR stimulation (1). In vitro studies with effector T cells revealed that CD8
+ 

T cells undergo a transient and rapid burst of TNF production that is extinguished rapidly 

despite the continuous presence of the antigen whereas CD4
+
 T cells show sustained 

production of TNF for up to 6 hours (355, 364). Our in vitro kinetic experiments with 

polyclonal T cells show that both CD8
+
 and CD4

+
 naïve splenic T cells transiently 

synthesize TNF, with its production peaking at 4-5 hours and diminishing by 7-8 hours 

despite continuous stimulation.  This suggests that, similar to effector T cells, the 

regulation of TNF production is tightly regulated in naïve T cells as well.  

 TNF signaling via TNFRI and TNFRII has been shown to play a co-stimulatory role 

along with CD28 in augmenting early T cell responses, especially in increasing IL-2 

production and by regulating the threshold of activation during priming (186-189, 365). 

Other studies have shown that the TNF plays an important role in down-regulating T cell 

responses during acute viral infections and against tumor cell growth (182, 190-192). 

These studies indicate that TNF may be playing distinct roles at different stages of an 

immune response. Our data suggest that absence of T cell-derived TNF also leads to 

accumulation of higher frequencies of antigen-specific T cells during a viral infection. 

The previous findings with TNF-deficient and TNFR-deficient mice also revealed that 

the mechanism behind the higher accumulation of TNF or TNFR-deficient T cells was 

due to their reduced apoptosis (191, 192). In contrast to these findings, however, adoptive 



"#$

transfer of transgenic WT P14 and TNF- deficient P14 T cells into either WT or TNF 

deficient hosts indicated that there was no difference in the apoptotic status of TNF 

deficient P14 T cells relative to WT P14 cells during a viral infection, suggesting that 

reduced apoptosis may not be the mechanism for the accumulation of higher frequencies 

of antigen-specific T cells. Additionally, the differences between the previous reports and 

my results may perhaps be due to differences in the experimental systems used. In the 

adoptive transfer experiment of WT P14 and TNF-deficient P14 T cells into TNFR1/2 

deficient hosts, I found that WT P14 T cells accumulated to similar levels as the TNF-

deficient P14 T cells. This suggests that the accumulation of higher frequencies of TNF-

deficient antigen-specific T cells may be due to the lack of signaling from host cells 

expressing the TNF receptors. Another signaling pathway that is disrupted in TNFR1/2 

KO hosts involves LT (that exists as a homotrimer LT!3), another member of the TNF 

superfamily that exerts its effect through TNFR1 and 2. Both TNF and LT have been 

shown to play a role in the maintenance of the splenic microarchitecture (167). Anti-viral 

T cell responses are impaired in the absence of LT! owing to the abnormal lymphoid 

architecture and not due to intrinsic T cell defects (140). Absence of both TNF and LT 

signaling in the TNFR1
-/-

 and TNFR2
-/-

 hosts may therefore affect the overall T cell 

responses of donor P14 Tg T cells (both WT and TNF-deficient) compared to the WT 

hosts.  

  Given the immunoregulatory role of TNF and the ability of naïve T cells to produce 

this cytokine early during activation, I wanted to determine the developmental stage 

when naïve T cells become competent to produce TNF. I addressed this question in the 
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context of 2 modes of T cell activation, one is the non-specific !CD3+ !CD28 mediated 

cross-linking of the polyclonal TCR (B6) and the other is specific cognate peptide 

mediated stimulation of the transgenic TCR (P14 in this case). The major findings 

discussed in this chapter, showing differences in TNF production between SP thymocytes 

and splenic T cells and the ability of SP thymocytes to become competent to produce 

TNF in a post-thymic maturation-dependent manner, are consistent between the 

polyclonal and the transgenic TCR system. However, I found that there was absolute 

requirement of antigen presenting cells that facilitated !CD3+ !CD28 antibody mediated 

cross-linking for the differences in TNF production to become evident between 

polyclonal thymocytes and splenic T cells during activation. On the other hand, the 

differences in TNF production were evident between purified transgenic SP thymocytes 

and splenic T cells with mere peptide stimulation in the absence of antigen-presenting 

cells. The differences in the requirements of activation of T cells in the polyclonal versus 

transgenic T cells may reflect their different activation thresholds (366).  In vitro studies 

using stimulation of Fyn deficient transgenic CD4
+
 T cells (AD10 TCR transgenic that 

recognize pigeon cytochrome C peptide 88-104) with peptide pulsed APCs showed a 

robust proliferative and IL-2 response whereas !CD3 mediated stimulation led to a 

profound defect in proliferation. This defect was rescued when !CD3 was used to 

crosslink the TCR in the presence of !CD4 that initiated the Lck-mediated signaling 

(367). This study suggested that the mode of activation could result in the activation of 

different downstream signaling pathways from the TCR and thereby influence the 

outcome. Similar to this finding, the differences in !CD3+!CD28 mediated cross-linking 
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of the polyclonal T cells and peptide based stimulation of transgenic T cells may also 

reflect differences in the mode of stimulation and differences in the downstream signaling 

events. 

 Irrespective of the differences in activation of polyclonal thymic and splenic T cells, I 

show that the unique capability of naïve T cells (both polyclonal and transgenic) to 

produce TNF is only acquired after emigration into the periphery via a gradual licensing 

process that occurs progressively in the periphery. The thymus is a primary lymphoid 

organ, where developing thymocytes undergo positive and negative selection that 

ultimately determines thymic output and contributes to the establishment of the T cell 

repertoire in the periphery (368). Our data show that SP thymocytes are functionally less 

competent to produce TNF upon TCR stimulation relative to naïve T cells in the 

secondary lymphoid organs. This reduced capability for TNF production is also evident 

at the transcriptional level and correlates with lower levels of phosphorylated ERK in SP 

thymocytes relative to naïve splenic T cells during TCR stimulation. Despite this 

functional difference, SP thymocytes did not possess any apparent phenotypic defects 

when compared to naïve splenic T cells during activation (upregulation of CD25 and 

CD69 and down-regulation of CD62L). This suggests that the signaling pathway 

downstream of TCR activation that leads to the production of TNF is under a distinct and 

tightly regulated mechanism in developing SP thymocytes. The poor ability of SP 

thymocytes to produce TNF was not overcome upon receiving optimal signals from 

APCs of secondary lymphoid organs (spleen and lymph node) during TCR activation, 

suggesting that SP thymocytes possess an intrinsic defect in their ability to produce TNF 
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efficiently upon stimulation. SP thymocytes eventually gain full competence to produce 

TNF upon TCR stimulation as they undergo post-thymic maturation in the periphery and 

join the mature-naïve T cell pool in secondary lymphoid organs. This licensing for TNF 

production does not require homeostatic cell division. 

 Several studies have shown the expression and the physiological role of TNF within 

the thymus. For example, in situ hybridization studies revealed the localization of TNF 

mRNA to the cortical regions of the thymus during ontogeny and studies by Giroir et al 

showed that there was constitutive expression of TNF in thymic lymphocytes (369). In 

vitro functional studies showed that TNF induced CD25 expression in developing 

(CD117
+
CD25

-
) thymocytes in vitro (370). TNF has also been shown to induce apoptosis 

of CD4
-
 CD8

- 
double negative thymocytes that coexpressed both TNFR1 and TNFR2 at 

lower doses and proliferation at higher doses (371). Interestingly, TNFR1/2 double 

deficient mice exhibited thymic hypertrophy with an overall increase in total thymocytes 

but normal distribution of SP CD4
+ 

and SP CD8
+
 T cell subsets due to absence of 

apoptosis in DN thymocytes (371). Collectively, the dual role of TNF in the thymus 

appears paradoxical and may depend on the location and the quantity of its production at 

various stages of development.  

 Alternatively, there is also evidence showing the dangerous effects of deregulated 

production of TNF in the thymus. For instance, mice that over-express human TNF 

within the thymus exhibit thymic atrophy, which is primarily associated with premature 

apoptosis of double negative (DN2) developing thymocytes and diminished numbers of 
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cortical thymic epithelial cells (cTECs) (372). Mice infected with Trypanosoma cruzi 

show severe thymocyte depletion of CD4
+
 CD8

+ 
DP thymocytes due to an exacerbated 

inflammatory reaction mediated by TNF (373). Increased levels of TNF and IFN-! 

message have been associated with increased thymocyte deletion and cortical depletion 

observed in the thymi of patients with Down-Syndrome (DS) (374, 375). It is proposed 

that this abnormality may be due to improper interactions between developing 

thymocytes and thymic stromal cells mediated by elevated levels of LFA-1 and ICAM-1 

and an abnormal distribution of ICAM-1 in DS thymi that is then exacerbated by the 

expression of TNF and IFN-! in DS thymi (376). These reports suggest that 

overproduction of TNF in the thymus may be detrimental to the T cell developmental 

process. I detected that resting unstimulated SP thymocytes expressed a small level of 

mature TNF message similar to their splenic counterparts. However, there was no 

spontaneous production of TNF protein detected in these cells. This suggests that despite 

having a similar basal level of TNF transcription, there is a lack of translation of the TNF 

protein under resting conditions in both these subsets. Therefore, the reduced ability of 

SP thymocytes to rapidly produce TNF during TCR engagement in the thymus under 

normal circumstances may be beneficial for the survival of SP thymocytes during T cell 

selection. 

 A previous report revealed that TNF production by T cells does not require de novo 

mRNA expression from the TNF locus, as primary CD4
+
 T cells contain an immature 

TNF transcript which, following TCR engagement, is spliced to form a mature TNF 

message, that results in the synthesis of TNF protein in the absence of new transcription 
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(377). However, previous observations revealed that treatment of naïve CD8
+
 T cells with 

the transcriptional inhibitor actinomycin-D and translational inhibitor cycloheximide 

completely abrogated the production of TNF, suggesting that new transcription and 

translation are vital TNF production by naïve CD8
+
 T cells (1). These experiments were 

done with whole splenocyte populations. Here, I show that actinomycin-D and 

cycloheximide treatment of purified P14 TCR transgenic T cells abrogated TNF synthesis 

indicating that T cell intrinsic transcription and translation is required for early TNF 

production by naïve T cells. My results here show that there is a slight but significant 

upregulation of TNF message in the CD8
+
 SP thymocytes upon TCR stimulation, but it is 

insufficient for the optimal protein production. Splenic T cells, however, show a dramatic 

upregulation in TNF message and protein upon activation. These findings suggest that 

there is distinct transcriptional and post-transcriptional control of TNF gene expression in 

SP thymocytes relative to splenic T cells. Work done in Jurkat T cells and macrophages 

has revealed that the 3’UTR of TNF mRNA is vital for TNF regulation. The AU rich 

regions of the 3’UTR serve as binding sites for translational repressor proteins such as 

heterogeneous nuclear ribonucleoprotein (hnRNP)A1. These repressors serve as 

substrates for MAP kinase signaling integrating kinases (Mnks) that are phosphorylated 

and activated by upstream kinases such as ERK1/2 during TCR stimulation. Once 

activated, Mnk1 phosphorylates hnRNPA1 that reduces the ability of hnRNPA1 to bind 

the 3’UTR of TNF mRNA, thereby allowing the translation of TNF message (229). My 

work supports this, as I observed reduced phosphorylation of ERK in SP thymocytes 

relative to naïve splenic T cells during the first hour of peptide stimulation. Therefore, the 
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poor transcription of TNF mRNA and reduced phosphorylation of ERK may together be 

associated with the limited ability of SP thymocytes to produce TNF. Additionally, 

another factor contributing to the difference could be differences in TNF mRNA stability. 

