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Abstract 

Progression through the cell cycle is tightly controlled, and the decision 

whether or not to enter a new cell cycle can be influenced by both internal and 

external cues. For budding yeast one such external cue is pheromone treatment, 

which can induce G1 arrest.  Two distinct mechanisms are known to be involved 

in this arrest, one dependent on the arrest protein Far1 and one independent of 

Far1, but the exact mechanisms have remained enigmatic. The studies 

presented here further elucidate both of these mechanisms.  

We looked at two distinct aspects of the Far1-independent arrest 

mechanism. First, we studied the role of the G1/S regulatory system in G1 arrest. 

We found that deletion of the G1/S transcriptional repressors Whi5 and Stb1 

compromises Far1-independent arrest, but only partially, and that this partial 

arrest failure correlates to partial de-repression of G1/S transcripts.  Deletion of 

the CKI Sic1, however, is more strongly required for arrest in the absence of 

Far1, though not when Far1 is present. Together, this demonstrates that 

functionally overlapping regulatory circuits controlling the G1/S transition 

collectively provide robustness to the G1 arrest response. We also sought to re-

examine the phenomenon of pheromone-induced loss of G1/S cyclin proteins, 

which we suspected could be another Far1-independent arrest mechanism. We 

confirmed that pheromone treatment has an effect on G1 cyclin protein levels 

independent of transcriptional control.  Our findings suggest that this 

phenomenon is dependent on SCFGrr1 but is at least partly independent of Cdc28 
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activity, the CDK phosphorylation sites in Cln2, and Far1.  We were not, 

however, able to obtain evidence that pheromone increases the degradation rate 

of Cln1/2, which raises the possibility that pheromone reduces their synthesis 

rate instead.  

Finally, we also studied the function of Far1 during pheromone-induced 

G1 arrest. Although it has been assumed that Far1 acts as a G1/S cyclin specific 

CDK inhibitor, there has been no conclusive evidence that this is the case. Our 

data, however, suggests that at least part of Far1’s function may actually be to 

interfere with Cln-CDK/substrate interactions since we saw a significant decrease 

of co-pulldown of Cln2 and substrates after treatment with pheromone. All 

together, the results presented here demonstrate that there are numerous 

independent mechanisms in place to help robustly arrest cells in G1.   



"##

Table of Contents 

Title Page………………………………………….….………………………………ii 

Signature Page………………………..…….……….………………………………iii 

Acknowledgement…………..…………….…………………………………………iv 

Abstract…………………………………….…………………………………….……v 

List of Tables……………………………….…………………………………………ix 

List of Figures…………………………………………………………………………x 

Preface………………………………………………………………………………...xi 

 

CHAPTER I: Introduction ……………………………………………………………1 

 

CHAPTER II: Functional overlap among distinct G1/S inhibitors in yeast allows 

robust G1 arrest and prevents premature cell cycle commitment……………….18 

Abstract………………………………………………………………………………..19  

Introduction…………………………………………………………...………………21 

Materials and Methods………………………………………………………...……26 

Results…………………………………………………………………………………33 

Discussion………………………………………………...….……………………….61                              

 

CHAPTER III: G1/S cyclin protein levels decrease after pheromone treatment..70 

Abstract………...……………………………………………………………………...71 

Introduction……………………………………………………………………………72 

Results……………………………………………………………………...………….75 

Discussion…………………………………………………………………....……….94 

Material and Methods………………………………………………………………..98 

 

CHAPTER IV: Far1-dependent G1 arrest in response to pheromone is the result 

of interference with the ability of Cln proteins to bind with their substrates…...105 

Abstract………………………………………………………………………..…….106 



"###

Introduction……………………………………………………………….………107 

Results……………………………………………………………………………..112 

Discussion…………………………………………………………...……………137 

Material and Methods……………………………………………………………143 

 

CHAPTER V: Concluding Remarks……………………………………...……150 

 

References………………………………………...………………………………155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



"#

List of Tables 

 

Table 2.1.  Yeast strains used in Chapter II  

Table 2.2.  Oligonucleotide primers used for RT-qPCR analysis  

Table 2.3.  Plasmids used in Chapter II 

Table 3.1.  Yeast strains used in this Chapter III  

Table 3.2.  Plasmids used in Chapter III  

Table 4.1.  Yeast strains used in Chapter IV  

Table 4.2.  Plasmids used in Chapter IV 



"

List of Figures 

Figure 2.1.  Far1-independent arrest and cell cycle commitment in synchronous 
cultures. 
Figure 2.2.  Partial role for Whi5 in Far1-independent arrest. 
Figure 2.3.  Effects of Far1, Whi5, and Stb1 on G1/S mRNA levels. 
Figure 2.4.  Loss of repressors only partially de-represses transcription. 
Figure 2.5.  Strong role for Sic1 in Far1-independent arrest. 
Figure 2.6.  Failure to arrest in G1 causes loss of viability during pheromone 
exposure. 
Figure 2.7: Tec1 antagonizes G1 arrest 
Figure 2.8: A simple illustration of multiple pathways contributing to pheromone 
arrest. 
 
 
Figure 3.1: G1/S protein levels decrease after pheromone treatment 
Figure 3.2: Loss of G1/S proteins is Cdc28-independent, but partially dependent 
on Far1 
Figure 3.3: Pheromone-induced protein loss requires Grr1 but not CDK 
consensus sites  
Figure 3.4: Protein levels after arrest with nocodazole or hydroxyurea  
Figure 3.5: Protein levels after transcriptional shut-off  
Figure 3.6: Protein levels after translational shut-off  
 
Figure 4.1: Schematic of Far1-dependent G1 arrest  
Figure 4.2: Far1 prevents Cln-CDK substrate interactions 
Figure 4.3: Different alleles of Far1 affect G1 arrest as well as Cln-CDK/substrate 
binding 
Figure 4.4: Detection of docking-dependent binding between Cln2 and full-length 
substrate proteins. 
Figure 4.5: The allele of Far1 can affect binding of full-length Ste20 or Ste5 to 
GST-Cln2 
Figure 4.6: Day-to-day variability of the binding phenotype with Ste20 as the 
substrate 
Figure 4.7: Day-to-day variability of the binding phenotype with Ste5 as the 
substrate 
Figure 4.8: FAR1 genotype and pheromone also affect substrate phosphorylation  
Figure 4.9: Comparison of Far1 and substrates in whole cell extracts and binding 
assays 



"#

Preface 

 

Portions of this dissertation appear in separate publications: 

 

Pope, P. and Pryciak, P.M. Functional overlap among distinct G1/S inhibitors in 
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CHAPTER I 

Introduction 

 

 

Progression through the cell cycle is tightly controlled, and the transition 

from G1 to S phase in particular is a critical regulatory step in all organisms. In 

multicellular eukaryotes, including humans, cells must decide during G1 if they 

are going to divide, differentiate, or die, and this decision is influenced by a 

multitude of environmental cues. Improper responses to these external cues can 

lead to cancer, and many oncogenes and tumor suppressor genes have a link to 

G1 control. Inappropriate levels of cell cycle control related proteins such as 

Cyclin D, p27Kip1, and Rb have been linked to cancer (Massague, 2004); 

demonstrating the importance of appropriate control of the G1/S transition.  

The following dissertation describes how one external cue, mating 

pheromone, can influence the cell cycle of the budding yeast Saccharomyces 

cerevisiae. Specifically, pheromone treatment induces a G1 arrest, and these 

studies look at two distinct mechanisms involved in this arrest, one dependent on 

the arrest protein Far1 and one independent of Far1. Although the existence of 

both of these pathways is well established the exact mechanisms have remained 

enigmatic. By studying how yeast control the G1/S transition in this setting we 

hope to shed further light on cell cycle control in all eukaryotic cells 
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Cell cycle Control in Saccharomyces cerevisiae 

In all eukaryotes the cell cycle is controlled by cyclin dependent kinases 

(CDKs) (Morgan, 1997).  In budding yeast, the primary CDK responsible for cell 

cycle control is Cdc28/Cdk1 and its association with a series of nine cyclins 

determines its specificity at various points in the cell cycle (Cross, 1995; 

Nasmyth, 1996; Koivomagi et al., 2011). Several waves of CDK activity control 

when and how the cells progress through the cell cycle, and consequently the 

expression and activation of cyclins is tightly regulated. There are three G1 

cyclins in yeast: Cln1, Cln2, and Cln3. Deletion of all three cyclins causes the 

cells to permanently arrest in G1 (Hadwiger et al., 1989; Richardson et al., 1989; 

Cross, 1990). Although the presence of any one of these cyclins is sufficient to 

promote growth, there are distinct differences between their native functions 

(Dirick et al., 1995). CLN3 is expressed at low levels throughout the cell cycle, 

with a slight peak in M phase that is necessary for initiation of the new cell cycle 

(Tyers et al., 1993; McInerny et al., 1997; MacKay et al., 2001). The two G1/S 

cyclins CLN1 and CLN2 peak late in G1 and are necessary for propelling the 

cells through Start, the point at which cells commit to completing a new cell cycle 

(Hartwell et al., 1974; Wittenberg et al., 1990; Tyers et al., 1993). The remainder 

of the cell cycle is controlled by a set of six B-type cyclins (Clb1-Clb6) that can be 

broken down into two subsets, S-phase cyclins (Clb5 and Clb6) and M-phase 

cyclins (Clb1-Clb4) required for the appropriate timing of mitosis (Nasmyth, 1996; 
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Bloom and Cross, 2007). Of particular interest to this dissertation is control of the 

G1/S transition, which will be discussed in detail in the following sections. 

 

Control of the G1/S transition through G1 and G1/S cyclins 

The yeast G1 cyclin Cln3 initiates a new cell cycle early in G1 by 

phosphorylating and deactivating the transcriptional repressor Whi5 (the yeast 

analog of RB), thereby allowing transcription of a host of G1/S genes including 

the G1/S cyclins CLN1 and CLN2 (Stuart and Wittenberg, 1995; Costanzo et al., 

2004; de Bruin et al., 2004; Schaefer and Breeden, 2004). Cln1 and Cln2 can 

then activate a positive feedback loop by further increasing expression of the 

G1/S gene set (Skotheim et al., 2008). This process produces a rapid increase in 

transcription of the G1/S regulon in late G1, causing the cell to progress through 

Start, the yeast equivalent of the restriction point in higher eukaryotes (Hartwell 

et al., 1974; Blagosklonny and Pardee, 2002), and begin a new round of DNA 

replication. 

CLN3 transcription is not as strongly cell cycle as the other cyclins 

(although it is subject to control based on nutrient conditions), so its cyclical 

function relies more heavily on post-transcriptional control of mRNA and protein 

abundance and localization (Tyers et al., 1992; Cross and Blake, 1993; Shi and 

Tu, 2013).  In wild type cells Cln3 localizes to cytoplasmic punctae during early 

G1, and then accumulates in the nucleus in late G1 with a peak at Start (Wang et 

al., 2004).  After Start Cln3 rapidly dissipates from the nucleus.  This localization 
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of Cln3 is controlled at both the mRNA and protein level. Its cytoplasmic 

sequestration appears to occur by association of Cln3/CDK complexes with the 

ER, and dissociation of Cln3 from the ER correlates with its rapid entry into the 

nucleus and recruitment to promoters bound by the transcription factors SBF and 

MBF (Gari et al., 2001; Wang et al., 2004; Verges et al., 2007). 

Once in the nucleus Cln3 is able to phosphorylate Whi5, causing Whi5 to 

dissociate from the promoters and exit the nucleus, which allows for initiation of 

the G1/S transcriptional program (de Bruin et al., 2004). It is this Cln3-mediated 

expulsion of Whi5 that appears to act as the primary cell size control mechanism 

in yeast cells. Once Whi5 exits the nucleus the time to budding is independent of 

cell size (Di Talia et al., 2007).  

Although Cln3 phosphorylation of Whi5 is a primary regulator of the initial 

activation of the approximately 200 genes in the G1/S regulon (Spellman et al., 

1998), it is not the only factor involved.  There are two heterodimeric transcription 

factors involved in G1/S control known as MBF and SBF (Koch et al., 1993).  

Each contains a common regulatory subunit Swi6 and specific DNA binding 

subunits Mbp1 in MBF and Swi4 in SBF that bind specific recognition sites (Iyer 

et al., 2001).  SBF appears to have a predominantly positive role in 

transcriptional control, whereas MBF seems to function as both a positive and 

negative regulator (de Bruin et al., 2004; de Bruin et al., 2006). These two 

transcription factors are aided in their control of G1/S transcription through their 

interaction with various regulatory proteins. The aforementioned inhibitor Whi5 
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binds SBF (and possibly MBF) during G1, repressing transcription until it is 

phosphorylated by Cln3-CDK, which causes it to dissociate from the promoter 

and leave the nucleus.  Another factor, Stb1, binds both SBF and MBF through 

Swi6 and may have both repressive and activating properties since Stb1 appears 

to be required both for repression of G1/S transcription in early G1 as well as 

attainment of maximal levels of MBF-dependent gene expression (Ho et al., 

1999; Costanzo et al., 2003; de Bruin et al., 2008). At least part of the repressive 

action of Whi5 and Stb1 stems from their role in recruiting histone deacetylase 

complexes to SBF and MBF-bound promoters. The Rpd3 HDAC complex can be 

found at SBF promoters in early G1, and appears to dissociate in a Cln3-

dependent manner (Huang et al., 2009; Takahata et al., 2009; Wang et al., 

2009).  

After passage through Start the SBF complex dissociates from promoters, 

thereby stopping expression of those genes. MBF, however, remains associated 

with its promoters post-Start and transcription is instead constrained by the 

binding of the repressor Nrm1 (de Bruin et al., 2006). 

The two G1/S cyclins Cln1 and Cln2 are at least partially redundant, 

although there does seem to be some specificity of function. The reason for this 

specificity is unclear, but there is evidence that localization of the two proteins 

could be involved (Edgington and Futcher, 2001; Quilis and Igual, 2012) . This 

observation suggests that the localization of cyclins could play a role in their 

specificity and function, and may also suggest a means of regulating activity 
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through regulation of localization, something that could become relevant in 

Chapter 4 where the role of Far1 in regulating cyclin proteins is discussed.  

The important role of all of these factors in controlling the G1/S transition 

makes them potential targets for regulation during pheromone arrest, a topic that 

will be addressed further in Chapter 2. 

 

Control of the G1/S transition through the CKI Sic1 

Another established aspect of the G1/S regulatory machinery is Sic1. Sic1 

is a B-type cyclin specific CDK inhibitor, analogous to mammalian p27(Kip1), that 

appears to play a role in the timing of B-type cyclin activity (Mendenhall, 1993; 

Schwob et al., 1994; Barberis et al., 2005). Although low levels of Sic1 are 

present throughout the cell cycle, peak levels are seen in late M and G1. 

Transcription of SIC1 is controlled by the transcription factors Swi5 and Ace2, 

which activate SIC1 transcription in late M phase Clb-dependent degradation of 

Swi5 then shuts off SIC1 expression in G1 (Knapp et al., 1996; Toyn et al., 1997; 

Barberis, 2012). Increasing levels of Sic1 in late M appear to have a role in 

inhibiting Clb2-CDK activity to allow for mitotic exit. It is, however, Sic1’s 

interaction with Clb5 and Clb6 during G1 that is most well characterized, and 

most relevant to G1/S regulation. 

Transcription of the S-phase cyclins Clb5 and Clb6 is controlled by the 

MBF machinery, and is therefore upregulated at the same time as Cln1 and Cln2 

(Schwob and Nasmyth, 1993). Their activity, however, is inhibited during G1 by 
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the presence of Sic1.  During G1 Sic1 binds and inhibits Clb-CDK complexes, 

and in late G1 CDK-dependent phosphorylation targets Sic1 for ubiquitin-

dependent degradation (Feldman et al., 1997; Verma et al., 1997; Nash et al., 

2001; Koivomagi et al., 2011). Underlining the importance of Clb5 and Sic1 are 

numerous associated phenotypes. A strain deleted for all three G1 cyclins is 

inviable, however, overexpression of CLB5 or deletion of Sic1 can restore 

viability (Oehlen et al., 1998). This suggests that control of Sic1/Clb5 may be a 

major factor of G1/S timing. A strain deleted for SIC1 has a seventeen-fold 

increase in incidence of gross chromosomal rearrangements (Lengronne and 

Schwob, 2002), demonstrating that unscheduled activation of Clb activity in G1 

can seriously impact the cell.  

Sic1 stability appears to be modulated by carbon source, in cells grown in 

ethanol Sic1 demonstrates increased stability with a correlated decrease in Clb5 

associated kinase activity.  Suboptimal carbon sources also affect the cell cycle 

localization of Sic1, keeping Sic1 cytosolic longer, suggesting that Sic1 is 

involved in the cellular response to nutrient conditions (Rossi et al., 2005). 

Growth in a poor carbon source requires an overall slowing of the cell cycle to 

allow more time for the cell to reach a critical size, and the use of Sic1 as a 

means to control cell cycle progression in this instance demonstrates the 

importance of Sic1 in the timing of the G1/S transition. The role Sic plays in 

pheromone-induced G1 arrest will be discussed further in Chapter 2. 
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Mating: a yeast differentiation pathway 

As with all eukaryotic cells, cell division in yeast is influenced by both 

external and internal signals, which determine if and when a cell will commit to 

another cell cycle.  In higher eukaryotes these signals include hormones and 

growth factors, and in yeast they include nutrient levels and other environmental 

conditions.  Another important regulator in yeast is the presence of mating 

pheromone (Bender and Sprague, 1986). Haploid Saccharomyces cerevisiae 

cells exist in two mating types (MATa or MAT!).  Exposure of cells to the mating 

pheromone of the opposite type (!-factor or a-factor) results in activation of a 

MAP kinase cascade that leads to significant changes in gene expression 

patterns (increasing transcription of some genes and repressing others) and cell 

morphology. As a result, the cells arrest in G1, create mating projections 

(shmoos), and the two haploid cells fuse to create one diploid cell (Elion, 2000; 

Dohlman and Thorner, 2001).   

 The mating response initiates when pheromone is bound by a cell surface 

G-protein coupled receptor (Ste2 in MATa or Ste3 in MAT!) (Nakayama et al., 

1987; Nomoto et al., 1990). Binding causes the release of G"# (Ste4 and Ste18) 

from G! (Gpa1) on the inner surface of the plasma membrane (Miyajima et al., 

1987; Whiteway et al., 1989).  This free G"# is then able to recruit the cell polarity 

proteins required for mating projection formation as well as the MAP kinase 

scaffold protein Ste5 to the membrane along with its associated MAP kinases 

(Choi et al., 1994; Marcus et al., 1994; Pryciak and Huntress, 1998; Mahanty et 
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al., 1999; Nern and Arkowitz, 1999; Winters et al., 2005; Lamson et al., 2006).  

Once the MAP kinase cascade is associated with the membrane, the membrane-

bound PAK family kinase Ste20 can then phosphorylate and activate the 

MAPKKK Ste11, which in turn phosphorylates and activates the MAPKK Ste7 

(Neiman and Herskowitz, 1994; Zheng and Guan, 1994; Feng et al., 1998; 

Leeuw et al., 1998; Drogen et al., 2000). The subsequent activation of the MAPK 

Fus3 or Kss1 by Ste7 allows them to phosphorylate targets, at consensus S/T-P 

sites, that play roles in all aspects of the mating response (Errede et al., 1993; 

Ma et al., 1995; Bardwell et al., 1996).  Although the two MAPK proteins are 

partially redundant Fus3 plays a greater role in the mating response (Elion et al., 

1991; Madhani et al., 1997; Cherkasova et al., 1999; Breitkreutz et al., 2001). It is 

believed that Fus3, once phosphorylated, will dissociate from Ste5 and diffuse 

through the cytoplasm and nucleus in order to activate downstream effectors of 

the mating response (Elion et al., 1993; van Drogen et al., 2001). 

  

Downstream effectors of the mating pathway 

One known target of the MAPK is the transcriptional activator Ste12.  

Ste12 binds pheromone response elements (PRE) in the promoters of its target 

genes (Dolan et al., 1989). Prior to pheromone activation the repressors Dig1 

and Dig2 bind Ste12, which keeps transcription shut off (Tedford et al., 1997; 

Chou et al., 2006).  Activated MAPK phosphorylates these repressors, which 

then dissociate from Ste12, allowing Ste12 to induce transcription of 
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approximately 200 genes necessary for the mating process including some 

members of the mating response pathway (Dolan and Fields, 1990; Elion et al., 

1993; Roberts et al., 2000).  

 Another known target of the MAPK is Far1 (Factor arrest), discovered, as 

its name suggests, in a screen for mutants that no longer arrest is response to 

pheromone (Chang and Herskowitz, 1990).  Activated Far1 is believed to be a 

CDK inhibitor (CKI) specific for G1-cyclin (Cln)-CDK complexes, and can thus 

prevent the cyclins from promoting passage through Start (Chang and 

Herskowitz, 1992; Tyers and Futcher, 1993; Peter and Herskowitz, 1994; Gartner 

et al., 1998). The mating pathway and cell cycle progression are mutually 

antagonistic, meaning that components of the mating pathway can inhibit cell 

cycle progression, and the cell cycle machinery can likewise prevent pheromone 

pathway activation (Oehlen and Cross, 1994; Oehlen et al., 1998).  Cells are only 

responsive to pheromone in late mitosis and G1, once past Start they will not 

respond to pheromone until after completion of the division cycle. There are a 

few ways in which the cell cycle inhibits pheromone signaling.  Basal levels of 

expression of mating genes fluctuate during the cell cycle with a peak in early 

G1, and they decrease late in G1 when G1/S transcripts including CLN1 and 

CLN2 are at their highest (Oehlen and Cross, 1994; Wassmann and Ammerer, 

1997). The expression and stability of Far1 itself is also tied to the cell cycle, the 

protein accumulates in G1 but is targeted for degradation as cells pass Start in a 

CDK-dependent manner (McKinney et al., 1993; Henchoz et al., 1997). Another 
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means of cell cycle regulation of the mating pathway is through regulation of the 

scaffold protein Ste5 and its recruitment to and association with the plasma 

membrane (Winters et al., 2005; Bhattacharyya et al., 2006). The G1/S cyclins 

inhibit the membrane localization of Ste5 by phosphorylating sites flanking a 

plasma membrane associating domain of Ste5 (Strickfaden et al., 2007).  These 

phosphorylations prevent strong association of Ste5 with the membrane, and 

thereby prevent signaling through the mating pathway. This mechanism ensures 

that once a threshold of cyclin activity has been reached, the cell will no longer 

be able to activate the mating response, allowing it to progress to S phase 

without interference.  If cells are exposed to pheromone in early G1, activated 

Far1 inhibits G1/S cyclin-CDK activity and thereby prevent this CDK inhibition of 

Ste5. Although Far1 is important for pheromone-induced G1 arrest, its exact 

molecular activity has remained somewhat controversial.  Early reports 

suggested that Far1 directly inhibited CDK activity, but later work was unable to 

confirm this effect (Peter and Herskowitz, 1994; Gartner et al., 1998). Hence, it 

seems clear that Far1 serves to antagonize Cln-CDK activity in vivo, but the 

precise molecular mechanism by which this is accomplished is unclear. Chapter 

4 of this dissertation returns to this question of Far1’s role in CDK inhibition.  

