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Abstract 
 

Injury to bone is one of the most prevalent and costly medical conditions. Clinical 

treatment of volumetric bone loss or hard-to-heal bony lesions often requires the use of 

proper bone grafting materials, with or without adjuvant anabolic therapeutics. Despite 

significant problems associated with autografting (donor site morbidity, limited supplies) 

and allografting (disease transmissions, high graft failure rates) procedures, synthetic 

bone grafts remain the least utilized clinically. Existing synthetic orthopaedic 

biomaterials rarely possess a combination of bone-like structural and biochemical 

properties required for robust osteointegration, scalable and user-friendly characteristics 

indispensable for successful clinical translations. This thesis tests the hypothesis that by 

recapitulating key structural elements and biochemical components of bone in 3- and 2-

dimensional biomaterials, scalable synthetic bone grafts can be designed to enable 

expedited healing of hard-to-heal volumetric bone loss. Specifically, FlexBone, a 3-

dimensional hydrogel scaffold encapsulating 50 wt% of structurally well integrated 

nanocrylstalline hydroxyapatite, the main inorganic component of bone, was developed. 

The large surface area of nanocrystalline hydroxyapatite combined with its intrinsic 

affinity to proteins and its excellent structural integration with the hydrogel matrix 

enabled FlexBone to both sequester endogenous protein signals upon press-fitting into an 

area of skeletal defect and to deliver exogenous protein therapeutics in a localized and 

sustained manner. We demonstrated that FlexBone enabled the functional healing of 

critical-size long bone defects in rats in 8 – 12 weeks with the addition of a very low dose 

of osteogenic growth factor BMP-2/7. This promising synthetic bone graft is now being 
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explored for the delivery of multiple growth factors to expedite the healing of diabetic 

bony lesions. In addition, a 2-dimensional electrospun cellulose fibrous mesh was 

chemically modified with sulfate residues to mimic sulfated polysaccharide ECM 

components of skeletal tissues to enabled progenitor cell attachment and differentiation 

as well as controlled retention and localized/sustained delivery of protein therapeutics. 

This sulfated fibrous mesh is currently explored as synthetic periosteum to augment the 

osteointegration of devitalized structural allografts. Finally, a rat subcutaneous 

implantation model developed to examine the biocompatibility of newly developed 

biodegradable shape memory polymer bone substitutes is also presented.  
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Chapter I:  Introduction  

This chapter has been adapted from the following published book chapter:  

Filion TM and Song J. Scalable Functional Bone Substitutes: Strategic Integration of Key 

Structural Elements of Bone in Synthetic Biomaterials, Biomedical Engineering - 

Frontiers and Challenges, Reza Fazel-Rezai (Ed.), ISBN: 978-953-307-309-5, InTech, 

2011. 
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1. Introduction 

  

Over 40% of the disabling medical conditions of persons aged 18 years and over are 

musculoskeletal related. This number is even higher within the older population.1 

Surgical treatment for age-, trauma- or cancer-induced critical-size bone loss is 

particularly challenging. Current grafting material options for scaffold-assisted surgical 

repair of critical-size bone loss include autogenic bone grafts (autografts), allogenic bone 

grafts (allografts), and synthetic bone substitutes. Still considered the gold standard, 

autografts, retrieved from patients’ own skeleton, are used in approximately 50% of all 

orthopedic bone grafting procedures. Complications arising from possible donor-site 

morbidity and insufficient grafting materials are major drawbacks of autografting 

procedures 2. In addition, this option is highly limited within the aging population as the 

elderly are less likely to be qualified for such a procedure due to higher incidences of 

osteoporosis and metabolic diseases. Allografts, obtained from another human donor or 

animal cadaver, represent a useful alternate to autografts, and are used in approximately 

40% of bone grafting surgeries. However, allografting procedures suffer from risks of 

rejection and disease transmission, as well as a significant structural failure rate  of ~15 – 

25% due to poor tissue integration, both structurally and biochemically.2-6 These 

limitations, along with the growing aging population, has led to an increasing need for 

viable synthetic bone substitute alternatives.7 Current clinically used synthetic bone grafts 

such as brittle ceramics and weak gel foams are used in only ~10% of all bone grafting 

procedures,2 primarily due to their unstable graft fixation and insufficient tissue-graft 
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interactions.4, 8-10 In the past two decades, many new synthetic bone grafts, designed to 

mimic key structural and biochemical properties of bone in order to enhance 

osteointegration and graft healing, have emerged in the literature. This rapidly evolving 

field has been extensively reviewed by others, including broad overviews of current 

requirements and techniques for preparing synthetic bone grafts,7, 11 calcium phosphate–

based bone substitutes,12 polymeric bone substitutes,13 and biomimetic nanocomposite 

orthopedic biomaterials.14, 15 This introduction chapter highlights the evolvement of non-

metallic orthopedic biomaterials from bioinert, biodegradable/bioresorbable, bioactive to 

tissue-responsive, and emphasizes the strategic integration of key structural elements of 

bone in the design of organic-inorganic composite bone substitutes with promising 

biomimetic and therapeutic properties. Within this dissertation, I illustrate the feasibility 

of accomplishing multifaceted functional requirements of viable synthetic bone 

substitutes by mimicking key extracellular components of bone. 

 

 

2. Brief overview of the evolvement of synthetic orthopedic biomaterials 

 

Most synthetic polymers traditionally used in orthopedic care, including poly(ethylene 

terephthalate) (PET) as implant coating, polyetheretherketone (PEEK) as spacers for 

cervical fusion, maxillofacial defect repair, and hip prostheses,16-18 poly(methyl 

methacrylate) (PMMA) as bone cements, ultra high molecular weight polyethylene 

(UHMWPE) as total joint replacement components, and polysulfone (PSU) as internal 
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fracture fixators12, 16, 19, 20 are considered bioinert. They are primarily designed to provide 

structural or mechanical support without eliciting significant immune responses. The 

primary drawback of bioinert implant materials is that they lack the intrinsic ability to 

promote osteogenesis, thus are unable to structurally or biologically integrate with the 

host tissue. To overcome such limitations, physical modification (e.g. increasing 

porosity) or blending bioinert materials with bioceramics or biodegradable polymeric 

components have been attempted.20-25 

 

Calcium phosphate–based bioceramics have long been used clinically as bioactive bone 

fillers.12, 26 They are known for good biocompatibility, osteoconductivity and easy 

surgical handling. However, these bone substitutes suffer from poor mechanical 

properties such as high brittleness and are often unsuitable for weight-bearing 

applications.12, 27 Their integration with the more compliant polymeric matrices, 

therefore, has been under intense investigation.28-31 

 

Biodegradable synthetic polymers have great potential as resorbable orthopedic implants 

and tissue scaffolds. The in situ generated porosity of degradable polymers, as a result of 

hydrolytic degradation, is thought to be beneficial to tissue penetration / osteointegration. 

In addition, the gradual resorption of biodegradable polymer-based orthopedic fixation 

devices, if timed to match with the tissue integration rate, could ensure adequate 

mechanical integrity at the site of implantation while potentially eliminating the need for 

a second surgery for implant retrieval. Among all degradable synthetic polymers, 
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poly(lactic acid) (PLA),32 poly(glycolic acid) (PGA), poly(lactic-co-plycolic acid) 

(PLGA),33-36 polyhydroxybutyrate (PHB),37 polycaprolactone (PCL),38 and their co-

polymer blends27 have been the most investigated.  

 

Blending biodegradable polyesters with weakly basic osteoconductive minerals such as 

tri-calcium phosphate (TCP) or hydroxyapatite (HA) have been widely pursued as a 

strategy for further enhancing scaffold osteoconductivity, drug retention capacity, and for 

neutralizing acidic degradation products and mitigating inflammatory tissue responses.19, 

27, 39, 40 Achieving adequate structural integration between the organic matrix and the 

inorganic minerals, however, remains one of most significant challenges for the clinical 

translation of these polymer-mineral nanocomposites for orthopedic care. Loosely 

integrated ceramic particles could not only lead to inferior mechanical properties of the 

composite, but also cause ectopic bone formation in nearby soft tissues. This is because 

most polyesters are hydrophobic in nature and exhibit an intrinsically low affinity to 

bioceramics. Recent development of high-affinity HA-surface mineralization strategies 

applicable to hydrophilic hydrogels such as poly(2-hydroxyethyl methacrylate) (pHEMA) 

and pHEMA-based copolymers,41-43  and identification of novel HA-binding/nucleating 

ligands, either small molecule-based44, 45 or peptide-based,46, 47 could help address this 

challenge.  

 

The past decade has witnessed an increasingly elaborate trend in the design of bioactive 

synthetic biomaterials.48 For bone tissue engineering applications, integrin-binding 
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peptide sequences for promoting cellular adhesion, phosphorylated ligands for promoting 

HA-mineralization, heparin-mimicking motifs for drug retention, and degradative 

enzyme substrate sequences have all been incorporated into multi-modality synthetic 

scaffold designs.49-53 Of particular novelty is the design of self-assembling peptide-

amphiphile (PA) gels by Stupp and coworkers for simultaneous presentation of cell 

adhesion peptide sequences, HA-mineral-nucleating sites, reversible crosslinking sites, 

and other therapeutic agents all within a single PA molecule that self-assembles and 

dissembles in response to environmental perturbations.50, 54-56 Likely limitations of these 

unique PA gels include their relatively high manufacturing cost and low mechanical 

modulus which could limit their use to treatment of small non-weight bearing skeletal 

lesions. Another innovative concept introduced by Hubbell and coworkers was to induce 

scaffold degradation by using peptide substrates of the degradative enzymes matrix 

metalloproteinases (MMPs) as the chemical crosslinker of a non-fouling crosslinked 

hydrogel system.52, 53 Given the elevated expression of some MMPs within both 

degenerative bony defects and arthritic knee joints, such a hydrogel system could be 

useful for bone and cartilage repair as the in situ increase of scaffold porosity in response 

to tissue microenvironment-specific enzymatic degradation could promote cellular 

infiltration and matrix deposition. The selection of MMP substrates with proper 

degradation kinetics matching with those of the matrix deposition rate, however, is not a 

trivial task.57   
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Despite the many exciting orthopedic biomaterials emerging in the literature, successful 

clinical translations are rare. The challenges lie in the difficulty in accomplishing the 

functional sophistication of viable synthetic bone substitutes (e.g. physical properties 

enabling easy surgical handling and stable graft fixation, structural and biomechanical 

properties facilitating its osteointegration, biocompatibility ensuring long-term safety) 

within an easy-to-fabricate biomaterial that can be reproducibly manufactured at low 

cost. Our laboratory, as well as some in the orthopedic biomaterials research community, 

believe that functional sophistication is not synonymous with complicated material 

designs.10, 48 Instead, we believe that the key to meeting this challenge lies in the strategic 

integration of key structural elements of bone, which play multifaceted roles in defining 

the unique properties of the native tissue, in a low-cost biocompatible synthetic 

biomaterial. 

 

 

3. Key structural elements of bone and their multifaceted functions   

 

From a material’s perspective, bone is an organic-inorganic composite comprising two 

major structural components that are hierarchically organized across various length 

scales: the calcium apatite crystals (primarily as substituted nanocrystalline 

hydroxyapatite, nHA, but also as crystalline precursors in lower quantities) and the type I 

collagen matrix 58. The quantity and quality of the hard calcium apatite crystals (crystal 

size, maturity and structural integration with the collagen matrices) influence the 
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mechanical properties of bone.59 For instance, the bending and compression strength of 

bone is known to positively correlate to bone mineral content.60 In addition, bone 

minerals also support bone cell attachment, serve as an important reservoir of calcium 

and phosphate ions, and help retain the secreted factors that are indispensable in 

regulating the biochemical microenvironment of the bony tissue. Thus, HA has long been 

recognized as an important design element for tissue-engineered bone substitutes.61 The 

intrinsic affinity of the dynamic apatite crystal surface for many acidic non-collagenous 

proteins widely found in calcified tissues62-64 have also inspired the use of bioceramic 

scaffolds65, 66 or polymer-bioceramics composite scaffolds67, 68 to retain and deliver 

recombinant proteins for therapeutic use. Overall, HA has been explored for bone tissue 

engineering applications more as a way to enhance the mechanical strength than as a tool 

to mediate the biochemical properties of the scaffold.10, 27 In general, the potential of the 

large surface areas provided by nHA as opposed to micrometer-sized HA for more 

efficient therapeutics delivery (e.g. higher retention capacity, more sustained release) has 

not been exploited to the fullest extent in the design of synthetic bone substitutes. 

 

Type I collagen matrix of bone serves as a compliant template for the structural 

integration of the calcium apatite crystals, and, along with the mineral component, is 

responsible for defining the 3-dimensional structure as well as the strong, tough, yet 

relatively compliant mechanical properties of bone.58, 69 In addition, it also interacts with 

many non-collagenous proteins and mediates cellular adhesion and functions.70 The Gly-

Pro-Hyp (Hyp: hydroxyproline) triplet repeats of type I collagen may also play an 
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important role in template-driven biomineralization. Recent discovery of novel HA-

binding oligopeptides using the combinatorial phage display technique reveals a [Pro-

(OH)-X] tripeptide pattern (OH: hydroxylated amino acid residues (Ser, Thr, Tyr); X: any 

amino acid) among the dominant HA-binding motifs.46, 47 Such a hydroxylated tripeptide 

pattern resembles that of the type I collagen, underscoring the importance of 

hydroxylated residues in directing ligand-mineral interactions on a molecular level. These 

oligopeptides were shown to template the nucleation and growth of HA in vitro46, 47 and 

may be useful in the design of synthetic polymer scaffolds, enabling template-driven 

mineralization of HA or the preparation of bulk organic-inorganic bone-like composites 

with improved interfacial binding affinity. We also showed earlier that polymeric 

hydrogels displaying hydroxylated (e.g. pHEMA) and acidic residues could be used to 

template the surface mineralization of HA with excellent interfacial adhesion strength,41-

43 further supporting the favorable interaction between the hydroxyls and the calcium 

ions. The strategy of modifying the surface of polymers or metallic substrates with 

hydroxylated or anionic coatings has also been pursued to facilitate the nucleation and 

growth of calcium apatite.71, 72 

 

 

4. Synthetic bone scaffolds for the delivery of therapeutic agents 

 

 A multitude of proteins are known to play roles in the biological healing of bone, 

including in cellular recruitment and initiating the inflammation / bone remodeling 



10 
 

 

cascades.73 Most scaffold-assisted bone repair would require the supplement of 

exogenous therapeutic agents such as osteogenic growth factors to augment the biological 

performance of biomaterial scaffolds. The therapeutic agents most commonly used 

clinically and in the literature to enhance bone repair are the Food and Drug 

Administration (FDA)-approved osteogenic growth factor bone morphogenetic protein -2 

(BMP-2) and BMP-7.74-76 In addition, vascular endothelial growth factor (VEGF),77-80 

receptor activator of nuclear factor kappa-Β ligand (RANKL)77 and transforming growth 

factor β (TGFβ)81, 82 are also used to modulate the graft vascularization, osteoinegration 

and remodeling. Another recombinant factor that has gained quick attention within the 

bone tissue engineering community is BMP-2/7, a protein heterodimer of BMP-2 and 

BMP-7 that is more potent in inducing osteogenic differentiation of pluripotent cells in 

vitro than either homodimer alone.83, 84 Its higher potency has been attributed to its 

decreased sensitivity to BMP inhibitors.85 In particular, BMP-2/7 was found to have 

decreased sensitivity to Noggin, a BMP antagonist that is secreted from mesenchymal 

cells in response to BMPs to help control the rate of cellular differentiation. Noggin binds 

BMP, inhibiting BMP cell surface receptor binding; however, Noggin’s binding affinity 

is lowered in the BMP-2/7 heterodimer. The high potency of BMP-2/7 has important 

clinical implications, including more cost-effective low-dose treatment with reduced 

systemic side-effects. A number of laboratories, including our own, have exploited the 

use of BMP-2/7 for augmenting scaffold-assisted repair of bone in vivo.67, 86, 87 
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Most existing biomaterials, however, are not designed for sufficient retention and/or 

controlled release of recombinant proteins, consequently requiring extremely high 

loading doses of these expensive agents.65, 88 The excessive growth factors “burst” 

released from these scaffolds could cause a variety of adverse systemic side-effects, 

including ectopic bone formation and potential risks for cancers. Conversely, if the 

scaffold retains growth factors too tightly, healing may not be expedited. Therefore 

appropriate release kinetics that enable sustained and localized release of the therapeutic 

agents,89 and ultimately lowers their critical loading doses67, 68, 90, 91 and cost is highly 

desired. 

 

Recent improvements in biomaterials’ therapeutic delivery characteristics for bone repair 

were accomplished by incorporating nHA in polymeric hydrogel matrices, an approach 

that our lab has pursued,91, 92 or by combining thin fibrous film-based physical barriers 

with 3-dimensional hydrogels90 to enable the retention and release of growth factors in a 

more localized and sustained manner. Physical entrapment of therapeutic agents within 

MMP-degradable poly(ethylene glycol) (PEG)-based hydrogels is another innovative 

approach that has been established for therapeutic delivery by Hubbell and coworkers.93 

Another, more established, method for therapeutic delivery is the use of electrostatic 

interactions in hydrogels. For example, gelatin hydrogels can be basic and positively 

charged, or acidic and negatively charged depending on how the gelatin is extracted from 

collagen, thus can be designed to interact with a wide range of charged therapeutics.94 

Furthermore, therapeutic release kinetics can be modulated by the extent of gelatin cross-
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linking, density, rate of degradation and scaffold porosity. Hyaluronic acid incorporation 

into hydrogels has also proven to be an affective method for not only therapeutic 

retention of proteins, such as BMP-2, but also for cellular adhesion, migration and 

proliferation, as well as binding to collagen and fibrin.95-97  Sulfates have also been 

exploited for therapeutic retention. Hydrogels that incorporate negatively charged heparin 

sulfate can easily interact with many positively charged proteins, such as vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF) and BMP-2.95, 98, 99 

Compared to the latter strategies, the incorporation of nHA has the added advantages of 

being able to retain and enrich endogenously secreted factors due to its intrinsic affinity 

to the factors residing in the bony tissue environment and its large surface area available 

for absorption. This is a key strategy that this dissertation will exploit. 

