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ABSTRACT  

Despite the current understanding that sensorimotor circuits function 

through the action of transmitters and modulators, we have a limited 

understanding of how the nervous system directs the flow of information 

necessary to orchestrate complex behaviors.  In this dissertation, I aimed to 

uncover how the nervous system coordinates these behaviors using the escape 

response of the soil nematode, Caenorhabditis elegans, as a paradigm.  C. 

elegans exhibits a robust escape behavior in response to touch.  The worm 

typically moves forward in a sinusoidal pattern, which is accompanied by 

exploratory head movements.  During escape, the worm quickly retreats by 

moving backward from the point of stimulus while suppressing its head 

movements.  It was previously shown that the biogenic amine tyramine played an 

important role in modulating the suppression of these head movmemetns in 

response to touch. We identified a novel tyramine-gated chloride channel, LGC-

55, whose activation by tyramine coordinates motor programs essential for 

escape.  Furthermore, we found that changing the electrical nature of a synapse 

within the neural circuit for escape behavior can reverse its behavioral output, 

indicating that the C. elegans connectome is established independent of the 

nature of synaptic activity or behavioral output.  Finally, we characterized a 

unique mutant, zf35, which is hyperactive in reversal behavior. This mutant was 

identified as a gain of function allele of the C. elegans P/Q/N-type voltage-gated 

calcium channel, UNC-2.  Taken together, this work defines tyramine as a 
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genuine neurotransmitter and completes the neural circuit that controls the initial 

phases of the C. elegans escape response. Additionally,  this research further 

advances the understanding of how the interactions between transmitters and ion 

channels can precisely regulate neural circuit activity in the execution of a 

complex behavior. 
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CHAPTER I 

 

 

 

Introduction 

 

 

 

 

"An instinct, like a gene, is a kind of memory, a gift of time. We are born knowing 
a thousand things we could not reinvent in a lifetime if we had to start from 

scratch.”  

- Jonathan Weiner 
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“Eat but don’t get eaten” is the prevailing motto that guides animal 

behavior.  However, this principle presents a dilemma since foraging often 

increases the risk of predation.  Animals can offset part of these risks by trying to 

survive a confrontation with a predator. Run, dart, jump, fly, burrow and hide can 

all improve the prey’s odds in such life or death encounters. Time is of the 

essence so the animal needs to quickly translate sensory information about their 

environment into action. As a consequence, escape responses are typically 

robust, use dedicated neuronal structures and have a clear evolutionary purpose 

(Eaton, 1984). One of the critical features of an escape response is the fast 

translation of sensory information into a coordinated behavioral output.  An 

animal must not only sense the presence of a predator, but also coordinate 

distinct motor programs to produce an efficient escape.  Despite the current 

understanding that activity of sensorimotor circuits, through the action of 

transmitters and modulators, controls complex behaviors like the escape 

response, we have a limited understanding of how the nervous system directs 

the flow of information necessary to orchestrate these behaviors.  This 

dissertation explores the neural and molecular pathways that translate sensory 

input into a coordinated behavioral output using escape behavior as a paradigm.   

Simple Circuits and the Study of Coordinated Escape Behaviors 

The study of relatively simple circuits has provided some of the rare 

examples where we know the complete path from sensory input to a coordinated 
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motor output.  Often in escape responses, the nervous system must orchestrate 

multiple motor programs to produce an effective escape behavior.  For example, 

in the tail-flip escape of the crayfish (Figure I-1) touch to the tail induces powerful 

abdominal flexures that are spatially and temporally controlled to propel the 

animal through the water away from the stimulus (Edwards, et al., 1999; 

Herberholz, et al., 2004).  In the C-start escape in goldfish (Figure I-1), lateral 

stimulation causes the animal to coordinate both the strength and the timing of 

agonist and antagonist muscle contractions on either side of the body to quickly 

change direction and move away from the stimulus (Foreman and Eaton, 1993; 

Korn and Faber, 2005). In the Tritonia swim reflex response (Figure I-1), upon 

touch to the body, the animal initiates a series of coordinated dorsal and ventral 

body flexures to swim away from predators (Willows, et al., 1973; Katz, 1998).  

Studies of these complex behaviors have provided crucial insights into 

fundamental neuronal processes as diverse as synaptic transmission, sensory 

transduction, decision-making, and learning and memory.  However, genetic 

analyses in these organisms are difficult, leaving the molecular coding of these 

behaviors relatively unexplored.    

Studies in genetically tractable organisms, such as the fruit fly Drosophila 

melanogatser and the roundworm Caenorhabditis elegans, have provided some 

insight into the molecular basis of escape behaviors. In the fly, a strong visual 

stimulus induces fast flight initiation, where the fly couples leg extension and 

wing depression to quickly fly away (Figure I-1).  The critical motor programs that 
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control leg extension and wing depression critical for fast flight initiation are 

coordinated by the giant fiber (GF) neurons (Hammond and O’Shea, 2007; Card 

and Dickinson, 2008).  A number of genes have been identified from genetic 

screens, which play a role in the development of the GF circuit.  These genes 

play a role in regulating the outgrowth of GF axons, and the formation and 

maturation of synapses (Allen, et al., 2006). Although the neuronal pathway from 

the GF neurons to motor neurons is well defined, relatively little is known about 

its sensory inputs.  However, in C. elegans the transparency of the animal and 

simple nervous system offers the possibility to study the function of individual 

neurons and identify complete neural circuits.    

The C. elegans escape response  

The nematode C. elegans has a robust response to anterior touch.  This 

stimulus initiates a stereotyped behavior where the animal must coordinate 

several motor sequences in order to execute an efficient escape.  Gentle touch to 

the anterior of the body of the worm induces a reversal coupled with the 

suppression of foraging head movements followed by a deep ventral bend 

(omega turn) and a 180˚ change in the direction of locomotion (Figure I-1).  

Given the genetic tractability of this organism, C. elegans is an excellent model 

for the study of how the nervous system coordinates a complex behavior.   

Additionally, the complete wiring diagram of the C. elegans nervous system is 
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known, and this provides a framework for understanding neural circuits and 

sensory processing (White, et al., 1986).  

C. elegans moves on its side by propagating a sinusoidal wave of dorsal 

ventral flexures along the length of its body (Croll, 1975a). Locomotion is 

accompanied by exploratory head movements, in which the head of the animal 

sways rapidly from side to side (Figure I-1; Movie II-4). Head and body 

movements are controlled independently by distinct classes of motor neurons 

and muscles.  Although body bends are restricted to the dorsal-ventral plane, the 

animal can flex its head in three dimensions. Head movements most likely allow 

the animal to explore its immediate environment and aid in the search for food, 

as the tip of worm’s nose contains the sensory endings that smell, taste and 

sense touch.  Gentle touch to the body of the animal induces a predictable 

escape response where the animal moves away from the stimulus.  Touch to the 

tail of the animal causes the nematode to speed up; while touch to the anterior 

half of the animal induces a quick reversal during which foraging head 

movements are suppressed (Chalfie, et al., 1985; Alkema, et al., 2005; Figure I-

1; Movie II-4).  Furthermore, optogenetic activation of the mehcanosensory 

neurons in the anterior or posterior of transgenic animals that express the light 

activated channelrhodopsin in these cells induces the same behaviors as gentle 

touch (Stirman, et al., 2011; Leifer, et al., 2011).  Much like the coordination of 

leg extension and wing depression during a fly escape (Card and Dickinson, 



6 
 

2008; Allen, et al., 2006), the worm coordinates backward locomotion with the 

suppression of foraging head movements in response to anterior touch.  

The neural circuit of C. elegans escape  

In the worm, gentle touch to the body is sensed by six mechanosensory 

neurons; a pair of ALM and the AVM neurons sense touch to the anterior half, 

while a pair of PLM and the PVM neurons sense touch to the posterior half 

(Chalfie and Sulston, 1981; Figure I-2).  All six neurons send anteriorly directed 

processes that run close to the cuticle and can sense touch over their entire 

length.  Touch reception is mediated by a DEG/ENaC ion channel complex that 

can sense the application and removal of forces as small as 100 nN with a 

latency of less than 5 ms, allowing the animal to quickly respond to even the 

lightest of touches (O’Hagan, et al., 2005; Geffeney, et al., 2011). The touch 

sensory neurons make chemical synapses and electrical gap junctions with a set 

of command-like interneurons that control locomotion. The PVC and AVB 

locomotion command neurons provide inputs into the VB and DB motorneurons 

which synapse onto body wall muscles and drive forward movement; the AVD 

and AVA neurons provide inputs into the VA and DA motor neurons that drive 

backward locomotion (White, et al., 1986, Figure I-2). Laser ablation studies and 

genetic perturbations indicate that the activity of the interneurons establishes the 

direction of locomotion (Chalfie, et al., 1985; Zheng, et al., 1999).  Recent 

calcium imaging studies support this notion, indicating that the reciprocal 
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activation of AVB and AVA command neurons correlates with forward and 

backward locomotion respectively (Chronis, et al., 2007; Ben Arous, et al., 2010; 

Kawano, et al., 2011).  

Activation of the anterior touch sensory neurons inhibits command 

neurons that drive forward locomotion (PVC, AVB) and activates those, which 

promote backward locomotion (AVD, AVA), causing the animal to back away 

from the stimulus (Figure I-2). During this reversal, the animal also suppresses 

foraging head movements.  The RIM neurons are connected to the backward 

locomotion circuitry via gap junctions with the AVA command neurons.  

Optogenetic activation of the RIM neurons causes an increase in intracellular 

calcium in the AVA, suggesting that the AVA and RIM are co-activated during a 

backing response (Guo, et al., 2009).  

Tyramine and Behavior 

The RIM sits in a unique position, making synaptic contacts with the 

forward locomotion command neurons, AVB, as well as the motor neurons and 

neck muscles that facilitate foraging head movements (White et al., 1986; Figure 

I-2).  This connectivity, coupled with the data that shows the RIM is activated 

concurrently with the backward locomotion command neurons, AVA (Guo, et al., 

2009) suggests that the RIM is may link the locomotory neural circuit with the 

neural circuit that controls head movements.  The RIM neurons express tyrosine 

decarboxylase (TDC-1), the biosynthetic enzyme that converts tyrosine into 
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tyramine (Alkema, et al., 2005).  In invertebrates, tyramine was long thought to 

be the biogenic precursor of octopamine, which is a well-established 

neurotransmitter (Roeder, et al., 2003).  However, the biosynthetic enzyme 

tyramine β-hydroxylase (TBH-1) that is necessary to convert tyramine to 

octopamine is not expressed by the RIM neurons (Alkema, et al., 2005; Figure I-

3).  This suggests that there are distinct cells in the nervous system that might 

utilize tyramine as a neurotransmitter or a neurohormone.   

The role for tyramine as an independent signaling molecule in invertebrate 

behavior is largely unexplored.  G-protein coupled receptors (GPCRs) that 

respond to tyramine have been found in Drosophila, the locust, the honey bee, 

the silk moth, the freshwater prawn and the nematode (Saudou, et al., 1990; 

Blenau and Baumann, 2001; Ohta, et al., 2003; Reyes-Colón, et al., 2010; Rex 

and Komuniecki, 2002; Rex, et al., 2005; Borowsky, et al., 2001; Bunzow, et al., 

2001), supporting the notion that tyramine itself might act as a neurotransmitter in 

invertebrates.  Similar to C. elegans, distinct tyraminergic cells have been 

identified in the central complex of the locust and the central nervous system of 

Drosophila (Homberg, et al., In Press; Nagaya, et al., 2002).  Furthermore, in 

these insects, tyramine alone has been linked to several physiological processes.  

It has been shown to change the chloride conductance in the Drosophila renal 

tube, inhibit excitatory junction potentials at both the Drosophila and locust 

neuromuscular junctions (NMJ), affect behavioral responses to cocaine and 

modulate attraction to ethanol in Drosophila (Blumenthal, et al., 2005; Kutsukake, 
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et al., 2000; Donini and Lange, 2004; McClung and Hirsh, 1999; Schneider, et 

al., 2012).  In C. elegans, tyramine deficient animals (tdc-1), or animals in which 

the single pair of tyraminergic RIM neurons are ablated fail to suppress head 

movements and back up less far in response to touch, behavioral defects that 

are not shared by octopamine deficient mutants (tbh-1) (Alkema, et al., 2005; 

Figure I-3).  Furthermore, recent studies show that tyramine GPCRs may play a 

role in a modulating the behavioral response to environmental cues and affect 

decision making (Bendesky, et al., 2011).  These studies provide evidence to 

suggest that tyramine may have an independent role in C. elegans behavior.  

Although tyramine was often thought of as a metabolic byproduct or 

precursor to classical biogenic amines in the mammalian nervous system, 

identification of a family of GPCRs reactive to tyramine and β- phenylethylamine 

indicates they may also play a more physiological role in the mammalian brain 

(Borowsky, et al., 2001; Bunzow, et al., 2001).  Tyramine is produced in trace 

amounts in the mammalian nervous system, through the conversion of tyrosine 

by the biosynthetic enzyme, aromatic amino acid decarboxylase (AADC).  AADC 

is also required for the biosynthesis of dopamine, serotonin and noradrenaline.  

Evidence suggests that distinct tyraminergic neurons might also exist in the 

mammalian brain.  Within the mammalian CNS there are several regions that 

express AADC, but do not produce dopamine, serotonin or noradrenaline 

(Jaeger, et al., 1984; Beltramo, et al., 1993).  Tyramine immunoreactivity is 

strongly observed in the hypothalamus, and only subsets of these cells are 
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dopaminergic or noradrenergic (Kitahama, et al., 2005).  Following stimulation, 

endogenous tyramine is released from rat striatal slices, indicating that tyramine 

can be secreted from neurons in an activity dependent manner (Dyck, 1989). 

These data suggest that distinct populations of tyraminergic cells exist in the 

mammalian brain, and that tyramine might function as a signaling molecule in 

mammals as well as invertebrates.  Although the role for tyramine in mammalian 

behavior is currently unknown, deregulation of this trace amine has been 

implicated in the etiology of a variety of neurological disorders including 

depression, schizophrenia, attention deficit hyperactivity disorder (ADHD) and 

migraine (Boulton, 1980; Branchek and Blackburn, 2003; D’Andrea, et al., 2004).  

Octopamine and tyramine are often considered the invertebrate 

counterparts of the structurally related monoamines noradrenaline and 

adrenaline (Roeder, 2005).  In mammals, adrenergic transmitters coordinate the 

increase in heart rate, muscle tone, oxygen supply to the brain and release of 

glucose for the increase burst of energy required for the fight-or-flight escape 

response (Brede, et al., 2004).  Similarly, in invertebrates octopamine and 

tyramine have been implicated in orchestrating the sting response in honeybees, 

the fight or flight response of locusts, subordinate behavior in lobsters, and 

aggressive behavior in Drosophila and crickets (Burrell and Smith, 1995; Adamo, 

et al., 1995; Kravitz, 1988; Certel, et al., 2007; Zhou, et al., 2008; Stevenson, et 

al., 2005).  This suggests that monoaminergic signaling might be a universal 

mechanism for coordinating behaviors during a stress or escape response. 
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However, how these molecules execute this task remains poorly understood.  

Previous data has indicated that tyramine plays an important role in coordinating 

the motor programs of the C. elegans escape response (Alkema, et al., 2005).  

Given that tyramine deficient animals cannot appropriately execute evasion of 

gentle touch, it is possible that tyramine acts directly as the signaling molecule 

necessary to orchestrate this response.  My research aims to understand how 

tyramine modulates the escape response and determine the molecular coding 

and neural circuitry required to coordinate this behavior  

Outline of Thesis 

My thesis work focuses on the role of tyramine in the coordination of motor 

programs necessary for the C. elegans escape response.  To identify receptors 

and components involved in the tyramine-signaling pathway, we performed a 

genetic screen to isolate mutants resistant to immobilization induced by the 

exogenous application of tyramine.  Chapter II describes the identification and 

characterization of the novel ligand-gated chloride channel, LGC-55, which is 

activated by tyramine.  LGC-55 is expressed in neurons and muscle cells that are 

postsynaptic to the tyraminergic neuron, the RIM, and we found that the 

activation of LGC-55 by tyramine coordinates the backward locomotion and head 

movement motor programs during the escape response initiated by touch.  This 

work identifies tyramine as a classical neurotransmitter and delineates the neural 

circuit that controls the initial phases of the escape response.  
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Chapter III investigates whether it is possible to change the behavioral 

outputs of a neural circuit by changing the electrical sign of a synapse.  In 

Chapter II we identified a homomeric receptor, LGC-55, that acts postsynaptically 

of the tyraminergic neurons to control distinct behaviors.  Since there is a single 

pair of neurons that release tyramine and a single ionotropic postsynaptic 

receptor, we have a unique opportunity to determine if changing the sign of a 

receptor can affect the behavioral output of a defined neural circuit.  To test this 

idea we engineered LGC-55 to change its ion selectivity from anions to cations, 

and generated transgenic animals that expressed the chimeric LGC-55 cation 

channel.  Our experiments show that changing the nature of the synapse within a 

neural circuit can reverse behavioral output and indicates the C. elegans 

connectome is established independent of the nature of synaptic transmission.  

Finally, in a screen for tyramine resistant mutants we isolated a unique 

hyperactive mutant, zf35. Chapter IV describes the identification and 

characterization of the zf35 allele.  We identified zf35 as a gain-of-function allele 

of unc-2, which encodes the alpha subunit of a P/Q/N-type voltage-gated calcium 

channel (Cav2).  Synaptic activity converges onto presynaptic voltage-gated Ca2+ 

channels (Cav) that exert control on neurotransmission within dynamic signaling 

networks.  Neurotransmitters can in turn directly regulate the activity of Cav 

channels by activating GPCRs.  Gβγ proteins interact with calcium channels to 

inhibit their activity, modulating the excitability of postsynaptic neurons (Dascal, 

2001; Zamponi and Snutch, 1998).  We found that the zf35 lesion causes an 
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increase in channel conductance and a shift in the activation voltage, leading to 

an increase in neurotransmission.  Perturbation of Cav2 channel function in this 

manner disrupts the timing and control of distinct motor programs, resulting in the 

hyperactivity exhibited by zf35 animals.  This mutation causes changes in the 

biophysical properties of the channel similar to mutations in found in patients with 

Familial Hemiplegic Migraine (FHM), suggesting unc-2(zf35) has the potential to 

serve as an invertebrate model for the study of FHM.  
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Figure I-1 

 

 

Escape responses. 

Silhouettes of animal escape responses. Arrows indicate the direction of the 
threatening stimulus. Crayfish tail-flip (top): Time from first to last frame is 
approximately 15 ms (Edwards, et al., 1999; Herberholz, et al., 2004). Tritonia 
swim reflex: Time from first to last frame is approximately 5 s (Willows, et al., 
1973). Goldfish C-start:  Time from first to last frame is approximately 50 ms 
(Foreman and Eaton, 1993). Drosophila startle response: Time from first to last 
frame is approximately 25 ms (Card and Dickinson, 2008). C. elegans anterior 
touch response:  Time from first to last frame is approximately 10s (Alkema, et 
al., 2005). 
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Figure I-2 
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Figure I-2 

 

C. elegans escape circuit. 

Top: C. elegans moves its head rapidly from side to side during forward 
locomotion as indicated by the outline. The relative cell body position and 
neuronal process of neurons responsible for sensing touch (purple: anterior 
touch; red: posterior touch) are depicted.   

Bottom: The circuit diagram illustrates the connections between the sensory 
neurons and those that control locomotion and head movements.  Synaptic 
connections (arrows) and gap junctions (spheres) are as described by White, et 
al. (1986).  Sensory neurons are shown as triangles; command neurons required 
for locomotion are shown as hexagons, and motor neurons as circles. Excitatory 
(+) and inhibitory (-) connections involved in the anterior touch escape response 
are noted.  Anterior touch activates the AVA backward locomotion command 
neuron, which in turn activates the tyraminergic RIM motor neuron, which makes 
synapses on to the AVB forward locomotion command neuron and cells of the 
head movement circuit: RMD, SMD, and neck muscles (Chalfie, et al., 1985; 
Alkema, et al., 2005).     
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Figure I-3 

 

 

Tyramine acts independently of octopamine in C. elegans. 

A) Biosynthetic pathway of octopamine in C. elegans. Tyramine decarboxylase 
(TDC-1) converts tyrosine to tyramine; subsequently tyramine β-hydroxylase 
(TBH-1) converts tyramine to octopamine. 

B) Schematic diagram of the location of tyraminergic and octopaminergic cells.  
RIM and UV1 (blue) express tdc-1 but not tbh-1 indicating that tyramine is the 
end product of the biosynthetic pathway.  RIC and the gonadal sheath (green) 
express both tdc-1 and tbh-1, resulting in the production of octopamine as the 
final product of the pathway.  
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CHAPTER II 

 

 

 

A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs 
of a Caenorhabditis elegans Escape Response 

 

 

 

 

The work in this chapter is reprinted from a published manuscript of the same 
title, which appeared in Neuron (2009) 62.  Authorship was given to Adam 
McPherson for help with cell identifications, to Jamie Donnelly for performing the 
genetic screen that isolated the lgc-55 mutants as well as for doing the tyramine 
dose response experiment in Figure II-2, and to Michael Francis for performing 
the in vivo electrophysiology in Figure II-4.  
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Abstract 

 

A key feature of escape responses is the fast translation of sensory 

information into a coordinated motor output. In C. elegans anterior touch initiates 

a backward escape response in which lateral head movements are suppressed. 

Here we show that tyramine inhibits head movements and forward locomotion 

through the activation of a tyramine-gated chloride channel, LGC-55.  lgc-55 

mutant animals have defects in reversal behavior and fail to suppress head 

oscillations in response to anterior touch.  lgc-55 is expressed in neurons and 

muscle cells that receive direct synaptic inputs from tyraminergic motor neurons. 

Therefore, tyramine can act as a classical inhibitory neurotransmitter.  Activation 

of LGC-55 by tyramine coordinates the output of two distinct motor programs, 

locomotion and head movements that are critical for a C. elegans escape 

response. 
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Introduction 

Biogenic amines play an important role in the modulation of behaviors in a 

wide variety of organisms. In contrast to the classical biogenic amines, like 

dopamine or serotonin, roles for trace amines in the nervous system remain 

elusive. The trace amine, tyramine is found in the nervous system of animals 

ranging from nematodes to mammals. Tyramine has often been considered as a 

metabolic byproduct, or intermediate in the biosynthesis, of the classical biogenic 

amines. However, the characterization of invertebrate and mammalian G-protein 

coupled receptors that can be activated by tyramine has peaked new interest in 

the role of tyramine in animal behavior and physiology. The mammalian trace-

amine associated receptor TAAR1, has a high affinity for tyramine and beta-

phenylethylamine and is broadly expressed in the mammalian brain (Borowsky et 

al., 2001; Miller et al., 2005). Tyramine responsive G-protein coupled receptors 

have been characterized in fruit flies, locusts, honeybees, silk moths and 

nematodes (Blenau et al., 2000; Ohta et al., 2003; Rex et al., 2005; Rex and 

Komuniecki, 2002; Saudou et al., 1990). However, it is unclear whether tyramine 

is the endogenous ligand for these receptors and the role of tyramine in animal 

physiology and behavior remains relatively unexplored.  

Like in mammals, tyramine levels in invertebrates are much lower than 

those of the classic invertebrate biogenic amines, dopamine, serotonin and 

octopamine (Cole et al., 2005; Monastirioti et al., 1996). In invertebrates tyramine 
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is also a precursor in the biosynthesis of octopamine, often considered to be the 

invertebrate analog of norepinephrine (Roeder et al., 2003). In C. elegans 

tyramine is synthesized from tyrosine by a tyrosine decarboxylase (tdc-1), and a 

tyramine beta-hydroxylase (tbh-1) is required to convert tyramine to octopamine 

(Alkema et al., 2005). TDC-1 and TBH-1 are co-expressed in a single pair of 

interneurons, the RICs, and in gonadal sheath cells, indicating that these cells 

are octopaminergic. TDC-1 is also expressed on its own in the RIM motor 

neurons and the uterine UV1 cells suggesting that these cells are uniquely 

tyraminergic in C. elegans. Furthermore, animals that lack tyramine and 

octopamine (tdc-1 mutants) have behavioral defects that are not shared by 

animals that only lack octopamine (tbh-1 mutants), indicating a distinct role for 

tyramine in C. elegans behavior (Alkema et al., 2005). tdc-1 mutants, unlike tbh-1 

mutants, have defects in egg laying, reversal behavior and fail to suppress head 

movements in response to gentle anterior touch. The C. elegans neural wiring 

diagram (White et al., 1986) and cell ablation studies indicate that the 

tyraminergic RIM motorneurons link the neural circuits that control locomotion 

and head movements. In the wild, the suppression of head movements in 

response to touch may allow the animal to escape nematophagous fungi that 

trap nematodes with constricting hyphal rings (Barron, 1977).  

The study of relatively simple circuits in invertebrates has provided 

fundamental insights on how biogenic amines change the output of distinct motor 

programs (Marder and Bucher, 2001; Katz et al., 1994; Nusbaum and 
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Beenhakker, 2002). In this report, we show that tyramine inhibits head 

movements and induces long backward runs through the activation of a 

tyramine-gated chloride channel, LGC-55. lgc-55 is expressed in cells that are 

postsynaptic to the tyraminergic RIM neurons and the activation of LGC-55 

inhibits the neural circuits that drive head movements and locomotion.  Our data 

firmly establish tyramine as a genuine neurotransmitter in C. elegans and 

suggest that fast inhibitory tyraminergic transmission plays a critical role in 

coordinating a C. elegans escape response. 

Experimental Procedures 

Genetic Screen, Mapping and Cloning of LGC-55  

All strains were cultured at 22˚C on NGM agar plates with the E. coli strain 

OP50 as a food source. The wild-type strain was Bristol N2. All strains were 

obtained from the C. elegans Genetics Center (CGC) unless otherwise noted. 

