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Abstract 
 

The generation of complex behaviors often requires the coordinated 

activity of diverse sets of neural circuits in the brain. Activation of neuronal 

circuits drives behavior. Inappropriate signaling can contribute to cognitive 

disorders such as epilepsy, Parkinson’s, and addiction (Nordberg et al., 1992; 

Quik and McIntosh, 2006; Steinlein et al., 2012). The molecular mechanisms by 

which the activity of neural circuits is coordinated remain unclear. What are the 

molecules that regulate the timing of neural circuit activation and how is signaling 

between various neural circuits achieved? While much work has attempted to 

address these points, answers to these questions have been difficult to ascertain, 

in part owing to the diversity of molecules involved and the complex connectivity 

patterns of neural circuits in the mammalian brain. 

My thesis work addresses these questions in the context of the nervous 

system of an invertebrate model organism, the nematode Caenorhabditis 

elegans. The locomotory circuit contains two subsets of motor neurons, 

excitatory and inhibitory, and the body wall muscle. Dyadic synapses from 

excitatory neurons coordinate the simultaneous activation of inhibitory neurons 

and body wall muscle. Here I identify a distinct class of ionotropic acetylcholine 

receptors (ACR-12R) that are expressed in GABA neurons and contain the 

subunit ACR-12. ACR-12R localize to synapses of GABA neurons and facilitate 

consistent body bend amplitude across consecutive body bends. ACR-12Rs 

regulate GABA neuron activity under conditions of elevated ACh release. This is 
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in contrast to the diffuse and modulatory role of ACR-12 containing receptors 

expressed in cholinergic motor neurons (ACR-2R) (Barbagallo et al., 2010; 

Jospin et al., 2009). Additionally, I show transgenic animals expressing ACR-12 

with a mutation in the second transmembrane domain [ACR-12(V/S)] results in 

spontaneous contractions. Unexpectedly, I found expression of ACR-12(V/S) 

results in the preferential toxicity of GABA neurons. Interestingly loss of 

presynaptic GABA neurons did not have any obvious effects on inhibitory NMJ 

receptor localization. Together, my thesis work demonstrates the diverse roles of 

nicotinic acetylcholine receptors (nAChRs) in the regulation of neuronal activity 

that underlies nematode movement. The findings presented here are broadly 

applicable to the mechanisms of cholinergic signaling in vertebrate models.  
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Introduction  
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 The nervous system is a complex and highly interconnected 

network of specialized cells called neurons. Groups of connecting neurons form 

circuits that modify behavior based on activity. These neurons are interconnected 

by two mechanisms: the electrical synapse, or gap junction, and a unique 

chemical junction called a synapse. Electrical coupling or gap junctions are a 

direct low resistance mechanism for transmitting electrical activity from one 

neuron to a neighboring neuron or other cell type. The gap junction is comprised 

of a hydrophilic intercellular channel, with one subunit of the channel contributed 

from each of the connecting cells (Flores et al., 2012; Pereda et al., 2012). In 

contrast, synapses utilize chemical transmission. An electrical signal from the 

presynapse triggers the release of a neurotransmitter into the synaptic cleft. After 

diffusing across the cleft, the neurotransmitter binds to receptors located on the 

postsynaptic neuron. Fast synaptic transmission is mediated by ionotropic 

receptors, also known as ligand-gated ion channels (LGICs). Binding of the 

chemical neurotransmitter triggers a conformational change in the receptor, 

opening a pore through the membrane that allows the flow of ions into or out of 

the cell, and converting the chemical signal into an electrical response (Holtmaat 

and Svoboda, 2009). Chemical signaling through a synapse translates into one 

of two simple outcomes: (1) the activation of the postsynaptic neuron and 

continued neuronal transmission or (2) the inhibition of the postsynaptic neuron 

that reduces downstream signaling. Signaling at synapses occurs on a time scale 

of milliseconds, allowing for rapid activation or inhibition of sequential neurons 
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within a circuit to appropriately drive circuit activity and ultimately determine 

behavior. 

The generation of complex behaviors often requires the coordinated 

activity of diverse sets of neural circuits in the brain. The molecular mechanisms 

by which the activity of neural circuits is coordinated remain unclear. What are 

the molecules that regulate the timing of neural circuit activation and how is 

signaling between various neural circuits achieved? These are important 

questions, as disruption of coordinated circuit activity can have severe 

consequences (e.g., epilepsy). While scientific research has attempted to 

address these points, answers to these questions have been difficult to ascertain, 

in part owing to the diversity of molecules involved and the complex connectivity 

patterns of neural circuits in the mammalian brain. My thesis work addresses 

these questions in the context of the nervous system of an invertebrate model 

organism, the nematode Caenorhabditis elegans. The genetic tools available and 

well-established connectivity of this organism make it ideal for this type of study. 

As the major neurotransmitter in C. elegans is acetylcholine, a detailed 

description of cholinergic signaling and the molecules involved follows. 

Ligand-gated ion channels and synaptic transmission 

The ligand-gated gated ion channel (LGIC) super family includes 

receptors for the neurotransmitters glutamate, acetylcholine (ACh), γ amino 

butyric acid (GABA), glycine, and a single serotonin receptor (Corringer et al., 
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2012; Millar and Harkness, 2008; Rosenberg et al., 2002). In mammals, LGIC 

family members can be broadly classified as either excitatory or inhibitory based 

on their permeability to either anions or cations. Ionotropic glutamate receptors 

(iGluR) and nicotinic acetylcholine receptors (nAChR) act as cation-selective 

channels and are excitatory, while GABA and glycine receptors act as anion-

selective channels and are generally inhibitory in the adult nervous system. Over 

40 distinct genes that encode subunits of LGICs have been identified in 

mammals (Baenziger and Corringer, 2011). These receptors are pentameric, 

with the exception of glutamate receptors which form tetramers, and are 

expressed in varying subunit combinations throughout the nervous system (Millar 

and Gotti, 2009). Pharmaceutical therapies designed to activate (agonists) or 

inhibit (antagonists) specific subunit combinations have been developed as 

potential treatments for diseases such as epilepsy and Parkinson’s (Brooks-

Kayal et al., 1998; Davies, 1995; Mulley et al., 2005; Quik and McIntosh, 2006). 