The TNF mRNA may be less stable in SP thymocytes than in naïve splenic T cells after 

stimulation, resulting in the net increase in TNF mRNA detected in naïve splenic T cells. 

Other RNA binding proteins (RBPs) such as Human antigen R (HuR) proteins have been 

shown to bind to the AU rich regions of TNF mRNA and induce its translational 

silencing (378, 379). Absence of HuR in SP thymocytes has been shown augment TNF 

biosynthesis in SP thymocytes (379). This suggests one mechanism by which TNF 

expression may be controlled in SP thymocytes.  

 Stimulation in the presence of splenocytes partially enabled SP thymocytes to 

produce TNF efficiently as there was only a partial increase in the proportion of cells 

producing the cytokine.  This effect could be either due to better antigen presentation of 

exogenous peptides by splenocytes to SP thymocytes. For example, cells of the secondary 

lymphoid organs (spleen and lymph nodes) including B cells, APCs might offer 

additional accessory signals that enhance clustering of adhesion molecules during 

immunological synapse formation and leading the partial production of TNF (380, 381). 

Additionally, chemokine/ chemokine receptor interactions between stromal cells in the 

spleen and the T cells can also augment TNF responses (382). The alternative possibility 

is that there are more antigen presenting cells in the splenic environment that increase the 

strength of TCR-MHC interactions making SP thymocytes more sensitive to stimulation. 

Moreover, this effect occurs regardless of whether SP thymocytes are stimulated in the 
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presence of live or killed (!-irradiated) splenocytes, suggesting that the peptide-MHC 

complexes and other potential molecules present on the surface of splenocytes are 

sufficient for this process. However, despite receiving optimal antigen presentation in the 

splenic environment, thymocytes are still incapable of producing producing TNF 

efficiently. 

 The differences in antigen presentation in the thymus versus the spleen may in turn be 

reflective of the major fundamental role of these tissues in the immune system. For 

instance, cells in the thymus are functionally equipped for T cell development and central 

tolerance while cells in the secondary lymphoid organs are equipped for the initiation of 

potent immune responses against pathogens in the periphery (383).  The peripheral tissue 

micro-environment can regulate the production of cytokines such as IFN-! and TNF in 

antigen-specific T cells as a mechanism to restrict local tissue damage and prevent 

immunopathology (384). I speculate that a similar mechanism of TNF control in naïve T 

cells may exist in the primary lymphoid organ (thymus) and secondary lymphoid organs 

(spleen and lymph node). 

 Contact with secondary lymphoid organs is vital for the completion of post-thymic 

maturation of developing SP thymocytes (3). RTEs that reach the periphery undergo 

phenotypic and functional maturation as they become resident in secondary lymphoid 

organs (41, 385). My findings indicate that the full competence for TNF production by 

naïve T cells in the peripheral T cell pool is acquired gradually in a post-thymic 

maturation dependent manner. One caveat of the adoptive transfer model is that the 
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recovery of thymocytes from the spleens of the recipient mice decreased over time. 

Therefore, I cannot exclude the possibility that the increase in the percentage of TNF 

producing donor CD45.1
+
 SP P14-CD8

+
 thymocytes with time in the periphery may be 

due to preferential survival of SP thymocytes that are capable of TNF production. 

Nevertheless, I have shown (using MFI of the TNF signal of transferred thymocytes and 

polyclonal RTEs) that the progressive gain in the TNF producing capability by naïve T 

cells occurs as they mature in the periphery. 

 In mice, developing thymocytes emigrate and populate the periphery at the rate of 1-

2% of thymocytes per day throughout the lifespan (44, 47). Therefore, at any given time 

in an adult immune system, the naïve T cell pool is comprised of cells at various stages of 

post-thymic development, unlike neonates whose peripheral lymphoid organs are 

predominantly populated with RTEs (347, 385). The post-thymic maturation status of T 

cells is a component that has been recently shown to influence T cell fate decisions at the 

time of antigen encounter (347). This study showed that RTEs produced fewer memory-

precursor effector cells (MPECs) and more short-lived effector cells (SLECS) during the 

immune response to LCMV. Our data show that RTEs produce less TNF relative to MN 

T cells. Given the immunoregulatory functions of TNF, I speculate that the differential 

ability of TNF production linked to the post-thymic maturation status of antigen-specific 

naïve T cells, may also contribute to influencing the fate of the responding T cells during 

the initial phase of activation. (Model in figure 3.34; Pg 215). 
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  In conclusion, our findings indicate that the licensing of naïve T cells for rapid TNF 

production is determined by their developmental state. It is an intrinsic property of the 

developing T cells that is acquired gradually, where functional maturation in secondary 

lymphoid organs drives developing naïve T cells to eventually attain full competence to 

produce TNF efficiently during TCR stimulation.  
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Chapter 4: Changes in the apoptotic signature of alloreactive T cells during TLR 

mediated abrogation of co-stimulation blockade induced tolerance. 

Chapter 4: Abstract 

T cell co-stimulatory blockade protocols have shown great promise as an alternative to 

chronic immunosuppressive drugs for the induction of transplantation tolerance. One 

such approach uses the administration of !CD154 mAb (!CD40L/MR1) and donor 

specific transfusion (DST) to induce allograft tolerance. This results in the deletion of 

host alloreactive T cells within 24 hrs after treatment. Activation via the TLRs at the time 

of co-stimulation blockade regimen, such as that found in opportunistic 

infections/inflammation during transplantation, rescues host alloreactive T cells from 

deletion and abrogates tolerance induction. To study the fate of alloreactive T cells and 

changes in their apoptotic molecular signature during co-stimulation blockade and 

during TLR4 administration, I used a syngeneic bone marrow chimeric mouse model, 

which contains a trace population of alloreactive KB5 Tg CD8
+
 T cells that recognize 

H2K
b
 as an

 
alloantigen. I show here that activated KB5 Tg CD8

+
 T cells begin to 

declined by 15 hours after co-stimulation blockade treatment that correlated with the 

increase in annexin-V positivity. In contrast, KB5-CD8
+
 T cells from mice treated with 

LPS during co-stimulation blockade failed to become annexin-V positive. Further, the 

expression of FasL and BIM, two pro-apoptotic genes involved in apoptosis, was 

increased in KB5 CD8
+
 T cells by 12 hrs after co-stimulation blockade, suggesting that 

both these molecules may be involved in the induction of alloreactive T cell death. 

During LPS treatment, however, the expression of FasL was inhibited but the expression 

of BIM was unaffected, suggesting that one mechanism by which TLR agonists may 

prevent the early apoptosis of alloreactive T cells during co-stimulation blockade is by 

suppressing the expression of FasL expression on alloreactive T cells. However, I found 

that despite the rescue from deletion in the presence of LPS, alloreactive T cells are 

sensitive to Fas-mediated apoptosis in vitro suggesting that there is an early window 

where alloreactive T cells can be deleted even in the presence of inflammatory agents.  
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Chapter 4: Introduction 

The outcome of T cell activation is determined by the sum of positive and 

negative co-stimulatory signals that the T cell receives (72).The potential of targeting the 

co-stimulatory pathways in activated T cells that normally augment T cell responses has 

been  recognized as a vital strategy to induce peripheral tolerance (72). The approach that 

is used in this chapter of my thesis to induce transplantation tolerance is a two-step 

combination therapy of donor specific transfusion (DST; donor splenocytes) along with 

anti-CD154 (!CD154) blocking antibody that leads to prolonged allograft survival (4). 

This strategy has been used to induce tolerance to allogeneic skin, islets and bone marrow 

(4, 5, 386). One mechanism by which co-stimulation blockade regimen induces tolerance 

is by the deletion of activated alloreactive T cells within 24 hours of treatment (4). 

Inflammation resulting from either the surgical procedure or viral infections at the time of 

transplantation jeopardizes the effects of co-stimulation blockade leading to graft 

rejection. The effects of inflammation during transplantation can be studied in an 

experimental setting by the use of TLR agonists at the time of co-stimulation blockade 

regimen. TLR activation during co-stimulation blockade has been shown to provoke a 

vigorous inflammatory reaction and prevent the deletion of alloreactive T cells. This has 

been shown to result in the abrogation of tolerance induction in a Type-I IFN dependent 

manner (5). Type 1 IFN provides survival signals to T cells and can act as a third signal 

for productive T cell activation (387). The induction of type-I IFN during co-stimulation 

blockade not only protects alloreactive T cells from deletion but also enhances the 

generation of effector cells (5). It is therefore possible that the lack of early deletion of 
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alloreactive T cells during TLR administration may be crucial in shifting the balance of 

effector T cells to T regulatory cells thereby leading to abrogation of tolerance induction 

(234). 

There have been several transcriptional and proteome screening studies done to 

understand the molecular pathways/indicators that govern tolerance and rejection (388-

390). However, the molecular mechanisms by which TLR-agonists protect alloreactive T 

cells from apoptosis during co-stimulation blockade is an area that has not been 

investigated. Understanding the changes in the molecular mechanisms functioning in 

early apoptosis versus survival of alloreactive T cells can be implicated in identifying 

potential molecular indicators of peripheral tolerance. Additionally, these indicators can 

also serve as potential targets while devising strategies to induce deletional tolerance in 

the presence of environmental perturbation as described previously. Therefore, I wanted 

to investigate the apoptotic signature of alloreactive T cells during co-stimulation 

blockade induced tolerance induction and in the presence of TLR activation. I 

hypothesized that TLRs prevent the deletion of alloreactive T cells by differentially 

regulating the apoptotic signature of alloreactive T cells.  

To test this hypothesis, I performed transcriptional profiling of alloreactive T cells 

during co-stimulation blockade and in the presence or absence of the TLR4 agonist, LPS. 

To specifically track alloreactive T cells, I used a KB5 synchimeric (bone marrow 

chimeric) mouse model (described schematically in pg 221) that consists of a small, self-

renewing population of alloreactive CD8
+
 T cells, which recognize H-2K

b
 as an 



"#$

alloantigen and can be identified by the DES clonotypic antibody (338). Consistent with 

the early deletion of alloreactive T cells during co-stimulation blockade, one of pro-

apoptotic molecules that showed a dramatic up-regulation in alloreactive T cells within 

12 hours of treatment was FasL expression, a molecule involved in the activation induced 

cell death (AICD) of T cells. Concomitantly, there was also an early upregulation of 

BIM, a pro-apoptotic molecule involved in passive cell death (PCD), suggesting that both 

extrinsic and intrinsic apoptotic pathways may be involved in the early deletion of 

alloreactive T cells during co-stimulation blockade. Interestingly, absence of Fas or FasL 

(lpr and gld) did not abrogate co-stimulation blockade-induced tolerance, suggesting that 

Fas-FasL pathway may not be crucial for the induction alloreactive T cell death or that it 

may be playing a redundant role along with other pro-apoptotic molecules such as BIM in 

inducing alloreactive T cell death during co-stimulation blockade. 

