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ABSTRACT 

Huntington’s disease (HD) is an autosomal dominant, progressive 

neurodegenerative disorder. Invariably fatal, HD is caused by expansion of the 

CAG repeat region in exon 1 of the Huntingtin gene which creates a toxic protein 

with an extended polyglutamine tract1. Silencing mutant Huntingtin messenger 

RNA (mRNA) is a promising therapeutic approach2-6. The ideal silencing strategy 

would reduce mutant Huntingtin while leaving the wild-type mRNA intact. 

Unfortunately, targeting the disease causing CAG repeat expansion is difficult 

and risks targeting other CAG repeat containing genes. 

 We examined an alternative strategy, targeting single nucleotide 

polymorphisms (SNPs) in the Huntingtin mRNA. The feasibility of this approach 

hinges on the presence of a few common highly heterozygous SNPs which are 

amenable to SNP-specific targeting. In a population of HD patients from Europe 

and the United states, forty-eight percent were heterozygous at a single SNP 

site; one isoform of this SNP is associated with HD. Seventy-five percent of 

patients are heterozygous at least one of three frequently heterozygous SNPs. 

Consequently, only five allele-specific siRNAs are required to treat three-quarters 

of the patients in the European and U.S. patient populations. We have designed 

and validated siRNAs targeting these SNPs. 

 We also developed artificial microRNAs (miRNAs) targeting Huntingtin 

SNPs for delivery using recombinant adeno-associated viruses (rAAVs). Both U6 
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promoter driven and CMV promoter driven miRNAs can discriminate between 

matched and mismatched targets in cell culture but the U6 promoter driven 

miRNAs produce the mature miRNA at levels exceeding those of the vast 

majority of endogenous miRNAs. The U6 promoter driven miRNAs can produce 

a number of unwanted processing products, most likely due to a combination of 

overexpression and unintended export of the pri-miRNA from the nucleus. In 

contrast, CMV-promoter driven miRNAs produce predominantly a single species 

at levels comparable to endogenous miRNAs. Injection of recombinant self 

complementary AAV9 viruses carrying polymerase II driven Huntingtin SNP 

targeting miRNAs into the striatum results in expression of the mature miRNA 

sequence in the brain and has no significant effect on endogenous miRNAs. 

Matched, but not mismatched SNP-targeting miRNAs reduce inclusions in a 

knock-in mouse model of HD. These studies bring us closer to an allele-specific 

therapy for Huntington’s disease.  
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CHAPTER I: INTRODUCTION 
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Huntington’s disease  

Huntington’s disease (HD) is an autosomal dominant, progressive and invariably 

fatal neurodegenerative disorder. Early symptoms include cognitive impairment 

and depression while later stages of the disease are characterized by involuntary 

movements (chorea), which can cause injury, and disabling impairments in 

voluntary movements, such as swallowing. As the disease progresses, patients 

become unable to care for themselves and often unable to speak. The movement 

disorder is accompanied by changes in cognition and personality and by 

additional psychiatric symptoms which can include depression, anxiety, 

obsessive compulsive behaviors, psychosis. Patients often take a variety of 

medications to try to control the psychological symptoms of the disease, but 

these medications often have side-effects and they do nothing to prevent or 

delay the progression of the disease. The most direct approach to treating HD is 

to silence expression of the mutant Huntingtin gene while leaving the normal 

Huntingtin intact (allele-specific silencing); for this we turned to RNA interference. 

RNA interference (RNAi) is a sequence-specific method for targeting messenger 

RNAs for degradation. Unfortunately, targeting the CAG repeat expansion which 

causes the HD has proven difficult 7. Targeting frequently heterozygous single 

nucleotide polymorphisms in the Huntingtin mRNA provides an alternative 

approach.
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Genetics of HD  

HD is caused by expansion of the CAG repeat region in exon 1 of the Huntingtin 

gene1. Expansion results in the production of a toxic polyglutamine (poly(Q)) 

expanded protein, which is particularly damaging to cortical and striatal neurons. 

Huntingtin alleles can be classified by the number of CAG repeats they contain. 

The normal allele contains fewer than 35 repeats. Alleles containing 27-35 

repeats do not cause disease, but are unstable and prone to expansion into the 

disease range in the next generation.  

In general, patients with longer CAG repeat expansions develop disease 

symptoms earlier 8,9. Patients with repeat lengths between 36 and 39 have very 

late onset and may even appear to be disease free throughout their lives, 

whereas patients with more than 60 repeats often develop symptoms before age 

20. The majority of patients have 39-50 repeats and become symptomatic 

between the ages 30 and 50. Age of onset has traditionally been defined as the 

age at which motor symptoms appear, but subtle psychiatric or cognitive 

changes likely precede motor symptoms. Defining and predicting the early 

course of the disease may be important, as it may influence the outcome of 

therapeutic intervention. CAG repeat length variation accounts for approximately 

70% of the variation in age of onset. Up to 60% of the remaining variability may 

be explained by other genetic factors10 including CAG repeat length of the normal 

Huntingtin allele and polymorphisms in the GluR6 gene11,12. The remaining 12% 

of variability in age of onset is likely attributable to environmental factors. HD 
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homozygotes are phenotypically similar to heterozygotes and have a similar age 

of onset13,14 but homozygosity may accelerate disease progression15. For 

affected families, the financial and emotional costs of the disease are high. 

Average survival after symptom onset may be as long as 20 years, and as the 

disease progresses many patients require long-term institutional care. 

Expanded Huntingtin alleles are unstable and particularly prone to 

expansion in the male germ line, giving rise to the phenomenon known as 

anticipation where the age of onset falls in subsequent generations, particularly 

when the mutant allele is inherited from the father8. The majority of juvenile HD 

cases are paternally inherited16,17. Somatic instability has also been reported and 

may account for differences in disease progression or cell type vulnerability18,19. 

Functions of wild-type Huntingtin 

Huntingtin is a large (~350kD), widely expressed, cytoplasmic protein composed 

of a series of HEAT (Huntingtin, Elongation factor 3, protein phosphatase 2A, 

TOR1) repeats20-22. HEAT repeats are degenerate sequences approximately 50 

amino acids long that form an α-helical hairpin. HEAT repeat proteins contain 

multiple tandem repeats, which are thought to provide a flexible scaffold for 

multiple protein-protein interactions. In agreement with this, yeast two-hybrid 

assays have been used to identify a large number of potential Huntingtin 

interaction partners23.  
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Huntingtin is ubiquitously expressed, but it is present at high 

concentrations in the brain and testis24,25. Mice lacking wild-type Huntingtin 

exhibit increased apoptosis and embryonic lethality which precedes nervous 

system development26-28. Heterozygotes exhibit neuronal loss and behavioral 

abnormalities28. Conditional inactivation of Huntingtin in the adult brain results in 

neuronal degeneration, behavioral abnormalities, and reduced lifespan29. 

In neurons, Huntingtin is associated with microtubules and vesicles30-32, 

functions in vesicle trafficking,33 and regulates receptor recycling by affecting the 

guanine nucleotide exchange factor Rab1134. Impaired vesicle recycling leads to 

increased reactive oxygen species and may contribute to HD pathology35,36. In 

Drosophila, loss of wild-type Huntingtin causes axon transport defects37 and in 

mouse striatal neurons, reducing the level of wild-type Huntingtin below 50% 

results in reduced mitochondrial speed38. Loss of wild-type Huntingtin may 

reduce trophic support for striatal neurons. BDNF transport from the cortex to the 

striatum protects striatal neurons, while loss of cortical BDNF results in neuronal 

degeneration39. Wild-type Huntingtin enhances BDNF transport along 

microtubules, upregulates transcription of BDNF by binding to the transcription 

factor Repressor Element-1 Transcription Factor/Neuron Restrictive Silencer 

Factor (REST/NRSF)40,41, and is neuroprotective in cell culture42. The interaction 

between Huntingtin and REST/NRSF may also promote the maintenance of 

neuronal specification. REST/NRSF is a repressor of neuron specific gene which 

binds a DNA sequence called the neuron-restrictive silencer element (NRSE) 
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and represses transcription of neuronal genes in nonneuronal cells43,44. 

Interaction of REST/NRSF with wild-type Huntingtin sequesters it in the 

cytoplasm and prevents its binding to NRSEs41; therefore loss of wild-type 

Huntingtin may shift the transcriptional profile of neurons towards that of 

nonneuronal cells. 

Wild-type Huntingtin is anti-apoptotic and protective against a variety of 

toxic stimuli45-47. In mice, depletion of wild-type Huntingtin causes activation of 

caspase-3 and increased susceptibility to cell death, while overexpression 

inhibits both caspase-3 activation and excitotoxic cell death48. Loss of wild-type 

Huntingtin exacerbates behavioral defects in mice expressing full length human 

Huntingtin49. Although the primary cause of HD is toxicity of mutant Huntingtin, 

any therapeutic approach should take into consideration the neuroprotective 

properties of the wild-type protein. 

Toxicity of mutant Huntingtin 

Huntington’s disease, like many neurodegenerative diseases, is characterized by 

the abnormal formation of cytoplasmic and nuclear aggregates or inclusions50. 

These inclusions contain ubiquitin and N-terminal cleavage products of mutant 

Huntingtin50. Changes in protein folding51,52, cleavage53-60, clearance61-63 or 

aberrant protein-protein interactions23,64 may contribute to the toxicity and 

accumulation of mutant Huntingtin. Additional sources of toxicity include: 

disruption of axonal transport38,65,66, impaired mitochondrial function67,68, 
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overproduction of reactive oxygen species69-71, disturbed calcium 

homeostasis72,73, neuroinflammation74, and deregulation of transcription75. 

 Microglial activation and neuroinflammation may contribute to the 

pathology of HD. Microglia are macrophages resident in the mammalian CNS. In 

the healthy brain, they are quiescent, but in response to injury they rapidly 

become activated. Activated or reactive microglia display a variety of cell surface 

antigens and secrete both cytotoxic molecules, including reactive oxygen species 

and pro-inflammatory cytokines, and cytoprotective molecules such as growth 

factors76. These secreted molecules in turn affect neighboring cells. Reactive 

microglia have been found in the striatum and cortex of brains from HD patients77 

and in mouse models of polyglutamine toxicity78. Activation of microglia in HD 

may represent an attempt at repair, but it could also contribute to the cytotoxic 

cascade which leads ultimately to cell death.  

The effect of mutant Huntingtin on transcription is partially mediated by 

binding of the polyglutamine region to glutamine rich transcription factors79. 

Among the transcription factors known to be affected are CREB binding protein 

(CBP, a transcriptional co-activator and histone acetyltransferase)80-82, specificity 

protein 1 (Sp1, a sequence specific transcription activator)83,84 and 

REST/NRSF41,85. BDNF, REST/NRSE, Sp1, and Huntingtin are linked together in 

a complex feedback loop that is disrupted by mutant Huntingtin. Binding of 

mutant Huntingtin to CBP sequesters CBP in the cytoplasm and prevents 

activation of its target genes in the nucleus81,82 while binding of mutant Huntingtin 
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to Sp1 may prevent its activity by interfering with its ability to form a complex with 

components of the transcriptional machinery83,84. Sp1 levels are increased in 

models of HD and reduction of Sp1 appears to be neuroprotective86. Sp1 binds to 

and activates the REST/NRSF promoter87 and Huntingtin itself may be 

upregulated by Sp188. Mitochondrial dysfunction is linked to transcriptional 

deregulation: mutant Huntingtin binds to the peroxisome proliferator-activated 

receptor  coactivator-1 (PGC-1) promoter, reducing the expression of PGC-

1, a regulator of mitochondrial respiration89.  

Mutant Huntingtin mRNA may be toxic. RNA transcripts with expanded 

CAG repeats are neurotoxic in Drosophila models of Machado-Joseph disease90 

and myotonic dystrophy91 and there are some indications that RNA toxicity is 

present in HD92,93. Therapeutics which target Huntingtin at the mRNA level may 

therefore be preferable to those targeting the protein. 

Therapeutic strategies for HD  

The complexity of Huntingtin interactions makes developing treatment strategies 

based on downstream pathogenic processes difficult. Potential therapeutic 

strategies include: NMDA receptor antagonists to reduce excitotoxicity, histone 

deacetylase (HDAC) inhibitors to restore transcriptional regulation94-96, caspase 

inhibitors to prevent Huntingtin cleavage97-99, compounds to enhance 

mitochondrial function70,97,100,101, induction of heat shock proteins to reduce 

protein aggregation102,103 and Huntingtin misfolding104, and induction of 
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autophagy to improve protein degradation105. Many of these strategies have 

shown promise in animal models of HD and in some early clinical studies100,106 

but results from longer term studies have shown little benefit101,107.  

Mutant Huntingtin disrupts a large number of cellular pathways and 

treatment strategies targeting single aberrant pathways may be ineffective. The 

most direct treatment approach would be to destroy the mutant mRNA and 

prevent the production of mutant Huntingtin protein. Studies in mice suggest that 

mutant Huntingtin toxicity is reversible108-110. RNA interference, which provides a 

mechanism for sequence specific gene silencing, is a promising therapeutic 

approach. 

The RNAi pathway 

History of RNAi  

RNA silencing was accidentally discovered in plants when attempts to 

overexpress the chalcone synthase (CHS) gene --an enzyme responsible for 

flower pigmentation-- in petunias resulted in plants with white or partially white 

rather than deep purple flowers111,112. Additional evidence came from studies of 

viral resistance in tobacco plants: transgenic tobacco plants expressing a non-

translatable version of the tobacco etch virus coat protein (TEV CP) could 

become immune to, or recover from, TEV. These studies suggested that it was 

not the coat protein that was responsible for viral resistance113,114. Further studies 

in plants using non-viral transgene sequences confirmed that the silencing signal 
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was most likely nucleic acid115. In the meantime, a similar silencing of 

endogenous genes by homologous transgenes, known as quelling, was 

discovered in fungi116.  

 The first clue that silencing could occur in animals came from an attempt 

to inhibit the par-1 gene in Caenorhabditis elegans using antisense RNA117. The 

researchers found that contrary to their expectations, both sense and antisense 

RNA could inhibit the gene. In 1998, Fire and Mello established that 21-22 

nucleotide double stranded RNA could trigger sequence specific silencing118. 

These small RNA triggers were termed siRNAs. Only a small amount of siRNA 

was required to initiate silencing, indicating that silencing was an active process 

and that the signal was amplified118. Following this discovery, RNAi was 

uncovered in a number of other species including in Drosophila119 and in 

mammals120,121. Initially, RNAi in mammals appeared to be limited to cells lacking 

the interferon response, an anti-viral defense that causes non-specific inhibition 

of protein translation and apoptosis in response to double-stranded RNA. 

Fortunately, short double stranded RNA including 21-22 nucleotide siRNAs, 

effectively silence endogenous mRNAs in mammals and do not trigger the 

interferon response122.  

Core Machinery of the RNAi pathway 

The RNAi pathway is evolutionarily conserved from plants to mammals. At the 

heart of the RNAi machinery is a core set of proteins, called Argonautes. 
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Argonaute proteins use small (18-30 nucleotide) RNAs to guide sequence-

specific silencing of mRNA transcripts. Argonaute proteins are composed of four 

domains: N-terminal, PAZ, Mid and PIWI domains. The Mid and PAZ domains 

position the small RNA guide strand123-125 while the PIWI domain is an RNAse H 

domain. Three conserved amino acids (DDH) in the PIWI domain form the 

catalytic triad required for the endonucleolytic cleavage activity of the 

enzyme123,126-129. The N-domain of the protein is thought to participate in 

unwinding of the RNA duplex during Argonaute complex maturation130. 

The mammalian RNAi pathway  

In the mammalian RNAi pathway (Figure 1.1), small RNAs called microRNAs 

(miRNAs) are transcribed as long hairpins (pri-miRNAs), primarily by polymerase 

II promoters. Pri-miRNAs are processed in the nucleus by Drosha/DGCR8 to pre-

miRNA hairpins approximately 70 nucleotides in length95,128,131,132 and exported 

from the nucleus via Exportin-5133,134. In the cytoplasm, pre-miRNAs are further 

processed by Dicer/TRBP135-137 to miRNA/miRNA* duplexes, which form 

complexes with Argonaute proteins. Thermodynamic stability at the 5′ end of the 

duplex determines which strand will be incorporated into the mature Argonaute 

complex138,139: the strand that is less thermodynamically stable becomes the 

miRNA while the other strand, called the miRNA* strand, is discarded during 

complex maturation. Maturation can occur by cleavage of the miRNA* strand140-

144 or by duplex unwinding145,146.  
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Figure 1.1. The mammalian RNAi pathway
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Much of the work on RNAi in vertebrates has been done in fruit flies where 

there are several distinct small RNA pathways. In flies, cleavage of long double-

stranded RNA by members of the Dicer family136 produces fully complementary 

siRNAs duplexes. miRNA duplexes, which contain mismatches, are produced 

from long transcripts (pri-miRNAs) by sequential Drosha and Dicer processing147. 

Drosophila siRNAs and miRNAs are sorted into distinct complexes: siRNAs into 

Ago2 complexes136, and miRNAs into Ago1 complexes, based on the internal 

structure of the RNA duplex148. Ago2-siRNA complexes and Ago1-miRNA 

complexes silence their targets by different mechanisms. Complexes containing 

Ago2, which is an efficient endonuclease, can cleave fully complementary 

mRNAs. Ago1 complexes can silence mRNAs with multiple, partially 

complementary binding sites149. Humans have four Argonaute proteins (Ago1-

Ago4) but only Ago2, which is homologous to Drosophila Ago1, is capable of 

target cleavage128,150. Ago3 contains a catalytic triad, but is catalytically inactive. 

Ago1 and Ago4 lack the catalytic triad129,150,151. Despite the existence of distinct 

Argonaute proteins and the similarity in structure between miRNAs from flies and 

miRNAs from mammals, most mammalian miRNAs associate with multiple 

Argonaute proteins151,152. 

Argonaute complexes recognize their targets primarily via pairing of the 

seed sequence, nucleotides 2-8 of the guide strand. Nucleotides outside of this 

region influence target affinity and mode of silencing of Argonaute complexes. 

When there is extensive pairing between an mRNA target and an 
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Argonaute:miRNA complex, competent Argonautes can catalyze endonucleolytic 

cleavage of the mRNA128,150,153-155. Argonautes cut between positions 10 and 11 

of the RNA guide strand156. Mismatches between the siRNA and target around 

the cleavage site prevent this activity156-158. In the absence of cleavage, 

Argonaute complexes may inhibit translation159,160 or cause mRNA 

destabilization161 Many mammalian miRNAs exhibit only partial complementarity 

to their mRNA targets162,163. Multiple, adjacent, partially complementary sites can 

participate in cooperative silencing160,164,165, where binding of a single Argonaute 

complex promotes binding of complexes to adjacent sites. This mode of silencing 

requires a higher concentration of the siRNA than does silencing by siRNAs with 

extensive complementarity165. 

Therapeutic small RNAs are typically designed to be fully complementary 

to their targets at a single site and to act via cleavage. While extensive pairing 

between a miRNA and its target mRNA can result in target cleavage, in both flies 

and humans it can also trigger the degradation of the miRNA. In flies, Ago1 

loaded siRNAs are protected from degradation by 2’-O-methylation166. Whether 

this finding has any significance for therapeutic applications of RNAi has yet to 

be determined. 
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RNAi Therapeutics 

Challenges and Strategies 

Our mechanistic understanding of RNAi is rapidly improving but therapeutic 

applications present their own challenges, among them delivery and safety are 

perhaps the most critical. Effective delivery strategies should address tissue and 

cell-type specific targeting, effective intracellular delivery, and distribution of the 

small RNA effector. Safety concerns include off-target silencing of genes with 

partial complementarity to the therapeutic small RNA, induction of innate immune 

responses, and saturation of the cellular RNAi machinery.  