In Parkinson’s disease stimulation of presynaptic nAChRs can increase 

dopamine release in the substania nigra (Quik and McIntosh, 2006). Current 

treatments for Parkinson’s disease synthetically compensate for a loss of 

dopamine using L-DOPA, a precursor of dopamine. However, as previously 

mentioned in Parkinson’s models it is possible to achieve similar increases in 

dopamine levels by activating presynaptic nAChRs (Quik and McIntosh, 2006). 

nAChRs were the first members of the LGIC family to be isolated and studied in 
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vivo and much of our understanding of how LGICs function has come from 

studies of nAChRs (Unwin, 2005). 

Structure, function and localization of nicotinic acetylcholine receptors  

nAChRs were first isolated from the electric organ of the marine Torpedo 

ray and the Electrophorus eel (Changeux et al., 1970; Popot and Changeux, 

1984). In vertebrates, there are 17 nAChR subunits: α1-10, β1-4, δ, γ, and ε 

(Lindstrom, 2003; Millar and Harkness, 2008). In general, nAChRs fall into two 

classes, receptors comprised of identical subunits (homomeric) or different 

subunits types (heteromeric) (Unwin, 2005).The heteromeric nAChR of the NMJ 

contains the subunits α12β1δε; although, during development the subunit 

composition is slightly different (a γ subunit is substituted for an ε subunit) (Millar 

and Harkness, 2008).  In the nervous system the subunit composition of nAChRs 

has more potential for variability, enabling functional diversity across specific 

subunit combinations. Receptors formed from the alpha7 subunit (homologous to 

the ACR-16 subunit in C. elegans) are generally homomeric while the other 

subunits typically contribute to heteromeric receptors, the precise subunit 

combinations of which vary across neuronal classes. 

Each subunit of the pentameric nAChR contains four membrane spanning 

domains (Lindstrom, 2003). Activation of the channel occurs when ACh attaches 

to a binding site on the external face of the receptor. Initially, the extracellular N-

terminal region of α subunits was thought to be solely responsible for ligand 
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binding. However, more recent studies have shown that the ACh binding sites 

exist at the interface of adjacent subunits (Corringer et al., 2000; Luetje and 

Patrick, 1991). Proper formation of the ACh binding site is dependent on the 

presence of two adjacent cysteines located in the N-terminal region of α subunits 

(Figure 1-1) (Doyle, 2004; Lindstrom, 2003). Subunits without these adjacent 

cysteines are classified as non-alpha: β, δ, γ, and ε subunits. Each subunit has a 

large intracellular loop between the third and fourth transmembrane domains. 

The sequence of this intracellular loop does not appear to be highly conserved 

across other nAChR subunits of the same or different species (Doyle, 2004; 

Lindstrom, 2003). It is likely that sequence elements within the large intracellular 

loop are important for localization of the receptor.  

The second transmembrane domain of each subunit contributes to the ion 

channel pore of the receptor (Imoto et al., 1988; Revah et al., 1991). Mutations in 

specific residues of the pore region and the area directly surrounding the pore 

can dramatically alter kinetics, prolonging channel open time (Figure 1-2). For 

example, mutations at amino acids 234, 237 and 258 convert a channel from 

cationic to anionic. Residues 234 and 237 are located just outside the second 

transmembrane domain in the extracellular space while residue 258 is located at 

the intracellular end of the second transmembrane domain (Revah et al., 1991). 

Others have identified residues 236 and 251 as contributing to ion selectivity 

(Corringer et al., 1999; Galzi et al., 1992; Imoto et al., 1988). Reconstitution 

studies have shown the kinetics of α7 homomers could be dramatically altered by 
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mutating a residue in the second transmembrane domain. Mutating residue 247 

from a non-polar leucine to a polar serine has the most pronounced effect on 

mean channel open time (Revah et al., 1991). Hypersensitive nAChRs, or gain of 

function receptors, have since been used to examine the role of cholinergic 

signaling in the CNS. Using an α4 gain of function knock in mouse model, 

researchers were able to identify interactions of nAChRs and dopamine D2 

receptors in regulating cholinergic interneuron activity (Zhao-Shea et al., 2010). 

Mutations in the pore lining domain of α6 (α6L9’S) nAChR subunit identified 

α6α4β2* containing receptors as a key target for disorders associated with 

reduced dopamine release. The researchers were able to specifically link the 

behavioral deficits of α6L9’S animals to α6α4β2* containing receptors in dopamine 

releasing neurons in vivo (Drenan et al., 2010). Additional work with gain of 

function α6 subunits has demonstrated a role for β3 subunits in promoting the 

function of α6 containing receptors (Dash and Lukas, 2012).  

Role of cholinergic signaling in the nervous system 

In the CNS nAChRs are predominantly localized at presynaptic terminals, 

while postsynaptic nAChRs act in the peripheral nervous system to mediate 

transmission in the sympathetic ganglia (Rassadi et al., 2005). Cholinergic 

signaling coordinates neuronal activity in several manners. First, nAChRs located 

at presynaptic sites are important in modulating the release of neurotransmitter. 