 In the presence of LPS during co-stimulation blockade, the apoptotic profile of 

alloreactive T cells with respect to FasL was altered. The expression of FasL was 

diminished dramatically, while the expression of BIM was not affected in the presence of 

LPS. Moreover, the expression of Fas was upregulated in alloreactive T cells and non-

transgenic CD8
+
 and CD4

+
 T cells in the presence of LPS. Given this, I hypothesized that 

alloreactive T cells emerging from a pro-inflammatory environment (LPS in this 

scenario) may still be sensitive to early deletion. Validating this hypothesis, I found that 

provision of exogenous Fas agonist in vitro rendered alloreactive T cells (isolated from 

mice treated with LPS during co-stimulation blockade) to undergo death in vitro. This 

suggests that alloreactive T cells are not completely refractory to the apoptotic signals 
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and intervention during this early time point can still be a potential strategy to bypass the 

anti-apoptotic effects of TLR agonists on alloreactive T cells.  
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Chapter 4: Results 

A. Early decline of alloreactive KB5 transgenic CD8
+
 T cells correlates with increase in 

annexin-V positivity within 15 hours of co-stimulation blockade [DST+!CD154 

(MR1)]  

  Previously Thornley and colleagues showed that alloreactive T cells undergo 

deletion by 24 hours after co-stimulation blockade (4). To determine the kinetics of the 

decline of alloreactive T cells prior to 24 hours, I first quantified the number of KB5 

alloreactive T cells in the spleens of KB5 synchimeric mice treated with co-stimulation 

blockade regimen (DST+!CD154 also referred to as DST+ MR1) at 6, 11 and 15 hours. I 

observed that the percentage and the absolute number of alloreactive KB5 transgenic 

CD8
+
 T cells (KB5 Tg CD8

+
 T cells) decreased dramatically between 11 and 15 hours 

post-treatment (Fig 4.1A). The cells in untreated animals were not affected at all the time 

points tested (Fig 4.1A). To determine the apoptotic state of KB5 Tg CD8
+
 T cells I 

performed annexin-V binding assay, which is a measure of early apoptosis. Briefly, 

spleens were recovered from mice that were either untreated or treated with DST+MR1 

for 12 hours. The splenocytes were then incubated at 37°C for 4 hours followed by 

annexin-V binding assay. Incubation of cells at 37°C diminished the scavenging capacity 

of macrophages that phagocytose apoptotic cells thereby enhancing the detection of 

apoptotic cells. The decline of KB5 Tg CD8
+
 T cells observed between 11 and 15 hours 

of co-stimulation blockade coincided with an increased frequency of annexin-V positive 

cells (Fig 4.1B). This was accompanied by the rapid down-regulation of CD127 (IL7R!) 
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which indicates that T cells are activated (391)(Fig 4.1B). In addition to the increased 

frequency of annexin-V positive KB5 Tg CD8
+
 T cells, there was increased annexin-V 

positivity on a per cell basis as indicated by the increase in annexin-V MFI after 

DST+MR1 treatment (Fig 4.1C). The endogenous non-transgenic CD8
+
 T cells (Non-

Transgenic; NTg) showed neither an increase in annexin-V positivity or a change in 

CD127 levels (Fig 4.1B). 

 In order to further confirm the apoptotic status of KB5 Tg CD8
+
 T cells after co-

stimulation blockade, the cells were evaluated for the expression of activated caspase3 

and for the level of DNA fragmentation by TUNEL staining at 12 hours after DST+MR1 

treatment. Caspase 3 is one the executioner caspases whose activation is an indicator of 

early-stage apoptosis. Briefly splenocytes were incubated for a total of 4 hours at 37°C 

As a negative control, splenocytes were also incubated with the PAN caspase inhibitor Z-

VAD during the this culture period. The cells were then stained using the FITC 

conjugated marker for caspase 3. Concurrent with the increase in annexin-V positivity, 

activated caspase3 was detected in the KB5 Tg CD8
+ 

T cells in mice treated with 

DST+MR1, but this was not observed with the endogenous non-transgenic CD8
+
 T cells 

(Fig 4.2A). The presence of Z-VAD reduced the active caspase3 staining indicating that 

the stain was specific.   

 DNA fragmentation is another signature event of cells undergoing apoptosis, and 

TUNEL (dUTP—nick end labeling) staining can be used to determine the extent of DNA 

fragmentation. Similar to the increase in caspase 3 activity, there was an increase in 
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TUNEL positivity in KB5 Tg CD8
+ 

T cells from mice treated with DST+MR1 (Fig 

4.2B). Non-transgenic CD8
+
 T cells showed a higher level of background TUNEL 

staining, however the levels were similar between cells from untreated and DST+MR1 

treated animals  (Fig 4.2B). Together these results suggest that the decline of alloreactive 

KB5 transgenic CD8
+
 T cells begins as early as 12 hours post-treatment. 
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Figure 4.1. Decline of alloreactive KB5 transgenic CD8
+
 T cell numbers by 15 hours 

post DST+!CD154 (MR1) correlates with their apoptotic status. 

KB5 CD8
+
 synchimeric mice were given DST in the form of B6 splenocytes (10"10

6
) i.v 

along with (200µg/mouse) !CD154 (MR1 antibody) i.p. At the indicated time points, 

recipient spleens were harvested and stained for transgenic alloreactive T cells using 

KB5-DES clonotypic antibody and CD8#. Panel A shows the percentages and the 

absolute numbers of KB5 Tg CD8
+
 T cells at the indicated time points. The groups were 

compared using a one-way ANOVA analysis with Tukey-post test. P value =0.0053** 

and P <0.05*. At 12 hours post treatment, recipient spleens were isolated and incubated 

for 4 hours at 37°C before annexin-V staining as described in Materials and Methods. 

Panel B shows the annexin-V profile of KB5 Tg CD8
+
 T cells and the expression of 

IL7R! (CD127) at 12 hours post treatment in both the transgenic and non-transgenic 

alloreactive CD8
+
 T cells. The MFI of annexin-V in KB5 Tg CD8

+
 T cells   in untreated 

and DST+MR1 treated animals at 12 hours is also shown. The values were compared 

using one-way ANOVA analysis with Tukey post-test. P value = 0.0005***. 
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Figure 4.2. Correlation of annexin-V positivity in alloreactive KB5 Tg CD8
+
 T cells 

during with activated caspase3 and TUNEL expression during co-stimulation 

blockade. 

KB5 CD8
+
 synchimeric mice were given DST in the form of B6 splenocytes (10!10

6
) i.v 

along with (200µg/mouse) "CD154 (MR1 antibody) i.p. At 12 hours post treatment, 

recipient spleens were isolated and incubated for 4 hours at 37°C in absence of presence 

of the PAN caspase inhibitor Z-VAD (1µl/ml concentration). At the end of the 3
rd

 hour, 

activated caspase 3 was added to all the wells and cells were incubated for another 

additional hour. Following incubation, cells were stained as per the manufacturers 

protocol as described in Materials and Methods. Panel A shows the percentages of cells 

positive for activated caspase3 and their respective activated caspase3 MFI in the 

indicated groups. The values were compared using one-way ANOVA analysis with Tukey 

post-test. The P value is <0.0001***. Panel B, splenocytes from the treated mice were 

incubated for 4 hours followed by TUNEL stain as described in Materials and methods. 

Briefly, cells were surface stained and cells were fixed with 90% ethanol at -20°C 

overnight. This was followed by TUNEL staining and the percentages of TUNEL positive 

cells and their respective MFIs are shown. The values were compared using unpaired t-

test and the p value was determined to be 0.0042***. 
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B. Prevention of KB5 Tg CD8
+
 T cell deletion by TLR4 activation during co-

stimulation blockade correlates with inhibition of the early increase in annexin-V 

positivity.  

 To study the role of innate immunity in perturbing co-stimulation blockade 

induced peripheral tolerance, I used the TLR4 agonist LPS to activate the innate arm of 

the immune system. Exposure to TLR agonists at the time of co-stimulation blockade 

prevented the deletion of alloreactive KB5 Tg CD8
+
 T cells and resulted in graft rejection 

(4). By 72 hours post-treatment, LPS protected alloreactive KB5 Tg CD8
+
 T cells from 

undergoing apoptosis as determined by the reduction in the percentage of annexin-V
+
 

cells. To determine if LPS has a similar effect on the early (within the first 24 hours) 

annexin-V profile of alloreactive KB5 Tg CD8
+
 T cells, splenocytes from mice treated 

with cells with DST, DST+MR1 and DST+MR1 and LPS for 9, 12 and 15 hours were 

incubated at 37°C for 4 hours and then stained for annexin-V. Similar to the annexin-V 

profile at 72 hours shown previously by Thornely et al (4), I found a lower percentage of 

alloreactive KB5 Tg CD8
+ 

T cells that were annexin-V positive in the LPS treated group 

at all time points (Fig 4.3A). Additionally, the reduction in the percentage of annexin-V 

positive alloreactive KB5 Tg CD8
+
 T cells correlated with their lower MFI for annexin-V 

during DST+MR1+LPS treatment (Fig 4.3B). Presence of DST alone resulted in a 

increase in annexin-V
+ 

cells and an increase in annexin-V MFI in KB5 Tg CD8
+ 

T cells 

similar to the cells in DST+MR1 group at these early time points tested. These results 

suggests that the similarity in annexin-V profile of KB5 Tg CD8
+
 T cells between DST 

and DST+MR1 may also be due to early deletion of activated KB5 Tg CD8
+ 

T cells 
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during DST treatment. It is not clear why and how exactly DST treatment induces 

deletion of activated KB5 Tg CD8
+
 T cells. I predict that in contrast to DST, the 

apoptotic pathways triggered during DST+MR1 may be different that may lead to a 

profound deletion of alloreactive T cells. The second possibility could be an existence of 

a threshold for the number of activated alloreactive T cells to mediate rejection. The 

extent of deletion may be more profound during DST+MR1 treatment bringing the 

number of alloreactive T cells below the threshold that cannot be recovered back. In 

contrast, although the apoptotic profile of alloreactive T cells after DST treatment may 

appear to be similar to DST+MR1 treatment, the number of alloreactive T cells during 

DST treatment may not be reduced below the threshold rendering them much easier to 

recover. Clearly, alloreactive T cells from the DST treated group recover and accumulate 

in numbers at later time points and mediate graft rejection. More importantly, these 

results show that LPS prevents the early increase in annexin-V positivity in alloreactive T 

cells that occurs during the first 12 hours of co-stimulation blockade treatment.  
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Figure 4.3. LPS treatment at the time of co-stimulation blockade prevents the increase 

in annexin-V positivity in alloreactive KB5 Tg CD8
+
 T cells. 

 Groups of KB5 synchimeric mice were either treated with DST, DST+MR1 or 

DST+MR1 along with LPS (100 µg/ mouse) i.p., as described in Materials and Methods. 

Splenocytes from mice were harvested at 3 time points and the annexin-V profile was 

determined in KB5 Tg CD8
+
 T cells as described in Materials and Methods. Panel A, 

shows the percentages of annexin-V positive cell in three different treated groups (rows) 

at 3 time points (columns). Panel B shows the MFI of annexin-V of KB5 Tg CD8
+
 T cells   

in 3 treated groups at 8-9 hours post treatment. Each dot indicates an individual mouse. 

The values were compared using one-way ANOVA analysis with Tukey post-test. P value 

is <0.0001***. 
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C. LPS increases the expression of CD25 on alloreactive KB5 Tg CD8
+
 T cells within 9 

hours of co-stimulation blockade treatment. 