Therapeutic small RNAs (Figure 1.2A) generally fall into two classes: 

siRNAs and virally expressed hairpins (shRNAs and artificial miRNAs). siRNAs 

are small, 19-23 nucleotide, synthetic double-stranded RNAs designed to mimic 

the products of Drosha and Dicer cleavage. They are delivered to the cytoplasm 

and incorporate into Argonaute complexes to produce transient silencing. Long 

term silencing of genes requires chronic infusion or repeated siRNA 

administration and dosage can be monitored and adjusted during the course of 

treatment. Although there have been several reports of successful in vivo 

silencing of endogenous genes by local administration of naked siRNAs167-170, 

siRNAs do not readily enter the cell by diffusion. Conjugation5,171,172 or 

encapsulation of siRNAs into liposomes or nanoparticles may improve stability  

16



Fi
gu

re
 1

.2
. T

yp
es

 o
f t

he
ra

pe
ut

ic
 R

N
Ai

 c
on

st
ru

ct
s.

 
(A

) s
iR

N
A

s 
ar

e 
de

si
gn

ed
 to

 m
im

ic
 th

e 
pr

od
uc

ts
 o

f s
eq

ue
nt

ia
l c

le
av

ag
e 

by
 D

ro
sh

a 
an

d 
D

ic
er

 w
hi

le
 s

hR
N

A
s 

(B
) r

es
em

bl
e 

th
e 

pr
od

uc
ts

 o
f D

ro
sh

a 
cl

ea
va

ge
. (

C
) A

rti
fic

ia
l m

iR
N

A
s 

in
co

rp
or

at
e 

th
e 

st
ru

ct
ur

e 
of

 
en

do
ge

no
us

 m
iR

N
A

s 
an

d 
ca

n 
be

 c
o-

tra
ns

cr
ib

ed
 w

ith
 p

ro
te

in
 c

od
in

g 
ge

ne
s 

fro
m

 p
ol

ym
er

as
e 

II 
pr

om
ot

er
s.

 
 

17



Fi
gu

re
 1

.2

sh
R

N
A

ar
tif

ic
ia

l m
iR

N
A

si
R

N
A

A
B

C

18



 
 

 

and promote entry into the cell by endocytosis. Transfection reagents3,173,174 have 

been used to improve intracellular delivery of siRNAs, but they carry the risk 

ofcytotoxicity. Once inside the cell, siRNAs must dissociate from delivery 

vehicles, escape the endosomal compartment and incorporate into Argonaute 

complexes in the cytoplasm. For delivery to the brain, the blood brain barrier 

presents a significant hurdle therefore most studies have used local rather than 

systemic delivery. However, delivery of siRNA following intravenous injection of 

siRNAs complexed to a short peptide from the rabies virus glycoprotein (RVG) 

has been reported175. The same RVG peptide has been used to facilitate 

systemic delivery of liposome-siRNA complexes targeting the prion protein, 

PrPC176 and exosomes loaded with siRNA targeting GAPDH177.  

Short hairpin RNAs (shRNAs, Figure 1.2B) and artificial miRNAs (Figure 1.2C) 

are both hairpin-type constructs expressed from plasmids or viruses. Short 

hairpin RNAs are generally expressed from RNA polymerase III (Pol III) 

promoters, which are specialized for transcribing small non-coding RNAs 

(ribosomal RNAs, small nuclear RNAs, tRNAs). After transcription in the nucleus 

and export into the cytoplasm by Exportin 5, shRNAs are designed to enter the 

RNAi pathway at the Dicer processing step (Figure 1.3). Artificial miRNAs are 

usually transcribed from RNA polymerase II (Pol II) and can be incorporated into 

longer mRNA transcription units, this makes them ideal for situations in which co-

delivery of a protein coding gene and a miRNA is desirable. They are designed to 

be substrates for processing by Drosha in the nucleus (Figure 1.3). For 
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therapeutic applications, shRNAs and artificial miRNAs are almost universally 

packaged into viruses and delivered locally, although some AAV vectors have 

been shown to cross the blood brain barrier178. Cell type and tissue specificity is 

accomplished by selecting a virus with appropriate tropism and can be refined by 

incorporating binding sites for endogenous miRNA to restrict expression to the 

tissue of interest179. Because they mediate long-term target silencing, virally 

delivered shRNA and miRNA expression constructs are most suitable for 

conditions that require long term silencing of endogenous genes and where there 

is little expectation of toxicity. 
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Figure 1.3. Therapeutic RNAi constructs and the RNAi pathway 
siRNAs are delivered to the cytoplasm. Complexed or encapsulated siRNAs 
must escape the endosomal compartment prior to loading into Argonaute 
complexes. shRNAs are designed to be transcribed in the nucleus by 
polymerase III promoters and exported to the cytoplasm by exportin-5. In the 
cytoplasm they are processed by Dicer and loaded into Argonaute complexes. 
Artificial miRNAs are primarily transcribed by polymerase II promoters and enter 
the RNAi pathway at the Drosha processing step.
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Toxicity: Seed mediated off-target effects  

Sequence specific off-target effects can occur when an exogenous small RNA 

has partial complementarity to endogenous mRNAs180,181. These off-target 

effects are due largely to complementarity between mRNAs and the 6-7 

nucleotide small RNA seed sequence68,182,183. Messenger RNAs with only a seed 

matching miRNA target site are generally only modestly downregulated in 

response to the miRNA144,184, therefore the importance of seed-mediated off-

target effects is unclear. However, in one study 51 out of 176 randomly selected 

siRNAs targeting two different mRNAs reduced cell viability in culture. The toxic 

phenotype was independent of on-target silencing and dependant on 

components of the RNAi machinery185. Owing to divergences in the 3′-UTRs of 

mRNAs and to differences in mRNA expression patterns, off-target effects are 

species specific186 and likely cell type specific. Chemical modifications187,188 and 

nucleotide substitutions that destabilize seed:mRNA pairing189,190 can reduce 

guide strand mediated off-target effects.  

Seed mediated off-targeting effects can also be occur if the passenger, 

rather than the guide strand of an siRNA duplex incorporates into the Argonaute 

complex. Increasing the asymmetry of the siRNA to favor loading of the intended 

strand can reduce these effects. Strategies to increase asymmetry include: 

introducing a deliberate mismatch between the 5′-end of the guide strand and the 

3′-end of the passenger strand139, introducing chemical modifications into the 

guide or passenger strand191,192 or modifying the siRNA structure193. 
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Some nucleotide hexamers are more commonly found in 3′-UTRs than 

others. The frequency of seed mediated off-target effects can be reduced by 

avoiding seed sequences that target hexamers that are abundant in the 3′-UTRs 

of transcribed genes194,195. This may be especially important when designing 

shRNA or artificial miRNAs. Minimizing sequence specific off targeting of 

shRNAs and artificial miRNAs can only be accomplished by selecting appropriate 

sequences, as promoter driven hairpins cannot be chemically modified to reduce 

off-targeting effects or to favor loading Argonaute loading of the appropriate 

strand. Unfortunately, selection for low frequency seed sequences limits the pool 

of potential therapeutic sequences and could preclude targeting of specific 

disease-associated sites.  

Toxicity: Immune Stimulation 

In mammalian cells, long double stranded RNA can induce non-specific 

degradation of RNA and translational repression by a mechanism involving 

activation of PKR, phosphorylation of elongation factor 2196
 and activation of 

RNAse L197. Initially, double stranded RNAs shorter than 30bp were thought to 

escape this response122,198 but later studies showed that 21 nucleotide siRNAs 

can activate PKR and upregulate interferon response genes199. Short double and 

single stranded RNAs can also activate an immune response by signaling 

through Toll-like receptors (TLRs). TLR3, an extracellular receptor which 

recognizes dsRNA, can be activated non-specifically by siRNAs200,201 and signals 
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through NF-kB to stimulate production of type I interferons (IFNs)202. TLR7 and 

TLR8 recognize GU rich single- and potentially double-stranded RNAs203-205 and 

are thought to be responsible for the sequence-specific immune response to 

siRNAs206-208. Like seed-mediated off-target effects, activation of innate immunity 

by short RNAs can be prevented by 2’-O-methyl modification209. 

Immune responses can be affected by mode of delivery206,210. siRNAs 

entering the cell via endocytosis (as occurs with liposomal formulations) can be 

exposed to endosomal TLR3, TLR7 and TLR8 resulting in activation of the 

immune response. Delivery methods that bypass endocytosis may avoid the 

same immune response. Two types of RNAi triggers are commonly used to 

induce RNAi: plasmid- or virally-expressed hairpins and siRNA duplexes. The 

preceding discussion focused primarily on immune responses to siRNAs, but 

virally delivered hairpins can also elicit immune responses211,212 these responses 

may depend on expression levels, on structural characteristics of the hairpin or 

on the animal’s previous viral exposure. Very little information is available 

regarding stimulation of immunity by small RNAs specifically in the brain 

therefore any RNAi therapeutic for Huntington’s disease will need to be 

evaluated for potential immune stimulation.  

Toxicity: Saturation of the RNAi machinery 

Overexpression of shRNAs is thought to be responsible for another safety issue: 

saturation of the small RNA silencing pathway. In mice, intravenous injection of 
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high doses of virally expressed shRNAs can induce liver toxicity and death. 

Toxicity is not sequence specific, but is correlated with high shRNA expression 

and decreased levels of the endogenous liver miRNA, miR-122 suggesting that 

the shRNAs interfere with endogenous miRNA processing. Overexpression of 

exportin-5 increases silencing by the shRNA213 but overexpression also 

increases toxicity214 suggesting that toxicity can be caused both by saturation of 

exportin-5 and by saturation of downstream components214. The sequence of an 

shRNA can affect its expression levels and processing: highly similar shRNA can 

show dramatically different expression levels and some are inefficiently 

processed213. Toxicity can be eliminated by lowering the expression of the 

shRNA using a weaker, tissue-specific promoter215. Loss of shRNA-induced 

silencing in the liver is caused by loss of shRNA expressing cells and is therefore 

an indication of hepatotoxicty. Overexpression of either Ago-2 or Exportin-5 

increases the duration of shRNA induced silencing in the liver, indicating 

decreased toxicity. Prolonged maximal silencing is only produced by combining a 

low toxicity shRNA with reduced shRNA dose214. 

Saturation or overexpression toxicity can occur in the brain as well. 

Davidson and colleagues found that injection of two specific AAV-shRNAs 

targeting exon 2 and 30 of Huntingtin (AAVsh2.4-GFP, AAVsh30.1-GFP) into the 

striatum caused microglia activation and loss of staining for dopamine and 

cAMP-regulated protein (DARPP-32), a marker of medium spiny neurons. A third 

shRNA targeting exon 8 of Huntingtin (AAVsh8.2-GFP) was not toxic216. The 

26



 
 

 

passenger strand and the unprocessed shRNA transcript were undetectable in 

the brain, indicating that the shRNA was exported to the cytoplasm, processed 

by Dicer and loaded into Argonaute complexes. Toxicity was correlated with 

higher expression of the mature guide strand suggesting that a later component 

of the RNAi pathway, possibly Argonaute, was limiting. Lowering the viral titer 

reduced both toxicity and silencing efficacy, whereas incorporating the 

sequences into a miRNA backbone lowered the levels of the precursor and 

mature guide strand in cell culture and reduced toxicity in vivo without affecting 

Huntingtin silencing216. In an attempt to compare the silencing efficiency of 

shRNAs and artificial miRNAs, Davidson’s group developed optimized shRNAs 

and miRNAs expressed from the same U6 promoter and producing the same 

mature guide strand sequence. They found that the shRNAs were more potent, 

but that the precursor transcript accumulates both in the nucleus and in the 

cytoplasm indicating that overexpression of shRNAs may saturate the RNAi 

machinery at multiple steps216. In contrast, precursors from artificial miRNAs do 

not accumulate. Toxicity caused by overexpression of shRNAs is not limited to 

mice. Similar findings have been reported in the rat substantia nigra217,218 and in 

dog heart219.  

Saturation of the endogenous miRNA machinery can cause competition 

between exogenous small RNAs and endogenous miRNAs. In competition 

assays, shRNAs reduce the efficiency and processing of co-expressed GFP 

miRNAs, whereas artificial miRNAs do not6. There is evidence of competition 
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between siRNAs: co-administration of inactive with active siRNAs reduces 

silencing220. Argonaute-2 in particular may be limiting. Reduced expression of 

Ago2, but not of exportin-5 or of other components of the RNAi pathway 

decreases siRNA potency and increases competition between siRNAs221. 

Overexpression of exportin-5 increases both shRNA potency and toxicity in the 

liver214, again suggesting that the miRNA pathway can be saturated downstream 

of exportin-5214.  

It has been suggested that artificial miRNAs do not compete for saturable 

components of the RNAi machinery222 but the components of the RNAi pathway 

are expressed at different levels in different cell types and in different tissues. 

Toxicity may depend both on the type of construct and on the target tissue. In 

addition to the striatal loss of neurons described by the Davidson group216, it has 

recently been shown that striatal delivery of U6 promoter driven shRNAs 

targeting torsinA, which causes the dominantly inherited disease DYT1 dystonia, 

can cause lethal toxicity223. The cause of this toxicity is unclear, but 129/SvEv 

mice were more susceptible than C57BL/6223.  

Disruption of endogenous miRNAs in the brain may be of particular 

concern. A large number of miRNAs are expressed in the brain224, some of these 

appear to be involved in maintaining neuronal differentiation225. Disruption of 

miRNA biogenesis in the brain can cause behavioral and neuropathological 

defects: deletion of Dicer in cerebellar Purkinje cells226 or in astroglia227 causes 

progressive neurodegeneration. Changes in miRNA expression and alteration of 
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miRNA networks, including one involving a feedback loop between 

REST/CoREST and mir9/mir9*228-230 may play a role in HD pathogenesis. In 

mouse models of HD, global changes in miRNA expression coincide with 

changes in the levels of key components of the miRNA processing machinery231. 

Disruption of the endogenous miRNA pathway in HD may increase the likelihood 

of pathway saturation and complicate the development of HD therapeutics.  

RNAi Therapy for Huntington’s Disease 

Three main approaches to RNAi therapeutics for HD have emerged (Figure 1.4), 

simultaneous silencing of mutant and normal Huntingtin (nonallele-specific 

silencing), direct targeting of the CAG repeat region, and targeting of 

polymorphisms in the Huntingtin gene. For any disease therapy there are two 

goals: treat the disease and minimize the side effects. For an autosomal 

dominant disease, like HD, the most direct approach would be to specifically 

eliminate the toxic gene product.  
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CAG Targeting 

The most obvious target in HD is the CAG repeat expansion itself. Normal 

Huntingtin contains 18-35 CAGs or 2-5 binding sites for a typical 21 nucleotide 

siRNA. A perfectly matched siRNA, which requires only a single binding site, 

should bind and cleave both the normal and the mutant Huntingtin mRNA (Figure 

1.4A). Preventing cleavage by introducing mismatches between the siRNA guide 

and its miRNA target so that multiple binding sites are required to achieve 

silencing (Figure 1.4B) may allow discrimination between long and short 

isoforms232. However, there are over 400 CAG repeats in the human genome. 

Over 60 protein coding genes containing CAG repeats are translated into 

proteins having 5 or more consecutive glutamines233. Oligonucleotides targeting 

the CAG repeat region alone may not be gene specific.  

Gene-specific silencing  

Because of the difficulties involved in CAG repeat targeting, many studies have 

used gene specific (nonallele-specific) small RNAs. Polymerase III driven short 

hairpin RNAs (shRNAs) perfectly matched to human Huntingtin but containing 

mismatches to the mouse mRNA reduce neuronal inclusions and improve or 

delay behavioral deficits in transgenic mice expressing truncated versions of 

human Huntingtin2-4,234. Transgene mRNA levels in the striatum were reduced by 

50%4 to 75%234 and protein by 40%234. The shRNAs used in these studies 

contain mismatches to the mouse Huntingtin. One study used an shRNA with 
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mismatches to mouse Huntingtin at positions 4, 9-11 and 17. The authors report 

no reduction of mouse Huntingtin by qRT-PCR4. Notably, although the intended 

guide strand is easily detected in Northern blots, the shRNA used in this study 

likely exhibits inappropriate strand biasing4. Rodriguez-Lebron234 and colleagues 

tested two shRNAs: a 19-mer targeting the 5′-UTR of human Huntingtin (siHUNT-

1) and a 21-mer targeting sequences in exon1 upstream of the CAG repeat 

region (siHUNT-2). The 5′-UTR targeting shRNA is likely human specific, but 

siHUNT-2 contains only 3 mismatches to the mouse Huntingtin at positions 1, 10 

and 19. It is unclear if these mismatches are sufficient to prevent partial silencing 

of mouse Huntingtin. siHUNT-2 but not siHUNT-1 caused a reduction in the 

levels of several other striatal mRNA transcripts in both R6/1 and wild-type 

mice234. This effect was sequence specific, as ribozymes targeting the same 

region produced similar disruptions in striatal mRNA transcripts235. 

siRNAs can also reduce clinical and neuropathological symptoms in mice. 

Injection of siRNAs targeting the same region of exon1 of the human Huntingtin 

into newborn mice prolongs lifespan and reduces behavioral defects in a rapid 

onset transgenic model of HD (R6/2)3. Co-injection of cholesterol conjugated 

siRNA targeting Huntingtin exon 1 can reduce neuropathology induced by an 

AAV virus encoding an N-terminal (1,395 nucleotides), CAG expanded human 

Huntingtin fragment5. Although the siRNA in this experiment also matches mouse 

Huntingtin, the time course of this experiment was too short to draw any 

conclusions about the effects of mouse Huntingtin knockdown. 
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Studies targeting human Huntingtin transgenes in the presence of mouse 

Huntingtin2-5,234 have shown promise, but the presence of the wild-type mouse 

Huntingtin complicates the interpretation of results. Silencing the mutant 

transgene generally improves behavior and reduces neuropathology, but when 

mouse Huntingtin is left intact, these studies more closely resemble allele-

specific rather than gene-specific silencing. Unfortunately, the sequences used 

cannot be expected to achieve allele-specific silencing in humans. 

In order to examine the effects of simultaneous silencing of wild-type and 

mutant Huntingtin (gene-specific silencing, Figure 1.4D), Boudreau and 

colleagues used an artificial miRNA targeting both human and mouse Huntingtin. 

HD-N171-82Q. Mice treated with this miRNA showed improved performance in 

behavioral assays (rotarod) and improved survival when compared to control 

treated mice6. In microarray experiments, silencing of mouse Huntingtin in wild-

type mice caused two fold or greater expression changes in 473 transcripts and 

subtle changes in transcripts containing RE1/NRSE binding sites6. 

Simultaneously, a second group showed, using a lentiviral shRNA, that 65-75% 

reduction in endogenous rat Huntingtin caused gene expression changes in 

pathways associated with wild-type Huntingtin function, but did not produce any 

signs of toxicity110. Overall, these results indicate that partial nonallele-specific 

silencing of Huntingtin may be tolerated. However, the long term effects of subtle 

changes caused by reduction of wild-type Huntingtin, in particular on the ability of 

neurons to respond and recover from toxic insults, are difficult to predict. The 
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clear advantage of both CAG repeat targeting and nonallele-specific silencing is 

that both approaches support a single treatment, which could be optimized for 

potency and specificity and would be suitable for all HD patients.  

Targeting single nucleotide polymorphisms 

One alternative to direct CAG targeting or nonallele-specific silencing is to use 

heterozygous single nucleotide polymorphisms to distinguish between the mutant 

and wild-type Huntingtin mRNA. siRNAs can distinguish between mRNAs 

differing at a single nucleotide158,236,237. Discrimination depends on the position 

and composition of the mismatch between the siRNA guide strand and the 

mRNA target: purine:purine mismatches at positions 10 or 16 are good 

candidates for single-nucleotide discrimination237,238. For siRNA:mRNA pairs 

where single nucleotide mismatches do not provide sufficient discrimination 

between two SNP isoforms, additional mismatches in the seed region or at the 3′-

end of the siRNA guide strand can improve discrimination239,240. 

Allele-specific siRNAs have been developed for SNPs in several disease 

causing genes including the SOD1, Huntingtin and ataxin-3 genes236,237,240. 

Allele-specific shRNAs targeting SNP sites have been developed for other CAG 

repeat expansion diseases240-242. Expansion of the CAG repeat region in the 

coding region of the ataxin-3 gene causes Machado-Joseph 

disease/spinocerebellar ataxia type 3 (MJD/SCA3)243. In rats, co-delivery of an 

shRNA targeting a SNP at the 3′-end of the CAG repeat region of ataxin-3 

35



 
 

 

decreases neuropathology in a lentiviral model of MJD241. Both shRNAs and 

artificial miRNAs targeting a SNP site in ataxin-7, the gene responsible for 

spinocerebellar ataxia type 7 (SCA7) discriminate between the mutant and wild-

type isoforms in cell culture but the miRNA may be safer242.The shRNA, but not 

the miRNA, competes with a co-delivered GFP shRNA causing a reduction in 

GFP silencing242.  