For example, activation of presynaptic nAChRs on dopamine neurons increases 
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neurotransmitter release (Salminen et al., 2004). Second, activation of pre-

synaptic nAChRs can trigger neurotransmitter release in the absence of a 

propagated signal; bypassing upstream signaling (Vizi and Lendvai, 1999). Third, 

cholinergic signaling is linked to changes in gene expression (Chang and Berg, 

2001; Hu et al., 2002). Researchers have demonstrated that selective activation 

of nAChRs leads to the phosphroylation of CREB, a transcriptional coactivator, 

and changes in expression of the immediate early gene c-Fos. Fourth, nAChRs 

can directly activate neurons by localizing to postsynaptic sites. It is possible 

subunit diversity in nAChRs provides an opportunity for diverse roles for 

cholinergic signaling. 

Altered cholinergic signaling is implicated in the pathophysiology of 

epilepsy, Parkinson’s disease, Alzheimer’s disease, and in addiction to nicotine 

(Dineley, 2007; Gotti and Clementi, 2004; Quik and McIntosh, 2006; Steinlein et 

al., 2012). Activation of nAChRs in the reward pathways of the brain facilitates 

nicotine addiction. There are at least three distinct classes of nAChRs involved in 

nicotine addiction α4*, α6*, and α7. Specifically, nicotine binds to presynaptic α7 

receptors on glutamatergic neurons in the laterodorsal tegmentum (LTD) 

influencing neurotransmitter release onto dopaminergic neurons in the ventral 

tegmentum area (VTA). The dopaminergic neurons express two classes of 

nAChRs, α4β2*- and β2*- containing receptors, which modulate neurotransmitter 

release and increase in burst firing (Dani et al., 2001; Mansvelder and McGehee, 

2002). Inhibitory GABA neurons also make synaptic contacts with dopaminergic 
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neurons of the VTA  and express α4β2 containing receptors (Dani and Harris, 

2005). However, distinct nAChRs extend beyond the reward pathways of the 

brain. α3β4 receptors were recently identified as directly mediating excitation of 

mitral cells from olfactory inputs. Activation of mitral cells filters the inputs from 

olfactory neurons (D'Souza and Vijayaraghavan, 2012). Additionally, impaired 

cholinergic signaling in Alzheimer’s disease results in decreases in cognition 

(McGehee et al., 1995). Mutations in α4 and β2 subunits have been linked to 

autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) (Raggenbass and 

Bertrand, 2002). There are age and dementia associated changes in high and 

low affinity nAChRs in various regions of the brain (Nordberg et al., 1992). During 

development, loss of α7 containing receptors dramatically reduces the number of 

glutamatergic synapses in the adult brain. The reduction in glutamatergic 

synapses is associated with the behavioral changes in α7 knockout mice 

including attention deficits and impaired spatial discrimination (Lozada et al., 

2012).  

C. elegans as a model for studying nervous system function 

C. elegans is an ideal invertebrate model for addressing fundamental 

principles of nervous system function. There are a host of cell specific drivers 

and the cell fate of all embryonic cells is known (Hobert, 2005). The genome of 

the organism has been fully sequenced and there is a myriad of genetic tools 

available, as well as readily available deletion mutants for many genes of 
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interest. Under laboratory conditions, C. elegans strains are maintained with a 

readily available bacterial food source so the animals do not have to move in 

order to feed. In addition, C. elegans are hermaphroditic so coordinated motor 

behaviors are not required for reproduction. These features allow one to 

propagate strains carrying severe mutations in genes required for nervous 

system function that would be lethal in most systems, and study the functional 

roles of these genes. In addition, the transparent body enables in vivo 

visualization of fluorescent markers in the intact animal. More recently developed 

techniques have made C. elegans amenable to electrophysiological experiments, 

which can be performed both in vivo and in vitro (Christensen et al., 2002; 

Francis et al., 2003; Richmond and Jorgensen, 1999). In addition, tools such as 

cell specific expression of light-activated ion channels, Channelrhodopsin-2 or 

Halorhodopsin, allow for the targeted activation of specific neuronal circuits in 

vivo and subsequent analysis using behavior and electrophysiology (Nagel et al., 

2005; Zhang et al., 2007a). Qualities of the animal’s characteristic sinusoidal 

movement can be measured under a variety of conditions. These tools allow 

researchers to tease apart how a single neuronal circuit contributes to a specific 

behavior.  

The C. elegans nervous system uses many of the same neurotransmitters 

as mammals including acetylcholine, GABA, and glutamate. The genome is 

about 97 megabases and contains over 19,000 genes (Consortium, 1998). This 

genome has a high density of receptors important for synaptic function. In 
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addition, there are on the order of 90 neurotransmitter-gated ion channels of 

which there are more than 30 potential nAChR subunits (Bargmann, 1998; Jones 

et al., 2007; Jones and Sattelle, 2004). C. elegans possess the largest known 

family of AChRs (Mongan et al., 2002). These subunits fall into six different 

groups named for the first subunit identified in each group: unc-29, unc-38, acr-8, 

acr-16, deg-3, and orphan LGIC (Figure 1-3). Specifically, the acr-8 and deg-3 

groups are unique to C. elegans (Jones and Sattelle, 2004). The acr-8 group has 

a unique feature compared to the other groups with a basic (histidine) residue in 

place of a highly conserve acidic (glutamate) residue in the second 

transmembrane domain of the receptor. This alteration can alter the ion 

selectivity from cation to anion (Corringer et al., 1999; Imoto et al., 1988). The C. 

elegans nAChR subunits are classified as either α (ligand binding) or non-α (non-

ligand binding) by the absence or presence of adjacent cysteines. Similar to 

mammalian subunits, C. elegans nAChRs show differential expression patterns 

and are not limited to a specific neuron class (Barbagallo et al., 2010; Cinar et 

al., 2005; Drenan et al., 2008; Fox et al., 2005; Jospin et al., 2009; Nordberg et 

al., 1992; Salminen et al., 2004).  