Co-stimulation blockade does not prevent the activation and proliferation of 

alloreactive T cells in terms of up-regulation of CD44 and Ki67 staining (4). In order to 

determine if alloreactive T cells undergoing deletion have other defects in their activation 

profile, we examined changes in the expression of CD25, CD69, CD62L and CD127 in 

the KB5 Tg CD8
+
 T cells, as these molecules are the earliest indicators for of T cell 

activation. Overall, alloreactive T cells from mice treated with co-stimulation blockade 

did not show any defects in activation as early as 9 hours post-treatment (Fig 4.4A and 

B). The percentage of CD44 positive cells and the MFI were similar among all the groups 

of mice. The percentage of cells that have down-regulated the CD62L and CD127 

expression were also similar among DST, DST+MR1 and DST+MR1+LPS confirming 

that co-stimulation blockade does not prevent the early activation of alloreactive T cells 

and the effect is TCR dependent (Fig 4.4A).  With regard to the up-regulation of CD69 

and CD25, LPS resulted in the increased proportion of cells positive for these activation 

markers (Fig 4.4A). Additionally the expression of CD25 and CD69 was increased on a 

per cell basis (MFI) (Fig 4.4C and D). CD69 is also upregulated in the non-transgenic T 

cells upon LPS treatment (Fig 4.4B). It has been shown the type-I IFNs can upregulate 

CD69 independent of TCR-mediated activation (392). I also observed higher percentages 

of the cells positive for CD25 in the alloreactive KB5 CD8
+
 Tg T cells in LPS treated 

groups. Fig 4.4 C and D show average increases in the percentages and MFI of the 

activation markers in mice treated with DST, DST+MR1 and DST+MR1+LPS. Together, 
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these results indicate that overall there is normal activation of alloreactive KB5 Tg CD8
+
 

T cells during co-stimulation blockade. Administration of LPS alters the activation 

profile of alloreactive T cells leading to enhanced upregulation of CD25 and CD69 

compared to cells treated with DST or DST+MR1. This suggests that early differences in 

the activation profile of alloreactive T cells during DST+MR1 and during the presence of 

LPS may play a role in influencing the fate of alloreactive T cells at later time points.  
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Figure 4.4. Co-stimulation blockade does not prevent the early activation of 

alloreactive KB5 Tg CD8
+
 T cells. 

Groups of KB5 synchimeric mice were either treated with DST, DST+MR1 or DST+MR1 

along with LPS (100 µg/ mouse) i.p. as described in Materials and Methods. Panel A and 

B show the activation profile of the indicated markers during DST, DST+MR1 and 

DST+MR1+LPS treatment in KB5 Tg CD8
+
 T cells and non-transgenic endogenous 

CD8
+
 T cells. Panel C and D show the average percentages of activated alloreactive T 

cells with respect to each of the activation markers and their corresponding changes in 

the MFI intensities of each of the markers in KB5 Tg CD8
+
 T cells.  
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D. LPS alters the apoptotic signature of alloreactive T cells that occurs during co-

stimulation blockade. 

Since the early changes in the annexin-V profile were detected between 9 and 15 

hours in alloreactive T cells, I wanted to determine the apoptotic gene profile of 

alloreactive T cells during co-stimulation blockade and evaluate how the expression of 

these genes may be altered in the presence of LPS. To do this, I used an apoptotic gene 

array consisting of a focused set of genes involved in apoptosis and analyzed the 

transcriptional signatures of these apoptotic genes in alloreactive KB5 Tg CD8
+
 T cells 

during DST, DST+MR1 and DST+MR1 and LPS at 12 hours post-treatment. Briefly, 4 

groups (each consisting of 6-7 mice per group) were untreated, or treated with DST, 

DST+MR1 or DST+MR1+ LPS for 12 hours. KB5 Tg CD8
+
 T cells were sorted to 99% 

purity, RNA was isolated from the recovered cells and cDNA was synthesized. The 

cDNA synthesized from the different groups was subjected to real-time PCR array to 

determine gene expression changes in 84 genes involved in apoptosis using difference in 

the Ct values. The fold induction values of various genes with respect to the untreated 

group are shown in Fig 4.5 A, B, C, D. 

In the real time PCR array analysis, only genes possessing Ct (cycle threshold) 

values below 35 (set cut off) were included in the analysis. All the fold changes in gene 

expression were normalized to housekeeping genes and compared to the untreated group 

using the Superarray real time PCR array software. Fig 4.5 A–D shows the fold changes 

in expression of the genes with respect to the untreated groups and these fold regulation 
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values are an average of two experiments. Individual experimental analyses are 

documented in the appendix for further reference. Firstly, it was interesting to note that 

the apoptotic profile between DST and DST+MR1 was similar correlating with a similar 

annexin-V profile between the two groups observed previously. However, the DST+MR1 

treated group showed a slightly higher level of expression of FasL compared to DST (Fig 

4.5B and C and table IV). FasL and IL-10 were the most prominent and consistent of the 

genes that showed reciprocal expression in DST+MR1+LPS relative to DST+MR1 (Fig 

4.5D). FasL mRNA was expressed at higher levels in alloreactive T cells from 

DST+MR1 group but was detected at low levels in the presence of LPS (E02 in Fig 4.5B 

and D). Concomitantly, IL-10 mRNA was absent during DST+MR1 treatment but was 

induced during LPS treated group (E04 in Fig 4.5C and D). Additionally, TNF was also 

found to be consistently upregulated during DST and DST+MR1 and is more 

dramatically increased in the presence of LPS. TNF was expressed at 8-10 fold higher in 

DST and DST+MR1 treated groups and was upregulated > 17fold in the LPS treated 

groups. In contrast to FasL that showed a dramatic change in its expression, Fas (receptor 

for FasL) on the other hand was dowregulated at least 3 fold in alloreactive T cells during 

DST and DST+ MR1 treatment with respect to the untreated group (E01 in Fig 4.5 B and 

C). Interestingly, the mRNA expression of Fas was not downregulated to the same extent 

upon LPS treatment resulting in 1.7 fold difference in its expression compared to 

DST+MR1 group (E01 in Fig 4.5D). The fold up/down-regulation of genes from 

different families with respect to the untreated group from two experiments is 

summarized in Table IV. In Table IV, the genes that are consistent between the 
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experiments are colored blue, and genes that showed a trend in at least one of the 

experiment are indicated by light orange. Together, these results indicate that the 

expression of FasL mRNA and IL-10 mRNA is significantly altered during the 

abrogation of tolerance by LPS treatment and may serve as molecular indicators of 

alloreactive T cell apoptotic status during co-stimulation blockade.  
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Figure 4.5. Apoptotic profiling of KB5 Tg CD8
+
 T cells during DST, DST+MR1 and 

DST+MR1+LPS treatment. 

Groups of KB5 synchimeric mice were either treated with DST, DST+MR1 or 

DST+MR1 along with LPS (100 µg/ mouse) i.p. as described in Materials and Methods. 

After 12 hours of treatment KB5 Tg CD8
+
 T cells were sorted to > 97% purity from each 

of the groups. RNA was isolated and cDNA was synthesized and then amplified by 

apoptotic RT
2 

Real time PCR array (PAMM-012) reagents as described in Materials and 

Methods. Raw Ct values obtained were uploaded into the Super array web based data 

analysis software and the !!Ct based fold-change calculations were generated with the 

software. Fold change comparisons were done between the indicated groups. Panel A, B 

and C show the comparison of apoptotic profile of KB5 alloreactive T cells in DST, 

DST+MR1 and DST+MR1+LPS treated groups relative to the untreated groups 

respectively. Panel D shows the comparison of apoptotic profile of KB5 Tg CD8
+
 T cells 

in DST+MR1 +LPS relative to DST+MR1 group. The heat maps show magnitude of 

Log2 (Fold change) between the groups and the layout below show the fold regulation of 

genes. Genes marked blue showed consistent differences in both the experiments and 

genes marked in light orange showed desirable (key genes involved in apoptosis) 

differences in only one of the experiments. The positive values indicate the fold up-

regulation (fold change>1) and negative values indicate fold down-regulation (which is 

negative inverse of the fold changes that < than 1). Table 4 summarizes the fold 

regulation values of the well-known genes involved in regulating apoptosis. 
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E. Validation of FasL expression at the mRNA and protein level in alloreactive T cells 

during co-stimulation blockade and LPS treatment. 

Next I confirmed the dramatic increase in FasL mRNA expression in DST and 

DST+MR1 groups seen in the microarray studies by performing real time RT-PCR 

analysis using FasL specific primers purchased from two different companies, R&D and 

Superarray. I purified alloreactive KB5 Tg CD8
+
 T cells and endogenous non-transgenic 

CD8
+
 T cells from untreated and mice treated with DST for 12 hours. I isolated the RNA 

and synthesized cDNA followed by real time RT PCR. I found almost a 200 fold increase 

in the expression of FasL in DST treated group compared to the untreated group which 

was validated by running the sample on a 1% agarose gel (Fig 4.6A). Though there was a 

minor increase in non-transgenic CD8
+ 

T cells, the band intensities appeared similar on 

the gel, suggesting that the changes are very subtle in the non-transgenic CD8
+
 T cells. I 

next confirmed the expression of FasL mRNA using R&D primers via RTPCR and found 

that FasL mRNA was detected in purified KB5 Tg CD8
+
 T cells from DST treated group 

(Fig 4.6B).  This result confirmed the microarray data that FasL mRNA was upregulated 

in KB5 Tg CD8
+
 T cells upon DST and DST+MR1 treatment by 12 hours. 

I then determined if the changes in the mRNA expression level of FasL correlated 

with its expression at the protein level. I hypothesized that FasL protein would be up-

regulated in alloreactive KB5 Tg CD8
+
 T cells as early as 9 hours after DST and 

DST+MR1 treatment as this was the earliest time-point I observed increases in the 

annexin-V profile of KB5 Tg CD8
+
 T cells. There was, however, still the possibility the 
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changes in FasL may be occurring prior to 9 hours. KB5 synchimeric mice were treated 

with DST, DST+MR1 and DST+MR1+LPS for 9 hours and then stained for surface 

expression of FasL. The black histograms indicate samples stained with the isotype 

control and red histograms refer to samples stained with antibody specific to FasL for the 

indicated groups. There was a subtle increase in FasL in the percentage of cells positive 

for FasL in the KB5 Tg CD8
+
 T cells during DST and DST+MR1 treatment (Red 

histograms) but this increase was not observed in the LPS-treated groups (Fig 4.7 A and 

B). Likewise there was an increase in the MFI of FasL in the KB5 alloreactive T cells in 

the DST and DST+MR1 treated groups. (Fig 4.7 B). This increased expression of FasL 

on the cell surface was not observed in the LPS treated groups (Fig 4.7A and B). These 

results therefore confirm our microarray data and suggest that FasL may be possibly 

involved in the early apoptosis of alloreactive T cells during co-stimulation blockade. 

These data also suggest that FasL may be one of the many pro-apoptotic genes that is 

differentially regulated in alloreactive T cells in the presence of LPS. 

FasL binds its receptor Fas to induce apoptotic cell death. I therefore wanted to 

determine if there is a concomitant change in the expression of the Fas expression along 

with FasL on alloreactive T cells during co-stimulation blockade and during LPS 

administration. To determine this, I first tested the mRNA expression pattern of Fas in 

DST, DST+MR1 and LPS from the microarray analysis (Table IV). Unlike FasL, there 

was no dramatic upregulation but instead a 3-4 fold downregulation in the expression of 

Fas mRNA in DST and DST+MR1 group. With respect to the protein expression levels 

there was a considerable increase in the MFI of Fas expression during DST and 
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DST+MR1 treatment over the untreated groups (Fig 4.7 C and D). This discrepancy in 

the RNA and protein levels of Fas may be attributed to timing of the analysis. The Fas 

protein expression analysis was performed around 9 hours after treatment, whereas and 

the mRNA analysis of Fas in the microarray experiment was performed around 12 hours. 