In the previous examples, selecting a SNP to target is straightforward. A 

single nucleotide polymorphism in the SOD1 mRNA causes an inherited form of 

Amyotrophic Lateral Sclerosis (ALS) and specific haplotypes are associated with 

both SCA7 and SCA3. In contrast, the HD CAG repeat expansion was not 

previously thought to be associated with any specific SNPs. For SNP targeting to 

be practical for HD, there must be sufficient heterozygosity in the Huntingtin gene 

for a majority of patients to be covered by a small number of SNP sites. Hayden 

and colleagues provided evidence that the SNP distribution of HD and normal 

chromosomes differ244. Ninety-five percent of HD chromosomes belong to a 

single haplotype defined by 10 SNPs; only fifty-three percent of control 

chromosomes belong to this same haplogroup. Consequently, approximately 

forty-five percent of patients can be expected to be heterozygous and could, in 

theory, be treated with a single siRNA targeting one of the SNPs that defines this 

haplogroup. However, this study did not distinguish between SNPs occurring in 

introns, which are not useful for RNAi, and those in exons, which are candidate 

therapeutic targets. Our strategy was to develop a panel of SNP targeted RNAi 
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therapeutics. In individual patients, the appropriate SNP-selective therapeutic 

would be chosen from among the panel using SNP linkage by circularization 

(SLic)245. In this method, circularization of a PCR amplified fragment of the 

Huntingtin cDNA brings the CAG repeat and a heterozygous SNP site into close 

proximity, and linkage between the CAG repeat and the SNP can be established 

by sequencing (Fig. 1.6). Once the SNP-CAG linkage is established, the 

appropriate RNAi therapeutic could be selected from the panel. However, if each 

SNP covers only a few patients, the cost of developing such a panel would not 

only be prohibitive, but a meaningful phase III drug trial might be impossible. This 

dissertation describes our approach to developing SNP targeting RNAi therapy 

for HD.  
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CHAPTER II: FIVE SIRNAS TARGETING THREE SNPS IN HUNTINGTIN MAY 

PROVIDE THERAPY FOR THREE-QUARTERS OF HUNTINGTON’S DISEASE 

PATIENTS 
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Preface 

The work presented in this chapter was a collaborative effort. Lori Kennington 

and Sujata Wagh performed the genotyping of human DNA samples. Lori 

Kennington and I analyzed the sequencing results. Juerg Straubhaar performed 

the statistical analyses and generated Figure 2.1B. Wanzhou Liu determined the 

SNP-CAG linkage presented in Table 2.2. Lori Kennington and I cloned the SNP 

sites into the luciferase reporters. I designed the siRNAs and generated and 

analyzed the data for the luciferase assays. I did the Western blotting and qRT-

PCR.  

 

This work has appeared as: 

 

Five siRNAs targeting three SNPs in Huntingtin may provide therapy for three-

quarters of Huntington’s disease patients. 

Pfister, EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, 

Landwehrmeyer B, Vonsattel JP, Zamore PD, Aronin N. Curr Biol. 2009 May 12; 

19(9): 774-778. 
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Summary 

Among dominant neurodegenerative disorders, Huntington’s disease (HD) is 

perhaps the best candidate for treatment with small interfering RNAs (siRNAs)2-

5,246-250. Invariably fatal, HD is caused by expansion of a CAG repeat in the 

Huntingtin gene, creating an extended polyglutamine tract that makes the 

Huntingtin protein toxic1. Silencing mutant Huntingtin mRNA should provide 

therapeutic benefit, but no siRNA strategy can yet distinguish among the normal 

and disease Huntingtin alleles and other mRNAs containing CAG repeats7. 

siRNAs targeting the disease isoform of a heterozygous single-nucleotide 

polymorphism (SNP) in Huntingtin provide an alternative158,236,237,251,252, because 

such siRNAs should preserve expression of normal Huntingtin, which likely 

contributes to neuronal function29,253,254. We sequenced 22 predicted SNP sites 

in 225 human samples corresponding to HD and control subjects. We find that 

48% of our patient population is heterozygous at a single SNP site; one isoform 

of this SNP is associated with HD. Several other SNP sites are frequently 

heterozygous. Consequently, five allele-specific siRNAs, corresponding to just 

three SNP sites, could be used to treat three-quarters of the United States and 

European HD patient populations. We have designed and validated selective 

siRNAs for the three SNP sites, laying the foundation for allele-specific RNAi 

therapy for HD. 
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Results 

Current strategies for designing single nucleotide-selective siRNAs rely on SNPs 

that produce a purine:purine mismatch between the siRNA guide strand and the 

counter-selected mRNA target237,238. Only 4 of the 12 nucleotide mismatches 

satisfy this criterion. Even when purine:purine mismatches are available, single-

mismatch siRNAs vary in their selectivity, ranging in one study, for example, from 

4.3- to 133-fold discrimination between the fully complementary targeted RNA 

and the mismatched, counter-selected RNA237. 

Sequencing and analysis of Huntingtin SNP sites in HD and control 

patients 

We sequenced twelve PCR amplicons spanning 22 known SNP sites in 

Huntingtin using genomic DNA from 109 Huntington’s disease patients and 116 

non-HD controls (Figure 2.1). The sequenced DNA encompassed six complete 

coding exons and the portion of exon 67 that contains the stop codon and part of 

the 3′ untranslated region (UTR). Twenty-two of the SNP sites were reported in 

the SNPper database255,256. Four of these reported SNP sites were present only 

as a single isoform in our population. We identified an additional two sites by 

resequencing exons 2–67 in the Huntingtin locus from six HD patient samples.  
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Table 2.1 reports the frequency of heterozygosity for each SNP site for patient 

and control DNA. 

Of the 24 SNPs, rs362307 at nt 9,633 (exon 67) of the mRNA was 

significantly associated with HD (p = 0.0000523). After Bonferroni correction for 

multiple testing, the association remained significant (p = 0.000890). More than 

48% of the HD patients we examined—which are believed to be representative of 

the US and European patient pool—were heterozygous at this site (Table 2.1). 

The U isoform of the rs362307 SNP comprised 26% of Huntingtin alleles among 

the patients we tested, but in only 6% of alleles among the controls. This finding 

suggests that a single, allele-specific siRNA selectively targeting the U mRNA 

isoform of this SNP could be used to treat nearly half of this patient population. 

To confirm our statistical analysis, we used a previously reported method to 

determine the rs362307 SNP isoform linked to the CAG repeat expansion 

allele245 for 16 patient blood samples. Eight out of the 16 patients were 

heterozygous at this site; of the eight, the U isoform was linked to the expanded 

CAG repeat for seven patients (Table 2.2). We conclude that the U isoform of 

this SNP is associated with the disease allele of Huntingtin mRNA. 

  

44



Ta
bl

e 
2.

1.
 F

re
qu

en
cy

 o
f H

et
er

oz
yg

os
ity

 fo
r 2

4 
SN

P 
si

te
s 

in
 th

e 
H

un
tin

gt
in

 m
R

N
A

  
Th

e 
S

N
P

 s
ite

s 
fo

r w
hi

ch
 w

e 
te

st
ed

 s
iR

N
A

s 
ar

e 
in

 b
ol

d;
 th

e 
S

N
P

 a
ss

oc
ia

te
d 

w
ith

 H
D

 is
 s

ha
de

d.

45



Ta
bl

e 
2.

1

C
on

tr
ol

s
H

D
 p

at
ie

nt
s

O
R

F,
 e

xo
n 

20
 (2

82
2)

rs
36

30
75

G
/A

, 1
0.

3%
 (G

/G
, 8

9.
7%

)
G

/A
, 1

2.
8%

 (G
/G

, 8
6.

2%
; A

/A
 0

.9
%

)
O

R
F,

 e
xo

n 
25

 (3
33

5)
rs

35
89

29
13

G
/A

, 1
0.

3%
 (G

/G
, 8

9.
7%

)
G

/A
, 1

3.
0%

 (G
/G

, 8
6.

1%
; A

/A
, 0

.9
%

)
O

R
F,

 e
xo

n 
25

 (3
38

9)
rs

10
65

74
6

G
/C

, 0
%

 (G
/G

 1
00

%
)

G
/C

, 0
.9

%
 (G

/G
 9

9.
1%

)
O

R
F,

 e
xo

n 
25

 (3
41

8)
rs

17
78

15
57

T/
G

, 1
2.

9%
 (T

/T
, 8

7.
1%

)
T/

G
, 1

.9
%

 (T
/T

, 9
8.

1%
)

O
R

F,
 e

xo
n 

29
 (3

94
6)

rs
46

90
07

4
C

/T
, 3

7.
9%

 (C
/C

, 5
0.

9%
; T

/T
, 1

1.
2)

C
/T

, 3
5.

8%
 (C

/C
, 5

9.
6%

; T
/T

, 4
.6

%
)

O
R

F,
 e

xo
n 

39
 (5

30
4)

rs
36

31
25

C
/A

, 1
7.

5%
 (C

/C
, 7

9.
0%

; A
/A

, 3
.5

%
)

C
/A

, 1
1.

0%
 (C

/C
, 8

7.
2%

; A
/A

, 1
.8

%
)

O
R

F,
 e

xo
n 

44
 (6

15
0)

ex
on

 4
4 

(n
ew

)
G

/A
, 0

%
 (G

/G
, 1

00
%

)
G

/A
, 2

.8
%

 (G
/G

, 9
7.

2%
)

O
R

F,
 e

xo
n 

48
 (6

73
6)

rs
36

23
36

G
/A

, 3
8.

7%
 (G

/G
, 4

9.
6%

; A
/A

, 1
1.

7%
)

G
/A

, 3
7.

4%
 (G

/G
, 5

7.
9%

; A
/A

, 4
.7

%
)

O
R

F,
 e

xo
n 

50
 (7

07
0)

rs
36

23
31

T/
C

, 4
5.

7%
 (T

/T
, 3

1.
0%

; C
/C

, 2
3.

3%
)

T/
C

, 3
9.

4%
 (T

/T
, 4

9.
5%

; C
/C

, 1
1.

0%
)

O
R

F,
 e

xo
n 

57
 (7

94
2)

rs
36

22
73

A
/G

, 4
0.

3%
 (A

/A
, 4

8.
2%

; G
/G

, 1
1.

4%
)

A
/G

, 3
5.

2%
 (A

/A
, 6

0.
2%

; G
/G

, 4
.6

%
)

O
R

F,
 e

xo
n 

61
 (8

50
1)

rs
36

22
72

G
/A

, 3
7.

1%
 (G

/G
, 5

1.
7%

; A
/A

, 1
1.

2%
)

G
/A

, 3
6.

1%
 (G

/G
, 5

9.
3%

; A
/A

, 4
.6

%
)

O
R

F,
 e

xo
n 

65
 (9

05
3)

rs
30

25
80

6
A

/T
 0

%
 (C

/C
, 1

00
%

)
A

/T
 0

%
 (C

/C
, 1

00
%

)
O

R
F,

 e
xo

n 
65

 (9
17

5)
ex

on
 6

5 
(n

ew
)

G
/A

, 2
.3

%
 (G

/G
, 9

7.
7%

)
G

/A
, 0

%
 (G

/G
, 1

00
%

)
O

R
F,

 e
xo

n 
67

 (9
52

3)
rs

36
23

08
T/

C
, 0

%
 (T

/T
, 1

00
%

)
T/

C
, 0

%
 (T

/T
, 1

00
%

)
3′

 U
TR

, e
xo

n 
67

 (9
63

3)
rs

36
23

07
C

/T
, 1

3.
0%

 (C
/C

, 8
7.

0%
)

C
/T

, 4
8.

6%
 (C

/C
, 4

9.
5%

; T
/T

 1
.9

%
)

3′
 U

TR
, e

xo
n 

67
 (9

88
8)

rs
36

23
06

G
/A

, 3
6.

0%
 (G

/G
, 5

2.
6%

; A
/A

, 1
1.

4%
)

G
/A

, 3
5.

8%
 (G

/G
, 5

9.
6%

; A
/A

, 4
.6

%
)

3′
 U

TR
, e

xo
n 

67
 (9

93
6)

rs
36

22
68

C
/G

, 3
6.

8%
 (C

/C
, 5

0.
0%

; G
/G

 1
3.

2%
)

C
/G

, 3
5.

8%
 (C

/C
, 5

9.
6%

; G
/G

, 4
.6

%
)

3′
 U

TR
, e

xo
n 

67
 (9

94
8)

rs
36

23
05

C
/G

, 2
0.

2%
 (C

/C
, 7

8.
1%

; G
/G

 1
.8

%
)

C
/G

, 1
1.

9%
 (C

/C
, 8

5.
3%

; G
/G

, 2
.8

%
)

3′
 U

TR
, e

xo
n 

67
 (1

00
60

)
rs

36
23

04
C

/A
, 2

2.
8%

 (C
/C

, 7
3.

7%
; A

/A
, 3

.5
%

)
C

/A
, 1

1.
9%

 (C
/C

, 8
5.

3%
; A

A
, 2

.8
%

)
3′

 U
TR

, e
xo

n 
67

 (1
00

95
)

rs
36

23
03

C
/T

, 1
8.

4%
 (C

/C
, 7

9.
8%

; T
/T

, 1
.8

%
)

C
/A

, 1
1.

9%
 (C

/C
, 8

5.
3%

; T
/T

, 2
.8

%
)

3’
-U

TR
, e

xo
n 

67
 (1

07
04

)
rs

15
57

21
0

C
/T

, 0
%

 (C
/C

 1
00

%
)

C
/T

, 0
%

 (C
/C

 1
00

%
)

3′
 U

TR
, e

xo
n 

67
 (1

07
08

)
rs

36
23

02
C

/T
, 4

.3
%

 (C
/C

, 9
5.

7%
)

C
/T

, 0
%

 (C
/C

, 1
00

%
)

3’
-U

TR
, e

xo
n 

67
 (1

07
96

)
rs

30
25

80
5

G
/T

, 0
%

 (G
/G

 1
00

%
)

G
/T

, 0
%

 (G
/G

 1
00

%
)

3′
 U

TR
, e

xo
n 

67
 (1

10
06

)
rs

36
22

67
C

/T
, 3

6.
2%

 (C
/C

, 5
2.

6%
; T

/T
,1

1.
2%

)
C

/T
, 3

5.
5%

 (C
/C

, 5
9.

8%
; T

/T
, 4

.7
%

)

Pe
rc

en
t h

et
er

oz
yg

os
ity

Lo
ca

tio
n 

in
 m

R
N

A
 

(p
os

iti
on

, n
t)

R
ef

er
en

ce
 

N
um

be
r

46



Table 2.2. The U Isoform of SNP rs362307 at Huntingtin mRNA Nucleotide 
9,633 Is Associated with the Expanded CAG Disease Allele
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Nucleotide Mutant allele Normal allele
4 C/U U C
5 C/U U C
7 C/U U C
8 C/U U C
9 C/U C U
11 C/U U C
14 C/U U C
15 C/U U C

Patient number

Linkage

Table 2.2
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An additional two SNPs achieve patient coverage > 75% 

Eight other SNP sites were each heterozygous in > 33% of our patient 

population, but did not show a statistically significant association with HD. 

Because no particular isoform of these SNPs is associated with HD in our patient 

population, each SNP site requires two distinct, isoform-selective siRNAs. We 

calculated the maximum coverage (i.e., the number of patients with at least one 

heterozygous SNP site) for all possible combinations of 1 to 7 SNPs. Adding two 

additional SNP sites covered ~75% of our patient population. Using four or more 

SNP sites as potential targets for siRNA therapy is not predicted to provide much 

additional benefit: using even seven SNP sites achieves < 80% coverage, but 

would require 13 isoform-selective siRNAs (Figure 2.2). 
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Figure 2.2. Heterozygosity of SNPs in HD patients 
The maximum percentage of patients to have at least one heterozygous SNP 
using any combination of 1 to 7 SNPs was calculated using the experimentally 
determined frequency of heterozygosity for the SNP sites in our study. Three 
SNPs cover ~75% of the patient population analyzed here 
Figure 2.2. Repression of Luciferase Expression in Reporter Assays 
Corresponds to Depletion of Endogenous Huntingtin mRNA
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Figure 2.2
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Luciferase reporter assays using matched and mismatched targets are 

good predictors of efficacy and selectivity for endogenous mRNA targets 

To verify that luciferase reporter assays are good predictors of the efficacy and 

selectivity of siRNAs for endogenous mRNA targets, we compared the ability of a 

pair of siRNAs (Figure 2.3A) targeting a SNP site (rs363125) to discriminate 

between matched and mismatched isoforms of endogenous HeLa cell Huntingtin 

mRNA to the ability of the same set of siRNAs to reduced luciferase activity of 

the matched and mismatched reporters. HeLa cells have a C at this position in 

the mRNA. In luciferase assays, the siRNA matched to the C isoform of the SNP 

has an IC50 of 0.06nM and reduces luciferase activity by 88%, whereas the 

siRNA targeting the U isoform has an IC50 of 0.11nM and reduces activity from 

the C target by 55% (Figure 2.3B). We measured the levels of endogenous HeLa 

cell Huntingtin mRNA by quantitative RT-PCR and found that the IC50 of the 

matched siRNA targeting the endogenous HeLa cell mRNA is 0.5nM. Huntingtin 

mRNA levels are reduced by an average of 87%. We are unable to calculate an 

IC50 using the mismatched siRNA, but Huntingtin mRNA levels are reduced by 

66% (Figure 2.3C). We observed a corresponding difference in the levels of 

endogenous Huntingtin protein (Figure 2.4). 
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Figure 2.3. Repression of Luciferase Expression in Reporter Assays 
Corresponds to Depletion of Endogenous Huntingtin mRNA 
(A) Matched and mismatched siRNAs targeting the SNP rs363125 at nt 5,304 of 
Huntingtin mRNA. siRNAs are shown in capital letters with the passenger strand 
at top and the guide strand paired to the mRNA, in lower case letters. The 
mismatch is at siRNA position 10. Dose-response analysis for these siRNAs 
using (B) transfected plasmids expressing luciferase reporters and (C) 
quantitative RT-PCR assays measuring endogenous Huntingtin mRNA. HeLa 
cells are homozygous for the C isoform of this SNP (data not shown).
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Figure 2.3 
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Figure 2.4. A Fully Matched siRNA That Reduces Expression of Both a 
Luciferase Reporter and Endogenous Huntingtin mRNA Causes a 
Corresponding Depletion of Endogenous Huntingtin Protein 
An identical siRNA, but for a position 10 (P10) mismatch to the luciferase 
reporter and to the endogenous Huntingtin mRNA, was far less effective at 
suppressing Huntingtin protein production. HeLa cells were transfected with 
either the P10 match or P10 mismatch siRNA targeting SNP rs363125 at nt 
5,304 of the Huntingtin mRNA, GFP siRNA alone, or a positive control siRNA 
targeting a non-polymorphic site in Exon 1 (E1-4) of the Huntingtin mRNA5. Cells 
were lysed 48 h after transfection and analyzed by Western blotting using 
antibodies to Huntingtin and α-Tubulin, which served as a loading control. (A) 
and (B) show independent replicates of the experiment.
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Development of allele-specific siRNAs 

The HD-associated SNP site at position 9,633 of the Huntingtin mRNA does not 

fall into the category of SNPs predicted to be readily amenable to selective 

targeting, because it does not create a purine:purine mismatch between siRNA 

and mRNA237,238. However, our analysis of Huntingtin SNPs in HD patients and 

controls (Figure 2.2 and Table 2.1) suggests that a practicable RNA silencing 

therapy for HD requires an siRNA that targets the disease isoform at this site, but 

spares the normal Huntingtin mRNA. To this end, we designed siRNAs targeting 

the U isoform of the position 9,633 SNP. We tested both the efficacy and 

selectivity of the siRNAs in cultured human HeLa cells co-transfected with the 

siRNA and luciferase reporters containing in their 3′ UTRs either the U or C 

isoform of the sequence containing the SNP. Previous work has shown that such 

SNP selective siRNAs can reduce mutant Huntingtin levels while leaving normal 

Huntingtin intact257. 

siRNAs whose guide strand was fully matched to the U isoform, which is 

associated with HD, but mismatched at position 10 or position 16 to the C 

isoform, were functional, but failed to discriminate between U and C reporter 

mRNAs (Figure 2.5). (siRNAs that bear purine:pyrimidine mismatches to their 

counter-selected targets generally show poor discrimination237.) We also tested 

single mismatches at positions 2 through 9 (Table 2.3), but found that all of these 

were less specific than the most selective position 10 + seed mismatch. 
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Figure 2.5. siRNAs with single mismatches at position 10 or 16 do not 
discriminate between the U and C isoforms of rs362307 
siRNAs targeting the U isoform of rs362307 and mismatched to the C isoform at 
either position 10 or position 16 did not discriminate between matched and 
mismatched luciferase reporter mRNAs. Representative data are shown.
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Figure 2.5
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Previous work has shown that adding a second mismatch can improve the 

ability of siRNA to discriminate between alleles239. We reasoned that adding a 

mismatch in the seed sequence of the siRNA might sufficiently destabilize our 

siRNA so that the doubly mismatched siRNA would lose its ability to silence the 

wild-type Huntingtin mRNA, while pairing at the SNP site would allow the singly 

mismatched siRNA to retain silencing activity for the disease allele. Double-

mismatch strategies based on a position 16 mismatch with the counter-selected 

isoform had very low activity (Table 2.3). Therefore, we tested doubly 

mismatched siRNAs combining a seed mismatch with a position 10 mismatch. 

