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ABSTRACT 
 
 

T cells play a central role in cellular-mediated immunity and must become 

activated to participate as effector cells in the immune response. The activation process is 

highly intricate and involves stimulation of a number of downstream signaling pathways 

enabling T cells to proliferate and produce cytokines that are vital for proper effector 

function. This increase in protein production and protein folding activity adds to the 

normal physiological strain on cellular machinery. One cellular compartment that has 

generated a mechanism to mitigate the stress induced by increased protein production is 

the endoplasmic reticulum (ER).  

In general, an increase in cellular production of proteins that overwhelms a cell’s 

protein folding capability can alter ER homeostasis and lead to ER stress. To counteract 

this stress, an adaptive cellular mechanism known as the ER stress response (ERSR) is 

initiated. The ERSR allows a cell to cope with normal physiological stress within the ER 

caused by increased protein translation. In this dissertation, we show that in vitro and in 

vivo T cell activation involving T cell receptor (TCR) ligation in the presence of 

costimulation initiates the physiological ERSR. Interestingly, the ERSR was also 

activated in T cells exposed only to TCR ligation, a treatment known to induce the ‘non-

responsive’ states of anergy and tolerance. We further identified a key component of the 

downstream TCR signaling pathway, protein kinase C (PKC), as an initiator of 

physiological ERSR signaling, thus revealing a previously unknown role for this 

serine/threonine protein kinase in T cells. Therefore, induction of the physiological ERSR 
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through PKC signaling may be an important ‘preparatory’ mechanism initiated during the 

early activation phase of T cells. 

 If ER stress is persistent and ER homeostasis is not reestablished, physiological 

ER stress becomes pathological and initiates cellular death pathways through ER stress-

induced apoptotic signaling. We further present data demonstrating that absence of 

functional Gimap5, a putative GTPase implicated to play a role in TCR signaling and 

maintenance of overall T cell homeostasis, leads to pathological ER stress and apoptosis. 

Using the BioBreeding diabetes-prone (BBDP) rat, a model for type 1 diabetes (T1D), we 

link pathological ER stress and ER stress-induced apoptotic signaling to the observed T 

cell lymphopenic phenotype of the animal. By depleting the ER stress apoptotic factor 

CHOP with siRNA, we were able to protect Gimap5-/- BBDP rat T cells from ER stress-

induced death. These findings indicate a direct relationship between Gimap5 and 

maintenance of ER homeostasis for T cell survival.    

Overall, our findings suggest that the ERSR is activated by physiological and 

pathological conditions that disrupt T cell homeostasis. TCR signaling that leads to PKC 

activation initiates a physiological ERSR, perhaps in preparation for a T cell response to 

antigen. In addition, we also describe an example of pathological ERSR induction in T 

cells. Namely, we report that the absence of functional Gimap5 protein in T cells causes 

CHOP-dependent ER stress-induced apoptosis, perhaps initiated by deregulation of TCR 

signaling. This indicates a dual role for TCR signaling and regulation in the initiation of 

both the physiological and pathological ERSR. Future research that provides insights into 

the molecular mechanisms that govern ERSR induction in TCR signaling and regulation 
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may lead to development of therapeutic modalities for treatment of immune-mediated 

diseases such as T1D.     
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CHAPTER I: INTRODUCTION TO ENDOPLASMIC RETICULUM STRESS 
 

Overview of Endoplasmic Reticulum Stress 

 The endoplasmic reticulum (ER) is a multifunctional organelle which plays a vital 

role in the regulation of numerous cellular processes. The ER, which functions as the 

central processing plant for the synthesis, folding, and assembly of secretory and 

transmembrane proteins (1-3), also participates in calcium (Ca2+) signaling, vesicle 

trafficking, drug metabolism, and lipid biogenesis (4-6). As the main component for 

protein processing within a cell, the ER has evolved numerous signaling pathways that 

monitor its protein folding capacity to ensure these pathways do not become 

overwhelmed (3). However, disturbances to normal cellular functioning and homeostatic 

conditions can interfere with the responsibilities of the ER and cause “stress” to the 

organelle. These perturbations that disrupt normal ER functioning and lead to ER stress 

include accumulations of unfolded or misfolded proteins, Ca2+ fluxes across the ER 

membrane, glucose depletion, and significant changes to the redox or ionic potential 

within the lumen of the ER (5-8). To restore ER homeostasis and alleviate ER stress, 

eukaryotic cells trigger an adaptive cellular mechanism known as the ER stress response 

(ERSR) (5,6).              

 

Components of ER Stress Response Signaling 

The ERSR was initially discovered in the budding yeast Saccharomyces 

cerevisiae where researchers uncovered a role for this signaling pathway in the 

maintenance and regulation of numerous secretory pathways (5,9). Within mammals, the 
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general features of the ERSR discovered in yeast are maintained, but function in a more 

complex manner and also include the responsibilities of protein translational control and 

programmed cellular death pathways (9,10). Component programs of the mammalian 

ERSR include: 1) transcriptional activation of ERSR-induced genes, 2) general 

attenuation of protein translation, 3) ER-associated degradation, and 4) ER stress-induced 

apoptosis. Coordination of the multifaceted ERSR relies upon the precise regulation of 

transducer molecules that are responsible for carrying out the initiation signals necessary 

for orchestration of the multiple complex programs initiated by ERSR signaling (11). The 

three major ERSR transducers responsible for activation of the ERSR include activating 

transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1), and PKR-like ER 

kinase (PERK) (12). 

 

ATF6 and Transcriptional Induction of ERSR-induced genes 

The constitutively expressed ATF6 is localized to the ER membrane of all cells 

and remains bound to glucose-regulated protein 78 (GRP78), an ER-resident molecular 

chaperone which functions as the central regulator of the ERSR (11,13). Upon conditions 

that cause ER stress, GRP78 releases from ATF6, unveiling a Golgi complex localization 

signal. This allows the 90 kDa ATF6 molecule to migrate to the Golgi complex where it 

is proteolytically cleaved by site-1-protease (S1P) and site-2-protease (S2P), thus 

generating a 50 kDa nuclear form of ATF6, known as pATF6(N) (11,14,15). This nuclear 

form of ATF6 is a basic leucine zipper (bZIP) transcription factor that shuttles to the 
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FIGURE 1 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ATF6 activation by the ERSR results in transcription of ERSR-induced 

genes.  

The release of ATF6 from GRP78 unveils a Golgi complex localization signal (GLS) on 

ATF6. This allows ATF6 to shuttle to the Golgi complex where the protein undergoes 

proteolytic cleavage by S1P and S2P. This cleavage results in a nuclear form of ATF6, 

which as a transcription factor, travels to the nucleus and binds to the ERSR element in 

the promoter of ER chaperone genes (adapted from (16)).    
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nucleus and binds to the ERSR element within the promoter sequence of target genes 

thereby driving their expression (Figure 1) (11,17). In this manner, activation of ERSR 

signaling is capable of utilizing pre-existing ATF6 protein for the transcription of genes 

regulated by the ERSR element without synthesis of de novo proteins (11). Many of the 

target genes for pATF6(N) encode ER chaperone proteins, including GRP78, glucose-

regulated protein 94 (GRP94), protein disulfide isomerase (PDI), and ER protein 72 

(ERp72). Chaperones reside in the lumen of the ER and participate in protein folding 

activities as well as quality control mechanisms that ensure retention of misfolded or 

unfolded proteins to the ER (18,19). Upon activation of the ERSR, expression of ER 

chaperones is increased to enhance the protein folding capacity of the ER in order to 

alleviate the “stress” caused by an accumulation of unfolded proteins (Figure 2).    

 

Amplification of the ERSR by IRE1 Signaling 

In cells that are not undergoing ER stress, the second main ERSR transducer, 

IRE1, remains bound to GRP78 in an unphosphorylated and monomeric state (20). IRE1 

is an ER transmembrane protein that contains both serine-threonine kinase and 

endoribonuclease domains in it cytoplasmic region (11,21). When ER stress occurs, 

GRP78 releases from IRE1’s lumenal domain allowing IRE1 to activate via 

oligomerization and trans-autophosphorylation (20). Activated IRE1 through its 

endoribonuclease activity performs a site-specific cleavage on its substrate molecule, X-

box binding protein 1 (XBP1) mRNA, thus removing a 26-nucleotide intron (11,22). 

Spliced XBP1 mRNA is ligated by an unidentified RNA ligase and allows for the 
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FIGURE 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ERSR signaling results in increased ER chaperone expression. 

An increase in protein production into the ER results in signaling from the ER to the 

nucleus leading to enhanced transcription of ER chaperones. The ER chaperones are 

translated into the ER causing an increase in ER chaperone proteins which enhances the 

protein folding capacity of the ER.    
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formation of the mature XBP1 mRNA. Mature XBP1 mRNA encodes for a bZIP 

transcription factor, pXBP1(S), which travels to the nucleus and binds to the ERSR 

element of target genes, as well as to another cis-acting element, known as the unfolded 

protein response (UPR) element (Figure 3) (22). Through this complex mechanism, 

activation of IRE1 is capable of increasing the amount of ER chaperones and further 

amplifying the ERSR to assist in the return of the cell to homeostasis.      

 

Protein Translational Attenuation by PERK 

Although the three ERSR transducer molecules are activated simultaneously 

when ER stress conditions begin, the third ERSR transducer molecule, PERK, is thought 

to handle the immediate response (23). PERK is a transmembrane protein that is activated 

when GRP78 dissociates from its lumenal domain (24). PERK activation is comparable 

to the activation process of IRE1, in that the loss of GRP78 allows for PERK to 

oligomerize and trans-autophosphorylate (6,24). Activated PERK phosphorylates the α 

subunit of eukaryotic translation initiation factor 2 (eIF2) on serine 51 which causes 

attenuation of general protein translation through decreased recognition of the AUG 

initiation codon (6,12,15). Therefore, through a translational control mechanism, PERK 

decreases the workload of the ER by decreasing protein synthesis (25). 

Paradoxically, the translation of certain mRNAs occurs more efficiently in the 

presence of phosphorylated eIF2α (15,26). Because a global attenuation of protein 

translation would disrupt the synthesis of ERSR-induced gene products, it is important 

for the cell to maintain regulatory networks to balance the opposing effects of ERSR
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FIGURE 3 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: IRE1 signaling amplifies the ERSR.  

When ER stress occurs, GRP78 releases IRE1 which oligomerizes and trans-

autophosphorylates to become activated. The activated form of IRE1 cleaves XBP1 

mRNA allowing for formation of a mature form of XBP1 mRNA which encodes a 

transcription factor. This transcription factor enters into the nucleus and binds to elements 

within the promoter sequence of ERSR and UPR-regulated genes (adapted from (11)). 
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activation (11,25). One such mRNA that is preferentially translated by phosphorylated 

eIF2α encodes for activating transcription factor 4 (ATF4) (12,26). Upon PERK 

activation, ATF4 translation increases leading to the induction of growth-arrest DNA-

damage gene 34 (GADD34). GADD34, through an association with protein phosphatase 

1 (PP1), acts to dephosphorylate eIF2α, thus alleviating the repression of protein 

translation (11,27,28). If persistent ER stress exists within the cell, ATF4 induces the 

expression of C/EBP-homologous protein (CHOP), a transcription factor involved in ER 

stress-induced apoptotic signaling (Figure 4) (24). Consequently, activation of PERK and 

its downstream signaling pathways enable the ERSR to affect processes necessary for 

determining cell survival (11).    

 

ER Stress-Induced Apoptosis 

Normally, stress within the ER triggers the ERSR in an attempt to return the cell 

to homeostasis (20,22). However, if ER stress persists and cellular homeostasis can not 

be restored, the ERSR can initiate cell death stimuli via ER stress-induced apoptotic 

signaling (5,29). Initiation of ER stress-induced apoptosis through ERSR signaling 

involves the transcriptional activation of the bZIP transcription factor chop (30). CHOP 

protein acts to repress the promoter of the bcl-2 gene, thus downregulating antiapoptotic 

Bcl-2 protein and rendering cells sensitive to the proapoptotic effects of BH3-only 

proteins (31,32). CHOP-/- mouse embryonic fibroblasts (MEFs) exhibit significantly 

lower cell death when faced with agents that perturb ER function (33). Furthermore, 

targeted disruption of the chop gene in the Akita mouse protected beta cells from
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FIGURE 4 
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Figure 4: PERK activation by the ERSR results in translational attenuation. 

The release of GRP78 from PERK following ERSR signaling allows for oligomerization 

and trans-autophosphorylation of the protein. Activated PERK phosphorylates eIF2α 

thereby effectively decreasing protein translation. However, certain mRNAs, such as atf4 

mRNA, are preferentially translated by phosphorylated eIF2α. ATF4 induces the 

expression of GADD34 and CHOP. GADD34 together with PP1 act to dephosphorylate 

eIF2α to relieve the cell of protein translational attenuation (adapted from (11)).     
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apoptosis normally caused by an accumulation of mutant insulin in the ER (34,35). These 

data suggest that CHOP acts as a regulatory protein in the initiation of ER stress-induced 

apoptosis. 

 

ERSR Signaling during Physiological Cellular Processes 

ERSR signaling may be initiated by pathological events, and has classically been 

associated with exposure to deleterious chemical stressors. Chemical agents such as 

tunicamycin (TM), an inhibitor of N-linked glycosylation (36), and thapsigargin (TG), an 

inhibitor of the ER Ca2+-ATPase (37), disrupt ER homeostasis and lead to ERSR 

signaling. More recently, ERSR signaling has also been shown to occur during numerous 

cellular processes. During muscle development, expression of GRP78 and CHOP is 

induced in both differentiating myoblasts and apoptotic cells, indicating a role for ERSR 

signaling during myoblast differentiation (38). Additionally, the differentiation of B 

lymphocytes into antibody-producing plasma cells involves a physiological ERSR to 

permit high levels of antibody production (11,39,40). Furthermore, ERSR signaling has 

been found to be essential for the proper functioning of hepatocytes and osteoblasts (23).  

 Recently, priming of CD4+ T cells with peptides in the context of major 

histocompatibility complex (MHC) molecules has been reported to utilize components of 

physiological ERSR signaling, including expression of stress response-induced genes 

(41). Investigations of pancreatic beta cells have also led to the discovery of the initiation 

of multiple components of ERSR signaling during their production and secretion of 

insulin (42). IRE1 signaling has been found to play several roles in maintaining ER 
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homeostasis and regulated insulin production in pancreatic beta cells (43,44). Thus, 

physiological ER stress appears to be an intrinsic cellular state that may be initiated by 

distinct activators involved in the precise regulation of cellular differentiation and 

function. 