 

 

5. Complimentary synthetic scaffolds: 2-Dimensional vs. 3-Dimensional  

 

While biomaterials for bone repair can be enhanced by the addition of exogenous 

therapeutics, they can also benefit from exogenous cells (e.g. mesenchymal stem cells, 

hematopoietic cells, osteoblasts) pre-seeded on the biomaterial scaffolds.100 

Functionalization of biomaterials with integrin binding peptides such as RGD, and 

mimetics of extracellular matrix components, such as collagenous protein mimetics, have 

been used to improve cellular attachment of both endogenous cells and pre-seeded 

exogenous cells.93, 101 In addition, cellular fate (e.g. stem cell differentiation) is also 
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known to be profoundly impacted by the chemical, structural and mechanical properties 

of the biomaterials.102, 103 Overall, materials possessing the ability to support cellular 

encapsulation (e.g. 3-D constructs) or surface attachment (e.g. 2-D films or fiber meshes) 

and that favor specific stem cell differentiation pathways, in addition to the ability to act 

as a therapeutic delivery vehicle, are attractive for bone repair. 

 

Both 3-D and 2-D constructs have been explored towards this goal,104-106 although greater 

focus has been placed on engineering 3-D scaffolds. Among the 2-D platforms explored, 

a focus has been centered on supporting cellular attachment and differentiation (due to 

the relative ease of cell attachment on 2-D compared to 3-D scaffolds), as well as 

delivery of osteogenic factors in culture.38, 107-109 The unique handling characteristics of 

2-D scaffolds could enable versatile in vivo uses, including as a stand-alone graft 

overlying a fracture, a filler being press-fit into an area of small bony defect, or a 

synthetic membrane wrapped around a 3-D bone graft (Fig. 2.4). The combination of 2-D 

and 3-D constructs has recently been explored by Robert Guldberg and colleagues to 

achieve spatio-temporal control of growth factor release profiles,81, 110 and by others to 

create hierarchical composites.111 From a biomimetic perspective, 2-D scaffolds that can 

be wrapped around a 3-D bone scaffold, if engineered properly, can recapitulate some of 

the important functions of periosteal tissues surrounding long bone in harboring stem cell 

and directing their differentiation upon injury. This scenario, as depicted in Figure 1, 

offers a unique opportunity to create a spatial and kinetic hierarchy to deliver multiple 

therapeutics and/or support adhesion of different cell types at the interface of the 2-D and 
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3-D graft components. For example, BMP-2 is known to play a critical role in initiating 

early bone healing,112 while BMP-7 may be more suitably used for stimulating later 

stages of bone healing.113, 114 One could envision using a 3-D scaffold designed for 

slower release of BMP-7 in combination with a 2-D scaffold designed for faster release 

of BMP-2. Alternatively, different cell types could be seeded on each construct, such as 

seeding bone marrow-derived stem cells on the 2-D construct to more efficiently initiate 

graft healing while seeding hematopoietic stem cells on the 3-D construct to promote the 

vascularization of the graft for better tissue incorporation. In cases where the 3-D grafts 

(i.e. allografts) cannot readily support the seeding of exogenous cells, a cell-laden 2-D 

construct could be readily wrapped around the 3-D graft. 
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Figure 1.1. Cartoon depiction of complementary 3-D and 2-D grafts. 
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A common method for preparing a 2-D fibrous mesh scaffold with controlled fiber 

dimension, mesh thickness and porosity is by electrospinning. When the polymer fibers 

are properly chosen, they can be subjected to further chemical modifications to render 

specific biological properties and/or mechanically strengthened to improve their handling 

characteristics.115-117 This is another area that this dissertation will focus on. 

 

 

6. Overview of dissertation content 

 

The central theme of this dissertation is the development of scalable 2-D and 3-D 

scaffolds for facilitating the repair of critical-size bone defects.  

 

Chapter 2 will focus on FlexBone, a 3-D elastomeric composite bone substitute 

integrating hydroxylated biocompatible pHEMA hydrogel with 50 wt% of nHA. The 

design was inspired by the multifaceted roles of nHA in defining the unique structural, 

mechanical and biochemical properties of bone. Here we show that FlexBone can enable 

either functional repair of critical-size femoral defects in rats with the addition of a very 

low dose of rhBMP-2/7, and partial healing in the absence of exogenous therapeutics in 

8-12 weeks. 

 

Chapter 3 will focus on the development and characterization of a 2-D electrospun 

sulfated cellulose fibrous mesh for use as a delivery vehicle for growth factors and as a 
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platform for supporting the attachment and differentiation of bone marrow derived 

mesenchymal stem cells (MSC). The chemical design of this construct was inspired by 

sulfated polysaccharides which are known for their high affinity for many protein signals 

within the extracellular matrix environment of bone and cartilage tissues. We show that 

this mesh can support cellular attachment and differentiation of MSCs to osteogenic 

lineage, and can act as a suitable delivery vehicle for protein therapeutics. 

 

Chapter 4 will examine the biocompatibility of a biodegradable, thermal-responsive 

shape memory polymer (SMP) scaffold developed in our laboratory, for use in minimally 

invasive surgical applications. Using a rat subcutaneous implantation model, we 

established the in vivo degradation profile of this class of SMP as a function of the 

biodegradable polyester chain length, and demonstrated that these materials and their 

degradation products exhibited immunogenicity similar to those of polylactide 

(resorbable suture) controls. The methods used in this study can be extended for the 

characterization of the biocompatibility of other novel synthetic orthopaedic biomaterials. 

 

Chapter 5 will conclude the thesis with some ongoing work highlighting the future 

directions of applying FlexBone to the treatment of hard-to-heal diabetic bony defects 

and the 2-D sulfated fibrous mesh as synthetic periosteum to augment the healing of 

structural allografts or 3-D synthetic bone grafts.  
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Chapters 2, 3 and 4 are based on my first-authored publications resulting from my 

dissertation research. The appendix section will include a list of my other co-authored 

publications as well as a first-authored publication on a different topic, all accomplished 

during my graduate school career.  
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Chapter II: Elastomeric osteoconductive synthetic scaffolds with acquired 

osteoinductivity expedite functional repair of critical rat femoral defects 

This chapter has been adapted from the following published manuscripts:  

Song J, Xu J, Filion T, Saiz E, Tomsia AP, Lian JB, Stein GS, Ayers DC, Bertozzi CR. 

Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic 

applications. J Biomed Mater Res A., volume: 89A, Issue: 4, pages 1098-1107, 2009. 

 

Filion TM, Li X, Kreider JM, Goldstein SA, Ayers DC, Song J. A Synthetic Alternative 

to Structural Bone Allograft. Elastomeric osteoconductive synthetic scaffolds with 

acquired osteoinductivity expedite the repair of critical femoral defects in rats. Tissue 

Eng. Part A, volume: 17, issue: 3-4, pages 503-511, 2011. 
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Abstract 

Regenerative medicine aspires to reduce reliance on or overcome limitations 

associated with donor tissue-mediated repair. In orthopedic care, the prevalently 

used structural bone allografts are known for failures due to poor tissue integration. 

This problem is aggravated among elderly, those suffering from metabolic 

conditions, or those undergoing cancer therapies that compromise graft healing. 

Towards this end, we developed a synthetic graft named FlexBone where 

nanocrystalline hydroxyapatite (nHA, 50 wt%) was structurally integrated with 

crosslinked poly(hydroxyethyl methacrylate) hydrogel that provides dimensional 

stability and elasticity. It recapitulates the essential role of nHA in defining the 

osteoconductivity and biochemical microenvironment of bone due to its affinity for 

biomolecules. Here we demonstrate that FlexBone effectively absorbed 

endogenously secreted signaling molecules associated with the inflammation/graft 

healing cascade upon being press-fit into a 5-mm rat femoral segmental defect. 

Furthermore, when preabsorbed with a single dose of 400-ng rhBMP-2/7, it enabled 

the functional repair of the critical-sized defect by 8-12 weeks. FlexBone was stably 

encapsulated by the bridging bony callus while the FlexBone-callus interface was 

continuously remodeled. In summary, FlexBone combines the dimensional stability 

and osteoconductivity of structural bone allografts with desirable surgical 

compressibility and acquired osteoinductivity in an easy-to-fabricate and scalable 

synthetic biomaterial. 
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Introduction 

Synthetic scaffolds designed to assist tissue repair should exhibit useful surgical 

handling characteristics, biochemical microenvironment promoting proper cellular 

response and tissue integration, and structural/chemical properties ensuring long-term 

stability and safety. Existing clinical synthetic bone substitutes (e.g. brittle ceramics, 

weak polymer gel foams) rarely possess essential bone-like structural and biochemical 

properties. In addition, they often lack desirable physical properties facilitating 

convenient surgical insertion / stable graft fixation or generate 

immunogenic/inflammatory degradation products in vivo. In fact, in orthopedic care, no 

single synthetic scaffold can yet meet the multiple requirements to functionally 

replace/outperform structural bone allografts. There is a huge disconnect between the 

many proof-of-concept synthetic bone substitutes reported in literature and the translation 

of these materials into clinical practice.9 The over-reliance of existing scaffolding 

materials and the sub-optimum methods for delivering therapeutics fail to enable 

sufficient integration of these materials with host bone or generate new bone structure in 

vivo. On the other hand, the many exciting new biomaterial scaffolds emerged from 

academic labs often fail to address the high manufacturing cost associated with the 

complicated engineering design, which is a major hurdle in their bench-to-bedside 

translations. In contrast, FlexBone, with nHA structurally integrated within a crosslinked 

carbon network that is not hydraulically degradable, can withstand repetitive functional-

compressive loads with excellent shape recovery under physiological conditions.118 As a 

result of the high surface area of the nHA component and its intrinsic affinity for proteins 
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and small molecule therapeutics,63, 64 FlexBone is also a suitable vehicle for delivering 

growth factors and antibiotics in a sustained and localized manner in vitro (Fig. 2.2).68 

FlexBone is also scalable, and easy and inexpensive to prepare. In this study, we test the 

hypothesis that the elasticity, osteoconductivity, and dimensional stability exhibited by 

FlexBone, combined with its osteoinductivity acquired from preabsorbed  bone 

morphogenetic protein-2/7 heterodimer (rhBMP-2/7), makes it an effective scaffold in 

enabling the functional repair of critical femoral defects in rats.  

A 5-mm rat femoral segmental defect model119 was chosen to evaluate the 

efficacy of FlexBone in facilitating the repair of the critical defect due to its non-healing 

nature in the absence of proper intervention. In addition, the periosteum of the cortical 

bone adjacent to the femoral defect was circumferentially removed to emulate 

challenging clinical scenarios where this important source of progenitor cells and growth 

factors for bone regeneration is lost. FlexBone with a given mineral composition, 50wt% 

nHA (FB-50), or 25wt% nHA plus 25wt% tricalcium phosphate (TCP) (FB-25-25), with 

or without pre-absorbed rhBMP-2/7, was press-fit into the defect. BMP-2 and BMP-7 are 

both FDA-approved protein therapeutics for promoting skeletal repair.120 BMP-2 plays a 

critical role in initiating fracture healing,112 and is clinically used for tibial fractures and 

spinal fusions. BMP-7 may play a larger role in the later stages of bony repair,113, 114, 121 

and is routinely used for spinal fusions and non-unions. It has also been used in revision 

surgeries following inadequate repairs by BMP-2 treatment. Here we hypothesize that 

rhBMP-2/7 heterodimer could be more effective than either homodimer in augmenting 

the osteointegration and graft healing of FlexBone. The graft healing as a function of 
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mineral composition and growth factor treatment was monitored by radiography and 

histology for 12 weeks. Functional repair of the defect was assessed by end-point micro-

CT analyses and torsion tests. 

 

Methods 

Graft Preparation  

     FlexBone with two mineral compositions, 50wt% nHA (FB-50) or 25wt% nHA-

25wt% tricalcium phosphate (TCP) (FB-25-25), were prepared to examine the potential 

impact of the faster dissolution of TCP122 on graft remodeling. FB-50 and FB-25-25 were 

prepared as previously described,118 in rigid acrylic tubing of an inner diameter of 3.2 

mm (United States Plastic Corp.; tubes were washed with absolute ethanol to remove 

radical inhibitors, and air-dried prior to use). The retrieved cylindrical FlexBone was cut 

into segments ~ 5.5 mm in length, and drilled with 2 intersecting orthogonal drill holes (a 

longitudinal channel 1.19 mm in diameter and an orthogonal channel 0.79 mm in 

diameter as illustrated in Fig. 2.4A) to allow bone marrow access upon implantation. 

FlexBone was then thoroughly equilibrated in MilliQ water to remove residual radical 

initiators, unreacted monomers, ethylene glycol, and debris from the drilling. After being 

sterilized with 70% ethanol, FlexBone was dried for storage. Prior to surgical 

implantation, FlexBone was hydrated with saline for ~0.5 h (Fig. 2.3) before an 

additional 8-µL saline or reconstituted rhBMP-2/7 solution (R&D Systems) was 

uniformly applied to give a final loading dose of 0 or 400-ng rhBMP-2/7 per graft.  
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Rat bone marrow stromal cells (MSC) attachment and differentiation on FlexBone using 

a rat subcutaneous implantation model 

MSC were isolated from long bones of 4-week old male Charles River SD strain 

rats. Briefly, marrow was flushed from femur with a syringe. After lysing red blood cells 

with sterile water, the marrow cells were centrifuged and resuspended in minimum 

essential medium (MEM) supplemented with 20% FBS, 0.2% penicillin-streptomycin 

and 1% L-glutamine, and passed through a sterile metal filter. Cells were expanded on 

tissue culture plates (10 million cells per 100-mm plate initial seeding density) with 

media change on day 4 and every other day thereafter before they were lifted off for 

plating on FlexBone.  

Thin half discs (7 mm in diameter, 1 mm in thickness) of FlexBone containing 

40% nHA were sterilized in 70% ethanol, re-equilibrated with sterile water before being 

seeded with MSC and used for subcutaneous implantation in rats. Fifty microliters of 

MSC suspension (in culture media described above) was loaded on the surface of thin 

disks of FlexBone to reach 5,000-cells/cm2 or 20,000-cells/cm2 seeding density. The cell-

seeded FlexBone were incubated at 37 °C in humidified environment with 5% CO2 

without additional media for 6 h to allow cell attachment to the FlexBone substrate. 

Additional media were then added and the cells were cultured on the substrates for 2 days 

before being used for implantation. Four sets of samples were used for each cell seeding 

treatment. Thin discs of FlexBone without pre-seeded MSC were also used for 
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implantation as controls. Rats were anesthetized by intraperitoneal (IP) injection of 

ketamine / xylazine (50 mg / 5 mg per kg). They were shaved and swabbed with betadine 

before two 1/4” bilateral skin incisions were made over the rib cage for insertion of the 

FlexBone discs with and without preseeded MSC. The skin was closed with surgical 

staples and buprenorphine (0.02 mg/kg) was given subcutaneously. The rats were 

sacrificed by CO2 inhalation and cervical dislocation at day 14 and day 28 for the 

retrieval of FlexBone. After removing the fibrous tissue encapsulation, the retrieved 

FlexBone was fixed in 4% paraformaldehyde (0.1 M phosphate buffer, pH 7.4) for 5 h at 

4 ºC before being analyzed by SEM, XRD, and histology. 

 

Environmental Scanning electron microscopy (ESEM) 

The microstructures of the composites were characterized using environmental 

scanning electron microscopy (ESEM) on a Hitachi S-4300SEN microscope (Hitachi, 

Japan). The chamber pressure was kept ~35 Pa to avoid complete sample dehydration and 

surface charging during the observation.  

 

X-ray powder diffraction (XRD) 

The crystalline phases of the mineral in the FlexBone composites before and after 
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subcutaneous implantation in rats were evaluated by XRD with a Siemens D500 

instrument using Cu Kα radiation. Phases were identified by matching the diffraction 

peaks to the JCPDS files. 

 

In vitro characterization of the release of rhBMP-2/7 from FlexBone (FB-50) using the 

C2C12 osteogenic trans-differentiation culture model  

The ability of FB-50 to locally release pre-absorbed rhBMP-2/7 in a sustained 

manner was examined as previously described for FB-25-25.68 Briefly, mouse myoblast 

C2C12 cells were seeded at 5,000 cells/cm2 in a 24-well plate in expansion media 

(DMEM, 10% FBS, 1% Pen-Strep) and allowed to adhere overnight. The culture was 

then continued in low mitogen media (DMEM, 5% FBS, 1% Pen-Strep), with a 

cylindrical FB-50 graft pre-loaded with 40-ng rhBMP-2/7 (R&D Systems) added to each 

well (n=3 per experimental group). Positive control wells were supplemented with 40-

ng/well rhBMP-2/7 without a graft carrier. Cultures were continued for 3 or 4 days 

without media change, before the graft was removed and the cells were stained for ALP, 

a marker of osteogenic differentiation, using a leukocyte alkaline phosphatase kit (Sigma 

Aldrich). In a subset of experiments, grafts retrieved after 4-day culture were placed into 

fresh wells of C2C12 culture for 3.5 days to assess long-term sustained release of 

rhBMP-2/7 from the FlexBone grafts. As shown in Fig. 2.2, the release of rhBMP-2/7 

from FB-50 was achieved in a localized manner over 7 days, similar to that observed with 

FB-25-25.68 
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Water uptake of freeze-dried FlexBone over time and determination of the proper loading 

volume of rhBMP-2/7 solution per graft 

 To enable convenient surgical press-fitting of FlexBone graft (FB-25-25 or FB-

50) into the 5-mm rat femoral defect, freeze-dried grafts must be partially hydrated to 

render necessary elasticity while still leaving enough room for absorbing rhBMP-2/7 

solution prior to implantation. To determine the optimal hydration time and proper 

loading volume of rhBMP-2/7 solution to be applied to each graft prior to implantation, 

freeze-dried FB grafts were first hydrated in water over 3.5 days to determine their water 

uptake profiles over time (Fig. 2.3). Pre-weighed, freeze-dried grafts (FB-25-25 and FB-

50, dimension shown in Fig. 2.4A) were placed in deionized water and retrieved every 

half hour for weighing. The grafts placed in water for 3.5 days were considered to be 

fully hydrated. As shown in Fig. 2.3, each freeze-dried FlexBone graft could absorb >20-

µL water when fully hydrated (3.5 days in water), with half of this volume absorbed by 

the graft in the first 30-min exposure to water. We thus chose to hydrate freeze-dried 

FlexBone grafts for 0.5 h prior to the surgery, and the rhBMP-2/7 (400 ng) was loaded to 

the partially hydrated FlexBone in 8-µl loading volume immediately before the press-

fitting of the graft into the defect. 
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Femoral segmental defect model – study design and surgical procedure 

 A 5-mm rat femoral segmental defect model119 (Fig. 2.4B) was chosen to evaluate 

FlexBone-mediated skeletal repair as a function of mineral composition and osteogenic 

growth factor delivery.  Four groups of FlexBone grafts (FB-50 and FB-25-25, with or 

without 400-ng rhBMP-2/7) were press-fit in 5-mm rat femoral defects, and the 

osteointegration of the grafts were examined over time. A no-graft control group was 

used to ensure the non-healing nature of the 5-mm defect without graft treatment. The 

rats were euthanized at 4 days, 2, 4, 6, 8 and 12 weeks for histological examination. In a 

subset of 8- and 12-week rats, fresh frozen explanted femurs were evaluated by microCT 

and then tested to failure in torsion. A total of 140 defects were generated: 5 groups (4 

exp. groups + 1 no-graft control group)×[6 time points×3(N = 3, histology)+2 time 

points×5(N = 5, MicroCT & torsion test)] =140 defects. Four intact femurs were 

collected for torsion from healthy un-operated rats that were of the same age as the rats 

receiving the grafts for 12 weeks. 