Far1 is regulated both positively and negatively following phoshorylation 

by both MAPKs and CDKs respectively.  During pheromone treatment, the MAPK 

Fus3 phosphorylates Far1 at position T306, which enhances its binding to Cln2 

(Gartner et al., 1998); consequently, a far1-T306A mutant strain is defective at 
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pheromone arrest, suggesting that Far1 interaction with Cln2 is vital for G1 

arrest. CDK phosphorylation of Far1 at position S87 targets it for degradation; 

hence, a Far1-S87A mutant protein is significantly stabilized and causes 

increased sensitivity to pheromone (McKinney et al., 1993; McKinney and Cross, 

1995; Henchoz et al., 1997; Doncic et al., 2011). 

Although Far1 was originally discovered in a screen for mutants that could 

not arrest in response to pheromone, it was also observed that deletion of CLN2 

in a far1$ strain could restore some level of G1 arrest (Chang and Herskowitz, 

1992). This finding reveals that there must be some additional, Far1-independent 

route by which the pheromone pathway interferes with the G1/S transition.  

Indeed, the far1! arrest defect can also be suppressed by overexpressed or 

constitutively active forms of pheromone signaling proteins (Cherkasova et al., 

1999). Nevertheless, these Far1-independent routes have remained undefined. 

Potential mechanisms for this Far1-independent arrest will be discussed further 

in Chapter 2. 

Potential targets of this Far1-independent arrest include various aspects of 

the previously discussed G1/S regulatory machinery. Prior evidence suggested 

that Cln2 might be destabilized as a result of !-factor arrest (Valdivieso et al., 

1993; Lanker et al., 1996). There is also evidence that the ubiquitin ligase 

SCFGrr1, which is normally responsible for ubiquitination of the G1/S cyclins, is 

important for pheromone-induced G1 arrest (Schweitzer et al., 2005). Exactly 

what role Grr1 and/or Cln protein degradation might be playing in the pheromone 
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response will be further studied in Chapter 3.  Additionally, in response to 

pheromone, the full complement of G1/S genes are not transcribed (Roberts et 

al., 2000). There is evidence that this process may, at least partially, be Far1-

independent since previous work demonstrated that CLN1 transcription is still 

repressed in response to pheromone in a far1" cln2" strain (Valdivieso et al., 

1993).  Whether this repression is the result of an active pheromone-induced 

mechanism or merely the result of the absence of CDK activation is unclear. 

 Recently, evidence suggesting that Far1 may have roles outside of the 

pheromone response has been mounting. Overexpression of FAR1 produces 

cells that have increased cell volume, with a corresponding increase in RNA and 

protein synthesis suggesting a role for Far1 in global control of growth and 

macromolecule synthesis (Busti et al., 2012).  It has also been shown that 

degradation of Far1, in a Cdc48-dependent manner, is necessary for progression 

past Start (Fu et al., 2003). Additionally, strains with deletions of various 

components of the pheromone pathway exhibit larger cell size suggesting that 

basal signaling through the mating pathway may antagonize growth (Goranov et 

al., 2009).  Taken together, these data provide evidence that Far1 plays a role 

not only during pheromone response, but also during vegetative growth. 

 

The role of Far1 in polarized growth 

 Aside from its role in pheromone-induced arrest Far1 is also important for 

control of polarized growth in both budding and shmooing cells (Valtz et al., 
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1995). Polarized growth requires activation of the Rho family GTPase Cdc42 by 

its GEF Cdc24 to orient the actin cytoskeleton (Etienne-Manneville, 2004), and 

the proper recruitment of Cdc24 to the site of budding or shmooing is dependent 

on Far1 (Wiget et al., 2004). During G1, Cdc24 is localized in the nucleus, and 

becomes cytoplasmic at the time of bud emergence. Nuclear export of Cdc24 

coincides with the peak of CLN expression, and activation of Cln-CDK activity 

appears sufficient to promote Cdc24 nuclear export. Far1 is degraded at the time 

of bud emergence in a CDK-dependent manner, and it appears this degradation 

of Far1 is critical for Cdc24’s export from the nucleus, suggesting that Far1 

serves to sequester Cdc24 in the nucleus until the time of bud emergence (Nern 

and Arkowitz, 2000; Shimada et al., 2000). 

 Far1 is also involved in the control of Cdc24 during mating, although the 

mechanism varies from that involved in budding. In response to pheromone a 

portion of Far1 goes from the nucleus to the cytoplasm, and it is recruited to the 

plasma membrane by the G!! subunit. It appears that in this instance Far1 is able 

to bring Cdc24 along with it to the site of shmoo formation thereby initiating the 

pheromone induced polarized growth (Butty et al., 1998; Nern and Arkowitz, 

2000; Shimada et al., 2000). 

 The role of Far1 in polarized growth shows that Far1 influences non-

pheromone related cell functions, and also demonstrates how the cell can use 

localization of Far1 to control cellular functions; something to keep in mind in 
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Chapter 4 where we’ll be discussing how Far1 could be regulated Cln-CDK 

activity. 

 

A second CDK: Pho85 

Budding yeast cells also possess a second CDK, Pho85, originally 

identified for its role in phosphate metabolism. Pho85 functions with its 10 

associated cyclins, known as Pcls, in diverse aspects of nutrient response and 

cell cycle control (Toh-e et al., 1988; Measday et al., 1997).  Deletion of PHO85 

is non-lethal, although the cells do appear to have an extended G1, and deletion 

of PHO85 alongside cln1" cln2" is synthetically lethal indicating that the two 

CDKs, Pho85 and Cdc28, have some overlapping function.  Transcription of 

PCL1, PCL2, and PCL9 peaks in G1, similarly to CLN1 and CLN2, making these 

cyclins the most likely candidates for any role in control of the G1/S transition 

(Nasmyth and Dirick, 1991; Measday et al., 1994; Measday et al., 1997). Indeed, 

although a pcl1" pcl2" or a cln1" cln2" mutant is viable a pcl1" pcl2" cln1" 

cln2" quadruple mutant is inviable, again suggesting some functional overlap 

between the two sets of cyclins (Espinoza et al., 1994; Measday et al., 1994). As 

with CLN1 and CLN2, levels of PCL1 and PCL9 decrease after pheromone 

treatment, PCL2 on the other hand, increases (Measday et al., 1997). There is 

also mounting evidence that Pho85 can phosphorylate many substrates initially 

identified as Cdc28 targets, at least in some situations (Huang et al., 2009; Liu et 

al., 2011; Menoyo et al., 2013). Sic1, for example, can be phosphorylated by 
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Pcl1-Pho85 along with Cdc28, suggesting that Pho85 may play a role in G1/S 

control through Sic1 degradation (Nishizawa et al., 1998; Wysocki et al., 2006).  

There has also been evidence that Pho85 plays a role in regulation of Whi5 

(Huang et al., 2009). Pcl9 can be found associated with the promoter of CLN2 

during G1, and this association is dependent on Whi5. Interestingly, although 

deletion of CLN3 or PHO85 causes relatively minor growth defects, the double 

pho85" cln3" has a much more pronounced growth phenotype, which can be 

suppressed by further deletion of WHI5. Taken together these data suggest that 

Cln3 and Pho85 work in separate, but converging, pathways to regulate Whi5 

(Huang et al., 2009). The existence of an alternate CDK comes into play in later 

chapters where I’ll discuss possible means of regulating Cdc28 targets during 

pheromone arrest when Cdc28 is normally inhibited. 

 

Other G1 arrest mechanisms in yeast 

The mating pathway is not the only pathway known to establish a G1 

arrest, and it’s possible that the Far1-independent arrest pathways use 

mechanisms similar to those used by some of these other pathways. The 

following are a few examples of other G1 arrest mechanisms that have been 

demonstrated in yeast. 

 Another MAPK cascade in yeast is the HOG pathway, responsible for 

mediating the cell’s response to high osmolarity. Part of this response is cell 

cycle arrest in G1, and this arrest is dependent on Sic1 (Escote et al., 2004). In 
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response to high osmotic stress the MAPK Hog1 directly phosphorylates Sic1 at 

T173, and this phosphorylation stabilizes Sic1. The absence of Sic1 abolishes 

the high osmolarity induced G1 arrest, as does replacement of T173 with an 

alanine. Although this exact mechanism is unlikely to be involved in pheromone 

arrest, since pheromone-arrested cells in this study did not have the indicated 

Sic1 phosphorylation, it still serves to demonstrate the critical role Sic1 plays in 

G1 control and G1 arrest.  

Activation of the G1 checkpoint in eukaryotes, often as a result of DNA 

damage, also results in a G1 delay (Siede et al., 1994; Bartek and Lukas, 2001). 

In yeast, the most interesting implication of this arrest from a G1/S control 

standpoint arises not from the mechanism of delay, but from the details of how 

the cells eventually escape G1 and enter S phase. During the response to DNA 

damage the cells prevent accumulation of Cln cyclins, thereby preventing 

inactivation of Sic1 and subsequent activation of Clb-CDK activity. But then how, 

in the absence of Cln-CDK activity, can the cells ever release from this G1 

delay? In a screen for mutants with defects in recovery after DNA damage the 

CDK Pho85 was recovered. It appears that Pho85 plays a critical role in the cell’s 

exit from the DNA damage checkpoint, and that this function involves interaction 

with Sic1 (Wysocki et al., 2006). This observation provides further evidence for 

the importance of Sic1 in controlling G1 arrest, as well as the possibility that 

Pho85 can play a role in control of the G1/S transition. 
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CHAPTER II 

Functional overlap among distinct G1/S inhibitors in yeast allows robust 

G1 arrest and prevents premature cell cycle commitment. 

 

 

The following chapter contains the manuscript: 

 

Pope, P. and Pryciak, P.M. Functional overlap among distinct G1/S inhibitors in 

yeast allows robust G1 arrest and prevents premature cell cycle commitment. 

(Manuscript in preparation) 

 

I solely performed all experiments presented. The manuscript was prepared by 

myself and Dr. Peter Pryciak. 
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Abstract 

 

In budding yeast, mating pheromones arrest the cell cycle in G1 phase via a 

pheromone-activated Cdk-inhibitor (CKI) protein, Far1.  Yet alternate routes must 

also exist, because deletion of the cyclin gene CLN2 restores pheromone arrest 

to far1! cells, though by unknown mechanisms.  In metazoans, transcriptional 

repression by Rb proteins and CKI activity of p27/p21 (Kip1/Cip1) proteins 

together inhibit cell cycle entry.  Thus, here we investigated whether yeast 

pheromone arrest involves the G1/S transcriptional repressors Whi5 and Stb1, or 

the p27-like CKI protein Sic1.  Indeed, whi5! and sic1! mutations each caused 

increased escape from G1 in cells lacking Far1 (i.e., far1! cln2!), though not 

when Far1 was present.  Notably, removing the transcriptional repressors caused 

only partial de-repression of G1/S genes in pheromone-treated cells, and hence 

only a partial G1 escape phenotype, indicating that pheromone signaling can still 

inhibit G1/S transcription in their absence.  Deletion of SIC1 had a stronger 

effect, as it almost entirely abolished pheromone-induced G1 arrest in far1! 

cln2! cells.  Therefore, inhibition of B-type cyclin-Cdk activity helps ensure that 

cell cycle entry can still be blocked when signal-mediated arrest is compromised.  

Interestingly, although far1! cln2! sic1! cells escaped G1 arrest, they failed to 

proliferate and instead lost viability during pheromone exposure, indicating that 

exit from G1 is deleterious if pheromone signaling persists.  Overall, our findings 

illustrate how functional overlap among distinct G1/S braking mechanisms can 
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ensure a robust signal-induced G1 arrest and help prevent premature cell cycle 

commitment. 
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Introduction 

 

 Cell cycle progression in all organisms is regulated by both internal and 

external cues.  In eukaryotes, the G1 phase of the cell cycle provides a critical 

period in which cells monitor whether conditions are appropriate for entry into a 

new division cycle (Morgan, 2007).  Signals that control this decision include 

positive and negative growth factors, differentiation triggers, nutrient levels, and 

environmental stresses.  These regulatory signals either promote or prevent the 

transition from a stable G1 state to a new round of DNA synthesis and mitosis. 

Often, cells become insensitive to these regulatory signals once they initiate the 

G1/S transition, establishing a cell cycle commitment phenomenon known as 

“Start” in yeast or the “Restriction Point” in animal cells (Hartwell et al., 1974; 

Pardee, 1974; Cross, 1995; Blagosklonny and Pardee, 2002).  Accordingly, 

signals that influence cell cycle entry generally impact the molecular machinery 

that controls the G1/S transition.  In all eukaryotes, cell cycle transitions are 

promoted by the activity of cyclin dependent kinases (Cdks) as well as by 

coordinate changes in gene expression, and these promoting factors are often 

held in check by inhibitory molecules to ensure that cell cycle progression is 

carefully controlled (Morgan, 2007).  Curiously, the overall architecture of the 

G1/S regulatory network is strongly conserved throughout eukaryotes, yet some 

of the individual components may have evolved separately in yeasts versus 

animals (Cross et al., 2011). 
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 In the budding yeast Saccharomyces cerevisiae, a single Cdk, Cdc28, 

associates with nine different cyclins that help drive distinct cell cycle events 

(Bloom and Cross, 2007).  The transition from G1 to S phase is predominantly 

controlled by the G1 cyclin Cln3 along with two G1/S cyclins Cln1 and Cln2, 

whereas the subsequent events of DNA synthesis and mitosis (in S and M 

phases) are driven by six B-type cyclins (Clb1-Clb6).  The decision of yeast cells 

to enter a new cell cycle can be profoundly influenced by the presence of an 

external cue known as mating pheromone, which promotes fusion of two haploid 

mating partner cells (Hartwell, 1973).  During this mating reaction, pheromone 

activates an intracellular signaling pathway that arrests the cell cycle in G1 

phase, prior to Start (Dohlman and Thorner, 2001; Bardwell, 2005).  An important 

factor in this G1 arrest pathway is the protein Far1, as far1! cells do not arrest in 

response to pheromone (Chang and Herskowitz, 1992).  Far1 is thought to be a 

Cdk inhibitor (CKI) protein that blocks the activity of Cln-Cdc28 complexes and 

thereby prevents progression through Start (Peter et al., 1993; Tyers and 

Futcher, 1993; Peter and Herskowitz, 1994; Jeoung et al., 1998), although some 

findings conflict with this interpretation (Gartner et al., 1998).  Notably, however, 

in some circumstances Far1 is actually dispensable for G1 arrest.  For example, 

removing the G1/S cyclin Cln2 from far1! cells (i.e., far1! cln2!) restores 

pheromone-induced G1 arrest (Chang and Herskowitz, 1992; Cherkasova et al., 

1999).  Thus, even in the complete absence of Far1, pheromone signaling still 
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can interfere with the ability of cells to pass Start and enter a new division cycle.  

Despite early recognition of this fact, the molecular mechanisms responsible for 

Far1-independent arrest have remained obscure. 

 

 In this study, we wished to probe the Far1-independent arrest 

mechanisms more closely, in order to better understand how pheromone 

signaling regulates G1 arrest and to provide more general insights into the 

multiplicity of factors that control cell cycle commitment decisions.  We reasoned 

that the effects of pheromone signaling might depend on known negative 

regulators of the G1/S transition that act as “brakes” to antagonize cell cycle 

entry in many eukaryotes (Morgan, 2007).  One such negative regulator is the 

CKI protein Sic1 (Donovan et al., 1994; Schwob et al., 1994), which is 

functionally analogous to the mammalian CKI p27(Kip1) (Sherr and Roberts, 

1999).  During G1, these CKI proteins inhibit Cdks bound to B-type cyclins, and 

thereby prevent premature entry into S phase.  This inhibition is eventually 

released in late G1, when G1/S cyclin-Cdk activity reaches levels sufficient to 

target the CKI for degradation (Schwob et al., 1994; Nash et al., 2001; Cross et 

al., 2007; Koivomagi et al., 2011).  Another mode of negative regulation involves 

transcriptional repression of genes expressed at the G1/S boundary.  In animal 

cells, transcription of G1/S genes is activated by the E2F family of heterodimeric 

transcription factors and repressed by members of the retinoblastoma protein 

(Rb) family (Frolov and Dyson, 2004; van den Heuvel and Dyson, 2008).  Yeast 
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cells have an analogous system (Bahler, 2005; Wittenberg and Reed, 2005), in 

which G1/S transcription is driven by two heterodimeric transcription factors 

called SBF (Swi4-Swi6) and MBF (Mbp1-Swi6), and is inhibited in early G1 by 

the repressors Whi5 and Stb1 (Koch et al., 1996; Costanzo et al., 2003; 

Costanzo et al., 2004; de Bruin et al., 2004; Bean et al., 2005; de Bruin et al., 

2008).  These repressors block the activity of DNA-bound SBF and MBF in part 

by recruiting repressive histone deacetylases (Huang et al., 2009; Takahata et 

al., 2009; Wang et al., 2009); in late G1, they are phosphorylated and inactivated 

by G1 and G1/S cyclin-Cdk complexes, allowing SBF/MBF-dependent 

transcription to ensue (Costanzo et al., 2004; de Bruin et al., 2004; Wagner et al., 

2009; Doncic et al., 2011).  Important targets of SBF and MBF include the G1/S 

cyclin genes CLN1 and CLN2, which yield increased G1/S Cdk activity, thereby 

creating a positive feedback loop that helps ensure a decisive and coherent G1/S 

transition (Cross and Tinkelenberg, 1991; Dirick and Nasmyth, 1991; Skotheim et 

al., 2008).  MBF/SBF-regulated genes are not expressed in pheromone-arrested 

cells, regardless of whether the arrest is Far1-dependent or Far1-independent 

(Wittenberg et al., 1990; Cherkasova et al., 1999), but it has been unclear 

whether this inhibited transcriptional state is a cause or an effect of G1 arrest. 

 

 Here, we report that although the transcriptional repressors Whi5 and Stb1 

ensure full repression of G1/S transcripts during G1 arrest, pheromone signaling 

can still inhibit peak G1/S gene expression in their absence.  Accordingly, 
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deletion of these repressors compromises Far1-independent arrest, but only 

partially.  By comparison, the CKI Sic1 is more strongly required for arrest in the 

absence of Far1, though not when Far1 is present.  Our results reveal that 

multiple, functionally overlapping regulatory circuits controlling the G1/S transition 

collectively provide robustness to the G1 arrest response, which may help ensure 

that commitment to cell cycle entry occurs decisively rather than tentatively. 
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Materials and Methods 

 

Yeast Strains and Plasmids 

Standard procedures were used for growth and genetic manipulation of yeast

(Rothstein, 1991; Sherman, 2002).  Yeast cultures were grown at 30˚C.  Yeast 

strains are listed in Table 1; all were derived from the W303 background 

(Thomas and Rothstein, 1989) and harbor the bar1! mutation to block ! factor 

degradation.  PCR-mediated gene targeting used methods described previously 

(Longtine et al., 1998); selectable markers included antibiotic resistance genes 

(kanMX6, natMX6) and orthologs of biosynthesis genes from other yeasts (S. 

kluyveri HIS3, C. glabrata TRP1, K. lactis URA3).  To ensure that genetic effects 

were reproducible, independently derived strains of identical genotype were 

tested in parallel, and the combined results were averaged.  For cell 

synchronization experiments, the promoter of the essential cell cycle gene 

CDC20 was replaced with a regulated promoter (PGAL1) using a PCR-generated 

cassette marked with the K. lactis URA3 gene (URA3K.l).  For Cdc28 inhibition 

experiments, the CDC28 gene was replaced with an ATP analog-sensitive allele 

cdc28-as2 via a two-step pop-in/pop-out method (Rothstein, 1991); we used the 

Cdc28-as2 [F88A] mutant (Colman-Lerner et al., 2005) because in our strains the 

more severe mutant Cdc28-as1 [F88G] (Bishop et al., 2000) was hypomorphic, 

as indicated by slow growth and cell shape defects. 
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Synchronous Culture Assays 

As in previous studies (Cosma et al., 2001; Bean et al., 2005; Takahata et al., 

2009), cell cultures were synchronized in mitosis and then released for entry into 

the next cell cycle by using strains in which the CDC20 gene was under control 

of the GAL1 promoter.  These PGAL1-CDC20 strains were grown asynchronously 

in liquid YPGal medium (containing 2% galactose), and then cultures were 

arrested in M phase by pelleting and resuspending in YPD medium (2% 

glucose), followed by incubation for 3 hr.  Cultures were released from the M 

phase block by two rounds of pelleting and washing in YPGal, resuspension in 

YPGal either with or without ! factor (0.2 "M), and incubation (with shaking) for 0 

to 240 minutes. 

 

Flow Cytometry and Budding Assays 

DNA content was measured by flow cytometry using methods described 

previously (Haase and Reed, 2002; Strickfaden et al., 2007).  Briefly, cell aliquots 

(0.5 ml) were harvested by centrifugation, resuspended in 0.3 ml sterile water, 

fixed by addition of 0.7 ml 100% ethanol, mixed by inversion, and incubated 

overnight at 4˚C.  Fixed cells were pelleted, washed once with water, 

resuspended in 0.5 ml freshly prepared RNase solution (2 mg/ml RNase A in 50 

mM Tris-HCl, pH 8.0, 15 mM NaCl), and incubated for 2 hr at 36˚C.  They were 

then pelleted and resupended in 0.2 ml fresh proteinase solution (1 mg/ml 

proteinase K in 50 mM Tris-HCl pH 8.0), incubated for 1 hr at 36˚C, then pelleted 
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and resuspended in 0.5 ml 50mM Tris-HCl, pH 7.5, and stored at 4˚C.  Before 

analysis, the suspensions were sonicated (10 pulses with a micro-tip probe), and 

then 50 "l was mixed with 1 ml fresh Sytox Green solution (1 µM in 50 mM Tris-

HCl, pH 7.5), gently vortexed, and analyzed with a Becton-Dickinson FACScan 

flow cytometer.  For experiments that were directly compared with each other, a 

uniform range of fluorescence values was defined for the 2C peak (generally 

100-150 units) and for the total (including 1C, 2C, and intermediate; generally 40-

200 units), and then %2C was calculated as 100% x 2C/total. 