Wild-type animals were mutagenized with 50 mM EMS (Brenner, 1974). Young 

adult F2 progeny of approximately 14.000 mutagenized F1 animals were washed 

twice with water and transferred to 40 mM tyramine plates. After 10 to 20 minutes 

animals that displayed sustained head or body movements were picked to single 

plates. Primary isolates were retested on 30 mM tyramine. Twelve mutants were 

isolated, of which only zf11 and zf53 were sensitive to the inhibitory effects on 

body movements but resistant to the inhibitory effects on head movements. 
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We mapped lgc-55(zf11) to LG V using the SNP mapping procedure as 

previously described (Wicks et al., 2001; Davis et al., 2005). Further three factor 

mapping placed lgc-55(zf11) to the left of rol-9 close to unc-51. Full-length lgc-55 

cDNA sequence was obtained from the expressed sequence tag (EST) clone 

yk1072c.07. Standard techniques for molecular biology were used. ClustalW 

alignments were carried out using MacVector software (Accelrys). The lgc-55 

deletion allele was obtained from National Bioresource Project and outcrossed 

four times. 

All transgenic strains were obtained by microinjection of plasmid DNA into 

the germline. At least three independent transgenic lines were obtained and data 

are from a single representative line.  An lgc-55 rescue construct was made by 

cloning a lgc-55 genomic fragment corresponding to nucleotide (nt) -2663 to 

+3895 relative to the translation start site into the EcoRV site in yk1072c7.  For 

muscle specific rescue an Acc65I/XhoI fragment containing the full-length lgc-55 

cDNA was cloned into pPD95.86 behind the myo-3 promoter. A 2751 bp genomic 

fragment upstream of the sra-11 translation start site was fused to the full-length 

lgc-55 cDNA for expression of LGC-55 in the AVB, AIA and AIY, as well as to 

GFP for expression analysis.  A PstI/Acc65I fragment from the vector pV6 

containing the glr-1 promoter was fused to the full-length lgc-55 cDNA for 

expression of LGC-55 in head neurons including RMD, SMDD, and SMDV.  A 

3545 bp genomic fragment upstream lim-4 translation start site was fused to the 

full-length lgc-55 cDNA for expression of LGC-55 in RMD and other head 
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neurons.  LGC-55::GFP translational fusion constructs were made by cloning 

GFP into an engineered AscI restriction in the genomic rescuing construct in the 

sequence encoding the intracellular loop between TM3 and TM4 (See Figure II-

3C). Transgenic animals for cell specific rescue experiments were made by co-

injecting genomic, LGC-55::GFP, myo-3::LGC-55, sra-11::LGC-55, glr-1::LGC-55 

or lim-4::LGC-55 plasmids at 20 ng/µl along with the lin-15 rescuing plasmid 

pL15EK at 80 ng/µl into lgc-55(tm2913); lin15(n765ts) animals. lgc-55::gfp and 

lgc-55::mCherry transcriptional fusion constructs were made by cloning a 

genomic fragment corresponding to nt -2663 to +3859 relative to the translational 

start site into the following vectors pPD95.70 (GFP) and pPD95.70Cherry 

(mCherry).  The membrane targeting signal sequence corresponding to nt +4 to 

+48 relative to the lgc-55 translational start site was removed using site directed 

mutagenesis. GFP and mCherry constructs were microinjected along with the lin-

15 rescuing plasmid, pL15EK, at 80 ng/µl into lin15(n765ts) animals.  

Cell Identification 

Identifications of cells that expressed the lgc-55::mCherry reporter were 

based on cell body positions, axon morphologies and co-expression with 

previously described cell specific GFP markers. Strains containing the following 

fusion genes were used to confirm cell identification: IL1: sEx15005 

(y111b2a.8::GFP),  AVB: otls123 (sra-11::GFP), RMD, SMDD. SMDV: kyls29 
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(glr-1::GFP), and ALN, SDQ: otls107 (ser-2::GFP).  All strains were examined for 

co-expression of GFP and mCherry by fluorescence microscopy. 

Behavioral Assays 

All behavioral analysis was performed with young adult animals (24 hours 

post L4) at room temperature (22-24°C); different genotypes were scored in 

parallel, with the researcher blinded to the genotype. To quantify tyramine 

resistance, young adult animals were transferred to agar plates supplemented 

with 30 mM tyramine and the percentage of immobilized animals was scored 

every minute for a 20-minute period.  Body and head movements were scored 

separately.  Body movement was defined as sustained locomotion for more than 

5 seconds, and head movement was defined as sustained lateral swings of the 

head (anterior to the posterior pharyngeal bulb) only.  Wild-type animals 

paralyzed on 30 mM tyramine within 3-5 minutes.  Tyramine plates were 

prepared by autoclaving 1.7% agar in water, cooling to ~55°C and adding glacial 

acetic acid to a concentration of 2 mM and tyramine-HCl (Sigma) to a 

concentration of 30 mM.   

To quantify the effect of tyramine on backward locomotion, animals were 

transferred in a small drop of water to agar plates with or without 30 mM tyramine 

(tyramine free plates were made as described above, without the addition of 

tyramine).  The drop of liquid was quickly dried with a KimWipe, with care taken 

not to disturb the animal.  Once the spot was dry, the animals were filmed using 
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an Imaging Source DMK 21F04 firewire camera and Astro IIDC software, for 5 

minutes or until the animal became paralyzed.  The length of each reversal was 

quantified by counting the number of backward body bends. A backward body 

bend was defined as half of a sine wave and quantified by counting the number 

of bends made in the posterior body region during backward runs.  The data 

represent the longest average reversal made within the time interval.  

Spontaneous reversal frequency was scored on unseeded NGM agar.  

Animals were transferred from their culture plate to an unseeded plate and 

allowed to crawl away from any food that might have been transferred. The 

animals were then gently transferred without food to another unseeded plate and 

allowed to recover for 1 minute.  After the recovery period the animals were 

filmed for 3 minutes. The reversal frequency was determined as described in 

Tsalik and Hobert (2003), and reversal length was scored according to Gray et 

al. (2005). Animals that crawled to the edge of the plate during filming were 

discarded.  To quantify backward locomotion in response to touch, animals were 

touched gently with an eyelash posterior to the pharynx and the number of 

backward body bends made in response to the touch was counted. The 

suppression of head oscillations was scored as described by Alkema, et al. 

(2005). 
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Mosaic Analysis 

 Strains used for mosaic analysis (QW231 and QW232) were made by 

coinjecting myo-3::GFP (50ng/ul), lgc-55::mCherry (30 ng/µl), the lgc-55 rescuing 

construct (20ng/µl) and lin-15 rescuing plasmid pL15EK (80 ng/µl) into lgc-

55(tm2913); lin15(n765ts) animals. To facilitate the identification of animals that 

lost the extrachromosomal array in the AB lineage, we selected multivulva (Muv) 

animals that expressed myo-3::GFP. Animals that lost the extragenic array the 

P1 lineage were selected by picking non-Muv animals that did not express myo-

3::GFP. Animals that lost the rescuing array in either AB or P1 lineages and non-

mosaic controls were tested for the suppression of head oscillations, head 

paralysis and backward locomotion on exogenous tyramine as described above. 

Once behavioral assays were completed animals were mounted and examined 

for the presence of GFP and mCherry using fluorescence microscopy to confirm 

expression of the array in the appropriate cell type. Animals not expressing the 

array in all neck muscle or all head neurons were discarded.  

Electrophysiology of LGC-55 

An EagI/XhoI fragment containing the full length LGC-55 cDNA, including 

the 5’ and 3’ UTRs was cloned into the EagI/XhoI site of the vector pSGEM for 

oocyte expression. Capped RNA was prepared using T7 polymerase from 

Promega. Stage V and VI oocytes from X. laevis were injected with ~50 ng of 

cRNA. Two electrode voltage clamp experiments were performed 2-3 days post 
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injection at room temperature (22-24°C). The standard bath solution for dose 

response and control experiments was ND96: 96 mM NaCl, 2 mM KCl, 1.8 mM 

CaCl2, 1 mM MgCl2, 5 mM HEPES. For dose response experiments, oocytes 

were voltage clamped at -60 mV and were subjected to a 10 second application 

of neurotransmitter (1-1000 µM, in ND96) with 2-3 minute washes between each 

application. All dose response data were normalized to the mean maximum 

current observed for tyramine. Data were gathered in 12 independent 

experiments for each neurotransmitter (totaling 31 eggs), using oocytes from 

different frogs. Data were consistent between the different batches of oocytes 

and represent the mean of at least four recordings for each dose of 

neurotransmitter.  

 The reversal potential of LGC-55 expressing oocytes was first determined 

in standard ND96 (as above). For the sodium permeability test, we substituted 96 

mM NMDG for NaCl. The Cl- permeability test was performed in 10% NaCl (9.6 

mM NaCl, 86.4 mM sodium gluconate, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 

5mM HEPES). All points represent the response to an application of 10 µM TA 

for 10 s at the indicated holding potentials. Data were normalized tyramine 

current at -60 mV and averaged for 4-5 oocytes per data point. We used 3 M KCl 

filled electrodes with a resistance between 1-4 MΩ. We used agarose bridges to 

minimize liquid junction potentials and liquid junction potentials occurring at the 

tip of the recording electrodes were corrected prior to recording. Currents were 

recorded using Warner Instrument OC-725 two-electrode voltage clamp (TEVC) 
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and data were acquired with Digidata 1322A using pClamp 9 (Axon Instruments). 

Normalized dose response data were fit to the Hill equation log(/1-)= nlog[L]-

nlogKA. Reversal potential (Erev) was calculated by determining the x intercept of 

the linear regression line of each I-V curve and averaged for 4-5 oocytes. Whole-

cell voltage-clamp recordings of C. elegans muscle cells were performed as 

previously described in Francis, et al (2005). In short, recording pipettes were 

filled with an intracellular solution of 25 mM KCl and 115 mM K-gluconate. 

Muscle cells were voltage clamped at -60 mV and 200 µM tyramine was pressure 

applied for 250 ms. The reversal potential of LGC-55 in C. elegans body wall 

muscle was determined using voltage steps in 20 mV increments. Data were 

normalized to the Imax for each animal and averaged across 3 to 4 animals. Curve 

fitting and statistical analyses were performed with Prism version 5.0a for Mac 

OS X (GraphPad Software).  

Results 

Exogenous tyramine induces backward locomotion and inhibits head 

movements. 

C. elegans moves on its side in a sinusoidal pattern by propagating dorso-

ventral waves of body wall muscle flexures along the length of its body. 

Locomotion is accompanied by exploratory head movements, where the tip of the 

nose of the animal moves from side to side. Head movements are controlled 

independently from body movements by a set of radially symmetric head and 
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neck muscles. The tyraminergic RIM motorneurons make synaptic connections 

with neck muscles that control head movements and command neurons that 

drive locomotion (Figure II-1). To study how tyramine signaling might control 

head and body movements during locomotion, we developed a simple assay for 

measuring behavioral responses to tyramine. We found that wild-type animals 

became immobilized on agar plates containing exogenous tyramine in a dose-

dependent manner (Figure II-2). In extended behavioral studies of individual 

worms in the presence of 30 mM exogenous tyramine, we noted a progressive 

sequence of behaviors that were nearly invariant from animal to animal (Figure II- 

1). Wild-type animals displayed a brief period of forward locomotion in which 

head movements ceased completely, while sinusoidal body movements in the 

posterior half of the animal persisted. Immobilization of head movements was 

followed by strikingly long backward locomotory runs (Figure II-1A, Figure II-12D, 

and Movie II-1). Following this behavioral sequence, most wild-type animals 

became completely immobilized within 5 minutes of tyramine exposure. 

Locomotion could still be triggered in immobilized animals by mechanical 

stimulation with a platinum wire. However, movements were restricted to the 

posterior half of the animal (body movements) while the head remained 

paralyzed (Movie II-2). These results support the idea that exogenous tyramine 

affects head movements and locomotory body movements through distinct 

tyraminergic signaling pathways.  
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lgc-55 mutants are partially resistant to exogenous tyramine. 

To identify genes involved in tyramine signaling we performed a genetic 

screen for mutants that are resistant to the paralytic effects of exogenous 

tyramine. We placed F2 progeny of 10,000 mutagenized hermaphrodites on agar 

plates containing 30 mM tyramine and selected rare mutants that displayed 

sustained body and/or head movements. Two mutants isolated from this screen, 

zf11 and zf53, became immobilized slightly more slowly than wild-type animals 

and continued head movements on plates containing exogenous tyramine 

(Figure II-1B and II-1C). However, neither zf11 nor zf53 mutant animals 

displayed any body movements posterior to the pharynx (See Movie II-3). 

Furthermore, exogenous tyramine failed to induce long backward locomotory 

runs in the zf11 and zf53 mutants (See Figure II-12D). zf11 and zf53 mutant 

animals were healthy and viable with normal brood sizes and had no obvious 

defects in locomotion pattern or head movements in the absence of exogenous 

tyramine.  

We mapped zf11 using single nucleotide polymorphisms and three-factor 

mapping to the right of chromosome V close to unc-51 (Figure II-3A). This 

genomic region contains a gene, lgc-55, which encodes a protein with similarity 

to members of the cysteine-loop ligand-gated ion channels (Cys-loop LGIC) 

(Figure II-3B) (Betz, 1990). Sequence analysis revealed single-base transitions in 

the lgc-55 coding sequence in zf11 and zf53 mutants. The lgc-55 gene structure 
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was confirmed by analysis of expressed sequence tagged full-length cDNA 

clones. The predicted LGC-55 protein is comprised of a large extracellular ligand-

binding domain with a characteristic Cys-loop motif, four transmembrane 

domains (M1-M4) and a large intra-cellular domain between M3 and M4 (Figure 

II-3C). The zf11 allele mutates a splice acceptor site of exon 9, which causes a 

frame shift that would lead to premature truncation of the LGC-55 protein. The 

zf53 allele converts the first cysteine codon of the Cys-loop to a tyrosine 

(C215Y). The cysteines of the Cys-loop motif in the N-terminal extracellular 

ligand-binding region of each subunit form a disulphide bond that plays a key role 

in receptor assembly (Green and Wanamaker, 1997) and gating of the ion 

channel (Grutter et al., 2005). We also obtained an available deletion allele 

tm2913, which deletes parts of both exon 4 and 5 of the lgc-55 gene. The 

deletion should prematurely truncate the LGC-55 protein and therefore most 

likely represents a null allele. Like lgc-55(zf11) and lgc-55(zf53) mutants, lgc-

55(tm2913) mutants animals are resistant to tyramine-mediated head paralysis, 

suggesting that lgc-55(zf11) and lgc-55(zf53) also represent loss-of-function 

alleles. We were able to restore tyramine sensitivity by expressing a transgenic 

lgc-55 minigene in lgc-55 mutants (Figure II-1C). These data indicate that lgc-55 

is required for the paralytic effects of exogenous tyramine on head movements.  

LGC-55 is an ionotropic tyramine receptor.  

Cys-loop LGIC receptors, like nicotinic acetylcholine (nAChR), g-

aminobutyric acid (GABAAR), glycine (GlyR) and serotonin (5HT3AR) receptors, 
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form pentameric complexes in the cell membrane (Betz, 1990). Ligand binding at 

the N-terminal domain induces a conformational change causing the pore of the 

channel to open. LGC-55 is most closely related to this family of ligand-gated ion 

channels, in particular the GABA-, glycine-gated chloride channels as well as the 

C. elegans 5HT-gated chloride channel, MOD-1 (Ranganathan et al., 2000) 

(Figure II-3B). Additionally, we identified orthologues of LGC-55 in the genomes 

of the closely related nematode species C. briggsae (CBP26358, 94% identity), 

C. remanei (RP28082, 95% identity), Pristionchus pacificus (PP01401, 70% 

identity) and the more distantly related parasitic nematode Brugia malayi 

(EDP32880, 52% identity).  

To determine whether LGC-55 can form functional homomeric channels, 

we expressed lgc-55 in Xenopus laevis oocytes for two-electrode voltage clamp 

recordings. In lgc-55 injected oocytes, application of tyramine in concentrations 

ranging from 1-1000 µM evoked robust and rapidly developing inward currents 

up to 2.2 µA (Figure II-4A). Application of tyramine to mock injected oocytes 

showed no such response (data not shown). The EC50 (effective concentration 

for half maximal response) for tyramine activation of LGC-55 receptors was 12.1 

± 1.2 µM, a concentration well within the range of EC50 values defined for 

neurotransmitters that activate closely related LGIC family members (Figure II-

4B). These data indicate that LGC-55 forms a functional homomeric receptor that 

can be activated by tyramine. The EC50 of the structurally related amines, 

octopamine and dopamine, is approximately 10-fold lower than those for 
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tyramine (EC50 = 215.2 ± 1.1 µM and 158.8 ± 1.1 µM respectively), whereas 

serotonin only elicited small LGC-55-dependent inward currents at millimolar 

concentrations. GABA, glycine, acetylcholine, and histamine did not elicit any 

significant LGC-55-dependent inward currents even at concentrations as high as 

1 mM. Although octopamine and dopamine may activate LGC-55 in vivo, 

tyramine is the most potent activator of LGC-55, suggesting that tyramine could 

function as the native ligand for LGC-55.  

LGC-55 is a tyramine gated chloride channel. 

The ion selectivity of cys-loop LGICs is determined by the M2 domain, 

which lines the pore of the ion channel. LGC-55 contains a PAR motif on the 

cytoplasmic side of the M2 domain, which is conserved in most anion-selective 

channels (Figure II-4D) (Karlin and Akabas, 1995). To determine the ion 

selectivity we analyzed the current-voltage (I-V) relationship for LGC-55 under a 

variety of ionic conditions. Under our standard recording conditions (100 mM Cl–), 

current responses to tyramine application reversed at -25.7 ± 0.9 mV (Figure II-

4C), consistent with the chloride equilibrium potential (ECl) in Xenopus oocytes 

(Weber, 1999). This is similar to the reported reversal potential of other C. 

elegans chloride selective channels, such as the UNC-49B/GABA receptor 

(Bamber et al., 1999) and the serotonin-gated chloride channel, MOD-1 

(Ranganathan et al., 2000) and significantly different from the near 0 mV reversal 

potential normally observed for non-selective cation channels.  Furthermore, after 

complete substitution of extracellular sodium with the large impermeant cation N-
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methyl-D-glucamine (NMDG), we did not observe an obvious change in reversal 

potential (ErevNMDG = -27.2 ± 1.3 mV), suggesting that sodium ions do not 

significantly contribute to the current passing through the LGC-55 ion channel 

(Figure II-4C).  

To test how changes in the chloride ion concentration affected the reversal 

potential of LGC-55, we substituted external chloride with the large anion 

gluconate.  When the chloride concentration was reduced by 10-fold, we 

observed a rightward shift in reversal potential of approximately 40 mV 

(Erevgluconate = 14.9 ± 2.6) (Figure II-4C). These data are consistent with 

corresponding shifts predicted by the Nernst equation and indicate that LGC-55 

is a chloride selective channel. To test whether the LGC-55 receptors expressed 

in vivo were also chloride selective, we expressed lgc-55 in C. elegans body wall 

muscles using the muscle-specific myo-3 promoter (myo-3::LGC-55) and 

recorded current responses to tyramine using whole-cell patch clamp 

electrophysiology (Figure II-4E). While we never detected measurable current 

responses to tyramine in body wall muscles of wild-type worms, we noted robust 

responses to tyramine in the body wall muscles of transgenic worms expressing 

LGC-55. Consistent with our results for heterologously expressed LGC-55 

receptors, current responses to tyramine reversed at approximately –30 mV 

(Figure II-4F), near the predicted reversal potential for an anion-selective channel 

under our conditions (Francis and Maricq, 2006). 
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LGC-55 is expressed in cells that are postsynaptic to the tyraminergic RIM 

motorneurons 

To determine the expression pattern of lgc-55 we generated translational 

fluorescent reporter constructs. A 7 kb lgc-55 genomic fragment including a 3.5 

kb promoter and the first intron was fused to the open reading frame of green 

(GFP) (Chalfie et al., 1994) and red (mCherry) fluorescent reporters (Shaner et 

al., 2004). The lgc-55::mCherry and lgc-55::GFP reporter expression was 

observed in a subset of neck muscles, and a restricted set of neurons (Figure II-

5). We have identified these neurons as the AVB, RMD, SMDD, SMDV, IL1D, 

IL1V, SDQ, HSN and ALN neurons (Figure II-5A, B, C, and Figure II-6,7,8). In 

addition, weak lgc-55 reporter expression was also detected in the UV1 cells and 

tail muscle cells. 

To visualize the localization of the LGC-55 protein we fused the GFP 

coding sequence between the M3 and M4 coding domain of the minimal rescuing 

construct. The LGC-55::GFP construct rescued the sensitivity of lgc-55(tm2913) 

mutants to exogenous tyramine and also rescued defects in the suppression of 

head oscillations (data not shown), indicating that LGC-55::GFP is, at least in 

part, properly localized to restore tyraminergic signaling. LGC-55::GFP 

fluorescence was observed in neuronal cell bodies and punctate structures in the 

nerve ring suggestive of postsynaptic specializations (Figure II-5E). In C. 

elegans, muscles extend cytoplasmic arms that synapse with bundles of motor 
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neuron processes (White et al., 1986) (Hall and Altun, 2007). Neck muscle arms 

turn anteriorly into the nerve ring where they make synapses with the head 

motorneurons including the tyraminergic RIMs. Therefore, the LGC-55::GFP 

puncta in the nerve ring suggest that LGC-55 receptors cluster at post synaptic 

sites that may include neuromuscular synapses between the RIMs and the neck 

muscles. The neck muscles, the AVB, RMD, SMDD and SMDV neurons are 

postsynaptic to the tyraminergic RIM motor neurons (White et al., 1986), 

consistent with tyramine being an endogenous ligand of LGC-55. The HSN, IL1, 

SDQ and ALN neurons send processes to the nerve ring but do not receive direct 

synaptic input from the RIM suggesting that LGC-55 may also act 

extrasynaptically. Furthermore, tyramine release from non-neuronal cells, such 

as the uterine UV1 cells, could activate lgc-55. 

lgc-55 is required in neck muscles to suppress head oscillation in response 

to anterior touch. 

Gentle touch to the anterior half of the body of C. elegans elicits an 

escape response in which the animal reverses its direction of locomotion (Chalfie 

et al., 1985). Wild-type animals suppress head oscillations during this backing 

response (Movie II-4). However, head oscillations are usually not suppressed 

during spontaneous reversals (Alkema et al., 2005). Mutant animals that lack 

tyramine, and animals in which the tyraminergic RIM motorneurons are ablated, 

fail to suppress head oscillations in response to anterior touch (Alkema et al., 
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2005). lgc-55 mutants had no obvious defects in locomotion pattern or head 

oscillations during normal foraging. However, we found that lgc-55 mutant 

animals failed to suppress head oscillations in response to anterior touch (Figure 

II-9, Movie II-5).  

How does the tyramine-gated chloride channel suppress head oscillations 

in response to anterior touch? We observed strong lgc-55::GFP expression in the 

RMD and SMD neurons as well as 8 radially symmetric neck muscle cells (Figure 

II-5B and D). Head movements that accompany foraging behavior are controlled 

by the excitatory cholinergic RMD and SMD neurons and the inhibitory 

GABAergic RME neurons that provide synaptic inputs to the neck muscles (Hart 

et al., 1995; Gray et al., 2005). The RMD and SMD neurons are coupled through 

gap junctions and reciprocal synaptic connections, and innervate contralateral 

neck muscles (White et al., 1986). The RMD neurons display bistable potentials, 

which may contribute to the oscillatory head movements (Mellem et al., 2008). 

The GABAergic RME neurons synapse onto the neck muscles as well as the 

RMD and SMD neurons and limit the extent of head deflection during head 

oscillations (McIntire et al., 1993).  

We sought to identify the cells in which lgc-55 acts to suppress head 

oscillations in response to anterior touch using cell specific rescue and mosaic 

analysis. For the first approach we expressed the lgc-55 cDNA under the control 

of cell specific promoters in the lgc-55(tm2913) mutants. We used the following 
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promoters to drive the expression of lgc-55 in specific subsets of cells: lim-4: the 

RMD neurons (plus 5 additional neurons) (Sagasti et al., 1999); glr-1: the RMD 

and SMD neurons (plus 14 additional neurons) (Hart et al., 1995; Maricq et al., 

1995); sra-11: the AVB neurons (plus 2 additional neurons) (Altun-Gultekin et al., 

2001) and myo-3: body wall muscle (including neck muscle) (Okkema et al., 

1993) (Table II-1). Expression of lgc-55 in the AVB (sra-11::LGC-55) or RMD 

(lim-4::LGC-55) neurons failed to rescue the defect in the suppression of head 

oscillations. Animals that expressed lgc-55 in the RMD and SMD neurons (glr-

1::LGC-55) also did not fully rescue the suppression of head oscillations but 

usually kinked their head to one side while reversing (Movie II-6). However RMD 

and SMD expression did restore sensitivity to the paralyzing effects of 

exogenous tyramine in head movement assays (Figure II-10). The expression of 

myo-3::LGC-55 in muscle, on the other hand, fully rescued the defect in the 

suppression of head oscillations of lgc-55 mutants (Figure II-9C, Movie II-7) and 

restored sensitivity to the paralyzing effects of exogenous tyramine in head 

movement assays (Figure II-10). Animals in which lgc-55 expression was 

rescued in body wall muscle displayed normal locomotion and backing in 

response to touch, suggesting that tyraminergic activation of lgc-55 mainly 

occurred synaptically at the RIM-neck muscle neuromuscular junctions.  

As a second approach we performed genetic mosaic analysis. The lgc-55 

expressing neurons are derived from the embryonic AB blastomere, whereas the 

body wall muscles are derived from the P1 blastomere (Figure II-11A). Using 
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GFP and mCherry markers we selected animals that had lost a rescuing 

extrachromosomal array in either the descendants of AB blastomere or the 

descendants of the P1 blastomere. Mosaic animals that lost the array in the P1 

lineage failed to suppress head oscillations whereas animals that lost the array in 

the AB lineage did suppress head oscillations in response to touch (Figure II-

11B). Exogenous tyramine could still inhibit head movements in animals that lost 

the rescuing array in the P1 lineage, albeit to lesser extent than animals that lost 

the array in the AB lineage. These results indicate that even though LGC-55 

expression in the RMD and SMD neurons may contribute to the suppression, 

LGC-55 expression in neck muscles is necessary and sufficient to fully suppress 

lateral head movements upon anterior touch. However, lgc-55 expression in 

neurons was required to mediate the tyraminergic stimulation of backward 

locomotion, since exogenous tyramine did not induce long backward locomotory 

runs in animals that had lost the array in the AB lineage (see below). 

lgc-55 acts in the AVB forward locomotion command neurons to modulate 

reversal behavior.  