Genes involved in the trafficking of AChRs include Calnexin, BiP, unc-50, 

ric-3, and unc-74 (Boulin et al., 2008; Eimer et al., 2007; Forsayeth et al., 1992; 

Gelman et al., 1995). Both Calnexin and Bip are ER chaperones involved in the 

synthesis of nAChRs and are shed in the maturation process (Forsayeth et al., 

1992; Gelman et al., 1995). Unfolded or misassembled subunits are retained in 



12 
 

the ER and degraded by ER-associated degradation (Christianson and Green, 

2004). UNC-50 is specifically required for the trafficking of levamisole sensitive 

AChRs (L-AChRs). These proteins are involved in subunit specific trafficking of 

nAChRs, while the function of unc-74 remains unknown (Eimer et al., 2007). RIC-

3 is a protein important for the trafficking of nAChR, but not other LGIC, to the 

cell membrane and is localized to the endoplasmic reticulum (ER) (Halevi et al., 

2002). This is similar to the human form of ric-3 (hric3); however, the human form 

has further evolved to inhibit certain subunit combinations of nAChR and extend 

its regulation to other LGIC (Halevi et al., 2003). Taken together this evidence 

suggests factors involved in trafficking and localization are key regulators in 

preventing aberrant receptors from reaching the cell membrane. In addition, 

there are functional properties associated with distinct subunit compositions such 

as agonist sensitivity and calcium permeability (Changeux et al., 1970; Deneris et 

al., 1991; Drisdel and Green, 2000; Lipovsek et al., 2012). The C. elegans 

locomotory circuit is enriched for nAChRs making this circuit of alternating 

movement ideal for examining coordinated activity. 

Generating alternating movements in C. elegans 

Utilizing alternating movements as a model for identifying mechanisms 

that coordinate excitation and inhibition is common (Eklof-Ljunggren et al., 2012; 

Gabriel et al., 2011; Grillner and Jessell, 2009; Kupfermann and Weiss, 2001; 

Masino and Fetcho, 2005). One of the primary advantages to this model is a 
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completely defined network of neurons including the anatomical connections of 

all chemical and electrical synapses (White et al., 1986). The locomotory circuit is 

comprised of command interneurons, excitatory, and inhibitory motor neurons. 

Sensory information is relayed through command interneurons that synapse onto 

excitatory motor neurons. There are 5 sets of command interneurons: AVA, AVB, 

AVE, AVD, and PVC (White et al., 1986). AVA, AVE, and AVD regulate 

backwards movement through electrical and chemical synapses with the A motor 

neurons (backwards movement). AVB and PVC regulate forward movement via 

gap junctions and chemical synapses with B type motor neurons (forward 

movement) (Chalfie et al., 1985; Wicks et al., 1996; Zheng et al., 1999). Recent 

work has suggested gap junctions between AVA and A motor neurons function to 

bias the motor circuit towards forward versus backward movement. In addition 

electrical coupling may be modulatory in forward movement or there are 

alternative signaling mechanisms maintaining the communication between AVB 

and B type motor neurons in forward movement (Kawano et al., 2011). In turn, 

the excitatory motor neurons (A and B), form dyadic synapses with body wall 

muscle (BWM) initiating contraction while simultaneously activating inhibitory 

motor neurons. Activation of the inhibitory motor neurons initiates relaxation of 

the contralateral BWM. The simultaneous signaling of excitation and inhibition on 

opposing muscle groups is thought to be important for generation of the animal’s 

characteristic sinusoidal wave form (Figure 1-4) (White et al., 1986).  
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In vertebrates there are fundamental differences in NMJ and CNS 

synapses. First NMJ synapses are far more stable than those of the CNS which 

have a higher degree of plasticity. During development, the half life of receptors 

at the NMJ are lengthened unlike the receptors of the CNS. Second, the 

formation of CNS synapses occurs on the time scale of hours whereas the time 

scale at the NMJ is weeks (Holtmaat and Svoboda, 2009). Third, proteins 

associated with NMJ formation (i.e. Agrin, MuSK, and LRP4) are not required for 

CNS synapse formation. Lastly, in stark contrast to the CNS synapses the NMJ 

is regulated primarily by one neurotransmitter and one class of nAChR 

(Lindstrom, 2003). In the CNS neurons are polyinnervated, receiving both 

inhibitory and excitatory neurotransmitters (Kim et al., 2008; Zhang et al., 2008). 

The C. elegans NMJ is similar in that it is also polyinnervated, expresses different 

classes of receptors, and forms through mechanisms independent of Agrin, 

MuSK, and LRP4 (Francis et al., 2005; Richmond and Jorgensen, 1999; 

Touroutine et al., 2005) . Therefore, identifying molecular mechanisms involved 

in regulating the activity of the C. elegans locomotory circuit will be relevant for 

linking findings to mechanisms in the mammalian CNS.  

Within the C. elegans locomotory circuit are previously characterized 

nAChRs. One receptor is a homomeric (contains one subunit type) receptor 

containing five Acetylcholine Receptor-16 (ACR-16) (Francis et al., 2005; 

Touroutine et al., 2005) subunits, and a second receptor is heteromeric 

comprised of UNC-29, LEV-1, LEV-8, UNC-38, and UNC-63 subunits (Culetto et 
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al., 2004; Fleming et al., 1997; Unwin, 2005). The UNC-29, UNC-38, and UNC-

63 subunits are all essential for the function of the UNC-29 receptor. LEV-1 and 

LEV-8 are considered non-essential subunits. Similar to mammalian CNS 

synapses the inhibitory NMJ is mediated by a GABA receptor (UNC-49). This is 

in contrast to the mammalian NMJ which is regulated solely by nAChR. 