We prepared siRNAs predicted to mismatch at position 10 with the normal 

Huntingtin mRNA and also bearing an additional mismatch to both normal and 

disease alleles at one of the six seed positions (2–7). Mismatches at positions 5 

or 6, combined with a position 10 mismatch with the counter-selected isoform, 

resulted in a reduction or loss of silencing of the SNP-mismatched target, while 

retaining good activity against the SNP-matched target (Figure 2.6A). 
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Figure 2.6. Representative Data for the Development of an Allele-Specific 
siRNA Targeting SNP rs362307, Which Is Associated with HD.  
(A) Placing an additional mismatch in the seed sequence of the siRNA bearing a 
position 10 mismatch to the C isoform improved its selective targeting of the U 
isoform. (B) A doubly mismatched siRNA targeting the C isoform also 
distinguished between reporter mRNAs corresponding to the position 10 
matched, C isoform and the position 10 mismatched, U isoform.
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Figure 2.6
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Table 2.4 reports “discrimination ratios”—the ratio of the IC50 of the 

siRNA for the counter-selected target to the IC50 of the targeted mRNA. The P10 

(SNP) + P5 siRNA (IC50P10 mismatch >20; IC50P10 match = 0.62 ± 0.43 nM) had a 

discrimination ratio > 32 and at 20 nM—the highest concentration tested—

reduced expression of the counter-selected reporter by only 33%. The P10 + P6 

siRNA achieved no appreciable reduction in expression of the mismatched 

reporter, even at 20 nM (IC50P10 mismatch > 20 nM), but was less effective against 

the matched reporter (IC50P10 match = 1.5 ± 0.31 nM), yielding a lower 

discrimination ratio. We often observed such a trade-off between the efficacy and 

the selectivity of SNP-specific siRNAs. We also designed and tested an siRNA 

targeting the C isoform; while it was less active than the siRNA targeting the U 

isoform, it selectively targeted the P10-matched allele (IC50P10 mismatch > 20; 

IC50P10 match = 3.2 ± 2.2 nM; Figure 2.4C and Table 2.4) 
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To cover 75% of HD patients requires siRNAs targeting additional SNPs. 

Because no specific nucleotide isoform of these SNP sites is associated with HD, 

selective siRNAs are needed for both isoforms. Our long-term strategy would be 

to screen patients to determine the SNP isoform associated with the expanded 

CAG repeat Huntingtin allele245 and select the corresponding for therapy. As a 

first step toward this goal, we tested its ability to target one isoform of the SNP 

while minimizing silencing of the other isoform. For the SNP site rs363125, which 

lies at nt 5,304 (exon 39) and occurs as either an A or a C, placing the mismatch 

at position provided some discrimination (Figure 2.7A), but a mismatch at 

position 16 was sufficient to provide a high degree of selectivity for the fully 

matched target for both the A (>27-fold discrimination; IC50mismatch > 20 nM; 

IC50match = 0.74 ± 0.40 nM) and C (IC50mismatch > 20nM; >55-fold discrimination; 

IC50match = 0.36 ± 0.24 nM) isoforms (Figure 2.7B and Table 2.4). For a second 

SNP, rs362273, which lies at nt 7,942 (exon 57) in the Huntingtin mRNA and 

occurs as either an A or a G, the P10 (SNP) + P5 siRNA design targeting the A 

isoform of the SNP provided ~30-fold selectivity (IC50P10 mismatch = 0.59 ± 0.08 

nM; IC50P10 match = 0.02 ± 0.003 nM, Figure 2.8A), whereas the siRNA targeting 

the G isoform (IC50P10 mismatch = 0.74 ± 0.11 nM; IC50P10 match = 0.15 ± 0.04 nM, 

Figure 2.8B) gave ~4.9-fold selectivity (Figure 2.8, Figure 2.9 and Table 2.4). 
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Figure 2.7. Representative Data for the siRNAs Targeting the rs363125 SNP 
Site 
(A) siRNAs bearing a mismatch at position 10 to the C or the A isoform of 
rs363125 did not discriminate well between matched and mismatched targets. 
(B) siRNAs mismatched at position 16 discriminated between luciferase reporter 
mRNAs bearing either the C or the A isoform of the rs363125 SNP site.
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Figure 2.7 
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Figure 2.8. Representative data for the development of isoform-specific 
siRNAs targeting the rs362273 SNP Site 
siRNAs bearing a mismatch to the SNP site at position 10 and an additional 
position 5 mismatch discriminated between the A (A) or G (B) isoforms of the 
rs362273 SNP site.
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Figure 2.8
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Figure 2.9. Adding a Position 5 Mismatch to a Position 10 Mismatched 
Increased the Ability of an siRNA to Discriminate between the Two 
Isoforms of the rs362273 SNP 
We evaluated the efficacy and selectivity of siRNAs combining mismatches at 
positions 2,3,4,5,6 or 7 with a mismatch at position 10. The position 10 + position 
5 siRNA was best able to distinguish between the matched and mismatched 
reporters. Representative data are shown.
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Figure 2.9
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Discussion 

Targeted reduction of mutant Huntingtin mRNA is considered an ideal strategy 

for treating HD. The primary obstacles to the development of such a therapy 

have been concerns about the number of siRNAs that would require testing in 

clinical trials. It is not clear if drug regulatory agencies will permit patient-specific 

siRNAs to be used in humans without large-scale clinical trials. Such trials are, of 

course, not possible if only small numbers of patients share a common SNP 

isoform. Our results suggest that there is sufficient heterozygosity at a small 

number of SNP sites among American and European HD patients to support 

SNP-specific siRNA therapy. Targeting just three SNPs with five siRNAs should 

cover the majority of HD patients in the population studied here. This is possible 

because of the presence of several highly heterozygous SNPs and because a 

single SNP isoform for SNP rs362307 is associated with HD. One siRNA 

targeting this HD-associated isoform should target the mutant Huntingtin allele in 

nearly 50% of our patient population. We have developed an siRNA that 

selectively targets the disease-associated isoform of this SNP in cultured human 

cells. In the near future, pre-clinical testing of this siRNA for efficacy, selectivity, 

and safety is clearly of the highest importance. 

What of the ~25% of patients predicted to be beyond the reach of the five 

siRNAs developed here? Unfortunately, our analysis predicts that a very large 

number of siRNAs will be required to provide siRNA therapy for this sub-

population. Adding an additional four siRNAs (for a total of nine siRNAs 
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corresponding to 5 SNP sites) only increases the treatable patient population by 

3%. A further increase in the number of siRNAs provides no real additional 

benefit. 

Finally, we find that by using potentiating mismatches in the seed 

sequence, isoform-selective siRNAs can be designed for SNP sites predicted to 

be poor candidates for the development of allele-selective siRNAs. Our data 

suggest that a single siRNA directed against a SNP isoform associated with HD 

could be used to treat nearly half the US and European HD population. Clearly, 

an siRNA directed against this SNP isoform, such as the siRNA presented here, 

merits thorough pre-clinical validation to test its promise as a candidate therapy 

for HD. 

Materials and Methods 

Patient Samples, Sequencing, and Statistical Analysis 

Patient brain samples were obtained from brain repositories in Charlestown, MA 

and New York, NY, and DNA from the DNA repository in Ulm, Germany. 

Genomic DNA was either extracted from brain tissue (USA patients) using a 

genomic DNA extraction kit (Lamda Biotech, St. Louis, MO) or obtained as 

purified (German patients). Candidate SNP sequences were amplified by PCR 

(Table S2.1) and sequenced (GENEWIZ, South Plainfield, NJ, USA, and 

Macrogen, Rockville, MD, USA). To identify new SNP sites, we selected six 
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subjects for sequencing of all 67 Huntingtin exons. All electrophoretograms were 

manually inspected for the forward and reverse directions. 

One hundred-nine case and 116 control genomes from German and US 

populations were typed at 24 SNP positions in the HD gene on human 

chromosome 4. Of these, 9 were discarded because they were rarely 

heterozygous. All assayed SNPs had a call rate greater than 95%. Four SNPs 

with a minimal allele frequency (MAF) of less than 0.01 were removed from the 

set. Deviations from Hardy-Weinberg equilibrium (HWE) were determined with 

Pearson goodness-of-fit and Fisher’s exact tests. All markers resulted in HWE p-

values of greater than 0.01. Single SNP associations were calculated for 

associations of markers with the HD phenotype. Test statistics of the Pearson 

goodness-of-fit test was determined and significance evaluated against the chi 

squared distribution and against an empirical distribution of the statistic after 

1000 permutations. Association was also tested with the Fisher’s exact test and 

the Cochran-Armitage test. A single marker, rs362307, was found to be 

associated with a significance of 0.0000523. This marker remained significant 

after Bonferroni multiple testing adjustment for 17 tests at the level of 0.000890. 

SNP rs362307 is located in a ~80 kb block of 10 markers whose average local 

linkage disequilibrium value is D′ =0.995666. The power of the study to detect 

association at p < 0.01 was > 90%. All statistical calculations were performed 

using the Haploview software, version 3.32258 and R (R: Development core team 

(2004). R: A language and environment for statistical computing. Vienna, Austria. 
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http://www.r-project.org). SNP data were imported into R and formatted for input 

into Haploview software. 

Reporter Constructs and Assays 

For rs363125, a 55-mer containing the SNP site (for 5′-cta gag GTT AAG AGA 

TGG GGA CAG TA[C/A] TTC AAC GCT AGA AGA ACA CAc tcg agc t-3′, rev 5′-

cta gag ctc gag TGT GTT CTT CTA GCG TTG AA[G/T] TAC TGT CCC CAT 

CTC TTA ACc t-3′) was cloned into the pRL-TK vector (Promega Corporation, 

Madison, WI) using the XbaI site in the 3′ UTR of the Renilla luciferase gene. 

Proper insertion was confirmed by PCR and sequencing. Luciferase assays were 

performed by co-transfection in 24 well plates of the siRNA with 0.025 µg/well of 

the SNP reporter (pRL3125) and 0.05 µg/well pGL3-control vector (Promega). 

For dose-response measurements, GFP siRNA (guide: 5′-GCA AGC UGA CCC 

UGA AGU UAA U-3′; passenger: 5′-GAA CUU CAG GGU CAG CUU GCC G-3′) 

was added to each transfection mixture so that all transfections contained 20 nM 

total siRNA. Transfections were performed using Lipofectamine 2000 (Invitrogen 

Corporation, Carlsbad, CA), according to the manufacturer’s protocol. Twenty-

four hours after transfection the cells were lysed for 20 min in 1x passive lysis 

buffer (Promega). Luciferase activity was read in 96-well plates with the Dual-

luciferase assay kit (Promega) using the GloMax multi-detection system 

(Promega). 
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For rs362307 and rs362273, a 45-mer (rs362273 forward: 5′-tcg aAG CCA 

CGA G AA GCT GCT GCT [A/G]CA GAT CAA CCC CGA GCG GGA-3′, reverse: 

5′- ggc cTC CCG CTC GGG GTT GAT CTG [T/C]AG CAG CAG CTT CTC GTG 

GCT-3′, rs362307 forward: 5′-tcg aCC GGA GCC TTT GGA AGT CTG [C/T]GC 

CCT TGT GCC CTG CCT CCA-3′, reverse: 5′-ggc cTG GAG GCA GGG CAC 

AAG GGC [G/A]CA GAC TTC CAA AGG CTC CGG-3′) containing the SNP site 

was cloned into pSiCHECK-2 (Promega) between the XhoI and NotI restriction 

sites in the 3′ UTR of a codon-optimized form of the Renilla reniformis luciferase 

gene. We used 0.025 µg/well of the psiCHECK vector in our luciferase assays, 

which were performed as above. Data were graphed and analyzed using Igor Pro 

software (WaveMetrics, Portland, OR). 

Western Blotting 

Cells were grown and transfected in 6-well plates. The final concentration of total 

siRNA transfected in each well was 20 nM (GFP siRNA plus Huntingtin siRNA). 

An siRNA targeting a non-polymorphic site in the Huntingtin mRNA (“E1-4”; 

guide: 5′-UUC AUC AGC UUU UCC AGG GUC-3′; passenger: 5′-CCC UGG AAA 

AGC UGA UGA CGG-3′) served as a positive control. Cells were lysed 48 h after 

transfection using Passive Lysis Buffer (Promega) supplemented with protease 

inhibitors (Roche Applied Science, Indianapolis, IN, USA). Samples were diluted 

in Laemmli Sample buffer (Bio-Rad Laboratories, Hercules, CA, USA) and 

resolved by electrophoresis through a 4–15% polyacrylamide denaturing Tris-HCl 
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gel (Bio-Rad). After transfer to PVDF, blots were probed with anti-Huntingtin 

antibody (Ab1, 0.5 µg/ml) 32 followed by an HRPconjugated anti-rabbit secondary 

antibody (NA934V, GE Healthcare, Buckinghamshire, UK) diluted 1:10,000. 

Chemiluminescent detection was performed with SuperSignal West Dura 

Extended Duration Substrate (Thermo Scientific, Pierce, Rockford, IL, USA) and 

images acquired with an LAS-3000 imaging system (Fujifilm, Tokyo, Japan). 

After probing with the anti-Huntingtin antibody, blots were stripped and re-probed 

with anti-α-Tubulin antibody (DM1A, Sigma Aldrich, St. Louis, MO, 1:1000) 

detected with anti-mouse secondary antibody (NA931V, GE Healthcare) diluted 

1:10,000. 

Quantitative PCR 

Cells were grown and transfected in 6-well plates. The final concentration of total 

siRNA transfected in each well was 20 nM (GFP siRNA plus Huntingtin siRNA). 

RNA was extracted 24 h after transfection using TRI reagent solution (Ambion, 

Austin, TX), and then DNase treated with Turbo DNA-free DNase (Ambion). 

cDNA was synthesized using oligo(dT) primers, Superscript III reverse 

transcriptase (Invitrogen Corporation, Carlsbad, CA) and 0.5 µg total RNA. 

Quantitative PCR reactions were performed with primers to amplify Huntingtin 

(forward, 5′-cgc aga gtc aga tgt cag ga-3′; reverse, 5′-ggg tct ctt gct tgt tcg ag-3′) 

or β-actin mRNA (forward, 5′-gga ctt cga gca aga gat gg-3′, reverse 5′-agc act gtg 

ttg gcg tac ag-3′) using the Quantitect SYBR Green PCR kit (Qiagen, Valencia, 
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CA). Data were analyzed using the 2-ΔΔCT method259 and β-actin mRNA for 

normalization. 
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CHAPTER III: PROCESSING AND THERAPEUTIC APPLICATIONS OF 

ARTIFICIAL MIRNAS TARGETING HUNTINGTIN SNPS 
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Summary 

Huntington’s disease (HD) is a neurodegenerative disorder caused by expansion 

of a CAG repeat region in exon 1 of the Huntingtin gene. The polyglutamine 

protein causes premature neuronal death in the cortex and striatum. Lowering 

mutant Huntingtin levels using RNA interference (RNAi) shows therapeutic 

promise and siRNAs targeting single nucleotide polymorphisms (SNPs) can 

specifically target the mutant Huntingtin. To facilitate delivery and promote long-

term silencing, we developed artificial microRNAs targeting Huntingtin SNPs for 

delivery using recombinant adeno-associated viruses (rAAVs). In cell culture, 

both U6 promoter driven and CMV promoter driven miRNAs can discriminate 

between matched and mismatched targets. Canonical 21 nucleotide siRNAs are 

not perfect models for SNP discriminating miRNAs as our miRNAs show 

generally poorer discrimination than siRNAs. Additional mismatches can improve 

discrimination. U6 promoter driven microRNAs (miRNAs) are overexpressed and 

can produce many more unwanted processing products than polymerase II 

driven miRNAs. Polymerase II driven artificial miRNAs produce asymmetric small 

RNAs from the guide strand (miRNA) and the passenger strand (miRNA*) at a 

ratio of approximately 15:1. No other products are produced at significant levels. 

In vivo, polymerase II driven miRNAs are expressed at moderate levels following 

direct injection of self-complementary AAV9-miRNA vectors and Huntingtin 

miRNAs have no significant effect on the endogenous miRNA profile. Finally, 

artificial miRNAs targeting a human SNP site reduce inclusions in a knock-in 
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mouse model of HD. These studies bring us closer to a safe and effective 

therapeutic strategy for Huntington’s disease. 

Introduction 

Huntington’s disease (HD) is a dominantly inherited monogenetic 

neurodegenerative disease. It is a prime candidate and test case for RNAi gene 

therapy. HD is caused by expansion of a CAG repeat region in exon 1 of the 

Huntingtin gene that produces a toxic protein containing an extended 

polyglutamine stretch. Three main silencing strategies have emerged for HD 

therapy: simultaneous silencing of mutant and normal Huntingtin (gene specific 

or nonallele specific silencing), silencing mutant Huntingtin by direct targeting of 

the CAG repeat region, and silencing of mutant Huntingtin by targeting single 

nucleotide polymorphisms. While there have been indications that gene specific 

(nonallele-specific) silencing may be tolerated6 110,260, there is concern about the 

long term consequences of reducing normal Huntingtin, which contributes to 

neuronal function. Targeting the CAG repeat is the most direct approach to 

allele-specific silencing, and there is some evidence that siRNAs can 

discriminate between Huntingtin within the normal CAG repeat range and 

expanded Huntingtin232. However, there are more than 60 human proteins that 

contain CAG repeat regions233 any of which could also potentially be targeted by 

CAG repeat targeting RNAi therapies. An alternative to CAG targeting is 

targeting single nucleotide polymorphisms (SNPs) in the Huntingtin gene. There 
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are over 1,000 SNP sites in the Huntingtin gene, many of which are highly 

heterozygous among HD patients from Europe and the United States261,262. A 

small number of heterozygous SNP sites could be used to cover the majority of 

patients and siRNAs targeting these SNP sites can discriminate between 

isoforms in cell based luciferase assays and in patient derived 

fibroblasts257,261,262. However, delivering siRNA to the brain presents a challenge. 

Cholesterol conjugated siRNA can reduce the levels of a co-injected AAV 

Huntingtin fragment, but we have been unable to show consistent and 

widespread knockdown of endogenous Huntingtin using siRNAs delivered to the 

striatum. Delivery of siRNAs using polycationic polyethylenimine (PEI) 

nanoparticles and liposomes requires endocytosis and therefore their 

effectiveness depends on endosomal escape. Endocytotic delivery can also lead 

to toxicity caused by innate immune activation or lysosomal rupture. On the other 

hand, viruses expressing small hairpin RNAs injected directly into the brain have 

been successfully used to knockdown endogenous genes, including 

Huntingtin4,6,216,263 and have shown little toxicity when the hairpin is placed in the 

correct context216.  