On agar plates C. elegans mainly displays forward locomotion interrupted 

by brief backward locomotory runs. The neural circuit that controls forward and 

backward locomotion consists of four pairs of locomotion command interneurons: 

the PVC and AVB neurons are primarily required for forward locomotion whereas 

the AVD and AVA neurons are required for backward locomotion (Chalfie et al., 
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1985). Electrophysiology, Ca2+ imaging and genetic experiments indicate that 

depolarization of the forward locomotion command neurons results in forward 

locomotion whereas depolarization of the backward locomotion command 

neurons drives backward locomotion (Chronis et al., 2007; Zheng et al., 1999). 

The forward and backward locomotion command neurons make reciprocal 

synaptic connections, which may link the neural activities underlying these 

antagonistic behaviors and allow the animal to switch its direction of locomotion. 

The tyraminergic RIM neurons are electrically coupled through gap junctions with 

the AVA backward command neurons and have synaptic outputs onto the AVB 

forward locomotion command neurons. Although tyramine deficient animals 

normally initiate backward locomotion in response to anterior touch, they back up 

less far than the wild type. In addition, tyramine deficient animals have a marked 

increase in the number of spontaneous reversals indicating that tyramine 

modulates reversal behavior (Alkema et al., 2005).  

We tested whether lgc-55 mutants have defects in reversal behavior. Like 

tdc-1 mutants, lgc-55 mutants initiated backward locomotion normally in 

response to anterior touch but displayed shorter runs of backward movement 

(2.4 ± 0.1 body bends) than the wild type (3.3 ± 0.1 body bends) (Figure II-12A 

and II-13). In addition, we found that lgc-55 mutants had an increase in 

spontaneous reversals compared to the wild type, although the increase was less 

pronounced than that of the tdc-1 mutants (Figure II-12B). To examine 

spontaneous reversal behavior in more detail we categorized the reversals 
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according to the number of backward body bends (Gray et al., 2005). We found 

that lgc-55 mutants displayed more short reversals than wild-type worms (Figure 

II-12C). The increase in short reversals was even more dramatic in the tdc-1 

mutants. An lgc-55 minigene rescued the defects of lgc-55 mutants in reversal 

behavior in both the touch-induced and spontaneous reversal assays.  

Where does lgc-55 act to increase the length of reversals? Cell specific 

rescue experiments showed that lgc-55 expression in the RMD (lim-4::lgc-55), 

RMD or SMD neurons (glr-1::lgc-55) or body wall muscle (myo-3::lgc-55) did not 

restore normal reversal behavior in lgc-55 mutants (Figure II-12A, data not 

shown). However, lgc-55 expression in the AVB neurons (sra-11::lgc-55) 

restored normal reversal behavior in lgc-55 mutants. The length of backward 

runs in response to anterior touch (on average 3.3 ± 0.2 backward body bends), 

and the number and percentage of long reversals (39.6% short vs 60.4% long) in 

spontaneous reversal assays were comparable to those observed for wild-type 

worms (Figure II-12). These data indicate that lgc-55 expression in the AVB 

neurons is required to sustain backward locomotion once a reversal is initiated.   

Our data support the hypothesis that tyramine inhibits forward locomotion 

by activating lgc-55 and hyperpolarizing the AVB forward locomotion command 

neurons. The lgc-55 dependent inhibition of the forward locomotion program 

could dramatically shift the balance towards the backward locomotion program, 

thus explaining our observation that exogenous tyramine induces extremely long 
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backward locomotory runs. To further test this hypothesis, we quantified reversal 

behavior in the presence of exogenous tyramine. The longest average 

backwards run for wild-type worms in the presence of exogenous tyramine was 

approximately 15 body bends, compared to 4 body bends in the absence of 

exogenous tyramine (Figure II-12D). However, exogenous tyramine did not elicit 

prolonged backward runs in lgc-55 mutant animals (4.0 versus 2.8 backward 

body bends, respectively). In contrast, lgc-55 mutants that carried a rescuing lgc-

55 transgene displayed a dramatic increase in the length of backwards runs in 

this assay (44 backward body bends), likely due to overexpression of lgc-55. 

Exogenous tyramine also triggered long backward runs (11 backward body 

bends) in lgc-55 mutants that express lgc-55 in the AVB neurons using the sra-

11::lgc-55 transgene (Figure II-12D), but failed to do so in animals that  express 

lgc-55 in the SMD and/or RMD neurons or body wall muscles (data not shown).  

This result indicates that the effects of exogenous tyramine on backward 

locomotion are mediated, at least in part, through the activation of lgc-55 in the 

AVB forward locomotion neurons.  

Discussion 

Tyramine acts as a classical neurotransmitter in C. elegans. 

 Although tyramine is found in nervous systems from worms to man, it has 

remained unclear whether tyramine can act as a genuine neurotransmitter. The 

data presented further satisfy the six criteria that tyramine must meet to enter the 
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realm of neurotransmitters (Paton, 1958)(Cowan et al., 2001): (1) the presynaptic 

neuron contains enzymes to make the substance; (2) the substance is released 

upon activation of the neuron; (3) exogenous application of the substance to the 

postsynaptic cell mimics normal synaptic transmission; (4) the postsynaptic cell 

has receptors for the substance; (5) blocking the receptor disrupts the activity of 

the substance; (6) there are mechanisms to terminate the action of the 

substance. First, it was previously shown that the C. elegans RIM neurons 

contain the TDC-1 enzyme that synthesizes tyramine. Second, behavioral 

analysis of tdc-1 mutants, vesicular monoamine transporter (cat-1) mutants and 

laser ablation studies indicate that activation of the RIM motor neuron leads to 

synaptic tyramine release (Alkema et al., 2005). Third, here we show that 

exogenous tyramine, like endogenous tyramine release, leads to the suppression 

of head oscillations and stimulates backward locomotion. Fourth, cells that are 

postsynaptic to the RIM express the tyramine-gated chloride channel, LGC-55. 

Fifth, genetic disruption of the receptor blocks the tyramine-induced suppression 

of head oscillations and stimulation of backward locomotion. Sixth, to date no 

tyramine or octopamine reuptake transporter has been characterized in C. 

elegans. However several of the C. elegans sodium neurotransmitter transporter 

gene family (SNF) (Mullen et al., 2006) have not been characterized. In addition, 

monoamine-oxidase (MAO) and aryl-alkylamine N-acetyltransferase activities 

have been detected in nematodes including C. elegans (Isaac et al., 1996) 
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indicating that mechanisms that could terminate tyramine action are present in C. 

elegans.  

Metabotropic tyramine receptors have been identified in a wide variety of 

animals. Three G-protein coupled receptors that are activated by tyramine, SER-

2, TYRA-2 and TYRA-3, have been identified in C. elegans (Rex et al., 2005; 

Rex and Komuniecki, 2002; Wragg et al., 2007; Tsalik et al., 2003). ser-2, tyra-2 

and tyra-3, are expressed in cells that do not receive direct input from the 

tyraminergic RIMs suggesting that tyramine mainly acts as a neurohormone to 

activate G-protein coupled tyramine receptors. ser-2, tyra-2 and tyra-3 mutants 

have no obvious defects in the suppression of head oscillations or reversal 

behavior. However, ser-2 mutants are partially resistant to the inhibitory effects of 

tyramine on body movements (J.D. and M.J.A, unpublished observations). LGC-

55 provides the first example of an ionotropic-tyramine receptor. Ligand-gated 

ion channels are thought to have arisen from a common ancestor over 2 billion 

years ago (Ortells and Lunt, 1995). LGC-55 is found in the same clade as the 

serotonin-gated chloride channel MOD-1, suggesting that an ancestral anion-

channel accumulated mutations in its extracellular domain to acquire sensitivity 

to tyramine. Have tyramine-gated chloride channels evolved in species other 

than nematodes? Some observations seem to support this idea. Tyramine 

increases chloride conductance in the Drosophila Malpighian (renal) tubules 

(Blumenthal, 2005). Furthermore in rats, tyramine induces strong inhibitory 

effects on the firing rate of caudate and cortical neurons (Henwood et al., 1979) 
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and can induce hyperpolarization in neurons of the subthalamic nucleus (Zhu et 

al., 2007) of the rat brain. 

Tyramine coordinates distinct motor programs in a C. elegans escape 

response. 

The analysis of escape responses in flies, crayfish and goldfish have 

illuminated how neural networks translate sensory input into a motor output (Korn 

and Faber, 2005; Edwards et al., 2002; Allen et al., 2006). An animal’s escape 

response increases its ability to survive predator-prey encounters. One of the 

main predators of nematodes is the nematophagous fungi (Barron, 1977). These 

carnivorous fungi are ubiquitous in the soil and decaying organic material and 

have developed distinctive trapping devices, including constricting hyphal rings, 

to catch worms (Thorn and Barron, 1984). When a nematode passes through a 

hyphal ring, gentle friction induces the cells of the ring to inflate and catch the 

nematode. In C. elegans gentle anterior touch is detected by the ALM and AVM 

mechanosensory neurons (Figure II-14) (Chalfie and Sulston, 1981). The neural 

wiring diagram and laser ablation studies support a model by which activation of 

the ALM and AVM neurons leads to the inhibition of the PVC and AVB forward 

locomotion command neurons and activation of the AVD and AVA backward 

locomotion command neurons. This causes the animal to move backward away 

from the stimulus (Chalfie et al., 1985). Subsequently, the RIM is activated 

through gap junctions with the AVA neurons triggering the release of tyramine 
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(Alkema et al., 2005) and the activation of tyramine-gated chloride channel, LGC-

55.  

In response to anterior touch, lgc-55 mutants, like tyramine deficient 

animals, fail to suppress head movements and back up less far than the wild 

type. This indicates that tyramine modulates the output of two independent motor 

programs, head movements and locomotion. lgc-55 is expressed in neck 

muscles, the RMD and SMD motorneurons and the AVB forward locomotion 

command neurons that receive postsynaptic inputs from the RIM. Our studies 

indicate that tyramine hyperpolarizes neck muscles through activation of LGC-55, 

thus relaxing the muscle and inhibiting head movements. Since lgc-55 is also 

expressed in the cholinergic RMD and SMD motor neurons, which regulate head 

movements, hyperpolarization of these motor neurons may further contribute to 

the inhibition of head movements. Interestingly, recent patch-clamp studies have 

demonstrated that the RMD neurons display bistable potentials that depend on 

extrinsic activation of membrane conductance in the RMD neurons (Mellem et 

al., 2008). The expression of LGC-55 in RMD neurons suggests that tyraminergic 

inhibitory synaptic input may be important for the generation of RMD bistability.  

LGC-55 expression in the AVB forward locomotion command neurons is 

required for tyraminergic modulation of reversal behavior. The forward 

locomotion command neurons make presumptive inhibitory inputs onto the 

backward locomotion command neurons to coordinate the animal’s locomotion 
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program. Our data indicate that tyraminergic activation of LGC-55 in the AVB 

shifts the balance of the bistable circuit that controls the direction of locomotion in 

favor of the backward locomotion program. Tyramine reinforces the backward 

locomotion program allowing the animal to make a long reversal before 

reinitiating forward locomotion (Figure II-14).  Long reversals (3 or more body 

bends) are usually coupled to an omega turn, in which the head bends ventrally 

towards the tail (Croll, 1975b). Omega turns usually change the direction of 

locomotion to one directly opposite to the original trajectory (approximately 180˚). 

Short reversals of 1 or 2 body bends lead to a relatively small (40˚ to 70˚, 

respectively) change in direction of locomotion (Gray et al., 2005; Zhao et al., 

2003). Therefore, the suppression of head oscillations coupled to long reversals 

may allow the animal to engage in a more efficient escape response. 

The C. elegans neural escape circuit is reminiscent of the neural escape 

circuit in flies. In the Drosophila escape response the giant fiber (GF) neurons 

coordinate distinct motor programs: leg extension and wing depression, which 

are required for fast flight initiation (Hammond and O'Shea, 2007; Card and 

Dickinson, 2008). Fly GF interneurons make electrical synapses with the TTMn 

motorneurons, which control leg jump, and the PSI interneurons, which control 

wing depression (Tanouye and Wyman, 1980). Additional synaptic connectivity 

exists between PSI interneurons and the TTMn neurons that presumably 

contribute to a coordinated motor response (Phelan et al., 1996). Like the worm 

AVA neurons, the fly GF neurons control two distinct motor programs. Could 
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tyramine play a role in the coordination of these motor programs in the fly escape 

response? Interestingly, tyramine appears to inhibit flight initiation (Brembs et al., 

2007) and flies that have an excess of tyramine or lack the tyramine G-protein 

coupled receptor, TyRhomo do not jump as far as the wild type in fly escape 

assays (Zumstein et al., 2004). These striking similarities between worms and 

flies, suggests that tyramine may act as a universal coordinator of motor 

programs in invertebrate escape responses. 
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Figure II-1 
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Figure II-1. Exogenous Tyramine Induces Long Reversals and Suppresses 
Head Movements. 

(A) Still image of locomotion pattern of wild-type animals on 30 mM tyramine 
prior to immobilization. The x marks the starting location and the dashed line 
marks the backward locomotory run (See Supplemental Movie S1). Inset: the 
main synaptic outputs of the tyraminergic RIM motorneurons include the AVB 
forward locomotion command neurons, the RMD and SMD motorneurons and 
neck muscles.  

(B) Overlay of three still images of wild type and lgc-55(zf11) after five minutes 
on exogenous tyramine. Images were taken approximately 2 s apart. Wild-type 
animals completely immobilize. lgc-55 mutants move their heads while their body 
remains immobilized.  

(C) Quantification of head and body movements on 30 mM tyramine. Shown is 
the percentage of animals immobilized by tyramine each minute for 20 min. Each 
data point is the mean  standard error of the mean (SEM) for at least four trials 
totaling 40 or more animals. lgc-55 mutants continue to move their heads through 
the duration of the assay, while the body immobilizes similarly to wild-type 
animals.  
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Figure II-2 

 

 

Wild-Type Animals Immobilize on Exogenous Tyramine. 

Dose dependent immobilization of wild-type animals on exogenous tyramine. The 
percentage of immobilized animals, at varying concentrations of exogenous 
tyramine, are depicted over a 20 minute period. Each data point represent the 
average ± SEM for at least five trials totaling at least 50animal.  
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Figure II-3 

 

 

lgc-55 encodes a ligand-gated ion channel subunit. 

(A) The lgc-55 locus. Genetic map and gene structure of lgc-55: coding 
sequences are represented as black boxes; untranslated regions are 
represented as white boxes. The SL1 trans-spliced leader and the poly(A) tail are 
indicated. The position of the lgc-55(zf11), lgc-55(zf53) and lgc-55(tm2193) 
alleles are indicated. The lgc-55(tm2913) has a 285 bp deletion that removes 
part of exon 4 and exon 5. The deleted region indicated by bars.  

(B) Phylogenetic tree of LGC-55 and various ligand-gated ion channel subunits. 
Predicted C. elegans LGICs (Jones and Sattelle, 2008), including the 5HT 
receptor MOD-1, glutamate receptor AVR-15, GABA receptor UNC-49B, the 
Brugia malayi predicted protein EDP32880, and human GABAA
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and 5HT3A. A neighbor weighted tree of decarboxylase-conserved regions was 
determined and the bootstrap analysis and the Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) using MacVector software (Accelrys).  

(C) Alignment of LGC-55 with MOD-1 and the closely related predicted protein 
from Brugia malayi, EDP32880. Identities are outlined in black and similarities 
are shaded. The four predicted transmembrane domains are indicated by black 
bars, and the Cys-loop is indicated by a line with two black with black circles. The 
LGC-55 zf11 and zf53 mutations are indicated by stars, the black line denotes 
the amino acids deleted in the tm2913 allele. The position of the GFP insertion of 
the LGC-55::GFP translational fusion is indicated.  
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Figure II-4 

 

 

LGC-55 is a Tyramine Gated Chloride Channel. 

(A) Representative traces from Xenopus oocytes injected with lgc-55 cRNA 
showing responses to 10 µM octopamine (OA), serotonin (5HT), dopamine (DA), 
and tyramine (TA) as well 1-1000 µM TA in ND-96. Neurotransmitters were bath-
applied for 10 s.  

(B) LGC-55 TA, OA and DA dose response curves. EC50TA = 12.1 ± 1.2 µM and 
Hill Coefficient = 1.0 ± 0.17, EC50DA = 158.8 ± 1.1 µM, EC50OA = 215.2 ± 1.1 
µM. Each data point represents the mean current value normalized to the mean 
maximum current observed for tyramine, (Imax = 2.2 ± 0.17 µA). Error bars 
represent SEM.  
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(C) Ion selectivity of LGC-55 in Xenopus oocytes. TA-evoked (10 µM, 10 s) 
currents were recorded at the holding potentials shown. Filled circles, I-V curve 
determined in standard ND-96 (Erev = -25.7 ± 0.9 mV, n=4). Filled squares: 0 mM 
Na+ (Erev = -27.2 ± 1.3 mV, n=4). Filled triangles: 9.6 mM Cl- (Erev= 15.0 ± 2.6 
mV, n=4). Error bars represent SEM.  

(D) Alignment of the M2 region of LGC-55 with other members of the Cys-loop 
ligand-gated ion channel family. Shaded regions indicate residues important for 
ion selectivity.  

(E) Representative current responses to tyramine application (200 µM) recorded 
from C. elegans body wall muscle cells of wild-type (upper) or transgenic animals 
expressing myo-3::LGC-55 (lower). Black bars indicate duration of tyramine 
application (250 ms).  

(F) Current-voltage relationship for LGC-55 receptors expressed in C. elegans 
body wall muscle cells under normal recording conditions. Current responses to 
tyramine were recorded at the holding potentials indicated.  
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Figure II-5
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Figure II-5. Expression Pattern of lgc-55. 

(A) Adult animal showing expression of a fluorescent lgc-55::mCherry 
transcriptional reporter in neck muscles, head neurons, SDQ, HSN and ALN 
neurons.  

(B) Head region of an adult animal showing expression of lgc-55::mCherry (zfIs4) 
in head neurons, IL1, RMD, SMD, and AVB.  

(C) Expression of lgc-55::GFP (zfIs6) in the HSN and uterine UV1 cells. The star 
indicates position of the vulva.  

(D) Expression of lgc-55::GFP in the third row of neck muscle cells. 

(E) Expression of LGC-55::GFP translational reporter showing subcellular 
localization to neuronal cell bodies, nerve ring and muscle arms. Position of the 
nerve ring is indicated by the dotted line. Scale bar, 10 µm. Anterior is to the left 
and ventral side is down in all images. 
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Figure II-6 

 

Coexpression of lgc-55::mCherry and glr-1::GFP. 

Coexpression of lgc-55::mCherry(zfIs4) with glr-1::GFP(kyIs29) (Mariq et al., 
1995) and glr-1::GFP(nuIs25) (Hart et al., 1995). Confocal images show 
coexpression of LGC-55 and GLR-1 in the RMD, SMDD, and SMDV.  The AVB 
cell-body, similar to the cell labeled by lgc-55::mCherry, lies on the dorsal side of 
the animal just anterior to the posterior pharyngeal bulb and has a process that 
runs ventrally through the amphid commissure (indicated by arrow head) before 
turning anteriorly and entering the nerve ring (White, et al. 1986).  It was 
previously reported that glr-1 is expressed in AVJ, RIM, AVD and AVB (Hart et 
al., 1995, Mariqu et al., 1995).  In the adult animal, we observe glr-1::GFP 
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expression (middle planels) in three cells just anterior to the posterior bulb. The 
dorsal most cell in this group is slightly ventral compared to the lgc-55::mCherry 
neuron and has a process that extends anteriorly into the nerve ring, similar to 
the cell body position and axon morphology of the AVJ. Based on cell body 
position, axon morphology, which includes a process that runs through the 
amphid commissure and coexpression with sra-11::GFP (See Figures II-7,8), we 
conclude lgc-55 is expressed in the AVB.  Anterior is to the left. Scale bar, 10 
µm. 

  



61 
 

Figure II-7

 

Coexpresion of lgc-55::mCherry and sra-11::GFP. 

Coexpression of lgc-55::mCherry(zfIs4) with sra-11::GFP(otIs123) (Altun-Gutekin 
et al., 2001). Confocal images show LGC-55 expression in the AVB. 
Coexpressing cell is on the dorsal side of the animal just anterior to the posterior 
pharyngeal bulb and has a process that projects ventrally before turning 
anteriorly and entering the nerve ring in both sets of images. Anterior is to the 
left.  Scale bar, 10 µm.  
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Figure II-8

 

sra-11::GFP and glr-1::GFP Label Different Subsets of Neurons.  

(A) Fluorescence microscopy of animals expressing both glr-1::GFP(kyIs29) and 
sra-11::GFP(otIs123).  Animals expressing both GFP markers were examined to 
determine the expression in the AVB.  If sra-11::GFP and glr-1::GFP are both 
expressed in the AVB, three cells should be visible in animals expressing both 
transgenes.  Here, four cells are visible suggesting that sra-11::GFP and glr-
1::GFP label different subsets of neurons. 
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 (B) Confocal image of sra-11::GFP(zfEx46). Promoter is the same as sra-
11::LGC-55, and shows expression in the AVB and AIY similar to sra-
11::GFP(otIs123).  
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Table II-1

 

Expression patterns of promoters used for cell specific rescue of lgc-55. 

lim-4 (Sagasti et al., 1999); glr-1 (Hart et al., 1995; Maricq et al., 1995); sra-11 
(Altun-Gultekin et al., 2001) and myo-3 (Okkema et al., 1993). Note: In contrast 
to previous reports we could not detect expression of a glr-1::GFP reporter in the 
AVB neurons of adult transgenic animals; See Figure II-6-8. Cells overlapping 
with lgc-55 expression are indicated in bold. 
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Figure II-9

 

lgc-55 Mutants Fail to Suppress Head Oscillations in Response to Anterior 
Touch.  

(A) Illustration of C. elegans head movements during locomotion. Wild-type 
animals and lgc-55 mutants oscillate their heads during forward locomotion. 
Anterior touch of wild-type animals with an eyelash induces a reversal response 
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during which the head oscillations are suppressed. lgc-55 mutants fail to 
suppress head oscillations during the reversal.  

(B) Suppression of head oscillations in response to anterior touch was scored 
during the reversal response, wild-type (n=235), lgc-55 mutants [lgc-55(tm2913), 
n=205; lgc-55(zf11), n=205, lgc-55(zf53), n=170], lgc-55 rescue [lgc-55(tm2913); 
zfEx2, (n=205)], myo-3::LGC-55 [lgc-55(tm2913); zfEx31, (n=100)], sra-11::LGC-
55 [lgc-55(tm2913); zfEx37, (n=185)], glr-1::LGC-55 [lgc-55(tm2913); zfEx42, 
(n=130)], and lim-4::LGC-55 [lgc-55(tm2913); zfEx44, (n=115)] . Error bars 
represent SEM. Statistical difference from wild type; ***p<0.0001, two-tailed 
Student’s t test. ‡ p<0.0001, two- tailed Student’s t test. glr-1::LGC-55 transgenic 
animals do not completely suppress head oscillations and appear to have a 
kinked head during reversals in response to anterior touch. See text for details.  
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Figure II-10 

 

 

LGC-55 Expression in the RMD and SMD Neurons or Neck Muscles 
Restores Sensitivity to Exogenous Tyramine. 

Quantification of head movements of tissue specific rescue lines on 30 mM 
tyramine.  Expression of lgc-55 in muscle (myo-3::LGC-55), RMD and SMD (glr-
1::LGC-55) restores sensitivity to exogenous tyramine.  Animals expressing lgc-
55 in AVB (sra-11::LGC-55) and RMD alone (lim-4::LGC-55) are resistant to 
exogenous tyramine. 
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Figure II-11 

 

 

lgc-55 is Required in Neck Muscles to Suppress Head Oscillations. 

(A) Diagram of C. elegans early cell lineage. lgc-55 expressing cells derived from 
AB and P1 are indicated.  

(B) Mosaic Analysis. An lgc-55 rescuing construct was injected into lgc-
55(tm2913) mutant animals together with lgc-55::mCherry and myo-3::GFP as 
lineage markers. Animals lacking lgc-55 function in either the AB or P1 lineages 
and non-mosaic controls were analyzed for suppression of head oscillations in 
response to anterior touch, head paralysis after 5 min. on exogenous tyramine 
(30 mM) and longest backward run (# backward body bends) on 30 mM 
tyramine. Data shown are the mean ± SEM.  
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Figure II-12 

 

 

lgc-55 Mutants Have defects in Reversal Behavior. 

 (A) Average number of backward body bends in response to anterior touch of 
wild-type (n= 317), tdc-1(n3420) (n=139), lgc-55(tm2913) (n=257), lgc-55 rescue 
[lgc-55(tm2913); zfEx2, (n=204)], sra-11::LGC-55 [lgc-55(tm2913); zfEx37, 
(n=190)], myo-3::LGC-55 [lgc-55(tm2913); zfEx31, (n=157)], glr-1::LGC-55 [lgc-
55(tm2913); zfEx42, (n=133)], and lim-4::LGC-55 [lgc-55(tm2913); zfEx44, 
(n=108)] animals. 

(B) Number of spontaneous reversals in 3 minutes of well-fed wild-type (n=55), 
tdc-1(n3420) (n=16), lgc-55(tm2913), (n=40), lgc-55 rescue [lgc-55(tm2913); 
zfEx2, (n=27)], and sra-11::LGC-55 [lgc-55(tm2913); zfEx37, (n=32)] animals on 
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plates without food. Statistical difference from wild type unless otherwise noted; 
***p<0.0001, *p<0.01, two-tailed Student’s t test.  