The ERSR in Health and Disease 

 Misfolding of cellular proteins leads to ER stress and has been speculated as the 

cause of numerous conformational diseases, such as Parkinson’s disease and Alzheimer’s 

disease (3). Formation of protein aggregates, caused by an accumulation of unfolded or 

misfolded proteins, is thought to disrupt proteasome function, thereby inhibiting the ER-

associated degradation pathway. This malfunction of cellular machinery is thought to 

interfere with ERSR induction and has been implicated in the development of 

Parkinson’s disease (3,24,45). In patients with Alzheimer’s disease, the ERSR has been 

shown to be activated (46,47) and it is believed that its induction is due to an 

accumulation of amyloid beta-peptides that cause cerebral neuritic plaques (24). 

   The ERSR has also been implicated in the pathogenesis of type 1 and type 2 

diabetes (T2D) (48). Beta cells are highly susceptible to ER stress and disturbances in ER 

homeostasis have been shown to lead to ER stress-induced apoptotic signaling within 

these cells (34). Alternatively, ER stress may result in misfolding of insulin produced by 

the beta cell in such a way that the generation of “neo-autoantigens” occurs (44,49). In 

either case, both scenarios may initiate an autoimmune response and lead to the 

pathogenesis of type 1 diabetes (T1D). Additionally, ER stress has been implicated in 

insulin resistance development and over activation of ERSR signaling components may 
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contribute to the progression of T2D (8,48). Mice deficient in XBP1 develop peripheral 

insulin resistance and T2D (50); however, chemical chaperones that enhance the folding 

capacity of the ER normalize glycemic levels, restore insulin sensitivity, and enhance 

insulin action in tissues throughout the body (51). Therefore, understanding the 

relationship between ERSR activation and diabetes induction may lead to new 

therapeutic approaches capable of preventing the pathogenesis of this disease.     
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CHAPTER II: T CELL ACTIVATION AND SIGNALING 
 

Overview of T Cell Activation 

 T cells are a critical component of the adaptive immune response and participate 

in the removal of foreign pathogens from the body. Typically, two signals are required 

for a T cell to become fully activated. Signal one occurs when the T cell receptor (TCR) 

recognizes and binds to a peptide presented by a MHC molecule expressed on an antigen 

presenting cell (APC) (52,53). Signal two is generated by ligation of costimulatory 

molecules on the T cell and APC (54). If signal one occurs in the absence of signal two, T 

cells enter a state of antigen-specific tolerance or become ‘non-responsive’, a state often 

termed anergy (55,56).  

Alternatively, T cells can be activated in vitro by stimulating with a combination 

of phorbol 12-myristate 13-acetate (PMA) along with the Ca2+ ionophore, ionomycin (Io) 

(57,58). PMA specifically activates protein kinase C (PKC) upon entering the cell while 

Io acts as a Ca2+ channel regulator by raising the intracellular level of Ca2+ (57,58). 

Activation of T cells by signal one and signal two via surface mediated receptors or by 

direct stimulation with PMA and Io results in numerous downstream signals that activate 

pathways enabling T cells to proliferate and produce cytokines, such as interleukin-2 (IL-

2) (Figure 5) (59,60). Therefore, the process of T cell activation is a major determinant in 

T cell fate and together with cytokines, such as IL-2, drives T cell proliferation and 

differentiation programs (53). 
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FIGURE 5 
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Figure 5: Downstream components of TCR signaling. 

TCR recognition and ligation to a MHC-antigen complex in the presence of costimulation 

result in numerous downstream signaling events. Two of these signaling events, an influx 

of Ca2+ and activation of PKC, lead to activation of transcription factors necessary for 

production of the important cytokine, IL-2. Downstream TCR signaling events can be 

mimicked in vitro through treatment with PMA and Io.      
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Development of T cells in the Thymus 

 T cells develop in the bone marrow from a common lymphoid progenitor cell that 

travels from the bone marrow to the thymus (61). Upon entering the thymus, the 

progenitor cell proliferates and begins gene arrangement for production of γδ and αβ T 

cells (62). A common feature of T cell development is the assembly process of the TCR 

consisting of germline variable (V), diversity (D), and joining (J) gene segments. This 

process of V(D)J recombination results in random generation of a diverse and clonally 

distributed repertoire set of T cell antigen receptors, capable of recognizing a diverse 

array of antigenic patterns (63,64).    

 Production of a successful V(D)J recombination results in a pre-TCR that is 

required for CD4-CD8- thymocytes to proceed to the CD4+CD8+ double positive 

thymocyte stage. After thymocytes proceed to the double positive stage, subsequent 

developmental decisions are mediated by peptide-MHC complex ligands found on the 

stromal cells within the thymic milieu (65). These cellular interactions of receptors on 

thymocytes with peptide-MHC complexes cause thymocytes to undergo positive and 

negative selection to eliminate potentially self-reactive cells by apoptosis or cause 

differentiation into mature CD4+CD8- or CD4-CD8+ thymocytes (64,66). If a TCR 

interacts with peptide-MHC ligands with a low, but measurable affinity, the thymocyte 

will be “positively” selected; however, if there is no or too high of affinity during the 

interaction, death by neglect or “negative” selection will occur, respectively (65,67). A 

TCR that interacts with peptide-class II MHC complexes develops into a CD4+CD8- 
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thymocyte while a TCR that has a specificity for peptide-class I MHC complexes 

develops into a CD4-CD8+ thymocyte (67). 

 Positively selected thymocytes continue to travel throughout the thymus toward 

the centrally located medulla region (67). Consequently, the medulla contains few, single 

positive thymocytes with many characteristics of mature T cells. This population of cells 

includes single positive thymocytes that will leave the thymus, enter the bloodstream, and 

populate the secondary lymphoid tissues. The medulla also contains populations of 

mature T cells that participate in the elimination of any foreign antigens in the thymus 

(61). Although thymocytes undergo positive and negative selection, it is possible for cells 

to express a TCR with affinity for self-peptide-MHC complexes. If these cells escape the 

thymus and enter into the circulation, they pose a threat to the body through the capability 

of mounting a self-reactive immune response (67). Therefore, the body has developed 

tolerance mechanisms to render these potential self-reactive T cells unresponsive. 

 

T Cell Receptor Signal Transduction 

 For an antigen-specific immune response to begin, a TCR must recognize and 

bind to a peptide and MHC molecule on the surface of an APC (52,53). Upon ligation of 

the TCR with the MHC molecule, another protein interacts with the receptor complex to 

complete the signal transduction (68,69). The CD8 protein binds to epitopes that are part 

of MHC class I molecules and therefore participates in responses by cytotoxic T cells, 

while the CD4 protein present on the surface of helper T cells binds to epitopes presented 

exclusively by MHC class II molecules (69). Additionally, for complete activation to 
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occur, a second costimulatory signal is required to be delivered to the T cell. The most 

common molecules responsible for this secondary signal is the CD28 molecule on the T 

cell and the B7 ligand on the APC (70). If a T cell receives both signals, production of the 

potent growth factor cytokine IL-2 begins (71).     

After a T cell receives signaling through its TCR in the presence of costimulation, 

induction of protein tyrosine kinase (PTK) activity is initiated (72). PTK activation is 

mediated by Lck and Fyn, both Src kinases, as well as members of the Tec kinase family 

(72). PTK activity leads to numerous downstream signaling events, including an influx of 

intracellular Ca2+ and activation of Ras-mitogen-activated protein kinase (MAPK), 

nuclear factor-κB (NF-κB), and PKC (72,73). These pathways lead to expression of 

genes responsible for T cell proliferation and differentiation. 

Following PTK signaling, an influx of extracellular Ca2+ into the T cell occurs. 

For this biochemical event to happen, phospholipase Cγ (PLCγ) must be activated to 

cleave inner membrane phosphatidyl inositol-4,5 biphosphate (PIP2) into diacylglycerol 

(DAG) and inositol-1,4,5-trisphosphate (IP3) (74). IP3 leads to release of ER Ca2+ stores 

as well as influx of extracellular Ca2+, causing a sustained increased intracellular Ca2+ 

level, which activates a protein phosphatase known as calcineurin (CN). Calcineurin 

dephosphorylates the nuclear factor of activated T cells (NFAT), a transcription factor 

that travels into the nucleus and drives transcription of multiple genes, including IL-2 

(75).  
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Protein Kinase C Signaling 

The other product of PIP2 cleavage by PLCγ, DAG, activates the signaling 

molecule PKC (76). The PKC serine/threonine family contains multiple isoforms that in 

their inactive conformation localize to the cytoplasm (77). Signaling from upstream 

components activate PKC and cause its translocation to the plasma membrane (78). PKC 

phosphorylates proteins that inhibit NF-κB, thus targeting these inhibitory proteins for 

proteasome-mediated degradation. This process allows NF-κB to travel to the nucleus, 

where as a transcription factor it regulates expression of genes necessary for T cell 

proliferation and differentiation (79).        

Amongst the PKC isoforms, PKCθ has been extensively studied and shown to 

play an important role in numerous TCR downstream signaling pathways (80). Research 

indicates that Jurkat T cells receiving signaling through the TCR in the presence of 

costimulation specifically activates PKCθ and downstream NF-κB (80-82). Also, in vitro 

studies in PKCθ-deficient mice indicated T cell proliferation and IL-2 production was 

diminished in the absence of PKCθ (83). Therefore, PKCθ has been identified as an 

important component in the regulation of T cell survival and proliferation, in addition to 

IL-2 production.    

In addition to PKC and CN activation, TCR signaling leads to an accumulation of 

the active form of p21ras (Ras) (72). Activation of Ras protein is mediated by guanine-

nucleotide exchange factors (GEFs), which exchange GDP to GTP for activation of Ras 

(84). In turn, Ras activates the MAP kinase cascade including ERK, JNK, and the p38 

MAPK (72). This kinase cascade leads to production and nuclear localization of activator 
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protein-1 (AP-1), which is comprised of fos and jun constituents (85). AP-1 is a 

transcriptional regulator of the IL-2 gene and is capable of driving IL-2 protein 

expression (72). These signaling pathways are crucial for the activation of T cells so that 

they can participate as effector cells in an immune response. 

 

Tolerance Mechanisms 

 Within the immune system, the establishment of immunological tolerance 

involves two mechanisms, central and peripheral tolerance. Central tolerance is the term 

used for the intrathymic deletion of self-reactive T cells (86). The chief mechanisms 

utilized by central tolerance techniques involve clonal deletion or inactivation of self-

reactive T cells (87). Clonal deletion involves the triggering of apoptosis in T cell 

progenitors whose TCR has too high of an affinity for self-antigens presented on MHC 

molecules (88). The clonal deletion of potentially self-reactive T cells is a highly efficient 

process, but T cells that are capable of recognizing self-antigens do escape the thymus to 

the periphery and most individuals harbor a population of self-reactive T cells. However, 

pathogenesis of an autoimmune response is a rare incident, thus indicating the body has 

developed other means to keep self-reactive T cells in check (89). Peripheral tolerance is 

the term used to describe mechanisms within the periphery that inhibit the ability of self-

reactive T cells to mount an autoimmune response.  

 Peripheral tolerance is maintained through numerous mechanisms, including 

anergy, dominant immune suppression by regulatory T cells, extrathymic deletion of T 

cells, and immunological ignorance of self tissues (90). These tolerance mechanisms are 
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necessary because not all self-antigens are expressed in the thymus to cause clonal 

deletion (67). Anergy is a form of peripheral tolerance that causes self-reactive T cells to 

become unresponsive (56). This is accomplished when T cells receive activation signals 

in the absence of costimulation (91). These anergic T cells fail to produce IL-2 and 

become unresponsive to subsequent antigen stimulation, even in the presence of 

costimulation (85,91). The induction of anergy has been shown to be an active process 

that requires synthesis of new proteins because cycloheximide can block the anergic state 

(69,92).   

  Another form of peripheral tolerance is maintained through a specialized group 

of T cells that modulate the activity of self-reactive T cells (89). These specialized T 

cells, known as regulatory T cells (Tregs), suppress self-reactive T cells through an active 

mechanism. This mechanism is thought to function in a cell-cell contact manner, possibly 

requiring the transcription factor Foxp3, and cytokines such as IL-10 and TGF-β (93). 

Tregs have been shown to be a major factor for peripheral tolerance, as their depletion  

results in systemic autoimmunity (93).   

 A third form of peripheral tolerance that prevents autoimmune activity is the 

process of extrathymic deletion. This mechanism causes effector T cells to disappear 

through apoptosis after contact with their specific antigen (94). Disappearance of the T 

cells normally occurs in the presence of an abundance of antigens in the periphery 

following over stimulation of antigenic activation (95). A final mechanism of peripheral 

tolerance that inhibits self-reactive T cells is the ignorance of self tissues. There are 

numerous ways that this form of maintenance prevents T cells from becoming activated, 
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even in the presence of their cognate antigen. First, anatomic barriers that are limiting 

factors for T cell migration and activation maintain self-reactive T cells in an ignorant 

state. Secondly, receptors on naïve T cells trigger their homing to lymphoid organs, thus 

preventing the detection of certain self-antigens. Thirdly, class II MHC molecules and 

certain costimulatory molecules are not expressed on all tissues, thus preventing 

activation. Lastly, T cell mediated attacks on immune-privileged tissues is prevented 

from self-reactive responses by the use of inhibitory surface molecules and 

immunosuppressive cytokines (67). Overall, these central and peripheral tolerance 

mechanisms work in combination to prevent self-reactive immune responses from 

occurring in the body.         

 

Transplantation Tolerance 

 The principles of peripheral tolerance mechanisms underlie the foundation of 

techniques used to induce transplantation tolerance for the long term survival of foreign 

tissues. For complete T cell activation to occur, it has been established that a minimum of 

three signaling events are needed. First, the T cell must receive an initial signal through 

the TCR. This leads to upregulation of the cell surface molecule CD154 on the T cell 

which engages and maturates the APC through ligation of CD40. Signaling to the APC 

through CD40 leads to upregulation of costimulatory molecules on the APC that deliver 

the final activation signal to the T cell. Our laboratory has developed a two-step 

costimulation blockade involving donor specific transfusion, termed DST, and a brief 

course of anti-CD154 mAb which blocks CD40-CD154 interaction, thereby preventing 
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costimulatory molecule upregulation on the APC (96,97). This protocol causes deletion 

of alloreactive CD8+ T cells (98) and has been shown in vivo to induce tolerance and 

enhance long term allograft survival in mice, rats, and non-human primates (99-102).     