 To analyze cell cycle position by budding, cells aliquots (0.5 ml) were fixed 

by the addition of formaldehyde to 3.7% final concentration, incubated on nutator 

(room temperature, 10 min.), washed three times with phosphate-buffered saline 

(PBS), and resuspended in 500 "l PBS.  Fixed cells were spotted onto glass 

slides and viewed microscopically to score budded and unbudded cells; for each 

experimental condition, 200 cells were counted. 

 

mRNA Preparation and RT-qPCR Analysis 

As described previously (de Bruin et al., 2008), RNA was prepared using a 

Qiagen RNeasy Plus Mini Kit (#74134).  Cells (~5 x 107) were harvested by 

centrifugation and frozen in liquid nitrogen.  Cell pellets were resuspended in 400 

"l of Qiagen RLT-plus buffer freshly supplemented with "-mercaptoethanol (10 "l 

per ml of buffer), and transferred to a micro-centrifuge tube.  Approximately 400 

"l of acid-washed glass beads were added, and cells were lysed by vortexing (4 
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cycles of 1 min., interspersed with rest periods of 3 min. on ice).  The tube was 

punctured at bottom with a needle, placed in another tube, and centrifuged briefly 

(10 sec) to transfer the lysate to the fresh tube. Then, cell debris was removed by 

centrifugation (2 min., full speed).  The supernatant was loaded onto Qiagen 

gDNA Eliminator columns, and then mRNA was prepared according to the 

manufacturer's instructions, diluted to equal concentrations (0.5 "g/"l), and 

stored at -70˚C.  cDNA was synthesized from the RNA samples using Invitrogen 

SuperScript VILO cDNA synthesis kit (#11754) as per the manufacturer’s 

instructions, using ~2 µg of RNA per reaction.  Products were then diluted to final 

concentration of 2.5 ng/µl.  

 Quantitative real-time PCR reactions were performed using Applied 

Biosystems Power SYBR Green PCR Master Mix (#4367659).  Reaction 

mixtures (15 "l) contained 7.5 "l of SYBR Green reaction mix, 2 "l of primer mix 

(3 "M each primer), 1 "l of cDNA (2.5 ng), and 4.5 "l of water.  Reactions were 

performed in 96-well plates, in duplicate, using an Applied Biosystems 

StepOnePlus instrument. Preliminary trials using multiple primers for each gene 

were performed to identify primer sets with optimal properties (linearity of 

amplification) for use in all subsequent experiments.  Primers are listed in Table 

2.  The ##CT method was used to convert real-time amplification kinetics into 

relative mRNA levels; ACT1 mRNA served as the internal control. 

 

Cell Viability Assays 
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Asynchronous cultures were treated with pheromone to a final concentration of 

0.2 "M for 1-4 hr.  Aliquots were collected before and after treatment, sonicated 

(7 pulses with a micro-tip probe), diluted in sterile PBS, spread on solid synthetic 

medium, and incubated for 2 days.  Viable colonies were counted and expressed 

as a percentage of the number formed by equivalent aliquots of the initial, un-

treated cultures. 
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Source: (1)(Zimmerman and Kellogg, 2001) (2)(Strickfaden et al., 2007)  

Table 2.1.  Yeast strains used in Chapter II 

Name Relevant Genotype* Source 

PPY1716 MATa bar1  1 
PPY1748 MATa bar1 STE5-8A 2 
PPY1777 MATa bar1 far1!::ADE2 2 
PPY1789 MATa bar1 far1!::ADE2 cln2!::kanMX6 2 
PPY1867 MATa bar1 cln2!::kanMX6 this study 
PPY1913 MATa bar1 HIS3::PGPD1-CLB5 2 
PPY1918 MATa bar1 STE5-8A HIS3::PGPD1-CLB5 2 
PPY2013 MATa bar1 far1!::ADE2 cln2!::kanMX6 PGAL1-CDC20::URA3

Kl
 this study 

PPY2014 MATa bar1 far1!::ADE2 cln2!::kanMX6 PGAL1-CDC20::URA3
Kl

 this study 
PPY2019 MATa bar1 far1!::ADE2 cln2!::kanMX6 mbp1!::TRP1

Cg
 PGAL1-CDC20::URA3

Kl
 this study 

PPY2020 MATa bar1 far1!::ADE2 cln2!::kanMX6 mbp1!::TRP1
Cg

 PGAL1-CDC20::URA3
Kl

 this study 
PPY2043 MATa bar1 far1!::ADE2 cln2!::kanMX6 sic1!::TRP1

Cg 
this study 

PPY2063 MATa bar1 PGAL1-CDC20::URA3
Kl 

this study 
PPY2064 MATa bar1 PGAL1-CDC20::URA3

Kl
 this study 

PPY2068 MATa bar1 far1!::ADE2 cln2!::kanMX6 sic1!::TRP1
Cg

 PGAL1-CDC20::URA3
Kl

 this study 
PPY2069 MATa bar1 far1!::ADE2 cln2!::kanMX6 sic1!::TRP1

Cg
 PGAL1-CDC20::URA3

Kl
 this study 

PPY2082 MATa bar1 far1!::ADE2 PGAL1-CDC20::URA3
Kl

 this study 
PPY2083 MATa bar1 far1!::ADE2 PGAL1-CDC20::URA3

Kl
 this study 

PPY2085 MATa bar1 sic1!::TRP1
Cg 

this study 
PPY2087 MATa bar1 far1!::ADE2 sic1!::TRP1

Cg 
this study 

PPY2090 MATa bar1 far1!::ADE2 cln2!::kanMX6 mbp1!::TRP1
Cg

 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
PPY2091 MATa bar1 far1!::ADE2 cln2!::kanMX6 mbp1!::TRP1

Cg
 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

PPY2128 MATa bar1 far1!::ADE2 cln2!::kanMX6 mbp1!::TRP1
Cg

 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP137 MATa bar1 cln2!::kanMX6 stb1!::natMX6 PGAL1-CDC20::URA3

Kl
 this study 

YPAP138 MATa bar1 cln2!::kanMX6 stb1!::natMX6 PGAL1-CDC20::URA3
Kl

 this study 
YPAP141 MATa bar1 far1!::ADE2 cln2!::kanMX6 stb1!::natMX6 PGAL1-CDC20::URA3

Kl
 this study 

YPAP142 MATa bar1 far1!::ADE2 cln2!::kanMX6 stb1!::natMX6 PGAL1-CDC20::URA3
Kl

 this study 
YPAP143 MATa bar1 far1!::ADE2 cln2!::kanMX6 rpd3!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP144 MATa bar1 far1!::ADE2 cln2!::kanMX6 rpd3!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP151 MATa bar1 far1!::ADE2 cln2!::kanMX6 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP152 MATa bar1 far1!::ADE2 cln2!::kanMX6 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP153 MATa bar1 cln2!::kanMX6 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP156 MATa bar1 cln2!::kanMX6 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP157 MATa bar1 far1!::ADE2 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3

Sk
  this study 

YPAP161 MATa bar1 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3
Sk

 this study 
YPAP165 MATa bar1 cln2!::kanMX6 PGAL1-CDC20::URA3

Kl
 this study 

YPAP166 MATa bar1 cln2!::kanMX6 PGAL1-CDC20::URA3
Kl

 this study 
YPAP167 MATa bar1 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP168 MATa bar1 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP171 MATa bar1 far1!::ADE2 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP172 MATa bar1 far1!::ADE2 cln2!::kanMX6 stb1!::natMX6 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP203 MATa bar1 far1!::ADE2 cln2!::kanMX6 rpd3!::HIS3

Sk
 whi5!::TRP1

Cg
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP204 MATa bar1 far1!::ADE2 cln2!::kanMX6 rpd3!::HIS3
Sk

 whi5!::TRP1
Cg

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP208 MATa bar1 cln2!::natMX6 sic1!::TRP1

Cg 
this study 

YPAP209 MATa bar1 far1!::ADE2 cln2!::kanMX6 sic1!::TRP1
Cg

 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP210 MATa bar1 far1!::ADE2 cln2!::kanMX6 sic1!::TRP1

Cg
 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP236 MATa bar1 cln2!::natMX6 sic1!::TRP1
Cg

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP237 MATa bar1 cln2!::natMX6 sic1!::TRP1

Cg
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP238 MATa bar1 cln2!::natMX6 sic1!::TRP1
Cg

 whi5!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP239 MATa bar1 cln2!::natMX6 sic1!::TRP1

Cg
 whi5!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP240 MATa bar1 cln2!::kanMX6 cdh1!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP241 MATa bar1 cln2!::kanMX6 cdh1!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP242 MATa bar1 far1!::ADE2 cln2!::kanMX6 cdh1!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP243 MATa bar1 far1!::ADE2 cln2!::kanMX6 cdh1!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

YPAP244 MATa bar1 far1!::ADE2 cln2!::kanMX6 cdh1!::HIS3
Sk

 PGAL1-CDC20::URA3
Kl

 this study 
YPAP245 MATa bar1 far1!::ADE2 cln2!::kanMX6 cdh1!::HIS3

Sk
 PGAL1-CDC20::URA3

Kl
 this study 

* All strains are in the W303 background (ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1).  In the PGAL1-CDC20 strains, 
a cassette containing the URA3

Kl
 marker and GAL1 promoter is inserted in place of the CDC20 promoter at the native 

CDC20 locus. 
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Table 2.2.  Oligonucleotide primers used for RT-qPCR analysis 

Primer name Sequence (5’ to 3’) 

  
CLN1-fw1 CTTTGGTTAGCGGCCAAAAC 
CLN1-rev1 AGAAAGGCGTGGAATACGAG 
YOX1-up1 AAATAGGCGCTCATCCACAC 
YOX1-dn1 ACGTTTTCACGGGAGTCAAC 
RNR1-up1 TCGAGGCTGCTTTAGAAACG 
RNR1-dn1 GGCAACCAAGAAACAAGAGG 
POL1-fw1 TGACATTTGCTCTGGTAGGC 
POL1-rev1 CGGCTTATGCTCCTTTTCAC 
CDC21-fw1 GGAACCCAGCTGATTTTGAC 
CDC21-rev1 CGGATCCTTCTCCTTCTTTG 
SIC1-fw1 CCAAAAGCCTTCACAGAACC 
SIC1-rev1 GAGAGGTCATACCCATGTTCG 
ACT1-fw1 TTCCAGCCTTCTACGTTTCC 
ACT1-rev1 CCAGCGTAAATTGGAACGAC 
  

 

 

Source: (1)(Sikorski and Hieter, 1989) (2) (Bao et al., 2004) 

Table 2.3.  Plasmids used in Chapter II 
Name Alias Description Source 

pPP681 pRS316 CEN URA3 vector 1 

pPP4042 YCplac33-TEC1 CEN URA3 TEC1 2 

pPP4043 YCplac33-tec1-T273M CEN URA3 TEC1-T273M 2 
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Results 

 

Studying Far1-independent G1 arrest using synchronous cultures 

 

In order to test the contribution of various regulatory factors to pheromone arrest, 

in both the presence and absence of Far1, we used synchronous cultures to 

measure the duration of G1 phase.  The essential cell cycle gene CDC20 was 

placed under control of a regulated promoter (PGAL1), allowing cells to be arrested 

in M phase and then released in the presence or absence of pheromone.  Cell 

cycle progression was monitored by measuring DNA content (using flow 

cytometry) and/or by scoring budding.  This approach offered three useful 

features: (i) by measuring G1 duration, even relatively subtle and temporary 

effects on the G1/S transition could be detected; (ii) by using synchronized cells, 

the uniformity of phenotypes could be readily assessed; and (iii) the specific 

effects of pheromone on G1 arrest could be distinguished from effects on other 

cell cycle stages or on cell viability (which will become important later). 

 

 In this experimental context (Figure 2.1A), most cells finish mitosis and 

enter G1 (i.e., 1C DNA) by 30-60 minutes after release from the M-phase block, 

and then begin a new round of DNA synthesis roughly 30 minutes later (at 90 

min).  If pheromone was added, wild-type cells completed mitosis normally and  
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Figure 2.1.  Far1-independent arrest and cell cycle commitment in 

synchronous cultures. 

(A) Example of synchronous cell cycle progression and G1 arrest.  A PGAL1-

CDC20 strain was arrested in M-phase (by transfer to glucose medium) and 

then released (by return to galactose medium) in the presence or absence of 

! factor.  At the times indicated, DNA content of cells was assayed by flow 

cytometry.  In each histogram, the horizontal axis represents fluorescence, 

and the vertical dimension shows the number of cells.  At bottom is shown the 

range of fluorescence values used to calculate the proportion of cells with 

replicated DNA (%2C) in subsequent figures.  This example shows a cln2! 

strain (YPAP165). 

(B) The ability of ! factor to halt cell cycle progression was analyzed for four 

strains, using the PGAL1-CDC20 method described in panel (A).  Graphs show 

mean ± range (n = 2) for wild type and far1!, or mean ± SD (n = 4) for cln2! 

and far1! cln2! strains. 

(C) Cell cycle commitment occurs earlier in the absence of Far1.  After releasing 

PGAL1-CDC20 cultures from the M-phase block, aliquots were removed at 15-

minute intervals and treated with pheromone.  At 120 min, cells were scored 

for whether they had arrested in G1 (unbudded cells) or entered the cell cycle 

(budded).  Graphs show mean ± SD (n = 3). 
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Figure 2.1.  Far1-independent arrest and cell cycle commitment in synchronous 

cultures.
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then arrested in G1 (for > 3 hr).  To compare multiple different strains and 

replicate experiments, we plotted the percentage of cells with 2C DNA content as 

a function of time (Figure 2.1B); generally, the M-phase arrested cultures were 

80-90% 2C, and by 60 minutes after release they had cycled back to G1 and 

were predominantly 1C (i.e., only 10-15% 2C).  As expected, far1! cells did not 

arrest in G1 in the presence of pheromone (Figure 2.1B).  (In addition, with or 

without pheromone they showed an accelerated return to the 2C state after 

completing mitosis, a behavior consistent with previous findings that Far1 can 

alter the timing of the G1/S transition even without pheromone treatment 

(Alberghina et al., 2004).)   In contrast, when far1! cln2! cells were released in 

the presence of pheromone, they completed mitosis and then remained in G1 for 

an extended period (Figure 2.1B).  The arrest in the far1! cln2! strain was not as 

robust as in wild type or FAR1 cln2! strains, as evidenced by the gradual 

increase in cells with 2C DNA content beginning at 120-150 minutes after 

release.  Thus, G1 arrest in the far1! cln2! cells is partially leaky, but 

pheromone clearly imposes a durable G1 delay that affects the majority of cells 

in the culture.        

 

 Separately, we tested how Far1 affects the window of time in which cells 

commit to a new division cycle (Figure 2.1C).  After releasing cultures from the 

M-phase block, aliquots were removed at short intervals and treated with 

pheromone to test if the cells could still arrest in G1 or were already committed to 
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division.  In wild type and cln2! strains, cells transitioned from fully uncommitted 

(> 95% arrest) to substantially committed (< 65% arrest) between the 45 and 60 

minute time points.  In the far1! cln2! strain, two differences were evident 

(Figure 2.1C).  First, the commitment point occurred roughly 10-15 minutes 

earlier, as judged by the time at which 50% of cells still arrest.  Second, the 

transition was less sharp, as evidenced by a more gradual increase in the 

fraction of cells that could not arrest.  Together, these data illustrate that Far1 

makes the arrest mechanism more potent, as it allows pheromone to arrest cells 

that have advanced closer to Start, and also more robust, as the arrest is more 

uniform in FAR1 cln2! than far1! cln2! cells.  These findings complement a 

recent study in which the commitment point could be delayed by a stabilized form 

of Far1 (Doncic et al., 2011).  Nevertheless, despite these clear effects of Far1, 

our results show that a commitment point still exists in the absence of Far1, albeit 

one that is advanced so that the time window in which arrest can be imposed is 

more limited.  In experiments to follow, the Far1-independent arrest phenotype in 

far1! cln2! strains serves as sensitized setting in which to test the contribution of 

other factors that affect the G1/S transition. 

 

Role of G1/S transcriptional repressors in G1 arrest 

 

Previous studies found that expression of G1/S transcripts is inhibited in 

pheromone-arrested cells (Wittenberg et al., 1990), even when the arrest is Far1-



$)

independent (Cherkasova et al., 1999).  Yet it has remained unclear whether this 

inhibition is a cause or an effect of the G1 arrest.  Hence, to determine if Far1-

independent arrest relies on control of G1/S transcription, we probed the role of 

Whi5 and Stb1, the repressors of the G1/S transcription factors SBF and MBF 

(Figure 2). (Reports vary as to whether Whi5 inhibits only SBF or also MBF, and 

while Stb1 can bind both complexes it may have a greater negative effect on 

MBF (Costanzo et al., 2003; Costanzo et al., 2004; de Bruin et al., 2004; Bean et 

al., 2005; de Bruin et al., 2008; Takahata et al., 2009).)  Deletion of STB1 alone 

produced no discernable change in either FAR1 cln2! or far1! cln2! strains 

(Figure 2.2 A-D).  Deletion of WHI5 had no effect in FAR1 cln2! cells (Figure 

2A), but in far1! cln2! cells (Figure 2.2C) it allowed a greater fraction of cells to 

escape the G1 arrest (e.g., 38% vs. 24% 2C at 240 min.).  No further 

enhancement was seen when both Whi5 and Stb1 were removed.  Assays using 

bud emergence as a marker of cell cycle progression yielded similar results 

(Figure 2.2D), although the escape phenotype caused by removing Whi5 (or both 

Whi5 and Stb1) was even more evident.  Despite these effects, the increased 

escape phenotypes were only partial, in that pheromone still imposed a 

significant G1 delay in the majority of cells.   

 

 We also tested the role of Mbp1, which is the DNA-binding component of 

the MBF heterodimer (Bahler, 2005).  Although Mbp1 is required for 

transcriptional activation by MBF, it is also required for full repression of MBF-  
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Figure 2.2.  Partial role for Whi5 in Far1-independent arrest. 

(A) Removal of Whi5 and/or Stb1 does not affect G1 arrest when Far1 is present.  

PGAL1-CDC20 strains in the FAR1 cln2! background were arrested in M 

phase and released, in the presence or absence of pheromone.  Cell cycle 

progression and G1 arrest was measured by the flow cytometry assay of DNA 

content.  Graphs show mean ± SEM (n = 4-8). 

(B) The strains in panel (A) were tested for G1 arrest by the budding assay.  

Budding was scored 120 minutes after release from M-phase arrest in the 

presence of ! factor.  Bars show mean ± SEM (n = 3-4). 

(C) Removal of Whi5 partially compromises Far1-independent arrest.  Cell cycle 

progression and G1 arrest was measured in far1 cln2! strains by the DNA 

assay.  Graphs: mean ± SEM (n = 4-8). 

(D) Strains from panel (C) were tested for G1 arrest by the budding assay, as in 

panel (B).  Bars show mean ± SEM (n = 6). 

(E) Mbp1 is not required for Far1-independent arrest or for the role of Whi5.  G1 

arrest was measured by the DNA (left) and budding (right) assays.  Data 

points: mean ± SEM (n = 3). 

(F) Rpd3 is not required for the role of Whi5.  Graphs show mean ± SEM (n = 4) 

for far1! cln2! and far1! cln2! rpd3!, or mean ± range (n = 2) for far1! 

cln2! rpd3! whi5!. 
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Figure 2.2.  Partial role for Whi5 in Far1-independent arrest.
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bound genes in early G1 (de Bruin et al., 2006).  We found that removing Mbp1 

from far1! cln2! cells caused a more complete arrest (Figure 2.2E), rather than 

increased escape, suggesting that its role as an activator outweighs its role as a 

repressor in this setting.  Deleting WHI5 from these far1! cln2! mbp1! cells 

allowed increased escape from G1 arrest (Figure 2.2E), but again the effect was 

partial such that the majority of cells still arrested.   

 

Whi5 and Stb1 repress transcription in part through the recruitment of the 

histone deacetylase Rpd3 (Huang et al., 2009; Takahata et al., 2009; Wang et 

al., 2009).  To determine if the reduced arrest proficiency of the far1! cln2! 

whi5! strain was due to the loss of Rpd3 recruitment, we tested far1! cln2! 

rpd3! strains (Figure 2.2F).  In fact, deletion of Rpd3 did not increase escape 

from G1 arrest; if anything, it seemed to make G1 exit even slower, though this 

may reflect a slightly decreased growth rate of rpd3! mutants.  Furthermore, 

Rpd3 is not required for the G1 arrest role of Whi5, because removing Whi5 from 

the far1! cln2! rpd3! strain still led to increased escape, indicating that the 

whi5! phenotype cannot be attributed solely to a defect in Rpd3 recruitment (see 

Discussion). 

 

Collectively, these results show that Whi5 and Stb1 are not required for the 

strong G1 arrest seen when Far1 is present, but they contribute to the weaker G1 

arrest observed in cells that lack Far1.  Even so, their removal from far1! cln2! 
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cells causes only a partial defect in G1 arrest, indicating that pheromone 

signaling can still inhibit the G1/S transition in the absence of both Far1 and 

these transcriptional repressors. 

 

Loss of repressors only partially de-represses transcription 

 

We considered two possible explanations for why removing the transcriptional 

repressors did not fully eliminate G1 arrest in far1! cln2! cells: (a) pheromone 

signaling might still be able to inhibit G1/S transcription even without the 

repressors; or (b) the G1/S transcripts could be fully de-repressed but 

pheromone signaling might exert non-transcriptional effects that inhibit exit from 

G1.  To test these possibilities, we analyzed G1/S transcript levels via RT-qPCR.  