(C) Distribution of short (1-2 body bends) and long (3+ body bends) spontaneous 
reversals made in 3 minutes. p<0.001, two-way ANOVA.  

(D) Number of backward body bends made during the longest backward run 
before paralysis on 30 mM tyramine of wild-type (n=33), lgc-55(tm2913) (n=20), 
lgc-55 rescue [lgc-55(tm2913); zfEx2, (n=20)], and sra-11::LGC-55 [lgc-
55(tm2913); zfEx37, (n=29)] animals. 0 mM data represent the number of 
backward body bends during the longest backward run made in 3 min on agar 
plates without food for wild-type (n=28), lgc-55(tm2913) (n=20), lgc-55 rescue 
[lgc-55(tm2913); zfEx2 (n=20)], and sra-11::LGC-55 [lgc-55(tm2913); zfEx37, 
(n=12)] animals. p<0.0001, two-way ANOVA; ***p<0.001, *p<0.01, Bonferroni 
post-test. Error bars represent SEM.  
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Figure II-13  

 

 

lgc-55 Mutants Have Defects in Reversal Behavior. 

Distribution of number of backward body bends in response to anterior touch of 
wild type (n=317), tdc-1(n3420) (n=139), lgc-55(tm2913) (n=257), lgc-55 rescue 
[lgc-55(tm2913); zfEx2, (n=204)], sra-11::LGC-55 [lgc-55(tm2913); zfEx37, 
(n=109)], lim-4::LGC-55 [lgc-55(tm2913); zfEx44, (n=108)], glr-1::LGC-55 [lgc-
55(tm2913); zfEx42, (n=133)], myo-3::LGC-55 [lgc-55(tm2913); zfEx31, (n=157)] 
animals. See also Figure II-12A.  
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Figure II-14 

 

 

Model: Neural Circuit for Tyraminergic Coordination of C. elegans Escape 
Response. 

Tyraminergic activation of LGC-55 hyperpolarizes neck muscles and the AVB 
command neurons inducing suppression of head oscillations and sustained 
backward locomotion in response to touch. Schematic representation of the 
neural circuit that controls locomotion and head movements. Synaptic 
connections (triangles) and gap junctions (bars) are as described by White et al. 
(1986). Sensory neurons shown as triangles, command neurons required for 
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locomotion are shown as hexagons, and motor neurons are depicted as circles. 
Neck muscles are represented as an oval. lgc-55 expressing cells and neurons 
are light grey. The tyraminergic motor neuron (RIM) is dark grey. Hypothesized 
excitatory (+) connections of neurons in this circuit are based on the identification 
of neurotransmitters, laser ablation and genetic studies cited in this paper. 
Inhibitory (-) connections important for suppression of head oscillations in 
response to anterior touch and sustained backward locomotion are based on 
behavioral, electrophysiological, and expression data described in this paper. 
See text for details.  
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Movie II-1 

Movie of a wild-type animal on plates containing 30 mM tyramine.  

Filming began immediately after the animal was placed on the plate and ended 
shortly after paralysis. Movie was shot at 15 frames per second (fps) and sped 
up five times.  
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Movie II-2  

Movie of a wild-type animal after 5 minutes on plates containing 30 mM 
tyramine.  

Animals paralyze, but can still move in response to mechanical stimulation. Body 
movements are apparent, but the head and neck remain paralyzed. Movie was 
filmed at 15 fps. 
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Movie II-3 

Movie of a lgc-55 animal after 5 minutes on plates containing 30 mM 
tyramine.  

lgc-55 mutant worms display sustained head movements, while body movements 
are inhibited. Movie was filmed at 15 fps. 
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Movie II-4 

Movie of gentle anterior touch response of wild-type animals.  

Wild-type animals suppress head oscillations in response to anterior touch.  
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Movie II-5 

Movie of gentle anterior touch response of lgc-55(tm2913) mutant animals.  

lgc-55 mutant animals fail to suppress head oscillations in response to anterior 
touch. 

  



79 
 

Movie II-6 

Movie of gentle anterior touch response of transgenic animals expressing 
glr-1::LGC-55.  

lgc-55(tm2913) mutant animals expressing a glr-1::LGC-55 transgene do not 
completely suppress head oscillations and have a kinked head during the 
reversal. 
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Movie II-7 

Movie of gentle anterior touch response of transgenic animals expressing 
myo-3::LGC-55.  

lgc-55(tm2913) mutant animals expressing a myo-3::LGC-55 transgene suppress 
head oscillations in response to anterior touch, similar to wild type.  
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CHAPTER III 

 

 

 

Synaptic Engineering: An Ionic Switch of Behavior 

 

 

 

 

The experimental work in this chapter has been written as a manuscript for 
publication at the time of this thesis preparation. Dr. Diego Rayes will also be 
credited with authorship on this manuscript for his work performing the 
electrophysiology experiments in Figure III-1 and Figure III-2 and his critical 
feedback on the manuscript. 
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Abstract 

Unraveling the human connectome is considered by many to be an 

essential step in understanding how the brain controls behavior and how 

malfunction can lead to behavioral disorders.  The neural connectivity map, 

however, does not provide information about the nature of synaptic connections. 

Whether a synapse within a neural network is excitatory or inhibitory should 

dramatically change the behavioral output produced by a neural circuit.  In this 

paper we investigate if it is possible to change the behavioral output of a neural 

circuit by changing the electrical sign of the synapse and if this provides 

developmental constraints on the connectome.  We address these questions in 

the nematode C. elegans, by selectively mutating the tyramine-gated chloride 

channel, LGC-55 to gate cations instead of anions. We show that the LGC-55 

cation channel is appropriately trafficked and functional in vivo, leading to 

behavioral responses that are opposite those produced by activation of wild-type 

LGC-55.  Our data suggest that changing the nature of a synapse within a neural 

circuit can reverse behavioral outputs and indicate that the neural network for 

escape behavior in C. elegans is established independent of the nature of 

synaptic activity or behavioral output.  
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Introduction 

In recent years great efforts have been made to map all the neural 

connections within the human nervous system.  Developing the human 

“connectome” has been considered a fundamental step in understanding 

complex behavior.  The information one would glean from the connectome 

provides the basis for making the bridge between neurons and behavior.  

However, a neural network map carries no information about the activity of 

neurons and the types of synapses each neuron makes.  This lack of information 

obscures the relationship between the connectome and behavioral output.  

The clearest example that supports this idea is the neural connectivity 

map of the nematode C. elegans.  The C. elegans hermaphrodite contains 302 

neurons, which make 7,000 chemical synapses and 900 gap junctions (White, et 

al 1986; Hall and Russell, 1991; Varsheny, et al., 2011).  The location of these 

neurons and their connectivity is fairly invariant animal to animal, which allowed 

for the reconstruction of the nervous system.  How each of these neurons 

connect to one another has been completely mapped, making the C. elegans 

neural network the only currently known connectome.  Even though the C. 

elegans neural connectivity map was described more than 25 years ago; we only 

really understand the few behaviors where we know the identities of the 

neurotransmitter and/or the nature of the postsynaptic receptor.  
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In order to fully understand the relevance of the connectome in predicting 

behavioral outputs, one of the questions that can be addressed is whether 

abnormal behavior is the result of aberrant wiring of neural circuits or if it is 

caused simply by deregulation in synaptic transmission within a given neural 

network.  If the latter possibility is true, dramatic changes in behavior are 

expected to be observed if either the receptor or the nature of the synaptic 

connections involved is altered.  Elegant sensory engineering experiments have 

demonstrated that animals can be reprogramed to avoid normally attractive 

molecules by expressing exogenous chemoreceptors on the sensory neurons.  

For example, in C. elegans endogenous expression of the chemoreceptor ODR-

10 in the AWA neuron, leads to attraction to diacetyl. However, ectopically 

expressing ODR-10 in the AWB neuron, which is associated with aversive 

behaviors, leads to diacetyl avoidance (Troemel et al, 1997; Wes and Bargmann, 

2001).  In Drosophila, capsaicin-mediated activation of VR1 cationic channels 

expressed in Gr5a cells, which are involved in sugar sensing, and Gr66 cells, 

which are implicated in avoidance of bitter compounds, is sufficient to elicit taste 

attraction or avoidance respectively, when flies are presented with capsaicin 

(Marella, et al., 2006).  Moreover, expression of the artificial opiate receptor 

RASSL in sweet sensing cells in mice leads to strong attraction to a synthetic 

opiate, whereas aversion to this compound is observed when RASSL is 

expressed in bitter sensing cells (Zhao, et al., 2003; Mueller et al., 2005).  These 

studies strongly support the idea that the activation of sensory neurons is 
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hardwired to produce specific behavioral outputs.  However, since these changes 

are limited to the edge of the neural network, no conclusion can be made about 

the effect of alterations in synaptic transmission at the interneuron and 

neuromuscular level.  

Is it possible to alter behavior by changing synapses within the neural 

network?  If we change the sign of one synapse within a connectome, would this 

be sufficient to completely reverse the behavioral outputs? Or are there 

developmental constraints and compensatory mechanisms that would alleviate 

the effects an alteration in synaptic activity would have on the behavioral output?  

Here, we address these questions using the neuronal circuit that mediates the C. 

elegans escape response.  

C. elegans has a single pair of tyraminergic neurons in the head ganglia, 

the RIMs, which activate the homomeric tyramine-gated chloride channel, LGC-

55.  This receptor belongs to the cys-loop, ligand-gated ion channel family of 

receptors, similar to the nicotinic acetylchoine (nAcHR), γ-aminobutyric (GABA), 

glycine, and 5-HT3a ionotropic receptors.  LGC-55 is the only ionotropic tyramine 

receptor expressed in both neurons and neck muscle cells that are directly 

postsynaptic to the RIM (Pirri, et al., 2009).  Since, there is a single pair of 

neurons that release tyramine during the escape response and a single 

ionotropic postsynaptic receptor; we have a unique opportunity to determine if 
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changing the sign of a receptor can affect the behavioral output of a defined 

neural circuit.  

Experimental Procedures 

Cloning of LGC-55 L and LM2 

Standard molecular biology techniques were used. ClustalW alignments 

were carried out using MacVector Software (Accelrys).  An lgc-55 rescue 

construct was made by cloning a lgc-55 genomic fragment corresponding to 

nucleotide (nt) -2663 to +3895 relative to the translation start site into the EcoRV 

site in yk1072c7, as in Pirri, et al., 2009.  To make the chimeric LGC-55 L 

receptor we performed DpnI site directed mutagenesis on the lgc-55 rescuing 

construct using a primer that corresponded to the genomic sequence of the M1-

M2 loop of the 5HT3a channel with 20 nt on either side homologous to the same 

region in LGC-55. LGC-55 LM2 was made using DpnI site directed mutagenesis 

with a primer that changed the codon in the LGC-55 cDNA at nts 1042 – 1044 

relative to the translational start, corresponding to a R to D substitution at the 20’ 

position of the M2 loop. For muscle specific expression of LGC-55 and LGC-55 

LM2 the full length lgc-55 or lgc-55 LM2 cation cDNA was cloned into pPD95.86 

behind the myo-3 promoter.  LGC-55::GFP and LGC-55 LM2::GFP translational 

fusion constructs were made by cloning GFP into an engineered AscI restriction 

in the respective rescuing constructs in the sequence encoding the intracellular 

loop between TM3 and TM4.  For AVB specific expression, nt -2663 to -121 
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relative to the translational start site of the LGC-55::GFP and LGC-55  LM2::GFP 

rescuing constructs were deleted using restriction digest.  

All transgenic strains were obtained by microinjection of plasmid DNA into 

the germline.  At least three independent transgenic lines were obtained and data 

are from a single representative line. All transgenic animals used in the 

experiments outlined in this paper are in an lgc-55 null background, unless 

otherwise noted. Transgenic animals were made by co-injecting lgc-55 rescuing, 

lgc-55 L/LM2 cation, myo-3:LGC-55, myo-3::LGC-55 L/LM2, pAVB::LGC-

55::GFP, pAVB::LGC-55 LM2::GFP; plgc-55::LGC-55::GFP, or plgc-55::LGC-55 

LM2::GFP at 20 ng/µl along with the lin-15 rescuing plasmid pL15EK at 80 ng/µl 

into lgc-55(tm2913); lin-15(n765ts) animals.   

Isolation and Culture of C. elegans Muscle Cells.  

Embryonic cells were isolated and cultured as described by Christensen et 

al. (2002).  Briefly, adult animals expressing the myo-3::LGC-55 or LGC-55 LM2; 

myo-3::GFP  transgene were exposed to an alkaline hypochlorite solution (0.5 M 

NaOH and 1% NaOCl).  Eggs released were treated with 1.5 U/ml chitinase 

(Sigma-Aldrich Co., St. Louis, MO) for 30 to 40 min at room temperature. The 

embryonic cells were isolated by gently pipetting and filtered through a sterile 5 

µm Durapore syringe filter (Millipore Corporation, Billerica, MA) to remove 

undissociated embryos and newly   hatched larvae. Filtered cells were plated on 

glass coverslips coated with peanut lectin. Cultures were maintained at RT in a 
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humidified incubator in L-15 medium (Hyclone, Logan, UT) containing 10% fetal 

bovine serum. Complete differentiation to muscle cells was observed within 24 h.  

Electrophysiology experiments were performed 2 to 8 days after cell isolation. 

Muscle cells from transgenic animals were identified by GFP expression. 

Electrophysiology 

 Whole-cell patch clamp recordings were performed using a HEKA EPC-9 

patch clamp amplifier. Recording pipettes with a resistance of 3-7 MΩ were used. 

The intracellular solution contained 115 mM K-gluconate, 25 mM KCl, 0.5 mM 

CaCl2, 50 mM HEPES, 5 mM Mg-ATP, 0.5 mM Na-GTP, 0.5 mM cGMP, 0.5 mM 

cAMP, and 1 mM BAPTA (PH 7.4).  For ionic selectivity experiments extracellular 

solutions with different concentrations of Na+ and Cl- were used: ES1 (standard 

solution, 150 mM NaCl, 5mM KCl, 1mM CaCl2, 4 mM MgCl2, 15 mM HEPES, 10 

mM glucose, pH 7.2 with NaOH), ES2 (as ES1 except 15 mM NaCl, 135 mM 

NMDG-Cl) ES3 (as ES1, except 30 mM NaCl, 120 mM Na-gluconate). For K+ 

and Ca++ permeability studies, the solutions used were: ES4 (as ES2 except 140 

mM KCl) and ES5 (as ES2 except 25 mM CaCl2, 85 mM NMDG-Cl).  

Current voltage relationships were constructed by measuring the current 

peak after 250 ms perfusion of extracellular solution containing 0.5 mM tyramine 

at holding potentials ranging from -60 to +60 mV in 20 mV steps. Data analysis 

was performed using Igor Pro software (Wavemetrics Inc, Lake Oswego, 

Oregon).  Mean currents were fitted by a single exponential function: I(t)= Io exp (-
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t/τd) + I∞ were Io is the current at the peak, I∞ is the current at the end of the 

recording and τd the current decay time constant. Data were normalized to Imax 

and the mean peak value in each condition was obtained after averaging 3 

different traces (obtained not consecutively, but in different voltage protocols in 

the same experiment). If the difference in current peak values were more than 80 

% for a given condition, the whole experiment were discarded.  

Reversal potential values are shown as mean ± standard error of 4-5 

independent experiments for each extracellular solution. Curve fitting and 

statistical analysis was performed using Sigma Plot 11.0 (Systat Software Inc.) 

Behavioral Assays 

All behavioral analysis was performed with young adult animals (18-24 hr. 

post-L4) at room temperature (20º-23ºC); different genotypes were scored in 

parallel, with the researcher blinded to the genotype.  Quantification of tyramine 

resistance and tyramine induced reversals were performed as in Pirri, et al. 2009.  

To quantify body length on exogenous tyramine, animals were placed on agar 

plates supplemented with 30 mM tyramine.  Still frames were taken at 5 minutes 

after exposure to tyramine and animals were measured using ImageJ software.  

To quantify neck length on exogenous tyramine, animals were placed on 30 mM 

tyramine plates.  Still frames were taken at 5 minutes after exposure to 

exogenous tyramine.  The neck was defined as the length from the anterior most 
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point of the buccal cavity to posterior of the pharyngeal bulb (illustrated in Fig. 

3b).  Neck lengths were measured using ImageJ software.    

To quantify neck lengths in response to touch animals were filmed for 10 

seconds before and after touch posterior to the pharyngeal bulb with an eyelash 

using an Imaging Source DMK21F04 firewire camera and AstroII DC software. 

Still frames were grabbed from the video just prior and just after touch.  Neck 

lengths were measured from these still frames using ImageJ software.  Animals 

used in this set of experiments were in the unc-3(e151) background. unc-3(e151) 

animals have a defect in ventral cord specification that affects locomotion but not 

head and neck movements.  We used these animals in these assays and in our 

optogenetic experiments to prevent locomotion so as to maintain the animal in 

the field of view at a magnification that would allow for accurate neck 

measurement.   

Optogenetic head contraction assays were performed with transgenic 

animals containing either wild type LGC-55 or LGC-55 LM2 and tdc-1::ChR2 in 

an unc-3 (e151) mutant background. For these experiments, healthy L4 animals 

were transferred to assay plates that were seeded with either OP50 E.coli that 

was supplemented with all-trans retinal to a final concentration of 660 µM or plain 

OP50.  Animals were fed retinal or non-retinal containing food overnight.  To 

quantify neck lengths in response to optogenetic activation of the RIM, animals 

were filmed for 10 seconds before and after a 2 second blue light pulse.  Still 
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frames were grabbed from the video just prior to and during the blue light 

exposure. Neck lengths were measured from the still frames as described above.  

Results 

Mutation of the LGC-55 M1-M2 intracellular linker results in cation 

selectivity. 

Ligand-gated ion channels (LGICs) are the fundamental signaling 

component for fast chemical neurotransmission. These channels can either be 

excitatory or inhibitory, and this is determined by whether the channel is selective 

for cations or anions.  The cys-loop LGIC family of receptors is a class of 

pentameric channels.  Each individual subunit contains an extracellular N-

terminal domain that harbors the ligand binding domain and four transmembrane 

spanning domains (M1-M4).  The location of charge selectivity determinants is 

common to both anion and cation-selective channels, and mainly involves 

residues within the intracellular loop between M1 and M2 (Galzi et al., 1992, 

Keramidas et al., 2000).  In vitro studies have largely shown that a PAR motif in 

this loop is critical for anion selectivity and its substitution by equivalent residues 

from excitatory channels is enough to convert the receptor selectivity from 

anionic to cationic (Glazi, et al. 1992, Keramidas et al., 2000, Gunthorpe and 

Lummis, 2001, Menard et al. 2005) (Figure III-1A,B).  

To change the ion selectivity of LGC-55, we engineered a chimeric 

receptor which replaced the residues of the anionic M1- M2 loop (RRSLPA) with 
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those that are conserved in structurally related cationic channels (PDSG-E) 

(Figure III-1B).  LGC-55 L, contains the M1-M2 loop of the cationic 5HT3a 

channel, while LGC-55 LM2 also includes an R to D substitution at the 20’ 

position of the M2 segment (Figure III-1B).  Given that this position has been 

reported as a main determinant of channel conductance (Imoto et al, 1998; 

Langosch et al, 1994), the introduction of a negatively charged amino acid is 

expected to increase the cation conductance of the chimeric receptor.  

In order to determine the ionic selectivity of the LGC-55 receptor 

containing the M1-M2 intracellular loop of 5HT3aR, we recorded tyramine-elicited 

whole cell currents in cultured muscle cells obtained from two different C.elegans 

strains that ectopically expressed either the wild-type or the LM2 version of LGC-

55 in body wall muscles (myo-3::LG-55 or LG-55 LM2; myo-3::GFP, see 

methods).  We constructed the corresponding I-V relationships in the presence of 

different extracellular solutions: ES1 (Standard solution: 150 mM Na+, 165 mM 

Cl-), ES2 (low Na+: 15 mM Na+, 165 mM Cl-) and ES3 (low Cl-: 150 mM Na+, 30 

mM Cl-).  Given that similar mutations in other LGIC receptors have been 

reported to also alter the agonist EC50 (Keramidas et al., 2000; Gunthorpe and 

Lummis, 2001; Wotring et al., 2003), we perfused the patches with a high 

concentration of tyramine (0.5 mM) where saturation is expected to be achieved.  

The reversal potential (Erev) of the wild type LGC-55 in standard solution 

(ES1) was -26.8 ± 3.1 mV (n=4) which is consistent with our reported data using 
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body-wall muscle recordings in vivo, and to the predicted Erev for an anion-

selective channel in our conditions (Francis and Maricq, 2006; Pirri et al, 2009). 

As expected, no significant differences were observed in the Erev values for the 

wild-type receptor in the ES2 solution when compared to the standard conditions 

(Erev= -24.3 ± 1.6 mV, n=4). On the other hand, a 5.5-fold reduction of 

extracellular chloride concentration (ES3) lead to a ~20 mV rightward shift of the 

reversal potential (Erev= -1.9 ± 2.3 mV, n=4). Taken together, these observations 

agree with our previous report confirming that the tyramine receptor LGC-55 is 

predominantly permeant to anions (Pirri et al., 2009, Figure III-1C). 

Equivalent experiments performed on cultured muscle cells that 

expressed LGC-55 LM2 showed that the reversal potential in standard solution 

was 2.4 ± 1.2 mV (n=5), near the GHK-predicted value for a cation-selective 

channel. Reduction of the extracellular chloride concentrations did not lead to 

significant changes in this value (Erev in ES3: 1.7 ± 0.9mV, n=4), whereas a ~ 

24mV shift to more negative potentials is observed when we decrease the 

extracellular sodium concentration (Erev in ES2; -21.9 ± 2.6 mV, n=5).  These 

findings indicate that the current passing through the chimeric LGC-55 LM2 

channel is mainly carried by Na+ and that the Cl--dependent component of that 

current is negligible.  We can therefore conclude that the replacement of the M1-

M2 linker by that of the cationic 5HT3a receptor converts the selectivity of the 

LGC-55 channel from anionic to cationic (Figure III-1C). 
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To further study the ionic selectivity of the LGC-55 LM2 receptor, we 

varied the K+ and Ca2+ concentrations of the extracellular solutions and 

performed whole cell experiments as described above (Figure III-2). An increase 

in the external K+ concentration (from 5 mM to 140 mM in an external solution 

containing 15 mM Na+, ES4) significantly displaced the reversal potential towards 

more positive membrane potentials (Δrev~ 23.8 mV), indicating that the channel 

is also highly permeant to K+ (Figure III-2). On the other hand, a 25-fold increase 

in the external Ca2+ concentration (ES5) did not change the reversal potential 

suggesting negligible calcium permeability.  These observations are consistent 

with previous reports showing that similar mutations in the M1-M2 linker of GlyR 

dramatically increase the permeability of monovalent cations but not of calcium 

(Keramidas et al., 2000). 

Chimeric LGC-55 cation channels are functional in vivo. 

To determine if the chimeric LGC-55 receptors are functional in vivo, 

transgenic animals that expressed either the wild-type or cationic LGC-55 

channels in all muscle cells were exposed to exogenous tyramine.  Over-

expression of LGC-55 anion in all muscle cells caused muscle relaxation and 

overall lengthening of the animal (myo-3::LGC-55 anion (zfEx31), 8.6% increase 

in length, n=53) during exposure to exogenous tyramine.  We observed that lgc-

55 mutant animals were slightly contracted on tyramine.  This is likely due to the 

activation of the tyraminergic GPCR, SER-2, which inhibits GABA release onto 
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body wall muscles (Donnelly, et al., 2013), leading to a slight contraction of the 

animal’s ventral musculature (lgc-55(tm2913), 5.3% decrease in length, n=25).  

In contrast, transgenic animals that expressed the LGC-55 L or LGC-55 LM2 

cation channel in all muscle cells were extremely hypercontracted and shortened 

in response to exogenous tyramine (myo-3::LGC-55 L (zfEx367), 16.6% 

decrease in length, n=59; myo-3::LGC-55 LM2 (zfEx41), 20.1% decrease in 

length, n=55).  This indicates that the chimeric LGC-55 cation channels are 

functional in vivo (Figure III-1D,E).   

Changes in neuronal activity cause synaptic plasticity in LGC-55 cation 

mutants.  

Our ectopic expression of the chimeric LGC-55 channels suggests they 

can be trafficked to the muscle cell surface and respond to tyramine in vivo.  

Since, LGC-55 is not normally expressed in all muscle cells, we wanted to 

determine if the cationic tyramine receptors can now be appropriately trafficked 

to the endogenous synapse, and how this might affect synaptic development.  

The tyraminergic RIM makes synaptic outputs onto the neck muscles and several 

neurons that express LGC-55.  To visualize these tyraminergic synapses we 

expressed the synaptic vesicle marker, mCherry::RAB-3 in the RIM neurons and 

a rescuing LGC-55::GFP translational fusion under control of the lgc-55 promoter 

in lgc-55 mutant animals.  Expression of mCherry::RAB-3 in the RIM neurons 

showed presynaptic varicosities along the ventral process and in the nerve ring 
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and LGC-55 receptors formed high density clusters opposite of these tyramine 

release sites (Figure III-3A).  We compared this with the localization of synaptic 

vesicles and postsynaptic receptors in LGC-55 LM2 cation animals.  Transgenic 

animals that expressed LGC-55 cation LM2::GFP under control of the lgc-55 

promoter and mCherry::RAB-3 in the RIM, have similar localization to synaptic 

specializations in the nerve ring and along the ventral process (Figure III-3A).  

To further examine the localization of the chimeric receptor to the 

postsynapse, we visualized the synapses made by the RIM onto one of its 

postsynaptic partners, the forward locomotion command neurons, AVB.  We 

expressed the translational fusion of LGC-55::GFP or LGC-55 LM2::GFP, under 

control of a promoter fragment that drives expression in a subset of LGC-55 

positive cells, including the AVB.  Electron micrograph reconstructions show the 

AVB neurons make several synaptic connections with the RIM in the segment of 

the ventral process that is most proximal to the cell body (White, et al. 1986, 

Figure III-3B).  LGC-55 anion channels are localized to postsynaptic 

specializations opposing this presynaptic region in the RIM.  Similarly, the LGC-

55 LM2 cation channels are localized in the same region as the wild type, anion 

channel (Figure III-3D, Figure III-4).  We measured the size of the pre- and 

postsynaptic density in wild-type animals and tyramine signaling mutants. Wild 

type animals show discrete regions of pre- (average width: 3.3 ± 0.3 µm, n=19) 

and postsynaptic density (average width: 5.0 ± 0.46 µm, n=19) (Figure III-3D,E).  