 

T Cell Receptor Signaling Immunotherapies 

 Besides developing strategies to disrupt T cell activation through inhibition of cell 

surface signaling between the T cell and APC, research is underway to develop 

immunotherapies based on interfering with specific downstream TCR signaling 

pathways. These novel immunotherapies can be developed for treatment of T cell 

mediated diseases, including allergic reactions, autoimmunity, malignancies, and 

transplant rejection (103). For example, targeting the TCR/CD3 complex through 

utilization of an anti-CD3 monoclonal antibody (mAb) has been used to deplete T cells 

and cause tolerization for the purpose of organ transplantation (103,104). Additionally, 

agents such as CTLA-4Ig, which are designed to block costimulatory receptors on the T 

cell from interacting with an APC, are successful in preventing allograft rejection and 

graft-versus-host disease, as well as delaying autoimmune responses (103). Downstream 

of the TCR and costimulatory molecules, disruption of Ca2+ signaling with the drug 

cyclosporin A, disrupts CN and inhibits NFAT translocation to the nucleus (105). This 

interferes with IL-2 production and proliferation by the T cell and is used as an 

immunosuppressive agent during organ and bone marrow transplantation (103). 

Therefore, targeting signaling pathways and components downstream of the TCR offers a 

promising means of modulating and regulating T cell function.     
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CHAPTER III:  GIMAP5 AND THE BIOBREEDING DIABETES-PRONE RAT 
 

Overview of Gimap5 

 The regulation of T cell survival has been linked to expression of Gimap5, a 

member of the GTPase of the immunity-associated protein family of genes (formerly 

known as IANs, immune-associated nucleotide-binding proteins) (106-108). Although 

the exact role for Gimap5 in the maintenance of T cell homeostasis remains unknown, 

research indicates Gimap5 regulates mitochondrial apoptotic signaling through 

interactions with members of the Bcl-2 family of proteins (106,109,110). Additionally, 

the localization of Gimap5 remains controversial, with localization linked to the 

mitochondria (111), as well as the ER, Golgi complex, and centrosome (112). More 

recently, Gimap5 was found to exclusively localize to the ER (113).   

 

The Function of GTPases 

 Gimap5 belongs to a family of genes that encode putative GTPases of unknown 

function in immune tissues (109). GTPases are GTP-binding proteins that function in 

numerous cellular activities, including transmission of messages across the plasma 

membrane to intracellular messaging systems, vesicle formation and fusion, and protein 

trafficking within the cell (114-116). GTP-binding proteins have been discovered in 

many intracellular organelles, including the ER, Golgi complex, and mitochondria (116). 

Gimap family members are characterized by a GTP-binding motif, known as the AIG1 

domain, and multiple coiled-coil motifs (110).     
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 GTP-binding proteins cycle through three conformational states as they bind and 

hydrolyze GTP: GTP-bound, empty, and GDP-bound (117). This occurs by conversion of 

the GTP-bound state through hydrolysis of GTP to the GDP-bound state utilizing GTPase 

activity (117-119). To reactivate the protein, the GDP is replaced by GTP in the inactive 

GDP-bound form, a switch mediated by guanine nucleotide exchange proteins (117,118). 

The GTP-bound form of the signaling protein is considered the active form of the protein 

because it is capable of activating effector enzymes, unlike the GDP-bound form (117).  

  

Identification of Gimap5 in Bcr/Abl Oncogene Transfected Cells 

 Gimap5 was first identified in Bcr/Abl-transformed hematopoietic precursor 32D 

cells (111). The Bcr/Abl oncogene is a fusion formed from a truncated breakpoint cluster 

region (Bcr) gene with the cellular homolog of the transforming gene from the Abelson 

murine leukemia virus, c-Abl (111). The protein product of this oncogene, Bcr/Abl, 

displays constitutive tyrosine kinase activity and is responsible for the activation of 

numerous signaling molecules (120-123). Additionally, the Bcr/Abl fusion protein is 

found in >95% of chronic myeloid leukemia (CML) cases and is capable of converting 

cell lines to a growth factor independent state (124,125).       

 Several mechanisms have been proposed to explain the role for Bcr/Abl in the 

accumulation of leukemic cells that leads to the pathogenesis of CML. Bcr/Abl has been 

linked to the inhibition of apoptosis and is also connected to the expression of 

antiapoptotic molecules, such as several members from the Bcl-2 family of proteins (126-

128). Also, the role of Bcr/Abl in several signaling pathways may contribute to its ability 
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to control proliferation and an ability to prevent apoptosis (111). It has been determined 

that the tyrosine kinase activity is essential for Bcr/Abl to maintain its antiapoptotic 

abilities (129). 

 

The Gimap Family of Genes 

 The expression of the Gimap family of genes has been implicated in the 

regulation of T cell survival through modulation of TCR signaling and interactions with 

Bcl-2 family members (109,110). The Gimap family of genes are found in higher plant 

forms and vertebrates and tend to be encoded within short spanning sequences within the 

genome (109). Expression of the Gimap family in humans has been detected in multiple 

tissues, but remains highest in immune cells (109). However, in the mouse, the Gimap 

family is mainly expressed in T cells and B cells (109,130). Overall, the expression of the 

Gimap family of genes appears to be regulated during an immune response in 

lymphocytes (109,110). 

 Gimap4 (formerly known as Ian1) which shares homology to a pathogen-induced 

plant protein, AIG1, appears to lie downstream of TCR signaling (131). Gimap4, unlike 

most Gimap family members, lacks a putative transmembrane domain, and seems to 

localize predominantly to the cytoplasm (108,109). Gimap4 is primarily found in T cells, 

but its expression is turned on during thymic selection events (132). Despite its 

expression in T cells, Gimap4 does not appear to play a significant role in T cell 

development as Gimap4-deficient mice show normal T cell development (110). However, 

peripheral T cells from these mice exhibit a delay in apoptosis in response to different 
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cellular disturbances, indicating Gimap4 acts to accelerate T cell death (132). Thus, 

Gimap4 appears to function as a positive regulator of cell death. 

 Gimap1 (formerly known as Ian2, Iap38, and Imap38) expression is induced in 

spleens of mice that develop immunity to the experimental malarial parasite Plasmodium 

chabaudi (130,133). Gimap1 contains membrane anchoring hydrophobic regions at the 

C-terminus and localizes to the ER (110,134). In the thymus, Gimap1 expression is 

highest in double positive thymocytes, but is minimally expressed in peripheral T cells 

(110). Similar to other members of the Gimap family of genes, including Gimap9, 

Gimap6, Gimap7, and Gimap2, the exact molecular function remains unclear (110).  

 Both Gimap8 and Gimap3 have been shown to localize to the ER, Golgi complex, 

and mitochondria (111,135). Gimap8 appears to function as an apoptotic inhibitor while 

Gimap3 may participate in thymic selection (111,135). Analogous to Gimap8, Gimap5 

appears to function as an antiapoptotic factor because the natural knockout of Gimap5 in 

T cells from BioBreeding Diabetes-Prone (BBDP) rats has been shown to result in 

mitochondrial dysfunction and apoptosis of recent thymic emigrants leading to a 

peripheral T cell lymphopenia (106). Gimap5 is further believed to modulate TCR 

signaling by inhibiting the MAP kinase pathway, thus promoting T cell quiescence (136). 

Overall, the exact mechanisms by which Gimap5 participates in the regulation of T cell 

survival is still unknown. 
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The BioBreeding Diabetes-Prone and Diabetes-Resistant Rats 

 The BBDP rat contains a frameshift mutation in Gimap5, which has been 

implicated as the cause of the profound peripheral T cell lymphopenia seen in the rat 

(106,137,138). Because of this mutation, the function of Gimap5 has been extensively 

studied using the BBDP rat, which also serves as an animal model of T1D. The BBDP 

rat, the oldest known rat model for T1D, was discovered in a colony in 1974 at 

BioBreeding Laboratories in Canada (139). Selective breeding has resulted in BBDP rats 

that spontaneously develop T1D with >90% frequency (139). BBDP rats have various 

T1D susceptibility loci and exhibit a severe T cell lymphopenia. This lymphopenia in the 

peripheral T cell compartment is characterized by reductions in CD4+ T cells and a near 

absence of CD8+ T cells and the regulatory RT6+ T cell population; however, the 

development of thymocytes is generally normal (131,137,140).  

 In contrast, BioBreeding diabetes-resistant rats (BBDR), which were derived from 

outbred BBDP rat forebears, are Gimap5+/+, non-lymphopenic, and do not develop 

spontaneous autoimmune diabetes when housed in a viral antibody free (VAF) facility 

(139). They circulate normal numbers of CD4+ T cells, CD8+ T cells, and RT6+ 

regulatory T cells (141). However, BBDR rats have a proclivity to develop diabetes in 

response to environmental perturbations. Treating VAF housed BBDR rats with a 

depleting anti-RT6+ antibody combined with polyinosinic:polycytidylic acid (poly I:C), a 

synthetic double stranded polyribonucleotide and immune system activator, leads to 

diabetes pathogenesis (141). Additionally, viral infection with Kilham rat virus (KRV) 

causes diabetes development in approximately 30% of BBDR rats, but pretreatment with 
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poly I:C induces diabetes in 100% of KRV-infected rats. However, it remains unclear 

how KRV infection combined with poly I:C leads to diabetes (142).    

 Multiple diabetes susceptible loci have been identified in the BB rat. To acquire 

T1D in rat models, there appears to be a necessity for at least one gene that is associated 

with the rat MHC (141). In the BB rat, diabetes development requires at least one MHC 

class II RT1u allele, named Iddm2 (141,143). Additionally, analyses determined Iddm4, 

which maps to chromosome four, has been found to be a major non-MHC determinant of 

diabetes development in the BB rat (141,144). Lastly, the lymphopenia in the BBDP rat 

is linked to a recessive mutation in Iddm1, which encodes for Gimap5 protein. However, 

this mutation is not found in the BBDR rat (141).  

 Similar to human T1D, BBDP rats develop spontaneous diabetes during 

adolescence (60-100 days of age) that is characterized by lymphocytic infiltration into the 

islets of the animals (139). Although the exact event that incites autoreactivity toward the 

beta cell remains elusive, researchers speculate that the process involves presentation of 

an unknown autoantigen by the MHC class II RT1u allele (139,141). Additionally, a role 

for regulatory T cells has been established in the BB rat model because transfusion of 

regulatory RT6+ T cells into the BBDP rat prevents pathogenesis of T1D. Furthermore, 

depletion of regulatory RT6+ T cells from BBDR rats, together with a low dose of poly 

I:C, leads to T1D within four weeks of treatment (139). Collectively, these data suggest a 

complex interplay between lymphopenia (generated by Gimap5-/- or transiently 

introduced by RT6+ T cell depletion or KRV infection) and diabetes susceptibility genes 

for the pathogenesis of T1D.   
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CHAPTER IV: MATERIALS AND METHODS 
 

Animals. For T cell activation experiments, six- to ten-week-old male BALB/c (H2d) 

(Charles River Laboratories, Wilmington, MA) mice and C57BL/6 (H2b) and CBA (H2k) 

mice (The Jackson Laboratory, Bar Harbor, ME) were used. For Gimap5 studies, BBDR 

and BBDP rats were obtained from Biomedical Research Models (Worcester, MA). Eight 

week-old male or female rats were used and all of the rats were nondiabetic at the time of 

study. All animals were housed in a VAF and maintained in accordance with the 

guidelines of the University of Massachusetts Medical School Institutional Animal Care 

and Use Committee and the Guide for the Care and Use of Laboratory Animals (Institute 

of Laboratory Animal Resources, National Research Council, National Academy of 

Sciences, 1996). 

 

T cell preparation. Spleen and mesenteric lymph nodes were removed from BALB/c 

mice and processed aseptically for T cell activation experiments. BALB/c T cells were 

purified (93-97% TCRβ+) as previously described (145). For Gimap5 studies, cervical 

and mesenteric lymph nodes were aseptically removed from BBDR and BBDP rats and 

extruded through mesh wire to prepare single cell suspensions for flow cytometry and 

Western blot analyses. 

 

In vitro T cell stimulation. Six-well culture plates (BD Falcon, Bedford, MA) were 

incubated overnight with 10 μg of anti-CD3 mAb (clone 17A2; BD Pharmingen, San 

Jose, CA) per well in phosphate buffered saline (PBS) at 4oC. BALB/c purified T cells 
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were cultured in plates rinsed with PBS at 6x106 cells per well in 3 mL of RPMI 1640 

medium (Sigma-Aldrich, St. Louis, MO) containing 10% fetal bovine serum (FBS) 

(Hyclone, Logan, UT), 1% Pen/Strep/Glut (Gibco, Carlsbad, CA), and 0.1% β-

mercaptoethanol (Gibco) at 37oC. Where indicated, soluble anti-CD28 mAb (1 μg/mL, 

clone 37.51; BD Pharmingen) was added. Control T cells were incubated with 

immobilized isotype matched IgG mAb. For PMA (Calbiochem, San Diego, CA) and Io 

(Calbiochem) stimulation, T cells were stimulated with 100 ng/mL PMA and 1 µg/mL or 

2 µg/mL Io for 20 h. For TG (Calbiochem) treatment, T cells were plated at 6x106 cells 

per well in 6 mL culture media with 2 μM TG. Calphostin C (Calbiochem) was added at 

500 nM for the duration of activation for specified treatment groups. Control T cells were 

treated with the vehicle dimethyl sulfoxide (DMSO) (Sigma-Aldrich). 

 

IL-2 ELISA. BALB/c T cells were cultured as described (above). Supernatants were 

harvested after 17 or 20 hrs and assayed for IL-2 production using a mouse IL-2 ELISA 

set (BD Pharmingen) according to manufacturer’s instructions.  

 

Western blotting. BALB/c or rat lymphocytes were lysed (145) and protein 

concentrations determined by bicinchoninic acid (BCA) protein assay (Sigma-Aldrich). 

Protein (30 μg) was mixed with 4X SDS-PAGE loading buffer and Western blot analyses 

were performed as described (145). Actin was used as a loading control. Band densities 

were measured by densitometry (ImageJ software, NIH, Bethesda, MD). Density values 
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are expressed as a ratio normalized to actin, and the ‘fold change’ is compared to control 

samples. 

 

Flow cytometry. BALB/c or rat single cell suspensions were washed and suspended in 

PBS containing 1% fetal clone serum (FCS) (HyClone) and 0.1% sodium azide (Sigma-

Aldrich). Samples from BALB/c mice were incubated in anti-CD16/32 for 10 min at 4°C. 