  All animal procedures were approved by the University of Massachusetts Medical 

School Animal Care and Use Committee. Briefly, sedated male Charles River SASCO-

SD rats (289-300 g) were maintained by 2% isoflurane-oxygen throughout the surgery. 

The shaft of a femur was exposed by a combination of sharp and blunt dissections and the 

periosteum of the exposed femur was circumferentially removed to emulate a challenging 

clinical scenario where this important source of progenitor cells and signaling molecules 

is lost. A radiolucent PEEK internal plate fixator was secured to the exposed femur with 

4 bicortical screws into pre-drilled holes. A 5-mm mid-diaphyseal defect was then 
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created using an oscillating Hall saw with parallel blades (Fig. 2.4B). The defect site was 

thoroughly irrigated with saline to remove bone debris and residue detached periosteum 

before it was press-fit with a FlexBone graft with or without 400-ng rhBMP-2/7. The 

wounds were closed with sutures and the rats were given cefazolin (20 mg/kg) and 

bupenorphine (0.08 mg/kg) injections subcutaneously over the next 2 days. Rats were 

radiographed post-op to ensure proper graft positioning, and every 2 weeks thereafter to 

monitor the mineralized callus formation over time. On dates of scheduled explant 

retrieval, rats were sacrificed by isoflurane and cervical dislocation. The repaired femur, 

with the PEEK plate fixator intact, was carefully separated from the adjacent hip and 

knee joints by an oscillating saw. 

 

Histology and Microscopy  

       To evaluate cellularity, new bone formation, remodeling and vascularization of 

the FlexBone over time, histochemical and immunohistochemical staining of the explants 

for hematoxylin and eosin (H&E), osteogenic differentiation marker alkaline phosphatase 

(ALP), osteoclast lineage marker tartrate-resistant acid phosphatase (TRAP), and 

chondrocytes (by toluidine blue) were performed on 6-µm paraffin sections. All 

explanted femurs were fixed in a periodate-lysine-paraformaldehyde fixative123 at 4 °C 

for 2 days, and decalcified in 18% EDTA (0.1 M Tris, pH 7.0) at 4 °C for 4 weeks before 

they were bisected longitudinally for paraffin embedment and sectioning. Polarized light 
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microscopy was used to assess the orientation of collagen fibrils and thus the maturity of 

new bone formation.  

 

Quantification of bone remodeling activities at the FlexBone-callus interface as a 

function of time and growth factor treatment 

 The active bone remodeling which occurred at FlexBone-callus interface was 

quantified as the number of nuclei from TRAP positive cells (osteoclastic activity) and 

the number of nuclei from ALP positive cells (osteoblastic activity) detected along each 

millimeter of FlexBone-callus interface (within 100-µm thickness of the callus adjacent 

to the implant surface). Reporting of the number of nuclei of TRAP positive cells was 

chosen over the determination of the number of osteoclasts due to the difficulty in 

discerning the whole contour of the multinucleated cells as the sectioning often sliced 

through these cells. For each graft treatment at 2 and 6 weeks, 7-9 consecutive 200× 

fields of view (FOV) across the length of the external callus-FlexBone interface were 

examined with ALP/TRAP-stained and corresponding H&E stained tissue sections. 

Counts in all FOVs were averaged and reported as mean+/-standard deviation per 

0.1mm2 rather than summed as a whole to reflect the heterogeneity of bone remodeling 

activity along the graft-callus interface. 
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Detection for endogenous proteins absorbed on FlexBone 

     FB-50 grafts and un-mineralized pHEMA controls were press-fit into the 5-

mm critical-size rat femoral defects in a subset of experiment. The grafts were harvested 

and fixed at 0.5 hours, 1 day, 2 days, 4 days, and 1 week, during which the 

inflammatory/graft healing cascade was initiated. Antibodies for TGFβ (detects precursor 

and mature TGFβ1, 2 and 3 isoforms; Santa Cruz, Santa Cruz, CA), TNF-α (Novus 

Biologicals, Littleton, CO), IL-1β (Santa Cruz), VEGF (Santa Cruz), RANKL (Abcam, 

Cambridge, MA), BMP-2 (Novus Biologicals), BMP-7 (Abcam), and SDF-1 (Santa 

Cruz) were used to detect the endogenous proteins absorbed on FB-50 and pHEMA at 

each time point. Unimplanted FB-50 were stained for the same panels of antibodies and 

IgG isotype (rabbit or mouse IgG) control stains were performed on all FB-50 explants 

retrieved at various time points (Fig. 2.7). For the TGFβ detection, positive control stain 

was performed on a FB-50 graft loaded with 10-ng rhTGFβ1 (R&D systems), and 

negative control stain using the blocking peptide (Santa Cruz) along with the primary 

antibody was also carried out. The immunohistochemical detection was performed on 

paraffin embedded sections as described above. 
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MicroCT and Biomechanical Tests 

     Fresh frozen explants were scanned on a cone-beam eXplore Locus SP 

microCT system. The effective voxel size of the reconstructed images was 18×18×18 

µm3. Images were globally thresholded and analyzed to measure bone to callus volume 

and bone mineral content. Both ends of the same explants were then potted in aluminum 

pots with molten bismuth and mounted in a custom mini-torsion tester. PEEK fixators 

were carefully bisected using a high speed burr under irrigation before the explants were 

loaded to failure (0.5°/sec) to determine failure torque and energy to failure. 

 

Statistical analyses 

 The Wilcoxon-Mann-Whitney ranked-sum test was used to make all statistical 

comparisons and p-values < 0.05 were considered significant. All analyses were 

performed using STATA (version 9.0) software. 

 

Histological examination of vital organs retrieved 12 weeks post-op 

 To identify potential adverse systemic effect of the implanted FlexBone grafts on 

vital organs, heart, kidney, liver and lung tissues were retrieved from the sacrificed rats 

12 weeks post-op (with or without the implantation of FlexBone) and fixed in a 
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periodate-lysine-paraformaldehyde fixative123 at 4 °C for 2 days before they were 

paraffin-embedded, sectioned and stained for H&E. 

 

Results  

In vivo osteogenic differentiation of bone marrow stromal cells (MSC) supported by 

FlexBone  

To test the cytocompatibility and the in vivo resorption of FlexBone, we seeded 

hydrated composites with MSC isolated from rat femurs, and implanted them 

subcutaneously (SC) in 4-week old male Charles River SD strain rats. The composites 

were retrieved at 14 and 28 days, with a degree of fibrous tissue encapsulation observed 

in all cases. After removing the fibrous tissue, the morphology and mineral phase of the 

retrieved implant were examined by SEM and X-ray powder diffraction. Little 

macroscopic change in shape or size of the retrieved FlexBone was observed, reflecting 

the non-degradable nature of the hydrogel scaffold that defines the overall shape of the 

composite. However, surface roughening was observed with both 14- and 28-day 

explants regardless whether they were pre-seeded with MSC prior to implantation (Figs. 

2.1A & 2.1B). This is likely a combined outcome of slow dissolution of the mineral 

component and the extracellular matrix deposition from cells either pre-seeded on or 

newly attracted to the substrate in vivo. XRD analyses performed with the explanted 

composite (Fig. 2.1C) revealed a diffraction pattern matching with that of the nHA 

powder, suggesting that the major mineral phase remained unchanged 4 weeks after the 

SC implantation. To determine whether the composite can support the osteogenic 
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differentiation of MSC in vivo, the explanted composites with pre-seeded MSC were 

stained histochemically for alkaline phosphatase (ALP) activity, a marker for osteogenic 

differentiation.124 To avoid the harsh paraffin embedding conditions that may 

compromise ALP enzymatic activity,125 frozen sectioning was performed on the explants 

prior to ALP staining. As shown in Figure 4D, ALP activity (indicated by red stains) was 

detected 14 days post-implantation on the periphery of the FlexBone pre-seeded with 

5000-cells/cm2 MSC. More extensive ALP activity was also detected 28 days after the 

implantation on FlexBone pre-seeded with 20,000-cells/ cm2 BMSC. These data suggest 

that FlexBone was able to support the attachment and in vivo osteoblastic differentiation 

of osteoblast precursor cells. 
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Figure 2.1. In vivo resorption and osteogenic differentiation of bone marrow cells 

supported by FlexBone. (A) SEM micrograph of a composite (pre-seeded with 20,000-

cells/cm2 MSC) retrieved 28 days after SC implantation in rat; (B) SEM micrograph of a 

composite (without pre-seeded MSC) retrieved 14 days after SC implantation in rat; (C) 

XRD of the explanted sample shown in (A), with diffraction patterns matching with that 

of the nHA powder; (D) ALP staining (red) of a 12-μm frozen section of an explanted 

composite (pre-seeded with 5,000-cells/cm2 MSC) on day 14. Magnification: 400×. 
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Partial healing of femoral critical defects by FlexBone in the absence of exogenous 

growth factors. 

Elastomeric FlexBone grafts of either mineral composition, pre-drilled with 2 

intersecting orthogonal channels for marrow penetrations (Fig. 2.4A), were readily press-

fit into the 5-mm defects with excellent alignment to adjacent bones (Fig. 2.4B). 

Radiographic monitoring of the graft healing by X-ray (Fig. 2.4C) showed that the grafts 

remained stably positioned throughout the study, with calcified callus partially or 

completely bridging over the defect by 12 weeks.  
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Figure. 2.2. FB-50 released pre-absorbed rhBMP-2/7 (40-ng/graft) in a sustained and 

localized manner over a 7.5 day period, and induced osteogenic transdifferentiation of 

C2C12 cells. Localized ALP staining (red), next to where the FB-50 graft was placed, 

was observed 3 and 4 days after the FB-50 pre-absorbed with 40-ng rhBMP-2/7 was 

placed in culture. When FB-50 retrieved from the day 4 time point was placed in a fresh 

well of C2C12 cells, localized ALP staining was observed after 3.5 days, indicating 

sustained release of rhBMP-2/7 from FB-50 over 7.5 days. Positive control wells were 

supplemented with 40-ng/well rhBMP-2/7 without a graft carrier. 
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Figure 2.3. Volume of water uptake per freeze-dried graft over time. Error bars represent 

standard deviation of the mean (n=5).  
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Figure 2.4. Graft design (A), surgical procedure (B) and radiographic follow-ups (C). 

The femoral segmental defect was surgically created by (i) securing a radiolucent PEEK 

plate fixator to the exposed femur (the periosteum was circumferentially removed from 

the femur to which the PEEK plate was attached with bicortical screws); (ii, iii) 

generating 5-mm mid-diaphyseal defect under the plate fixator with an oscillating Hall 

saw with parallel blades; and (iv) press-fitting a 5.5-mm long FlexBone (with or without 

400-ng BMP-2/7) into the defect. Radiographic follow-ups confirmed the alignment and 

stability of the press-fit graft and the formation of a healing callus over 12 weeks. FB-50, 

FlexBone with 50wt% nanocrystalline hydroxyapatite; FB-25-25, FlexBone with 25wt% 

nanocrystalline hydroxyapatite plus 25wt% tricalcium phosphate; BMP-2/7, bone 

morphogenetic protein-2/7 heterodimer. 
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Histological analyses and polarized light microscopy (Fig. 2.5) revealed that the 

osteoconductivity of FlexBone facilitated healing in the absence of exogenous osteogenic 

growth factors. Bone marrow penetration throughout the orthogonal drill holes of the 

graft (FB-50), the emergence of an external callus, and the formation of an 

internal/medullary callus (within the graft drill hole and adjacent medullary cavity, Fig. 

2.5A) was evident at 4 days post-op (Fig. 2.5B). By 2 weeks, the external callus bridging 

over the defect was partially mineralized, with ossification extending from the graft-

cortical bone interfaces towards the center of the callus. Cartilage, stained purple by 

toluidine blue (Fig. 2.6), was prominently present at the mineralizing ends of the external 

callus, underscoring the endochondral ossification mechanism. Fig. 2.6 shows that the 

purple-staining cartilage was detected within the external callus of the FB-50 explants at 

2-week (with and without rhBMP-2/7) and 6-week (without rhBMP-2/7) post-op, 

supporting endochondral ossification of the external callus. The purple-staining 

chondrocytes, however, were not detected within the internal callus at the time points 

examined (2-, 6- and 12-week post-op). Similar results were observed with the FB-25-25 

explants. By 6 weeks, both the external and internal calluses were significantly 

remodeled and matured as evidenced by the recanalization126 and the formation of 

oriented collagen fibrils revealed by polarized microscopy.127 Although even greater 

orientation of collagen fibrils within the external callus was observed beyond 6 weeks, 

bridging of the defect by fully mineralized callus was not achieved by 12 weeks without 

rhBMP-2/7. 
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Figure 2.5. Cartoon depiction (A), histological analyses (B) of the callus formation 

surrounding a femoral segmental defect fit with FB-50 without recombinant human (rh) 

BMP-2/7, and immunohistological detection (C) of endogenous proteins absorbed on FB-

50. Longitudinal sections of the explants obtained at various time points were stained for 

H&E, ALP (blue), and TRAP (red) to assess the cellularity and tissue types and to 

monitor osteoblastic and osteoclastic activities within the healing callus. Polarized light 

microscopy was used to assess collagen fibril orientation within the callus. Panel C 

selectively shows the absorption of endogenous TGFβ (Fig. 2.7 for a panel of additional 

proteins) on FB-50 within 1 week of implantation in rat femoral defects. Negative control 

stains of the 2-day FB-50 explant using TGFβ blocking peptide and rabbit IgG isotype 

control, respectively, are selectively shown. Endogenous TGFβ detected on pHEMA 

retrieved on day 2 is representatively shown (see Fig. 2.7 for other time points). Scale 

bars = 200 µm. H&E, hematoxylin and eosin; ALP, alkaline phosphatase; TRAP, tartrate-

resistant acid phosphatase; TGFβ, transforming growth factor β; pHEMA, poly(2-

hydoxyethyl methacrylate). 
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Figure 2.6. Cartoon depiction (A) and histological analyses (B) of the endochondral-

mediated callus formation surrounding a femoral segmental defect fitted with FB-50 with 

or without rhBMP-2/7. Scale bars = 200 µm.  
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Remodeling activity (indicated by positive ALP and TRAP stains) was detected 

within internal, external, and medullary calluses throughout the 12-week study. A line of 

osteoclastic activity (red TRAP stain) was typically observed at the FlexBone-callus 

interface followed by a distinct line of osteoblastic activity (blue ALP stain), suggesting 

coordinated remodeling and osteointegration of FlexBone. Quantification of the numbers 

of TRAP positive cell nuclei and ALP positive cell nuclei at the graft-callus interface 

over time (Table 2.1) revealed persisting active graft remodeling activities by 6 weeks as 

evidenced by the increased osteoclastic activities compared to those detected at 2 weeks. 

Intense TRAP and ALP stains were still detected at the FlexBone-callus interface at 12 

weeks, suggesting that the graft remodeling would continue over an extended period of 

time. Histological analysis of the FB-25-25 graft healing over time revealed similar 

observations.  
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Table 2.1. Quantification of TRAP positive nuclei (osteoclastic activity) and ALP 

positive nuclei (osteoblastic activity) detected at each millimeter of the FlexBone-callus 

interface as a function of time and growth factor treatments. n = 7-9; values are expressed 

as means +/- standard deviation. 
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In a subset of experiments (Fig. 2.7), we showed that FlexBone effectively 

absorbed a number of endogenously secreted factors (TGFβ, IL-1β, TNF-α, VEGF, 

RANKL, BMP-2, BMP-7 and SDF-1) associated with the initiation of the 

inflammation73, 128 /graft healing cascade129 and the recruitment of progenitor cells.77, 130 

Whereas the majority of these factors were initially (0.5 h after implantation) detected on 

the surface of the graft where progenitor cells were recruited to, the secreted molecules 

quickly penetrated throughout the 3-dimensional network and were effectively retained 

by the nHA component (Fig. 2C). By contrast, the un-mineralized pHEMA controls were 

not able to attract and retain these endogenously secreted molecules within its 3-

dimensional network. Unimplanted FB-50 stained for the same panel of antibodies, as 

well as IgG isotype control (rabbit or mouse IgG) stains performed on all FB-50 explants 

retrieved at various time points, revealed minimal staining (Fig. 2.7C). 

 

 

 

 

 

 

 

 

 



47 
 

 

Figure 2.7. Immunohistological detection for endogenous proteins absorbed on FB-50 

(A) or pHEMA control (B) retrieved at 0.5 hours, 1, 2, and 4 days, and 1 week after being 

press-fit into 5-mm femoral segmental defects in rats. For pHEMA control, only stains 

for TGFβ were representatively shown. IgG isotype control (rabbit and mice) stains of 

FB-50 retrieved at 2 days are shown in (C). Scale bars = 200 µm.  
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Expedited healing of femoral critical defects by FlexBone in the presence of rhBMP-2/7. 