Mutants that lack tyramine (tdc-1) still form synapses in the correct region 
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however the presyanpse becomes larger (average width: 3.8 ± 0.3 µm, n=14) 

and the expression of LGC-55 in the postsynaptic region was increased and 

more diffuse (average width: 7.7 ± 0.7 µm, n=14) (Figure III-3C,D,E).  In lgc-55 

null mutants, the presynaptic density becomes even larger than in the tyramine 

deficient animals (average width: 5.4 ± 0.4 µm, n=17) (Figure III-3D,E).  Similarly, 

the presynaptic density in LGC-55 LM2 animals is also larger (average width: 6.1 

± 0.4 µm, n=11), and in the postsynaptic density expression is lower and more 

diffuse (average width: 5.5 ± 0.4 µm, n=12) (Figure III-3C,D,E).  These results 

suggest that while the chimeric channels can be properly localized at the 

neuromuscular junction and at synaptic connections between neurons, there is 

some plasticity after neural connections are made.  Expression of the 

postsynaptic receptor or volume of release sites may be up or down regulated 

based on activity levels within the circuit.  However, changing the receptor from 

inhibitory to excitatory has no effect on the gross development of the neural 

circuit controlling C. elegans escape behavior.  

LGC-55 cation channels change the behavioral outputs of the neural circuit 

controlling C. elegans escape.  

Can the ionic switch of the LGC-55 receptor elicit an opposite behavioral 

response? To analyze the functional consequences of converting LGC-55 to a 

cationic receptor, we tested the response of lgc-55 mutant animals that 

expressed LGC-55 anion or LGC-55 cation under control of the native promoter 
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to exogenous tyramine.  Wild-type animals on exogenous tyramine exhibit neck 

relaxation and long backward locomotory runs before paralysis (Pirri, et al., 2009, 

Figure III-5, Movie III-1).  Previous reports from our group indicated that paralysis 

is due to hyperactivation of the tyraminergic GPCR, SER-2, which inhibits GABA 

release in the ventral nerve cord affecting locomotion (Donnelly, et al., 2013).  

However, it is the hyperactivation of the LGC-55 anion channel that leads to neck 

relaxation and long backward runs.  LGC-55 is expressed in the second row of 

neck muscles that control radial head movements.  In wild-type animals 

exogenous tyramine causes hyperpolarization of the neck muscles through the 

activation of LGC-55, and the neck becomes relaxed and lengthened (wild type 

(anion), 5.2% increase in length, n=68; LGC-55 rescue (anion Ex), 5.8% increase 

in length, n=75)  (Figure III-5A,B).  In this assay, head movements persisted in 

lgc-55 mutants (data not shown), and there was no significant change in the 

overall length of the neck (lgc-55(tm2913), 1% increase in neck length, n=65).  In 

contrast, transgenic animals that expressed the chimeric LGC-55 cation receptor 

variants under control of the native promoter had a hypercontracted and 

shortened neck in the presence of exogenous tyramine (LGC-55 L (cation (L) 

Ex), 7.8% decrease in length, n=49; LGC-55 LM2 (cation (LM2) Ex), 14.6% 

decrease in length, n=49) (Figure III-5A,B).  LGC-55 is also expressed in the 

forward locomotion command neurons, AVBs, which drive locomotion. In wild-

type animals, hyperactivation of LGC-55 by exogenous tyramine causes 

hyperpolarization of the AVB neuron and leads to long backward runs (wild-type 



99 
 

(anion), -16 ± 2.7 body bends, n=40; LGC-55 rescue (anion Ex), -33.7 ± 2.9 body 

bends, n=29) (Pirri, et al., 2009, Figure III-5A,D, Movie III-1).  lgc-55 mutants 

paralyze without making a significant locomotory run in either direction (lgc-55 

(tm2913), backward: -6.6 ± 0.9 body bends, n=34; forward: 9.2 ± 0.9 body bends, 

n=29).  However, LGC-55 cation animals exhibit dramatic long forward runs 

(LGC-55 L (cation (L) Ex), 48.3 ± 8.4 body bends, n=17; LGC-55 LM2 (cation 

(LM2) Ex), 81.7 ± 9.5 body bends, n= 24) which continued for an extended period 

of time (Figure III-5A,C,D, Movie III-2).  We observed that animals expressing the 

LGC-55 anion channel become immobilized more quickly than those expressing 

the LGC-55 cation channel.  This suggests that the fast inhibition of locomotion 

on exogenous tyramine is, in part, attributed to the inhibition of the forward 

locomotion command neuron, AVB, and not solely due to activation of SER-2 

(Figure III-5C).  

While the exogenous tyramine assays indicate that the LGC-55 cation 

receptor is functional in cells that normally express LGC-55, can it function in the 

endogenous tyraminergic circuit?  A caveat to an exogenous drug assay is that 

they are only useful to evaluate gross receptor expression and functionality 

without giving much information regarding the behavior of the receptor in 

response to synaptic release of neurotransmitter.  To test if the LGC-55 cation 

channel is acting at the synapse within the escape circuit, like its wild type 

counterpart, we tested the behavioral response of these animals to a touch 

stimulus.  
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Touch activates mechanosensory neurons that activate the backward 

locomotion command neurons leading to a reversal.  Activation of the backward 

locomotion program simultaneously activates tyramine release from the RIM 

(Figure III-6A).  Tyramine release then activates LGC-55 anion channels in the 

neck muscles causing suppression of exploratory head movements during the 

reversal and a slight lengthening of the neck (Figure III-6B, Figure III-7, Movie III-

3, Pirri, et all., 2009).  lgc-55 null mutant animals, continue the exploratory head 

movements during the reversal and there is no significant change in neck length.  

However, in transgenic animals that expressed the LGC-55 cation channel, touch 

induced a contraction of the neck muscle, resulting in a shortened neck (wild-

type (anion), 3.3% increase in length, n=39; lgc-55(tm2913), 0.6% increase in 

length, n=21; LGC-55 L (cation (L) Ex), 7.2% decrease in length, n=32; LGC-55 

LM2 (cation (LM2) Ex), 9.0% decrease in length, n=26) (Figure III-6B, Figure III-

7, Movie III-4).  

 Additionally, LGC-55 plays a role in suppressing forward locomotion 

during the touch response so the animal can make a long reversal.  Touch 

induced activation of the LGC-55 anion channel causes a hyperpolarization of 

the AVB, and leads to an extended reversal so the animal can escape the 

stimulus.  In response to touch, wild type animals reversed for an average of 3 

backward body bends (n=100) (Movie III-3), while lgc-55 mutants failed to 

execute a long reversal (lgc-55(tm2913), 2.45 ± 0.15 body bends, n=100) (Figure 

III-6A,C, Figure III-8, Pirri et al., 2009).  Transgenic animals that expressed the 
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LGC-55 cation channel variants also failed to reverse in response to touch, often 

not moving away from the point of stimulus (LGC-55 L, 1.57 ± 0.1 body bends, 

n=100; LGC-55 LM2, 1.22 ± 0.1 body bends, n=100) (Figure III-6C, Figure III-8, 

Movie III-4).  In addition to response to touch, it has been previously reported that 

tyramine plays a role in spontaneous reversal rate and length.  Mutants deficient 

in tyramine signaling, tdc-1 and lgc-55, have an increase in spontaneous reversal 

rate and make shorter reversals (Alkema, et al., 2005; Pirri, et al., 2009).  We 

also examined spontaneous reversals in our cation mutants and found that 

animals expressing LGC-55 L or LGC-55 LM2 have a dramatic increase in the 

number of spontaneous reversals (Figure III-9A) and in most cases failed to 

make a full body bend during the reversal (Figure III-9B). These data suggest 

that in the LGC-55 cation mutants, the simultaneous activation of the forward 

(AVB) and backward (AVA) locomotion command neurons contributes to the 

inability for the animals to move a significant distance in either direction (Figure 

III-6C, Figure III-8,9).   

To determine if the behavioral response to touch is dependent on the 

tyramine release from the RIM, we specifically activated the RIM by expressing 

the light-gated cation channel, ChannelRhodopsin 2 (ChR2) in these neurons.  

This allows us to determine if the touch induced release of other signaling 

molecules, like neuropeptides or other transmitters, can affect the escape 

response.  Upon exposure to blue light, wild type animals that expressed ChR2 

in the RIM relaxed their necks (Figure III-6D, Figure III-10, Movie III-5) (wild-type 
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(anion), 3.7% increase in length, n=28).  In contrast, LGC-55 cation animals, 

which also expressed ChR2 in the RIM, had hypercontracted necks in response 

to blue light exposure (Figure III-6D, Figure III-10, Movie III-6) (LGC-55 LM2 

(cation LM2 Ex), 12.1% decrease in length, n=20).  This response was abolished 

in tdc-1 mutants that do not produce tyramine (tdc-1(n3420); LGC-55 LM2, 0.5% 

decrease in length, n=16) (Figure III-6D, Figure III-10).  These data support the 

notion that tyramine is released from the RIM and activates the tyramine gated 

chloride channel, LGC-55 in the postsynapse.  Furthermore, these results 

indicate that the chimeric LGC-55 cation channels are properly expressed and 

functional at the synapse within the neural circuit that modulates the C. elegans 

escape behavior. 

Discussion 

While many studies have suggested that activity is important to sculpt and 

maintain neural connections in the brain (Mennerick and Zourmski, 2000; Hua 

and Smith, 2004; Yamamoto and López-Bendito, 2012), our results suggest that 

the electrical nature of neural activity may not impact neural circuit development.  

Here we show that neck muscles and AVB neurons, which are predicted to be 

inhibited by tyramine, have no developmental or functional restrictions to the 

expression of the cationic version of LGC-55.  Normally these cells that are 

postsynaptic to the tyraminergic neuron express an anionic version of LGC-55.  

By engineering a chimeric LGC-55 cation receptor and expressing it in the native 
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circuit, we have shown, for the first time, that it is possible to alter behavioral 

outputs by changing the nature of the synapse within a neural network.  

Mechanical stimulus or optogenetic activation of endogenous tyramine release 

triggers animals expressing the LGC-55 cation variants to hypercontract neck 

muscles.  Furthermore, LGC-55 cation animals fail to reverse in response to 

touch, suggesting there is activation instead of inhibition of the forward 

locomotion command neuron, AVB.  Our data suggests that the initial wiring of 

this neural circuit is established independently of the nature of synaptic 

transmission and that the type of neuronal activity, whether excitatory or 

inhibitory, seems to be irrelevant for the formation and stability of synaptic 

contacts in the neural circuitry that controls C. elegans escape behavior.   

These observations are consistent with several reports showing that the 

nature of synaptic connections may be unimportant for the gross morphology and 

topology of the brain.  It has been largely reported that the postsynaptic response 

elicited after the activation of a given receptor is dependent on the developmental 

stage of the nervous system and the neuron type.  For example, the GABAAR, 

traditionally classified as inhibitory, generates excitatory responses in most 

embryonic neurons, and in some mature neuronal types in mammals (Ben Ari., 

2002; Owens and Kriegstein 2002; Gulledge and Stuart, 2003; Chavas and 

Marty, 2003). These studies further support the idea that the sign of the synapse 

may not be critical for development of a neural circuit, since this type of variability 
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in the postsynaptic response would require very specific, complex and dynamic 

mechanisms for the development each type of synapse in the nervous system.   

The expression of the chimeric LGC-55 cation channel may cause some 

plasticity in levels of receptor expression.  We found that despite a complete 

change in the electrical nature of the synapse, the synaptic contacts between the 

tyraminergic RIM and its postsynaptic partners develop normally, however levels 

of receptor expression are decreased.  Furthermore, null mutant animals that 

lack the biosynthetic enzyme for tyramine, TDC-1, or the LGC-55 receptor also 

develop normal synaptic contacts, suggesting that activity may not be important 

for the formation of this neural circuit.  In C. elegans,  release of the inhibitory 

neurotransmitter, GABA, is not required for clustering of GABA receptors at the 

neural muscular junction (NMJ), nor is it required for the formation of the 

presynaptic sites (Gally and Bessereau, 2003).  Similarly, mice that do not 

synthesize acetylcholine form neuromuscular synapses form clusters of 

acetylcholine receptors similar to wild type animals (Misgeld, T., et. al., 2002) and 

the brain histology and cytoarchitecture of newborn GAD knockout mice, which 

are deficient in GABA production, do not show evident abnormalities (Ji et al., 

1999). Moreover, blockage of neuronal activity with tetrodotoxin in the developing 

mammalian brain does not cause any gross morphological defects (Shatz, C., et 

al.,1988).  Together these data indicate that neural circuits might first develop 

and then later expression of receptors dictates the nature of the connection.  Also 
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raise the possibility that the resulting activity then shapes the final architecture of 

the mature neural circuit.  

Our manipulation of synapses within the connectome suggests that 

function may not be emergent property of network connectivity.  The flow of 

information may be predicted by the neural connectivity map, but behavioral 

output cannot be determined without knowledge of the signaling molecules that 

interpret that flow of information.  While understanding how the nervous system 

is connected is an important step to unravel how the brain functions, it is only a 

foundation on which we can begin to understand how neural activity sculpts 

behavior. A detailed description of the type of molecules within the network, the 

contribution of extrasynaptic receptors, and description of the properties of the 

neurons involved, is also needed in order to accurately predict behavioral outputs 

from neuronal networks.   Furthermore, study of how neural circuits develop, 

function and remain stable in relation to intrinsic or extrinsic activity will be critical 

to the understanding of how the nervous system controls behavior.  
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Figure III-1
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Figure III-1. LGC-55 cation channel mutants gate sodium and are functional 
in vivo. 
 
(A) Cys-loop ligand gated ion channels are pentameric channels, each subunit 
containing four transmembrane domains. Depicted is a schematic representation 
of an LGIC with transmembrane domains 1 and 2 (M1, M2) in dark gray.  In light 
blue is the intracellular loop that links M1 and M2, which is responsible for the ion 
selectivity of the channel, in this case chloride (red circles).  

(B) Alignment of M1 loop region of LGC-55 with structurally related cys-loop 
ligand gated ion channels.  Identities are shaded in dark gray, while similarities 
are light gray. The blue boxes indicate residues that play a role in selectivity of 
anions, while red boxes indicate those for cation selectivity.  LGC-55 cation L and 
LM2, contain the M1 loop of the cationic 5HT3a receptor.  LGC-55 cation LM2 
also contains an additional mutation at the 20’ residue, which is predicted to 
enhance cation selectivity (see text for details).  

(C) Ion selectivity of LGC-55 anion (left) and LGC-55 cation LM2 (right) in 
cultured C. elegans muscle cells. TA evoked (0.5 mM, 250 ms) currents were 
recorded at the holding potentials shown.  Black circles: ES1 (standard solution: 
150 mM Na+, 165 mM Cl-), LGC-55 anion: Erev= -26.8 ± 3.1mV (n=4), LGC-55 
cation LM2: Erev= 2.4 ± 1.2 mV (n=5); red squares: ES2 (low Na+: 15 mM Na+, 
165 mM Cl-), LGC-55 anion: = -24.3 ± 1.6 mV (n=4), LGC-55 cation LM2: -21.9 ± 
2.6 mV (n=5); blue triangles: ES3 (low Cl-: 150 mM Na+, 30 mM Cl-), LGC-55 
anion: -1.9 ± 2.3 mV (n=4) LGC-55 cation LM2: 1.7 ± 0.9mV (n=5).  Insets, 
representative macrocurrents of LGC-55 anion (top) and LGC-55 cation LM2 
(below) elicited after perfusion of 0.5 mM tyramine at membrane holding 
potentials ranging from -60 to +60 mV in 20 mV steps.  

(D) Still images of transgenic animals expressing LGC-55 anion (top) or cation 
LM2 (bottom) ectopically in all muscle cells, on exogenous tyramine.  LGC-55 
anion animals have relaxed body wall muscles, while LGC-55 cation LM2 
animals are hypercontracted. Scale bar = 0.25 mm.  

(E) Quantification of body length on exogenous tyramine. Animals expressing 
LGC-55 anion in all muscle cells are elongated in the presence of tyramine, due 
to a relaxation of the body wall muscles. Animals expressing the LGC-55 cation 
channel variants in all muscle cells are shortened, due to a hypercontraction of 
the body wall muscle. Error bars represent the standard error of the mean (SEM). 
Statistical significance as indicated *** p<0.0001. 
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Figure III-2

 

 
LGC-55 cation channels gate Na+ and K+, but not Ca2+. 
 
(A) Representative macrocurrents of LGC-55 cation LM2 elicited after perfusion 
of 0.5 mM tyramine at membrane holding potentials ranging from -60 to +60 mV 
in 20 mV steps in the indicated extracellular solutions.  

(B) Ion selectivity of LGC-55 cation LM2 in cultured C. elegans muscle cells. TA 
evoked (0.5 mM, 250 ms) currents were recorded at the holding potentials 
shown.  Black circles: ES1 (standard solution: 150 mM Na+, 165 mM Cl-), Erev= 
2.4 ± 1.2 mV (n=5); red squares: ES2 (low Na+: 15 mM Na+, 165 mM Cl-), Erev= 
-21.9 ± 2.6 mV (n=5); blue triangles: ES3 (low Cl-: 150 mM Na+, 30 mM Cl-), 
Erev= 1.7 ± 0.9mV (n=5); purple triangles: ES4 (high K+: 140 mM K+, 1 mM Ca+, 
15 mM Na+), Erev=1.9 ± 1.2mV (n=5); maroon circles: ES5 (high Ca++: 5 mM 
K+, 25 mM Ca+, 15 mM Na+), Erev= -20.8 ± 1.2mV (n=5).   
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Figure III-3 

 

Neural activity is important for the refinement of synaptic connections 
within the C. elegans escape response neural circuit.  

(A) Representative images of animals coexpressing the synaptic vesicle marker 
mCherry::RAB-3 in the RIM neurons (left) and a translational LGC-55::GFP or 
LGC-55 LM2::GFP reporter (center).  Merge (right) identifies synaptic contacts 
between the RIM and LGC-55 expressing neurons.  Anterior is the left, nerve ring 
indicated by dashed line, arrows indicate RIM-AVB synapse. Scale bars, 3 µm.     

(B) Schematic diagram of the morphology of the RIM in the nerve ring (left) and 
the location of the major synaptic varicosities with outputs onto the AVB 
command interneuron as described in White, et al. (1986).  The area measured 
for quantification of synaptic density is indicated by the dashed box. 

(C) Head region of adult transgenic animals of indicated genotypes expressing 
the mCherry::RAB-3 presynaptic vesicle marker in the RIM. Region of 
presynaptic connectivity with the AVB measured in (E) is indicated with by the 
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white arrow and magnified below. Star indicates neuromuscular junction between 
the RIM and neck muscle in the nerve ring.  Scale bars, 5 µm.     

(D) Head region of an adult transgenic animals showing expression of the LGC-
55::GFP or LGC-55 CATION (LM2)::GFP translational reporter in the AVB. The 
regions of postsynaptic density corresponding with synapses between the RIM 
and AVB that were measured in (E) are indicated by the white arrow and 
magnified below (See also Figure III-4). Anterior is to the left and the position of 
the nerve ring is indicated by a star.  Scale bars, 5 µm. 

(E). Top: Fluorescence intensity over the area containing the AVB synapses.  
Shown is the average fluorescence intensity in the presyanpse measured in 
regular intervals over 8 µm in transgenic animals expressing mCherry::RAB-3 in 
the RIM of wild type (n=19), lgc-55 (n=17), tdc-1(n=14) and LGC-55 LM2 (n=11), 
animals.  Measurements were taken from the anterior region of the AVB synaptic 
density to area just posterior.  Fluorescence is more diffuse in tdc-1 and lgc-55 
mutants, suggesting a change in synaptic vesicle localization. Botttom: Average 
fluorescence intensity in the postsynapse was measured in regular intervals over 
8 µm in animals coexpressing mCherry::RAB-3 in the RIM and LGC-55::GFP 
(n=19) or LGC-55 LM2::GFP (n=12) in lgc-55 or tdc-1 (n=14) mutants.  
Measurements of the LGC-55::GFP density were taken from the region of 
colocalization with the AVB synapse (see Supplemental Fig.2). In tdc-1 mutants 
LGC-55 expression is increased and the postsynaptic density is more diffuse.  In 
LGC-55 LM2 animals, expression is lower and also slightly more diffuse.  This 
suggests that activity may regulate postsynaptic receptor expression. 

  



111 
 

Figure III-4 

 

 

LGC-55 cation channels localize to postsynaptic specializations in the 
nerve ring.  

Representative images of animals coexpressing a translational LGC-55::GFP or 
LGC-55 LM2::GFP reporter (left) under control of a minimal promoter that drives 
expression in a subset of neurons including the AVB (indicated) and the synaptic 
vesicle marker mCherry::RAB-3 in the RIM neurons (center). Head is to the left, 
AVB synapses indicated by dashed line.  Scale bar, 5 µm. See Fig. III-3.   
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Figure III-5 

 

 

Exogenous tyramine induces long forward runs and neck contractions in 
LGC-55 cation animals.  

(A) Top: Still images of the locomotion pattern of LGC-55 anion and LGC-55 
cation (LM2) animals prior to immobilization on 30 mM tyramine.  The x marks 
the starting location and the dashed red line indicates the forward locomotion, 
while the dashed blue line indicates backward locomotion. LGC-55 anion animals 
make long backward runs, while LGC-55 cation animals make long forward runs.  
Bottom: Still images of LGC-55 anion and LGC-55 cation animals after five 
minutes on exogenous tyramine, arrow denotes neck region. LGC-55 anion 
animals exhibit a relaxation of the head muscles causing an elongation of the 
neck, while the presence of the LGC-55 cation mutation causes contraction of 
the head muscles and a shortening of the neck. 

(B) LGC-55 cation animals hypercontract their neck on exogenous tyramine. 
Shown is the quantification of neck lengths on exogenous tyramine. The length of 
the neck was measured from the posterior of the pharynx to the tip of the nose 
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after 5 minutes on 30 mM tyramine (dark grey bars) or 0 mM tyramine (light grey 
bars). Error bars represent the standard error of the mean (SEM). Statistical 
difference as indicated; *** p<0.0001, two tailed Student’s t test.  

(C) LGC-55 cation animals immobilize more slowly on exogenous tyramine. 
Shown is the percentage of animals immobilized by tyramine each minute for 20 
minutes. Each data point is the mean +/- SEM for at least four trials totalling 40 or 
more animals.  

(D) LGC-55 cation animals make long forward runs on exogenous tyramine. 
Shown is the number of backward (dark grey bars) and forward (light grey bars) 
body bends made before paralysis on 30 mM tyramine.  Error bars represent 
SEM. Statistical difference from anion, ** p<0.001, ***p<0.0001, two tailed 
Student’s t test.  
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Figure III-6 
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Figure III-6. LGC-55 cation acts synaptically to induce neck contraction and 
activation of forward locomotion.  

A) Schematic representation of the neural circuit for tyraminergic coordination of 
head movements and locomotion in response to touch.  Gentle touch activates 
release of tyramine from the RIM (purple) onto cells expressing LGC-55 (blue).  
Tyraminergic activation of LGC-55 hyperpolarizes neck muscles and the forward 
locomotion command neuron,  AVB, to suppress head movements and promote 
backward locomotion. Synaptic connections indicated as triangles and gap 
junctions as bars, are as described by White, et al. (1986). Sensory neurons are 
triangles, command neurons required for locomotion as hexagons, motor 
neurons as circles and muscles as an oval.  

B) Touch induces neck contraction in LGC-55 cation animals. Shown is the 
length of the neck from posterior of the pharynx to the tip of the nose before (light 
gray bars) and after (dark gray bars) anterior touch. Error bars represent SEM. 
Statistical difference as indicated, ** p<0.001, ***p<0.0001, two tailed Student’s t 
test. Inset: still images of the animal’s head before (top) and after (bottom) 
mechanical stimulus. Scale bar, 0.1mm.  

C) LGC-55 cation animals fail execute a long reversal in response to touch. 
Shown is the average number of backward body bends in response to anterior 
touch. Error bars represent SEM. Statistical difference from anion, * p<0.01, 
***p<0.0001, two tailed Student’s t test.  

D) Tyramine release from the RIM activates the LGC-55 cation channel.  Shown 
is the length of the neck (as measured in b) before (light gray bars) and after 
(dark grey bars) exposure to blue light in retinal fed animals expressing the light 
activated cation channel, ChR2 in the RIM. Blue light causes activation of the 
RIM and release of tyramine.  Tyraminergic activation of LGC-55 anion causes a 
relaxation of the neck muscles, while activation of LGC-55 cation LM2 causes a 
hypercontraction of the neck muscles. There is no response in animals that are 
not fed retinal (see Figure III-10). Error bars represent SEM. Statistical difference 
as indicated, ** p<0.001, ***p<0.0001, two tailed Student’s t test.  

 

 

 

 

 

 



116 
 

Figure III-7 

 

 

LGC-55 cation channels contract their heads in response to touch.  

Shown is the percentage of animals which contract their necks in response to 
touch. Positive response indicates contraction while negative response indicates 
relaxation.  lgc-55 mutants neither contract or relax their necks, while transgenic 
animals expressing either LGC-55 anion or LGC-55 cation channels contract 
their necks in response to touch.   See text for details. ****p ≤ 0.0001. 
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Figure III-8 

 

LGC-55 cation animals make short reversals in response to touch. 

Shown is the distribution of number of backward body bends in response to 
touch, average and SEM are indicated (wild type, n=100; lgc-55 rescue, n=100; 
lgc-55(tm2913), n=95; lgc-55(tm2913); LGC-55 cation (L), n=100; lgc-
55(tm2913); LGC-55 cation (LM2), n=100).  
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Figure III-9 
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Figure III-9. LGC-55 cation animals have defects in spontaneous reversal 
behavior.  