We chose five representative genes (CLN1, YOX1, POL1, RNR1, and CDC21) 

that are induced by SBF and/or MBF at the G1/S transition (Bean et al., 2005; de 

Bruin et al., 2006; Eser et al., 2011).  For comparison, we also monitored a gene 

expressed at the earlier M/G1 boundary (SIC1).  We first conducted single time 

course experiments for eight different strains, in which we analyzed transcript 

levels at numerous time points in synchronous cultures (Figure 2.3).  Then, we 

analyzed the most informative time points in multiple independent trials (Figure 

2.4). 
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Figure 2.3.  Effects of Far1, Whi5, and Stb1 on G1/S mRNA levels. 

The effects of Whi5 and Stb1 on G1/S transcript levels were measured in 

FAR1 cln2! (left) and far1! cln2! (right) backgrounds.  PGAL1-CDC20 strains 

were arrested in M phase and released, with or without ! factor.  At 30-minute 

intervals, mRNA levels were measured by RT-qPCR (see Methods).  Five G1/S 

transcripts (CLN1, YOX1, RNR1, POL1, and CDC21) and one M/G1 transcript 

(SIC1) were monitored.  mRNA levels at each time point were plotted relative to 

the levels present in the M phase-arrested cultures (t = 0).  See Figure 4 for 

further analyses. 
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Figure 2.3.  Effects of Far1, Whi5, and Stb1 on G1/S mRNA levels.
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In cells released from mitosis without pheromone, the M/G1 and G1/S transcripts 

peaked at 30 and 60 minutes, respectively (Figure 2.3).  This agrees with the 

timing of DNA synthesis and budding (which begin at 60-90 minutes).  Adding 

pheromone prevented the G1/S peak in FAR1 cln2! cells, and instead these 

transcripts declined to a minimum at 60 minutes and remained low for up  

to 4 hours (Figure 2.3). In the absence of Far1 (far1! cln2! cells), pheromone 

still inhibited the G1/S peak, but after 60 minutes these transcripts gradually 

increased, reaching levels that were higher than the corresponding FAR1 cln2! 

cells but below peak levels in untreated cells.  This gradual increase is consistent 

with the leaky arrest phenotype of far1! cln2! cells.  As expected for 

transcriptional repressors, removal of Whi5 and/or Stb1 allowed G1/S transcripts 

to start increasing earlier and/or to reach elevated levels in pheromone-treated 

cells, and yet pheromone still interfered with their expression.  These patterns of 

partial de-repression were seen in both FAR1 cln2! and far1! cln2! 

backgrounds, although inhibition by pheromone was generally more potent and 

durable when Far1 was present. Clearly, pheromone signaling can prevent peak 

G1/S transcription even without Whi5 and Stb1. 

 

 (Note, the drop in G1/S transcript levels from M phase [t=0] to G1 [t=30 

min] was unexpected because these genes are not thought to be active during 

mitosis.  This behavior might reflect imperfect initial synchronization in M phase.  

Alternatively, maximal repression by Whi5 and Stb1 may require DNA binding by 
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SBF/MBF and nuclear localization of Swi6, which are inhibited in M phase by 

high Cdk activity (Sidorova et al., 1995; Koch et al., 1996; Queralt and Igual, 

2003; Geymonat et al., 2004).) 

 

For further analysis we performed multiple repetitions of each time course 

experiment, and then measured mRNA levels at 60 minutes after release from 

the M phase block (Figure 2.4), because this was the time of peak expression in 

the absence of pheromone.  Without pheromone, G1/S transcripts reached 

approximately the same peak level in all strains (Figure 2.4A), consistent with 

previous findings that Whi5 and Stb1 only slightly affect peak expression 

(Costanzo et al., 2003; Costanzo et al., 2004; de Bruin et al., 2004; de Bruin et 

al., 2008; Takahata et al., 2009).  But de-repression was clearly evident in the 

pheromone treated samples, as G1/S transcripts were no longer fully repressed 

when Whi5 and/or Stb1 were absent.  Remarkably, however, even in the 

absence of both Whi5 and Stb1, G1/S transcript levels in pheromone treated 

cells did not reach the maximum seen in the untreated samples.  Therefore, 

inactivation of these repressors is not sufficient for full expression of G1/S 

transcripts, and pheromone signaling can still prevent their full expression.  For 

several genes the highest transcript levels were seen in the far1! cln2! whi5! 

and far1! cln2! stb1! whi5! strains, which agrees with the finding that these 

strains have the strongest G1 escape phenotype, yet the ability of pheromone to  
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Figure 2.4.  Loss of repressors only partially de-represses transcription. 

(A) G1/S transcripts were assayed at a fixed time corresponding to the transition 

from G1 to S phase.  The PGAL1-CDC20 arrest/release experiments shown in 

Figure 3 were repeated three times.  mRNA levels were measured before 

release as well 60 minutes after release in either the presence or absence of 

! factor.  Bars show mRNA levels (mean ± SD; n = 3) at the 60-minute time 

points, expressed relative to the levels in the M phase-arrested cells (t = 0).  

The effects of Whi5 and Stb1 were compared in FAR1 cln2! (left) and far1! 

cln2! (right) backgrounds. 

(B) Comparison of transcriptional inhibition by pheromone treatment and Cdc28 

inhibition. 



%)

Figure 2.4.  Loss of repressors only partially de-represses transcription.
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prevent peak expression in these strains also agrees with the finding that even 

the strongest G1 escape phenotypes were partial. 

 

Role for CDK activity in repressor-independent transcriptional control 

 

The mRNA analyses revealed a striking synergy between Far1 and Whi5 (Figure 

2.4A).  That is, for several genes there was an additive effect of removing both 

proteins (i.e., far1! cln2! whi5!), whereas pheromone treatment could still exert 

a strong repressive effect if either one was present (i.e., FAR1 cln2! whi5! or 

far1! cln2! WHI5).  Again, this correlates with the arrest behavior, in that 

removing Whi5 caused a notable escape phenotype only when Far1 was absent.  

By contrast, the de-repression caused by removing Stb1 was not further 

enhanced when Far1 was also removed (i.e., compare FAR1 cln2! stb1! with 

far1! cln2! stb1!), and the additive relationship between Far1 and Whi5 did not 

require Stb1 (i.e., compare FAR1 cln2! stb1! whi5! with far1! cln2! stb1! 

whi5!).  Together, these results suggest that Far1 and Whi5 contribute additively 

to transcriptional repression, with a corresponding additive effect on G1 arrest.  

Because Far1 is thought to inhibit Cln-Cdk activity (Peter et al., 1993; Tyers and 

Futcher, 1993; Peter and Herskowitz, 1994; Jeoung et al., 1998), the finding that 

it contributes to transcriptional repression even in the absence of Whi5 and Stb1 

suggests that Cdk activity promotes G1/S transcription by additional mechanisms 

distinct from repressor displacement.  
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Sic1 plays a strong role in Far1-independent arrest 

 

Another regulator of the G1/S transition is the protein Sic1, a CKI that inhibits S-

phase cyclin-Cdks during early G1, and is inactivated in late G1 via 

phosphorylation by G1/S cyclin-Cdks.  Because of its role as an antagonist of the 

G1/S transition, we tested if Sic1 is involved in the Far1-independent arrest by 

pheromone (Figure 2.5).  (These experiments exclusively used the budding 

assay because the sic1! mutation caused extremely broad DNA flow cytometry 

profiles in PGAL1-CDC20 strains, which obscured the analysis.)  Indeed, although 

deleting SIC1 had no impact on G1 arrest when Far1 was present (Figure 2.5A), 

it had a substantial effect on Far1-independent arrest (Figure 2.5B).  That is, in 

far1! cln2! sic1! cells the ability of pheromone to impose a G1 arrest was 

strongly disrupted, although it was not eliminated. The residual arrest was not 

eliminated by further deletion of WHI5 (Figure 2.5B), and hence we saw no 

evidence for synergy between Sic1 and Whi5 suggesting that the primary 

downstream effect of whi5" is through eventual activation of Sic1 resulting from 

derepressed CLN1 expression.  Furthermore, removing both Sic1 and Whi5 in a 

FAR1 background had no phenotype (Figure 2.5A).  Thus, removing any two 

antagonists of the G1/S transition is not sufficient to cause a G1 escape 

phenotype; instead, this phenotype is only seen when combining far1! with 

either whi5! or sic1! mutations. We conclude that the G1/S braking mechanism 
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Figure 2.5.  Strong role for Sic1 in Far1-independent arrest. 

PGAL1-CDC20 strains of the indicated genotypes were synchronized and then 

released into the presence or absence of ! factor (!F).  Cell cycle progression 

and G1 arrest was assayed by budding.  Panels (A) and (B) compare results in 

the FAR1 cln2! and far1! cln2! backgrounds, respectively.  All graphs show the 

mean ± SD (n = 3-4).  Note that far1! cln2! cdh1! strains showed phenotypic 

heterogeneity that was isolate-dependent.  Specifically, we tested a total of 12 

isolates: six PGAL1-CDC20 derivatives from each of two independent far1! cln2! 

cdh1! strains.  The results shown are an average of three strains (YPAP242, 

244, 245) that represent the majority phenotype seen in 10 of 12 isolates.  In 2 of 

12 isolates, both derived from the same initial far1! cln2! cdh1! parent strain, 

we observed a notable escape phenotype (e.g., for YPAP243, ~40% budded 

cells after 120-180 min. in ! factor).  The explanation for this heterogeneity is 

unknown, but the finding that the escape phenotype was observed in only a 

minority of derivatives (2/6) of one parent strain, and in no derivatives (0/6) of the 

other, suggests that a rare enhancer mutation may be responsible. 
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Figure 2.5.  Strong role for Sic1 in Far1-independent arrest.
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provided by Sic1 allows pheromone to activate a weakened G1 arrest response 

when Far1 is absent.  

For comparison to the findings with Sic1, we tested another antagonist of 

S- and M-phase cyclins; namely, the APC component Cdh1, which inhibits 

accumulation of B-type cyclins during G1 (Visintin et al., 1997; Morgan, 2007).  

We found that removal of Cdh1 in the far1! cln2! background caused a 

negligible change in G1 escape (Figure 2.5B), although for unknown reasons we 

did observe an increased escape phenotype in rare isolates (see Figure 5 

legend).  Therefore, these findings suggest that Far1-independent arrest 

depends more strongly on the inhibitor of Clb-Cdk activity (Sic1) than on the 

inhibitor of Clb protein accumulation (Cdh1); however, we cannot rule out the 

possibility that the absence of Cdh1 was to some degree compensated in our 

experimental system by ectopic expression of its functional relative, Cdc20, 

which enabled the cell synchronization protocol. 

 

G1 arrest failure can compromise cell viability 

 

Although removing Sic1 allowed far1! cln2! cells to escape pheromone-

induced G1 arrest more readily, it appeared to cause enhanced sensitivity to 

pheromone when growth arrest was measured by a long-term “halo assay” 

(Figure 2.6A).  This paradox led us to consider the possibility that the failure of 

these cells to arrest in G1 causes reduced viability during continuous incubation  
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Figure 2.6.  Failure to arrest in G1 causes loss of viability during 

pheromone exposure. 

(A) Removing Sic1 from far1! cln2! cells causes enhanced pheromone 

sensitivity when measured by a chronic growth arrest (“halo”) assay.  Cells 

were spread on solid growth medium, overlaid with filter disks containing 20 "l 

of 20 µM or 100 µM ! factor, and then incubated at 30˚C for 2 days.  

(B) Pheromone treatment causes loss of viability in far1! cln2! sic1! cells.  

Asynchronous liquid cultures were incubated with pheromone for 1 to 4 hours, 

and then cell viability was measured by plating on medium lacking 

pheromone and counting colony formation (see Methods).  Viable cells at 

each time point were expressed relative to the number present prior to 

treatment (t = 0).  Graphs show mean ± range (n = 2).  In parallel cultures 

incubated without pheromone, no differences in viability were observed 

among these strains (data not shown). 

(C) Loss of cell viability is a consequence of escaping G1 arrest without inhibiting 

pheromone signaling.  Asynchronous cultures were incubated with 

pheromone for 4 hour, and viable cells were measured and expressed 

relative to the pre-treated cultures (t = 0) as in panel (B).  Bars show mean ± 

SD (n = 4).  Strains that continue dividing in the presence of pheromone (e.g., 

far1!) show an increased number of viable cells at 4 hours compared to the 

pre-treated culture.  See text for further explanation. 
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Figure 2.6.  Failure to arrest in G1 causes loss of viability during pheromone 

exposure.
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with pheromone.  Therefore, we assayed cell viability in asynchronous cultures 

treated with pheromone for various times (Figure 2.6B).  Wild type strains 

maintained viability for several hours, but the far1! cln2! sic1! strain showed a 

clear loss of viability after only a short period (2-4 hr).  This reduced viability was 

not seen in the absence of pheromone (see Figure 2.6 legend) or when either 

Far1 or Sic1 was present (i.e., FAR1 cln2! sic1! or far1! cln2! SIC1 strains), 

suggesting that it is not the presence or absence of either protein per se but 

rather the rapid escape from G1 that ultimately causes reduced viability in the 

far1! cln2! sic1! strain.  Furthermore, simultaneous absence of both proteins 

was tolerated if strains retained CLN2 (i.e., far1! sic1! strains; Figure 6C).  

Because Cln2 plays a prominent role in blocking pheromone response as cells 

pass Start (Oehlen and Cross, 1994; Strickfaden et al., 2007), the combined 

results suggest that the observed inviability is due to cells exiting G1 without 

down-regulating pheromone signaling.   

 

These implications were further corroborated by other experiments that did 

not involve Far1, Sic1, or Cln2.  In particular, over-production of the S-phase 

cyclin Clb5 can override G1 arrest by pheromone (Oehlen et al., 1998), and a 

Cdk-resistant form of the signaling protein Ste5 (Ste5-8A) prevents pheromone 

response from being shut down in post-Start cells (Strickfaden et al., 2007).  The 

presence of both features together (i.e., STE5-8A PGPD1-CLB5 double mutants) 

caused cells to lose viability during pheromone exposure, whereas the single 
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mutants did not (Figure 2.6C), arguing that inviability is a specific consequence of 

allowing pheromone signaling to continue in cells that escape the G1 arrest.  

Altogether, these findings illustrate the physiological importance of maintaining a 

robust G1 arrest in cells that are undergoing pheromone signaling.  They also 

reveal that, under some circumstances, mutations that compromise G1 arrest 

would not be identified using only a growth arrest assay (see Discussion). 

 

Tec1 antagonizes G1 arrest 

 One route by which pheromone might affect G1/S transcription 

independent of the inhibitors Whi5 and Stb1 is the ability of the pheromone-

activated MAP kinase Fus3 to trigger degradation of the transcription factor Tec1 

(Bao et al., 2004; Bruckner et al., 2004; Chou et al., 2004), which positively 

regulates CLN1 expression (Madhani et al., 1999; Bruckner et al., 2004); 

consequently, this mechanism could also indirectly dampen other G1/S 

transcripts that are transcriptional targets of Cln1-Cdc28 (Eser et al., 2011). 

Initially, to test the possibility that Tec1 could play a role in pheromone-induced 

arrest, we looked at halo assays of FAR1 cln2", FAR1 cln2" whi5" stb1", far1" 

cln2", and far1" cln2" whi5" stb1" cells expressing either wild type Tec1 or a 

mutant, stabilized version Tec1-T273M (Figure 2.7). Results of the halos show 

significantly decreased arrest proficiency in far1" cln2" and far1" cln2" whi5" 

stb1" cells expressing Tec1-T273M. It appeared the Tec1-T273M mutant may 

even have a slight effect in FAR1 cln2" stb1" whi5" cells. Based on these  
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Figure 2.7: Tec1 antagonizes G1 arrest 

 far1" cln2" and far1" cln2" stb1" whi5" cells expressing either a WT or 

stabilized version of Tec1 show decreased arrest proficiency. FAR1 cln2", FAR1 

cln2" whi5" stb1", far1" cln2", and far1" cln2" whi5" stb1" cells harboring 

either an empty vector or a plasmid expressing WT Tec1 or the stabilized form 

Tec1-T273M were spread on selective media, and discs containing 20"l or either 

20"M or 100"M $ factor. (Strains PPY1789, PPY1867, YPAP157, and YPAP161 

harbored pPP681, pPP4042, or pPP4043)
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Figure 2.7: Tec1 antagonizes G1 arrest 
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results, we also attempted the block and release assays. Initial results from these 

experiments appear to support the halo phenotypes, with far1" cln2" whi5" 

stb1" cells expressing Tec1-T273M seeming to escape arrest more quickly than 

their vector expressing counterparts. Quantification and further repeats of this 

experiment are currently ongoing to confirm these results. 
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Discussion 

 

 In this study we sought to increase our understanding of the mechanisms 

that yeast cells use to activate G1 arrest in response to mating pheromones.  

Previous findings indicate that this arrest does not absolutely require the 

pheromone-activated CKI Far1, because removal of Cln2 restores pheromone 

arrest to far1! cells.  Thus, here we compared Far1-dependent and Far1-

independent G1 arrest, in terms of their molecular phenotypes and their 

dependence on other inhibitory factors.  We show that Far1 is not absolutely 

required for establishing a commitment point at Start, but it lengthens the time 

window in which pheromone can block this commitment step, and it makes G1 

arrest more potent.  Far1 also makes the G1 arrest process less dependent on 

other antagonists of the G1/S transition, such as repressors of G1/S transcription 

and inhibitors of S- and M-phase Cdk activity.  Conversely, these repressors and 

inhibitors are not absolutely required for G1 arrest but they reduce the 

dependence on Far1.  Thus, our findings reveal functional overlap among these 

distinct G1/S inhibitors, which helps enforce a robust G1 arrest and thereby 

prevents premature cell cycle commitment in the presence of external anti-

proliferative signals (Figure 2.8).  

 

 In many eukaryotic systems it is thought that inhibition of G1/S 

transcription by Rb-like repressors plus inhibition of S- and M-phase Cdk activity  
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Figure 2.8:  A simple illustration of multiple pathways contributing to 

pheromone arrest. 

Regulatory effects that inhibit or promote the G1/S transition are indicated in red 

or green, respectively.  Dashed arrows with question marks emphasize that, 

although we found roles for Whi5/Stb1 and Sic1 in Far1-independent arrest, it is 

not known whether pheromone signaling enhances their inhibitory activity or 

simply depends on their constitutive effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 



! '$!

Figure 2.8:  A simple illustration of multiple pathways contributing to 

pheromone arrest. 
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by Cip/Kip-like CKIs are key factors that restrain cell cycle entry and impose a G1 

waiting period (Morgan, 2007).  In this study we find that pheromone-induced G1 

arrest in budding yeast can still be imposed in the absence of the transcriptional 

repressors Whi5/Stb1 or the CKI Sic1, or even both Whi5 and Sic1 

simultaneously.  But these negative factors become important for pheromone 

arrest in far1! cells.  Therefore, although Whi5/Stb1 and Sic1 are not absolutely 

required for G1 arrest, they help enforce G1 arrest when Far1 is absent.  The 

existence of multiple braking mechanisms may help prevent premature cell cycle 

entry and expand the commitment decision period, perhaps by imposing a 

requirement that G1/S Cdk activity exceeds a sufficiently high threshold to 

counteract multiple antagonists.  Such functional overlap, while in principle not 

required for a basic cell cycle, may increase the opportunities for regulatory 

control of the G1/S transition and minimize promiscuous division.  Indeed, in 

animals there is evidence that Rb and CKIs can have additive effects in 

restraining proliferation in undifferentiated cells, or redundant effects in terminally 

differentiated cells (Brugarolas et al., 1998; Buttitta et al., 2010; Wirt et al., 2010). 

 

 It is noteworthy that removal of Whi5 and Stb1 is not sufficient for full 

expression of G1/S transcripts, despite evident de-repression.  Instead, we find 

that pheromone signaling inhibits expression of G1/S genes even in the absence 

of both repressors, similar to previous results in whi5! or stb1! single mutants 

(Costanzo et al., 2004; de Bruin et al., 2008). Because this inhibition is maximal 
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in the presence of Far1 or when Cdc28 is inactivated, it suggests that Cdk 

activity promotes full G1/S transcription by additional means separate from its 

role in releasing repression by Whi5/Stb1.  This behavior could be explained if 

SBF and MBF are activated directly via Cdk phosphorylation.  Indeed, such a 

mechanism was proposed prior to the discovery of Whi5 and Stb1, and Cdk 

phosphorylation sites have been identified in both Swi4 and Swi6, but direct 

evidence that Cdk phosphorylation of SBF/MBF enhances their activity is still 

lacking (Sidorova et al., 1995; Wijnen et al., 2002).  Previous mutational analyses 

suggest that Cdk phosphorylation of either Swi6 or Whi5 suffices to dissociate 

the repressor, and hence that these phosphorylation events act redundantly 

rather than additively (Costanzo et al., 2004; de Bruin et al., 2004; Wagner et al., 

2009).  In contrast, our observations clearly argue for a pheromone/Cdk-

regulated mechanism that acts in addition to repressor displacement, rather than 

redundant with it. This is consistent with the results of an experiment done in a 

strain with inhibitable Cdc28 (cdc28-as2) that suggested that CDK inhibition 

could still decrease transcription even in the absence of the repressors (results 

not shown). This additional mechanism could affect SBF/MBF itself, an 

associated factor such as Msa1 (Ashe et al., 2008), or a separate factor that 

cooperates with SBF/MBF such as Bck2 or Spt10 (Wijnen and Futcher, 1999; 

Eriksson et al., 2011).  Regardless of the precise mechanism, our mRNA 

analyses provide a clear molecular readout that correlates with G1 arrest 

proficiency, and hence provide a quantitative reporter for how potently 



''

pheromone signaling can antagonize the G1/S transition in different genetic 

backgrounds.  

Interestingly, the effect observed upon WHI5 deletion appears to be 

independent of the HDAC Rpd3, which Whi5 is known to recruit to promoters, 

suggesting that Whi5 plays a role in repression independent of Rpd3 recruitment.  

It has been suggested that Whi5 may also recruit an additional HDAC Hos3 

(Huang et al., 2009), and that Whi5’s presence at promoters may prevent 

recruitment of the chromatin reorganizing complex FACT (Takahata et al., 2009). 

Either of these functions, or some yet unidentified role for Whi5, could be 

contributing to its Rpd3-independent effect on transcription. 