Therefore it is possible that Fas mRNA detected around 12 hours after co-stimulation 

blockade may be in the process of degradation. LPS treatment, on the other hand, resulted 

only in a twofold downregulation of Fas mRNA with respect to DST+MR1 (Fig 4.5D and 

Table IV). Interestingly, LPS treatment during co-stimulation blockade induced an 

increase in the percentage and MFI of Fas+ cells in the KB5 Tg CD8
+
 T cells and also in 

the endogenous non-transgenic CD8
+
 T cells and CD4

+
 T cells (Fig 4.7 C). Together, 

these results indicate that Fas and FasL may be differentially regulated in alloreactive T 

cells in the presence of LPS. This further suggests that the and absence sufficient FasL 

expression in alloreactive T cells despite the presence of Fas expression during LPS 

treatment may be a mechanism in preventing T cell suicide or fratricide that is initiated 

during co-stimulation blockade.  
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Figure 4.6. Confirmation of DST induced FasL mRNA expression in KB5 Tg CD8
+
 T 

cells. 

After 12 hours of treatment with DST, KB5 Tg CD8
+
 T cells were sorted as described in 

Materials and Methods to 98% purity for samples from untreated mice (transgenic and 

non transgenic T cells) and 58 and 95% purity for DST treated animals (transgenic and 

non-transgenic T cells respectively). RNA was isolated and cDNA was synthesized. The 

cDNA was amplified by real time PCR using FasL specific primers purchased from 

Superarray. Concomitantly, the cDNA was also amplified by RTPCR using FasL specific 

primers purchased from R&D. Panel A shows the fold change of FasL mRNA detected 

with respect to the untreated control. Panel B shows the FasL mRNA detected in 

alloreactive T cells by RT-PCR. 
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Figure 4.7. Correlation of Fas and FasL mRNA expression to the protein levels on the 

surface of KB5 Tg CD8
+
 T cells during DST, DST+MR1 and DST+MR1+LPS 

treatment. 

Splenocytes of KB5 synchimeric mice treated with DST, DST+MR1 and DST+MR1+LPS 

for 9 hours were stained for surface FasL as described in Materials and Methods. Panel 

A shows the percentages of cells positive for FasL (Red histograms) in alloreactive KB5 

CD8
+
 transgenic T cells and the endogenous non transgenic CD8

+
 T cells. The black 

histograms indicate the FasL isotype staining in each of the groups. Panel B is the 

comparison of averages of FasL MFI profile in KB5 Tg CD8
+
 T cells from two 

experiments with p value < 0.05. Panel C and D show the percentages of cell positive for 

Fas receptor and their respective MFIs. The averages for the MFI were analyzed using 

one-way ANOVA analysis with Tukey post-test and the P value was <0.0001***. 
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F. In vitro blocking of FasL does not prevent KB5 Tg CD8
+
 T cell death during co-

stimulation blockade 

My data show that there is considerable up-regulation of Fas and FasL in KB5 Tg 

CD8
+
 T cells undergoing apoptosis during co-stimulation blockade. I therefore 

hypothesized that blocking of the Fas-FasL pathway using anti-FasL antibodies would 

prevent the early apoptosis of alloreactive T cells. To test this in vitro, I incubated 

splenocytes isolated from KB5 synchimeric mice that were either untreated or treated 

with DST+MR1 (for 8 hours) with a FasL blocking antibody at (20 µg/ml) (342) for 4 

hours. I then evaluated KB5 Tg CD8
+
 T cells for apoptosis by annexin-V staining, 

activated caspase3 and TUNEL staining. I found that blocking FasL in vitro did not 

reduce the percentage of cells that were positive for annexin-V-binding, activated 

caspase3 and TUNEL as compared to control or isotype treated cells (Fig 4.8 A,B,C). 

FasL blocking also did not alter the MFI of annexin-V, activated caspase3 or TUNEL in 

alloreactive T cells from DST+MR1 treated groups (Fig 4.8 A, B and C). These results 

revealed that blocking Fas-FasL pathway after the initiation of programmed cell death in 

alloreactive T cells during co-stimulation blockade is not sufficient to inhibit apoptosis. 

Together, these results indicate that the Fas-FasL pathway is not important for the 

induction of apoptosis during co-stimulation blockade.   
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Figure 4.8. FasL blockade in vitro does not prevent co-stimulation blockade-induced 

alloreactive KB5 transgenic CD8
+
 T cell apoptosis. 

Splenocytes of KB5 synchimeric mice treated with DST, DST+MR1 and DST+MR1+LPS 

for 12 hours were incubated for 4 hours in the presence or absence of FasL blocking 

antibody and control isotype (20µg/ml). Cells were stained for annexin, activated 

caspse3 and TUNEL as described in Materials and Methods. Panel A shows the 

percentages of KB5 Tg CD8
+
 T cells staining for annexin-V and the corresponding MFI 

of annexin in the samples. Panel B and Panel C show the percentages of KB5 Tg CD8
+
 T 

cells staining for activated caspase3 and TUNEL and their corresponding MFIs 

respectively%!
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G. In vitro activation of Fas receptor can render alloreactive T cells from the LPS 

treated group susceptible to cell death  

Although FasL expression was not increased on KB5 Tg CD8
+
 T cells from mice 

treated with DST+MR1 and LPS, Fas was expressed on the surface of these cells.  It was 

also shown that in vivo LPS administration increased FAS expression in microglial cells 

without causing apoptosis (Non TUNEL
+ 

cells) (393). Studies in vascular endothelial 

cells revealed that IFN-! and LPS augmented Fas-antibody mediated apoptosis by 

increasing the expression of Fas receptor in these cells in vitro (394). Therefore I 

hypothesized that engagement of Fas receptors on the surface of alloreactive T cells from 

DST+MR1 and LPS treated mice would induce apoptosis in vitro. To determine this, 

spleens were recovered from KB5 synchimeric mice at 10 hours after treatment with 

DST, DST+MR1 and DST+MR1+LPS. The splenocytes were incubated with Fas 

agonistic or isotype antibody for 4 hours in vitro and then examined by annexin-V 

binding assay. The presence of Fas agonistic antibody increased the percentages of 

annexin-V positive cells and also increased the MFI of the annexin-V stain in the LPS 

treated groups, and this did not occur in the presence of control isotype antibody (Fig 4.9 

A and B). Moreover, the endogenous non-transgenic CD8
+
 and CD4

+ 
T cells did not 

show any changes in annexin-V profile in the presence of Fas agonistic antibody 

indicating that there is no non-specific effect of the antibody. Together, these results 

suggest that alloreactive T cells that are usually prevented from deletion in the presence 

of LPS are sensitive to Fas induced cell death. 
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Figure 4.9. Engagement of Fas invitro selectively induces apoptosis in alloreactive 

KB5 Tg CD8
+
 T cells from DST+MR1 and LPS treated group. 

Splenocytes of KB5 synchimeric mice treated with DST, DST+MR1 and DST+MR1+LPS 

for 9-10 hours were incubated for 4 hours before staining for annexin-V. Splenocytes 

from DST+MR1+LPS group were incubated in the presence of either Fas agonistic 

antibody or isotype (5µg/ml) during the 4hour incubation period followed by annexin-V 

staining. Panel A shows the representative percentages of cells that are annexin-V 

positive and Panel B shows the average percentages of annexin-V positive cells and the 

annexin-V MFI in the indicated groups. All the groups were compared by one-way 

ANOVA analysis with Tukey post-test. P value <0.0001***. Error bars indicate SD. 
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H. The Fas-FasL pathway is not critical for co-stimulation blockade induced tolerance.  

Deletion of alloreactive T cells by co-stimulation blockade is considered to be an 

important mechanism by which donor specific tolerance is induced (4). In vitro studies so 

far have suggested that the Fas-FasL death pathway may be mechanism by which the 

early deletion of alloreactive T cells occurs. Therefore, I hypothesized that lpr and gld 

mice would not be tolerized by co-stimulation blockade regimen. To test this hypothesis, 

I performed an in vivo cytotoxicity assay in NK-depleted lpr and gld mice (Fig 4.10 A 

and 4.11 A). This assay is a reliable indicator of activated alloreactive T cells, as it 

determines their ability to lyse allogeneic target cells. Since lpr and gld mice develop 

lymphoproliferative disorder with age, I used young mice that were age-matched (6 to 7 

weeks) and weight matched with the WT control B6 mice. Very little to no killing of 

allogeneic target cells was detected in lpr or gld mice after co-stimulatory blockade 

regimen, suggesting that the Fas-FasL pathway may not be crucial in induction of 

tolerance (Fig 4.10B and C and Fig 4.11B and C). Both lpr and gld mice treated with 

DST were able to kill allogeneic target cells, indicating that these mice are able to 

generate alloreactive T cell responses. Additionally, this also indicates that that absence 

of killing of allogeneic target cells in lpr and gld mice after co-stimulation blockade was 

truly due to their tolerization and not due to the inability of alloreactive T cells to lyse 

target cells in the absence of Fas-FasL pathway. Together, these results indicate that Fas 

and FasL are not critical for co-stimulation blockade-induced tolerance induction. 
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Figure 4.10. Fas expression in the recipient is not necessary for the induction of co-

stimulation- blockade tolerance . 

Panel A, WT B6 (H-2
b
) and lpr (H-2

b
) mice were subjected to co-stimulation blockade 

regimen in the form of allogeneic BALB/c splenocytes (H-2
d
) as DST along with 3 

injections of MR1 (!CD154)(Day-7, -4, 0). On day-1 mice were given NK1.1 depleting 

antibody followed by the transfer of 2 cell populations (both syngeneic and allogeneic) 

that were labeled with the indicated concentrations of CFSE as described in Materials 

and Methods. On day +1 recipient spleens (both WT and lpr) were harvested and the 

lysis of allogeneic target cells is determined as described in Materials and Methods. 

Panel B, shows the representative histograms of allogeneic (H-2
d
) and syngeneic (H-2

b
) 

target cells before transfer and after the indicated treatments. Panel C shows the % lysis 

of allogeneic target cells with respect to the syngeneic populations. 
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Figure 4.11. Expression of FasL on the recipient is not necessary for the co-

stimulation blockade-induced tolerance. 

Panel A, WT B6 (H-2
b
) and gld (H-2

b
) mice were subjected to co-stimulation blockade 

regimen in the form of allogeneic BALB/c splenocytes (H-2
d
) as DST along with 3 

injections of MR1 (!CD154) (Day-7, -4, 0). On day-1 mice were given NK1.1 depleting 

antibody followed by the transfer of 2 cell populations (both syngeneic and allogeneic) 

that were labeled with the indicated concentrations of CFSE as described in Materials 

and Methods. On day +1 recipient spleens (both WT and gld) were harvested and the 

lysis of allogeneic target cells is determined as described in Materials and Methods. 

Panel B, shows the representative histograms of allogeneic (H-2
d
) and syngeneic (H-2

b
) 

target cells before transfer and after the indicated treatments. Panel C shows the % lysis 

of allogeneic target cells with respect to the syngeneic populations. 
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I.  Co-stimulation blockade-induced BIM expression is not prevented by LPS 

treatment.  