(A) Number of reversals made in 3 minutes of wild type, 5.2 ± 0.3 body bends, 
n=30; LGC-55 rescue, 5.2 ± 0.4 body bends, n=18; lgc-55(tm2913), 7.86± 0.5 
body bends, n=25; LGC-55 L, 12.7 ± 1.4 body bends, n=27; LGC-55 LM2, 13.3 ± 
1.9 body bends, n=10. LGC-55 cation animals exhibit hyper reversal behavior.   

(B) Distribution of short (1-2 body bends) and long (3+ body bends) spontaneous 
reversals made in 3 min of wild-type (n=30), LGC-55 rescue (n=18), lgc-
55(tm2913) (n=25), LGC-55 L (n=27), LGC-55 LM2 (n=10). LGC-55 is expressed 
in the forward locomotion command neuron, AVB. In wild-type animals, 
spontaneous release of tyramine activates LGC-55 anion causing a 
hyperpolarization of the AVB leading to a long reversal.  In LGC-55 cation 
animals, spontaneous release of tyramine causes an activation of the AVB, 
leading to a shortened reversal length, and an increase in the number of 
shortened reversals made in 3 minutes.  
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Figure III-10 

 

 

 
Tyramine release is dependent upon activation of the RIM. 
 
Shown is the average neck length before (wild type, 0.193 ± 0.002µm (n=17); 
tdc-1, 0.191 ± 0.001µm (n=21); lgc-55, 0.194 ± 0.001µm (n=17); LGC-55 LM2, 
0.202 ± 0.001µm (n=25); tdc-1; LGC-55 LM2, 0.191 ± 0.002µm (n=10)) and after 
(wild type, 0.193 ± 0.001µm (n=17); tdc-1, 0.189 ± 0.001µm (n=21); lgc-55, 0.191 
± 0.001µm (n=17); LGC-55 LM2, 0.202 ± 0.001µm (n=25); tdc-1; LGC-55 LM2, 
0.191 ± 0.002µm (n=10)) blue light exposure of animals that were not fed retinal. 
There is no significant head contraction or relaxation response to blue light, 
indicating that tyramine is released only when the RIM is activated and any 
behavioural response to illumination with blue light does not cause significant 
tyramine release. 
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Movie III-1 

Movie of a wild-type animal on a plate containing 30 mM tyramine.  

Filming began immediately after the animal was placed on the plate and ended 
shortly after paralysis. Movie was shot at 15 frames per second (fps) and sped 
up five times. Wild-type animals exhibit an elongated, straightened neck and 
execute a long backward run before immobilization. 
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Movie III-2 

Movie of LGC-55 LM2 on a plate containing 30 mM tyramine.  

Filming began immediately after the animal was placed on the plate and ended 
shortly after paralysis. Movie was shot at 15 frames per second (fps) and sped 
up five times. Animals expressing the chimeric cation channel under control of 
the native promoter exhibit a hyper-contracted neck and execute long forward 
runs before paralysis, behaviors opposite to that of wild type. 
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Movie III-3 

Movie of gentle anterior touch response of wild-type animals.  

Wild-type animals suppress head oscillations in response to anterior touch and 
execute a long reversal.  
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Movie III-4 

Movie of gentle anterior touch response of LGC-55 LM2 animals.  

Animals expressing the LGC-55 LM2 cation channel under control of the 
endogenous promoter hypercontract their neck and fail to execute a long reversal 
in response to anterior touch.  
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Movie III-5 

Movie of wild-type animals expressing ptdc-1::ChR2 in response to blue 
light.  

Wild-type animals suppress head oscillations and lengthen there neck in 
response to stimulation of tyramine release by activation of ChR2 in the RIM. 
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Movie III-6 

Movie of LGC-55 LM2 animals expressing ptdc-1::ChR2 in response to blue 
light.  

LGC-55 LM2 cation animals suppress hypercontract their neck in response to 
stimulation of tyramine release by activation of ChR2 in the RIM. 
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CHAPTER IV 

 

 

 

Characterization of a Novel Gain of Function Voltage-Gated Calcium 
Channel 
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thrashing assays in Figure IV-5, worked closely with me on the suppressor 
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Abstract 

The release of neurotransmitter is critical to propagating signals that 

generate behavioral outputs.  In a genetic screen for mutants that are resistant to 

the paralytic effects of exogenous tyramine, we isolated a mutant, zf35, which 

displays a hyperactive locomotory and egg laying phenotype.  We identified zf35 

as an allele of unc-2, the pore forming α1 subunit of a voltage-gated calcium 

channel essential for synaptic vesicle exocytosis.  zf35 phenotypes are directly 

opposite to those of unc-2 loss-of-function mutants, which are sluggish and have 

a decrease in endogenous synaptic activity.  This indicates that the zf35 lesion 

represents a gain-of-function-mutation.  Electrophysiological studies show the 

zf35 mutation causes an increase in channel conductance and shifts in the 

activation potential of the channel, which may lead to an increase in 

neurotransmitter release.  This mutation provided us with a unique opportunity to 

identify new genes that interact with unc-2 at the synapse.  We performed a pilot 

suppressor screen for mutations that suppress the hyperactive phenotypes of 

unc-2(zf35).  We isolated 23 mutants, many of which are new alleles of genes 

known to be essential for expression and processing of calcium channels.  
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Introduction 

Voltage-gated calcium channels (VGCCs) play a critical role in nervous 

system function.  In addition to participating in the regulation of gene expression, 

neuronal migration and stimulus-contraction coupling, voltage-gated calcium 

channels act as the bridge between neural activity and neurotransmitter release.  

They accomplish this by responding to changes in membrane potential by 

opening and allowing the necessary influx of Ca2+ to trigger vesicular fusion 

events.  Additionally, calcium influx through VGCCs can activate signaling 

cascades that lead to transcription, muscle contraction and growth (reviewed in 

Catterall, 2000).   

VGCCs are multi-subunit complexes composed of four to five 

components, α1, α2δ, β, and γ subunits.  The α1 subunit forms the voltage sensor 

and the central pore, while the other subunits have been shown to modulate 

channel activity and expression (Caterall, 2000; Singer, et al, 1991).  In 

mammals, there are five types of calcium channels encoded by 10 α1 subunit 

genes, L- (CaV1), N-, P/Q-, R- (CaV2), and T- (CaV3) type, and are organized 

according to their distinct pharmacological properties.   The CaV2 or N-, P/Q- and 

R-types are the predominant VGCCs in presynaptic nerve terminals where 

channel opening and Ca2+ influx triggers the fusion of synaptic vesicles with the 

cell membrane (Catterall, 2000).   

Although there has been much research done on the pharmacological and 

electrophysiological properties of these channels, how their activity, expression, 
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and localization are precisely regulated is largely unknown.  Furthermore, 

deregulation of Cav2 channel function can cause severe neurological disorders 

including ataxia, epilepsy, migraine and autism-spectrum disorders (reviewed in 

Gargus, 2009; Splawski, et al., 2004; Hans, et al., 1999; Serra, et al., 2008; 

Barrett, et al., 2005).  Determining how Cav2 channel activity and expression are 

regulated will not only provide insights into normal calcium signaling mechanisms 

within neural networks, but it will also contribute to our understanding of the 

pathology of these channelopathies.   

In contrast to the mammalian nervous system, the nematode 

Caenorhabditis elegans has only three α1 subunit genes, egl-19, cca-1 and unc-2 

which are homologous to the mammalian L- (CaV1), T- (CaV3) and N/P/Q (CaV2) 

type, respectively (Lee, et al., 1997; Steger, et al., 2005; Shtonda and Avery, 

2005; Schafer and Kenyon, 1995).  Additionally, C. elegans encodes α2δ (unc-

36) and β (ccb-1) subunit homologues (Schafer and Kenyon, 1995; Schafer, et 

al., 1996; Laine et al, 2011).  It has been shown that unc-2 regulates 

acetylcholine, GABA and biogenic amine signaling, that control behaviors 

including, locomotion, defecation and egg-laying (Schafer and Kenyon, 1995; 

Mathews, et al., 2003).  These studies show that unc-2 acts to orchestrate the 

calcium flux necessary for neurotransmission, suggesting a functional correlation 

to the mammalian CaV2-type channels.  The similarity in function and 

composition to the mammalian VGCCs combined with the advantages of a 
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limited genome and simple nervous system, makes C. elegans is an excellent 

model in which to study CaV2 regulation and function in vivo.   

We have identified a novel gain-of-function allele of the unc-2 gene, zf35.   

Here we describe a comprehensive characterization of unc-2(zf35) and show that 

the zf35 lesion produces changes to channel properties by increasing channel 

conductance and shifting the voltage of activation to more negative potentials.  

Furthermore, we developed a suppressor screen to uncover new molecules 

involved in processing, expression and subunit composition of CaV2 channels.  

Our suppressor screen identified new alleles of calf-1, unc-10, unc-13, unc-36 

and unc-31, which have all been previously implicated in calcium channel 

localization and function (Saheki and Bargmann, 2009; Kaeser, et al., 2011; 

Schafer, 1996; Frøkjær-Jensen et al., 2006).  Continued characterization of 

mutants isolated from our screen may identify new genes involved in  the proper 

assembly and trafficking of functional calcium channels.     

Experimental Procedures 

Genetic Screen, Mapping and Cloning of UNC-2 GF 

All strains were cultured at 22˚C on NGM agar plates with the E. coli strain 

OP50 as a food source. The wild-type strain was Bristol N2. All strains were 

obtained from the C. elegans Genetics Center (CGC) unless otherwise noted. 

The genetic screen which isolated zf35 was carried out as in Chapter II, briefly; 

wild-type animals were mutagenized with 50 mM EMS (Brenner, 1974). Young 

adult F2 progeny of approximately 14,000 mutagenized F1 animals were washed 
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twice with water and transferred to 40 mM tyramine plates. After 10 to 20 minutes 

animals that displayed sustained head or body movements were picked to single 

plates. Primary isolates were retested on 30 mM tyramine. Twelve mutants were 

isolated; zf35 was partially resistant to the paralytic effects of tyramine for both 

head and body movements. 

We mapped unc-2(zf35) to LG X using the SNP mapping procedure as 

previously described (Wicks, et al., 2001; Davis, et al., 2005).  Further three-

factor mapping placed unc-2(zf35) to the left of lon-2 close to dpy-3. Full length 

UNC-2 WT and GF rescuing clones were obtained from Y. Saheki and C. 

Bargmann.  Briefly, the UNC-2 cDNA containing a synthetic intron at nt position 

1142-1192 relative to the translational start and was cloned behind the tag-168 

pan neuronal promoter using restriction sites AscI and XhoI to generate the ptag-

168::UNC-2WT construct.  ptag-168 drives expression in all neurons.  The UNC-

2 GF construct was generated using site directed mutagenesis to engineer the 

zf35 mutation in ptag-168::UNC-2.  

All transgenic strains were obtained by microinjection of plasmid DNA into 

the germline.  At least three independent transgenic lines were obtained and data 

are from a single representative line.  Transgenic animals for rescue experiments 

were made by co-injecting ptag-168::UNC-2WT or ptag-168::UNC-2GF plasmids 

at 20 ng/µl along with the lin-15 rescuing plasmid pL15EK at 80 ng/µl into the 

loss of function animals, unc-2(e51); lin-15(n765ts) or lin15(n765ts).  
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Behavioral Assays 

All behavioral analysis was performed with young adult animals (24 hours 

post L4) at room temperature (22-24°C), unless otherwise noted; different 

genotypes were scored in parallel, with the researcher blinded to the genotype. 

To quantify resistance to aldicarb or levamisole, young adult animals were 

transferred to NGM supplemented with 1 mM aldicarb or 100 µM levamisole and 

the percentage of paralyzed animals was scored every 15 minutes for a 120-

minute period.  Paralysis was defined as the failure of an animal to respond to a 

harsh stimulus to the middle of the body.  100% of wild-type animals were 

paralyzed on 1 mM aldicarb or 100 µM levamisole at 120 minutes.  Aldicarb 

plates were prepared by adding aldicarb (Chemservice) dissolved in 100% 

isopropanol to a concentration of 1mM to standard NGM.  Similarly, levamisole 

plates were prepared by adding levamisole (Sigma) dissolved in water to a 

concentration of 100 µM to standard NGM. Plates were freshly seeded with 

OP50 the night before the assay to prevent animals from crawling off the plates 

during the assay.  

Spontaneous reversal frequency was scored on seeded NGM agar.  

Animals were transferred from their culture plate to a freshly seeded plate and 

allowed to recover for 1 minute.  After the recovery period the animals were 

scored for 3 minutes. The reversal frequency was determined as described in 

Tsalik and Hobert (2003). Animals that crawled to the edge of the plate during 
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the assay were discarded. Thrashing rate was quantified by counting the number 

of body-bends animals made in liquid in 30 seconds.  Animals were transferred 

singly to wells of a 96-well plate filled with 50 µL of M9 buffer and the thrashes 

were counted for 30 seconds after a 30 second equilibration period.  

Egg laying assays were performed as in Koelle and Horvitz, 1996. Briefly, 

quantification of brood size was performed by placing a single L4 to a NGM plate 

seeded with OP50 and the total number of offspring was counted after 5 days at 

room temperature.  This was repeated with at least 5 animals for each genotype.  

The number of eggs in the uterus was counted 36 hours after L4 by dissolving 

worms but not fertilized eggs in a 20% sodium hypochlorite solution.  The stage 

of eggs laid was quantified by allowing adult animals, 36 hours after L4, to lay 

eggs on food for one hour.  The eggs were then examined and classified in 

developmental stages according to the number of cells present.  

Electrophysiology of UNC-2 

A stable HEK293 cell line expressing the calcium channel auxiliary 

subunits β1c and α2δ (generous gift from Dr. Tsien, Department of Molecular and 

Cellular Physiology, Stanford University School of Medicine)(Piedras-Renteria et 

al., 2001) was used to transiently transfect 5 μg of wild-type or mutant human 

α1A/Cav1.2 subunit using the calcium phosphate method.  A plasmid encoding 

green fluorescent protein (pGreen lantern) was also included for recordings to 

allow identification of transfected cells under fluorescence optics. The cells were 
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kept in DMEM supplemented with 10% fetal bovine serum and 1000 U/ml 

penicillin–streptomycin.  

Whole-cell inward currents were recorded 24–36 hr after transfection with 

a HEKA EPC-9 patch clamp amplifier. Recordings were filtered at 2 kHz and 

acquired using Patchmaster software, version 10.1 (HEKA). The extracellular 

recording solution contained  5mM BaCl2, 1mM MgCl2, 10mM HEPES, 40mM 

TEACl, 10 mM glucose, and 87.5 mM CsCl, pH 7.4. Typically the pipettes 

exhibited resistances ranging from 2 to 4 MΩ and were filled with internal solution 

containing (in mM): 105 CsCl, 25 TEACl, 1 CaCl2, 11 EGTA, and 10 HEPES, pH 

7.2. 

Cell capacitance (16.7 ± 6.7 pF; n = 24) and series resistance (9.7 ± 4.6 

MΩ before compensation; n = 24) were measured from the current transient after 

a voltage pulse from -80 to -90 mV. Series resistance was typically compensated 

by 80–90%. Cells with large currents in which errors in voltage control might 

appear were discarded. I-V curves were generated by measuring the peak 

currents obtained after stepping the membrane potential from a holding potential 

of -120 mV to voltages between -55 and 40 mV in 5mV increments for 200 msec.   

I-V curves were fitted with Equation 1:  

 

I= G( G – Erev) (1+exp (V0.5- V)/ka)-1 
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where G is membrane conductance, Erev is the reversal potential, V0.5 is the 

midpoint, and ka the slope of the voltage dependence. Current densities were 

obtained by dividing the current peak amplitude to the cell capacitance for each 

experiment. 

To measure steady-state inactivation profiles, conditioning prepulses (10 

sec) from -90 to 20mV in 10mVsteps were applied, and the membrane was then 

stepped to the peak of the I–V curve. Currents were normalized to the maximal 

value obtained at the test pulse and plotted as a function of the prepulse 

potential. Data were fitted with Boltzmann equations:  

 

I/Imax= {1 + exp[(V-V0.5)/kin]-1}.   

 

All experiments were performed at room temperature. Data analysis was 

performed using the IgorPro software (WaveMetrics Inc., Lake Oswego, OR); 

figures, fitting and statistical analysis was done using the SigmaPlot software 

(version 11.0; Systat Software Inc.). Data are presented as mean ± SD. 

Significant differences were determined using Student’s t test with the 

significance value set at p˃0.01. 

UNC-2GF suppressor screens  

Two suppressor screens were performed.  First, UNC-2GF animals were 

mutagenized in 50 mM EMS as described (Brenner, 1974). Young adult F2 

progeny of approximately 8,000 mutagenized F1 animals were washed twice with 
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water and transferred to 1 mM aldicarb plates.  Animals resistant to paralysis by 

aldicarb in 60 minutes were recovered. Primary isolates were retested on 1 mM 

aldicarb, and those that were resistant to aldicarb were kept for further analysis 

and outcrossing.  4 mutants were isolated (see Table IV-1).  zf87, zf88, zf89 and 

zf90 were highly resistant to 1 mM aldicarb.  We identified zf88, zf89, and zf90 

using SNP mapping procedure as previously described (Wicks, et al., 2001; 

Davis, et al., 2005), complementation tests, and sequence analysis.  

We performed a second suppressor screen, similarly to Miller, et al., 1996.  

Briefly, UNC-2GF animals were mutagenized in 50 mM EMS as described 

(Brenner, 1974). Approximately 10,000 mutagenized F1 animals were washed 

twice with water and bleached to release their fertilized eggs.  F2 mutant eggs 

were plated on seeded NGM plates containing 0.25 mM aldicarb, and examined 

after 7, 14, and 21 days.  Aldicarb at this concentration causes larval arrest in 

UNC-2GF animals, resistant animals that reached adulthood by the specified 

time points were recovered.  Primary isolates were retested for their resistance to 

paralysis on 1 mM aldicarb.  16 mutants were isolated and alleles were identified 

by complementation testing and sequence analysis (Table IV-1).  

Results 

zf35 is an allele of C. elegans the voltage-gated calcium channel, UNC-2. 

 To identify genes involved in tyramine signaling, in Chapter II we 

performed a genetic screen for mutants that are resistant to the paralytic effects 

of exogenous tyramine.  We placed approximately 10,000 F2 progeny of 
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mutagenized wild-type hermaphrodites on plates containing 30 mM tyramine and 

selected mutants that displayed sustained body movement.  One mutant 

isolated, zf35, was partially resistant to the paralytic effects of exogenous 

tyramine (Figure IV-1).  Additionally, zf35 mutants are smaller than wild type 

(data not shown), and display a severe hyper-reversal phenotype (Figure IV-

5A,B, Movie IV-1,2).  Despite the difference in size and defects in locomotion, 

zf35 mutants were viable with normal brood sizes. 

 We mapped the zf35 mutation using single nucleotide polymorphisms and 

three-factor mapping to the left of chromosome X, close to dpy-3 (Figure IV-2A).  

This genomic region contains a gene, unc-2, which encodes the α-subunit of the 

C. elegans P/Q type (Cav2.1) voltage-gated calcium channel.  Sequence analysis 

of zf35 revealed a single base transition in the coding sequence of unc-2.  The 

predicted UNC-2 protein contains four homologous domains (TM I-IV), each 

containing six transmembrane segments (S1-6), and intracellular N- and C- 

termini (Caterall, 2000).  The zf35 allele is a mutation in the highly conserved 

intracellular linker between TM III-S6 and TM IV-S1 that converts a glycine 

residue to an arginine (G1132R) (Figure IV-2B,C). The intracellular linkers 

between TM domains have been implicated in association with the voltage 

sensing domains of the channel (S4), accessory subunits, and signaling 

molecules that regulate channel activity (Caterall, 2000), suggesting that the zf35 

mutation may cause a change in the electrophysiological properties of the 

channel. 
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The UNC-2 G1132R mutation causes a shift in activation voltage and an 
increase in Ca2+ influx. 

 In order to investigate the functional consequences of the missense 

mutation G1132R in UNC-2 we introduced the corresponding mutation in the 

human homologue of the α1A voltage-gated calcium channel subunit, CACNA1A, 

and expressed the wild-type or the mutant α1A subunit in a stable HEK 293T cell 

line expressing the auxiliary calcium channel subunits β1C and α2δ. 

Representative whole-cell Ba2+ currents for the wild-type and the G1132R mutant 

versions are shown in Figure IV-3A.  The maximal current densities were 

significantly larger for the G1132R mutation when compared to the wild-type: 

80.6 ± 5.7 (n=11) versus 47.5 ± 4.3 (n=13) (p>0.05; Figure IV-3B).   

The G1132R mutation caused the current-voltage relationship to shift ~10 

mV to more negative potentials in comparison to the wild-type. In 5 mM Ba2+, 

currents through the wild-type channels were first activated at approximately -20 

mV and peaked at approximately 10 mV. In contrast, the G1132R mutant 

channel was activated and peaked after depolarizations of -30 and 0 mV, 

respectively (Figure IV-3B). The V0.5act value, or the membrane potential where half 

of the maximal activation is achieved, was -3.9 ± 0.2 and -12.6 ± 0.6 mV for the 

wild-type and mutant channel respectively, and the slope of the activation curves 

is only slightly affected in the mutant (KaWT= 3.7 ± 0.2 mV; Ka G1132R=4.5  ± 

0.3). 

The extent of inactivation was measured as the relationship between the 

residual current at the end of a 200ms test pulse and the current peak, and is not 
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altered in the mutant as shown in Figure IV-3C. However, comparison of the 

steady-state inactivation properties demonstrated a slight displacement to more 

depolarized membrane potentials in the G1132R mutant (Figure IV-3D).  The 

membrane potential at which half of the current was inactivated in the mutant 

was about 7-8 mV more positive when compared to the wild-type (V0.5inact= -55.0 

± 1.0 and -47.3 ± 1.0 for the wild-type and mutant, respectively) (Figure IV-3D). 

Take together these data indicate that the G1132R mutation in the human 

α1A subunit of voltage gated neuronal Cav2.1 Ca2+ channels produces a 

significant shift of the activation to lower voltages and an important increase of 

the whole cell Ba2+ influx in HEK 293T cells.  The increase in activity caused by 

the G1132R mutation suggests a gain of channel function which may lead to an 

increase the rate of neurotransmitter release.  Similar changes were observed in 

studies examining the properties of known gain of function mutations in human 

Cav2.1, such as S218L and R192Q (Figure IV-2B), which have been associated 

with Familial Hemiplegic Migraine (FHM) (Hans et al., 1999; Tottene et al., 2005).    

The UNC-2 G1132R mutation causes an increase in neurotransmission. 

 To test if the UNC-2 G1132R mutation causes a change in 

neurotransmission, we used a pharmacological assay, where we exposed 

animals to the antihelminthic drug, aldicarb.  Aldicarb is an acetylcholinesterase 

inhibitor, which stops the breakdown of acetylcholine causing a buildup of 

acetylcholine at the synapse. Acetylcholine is the major excitatory 
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neurotransmitter at the neuromuscular junction (NMJ) in C. elegans; therefore an 

increase in acetylcholine signaling due to failure to clear the neurotransmitter 

from the synapse induces paralysis and eventually death.  It has been shown 

that animals that have an increase in neurotransmitter release become 

hypersensitive to aldicarb, while animals with a decrease in neurotransmitter 

release are resistant to the effects of the drug (Nonet et al., 1993; Miller et al., 

1996; Mahoney, et al., 2006).  unc-2(zf35) mutants are highly hypersensitive to 

1mM aldicarb, paralyzing approximately 2-fold faster than wild-type animals 

(Figure IV-4).  In contrast, the deletion allele of unc-2, e55, which most likely 

represents a null (Schafer and Kenyon, 1995; Mathews, et al., 2003, Figure IV-

4), is more resistant to aldicarb than wild type.  Animals that are heterozygous for 

the zf35 mutation are also hypersensitive to aldicarb, although not to the same 

levels as the homozygous mutant, suggesting the zf35 allele is semi-dominant 

(Figure IV-4).   

Further behavioral analysis also showed hyperactivity in several 

behaviors.  unc-2(zf35) animals have a dramatic increase in reversal and 

thrashing rates compared to wild type.  These behaviors are opposite that of unc-

2(e55) animals, which are mostly paralyzed (Mathews, et al., 2006; Figure IV-

5A,B; Movie IV-3). Additionally, although unc-2(zf35) animals had a normal brood 

size (wild type, 288 ± 5; unc-2(zf35), 253 ±14) they had a reduced number of 

eggs in their uterus and laid eggs at earlier stages than wild-type or unc-2(e55) 

animals, suggesting they are also hyperactive in egg laying behavior (Figure IV-
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5C,D,E).  Together with our pharmacological experiments, these data suggest 

that the zf35 mutation causes an increase in neurotransmission that effects 

behavioral outputs. 

  To determine if the G1132R mutation is the cause of these behavioral 

phenotypes we made transgenic animals that expressed UNC-2G1132R in all 

neurons in either unc-2(e55) null mutants or wild-type animals.  The transgenic 

animals expressing the UNC-2G1132R transgene exhibit hyper-reversal behavior 

and hypersensitivity to aldicarb, similar to unc-2(zf35) mutants.  unc-2(e55) 

transgenic animals that express UNC-2 WT in all neurons were rescued for 

locomotion defects and resistance to aldicarb (Figure IV-6A, B).  This indicates 

that the G1132R mutation confers the hyperactive phenotypes of unc-2(zf35) 

animals.  The electrophysiological properties of the G1132R, and the behavioral 

hyperactivity of unc-2(zf35), which is opposite to that of the null allele unc-2(e55), 

suggests that unc-2(zf35) is a gain-of-function allele of the C. elegans voltage 

gated calcium channel.  Additionally, our data indicate that expression of UNC-

2G1132R in the nervous system at both the NMJ and inter-neuronal connections 

causes an increase in neural activity.   

Suppressor Screen to Identify Novel Calcium Signaling Components. 