 Which molecular targets can explain the partial escape phenotypes 

obtained by removing Sic1 or Whi5 from far1! cln2! cells?  Ultimately, the key 

factor dictating whether cells can pass the G1/S transition despite the presence 

of pheromone may be acquisition of B-type Cdk activity.  Indeed, pheromone 

cannot arrest cells in G1 if the S-phase cyclin Clb5 is expressed from a strong 

foreign promoter (Oehlen et al., 1998; Strickfaden et al., 2007).  This view can 

explain the effects of removing Sic1, which directly inhibits Clb5-Cdk activity 

(Schwob et al., 1994).  Furthermore, CLB5 is an SBF-regulated gene, as are 

CLN1 and CLN2, which engage in a positive feedback loop that enhances their 

own expression as well as other SBF/MBF-dependent transcripts (Cross and 

Tinkelenberg, 1991; Dirick and Nasmyth, 1991; Skotheim et al., 2008).  Thus, in 

far1! cln2! cells, CLN1 and CLB5 expression levels may determine whether 
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sufficient Clb5-Cdk activity accumulates to pass Start, and hence their increased 

expression upon removal of Whi5 may cause the escape phenotype.  In far1! 

single mutants, the presence of Cln2 may tip the balance in favor of Start by a 

combination of several effects: (i) it might simply increase the total cyclin dosage, 

equal to an extra copy of CLN1; (ii) Cln2 might be a more effective promoter of 

Start than Cln1 (Tyers and Futcher, 1993), perhaps by providing greater Cdk 

activity toward key substrates like Whi5 and Sic1; and (iii) Cln2 might counteract 

pheromone arrest by directly inhibiting pheromone signaling, and it do so more 

potently than does Cln1 (Oehlen and Cross, 1994; Strickfaden et al., 2007).  

Thus, when Far1 is absent, the weaker Far1-independent arrest mechanisms 

can be overridden by Cln2 or by genetic changes that promote Clb5-Cdk activity. 

 

How does pheromone signaling lead to G1 arrest without Far1?  Although 

Whi5 and Sic1 can contribute to pheromone-induced arrest when Far1 is absent, 

this does not necessarily imply that they are themselves regulated by 

pheromone.  Because Sic1 can be phosphorylated and stabilized by another 

MAPK, Hog1 (Escote et al., 2004), it is tempting to postulate that a similar effect 

could be exerted by the pheromone-regulated MAPK, Fus3; yet it is unlikely that 

the identical mechanism is used because the phosphorylated form of Sic1 was 

absent in pheromone-arrested cells and can still be induced by Hog1 activation 

(Escote et al., 2004).  Another study, however, reported that the Sic1 N-terminus 

is partially phosphorylated in pheromone-arrested cells (Koivomagi et al., 2011), 
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though the sites or responsible kinases are unknown.  The effects of pheromone 

on G1/S transcription – even in the simultaneous absence of Far1, Whi5, and 

Stb1 – could be due to direct inhibition of transcription per se or an indirect effect 

of Cdk inhibition. Other pertinent mechanisms include pheromone-induced 

reduction in Cln protein levels (Valdivieso et al., 1993) or reductions in total 

protein synthesis rates (Goranov et al., 2009), which may cause a rapid drop in 

steady state levels of short-lived cell cycle regulators such as cyclins. 

The current results from the Tec1 experiments do suggest that pheromone-

induced degradation of Tec1 could play a role in G1 arrest. The severely 

decreased arrest proficiency of cells expressing the stabilized version of Tec1 

demonstrates how an abnormally high dosage of Tec1 can interfere with G1 

arrest. This suggests that Tec1 could be a critical target of the pheromone 

response pathway, and that its degradation during pheromone treatment plays a 

previously unappreciated role in G1 arrest. Since we also observed a synergistic 

effect of stabilizing Tec1 and absence of the repressors Whi5 and Stb1 it 

appears likely that control of both of these mechanisms combines to repress 

G1/S transcription in response to pheromone. 

 Finally, our findings reveal that robust G1 arrest is physiologically 

important, because if cell cycle entry occurs when cells are responding to 

pheromone it can lead to irreversible, lethal effects.  In particular, this was 

observed when far1! cln2! sic1! cells were exposed to pheromone; they were 

unable to arrest in G1, but they were nevertheless unable to divide and grow.  
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Similar inviability was observed during pheromone treatment of STE5-8A PGPD1-

CLB5 cells, in which G1 arrest is bypassed but signaling cannot be shut down.  

The exact cause of this inviability is not known, but ongoing studies suggest that 

pheromone signaling interferes with the proper assembly and/or function of the 

microtubule-based cytoskeleton during nuclear division (unpublished 

observations S. Strickfaden & P. Pryciak).  Our findings also clarify earlier results 

that appeared to suggest Sic1 was not required for Far1-independent arrest: 

namely, pheromone was able to arrest growth of cln1! cln2! cln3! far1! sic1! 

cells (Tyers, 1996).  In retrospect, it seems likely that those cells did not arrest in 

G1, but rather became inviable because of their failure to arrest in the presence 

of pheromone.  The results also illuminate an important consideration when 

analyzing other mutants for defects in pheromone-mediated arrest:  if they allow 

slippage past the G1/S transition but do not prevent pheromone signaling, then 

the arrest defect will not be noticeable by growth arrest (e.g., halo) assays.  

Hence, it is conceivable that a distinct class of pheromone arrest mutants exists 

that would have gone undetected in prior genetic screens. 
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CHAPTER III 

 

G1/S cyclin protein levels decrease after pheromone treatment 
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Abstract 

Cln protein levels have been shown to decrease during the response to 

pheromone, and it has been suggested that this decrease is independent of 

transcriptional control. It has, however, remained unclear if the effect on Cln 

protein levels is a result of a directed degradation mechanism or a side effect of 

another aspect of the pheromone response. Our studies confirmed the previously 

described results, levels of constitutively expressed Cln proteins decrease after 

pheromone treatment. Preliminary results suggest an overall decrease in 

translation rates may be at least partially responsible. 
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Introduction 

As befits an arrest in G1 phase, yeast cells arrested by mating pheromone 

lack the G1/S cyclin proteins Cln1 and Cln2 (Wittenberg et al., 1990).  A 

transcriptional mechanism clearly contributes to their absence, as the entire set 

of SBF/MBF-regulated transcripts, which includes CLN1 and CLN2, are not 

expressed during pheromone arrest (Roberts et al., 2000).  However, one 

previous study found that when CLN2 was placed under control of a low level 

promoter not effected by pheromone treatment (from CLN3), levels of the Cln2 

protein still declined markedly in response to pheromone treatment (Valdivieso et 

al., 1993), suggesting that pheromone signaling might also exert post-

transcriptional control over G1/S cyclin levels.  Surprisingly, this post-

transcriptional effect was strongly diminished in far1! cells, leading to the 

suggestion that it might be mediated by Far1, though by an unspecified 

mechanism.  What was unappreciated at the time of that study, however, was 

that pheromone signaling is inhibited by G1/S cyclin-CDK activity (Oehlen and 

Cross, 1994; Wassmann and Ammerer, 1997), and hence, in retrospect, the 

apparent requirement for Far1 might simply reflect its role as a CDK inhibitor 

needed to prevent the constitutively-expressed Cln2 from blocking pheromone 

response.  In the course of considering possible mechanisms for Far1-

independent arrest by pheromone (see Chapter 2), we wished to revisit this 

previous observation and probe the responsible mechanism.  
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 Notably, there are well-known routes for post-transcriptional regulation of 

Cln1 and Cln2.  Namely, during a normal cell cycle these cyclins are degraded by 

a mechanism involving phosphorylation and ubiquitin-mediated proteolysis.  The 

C-terminal tails of Cln1 and Cln2 are phosphorylated in a CDK-dependent 

manner (Salama et al., 1994; Lanker et al., 1996; Schneider et al., 1998), which 

targets them for ubiquitination by SCFGrr1 (an E3 ubiquitin ligase) and consequent 

degradation by the proteasome (Barral et al., 1995; Kishi and Yamao, 1998). In 

G1 these cyclins have a half-life of approximately 8 minutes, and this rapid 

turnover is dependent on CDK phosphorylation as a form of Cln2 with mutations 

at its seven CDK consensus sites, Cln24T3S, is significantly more stable (t1/2 ~ 60 

minutes) (Lanker et al., 1996).  Given that MAPKs and CDKs phosphorylate 

similar sites (i.e., SP or TP), it is conceivable that pheromone could trigger Cln1/2 

instability via the same phosphorylation sites and ubiquitination machinery that 

operate in cycling cells.  Moreover, as CDK activity is thought to be inhibited 

during pheromone-mediated G1 arrest (e.g., via Far1) (Peter and Herskowitz, 

1994), any Cln1/2 proteins that are synthesized might be unusually stable in the 

absence of an alternate mode of degradation, perhaps providing a physiological 

rationale for a pheromone-stimulated mode. 

The experiments in this chapter were aimed at re-examining the 

phenomenon of pheromone-induced loss of G1/S cyclin proteins, as well as the 

mechanistic requirements including the role of Far1. We confirmed that 

pheromone treatment has an effect on G1 cyclin levels independent of 
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transcriptional control.  Our findings suggest that this phenomenon is dependent 

on SCFGrr1 but is at least partly independent of Cdc28 activity, the CDK 

phosphorylation sites in Cln2, and Far1.  We were not able to obtain evidence 

that pheromone increases the degradation rate of Cln1/2, which raises the 

possibility that pheromone reduces their synthesis rate instead.  Unfortunately, 

our ability to probe this phenomenon was repeatedly hampered by unusually high 

day-to-day variability in the severity of effect.  Despite considerable effort, we 

were not able to find a way to control this variability, and consequently we 

decided to halt further study of this phenomenon.  Nevertheless, in order to 

document the findings for the benefit of future researchers in this area, the 

primary observations and their potential implications are presented here. 
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Results 

  

Steady state levels of G1/S cyclin proteins decrease after pheromone 

treatment 

To assess the effects of pheromone on cyclin protein levels in isolation 

from effects on transcription, we placed the cyclin genes under heterologous 

control (Figure 1A), such that only the open reading frames (ORFs) of the cyclins 

were placed between foreign, constitutively-active promoters (PCYC1 or PADH1) 

and a foreign transcriptional terminator (TCYC1).  In addition, each cyclin was 

tagged at its C-terminus with a myc13 epitope.  One concern was that constitutive 

expression of cyclins might interfere with pheromone signaling, specifically 

through the ability of Cln-CDK’s to phosphorylate the scaffold protein Ste5 

thereby preventing its pheromone-induced membrane localization.  Indeed, 

ectopic Cln2 expression noticeably reduced pheromone response in wild-type 

strains, and far1! strains were even more strongly affected (Figure 3.1B), 

presumably because Cln-CDK activity is fully uninhibited when Far1 is absent.  

By contrast, in strains with the STE5-8A allele, which encodes a CDK-resistant 

form of Ste5, cyclin expression had no impact on signaling in either FAR1 or 

far1! backgrounds.  Therefore, in all subsequent experiments we studied the 

effects of pheromone on Cln1/2 protein levels in strains harboring the STE5-8A 

allele.   
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Figure 3.1: G1/S protein levels decrease after pheromone treatment 

(A) Schematic of constructs used in these experiments containing the Cln1 or 

Cln2 ORF tagged with a 13myc epitope and under control of a foreign 

promoter (either ADH1, CYC1, or GAL). 

(B) Pheromone signaling is inhibited by Cln2 expression from constitutive 

promoters in wild type and far1" cells, but not in STE5-8A and STE5-8A 

far1". A plasmid expressing Cln2 under control of either the weaker CYC1 

promoter or the stronger ADH1 promoter (or an empty vector) was 

introduced into the cells, and pheromone response was measured using a 

transcriptional reporter (FUS1-lacZ).  

(C) Steady-state levels of Cln1 or Cln2 protein decrease over time after 

treatment with pheromone. STE5-8A and STE5-8A far1" cells expressing 

myc tagged Cln1 or Cln2 were treated with pheromone and samples were 

taken at 30 minute intervals. Samples were analyzed with anti-myc blots.   

(D) STE5-8A cells expressing a myc-tagged version of Cln1, Cln2, or Clb5 

from the constitutive CYC1 promoter were treated with $ factor and 

samples were taken after 1 and 2 hours. Whole cells extracts were 

analyzed by anti-myc blot. 
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Figure 3.1: G1/S protein levels decrease after pheromone treatment 
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In initial experiments, we found that steady state levels of Cln1 and Cln2 were 

reduced over time after addition of pheromone in both STE5-8A and STE5-8A 

far1" strains (Figure 3.1C). This result suggested that pheromone affects Cln1 

and Cln2 similarly, and that the effect may not require Far1.  Early experiments 

also indicated some cyclin specificity, as pheromone did not appear to affect the 

S-phase cyclin, Clb5, when expressed from the same foreign context as Cln1/2 

(Figure 3.1D).  In subsequent experiments in which we quantified protein levels 

and normalized to an internal control protein (Cdc28 signal), we sometimes 

observed that the effect of pheromone was greater in STE5-8A than STE5-8A 

far1! cells (Figure 3.2A,B), suggesting that there may be some partial Far1-

dependence.  In addition, in some experiments we observed decreased Cln1/2 

levels at late times even without pheromone treatment, which we suspected was 

most likely due to the cultures approaching stationary phase. On balance, these 

findings provided initial confirmation that pheromone can trigger loss of G1/S 

cyclin proteins, and so subsequent experiments were aimed at further parsing 

this phenomenon.  

 

CDK inhibition cannot explain protein loss 

 It is possible that the pheromone-induced reduction in Cln protein levels 

could be an indirect result of other responses to pheromone, including inhibition 

of Cdc28 activity and cell cycle arrest. To assess this possibility we used a strain 

containing an allele of Cdc28, cdc28-as1, which is specifically inhibited by the  
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Figure 3.2: Loss of G1/S proteins is Cdc28-independent, but partially 

dependent on Far1 

(A) Steady-state levels of Cln1 and Cln2 followed over time with or without 

pheromone in STE5-8A and STE5-8A far1" with Cdc28 serving as 

internal control.  

(B) Graphs of results from (A) normalized to the Cdc28 signal  

(C) Cdc28 inhibition alone does not cause total cyclin protein loss. Cdc28-as1 

cells were treated with 10µM ATP analog 1-NM-PP1 for 60 minutes, then 

cultures were split and $ factor was added to half. Samples were taken at 

the indicated time points and whole cell extracts were prepared. Samples 

were analyzed by anti-myc blot. Arrest from Cdc28 inhibition was 

confirmed via FACS of DNA content after inhibitor treatment. 
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Figure 3.2: Loss of G1/S proteins is Cdc28-independent, but partially 

dependent on Far1
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ATP analog 1-NM-PP1. We treated cultures with the inhibitor for 60 minutes to 

inactivate Cdc28 prior to addition of pheromone. Surprisingly, inactivation of 

Cdc28 alone resulted in somewhat decreased cyclin protein levels, but addition 

of pheromone caused a stronger decrease (Figure 3.2C). The efficacy of the 

Cdc28 inhibitor was evident by a shift in the mobility of Cln1 and Cln2 to a faster 

mobility form, which is diagnostic of reduced CDK phosphorylation. These results 

demonstrate that CDK inhibition alone is not sufficient to cause the degree of 

protein loss observed during pheromone treatment, and also suggest that during 

pheromone treatment cells have mechanisms independent of Cdc28 activity to 

target Cln proteins for degradation. 

  

Role for the normal cyclin degradation machinery 

Next, we investigated which aspects of the normal cyclin degradation 

mechanism are required for the pheromone effects.  Because phosphorylation of 

Cln1/2 at CDK sites normally targets these proteins for ubiquitination by SCFGrr1, 

we tested the requirement for these CDK sites and Grr1. A mutant form of Cln2 

lacking its seven CDK phosphorylation sites, Cln24T3S, is significantly stablized 

(t1/2 > 60 minutes versus < 10min for wild type). Remarkably, steady state levels 

of Cln24T3S were still reduced by pheromone treatment, although not as severely 

as for wild type Cln2 (Figure 3.3A). This result suggests that the CDK 

phosphorylation sites are not absolutely required for the pheromone effect. In 

contrast, SCFGrr1 appeared to be strongly required, as deletion of GRR1  
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Figure 3.3: Pheromone-induced protein loss requires Grr1 but not CDK 

consensus sites 

(A) Cln24T3S protein still decreases in response to pheromone even though it 

lacks the 7 CDK consensus phosphorylation sites. Steady state levels of 

wild type Cln2 and Cln24T3S were followed after treatment with pheromone 

in STE5-8A, STE5-8A grr1", STE5-8A far1" cln2", STE5-8A far1" cln1" 

cln2" cells.  

(B) Steady state levels of Cln1 no longer drop significantly after pheromone 

treatment when Grr1 is deleted. STE5-8A, STE5-8A far1", STE5-8A 

far1", and STE5-8A far1" grr1" cells expressing Cln1-myc from a 

constitutive promoter were treated with pheromone and samples were 

taken after 1 and 2 hours. Anti-myc blots of whole cell extracts were 

analyzed to determine protein levels. Cln1 was used in this experiment as 

opposed to Cln2 so as to limit the detrimental impact of overexpressing 

Cln protein in grr1". 
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Figure 3.3: Pheromone-induced protein loss requires Grr1 but not CDK 

consensus sites 



)%

significant reduced the effect of pheromone on Cln1 (Figure 3.3B).  As Grr1 is 

generally thought to recognize phospho-peptides in substrate proteins, it is not 

clear how to explain the seemingly stronger requirement for Grr1 than for the 

CDK sites.  We tested the Cln24T3S mutant in strains lacking endogenous Cln1/2 

proteins to eliminate the possibility of cross-complementation (Figure 3.3A), but 

we did not test if Grr1 was still required for the loss of the Cln24T3S mutant. 

 

G1 arrest is not required for cyclin protein loss 

We next wanted to test the G1 specificity of this phenomenon. By first 

arresting cells in other parts of the cell cycle we hoped to determine if arrest in 

G1 was required for the pheromone effect. To test G1 phase specificty we looked 

at levels of constitutively expressed Cln2 in STE5-8A and STE5-8A far1" cells 

first arrested with nocodozole (Figure 3.4A). Two hours in nocodozole alone 

decreased steady state protein levels, but addition of pheromone still had an 

increased effect indicating that 1) the effect on protein levels by pheromone is not 

dependent on the G1 arrest imposed by pheromone and 2) whatever pheromone 

is doing to decrease protein levels is not dependent on the cells being in G1. We 

also looked at the effect of pheromone on cells arrested by hydroxyurea (Figure 

3.4B). Here, we compared the effect of pheromone on Cln2, Clb2, and Clb5. If 

anything it appears that HU arrest actually increases the steady state level of all 

cyclin proteins, and further treatment with pheromone seems to decrease levels 

of all of the proteins, not just Cln2. Together these results confirm that the effect  
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Figure 3.4: Protein levels after arrest with nocodazole or hydroxyurea 

(A) Pheromone treatment can still cause decreased Cln2 even when cells are 

first arrest in mitosis with nocodazole. STE5-8A and STE5-8A far1" cells 

were treated with nocodazole for 60 minutes prior to addition of $ factor. 

Whole cell extracts were analyzed with anti-myc blots. Cell cycle arrest 

was confirmed by FACS. 

(B) Levels of Cln2, Clb2, and Clb5 proteins decrease in response to 

pheromone after HU arrest. STE5-8A cells harboring the indicated cyclin 

constructs were treated with hydroxyurea to arrest cells in S-phase prior to 

addition of pheromone. Whole cell extracts were analyzed by anti-myc 

blot. Cell cycle arrest was confirmed by FACS. 
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Figure 3.4: Protein levels after arrest with nocodazole or hydroxyurea 
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of pheromone on cyclin proteins is independent of G1 arrest, and that this effect 

may not be specific to the G1/S cyclins. 

 

Unfortunately, in the course of these studies we experienced significant 

day-to-day variability in the degree of steady-state protein loss observed after 

pheromone addition. In some experiments the reduction was starkly evident, 

whereas in other experiments it was almost undetectable. I tested multiple 

aspects of the experimental procedure to determine if factors such as culture 

density, nutrient levels, cell lysis procedure, or protein preparation methods could 

be impacting the overall results.  Although there was some dependence on 

culture density, such that the pheromone effect was strongest in cultures with a  

higher starting density, this alone was not enough to explain the observed 

variability. Because we could not identify the source of variability, I was unable to 

continue any further mechanistic analysis of steady-state protein levels. I did, 

however, perform some additional experiments aimed at measuring the rate of 

disappearance of Cln1/2 proteins. 

 

Using transcriptional or translational shut off to study protein decay rates 

In one experimental setting, we used a transcriptional pulse-chase system 

to monitor the decay rate of cyclin proteins. Here, we placed epitope-tagged Cln2 

under control of the inducible PGAL1 promoter, induced its expression with 2% 

galactose for 40 minutes, and then shut off expression by adding glucose either  
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Figure 3.5: Protein levels after transcriptional shut-off 

(A) & (B) When Cln2 transcription is shut off, pheromone has only a limited 

effect on the rate of protein loss. In STE5-8A and STE5-8A far1" cells 

Cln2 was transiently expressed through induction of a GAL1pr-CLN2-myc 

construct and then inhibited with glucose in the presence or absence of 

pheromone. Whole cell extracts were analyzed with anti-myc and anti-

Cdc28 blots. Graphs in (B) represent results normalized to Cdc28. 
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Figure 3.5: Protein levels after transcriptional shut-off 
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with or without pheromone. Then, the rate of protein loss was monitored.  Results 

in Figure 3.5 show that pheromone treatment did accelerate Cln2 protein loss in 

STE5-8A cells, however, there was no effect of  pheromone in STE5-8A far1" 

cells. Protein loss does seem to be slightly accelerated in the untreated samples 

of the STE5-8A far1" cells as compared to the STE5-8A which may be obscuring 

the results. As this was only a single experiment it is difficult to draw any strong 

conclusions. However, this experiment did suggest that pheromone can, in fact, 

impact the rate of cyclin protein disappearance, so we decided to further analyze 

this phenomenon.  