Formation of the C. elegans NMJ requires proteins such as CAM-1, a receptor 

tyrosine kinase, responsible for the proper trafficking of ACR-16 receptors 

(Fleming et al., 1997). CAM-1 is orthologus to the mammalian ROR1 and 2 

(Francis et al., 2005; Jensen et al., 2012). Furthermore, LEV-10 is a single pass 

transmembrane protein with several CUB domains which has been implicated in 

receptor clustering at the C. elegans NMJ (Gally et al., 2004). The mechanisms 

introduced here generate the characteristic alternating movement of C. elegans. 

The locomotory circuit of C. elegans is one of many models of alternating 

movement being utilized for understanding nervous system function. 

Alternating movement models in characterizing mechanisms of neuronal activity 

Walking vertebrates or swimming fish are classic demonstrations of the 

precision required to maintain the balance of excitatory and inhibitory signaling in 

movement circuits. Alternating movement can be seen in a host of organisms 

ranging from humans to C. elegans. Opposing muscle groups coordinate their 

activation and relaxation in order to properly time the shortening of one group of 

muscles while simultaneously lengthening the contralateral muscle group. 
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Alternating movements are finely modulated to achieve a variety of speeds, 

direction, amplitude, and frequency. Similar to the neuronal circuits in the brain, 

alternating movements require molecular mechanisms to facilitate adaptation to 

stimuli with a high degree of precision while maintaining a coordinated balance of 

excitation and inhibition. The molecular mechanisms that regulate activity in 

alternating movements are easier to study than those of the mammalian central 

nervous system. This is due in part to the well defined circuitry providing a more 

controlled environment for identifying and characterizing mechanisms of neuronal 

activity. This model circuit is an ideal alternative to the complex neuronal circuitry 

of the mammalian brain.  

Motor circuits have been characterized in several model systems including 

lamprey, zebrafish, mouse, and nematode (Goulding, 2009). The lamprey and 

zebrafish model systems have a unique feature of maintaining the complexity of 

highly connected interneuron populations while limiting the density of neurons 

(Eklof-Ljunggren et al., 2012; Masino and Fetcho, 2005). Comparing interneuron 

populations across species makes circuit analysis in vertebrate models more 

broadly relevant (Fetcho et al., 2008). Vertebrates allow us to address questions 

of how specific subsets of interneurons or motor neurons affect alternating 

movements and what kinds of molecular mechanisms are involved. However, 

invertebrate models present their own advantages for probing locomotory 

circuits. First, the circuitry is vastly simplified compared to vertebrate models 

(Altun, 2008; Jing and Weiss, 2002; Kupfermann and Weiss, 2001). Second, as 
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previously mentioned the connectivity of all neurons and synapses are identified 

and well characterized (Serrano et al., 2007; White et al., 1986). Third, the 

generation time of some invertebrate model organisms profoundly shorter than 

the generation time of vertebrate models. For example, the generation time of C. 

elegans is only 4 days. This allows researchers to perform large forward genetic 

screens and isolate mutants much faster than that of alternative model systems. 

Ultimately, the C. elegans locomotory circuit is ideally suited for linking 

mechanisms of neuronal activity to those of the mammalian CNS. 

Dissertation Overview 

My thesis work will focus on the chemical synapse, specifically how 

receptors regulate neuronal activity and directly influence behavior. I use the 

locomotory circuit of C. elegans as a model for identifying mechanisms that 

coordinate neuronal activity. The molecular mechanisms are critical to the 

balance of excitation and inhibition. The elucidation of these mechanisms will 

provide insights into mammalian nervous system function. In order to understand 

and study nervous system function it is important to be familiar with the types of 

molecular mechanisms that affect neuronal activity. Here in the first chapter I 

have introduced the structure and function of the nervous system including both 

chemical synapses and electrical coupling. I have also provided background on 

mechanisms that regulate neuronal activity and specifically the role of cholinergic 
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signaling in regulating neuronal activity. I have ended with establishing C. 

elegans as an informative model for studying nervous system function.  

 Chapter II identifies a mechanism important in directly coordinating 

excitatory and inhibitory signaling in the C. elegans locomotory circuit. Here, I 

provide evidence that a single nAChR subunit, ACR-12, forms two distinct 

classes of nAChRs. These distinct classes have differential localization, 

composition, and roles in regulating behavior. Our previous work with acr-2 

identified a heteromeric nAChR expressed in cholinergic motor neurons (ACR-

2R) (Barbagallo et al., 2010). The ACR-2R has diffuse localization in the 

dendrites and a modulatory role in regulating neuron activity (Barbagallo et al., 

2010; Jospin et al., 2009). Loss of ACR-2Rs results in subtle changes in behavior 

(see Appendix). In contrast the recently identified GABA neuron-specific ACR-12 

(ACR-12R) localizes to discrete sites within the dendrites. Colocalization of these 

discrete sites opposed to a presynaptic reporter suggests ACR-12R is synaptic. 