There are several different types of small RNA hairpins that can be used 

for viral delivery. First generation short hairpin RNAs are driven by polymerase III 

promoters and consist of a 19 nucleotide stem and a short terminal loop. One 

arm of the stem corresponds to the siRNA guide strand and the other to the 

passenger strand. The two arms are connected by a short loop sequence. These 
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shRNAs are intended to enter the RNAi pathway at the Dicer processing step. 

While these shRNAs can produce good knockdown, they can also be toxic, most 

likely because of their high expression levels213,216,223. More recently, constructs 

incorporating more components of endogenous microRNA structure have been 

developed216,264. These shRNAmirs or artificial miRNAs are designed to enter the 

RNAi pathway at the Drosha processing step. They can be expressed from 

polymerase II promoters which can be regulated by drugs such as doxycycline, 

or rapamycin. For gene therapy, co-expression of a protein coding gene and a 

miRNA may be desirable. One strategy for gene replacement is to express a 

miRNA and a non-targetable wild-type copy of the gene. This can be achieved by 

placing the miRNA in the 3′-UTR or in an intron of the protein coding gene265. To 

increase the concentration of a single miRNA or to include miRNAs targeting 

multiple sites, miRNA can be placed in tandem (“miRNA chaining”). Perhaps 

because they are expressed at lower levels, miRNA-adapted hairpins have fewer 

toxic effects than the first generation shRNAs216,222. Although there are 

advantages to the miRNA adapted hairpin design, using it to target single 

nucleotide polymorphisms may be more complicated. While shRNAs are 

processed only by Dicer, miRNAs must be processed by both Drosha and Dicer. 

If either enzyme is imprecise, a single artificial miRNA might produce multiple 

mature miRNA sequences. These mature miRNA could differ in their ability to 

differentiate between matched and mismatched targets; therefore, we set out to 

design and optimize a SNP specific hairpin targeting mutant Huntingtin.  
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Results 

Design of SNP targeting shRNA and miRNA 

We began with three initial hairpin designs: an shRNA driven by the human U6 

promoter (Figure 3.1A), a hybrid U6 promoter driven miRNA (Figure 3.1B) 

consisting of the hairpin sequence of the shRNA plus a minimal amount of 

miRNA context based on the endogenous mir30 sequence, and an artificial 

miRNA based on mir155 where the miRNA is expressed from the 3′-UTR of a 

CMV promoter driven GFP reporter (Figure 3.1C).  

 In 50% of US and European patients, a U at SNP site rs362307 (position 

9,633) in the 3′-UTR of the Huntingtin mRNA is associated with the expanded 

CAG repeat. An siRNA targeting the U isoform of the rs362307 SNP has a 

discrimination ratio greater than 12.5261. We incorporated the sequence targeting 

the U isoform into plasmids following our initial hairpin designs (U6-shRNA, U6-

miRNA and CMV-miRNA). To test for selectivity and potency, we measured 

luciferase activity following co-transfected these plasmids with matched or 

mismatched luciferase reporters. For each of the shRNAs, miRNAs and siRNAs, 

we report “discrimination ratios” for shRNAs, miRNA and siRNAs. The 

discrimination ratio, which is the IC50 of the siRNA for the mismatched target to 

the IC50 of the  
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matched target (IC50mismatch/IC50match), is a measure of the ability of an siRNA (or 

miRNA) to selectively silence a matched target over a range of concentrations. A 

second measure of selectivity, the fold repression ratio measures selectivity at a 

single concentration. This is useful in cases where maximum repression of an 

siRNA or miRNA differs but the IC50 does not, or in cases where there is greater 

than 50% silencing of the target at high concentrations but where we cannot 

generate a reliable IC50 curve. All three plasmids reduce luciferase activity from 

the matched, but not the mismatched target (Figure 3.2). None of the plasmids 

achieved 50% silencing of the mismatched reporter, so we report their IC50s as 

greater than the maximum amount of plasmid transfected; therefore, the 

differences in discrimination ratio primarily reflect the difference in silencing of the 

matched reporter. The discrimination ratios range from greater than 77 for the 

U6-shRNA (Figure 3.2A) to only greater than 1.9 for the CMV-miRNA (Figure 

3.2C). The U6-shRNA was the most potent in silencing the matched reporter and 

had the highest discrimination ratio. The CMV-miRNA was far less potent than 

either of the U6 promoter driven hairpins, but achieved a fold repression ratio of 

4.1, indicating that it was selectively silencing the matched target at high 

concentrations. We sometimes observed a non-specific increase in luciferase 

activity with high doses of both of the U6 promoter driven hairpins (Figure S3.1), 

therefore the maximum dose of those plasmids is lower than that of the CMV-

promoter driven hairpin. We do not know what causes this non-specific increase,  
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but we observed a similar phenomenon earlier when we were testing siRNAs 

using a two reporter system for this site. 

Although the rs362307 site is therapeutically important, none of the 

available mouse models of HD have the U isoform of that SNP site (266-268, Table 

3.1). A second, highly heterozygous SNP site, rs362273, is present in the 

endogenous mouse Huntingtin and in models of HD expressing full-length 

Huntingtin. siRNAs targeting that site are more potent than those targeting 

rs36207. Using the same CMV-miRNA backbone that we used to target 

rs362307, we designed a miRNA targeting rs362273. When we tested this 

miRNA against our luciferase reporters, it had a discrimination ratio of 3 and a 

fold repression ratio of 2.1, indicating poor discrimination between the matched 

and mismatched target (Figure 3.3). 
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Table 3.1. SNP sites and heterozygosity in cell lines and selected 
mouse models of HD 
SNP identity for selected human SNP sites in HeLa cells and in yeast 
artificial chromosome (YAC [1]), bacterial artificial chromosome (BAC [2]) 
and CAG 140 knock-in [3] models of HD. YAC and BAC transgenic mice 
have full length human Huntingtin while CAG 140 mice have 140 CAGs 
inserted into the endogenous mouse Huntingtin locus. For the CAG 140 
mice, the SNP site is listed as N/A if the site is not conserved between 
mouse and human Huntingtin.
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Table 3.1

Position in human 
Huntingtin mRNA

Reference 
Number YAC BAC

CAG140 
knock-in

HeLa 
cells

ORF, exon 29 rs363099 T C N/A (G) C
ORF, exon 39 rs363125 C C N/A (A) C
ORF, exon 50 rs362331 C T N/A (C) C/T
ORF, exon 57 rs362273 G A G A
ORF, exon48 rs362336 A G N/A (G) A/G

3' UTR, exon 67 rs362306 A G N/A G
3' UTR, exon 67 rs362268 G C N/A C
3' UTR, exon 67 rs362267 T C N/A C
3′UTR, exon 67 rs362307 C C N/A C/T
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Figure 3.3. Discrimination of an artificial miRNA at the rs362273 SNP 
site 
Representative luciferase reporter assays for the double mismatched, 
CMV-promoter driven artificial miRNA targeting rs362273. The intended 
guide strand is shown in red and mismatches are underlined. The primary 
mismatch to the SNP site is at position 10 with a secondary mismatch at 
position 6. The IC50 is reported for at least three independent replicates.
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Figure 3.3

IC50 match =  76 ± 15 ng/ml
IC50 mismatch = 26 ± 10 ng/ml
discrimination = 3
fold repression = 2.1
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U6 promoter driven miRNA hairpins produce small RNA species with 

multiple seed sequences 

miRNAs recognize their targets through pairing of the seed sequence, 

nucleotides 2-7 or 8 of the guide strand. For an shRNA or miRNA, the seed 

sequence is determined by the location of Drosha or Dicer cleavage (Drosha for 

miRNAs on the 5′-arm of the hairpin, Dicer for miRNAs on the 3′-arm). Single 

nucleotide polymorphisms in endogenous miRNAs and miRNA precursors are 

associated with altered miRNA processing and function269-271 but polymorphisms 

in seed regions are relatively rare272,273. Endogenous miRNAs are rarely fully 

complementary to their targets, therefore changes affecting the seed sequence 

may produce mature miRNAs with a different set of mRNA targets274. Our SNP 

targeting siRNAs have at most 1 mismatch with the targeted isoform and 2 

mismatches with the non-targeted isoform. Although a single nucleotide shift in 

cleavage site will produce a mature miRNA with a different seed sequence, the 

new seed sequence should also be complementary to the Huntingtin mRNA. 

Such a shift could, however, affect the ability of a miRNA to discriminate between 

the two Huntingtin isoforms. We transfected our RNAi plasmids into HeLa cells, 

cloned the small RNA fraction and used high throughput sequencing to 

characterize the processing products of different shRNA, miRNA-like hairpins 

and artificial miRNAs (Tables 3.2, 3.3).  
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We found that the U6-promoter driven miRNA (U6-m2307), produces multiple 

species (Figure 3.4A, Table 3.2). The most abundant small RNA species 

produces over 61,000 reads per million, comes from the 3′-arm of the miRNA and 

is likely the product of the expected sequential cleavage by Drosha and Dicer. 

Despite its ability to discriminate between the two isoforms, the most abundant 

small RNA species produced by the miRNA-like plasmid does not have the same 

sequence as our original discriminating siRNA, but instead is 5′-shifted by a 

single nucleotide. This surprised us, as it suggests that there is more flexibility 

than we anticipated in the design of allele-specific siRNA and miRNAs. In 

addition to the most abundant species, we see almost 12,000 reads per million 

from the species originating at our intended start site (1 nucleotide 3′ of the most 

abundant species) and a set of sequences originating 10 nucleotides 

downstream of these products. These products resemble those that we would 

expect if the unprocessed pri-miRNA is exported and cleaved once by Dicer. 

These additional small RNAs would likely be eliminated if the pri-miRNA 

transcript was extended to reduce its affinity for the nuclear export machinery. 

However, we expect that these small RNAs resemble the products that we would 

see from a simple U6-promoter driven shRNA. Although all the additional small 

RNAs could potentially target both Huntingtin isoforms through seed pairing, we 

see no reduction of the matched target, even at the highest plasmid 

concentration indicating that they are either non-functional or participate in allele-

specific silencing. The presence of multiple small RNA products increases the  
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probability of seed mediated off-target effects by increasing the number of 

potential seed hexamer matches between small RNAs and the 3′-UTRs of 

transcribe mRNAs. 

 The processing of the U6-miRNA is consistent and does not depend on 

the inserted sequence. Inserting an unrelated sequence targeting mouse 

Huntingtin (mHtt-9, Figure 3.4B) or changing the nucleotides at the base of the 

loop (mHtt-10, Figure 3.4C) does not significantly alter the processing. There 

were no significant differences in the small RNAs mapping to the plasmid hairpin 

from any of the U6 miRNA constructs (Figure 3.4D,E).  

U6-promoter driven miRNAs are produced at high levels relative to 

endogenous miRNAs. In all our samples the total number of reads mapping to 

the plasmid exceeded the number of reads for the most highly abundant 

endogenous miRNA. Only mir-21, which in all our samples generated nearly 10 

times more reads than any other miRNA, was consistently more abundant than 

the most abundant species from our U6-promoter driven miRNAs (Figure 3.5). 

Endogenous miRNA profiles were not significantly different between any of the 

samples (Figure 3.5). 
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CMV promoter driven artificial miRNAs produce primarily small RNAs with 

a single seed sequence 

In contrast to the U6-miRNA plasmids, the CMV-miRNAs primarily produce 

species with a single seed sequence (Figure 3.6A, Tables 3.2, 3.3). In deep 

sequencing samples from HeLa cells, we detected approximately 14.5 times 

more of the guide/miRNA strand than the passenger/miRNA* strand, indicating 

that the correct strand incorporates into and is protected by Argonaute. The 

miRNA strand shows some length heterogeneity with a peak at 23 nucleotides 

(Figure 3.6B).  

 The artificial miRNA is expressed at high levels (Figure 3.6C). Within the 

sample, the number of reads per million mapping to the miRNA/guide strand 

(12,538) is comparable to mir-181a (12,873), mir-29a (12,856) and mir-16 

(12,501). Although this indicates a high level of expression, the most abundant 

miRNA strand in the cells transfected with the U6-miRNA was more than 7 times 

higher. There were no significant differences between endogenous miRNAs in 

cells transfected with U6-miRNAs or with the CMV-miRNA (Figure 3.6C). 
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Discrimination between matched and mismatched targets can be improved 

by adding additional mismatches in the 3′-region of the siRNA. 

To improve discrimination at the rs362273 SNP site, we returned to our reporter 

assays using siRNAs to mimic the miRNA products. In our previous work, we 

found that adding secondary mismatches could improve discrimination. In the 

original rs362273 siRNA the SNP site paired with position 10 of the guide strand 

with a secondary mismatch at position 5. To ensure loading of the proper strand 

into Argonaute, our initial siRNAs contained a mismatch between position 1 of 

the guide strand and position 19 of the passenger strand. In the artificial miRNAs, 

we eliminated this mismatch and introduced a central bulge by deleting 2 

nucleotides at positions 7 and 8 of the passenger strand (Figure 3.7A, Figure 

S3.2). We used a series of siRNAs with this structure and mismatched at 2 and 3 

positions to test for discrimination between a matched and mismatched luciferase 

reporter (Table 3.4). The change in structure had no effect on discrimination as 

the p10 + p5 siRNA again had a discrimination ratio of 5 (Figure 3.7B). 

Expanding the mismatch in the central region of the siRNA by adding a second 

mismatch at position 9 or position 11 decreased discrimination (Figure 3.7C, D) 

but when we added a position 16 mismatch to the p10+p5 siRNA sequence, the 

discrimination ratio improved to greater than 10 with less than a 35% reduction in 

activity from the mismatched reporter, even at the highest concentration tested 

(Figure 3.7E).  
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Figure 3.7. Screening of siRNAs to improve discrimination at rs362273 
(A) Structure of the original and new siRNAs. The original contained a mismatch 
between position 1 of the guide strand and position 19 of the passenger strand. 
The new siRNAs consist of a 21 nucleotide guide strand and a 19 nucleotide 
passenger strand. This creates a bulge at position 12 and 13 of the guide strand. 
(B)-(I) Representative data from luciferase reporter assays for siRNAs targeting 
the G isoform of rs362273. The SNP site is always at position 10 and is 
underlined. (B) position 5+10, 21mer siRNA. (C) position 10+11, 21mer siRNA. 
(D) position 9+10 21mer siRNA. (E) position 5+10+16 21mer siRNA. (F) position 
5+10+11, 21mer siRNA. (G) position 5+9+10, 21mer siRNA. (H) position 5+10, 
23mer siRNA. (I) position 5+10+16 23mer siRNA. (J)-(M). Representative data 
from luciferase reporter assays for siRNAs targeting the A isoform of rs362273. 
(J) Position 5+10, 21mer siRNA. (K) Position 5+10+16, 21mer siRNA. (L) 
Position 5+10, 23mer siRNA. (M) Position 5+10+16, 23mer siRNA. This data is 
summarized in Table 3.4.
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Figure 3.7
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Adding a third mismatch to the centrally bulged siRNAs decreased their potency 

without improving discrimination (Figure 3.7F,G).  

Based on our sequencing data, the most common miRNA guide was 23 

nucleotides long. When we annealed this 23mer to the most common miRNA* 

strand, we found that discrimination decreased and silencing of the mismatched 

reporter increased for both the 2 mismatch and the 3 mismatch siRNA (Figure 

3.7H,I) suggesting that guide strand length influences the ability of an siRNA or 

miRNA to discriminate between SNP isoforms. The triple mismatched 23mer 

retained the ability to discriminate, albeit with 40-50% silencing of the 

mismatched reporter (Figure 3.7I). We tested the same pattern of mismatches in 

an siRNA targeting the A isoform of rs362273 and saw the same general results; 

the additional position 16 mismatch improved discrimination in both the 21mer 

(Figure 3.7J,K) and 23mer siRNAs (Figure 3.7L,M). Interestingly, the 23mer 

siRNA was more potent than the 21mer against both the A (match) and G 

(mismatch) target (Figure 3.7K,M). When we placed the new triple mismatched 

sequence into the CMV-mir155 plasmid, it retained the ability to discriminate 

between the two reporters (Figure 3.8). We proceeded with our experiments 

using this triple mismatched design. 
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Self-complementary AAV9 delivery of artificial miRNAs into the mouse 

striatum 

We incorporated the artificial miRNA targeting rs362273 into a self-

complementary recombinant AAV9 virus (Figure 3.9A). We injected viruses 

targeting the G isoform of rs362273 (scAAV9-2273G, match), the A isoform 

(scAAV9-2273A, mismatch) or renilla luciferase (scAAV9-rluc, non-targeting 

control) directly into the striatum of 3 month old wild-type mice. After three 

weeks, we harvested RNA from the striatum for small RNA sequencing (Table 

3.5, 3.6). We found that in these brain samples, we could only detect a small 

number of reads mapping to the virus (Table 3.6). In scAAV9-rluc and scAAV9-

2273G samples, only the miRNA and not the miRNA* reached our threshold 

abundance of 10 reads per million (Table 3.7). The miRNA* was detectable in the 

scAAV9-2273A samples but not in the scAAV9-mirRluc or scAAV9-mir2273G 

samples. (Table 3.7, Figure 3.9). All three miRNAs generated comparable 

numbers of total reads, but the each miRNA had a distinct length distribution 

(Figure 3.10) which may reflect differential processing or modification of the 3′-

end of the miRNA. Unlike in cell culture, the miRNAs were not detected at high 

abundance relative to endogenous miRNAs (Figure 3.9). We do not know if the 

miRNAs are present in many cells at low levels or at high levels in only a few 

cells. There were no significant differences in endogenous miRNAs between 

individual mice (Figure 3.9B,C,D) in each treatment group or between mice in 

different groups (Figure 3.9E,F). 
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Table 3.7. Small RNAs mapping to scAAV9-miRNA viruses in the 
mouse striatum. 
The total reads for miRNA and miRNA* includes number of reads from 
any small RNA species perfectly matched to the virus with the same 5′-
end as the expected miRNA or miRNA*. miRNA and miRNA* reads are 
normalized to the total number of genome mapping reads in the library 
minus the number of reads mapping to known non-coding RNAs. Species 
with less than the threshold of 10 reads per million are not reported. No 
other species reached the threshold in any of the samples.
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Table 3.7

Injection
Sample 
Number

miRNA 
reads

miRNA* 
reads

scAAV9-mirRluc 2138 638
scAAV9-mirRluc 2141 1173

scAAV9-mir2273A 2137 656 26
scAAV9-mir2273A 2144 719 15
scAAV9-mir2273G 2139 528
scAAV9-mir2273G 2142 649
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Figure 3.10. Length distributions of virally introduced artificial 
miRNAs 
Non-targeting (scAAV9-mirRluc, A), mismatched (scAAV9-mir2273A, B) 
and matched (scAAV9-mir2273G, C) miRNAs produce miRNAs with 
distinct length distributions.
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Figure 3.10
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SNP targeting artificial miRNAs reduce inclusions in a mouse model of HD 

We next injected the same viruses unilaterally into 3 month old homozygous 

Huntingtin CAG knock-in mice. These mice have 140 CAG repeats inserted into 

the mouse Huntingtin gene locus. They develop nuclear aggregates and 

inclusions starting at 4 months of age268. One of the mice injected with scAAV9-

mir2273A died following surgery. Four months after injection, we took the mouse 

brains for immunohistochemistry using MW8, an antibody that recognizes 

aggregated mutant Huntingtin275,276. For each mouse we counted the number of 

inclusions on the injected versus the non-injected side. None of the mice injected 

with the renilla luciferase (non targeting) control (n=8) miRNA showed any 

difference between sides (Figure 3.11A), whereas 1/6 of the mice injected with 

mir-2273A (mismatch, Figure 3.11B) and 4/8 of the mir-2273G (match, Figure 

3.11C) viruses showed a significant decrease in inclusions on the injected side. 