 Acceleration of the graft healing by delivery of rhBMP-2/7 using FlexBone was 

examined with each mineral composition. The capacity of FlexBone to locally deliver 

exogenous rhBMP-2/7 enhanced the graft osteoinductivity and led to expedited repair of 

the critical-size femoral defects by 8 weeks (Fig. 2.8). When press-fit with FlexBone 

(FB-50) containing 400-ng rhBMP-2/7, the defect was completely bridged by maturing 

and recanalizing internal and external bony calluses at 6 weeks. By 8 weeks, the collagen 

fibrils in the healing calluses exhibited excellent alignment with little change observed 

beyond that point. FB-25-25 supplemented with 400-ng rhBMP-2/7 enabled the 

formation of bridging bony calluses in a similar fashion. The accelerated active graft 

remodeling in the presence of rhBMP-2/7 was evidenced by >50% higher counts of 

TRAP-positive cell nuclei at 2 weeks post-op, and a more rapid drop of the number by 6 

weeks as compared to those observed for the group without BMP-2/7 treatment (Table 

2.1).  
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Figure 2.8. Histological analyses of the callus formation surrounding a femoral 

segmental defect fit with FB-50 with recombinant human (rh) BMP-2/7 (400 ng). 

Longitudinal sections of the explants obtained at various time points were stained for 

H&E, ALP (blue), and TRAP (red) to assess the cellularity and tissue types and to 

monitor osteoblastic and osteoclastic activities within the healing callus. Polarized light 

microscopy was used to assess collagen fibril orientation within the callus. Scale bars = 

200 µm. 
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Quantitative assessment of the repair of femoral critical defects by FlexBone as a 

function of mineral composition and rhBMP-2/7 treatment. 

Quantitative assessment of the healing callus formation by microCT (Fig. 2.9A) 

and torsion testing (Fig. 2.9B) indicated successful functional repair of the critical-sized 

femoral defects by 12 weeks using FlexBone augmented with 400-ng rhBMP-2/7. Three-

dimensional reconstruction of the microCT scans revealed robust mineralized external 

callus completely bridging over the FlexBone-filled defects when supplemented with 

rhBMP-2/7. Two-dimensional color maps of the center cross-sections confirmed that the 

mid-point of these grafts was fully encapsulated with mature and recanalized external and 

internal mineralized calluses. By contrast, defects filled by FlexBone of either mineral 

composition without rhBMP-2/7 treatment were only partially bridged by mineralized 

calluses. With the treatment of a single dose of 400-ng BMP-2/7, bone volume fractions 

and bone mineral contents of the 12-week explants increased by >100%. From 8 weeks 

post-op to 12 weeks post-op, defects treated with FB-50 and rhBMP-2/7 showed little 

increase in bone mineral content (Fig. 2.10B) but a 20% increase in bone volume fraction 

(Fig. 2.10A), suggesting continued remodeling of the bony callus beyond 8 weeks.  
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Figure 2.9. Microcomputed tomography analyses (A) and torsion tests (B) of 12-week 

explants as a function of graft mineral composition and BMP-2/7 treatment. Effective 

voxel size of 18x18x18 µm3 was applied to the reconstructed three-dimensional 

isosurface images and the two-dimensional color maps of the center slice of the explants 

(red representing a higher degree of mineralization). Graphed data are presented as 

boxplots, where red dots indicate median values and blue dots represent sample outliers. 

Note that FB explants without BMP-2/7 treatment did not fail during the torsion test 

(likely due to the lack of a fully bridging stiff bony callus and the elasticity of underlying 

FlexBone). Explants were loaded to failure at a rate of 0.5°/s. #The values reported 

represent the torque and energy at which the testing was stopped. *p<0.05 is considered 

significant.  
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Figure 2.10. Micro-CT analyses and torsion tests of 8- and 12-week explants press-fit 

with FB-50 grafts supplemented with 400-ng BMP-2/7. (A) Bone volume fraction over 

time; (B) bone mineral content over time; (C) failure torque over time; (D) failure energy 

over time. Explants were loaded to failure at a rate of 0.5°/s. Graphed data are presented 

as boxplots, where red dots indicate median values and blue dots represent sample 

outliers. P < 0.05 is considered significant. 8- and 12- week explants were harvested for 

microCT analysis at n = 4 and n = 6, respectively, and torsion testing at n = 3 and n = 6, 

respectively. 
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The remarkable healing achieved by a combination of osteogenesis and 

osteoconduction in the growth factor-treated group translated into the restoration of 

torsional strength of the femoral defects. The maximum torque and energy to failure 

values of the explants in the rhBMP-2/7-treated group approximate those of intact femurs 

(Fig. 2.9B)131 or the femoral defects repaired by gene therapy,129, 132 and surpass those 

accomplished by allograft-mediated repair.133 Despite an upward trend over time, the 

observed difference in failure torque or failure energy between the 8- and 12-week 

explants was statistically insignificant (Figs. 2.10C & 2.10D), suggesting that the bony 

callus formed at 8 weeks already possessed adequate strength.  

 

Discussion  

We have shown that FlexBone, a structural composite of nHA and hydrophilic 

pHEMA hydrogel matrix, possessed unique properties desired for the repair of critical-

sized femoral defects. The compressibility of FlexBone allowed for its convenient and 

stable press-fitting into a critical-sized femoral defect, and its pre-drilled interconnected 

channels facilitated bone marrow penetration and enabled the stabilization of the defect 

via the formation of both internal and external calluses. Effective recruitment of bone 

marrow progenitor cells via the drill holes and the affinity of the nHA component for 

endogenously secreted signals required for initiating the inflammation/graft healing 

cascade are likely contributors to the partial repair enabled by FlexBone in the absence of 

any exogenous osteogenic factors. 
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Further, we demonstrate that the local delivery of low-dose rhBMP-2/7 via 

FlexBone (400-ng/graft) enabled expedited functional repair of the critical defect by 8-12 

weeks via its acquired osteoinductivity. The biomechanical function of the defect was 

restored to the level comparable to those achieved by successful gene therapy, but 

without the common risks associated with the latter.129, 132 This was likely achieved due 

to the robust host-to-host junction of the bridging bony callus and the increase in cross 

sectional area (callus volume) and the degree of mineralization of the new bone collar. 

The low rhBMP-2/7 working dose accomplished in this study is 1-2 orders of magnitude 

lower than those utilized in rhBMP-2 therapy in treating similar defects,65, 88 likely 

resulting from a combination of higher potency of the heterodimer and the ability of 

FlexBone to release it in a more sustained and localized manner.68 This feature could be 

translated into FlexBone-mediated delivery of protein therapeutics in a more cost-

effective and safer fashion (e.g. with less proteins rapidly diffused away from the carrier), 

potentially benefiting the clinical treatment of hard-to-heal bony lesions. 

No significant difference in the functional outcome (based on microCT and 

torsion data) of FlexBone-assisted repair of critical femoral defects was observed 

between the two mineral compositions examined (FB-50 vs. FB25-25). Thus, the choice 

for mineral composition will likely be dictated by the desired physical properties of the 

scaffold for any given application. For instance, FB25-25 has higher compressability than 

FB-50 under physiological conditions, achieving 25% strain (as opposed to 10% for FB-

5068) under 0.5 MPa compressive load,118 making it easier to be press-fit into a defect 
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with limited accessibility. The stiffer properties of the FB50, on the other hand, could 

enable the graft more tightly fit within an open defect.  

The dimensional stability and biocompatibility of FlexBone, along with the 

persistent remodeling observed at the graft-callus interface, resemble some of the best 

features of structural allografts.134 Patients receiving a successful structural allograft 

implantation would often live with the allograft for life, with the graft being slowly 

remodeled over time generating little inflammatory degradation product. Unlike the 

overwhelming numbers of biodegradable polymeric bone substitutes designed for tissue 

engineering applications,135 the crosslinked pHEMA hydrogel network in FlexBone is not 

hydrolytically degradable by design. Vital organs collected from the rats receiving 

FlexBone implants for 12 weeks were pathologically indistinguishable from age-matched 

control organs harvested from un-operated rats (Fig. 2.11). We argue that 

biodegradability is not a functional requirement of viable synthetic bone grafts. To 

further explore the clinical potential of FlexBone, however, in vivo studies using large 

animal models and full toxicological analyses to determine the longer term remodeling 

pattern and safety (longer-term systemic effects) of FlexBone need to be carried out. 
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Figure 2.11. H&E staining of the vital organs collected from a rat 12 weeks after 

receiving femoral FB-50 implantation (A) vs. that of the control organs collected from an 

un-operated rat (B). Scale bars = 200 µm. 
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In summary, FlexBone combines some of the best features of structural allografts 

(osteoconductivity and dimensional stability)4, 135, 136 with desirable surgical 

compressibility and scalability of synthetic biomaterials. The ability of FlexBone to 

locally deliver biological therapeutics in a significantly reduced effective dose to enable 

expedited functional repair of the critical defect opens the door to engineer the 

biochemical properties of the graft77 based on individual needs. More broadly, our work 

supports the notion that functional sophistication of synthetic tissue grafts is not 

synonymous with complicated chemical/engineering designs.9 We show that by 

recapitulating the multifaceted roles that key extracellular matrix components play in 

defining tissue-specific microenvironment, easy-to-prepare biomaterials can be designed 

to facilitate functional tissue repair.  
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Chapter III: Chemically modified cellulose fibrous meshes for use as tissue 

engineering scaffolds 

This chapter has been adapted from the following published manuscript:  

Filion TM, Kutikov A, Song J. Chemically modified cellulose fibrous meshes for use as 

tissue engineering scaffolds. Bioorg Med Chem Lett., volume: 21, issue: 17, pages 5067-

70, 2011. 
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Abstract 

 

Cellulose and sulfated cellulose fibrous meshes exhibiting robust structural and 

mechanical integrity in water were fabricated using a combination of 

electrospinning, thermal-mechanical annealing and chemical modifications.  The 

sulfated fibrous mesh exhibited higher retention capacity for human recombinant 

bone morphogenetic protein-2 than the cellulose mesh, and the retained proteins 

remained biologically active for at least 7 days. The sulfated fibrous mesh also more 

readily supported the attachment and osteogenic differentiation of rat bone marrow 

stromal cells in the absence of osteogenic growth factors. These properties combined 

make the sulfated cellulose fibrous mesh a promising bone tissue engineering 

scaffold. 
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Electrospinning is a robust technique for fabricating polymer fibrous meshes 

mimicking the extracellular matrices (ECM) of natural tissues.117 By adjusting the 

viscosity and surface tension of the polymer solution as well as the voltage, speed and 

duration of the electrospinning process, polymer fibrous meshes of varied fiber 

dimensions and mesh thicknesses and porosities could be obtained.137, 138 For in vivo 

tissue engineering applications, however, these fibrous meshes should also be engineered 

with proper biochemical microenvironment (e.g. via the retention of tissue-specific 

biological cues) to help support cellular attachment, direct stem cell differentiation, and 

guide tissue integration.  

Covalent modification of synthetic scaffolds with growth factors was previously 

attempted for expediting bone tissue repair.139, 140 This approach, however, risks 

compromising the bioactivity of the proteins due to substantial structural perturbation.141, 

142 By contrast, strategies for retaining protein therapeutics through non-covalent 

electrostatic interactions are more biomimetic in nature. For instance, sulfated 

polysaccharides are known for their high affinity for many endogenous proteins within 

the ECM environment such as various isoforms of bone morphogenetic proteins 

(BMPs),143-146 presumably through favorable electrostatic interactions between the sulfate 

residues and the basic amino acid residues of the proteins. Such biopolymers are ideal 

candidates for the fabrication of synthetic tissue scaffolds. Indeed, chondroitin sulfate, an 

important sulfated structural component of cartilage tissue, has been shown to enhance 

bone remodeling of musculoskeletal defects when used in combination with other bone 

grafting materials.147 The application of electrospun chondroitin sulfate fibrous meshes to 
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augment the performance of 3-dimensional tissue engineered constructs, however, has 

proven challenging due to their exceptionally high solubility in water. In our hands, 

methacrylating chondroitin sulfate with glycidyl methacrylate 138 prior to electrospinning, 

followed by covalent crosslinking of the electrospun meshes, failed to improve the 

stability of the mesh in water.  

Here we report a practical method for preparing water-stable sulfated polysaccharide 

fibrous meshes from readily accessible electrospun cellulose acetate. The electrospun 

meshes are thermal-mechanically annealed to sustain sequential chemical modifications 

(Fig. 3.1A) and to exhibit adequate tensile modulus for use as a flexible 2-dimensional 

tissue engineering scaffold (e.g. to be wrapped around 3-dimensional tissue grafts or 

embedded within a tissue defect). The ability of the sulfated fibrous meshes to retain 

human recombinant bone morphogenetic protein-2 (rhBMP-2) and to support the in vitro 

attachment and osteogenic differentiation of bone marrow stromal cells (MSCs) for 

potential bone tissue engineering applications are examined and compared with those of 

the uncharged cellulose meshes.  

Cellulose is chosen as the candidate for sequential chemical modifications because it is 

an affordable natural polysaccharide known for its abundance, aqueous stability, 

cytocompatibility, and  chemical functionalizability.148, 149 Cellulose itself, however, is 

not soluble in most organic solvents, thus unsuitable for electrospinning. Thus, we first 

electrospun cellulose acetate (CA) fibrous mesh by ejecting tetrafluoroethylene solution 

of CA (150 g/L) at a rate of 2.4 mL/h under 15 kV with a distance of 10 cm between the 

ejection tip and the collection plate. After 4 h of electrospinning, CA fibrous meshes 400-
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650 µm in thickness and with fiber diameters ranging from several hundred nanometers 

to a few micrometers were obtained (Fig. 3.1B).  
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Figure 3.1. Chemical modification and characterization of modified cellulose acetate 

mesh. A) Synthetic scheme for chemical modification of thermal-mechanically annealed 

CA mesh. i) NaOH (0.1 N, 1:4/ EtOH:H2O), rt, 12 h; ii) NaIO4 (5 mg/mL, PBS), rt, 10 h; 

iii) 2-aminoethyl sulfate (0.05 g/mL, PBS), NaBH3CN (2.5 mg/mL, PBS), pH 7.4, rt, 12 

h. All meshes were gently shaken on an orbital shaker during the chemical treatment and 

extensively washed in MilliQ water afterwards. B) SEM micrographs of as-spun, 

thermal-mechanically annealed, and chemically modified meshes. Scale bars = 40 µm. C) 

X-ray photoelectron spectroscopy scans of the RC and SC meshes. D) Optical 

micrographs of RC and SC meshes after being immersed in an aqueous solution of 

toluidine blue (4 wt%) for 1 min and thoroughly rinsed in MilliQ water. Scale bars = 500 

µm. 
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The as-spun CA meshes were cut into 2” by 2” square pieces and annealed on a Carver 

hydraulic hot press under 25.85-MPa compressive loading for 10 min at either room 

temperature or 90 °C, which was >20 °C above the glass transition temperature of CA 150 

and chosen to enhance the physical bonding of the CA fibers. The final thicknesses of the 

mechanically and thermal-mechanically annealed CA meshes were approximately 100 

µm and 60 µm, respectively. SEM micrographs (Fig. 3.1B) confirmed that whereas the 

fiber dimensions remained unchanged upon thermal-mechanical annealing, the annealed 

mesh exhibited denser packing between fibrous layers. The annealed CA mesh was then 

deacetylated in aqueous base (Fig. 3.1A) to yield regenerated cellulose (RC), which was 

further oxidized by sodium periodate to obtain the aldehyde reactive handles for coupling 

with 2-aminoethyl sulfate under reductive amination conditions to generate the sulfated 

cellulose (SC) mesh. The complete deacetylation of the CA mesh and the subsequent 

oxidation and reductive amination were monitored and verified by Fourier transform 

infrared spectroscopy (Fig. 3.2). X-ray photoelectron spectroscopy analysis performed on 

the SC mesh detected the S and N signals that were absent from the RC mesh (Fig. 3.1C). 

The sulfated mesh was also readily stained by positively charged toluidine blue dye, 

which is commonly used for the histochemical detection of sulfated glycosaminoglycans 

in cartilage. By contrast, only a minimal amount of toluidine blue was absorbed on the 

uncharged RC mesh. Overall, these findings support successful sequential chemical 

modifications. The average thickness of RC mesh obtained from the mechanical 

compressed CA mesh was 103±6 µm, and the average thicknesses of the RC and SC 

meshes obtained from the thermal-mechanically annealed CA mesh were 65±5 µm and 
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58±5 µm, respectively, supporting minimal thinning resulting from the chemical 

modifications. SEM micrographs (Fig. 3.1B) revealed some degree of narrowing of the 

fiber diameters upon chemical treatment, although the overall packing density between 

fibrous layers of the RC and SC meshes were comparable to that of the thermal-

mechanically annealed CA mesh.  
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Figure 3.2. Fourier transform infrared spectroscopy (FTIR) supporting sequential 

chemical modifications. FTIR characterization of the regenerated cellulose (RC) mesh 

supported the complete removal of the acetyl groups (green arrow) from the cellulose 

acetate (CA) mesh upon base hydrolysis. The oxidized cellulose (OC) mesh exhibited a 

characteristic FTIR absorption at 1700 cm-1 corresponding to the aldehyde functionality 

(red arrow). After reductive amination with 2-aminoethyl sulfate, the sulfated cellulose 

(SC) mesh exhibited signals corresponding to aminoethyl sulfate (blue arrow). 
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Tensile mechanical testing of the meshes in hydrated state (Fig. 3.3) show that thermal-

mechanical annealing is superior to mechanical compression alone for mesh processing. 