KB5 synchimera splenic cells were incubated with clonotypic Désiré (DES) mAb for 20 

min., washed, incubated for 20 min with secondary mAb for DES, and labeled with 

fluorescent mAbs to cell-surface markers. BALB/c and rat single cell suspensions were 

labeled with fluorescent mAbs to various cell-surface markers as described in the text. To 

detect intracellular GRP78 or CHOP, cells were permeabilized using Cytofix/Cytoperm 

(BD Pharmingen) according to the manufacturer’s directions. Cells were washed and 

incubated with Alexa Fluor 647-conjugated anti-GRP78 or anti-CHOP mAbs for 20 min. 

Labeled cells were washed, fixed with 1% paraformaldehyde (Polysciences, Warrington, 

PA) in PBS and analyzed with a FACSCalibur (BD Biosciences, San Jose, CA) or LSR II 

(BD Biosciences) and FlowJo Software (PC version 7.2.2; Tree Star, Ashland, OR). 

Lymphoid cells were gated according to their light-scattering properties. 

 

Antibodies. For T cell activation studies, IgG2a developing reagent for DES (clone R19-

15), CD44 (clone IM7), CD8α (clone 53-6.7), CD69 (clone H1.2f3), 7-AAD, TCRβ 

(clone H57-597), GRP78 (clone 40), PDI (clone 34), and isotype control unconjugated or 

fluorochrome-conjugated anti-mouse mAbs were from BD Pharmingen. Zenon Mouse 
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IgG2a and IgG1 Labeling Kits, Alexa Fluor 647 (Invitrogen, Carlsbad, CA), were used to 

label GRP78 or CHOP mAb per the manufacturer’s directions. A mouse hybridoma cell 

line secreting the KB5-specific clonotypic DES mAb (146) was a gift from Dr. J. 

Iacomini (Harvard Medical School, Boston, MA). Anti-actin (clone C4), anti-ERp72, and 

anti-GRP94 (clone 9G10) antibodies were obtained from Chemicon International 

(Temecula, CA), Calbiochem, and Stressgen (San Diego, CA), respectively. Anti-rabbit, 

anti-rat, and anti-mouse IgG horseradish peroxidase (HRP) conjugates and anti-CHOP 

mAb were from Santa Cruz Biotechnology (Santa Cruz, CA). MR1 hamster anti-mouse 

CD154 mAb was produced as tissue culture supernatant and purified by affinity 

chromatography (National Cell Culture Center, Minneapolis, MN). Antibody 

concentration was determined by measurement of optical density and confirmed by 

ELISA (98). The concentration of contaminating endotoxin was determined 

commercially (Charles River Endosafe, Charleston, SC) and was uniformly <10 units/mg 

of mAb (147). For Gimap5 experiments, anti-rat CD8a-PE (clone Ox-8), PerCp-

conjugated anti-rat TCRαβ (clone R73), anti-rat CD90-FITC (clone HIS51), Biotin-

conjugated anti-rat CD25 (clone OX-39), and Streptavidin-conjugated APC-Cy7 mAbs 

were obtained from BD Pharmingen. Anti-rat CD4-Pacific Blue mAb and its 

corresponding isotype control Ab were obtained from Serotec (Raleigh, NC). Cleaved 

capase-3 antibody was obtained from Cell Signaling Technology (Danvers, MA). 

Polyclonal antiserum to Gimap5 was generated as described (106).  
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Synchimeras and tolerance induction. To determine the in vivo ERSR in antigen-

activated alloreactive CD8+ T cells in a normal microenvironment, we used KB5 TCR 

transgenic hematopoietic “synchimeric” mice generated as described (148). The 

transgenic T cells that develop in the animals express an anti-H2-Kb specific TCR 

recognized by the mAb DES. These procedures have been documented to generate a 

stable population of DES+CD8+ cells comprising 5-8% of peripheral blood mononuclear 

cells (PBMCs) within 8 weeks of bone marrow transplantation (148,149). Male KB5 

synchimeric mice were treated with a single transfusion of C57BL/6 (H2-Kb) mouse 

splenocytes, known as a donor specific transfusion (DST), for full activation of 

transgenic DES+CD8+ T cells or DST plus anti-CD154 mAb for induction of tolerance as 

described (148,150).  

 

T cell transfection. T cells from BBDP rats were purified as previously described (145). 

T cells were plated at 6x106 cells per well in 3 mL of RPMI medium (Sigma-Aldrich) 

containing 10% FBS (Hyclone), 1% Pen/Strep/Glut (Gibco, Carlsbad, CA), and 0.1% β-

mercaptoethanol (Gibco) at 37 degrees Celsius in the presence of 10 ng/mL of PMA 

(Calbiochem) and 100 ng/mL of ionomycin (Calbiochem). After 12 h, T cells were 

resuspended in 100 µL Nucleofector solution using human T cell Nucleofector kit (VPA-

1002, Amaxa Biosystems, Gaithersburg, MD) with 100 nM CHOP siRNA (catalogue no. 

L-088282-01, Dharmacon, Lafayette, CO) or 100 nM control siRNA (catalogue no. D-

001210-02, Dharmacon) and nucleofected using program U-014 in the Amaxa 
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Nucleofector apparatus. Following nucleofection, T cells were plated in 3 mL complete 

media and harvested at 30 h for protein preparation and flow cytometry analysis.  

 

Apoptosis Detection. To determine cellular apoptotic signaling, transfected T cells were 

harvested, washed twice with PBS, and stained with FITC-conjugated anti-annexin V and 

7-amino-actinomycin D (7AAD) according to the manufacturer’s directions (BD 

Pharmingen). At least 20,000 cells per sample were analyzed with a FACSCalibur (BD 

Biosciences) and analyzed with FlowJo software (Tree Star).   

 

Statistics. Statistical analyses were performed with GraphPad Prism software (Graphpad 

Software, San Diego, CA). Differences were compared by two-tailed unpaired t-tests. 

Values of p<0.05 were considered statistically significant. 
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CHAPTER V: PROTEIN KINASE C SIGNALING DURING T CELL ACTIVATION 
INDUCES THE ENDOPLASMIC RETICULUM STRESS RESPONSE 

 

Introduction 

Ligation of the TCR (signal one) in the presence of costimulation (signal two) 

results in downstream signals that increase protein production enabling naïve T cells to 

fully activate and gain effector function. Enhanced production of proteins by a cell 

requires an increase in ER chaperone expression which is accomplished through 

activation of a cellular mechanism known as the ERSR. The ERSR is initiated during the 

cascade of events that occur for the activation of many cells; however, this process has 

not been comprehensively studied for T cell function. We hypothesized that full T cell 

activation (signals one and two) resulting in IL-2 cytokine production generates ERSR 

induction.   

In this study, we used primary T cells and mice circulating TCR transgenic CD8+ 

T cells to investigate ER chaperone expression in which TCR signaling was initiated in 

the presence or absence of costimulation. In the presence of both signals, in vitro and in 

vivo analyses demonstrated induction of the ERSR, as evidenced by elevated expression 

of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in 

T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘non-

responsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to PKC, 

a signaling molecule specifically activated by TCR ligation, indicated this 

serine/threonine protein kinase is involved in the induction of the ERSR during T cell 

activation, thus revealing a previously unknown role for this signaling protein in T cells. 
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Collectively, these data suggest that induction of the ERSR through PKC signaling is an 

important component for the preparation of a T cell response to antigen.  
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Results 

A. The ERSR is induced in T cells by thapsigargin. 

We first confirmed the ability of T cells to generate an effective ERSR in the 

presence of a known ER stress inducer, TG. To do so, BALB/c mouse lymph node and 

splenic T cells (>93% purity) were treated with TG, and the expression of various ER 

chaperone proteins was quantified. Thapsigargin selectively inhibits the ER Ca2+-

ATPase, disrupting ER Ca2+ stores and leads to ER stress (37). In T cells treated with TG, 

expression levels of the ER chaperones GRP78, GRP94, PDI, and ERp72 increased 

within 2h (1.3- to 1.7-fold above the expression of vehicle (DMSO) treated control cells) 

and remained elevated (1.7- to 3.3-fold) through 24h of treatment (Figure 6). These data 

confirm that T cells can generate a robust ERSR when treated with a known ER stress 

inducing chemical, TG. 
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Figure 6 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Thapsigargin treatment of T cells induces ER stress. 

Purified T cells were treated with 2 μM TG or DMSO (Vehicle) for 2, 8, 16, and 24 h. 

TG- and DMSO-treated T cell protein lysates were analyzed by Western blot for ER 

chaperone expression. Band densities were measured by densitometry and values shown 

are ‘fold changes’ relative to control (=1.0) after actin normalization at the same time 

point. Data represent one of two independent time course experiments. 
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B. The ERSR occurs following in vitro T cell activation. 

Having established that freshly isolated T cells exhibit a functional ERSR when 

treated with a chemical stressor, we next investigated whether this response would be 

induced by activation through the TCR with costimulation. To do so we incubated 

purified T cells with both a mAb to CD3 (a TCR subunit that, when ligated, provides 

signal one) and the costimulatory anti-CD28 mAb for 17 h. As a negative control, a 

portion of the purified T cells were incubated with an immobilized isotype matched IgG 

mAb. Lymphocytes were gated according to their forward scattering (FSC) and side 

scattering (SSC) light properties, a means of distinguishing viable cells from their non-

viable counterparts. The percentage of viable lymphocytes following co-treatment with 

anti-CD3 plus anti-CD28 mAbs was 71.7%±0.6% (Figure 7A). This treatment increased 

the percentage of T cells expressing the early activation marker CD69 from 3.8%±1.2% 

in cells treated with an immobilized isotype matched IgG control mAb to 45.2%±4.2% in 

co-treated cells (Figure 7B, shaded region and black line, respectively).  

To determine whether T cell activation via signal one plus signal two also led to 

the induction of a physiological ERSR, intracellular expression of the ER chaperone 

GRP78, an indicator of ER stress (13), was quantified by flow cytometry. Because only 

~50% of T cells are stimulated by the plate-bound mAbs in these in vitro incubations, 

GRP78 expression levels were separately measured in CD69high and CD69low sub-

populations of T cells. After 17 h of co-treatment with anti-CD3 and anti-CD28 mAbs, 

intracellular GRP78 expression was significantly higher in T cells expressing high levels 

of CD69 (CD69high) than in CD69low cells (Figure 7C). The relative amount of 
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intracellular GRP78 protein in the CD69high and CD69low sub-populations is quantified by 

mean fluorescence intensity (MFI; Figure 7D). As expected, T cells co-treated with anti-

CD3 plus anti-CD28 mAbs secreted a robust amount of the IL- 2 cytokine (Figure 7E). 

These data indicate that full T cell activation resulting in cytokine secretion induces 

ERSR signaling. 

 

C. The ERSR occurs following partial T cell activation in vitro via signal one alone.  

We next investigated the ERSR in T cells exposed only to signal one (TCR 

ligation alone). Because such cells are generally thought to become ‘non-responsive’, we 

hypothesized that this process would not invoke a classical ERSR or, alternatively, would 

induce one qualitatively and/or quantitatively different from that associated with fully 

activated (signals one and two) T cells. 

We first determined the expression of CD69 on T cells that received only signal 

one through treatment with anti-CD3 mAb alone. This treatment is known to lead to the 

expression of the CD69 activation marker (151), and we found a similar increase in 

CD69 expression on T cells incubated with anti-CD3 mAb alone (48.2%±2.5%) as 

compared to co-treated T cells (Figure 7B). To ensure these T cells had a functional 

phenotype of cells only receiving signal one, we measured their production of IL-2. As 

expected, T cells incubated with anti-CD3 mAb alone produced significantly less IL-2 

compared to T cells exposed to both signal one and signal two (Figure 7E).  

We then directly tested our hypothesis that the ERSR in these T cells would be 

different from that observed in the fully activated, cytokine-secreting T cells. Because 
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apoptosis is a possible outcome of anti-CD3 mAb alone treatment, 7-AAD was used to 

exclude the contribution of any ERSR from non-viable T cells (data not shown). At 17 h, 

the intracellular GRP78 expression in T cells incubated with anti-CD3 mAb alone was 

significantly higher in CD69high than in CD69low T cells (Figures 7C,D). Unexpectedly, 

however, intracellular GRP78 expression was not significantly different between 

CD69high T cells in anti-CD3 plus anti-CD28 mAbs and anti-CD3 mAb alone treatment 

groups (Figure 7D). Therefore, GRP78 expression correlates with signaling through the 

TCR but, at least initially, does not distinguish between incomplete activation (anti-CD3 

mAb alone) and full T cell activation (anti-CD3 plus anti-CD28 mAbs) in which high 

levels of IL-2 are produced.  
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Figure 7 
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Figure 7: TCR signaling in vitro induces the ERSR.  

Purified T cells were co-treated with anti-CD3 plus anti-CD28 mAbs (left, n=3) or treated 

with anti-CD3 mAb alone (right, n=3) for 17 h as described in Methods. (A) 

Representative flow dot plots depicting the forward scattering (horizontal axis) and side 

scattering (vertical axis) light properties of lymphocytes. Viable lymphocyte populations 

are encircled. (B) Flow cytometric analyses of the activation marker CD69 in treated T 

cells (black line). Shaded regions represent CD69 expression in T cells incubated with 

immobilized isotype matched IgG mAb (Control). (C) Intracellular GRP78 expression in 

CD69high (black line) and CD69low (shaded region) T cells. The GRP78 expression for 

isotype control staining (dotted line) is shown in each histogram. (D) Bar graphs 

displaying the mean of intracellular GRP78 protein expression (arbitrary units; AU) for 

CD69high and CD69low T cells. Error bars represent the s.e.m. of triplicate samples. (E) IL-

2 production was determined by ELISA on T cell supernatants obtained from three 

independent experiments for each treatment group. Samples were examined in triplicate 

and error bars represent s.e.m. of experimental replicates. Data shown are from one of 

three independent experiments. 
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D. Upregulation of multiple ER chaperones following in vitro TCR signaling in the 

presence or absence of signal two.  

 
To confirm the initiation of the ERSR in activated T cells, protein lysates of 

purified T cells incubated for 17 h with anti-CD3 mAb alone or anti-CD3 plus anti-CD28 

mAbs were analyzed by Western blot. Analogous to the results obtained using flow 

cytometry, Western blot analyses revealed that GRP78 protein expression was increased 

in T cells incubated with anti-CD3 mAb alone (2.1-fold) or with anti-CD3 plus anti-

CD28 mAbs (2.1-fold) when compared to that observed in T cells incubated with the 

immobilized isotype matched IgG mAb control (Figure 8). The expression levels of the 

ER chaperone proteins GRP94, ERp72, and PDI were also increased to a similar amount 

following stimulation with either anti-CD3 mAb alone or in the presence of anti-CD3 

plus anti-CD28 mAbs (Figure 8). These data further reveal that the ERSR leading to 

increased production of ER stress associated chaperone proteins occurs in vitro in T cells 

activated with anti-CD3 mAb, irrespective of anti-CD28 mAb costimulation.  
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Figure 8 
 

 

 

 

 

 

 

 

 

 

 

Figure 8: ER chaperone expression increases during in vitro TCR signaling.  