 

 To ask whether pheromone affects Cln2 protein levels by altering the rate 

of synthesis versus degradation, we used cycloheximide to inhibit synthesis so  

that we could monitor degradation alone. When cultures were treated with 

cycloheximide in the presence or absence of pheromone, there seemed to be no 

difference in rates of Cln2 protein loss (Figure 3.6A).  We considered the 

possibility that the very short half-life of Cln2 (< 10 minutes) in normal cycling 

cells could obscure detection of any effect of pheromone.  Therefore, in an 

attempt to block CDK-mediated degradation, we inhibited CDK activity by using 

cdc28-as2 cells and the ATP analog 1-NM-PP1.  We expected that eliminating 

CDK activity would stabilize the Cln proteins and thereby make any pheromone-

dependent changes in protein degradation more evident.  Cultures were pre-
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treated with 1-NM-PP1 for 60 minutes prior to addition of cycloheximide and 

pheromone (Figure 3.6B). Surprisingly, even in the presence of the Cdc28 

inhibitor, there was still a very rapid decrease in Cln2 protein levels after addition 

of cycloheximide.  Furthermore, there was no evident effect of pheromone. The 

rapid decay of cyclin proteins in the absence of CDK activity was unexpected 

since CDK-dependent phosphorylation of Cln2 is required for its degradation. A 

simple explanation might be that the inhibition of CDK activity was incomplete 

and that the residual activity was sufficient to promote Cln2 degradation (see 

Discussion).  Regardless, the continued short half-life of Cln2 makes it difficult to 

interpret whether pheromone has no effect on degradation or whether the 

background rate is too fast to allow any increase to be detected. It is worth 

emphasizing, however, that these results might indicate that pheromone does act 

by reducing translational synthesis of Cln1/2, rather than increasing their 

degradation (see Discussion). 
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Figure 3.6: Protein levels after translational shut-off 

(A) When translation is inhibited with cycloheximide pheromone has no 

measurable effect on rate of Cln protein loss. STE5-8A and STE5-8A 

far1" cells expressing Cln2-myc were treated with cycloheximide with or 

without pheromone, and samples were taken at 10 minute intervals. 

Whole cell extracts were analyzed by anti-myc and anti-Cdc28 blots, and 

Cln2 protein levels were quantified and normalized to the Cdc28 signal. 

(B) Even after inhibition of Cdc28 Cln protein is still rapidly degraded. Cultures 

were first treated with 1-NM-PP1 to inhibit Cdc28-as2 activity and then 

treated with cycloheximide with or without pheromone. 
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Figure 3.6: Protein levels after translational shut-off 
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Discussion 

 

Overall these results suggest that there is a pheromone-induced effect on 

protein levels that appears to have some dependence on Far1.  However, the 

phenomenon may not be a result of increased degradation rates as previously 

hypothesized, but instead may be dependent on pheromone’s ability to globally 

regulate translation.  

  

The results of the steady-state experiments suggested that the 

destabilization of Cln proteins in response to pheromone is a partially Far1-

independent function reliant on Grr1 but at least partially independent of Cdc28 

activity and the cyclins’ CDK phosphorylation sites. The Cdc28-independence of 

this phenomenon is consistent with the concept that Cdc28 is inactivated in 

response to pheromone, and the requirement for Grr1 also seems consistent with 

our understanding of the Cln degradation pathway. The results obtained from the 

Cln24T3S allele, however, were unexpected, and, as discussed below, may 

indicate that targeted degradation of Cln1/2 is not the primary mechanism at 

work. 

  

Recent work (published after we discontinued most work on this project) 

suggests that the pheromone pathway causes a global reduction in protein 

synthesis, and so this effect may be relevant to the effects of pheromone on 
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Cln1/2 levels (Goranov et al., 2009) (this effect was specific to pheromone 

treated samples, and was not simply a result of G1 arrest). In particular, a 

pheromone-induced reduction in global protein synthesis might cause all short-

lived proteins to rapidly shift to a new steady state level (at which synthesis and 

degradation rates reach equilibrium).  This notion could explain why we saw no 

effect of pheromone on the rate of Cln1/2 degradation (i.e., after cycloheximide 

addition) but instead only saw effects when Cln1/2 protein synthesis was 

continued (i.e., the PGAL1 transcriptional shut-off experiment, and all steady state 

experiments including the stabilized Cln24T3S mutant). Moreover, this view 

predicts that other short-lived proteins should behave similarly to Cln1/2.  We did 

not test this prediction extensively, although we did observe that pheromone 

could cause decreased steady-state levels of Clb2 and Clb5 after HU arrest; this 

result is consistent with the above notion, but is certainly not conclusive.  

Notably, the recent work suggested that the ability of pheromone to reduce global 

protein synthesis depends on Far1; though the responsible mechanism is 

unknown, this finding might explain the partial Far1-dependence we observed in 

our experiments. 

 

 Since Cln1/2 proteins persist in the absence of the ubiquitin ligase SCFGrr1 

it appears that ubiquitin mediated degradation is required for the effects of 

pheromone on Cln1/2, although this finding is consistent with multiple models 

and does not necessarily imply that either Grr1 function or degradation per se are 
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regulated by pheromone.  Because Cln1/2 are ordinarily destabilized by CDK 

phosphorylation, we were surprised to see relatively rapid continued degradation 

in experiments where Cdc28 was inhibited.  It is conceivable that another kinase 

was responsible, such as the alternate CDK Pho85. Although there has been no 

evidence yet presented to suggest Pho85 targets Cln1 and Cln2 proteins, 

increasing evidence for overlapping function of Pho85 and Cdc28 does suggests 

it’s possible. Alternatively, and probably more likely in this setting, the CDK 

inhibition may have been incomplete, and any residual activity could potentially 

be enough to phosphorylate Cln proteins.  This possibility may be especially 

pertinent for substrates like cyclins that are directly associated with the CDK and 

hence are in high local concentration. In the presence of pheromone, Fus3 or 

another member of the pheromone signaling cascade could directly 

phosphorylate cyclin proteins, especially since MAP kinases and CDKs share the 

same consensus site (i.e, SP or TP).  This might relax the requirement for CDK 

activity, although further testing would be necessary to address this possibility. 

 

 As described earlier, we observed wide variability in the Cln1/2 phenotype 

in pheromone treated cells. In some experiments, the cyclin proteins were rapidly 

and almost completely lost in response to pheromone, but at other times there 

was little to no change. One possible contributor to this variation might involve 

previously observed links between nutrients and Cln protein levels (Baroni et al., 

1994; Tokiwa et al., 1994; Barral et al., 1995; Schneider et al., 2004). In 
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particular, carbon source has been demonstrated to have an impact on Cln 

protein levels independent of transcription. Steady state protein levels were 

observed to be six-fold higher in cells grown in glucose versus those grown in 

ethanol, a difference that correlated with faster growth rates in the glucose 

cultures (Schneider et al., 2004). This result suggests a link between culture 

conditions and Cln protein levels that could contribute to day-to-day variability of 

our results.  Although we were unable to conclusively verify that this was the 

cause, it remains our strongest suspicion that uncontrolled variability in nutrient-

based regulation of Cln1/2 protein levels was interfering with our efforts to study 

pheromone-specific regulation of these same proteins.  Future findings that 

surmount this variability problem may allow these studies to be resumed. 
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Material and Methods 

Yeast Strains 

Standard procedures were used for growth and genetic manipulation of yeast

(Rothstein, 1991; Sherman, 2002).  Yeast cultures were grown at 30˚C.  Yeast 

strains are listed in Table 3.1; all were derived from the W303 background 

(Thomas and Rothstein, 1989) and harbor the bar1! mutation to block ! factor 

degradation.  PCR-mediated gene targeting used methods described previously 

(Longtine et al., 1998); selectable markers included an antibiotic resistance gene 

(kanMX6) and biosynthesis genes from S. cerevisiae aa well as orthologs from 

other yeasts (ADE2, C. glabrata TRP1). For the cycloheximide and Cdc28 

inhibition experiment, the CDC28 gene was replaced with an ATP analog-

sensitive allele cdc28-as2 via a two-step pop-in/pop-out method (Rothstein, 

1991); we used the Cdc28-as2 [F88A] mutant (Colman-Lerner et al., 2005) 

because in our strains the more severe mutant Cdc28-as1 [F88G] (Bishop et al., 

2000) was hypomorphic, as indicated by slow growth and cell shape defects. 

 

Signaling assay 

To measure effects of constitutively expressed Cln2 on pheromone response 

cells were grown in raffinose media, induced with galactose, and then treated 

with ! factor. FUS1-lacZ expression was measured by !-galactosidase assay. 

 

Steady state cyclin level 
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 Cultures were grown in synthetic, selective media overnight. In the 

morning cultures were diluted back to an OD660 of 0.2 and allowed to grow for 3 

hours to ensure they were actively growing. Cultures were split, and pheromone 

was added to half to a final concentration of 0.2 µM. 5mL samples were taken at 

indicated time points.  

 For the steady-state hydroxyurea experiments, cultures were treated with 

200mM HU for 90 minutes.  5ml samples were taken and then the cultures were 

split and 0.2 µM pheromone was added to half. 5mL samples were taken after 90 

minutes. 

 For the steady-state nocodazole experiments: after recovery time 5mL 

samples were taken and the remaining culture was spun down and resuspended 

in YPD containing 10 µM nocodazole. After 60 minutes 5mL samples were taken 

and the remaining culture was split in half, with half receiving 0.2 µM pheromone. 

5mL samples were taken after 60 minutes. 

 

Steady-state cdc28-as1 experiment 

 Cultures were grown in synthetic, selective media overnight. In the 

morning cultures were diluted back to an OD660 of 0.2 and allowed to grow for 3 

hours to ensure they were actively growing. Cultures were incubated with 5"M 1-

NM-PP1 for 60 min, then cultures were split, and pheromone was added to half 

to a final concentration of 0.2 µM. Samples were taken at indicated time points.  
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GAL promoter shutoff 

Cultures were grown in synthetic, selective media containing 2% raffinose 

overnight. In the morning cultures were diluted back to an OD660 of 0.2 and 

allowed to grow for 3 hours to ensure they were actively growing. A 5mL sample 

was taken and then galactose (final concentration 2%) was added to induce 

cyclin expression for 40 minutes. A 5mL sample was removed and the remaining 

culture was spun down and resuspended in synthetic glucose media to shut off 

expression. The cultures were then split in half and pheromone was added to half 

to a final concentration of 0.2 µM. 5mL samples were taken at the indicated time 

points. Samples were prepared as above. 

 

Cycloheximide treatment, with or without cdc28-as 

Cultures were grown in synthetic, selective media overnight. In the 

morning cultures were diluted back to an OD660 of 0.4. A 5mL sample was 

removed and the remaining culture was split into two. Both received 

cycloheximide (5mg/mL final), and one also received 0.2 µM pheromone. 5mL 

samples were taken at indicated time points, spun, and frozen in liquid nitrogen. 

Samples were prepared as above. 

 For experiments in the cdc28-as2 strain, cultures were treated with 10 µM 

1-NM-PP1 for 60 minutes prior to addition of cycloheximide and pheromone. 

 

Protein Sample Preparation 
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For samples in figures 1, 2C, 3, 4 5mL samples were taken and prepared 

using the NaOH lysis method. Samples were spun down and resuspended in 

100µL H2O. 100µL of 2N NaOH was added, the samples were vortexed, and 

then allowed to sit at room temperature for 5 min. Samples were then spun for 1 

min at room temperature, resuspended in 50µL SDS Sample Buffer and boiled 

for 3 minutes.  

For all other figures the trichloroacetic acid procedure (as described (Lee 

and Dohlman, 2008)) was used. The 5-10mL samples were spun down and 

frozen in liquid nitrogen and stored at -80oC. Frozen cell pellets were thawed on 

ice with 300 "L TCA Buffer (10 mM Tris.HCl, pH 8.0, 10% TCA, 25 mM 

ammonium acetate, 1 mM Na2EDTA) and transferred to a pre-chilled microfuge 

tube. Approximately 200 "L of glass beads were then added, and the samples 

were vortexed to lyse the cells (five rounds of 1 mintute vortexing with 3 minutes 

on ice in between). The lysate was transferred to a new microfuge tube and 

centrifuged at 4˚C for 10 minutes at 16,000 x g. The supernatant was aspirated 

off and the remaining pellet was resuspended in 150 "L of Resuspension 

solution (0.1 M Tris.HCl, pH 11.0, 3% SDS). The samples were boiled for 5 min, 

allowed to cool at room temperature for 5 min, and then centrifuged for 30sec. 

Then 120"L of the supernatant was transferred to a fresh tube. 20uL was 

reserved for use in a BCA protein assay, and 100"L 2.5X SDS sample buffer 

was added to the remaining 100"L of sample. Protein concentrations were 

determined using the Pierce BCA Protein Assay Kit (#23225).  
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Western Blots 

 Either 10"L (for NaOH prepared cells) or 20"g (for TCA prepared cells) of 

each sample were run out by SDS-PAGE, transferred to PVDF by either semi-dry 

or submerged transfer method. Myc blots were probed with Rabbit anti-myc 

(1:200 Santa Cruz Biotechnologies #sc-789) and detected with Goat anti-rabbit 

AP conjugated secondary antibody (1:3000) and Immun-Star-AP substrate 

(BioRad #170-5018).  Cdc28 blots were probed with goat anti-Cdc28 (1:200 

Santa Cruz Biotechnologies #sc-6709) and detected with donkey anti-goat HRP-

conjugated secondary (1:3000 sc-2020) and Pierce SuperSignal West Pico 

(#34080) chemilluminescent reagent. 

 Blots were quantified using the program ImageJ and this previously 

described method (Miller, 2007). 
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Table 3.1.  Yeast strains used in this Chapter III 

Name Relevant Genotype* Source 

PPY640 MATa FUS1::FUS1-lacZ::LEU2 1 

PPY892 MATa FUS1::FUS1-lacZ::LEU2 far1::ADE2 this study 

PPY1748 MATa bar1 STE5-8A 2 

PPY1778 MATa bar1 STE5-8A far1"::ADE2 2 

PPY1853 MATa bar1 STE5-8A far1"::ADE2 cln2"::kanR 2 

PPY2075 MATa FUS1::FUS1-lacZ::LEU2 STE5-8A this study 

PPY2076 MATa FUS1::FUS1-lacZ::LEU2 far1::ADE2 STE5-8A this study 

PPY2179 MATa bar1 STE5-8A far1"::ADE2 cln2"::kanR cln1"::TRP1
cg

 this study 

PPY2208 MATa bar1# STE5-8A grr1#::TRP1
Cg

 this study 

PPY2210 MATa bar1# STE5-8A far1::ADE2 grr1#::TRP1
Cg

 this study 

PPY2213 MATa cdc28-as1  

PPY2270 MATa cdc28-as2 this study 

* All strains are in the W303 background (ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1), except PPY2270 which is 
BY4741 (MATa his3#1 leu2#0 ura3#0 met15#0)   

Source: (1)(Pryciak and Huntress, 1998) (2)(Strickfaden et al., 2007) 

 

 

 

Source: (1)(Bhaduri and Pryciak, 2011)

Table 3.2.  Plasmids used in Chapter III 

Name Alias Description Source 

pPP3077 pTEFpr-CLN2-myc CEN URA3 TEF1pr-CLN1-myc13  CYC1term 1 

pPP3078 pADHpr-CLN1-myc CEN URA3 ADH1pr-CLN1-myc13  CYC1term this study 

pPP3079 pADHpr-CLN2-myc CEN URA3 ADH1pr-CLN2-myc13  CYC1term this study 

pPP3153 pCYC1pr-CLN1-myc CEN URA3 CYC1pr-CLN1-myc13  CYC1term 1 

pPP3154 pCYC1pr-CLB5-myc CEN URA3 CYC1pr-CLB5-myc13  CYC1term 1 

pPP3155 pCYC1pr-CLB2-myc CEN URA3 CYC1pr-CLB2-myc13  CYC1term 1 

pPP3203 pCYC1pr-CLN2-myc CEN URA3 CYC1pr-CLN2-myc13  CYC1term 1 

pPP3204 pCYC1pr-CLN2
4T3S

-myc CEN URA3 CYC1pr-CLN2(4T3S)-myc13  CYC1term this study 

pPP3201 pGALpr-CLN2-myc CEN URA3 GAL1pr-CLN2-myc13  CYC1term this study 
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Strain and Plasmid combinations 

Figure 3.1: (B) PPY640, PPY892, PPY2075, PPY2076 harbored pPP681, 

pPP3079, or pPP3203 (C) PPY1748 and PPY1778 harbored pPP3078 or 

pPP3079 (D) PPY1748 harbored pPP3153, pPP3154, or pPP3203 

 

Figure 3.2: (A) PPY1748 and PPY1778 harbored pPP3153 or pPP3203 (C) 

PPY2213 harbored pPP3153 or pPP3203 

 

Figure 3.3: (A) PPY1748, PPY1778, PPY1853, and PPY2179 harbored pPP3203 

(B) PPY2208 and PPY2210 harbored pPP3203 

 

Figure 3.4: (A) PPY1748 and PPY1778 harbored pPP3203 (B) PPY1748 

harbored pPP3203, pPP3154, or pPP3155 

 

Figure 3.5: PPY1748 and PPY1778 harbored pPP3201 

 

Figure 3.6: (A) PPY1748 and PPY1778 harbored pPP3203 (B) PPY2270 

harbored pPP3153 and pPP3203 
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CHAPTER IV 

Far1-dependent G1 arrest in response to pheromone is the result of 

interference with the ability of Cln proteins to bind with their substrates 

 

The following chapter was prepared by Dr. Peter Pryciak and myself as a partial 

manuscript to be combined with work of a fellow graduate student, Samyabrata 

Bhaduri, for future publication. All experiments presented here were completed 

solely by me. 
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Abstract 

The protein Far1 was originally identified for its role in G1 arrest in 

response to pheromone. Early studies suggested that Far1 acts as a CDK 

inhibitor (CKI) protein that directly blocks the activity of Cln-CDK complexes, 

however, further studies have been unable to conclusively show that Far1 inhibits 

CDK activity. Although it is clear that Far1’s role in G1 arrest is linked to its ability 

to interact with Cln proteins, exactly how Far1 uses this interaction to eliminate 

Cln-CDK activity has remained a mystery. Recent revelations regarding the 

existence of specific docking sites for Cln-CDK binding on certain Cln substrates 

caused us to revisit this question of Far1’s function. Here we report that Far1 is 

able to interfere with the ability of Cln proteins to dock with substrates, and that 

this interference results in a correlated decrease in substrate phosphorylation. 

We also observed that the ability of various Far1 mutants to bind Cln2 correlated 

with the ability of those cells to arrest in pheromone, suggesting that the ability to 

interfere with Cln2-substrate binding is critical for Far1’s arrest function.
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Introduction 

In eukaryotic cells, initiation of cell division is regulated by a variety of 

extracellular signals (Qi and Elion, 2005).  During the mating reaction of the 

budding yeast Saccharomyces cerevisiae, extracellular mating pheromones (a 

factor and ! factor) activate a signal transduction pathway that blocks entry into a 

new division cycle and thereby arrests cells in G1 phase (Bardwell, 2005).  The 

protein Far1 (Factor arrest) plays a key role in this process.  Far1 was originally 

identified via a genetic screen for mutants that retained active signaling 

responses (e.g., pheromone-induced transcription) but were specifically defective 

at G1 arrest (Chang and Herskowitz, 1990), suggesting that it functioned to 

connect the signal transduction pathway to the cell cycle (Figure 1A).  Far1 

function is activated by the pheromone pathway via both increased transcription 

of the FAR1 gene and phosphorylation of the Far1 protein by the MAP kinase 

Fus3 (Chang and Herskowitz, 1990; Peter et al., 1993).  Conversely, when cells 

enter a new division cycle, Far1 is inactivated by CDK phosphorylation, which 

triggers its degradation (Henchoz et al., 1997). 

 

Early studies suggested that Far1 acts as a CDK inhibitor (CKI) protein 

that directly blocks the activity of cyclin-CDK complexes that contain early-acting 

cyclins (Cln1, Cln2, Cln3), which function in G1 to promote cell cycle entry.  In 

particular, Far1 was found to bind CDK complexes containing each of these three  
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Figure 4.1: Schematic of Far1-dependent G1 arrest 

(A) Once activated, the mating pathway activates a MAP kinase cascade that 

then activates Far1 through phosphorylation. Activated Far1 induces G1 

arrest through an as yet undefined mechanism. 

(B) Two possible mechanisms by which Far1 could induce G1 arrest; by 

interfering with Cln-CDK/substrate interactions or inhibiting Cln-CDK 

activity 
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Figure 4.1: Schematic of Far1-dependent G1 arrest 
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cyclins in vivo (Tyers and Futcher, 1993), and could inhibit CDK phosphorylation 

in vitro of generic substrates (e.g., histone H1) when the CDK was associated 

with the G1/S cyclin Cln2 but not with S- or M-phase cyclins (Clb5 or Clb2, 

respectively) (Peter and Herskowitz, 1994).  Subsequent studies, however, were 

unable to observe an inhibitory effect of Far1 on Cln2-CDK kinase activity, 

despite their clear association in a bound complex (Gartner et al., 1998).  Still 

other studies suggested that Far1 might inhibit CDK activity associated with the 

earliest G1 cyclin, Cln3, or that Far1 regulates post-transcriptional accumulation 

of the Cln2 protein (Valdivieso et al., 1993; Jeoung et al., 1998). Consequently, 

although the fact that Far1 plays a role in pheromone-induced G1 arrest has 

been clear for many years, its precise molecular activity has remained 

unresolved.  Furthermore, to our knowledge there are no published findings 

indicating that Far1 affects the phosphorylation state of a CDK substrate in vivo. 