Since two of the subunits from the ACR-2R are not expressed in GABA neurons, 

this observation suggests that GABA neuron-specific ACR-12 containing 

receptors are distinct from the heteromeric cholinergic receptor. In addition, the 

ACR-12R is implicated in regulating the consistency of the C. elegans waveform 

and mediating the activity of GABA neurons under conditions of elevated 

acetylcholine (ACh) release. Taken together, these results suggest diverse roles 

for receptor subtypes are important for coordinating neuronal activity.  
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Chapter III identifies the contributions of neuronal subsets to the 

generation of movement. Data in this chapter demonstrates that expression of a 

gain of function ACR-12 [ACR-12(V/S)] receptor has dramatic effects on behavior 

including highly reduced movement and spontaneous convulsions. In addition, 

expression of this transgene leads to the degeneration of the GABAergic nervous 

system, but not the cholinergic nervous system. These degenerative effects can 

be observed at early life stages and preliminary evidence suggests this 

degeneration is cell autonomous.  Interestingly, the NMJ inhibitory receptor, 

UNC-49, remains unaffected by the degeneration of presynaptic GABA neurons. 

Our results indicate ACR-12(V/S) will be a useful tool in identifying how subsets 

of neurons contribute to the overall behavior of an animal. Lastly, expression of 

ACR-12(V/S) may prove a useful genetic tool for identifying proteins associated 

with receptor localization, subunit identification, and mechanisms of 

degeneration. 
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Figure 1-1 
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Figure 1-1 reprint from (Doyle, 2004). The structure of a nAChR. 
(a) An extracellular perspective of the transmembrane helical topology in its 
closed state. (b). A side view (γ subunit removed). For all subunits (2α, β, and δ), 
transmembrane (TM) TM1 (red), TM2 (magenta), TM3 (green) and TM4 (blue). 
Residues of the hydrophobic gate are modeled in yellow ball-and-stick. TM2 
rotation direction is indicated by the arrows. 
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Figure 1-2 
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Figure 1-2 reprint from (Revah et al., 1991): “b, Functional properties of α7 
receptor mutants. b, Normalized currents evoked by 100μM ACh in Xenopus 
oocytes expressing α7 wild type (WT) and α7 L247F, L247V, L247T, L247S, 
L246T, S248A receptors (where letters represent amino acids at positions given 
by the numbers) are superimposed. The normalized responses to ACh from WT, 
L246T and S248A were indistinguishable.” 
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Figure 1-3 
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Figure 1-3 (Jones and Sattelle, 2004): Phylogeny of C. elegans nAChR 
subunits with vertebrate AChR subunits and other members of the LGIC 
superfamily. C. elegans α subunits (blue), non-α subunits (red), and GABA, 
glycine, glutamate, 5-HT3 and vertebrate nAChR subunits (black). Cosmid 
numbers are used for C. elegans sequences lacking gene names.  
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Figure 1-4 
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Figure 1-4 (Altun, 2011). Schematic of C. elegans locomotory circuit. Dark and 
light green shading indicates body wall muscles. In blue are the ACh MNs (VA, 
VB, DA, DB, AS, VC) and orange indicates GABA MNs (VD and DD). Axons and 
dendrites of ventrally directed cholinergic motor neurons (ventral A and ventral B 
classes) extend through the ventral nerve cord. Dorsally directed cholinergic 
motor neuron cell bodies (dorsal A class and dorsal B classes) are located 
adjacent to the ventral nerve cord and extend axons into the dorsal nerve cord, 
where they make dyadic synaptic contacts with body wall musculature and 
dendrites of ventrally directed GABA motor neurons (ventral D class).  
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Chapter II: 
 

Excitation and inhibition are coordinated 

through multiple cholinergic (nicotinic) 

signaling pathways in C. elegans motor 

control 
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ABSTRACT 

Heterogeneity in the composition of neurotransmitter receptors is thought to 

provide functional diversity that may be important in patterning neural activity and 

shaping behavior (Dani and Bertrand, 2007; Sassoe-Pognetto, 2011). However, 

this idea has remained difficult to evaluate directly due to the complexity of 

neuronal connectivity patterns and uncertainty about the molecular composition 

of specific receptor types in vivo. Here we dissect how molecular diversity across 

receptor types contributes to the coordinated activity of excitatory and inhibitory 

motor neurons in the nematode Caenorhabditis elegans. We show that excitatory 

and inhibitory motor neurons express distinct populations of ionotropic 

acetylcholine receptors (iAChR) requiring the ACR-12 subunit. The activity level 

of excitatory motor neurons is influenced through activation of nonsynaptic 

iAChRs (Barbagallo et al., 2010; Jospin et al., 2009). In contrast, synaptic 

coupling of excitatory and inhibitory motor neurons is achieved through a second 

population of iAChRs specifically localized at postsynaptic sites on inhibitory 

motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to 

reduced synaptic drive, decreased inhibitory neuromuscular signaling and 

variability in the sinusoidal motor pattern. Our results provide new insights into 

mechanisms that establish appropriately balanced excitation and inhibition in the 

generation of a rhythmic motor behavior, and reveal functionally diverse roles for 

iAChR mediated signaling in this process. 
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INTRODUCTION  

The pattern of activity in neuronal circuits is the basis for behavior, addition, 

learning and memory (Dani and Harris, 2005; Gotti and Clementi, 2004; Steinlein 

et al., 2012). Identifying the mechanisms responsible for this patterning will 

provide insights into how behaviors are readily adaptable with a constantly 

changing environment. The ligand-gated ion channel family is broadly expressed 

throughout the nervous system and is a major contributor to neuronal patterning 

(Doyle, 2004; Lindstrom, 2003). While many of the receptor families and 

individual subunits have been identified, the functional consequences for 

heterogeneity among individual receptor families remain unclear. Functional 

diversity remains difficult to evaluate directly due to the complexity of neuronal 

connectivity patterns and the uncertainty about the molecular composition of 

specific receptor types in vivo. Differences in subunit composition have been 

linked to changes in localization and kinetic properties of the receptors (Glykys 

and Mody, 2007; Imoto et al., 1988; Revah et al., 1991; Teichert et al., 2012; 

Zhang et al., 2007b). These changes can have profound effects on neuronal 

activity. Therefore, understanding how molecular diversity among individual 

receptor families gives rise to functional diversity and alters neuronal activity will 

be important for understanding normal brain physiology and the pathophysiology 

of disorders that affect post-synaptic receptors.  