Purified T cells were treated with immobilized isotype matched IgG mAb (Control), anti-

CD3 mAb alone, or with anti-CD3 plus anti-CD28 mAbs for 17 h as described in 

Methods. Western blot analyses of ER chaperone proteins were performed on lysates 

from T cells treated as indicated. Numbers represent densitometry of protein band 

densities after normalization to actin and comparison to control (=1.0). Data shown are 

from one of three independent experiments.  
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E. The ERSR is induced by in vivo activation of T cells.  

We next sought to determine if a functional ERSR also occurs with T cell 

activation in vivo. To do so, we required a system in which we could readily identify a 

population of activated cells with well defined kinetics. We elected to use KB5 

synchimeric mice to investigate T cell activation in vivo (148,152). These KB5 

synchimeric mice were modified (as described in Methods) to circulate a trace population 

(~5-8%) of TCR transgenic CD8+ T cells that specifically recognize the H2-Kb antigen. 

To induce T cell activation in vivo, the KB5 synchimeric mice were given a DST of H2-

Kb-expressing splenocytes from C57BL/6 mice. This in vivo DST provides both signals 

one and two and uniformly activates only the transgenic population of CD8+ T cells. The 

transgenic CD8+ T cells can be distinguished from endogenous T cells by use of the DES 

mAb. 

Spleen cells were recovered from KB5 synchimeric mice two days after injection 

of C57BL/6 splenocytes. Representative histograms illustrate that transgenic DES+CD8+ 

T cells can be readily distinguished from endogenous (non-transgenic) DES−CD8+ 

lymphocytes from the KB5 synchimeric mice (Figure 9A). Transgenic DES+CD8+ T cells 

from DST-treated mice exhibited an increased expression of the activation marker CD44 

(91.2±2.4%) compared to the DES−CD8+ lymphocyte population (29.3±6.7%; Figure 9B, 

black line and shaded region, respectively). As expected, few DES+CD8+ T cells in 

untreated KB5 synchimeric mice expressed high levels of CD44 (14.4±5.7%; Figure 9B).  

To investigate the in vivo ERSR in activated CD8+ T cells, expression of 

intracellular GRP78 protein was determined by flow cytometry. We observed that 

   



    49

intracellular GRP78 protein expression was not significantly different between 

DES+CD8+ T cells and non-transgenic DES−CD8+ lymphocytes from untreated KB5 

synchimeric mice (Figures 9C,D). However, intracellular GRP78 protein expression was 

significantly greater in DES+CD8+ T cells than in non-transgenic DES−CD8+ lymphocytes 

from DST treated mice (Figures 9C,D). Additionally, intracellular GRP78 protein 

expression of DES+CD8+ T cells from KB5 synchimeric mice injected with the allogeneic 

cells was significantly greater than in DES+CD8+ T cells from untreated mice (Figure 

9D). These data provide evidence of a physiological ERSR after in vivo activation of 

antigen-specific CD8+ T cells. 

 

F. The ERSR characterizes in vivo tolerized T cells that receive signal one alone.  

The KB5 synchimera mouse system has been used to study transplantation 

tolerance induction. In such studies, in addition to an injection of DST, recipient mice 

also receive an anti-CD154 mAb to block CD40-CD154 interaction, thus preventing 

signal two by inhibiting expression of costimulatory molecules on the surface of the APC 

(148,152). When anti-CD154 mAb is given, the majority of the alloresponsive KB5 

transgenic T cells (approximately 66%) disappear (148,152). Little is known, however, 

about the molecular phenotype of the T cells that are not deleted. We hypothesized that 

residual KB5 transgenic T cells in this tolerance induction system would display an 

‘activated’ ER stress phenotype analogous to that which we had observed in T cells 

exposed in vitro to signal one alone. 
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Transgenic DES+CD8+ T cells from these co-treated mice were stimulated as 

documented by an increased expression of the activation marker CD44 (80.6±1.6%; 

Figure 9B, black line), while intracellular GRP78 protein expression in the DES+CD8+ T 

cells was significantly increased as compared to non-transgenic DES−CD8+ lymphocytes 

(Figures 9C,D). Furthermore, intracellular GRP78 protein expression in activated 

DES+CD8+ T cells from KB5 synchimeric mice co-treated with DST plus anti-CD154 

mAb was significantly greater than in DES+CD8+ T cells from untreated KB5 

synchimeric mice (Figure 9D). Interestingly, the increase of GRP78 chaperone protein 

expression by flow cytometry in in vivo tolerized alloreactive CD8+ T cells (2.2-fold) was 

similar to that observed following in vitro activation using anti-CD3 mAb alone (2.5-

fold), another protocol that activates T cells that fail to become fully functional (Figure 

9C). These data demonstrate the presence of a physiological ERSR following in vivo 

tolerance induction (‘non-responsiveness’) in CD8+ T cells. These observations suggest 

that allogeneic cells that are not actually deleted by the tolerance induction protocol have 

a molecular phenotype consistent with partial activation. 
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Figure 9 
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Figure 9: Increased GRP78 expression with in vivo T cell activation and in vivo 

tolerance induction.  

KB5 synchimeric mice were untreated (left, n=5), DST treated (middle, n=4) to induce in 

vivo activation, or DST plus anti-CD154 mAb co-treated (right, n=3) to achieve tolerance 

induction of transgenic DES+CD8+ T cells as described in Methods. (A) Representative 

flow dot plots depicting CD8 expression (horizontal axis) and the anti-H2-Kb specific 

TCR recognized by the mAb DES (vertical axis) on lymphocytes obtained from the 

indicated treatment groups. DES+CD8+ T cells and DES−CD8+ lymphocyte populations 

are encircled. (B) Flow cytometric analyses of the activation marker CD44 on gated 

DES+CD8+ T cells (black line) and DES−CD8+ lymphocytes (shaded region). (C) 

Intracellular GRP78 expression in DES+CD8+ T cells (black line) and DES−CD8+ (shaded 

region) lymphocyte populations. The isotype control for GRP78 staining is indicated by a 

dotted line. (D) The mean of GRP78 protein expression displayed as bar graphs with 

error bars representing the s.e.m. Data are representative of four independent 

experiments.  
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G. Ionomycin stimulation of T cells does not lead to ERSR signaling.  

T cell activation via TCR (or CD3) ligation is known to signal through pathways 

that regulate Ca2+ levels within the T cell (153). Because fluxes in Ca2+ levels are known 

to cause ER stress (37) and we earlier showed TG treatment caused increases in ER 

chaperone expression (Figure 6), we investigated whether stimulating T cells with Io, a 

Ca2+ channel regulator which raises intracellular Ca2+ levels and mimics certain 

components of TCR signaling, leads to activation of the ERSR. To accomplish this, we 

stimulated purified T cells with DMSO (vehicle) or Io alone for 20 h.      

The percentage of viable lymphocytes following control (vehicle treated) or Io (1 

µg/mL) treatment was 73.0%±0.4% and 67.6%±3.7%, respectively (Figure 10A). Only 

5.2%±4.3% of T cells had increased expression of CD69 following Io treatment, a 

number statistically similar to the percentage of cells (4.3%±0.3%) in the vehicle 

treatment (p=0.6135; Figure 10B). This suggests that the small percentage of CD69high T 

cells found in the vehicle and Io alone treatment groups may have been activated in vivo 

previous to their isolation. As expected, the small percentage of CD69high T cells within 

the vehicle and Io alone treated populations had increased intracellular GRP78 protein 

expression compared to the CD69low T cells (Figures 10C,D). Interestingly, 47.5%±0.2% 

of T cells incubated with a high dose of Io (2 µg/mL) showed increased expression of 

CD69 indicating this treatment is above the threshold necessary to initiate activation 

(Figure 10B). However, the intracellular GRP78 protein expression within these CD69high 

T cells was not statistically different from that of CD69low T cells (Figures 5C,D), 

demonstrating that upregulation of this activation marker by Io treatment can occur in the 
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absence of ERSR signaling. Additionally, as anticipated, vehicle or Io treated T cells did 

not produce high levels of IL-2 (Figure 10E). These data indicate that Ca2+ signaling 

downstream of TCR or CD3 ligation is not responsible for ERSR signaling during T cell 

activation.   
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Figure 10 
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Figure 10: Stimulation of T cells with Io does not activate ERSR signaling.  

Purified T cells were treated with Vehicle (left, n=4), Io (1 µg/mL, middle, n=2), and Io 

(2 µg/mL, right, n=2) for 20 h as described in Methods. (A) Representative flow dot plots 

depicting the forward scattering (horizontal axis) and side scattering (vertical axis) light 

properties of lymphocytes. Viable lymphocytes are encircled. (B) Surface expression of 

CD69 activation marker in treated T cells (black line) or CD69 isotype matched IgG 

control expression (shaded region). (C) The expression of intracellular GRP78 protein in 

CD69high (black line) and CD69low (shaded region) T cells. The isotype IgG mAb control 

for GRP78 is depicted as a dotted line in each histogram. (D) The mean of intracellular 

GRP78 protein expression in CD69high and CD69low T cells with error bars representing 

the s.e.m. of duplicate samples. (E) Secretion of IL-2 was measured by ELISA on T cell 

supernatants harvested from two independent experiments. Samples were examined in 

triplicate and error bars represent s.e.m. of experimental replicates. Data shown are 

representative of two experiments.  
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H. PKC signaling in T cells initiates the ERSR.  

In addition to Ca2+ fluxes occurring downstream of TCR or CD3 ligation, 

signaling pathways that specifically activate PKC are initiated (153). We next 

investigated whether PKC activation could initiate ERSR signaling. For these studies, we 

stimulated T cells for 20 h with PMA, a specific activator of PKC, in the presence or 

absence of the PKC inhibitor, calphostin C. 

 In T cells treated with PMA alone (100 ng/mL), the majority of cells 

(95.7%±0.4%) showed increased expression of the activation marker CD69 (Figure 11B). 

Additionally, the CD69high T cells had an increased expression of intracellular GRP78 

protein that was statistically different from their CD69low T cell counterparts (Figures 

11C,D). These data indicate that PKC activation alone is sufficient to induce the ERSR. 

To validate the specificity of this response, T cells were next stimulated with PMA in the 

presence of the PKC specific inhibitor, calphostin C (500 nM). The percentage of cells 

that were CD69high remained elevated (91.6%±0.07%; Figure 11B). In contrast, however, 

expression of intracellular GRP78 protein in these CD69high T cells was not elevated and 

did not differ significantly from that of the CD69low T cells (Figures 11C,D). In addition, 

the intracellular GRP78 protein expression in CD69high T cells from the PMA treatment 

group was significantly higher than in the presence of calphostin C (Figure 11D), 

indicating that inhibition of PKC blocks the ERSR. As expected, PMA treatment in the 

presence or absence of calphostin C did not result in high levels of IL-2 secretion from 

the T cells (Figure 11E). These data demonstrate that activating PKC in T cells results in 

ERSR signaling, even in the absence of IL-2 cytokine production.  
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I. PKC inhibition during T cell activation with PMA and Io diminishes ERSR 

signaling and IL-2 production.  

Treatment of T cells with PMA combined with Io has been shown to cause 

cellular proliferation and enhanced IL-2 secretion (154). Within the lymphocyte gate 

(77.5%±2.5%; Figure 11A) for PMA and Io treated cells, 95.8%±0.4% of the T cells 

increased expression of CD69 (Figure 11B), indicating the majority of the T cells were 

activated. These T cells secreted very high levels of IL-2 (Figure 11E) and the CD69high T 

cells displayed an intracellular GRP78 protein level that was significantly higher than the 

few CD69low T cells within the population (Figures 11C,D).  

Similar to T cells treated with PMA in the presence of calphostin C, treatment of 

T cells with PMA and Io in the presence of the PKC inhibitor had little effect on the 

expression of the activation marker CD69 (92.3%±0.8%; Figure 11B), thus indicating 

these cells were receiving the initial T cell activation stimuli. However, blocking PKC 

activation with the inhibitor caused the cells to secrete significantly less IL-2 into the 

supernatant compared to PMA and Io treated cells in the absence of the inhibitor (Figure 

11E). This was not a secretory defect caused by the inhibitor because an intracellular 

protein ELISA also revealed a dramatic decrease in intracellular IL-2 within T cells that 

were treated with PMA and Io in the presence of the inhibitor (data not shown). 

Furthermore, intracellular GRP78 expression within the CD69high T cells did not differ 

significantly from that in the CD69low T cells (Figures 11C,D). These data indicate PKC 

activation in the initiation of ERSR signaling in T cells and suggest that signaling 
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downstream of the TCR (signal one) leading to PKC activation is sufficient to cause 

increased ER chaperone expression, independent of IL-2 production and secretion.  
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Figure 11 
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Figure 11: Activating PKC with PMA treatment initiates ERSR signaling in T cells.  

Purified T cells were treated with PMA (n=2), PMA + calphostin C (n=2), PMA + Io 

(n=2), or PMA + Io + calphostin C (n=2) for 20 h as described in Methods. (A) 

Representative flow dot plots depicting the forward scattering (horizontal axis) and side 

scattering (vertical axis) light properties of lymphocytes. Viable lymphocyte populations 

are encircled. (B) Representative histograms indicating expression of the activation 

marker CD69 (black line) and isotype IgG control for CD69 expression (shaded region). 

(C) Intracellular GRP78 expression for CD69high (black line) and CD69low (shaded 

region) T cells. Depicted in each histogram is the isotype IgG mAb control for GRP78 

(dotted line). (D) Bar graphs displaying the mean of GRP78 protein expression in 

CD69high and CD69low T cell populations shown with error bars representing the s.e.m. of 

duplicate samples. (E) IL-2 secretion by T cells measured by ELISA on supernatants 

from two independent experiments for each treatment group. *, p<0.0001 for PMA + Io 

vs. all other treatment groups. Shown are mean and s.e.m. of triplicate samples. Data 

shown are representative of two experiments.  
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J. The expression of multiple ER chaperones increases following PKC activation.  