 

 Recent studies indicate that efficient phosphorylation of some substrates 

by Cln1/2-CDK requires a specific docking interaction between the cyclin and a 

short recognition sequence in the substrate that is separate from the phospho-

acceptor site(s) (Bhaduri and Pryciak, 2011; Koivomagi et al., 2011).  These 

docking interactions were found to promote phosphorylation of several Cln1/2-

specific CDK substrates, both in vivo and in vitro.  CDK substrates that contain 

such docking sites include components of the pheromone signaling pathway 

(Ste5, Ste20) and regulators of the G1/S transition (Sic1, Whi5) (Bhaduri and 
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Pryciak, 2011).  These findings raise the possibility that the docking interactions 

might be regulated as an additional layer of control over cell cycle entry.  In 

particular, we considered the possibility that pheromone signaling and/or Far1 

might disrupt these docking interactions, either in addition to or as an alternative 

to direct inhibition of CDK activity per se (Figure 1B).  Here, we report that, 

indeed, Far1 interferes with the ability of Cln2 to bind docking sites in Cln2-CDK 

substrates, and that this interference can contribute to their reduced 

phosphorylation in vivo. 
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Results 

To assess whether activation of the mating pathway can disrupt docking 

interactions between Cln2 and substrates, we initially used an assay from our 

previous studies in which a GST-substrate fusion and an epitope-tagged cyclin 

were co-expressed and then co-precipitated.  One complexity in the current 

experiments arises from the fact that the mating pathway and Cln2-CDK activity 

are mutually antagonistic.  That is, pheromone-arrested cells do not express the 

CLN2 gene and hence lack Cln2 protein, whereas Cln2-expressing cells inhibit 

pheromone signaling and degrade Far1.  Therefore, to allow us to compare a 

variety of independent conditions without vast changes in protein levels, we 

circumvented these antagonistic effects as follows: (i) CLN2 was expressed from 

a constitutively-active promoter (PCYC1 or PADH1); (ii) the ability of Cln2 to inhibit 

pheromone signaling was prevented by using strains with the STE5-8A allele, 

which encodes a CDK-resistant form of the pathway scaffold protein, Ste5; and 

(iii) we initially used strains with the FAR1-S87A allele, which is resistant to CDK-

triggered degradation. 

 

 Initial experiments used a GST fusion to a fragment of the Cln2-CDK 

substrate Ste20 – specifically, the smallest fragment that previously showed 

strong Cln2 binding (residues 72-333, designated Ste20*) – expressed from a 

galactose-inducible promoter (PGAL1).  We observed Cln2-myc binding after as 

little as 30 minutes of galactose addition, when GST-Ste20* expression was 
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Figure 4.2: Far1 prevents Cln-CDK substrate interactions 

(A) In the absence of pheromone, Cln2 appears in the bound fraction as soon 

as detectable levels of GST-Ste20* appear. Cells co-expressing a 

GAL1pr-GST-Ste20 fusion and Cln2-myc were induced with galactose 

with or without pheromone and samples were taken at indicated time 

points. Complexes were recovered using glutathione sepharose beads. 

Bound and input (5%) were analyzed with anti-myc and anti-GST blots.  

(B) In FAR1 cells pheromone can inhibit Cln-CDK/substrate binding, but 

inhibition is lost in far1". Cells co-expressing chimeric GST-tagged 

substrates containing the Cln docking site from the indicated (*) protein 

and myc13-tagged Cln2 were induced with galactose in the presence or 

absence of pheromone. Glutathione sepharose beads were used to pull 

down complexes and bound and input (5%) samples were analyzed with 

anti-myc and anti-GST blots. 
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Figure 4.2: Far1 prevents Cln-CDK substrate interactions 
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submaximal (Figure 4.2A).  When pheromone (! factor) was added simultaneous 

with galactose addition, binding of Cln2-myc was inhibited substantially (Figure 

4.2A).  Pheromone had no impact on expression of the GST fusion, although we 

frequently observed a reduction in Cln2 levels after prolonged treatments, 

possibly reflecting a poorly understood post-translational effect of pheromone on 

Cln2 abundance ((Valdivieso et al., 1993); see Chapter 3); hence, in subsequent 

experiments we used short treatment times whenever possible to minimize this 

effect.  When we used a GST fusion in which the Ste20 docking site was 

replaced with one from Ste5 (GST-Ste5*), we found that pheromone inhibited 

binding of Cln2 to each fusion similarly (Figure 4.2B).  Remarkably, however, this 

inhibition was not observed in far1! cells (Figure 4.2B), indicating that Far1 is 

required for the pheromone-induced effect.  Together, these findings indicate that 

the pheromone pathway can disrupt Cln2-substrate binding interactions in a 

manner that depends on Far1. 

 

 Next, we examined the requirement for specific modification sites in Far1.  

Far1 is regulated in opposite ways by different kinases: phosphorylation at 

residue T306 by the MAPK Fus3 promotes Far1 arrest activity, whereas 

phosphorylation at residue S87 by CDK triggers its degradation (Figure 4.3A).  

We constructed strains with non-phosphorylable Ala mutations at these sites, in 

the context of full-length Far1 expressed from the native FAR1 locus.  As  
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Figure 4.3: Different alleles of Far1 affect G1 arrest as well as Cln-

CDK/substrate binding 

(A) Pheromone treatment induces phosphorylation of Far1 at T306, and this 

phosphorylation is critical for the G1 arrest function of Far1. Conversely, 

Cln-CDK complexes can phosphorylate S87 of Far1 which targets Far1 for 

degradation. 

(B) Different alleles of Far1 can either increase or decrease pheromone 

sensitivity as judged by zone of inhibition formation. For these assays 

lawns were spread on agar plates and disks containing 20µl of either 20 

or 100µM $ factor were added. 

(C) (D) Cln2-CDK/substrate binding corresponds to the arrest phenotype. WT, 

FAR1-S87A, FAR1-T306A, and FAR1-S87A,T306A strains co-expressing 

a GST-substrate and Cln2-myc constructs were grown in the presence or 

absence of pheromone to determine the effect of the Far1 genotype on 

Cln2-CDK/substrate binding. Glutathione sepharose beads were used to 

pull down complexes and bound and input (2.5%) samples were analyzed 

with anti-myc and anti-GST blots. 
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Figure 4.3: Different alleles of Far1 affect G1 arrest as well as Cln-

CDK/substrate binding 
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expected, the T306A mutant was defective at pheromone arrest and the S87A 

mutant remained functional (Figure 4.3B); the S87A T306A double mutant 

showed an intermediate phenotype, which indicates that T306 phosphorylation is 

not absolutely required if Far1 is stabilized by the S87A mutation.  These arrest 

phenotypes match those seen previously when these same mutations were 

tested in the context of an N-terminal fragment of Far1 (Gartner et al., 1998).  

When we tested Cln2-substrate interactions in these strains, we observed 

several notable features common to both the GST-Ste20* and GST-Ste5* 

partners (Figures 4.3C, 4.3D).  First, the T306A mutation in Far1 blocked the 

ability of pheromone to disrupt the Cln2-substrate interactions.  Second, the 

S87A mutation increased the disruptive effect of pheromone as compared to 

Far1-WT.  Third, this increased potency of the Far1-S87A mutant was evident 

even in the absence of pheromone.  Fourth, the S87A mutation suppressed the 

defect of the T306A mutation, though not entirely so.  Overall, these results 

parallel the G1 arrest phenotypes, implying that interference with Cln2-substrate 

docking might contribute to the arrest function of Far1.  The ability of the 

stabilized Far1-S87A mutant to reduce Cln2-substrate binding even in the 

absence of pheromone was unanticipated, and may indicate that interference 

with Cln2 is a function of Far1 dosage.  Hence, the inhibitory effect of pheromone 

in these experiments likely reflects both increased expression of Far1 and its 

phosphorylation by Fus3, which can explain why pheromone still was inhibitory in 

the S87A T306A double mutant.  Finally, although we could not fully eliminate the 
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effects of pheromone treatment on Cln2 protein levels, the effects on substrate 

binding generally seemed proportionately stronger.  In addition, the effect of the 

S87A mutant in the absence of pheromone was not accompanied by reductions 

in Cln2 levels, further suggesting that the effect of Far1 on Cln2-substrate binding 

is separable from Cln2 abundance. 

 

 To confirm these findings, we conducted analogous experiments using an 

alternative procedure, in which a galactose-inducible GST-Cln2 fusion was used 

to co-precipitate full-length substrate proteins (Ste20 and Ste5), expressed from 

their native promoters.  To minimize effects of pheromone on Cln2 levels, we 

used a truncated form of Cln2 (residues 1-372) that lacks destabilizing motifs in 

its C-terminus.  By this method, GST-Cln2 could specifically co-precipitate each 

substrate protein (Figure 4.4A, 4.4B), and this co-precipitation was disrupted by 

mutations in their known docking sequences.  Then, using this procedure, we 

again tested the effect of Far1 and its mutant variants (Figure 4.5).  Although 

there was some day-to-day variability in the degree of each effect (bar graphs in 

Figure 4.5 compile multiple trials shown in Figures 4.6 and 4.7), there were 

several consistent trends.  Binding of Cln2 to each substrate was strongest in 

far1! cells, weakest in FAR1-S87A cells, and intermediate in FAR1-WT cells 

(Figure 4.5), suggesting that Far1 interferes with docking and that this effect is 

enhanced by increased Far1 abundance.  Interestingly, this trend was apparent  
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Figure 4.4: Detection of docking-dependent binding between Cln2 and full-

length substrate proteins. 

GAL promoter driven GST alone or a GST fusion to truncated Cln2 (residues 1-

372) were co-expressed with V5-tagged forms of full-length substrates expressed 

from their native promoters.  (A) Ste20 (WT or docking site mutant [mut3]).  (B) 

Ste5 (WT or docking site mutant [LLPP]).  Glutathione sepharose beads were 

used to pull down complexes and bound and input (1.25%) samples were 

analyzed with anti-V5 and anti-GST blots.  The WT and mutant substrates were 

analyzed in parallel, but were separated by other lanes in the original gels. 
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Figure 4.4: Detection of docking-dependent binding between Cln2 and full-

length substrate proteins. 
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Figure 4.5: The allele of Far1 can affect binding of full-length Ste20 or Ste5 

to GST-Cln2 

(A) (B)Levels of binding of full-length substrates to Cln-CDK depend on the 

allele of Far1 present. far1", WT, FAR1, FAR1-S87A, FAR1-T306A, and 

FAR1-S87A,T306A cells (all also containing the CDK-resistant STE5-8A 

allele to eliminate potential effects of overexpression of cyclin proteins) co-

expressing a V5-tagged substrate (Ste20 in (A) and Ste5 in (B)) and 

GAL1pr-GST-Cln2 were induced with galactose with or without 

pheromone and samples were harvested after 1.5 hours. Glutathione 

sepharose beads were used to pull down complexes and bound and input 

(1.25%) samples were analyzed by anti-V5, anti-GST, and anti-Cdc28 

blots. Cdc28 was used as an internal control for binding. Results in the 

graphs represent the average of three (A) and four (B) experiments with 

all blots being shown in Figures 6 and 7 respectively.  
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Figure 4.5: The allele of Far1 can affect binding of full-length Ste20 or Ste5 

to GST-Cln2 
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Figure 4.6: Day-to-day variability of the binding phenotype with Ste20 as 

the substrate 

 GST-Cln2 was used to pull down full length V5-tagged Ste20. Three 

individual experiments were completed, and the results from all were average to 

create the chart in Figure 4.5A. 
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Figure 4.6: Day-to-day variability of the binding phenotype with Ste20 as 

the substrate 
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Figure 4.7: Day-to-day variability of the binding phenotype with Ste5 as the 

substrate 

 When GST-Cln2 was used to pull down full-length Set5 there was increased 

day-to-day variability as compared to the Ste20 results. Here blots from four 

individual experiments are presented to show the degree of this variability. 
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Figure 4.7: Day-to-day variability of the binding phenotype with Ste5 as the 

substrate 
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even in the absence of pheromone treatment.  The T306A mutant was usually 

most similar to WT, but the T306A mutation mildly reduced the interfering activity 

of the S87A mutant.  Importantly, Far1 only affected binding of Cln2 to its 

substrates and not to its partner CDK molecule, Cdc28 (Figure 4.5).  The effect 

of pheromone was less evident and more variable in these experiments than 

when using the earlier (reverse) procedure.  The reasons for this variability are 

not clear but may relate to the fact that acute over-expression of Cln2 can drive 

Far1 phosphorylation and degradation, which may limit the ability of pheromone 

signaling to increase its levels in the time span of these experiments and/or in the 

absence of the S87A mutation; hence, the results may primarily reflect the 

amount of Far1 present at the beginning of the experiment.  Overall, however, 

these results provide further confirmation that Far1 interferes with Cln2-substrate 

binding interactions. 

 

CDK-driven phosphorylation of both Ste20 and Ste5 causes changes in 

electrophoretic mobility (Bhaduri and Pryciak, 2011), although the effect on Ste20 

is easier to detect.  In the experiments just described, variations in Ste20 mobility 

suggested effects on Cln2-CDK activity.  To examine this more closely, the same 

samples were analyzed by electrophoretic conditions that improve the resolution 

of phosphorylated species in the total Ste20 population (Figure 4.8A).  The 

results showed several reproducible effects of Far1 and pheromone on Cln2-

CDK activity.  Namely, Cln2 expression in far1! cells caused Ste20 to  
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Figure 4.8: FAR1 genotype and pheromone also affect substrate 

phosphorylation  

(A) To demonstrate changes in phosphorylation, input samples from the 

binding experiments were run for longer intervals to allow resolution of the 

phosphoisoforms. The phosphoisoforms of Ste20 present coincide with 

the binding results, where samples that had the least binding (FAR1-S87A 

+$ factor) also showed the strongest reduction in Ste20 phosphorylation, 

and samples with the strongest binding (far1" and FAR1-T306A) also 

showed the most phosphorylation.  

(B) Cdc28 inhibition does not impact the binding of Cln-CDK and substrates. 

Cdc28-as2 cells containing GST-Cln2 (or a GST-only vector) and Ste20-

V5 constructs were induced with galactose either with or without the ATP 

analog 1-NM-PP1. Glutathione sepharose beads were used to pull down 

complexes and bound and input (1.25%) samples were analyzed with 

anti-GST blots. 
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Figure 4.8: FAR1 genotype and pheromone also affect substrate 

phosphorylation  
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accumulate in the slowest mobility form, indicative of phosphorylation.  

Pheromone treatment had no effect in far1! cells, but could reduce the extent of 

Ste20 phosphorylation in FAR1-WT cells.  FAR1-S87A cells showed reduced 

Ste20 phosphorylation even in the absence of pheromone treatment and a 

further reduction when pheromone was added.  The T306A mutant was relatively 

ineffective at affecting substrate phosphorylation after pheromone treatment, 

while the S87A T306A double mutant showed a result intermediate between the 

two single mutants.  Collectively, these results suggest parallel effects of Far1 on 

substrate docking and substrate phosphorylation by Cln2-CDK.  To address 

whether it was more likely that the effects on docking are a cause rather than an 

effect of phosphorylation, we directly interfered with CDK activity by using cdc28-

as2 cells and the inhibitor compound 1NM-PP1.  We found that inactivation of 

Cdc28-as2 activity (evident in the increased migration of total Ste20) did not itself 

cause a reduction in Cln2-Ste20 binding, and moreover the ability of the Far1 

S87A mutant to disrupt this binding was equally apparent with and without CDK 

inhibition (Figure 4.8B).  Therefore, these results suggest that Far1-mediated 

interference with Cln2-substrate docking causes reduced substrate 

phosphorylation, rather than vice-versa.  Notably, to our knowledge these results 

provide the first demonstration that Far1 affects phosphorylation of CDK 

substrates in vivo, and in a manner regulated by pheromone. 
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Previous studies showed that Far1 binds Cln-CDK complexes in vivo 

(Peter et al., 1993; Tyers and Futcher, 1993; Gartner et al., 1998).  Our findings 

that Far1 interferes with Cln2-substrate interactions suggested the possibility that 

Far1 and substrates might bind Cln2 competitively, and perhaps that Far1 might 

outcompete substrate binding by virtue of higher concentration or affinity.  To 

address this issue we directly compared the relative levels of these proteins by 

using the same epitope tag (triple V5) to mark both Far1 and the substrate 

proteins (all expressed from their native promoters).  In whole cell extracts of 

strains expressing individual tagged proteins, we observed that Ste20 was 

considerably more abundant than Ste5, and that the levels of Far1 ranged 

between these two depending on whether it had been induced by pheromone or 

stabilized by the S87A mutation (Figure 4.9A).   

 

Next, we used cells that simultaneously expressed V5-tagged forms of 

Far1 and Ste20 to compare their binding to Cln2 (Figure 4.9B).  (We chose Ste20 

rather than Ste5 because of its easier detection and increased electrophoretic 

separation from Far1.)  Several findings were notable.  First, in the total protein 

samples, the levels and/or migration of both Far1 and Ste20 provided a clear 

indication of Cln2-CDK activity (Figure 4.9B lower panels).  In particular, Cln2 

expression triggered a reduction in Far1 levels in a manner that was partially 

prevented by pheromone and strongly prevented by S87A mutation (although the 

S87A mutant was still phosphorylated by Cln2-CDK, presumably at other CDK  
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Figure 4.9: Comparison of Far1 and substrates in whole cell extracts and 

binding assays 

(A) Whole cells extracts of cells with V5 fused to the native Far1 gene (either 

FAR1 or FAR1-S87A) or expressing V5-tagged Ste20 or Ste5 were 

analyzed to determine relative amounts of each protein in the cell. 20µg of 

total protein was run for each sample and the blots were probed with anti-

V5 antibody. 

(B) More FAR1-S87A binds to Cln2 as compared to Far1, and binding further 

increases with pheromone treatment. Cells with V5 fused to the native 

Far1 gene (either FAR1 or FAR1-S87A) co-expressing GST-Cln2 and 

Ste20-V5 constructs were induced with galactose with or without 

pheromone to determine how the relative levels of bound substrate and 

Far1 change in the presence or absence of pheromone. Glutathione 

sepharose beads were used to pull down complexes and bound and input 

(1.25%) samples were analyzed with anti-V5 and anti-GST blots. 
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Figure 4.9: Comparison of Far1 and substrates in whole cell extracts and 

binding assays 
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sites that are less destabilizing).  In addition, as noted earlier, Ste20 mobility 

served as an indicator of Cln2-CDK activity, in that its phosphorylation was 

antagonized additively by both pheromone and Far1-S87A.  Second, the results 

clearly indicated that Far1 binds Cln2 more favorably than Ste20, as total Far1-

WT was substantially less abundant than Ste20, and yet Far1-WT bound Cln2 at 

equal or greater levels than Ste20 Figure 4.9B, upper panels).  Similarly, Far1-

S87A was comparably abundant to Ste20 yet showed disproportionally greater 

binding to Cln2.  Third, when comparing WT and S87A forms of Far1, the 

increased Cln2 binding of the S87A mutant was accompanied by a reduction in 

Ste20 binding, consistent with the notion that Far1 outcompetes Ste20 for 

binding to Cln2.  Pheromone treatment induced an increase in Far1-Cln2 binding, 

although the degree to which this was accompanied by a reduction in Ste20 

binding in Far1-WT cells was somewhat variable (Figure 4.9B shows two 

examples); the source of this variability is not clear, but a possible explanation is 

that a competitive effect is likely to be most evident when Far1 is in excess of 

Cln2, and more modest when Cln2 is in excess, and hence the degree of 

competition may depend on the precise amount of Cln2 that accumulates after 

acute galactose induction (which may show day-to-day variation).  Collectively, 

therefore, these results suggest that Far1 binds Cln2 in a way that is mutually 

exclusive with substrate docking, and that the more favorable binding of Far1 

allows it to outcompete substrates. 
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Finally, to explore whether Far1 must be in excess of Cln2 in order to 

effectively inhibit cell cycle progression, we will perform an additional experiment 

to compare their relative levels as cells approach the cell cycle commitment point 

(i.e., “Start”).  Specifically, we have prepared strains in which both Far1 (WT or 

S87A) and Cln2 are tagged with the identical triple-V5 tag.  With these, we will 

prepare synchronous cultures by mitotic block and release (using both cdc15ts 

and PGAL1-CDC20 methods), and then follow both the ability to arrest in G1 in 

response to pheromone and the relative levels of Far1 versus Cln2 as a function 

of time.  Our prediction is that pheromone will be able to arrest cells in G1 until 

Cln2 levels begin to exceed Far1 levels, and that this period will be extended by 

the Far1 S87A mutation.  Due to some delays in strain construction, these 

experiments will be conducted after submission of this dissertation but should be 

completed shortly afterward.  
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Discussion 

These studies were undertaken to address long-standing uncertainties 

about how the yeast pheromone pathway, and specifically the presumed CKI 

protein Far1, inhibits CDK function in vivo.  They were motivated by recent 

findings that phosphorylation of several Cln1/2-CDK substrates require docking 

interactions between the cyclin and the substrate (Bhaduri and Pryciak, 2011; 

Koivomagi et al., 2011), which raised the possibility that these docking 

interactions might be regulated.  Indeed, our findings provide evidence that 

activation of the pheromone signaling pathway interferes with Cln2-substrate 

interactions, and that this interference is mediated by Far1.  Moreover, from 

analysis of several Far1 mutants that lack different regulatory phosphorylation 

sites, the ability of Far1 to disrupt Cln2-substrate docking largely correlates with 

its ability to mediate pheromone arrest.  Finally, by comparing Cln2 binding to 

Far1 and a substrate (Ste20) in the same cells, we found that Far1 binds Cln2 

more favorably (presumably due to stronger protein-protein interaction affinity), 

and thus competes with substrates for binding to Cln2.  Collectively, these 

observations indicate that Far1 disrupts Cln2-substrate docking interactions.  

Given the previous evidence that these docking interactions enhance substrate 

phosphorylation, it seems likely that the ability of Far1 to interfere with docking 

contributes to a reduction in substrate phosphorylation, either instead of or in 

addition to a separate ability of Far1 to block CDK activity per se. Disrupting 

docking may be a particularly effective way to antagonize kinase activity toward 
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substrates with inherently poor (non-consensus) phosphorylation sites or those 

that must be phosphorylated at multiple independent sites, as these substrates 

might be especially dependent on docking.  This notion could help explain why 

inhibition of CDK activity by Far1 has been difficult to detect in some previous 

studies, as the in vitro assays routinely use histone H1 as a substrate, which has 

strong (consensus) phosphorylation sites and no docking motif. 