In one of the scAAV9-mir2273A mice we were unable to determine the injected 

side therefore it was not analyzed. The decrease was not due to neuron loss as 

there was no difference in DARPP-32 staining between sides in any of the mice 

that showed a significant decrease in inclusions (Figure 3.12).  
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Figure 3.12. Reductions in inclusions in mice receiving scAAV9-2273G are 
not due to neuron loss 
To ensure that the apparent reduction in inclusions in scAAV9-mir2273G treated 
mice was not due to neuron loss, we counted the number of DARPP32 positive 
neurons. There was no significant different between sides in any of the mice.  
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Figure 3.12
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Discussion 

In previous work we have shown that targeting of single nucleotide 

polymorphisms in the Huntingtin gene is a viable therapeutic strategy for 

Huntington’s disease261. Unfortunately, delivery and distribution of siRNA to the 

brain remains challenging. In this paper, we explore an alternative approach: 

allele-specific RNAi gene therapy for HD. In theory, shRNA and miRNA hairpins 

enter the endogenous miRNA pathway and are processed and loaded into 

Argonaute complexes. These Argonaute complexes are functionally 

indistinguishable from complexes loaded with unmodified siRNA. However, 

endogenous miRNA processing produces multiple closely related sequences. 

Most of the variability is at the 3′-end where it is not known to affect miRNA 

function, but there is some heterogeneity in 5′ processing as well. One of the 

challenges of targeting SNP sites is that the ideal SNP-targeting RNAi construct 

exists on the border between functional and non-functional; it is highly active 

against the matched target, yet a single nucleotide change renders it inactive. In 

theory, this might make SNP-targeting hairpins particularly sensitive to 

processing heterogeneity. Our results suggest that siRNAs which show good 

discrimination, particularly those that do not produce significant knockdown of a 

mismatched target at high concentrations, can easily be converted to artificial 

miRNAs. Sequence requirements for double mismatched discriminating siRNAs 

may be more flexible than we had initially expected as a single base shift in start 

position appears to produce a functional and discriminating small RNA. However, 
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siRNAs that show marginal discrimination or those that can produce significant 

knockdown of the mismatched target will need to be improved before they are 

incorporated into a miRNA backbone. Our reporter assays show that longer 

siRNAs and mature miRNAs may not discriminate as well as canonical 21 

nucleotide siRNAs. Using an endogenous miRNA backbone which is processed 

to a shorter product could improve the ability to discriminate between matched 

and mismatched target. 

 Artificial miRNAs targeting SNP sites in human Huntingtin can be 

delivered to the striatum using scAAV9 viruses and are processed into the 

correct small RNA species. Matched but not mismatched miRNAs reduce 

inclusions in a CAG140 knock-in mouse model of HD providing proof of concept 

for in vivo use of virally delivered SNP targeting artificial miRNAs in the brain. 

This brings us one step closer to allele-specific gene therapy for HD. 

  

Materials and Methods 

Construction of shRNA and miRNA plasmids and viral vectors 

For the cell culture experiments, U6-promoter driven shRNA and miRNA were 

generated by cloning a 71mer (shRNA) or 90mer (miRNA) into the BamHI and 

EcoRI sites of the pSIREN-Shuttle vector (Clontech Laboratories, Mountain View, 

CA). GFP-artificial miRNAs were generated by cloning into the pcDNA6.2-
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GW/EmGFP-miR plasmid (Invitrogen Corporation, Carlsbad, CA). Sequences 

are listed in Table S3.1. 

Recombinant AAV9 vectors used in this study were generated, purified, 

and titered by the UMass Gene Therapy Vector Core as previously described277. 

The cloning of the miRNAs at the polyA region was accomplished by inserting 

the pri-miRNA sequence at the NotI site 5 bp upstream of the polyA region of the 

CBA-GFP cassette. 

Reporter Constructs and Assays 

Reporter constructs were as previously described 261. HeLa cell cultures were 

maintained at 37°C and 5% CO2 in DMEM (Invitrogen Corporation, Carlsbad, 

CA) supplemented with 10% heat inactivated FBS and 50U/ml penicillin and 

streptomycin (Invitrogen). For luciferase assays, cells were plated at 0.8 × 105 

cells per well in 24-well plates. Twenty-four hours later, cells were washed and 

the medium was replaced with OptiMEM (Invitrogen). siRNAs were mixed in a 

total volume of 100µl/well with 0.025 µg/well of the SNP reporter (pSiCheck-2273 

or pSiCheck-2307) and 1 µl of DharmaFECT DUO (Dharmacon, Lafayette, CO). 

Each transfection mixture was normalized to a total siRNA concentration of 10nM 

using siGENOME RISC-Free Control siRNA (Dharmacon). Twenty-four hours 

after transfection, the cells were lysed for 20 minutes in 100µl 1x passive lysis 

buffer (Promega Corporation, Madison, WI). Luciferase activity was read in 96-
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well plates with the Dual-luciferase assay kit (Promega) using the GloMax multi-

detection system (Promega).  

 For plasmid transfections the procedure was essentially as described 

above. Each transfection mixture was normalized to contain the same amount of 

total DNA using pIRES-eGFP (Clontech) for the U6-promoter driven constructs or 

pcDNA6.2-GW/EmGFP-mirLacZ control (Invitrogen) for the CMV-promoter driven 

constructs. The media was changed back from OptiMEM to the usual growth 

medium after 24 hours. Forty-eight hours after transfection, the cells were lysed 

and luciferase activity was read as described above. IC50 curves were generated 

by fitting normalized Renilla luciferase activity versus concentration in Igor Pro 

(WaveMetrics, Inc., Lake Oswego, OR). 

Small RNA cloning 

HeLa cells were plated at 1.4×105 cells/ml in 100mm dishes. Twenty-four hours 

later, cells were washed with 1x PBS and the media was changed to OptiMEM. 

Cells were transfected with 6µg of plasmid DNA using 20µl of DharmaFECT Duo 

(Dharmacon). After 24 hours the media was changed back to the usual growth 

medium. After 48 hours total RNA was extracted using the mirVana RNA 

isolation kit (Ambion, Austin, TX). Eighty micrograms of total RNA was loaded 

onto a 15% denaturing urea-polyacrylamide gel (National Diagnostics, Atlanta, 

GA) and the 18-30 nucleotide fraction was isolated. 100 pmole of 3′-adapter 

(miRNA cloning linker 1, Integrated DNA Technologies, Coralville, IA) was ligated 
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to half the purified RNA using truncated T4 RNA Ligase 2 (New England Biolabs, 

Ipswich, MA) at 25°C for 8 hours in 20µl buffer containing 50mM Tris-HCl, 10mM 

MgCl2, 10mM DTT, 60µg/ml BSA and 10% DMSO. Ligated product was purified 

on a 15% denaturing urea polyacrylamide gel (National Diagnostics) and ligated 

to one of four barcoded 5′ RNA adapters (5′-GUU CAG AGU UCU ACA GUC 

CGA CGA UCC GUC-3′, 5′-GUU CAG AGU UCU ACA GUC CGA CGA UCU 

AGC-3′, 5′-GUU CAG AGU UCU ACA GUC CGA CGA UCA UCC-3′, 5′-GUU 

CAG AGU UCU ACA GUC CGA CGA UCG CAC-3′) using T4 RNA ligase 

(Ambion, Austin, TX) at 25°C for 8 hours. 5′-ligated product was purified on a 

10% denaturing urea-polyacrylamide gel (National Diagnostics). cDNA was 

synthesized using the RT primer (5′-ATT GAT GGT GCC TAC AG-3′). Libraries 

were amplified by PCR using forward (5′-AAT GAT ACG GCG ACC ACC GAC 

AGG TTC AGA GTT CTA CAG TCC GA-3′) and reverse (5′-CAA GCA GAA GAC 

GGC ATA CGA ATT GAT GGT GCC TAC AG-3′) primers and sent for 

sequencing on the Genome analyzer II (Illumina, San Diego, CA) by the 

University of Massachusetts Deep Sequencing Core. 

 For mouse brain small RNA libraries, brains were extracted and 

immediately frozen on dry ice. Frozen brains were dissected and the striatum 

was thawed at -20°C in RNAlater-ICE (Ambion, Austin, TX). Small RNA cloning 

and sequencing was as described above except the starting amount of total RNA 

was 20µg and all the ligation reactions were scaled accordingly. 
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Sequence extraction, analysis and statistics 

Each sequencing read was checked for the presence of a 3′-adapter by looking 

for a perfect match to the 6-mer corresponding to the 5′ end of the 3′-adapter. 

Sequences without a 3′-adapter were discarded. Sequences with a 3′-adapter 

were sorted by barcode by matching the first 4 nucleotides of the insert to the 

barcodes. Sequences without perfectly matching barcodes were discarded. 

Sequences with both 3′-adapter and 5′-barcode were then mapped, with no 

mismatched, to the genome (Homo sapiens, USCG hg19 or Mus musculus, 

USGC mm9), the introduced shRNA or miRNA, known non-coding RNAs and 

pre-miRNA hairpins using Bowtie 278. Species mapping to pre-miRNA hairpins 

were further annotated as miRNA or miRNA*. For each pre-miRNA, the most 

abundant species was annotated as the miRNA and the most abundant species 

on the opposite arm of the hairpin was annotated as the miRNA*. For both 

endogenous miRNA and sequences mapping to the introduced shRNA or 

miRNA, species with the same 5′-end were considered equivalent whereas we 

tolerated heterogeneity at the 3′-end. Therefore reads from small RNAs mapping 

to the same start position were summed. Small RNA reads were normalized to 

the number of times mapped to the genome and to the total number of genome-

mapping small RNA reads minus reads mapping to non-coding RNAs. Log 

transformation and spearman correlation analysis was performed using 

GraphPad Prism version 5.04 (GraphPad Software, Inc., La Jolla, CA). 
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Animals and Injections 

Three to four month old wild-type FVB mice or CAG140 mice were injected 

unilaterally with 3µl of scAAV9-mirRluc, scAAV9-mir2273G or scAAV9-mir2273A 

(viral titer 1.0 x 1013) as previously described 5. Following surgery, the mice were 

monitored for weight loss and behavioral changes. After three weeks, the wild-

type mice were killed and their brains were frozen for RNA extraction and small 

RNA cloning. After 4 months, the CAG140 mice were perfused with 4% 

paraformaldehyde in PBS. The brains were removed and post-fixed in 

paraformaldehyde for immunohistochemistry. All animal procedures were 

approved by the University of Massachusetts Medical School Institutional Animal 

Care and Use Committee.  

Immunohistochemistry and Inclusion Counting 

Brains were sectioned at 40µm. Sections were treated with 3% hydrogen 

peroxide for 3 minutes and then washed with PBS. For DARPP32 labeling, 

sections were then treated with 0.5% TritonX for 20 minutes. All sections were 

incubated in normal goat serum for 3-4 hours then incubated in primary antibody 

overnight. The next day after incubation in biotinylated anti-rabbit IgG secondary 

antibody and ABC reagent using the Vectastain ABC kit (Vector Laboratories, 

Inc., Burlingame, CA), sections were stained with diaminobenzidine for 2 

minutes. The MW8 antibody developed by Paul H. Patterson was obtained from 

the Developmental Studies Hybridoma Bank developed under the auspices of 
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the NICHD and maintained by The University of Iowa, Department of Biology, 

Iowa City, IA 52242. The anti-DARPP32 antibody was purchased from Abcam 

(EP720Y, Abcam, Cambridge, MA).  
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CHAPTER IV: SUMMARY AND CONCLUSIONS 
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Oligonucleotide Therapeutics for Huntington’s disease 

For patients and families, Huntington’s disease is devastating. With the 

identification of the causative gene came the expectation that a cure would soon 

be found. Unfortunately, despite nearly 20 years of research into the pathogenic 

mechanisms of mutant Huntingtin, effective therapies to delay the progression of 

the disease remain elusive. In theory, curing Huntington’s disease should be 

simple: turn off expression of the mutant, disease-causing Huntingtin gene. 

Several strategies have been proposed to achieve this goal. Leading strategies 

include oligonucleotide therapies (antisense oligonucleotides, RNAi) and small 

molecules or drugs designed to block translation or enhance clearance of the 

mutant protein. All of these strategies show promise but all come with 

challenges, foremost among them targeting and delivery. Although Huntingtin is 

widely expressed and pathology is not confined to the brain, neurons in the 

striatum and cortex are particularly vulnerable. Initial clinical trials will likely be 

focused on the striatum, but improvements to delivery and targeting and research 

into the functions of normal Huntingtin should drive efforts to develop more 

complete and safer therapies. 

Progress and Challenges 

Oligonucleotide therapies include virally delivered hairpins (shRNA or miRNA), 

siRNAs, and antisense oligonucleotides (ASOs). Antisense oligonucleotides are 

single stranded, chemically modified oligonucleotides. They can have various 
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effects on cellular mRNAs including inhibition of translation, modification of pre-

mRNA splicing, and RNAse H mediated degradation of complementary mRNAs. 

In nonhuman primates Huntingtin targeting ASOs are distributed broadly in the 

brain following delivery to the CSF 279 and in mice, Huntingtin targeting ASOs 

infused for two weeks into the ventricle accumulate and cause a reduction in 

Huntingtin mRNA which persists for 8 to 12 weeks 279.  

siRNAs and virally delivered shRNAs and miRNAs are designed to 

harness the endogenous RNAi pathways, primarily by associating with 

Argonaute proteins and guiding cleavage of complementary mRNAs. siRNAs 

effectively reduce Huntingtin levels in cell culture, where they can often be 

delivered by transfection. In our studies, we can achieve 90-100% transfection of 

siRNA into HeLa cells. In the brain, siRNAs have been limited by the inability to 

achieve widespread distribution and efficient cellular entry. However, in Rhesus 

macaque, convection enhanced delivery of siRNA targeting Huntingtin produces 

silencing throughout much of the striatum 167. Like ASO induced silencing, siRNA 

induced silencing is transient. Although the effect can be relatively long-lived, 

eventually the siRNAs are degraded and mRNA and protein levels recover. 

There is evidence from studies using ASOs that a transient reduction in 

Huntingtin produces a therapeutic effect that outlasts silencing 279,280 so it may  

not be necessary to maintain high ASO or siRNA levels at all times, but patients 

treated with siRNA or ASOs would still need to receive the drugs regularly and 

the invasive procedures to deliver these drugs locally may be cause for concern. 
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Implantable devices can facilitate sustained delivery, but the the presence of a 

foreign object in the brain long term can result in the formation of a glial scar 

which impedes drug distribution. In contrast, viral delivered hairpins can produce 

long-term silencing from a single dose although achieving broad distribution in a 

large brain may require delivery to multiple sites. Viral delivery has shown 

promise both in mice 2,4,6 and in non-human primates 263.  

Targeting Strategies 

Three targeting strategies have emerged for oligonucleotide therapies for 

Huntington’s disease. Targeting of the CAG repeat region is the most direct 

approach and ASOs and peptide nucleic acids 281 targeting the CAG repeat 

region can selectively reduce the levels of mutant Huntingtin in patient derived 

cell lines 282-285. While some of the ASOs may recruit RNAse H 283, others do not 

support RNAse H activity in vitro and may act by binding to multiple sites in the 

mutant mRNA and inhibiting translation 284. siRNAs perfectly matched to the 

CAG repeat region cannot discriminate between the mutant and normal 

Huntingtin mRNAs. However, introducing mismatches around the cleavage site 

improves discrimination 232. Like ASOs, these mutant Huntingtin specific siRNAs 

are thought to act by inhibiting translation. Allele-specificity could be due to 

binding to multiple binding sites or to differential recognition of the folded 

structures of the mutant and wild-type Huntingtin mRNAs. While CAG targeted 

oligonucleotides can be allele-specific, off-target silencing of other CAG repeat 

159



 
 

 

containing mRNAs remains a concern. Initial experiments have indicated that 

CAG repeat containing mRNAs are not targeted indiscriminately232,282, but a 

complete and systematic evaluation of off-targeting silencing of CAG repeat 

containing mRNAs will be required before these oligonucleotides will be declared 

safe.  

Targeting of heterozygous single nucleotide polymorphisms (SNPs), as 

described in this dissertation, presents an alternative to CAG targeting. Both 

ASOs and siRNAs have been shown to target human Huntingtin SNPs 257,261,286. 

ASOs can enter the nucleus and therefore can target SNPs that are present in 

pre-mRNA but absent in the mature mRNA. RNAi-based approaches at present 

can only target sequences in the mature mRNA. Consequently, ASOs have a 

potentially larger pool of targets than do RNAi based therapeutics. On the other 

hand, the toxicity and delivery profiles of the two different types of therapeutics 

will be different and may be suitable for different patient populations.  

Ideally, an allele specific RNAi therapeutic would have high activity against 

the matched target and no activity against the mismatched one, but siRNAs 

targeting therapeutically attractive SNPs may not conform to this ideal. The SNP 

at position 9,633 (rs362307) is one such target. Nearly 50% of the patients we 

genotyped were heterozygous at that site. However, we consistently found that 

siRNA and miRNAs targeting this site are less effective at silencing the target 

than those aimed at alternative sites. In contrast, discrimination at sites targeted 

by potent siRNAs, such as the siRNA targeting the SNP at position 7,942 
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(rs362273), tends to be low. Additional mismatches can improve discrimination 

but at a cost, as the additional mismatches also cause loss of silencing of the 

matched target. While highly potent and specific SNP targeting siRNAs certainly 

exist 127, it seems likely that siRNAs targeting many therapeutically attractive 

SNPs will not fall into this category.. Partial silencing of both alleles of Huntingtin 

is beneficial in mouse models of HD 6,110 and reduction of  wild-type Huntingtin by 

50% is tolerated in mice 26,27. The majority of HD patients do not develop 

symptoms for decades suggesting that disease progression requires an 

accumulation of mutant Huntingtin toxicity over time. A modest reduction of 

mutant Huntingtin may be sufficient to rescue vulnerable neurons.  

Alternative gene therapy strategies combining knockdown of the disease 

causing mRNA and replacement with an RNAi resistant (“hardened”) copy are 

not appropriate for Huntington’s disease, as the resulting construct would be too 

large for packaging into current gene therapy vectors. Combination approaches 

such as partial silencing of mutant Huntingtin and simultaneous augmentation of 

another gene product, such as BDNF, to counteract downstream pathological 

processes of the disease may prove beneficial. Additional strategies combining 

multiple modes of delivery and targeting, for example viral delivery of anti-

Huntingtin miRNAs to produce a mild reduction in Huntingtin plus occasional 

supplementary delivery of siRNAs or ASOs, are also likely to emerge and may 

ultimately provide the most benefit to patients. 
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Methods for designing SNP targeting siRNAs and miRNAs 

We have shown that small RNA production from promoter driven hairpin 

constructs is sensitive to expression levels and hairpin design. shRNA or miRNA 

that are poorly designed but expressed at high levels may produce good 

silencing, but that can be accompanied by the accumulation of non-functional or 

suboptimal processing products. In our studies, the major off-target products are 

most likely the unintentional consequence of export of the pri-miRNA from the 

nucleus and subsequent processing by Dicer. Redesign of the U6 promoter 

driven miRNA by adding a longer single stranded region should prevent nuclear 

export of the pri-miRNA and eliminate these products. We also detected 

secondary products adjacent to the Dicer cleavage site which may be detectable 

because of high expression from the U6 promoter. Incorporation of miRNA-like 

elements within the hairpin might eliminate these secondary products. 

Alternatively, lowering expression levels by using weaker or tissue specific 

promoters can minimize the danger of off target effects due to overexpression 

215. 

 Single nucleotide discrimination of miRNAs seems to mirror discrimination 

of canonical 21 nucleotide siRNAs, with some minor discrepancies. miRNAs may 

exhibit slightly lower discrimination than the corresponding 21 nucleotide siRNA. 

In vivo, the products generated from the miRNAs are slightly longer than 

expected. It may be that additional matches between the 3’-end of the longer 

mature miRNA and the mismatched mRNA target stabilize the interaction and 
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promote silencing. Alternatively, the 3’-end of a longer miRNA could be shaped 

by tailing and trimming 166. We observed differences in the length distribution 

between SNP matched and SNP mismatched miRNAs. This could reflect 

differential trimming. If the miRNA can bind to both the SNP-matched and SNP-

mismatched targets, but cleave only the matched target, we would expect that 

the mismatched miRNA might remain bound to the target and ultimately be 

degraded, while the matched miRNA would cleave and release its target. It is 

exciting to speculate that SNP discrimination could be enhanced by increased 

target directed destruction of the mismatched miRNA. If this occurs it would be a 

demonstration of target directed destruction of a miRNA by an endogenous 

mRNA and trimming and tailing could be used as a signature for allele-specific 

silencing. 

Despite several attempts to systematically catalog single nucleotide 

discrimination at each siRNA position 237,287, designing discriminating siRNAs and 

miRNAs for disease associated SNPs remains largely a matter of trial and error. 