To further demonstrate ERSR signaling in T cells following PKC activation, we 

examined the expression of multiple ER chaperones by Western blot analyses. The 

expression of multiple ER chaperones was not substantially increased during Io treatment 

in comparison to the expression in vehicle treated T cells (Figure 12). However, 

quantification of ER chaperone expression revealed that PKC activation with PMA or 

PMA combined with Io increases GRP94, GRP78, ERp72, and PDI (1.5- to 2.3-fold 

above the expression of vehicle (DMSO) treated T cells). Interestingly, simultaneous 

treatment of T cells with PMA or PMA combined with Io and the PKC inhibitor, 

calphostin C, effectively decreases the expression of multiple ER chaperones to levels 

comparable with vehicle treated T cells (Figure 12). These data further reveal PKC 

activation leads to increased production of multiple ER stress chaperone proteins.  
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Figure 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 12: PKC inhibition during T cell activation prevents ERSR signaling.  

Western blot analyses of ER chaperone proteins in lysates obtained from T cells 

stimulated with DMSO (vehicle), Ionomycin (Io), PMA, PMA with calphostin C (PMA + 

calph. C), PMA + Ionomycin (PMA + Io), and PMA + Ionomycin with calphostin C 

(PMA + Io + calph. C). Numbers represent densitometry of protein band densities after 

normalization to actin and comparison to control (=1.0). Data shown are from one of two 

independent experiments. 
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Summary 

The ERSR is an adaptive cellular mechanism that has been shown to be important 

during many physiological cellular processes. Our data illuminates the contribution of 

physiological ERSR signaling to modulation of T cell function during various 

physiologically relevant immune states. From these studies we have identified PKC as an 

intracellular signal that is involved in the induction of the ERSR in T cells (Figure 13). 

Furthermore, we demonstrate that signaling through the TCR alone is sufficient to 

generate the ERSR, thus supporting evidence that ‘non-responsive’ immune states are 

active processes that require increased expression of ER chaperones for maintenance of 

the tolerant state. Taken together, our data reveal an underlying, but largely 

unappreciated role for the physiological ERSR in the initial activation phase of T cells 

following immune stimulation. Furthermore, these findings suggest a new pathway for 

potential therapeutic intervention in the modulation of immune cell function.   
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Figure 13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: A model for enhanced ER chaperone expression following PKC signaling 

downstream of TCR/CD3 ligation. 

(A) Activating T cells through the TCR/CD3 complex initiates downstream signaling 

events that activate PKC and increases the intracellular Ca2+ concentration. PKC 

activation and increased intracellular Ca2+ in T cells can be mimicked through in vitro 

treatment with PMA and Io treatment, respectively. Increasing intracellular Ca2+ activates 

CN and the transcription factor, NFAT, but did not initiate ERSR signaling in T cells. 

However, the ERSR did occur with PKC activation, as evidenced by enhanced ER 

chaperone expression. It remains to be determined if (a) activated PKC directly signals or 

interacts with ER molecules to initiate ERSR signaling or (b) PKC through activation of 

the transcription factor NF-κB (155) indirectly enhances ER chaperone expression. (B) 

The highly specific PKC inhibitor, calphostin C, caused a significant reduction in ER 

chaperone expression, thus indicating PKC signaling is necessary for initiation of the 

ERSR during T cell activation. 
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CHAPTER VI: ABSENCE OF FUNCTIONAL GIMAP5 PROTEIN ACTIVATES 
ENDOPLASMIC RETICULUM STRESS-INDUCED APOPTOSIS IN T CELLS 

 

Introduction 

 The expression of the GTPase of the immunity-associated protein family of genes 

(Gimap) has been implicated in the regulation of T cell survival through modulation of 

TCR signaling. A member of the family, Gimap5, has been identified as having a 

significant role in T cell survival in BBDP rats. BBDP rats have a profound T cell 

lymphopenia resulting from a frameshift mutation in the Gimap5 gene. Because Gimap5 

has been shown to localize to the ER and previous reports demonstrated an increase of 

the ER chaperone GRP94 in purified Gimap5-/- T cells, we hypothesized that absence of a 

functional Gimap5 protein disrupts ER homeostasis. 

In this study, we found that the absence of functional Gimap5 protein in T cells of 

the BBDP rat activates ERSR signaling. We further discovered that ER stress-induced 

apoptotic signaling occurs in Gimap5-/- T cells and plays a role in the observed 

lymphopenia in the BBDP rat. By using siRNA-mediated knockdown of the ER stress 

apoptotic factor CHOP, we were able to protect Gimap5-/- T cells from ER stress-induced 

death. However, ER stress was not found in thymocytes or B cells from the BBDP rat. 

These finding indicate a direct relationship between Gimap5 and maintenance of ER 

homeostasis in the regulation of T cell survival.    
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Results 

A. Increased expression of ERSR proteins in Gimap5-/- BBDP rat lymphocytes.  

To examine levels of ER stress in lymph nodes and thymuses from Gimap5+/+ 

BBDR and Gimap5-/- BBDP rats, expression of various ER chaperone proteins was 

examined by Western blot. These analyses revealed that the expression of ER chaperones 

GRP94, GRP78, and ERp72 was increased in lymphocytes from Gimap5-/- BBDP rats 

when compared to that in Gimap5+/+ BBDR rats (Figure 14). However, in thymocytes 

from Gimap5+/+ BBDR and Gimap5-/- BBDP rats, ER chaperones were expressed at a 

basal level (Figure 14). These results indicate that the ERSR is upregulated in 

lymphocytes from Gimap5-/- BBDP rats leading to increased ER chaperone expression.    

To determine if activation of ER stress-induced apoptosis was also occurring in 

Gimap5-/- BBDP rats, we examined expression of the ER stress apoptotic factor, CHOP. 

Upregulation of CHOP has been reported to signal the activation of ER stress-mediated 

apoptotic signals (30) which ultimately culminate in cell death through proteolytic 

cleavage of caspase-3 (156). Under normal physiological conditions, CHOP expression is 

minimal and difficult to detect (157). Induction of CHOP was seen by Western blot 

analyses in lymphocytes from Gimap5-/- BBDP rats, but was not detected in thymocytes 

from Gimap5-/- BBDP or in thymocytes and lymphocytes from Gimap5+/+ BBDR rats 

(Figure 14). Furthermore, the presence of cleaved caspase-3, the executor of apoptosis 

downstream of ER stress-induced apoptotic signaling, was only detected in Gimap5-/- 

BBDP lymphocytes (Figure 14). As a control, Gimap5 protein was confirmed by Western 

blot analysis and was only detected in tissues from Gimap5+/+ BBDR rats (Figure 14). 
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These data provide evidence of ERSR and ER stress-induced apoptotic signaling in 

lymphocytes from Gimap5-/- BBDP rats.         
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Figure 14 
 

 

 

 

 

 

 

 

 

 

 

Figure 14: The expression of ER chaperones increases in lymphocytes from the 

Gimap5-/- BBDP rat. 

Western blot analyses of various ER chaperone proteins (GRP94, GRP78, and ERp72), 

the ER stress apoptotic factor CHOP, and cleaved caspase-3 (CASP-3) in lymphocytes 

and thymocytes from BBDP and BBDR rats. Gimap5 protein expression was confirmed 

in lysates from BBDR rats and actin was used as a loading control. Data shown are from 

one of three independent experiments.  
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B. GRP78 and CHOP expression levels are similar between Gimap5+/+ and   

Gimap5-/- rat thymocyte CD4+/CD8+ subpopulations.   

Lymphopenia in the Gimap5-/- BBDP rat is characterized by reductions in 

peripheral T cells and has been suggested to occur post-thymically; however, 

development of thymocytes is generally normal (131). Analysis of thymocyte populations 

in Gimap5+/+ BBDR and Gimap5-/- BBDP rats revealed similar percentages of CD4+, 

CD8+, and CD4+CD8+ thymocytes (Figure 15A, Table 1), analogous to previous reports 

(158). To determine if there are differences in ERSR signaling between the various 

thymocyte populations in Gimap5+/+ BBDR and Gimap5-/- BBDP rats, we examined 

expression of GRP78 using intracellular flow cytometry. Quantification of intracellular 

GRP78 expression revealed no significant difference in the thymocyte populations 

between Gimap5+/+ BBDR and Gimap5-/- BBDP rats (Figures 15B,D). Additionally, we 

analyzed for induction of ER stress-induced apoptosis by examining intracellular CHOP 

expression using flow cytometry. Similar to intracellular GRP78 expression, the MFI of 

intracellular CHOP expression was not significantly different in thymocyte populations 

between Gimap5+/+ BBDR and Gimap5-/- BBDP rats (Figures 15C,D). Similar to data 

obtained by Western blot analyses (Figure 14), these data provide evidence that ERSR 

signaling during thymocyte development in Gimap5-/- BBDP rats does not differ 

significantly from that in thymocytes of Gimap5+/+ BBDR rats.              
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Figure 15 
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Figure 15: ERSR signaling is similar in thymocytes from BBDR and BBDP rats.  

(A) Representative flow dot plots depicting CD8 expression (horizontal axis) and CD4 

expression (vertical axis) on thymocytes. (B,C) Intracellular GRP78 and CHOP 

expression was determined in thymocyte populations from BBDP (black line) and BBDR 

(shaded region) rats. Isotype control for GRP78 staining (dotted line) is shown in each 

histogram. (D) Bar graphs displaying the mean of intracellular GRP78 protein or CHOP 

protein expression (arbitrary units; AU). Error bars represent the S.D. of triplicate 

samples. Data shown are representative of three independent experiments. 
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C. CD90+ recent thymic emigrants comprise the majority of peripheral CD4+/CD8+ 

T cells in the Gimap5-/- rat. 

Gimap5-/- BBDP rats undergo a peripheral T cell lymphopenia that is attributed to 

a mutation in the Gimap5 gene (137,138). We first confirmed the peripheral T cell 

lymphopenia (158) by flow cytometry analyses and found reductions in TCR positive 

cells in gated lymphocytes from the Gimap5-/- BBDP rat (Figures 16A,B, Table 2). 

Comparable to a previous report (158), we also verified that the peripheral T cell 

compartment of Gimap5-/- BBDP rats is comprised of reductions in CD4+ T cells and a 

near absence of CD8+ T cells (Figure 16C, Table 2). 

We next examined expression of CD90, a cell surface molecule found on T cells 

recently exported to the periphery, amongst CD4+ and CD8+ T cells from the Gimap5+/+ 

BBDR and Gimap5-/- BBDP rats. In Gimap5-/- BBDP rats the majority of CD90+ T cells, 

known as recent thymic emigrants, disappear from the periphery within seven days of 

their export from the thymus (159). Flow cytometry analyses revealed that the 

preponderance of gated CD4+ and CD8+ T cells from Gimap5-/- BBDP rats still express 

CD90 on the cell surface, indicating few mature T cells survive (Figure 16D, Table 3). 

However, the majority of CD4+ and CD8+ T cells from the Gimap5+/+ BBDR rats have 

down-regulated CD90 and are phenotypically characteristic of mature T cells (Figure 

16E, Table 3). These data support previous reports that Gimap5-/- BBDP rats suffer from 

a profound T cell lymphopenia consistent with the disappearance of recent thymic 

emigrants from the periphery prior to CD90 down-regulation and maturation. 

 
 

   



    74

Figure 16 
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Figure 16: The majority of T cells in the periphery of the Gimap5-/- BBDP are 

CD90+ recent thymic emigrants. 

(A,B) Representative flow dot plots depicting the forward scattering (horizontal axis) and 

side scattering (vertical axis) light properties of lymphocytes. Viable lymphocytes are 

encircled. The arrow points to histograms representing gating of TCR+ cells within the 

lymphocyte population. (C) Quadrant gating of flow dot plots portraying CD8 expression 

(horizontal axis) and CD4 expression (vertical axis) on gated lymphocytes. Numbers 

indicate the percentage of cells in each quadrant. (D,E) Representative flow dot plots 

depicting CD90 expression (horizontal axis) and forward scattering (vertical axis) of 

lymphocytes within gated CD4+ and CD8+ T cell populations. Numbers represent the 

percentage of corresponding CD90- (left quadrant gate) and CD90+ (right quadrant gate) 

T cells within each dot plot. Data shown are representative of three independent 

experiments. 
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D. Gimap5-/- rat T cell populations in the periphery express increased levels of 

GRP78 and CHOP. 

We and others have shown that recent thymic emigrants disappear from the 

periphery of Gimap5-/- BBDP rats (159). However, the mechanism that causes the number 

of recent thymic emigrants to diminish remains elusive. We next tested our hypothesis 

that absence of functional Gimap5 protein in Gimap5-/- BBDP rat T cells disrupts ER 

homeostasis and integrity leading to the ERSR and ER stress-induced apoptosis, thus 

accounting for recent thymic emigrant death. Examining intracellular GRP78 expression 

on gated recent thymic emigrants (TCR+CD8+CD90+ and TCR+CD4+CD90+ 

lymphocytes) revealed an increase in GRP78 expression in cells from Gimap5-/- BBDP 

rats as compared with that in cells from Gimap5+/+ BBDR rats (Figures 17A,C). 

Additionally, intracellular GRP78 expression was increased to a similar extent in T cell 

populations from Gimap5-/- BBDP rats that down-regulated CD90 from the cell surface 

(TCR+CD8+CD90- and TCR+CD4+CD90- lymphocytes) over the same population of T 

cells from Gimap5+/+ BBDR rats (Figures 17B,C). These data provide evidence that 

ERSR signaling occurs not only in recent thymic emigrant populations from Gimap5-/- 

BBDP rats, but also in phenotypically mature CD90- T cells. 

To investigate activation of ER stress-induced apoptotic signaling, we examined 

intracellular expression of CHOP within Gimap5-/- BBDP rat T cell populations. The MFI 

of intracellular CHOP expression was increased in recent thymic emigrants from 

Gimap5-/- BBDP rats over that in Gimap5+/+ BBDR rats (Figures 18A,C). Similar to 

GRP78 expression, the enhanced expression of intracellular CHOP was not limited to 
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recent thymic emigrants and was detected in TCR+ subpopulations of CD90- lymphocytes 

from Gimap5-/- BBDP rats (Figures 18B,C). Importantly, in gated TCR-CD45RA+ cells, 

indicative of B cell populations, intracellular GRP78 and CHOP expression did not differ 

significantly between Gimap5-/- BBDP and Gimap5+/+ BBDR rats (Figures 19A,B). These 

data reveal that the Gimap5 mutation in BBDP rats results in specific activation of ERSR 

signaling that triggers ER stress-induced apoptosis not only in recent thymic emigrants, 

but also in T cells that have down-regulated CD90.  
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Figure 17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The ERSR is increased in all TCR+ lymphocyte populations within BBDP 

rats.  