The RC mesh obtained from thermal-mechanically annealed CA exhibited significantly 

higher elastic modulus and ultimate tensile strength (~500% increases, p<0.05) than those 

obtained from the mechanically compressed mesh. Without prior thermal-mechanical 

annealing, the SC mesh obtained after multi-step chemical modifications was not robust 

enough to withstand tensile mechanical testing. By contrast, the SC mesh functionalized 

from thermal-mechanically annealed CA mesh maintained megapascal-elastic modulus 

and ultimate tensile modulus in water. The thermal-mechanically annealed RC and SC 

meshes also exhibited >5% ultimate tensile strains. Overall, these meshes exhibit 

promising mechanical integrity for flexible manipulations as tissue engineering scaffolds 

(e.g. wrapping around a 3-dimensional scaffold, press-fitting in an area of defect, or 

covering an open wound surface with minor stretching).   
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Figure 3.3. (A) Tensile elastic modulus, (B) ultimate tensile strength, and (C) ultimate 

tensile strain of hydrated RC and SC meshes as a function of annealing conditions. All 

testing was performed at rt on a Q800 dynamic mechanical analyzer (TA Instruments) 

equipped with a tensile submersion fixture filled with MilliQ water. Specimens (6-mm 

wide, 15-mm long, N=3) were preloaded with a tensile force of 0.01 N and ramped to 

failure at a rate of 0.1 N/min. Elastic modulus was calculated as the slope of the linear 

region of the stress-strain curve. Ultimate tensile strength and ultimate tensile strain were 

determined as the maximum stress and maximum strain at break, respectively. Error bars 

indicate standard deviation; * indicates P < 0.05 as determined by Student’s t-test. 
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To examine the ability of RC and SC fibrous meshes to retain/release protein 

therapeutics, the meshes were absorbed with a single dose of rhBMP-2 (R&D Systems, 

pI = 9.3, 27-ng/cm2) and incubated in PBS at 37 ºC for 7 days. The rhBMP-2 released 

from the meshes over time was quantified by an enzyme-linked immunosorbent assay 

(ELISA, R&D Systems). As shown in Figure 3.4A, both meshes released pre-absorbed 

rhBMP-2 in a sustained manner over 7 days. The SC mesh exhibited better retention of 

rhBMP-2 than the RC mesh, with >85% of the protein still retained on the sulfated mesh 

after 7 days. More importantly, the rhBMP-2 retained on both RC and SC meshes 

remained biologically active, as evidenced by their ability to induce the osteogenic trans-

differentiation of myoblast C2C12 cells in culture. In the absence of rhBMP-2, C2C12 

cells cultured on RC and SC meshes did not express osteogenic marker alkaline 

phosphatase (Fig. 3.4B, bottom). However, when they were seeded on the BMP-treated 

meshes retrieved after 7-day incubation in PBS, the expression of alkaline phosphatase 

(stained red) was detected on day 3 of the culture (Fig. 3.4B, top), supporting the 

osteoinductity141 of the recombinant protein retained on the meshes. 
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Figure 3.4. A) Retention/release profile of rhBMP-2 on/from SC vs. RC meshes. The 

mesh (N=3) was pre-absorbed with rhBMP-2 (27 ng/cm2) and air-dried before being 

incubated in PBS at 37 °C for 7 days. The protein released in PBS at a given time was 

quantified by ELISA. B) Bioactivity of the rhBMP-2 retained on the mesh after 7-day 

incubation in PBS as indicated by their ability to induce osteogenic trans-differentiation 

of myoblast C2C12 cells. C2C12 cells were seeded (10,000 cells/cm2) on either BMP-2 

treated meshes retrieved after 7-day incubation in PBS (top) or those without rhBMP-2 

treatment (bottom), and cultured in DMEM with 10% FBS without additional supplement 

of BMP-2. Alkaline phosphatase staining (red) was performed on day 3 of the culture. 

Scale bars = 200 µm. 
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Finally, to assess the suitability of these fibrous meshes for bone tissue engineering 

applications, the ability of RC and SC meshes to support the attachment and osteogenic 

differentiation of rat bone marrow stromal cells (MSCs) were examined in culture. MSCs 

have the ability to differentiate into multiple lineages of the mesenchyme including 

osteoblasts,151-153 and have been widely used for scaffold-assisted repair of bony defects. 

Total bone marrow was isolated from the long bone of an 8-week old male Charles River 

SASCO SD rat and the MSCs were established through adherent culture and expanded as 

previously described.118 Passage 1 MSCs were seeded on RC and SC meshes (25,000 

cells/cm2) with and without pre-absorbed rhBMP-2 (27-ng/cm2) and allowed to attach in 

expansion media (αMEM without ascorbic acid, 20% FBS). MTT cell viability assay 

(Fig. 3.5A) performed 48 h after the initial cell seeding showed that significantly more 

viable cells (>100% increase) were attached to the SC mesh than to the uncharged RC 

mesh, and that the absorption of rhBMP-2 on the meshes prior to cell seeding had little 

effect on the cellular attachment / early proliferation. To examine whether or not the 

intrinsic osteogenic differentiation potential of MSCs was retained upon being attached to 

the fibrous meshes for 2 days, the MSC-seeded RC and SC meshes (without prior 

rhBMP-2 absorption) were continually cultured in osteogenic differentiation media 

(αMEM with L-glutamine, 15% FBS, 10 nM dexamethasone, 20 mM β-glycerol 

phosphate, 50 µM 1-ascorbic acid 2-phosphate) for 3 weeks, with the osteogenic media 

changed every 2 to 3 days. Alizarin red staining was performed on day 21 for the 

detection of mineralized matrix deposition resulting from osteogenic differentiation of 

MSCs.  As shown in Figure 3.5B, both RC and SC meshes were able to support the 
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osteogenic differentiation of MSCs, with the MSCs cultured on the SC mesh stained 

more intensely for alizarin red than the RC mesh. Minimal alizarin red staining was 

detected from the MSCs cultured on RC or SC meshes in expansion media. And as 

expected, the meshes without seeded cells exhibited negligible non-specific absorption of 

the negatively charged alizarin red dye. The ability of the SC fibrous mesh to more 

readily support the attachment and osteogenic differentiation of MSCs than the 

uncharged RC mesh suggests a potential role of the charged sulfate residue in affecting 

the cellular fate of MSCs in vitro and in vivo. How such a chemical modification affects 

the multi-potency of MSCs, particularly osteogenesis, chondrogenesis and adipogenesis, 

in a temporally defined manner is the subject of on-going investigations.  
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Figure 3.5. A) MTT cell viability assay performed 48 h after seeding rat MSCs on the 

RC and SC meshes with and without pre-absorbed rhBMP-2 in expansion media. B) 

Alizarin red staining of the MSCs cultured on RC and SC meshes in osteogenic 

differentiation media for 21 days (top) or in expansion media for 2 days (middle). Control 

meshes without cells were also stained (bottom). Scale bars = 200 µm. All meshes were 

equilibrated in PBS for 1 h prior to cell seeding. Seeding density for all experiments was 

25,000 cells/cm2. * p ≤ 0.01 (student t-test) 
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In summary, using a combination of electrospinning, thermal-mechanical annealing, 

and sequential chemical modifications, water-stable sulfated cellulose fibrous mesh 

exhibiting good tensile mechanical strength was fabricated. The sulfated fibrous mesh 

exhibited better retention capacities for osteogenic growth factor rhBMP-2, and more 

readily supported the attachment and osteogenic differentiation of MSCs than the 

uncharged cellulose fibrous mesh. These fibrous meshes have great potential for bone 

tissue engineering applications. 
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Chapter IV: In vivo tissue responses to thermal-responsive shape memory polymer 

nanocomposites. 

This chapter has been adapted from the following published manuscript:  

Filion TM,  XU J, Prasad ML and Song J. In vivo tissue responses to thermal-responsive 

shape memory polymer nanocomposites. Biomaterials, volume: 32, issue: 4, pages 985-

991, 2011. 
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Abstract 

 To explore the safe use of thermal responsive shape memory polymers 

(SMPs) as minimally invasive “smart” tissue scaffolds, we recently developed a class 

of biodegradable POSS-SMP nanocomposites exhibiting stable temporary shape 

fixing and facile shape recovery within a narrow window of physiological 

temperature. The materials were covalently crosslinked from star-branched 

building blocks consisting a bioinert polyhedral oligomeric silsesquioxane (POSS) 

core and 8 degradable poly(D,L-lactide) (PLA) arms. Here we examine the 

degradation profiles and immunogenicity of POSS-SMPs as a function of the PLA 

chain lengths using a rat subcutaneous implantation model. We showed that POSS-

SMPs elicited a mild foreign body type immune response upon implantation. The 

degradation rates of POSS-SMPs, both in vitro and in vivo, inversely correlated with 

the length of the PLA chains within the crosslinked amorphous network. Upon 

degradation, a second acute inflammatory response was elicited locally, and the 

inflammation was resolved over time without medical interventions. One year after 

the implantation of POSS-SMPs, no pathologic abnormities were detected from the 

vital / scavenger organs examined. These minimally immunogenic and 

biodegradable SMPs are promising candidates for scaffold-assisted tissue repair 

where both facile surgical delivery and controlled degradation are desired for 

improved clinical outcome.  
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1. Introduction 

  Thermal-responsive shape memory polymer (SMP) can be imparted with a 

permanent shape above a critical transition temperature (Ttrans) when it is cast. Such a 

permanent shape, formed at the material’s elastic state without external stress, can be 

retained or “memorized” as the material cools to a temperature below its Ttrans. The 

material can be subsequently deformed into any desired temporary shape by force at 

T>Ttrans, and be fixed as it cools down to T<Ttrans. When a thermal stimulus (T>Ttrans) is 

re-applied, the SMP can revert to its less strained permanent shape. These unique 

properties are attractive for tissue engineering applications as the SMP  may be delivered 

in a minimally invasive temporary shape to an area of tissue defect, and subsequently 

revert to a permanent shape that precisely conforms to the defect upon thermal 

triggering.154, 155 For safe clinical applications, a combination of stable temporary shape 

fixation at body temperature, a rapid and complete shape recovery at a Ttrans slightly 

above physiological temperature, and suitable mechanical and biological properties of the 

SMP will be ideal. 

Towards this end, we recently developed an amorphous SMP network cross-

linked from a star-branched macromer (Fig. 4.1A) containing polyhedral oligomeric 

silsesquioxane (POSS) nanoparticle core and eight poly(DL-lactide) (PLA) arms.156 The 

rigid POSS nanoparticle core facilitated maximal participation of the urethane-tethered 

PLA arms in the elastic deformation and recoiling process with reduced excessive chain-

chain entanglement below and above Ttrans, respectively. Consequently, the resulting 
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POSS-SMP nanocomposites, with cortical bone-like modulus (~ 2 GPa) at body 

temperature, could stably hold their temporary shape for > 1 year at room and body 

temperatures and achieve full shape recovery with a Ttrans<50 °C in a matter of seconds. 

To fully explore the potential of POSS-SMPs as self-fitting tissue scaffolds and implants, 

biocompatibility of this new class of thermal responsive materials needs to be 

investigated.157, 158 

Given the bioinert nature of the POSS core,159 the established clinical use of PLA 

as bioresorbable sutures,160, 161 and the prevalence of polyurethanes in medical 

implants,155 we hypothesize that POSS-SMPs and their degradation products would elicit 

minimal immunogenic response in vivo. Here we examine both the in vitro and in vivo 

degradation behaviors of POSS-SMPs as a function of the PLA chain lengths of the 

macromer building blocks (Fig. 4.1A, n =10, 20, or 40) using a subcutaneous 

implantation model in rats. Tissue responses to POSS-SMPs and their degradation 

products over a course of 1 year were examined.  
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Figure 4.1. Chemical composition and in vitro hydrolytic degradation of POSS-SMPs. 

(A) Star-branched macromer building blocks of POSS-SMP; (B) %Mass residue of 

POSS-SMPs as a function of PLA arm length upon incubation in PBS (pH 7.4) at 37 °C. 

A qualitative illustration of the tissue repair kinetics is shown in purple. A sample size of 

3 was applied; (C) SEM micrographs of POSS-SMPs before and after 73-day incubation 

in PBS at 37 °C. 
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2. Materials and Methods 

2.1. Sample preparation 

  POSS-SMP constructs were fabricated as previously described,156 Briefly, 

macromer building block POSS-(PLAn)8 (n = 10, 20, 40) and crosslinker hexamethylene 

diisocyanate were mixed in 1:4 molar ratio in 2.5 times (wt/wt) dichloromethane. 

Catalytic amount (100 ppm) dibutyltin dilaurate (≥95%, Aldrich) was added. The 

solution was stirred for 2 h at rt before being poured into rectangular Teflon molds (30.0 

mm × 6.0 mm). The solvent was evaporated at rt overnight under Argon, and the material 

was further crosslinked at 75 °C under Argon for 24 h. The final product was heated at 75 

°C under vacuum for 48 h to remove residue volatiles. The POSS-SMP constructs were 

designated as POSS-SMP-10, POSS-SMP-20, and POSS-SMP-40 based on the PLA arm 

lengths of their respective macromer building blocks POSS-(PLAn)8 (n = 10, 20, 40). The 

glass transition temperatures (Tg) of POSS-SMPs, determined by differential calorimetry, 

were 42.8 °C (POSS-SMP-10), 45.4 °C  (POSS-SMP-20), and 48.4 °C (POSS-SMP-40), 

respectively.156 Detailed thermal dynamic mechanical characterizations and the 

quantification of the shape memory performances of POSS-SMPs as a function of their 

PLA arm lengths using a dynamic mechanical analyzer were reported elsewhere.156 The 

POSS-SMPs (~0.5 mm in thickness) were cut into smaller pieces approximately 30 mg in 

weight for both the in vitro degradation study and the rat subcutaneous implantation 

study. Commercial DL-PLA pellets (MW 75-120kD, Aldrich) of the same weight were 
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used as a control. All POSS-SMPs and PLA control specimens were sterilized with 70% 

ethanol and 254-nm UV irradiation prior to implantation.  

2.2. In vitro hydrolytic degradation and scanning electron microscopy (SEM) 

  POSS-SMPs -10, -20 and -40 specimens (N=3) were incubated in PBS (pH 7.4, 

100 mL/g) at 37 °C and retrieved at pre-determined time points. They were washed with 

deionized water and freeze-dried to determine the residue masses. The samples were then 

returned to a fresh PBS (100 mL/g) and incubated at 37 °C. The percentage (%) of mass 

residue, defined as the residue dry mass at a given time point over the original dry weight 

of the sample, was plotted over time. The microstructures of POSS-SMPs retrieved from 

PBS at various time points were examined on a Quanta 200 FEG MKII SEM (FEI Inc.). 

The samples were sputter-coated with Au and imaged under high vacuum at 10kV. 

2.3 Study design and surgical procedure 

All animal procedures were approved by the University of Massachusetts Medical 

School Animal Care and Use Committee. Briefly, male Charles River SASCO-SD rats 

(289-300 g) were sedated by 5% isoflurane-oxygen and then maintained by 2% 

isoflurane-oxygen throughout the surgery. A small ventral incision (~1cm) was made to 

create a subcutaneous pocket to place a thin piece of POSS-SMP of a given PLA arm 

length (POSS-SMP-10, -20, or -40) or commercial amorphous DL-PLA pellets of the 

same weight, then closed with a surgical staple. Up to 6 pockets were created in each rat 

for implantation, and the implants were retrieved at 4-, 18-, 60-, or 164-day post-op for 
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histology (N = 3). A subset of POSS-SMP-10 was implanted for 1 year to examine the 

long-term effects of implantation. Heart, kidney, lung, liver, spleen and bone marrow 

from rib were collected from the rats receiving POSS-SMP-10 for 164-day and 1 year to 

examine potential systemic side effects of implant degradation to scavenger and vital 

organs. Note that no animals were lost or prematurely sacrificed due to substantial 

adverse reactions (e.g. tumor formation or unresolved infections) during the course of the 

study 

2.4. Implant and organ retrieval and histological examinations 

Subcutaneous implants and organs were retrieved from the rats sacrificed at pre-

determined time points, and fixed in a periodate-lysine-paraformaldehyde fixative123 at 4 

°C for 1 and 2 days, respectively. The internal organs were grossly inspected at the time 

of sacrifice for tumor formation. Paraffin sections (5 µm) of the subcutaneous explants 

were stained for Ki67, a marker for cell proliferation, and with hematoxylin and eosin 

(H&E). Paraffin sections (5 µm) of the retrieved organs were stained with H&E. All 

histology slides were blind-assessed by a pathologist. A total of twenty-seven 5-µm 

sections of each sample (9 sections per specimen, three specimens per sample) per time 

point were stained for H&E or Ki67.  Five randomly selected 400× fields of view (FOV) 

among the H&E sections were examined in detail to tally the number of lymphocytes, 

macrophages, mast cells, eosinophils, and neutrophils for each sample at each time point. 

Blood vessel counts were tallied in the most active 400× FOVs. All cell types and blood 
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vessels were quantified based on morphology. All cell and blood vessel counts were 

reported as average ranges per FOV in Tables 4.1 and 4.2.  

 

3. Results 

3.1 PLA chain length-dependant hydrolytic degradation kinetics  

The choice of the racemic DL-PLA instead of the L-PLA in the design of POSS-

SMP was based on the needs for both lowering the Ttrans to a physiologically safe range 

and avoiding crystalline degradation products that may elicit undesired in vivo responses 

162. Here we show that by adjusting the length of the DL-PLA arms attached to the POSS 

core, the hydrolytic degradation rates of POSS-SMP nanocomposites can be engineered. 

As shown in Figure 4.1B, whereas POSS-SMP-10 and POSS-SMP-20 lost 50% of their 

original masses in 3 months in PBS (with substantial increase in scaffold porosity, Fig. 

1C), POSS-SMP-40 reached 50% degradation in 7 months. It is worth noting that all 

POSS-SMPs examined exhibited a stable “lag” phase in mass reduction (2-6 months) 

before entering a rapid “log” phase of mass reduction leading to significant structural 

disintegration (Figs. 4.1B & C). Such a degradation profile is reciprocal to those 

exhibited by most soft and hard tissue repairs where a latent phase often precedes a more 

rapid increase in tissue structural integrity as qualitatively depicted by the purple trend 

line in Figure 4.1B 163, 164. 