While certain positions and conformations are predicted to provide good 

discrimination 237,287, potent siRNAs are often unaffected by single nucleotide 

mismatches while less effective siRNAs can too easily be rendered non-

functional. The most effective design strategy is one that combines systematic 

screening of all possible single nucleotide mismatches for potency and selectivity 

followed by fine-tuning of discrimination by addition of secondary mismatches 

and tertiary mismatches, when necessary. Eventually, if a large number of 
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heterozygosities are targeted in this fashion and more SNP discriminating 

siRNAs and miRNAs are developed, it should become possible to develop a 

more complete model to predict discrimination which could, in turn, be used to 

design better SNP discriminating sequences. 

Off-target effects 

RNAi therapeutics for HD could potentially affect endogenous miRNAs and 

mRNAs in the brain by mechanisms involving both on-target and off-target 

effects. In the case of miRNAs, competition for saturable components of the 

miRNA machinery could result in changes in endogenous miRNAs. However, it 

seems likely that the levels of artificial miRNA produced in our experiments, 

which are modest in comparison with many endogenous miRNAs, would not be 

sufficient to produce such a saturation effect. Changes in endogenous miRNAs 

might also occur via a disease specific mechanism, as there are indications that 

some endogenous miRNAs are disrupted in HD 228-231. We have seen that our 

Huntingtin targeting miRNAs do not have a global effect on endogenous miRNAs 

relative to non-targeting miRNAs, but it remains to be seen if they can shift the 

miRNA profile in HD mice back towards that of wild-type mice. If so, this would 

provide evidence that the miRNAs are effective in reducing disease pathology 

and an encouraging sign that endogenous miRNAs could be used as a 

biomarker in HD. 
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 There is considerable concern surrounding seed-mediated off-target 

effects of RNAi therapeutics but the functional consequences of such off-target 

effects are largely unknown. The most reasonable approach to avoiding these 

effects is to minimize the number of 3′-UTR seed matches. While this is easier 

with nonallele-specific miRNAs and siRNAs 195, our data suggest that there is 

some flexibility in the design of SNP-specific siRNAs and miRNAs which could 

potentially be exploited to reduce potential off target effects. Unfortunately, off-

target effects are particularly hard to predict from animal models 186 but 

algorithms which improve miRNA target prediction should also improve 

predictions of off-target effects.  

The Future of Huntington’s Disease Therapeutics 

Restoring normal Huntingtin function 

The first clinical trials of oligonucleotide therapeutics for Huntington’s disease are 

likely to involve targeting of total Huntingtin by locally delivered ASOs and rAAVs 

carrying Huntingtin targeting miRNAs. However, because the long-term effects of 

reducing wild-type Huntingtin are unknown, restoring or maintaining its function is 

likely to remain the ultimate goal. Combination strategies strategies involving 

simultaneous silencing of Huntingtin and replacement of other factors, (growth 

factors, transcription factors) will likely join allele specific silencing as a means to 

achieve this goal. Small molecules and oligonucleotides that aim to stabilize the 

CAG repeats and stall transcription could potentially achieve a specific reduction 
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of mutant Huntingtin and small molecules or drugs that enhance clearance of 

misfolded proteins could be used to augment the effects of Huntingtin silencing. 

Furthermore, while full length Huntingtin is too large for current gene therapy 

vectors, it is possible that studies designed to define the functional domains of 

the Huntingtin protein and how modifications to those domains influence toxicity 

288,289, will result in the delineation of shorter functional domains or modifications, 

which can be engineered to replace some of the functionality of the full length 

wild-type protein.  

Systemic Delivery 

Huntingtin is widely expressed and mutant Huntingtin appears to have 

toxic effects outside the brain 290. Innate immune activation can be detected 

peripherally years before the onset of clinical symptoms and increases with 

clinical progression 291. Treatments directed only at the striatum and cortex are 

not expected to ameliorate peripheral pathology therefore systemic delivery may 

be desirable. Systemic delivery presents an array of challenges distinct from 

those presented by local delivery. For neurological diseases, the most significant 

obstacle to systemic delivery is the blood brain barrier which provides a barrier 

between the blood and the brain. While some rAAV vectors can cross the blood 

brain barrier 178 , their use for gene therapy is relatively recent. In order for 

systemically delivered vectors to reach the brain and deliver their cargo at 

therapeutically relevant doses, they may need to be given at high doses but 
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vector dose may be limited by immune responses or by toxicity in other organs. 

The utility of systemically delivered vectors can also be limited by the presence of 

neutralizing antibodies. Adding tissue specific miRNA binding sites to the 

expression construct can reduce expression in off-target tissues 179 and directed 

evolution can be used to generate viral capsids with therapeutically desirable 

properties including  appropriate tropism and resistance to neutralizing antibodies 

292,293, but these are still in the early stages of development and a significant 

amount of effort will be needed to demonstrate that they can be used for gene 

therapy. Naked or unconjugated ASOs and siRNAs do not cross the blood brain 

barrier, but several groups have successfully used a rabies virus glycoprotein 

peptide 175,177 to target peripherally delivered siRNAs to the brain. With these 

advances, it seems likely that peripheral or systemic delivery will be one of the 

next steps in development of oligonucleotides therapies for Huntington’s disease. 

Gene Therapy: Developing an exit strategy 

 One of the main concerns for viral delivery is the lack of exit strategy. 

Virally delivered genes, shRNAs, and miRNAs, are generally constitutively active. 

While several regulated promoters are under development, they rely on the 

expression of additional proteins which could themselves cause toxicity. One 

alternative to drug regulated promoters may be a system which is responsive to 

pathological changes within the cell.  In this scenario, a miRNA targeting 

Huntingtin could be delivered in a single procedure. The miRNA expression 
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construct, which would ideally contain elements that could respond to 

endogenous promoter and repressor elements, would turn on in response to high 

levels of mutant Huntingtin or by transcriptional changes caused by those high 

levels. This would result in clearance of mutant Huntingtin, in response to which, 

the miRNA would turn off. In theory, this self-regulating system would prevent 

potential toxicity caused by long-term Huntingtin silencing.  

Combination Therapies 

 Huntington’s disease patients are a diverse group. Despite the fact that 

the ultimate cause of the disease is the same in all patients, there is considerably 

variability in phenotype. Some patients experience primarily motor symptoms 

while others suffer more from the cognitive and emotional aspects of the disease. 

We have shown that the gene itself has quite a large amount of heterozygosity. 

Ultimately, it seems likely that no single therapy will be suitable for all patients. 

Local delivery may be sufficient for some, but not for others. Patients may 

experience different types of toxicity or they may benefit from different 

therapeutic combinations. As our understanding of treatment grows, we are sure 

to benefit from having an array of therapies from which to choose. 
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Huntington’s disease (HD) is a neurodegenerative disorder caused
by expansion of a CAG repeat in the huntingtin (Htt ) gene. HD is
autosomal dominant and, in theory, amenable to therapeutic RNA
silencing. We introduced cholesterol-conjugated small interfering
RNA duplexes (cc-siRNA) targeting human Htt mRNA (siRNA- Htt )
into mouse striata that also received adeno-associated virus con-
taining either expanded (100 CAG) or wild-type (18 CAG) Htt cDNA
encoding huntingtin (Htt) 1–400. Adeno-associated virus delivery
to striatum and overlying cortex of the mutant Htt gene, but not
the wild type, produced neuropathology and motor deficits. Treat-
ment with cc-siRNA- Htt in mice with mutant Htt prolonged survival
of striatal neurons, reduced neuropil aggregates, diminished in-
clusion size, and lowered the frequency of clasping and footslips
on balance beam. cc-siRNA- Htt was designed to target human
wild-type and mutant Htt and decreased levels of both in the
striatum. Our findings indicate that a single administration into the
adult striatum of an siRNA targeting Htt can silence mutant Htt ,
attenuate neuronal pathology, and delay the abnormal behavioral
phenotype observed in a rapid-onset, viral transgenic mouse
model of HD.

gene delivery gene silencing Huntington’s disease
neurodegenerative disease RNAi

H untington’s disease (HD) is an autosomal dominant disease
caused by a CAG repeat expansion in the Htt gene (1).

Mutant Htt causes neuronal death, dementia, and movement
dysfunction; there is no e�ective treatment. In an inducible
transgenic mouse model of HD, turning o�transgene expression
reversed neuropathology and motor de�cits (2). Lowering mu-
tant Htt gene expression in brain may treat HD. In mice, viral
vector delivery of short hairpin RNAs (shRNAs) against mutant
Htt gene exon 1 or genes that cause other neurodegenerative
disorders reduced neuropathology and motor de�cits (3–10).
Brain delivery of adeno-associated virus (AAV)-shRNA against
mutant Htt improved signs of disease in HD transgenic models
(7, 11). In the inaugural study on RNAi targeting Htt in vivo,
shRNA against Htt in AAV2, delivered to the N171–82Q
transgenic model of HD, improved ambulation at 4 months and
rotarod performance at 10 and 18 weeks after injection (7). Five
and one-half months after shRNA administration, quantitative
RT-PCR revealed a 50% reduction in striatal Htt mRNA.
Statistical changes in quanti�cation of Htt protein reduction and
inclusions were not reported. AAV5 delivery of shRNA against
Htt in the R6/1 murine model of HD showed a 25% decrease in
Htt protein and an 80% reduction in Htt mRNA 10 weeks after
shRNA injection (10). The shRNA delayed onset of clasping by
2 weeks (20–22 weeks), and treated mice had fewer clasps. No
di�erence in rotarod performance was detected. Inclusion size
and number decreased in the striatum, but not in the cortex,
compared with the corresponding contralateral brain regions.
The authors provided an important caveat that one of the
shRNAs had o�-target e�ects; the cause of the o�-target e�ects

was not established. shRNA in AAV2 or AAV5 was used to
target EGFP to knock down EGFP-Htt in another transgenic
model of HD (11). shRNA reversed pathology after the onset of
pathologic changes; however, behaviors were not studied. Ad-
ministration o� arge amounts of siRNA against Htt in a Lipo-
fectamine 2000 suspension into the lateral ventricle of newborn
R6/2 transgenic mice (exon 1 of Htt) reduced whole-brain levels
of mutant Htt in two mice and Htt mRNA up to 7 days
posttreatment, delayed the onset of clasping, rotarod, and
open-�eld phenotypes, and improved survival (12). Statistical
quanti�cation of neuropathology was not reported. Thus, prior
studies examining RNAi against Htt provided the groundwork
for therapeutic gene silencing in HD. Most of the studies used
viral delivery of shRNA, and the study using siRNA required
liposome delivery to newborns, with the potential liposome
neuronal toxicity.
Caveats attend the use of shRNAs, which can be toxic when

integrated into the host genome (13, 14), in part because shRNA
production is unregulated. Long siRNAs ( 29 nt) and shRNAs
are prone to activate o�-target gene expression (15). For patient
safety, shRNA will need to be able to be switched o�, currently
a hurdle in viral delivery systems.
An alternative strategy for HD therapy is the use of small-

interfering RNAs (siRNAs), 21-nt RNA duplexes. siRNA has
been administered into cerebroventricles, vasculature, intrathe-
cal space, and parenchyma (16–20). siRNAs were found e�ec-
tive and safe when introduced into mice and non-human pri-
mates (19, 21, 22). Several limitations impede progress in using
siRNAs as a treatment for HD: entry and e�ectiveness in adult
neurons without the use of potentially toxic transfection re-
agents; a clear demonstration that gene silencing reduces protein
expression; and an improvement in behavioral de�cits and
neuropathology, especially neuron survival. Because bioactive
molecules conjugated to cholesterol have improved cellular
uptake in vitro (23), LDL receptors have been detected in brain
(24), and cholesterol conjugation enhances siRNA uptake in
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cells outside of the central nervous system (16), we speculated
that cholesterol-conjugated (cc) siRNA might enter neurons in
vivo.
An in vivo, rapid-onset model of HD would be optimal to test

gene silencing in brain. The current rapid mouse model of HD
shows mutantHtt-induced pathology after 2 months. Transgenic
mice expressing exon 1 of mutantHtt [R6/2 (25)] develop nuclear
inclusions throughout the brain at 2 months of age and exhibit
a rapidly progressing, severe phenotype. Other transgenic or
knock-in mice expressing mutant Htt exhibit late-onset, mild
phenotypes, often after 6 months of age (26, 27), and lack
prominent neuronal loss. Neither model is ideal to test transient
e�ects of a single injection of siRNA against Htt introduced
directly to the striatum. We therefore developed an acute, in
vivo, HD mouse model tailored to addressing the e�cacy of
siRNA. Here, we used AAV to deliver a 1,395-nt cDNA
fragment of human mutant Htt into mouse striatum to evaluate
the e�ectiveness of an siRNA targeting human Htt.

Results
Unconjugated and cc-siRNAs Enter Medium Spiny Striatal Neurons. To
con�rm that the siRNA introduced into the striatum entered
neurons, we examined striata of mice injected with Cy3-labeled
siRNA-Htt. Cholesterol conjugation improves siRNA delivery in
hepatocytes (16), so we compared delivery of cc-siRNA and
unconjugated siRNA in neurons. Brain tissue was processed 1–5
days after injection and examined for immunoreactive localiza-
tion of DARPP32, which is selectively expressed by medium size
striatal spiny neurons. At the level of the striatal injection, Cy3
immuno�uorescent bodies were present in the cytoplasm of the
majority of DARPP32-positive striatal neurons at all concen-
trations tested, regardless of cholesterol conjugation (Fig. 1 a
and b). Quantitative analysis showed that 86% and 88% of
DARPP32-positive neurons exposed to Cy3 cc-siRNA (10 M)
and unconjugated Cy3 siRNA (10 M) contained Cy3-labeled
bodies (range 76–100% in both). These �ndings indicate that
siRNA had entered the majority of striatal neurons. We typically
observed a higher level of Cy3 �uorescence in the neuropil
surrounding DARPP32-labeled cell bodies after injection of Cy3
cc-siRNA than unconjugated Cy3 siRNA (Fig. 1 c and d),
although the di�erence did not achieve statistical signi�cance
(Fig. 1 e; median; 59% versus 33%, P 0.18, respectively). These
results suggested, but do not prove, that neuronal processes take
up the cc-siRNAmore readily than the unconjugated siRNA. We
therefore used cc-siRNA in our subsequent studies.

Single Intrastriatal Injection of siRNA- Htt Protects Striatal Neurons
from Mutant Htt Neuropathology. Htt knock-in mice manifest
neuropathology and motor de�cits late and then sporadically at

10 months of age. Transgenic models vary in the extent of gene
expression, brain regions involved, neuropathology, and behav-
iors (28). We therefore developed a rapid-onset murine model
of HD, in which timed neuropathology and motor impairments
were predictable, robust, and experimentally testable. AAV
vectors are known to be e�ective for the delivery of exogenous
genes into the rodent brain (29). Normal mice received a
unilateral striatal injection of AAV Htt18Q or AAV Htt100Q (Htt
cDNA coding for amino acids 1–400 of Htt, with either 18 or 100
CAG repeats, respectively). Two independent preparations of
AAV Htt100Q virus were used (group 1 and group 2). Immu-
noperoxidase labeling with anti-Htt revealed intense Htt immu-
noreactivity in neurons within the dorsal half of the striatum,
deep layers of the cortex, and septal area ipsilateral to the
injection 2 weeks after injection (Fig. 2 a). In AAV Htt100Q-
infected mice, degenerating and shrunken Htt-labeled neurons
appeared in cortex layers 5 and 6 and in the dorsal striatum. In
the striatum of some mice, neurons were markedly depleted
from a core region around the site of AAV Htt100Q injection
(Fig. 2 a), resulting in a region of diminished Htt immunoreac-
tivity. No such loss of neurons was evident in mice injected with
AAV Htt18Q. Measurements of somal cross-sectional area
showed that neurons expressing AAV Htt100Q were signi�cantly
smaller compared with neurons expressing AAV Htt18Q (Fig. 2
b and c Left ; mean SD; AAV Htt18Q versus AAV Htt100Q,
149 10.4 versus 113 10.1; P 0.003) or neurons with
wild-type Htt in the noninjected striata (not shown). However,
the size of striatal neurons expressing AAV Htt100Q was not
di�erent in mice cotreated with cc-siRNA- Htt (113 10.1)
compared with mice cotreated with control cc-siRNA against
luciferase (siRNA- Luc ; 119 6; Fig. 2 c Right).
Stereology in Nissl-stained sections showed that the number of

neurons in AAV Htt100Q-injected regions of striatum was re-
duced compared with noninjected striata; neuronal number in
the injected striata of group 2 mice was lower compared with
mice in group 1 (Fig. 2 d). AAV Htt100Q-infected striata of group
1 mice cotreated with cc-siRNA- Htt had signi�cantly more
neurons compared with those given cc-siRNA- Luc (Fig. 2 d,
mean SD; cc-siRNA- Htt versus cc-siRNA- Luc , 5.3 0.6
versus 3.5 0.9, P 0.01). Neuronal survival was not improved
by cotreatment with cc-siRNA- Htt compared with cc-siRNA-
Luc in group 2 mice, most likely because of the more signi�cant
neuronal loss caused by AAV Htt100Q in group 2 [Fig. 2 d,
mean SD; cc-siRNA- Luc versus cc-siRNA- Htt, 2.87 1.1
versus 2.13 0.7, not signi�cant (29)].

Striatal and cortical neurons infected with AAV Htt100Q had
strong di�use nuclear labeling or intranuclear aggregates when
immunolabeled with anti-Htt antisera (Fig. 2 b Inset and Fig. 3 a
and b). Nuclear inclusions were detected in striatal (Fig. 3 c) and

Fig. 1. Cholesterol-conjugated and unconjugated siRNA- Htt enters neurons. ( a and b) Laser confocal images of DARPP32-labeled striatal neurons (green)
treated with Cy3-siRNA- Htt . The striatumwas injected with 10 M unconjugated ( a) or cc ( b) Cy3-siRNA- Htt . Cy3 fluorescence appears in the neuronal cytoplasm
as distinct bodies (red-orange color at arrows). Images were from striata 5 days ( a) and 1 day ( b) after injection. ( c and d) Cy3 fluorescence in the striatal neuropil
surrounding the DARPP32-labeled neurons. ( e) Percent of mice with high Cy3 fluorescence in neuropil after injection of cc-siRNA- Htt (n 17) or unconjugated
siRNA- Htt (n 18); not significant in Fisher’s exact test. Bars indicate the confidence intervals.
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cortical neurons with EM48 antibody, which detects only aggre-
gated Htt. cc-siRNA- Htt treatment signi�cantly reduced the
median size of nuclear inclusions in striatal neurons in
AAV Htt100Q-infected mice and in cortical neurons in group 1
AAV Htt100Q-infected mice (Fig. 3 d, medians; group 1: cortex,
cc-siRNA- Luc versus cc-siRNA- Htt, 6.89 versus 5.86, P 0.01;
striatum, cc-siRNA- Luc versus cc-siRNA-Htt, 9.08 versus 7.78,
P 0.01; group 2: cortex, cc-siRNA- Luc versus cc-siRNA- Htt,
6.22 versus 6.29, not signi�cant; striatum, cc-siRNA- Luc versus
cc-siRNA- Htt, 8.7 versus 6.18, P 0.004). The reduction in
inclusion size by cc-siRNA- Htt suggests that buildup o� nclu-
sions is related to levels of accumulation of mutant Htt. Striata
injected with AAV Htt18Q showed robust cytoplasmic staining in
neurons with anti-Htt antisera but lacked inclusions with EM48

or anti-Htt antisera (Fig. 2 b and b Inset). The density of
anti-Htt-labeled striatal neurons with inclusions was signi�cantly
higher in cc-siRNA- Htt-treated mice than in cc-siRNA- Luc -
treated mice (Fig. 3 e, mean SD; group 1: striatum, cc-siRNA-
Luc versus cc-siRNA- Htt, 258 55.1 versus 340 32.2, P
0.002). These data support results from stereology, which
showed that administration of cc-siRNA- Htt increased survival
of striatal neurons expressing mutant Htt (Fig. 2 d, group 1).