(A,B) The expression of intracellular GRP78 protein in BBDP (black line) and BBDR 

(shaded region) rat T cell populations. The isotype control for GRP78 staining is depicted 

as a dotted line in each histogram. (C) The mean of intracellular GRP78 protein 

expression in BBDP and BBDR TCR+ lymphocytes with error bars representing the S.D. 

of multiple samples. Data shown are representative of three independent experiments. 
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Figure 18 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: ER stress-induced apoptotic signaling is activated within TCR+ 

lymphocyte populations in BBDP rats. 

(A,B) Intracellular CHOP expression for BBDP (black line) and BBDR (shaded region) 

rat TCR+ lymphocytes. Depicted in each histogram is the isotype control for GRP78 

staining (dotted line). (C) Bar graphs displaying the mean of CHOP protein expression in 

gated BBDP and BBDR T cell populations. Error bars represent the S.D. of triplicate 

samples. Data shown are representative of three independent experiments. 
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Figure 19 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: B cell populations within BBDP and BBDR express similar ERSR 

signaling. 

(A) Intracellular GRP78 (left) and CHOP (right) expression in TCR-CD45RA+ 

populations from BBDP (black line) and BBDR (shaded region) rats. The dotted line 

represents the GRP78 isotype control staining. (B) Bar graphs displaying the mean of 

intracellular GRP78 protein (left) and CHOP protein (right) expression for BBDP and 

BBDR TCR-CD45RA+ lymphocytes with error bars representing the S.D. of duplicate 

samples. Data shown are representative of two independent experiments. 
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E. Knockdown of CHOP expression in Gimap5-/- rat T cells leads to decreased 

apoptosis and cell death. 

CHOP is a major regulator of ER stress-induced apoptotic signaling (30) and 

inhibition of CHOP is known to decrease ER stress-mediated apoptosis (160). To 

determine if decreasing CHOP expression in T cells from Gimap5-/- BBDP rats reduces 

apoptosis, Gimap5-/- BBDP rat T cells were purified, stimulated for 12 h with 10 ng/mL 

of PMA and 100 ng/mL of Io, then transfected by nucleofection with 100 nM siRNAs 

targeted to CHOP (siCHOP) or non-specific control siRNA (siControl). Western blot 

analyses revealed a significant reduction in CHOP protein expression in T cells 

transfected with siCHOP as compared to T cells transfected with siControl (Figure 20A). 

The effects of reducing CHOP protein expression on induction of ER stress-induced 

apoptosis were examined through flow cytometry. Using annexin V and 7AAD staining, 

flow cytometric analyses revealed three distinct populations of T cells: viable (annexin V-

/7AAD-; lower left quadrant), early apoptotic (annexin V+/7AAD-; upper left quadrant), 

and both late apoptotic and necrotic (annexin V+/7AAD+; upper right quadrant) (Figures 

20B,C).  

As compared to T cells transfected with siControl, reducing CHOP expression 

significantly decreased the percentage of T cells that enter into a late apoptotic stage of 

death, thus allowing for an increased percentage of T cells to remain viable (Figures 

20B,D). However, there was no significant difference in the percentage of cells that were 

in the early stages of apoptosis between T cells transfected with siCHOP or siControl 

(Figures 20B,D). To ensure the results of CHOP inhibition were specific to T cells, the 
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effects of siCHOP transfection were examined in gated TCR- lymphocytes. In contrast to 

T cells, there were no statistical differences in the percentages of viable, early apoptotic, 

and late apoptotic TCR- lymphocytes between siCHOP and siControl transfected cells 

(Figures 20C,E). Therefore, these studies suggest that CHOP protein actively participates 

in apoptotic signaling in Gimap5-/- T cells and reduction of this ER stress apoptotic factor 

decreases T cell death.             
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Figure 20 
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Figure 20: Knockdown of CHOP protein expression enhances Gimap5-/- T cell 

viability.  

(A) Western blot analyses of the ER stress apoptotic factor CHOP in purified T cells 

transfected with either CHOP siRNA (siCHOP) or non-specific control siRNA 

(siControl). Actin was used as a loading control. (B,C) Representative flow dot plots 

depicting cells positive for annexin V (vertical axis) and 7AAD staining (horizontal axis) 

on gated TCR+ or TCR- lymphocytes. (D,E) Bar graphs displaying the percentage of 

TCR+ or TCR- lymphocytes that were positive for both annexin V and 7AAD staining 

(left), positive for annexin V staining alone (middle), and negative for both staining 

(right). Error bars represent the S.D. of quadruplicate samples and data shown are 

representative of two independent experiments. 
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Table 1 
 

 

Table 1: Phenotypic profile of thymocytes from BBDR and BBDP rat strains  

Animal Strain CD4+ Thymocytes CD8+ Thymocytes CD4+CD8+ Thymocytes 

BBDR 6.36 ± 0.71a 4.95 ± 1.03 88.34 ± 1.19 
BBDP 5.16 ± 1.16 4.78 ± 2.02 89.81 ± 2.05 

aIndicated data are means ± S.D. (n = 4). 
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Table 2 
 

 

Table 2: Phenotypic profile of lymphocytes from BBDR and BBDP rat strains 

Animal Strain Lymphocytes TCR+ 
Lymphocytes 

CD4+ 

Lymphocytesb 
CD8+ 

Lymphocytesb 
BBDR 78.95 ± 1.92a 68.51 ± 2.44 57.04 ± 0.59 16.88 ± 1.44 
BBDP 67.91 ± 3.48 22.79 ± 0.71 36.97 ± 1.54 1.24 ± 0.07 

aIndicated data are means ± S.D. (n = 3). 
bGated on total lymphocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



    87

Table 3 
 

 

Table 3: Phenotypic profile of CD90 cell surface expression on lymphocytes from 
BBDR and BBDP rat strains 

Animal Strain TCR+CD4+CD90+ 

Lymphocytes 
TCR+CD4+CD90- 

Lymphocytes 
TCR+CD8+CD90+ 

Lymphocytes 
TCR+CD8+CD90- 

Lymphocytes 
BBDR 22.83 ± 8.14a 77.16 ± 8.14 28.01 ± 9.72 71.99 ± 9.71 
BBDP 67.54 ± 3.54 32.47 ± 3.46 86.23 ± 0.65 13.72 ± 0.58 

aIndicated data are means ± S.D. (n = 3). 
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Summary 

 The absence of functional Gimap5 protein has been linked to the lymphopenic 

phenotype of the BBDP rat. Our data indicates that Gimap5-/- T cells have increased 

levels of the ER chaperone GRP78 and the ER stress apoptotic factor CHOP. 

Furthermore, disrupting the production of CHOP protein protects Gimap5-/- T cells from 

death, thus demonstrating the participation of ER stress-induced apoptosis in the T cell 

lymphopenia of the BBDP rat. However, the involvement of the ERSR in Gimap5-/- 

BBDP rats is limited to T cells as thymocytes and B cells did not display ERSR signaling 

that differed significantly from Gimap5+/+ BBDR rats. Overall, these data indicate that 

Gimap5 regulates T cell survival through maintenance of ER homeostasis.  
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CHAPTER VII: DISCUSSION 
 

PKC Signaling Induces the ERSR in T cells 

Activation of T cells results in the upregulated expression of numerous proteins 

essential for differentiation and for effector functions (161). Many of these proteins, such 

as cytokines, chemokines, and cell surface molecules, participate in the activation 

process, and thus distinguish activated T cells from their naïve precursors (69). 

Considering the exigency on protein folding and production, it is conceivable that fully 

activated T cells require more efficient protein handling in the ER. Therefore, initiation 

of the ERSR and upregulation of ER chaperones as a physiological consequence of TCR 

signaling is a logical step to augment the protein folding ability of the ER. Consistent 

with this, our data from Chapter V demonstrate upregulation of ER chaperones during in 

vitro and in vivo activation of T cells through signal one and signal two. Since ‘partial’ 

activation of T cells (signal one only) resulted in reduced production of the important 

cytokine, IL-2, we hypothesized that the ERSR in this case would be qualitatively or 

quantitatively different. Unexpectedly, however, we found that ER chaperones were also 

increased in cells that we purposefully treated to omit (in our in vitro studies) or block (in 

our in vivo tolerance model) signal two. Lastly, we demonstrate that activation of PKC, a 

serine/threonine protein kinase found downstream of TCR signaling, is involved in the 

initiation of ERSR signaling during the T cell activation process (Figure 13). 

 The importance of PKC during T cell activation has been comprehensively 

investigated and PKC has been found to play key roles in activating numerous 

downstream signaling pathways of the TCR (80,162). Following TCR or CD3 ligation, 
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downstream signaling events leading to the production of DAG and IP3 occurs. It has 

been shown that these molecules play an active regulatory role in PKC activation (153). 

By using calphostin C, a highly specific inhibitor of PKC that functions by competing for 

the DAG binding site on PKC’s regulatory domain (163), we now show a previously 

uncharacterized link between PKC activation and ERSR signaling in T cells. Although 

full activation of T cells is required for production of IL-2, our data establish that the 

initial stimuli through the TCR leading to PKC activation, or direct activation of PKC 

with PMA treatment, is sufficient to initiate activation of the ERSR. Since TCR signaling 

is well characterized, further insights into T cell functioning may be employed by 

dissection of the ERSR in these cells. 

In a recent study, APC-stimulated CD4+ T cells utilized elements of the ERSR, 

including increased expression of ERSR genes, during their differentiation into effector 

cells (41). The authors speculated that ERSR signaling, as part of a general integrated 

stress response, may be induced by imbalances in nutrients following CD4+ T cell clonal 

expansion and differentiation or, alternatively, that TCR stimulation activates ERSR 

signaling in preparation for effector function. In Chapter V we extend those findings and 

demonstrate that stimulation of T cells through the TCR alone is sufficient to induce the 

expression of ERSR proteins, even in the absence of differentiation. Although consistent 

with a potential preparatory function of the ERSR prior to T cell differentiation and 

proliferation, ERSR signaling may alternatively be activated due to the misfolding of 

proteins upregulated by TCR stimulation or secondary factors that disrupt ER 
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homeostasis. Further studies are necessary to determine the exact role for ERSR 

induction following TCR engagement. 

During the differentiation of B cells into high-rate immunoglobulin secreting 

plasma cells, the expression of ER chaperones is increased in preparation for antibody 

secreting activity (39,40). Signaling through the B cell receptor (BCR) alone, while 

insufficient to allow B cell differentiation into plasma cells, is also a physiological 

inducer of the ERSR and causes an increase in ER chaperone expression (164). In an 

analogous manner, we found that ER chaperone expression in T cells was elevated by 

TCR signaling. Although PKC has been shown to be required for BCR signal 

transduction (165), the relative contribution of PKC to the increase of ER chaperones in 

B cells has not been linked. We show that inhibiting PKC function during T cell 

activation results in a decreased amount of ER chaperones. Therefore, initiation of the 

ERSR by signaling through the TCR or BCR appears to play an essential preparatory role 

in the adaptive immune response, and PKC signaling downstream of these receptors may 

be intimately involved in the preparation. 

Besides activating PKC and subsequent induction of the ERSR, signaling through 

the TCR complex without costimulation in naïve T cells can lead to anergy in CD4+ T 

cells (55) or tolerance in CD8+ T cells (98). Anergy in CD4+ T cells is a form of tolerance 

in which antigen-exposed CD4+ T cells become unresponsive to subsequent antigenic 

stimulation, even in the presence of costimulation (91). Maintenance of this anergic state 

has been shown to depend on the de novo synthesis of distinct proteins, including early 

growth response (Egr)-2 and Egr-3 proteins (85,166). Our data from Chapter V indicate 
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that expression of ER chaperones in T cells only receiving signal one does not differ from 

the expression in fully activated T cells. Therefore, we suggest that tolerant T cells are in 

an immunological ‘active’ state that requires increased levels of ER chaperones for the 

folding and assembly of proteins necessary for initiating and maintaining a ‘non-

responsive’ phenotype. These studies further indicate that increased expression of ER 

chaperones may be a general mechanism employed by numerous cell types in response to 

extracellular and intracellular signaling for modulation of cellular functioning.  

To investigate the induction of ERSR signaling in T cells in the context of 

physiologically relevant immune events, we evaluated in vivo ERSR signaling during 

activation and tolerance induction. We used an established mouse model in which 

administration of DST has been shown to fully activate TCR transgenic CD8+ T cells 

(148,152). Our results show for the first time that in vivo antigen-exposed CD8+ T cells 

that are destined to become either activated or tolerant undergo a physiological ERSR. 

The importance of PKC during the in vivo induction of a physiological ERSR are 

currently under investigation to determine if qualitative or quantitative differences are 

observed in antigen-exposed T cells that differ in their ultimate fate. 

TCR ligation leads to signals that are necessary, but not sufficient, for fully 

functional T cell activation. In Chapter V we reveal an induction of the ERSR in T cells 

following TCR ligation (signal one), even in the absence of costimulation (signal two). 

Induction of the ERSR in activated and tolerant T cells may play an integral, underlying 

role in the initiation of an immune response. In addition, we now link PKC, an important 

mediator of downstream TCR signaling, as a key molecule in the initiation of the ERSR, 
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as inhibiting PKC function failed to induce ERSR signaling. Further studies 

characterizing ERSR induction and PKC activation downstream of TCR ligation may 

uncover novel therapeutic targets in this signaling pathway. These targets could be used 

to suppress or promote activation of T cells for the treatment of immune-mediated 

diseases and disorders.  

 

ER Stress-Induced Apoptosis in Gimap5-/- T cells 

In Chapter VI we examined the ERSR in T cells from Gimap5-/- BBDP rats. We 

demonstrated that absence of functional Gimap5 protein in T cells leads to ERSR 

signaling as evidenced by increased GRP78 protein expression. Furthermore, Gimap5-/- 

BBDP T cells initiate ER stress-induced apoptotic signaling through upregulation of 

CHOP protein. By decreasing the expression of this ER stress apoptotic factor with 

siRNA, we were able to protect Gimap5-/- BBDP T cells from ER stress-induced death. 

These observations suggest that Gimap5 protein plays a role in the maintenance of ER 

homeostasis and integrity in T cells. 

Lymphopenia in the BBDP rat was originally linked to a recessive mutation in a 

diabetes susceptible locus, known as lyp/Iddm1, which encodes for Gimap5 protein (141). 