In C. elegans, excitatory cholinergic motor neurons (ACh MNs) make 

synaptic contacts onto both muscle cells and GABA MNs that, in turn, make 
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inhibitory synaptic contacts onto opposing musculature (Figure 2-3A) (White et 

al., 1986). Proper function of this circuit produces temporally coordinated and 

balanced excitatory and inhibitory signals that pattern movement. While the 

anatomical connectivity of this circuit has been well characterized, the signaling 

mechanisms that underlie coordinated motor neuron activity are not well 

understood. Expression studies have revealed that many of the 29 ionotropic 

acetylcholine receptor subunits encoded by the C. elegans genome are 

expressed in motor neurons, suggesting that cholinergic signaling may play a 

prominent role (Cinar et al., 2005; Fox et al., 2005; Jones et al., 2007; Rand, 

2007). For example, cholinergic motor neurons express a class of heteromeric 

acetylcholine-gated ion channel complexes known as ACR-2R (Barbagallo et al., 

2010; Jospin et al., 2009). ACR-2Rs are ionotropic receptors of the nicotinic 

acetylcholine receptor superfamily composed of five distinct subunits (ACR-2, 

ACR-3, UNC-38, UNC-63 and ACR-12), each of which is essential for function in 

heterologous expression studies. Loss of ACR-2R leads to relatively subtle 

changes in behavior; however, gain-of-function acr-2 mutations (acr-2(gf)) have 

profound consequences including hyperactivation and, in extreme cases, death 

of ACh MNs (Barbagallo et al., 2010; Jospin et al., 2009). In a forward genetic 

screen to identify mutations that suppressed the toxic effects of acr-2(gf) (ACR-

2L9'S), we isolated several loss-of-function alleles of a partnering acetylcholine 

receptor subunit, acr-12 (Barbagallo et al., 2010). Specific expression of acr-12 in 
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ACh MNs of animals coexpressing acr-2(gf) restored toxicity in acr-12 mutants, 

demonstrating a cell autonomous role for ACR-12 in these neurons.  

Here we identify and characterize a second class of ACR-12 containing 

receptors in GABA motor neurons (ACR-12R*). Animals that have lost GABA 

ACR-12Rs in GABA motor neurons exhibit inconsistency in body bend amplitude 

across consecutive body bends. Subcellular localization of GABA neurons ACR-

12R show discrete sites of green fluorescent protein (GFP) fluorescence. Using 

electrophysiology we show loss of acr-12 results in significant loss of inhibitory 

post synaptic events in the muscle that can be rescued with cell specific 

expression of ACR-12 in GABA neurons. Lastly, we demonstrate under 

conditions of elevated ACh release that acr-12 mutants can suppress the 

paralyzing effects of channelrhodopsin in upstream cholinergic motor neurons. 

Taken together our results provide valuable insights into the mechanisms of 

cholinergic signaling in nervous system function. 

MATERIALS AND METHODS 

C. elegans strains 

C. elegans strains were grown under standard laboratory conditions at 22°C. All 

strains are derivatives of the N2 Bristol strain (wild type). Transgenic strains were 

obtained by microinjection to achieve germline transformation. Multiple 

independent extragenic lines were obtained for each transgenic strain and data 

presented are from a single representative transgenic line unless noted 

otherwise. In all cases, lin-15(n765ts) mutants were injected with the lin-15 
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rescuing plasmid (pL15Ek; 30ng/ul) and one or more of the following plasmids: 

pPRB5 [Punc-47::mCherry], pPRB6 [Pacr-2::mCherry], pPRB47 [Pacr-

2::mCherry-RAB-3], pPRB53 [ACR-12-GFPICL], pPRB77 [Pacr-2::ACR-12-

GFPICL], pHP7 [Punc-47::ACR-12-GFPICL], pAG21 [ACR-12-GFPC-term]. Stably 

integrated lines were generated by X-ray integration and outcrossed at least four 

times to wild type. The following strains were used in this study: IZ914: acr-

12(ok367)X; IZ853: acr-12(ok367)X;ufIs57[ACR-12-GFPICL]; IZ984: acr-

12(ok367);ufIs78[Pacr-2::ACR-12::GFPICL]; IZ556: acr-12(ok367);ufIs92[Punc-

47::ACR-12-GFPICL]; IZ941: unc-49(e382)III;acr-12(ok367)X; IZ33: unc-

29(x29);acr-16(ok789); IZ514: unc-29(x29);acr-16(ok789);acr-12(ok367); IZ519: 

acr-12(ok367);ufIs23[Pacr-2::ChR2-GFP]; IZ801: ufIs23[Pacr-2::ChR2-GFP]; 

IZ629: ufIs38[ACR-12-GFPC-term];ufIs34[Punc-47::mCherry]; IZ651: ufIs38[ACR-

12-GFPC-term];ufIs43[Pacr-2::mCherry]; IZ632: ufIs26[Punc-

4::mCherry];ufIs38[ACR-12-GFPC-term]; IZ557: ufIs63[Pacr-2::mCherry-RAB-

3];ufIs92[Punc-47::ACR-12-GFPICL]; CB382: unc-49(e382)III; IZ712: acr-12(uf77); 

RB1559: acr-2(ok1887)II; IZ805: ufIs53[Punc-17::ChR2-mCherry]; IZ1096: acr-

2(ok1887);ufIs23[Pacr-2::ChR2-GFP]; and IZ1095: acr-

12(ok367);ufIs53[Punc17::ChR2-mCherry]. 