3.2 Immune responses 4 to 60 days post-implantation 



87 
 

 

  All POSS-SMPs and PLA control elicited a mild foreign body type immune 

response upon subcutaneous implantation in rats prior to the onset of detectable 

degradation. As representatively shown in Figure 4.2A and Table 4.1, POSS-SMP-10 

harvested 4 days post implantation was surrounded by a fibrous tissue capsule where 

macrophages, abundant and active capillaries (as indicated by the “plump” endothelial 

cells lining the vessels) and lymphocytes were detected, indicative of a typical foreign 

body response. Ki67 staining showed that >80% of the cells within the newly formed 

fibrous tissue capsule were proliferating at this early time point. The early tissue 

responses to POSS-SMP-10 appeared to be milder than those observed with the PLA 

control, with the tissue capsule of the latter characterized with more abundant 

macrophages and lymphocytes, as well as the presence of neutrophils (Fig. 4.2B; Table 

4.1). No significant hypersensitivity reaction to either POSS-SMP-10 or the PLA control 

was detected, as supported by the presence of very few mast cells or eosinophils 

surrounding the implant.  

 

 

 

 

 

 

 



88 
 

 

Figure 4.2. Foreign body type responses to (A) POSS-SMP-10 and (B) PLA control at 4, 

18 and 60 days post subcutaneous implantation as revealed by H&E (cellularity) and 

Ki67 (proliferation) immunostaining. Center rows are higher resolution images of the 

areas boxed in the top row. Birefringent images of the fibrous capsules surrounding 

POSS-SMP-10 are shown as insets. Scale bars: 200 µm. BV = blood vessel; L = 

lymphocyte; M = macrophage; F = fibroblast; N = neutrophil. 
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Table 4.1. Quantifications of immune responses to POSS-SMP-10 vs. PLA control at 4, 

18 and 60 days post subcutaneous implantation. Each cell type was counted with H&E 

staining in five randomly selected 400× field-of-view (FOV) and reported as average 

ranges per FOV. Blood vessels were counted in the 400× FOVs with the most densely 

populated blood vessels.  

1Blood Vessels: <20/FOV (+), 20-50/FOV (++), >50/FOV (+++); 2%Ki67+ cells: <5% (-
), 5-20% (+), 20-50% (++), >50% (+++); 3Lymphocytes: <5/FOV (-), 5-20/FOV (+), 
>20/FOV (++); 4Macrophages: <5/FOV (-), 5-20/FOV (+), 20-50/FOV (++), >50/FOV 
(+++); 5Implant degradation: no degradation (-), onset of degradation with minor 
microscopic structural changes (+), partial degradation with obvious macroscopic and 
microscopic structural disintegration (++), near to complete degradation (+++). 
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  By 18 days post implantation, a more mature fibrous tissue capsule characterized 

by aligned extracellular collagen fibers embedded with spindly fibroblasts surrounding 

both POSS-SMP-10 and the PLA control. The numbers of proliferating (Ki67 positive) 

cells, macrophages, lymphocytes, and blood vessels within the fibrous capsules 

surrounding both implants significantly decreased, but the overall immune responses to 

PLA remained stronger (Fig. 4.2; Table 4.1). No acute inflammatory response was 

detected at this time point in either POSS-SMPs or the PLA control, as supported by the 

absence of neutrophils.  

  By 60 days, while the number of proliferating cells, macrophages and blood 

vessels surrounding the PLA control continued to decrease, the onset of the degradation 

of POSS-SMP-10, indicated by the opaque appearance of the once transparent material, 

elicited a second inflammatory response. The small number of macrophages, proliferating 

fibroblasts and blood vessels surrounding POSS-SMP-10, however, was not accompanied 

by lymphocytes or neutrophils (Fig. 4.2A; Table 4.1). The fibrous capsule also remained 

well-aligned (as indicated by the birefringence of collagen fibers, inset of Fig. 4.2A), 

suggesting that the increase in tissue activity was limited at this time point. Finally, while 

masts cells were observed surrounding the PLA, no allergic reaction to POSS-SMP-10 

was detected by 60 days.  

3.3 Degradation-induced immune responses at 164 days       

 By 164 days post implantation, all POSS-SMPs degraded, with the extent of the 

structural disintegration and the degree of the corresponding acute inflammatory tissue 
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response inversely correlated to the PLA chain length of the nanocomposite. Similar to 

the trend observed with the in vitro hydrolytic degradation, POSS-SMP-10 degraded the 

fastest in vivo. The second acute inflammatory response to the degradation was the most 

abundant surrounding POSS-SMP-10 at day 164, with significantly more actively 

proliferating capillaries, macrophages, and neutrophils detected within its tissue capsule 

(Fig. 4.3; Table 4.2). This second acute inflammatory response to the extensive 

degradation of POSS-SMP-10 was also accompanied by mild allergic/hypersensitivity 

reaction to the degradation products as indicated by the presence of a small number of 

mast cells and eosinophils. The more abundant inflammatory cell activities within the 

fibrous capsule of POSS-SMP-10 also led to a drop of the intensity of birefringence (in 

yellow) as its collagen alignment was more profoundly disrupted than those surrounding 

POSS-SMP-20 or POSS-SMP-40 (Fig. 4.3, first row insets). 
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Figure 4.3. Inflammatory responses to POSS-SMP-10, POSS-SMP-20, POSS-SMP-40 

and the PLA control at 164 days post subcutaneous implantation as revealed by H&E 

(cellularity) and Ki67 (proliferation) immunostaining. Center rows are higher resolution 

images of the areas boxed in the top row. Birefringent images of the fibrous capsules 

surrounding POSS-SMPs are shown as insets. Scale bars: 200 µm. BV = blood vessel; L 

= lymphocyte; M = macrophage; F = fibroblast; N = neutrophil; MNG = multi-nucleated 

giant cell. 
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Table 4.2. Quantifications of immune responses to POSS-SMP-10, POSS-SMP-20, 

POSS-SMP-40 and PLA control at 164 days post subcutaneous implantation. Each cell 

type was counted with H&E staining in five randomly selected 400× field-of-view (FOV) 

and reported as average ranges per FOV. Blood vessels were counted in the 400× FOVs 

with the most densely populated blood vessels.  

 
1Blood Vessels: <20/FOV (+), 20-50/FOV (++), >50/FOV (+++); 2%Ki67+ cells: <5% (-
), 5-20% (+), 20-50% (++), >50% (+++); 3Lymphocytes: <5/FOV (-), 5-20/FOV (+), 
>20/FOV (++); 4Macrophages: <5/FOV (-), 5-20/FOV (+), 20-50/FOV (++), >50/FOV 
(+++); 5Implant degradation: no degradation (-), onset of degradation with minor 
microscopic structural changes (+), partial degradation with obvious macroscopic and 
microscopic structural disintegration (++), near to complete degradation (+++). 
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3.4 Systemic effects on scavenger / vital organs  

  Despite the significant in vivo degradation of POSS-SMP-10 by 164 days, the rats 

did not exhibit any signs of distress or infection. The vital organs and scavenger organs 

retrieved from rats receiving the implantation of POSS-SMP-10 for 164 days and 1 year 

were pathologically unremarkable compared to age-matched normal control organs as 

assessed by gross (i.e. no visible tumor formation) and histological inspection (Fig. 4.4). 

None of the major viscera examined showed any evidence of chronic injury or chronic 

systemic immune response such as systemic foreign body type granulomatous 

inflammation. 
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Figure 4.4. H&E stains of vital organs retrieved from rats receiving A) POSS-SMP-10 

for 164 days (500×) revealing no systemic side effects, and B) from age-matched rats 

without implantation. Scale bars = 200 µm. 
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  By 1 year, the POSS-SMP-10 implant was almost completely resorbed, with few 

immune cells present at the site of implantation and no signs of chronic inflammation. 

This finding suggests that the second acute immune response to the degradation of POSS-

SMPs was able to resolve over time without therapeutic interventions. 

 

4. Discussion 

To evaluate the suitability of a degradable synthetic biomaterial for in vivo 

biomedical applications, both its degradation characteristics and the immunogenicities of 

the biomaterial and its degradation products165-169 should be considered. Here we show 

that the hydrolytic degradation kinetics of POSS-SMPs could be tuned by adjusting the 

length of the PLA arms attached to the star-branched macromer building block. By 

increasing the number of lactide repeating units of each PLA arm from 10 to 40, the 

structural stability of the crosslinked POSS-SMP network (the “lag” phase of the mass 

reduction) could be extended from 2 months to 6 months, which was then followed by a 

rapid mass reduction phase (Fig. 4.1). This observation suggests that the more densely 

packed chain structure in POSS-SMP-40 as a result of longer PLA arms and less POSS 

disruption is more resistant to hydrolytic degradation. The in vivo degradation of POSS-

SMPs, upon subcutaneous implantation in rats, also followed a similar PLA chain-length 

dependent profile, with the onset of a late acute inflammatory response to the degradation 

detected by 60 days for POSS-SMP-10 (Table 4.1) but not until 164 days for POSS-

SMP-40 (Table 4.2). Such a tunable degradation profile is desired for their applications 

as synthetic tissue scaffolds where the structural stability of the scaffolds need to be 
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sustained for a tailored time period while the structural integrity of the damaged tissue is 

being restored. The rates of tissue repair often vary depending on the anatomic location 

of the tissue defect as well as the age and metabolic conditions of the patient. For 

instance, in children, long bone fractures are typically bridged in 5-14 weeks, with the 

remodeling of new bone peaking at 9 weeks.170 The bridging of adult long bone fractures 

typically take up to 16 weeks with its remodeling lasting up to 1-4 year.163 The tunable 

degradation rates of POSS-SMPs, along with their cortical bone-like mechanical strength 

at the body temperature prior to degradation,156, make them appealing candidates as 

synthetic bone scaffolds for the treatment of hard-to-heal bony lesions.171  

Four days after subcutaneous implantation, POSS-SMPs elicited a normal foreign 

body type immune response,172 as characterized by proliferating fibroblasts and 

mononuclear macrophages and multinuclear giant cells at the implant/tissue interface. No 

acute (neutrophils) or notable allergic responses (few mast cells or eosinophils) were 

detected. By 18 days, as the initial immune response to the foreign material subsided and 

the fibrous tissue capsule matured, the number of inflammatory cells, proliferating 

fibroblast, and blood vessels significantly decreased (Table 4.1). In comparison, the PLA 

control elicited a stronger inflammatory response than the POSS-SMPs at these early 

time points, with more macrophages and the presence of neutrophils detected at day 4, 

and more abundant blood vessels and proliferating cells at day 18 (Table 4.1). Overall, 

POSS-SMPs appeared to be minimally immunogenic and did not elicit allergic reactions 

upon implantation. 
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The degradation products of POSS-SMPs elicited a late acute inflammatory 

response characterized with the presence of neutrophils and an increase in overall cellular 

activities within the fibrous tissue capsule. This newly activated immune response, 

elicited by the acidic degradation products (e.g. lactic acid), was also accompanied by a 

decrease in the intensity of the birefringence of the fibrous tissue capsule as the 

penetrating immune cells disrupted the packing and alignment of collagen fibers. No 

local tissue necrosis or negative systemic impact on scavenger organs such as lung, liver, 

kidney, bone marrow and spleen were observed as a result of the degradation of POSS-

SMPs. This observation may suggest that the degradation products did not reach systemic 

circulation or distant organs, and were cleared in-situ at the site of implantation. More 

importantly, this late acute inflammatory response induced by the degradation products 

was able to resolve on its own without the need for medical interventions. Clinically, 

aseptic sinus / inflammatory abscess formations as a result of more severe acute 

inflammatory response will require treatment, but the late acute inflammatory response in 

the experimental animals in the current study did not reach this degree of severity.  It is 

worth noting that by physically incorporating additives (such as calcium phosphates) that 

can neutralize the acidic degradation products of the polyester component, the acute 

inflammatory response induced by the degradation of POSS-SMPs may be further 

mitigated. 
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5. Conclusion 

  We have shown that POSS-SMPs, a class of biodegradable thermal responsive 

shape memory polymers derived from star-branched building blocks containing POSS 

nanoparticle cores and polyester arms, elicited a mild foreign body type immune response 

upon subcutaneous implantation in rats. The degradation rates of POSS-SMPs, both in 

vitro and in vivo, inversely correlated with the length of the polyester chains within the 

crosslinked amorphous network. Upon degradation, a secondary acute inflammatory 

response was elicited locally at the implantation site, and the inflammation was able to 

resolve over time without medical interventions. No systemic pathologic abnormities 

were detected, as supported by the normal examination of bone marrow, heart, kidney, 

lung, liver, or spleen even one year after the implantation of POSS-SMPs. Coupled with 

their tunable mechanical properties and chemical functionalizability, POSS-SMPs may be 

explored for a wide range of in vivo applications (e.g. as orthopedic implants, vascular 

stents or other tissue scaffolds). However, pre-clinical animal studies using surgical 

models relevant to the intended applications as well as a full toxicology analysis will be 

necessary. Immunological staining of tissue sections to identify specific immune cell 

populations is also desired. 
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Chapter V: Conclusions and Future Perspectives 

 

1. Summary of thesis work 

 

The previous chapters highlight a number of 2-D and 3-D scaffolds designed to mimic 

key structural and biochemical properties of target skeletal tissues in easy-to-fabricate 

and scalable biocompatible materials. In Chapter 2, a 3-dimensional elastomeric hydrogel 

– nHA scaffold named FlexBone was shown to enable the functional healing of 5-mm 

critical-size femoral segmental defects in rats by 8 – 12 weeks when it was press-fit 

within the defect with a single low dose of rhBMP-2/7. FlexBone locally delivered 

rhBMP-2/7, likely as a result of the physical adsorption/desorption of rhBMP-2/7 

on/from the large surfaces of nHA, which could undergo dynamic surface charge changes 

as the pH within the tissue microenvironment fluctuates in response to cellular activities. 

Such unique surface properties of the nHA component also enabled FlexBone to 

sequester and enrich endogenous proteins, leading to partial healing of the defect in the 

absence of any exogenous growth factors. This work supports that FlexBone can be 

engineered to possess key properties of structural bone allografts such as 

osteoconductivity and structural stability, yet also exhibit attractive features that are 

commonly lacking in bone allografts. Among them, easy surgical handling due to its 

compressibility, ability to delivery growth factors to acquire osteoinductity, its 

inexpensive and scalable fabrication, and its convenient storage at ambient conditions 
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make it uniquely suited as an “off-the-shelf” product with excellent clinical 

translatability. 

 

Comparing to 3-D tissue scaffolds, 2-D scaffolds have the advantages of ease of cell 

seeding and its complementary physical properties to 3-D scaffolds. They may be used in 

combination with 3-D scaffolds to deliver multiple cells or therapeutics to accomplish 

spatial and temporal control over the delivery/release kinetics. In Chapter 3, we 

demonstrated that a sulfated 2-D fibrous mesh scaffold can be fabricated by 

electrospinning cellulose acetate in combination with subsequent chemical modifications. 

The sulfated residues are inspired by sulfated polysaccharides richly present in the 

extracellular matrix environment of bone and cartilage tissues, which exhibit high affinity 

for many endogenous proteins. We showed that this sulfated fibrous mesh can serve as a 

delivery vehicle for several growth factors including rhBMP-2, VEGF and IGF-1 (Figs. 

3.4 and 5.1) and retained their bioactivity after one week incubation in PBS. We also 

showed that bone marrow stromal cells could readily attach to the mesh surface, and 

undergo differentiation to osteogenic lineage under the induction of pre-absorbed 

osteogenic factors. These easy-to-fabricate cytocompatible meshes could be used for 

therapeutic and cellular delivery in vivo either as a stand-alone platform or in 

combination with other 3-D tissue grafts. 
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Figure 5.1. Retention/release profile of VEGF (top) and IGF-1 (bottom) on/from SC vs. 

RC meshes. The mesh (N=3) was pre-absorbed with VEGF or IGF-1 (27 ng/cm2) and air-

dried before being incubated in PBS at 37 °C for 7 days. The protein released in PBS at a 

given time was quantified by ELISA. 
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In Chapter 4, we describe a method for evaluating the biocompatibility of a novel 3-D 

scaffold developed in our lab for minimally invasive surgical use.156 Using a rat 

subcutaneous implantation model, a thermal-responsive shape memory polymer (POSS-

SMP) crosslinked from macromers containing a polyhedral oligomeric silsesquioxane 

(POSS) core and 8 biodegradable poly(D,L-lactide) (PLA) arms was evaluated for its 

immunogenicity as a function of its PLA arm lengths. We showed that all POSS-SMPs  

elicited  normal foreign body immune responses upon initial implantation and a 

secondary acute immune response upon their in vivo degradation. The severity of the 

secondary acute immune response increased with those with shorter PLA arms (thus 

faster degradation rates) but could resolve on its own over time without need for any 

medical intervention. No systemic side effects were observable one year after the 

implantation when vital and scavenger organs were inspected both grossly and 

microscopically. This study has established a much-needed method for examining the 

biocompatibility of degradable biomaterials that can benefit subsequent novel 

biomaterials development and characterizations. 

 

 

2. Ongoing work and future directions 

 

Two major directions we are currently pursuing towards the translation of FlexBone and 

the sulfated fibrous mesh for treating challenging orthopedic conditions are the use of 

FlexBone to treat hard-to-heal diabetic bony lesion and the use of the 2-D sulfated fibrous 
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cellulose mesh as a “synthetic periosteum” to augment the healing of structural bone 

allografts. 