Although spontaneous diabetes development in the BBDP rat depends on the presence of 

lyp/Iddm1, diabetes susceptibility and lymphopenia are traits that can be inherited 

independently (141). To ensure that ERSR signaling in T cells from the BBDP rat was 

due to absence of functional Gimap5 protein and not a byproduct of diabetes 

development, we only used nondiabetic BBDP rats for studies. Furthermore, flow 
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cytometry and Western blot analyses on Gimap5-/- T cells from congenic Wistar Furth 

rats that do not develop spontaneous diabetes but carry the lyp/Iddm1 and Iddm4 (a major 

non-MHC determinant of diabetes development in the BB rat) have increased expression 

of ERSR proteins, including GRP78 and CHOP (data not shown). Overall, this indicates 

that ERSR signaling in T cells from the BBDP rat is a result of the absence of functional 

Gimap5 protein product and not a secondary consequence of spontaneous diabetes 

development.  

Within the immune system, the establishment of immunological tolerance 

involves mechanisms to delete self-reactive T cells in order to avoid autoimmune 

diseases, such as T1D (86). The interactions of T cell receptors on thymocytes with 

thymic stromal cells are important for proper T cell development and eventually allow for 

CD4+CD8+ double positive thymocytes to differentiate into mature CD4+CD8- or CD4-

CD8+ single positive thymocytes (64,66). Our data from Chapter VI reveal that the 

percentage of double positive and single positive thymocytes does not differ between 

BBDR and BBDP rats, even though thymocytes from the BBDP rat contain a mutation in 

their Gimap5 gene. Furthermore, ERSR signaling was similar between the thymocyte 

populations from the BBDR and BBDP rats, thus indicating the main ER regulatory 

functions for Gimap5 protein may occur during T cell post-thymic development.  In 

general, our data indicate that ERSR and ER stress-mediated signaling may only occur 

minimally during thymocyte development as levels of ER chaperones remained low as 

double positive thymocytes matured to the single positive stage. 
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Following thymic development, T cells still expressing CD90, known as recent 

thymic emigrants, enter into the circulation. Within the BBDP rat, we and others have 

shown that a limited number of recent thymic emigrants live to down-regulate CD90 

expression and become mature T cells (Figure 16) (159). Because recent thymic 

emigrants undergo apoptosis more rapidly in the Gimap5-/- BBDP rat, we originally 

hypothesized that the level of ERSR signaling would be enhanced compared to that in 

CD90- mature T cells from the same animal. Our data suggest that ER chaperone 

expression is comparable amongst the various CD90+ and CD90- Gimap5-/- T cell 

populations from the BBDP rat, indicating that a global absence of the protein is 

sufficient to initiate ERSR signaling throughout peripheral T cell development.  

ER stress response signaling has been shown to be required for numerous 

physiological functions in several cell types (23,38,39,41). More recently, pathological 

signals from the ER have been attributed to cell death and apoptosis and linked to many 

diseases, including diabetes (5,160). In this report, we show that absence of functional 

Gimap5 protein leads to these pathological signals from the ER and subsequent ER 

stress-induced apoptosis in T cells from the BBDP rat. We suggest that triggering of the 

ER stress-induced apoptotic pathway in the T cells of the BBDP rat is involved with the 

corresponding lymphopenic phenotype of the animal. This observation is further 

supported by data that demonstrate a reduction in the number of apoptotic T cells 

following knockdown of CHOP protein by siRNA. Interestingly, our data indicate ERSR 

signaling does not differ between B cells from the Gimap5+/+ BBDR and Gimap5-/- 
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BBDP rat (Figure 19). Therefore, these data suggest a direct relationship between 

Gimap5 and ERSR signaling for the maintenance of T cell survival. 

In Chapter VI we demonstrate that Gimap5-/- T cells are prone to cell death 

through ER stress-induced apoptosis. However, we and others have previously shown a 

role for Gimap5 protein in maintenance of mitochondrial integrity for T cell survival 

(106,167). These two pathways are linked through the participation of CHOP protein in 

ER stress-induced cell death by sensitizing the mitochondria to numerous apoptotic 

factors (168). These apoptotic factors include downregulation of antiapoptotic Bcl-2 

protein (31), activation of JNK and its associated proapoptotic downstream kinases (5), 

and activation of caspase-12 (169). We hypothesize that CHOP protein through its role in 

ER stress-induced apoptotic signaling potentially leads to the disruption of mitochondrial 

integrity that is observed in Gimap5-/- T cells (106,167). Consequently, loss of 

mitochondrial integrity in Gimap5-/- T cells may be secondary to ER dysfunction and 

subsequent ER stress-induced apoptotic signaling.     

The localization of Gimap5 protein still remains controversial, however, recent 

research indicates an exclusive localization to the ER (113). Our data support an intimate 

link between Gimap5 and the ER because the ERSR is initiated in Gimap5-/- T cells. It 

has also been reported that in the BBDP rat the frameshift mutation in Gimap5 results in 

production of a truncated protein that lacks its transmembrane domain (113). Therefore, 

we can not rule out the possibility that the presence of this nonfunctional protein product 

may accumulate in the ER and lead to the pathological ER stress that is observed in 

Gimap5-/- T cells. A similar observation is made in pancreatic beta cells of the Akita 
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mouse where accumulation of mutant insulin causes ER stress and eventual apoptosis 

through CHOP protein induction (34). In both cases, disruption of CHOP has been 

effective in delaying apoptosis and preventing cell death (34), thus indicating the 

importance of CHOP in ER stress-associated cell death signaling.   

Our findings in Chapter VI suggest a role for ER stress-induced apoptosis in the T 

cells of the Gimap5-/- BBDP rat. We link for the first time a relationship between Gimap5 

protein and maintenance of ER homeostasis and integrity. Additionally, our results 

indicate that proper ER functioning in T cells is a critical component of their survival, as 

ER stress caused by a mutation in the Gimap5 gene leads to cellular death pathways and 

lymphopenia in the BBDP rat. Further studies characterizing the role of Gimap5 protein 

in T cell survival may uncover novel pathways capable of modulating T cell functioning.  

 

Conclusions and Remaining Questions 

 T cells are a critical component of the adaptive immune response and are 

designed to protect the human body from disease and viral infection. In order for T cells 

to participate as effector cells in this response, they must be activated through their TCR. 

Therefore, understanding the molecular mechanisms that govern their activation process 

may provide a means of regulating T cell function. Furthermore, insight into the T cell 

activation process has the potential to advance our knowledge of autoimmune diseases, 

such as T1D.  

The research presented in this dissertation was originally designed to further the 

understanding of signaling pathways involved in the T cell activation process 
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downstream of the TCR. In Chapter V we presented data linking a key downstream 

mediator of TCR signaling, PKC, to activation of the adaptive cellular mechanism known 

as the ERSR. Originally, the ERSR was thought to become activated in professional 

secretory cells such as plasma cells and beta cells which require an increased capacity of 

protein processing due to enhanced levels of protein synthesis and secretion (23). Here 

we present a model for activation of the ERSR in the T cell, a cell not classified as a 

professional secretory cell. Full activation of T cells in vitro and in vivo results in 

upregulation of the expression of ER chaperones, thus augmenting the protein folding 

capacity of the ER for maintenance of ER homeostasis. Unexpectedly, partial T cell 

activation through TCR signaling alone also induced the ERSR and an increase of ER 

chaperones. Although we were able to identify the downstream component of TCR 

signaling that activates the ERSR, the exact functions of the ERSR in T cells remains 

unknown.  

Importantly, however, we have now identified the physiological process of T cell 

activation as an inducer of ERSR signaling. Specifically, our data indicate that activation 

of PKC, a molecule essential for TCR-induced T cell activation (162), as an initiator of 

physiological ERSR signaling in T cells. Determining the PKC isoform involved in the 

initiation of the ERSR in T cells may provide insight into the importance of this molecule 

in ERSR induction in numerous cell types. Recently, a report linked PKCθ activation to 

ERSR induction during autophagy in hepatocytes (170). Based on the significance of this 

PKC isoform in the differentiation and survival of T cells (162,171), a logical hypothesis 

for future analysis would examine PKCθ and ERSR activation in T cells.  
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Activation of PKC has been implicated to be important for proper functioning in 

various immune cells, including macrophage activation and B cell survival (172). 

Additionally, PKC signaling has been linked to inhibition of insulin receptor signaling 

and found to be increased along with protein levels in skeletal muscle from T2D patients 

(173,174). Our data specifically links PKC activation with ERSR induction, suggesting 

this association may occur in and be important for multiple cell types. Recent reports 

demonstrate that knockdown of PKC expression did not interfere with TG-induced eIF2α 

phosphorylation and XBP1 mRNA splicing. Furthermore, deletion of ATF6 did not 

disrupt PKC activation (170). These data suggest that ERSR induction can occur 

independently of PKC activation and indicates that the resultant increases in transcription 

and translation of genes caused by PKC signaling may be the initiator of the ERSR in 

many cell types.  

The physiological ERSR allows a cell to handle increased protein biosynthesis 

through adaptation of ER chaperone capacity (175). An increase in the expression of ER 

chaperones in activated T cells may be necessary for numerous cellular activities, 

including proper folding of effector cytokines. Induction of ER chaperones has been 

shown to have both beneficial and negative consequences in development of diseases. 

For example, ER chaperones have been shown to ameliorate the accumulation of 

misfolded proteins to protect against the neurodegenerative diseases such as Alzheimer’s 

disease and Parkinson’s disease (176). However, upregulation of ER chaperones has been 

shown to promote cancer progression by preventing ER stress-induced cell apoptosis in 

tumor cells (176). Therefore, modulation of ERSR and ER chaperone induction in T cells 
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may serve as a target for therapeutic invention to enhance or inhibit the immune 

response.         

Besides playing a role in disease prevention and development, a requirement for 

physiological ERSR signaling has been shown in cellular activation and differentiation. 

In pancreatic beta cells, physiological functioning requires a regulated activation of IRE1, 

a major ERSR upstream molecule (43). Additionally, B cell differentiation into antibody-

secreting plasma cells requires physiological activation of ERSR signaling to handle 

increased immunoglobulin assembly (11,39,40). Our findings in T cells support these 

observations that the function and activation of normal cellular activities induces and 

requires physiological ERSR initiation. Our research also indicates the ERSR did not 

differ in magnitude between T cells that are fully or partially activated, suggesting a 

preparatory function for ERSR induction. Further investigation into physiological ERSR 

signaling in T cells destined to develop an effector or tolerant phenotype may reveal 

differences that regulate cellular progression.       

As aforementioned, the physiological ERSR is activated to allow a cell to handle 

normal stress within the ER. If ER stress conditions that disturb ER homeostasis beyond 

restoration persist, pathological ERSR signaling is initiated to eliminate damaged cells 

(169). In Chapter VI we link absence of Gimap5, a GTPase that modulates TCR signaling 

and participates in maintenance of T cell homeostasis, to ER stress-induced apoptosis 

through pathological ERSR activation. Therefore, in addition to a role in physiological 

ERSR activation, deregulation of TCR signaling through Gimap5 protein absence 

initiates apoptosis through pathological ERSR induction. This may occur through loss of 
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TCR regulation by Gimap5 and the interactions of both the TCR and Gimap5 with Bcl-2 

family members (109). Because CHOP induction leads to apoptosis through Bcl-2 

downregulation (31), and absence of functional Gimap5 leads to an increase of CHOP 

protein, TCR deregulation caused by Gimap5 absence may initiate pathological ER 

stress. However, the possibility still exists that loss of TCR regulation by absence of 

Gimap5 affects Bcl-2 family members independent of CHOP induction. In general, these 

data indicates a dual role for TCR signaling and regulation in activation of both 

physiological and pathological ERSR induction.   

Normally, T cell development in the thymus involves a series of differential TCR 

interactions with thymic stromal cells (64,66). This process also mediates the survival-or-

death decision of thymocytes through the principles of positive and negative selection 

(109). Our data indicates that ERSR signaling may play only a minimal role in thymocyte 

development because ER chaperone expression remains low. However, our data also 

indicates that peripheral T cells have an established pathological ERSR that is activated 

by loss of functional Gimap5 protein, a TCR regulator molecule. Consequently, 

pathological ERSR signaling that leads to ER stress-induced apoptosis may therefore 

play a role in various TCR-mediated activities, such as activation-induced cell death 

(AICD). Identifying a correlation between AICD and pathological ERSR signaling may 

provide another outlet for immune intervention due to the critical role AICD plays in 

eliminating self-reactive T cells. 

Despite the pathological ERSR signaling that occurs in T cells from the Gimap5-/- 

BBDP rat, a subset of T cells survive to a mature stage. It is these remaining T cells that 
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are also responsible for infiltrating the islets and specific destruction of beta cells in the 

BBDP rat. Previous data indicates that antigen activation of peripheral T cells from the 

Gimap5-/- BBDP rat rescues the cells from programmed cell death (140). This 

information combined with our data presented in both Chapter V and VI suggests that T 

cell activation, a known physiological ERSR inducer, has the capability of 

downregulating pathological ER stress, as not all T cells die in the Gimap5-/- BBDP rat. 

Thus, in T cells there may exist a dynamic relationship that balances physiological and 

pathological ER stress. The mechanisms that govern this relationship remain in question 

not only in T cells, but also in the majority of cell types that utilize ER stress to 

accomplish cellular activities.        

In spite of these remaining questions, our work indicates that ERSR induction 

may play multiple roles in TCR signaling and regulation. We have shown that T cells are 

capable of activating both a physiological and a pathological ERSR, suggesting the 

cellular machinery for ERSR induction is not limited to professional secretory cells. As 

investigations further our knowledge into the role of the physiological ERSR in T cells, 

we may uncover novel means of regulating T cell responses to antigens. Additionally, 

control of pathological ERSR induction may provide a means to limit an ‘excessive’ 

immune response, e.g., as in certain inflammatory or autoimmune diseases. In the future, 

the role of PKC signaling should be investigated in T cells to determine the exact 

function of this molecule in ERSR induction. To explore a link between the ERSR and 

the downstream signaling of PKC, experiments involving the inhibition of the 

transcription factor NF-κB through siRNA or inhibitors should be performed. It will also 
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be important to examine the role of Gimap5 in TCR regulation to investigate whether 

deregulated TCR signaling leads to cell death through ER stress-induced apoptosis. To 

accomplish this, components of the TCR signaling pathway that have been found to be 

deregulated in T cells from the Gimap5-/- BBDP rat should be examined for a link to ER 

stress and CHOP induction. Overall, advancements into the molecular mechanisms 

behind ERSR activation in T cells may provide potential targets for therapeutic 

intervention in immune-related diseases.   
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