Recently, studies using mice deficient of both Fas and BIM have indicated their 

complimentary roles in controlling T cell apoptosis (214). Since lpr and gld mice were 

tolerized by co-stimulation blockade, I hypothesized that BIM may be playing a 

compensatory role to induce apoptosis of alloreactive T cells in the absence of Fas or 

FasL. Unfortunately, the pro-apoptotic gene bim was not present in the apoptotic gene 

array. Instead of analyzing the mRNA expression of BIM, I directly tested the if 

expression BIM protein was upregulated during co-stimulation blockade and if its 

expression was affected during LPS treatment similar to FasL. BIM is found in 3 

isoforms (BIMS, BIML and BIMEL; where S means short, L means large and EL means 

extralarge) due to alternate splicing. During apoptosis, BIMS is known to be the most 

active. BIML and BIMEL are believed to be released from the dynein motor complex as 

downstream events of JNK activation. The antibody used for staining is specific for total 

BIM. Briefly, splenocytes from KB5 synchimeric mice were treated as indicated and 

either stained for BIM directly ex vivo or stained after 4 hours of incubation in vitro 

(37°C).  After 9 hours of DST+MR1 treatment BIM expression was higher in KB5 Tg 

CD8
+
 T cells compared to the untreated group (both percentages and MFI, Fig 4.12 A 

and B).  LPS treatment, on the other hand, did not affect BIM levels, although they were 

reduced in the percentages. The presence of higher levels of BIM in alloreactive T cells 

taken from mice treated with DST+MR1 and LPS suggest that it may contribute to the 

sensitivity of these cells to Fas-mediated apoptosis in vitro. Together, these results 
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suggest that BIM may be playing a role during co-stimulation blockade along with Fas to 

induce apoptosis of alloreactive T cells. 
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Figure 4.12. LPS does not prevent co-stimulation-blockade-induced BIM expression 

on KB5 Tg CD8
+
 T cells. 

Panel A and B, splenocytes of KB5 synchimeric mice treated with DST+MR1 and 

DST+MR1+LPS for 9 hours were stained for BIM directly ex vivo or after 4 hours of 

incubation at 37°C as described in Materials and Methods. Panel A and B show the 

percentages of KB5 Tg CD8
+
 T cells that are positive for BIM and the MFI of BIM. 

Additionally plots consisting of the staining with BIM isotype control antibody are also 

shown. Values were compared by one-way ANOVA analysis with Tukey post-test. P 

values for plots in panel A and B were 0.0453* and <0.0005*** respectively. 
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J. Increased levels of inflammatory cytokines in the serum of mice treated with LPS 

during co-stimulation blockade. 

TLR activation provokes the release of inflammatory cytokines that may be 

involved in preventing the deletion of alloreactive T cells thereby abrogating tolerance 

induction. Previously it was demonstrated that LPS-induced Type-I IFN impairs the 

deletion of alloreactive KB5 Tg CD8
+
 T cells during co-stimulation blockade (5). To 

evaluate if other inflammatory cytokines are produced after LPS treatment that may 

abrogate tolerance, I first performed cytokine analysis on the serum of mice treated either 

with DST, DST+MR1 or DST+MR1 +LPS for 9 hours. Compared to DST and 

DST+MR1 treated groups, LPS induced significant quantities of the inflammatory 

cytokines namely, IL-6, IL-10, IL-12p40, TNF, IFN! and MCP-1 (Fig 4.13). Importantly, 

the increase in TNF and IL-10 protein levels correlated with the microarray data where 

TNF mRNA was increased and IL-10 mRNA was detected at higher levels in alloreactive 

KB5 Tg CD8
+
 T cells during LPS treatment. In section G (Fig 4.9), I had mentioned that 

studies in vascular endothelial cells revealed that IFN-! and LPS augment Fas-antibody 

mediated apoptosis in vitro by increasing the expression of Fas receptor in these cells 

(394). Given the increase in IFN-! in the serum of the LPS treated group and the previous 

observations (section G; Fig 4.9) made with regard to the increase in Fas receptor 

expression in alloreactive T cells and their susceptibility to Fas-mediated apoptosis in 

vitro reinforces the effect of LPS on Fas expression in activated alloreactive T cells as 

well. Together, these results indicate that the production of various inflammatory 
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cytokines within the first hours of LPS treatment affect the apoptotic signature of 

alloreactive T cells. 
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Figure 4.13. Detection of inflammatory cytokines in the serum of mice treated with 

DST+MR1+LPS. 

Blood was isolated from KB5 synchimeric mice treated with DST+MR1 and 

DST+MR1+LPS for 8 hours. Serum isolated from blood was used for analysis for 

various cytokines using BD CBA inflammatory cytokine array as described in Materials 

and Methods. Shown are the amounts of various cytokines (pg/ml) detected in the serum 

in the treated groups (n=2). 
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K. IL-10 is not necessary for LPS mediated abrogation of tolerance induction 

IL-10 is usually considered to be an anti-inflammatory cytokine that is produced by Tregs 

in response to LPS and suppresses CD8
+
 T cell responses (232).  Recently, IFN-! has 

been shown to modulate the balance of anti- and pro-inflammatory functions of IL-10 

(395, 396). IFN-! priming of macrophage confers pro-inflammatory functions of IL-10 

that result in the increase of STAT-1 activation and subsequent induction of STAT-1-

dependent genes such as IRF-1 and chemokines CXCL-10 and CXCL-19 (395). LPS 

abrogates co-stimulation blockade-induced tolerance in a type-I IFN dependent manner 

(5). However it is not known if IL-10 is also required for LPS mediated abrogation of co-

stimulation blockade (DST+MR1) mediated tolerance induction. Given this and the 

dramatic increase in IL-10 mRNA expression in T cells and protein levels in the serum of 

mice receiving LPS during co-stimulation blockade, I hypothesized that IL-10 may be 

mediating the pro-inflammatory effects of LPS leading to the abrogation of tolerance 

induction. I tested this hypothesis using IL-10-deficient mice with the in vivo cytotoxicity 

assay. I predicted that in the absence of IL-10, LPS would not be able to abrogate 

tolerance induction. IL-10 deficient mice treated with DST+MR1 and LPS rejected 

allogeneic target cells with nearly 98% percent lysis, suggesting that IL-10 is not required 

for LPS to abrogate tolerance induction (Fig 4.14 A, B and C). However, IL-10 may be 

playing a synergistic role with other pro-inflammatory cytokines in mediating the 

abrogation of tolerance in the presence of LPS. 
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Figure 4.14. IL-10 is not necessary for LPS mediated abrogation of tolerance 

induction. 

Panel A, WT B6 (H-2
b
) and IL-10KO (H-2

b
) mice were subjected to co-stimulation 

blockade regimen in the form of allogeneic BALB/c splenocytes (H-2
d
) as DST along with 

3 injections of MR1 (!CD154) (Day-7, -4, 0). Some mice also received a dose of LPS 

(100µg/mouse) on day-7.  On day-1 mice were given NK1.1 depleting antibody followed 

by the transfer of 2 cell populations (both syngeneic and allogeneic) that were labeled 

with the indicated concentrations of CFSE as described in Materials and Methods. On 

day +1 recipient spleens (both WT and IL-10) were harvested and the lysis of allogeneic 

target cells is determined as described in Materials and Methods. Panel B, shows the 

representative histograms of allogeneic (H-2
d
) and syngeneic (H-2

b
) target cells before 

transfer and after the indicated treatments. Panel C shows the % lysis of allogeneic 

target cells with respect to the syngeneic populations. 
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Chapter 4: Summary 

1. The two-step co-stimulation blockade (DST+MR1) protocol effectively induces 

donor-specific tolerance by causing an early deletion (by 15 hours) of donor-

reactive CD8
+
 T cells.  

2. Co-stimulation blockade does not prevent the early activation (by 9 hours) of 

donor-reactive CD8
+
 T cells that are deleted. 

3.  Co-stimulation blockade results in the upregulation of both FasL and BIM, two 

pro-apoptotic molecules that may be involved in the early deletion of activated 

donor-reactive CD8
+ 

T cells. 

4. Exposure to LPS, a TLR4 agonist, at the time of co-stimulation blockade 

abrogates tolerance induction by preventing the deletion of donor-reactive CD8
+
 

T cells. 

5.  LPS prevents the deletion of donor-reactive CD8
+
 T cells by suppressing the 

expression of other pro-apoptotic genes such as FasL, caspase 2, BID, BAX. 

6. LPS treatment at the time of co-stimulation blockade also induces higher 

expression of CD25 in activated donor-reactive CD8
+
 T cells. 

7.  Although LPS inhibits the expression of FasL, it induces non-specific 

upregulation of Fas expression in donor-reactive as well as endogenous CD8
+
 T 

cells and CD4
+
 T cells. 

8. Donor-reactive CD8
+
 T cells that are prevented from deletion in animals treated 

with LPS at the time of co-stimulation blockade are still sensitive to early Fas-

mediated apoptosis in vitro. 
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Chapter 4: Discussion 

The deletion of donor reactive T cells during the induction of peripheral 

transplantation tolerance is considered to be one of the important mechanisms that 

facilitates graft acceptance (234). The deletion of alloreactive T cells during co-

stimulation blockade was shown to occur by 24 hours post-treatment (4), and exposure to 

TLRs during tolerance induction prevents this early deletion via a Type-I IFN dependent 

manner (4, 5). Here, I examined the expression of apoptosis-related genes by alloreactive 

CD8
+ 

T cells undergoing deletion after treatment with co-stimulation blockade. I 

observed alterations in the expression of 2 pro-apoptotic molecules, FasL (involved in the 

extrinsic apoptotic pathway) and BIM (involved in the intrinsic apoptotic pathway) in 

alloreactive CD8
+
 T cells by 12 hours of treatment with co-stimulation blockade. In 

particular, FasL was upregulated by alloreactive T cells at both the mRNA and protein 

levels as early as 12 hours after co-stimulation blockade. Interestingly, TLR4 (LPS) 

treatment during co-stimulation blockade, which prevents the early deletion of 

alloreactive T cells, inhibited the up-regulation of FasL (mRNA and protein), suggesting 

a potential role for the Fas-FasL pathway in the deletion process.  However, blocking of 

FasL in vitro did not rescue alloreactive T cells from undergoing apoptosis after co-

stimulation blockade. This finding correlated with the ability of co-stimulation blockade 

to induce tolerance in lpr and gld mice that are deficient in Fas-FasL pathway. These data 

suggest that either Fas-FasL apoptotic pathway is not directly involved in deletion of 

alloreactive cells during the induction of tolerance or that there is a compensatory 

mechanism involved in the deletion of alloreactive T cells in absence of Fas-FasL 
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signaling. I found that alloreactive T cells undergoing deletion had increased BIM 

expression, supporting the possibility that BIM and Fas may have redundant roles in 

controlling alloreactive T cell death during co-stimulation blockade. Importantly, 

although FasL expression by alloreactive T cells was inhibited in mice treated with 

DST+MR1 and LPS, these cells were still susceptible to Fas-mediated apoptosis in vitro. 

This suggests that alloreactive T cells emerging from an inflammatory environment and 

that are known to survive and expand after 24 hours are still sensitive to apoptosis within 

24 hours after treatment.  

Although the Fas-FasL pathway plays a vital role in mediating the process of 

AICD, lpr and gld mice that are deficient of Fas-FasL signaling accept allografts (265, 

397, 398) suggesting that Fas-FasL may be just one component of the apoptotic pathway 

and other compensatory apoptotic mechanisms may be involved in the elimination of 

activated alloreactive T cells during co-stimulation blockade.  Studies on immune 

privileged sites such as the cornea have revealed the involvement of FasL and TRAIL in 

mediating tolerance (399, 400). These studies suggest that death receptor pathways other 

than Fas-FasL may mediate the death of activated alloreactive T cells in gld mice during 

tolerance induction. Concomitantly, I also observed a modest increase in BIM expression 

in alloreactive T cells during co-stimulation blockade. Recently, both Fas and BIM have 

been shown to have a synergistic role in maintaining homeostasis, as defects in both the 

molecules led to a rapid onset of autoimmune diseases in mice than single molecule 

deficient counterparts (131, 401, 402). Given this, I predict that the induction of tolerance 
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in the absence of Fas and FasL may be compensated by BIM-mediated pro-apoptotic 

pathway.  