 

With the success of FlexBone as a 3-D synthetic bone graft in facilitating the healing of 

critical-size long bone defects in normal rats, we are seeking to extend its use to aid 

healing in clinically relevant hard-to-heal defects as a result of an interfering metabolic 

condition. g. Diabetes is a metabolic disease which affects approximately 25.8 million, or 

8.3% of the population in the United States, costing the US economy approximately $174 

billion per year.173 A well-known complication with diabetes is impaired wound healing, 

which is likely the result of several complex factors, such as risk for infections, poor 

circulation, peripheral neuropathy, and lack of growth factors needed for wound healing 

and vessel growth.174-176 Bony healing in diabetic patients is especially challenging.177 

Many theories for impaired bone healing are being studied. For example, the role of 

accumulated advanced glycation end products (AGEs) seen in some diabetic tissues may 

play a role in impairing bony healing.178 A role for insulin in regulating fracture healing 

in type 1 diabetes has been suggested by a mouse study. The diabetic femoral fractures 

showed increased chondrocyte apoptosis and increased osteoclastic activity at the site of 

fracture, which were linked to the impaired healing, and was shown to be rescued to 

some extent by  insulin treatment.179, 180 Insulin regulation was also shown by others to 

aid bone healing in type 1 diabetic rats.181 Lin and coworkers have shown that locally 

delivered insulin therapy led to more robust fracture healing in type 1 diabetic rats.182, 183 

Some evidence for decreased osteoblastic differentiation has also been presented in a type 
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1 diabetic mouse model.184 Delivery of osteogenic protein BMP-7 has been shown to 

enhance fracture healing in diabetic rats, supporting this theory.185 Further, low levels of 

endogenous growth factor IGF-1 in diabetic patients may also compromise the healing of 

bone, as low IGF-1 has been associated with reduced collagen deposition, angiogenesis 

and leukocyte infiltration – all processes critical for healing – and local administration of 

exogenous IGF-1 has been shown to aid both diabetic soft tissue repair and bone repair in 

diabetic rats.186, 187 Finally, local delivery of VEGF that is known to be deficient in 

diabetic wounds has also been shown to expedite soft tissue repair via neovascularization 

and stem cell recruitment.188 We hypothesize that a combination delivery of IGF-1,VEGF 

along with an osteogenic factor, such as BMP-2/7, could significantly expedite repair of 

bone in diabetic rats. 

 

To test this hypothesis, we chose to use Diabetic Prone Bio-Breeding/Worcester (BBDP) 

rats. BBDP rats are the most extensively studied strain of spontaneous type I diabetic rat 

model characterized by a predisposition to autoimmune beta cell destruction and T cell 

lymphopenia.189 These rats experience an average onset of diabetes between 50 and 90 

days of age, at an incidence of 85 – 90%.190 To our knowledge, the bone phenotype of 

BBDP rats has not been well-characterized; however, there has been some work 

performed with BBDP soft tissue wound and bone repairs. Our ongoing and future work 

with this type 1 diabetic rat model involves the validation of the retarded bone healing in 

BBDP rats, the characterization of the bone phenotype of BBDP rats, and the use of 

FlexBone in combination with multiple factors to “rescue” its bony healing. 
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We performed a series of pilot surgeries to create 5-mm femoral segmental defects in 

BBDP rats with poorly controlled blood glucose levels (BG maintained by an insulin 

implant at 250-400 mg/dL) and press-fit  FlexBone with or without a single dose of  400-

ng BMP-2/7 within the surgical defect as previously described.67 In contrast to previous 

findings with non-diabetic SASCO SD rats where FlexBone led to partial or complete 

healing of the femoral defect in combination with 0 or 400-ng BMP-2/7, these diabetic 

bony lesion  did not heal at all when press-fit with FlexBone regardless whether 400-ng 

BMP-2/7 was supplemented, as shown by histology, X-ray and microCT analyses. 

Supplementing FlexBone with 300-ng IGF-1 also did not lead to any detectable healing. 

To understand this impaired healing and to justify the choice of exogenous factors to 

supplement in subsequent experiments, we examined if any endogenous crucial factors 

needed for the initiation of bone healing are recruited to the defect site in a delayed or 

compromised manner in BBDP rats. To do this, we press-fit FlexBone into the site of 

femoral defect and retrieved FlexBone at various time points over a period of 1 week 

following the surgery. These samples were then histologically stained for key 

inflammatory (VEGF, IL-1β, TNFα, TGFβ), bone remodeling (BMP-7, BMP-2, 

RANKL, VEGF), stem cell recruitment (SDF-1) and growth/differentiation (IGF-1) 

factors. When comparing the endogenous factors recruited to/absorbed by FlexBone in 

diabetic BBDP rats vs. in SASCO SD rats, not only is there an observable decrease in the 

amount of proteins detected at earlier time points, but also a delayed “peak” in detecting 

all the proteins examined (Fig. 5.2). Of particular interest is the expression of TGF-β, 
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which plays a critical role in triggering early healing, peaks at 2 days in SASCO SD rats 

but not until one week in diabetic BBDP rats. These results give clues as to how complex 

rescuing diabetic bony healing can be. Currently, we are searching for growth factor 

combinations that can lead to synergistic enhancement of osteogenesis of MSCs in vitro. 

Preliminary results using the C2C12 osteogenic trans-differentiation model and 

osteogenic differentiation of rat bone marrow stromal cells show that combinations of 

BMP-2/7 with VEGF had a synergistic effect at a number of dose combinations, 

especially with 100-ng/mL BMP-2/7 plus 5-15-ng/mL VEGF in rat bone marrow stromal 

cell culture. The combination of BMP-2/7 with IGF-1 appeared to have little synergistic 

or inhibitory effect with bone marrow stromal cells, but appeared to be synergistic with 

the osteogenic trans-differentiation of C2C12 cells at certain dose combinations, most 

notably with 40-ng/mL BMP-2/7 plus 10-ng/mL IGF-1. Future work will also explore the 

supplementation of other factors that were expressed in a retarded manner at the defect 

site in diabetic BBDP rats as shown in Figure 5.2. 
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Figure 5.2. Immunohistological detection for endogenous proteins absorbed on FlexBone 

retrieved at various time points over 1 week after being press-fit into 5-mm femoral 

segmental defects in non-diabetic SASCO SD or diabetic BBDP rats. Scale bars = 200 

µm. 
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A combination of microCT and torsion testing is being performed on explanted femurs 

collected from various-aged (up to 1 year old) diabetic and non-diabetic BBDP rats. In 

addition, we are performing ELISAs to characterize serum markers of bone turnover, 

TRAP as a readout for osteoclast number and collagen fragments as a readout for 

osteoclastic activity; pro-collagen synthesis as a readout for osteoblastic activity (Catalog 

numbers AC-33F1, SB-TR103, AC-06F1, Immuno Diagnostic Systems, Scottsdale, AZ). 

Preliminary results with a sample size of 4 did not reveal any significant difference in 

cortical bone volume, thickness, density and bone volume fraction between diabetic and 

non-diabetic BBDP rats. Non-diabetic BBDP rats appear to have slightly higher 

trabecular bone volume and thickness as compared to the diabetic BBDP rats while no 

differences in trabecular bone density and bone volume fraction. Larger sample sizes 

applied to both the microCT analysis and subsequent torsional tests will be necessary to 

draw statistically significant conclusions. 

 

Another on-going effort is to explore the use of 2-D sulfated fibrous mesh as a “synthetic 

periosteum” to augment structural bone allograft healing. Periosteum is a thin membrane 

covering bone which plays a critical role in bone growth and healing. It is divided into 2 

distinct layers: an outer fibrous layer consisting of fibroblasts, collagen, elastin fibers, 

nerves and blood vessels and an inner cambium layer consisting of nerves, blood vessels, 

and periosteal stem cells.191, 192 Devitalized structural bone allografts lose this important 

component of bone, making their incorporation with surround tissue hard to achieve and 

resulting in high (50%) graft failure rates.  Methods for augmenting bone allograft-
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mediated healing include  gene therapy approaches, local delivery of protein therapeutics, 

and the use of pluripotent stem cells.193-197 77 198 

 

We hypothesize  that a synthetic periosteum recapitulating some of the key components 

of periosteum can be wrapped around allograft to improve their graft healing. Indeed, 

prior studies have shown that wrapping devitalized bone allografts with live periosteum 

transplants did improve graft healing,199 and that the periosteal stem cells were likely 

responsible for the majority of the rescued allograft incorporation.200 A tissue-engineered 

periosteum fabricated from a porcine small intestinal submucosa scaffold seeded with 

rabbit mesenchymal stem cells was also reported to augment segmental defect healing.201 

Guldberg and colleagues showed that devitalized mice bone allograft incorporation and 

healing can be aided when the grafts were wrapped with gelfoam strips pre-seeded with 

BMP-2 producing bone marrow cells, suggesting an opportunity for a synthetic version 

of periosteum in bony tissue repair.200 

 

Bone allograft healing occurs through a combination of endochondral ossification and 

intramembranous bone formation.193 Sulfated glycosaminoglycan (GAG) chondroitin 

sulfate has been previously shown to enhance bone healing.202 Other studies from our lab 

have shown that sulfated residues decorated on polymeric scaffolds may be advantageous 

in promoting the chondrogenesis of MSCs. We hypothesize that the sulfated cellulose 

mesh described in Chapter 3 may be used to augment the allograft graft healing by more 

effectively inducing the endochondral ossification process. In addition, we hypothesize 
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that the addition of growth factor therapeutics and pluripotent bone marrow stromal cells, 

both supported by the sulfated fibrous mesh, could further enhance the graft healing. 

 

All allografts used in the pilot study were devitalized by removing the periosteum and 

bone marrow, followed by rinses in PBS and 70% ethanol and freezing at -80 ºC for at 

least 24 hours prior to use. A 5-mm femoral segmental defect was surgically created in 

SASCO SD rats, which was then tight-fit with a devitalized femoral allograft and 

wrapped with the 2-D synthetic periosteum as shown in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 



114 
 

 

 

Figure 5.3. Surgical scheme for a femoral segmental defect fit with a devitalized bone 

allograft wrapped with synthetic periosteum. A) A radiolucent PEEK plate fixator was 

attached with bicortical screws to the exposed femur (periosteum was circumferentially 

removed) and a 5-mm mid-diaphyseal defect was generated under the plate fixator with 

an oscillating Hall saw with parallel blades. B) A devitalized bone allograft was tight-fit 

into the site of defect without additional support. C) A 9-mm × 7-mm film of synthetic 

periosteum was wrapped around the allograft with or without the addition of exogenous 

protein therapeutics or MSCs. Devitalized allografts wrapped with the synthetic 

periosteum pre-loaded with various doses of rhBMP-2 (0-ng, n=3; 750-ng, n=1; 1500-ng, 

n=2; and 3000-ng, n=2) showed that while limited bony bridging was observed without 

the addition of BMP-2 at 8 week post-operation, extensive bridging by healing callus 

occurred with the addition of 1500- and 3000-ng BMP-2 (Fig. 5.4). 
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Figure 5.4. At 8 weeks post-operation, x-ray radiography revealed varying levels of bony 

bridging (red arrows) over the femoral defects filled with devitalized allografts wrapped 

with synthetic periosteum pre-loaded with 0 (no growth factor), 1500-ng, or 3000-ng 

rhBMP-2. 
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The sample size of these experiments are being increased to N=7 to ensure that 

subsequent analyses by histology, microCT and torsional tests can be carried out to reach 

statistically significant conclusions. Future experiments will also involve addition of 

other growth factors (i.e. VEGF) and rat bone marrow stromal cells (rMSCs) to the 2-D 

scaffold to further expedite the graft healing. Immunogenicity of the synthetic periosteum 

will also be examined. 

 

 

3. Concluding remarks 

 

There has been many exciting developments in the orthopedic biomaterial community. 

However, very few of these biomaterials has been translated to clinical use, as they tend 

to be either too complicated in design or lack key properties needed for resulting in 

successful bone healing clinically (i.e. biocompatibility, suitable structural and 

biochemical properties, ideal surgical handling properties). The work presented in this 

dissertation illustrates that by recapitulating the multifaceted roles that key extracellular 

matrix components of bone play in defining bone-specific structural and biochemical 

properties, easy-to-prepare biomaterials can be designed to facilitate the functional repair 

of critical-size bony defects. Such biomaterials have the potential to outperform structural 

bone allografts, providing much-needed viable synthetic bone graft alternatives. Our 

work supports the notion that functional sophistication of synthetic tissue grafts is not 

synonymous with complicated chemical/engineering designs. We believe that by 
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pursuing such a biomaterial design strategy, bench-to-bedside translation can be 

expedited to benefit patients.  
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ABSTRACT 

Pluripotent human embryonic stem (hES) cells require mechanisms to 

maintain genomic integrity in response to DNA damage that could compromise 

competency for lineage-commitment, development and tissue-renewal.  The 

mechanisms that protect the genome in rapidly proliferating hES cells are 

minimally understood.  Human ES cells have an abbreviated cell cycle with a very 

brief G1 period suggesting that mechanisms mediating responsiveness to DNA 

damage may deviate from those in somatic cells.  Here, we investigated how hES 

cells react to DNA damage induced by ionizing radiation (IR) and whether genomic 

insult evokes DNA repair pathways and/or cell death.  We find that hES cells 

respond to DNA damage by rapidly inducing Caspase-3 and -8, phospho-H2AX foci, 

phosphorylation of p53 on Ser15 and p21 mRNA levels, as well as concomitant cell 

cycle arrest in G2 based on Ki67 staining and FACS analysis. Unlike normal 

somatic cells, hES cells and cancer cells robustly express the anti-apoptotic protein 

Survivin, consistent with the immortal growth phenotype. SiRNA depletion of 

Survivin diminishes hES survival post-irradiation. Thus, our findings provide 

insight into pathways and processes that are activated in human embryonic stem 

cells upon DNA insult to support development and tissue regeneration. 
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INTRODUCTION 

 

Human embryonic stem (hES) cells are pluripotent progenitors that can produce 

the three embryonic germ layers and support post-natal tissue renewal. Thus, it is 

important for these cells to have mechanisms to protect genomic integrity and avoid 

proliferative defects that may debilitate development or cause lethality. Human ES cells 

exhibit an abbreviated cell cycle due to a brief G1 period (Becker et al, 2006). These cells 

lack a traditional Restriction point in late G1 (reviewed in (Blagosklonny and Pardee, 

2002)), but maintain stringent control of histone gene expression at the G1/S phase 

transition (Becker et al, 2007).  Regulatory mechanisms for transcriptional control at the 

onset of S phase are operative.  The regulatory machinery for histone gene expression is 

spatially organized in discrete foci immediately following completion of mitosis (Ghule 

et al, 2007), and this organization is distinct from that observed in normal somatic cells 

(Ghule et al, 2008) or tumor cells (Ghule et al, 2009).  Human ES cells exhibit a robust 

induction of components of the DNA damage response (Becker et al, 2007), but 

mechanisms that mediate cell survival have not been examined. 

 The pathways controlled by the ataxia telangiectasia-mutated (ATM) and ATM-

related (ATR) proteins represent the principal pathways by which cells react to DNA 

damage in somatic cells. ATM is activated upon γ-ionizing radiation (IR)-induced DNA 

double strand breaks, phosphorylates p53 on serine 15, followed by upregulation of p21 

mRNA levels in somatic human cells (reviewed in (Gartel and Radhakrishnan, 2005)). 

This induction of p21 mRNA has also been observed in hES cells (Becker et al, 2007), 
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suggesting that hES cells are capable of blocking CDK levels to ensure a cell cycle arrest.  

A key question that remains to be addressed is how hES cells regulate cell survival 

following DNA damage and whether the cell cycle is inhibited. Although DNA damage 

response mechanisms have been examined in mouse ES cells (Aladjem et al, 1998; Lavin 

and Kozlov, 2007; Schmidt-Kastner et al, 1998; Hong and Stambrook, 2004; Hirao et al, 

2000), mouse and human cells differ in their ability to be immortalized and thus survival 

mechanisms may be fundamentally distinct.   

In somatic cells, mechanisms are operative that enable cells to stop cell cycle 

progression and to make molecular decisions to repair DNA and promote cell survival, or 

to undergo apoptosis to ensure genomic integrity within the organism (reviewed in 

(Altieri, 2008b; Altieri, 2008a; Salz et al, 2005; Luo and Altieri, 2008)). ES cells exhibit 

an immortalized phenotype that resembles the growth phenotype of cancer cells, which 

prevent apoptosis through induction of the anti-apoptotic protein survivin, while normal 

somatic cells have minimal survivin expression (Altieri, 2006; Altieri, 2003). In this 

study, we have characterized the cell survival response of human ES cells following IR-

induced DNA damage, in relation to expression of survivin. Using a combination of 

biochemical and cellular approaches, we show that DNA-damaged human ES cells have 

decreased cell survival, are able to block in the G2 phase of the cell cycle, have a 

functionally activated ATM pathway, and express survivin. 
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MATERIALS AND METHODS 

 

Cell lines and Irradiation 

The H1 hES line (WA01, WiCell Research Institute, Madison, WI; 

http://www.wicell.org/) was used in this study.  The control cell lines WI-38 (normal 

somatic lung fibroblast) and MDA-MB-231 (metastatic breast cancer) were used for 

comparison.  A 137Cs source irradiator was used to apply 5 Gy of IR to the cells.   

H1 Cell Culture Conditions  

Human embryonic stem (hES) cells were cultured under non-differentiating 

conditions according to WiCell Research Institute (Madison, WI) protocols in hES cell 

culture medium (80% DMEM/F12, 20% KnockOut-Serum Replacement, 2 mM L-

glutamine, 1% non-essential amino acids (NEAA), 0.1 mM 2-mercaptoethanol (all from 

Invitrogen, Carlsbad, CA), 4 ng/mL basic fibroblast growth factor (R+D Systems, 

Minneapolis, MN)) at 37 ºC, 5% CO2 and high humidity. Irradiated mouse embryonic 

fibroblasts (iMEF), isolated from day 13.5 embryos of CF-1 mice (Charles River 

Laboratories, Wilmington, MA), were used as feeder cells for the H1 culture.  iMEFs 

were cultured until passage 3 in DMEM (Hyclone, Logan, UT) supplemented with 10% 

heat inactivated fetal bovine serum (Hyclone) and 1% NEAA (Invitrogen).  Cells were 

then mitotically inactivated by irradiation at 5 Gy (Cesium 137) before seeding on a 0.1% 

Type A gelatinized (Sigma, St. Louis, MO) 6-well place at 1.75x106 cells/plate. 

At approximately 80% confluence (day 6) the H1 culture was collected using 

Collagenase Type IV (Invitrogen) at a concentration of 1 mg/mL.  This solution (1 mL) 

http://www.wicell.org/�
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was added to each well of a 6-well plate and incubated at 37oC and 5% CO2 for 5 min.  