In HD brain, mutant N-Htt fragments accumulate in degen-
erating neuronal processes called dystrophic neurites (30). In HD
transgenic mice, analogous neuronal processes are evident as
neuropil aggregates (30, 31). Neuropil aggregates were detected
in striata infected with AAV Htt100Q (Fig. 4 a) but not in striata
infected with AAV Htt18Q (data not shown). There was a higher
density of neuropil aggregates in group 1 mice compared with
group 2 mice, a �nding possibly due to the presence of more
neurons in group 1 compared with group 2 (Fig. 2 c and d).
Neuropil aggregates in striatum were signi�cantly lower in all
AAV Htt100Q mice treated with cc-siRNA- Htt compared with
those treated with cc-siRNA- Luc (Fig. 4, mean SD; group 1:
cc-siRNA- Luc versus cc-siRNA- Htt, 5.73 2.45 versus 1.85
1.42, P 0.002; group 2: cc-siRNA- Luc versus cc-siRNA- Htt,
2.69 1.60 versus 1.03 0.51, P 0.036). Reducing expression
of mutant Htt reduced formation of neuropil aggregates.

In summary, introduction of N-terminal mutant Htt fragment

Fig. 2. Cholesterol-conjugated siRNA- Htt reversed neuropathology in the
AAV HD mouse model. ( a) Brain sections from normal mice that received a
unilateral striatal injection of AAV Htt 18Q ( Left ) or AAV Htt 100Q ( Right ).
Sections were immunoperoxidase-labeled by using anti-Htt antisera. Exoge-
nous human wild-type and mutant Htt expression is visible in dorsal striatum
(asterisks), septal nuclei (arrows), and deep layers of the cortex (arrowheads).
(b) Htt-labeled striatal cells infected with AAV Htt 100Q are smaller than cells
expressing Htt18Q or neurons in the noninjected striatum. Insets show exam-
ples of Htt-labeled cells at higher magnification. ( c) Mean SD for the
cross-sectional area o� mmunoreactive striatal neurons in mice infected with
AAV Htt 18Q or AAV Htt 100Q ( Left ) and mice infected with AAV Htt 100Q and
cotreated with siRNA- Luc (Luc) or siRNA- Htt (Htt) ( Right ). Neuronal size is
reduced in striatal cells expressing mutant Htt100Q compared with striatal
cells expressing Htt18Q ( Left ; * , P 0.003; n 8 mice per group; 50 cells per
mouse; Student’s t test) but is not changed by cotreatment with cc-siRNA- Htt
(Right ; n 4 per group). ( d) Number of neurons determined by stereology in
Nissl-stained sections in noninjected and AAV Htt 100Q-injected striatum. Bar
graphs show mean SD for number of neurons. Group 1 ( Left ): * , P 0.01,
Student’s t test. Group 2 ( Right ): not significant.

Fig. 3. Inclusion pathology was reduced in AAV Htt 100Q mice treated with
cc-siRNA- Htt . Immunoperoxidase labeling was done with anti-Htt antisera. ( a
and b) NeuronswithAAV Htt 100Q inclusions in striatumand cortex. ( c) Nuclear
inclusions in striatal neurons labeled with EM48 antisera. ( d) Scatter plot
showing size distribution o� nclusions in the two groups of mice treated with
AAV Htt 100Q. Densitometry was performed with EM48-stained sections. Hor-
izontal bars indicate the medians. cc-siRNA- Htt (Htt) treatment reduces me-
dian inclusion size compared with cc-siRNA- Luc (Luc). Group 1: n 8, 8, 8, 8;
cortex, P 0.01; striatum, P 0.01. Group 2: n 5, 6, 5, 6. Cortex, not
significant; striatum, P 0.004. One hundred cells per mouse were evaluated.
Mann–Whitney U test; * , P 0.01 for cortex and striatum. ( e) Density of
Htt-labeled neurons with inclusions per 2,500 m2. cc-siRNA- Htt treatment
increased the number of Htt-labeled neurons with inclusions. Findings are
significant for striatum ( * , P 0.002; Student’s t test; cc-siRNA- Luc , n 9;
cc-siRNA- Htt , n 8).
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into the mouse striatum by AAV Htt delivery recapitulated
neuropathological features of HD, and cotreatment with siRNA
targeting Htt ameliorated neuropathology.

Single Intrastriatal Injection of siRNA-Htt Ameliorated Mutant Htt-
Induced Motor Dysfunction. When suspended by the tail, neuro-
logically impaired mice retract their limbs, a response called
clasping. We found that more AAV Htt100Q mice clasped 14
days after injection compared with AAV Htt18Q mice (Fig. 5 a;
62.5% versus 15%, respectively, P 0.02). The frequency of
clasping in AAV Htt100Q mice was signi�cantly reduced by
cotreatment with cc-siRNA- Htt compared with cc-siRNA- Luc

(Fig. 5 b; cc-siRNA- Luc versus cc-siRNA- Htt; group 1: 33%
versus 18%, P 0.01; group 2: 75.6% versus 51.9%, P 0.02).
The percent of clasping days in the two groups of AAV Htt100Q
mice positively correlated with the extent of neuronal death
observed in the striatum. Mice injected with AAV Htt100Q and
coinjected with cc-siRNA- Luc showed an increased number of
footslips on the beam 7 days after injection. In contrast,
AAV Htt100Q mice coinjected with cc-siRNA- Htt did not show
a signi�cant increase in footslips during beam walking, relative
to the number observed before injection (Fig. 5 c; 7 days after
injection; cc-siRNA- Luc , 4.25 2.22, versus cc-siRNA- Htt,
1.25 2.5, P 0.01). cc-siRNA- Htt protected mice from motor
de�cits caused by AAV Htt100Q.

Single Intrastriatal Injection of siRNA- Htt Decreases Human Htt Gene
Expression in Mouse Brain. To examine whether RNAi accounted
for improvement in neuropathology and motor de�cits, we
measured human Htt in the brain at the location of the AAV Htt
delivery 2.7 days after injection. Brain lysates from mice injected
with AAV Htt18Q or AAV Htt100Q, and cc-siRNA- Htt or cc-
siRNA- Luc , were analyzed by Western blotting. Densitometry
showed that coinjection of cc-siRNA- Htt reduced levels of
Htt-18Q and Htt-100Q protein by 56% and 66%, respectively,
compared with levels observed with the cc-siRNA- Luc (Fig. 6;
mean SD; AAV Htt18Q, cc-siRNA- Luc versus cc-siRNA- Htt,
0.68 0.25 versus 0.38 0.16, P 0.03; AAV Htt100Q,
cc-siRNA- Luc versus cc-siRNA- Htt, 1.02 0.19 versus 0.34
0.31, P 0.01). We conclude that that the observed improve-
ments in neuropathology and behavior re�ect silencing of the
AAV Htt100Q gene by the cc-siRNA- Htt.

Single Intrastriatal Injection of siRNA Does Not Stimulate a Speci�c
Immunogenic Response. siRNAs exceeding 23 bp and shRNAs
have been associated with an immunogenic response (32). We
examined reactive microglia (CD11B immunoreactivity) and
reactive astrocytes (30) (GFAP immunoreactivity) in mice in-
jected with PBS or cc-siRNA- Luc . siRNA concentrations were
the same as those used for coinjection with AAV. Astrocytic and
microglial labeling did not di�er between PBS and cc-siRNA
treatments [supporting information (SI) Figs. 7 ]. cc-siRNAs did
not change animal weight or temperature (SI Table 1 ).

Discussion
RNAi o�ers a promising therapy for autosomal dominantly
inherited neurodegenerative disease. In theory, RNAi can target
the underlying cause of HD, by silencing expression of the

Fig. 4. MutantHtt neuropil aggregateswere reducedby cc-siRNA- Htt . (a and
b) Htt labeling in neuropil aggregates (arrows) in the striatum from mice
treated with AAV Htt 100Q and cc-siRNA- Luc (a) or cc-siRNA- Htt (b). The ag-
gregates are small structures ( a), which are faintly visible in b. The boxes in a
and b denote the brain region in the Insets . (c and d) Bar graphs showing
number of neuropil aggregates in group 1 and group 2 AAV Htt 100Q mice
treated with cc-siRNA- Luc (Luc) or cc-siRNA- Htt (Htt). Group 1: n 8 per
treatment; * , P 0.002. Group 2: cc-siRNA- Luc , n 5; cc-siRNA- Htt , n 6; * ,
P 0.036. Student’s t test; one 40 field per mouse.

Fig. 5. AAV Htt 100Q mice show reduced motor deficits in the presence of
cc-siRNA- Htt . (a ) Percent of mice clasping 14 days after injection with
AAV Htt 18Q and AAV Htt 100Q. Mice with AAV Htt 100Q had significantly more
clasping days thanmice infectedwith AAV Htt 18Q. AAV Htt 18Q, 15% clasping,
n 13; AAV Htt 100Q, 62.5% clasping, n 16 (P 0.02). ( b) AAV Htt 100Qmice
cotreated with cc-siRNA- Htt had fewer clasping days than mice coinjected
with cc-siRNA- Luc (group 1: cc-siRNA- Luc , 33%, n 9, versus cc-siRNA- Htt ,
18%, n 8; * , P 0.01; group 2: cc-siRNA- Luc , 75%, n 5, versus cc-siRNA- Htt ,
52%, n 6; * , P 0.02; Fisher’s exact test). ( c) Shown are mean SD footslips
that occurredduringbeamwalking formice injectedwithAAV Htt 100Q.Mean
footslips were reduced in the presence of cc-siRNA- Htt compared with cc-
siRNA- Luc . * , P 0.01; Student’s t test; n 4 per group.

Fig. 6. Silencing human Htt mRNA reduced amount of exogenous wild-type
andmutantHtt in the striatum. ( a) Lysateswere prepared fromdorsal striatum
2.7 days after coinjection of AAV Htt 18Q or AAV Htt 100Qwith either cc-siRNA-
Luc or cc-siRNA- Htt . The Western blot was probed first with anti-Htt antibody
(Upper ) and then reprobed with anti-tubulin antibody ( Lower ). Shown is
expression of Htt100Q in mice treated with cc-siRNA- Luc or cc-siRNA- Htt . (b)
Bar graphs show mean Htt/tubulin ratios from densitometry of Western blot
films for mice infected with AAV Htt 18Q ( n 4) or AAV Htt 100Q ( n 3) and
treated with cc-siRNA- Luc or cc-siRNA- Htt . * , P 0.03 for AAV Htt 18Q; * , P
0.01 for AAV Htt 100Q.
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mutant protein. AAV-shRNA delivered to brain improved signs
of disease in transgenic models of HD (7, 11). Here, we describe
a new virus-mediated transgenic model of HD in the adult mouse
that mimics features of HD within 2 weeks and use this model
to test the e�ects of gene silencing with siRNA targeting Htt
mRNA. Our �ndings demonstrated that cc-siRNA- Htt entered
adult striatal neurons and e�ected a reduction in mutant Htt
protein that ameliorated both the neuropathology and the motor
de�cits caused by the virally delivered mutant Htt protein.

A single administration of cc-siRNA- Htt was su�cient to
attenuate multiple neuropathological features and aberrant mo-
tor behaviors in the rapid-onset model of HD: the transgene
silencing subdued expression of mutant Htt in the striatum for
at least 3 days and sustained a bene�t in motor behavior for 1
week. The improvement in motor behaviors correlated with
improvement in neuropathology, indicating that gene silencing
of mutant Htt ameliorated striatal neuronal dysfunction. Our
results demonstrate that siRNA treatment with a clinically
relevant formulation provides therapeutically meaningful ben-
e�t in an adult mouse model of HD. Together, these �ndings
indicate that the RNAi e�ect is durable and that siRNA
therapeutics might be deliverable in pulses rather than in
continuous �ow. The e�ect of a single siRNA injection appears
to be widespread. Although our siRNA treatment was directed
to the striatum, the size o� nclusions in some mice was reduced
in cortical neurons. siRNA administration correlated with an
increase in the number of neurons with inclusions. This in vivo
�nding supports cellular HD models in which nuclear inclusion
formation is dissociated with cell survival (33, 34) and could
o�er a survival advantage (35).

siRNA modi�ed by cholesterol conjugation was used because
of prior demonstration that cholesterol conjugation might im-
prove siRNA access to tissues (16). It is not clear whether
cholesterol conjugation increased Cy3-siRNA uptake into so-
mata of DARPP32-labeled medium size spiny neurons in stri-
atum. However, at low concentrations, a trend toward more
Cy3-cc-siRNA than unconjugated siRNA uptake was apparent
in regions surrounding cell bodies and in whitematter, raising the
possibility that neuronal processes, rather than cell bodies,
preferentially take up cc-siRNA. It is possible that coinjection of
siRNA with AAV- Htt improved the siRNA’s neuronal delivery.
Pilot studies have indicated that cc-siRNA enters primary stri-
atal neurons in the absence of AAV and that two injections of
siRNA- Htt can silence endogenousHtt (SI Figs. 8 and 9 ). Further
study will be needed to assess optimal delivery of unconjugated
and modi�ed siRNAs in reducing levels of mutant Htt in the
brain.

Safety and �exibility of small RNAs, either in shRNA or
siRNA, are paramount for therapeutic gene silencing. The
siRNA duplex used here, which targeted a sequence of Htt 5 to
the CAG repeat of Htt mRNA, was well tolerated in the brain.
Based on the extent of reactive microglia and astrocytes, siRNA
administration into the striatum did not elicit an in�ammatory
response greater than vehicle injection alone. The cc-siRNA did
not change animal weight or temperature (SI Table 1 ).

Viral delivery of a disease gene presents an alternative ap-
proach to traditional transgenic models for understanding
pathophysiology and testing potential therapeutics. Lentivirus
has been used to generate a rat model of HD (36). Delivery of
truncated mutant Htt in lentivirus produced neuropathological
features of HD but not behavioral phenotypes. In our model,
AAV- Htt spread through dorsal striatum and deep cortical
layers, areas a�ected early in HD. Cortical neurons are thought
to contribute to striatal neuron vulnerability, because o� oss
of brain-derived neurotrophic factor from cortical neurons pro-
jecting to striatum (37). This AAV- Htt transgenic model has
compelling features that provide a useful system for testing
therapeutic candidates for HD; the model shows the neuro-

pathological changes found in HD, including neuronal loss and
motor de�cits, both of which occur with a rapid time course and
are amenable to quanti�cation. The model distinguishes be-
tween CAG repeat number in wild-type and mutant Htt gene
expression, despite overexpression of both genes.
Treatment of HD and other autosomal dominant neurode-

generative diseases will require intervention for years, if not
decades. siRNA has a distinct advantage in providing a predict-
able and �nite term of action; therefore, siRNA treatment can
be adjusted or stopped should side e�ects arise. shRNA deliv-
ered by either genomic or epigenetic incorporation would not be
conducive to regulation and could be prone to activation of
IFN-dependent pathways (32). However, in concept, viral de-
livery of shRNA o�ers long-term intraneuronal siRNA expres-
sion. The next challenge in testing siRNA therapeutics in brain
disease will be the safe delivery of small RNAs to maximize
target speci�city, with the capacity to distinguish between mu-
tant and wild-type alleles.

Methods
Plasmid DNA and AAV Preparation. We cloned N-terminal Htt
cDNA with 18 CAG or 100 CAG repeats into plasmid pAAV-
CBA-W, which encodes a chimeric promoter bearing the CMV
enhancer element and the chicken -actin promoter. The Htt
cDNA codes 365 aa apart from the polyglutamine repeats. The
vector was packaged into AAV1/8 mosaic vector. Viral titers up
to 1.05 1013 (for 18Q) and 1.8 1013 (for 100Q) were obtained.

Animals, Stereotaxic Injections, and Behavioral Assessment. The
animal protocol abided was approved by the University of
Massachusetts Medical School (A-978). The right striata of mice
were coinjected with 3 l of virus delivering AAV Htt18Q or
AAV Htt100Q and a cc-siRNA- Htt or cc-siRNA- Luc (0.5 l of 1
mM) by using a micropump syringe. Animals were monitored
twice daily for weight, temperature, clasping, and beam walking.
Mice were killed at 2 weeks for immunohistochemical studies. A
group of mice was injected intrastriatally with 2 l of Cy3-labeled
cc-siRNA- Htt or unconjugated siRNA- Htt at 10 M. Animals
were killed 1, 3, and 5 days after injection. A group of mice was
injected with AAV Htt18Q ( n 4) or AAV Htt100Q ( n 4) and
coinjected with cc-siRNA- Luc or siRNA- Htt. Mice were killed 3
days after injection, and the brains were harvested for biochem-
ical analysis. Data were analyzed by using Student’s t test or
Fisher’s exact test.

Immunohistochemistry. Antisera included anti-Htt (against Htt
1–17 aa) and EM48 polyclonal antibody [gift of Steven Hersch
(Massachusetts General Hospital); 1:5,000] to detect Htt aggre-
gates; anti-DARPP32 antibody (Chemicon; 1:1,000) and anti-
GFAP polyclonal antisera (Chemicon; AB5804; 1:1,000) for
astrocytes; and rat monoclonal antibody (Chemicon; AB1387z;
1:500) for CD11B for microglia. For further details, see ref. 23.

Quantitative Microscopic Analysis. To measure the density of
Htt-labeled neurons, four adjacent microscopic �elds in layer 6
of cortex and �ve �elds in striatum bordering the corpus
callosum were selected by using a 20 objective lens. Total cells
with inclusions (per 2,500 m2) were determined for mice in
each group: cc-siRNA- Luc (n 9) or cc-siRNA- Htt (n 9).
Stereological methods were performed for neuronal number (26,
38). No signi�cant di�erences in striatal volumes were obtained
between injected and noninjected striata. Mean volumewas used
to calculate total neuronal number.
For inclusion size, three microscopic �elds in cortex and

striatum were evaluated at 40 objective in EM48-immunola-
beled sections. Images were captured by using a SPOT camera
(Diagnostic Instruments), and the cross-sectional area o� nclu-
sion size was determined by using SigmaScan Pro software
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(Jandel Scienti�c). About 100 cells were measured per mouse
per region (range from 50–140 cells), and median inclusion size
was determined and compared by Mann–Whitney U . Neuropil
aggregates in striatum were counted in 40 �elds of 40- m
sections labeled with anti-Htt antisera. The results were grouped
by treatment (cc-siRNA- Luc and cc-siRNA- Htt), and the mean
number of aggregates per area was determined. To examine
neuronal cross-sectional area, sections labeled with anti-Htt
antibody were observed at 40 on the injected and noninjected
side of the striatum and analyzed as above. The cross-sectional
area of 50 Htt-labeled neurons per striata was determined by
using SigmaScan Pro. Mean neuronal size was determined for
each animal and grouped according to CAG repeat length and
treatment condition.

Biochemical Analysis. The dorsal striatum from injected and
noninjected sides of the brain was dissected on ice and incubated
in lysis bu�er [50 mM Tris (pH 7.4), 1% Nonidet P-40, 250 mM
NaCl, 5 mM EDTA plus protease inhibitor mixture (Roche) and
pepstatin A, 1 g/ml]. Five-microgram protein samples were
analyzed by Western blot with anti-Htt antisera and tubulin as
described in ref. 39. Densitometry was performed by using
SigmaScan Pro to obtain the signal intensity of Htt-18Q, Htt-
100Q, and tubulin.

Preparation of siRNAs. The guide strand contained three phos-
phorothioate backbone modi�cation—two at the 3 end and one
at 5 end of the sequence to enhance nuclease stability and a 5
unpaired end to promote its assembly into the RNA-induced
silencing complex (40). The passenger strand contained 3
cholesterol and three phosphorothioate linkages (13, 41). The
guide strand was complementary to a region of Htt mRNA 5 to
the CAG repeats. cc-siRNA- Htt comprised guide 5 -UpsUC
AUC AGC UUU UCC AGG GpsUpsC-3 and passenger 5 -
CpsCC UGG AAA AGC UGA UGA CGpsGps-chol-3 . Con-
trol cc-siRNA- Luc comprised guide 5 -UCG AAG uAC UcA
GCGuA AGTps T-3 and passenger 5 -cuu AcG cuG AGu Acu
ucG ATpsTps-Chol-3 . (The lowercase letters represent nucle-
otides with 2 -O-methyl modi�cations, ps denotes phosphoro-
thioate, and Chol denotes cholesterol.) To generate Cy3-labeled
siRNAs, Qusar-570 (Cy3) was conjugated to the 5 end of the
passenger strand.
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