My in vivo cytotoxicity experiments with lpr and gld mice revealed that these 

mice are tolerized during DST+MR1 treatment. It is noteworthy to mention that the lpr 

mutation is leaky, and mice with lpr mutation have higher FasL mRNA expression 

CD4!CD8! 
T cells that are specifically cytotoxic to Fas expressing cells (209, 403). Given 

this, the induction of tolerance in lpr mice by co-stimulation blockade may be attributed 

to the leaky expression of Fas and the over-expression of FasL in this system. In contrast 

to this, CTLA-4 Ig+MR1 therapy (at the time of skin transplantation and post-

operatively) in lpr mice resulted in skin graft rejection (397). Graft rejection observed in 

lpr mice may be attributed to negative co-stimulatory role of Fas. A recent study showed 

that activation of Fas inhibited the activation and proliferation of human alloantigen-

specific T cells (212). Alternatively, the differences observed between the previous 

studies and mine may be just attributed to the differences in nature of the co-stimulation-

blockade regimens and the timing of the regimens.  

Gld mice given CTLA-4Ig and MR1 therapy (at the time of skin transplantation 

and post-operatively) showed significant skin graft survival relative to their WT 

counterparts (397). Although there was significant extension of skin graft survival in gld 

mice compared to WT recipients, these studies showed that the grafts failed in 

approximately 50% of the recipients in these studies. In addition to inducing death 

signals, FasL has also been shown to play a co-stimulatory role and augment the 



! "#$!

proliferation of T cells via retrograde (reverse signaling into T cells) signaling early 

during T cell activation (211, 404, 405). One alternative explanation for the ability of the 

gld mice to be tolerized is that the absence of Fas/FasL signaling during co-stimulation 

blockade may result in reduced proliferation of alloreactive T cells that in turn may limit 

the magnitude of alloreactive T cells below the required threshold for graft rejection 

thereby leading to tolerance induction (397). Together, these results suggest that 

sensitivity of activated T cells to apoptosis mediated by Fas and FasL during tolerance 

induction may vary with the time of alloantigen exposure as these molecules may exhibit 

other co-stimulatory roles in addition to being involved in apoptosis. 

 Although LPS inhibited the expression of FasL by alloreactive T cells, it non-

specifically led to a modest up-regulation of Fas protein on the surface of all cells (non-

transgenic CD8
+
 T cell and CD4

+
 T cells). Studies in other systems have shown 

differential effects of LPS on Fas and FasL mRNA and protein expression. LPS has been 

shown to stimulate Fas protein expression by vascular endothelial cells via the activation 

of p38 MAPK pathway thereby this increasing the susceptibility of these cells to Fas 

agonistic antibody killing (394). Administration of LPS in mice has been known to lead 

to the increase in FasL protein expression in blood leukocytes (394). In humans, 

administration of LPS induces up-regulation of Fas mRNA by 4 hours and expression of 

protein on neutrophils after 24 hours of treatment (406).  LPS was, however, not shown 

to affect FasL mRNA in leukocytes, though there was an increase in soluble FasL in the 

plasma (406). My data with alloreactive T cells show that, in vitro Fas agonistic antibody 

treatment caused selective apoptosis of alloreactive T cells from DST+MR1+ LPS treated 
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animals suggesting that alloreactive T cells in this scenario are still susceptible to Fas-

mediated apoptosis. In light of this observation, I speculate that targeting the Fas-FasL 

death pathway may result in alloreactive T cell death during the early period after LPS 

and co-stimulation blockade administration and possibly contribute to the induction of 

tolerance. 

My data show that mice injected with LPS during co-stimulation blockade 

produce several pro-inflammatory cytokines within 8 hours of treatment. This 

inflammatory environment may have an important role in abrogating tolerance. However, 

identifying roles for individual cytokines has proven challenging. Previous studies with 

TNFR2 and IL-12R deficient mice revealed that IL-12 and TNF signaling are not 

required for LPS (TLR4) mediated abrogation of tolerance (4). CpG (TLR9) was recently 

shown to abrogate tolerance induced by !CD154 and rapamycin therapy in an IL-6 

independent manner (316). This study showed that CpG instead promoted Th1 effector 

differentiation from naïve alloreactive T cells, and this mechanism was suggested to 

mediate graft rejection (316). My data show that IL-10 secreted during LPS treatment 

does not contribute to the abrogation of tolerance by co-stimulation blockade. The above 

studies and my results together suggest that the effect of inflammatory cytokines during 

tolerance abrogation may be synergistic. In line with this, a recent study in a skin 

allograft model (CTLA4-Ig and !CD154) showed that mice deficient in IL-6 and TNF 

had prolonged skin graft survival compared to their respective single deficient 

counterparts, suggesting a synergistic role of these cytokines in mediating allograft 
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rejection (407). IL-6 and TNF were shown to abrogate tolerance by inhibiting Treg 

function to suppress effector T cell proliferation (407).  

TLR signaling abrogates co-stimulation blockade induced tolerance by a Type-1 

IFN dependent pathway (5).  This study showed that LPS and Poly I:C do not abrogate 

tolerance in Type-I IFNRI-deficient mice as compared to WT mice (5).  In this scenario, 

the Type-I IFN dependent mechanism that prevents the deletion of alloreactive T cells 

may occur either directly or indirectly. Direct signaling through the Type-I IFNRI on T 

cells is known to be vital for CD8
+
 T cell survival and proliferation during viral infection 

(105, 408). Alternatively, Type-I IFN induces the production of survival cytokines such 

as IL-15 by dendritic cells that can in turn act on T cells (109, 409). Given these findings, 

I speculate that the effect of Type-I IFNs in rescuing alloreactive T cells from apoptosis 

during LPS mediated abrogation of co-stimulation blockade induced tolerance, may be 

occurring either by a direct inhibition of FasL expression by alloreactive T cells or it may 

be an indirect effect of Type-1 IFNs in inducing survival cytokines such as (IL-15)(109).  

One observation that requires attention is that it is not very clear why the 

apoptotic profile of KB5 Tg CD8
+
 T cells between DST and DST+MR1 is very similar 

(Section B; Fig 4.3). This may be due to early deletion of activated KB5 Tg CD8
+ 

T cells 

during DST treatment. If DST treatment alone can cause apoptosis, then two questions 

arise. First, what then is the effect of MR1 during co-stimulation blockade? Secondly, is 

early deletion of alloreactive T cells necessary for tolerance induction? We know that 

alloreactive T cells in DST treated mice eventually become primed to become effector 
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cells after 7 days and mediate graft rejection. In section B, I had predicted 2 possibilities. 

One possibility could be that the apoptotic pathways triggered during DST may be 

different from that triggered during DST+MR1 treatment. The second possibility could 

be that the extent of deletion may be more profound during DST+MR1 treatment than 

DST treatment, resulting in the number of alloreactive cells to be reduced below a certain 

threshold that cannot be recovered back. The molecular profiling of alloreactive T cells 

during DST and DST+MR1 treatment reveal that the apoptotic signaling pathways may 

be similar between the two groups. However, I cannot rule out the possibility of subtle 

gene expression differences that may result in two different biological outcomes during 

DST and DST+MR1 treatment. As far as the importance of early deletion of alloreactive 

T cells during co-stimulation blockade induced tolerance is concerned, this remains to be 

investigated further.  

Collectively, in this chapter of my thesis I investigated the early apoptotic 

signature of alloreactive CD8
+
 T cells during co-stimulation blockade and how this 

signature is altered in the presence of LPS (TLR4). I identified FasL as a reliable 

molecular indicator of early alloreactive T cell death during co-stimulation blockade that 

is inhibited in the presence of LPS. However its role in the induction of tolerance is also 

under investigation. (Model in figure 4.15; pg 285). 
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Chapter 5: Discussion 

In this thesis, I examined the importance of two prototypic members of the TNF 

superfamily, namely TNF and FasL in the regulation of early events in naïve T cell 

activation. In Chapter 3 of this thesis, I investigated the immunoregulatory role of T cell- 

derived TNF and its ability to limit antigen-specific T cell responses during the acute 

phase of an infection. Subsequently, I determined that naïve developing T cells in the 

thymus embark on a journey of post-thymic maturation in secondary lymphoid tissues, 

during which they gain the capability to produce TNF in a hierarchical manner.  This 

creates a population of cells possessing varying capabilities to produce TNF resulting in 

functional heterogeneity of the naïve T cell pool similar to what is found in effector and 

memory T cell populations (136). In Chapter 4 of this thesis, I examined the importance 

of the Fas-FasL pathway in the early apoptosis of activated alloantigen-specific T cells 

during co-stimulation blockade. The dramatic up-regulation of FasL on activated 

alloreactive T cells suggests that the process of apoptosis of these T cells may be 

occurring either by alloreactive T cell suicide or fratricide. One possible mechanism by 

which inflammation (TLR activation) leads to the rescue of alloantigen-specific T cells 

from early apoptosis in this scenario may be by inhibition of Fas-FasL pathway. 

Interestingly, I determined that despite this rescue from apoptosis, alloantigen-specific T 

cells are sensitive to Fas-mediated apoptosis within 24 hours of treatment. This finding 

suggests that during inflammation-mediated abrogation of co-stimulation blockade 

tolerance, there may still be an early window where alloantigen-specific T cells can be 
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targeted to undergo deletion that may in turn facilitate allograft acceptance despite early 

exposure to inflammatory agents. 

Studies in the first part of chapter 3 revealed a suppressive role of T cell-derived 

TNF that required a yet unknown signal acting in a localized fashion, provided by the 

surrounding cells that my study did not investigate. Questions such as whether this signal 

is cell-contact-mediated or due a soluble mediator produced by APCs in response to T 

cell-derived TNF or whether the suppressive signal is delivered directly back to T cells or 

if it occur indirectly via an intermediary cell type are future avenues that can be explored.  

One hint comes from studies showing expression of TNFR2 on CD4
+
CD25

+
Foxp3

+
 

mouse Treg cells (410, 411). Recently, a study showed that TNF modulates the human 

Treg cell function by the induction of several NF!B induced genes (412). Previous work 

from our laboratory and my work here suggest that TNF produced by recently activated 

naïve T cells can exist in soluble and membrane-bound forms (1). These studies suggest 

that the suppressive effect of T cell-derived TNF on CD8
+
 T cells may be mediated in 

localized manner by membrane-bound TNF via interactions with TNFR2 expressed on 

CD4
+
 T regulatory T cells. On the other hand, recent studies have also shown that TNF is 

secreted in a multidirectional manner, away from the immunological synapse and hence 

serves to create chemokine gradients to recruit several target cells (413). Therefore, the 

suppressive effect of T cell derived TNF that occurs in a localized manner can also be 

mediated through its soluble form. Additionally, a T cell-intrinsic role for T cell-derived 

TNF may also be playing role in this scenario. A recent study with human T cells showed 

that increased production of TNF correlates with the loss of CD28 expression and leads 
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cells to a non-proliferative end-stage replicative senescence that is correlated to higher 

expression of caspase 3 (414). Increases in caspase3 are correlated to susceptibility to 

AICD in effector T cells (415). I did not see any marked differences in CD28 expression 

in TNF-deficient and WT T cells in my study. However, as caspase 3 is one of the 

downstream caspases in the TNF signaling pathway, I speculate that the absence of 

intrinsic TNF signaling in CD8
+
 T cells may result in less caspase 3 activation and 

therefore reduced cell death during the effector phase. This prediction is consistent with 

previous reports suggesting that the absence of TNF signaling in TNF-deficient and 

TNFR-deficient mice led to reduced apoptosis (reduced annexin-V binding) of tetramer 

positive effector T cells on day 8 post LCMV infection (191, 192). In contrast to this 

study, however, our adoptive transfer experiments using P14 TCR transgenic TNF 

deficient and WT T cells did not show any apoptotic differences by annexin-V binding 

studies. The differences may be attributed to the differences transgenic versus 

endogenous T cells used in the experiments. 