 

The specific mechanism by which Far1 interferes with Cln2 docking 

interactions is not known.  There are no structural data on the Cln2-substrate 

binding interface, but mutational analyses suggest that the docking sequences 

are short peptides (e.g., 4-8 residues in length, enriched in Leu and Pro), which 

presumably bind to a peptide-recognition groove on the cyclin.  This would be 

analogous to the docking interaction between S-phase cyclins (e.g, mammalian 

CycA or yeast Clb5) and short “RXL” peptides in their substrates.  Conceivably, 

Far1 could outcompete substrate docking by having a similar docking peptide of 

higher affinity, or by interacting with a larger interface of Cln2 in a way that 

obscures the peptide recognition site.  Previous studies suggested that the ability 

of Far1 to bind Cln2 requires extensive sequences in two distinct regions (Peter 

et al., 1993); when considered in light of our finding that Cln2 binds Far1 

considerably more strongly than Ste20, this might favor the model that the Far1-

Cln2 interaction involves a larger interface on the cyclin than that occupied by the 

docking motif.  Again, this would be analogous to the interaction between 
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mammalian CKI proteins p21 and p27, which do have RXL-like docking 

sequences that contribute to cyclin binding and CDK inhibition (Wohlschlegel et 

al., 2001), but by crystallographic analysis it is clear that this contact with the 

docking groove is just a small part of an extensive interaction interface that 

involves both the cyclin and CDK subunits (Russo et al., 1996). 

 

One surprising aspect of our findings was the ability of Far1 (WT or S87A) 

to at least partially interfere with Cln2-substrate binding even without pheromone 

treatment.  This was unexpected because previous findings implied that Far1 

must be activated by pheromone: (a) although FAR1 transcription is induced by 

pheromone, over-expression of FAR1 from a foreign promoter is not sufficient to 

induce G1 arrest in the absence of pheromone (Chang and Herskowitz, 1992); 

and (b) Far1 is phosphorylated by Fus3 in response to pheromone, and mutation 

of this phosphorylation site (T306A) causes a defect in Cln2 binding and 

pheromone arrest (Gartner et al., 1998).  In retrospect, a more accurate 

interpretation might be that unphosphorylated Far1 is active but is less potent 

than when it is phosphorylated at T306; this view seems clearly evident in our 

binding experiments, and is supported by the fact that pheromone can arrest the 

FAR1-S87A T306A double mutant strain, though more weakly than the FAR1-

S87A single mutant.  Over-expression of FAR1 may not be sufficient to cause G1 

arrest because pheromone signaling may still be required to induce Far1-

independent effects (see Chapter 2) to efficiently arrest the cell cycle.  The 
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potential for unphosphorylated Far1 to reduce Cln2-CDK activity is also relevant 

to two other previous studies.  In one case, it was observed that far1! cells show 

accelerated passage through Start in the absence of pheromone exposure 

(Alberghina et al., 2004).  In another case, when comparing two methods for 

making the mating pathway resistant to CDK inhibition, namely FAR1-S87A 

versus STE5-8A, it was found that only the former was able to extend the Start 

commitment period (Doncic et al., 2011); it is possible that this was because the 

critical parameter dictating whether cells are past Start (and hence will not arrest 

upon pheromone exposure) is the level of Cln1/2-CDK activity present 

immediately prior to pheromone treatment, and so the key effect of Far1-S87A 

may have been to reduce Cln1/2-CDK activity before pheromone was added, so 

that the period in which pheromone can arrest the cell cycle is extended. 

 

Our findings clearly indicate that the ability of Cln2-CDK to phosphorylate 

Ste20 is inhibited by pheromone and Far1.  Remarkably, to our knowledge this is 

the first demonstration that pheromone and Far1 can block the ability of a cyclin-

CDK complex to phosphorylate any substrate in vivo.  There are many prior 

examples in which CDK substrates were unphosphorylated in pheromone-

arrested cells, but this is a trivial consequence of the fact that cyclins are not 

expressed in G1 arrested cells, and hence does not indicate that the kinase 

activity of cyclin-CDK complexes is reduced.  By expressing Cln2 in a manner 

that was not controlled by pheromone, we were able to observe regulation of 
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substrate phosphorylation by a set amount of Cln2-CDK in vivo.  The findings 

match previous expectations, but our ability to confirm those expectations is a 

notable new contribution. 

 

One key issue raised by our findings is the extent to which reduced 

substrate phosphorylation can be attributed to the disruption of Cln2-substrate 

binding by Far1, rather than a distinct mechanism whereby Far1 inhibits CDK 

kinase activity per se.  Studies pertinent to this issue are being performed as part 

of a parallel project being conducted by another graduate student in the lab, 

Samyabrata Bhaduri, and we plan to combine our findings into a co-authored 

manuscript for publication.  Because his work is distinct from mine, I will not 

present it in this dissertation, but instead I will briefly summarize his key findings 

here.  (1) He finds that Cln2-CDK phosphorylation of another substrate, based on 

the Ste5 N-terminus, is antagonized by Far1 in a manner similar to the pattern 

described above for Ste20.  (2) Consistent with the binding results described 

above, Far1 and Far1-S87A can clearly reduce phosphorylation of this additional 

substrate even in the absence of pheromone treatment.  (3) He has developed a 

method to link cyclins to their substrates by replacing the native docking 

interaction with a foreign leucine zipper interaction, and in this context the ability 

of Far1 to inhibit substrate phosphoryation by Cln2-CDK is greatly reduced but 

not eliminated, implying that Far1 may interfere with both substrate docking and 

CDK kinase activity.  (4) Unlike the native docking interaction, the leucine zipper 
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mediated binding interaction between Cln2 and substrate is not inhibited by Far1.  

(5) Using the leucine zippers to link different cyclins to the same substrate, he 

can detect substrate phosphorylation driven by multiple classes of cyclins (i.e., 

Cln3, Cln1, Cln2, Clb5, and Clb2), but Far1 only has a noticeable effect on 

phosphorylation by the G1/S cyclins (Cln1 and Cln2), indicating that the effects of 

Far1 on CDK activity are cyclin specific.  Thus, these parallel studies support and 

extend the observations described in this chapter.  Collectively, the combined 

results reveal a previously unsuspected mode of regulation of cyclin-CDK 

activity, in which an extracellular signal stimulates an intracellular inhibitory 

factor, Far1, to disrupt the ability of specific cyclin-CDK complexes to both 

interact with, and hence phosphorylate, their substrates. 
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Materials and Methods 
 
 

Yeast Strains and Plasmids 

Standard procedures were used for growth and genetic manipulation of yeast

(Rothstein, 1991; Sherman, 2002).  Yeast cultures were grown at 30˚C.  Yeast 

strains are listed in Table 1; all were derived from the W303 background 

(Thomas and Rothstein, 1989) and harbor the bar1! mutation to block ! factor 

degradation.  PCR-mediated gene targeting used methods described previously 

(Longtine et al., 1998); selectable markers included antibiotic resistance genes 

(kanMX6, hphMX6) and orthologs of biosynthesis genes from other yeasts (S. 

kluyveri HIS3, C. glabrata TRP1, K. lactis URA3).  For V5 tagging of endogenous 

Far1 PCR-generated cassette containing the 3xV5 tag marked with the antibiotic 

resistance gene kanMX6 was integrated into the genome downstream of the 

coding sequence.  For Cdc28 inhibition experiments, the CDC28 gene was 

replaced with an ATP analog-sensitive allele cdc28-as2 via a two-step pop-

in/pop-out method (Rothstein, 1991); we used the Cdc28-as2 [F88A] mutant 

(Colman-Lerner et al., 2005) because in our strains the more severe mutant 

Cdc28-as1 [F88G] (Bishop et al., 2000) was hypomorphic, as indicated by slow 

growth and cell shape defects. The same pop-in/pop-out method was used to 

create the FAR1-S87A and FAR1-T306A mutations. 

 

GST Binding Assays 
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 Cultures (25mL) were grown in 2% raffinose, and expression from GAL1pr 

constructs was induced with 2% galactose with or without 10nM $ factor for 1.5-3 

hours. For experiments using the cdc28-as2 allele, cultures were also treated 

with 10µM or 15 "M 1-NM-PP1. Cells were harvested and stored at -80oC. Cells 

were lysed by glass bead beating in a non-ionic detergent buffer described 

previously (Lamson et al., 2002).  Glass bead beating was performed using a 

Fast-Prep apparatus using 2mL tubes and 1 cycle at 4 m/s for 20sec.  Prior to 

GST harvest an aliquot was removed to serve as the input control. GST fusions 

were collected by binding to glutathione-sepharose beads (GE Healthcare #17-

0756-01).  

 

Whole cell extracts 

Whole cell extracts were prepared by lysis with trichloroacetic acid, in a method 

adapted from a previously reported protocol (Lee and Dohlman, 2008). Here, 

300µL of TCA Buffer (10 mM Tris.HCl, pH 8.0, 10% TCA, 25 mM ammonium 

acetate, 1 mM Na2EDTA) was added directly to frozen cell pellets, and allowed to 

sit on ice for 10 minutes. Samples were spun for 10 min at 4oC. The pellet was 

resuspended in 75µL Resuspension Buffer (0.1 M Tris.HCl, pH 11.0, 3% SDS), 

boiled for 5 min, allowed to cool at room temperature fro 5 minutes, then re-

centrifuged for 30sec. 60µL of supernatant was transferred to a new tube, 10µL 

was reserved for BCA protein concentration assay using Pierce BCA Protein 

Assay Kit (#23225), and 50µl 2xSDS Sample Buffer was added to the remaining 



"%&

sample. 

 

Western Blots 

Samples were run out by SDS-PAGE, and transferred to PVDF by submerged 

transfer method. Myc blots were probed with rabbit anti-myc (1:200 Santa Cruz 

Biotechnologies #sc-789) and detected with goat anti-rabbit HRP conjugated 

secondary antibody (1:3000, Jackson ImmunoResearch #111-035-144) and 

Pierce SuperSignal West Pico (#34080) chemilluminescent reagent.  V5 blots 

were probed with mouse anti-V5 (1:5000, Invitrogen #46-0705) and detected 

using HRP-conjugated goat anti-mouse antibodies (1:3000, BioRad #170-6516) 

Cdc28 blots were probed with goat anti-Cdc28 (1:200 Santa Cruz 

Biotechnologies #sc-6709) and detected with donkey anti-goat HRP-conjugated 

secondary (1:3000 sc-2020). GST tagged proteins were detected with anti-GST 

(1:1000, Santa Cruz Biotechnologies #sc-138) antibodies, and detected using 

HRP-conjugated goat anti-mouse antibodies (1:3000, BioRad #170-6516). 
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Table 4.1.  Yeast strains used in Chapter IV 

Name Relevant Genotype* Source 

PPY2268 MATa far1#::kanR J.Benanti 

PPY2296 MATa STE5-8A FAR1-S87A  this study 

PPY2322 MATa bar1#::hphR this study 

PPY2326 MATa bar1#::hphR far1#::kanR this study 

PPY2327 MATa bar1#::hphR STE5-8A far1#::kanR  this study 

PPY2329 MATa bar1#::hphR FAR1-S87A  this study 

PPY2330 MATa bar1#::hphR STE5-8A FAR1-S87A  this study 

PPY2340 MATa bar1#::hphR STE5-8A this study 

PPY2354 MATa bar1#::hphR FAR1-T306A this study 

PPY2356 MATa bar1#::hphR FAR1-S87A,T306A this study 

PPY2358 MATa bar1#::hphR STE5-8A FAR1-T306A   this study 

PPY2359 MATa bar1#::hphR STE5-8A FAR1-S87A,T306A   this study 

PPY2369 MATa bar1#::hphR STE5-8A far1#::kanR cdc28-as2 this study 

PPY2371 MATa bar1#::hphR STE5-8A FAR1-S87A cdc28-as2 this study 

PPY2377 MATa bar1#::hphR STE5-8A FAR1-3xV5::kanR this study 

PPY2380 MATa bar1#::hphR STE5-8A FAR1-S87A-3xV5::kanR this study 

* All strains are in the BY4741 background (MATa his3#1 leu2#0 ura3#0 met15#0)   
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Source: (1)(Winters et al., 2005) (2)(Takahashi and Pryciak, 2007) (3)(Bhaduri and Pryciak, 2011) 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2.  Plasmids used in Chapter IV 

Name Alias Description Source 

pPP1843 pUG-GST-GFP 2"m URA3 GAL1pr-GST-GFP vector   1 

pPP2154 pHG-GST CEN HIS3 GAL1pr-GST vector    3 

pPP2155 pHG-GST-GFP CEN HIS3 GAL1pr-GST-GFP vector    this study 

pPP2163 pHGT-S20A CEN HIS3 GAL1pr-GST-ste20(1-333)    2 

pPP3152 pH-TEFpr-CLN2-myc   CEN HIS3 TEF1pr-CLN2-myc13  CYC1term 3 

pPP3203 pCYC1-CLN2-myc   CEN URA3 CYC1pr-CLN2-myc13  CYC1term 3 

pPP3266 pS5kV5   CEN URA3 STE5-3xV5  CYC1term this study 

pPP3267 pRL116V5 CEN URA3 3xV5-STE20 3 

pPP3368 pRL116V5-Ala5 CEN URA3 3xV5-STE20(mut3 = SLDDP to AAAAA) 3 

pPP3369 pRL116V5-Ala13 CEN URA3 3xV5-STE20(Ala13 = CDK site mutant) 3 

pPP3573 pt-HGT-CLN2-t  CEN HIS3 GAL-GST-CLN2 1-372 + TCyc1 this study 

pPP3766 pUG-GST-F20L-wt  
#6-1 

2"m URA3 GAL1pr-GST-GFP-ste20(72-118/wt) + 
ste20(120-333)   

this study 

pPP3761 pS5kV5-Nhe-P4   CEN URA3 ste5(LLPP-AAAA)-3xV5 CYC1term 3 

pPP3771 pUG-GST-F20M-
5CSM-wt   

2"m URA3 GAL1pr-GST-GFP-ste5(263-335/WT)  + 
ste20(120-333)   

3 

pPP3825 pHG-GST-S20M-

5CSM-WT 

CEN HIS3 GAL1pr-GST-ste5(263-335) + ste20(120-333) this study 
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Strain and Plasmid combinations 

Figure 2: (A) PPY2296 harbored pPP3203 and pPP2163 (B) strains PPY2268 

and PPY2296 harbored pPP3152 with pPP1843, pPP3766, or pPP3771 

 

Figure 3: (B) strains PPY2322, PPY2326, PPY2329, PPY2354, and PPY2356 

(C) PPY2322, PPY2329, PPY2354, and PPY2356 harbored pPP3203 and 

pPP2163 (D) PPY2322, PPY2329, PPY2354, and PPY2356 harbored pPP3203 

and pPP3825 

 

Figure 4: (A) strain PPY2327 harbored pPP2154 or pPP3573 with pPP3267 or 

pPP3368 (B) strain PPY2327 harbored pPP2154 or pPP3573 with pPP3266 or 

pPP3761 

 

Figure 5: (A) strains PPY2327, PPY 2330, PPY2340, PPY2358, and PPY2359 

harbored pPP2154 or pPP3573 with pPP3267 (A) strains PPY2327, PPY 2330, 

PPY2340, PPY2358, PPY2359 harbored pPP2154 or pPP3573 with pPP3266 

 

Figure 6: strains PPY2327, PPY 2330, PPY2340, PPY2358, PPY2359 harbored 

pPP2154 or pPP3573 with pPP3267 

 

Figure 7: (A) strains PPY2327, PPY 2330, PPY2340, PPY2358, PPY2359 

harbored pPP2154 or pPP3573 with pPP3266 



"%*

 

Figure 8: (A) strains PPY2327, PPY 2330, PPY2340, PPY2358, and PPY2359 

harbored pPP2154 or pPP3573 with pPP3267 (B) strains PPY2369 and 

PPY2371 harbored pPP2154 or pPP3573 with pPP3267 

 

Figure 9: (A) PPY harbored pPP2154 with pPP3266 or pPP3267; PPY2340, 

PPY2377, and PPY2380 harbored pPP1843 and pPP2155  (B) PPY2377 and 

PPY2380 harbored pPP3267 with pPP2154 or pPP3573 



"&+

CHAPTER V 

Concluding remarks 

 

Purpose and outcome 

Pheromone treatment induces G1 arrest in Saccharomyces cerevisiae 

cells. This fact has been well established, as has the necessity for Far1. How 

exactly Far1 is able to induce arrest has remained unclear, and Far1-

independent mechanisms for arrest, although also clearly present, are even less 

well understood. Through these studies we were able to uncover details about 

how both the Far1-dependent and independent arrest mechanisms function, and 

together our data suggests that these two functions act in concert to robustly 

arrest cells in G1. 

The results presented in Chapter II demonstrate that, in the absence of 

Far1, G1/S transcriptional regulators and the CKI Sic1 help to enforce G1 arrest. 

We speculate that the presence of proteins such as Whi5 and Sic1 can help set a 

higher threshold for Cln/CDK activity that cannot be met once Far1 is activated 

by pheromone. Additive and/or redundant mechanisms for controlling 

proliferation have been demonstrated in animal cells, and our results provide 

clear evidence for similar redundancies in the control of the yeast cell cycle. Cells 

that rapidly escape G1 arrest (far1" cln2" sic1") actually lose viability 

demonstrating just how critical it is for the cells to arrest properly, and underlines 

the necessity of having multiple, redundant G1 arrest mechanisms. Another 
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important implication of the far1" cln2" sic1" results is that using growth arrest 

assays (such as halo assays) to screen for mutants deficient in pheromone-

induced arrest (or potentially any other G1 arrest) may cause us to overlook 

some mutants, namely those that no longer arrest in G1 but die at a later point in 

the cell cycle.  

 In Chapter III we studied the previously established phenomenon of 

decreased G1/S cyclin protein levels after pheromone treatment. Previous work 

had suggested that this decrease in protein levels was independent of 

pheromone-regulation of transcription, and our data confirmed this aspect of the 

response. We were, however, unable to confirm that the phenomenon is a 

specific, targeted degradation of the G1/S cyclin proteins. Our data, although not 

conclusive, does suggest that the observed effect on Cln protein levels may 

actually be a result of a pheromone-induced global decrease in translation rates. 

The very short half-lives of Cln proteins would make them more susceptible to 

changes in translation rates as opposed to more stable proteins such as Cdc28. 

 Finally, Chapter IV addressed the issue of Far1-dependent arrest. Far1 is 

known to bind Cln proteins in a pheromone-dependent manner, but the 

physiological function of this binding has remained unclear. As mentioned, 

previous data provided conflicting reports on Far1’s ability to inhibit CDK activity, 

leaving the question open as to whether or not Far1 is actually a CKI. Here we 

present data that suggests that, through Far1, pheromone is able to interfere with 

Cln-substrate interactions. We saw drastically decreased Cln-substrate binding in 
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pheromone treated cells, but only when Far1 was present. We also 

demonstrated that this interference with Cln-substrate binding appears to be a 

critical function for arrest, as a Cln2-binding compromised allele of Far1 (Far1-

T306A) that could no longer strongly inhibit Cln2-substrate interactions also 

showed reduced pheromone-induced arrest proficiency. We also observed a 

change in phosphorylation state of substrates that correlates with the binding 

phenotype; in situations where Far1 caused decreased binding there was also 

decreased substrate phosphorylation. These results are the first demonstration 

that pheromone and Far1 can block the ability of a cyclin-CDK complex to 

phosphorylate any substrate in vivo. Our results point towards this binding 

function of Far1 being a primary means through which Far1 regulates Cln-CDK 

activity. There is significant evidence that the CIP/KIP family of CKIs in 

mammalian cells make use of the cyclin docking motif (in this case the RxL motif) 

and the corresponding binding patch on the cyclin as part of their inhibitory 

mechanisms. In this case, the inhibitors possess the docking motif, and 

consequently can bind the cyclins in the same manner as substrates. It has been 

shown that this RxL motif is critical for p21s inhibition of cyclin E (Adams et al., 

1996; Chen et al., 1996), demonstrating the potential importance of cyclin 

docking for CKI-dependent inhibition. Interestingly, p21 and p27 appear to bind 

cyclin-CDKs not only through the docking sight but also over larger regions that 

contact both the cyclin and the CDK (Russo et al., 1996). Part of that binding 

appears to occlude the catalytic cleft (Russo et al., 1996), suggesting that these 
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inhibitors have multiple functions that combine to promote CDK inhibition. We do 

not currently have enough evidence to determine if Far1 acts in a similar manner, 

using multiple inhibitory mechanisms, but our data do suggest that Far1 has both 

docking-dependent and docking-independent functions suggesting that a 

mechanism similar to that of p21/p27 could be in use by Far1.  

Taken together all of the data presented here demonstrates how the 

pheromone response impacts multiple aspects of the G1/S regulatory machinery 

in order to properly arrest cells in G1.  

 

Future directions 

As discussed in Chapter 2, far1" cln2" sic1" cells demonstrate an 

interesting case where although the cells can escape from G1 while treated with 

pheromone they are unable to successfully complete an additional round of cell 

division. Based on 2C DNA content and budding pattern the cells appear to pile 

up post-S-phase.  However, viability assays demonstrate that this is not actually 

a cell cycle arrest, but instead cells are dying at this post-S-phase stage. These 

results coincide with previous data showing that overexpression of Clb5 in a 

STE5-8A strain could also cause cells to escape G1 arrest as well as lose 

viability at a point post-Start. We did not further investigate the mechanism 

behind this loss of viability, but we suspect mitosis failure due to inappropriate 

spindle formation may be to blame. Since other cells, including far1" cln2" 

whi5", can not only escape arrest but also successfully complete another round 
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of cell division it is clear that the passage through Start in pheromone signaling 

cells is not sufficient to cause the loss of viability. This instead points to a specific 

issue arising from inappropriate Clb5 activation without proper activation of other 

G1/S genes. A comparison of G1/S gene expression in pheromone treated far1" 

cln2" sic1" and far1" cln2" whi5" cells could shed some light on the issue, 

because I suspect differences in gene activation could help explain the 

differences in viability after G1 escape in these two strains. Some preliminary 

microscopy work looking at microtubule structures in post-Start arrested cells did 

suggest that the cells were unable to form proper mitotic spindles, but further 

work including time-lapse microscopy would be needed to determine exactly 

what the defect is.    

Chapter 3 addressed the role of Far1-dependent G1 arrest, and 

specifically how Far1 can interfere with Cln/substrate interactions. Work by a 

fellow lab member looked at another aspect of this phenomenon, that of how 

Far1 can impact CDK phosphorylation of substrates. What he found was a two-

pronged effect: although Far1 does appear to decrease substrate 

phosphorylation, this is not entirely docking dependent since artificial 

Cln/substrate interactions induced by leucine zipper fused Cln2 and substrates 

still show decreased phosphorylation during pheromone treatment. This suggests 

that Far1 may actually function through at least two mechanisms, interfering with 

docking and also inhibiting CDK activity. Determination of exactly how Far1 and 

Cln2 interact could provide further insight into this phenomenon. 
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