To identify genes that are involved in processing, expression, and composition of 

voltage-gated calcium channels we performed a genetic screen for mutants that 

suppressed the hyperactive phenotypes of unc-2(zf35) animals.  We obtained 50 
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mutants from this screen, which were resistant to the effects of aldicarb. We then 

tested these mutants on 100µm levamisole, an acetylcholine agonist.  Since this 

drug activates postsynaptic receptors, a resistance to this drug in addition to 

resistance to aldicarb indicates a postsynaptic defect rather than a defect at the 

presyanpse.  Of the 50 mutants we isolated that were resistant to aldicarb, 30 

were also resistant to levamisole, suggesting that these isolated mutants were 

alleles of genes acting in the postsynapse. We focused our analysis on the 20 

mutants, which were resistant to aldicarb only, allowing us to identify genes that 

were likely to have a genetic interaction with unc-2 localization at the 

presyanpse.   

Using single nucleotide polymorphisms, three factor mapping and 

sequence analysis, we identified the lesions in 17 of the 20 mutants we isolated 

(Table IV-1).  We obtained 7 intragenic suppressors of unc-2, including several 

alleles which cause early transcription termination (Figure IV-2B, Table IV-1). 

This supports the notion that the zf35 lesion causes is a gain of channel function.  

We also isolated three alleles of unc-10/RIM, one allele of unc-13, and one allele 

of unc-31, which are involved in synaptic vesicle docking and fusion (Gracheva, 

et al., 2008; Weimer, et al., 2006; Hammarlund, et al., 2007; Lin, et al., 2010).  

Additionally we identified four alleles of the α2δ subunit, unc-36, and one allele of 

the localization factor calf-1.  Both of these genes have been previously 

implicated in regulating the localization of unc-2 to the synapse (Saheki and 

Bargmann, 2009).   This screening approach was highly successful in identifying 
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genes that interact with unc-2 in the presyanpse.  Furthermore, since we also 

have 3 currently unidentified mutants, which do not appear to be alleles of genes 

known to function in calcium channel function or trafficking, we might uncover 

novel molecular components or mechanisms for calcium channel processing and 

expression.   

Discussion 

Pre-synaptic Cav2 channels play a central role in neural network function 

as they translate neuronal activity into synaptic transmission within dynamic 

signaling networks.  We have identified a novel gain of function allele of the C. 

elegans Cav2 gene, unc-2(zf35).  Our electrophysiological analysis shows that 

the G1132R mutation in UNC-2caused by the zf35 allele produces an increase in 

Ca2+ influx as well as shifts the activation voltage to more negative potentials, 

leading to more frequent and robust release of neurotransmitter.  unc-2(zf35) 

animals are also hyperactive in thrashing, reversal and egg laying behaviors and 

the hypersensitivity of unc-2(zf35) mutants to aldicarb support the notion that this 

mutation causes an increase in neurotransmission.  It is possible the increased 

conductance and lower voltage dependence causes a higher probability or an 

incoordination of synaptic release events.  It has been shown that mutants in 

genes that regulate the frequency of synaptic release, such as components of 

the Go/Gq signaling cascade, also display hyperactive phenotypes similar to unc-

2(zf35), suggesting that the G1132R mutation likely causes an increase in 

neurotransmission (Mendel et al., 1995; Segalat, et al., 1995; Koelle and Horvitz, 
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1996; Lackner, et al., 1999; Miller, 1999; Miller 2000). Perturbations of Cav2 

channel function may disrupt the timing and control of motor programs involved 

in locomotion and egg laying, resulting in an overall hyperactivity of these 

behaviors in zf35 animals. 

Mammalian studies indicate that the regulation of Cav2 channels is 

complex and is modulated by interactions with synaptic proteins, 

neuromodulatory pathways that activate G-protein signaling cascades, cross-talk 

with other intracellular signaling pathways (Catterall, 2000) and probably other 

factors yet to be characterized.  To identify molecular components involved in 

Cav2 processing and expression, we performed a suppressor screen in which we 

isolated mutants that were resistant to aldicarb.  We isolated 20 mutants, of 

which we identified components of the synaptic machinery (unc-10, unc-13, unc-

13).  It has been shown that UNC-10, UNC-13 and UNC-31 play a role in 

localizing UNC-2 to the active zone.  These studies have shown that direct 

interaction with the synaptic machinery is critical for calcium influx to 

appropriately trigger vesicular fusion (Saheki and Bargmann, 2009, Kaeser, et 

al., 2011).   We also identified alleles of claf-1 and unc-36.  These genes have 

been shown to play a key role in trafficking of unc-2 to the synapse (Saheki and 

Bargmann, 2009).  In particular, calf-1 is critical for the exit of unc-2 from the 

endoplasmic reticulum.  unc-36 is the C. elegans α2δ subunit and has been 

shown to play a role in trafficking unc-2 to the active zone, as well as modulating 

channel activity.  
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Our identification of a rare gf mutation in the gene coding for the UNC-

2/Cav2 channel opens new avenues for the analysis of Cav2 function, modulation 

and localization in vivo.  Our unc-2/Cav2(gf) suppressor screen indicates that the 

spectrum of isolated mutants is different from previous aldicarb-resistance 

screens (Nonet et al., 1993; Miller et al., 1996).  Molecular characterization of the 

remaining mutants and perhaps further screening should define new genes 

required for Cav2 processing and expression.  Many aspects of Cav2 function 

and modulation are still unknown and further study of our gain-of-function mutant 

may provide new insights into the pivotal role of Cav2 channels in the integration 

of circuit activity.   
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Figure IV-1 

 

zf35 mutants are partially resistant to the paralytic effects of exogenous 
tyramine.  

Show is the quantification of body movements on 30 mM tyramine. Each data 
point represents the mean ± SEM of the percentage of animals immobilized on 
exogenous tyramine every minute for 20 minutes for at least four trials totaling 40 
animals.  zf35 mutants continue to move through the duration of the assay while 
100% of wild type animals are immobilized after 5 minutes.   
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Figure IV-2 

 

zf35 is an allele of unc-2. 

(A) The unc-2 locus. Genetic map and gene structure of unc-2: coding 
sequences are represented as black boxes. Red circle indicates the position of 
the unc-2(zf35) allele. The zf35 gain-of-function allele is a single nucleotide 
transition (GGA  AGA) resulting in a glycine to arginine (G  R) amino acid 
substitution at position 1132. 
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(B) Schematic diagram of the UNC-2 protein. UNC-2 consists of four homologous 
domains (TM I-IV), each consisting of six transmembrane, alpha-helix segments 
(1-6) as indicated by the green cylinders. The UNC-2 (G1132R) gain-of-function 
mutation is located in the third intracellular loop between TM III and IV, indicated 
by the red circle. Blue circles indicate positions of intragenic suppressors isolated 
in our genetic screen (see Table IV-2). Yellow circles indicate the location of 
known gain-of-function mutations implicated in Familial Hemiplegic Migraine 
(FHM) (Hans et al., 1999; Tottene et al., 2005).   

(C) Alignment of C. elegans UNC-2 with Cav2.1 channels from human 
(CACNA1A), zebra fish (CaV2.1 1α), and Drosophilia (Cacophony). Identities are 
shaded in dark grey, similarities in light grey. Location of the G1132R mutation is 
indicated, which is a the highly conserved region of the UNC-2 protein between 
TM III-S6 and TM IV-S1. 
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Figure IV-3 
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Figure IV-3. The G1132R mutation causes functional changes in channel 
properties in α1A subunit of the human P/Q type calcium channel, 
CACNA1A. 

Shown are the whole-cell patch-clamp recordings with 5 mM Ba2+ as charge 
carrier from HEK293T cells transiently expressing either the wild type or G1132R 
mutant of the human Cav2.1 α1A subunit, CACNA1A. The recordings were 
obtained from cells incubated at 37°Cfor 24-36 hours after transfection. 
 
(A) Representative macrocurrents of wild-type (left) and mutant (right) CACNA1A 
elicited after stepping the membrane potential to voltages between -55 and 40 
mV in 5mV increments from a holding potential of -120 mV for 200 ms.  

(B) Voltage dependence of whole-cell current density for wild-type and mutant 
channels. The current density values were obtained by dividing current 
amplitudes and cell capacitance (wild-type, n=9; G1132R, n=11).  
 
(C) Comparison of the extent of inactivation (measured as the relationship 
between the residual current at the end of the test pulse and the current peak) as 
a function of membrane potential. No significant differences were observed (wild-
type, n=9; G1132R, n=11). 

(E) Steady-State Inactivation curves. The G1132R mutation causes a slight 
positive shift in the midpoint voltage in the steady-state inactivation curves. No 
significant differences were observed in the slope factor of the steady-state 
inactivation. Currents were normalized to the maximal value obtained at the test 
pulse and plotted as a function of the prepulse potential. Data were fitted with the 
Boltzmann equation of the form: I/Imax={1+exp[(V-V0.5)/kin]} - 1. 
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Figure IV-4

 

unc-2(zf35) animals are hypersensitive to 1 mM aldicarb. 

Show is the quantification of movement on 1 mM aldicarb. Each data point 
represents the mean ± SEM of the percentage of animals paralyzed by aldicarb 
every 15 minutes for at least five trials totaling 50 animals. Homozygous zf35 
mutants are hypersensitive to aldicarb. Heterozygous mutants are also 
hypersensitive aldicarb although not to the same extent as homozygotes, 
indicating that zf35 is a semi-dominant allele of unc-2.  



153 
 

Figure IV-5 
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Figure IV-5. unc-2(zf35) animals are hyperactive in locomotion and egg 
laying behaviors. 

(A) Quantification of number of reversals.  Shown is the average number of 
reversals made by wild-type (6.87 ± 0.40 reversals, n=60), unc-2(zf35) (43.2 ± 
1.9 reversals, n=65), and unc-2(ze55) (2.64 ± 0.23 reversals, n=44) in 3 minutes 
on food. Statistical difference from wild type; **** p<0.0001, two-tailed Student’s 
T test.   

(B) Quantification of the number of body bends during swimming behavior. 
Shown is the average number of body bends made by wild type (103.6 ± 0.40 
thrashes, n=20), unc-2(zf35) (143.2 ± 1.9 thrashes, n=20), and unc-2(ze55) (8.2 
± 0.23 thrashes, n=20) in 30 seconds in liquid. Statistical difference from wild 
type; **** p<0.0001, two-tailed Student’s T test. 

(C) Representative images of unlaid eggs in adult wild-type, unc-2(zf35) and unc-
2(e55) animals. Arrows indicate eggs; asterisk denotes position of the vulva. 

(D) Quantification of the number of eggs in the uterus.  Shown is the average 
number of eggs in the uterus of adult wild type (13.4 ± 0.72 eggs, n=59), unc-
2(zf35) (3.01 ± 0.15 egg, n=64) and unc-2(e55) (7.71 ± 0.40 eggs, n=30) 40 
hours post L4. unc-2(zf35) animals had fewer eggs in the uterus than wild type or 
unc-2(e55). Statistical difference from wild type unless otherwise noted; **** 
p<0.0001, two-tailed Student’s T test.  

(E) Distributions of stages of freshly laid eggs in wild-type (n=100), unc-2(zf35) 
(n=100), and unc-2(e55) (n=100). unc-2(zf35) animals laid eggs at an earlier 
stage (0-16 cell) than wild-type or unc-2(e55) animals. The distribution of the 
stage of the laid eggs of the unc-2(zf35) mutants is statistically significantly 
different from those of wild type and unc-2(e55) mutants. ****p<0.0001, two-way 
ANOVA.  
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Figure IV-6 
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Figure IV-6. UNC-2G1132R confers increase in neurotransmission. 

(A) Show is the quantification of movement on 1 mM aldicarb. Each data point 
represents the mean ± SEM of the percentage of animals paralyzed by aldicarb 
every 15 minutes for at least five trials totaling 50 animals. unc-2(e55) loss-of-
function or wild-type animals expressing the tag-168::UNC-2G1132R transgene 
is expressed in all neurons, are hypersensitive to aldicarb.  Resistance to 
aldicarb induced paralysis is rescued by expression of the tag-168::UNC-2WT 
transgene in unc-2(e55) loss-of-function animals.  

(B) Quantification of number of reversals.  Shown is the average number of 
reversals made by wild-type (6.87 ± 0.40 reversals, n=60), unc-2(zf35) (43.2 ± 
1.9 reversals, n=65), unc-2(ze55) (2.64 ± 0.23 reversals, n=44), unc-2(e55); 
ptag-168::UNC-2WT (±), unc-2(e55); ptag-168::UNC-2G1132R (±), and ptag-
168::UNC-2G1132R (±) in 3 minutes on food.  Animals expressing the G1132R 
transgene have an increased reversal rate similar to unc-2(zf35) animals. 
Statistical difference from wild type; **** p<0.0001, two-tailed Student’s T test.   
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Table IV-1 

 

unc-2(zf35) suppressor screen identifies new alleles of genes associated 
with VGCC trafficking and function. 

Shown is a list of alleles identified in the unc-2(zf35) suppressor screen grouped 
according to function.  We isolated 20 mutants that were resistant to the effects 
of aldicarb and sensitive to levamisole.  Genetic and sequence analysis lead us 
to identify 17 of the 20 mutations, all of which occur in genes known to play a role 
in unc-2 trafficking and function. Three alleles are still unidentified.  
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Movie IV-1 

Movie of wild-type animals on food. 

Filming began after a 3 minute equilibration period after the animals were 
transferred to a freshly seeded plate of food from the growth plate. Movie was 
shot at 15 frames per second. Wild-type animals move slowly on food and make 
few reversals.   
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Movie IV-2 

Movie of zf35 animals on food. 

Filming began after a 3 minute equilibration period after the animals were 
transferred to a freshly seeded plate of food from the growth plate. Movie was 
shot at 15 frames per second. zf35 animals have an increased speed on food 
and make many reversals.   
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Movie IV-3 

Movie of e55 animals on food. 

Filming began after a 3 minute equilibration period after the animals were 
transferred to a freshly seeded plate of food from the growth plate. Movie was 
shot at 15 frames per second. e55 animals have are slow, sluggish and appear 
mostly paralyzed.  
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Chapter V 

 

 

 

Final Thoughts: Discussion and Future Directions 
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 Signaling networks or neural circuits direct complex sequences of activity 

that culminate in what we recognize as coordinated behavior.  A good example of 

a complex behavioral sequence is an escape response in which an animal 

evades a threatening stimulus.  In many cases the response to a threat is 

modulated by biogenic amine signaling.  We know that in the mammalian 

nervous system noradrenaline and adrenaline mediate the “fight or flight” 

response (Brede, et al., 2004) however, how these biogenic amines work to 

coordinate distinct neural programs or networks to produce a coordinated 

response is unknown.  With trillions of neuronal connections in the mammalian 

brain, studies of neuronal control of these behaviors becomes challenging.  My 

dissertation aimed to explore how the nervous system coordinates a complex 

behavior through biogenic amine signaling in an organism with a simpler nervous 

system, the nematode C. elegans. 

 In invertebrates the biogenic amines octopamine and tyramine are 

considered analogous to noradrenaline and adrenaline (Roeder, 2005), in that 

they may orchestrate neural activity to produce complex behaviors in response to 

stress.  The role for tyramine was initially described in both mammalian and 

invertebrate systems as a precursor or a metabolic by product in the pathway to 

make other neurotransmitters (Roeder, 1999; Berry, 2004).  Previous work in C. 

elegans identified a subset of tyraminergic cells in the C. elegans nervous 

system, the RIMs, and showed that these cells played an important role in 

escape behavior (Alkema, et al., 2005).  Additionally, identification of GPCRs that 
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are activated by tyramine in C. elegans (Rex and Kouminecki, 2002; Rex, et al., 

2005) suggested a role far beyond that of an intermediate molecule.  However, 

how tyramine functioned in the nervous system remained unclear.   

In a genetic screen for tyramine signaling components we identified alleles 

of a previously uncharacterized ion channel, LGC-55, which we determined was 

activated by tyramine in Chapter II.  I also identified that activation of this channel 

was critical to coordinate the motor programs of the initial phases of the C. 

elegans escape response (Figure V-1, Figure II-14).  Normally, forward 

locomotion is accompanied by exploratory head movements, where the animal’s 

head oscillates from side to side. Gentle touch to the head of the animal elicits a 

backing response during which the exploratory head movements are 

suppressed.  This long reversal is followed by a deep ventral bend which allows 

the animal to make a sharp turn (omega turn) to resume locomotion in the 

opposite direction (Figure V-1).  I found that LGC-55 is expressed in the neck 

muscles and neurons that control head movements and the AVB forward 

locomotion command neurons, cells which are directly postsynaptic to the 

tyraminergic RIM.  During the escape response, the activation of LGC-55 by 

tyramine is necessary to cause a relaxation of the neck muscles to suppress 

head movements.  It is also critical for the prolonged inhibition of the forward 

locomotion command neurons, AVB, to facilitate a reversal long enough so the 

animal can make an omega turn, as typically these turns only occur after 3 or 

more body bends (Gray, et al., 2005).  The work in Chapter II identifies tyramine 
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as a classical neurotransmitter; as we show the ability for tyramine to directly 

affect the excitability of postsynaptic cells through the activation of LGC-55.  

Furthermore, we were able to complete the neural circuit for the escape 

response, by identifying the role for the RIM in coordinating two distinct motor 

programs, locomotion and head movements (Figure II-14). 

 The identification of a tyramine gated ion channel supports a new role for 

biogenic amines at the synapse.  A majority of the biogenic amine receptors 

identified in mammals and invertebrates are metabotropic and thus the 

assumption remains that monoamines function largely as neuromodulators.  In C. 

elegans, ion channels that are gated by serotonin, dopamine and now tyramine 

have been identified (Ranganathan, et al., 2000; Ringstad, et al., 2009; Pirri, et 

al., 2009), supporting the notion that biogenic amines can function to directly 

activate or inhibit neural circuits.  C. elegans has a large family of cys-loop 

LGICs, and many of the receptors in the family remain uncharacterized (Jones 

and Sattelle, 2008).  It is therefore a possibility that all monoamines might 

function in fast neurotransmission in the worm.  The C. elegans nervous system 

is quite small, only 302 neurons, and despite this they have a large repertoire of 

behaviors.  A way to generate flexibility in behavioral output with such a limited 

nervous system would be to increase complexity on the neurochemical level, 

perhaps through expansion of the types of neurotransmitter receptors.  Now a 

single neurochemical could both modulate and directly impact neural circuit 

activity through expression of different receptor types.    
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 These findings beg the question of whether there are biogenic amine 

gated ion channels in other animals.  In the vertebrate nervous system, serotonin 

is known to activate a cys-loop ligand-gated cation channel (5HT3a) (Derkach, et 

al., 1989; Maricq, et al., 1991), and histamine has been show to rapidly produce 

inhibitory synaptic signals in the hypothalamus that are not mediated by GPCRs 

(Hatton and Yang, 2001).  This presents the possibility that the classic biogenic 

amines might have corresponding LGICs that function in the mammalian brain.  

However, there is no indication that a trace amine gated chloride channel, like 

LGC-55, exists in the mammalian genome (JKP and MJA unpublished 

observations).  Therefore, a tyramine gated channel might be specific to the 

invertebrate nervous system.  

 Is tyraminergic signaling conserved in other nematodes? Most other 

species of soil nematodes suppress head movements in response to anterior 

touch, and have cells that express TDC-1 (see Appendix II).  However, it is 

currently unknown whether they utilize tyramine to coordinate motor programs, 

like C. elegans.  Work from our lab has shown that the coordination of head 

movements with backward locomotion through that activation of LGC-55 by 

tyramine is critical for the ability of C. elegans to escape its natural predator; the 

nematophageous fungi (Figure V-2; Maguire, et al., 2011).  As fungi that 

consume nematodes as a nitrogen source are not discriminating in their taste for 

worms, it is reasonable to think that all soil nematodes employ a similar 

mechanism for evading capture.  
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Species of the Pleiorhabditis clade tend to be parasitic, and not reside in 

the soil.  These nematodes do not suppress head oscillations in response to 

touch (See Appendix II), suggesting they may not utilize tyramine signaling as a 

part of their locomotory stress response.  Identification of a tyramine-gated 

chloride channel in the parasitic nematodes, Haemonchus contortus and Brugia 

malayi (Rao, et al., 2010, Pirri, et al., 2009), as well as identification of 

tyraminergic cells in the Pleiorhabditis species (JA, SM and MJA unpublished 

observations, see Appendix II) indicates that parasitic nematodes might employ 

tyramine signaling for a different purpose.  In C. elegans defects in tyramine 

signaling can also affect reproduction, causing a decrease in egg laying 

capability (Alkema, et al., 2005, MJA and JKP unpublished observations).  

Additionally, it has been shown that tyramine deficiencies can lead to infertility in 

the fly (Monastirioti, et al., 1996; Avila, et al., 2012).  Given the possible role for 

tyramine in fertility, and the fact that there would be no cross reactivity with the 

vertebrate nervous system, tyramine-gated chloride channels may be excellent 

targets for anthelmintic drugs and other pesticides. 

   The discovery of the novel homomeric tyramine channel, LGC-55, put us 

in a unique position to address the question of how the electrical nature of a 

synapse might affect the development and output of a neural network.  Much 

emphasis has been placed on determining all the neural connections in the 

human nervous system and developing this “connectome” is considered an 

essential step for understanding how the brain controls behavior. However, while 
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a connectome provides important information about the physical relationships 

between neurons, it harbors no information about the nature of synaptic 

connections and this lack of critical information therefore clouds the relationship 

between connectome and behavior.  

 In Chapter III I addressed whether changing the nature of a synapse could 

alter the behavioral output of a defined neural network, a feat that has not been 

attempted in any organism.  I chose to use LGC-55 to address this question 

since it is a homomeric receptor with expression limited to cells that are directly 

postsynaptic to a single pair of tyraminergic neurons, the RIM.  Additionally, 

activation of this receptor produces a defined behavioral output that can be easily 

monitored.  I showed that changing the selectivity of LGC-55 from anions to 

cations can cause a behavioral switch.  In the transgenic “LGC-55 cation” 

animals touch now induces behaviors that are virtually opposite from the wild 

type.  Animals expressing the cationic version of LGC-55 hypercontract the neck 

and have stunted reversals, while the wild type relax the neck and make long 

reversals.  This work shows that the output of a connectome can be changed 

simply through receptor expression within the circuitry and illustrates the 

limitations of a neural network map to predict behavior.  Surprisingly, the identity 

of the receptor or in turn the behavioral output provides no constraints on the 

development of the of the C. elegans neural circuit for escape.   
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The data in Chapter III suggests there is some plasticity in levels of 

receptor expression; however despite a complete change in the nature of the 

synapse, the C. elegans nervous system seems to develop independently of 

synaptic activity.  This might indicate that connectomes first develop and later 

expression of receptors dictates the nature of the connection, giving the nervous 

system certain degrees of freedom to produce excitatory or inhibitory synapses.  

This would allow an animal to generate diversity in behavioral outputs by having 

bivalent receptors that respond to the same neurotransmitter.   There are several 

examples of this in C. elegans, acetylcholine, GABA and glutamate receptors 

have both an activating cation and an inhibitory anion channel version of the 

channel (Cully, et al., 1994; Maricq, et al., 1995; Dent, et al., 1997; Beg and 

Jorgensen, 2003; Jones and Sattelle, 2004; Schuske, et al., 2004; Putrenko, et 

al., 2005).    

With the expanded complexity of the mammalian brain, things may not be 

so simple.  While there is evidence that suggests similar phenomena in the 

mammalian brain, where activity is not necessary for gross development, neural 

circuit refinement may be impaired (Shatz, C., et al., 1988; Ji et al., 1999; 

Misgeld, T., et. al., 2002).  However, there is little evidence to suggest that 

inhibitory or activating synapses develop differently. In fact, there are cases 

where classically inhibitory receptors, like GABAAR, are activating for a period of 

time during embryonic development (Ben Ari., 2002; Owens and Kriegstein 2002; 

Gulledge and Stuarts, 2003; Chavas and Marty, 2003).  This suggests that 
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switching the nature of the synapse may have little effect on development, in 

both invertebrates and mammals. 

My studies described in Chapter III provide a proof of principle that 

synaptic engineering is a feasible approach to modulate behavior.  The possibility 

that this same technique could be successful as a tool to re-engineer the activity, 

performance and coordination of the circuits is enticing.  In C. elegans, the LGC-

55 cation channel could be used to identify the role certain neurons have in 

behavior or activate specific cells/neural circuits without cross reactivity from their 

native neurotransmitter.  Furthermore, since altering the ion selectivity loop of an 

LGIC does not seem to affect expression or trafficking of the channel, expressing 

a cation version of a receptor in muscle cells and looking for hypercontraction to 

the application of different molecules is a feasible approach to deorphanizing 

other LGCCs (See Appendix I).  Additionally, by engineering cation versions of 

known LGCCs in C. elegans we might be able identify their roles in behavior.  

The cationic version of LGC-55 could also be useful to activate or modify neural 

circuits in other model systems like, the fruit fly or the mouse, where there are no 

known tyramine gated channels and the use of tyramine by the nervous system 

is limited.   

In addition to directly affecting postsynaptic excitability, monoamines that 

act through metabotropic receptors can regulate neurotransmitter release though 

the inhibition of CaV2 channels.  In particular the Gβγ protein has been shown to 
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modulate the excitability of postsynaptic cells through direct interaction with CaV 

channels (Dascal, 2001; Zamponi and Snutch, 1998). In humans, mutations that 

alter calcium channel properties or interactions between CaV channles and G-

protiens can result in many neurological disorders including ataxia, epilepsy, and 

migraine, underlining the importance of modulation of calcium channel activity 

(Caterall, 2000).  In our genetic screen for tyramine signaling mutants we 

identified an invaluable gain-of-function allele (zf35) of the unc-2 gene. unc-2 

encodes the sole C. elegans α1 subunit of the high voltage-gated calcium 

channel (CaV2). In mammals the N-, P/Q-and R-type CaV2 channels are the 

predominant voltage-gated calcium channels in presynaptic nerve terminals 

where channel opening and Ca2+ influx triggers synaptic release of 

neurotransmitter (Caterall, 2000).   