The next part of chapter 3 investigated the question of how naïve T cells become 

licensed to produce TNF. I determined that this licensing occurs in a maturation 

dependent manner after cells leave the thymus. SP thymocytes showed a poor ability to 

produce TNF upon TCR stimulation despite expressing mature TNF message at resting 

steady state. One of the questions that I did not dwell on here is the physiological role of 

low levels of TNF detected in SP thymocytes during TCR stimulation. There is a 

possibility that these low levels of TNF detected in the SP thymocytes may be sufficient 

for its effect in the thymus. It has been shown that some RTEs also require TCR-
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mediated signals for a proliferative burst immediately, before emigration (416-418). New 

evidence suggests that thymic Treg cells also express TNFR2 (410). Given this, I 

speculate that it may be beneficial for SP thymocytes to produce little or no TNF so that 

they can be resistant to suppression by thymic Treg cells and undergo proliferation before 

emigration. Additionally, as developing SP thymocytes are dependent upon TCR 

interactions during positive and negative selection, the poor ability of developing T cells 

to produce TNF upon TCR activation may reflect a location-dependent regulation of TNF 

expression owing to its pro-inflammatory nature that may be detrimental to selection 

process (discussed in chapter 3 in detail).  

In the periphery, naïve T cells exhibit a maturation-status dependent ability to 

produce TNF, with the young immature RTEs producing less TNF compared to their 

older mature naïve counterparts. As cells functionally mature, they begin to change their 

phenotypic profile as they downregulate the expression of markers such a CD24 and 

upregulate CD45RB and Qa2. In addition to serving as maturation markers, these 

molecules also have been shown to have a secondary role in T cell activation (419-422). 

For example, although CD24 is downregulated as T cells mature in the periphery, it is 

upregulated upon activation and has been shown to play a co-stimulatory role and 

involved in homeostatic proliferation of T cells (420).  The intracellular domain of CD45 

contains a tyrosine protein phosphatase required for the activation of proteins Lck and 

Fyn during T cell activation (423) and studies using antibodies to Qa2 (directed against 

!-3 region of Qa2 that is near the membrane) have been shown to augment T cell 

proliferation during stimulation (421). Therefore, the subtle changes in the maturation 
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markers may contribute to the differences in the activation status of different naïve T cell 

subsets (RTEs versus MN T cells). Although I did not perform an exact quantification of 

TNF message in RTEs versus MN T cells, analysis of TNF message in RTEs and mature 

naïve T cells at resting steady state by semi-quantitative RT-PCR suggests that the 

differences are not major. However, further quantification studies may reveal subtle 

differences in TNF mRNA expression between RTEs and MN T cells and if these 

differences contribute to the difference in their TNF producing capabilities. 

Another limitation of my study is that I did not specifically determine the 

mechanism by which T cells at different stages of development in the periphery produced 

TNF upon activation and if there was specific molecule in the secondary lymphoid 

organs that was required for optimal production of TNF by T cells. Nonetheless, my 

study highlights the functional heterogeneity of the naïve T cell pool that may be 

beneficial for an optimal T cell response during infection. The discovery that naive T 

cells produce TNF before any other effector cytokines such as IFN-! upon activation was 

applied in the field of transplantation tolerance. Our laboratory used the unique profile of 

naïve T cells to produce TNF but not IFN-! to determine the precursor frequency of 

alloreactive T cells during co-stimulation blockade regimen graft rejection (345). 

In chapter 4 of my thesis I examined the apoptotic signature of alloreactive T cells 

during co-stimulation blockade induced transplantation tolerance. This study identified 

that FasL expression is differentially regulated during LPS mediated abrogation of co-

stimulation blockade induced tolerance. However, experiments in chapter 4 suggest that 
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Fas may be acting in concert with other molecules such as BIM or other pro-apoptotic 

molecules to induce tolerance. Delineating the downstream mechanisms of apoptosis in 

alloreactive T cells induced by co-stimulation blockade treatment and identifying the key 

players is relevant as novel strategies to induce peripheral deletion and tolerance are 

being developed. Understanding these apoptotic molecular pathways is important as co-

stimulation blockade regimens using !CD154 therapy have shown great promise, but 

recent studies have revealed a major side effect of the use of this antibody in humans 

(424-426). It was determined that platelets express CD40 and hence the administration of 

!CD154 (!CD40L) leads to platelet aggregation, resulting in thromboembolism. In this 

chapter I speculated that targeting the Fas-FasL death pathway may result in alloreactive 

T cell death during the early period after LPS and co-stimulation blockade treatment that 

can possibly facilitate tolerance induction despite inflammation. 

One of the challenges of using Fas agonistic antibodies in vivo is that it results in 

fulminant hepatitis in mouse models (427). Therefore, to exploit the full potential of FasL 

to induce tolerance, several strategies have been developed (165). For example, 

syngeneic myoblasts engineered to express FasL that were co-transplanted with islet 

grafts protected islets from rejection (428). The use of CTLA-4Ig fused with FasL has 

been shown to induce corneal allograft survival by causing deletion of CD4
+
 T cells 

infiltrating the corneal transplants (429). Recently, cardiac allograft survival was 

achieved in rat models using DST engineered to display chimeric SA-FasL that is non-

cleavable (430).  Graft survival correlated with the deletion of alloreactive T cells and the 

expansion of Tregs (430). These studies suggest that targeting Fas-FasL pathway in a 
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localized manner (as in the above strategies) can maximize its apoptotic effects during 

tolerance induction and may potentially overcome the effects of TLR activation on co-

stimulation blockade.  

My studies revealed that co-stimulation blockade regimen resulted in the early 

upregulation of various activation markers including CD25. The presence of LPS resulted 

in further upregulation of this marker on alloreactive T cells. Studies have shown that co-

stimulation via CD80 leads to higher levels of CD25 on CD8
+
 T cells (431). As 

mentioned previously, although IL-2 is a cytokine involved in the induction of AICD in 

activated T cells, it is also involved in the proliferation of activated T cells. Studies using 

!CD25 mAb (Simulect) (that blocks IL-2 and IL-2R! interactions) has showed reduced 

lymphocyte numbers (CD25+ T cells) after 24 hours of treatment in the peripheral blood 

of kidney transplant patients (432, 433). Studies have shown that !CD25 mAb (Simulect) 

has many advantages. Firstly, It is an antibody that has undergone phase-I and phase-II 

clinical trials. These studies revealed that it has a half-life of 1-2 weeks and is well 

tolerated by transplant patients (432). Secondly, Simulect binds only activated T cells and 

macrophages and inhibits their proliferation and does not mediate complement-mediated 

cytotoxicity (432). CD25 is also expressed on Treg cells that require IL-2 signaling for 

their maintenance (278, 434). Since Treg cells are important for transplantation tolerance, 

one of the concerns is the effect of !CD25 mAb (Simulect) mediated blockade on Treg 

populations. A recent study showed that CD25 blockade was not required for the 

maintenance of human T regulatory cells in vivo as it did not lead to in vivo depletion of 

T regulatory cells (278). Given these findings, and the enhanced ability of CD25 in 
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alloreactive T cells during after LPS and co-stimulation blockade treatment, CD25 may 

be another potential target that can be used to induce early apoptosis in alloreactive T 

cells after treatment when they are still sensitive to apoptosis. 

Previous studies from our laboratory discovered that TLRs abrogated co-

stimulation blockade induced tolerance by preventing the deletion of alloreactive T cells 

through a Type-I IFN manner. One of the limitations of my study in chapter 4 was that I 

could not identify the mechanisms linking LPS induced Type I IFNs to the inhibition of 

FasL expression in alloreactive T cells was not deduced. One potential candidate that 

could link Type-I IFN and FasL expression may be IL-15, another member of !c 

cytokines. LPS is known to stimulate the rapid expression of IL-15 on the cell surface of 

activated monocytes (435). Type-I IFN also stimulates the production of IL-15 (109). 

Moreover, IL-15 has been shown to inhibit Fas-FasL induced apoptosis of human 

effector memory CD4
+
 and CD8

+
 T cells and enhance their survival (436, 437).  Studies 

in NK cells have shown that IL-15 mediates their survival through maintenance of 

myeloid-leukemia cell differentiation protein-1 (Mcl-1) expression (438) and that IL-15 

withdrawal induces BIM and NOXA that inhibit Mcl-1(438).  Additionally, IL-15-IgG2b 

fusion protein has been shown to inhibit anti-Fas (clone-Jo2) mediated apoptosis in vitro 

and in vivo in mice (439). Studies using an antagonist IL-15/Fc protein blocked CD8
+
 T 

cell dominant rejection by inhibiting the proliferation of CD8
+
 T cells during co-

stimulation blockade treatment (CTLA-4Ig) (440). Altogether, these findings lead me to 

predict that Type-I IFN induced IL-15 may be mediating FasL inhibition and promoting 

alloreactive T cell survival during LPS treatment. This is another possibility that can be 
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tested and if proven true could potentially serve as another early target to induce 

tolerance induction during LPS treatment. 

Although TNF and FasL are two of well-known TNF family members involved in 

apoptosis, studies indicate that they are both dispensable under some circumstance. Gld 

mice treated with neutralizing anti-TNF antibody did not abrogate alloreactive T cell 

death during co-stimulation blockade (CTLA-4Ig) suggesting that alloreactive T cell 

deletion is not mediated by FasL and TNF for cardiac allograft tolerance (398). Another 

study revealed that TNFR1 and FasL signaling are not required for P14 TCR transgenic T 

cell deletion after LCMV infection (124). However, in non-transgenic mice deficient of 

TNFR1 and FasL showed defects in peptide-induced deletion of T cells suggesting their 

unique role in T cell apoptosis depending upon the nature of antigen-challenge.   

Overall my thesis sheds light into the role of TNF and FasL, two prototypic 

members of the TNF superfamily and their respective roles in some of the earliest events 

of T cell activation. The immunoregulatory role of TNF in the altering T cell responses 

has recently been appreciated. 1) Studies in mice reveal that the absence of TNF leads to 

enhanced activation of T cells and immunopathology (441). Studies in collagen-induced 

arthritis on the other hand demonstrated that anti-TNF therapy enhances expansion of Th-

1 and Th-17 cell populations that can be pathogenic in rheumatoid arthritis models (195). 

2) Studies using low-dose TNF or TNFR2 agonist treatments have been shown to play a 

therapeutic role in specifically inducing autoreactive T cell death in certain autoimmune 

diseases such as type-1 diabetes (442). Alternatively, in the context for vaccine design 
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strategy, TNF blockade may in fact be beneficial in boosting the effector T cell response 

and possibly a better memory T cell response. On the basis of the diverse effects of TNF 

in immunity towards bacterial and viral infections and self-tolerance, this suggests that 

the role of TNF may differ depending on nature of the antigenic challenge and time.  

Therefore, caution should be taken while evaluating the efficacy of TNF blockade 

therapeutic strategies. Understanding the potential of inducing early apoptosis in 

alloreactive T cells exposed to inflammatory agents may have a practical implication in 

designing specific strategies that can induce multiple apoptotic pathways simultaneously 

in activated alloreactive T cells despite the presence of inflammation. 
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