When the edges of the hES cell colonies began to detach, the plate was removed from the 

incubator and transferred to a sterile biological safety cabinet.  The collagenase was 

removed and 2 mL fresh hES cell culture medium was added to each well.  A 5 mL glass 

pipette was used to further dislodge the H1 colonies from the plate and the contents of 

each well were collected and transferred to a sterile 50 mL conical tube.  Fresh hES cell 

culture medium (3 mL) was used to rinse any remaining cells from the wells and was 

added to the same tube.  The cells were centrifuged at 1000 rpm and 23oC for 5 min, after 

which the supernatant was removed and the pellet was resuspended in 24 mL fresh hES 

cell culture medium.  

After removing the iMEF culture medium from new feeder cells and rinsing with 

2 mL/well Dulbecco’s Phosphate Buffered Saline without calcium and magnesium 

chloride (Invitrogen), each well was preloaded with 1.5 mL fresh hES cell culture 

medium, followed by the addition of 1 mL of the H1 suspension previously collected.  

This 1:4 seeding ratio provided two 6-well plates at approximately 15% confluence 24 h 

later.  At this time, the exhausted hES cell culture medium was removed and replaced 

with 2.5 mL/well fresh medium.  This procedure was repeated at 48 and 72 h, concluding 

with the H1 cell irradiation 2 h after the final feeding (day 3). 

 

Survival and Apoptotic Activity 

Adherent H1 cells were collected at 0 h without IR and at 7 h both with and without IR 

and stained with Trypan Blue to determine H1 survival post-IR.  Caspase-3 and 8 
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activities were then measured via colorimetric enzyme activation assays 

(Chemicon/Millipore, Billerica, MA) at 0 h without IR and at 2, 3, and 4 h time points 

with IR to examine activation of apoptotic pathways according to the manufacturer 

specifications. 

 

Flow Cytometry 

H1 cells were collected at 0, 2, and 7-h, with IR at 2 and 7 h and without IR at 0 and 7 h 

and processed for cell cycle flow cytometry to examine cell cycle distribution.  Cells 

were trypsinized, washed with phosphate-buffered saline, fixed in 95% ethanol overnight 

at 4°C, stained with propidium iodide and analyzed using FACSCalibur (Becton, 

Dickinson Biosciences, San Jose, CA) and ModFit software (Verity Software House, 

Topsham, ME). 

 

Protein Analysis  

Protein and immunohistochemistry samples were collected at 2, 7, 14 and 24 h time 

points after IR, with unirradiated controls also being collected at 0, 7 and 24 h.  Protein 

was used to analyze by western blot analysis the ATM pathway-related proteins γH2A.X 

(Upstate/Millipore, Billerica, MA), p53 (Santa Cruz, Santa Cruz, CA), p53 ser15 (Cell 

Signaling, Danvers, MA), p21 (Santa Cruz), and Chk2 ser68 (Cell Signaling), as well as 

survivin (Novus Biologicals, Littleton, CO).  Alpha tubulin (Santa Cruz) was used as an 

internal control.  Immunohistochemistry was used to analyze γH2A.X, p53 ser-16, and 

Ki67 (Abcam, Cambridge, MA).  Ki67 yields staining patterns specific to different 
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phases of the cell cycle and was used to determine whether H1 cells block in cell cycle in 

response to IR to support flow cytometry data. 

 

Reverse transcription-quantitative PCR (RT-qPCR) 

mRNA levels were analyzed as described previously described (Becker et al, 2007).  

Briefly, total mRNA was extracted from hES cells using TRIzol reagent according to the 

manufacturer specifications (Invitrogen) and subjected to DNase I digestion, followed by 

column purification using the DNA Free RNA Kit (Zymo Research, Orange, CA).  

Reverse transcription was performed using iScript cDNA synthesis kit (Bio-Rad 

Laboratories, Hercules, CA).  Quantification was performed on ABI PRISM 7000 

sequence detection system with SYBR Green supermix (Applied Biosystems, Foster 

City, CA).  Human-specific p21 sequence was used as previously reported (Becker et al, 

2007).  Mitochondrial cytochrome c oxidase (m-COX) was used as an internal control 

(reverse: 5’-CGG GAA TTG CAT CTG TTT TT-3’, forward: 5’-GGC CAC CAA TGG 

TAC TGA AC-3’). 

 

Cell Proliferation Assay                                                                                                      

 An MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium, inner salt] assay was used to analyze cell viability. For each time point, 

H1 cells in a 6-well plate were washed with PBS twice.  The total number of surviving 

cells was assessed by determining the absorbance at A490 nm of the dissolved formazan 
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product after addition of MTS for 1 h, as described by the manufacturer (Promega, 

Madison, WI).  

 

siRNA Transfection                                                                                                                  

Twenty-four hours before transfection, 70-80% confluent H1 cells were split 1:5 and 

plated on top of MEF cells in a 6-well plate. Cells were transfected with oligofectamin 

(Invitrogen) according to the manufacture’s instruction. The final concentration of 

control or survivin siRNA is 50 nM. The medium was replaced 6 h later, and the cells 

were analyzed for survivin expression 48 h after transfection.  

 

 

RESULTS 

 

Survival of human ES cells is significantly decreased by ionizing radiation 

To address cell survival of human ES cells in response to DNA damage, we 

initially determined the number of viable adherent H1 human ES cells following γ 

radiation (5 Gy). IR treatment of human ES cells decreases cell viability by 

approximately 65% at 7 h after treatment (Fig. 1A).  Populations of adherent cells at 2, 3 

and 4 h were subjected to molecular analyses of pathways activated in response to IR. 

The induction of apoptotic mechanisms was monitored by assessing the activities of 

Caspase-3 and Caspase-8 (Fig. 1B). While both Caspase-3 and -8 are induced by ~2 fold 
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at 2 h post-radiation, Caspase-3 levels remain modestly elevated at 3 and 4 h, while 

Caspase-8 levels continue to increase to ~9-10 fold over control levels by 4 h. Thus, at 4 

h after DNA damage, mechanisms supporting programmed cell death have been initiated 

(Fig. 1A). 
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Fig. 1.  Decreased cell survival of human ES cells upon γ-irradiation. A. Survival of H1 

cells was determined by assessing the number of adherent live cells (as determined by 

trypan blue staining) per well of a 6-well plate before and at 7 h after IR with 5 Gy. 

Values represent the average of three determinations within a representative experiment 

and the error bars are based on the standard error. B. Induction of apoptosis was 

determined by monitoring the activities of Caspase-3 and Caspase-8 by enzymatic assays 

at 2, 3 and 4 h after IR.  Values represent the average of sample duplicates.  Standard 

error was determined, but this error is minimal and not readily visible in the graph). 
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Human ES cells arrest in G2 upon γ-irradiation 

To determine whether human ES cells are capable of blocking cell cycle 

progression after IR, we used a combination of Ki67 nuclear staining and cell cycle 

analysis by flow cytometry. Ki67 immunofluorescence staining gives distinct nuclear 

patterns for different stages of the human ES cell cycle (Solovei et al, 2005; Becker et al, 

2006; Ghule et al, 2007).  Using Ki67, we find that H1 human ES cell populations are 

deficient for both G1 and M phase cells after irradiation (Fig. 2A). For example, mitotic 

cells represent ~5% of the actively proliferating population that did not receive radiation 

but are undetectable at 2 h after irradiation, indicating that irradiation prevents new 

mitotic divisions. Mitotic cells gradually increase during the subsequent time-points (7, 

14 and 24 h) as cells recover from DNA damage and resume mitosis (Fig.2A). Consistent 

with an irradiation induced cell cycle block by 2 h, we find that the distribution of cells in 

late G1 and S versus G2 phase is significantly altered (Fig. 2A). The disappearance of G1 

and M phase cells, along with increased representation of cells in G2 (at 2 hr), suggests a 

block in the G2 phase of the cell cycle.  

Given the abbreviated G1 period in human ES cells and the Ki67 nuclear staining 

patterns we observed, the possibility arises that these pluripotent cells may not undergo a 

G1 block upon IR and may move into S phase or undergo cell death. To examine this 

possibility, we performed cell cycle analysis by flow cytometry. At 2 h post irradiation 

there is evidence of significant cell death as indicated by the accumulation of a sub-G1 

cell population (Fig. 2B). The data reveal an increase of G2 cells after IR, with 14% 

before irradiation increasing to 24% by 7 h after irradiation. These data are consistent 
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with the findings obtained with Ki67 (see Fig. 2A) and indicate that DNA-damaged hES 

cells can undergo apoptosis and/or arrest in G2.   
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Fig. 2.  γ-Irradiation induces a G2 phase related cell cycle arrest in human ES cells.  A. 

Immunofluorescence microscopy was used to examine Ki67 staining patterns (n=200; bar 

graph in upper portion), which reflect different stages of the cell cycle (lower portion), as 

a time-course after γ-irradiation (5 Gy). Values represent the average of three 

independent determinations of 200 cells per sample within a representative experiment 

and the error bars are based on the standard error.  B. Fluorescence activated cell sorting 

was used to assess the distribution of hES cells in different cell cycle stages following γ-

irradiation. We note that the fraction of cells in G1 may be over-estimated due to the 

presence of inactivated mouse embryonic fibroblasts that are arrested in G1. 



160 
 

 

 

 

 

 

 



161 
 

 

The ATM pathway is activated in human ES cells in response to IR 

To determine if the ATM pathway is functionally activated in human ES cells in 

response to IR, we analyzed several major components of the ATM pathway. 

Immunofluorescence microscopy reveals that irradiated human ES cells have an 

increased number of foci containing ATM-phosphorylated H2A.X (γH2A.X foci), which 

reflect double-stranded DNA breaks (Fig. 3A), as well as an increase of p53 

phosphorylated on serine 15 (Fig. 3B).  This activation of p53 occurs within 2 h after IR 

and results in approximately 15-fold upregulation of p21 mRNA levels (Fig. 3C).  

Western blot analysis of ATM pathway-related proteins corroborates the 

immunofluorescence data (Fig. 3D).  For example, γH2A.X, p53-phosphoSer15, and 

Chk2-phosphoSer68 are all increased by 2 h after IR.  Although phosphorylation of p53 

and Chk2 has subsided by 7 h, phosphorylation of H2A.X is sustained until at least 24 h. 

This transient induction of phospho-Chk2 in hES cells is consistent with the observed 

G2/M block at 2 h and its partial resolution by 7 h after IR based on Ki67 staining (see 

Fig. 2A).  Interestingly, p21 protein levels in hES cells are barely elevated post-

irradiation (Fig.3D) despite a robust induction at the mRNA level (see Fig. 3C). Thus, H1 

human ES cells exhibit an activated ATM pathway after IR treatment. 
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Fig. 3.  Activation of the ATM pathway activation by IR in hES cells. A. 

Immunofluorescence microscopy was used to examine the in situ appearance of γH2A.X 

foci (red), which reflect phosphorylation of H2A.X by ATM at sites of double-stranded 

DNA breaks after IR.  Nuclei were stained with DAPI (blue).   B. Same as A, but 

assessing phosphorylation of p53 at Ser-15 (dark gray in upper panels) by in situ 

immunofluorescence microscopy after IR.  C. Quantitative real-time PCR analysis was 

used to show that in situ activation of the ATM pathway after IR results in the expected 

p53 mediated induction of p21 mRNA levels at 2 and 7 h after radiation with 5 Gy.  Error 

bars represent standard deviation of sample duplicates.   D. Western blot analysis was 

used to show activation of components of the ATM pathway in human H1 embryonic 

stem cells, normal diploid WI-38 fibroblasts and MDA-MB-231 breast cancer cells upon 

γ-irradiation. Blots were prepared with antibodies probing ATM dependent 

phosphorylation of H2A.X (γH2A.X) and Ser-15 phosphorylation of p53, as well as the 

levels of the CDK inhibitor p21 and Chk2, using α-tubulin as an internal control for 

protein loading.  

 

 



163 
 

 

 

 

 



164 
 

 

The DNA damage response of human ES cells differs from responses in somatic cells 

 The DNA damage response has been well characterized in both normal somatic 

and tumor-derived human cells. Therefore we compared activation of the ATM pathway 

in H1 embryonic stem cells with normal diploid WI-38 fibroblasts and MDA-MB-231 

breast cancer cells (Fig. 3A and 3D).  Notably, γH2A.X protein levels in both H1 and 

MDA-MB-231 cells decrease more slowly than in normal somatic WI-38 cells, indicating 

possible delay in or decreased ability to repair double-stranded DNA breaks. In contrast, 

p53 phosphorylation peaks by 2 h and decreases by 7 h after IR in both H1 and WI-38 

cells, while elevated p53 phosphorylation is maintained for at least 24 h in MDA-MB-

231 cells, perhaps due in part to high basal levels of phospho-p53. Chk2-Ser-68 

phosphorylation is transiently induced at 2 h in both H1 and MDA-MB-231 cells but not 

detectable in WI-38 cells under our experimental conditions. Protein levels of p21 are 

barely detectable in irradiated H1 cells, while p21 is clearly detected and induced by p53 

activation as expected in WI-38 cells; p21 is not expressed in the tumor-derived MDA-

MB-231 cells. Taken together, these results indicate both differences and similarities in 

the molecular mechanisms by which human ES cells mitigate deleterious effects of DNA 

damage compared to normal and tumor-derived somatic cells. 

 

Expression and siRNA-mediated depletion of survivin during the DNA damage 

response in human ES cells 

Both control and irradiated H1 human embryonic stem cells have substantial 

levels of survivin, although at lower levels than in MDA-MB-231 cancer cells, as 



165 
 

 

determined by western blot analysis (Fig. 4A).  These high levels of survivin that are 

indicative of resistance to apoptosis are largely sustained for at least 24 h in both cell 

types, but survivin is not detected in WI-38 fibroblasts irrespective of irradiation.  

Although levels of survivin are significantly lower in pluripotent human ES cells 

following subcultivation, there is a stress induced response (data not shown).  To test 

whether survivin is required for hES cell survival after induction of DNA damage, we 

generated survivin-depleted ES cells using RNA interference. Survivin siRNA treatment 

results in a >3-fold decrease in survivin protein levels in non-irradiated cells (Figs. 4B 

and 4C).  This reduction in survivin levels does not impinge on survival during the first 

24 h after IR (Fig. 4B), but appears to reduce cell fitness modestly at later times (96 h) 

(Fig. 4C). We conclude that survivin is at least in part dispensable for hES cell survival 

after gamma radiation, suggesting a novel role in human ES related regulatory 

mechanisms. 

 

 

 

 

 

 

 

 



166 
 

 

Fig. 4.  Expression and function of survivin upon γ-irradiation in human ES cells. A. 

Western blot analysis was used to monitor survivin protein levels in human H1 

embryonic stem cells, normal diploid WI-38 fibroblasts and MDA-MB-231 breast cancer 

cells upon γ-irradiation (5 Gy) at the indicated time-points. Levels of α-tubulin were 

determined as an internal control for protein loading.  B and C. Effect of siRNA-mediated 

depletion of survivin during the DNA damage response in human ES cells. Cells were 

transfected with either control or survivin siRNA for 48 hours and then exposed to 5Gy 

of γ-irradiation.  B. Cell survival was measured by MTS assay as function of time after 

treatment.  C. siRNA treatment is effective as revealed by reduced survivin levels 

throughout a 96 h time course after IR. 
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DISCUSSION 

 

In this study we have shown that human ES cells lack a G1 checkpoint in 

response to ionizing radiation. We find that the ATM pathway is activated in hES cells in 

response to IR, but there is essentially no p21 protein to support a cell cycle arrest.  

However, these cells activate Chk2 and express survivin, thus providing p21- 

independent mechanisms to recuperate from DNA-damage. 

Following DNA damage human ES cells will not divide but instead initiate 

apoptosis.  Indeed, we find that the majority of hES cells are undergoing cell death via 

Caspase-related mitochondrial apoptosis following induction of DNA damage.  This 

apoptotic mechanism may ensure that genomic integrity is not compromised in human ES 

cells. Our results show that surviving human ES cells enter a cell cycle block after IR.  

Human ES cells do not arrest in G1, but block in the G2 phase of the cell cycle. 

The induction of p53 phosphorylation in response to IR would be expected to 

inhibit survivin expression through a direct mechanism of transcriptional repression 

(Dumaz and Meek, 1999). Survivin is a well characterized downstream target of p53, 

which is transcriptionally silenced in a pathway that may enhance p53-dependent 

apoptosis.  Given that it is unclear how survivin is regulated after IR in ES cells, this 

response may involve post-transcriptional mechanisms that include protein stabilization 

and reduced destruction.   

The strong induction of Chk2 in response to DNA damage in the hES cells is 

consistent with previous studies that Chk2 activation induces survivin expression in 
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tumor cells (Ghosh et al, 2006).  This was not a transcriptional response but a 

redistribution of survivin from mitochondria into the cytosol.  The response may 

contribute to inhibition of apoptosis after IR and may be analogous to the response we 

observe with the human ES cells. 

Survivin is expressed in hES cells, but its depletion does not have a major impact 

on hES cell survival after DNA damage. This finding suggests that survivin may perform 

another function that is not necessarily coupled to canonical cell survival pathways. 

Survivin function is associated with inhibition of mitochondrially-mediated and Caspase-

related programmed cell death (Altieri, 2008b; Altieri, 2008a; Salz et al, 2005; Luo and 

Altieri, 2008; Altieri, 2006; Altieri, 2003).  Recent studies have shown that Caspases are 

transiently expressed in human ES cells during the transition when ES cells relinquish 

pluripotency and initiate lineage commitment (Abdul-Ghani and Megeney, 2008; Janzen 

et al, 2008; Fujita et al, 2008). This increased Caspase activity is required to degrade the 

complement of transcription factors that establish and/or sustain the pluripotent state. The 

possibility arises that survivin may attenuate the activity of Caspases to permit cell 

survival while allowing the degradation of the regulatory factors that determine stemness. 

In this study we have revealed some of the previously unknown fundamental 

differences between human ES cells and normal somatic cells in response to IR. We have 

shown that human ES cells lack a G1 checkpoint and have a p21–independent G2 

checkpoint. Further elucidation of the mechanisms governing the G2 checkpoint in 

human ES cells will give us insight into how these cells are protecting their genomic 

integrity.  In addition, our data suggest that human ES cells may invoke a novel role for 
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survivin. Dissecting the role of survivin in human ES cells may contribute to 

understanding mechanisms associated with cellular differentiation.  
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