In Chapter IV I showed that, while unc-2 loss-of-function mutants are 

uncoordinated, unc-2(zf35) mutants are hyperactive in many motor programs, 

which are also involved with the escape response.  In addition, the unc-2(zf35) 

mutants exhibit hyperactivity in egg laying, and are hypersensitive to aldicarb, 

which are indicators of increased neurotransmission.  The electrophysiological 

data show that this mutation causes an increase in channel conductance and a 

shift in the activation potential of the channel to lower voltages, suggesting a 

heightened channel activity which is likely the cause of increased 

neurotransmitter release in the unc-2(zf35) animals.   



171 
 

The unc-2(zf35) mutation causes a glycine to arginine substitution in 

highly conserved intracellular linker between TM III-S6 and TM IV-S1. The 

intracellular linkers between TM domains have been implicated in association 

with the voltage sensing domains of the channel (S4), accessory subunits, and 

G-proteins, that regulate channel activity (Caterall, 2000).  Similar gain-of-

function mutations were identified in the human CACNA1A gene that encodes 

the pore forming α1 subunit of CaV2 in patients with the neurological disorder 

Familial Hemiplegic Migraine (FHM) (Hans et al., 1999; Tottene et al., 2005).  

This suggests that unc-2(zf35) could serve as an invertebrate model for this 

channelopathy.  Furthermore, given their easily identifiable hyperactive 

phenotypes, these mutants are good candidates for drug screens to look for 

treatments for FHM and perhaps other disorders that are the result of increased 

calcium channel function.   

Additionally, these mutants are also useful in suppressor screens to look 

for molecular components or mechanisms for calcium channel processing and 

expression.  The pilot suppressor screen discussed in Chapter IV, was quite 

successful in identifying mutants and we found that the spectrum of isolated 

mutants was different from previous aldicarb-resistance screens (Nonet et al., 

1993; Miller et al., 1996).  We isolated several mutants, which represent novel 

alleles of genes known to function in calcium channel trafficking and localization.  

Some of the mutants we identified are represented by single alleles indicating 

that our screen is incomplete (Table IV-1).  We should therefore increase the 
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number of genomes screened to isolate a comprehensive set of genes that play 

a role in calcium channel function.  Mammalian studies indicate that the 

regulation of Cav2 channels is complex and can be modulated by multiple 

factors, many of which are likely unidentified (Caterall, 2000).  The majority of 

these studies were performed using candidate gene approaches in cell culture, 

so an unbiased genetic screen would take in vivo approach that might uncover 

novel mechanisms for regulation of Cav2 channels. 

The UNC-2 gf mutation also could be used as powerful new tool to 

hyperactivate neurons within a circuit.  While optogenetics can reveal the direct 

behavioral consequences of neuronal activation, the stimulation occurs outside of 

the typical behavioral setting.  Cell-specific expression of unc-2(zf35) would allow 

us to constitutively hyperactivate subsets of neurons or individual neurons, 

throughout the animal’s life. By analyzing the behavior of transgenic animals that 

express unc-2(zf35) in specific cell types in combination with analysis of receptor 

expression, calcium imaging and electrophysiological data, we might also be able 

to shed light on how the nervous system maintains homeostasis of neuronal 

activity.  Furthermore, these experiments would allow us to dissect how neuronal 

assemblies produce a coordinated behavioral output within the context of normal 

behavior.   

My doctoral thesis work aimed to explore how an animal can coordinate 

motor programs in order to produce a complex behavioral output.  To that end, 
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this work broadened the role for monoamines in fast synaptic transmission by 

identifying a ligand-gated chloride channel activated by the biogenic amine 

tyramine.  Furthermore, identification of this receptor provided a new role for 

tyramine at the synapse as a genuine neurotransmitter.  This work is also among 

the rare examples where the neural path from sensory input to motor output has 

been completed.  The identification of this pathway lead to novel experiments in 

genetic engineering, where we found it is possible to alter behavioral outputs by 

simply changing the nature of synaptic activity.  We also discovered an 

invaluable gain-of-function mutant that may lead to the discovery of treatments 

for calcium channelopathies, as well as further the understanding of calcium 

channel physiology and neural circuit function.  Together, the work presented in 

this thesis has furthered the understanding of how neural circuit activity 

orchestrates complex behaviors and provides motivation for the advancement of 

the study of the interactions between monoamines and ion channels in behavior.  
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Figure V-1 

 

 

Phases of the C. elegans escape response.  

Shown are still frames taken during the C. elegans escape response illustrating 
the four phases of the behavior.  During normal locomotion the animal moves 
forward and displays exploratory head movements (I), after the animal is touched 
in the anterior portion of the body the animal executes a reversal during which 
these head movements are suppressed (II), after a long reversal the animal 
makes a deep ventral head bend (III) and slides its head along the ventral side of 
the body in and “omega turn” (IV) to reorient its locomotion trajectory in the 
opposite direction of the point of stimulus.  It is at this point the animal moves 
forward and exploratory head movements are resumed (I’).    
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Figure V-2 

 

C. elegans caught by a constricting ring of a nematophagous fungus.  

Scanning electron micrograph of C. elegans L2 larvae caught in the constricting 
rings of the nematode trapping fungi, Drechslerella doedycoides. Image courtesy 
of Sean M. Maguire.  
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APPENDIX I 

 

Cloning and Characterization of Orphan Cys-Loop Ligand Gated Chloride 
Channels (LGCCs) In C. elegans 

 

 

 

 

 

 

 

 

The work represented in this appendix is the preliminary data for a project which 
aims to deorphanize a group of predicted C. elegans ligand-gated chloride 
channels.  I generated all the reagents including all constructs for C. elegans and 
Xenopus oocyte expression as well as the transgenic animals.   
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Introduction and Results 

Cys-loop ligand gated ion channels (LGICs) play a major role in synaptic 

transmission, as activation of these channels directly alters excitability of neurons 

and can lead to excitation or inhibition of neural circuits.  Like the mammalian 

genome, the C. elegans genome contains a large family of Cys-loop LGIC genes 

(Jones and Sattelle, 2008). Work from our laboratory and others has led to the 

identification of a novel class of Cys- loop ligand-gated chloride channels (LGCC) 

activated by biogenic amines (Figure AI-1). The Cys-loop ligand gated ion 

channel (LGIC) family consists of a group of neurotransmitter receptor subunits, 

such as the nicotinic acetylcholine (nAchR), -amniobutyric acid (GABA), glycine, 

and serotonin (5HT3a) receptors. Each subunit contains four transmembrane 

domains (M1-M4), an extracellular N-terminus and a large intracellular loop that 

connects transmembrane domains M3 and M4 (Betz, 1990).   

Three LGCCs in C.elegans, MOD-1, LGC-53, and LGC-55 which are 

activated by the biogenic amines serotonin, dopamine, and tyramine 

respectively, have been elecrophsysologically characterized (Ranganathan et al., 

2000; Ringstad et al., 2009; Pirri et al., 2009).  MOD-1, LGC-53, and LGC-55 

define a novel class of ligand-gated chloride channels (LGCC) that are gated by 

biogenic amines (Figure AI-1). There are eight closely related members of the 

novel LGCC group of subunits, five of which are uncharacterized, lgc-50, -51, -

52, -54 and ggr-3.  Each of these subunits is likely to form anion selective 

channels given the presence of a PAR motif in the cytoplasmic loop preceding 
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the M2 domain, which has been shown to play a major role in anion selectivity 

(Karlin and Akabas, 1995).   

Using comparative genomic sequence alignments we found that the 

annotated gene finder predictions of the C. elegans sequences for three of these 

genes (lgc-50, lgc-52 and lgc-54) were incorrect and identified the correct the 5’ 

ends of the five orphan LGCCs. We performed RT-PCR based on these 

predictions, and isolated and cloned cDNA for the remaining five LGCC subunits 

(Table AI-1).  To further characterize these genes, we generated fluorescent 

reporters to analyze the expression patterns for each of these putative chloride 

channels.  Thus far, we have made transgenic animals that express a reporter for 

each of the following genes: lgc-50, -51, 54 (Table AI-1).   We found that lgc-50 is 

expressed in a single pair of bilaterally symmetric neurons in the head, as well as 

in head and neck muscle.  lgc-51 is expressed in at least five pairs of neurons in 

the head as well as a pair in the tail.  lgc-54 is expressed in six pairs of neurons 

in the head of which we identified the RIC, RMED and RMEV (Figure AI-2).  

These results suggest that these LGCCs encode functional subunits that are 

expressed by the worm.  Additionally, their expression in neurons indicates that 

they may a play a role in modulating C. elegans behavior.  

To determine the ligands that activate these LGCCs we expressed each 

subunit individually in Xenopus oocytes for two-electrode voltage clamp (TEVC) 

electrophysiology.  We found that bath application of dopamine, serotonin, 
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tyramine, octopamine or histamine at concentrations up to 100 µm did not 

produce detectable currents.  Since, Xenopus oocyte TEVC is a heterologous 

expression system we also ectopically expressed each subunit in all C. elegans 

muscle cells, to mimic a more native environment.  We exposed transgenic 

animals that expressed lgc-50, -51, -52, -54 or ggr-3 in all muscle cells to 

exogenous biogenic amines and found that the animals behaved similarly to wild 

type animals in the presence of dopamine, serotonin, tyramine, or octopamine 

(data not shown).   

Materials and Methods 

Cloning of C. elegans LGCCs 

Comparative genomic sequence alignments of C. elegans LGCCs were 

carried out using MacVector software (Accelrys).  Based on these alignments 

and gene finder predictions the following primers were designed to amplify 

LGCCs from first strand cDNA pools: 

lgc-50: 5’ ATGCGATTTCTTCTTGTTCTTC,  3’ 

TTACATGGGACGATCCATTTTC; lgc-51: 5’ ATGTGCTTATTCCATTTCTTAGC; 

3’ TTATTGAGAAATTCGTGAACAAG; lgc-52: 5’ 

ATGATCTACAGTATACAGGTGAG, 3’ TCAAGTGTAGACAGGATTCATG; lgc-

54: 5’ ATGACAAACGTTACGGGATTC, 3’ TCAGGATGGTGGCGTCATTTG; ggr-

3: 5’ ATGCTACACGATGTCATCTATATG, 3’ 

CATGTTTGCAGCTTTTAATGGTTAG 
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The oligo-dT primed cDNA pool was generated from whole worm RNA using the 

Super-Script (II) First Strand Synthesis System (Invitrogen).  Isolated cDNAs 

were then sublcloned into pGEM-T using the pGEM-T Easy Vector System 

(Promega).    

All transgenic strains were obtained by microinjection of plasmid DNA into 

the germline of lin-15(n765s).  At least three independent transgenic lines were 

obtained and data are from a single representative line.  GFP reporter constructs 

were generated by cloning a genomic fragment containing 2 kb upstream, the 

first intron, first exon and part of the second exon relative to the predicted start 

site for each lgc-50, -51, -52, -53, -54 and ggr-3 in the GFP expression vector, 

pPD95.70.  Constructs for muscle specific expression were generated by cloning 

lgc-50, -51, -52, -53, -54 or ggr-3 cDNA into pPD95.86 behind the myo-3 

promoter.  GFP and myo-3 constructs were microinjected along with the lin-15ts 

rescuing plasmid pL15EK at 80 ng/µl. 

Cell Identification of plgc-54::GFP 

 Identifications of cells that expressed plgc-54::GFP reporter were based 

on cell body position, axon morphology and coexpression with previously 

described cell specific mCherry markers.  Strains containing the following fusion 

genes were used to confirm cell identification: RIC: zfIs25, ptdc-1::mCherry, 

RMED/V: ufIs34, punc-47::mCherry 
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Electrophysiology of C. elegans LGCCs 

Full length cDNA including 5’ and 3’ UTRs for each LGCC was cloned into 

the vector pSGEM or pTLNII for oocyte expression.  Capped RNA was prepared 

the using T7 or SP6 polymerase from Promega. Stage V and VI oocytes from X. 

laevis were injected with ~50 ng of cRNA. Two electrode voltage clamp 

experiments were performed 2-3 days post injection at room temperature (22-

24°C). The standard bath solution for recording was ND96: 96 mM NaCl, 2 mM 

KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES. Oocytes were voltage clamped 

at -60 mV and were subjected to a 10 second application of each 

neurotransmitter (100 µM, in ND96) with 2-3 minute washes between each 

application.  

Discussion and Future Directions 

Despite extensive study, how biogenic amines regulate outputs of neural 

networks to control behavior is still poorly understood. Biogenic amines are 

implicated in a large variety of neurological disorders including, substance abuse, 

depression, schizophrenia and migraine.  Their signaling pathways have been 

the focus for development of treatments for these disorders. Better 

understanding of the functional roles of these channels will undoubtedly shed 

new light on how biogenic amines modulate neural circuits and behavior.  Our 

work and that of others defined a new class of ligand-gated chloride channels 

(LGCCs) activated by biogenic amines, suggesting there are new mechanisms 



183 
 

for biogenic amine signaling in the nervous system (Ranganathan et al., 2000; 

Ringstad et al., 2009; Pirri et al., 2009; Jones and Sattelle, 2008).  

Our phylogenetic comparison suggests there are eight closely related 

members of this group of LGCCs, five of which ligand specificity is unknown.  We 

have cloned these genes and determined that at least three of them, lgc-50, -51, 

and -54, are expressed in the C. elegans nervous system (Figure AI-2).  

However, expression of these subunits individually in either the heterologous 

Xenopus expression system or endogenously in C. elegans muscle did not 

produce a functional channel that was activated by application of the biogenic 

amines dopamine, serotonin, tyramine, octopamine or histamine.  Although 

based on previous experiments (Ranganathan et al., 2000; Ringstad et al., 2009; 

Pirri et al., 2009) we expected the putative LGCCs described here to also act as 

homomeric channels.  However, it is possible that these subunits coassemble to 

form heteromeric complexes.  Additionally, it is possible that that these channels 

interact with other compounds.  In addition to the biogenic amines tested here, 

the responses to the classical neurotransmitters, acetylcholine, GABA and 

glycine as well as biosynthetic intermediates for biogenic amine synthesis should 

be determined. 

To determine how LGCC subunits modulate behavioral outputs, it will be 

important to analyze the behaviors of mutant animals.   We have obtained 

deletion mutants for all the remaining LGCCs through the C. elegans Knockout 
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Consortium and National Bioresource Project and each has been extensively 

backcrossed.  In combination with the expression profiles, analysis of 

locomotory, egg laying, feeding, and defecation behaviors in these mutants might 

provide information on the neural circuits that are modulated by these LGCCs. 

Application of exogenous biogenic amines can reveal distinct phenotypes, and 

provide information on the type of behaviors being modulated by a particular 

receptor.  These pharmacological assays can elicit typical behaviors, for example 

exogenous serotonin stimulates egg laying, pharyngeal pumping and inhibits 

locomotion.  Additionally, there are mutations we can employ which can change 

the kinetics or reverse the polarity of the channel that could help identify the 

function of the LGCCs in the nervous system.  These genetic and 

pharmacological studies may identify the effects of a single receptor on behavior 

and define new roles for biogenic amines and their corresponding ionotropic 

receptors in the regulation of C. elegans behavior.      
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Figure AI-1 

 

 

A novel class of cys-loop ligand gated chloride channels (LGCC).  

Phylogenetic tree of LGC-55 and various ligand-gated ion channels. Shown are 
predicted C. elegans LGICs, including the 5HT receptor MOD-1, glutamate 
receptor AVR-15, GABA receptor UNC-49B, the Brugia malayi predicted protein 
EDP32880, and the human GABAA1, nAchR7 and 5HT3a.  
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Table AI-1 

Cloned 
cDNAs 

Cloned 
promoters 

Xenopus 
expression 

vectors 
GFP 

transgenics 
myo-3 

transgenics 
lgc-50 lgc-50 lgc-50 lgc-50 lgc-50 
lgc-51 lgc-51 lgc-51 lgc-51 lgc-51 
lgc-52 lgc-52 lgc-52  lgc-52 
lgc-54 
ggr-3 

lgc-54 
ggr-3 

lgc-54 
ggr-3 

lgc-54 
 

lgc-54 
ggr-3 

 

 

LGCC reagents generated. 

Each LGCC cDNA was isolated from oligo-dT primed cDNA pools and subcloned 
into the pGEM-T vector.  Additionally each cDNA was subcloned into both 
pSGEM and pTLNII vectors for expression in Xenopus oocytes as well as behind 
the myo-3 promoter for expression in all muscle cells.  The genomic fragment 
containing each LGCC promoter was cloned into a GFP expression vector.  The 
last two columns indicate which stable transgenic lines were produced for either 
GFP reporter or muscle cell expression.  Stable lines expressing plgc-52::GFP, 
pggr-3::GFP, myo-3::LGC-51, and myo-3::LGC-52 still need to be generated as 
the time of this thesis publication.  
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Figure AI-2 

 

Expression Pattern of LGCCs.  

Adult animals showing expression of fluorescent transcriptions reporters. lgc-50 
is expressed in a single pair of neurons in the head (top) as well as head and 
neck muscles (bottom).  lgc-51 is expressed in at least five pairs of neurons in 
the head (top) and a single neuron in the tail (bottom). lgc-54 is expressed in six 
pairs of neurons in the head, of which we have identified the RIC, REMV and 
RMED.  Anterior is to the left and ventral is down in all images. Muscle cells and 
identified neurons are indicated, open triangles indicate unidentified neurons. 
Scale bar, 10 µm. 
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APPENDIX II 

 

Evolution of Nematode Escape Behavior  

 

 

 

 

The work represented in this Appendix is the preliminary data for a project which 
aims to explore the evolutionary relationships of nematode escape responses.  I 
performed all the behavioral analysis and isolation of wild soil nematodes and 
fungus described in this appendix. The introduction highlighting C. elegans 
predator-prey relationship is taken from the peer-reviewed Review article The 
Neruoethology of C. elegans escape, written by myself and Dr. Mark Alkema.  
This review was published in Current Opinion in Neurobiology 22(2) in April, 
2012. The immunostaining in figure AII-3 was performed by Jasmim Abraham 
and Sean Maguire.  
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Introduction, Results and Discussion 

Foraging can expose C. elegans to encounters with its natural predators.  

Nematophagous mites (Karagoz, M., et al., 2007), springtails (Read, D., et al., 

2006), water bears (Hohnberg and Traunspurger, 2009)  and other predacious 

nematodes like Pristionchus pacificus (Bento, G., et al., 2010) can actively kill 

and eat nematodes. Nematodes face another lurking foe in their habitat: 

predacious fungi. These carnivorous fungi, from the family of Orbiliales 

(Ascomycota), possess hyphal structures to trap nematodes in the soil and 

decaying organic debris (Duddington, 1951; Thorn and Barron, 1984). One 

method of capturing nematodes employs adhesive branches, knobs or hyphal 

nets that stick to, and entangle nematodes. By far the most sophisticated 

trapping mechanism is the constricting ring. When a worm crawls through the 

ring gentle friction induces the ring to rapidly inflate and lasso its prey. 

Predacious fungi form few, if any traps in the absence if nematodes. Trap 

formation is induced by the presence of nematodes, including C. elegans (Xie, et 

al., 2010), and stimulates the growth of a variety of hyphal traps. Once a 

nematode is caught by a hyphal trap, death does not come quickly. A prolonged 

struggle usually only ends when fungal hyphae perforate the cuticle, and absorb 

the contents of the nematode.  

Work from our lab has shown that the escape response elicited by gentle 

anterior touch is critical for the worm’s survival in the presence of these trap 

forming fungi (Maguire, et al., 2011).  Our studies of predator-prey relationships 
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between C. elegans and the constricting ring fungus Drechslerella doedycoides 

showed that the fungus is extremely efficient in entrapping the early larval 

stages.  Wild-type animals survive most encounters with the hyphal noose, while 

mutants that fail to sense touch or that cannot reverse, are trapped more 

frequently. Moreover, lgc-55 mutants, which fail to suppress foraging head 

movements and execute a long reversal in response to touch, are caught more 

often than the wild type (Maguire, et al. 2011). We showed that coordination of 

these motor programs in the C. elegans escape response is vitally important to 

evade fungal predation. 

 To determine if this escape response was unique to C. elegans or if it was 

a behavior displayed by other soil nematoes we examined the escape responses 

of other rhabditid nematode species.  We found that all rhabditid species tested 

responded robustly to anterior touch (Figure AII-1).  Soil nematodes from the 

Eurhabditis clade, close relatives of C. elegans, display a similar escape 

response, suppressing head oscillations in response to anterior touch (Figure AII-

2).  Interestingly, several species from the Pleiorhabditis clade, M. 

longespiculosa, T. palmarum, and P. strongyloides, fail to coordinate head and 

body movements in their escape response (Figure AII-2).  Furthermore, although 

these animals failed to suppress head oscillations in response to touch, 

immunohistochemistry experiments show they have cells that express TDC-1, 

suggesting they release either octopamine or tyramine (Figure AII-3 and data not 

shown, personal communication, J. Abraham, and M. Alkema).  Further 
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experiments should be done to determine if these cells are tyraminergic as, it 

would be interesting to determine how these animals are using tyramine in a 

manner that is unique compared to other rhabditid nematodes.  These 

Pleiorhabditis species do not exclusively inhabit the soil and are mostly found in 

parasitic association with insects or mammals.  This may indicate that the touch-

induced suppression of head movements has evolved from selective pressures 

imposed by predacious fungi.   

Nematodes and predacious fungi that use rings as trapping devices have 

been found in 100 million year old amber indicating an ancient predator-prey 

relationship (Schmidt, et al., 2007).  To determine if fungi that employ ring traps 

still inhabit the same soils as nematodes today, we isolated nematodes and fungi 

that were found in soil samples from the local environment.  We took soil from 

locations in Massachusetts and Rhode Island that were high in decaying material 

such as, leaf litter and rotting fruits.  From our samples, we isolated at least four 

different species of nematodes and three different species of fungus, including 

fungi that used trapping rings to capture nematodes (Figure AII-4).  These results 

suggest that more extensive field studies to analyze the ecology of predatory 

fungi and cohabitating nematodes are possible.  These studies will be critical to 

determine the dynamics of this unique predator-prey relationship. The phylogeny 

of predacious fungi and morphology of these trapping devices suggest that 

constricting rings have evolved from non-constricting rings (Li, et al., 2005). This 

raises the possibility that constricting rings and the suppression of head 
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movements are the result of an evolutionary arms race. Since we know the 

molecular and neuronal basis of the escape response in C. elegans, comparative 

studies with other nematodes should allow us to find the selection pressures that 

shape behavioral adaptation.  

Materials and Methods 

Nematode Maintenance 

Nematodes of the Eurhabditis, Diplogastrids, and Pleiorhabditis clades 

were maintained at room temperature (19-21ºC) on nematode grow medium 

(NGM) and fed the E.coli strain OP50.  T. palmarum was maintained on NGM 

made with 2% agar to prevent burrowing. P. redivivus was grown at room 

temperature room temperature (19-21ºC), in a 60% apple cider vinegar solution 

supplemented with a slice of apple. 

Behavioral Assays 

All behavioral assays were done at room temperature (19-21ºC) with 

young adult animals. Response to anterior touch was quantified by touching each 

animal in the anterior portion of the body 5 times with an ISI of approximately 5 

seconds. A positive response was recorded if the animal stopped movement or 

accelerated in either direction in response to the touch.  At least 30 animals of 

each species were scored, and shown is the mean % of positive responses.  
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Suppression of head movements was scored as described in Alkema et al., 

2005. At least 50 animals of each species were scored.  

Isolation of Wild Nematodes and Fungi 

Soil samples were collected decaying debris or compost from Lincoln, 

Rhode Island and Shrewsbury, Princeton, and Bolton, Massachusetts. The 

samples were kept in containers at room temperature (19-21ºC) for no longer 

than 24 hours.  To isolate nematodes, soil was sparsely spread on NGM plates 

seeded with OP50 and moistened with M9 buffer.  The samples were incubated 

covered at room temperature (19-21ºC) for 1-3 days, in order to isolate fertile 

adult females or hermaphrodites.  Animals were picked singly and those that 

could successfully produce offspring were propagated.  Individual species were 

identified by morphological features and at least one isolate of each species 

recovered was kept.  To isolate fungi, soil was sparsely spread on 1.7% water 

agar plates and moistened with M9 buffer.  The samples were incubated at 20ºC 

for 3-5 days to allow fungi spores to germinate.  Individual species of fungi were 

identified by morphological features of spores.  To produce pure cultures spores 

from each identifiable species were picked to separate pates.  To test if fungi 

could form traps, starved fungus was plated on water agar and allowed to grow 

for 7 days.  Once the plate was filled with hyphae, nematode suspension was 

added and allowed to incubate at 20ºC for 24 hours.   
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Figure AII-1

 

 

Rahbditid nematodes respond to anterior touch. 

Shown is the mean response to five gentle touches to the anterior portion of the 
body of each species of rabditid nematodes for at least 30 or more animals.  All 
animals respond by either stopping or attempting to escape from the point of 
stimulus.  
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Figure AII-2 

 

The Pleiorhabditis clade fails to suppress head oscillations during the 
escape response.  

Left: Phylogenetic tree of Rhabditid nematodes. Highlighted in red are the 
species of the Pleiorhabditis clade that fail to suppress head movements in 
response to anterior touch. Panagrellus redivivus is most distantly related to C. 
elegans.  

Right: Suppression of head oscillations in response to anterior touch was scored 
during the reversal response of at least 30 or more animals of each species. 
Error bars represent the SEM. Statistical difference from C. elegans, *p<0.01, 
**p<0.001, ***p<0.0001, two-tailed Student’s t test.  
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Figure AII-3 

 

 

The Pleiorhabditis species, Mesorhabditis longespiculosa, has cells that 
express TDC-1. 

Shown is an image of whole mount staining of Mesorhabditis longespiculosa with 
TDC-1 antibodies. TDC-1 is expressed in at least three neurons which send 
projections to a structure similar to the C. elegans nerve ring. Image courtesy of 
Jasmin Abraham.    
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Figure AII-4 
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Figure AII-4. 

Constricting ring fungi can be isolated from soil samples. 

Images of constricting ring fungi and nematodes isolated from local soil samples.  
This illustrates the active predator-prey relationship between nematodes and 
fungi in the soil environment.  
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