 

Molecular Biology 

The ACR-12-GFPICL transgene (pPRB53) was generated by cloning the GFP 

coding sequence in-frame into the sequence of an acr-12 genomic fragment (-
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1514 to +4799 bp relative to the translational start site) encoding the intracellular 

loop (ICL) between transmembrane domains (TM)3 and TM4. ACR-12-GFPICL 

was localized in neuronal processes and expression of this construct was 

sufficient for rescue of acr-12 mutants. pAG21 [ACR-12-GFPC-term] was provided 

by Alexander Gottschalk and was used in cell identifications (Fig. 1). ACR-12-

GFPC-term fluorescence was largely confined to cell bodies. Punc-47::ACR-12-

GFPICL (pHP7) and Punc-47::ACR-12-GFPICL (pPRB77) were generated by 

subcloning a 4.9 kb NruI/BglI fragment containing GFP from pPRB53 into 

constructs encoding the acr-12 cDNA under control of the appropriate promoters 

(pBB25 and pHP3 respectively). Punc-47::mCherry (pPRB5) was generated by 

subcloning mCherry coding sequence downstream of a 1.3 kb promoter for the 

unc-47 gene. Pacr-2::mCherry (pPRB6) was generated by subcloning a 3.3 kb 

promoter for the acr-2 gene upstream of the mCherry coding sequence.  

 

Microscopy 

Confocal microscopy was performed using a Zeiss Axioskop 2 microscope 

system and LSM Pascal 5 imaging software (Zeiss). All images used animals 24 

h after the L4 stage and were processed using ImageJ software. For all synapse 

quantification, a region of the dorsal cord directly across from the vulva was 

imaged. Synapses were quantified within a 50 μM region of interest by 

thresholding fluorescence intensity and using the “analyze particles” module in 

ImageJ software. The percentage of overlap with pre-synaptic RAB-3 was 
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determined by quantifying the number of mCherry::RAB-3 puncta which were 

positioned either directly apposing or overlapping with ACR-12::GFP fluorescent 

signal. 

 

Behavioral assays 

All behavioral analyses were performed using staged populations of young adult 

animals (24 h following L4) at room temperature (22°C-24°C). Strains were 

scored in parallel, with the researcher blinded to the genotype during both 

experiment and analysis. For aldicarb assays, staged populations of adult 

animals (≥10) were transferred to NGM plates containing 1 mM aldicarb 

(ChemService), and movement was assessed every 15 min for 2 h. Movies and 

still images for behavioral analyses were obtained using an Olympus SZ61 

upright microscope equipped with a FireWire camera (Imaging Source). For body 

bend measurements, amplitudes were determined using ImageJ software. The 

distance between the deepest point of the bend and a line tangent to the tip of 

the head and the body was measured. This measurement was then normalized 

to the length of each animal and either averaged across 3 consecutive body 

bends to generate a value for average body bend amplitude (Figure 2-6D) or 10 

individual consecutive body bends (Figure 2-6B and C). For gross movement, 

individual worms were transferred to 100mm (large) unseeded plates. The 

number of body bends and spontaneous reversals were counted manually over 

1-minute intervals for 3-minutes and averaged (Figure 2-6E). For optogenetic 



36 
 

experiments, animals were maintained on OP50 plates containing retinal and 

450-490 nm light (2.5 mW/mm2) was delivered using an Exfo X-cite series 120 

light source and appropriate GFP excitation filters. On the day of the assay 

staged young adult animals were moved to a fresh plate for an equilibration 

period of 1 minute prior to filming for 40 s. After 10 s of filming the animals were 

exposed to blue light for 15 s and then filmed for an additional 10 s after blue 

light exposure. Responses were categorized using the following criteria: no 

movement impairment, tail bend ≤ 90°, tail bend > 90°, or arrested movement. 

Electrophysiology 

Endogenous postsynaptic currents were recorded from body wall muscles 

as previously described (Francis et al., 2005). The extracellular solution 

consisted of 150 mM NaCl, 5 mM KCl, 4 mM MgCl2, 1 mM CaCl2, 15 mM 

HEPES, and 10 mM glucose (pH 7.4, osmolarity adjusted with 20 mM sucrose). 

The intracellular fluid (ICF) consisted of 115 mM K-gluconate, 25 mM KCl, 0.1 

mM CaCl2, 50 mM HEPES, 5 mM Mg-ATP, 0.5 mM Na-GTP, 0.5 mM cGMP, 0.5 

mM cAMP, and 1 mM BAPTA (pH 7.4, osmolarity adjusted with 10 mM sucrose). 

For some experiments measuring GABA-mediated currents, the intracellular 

solution contained 115 mM KCl and 25 mM K-gluconate. At least 60-90 s of 

continuous data were used in the analysis. Data analysis was performed using 

Igor Pro (WaveMetrics, Inc.) and Mini Analysis (Synaptosoft, Inc.) software. 

Statistical comparisons were made by Student’s t test using GraphPad Prism. 
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RESULTS  

Loss of ACR-12 leads to heightened excitability 

acr-12 encodes a 573 amino acid iAChR alpha subunit (Figure 1) with 

significant homology to the ACR-8 like group of C. elegans subunits and more 

distant homology to mammalian neuronal heteromeric alpha subunits such as 

alpha6 (Jones et al., 2007). To investigate the contribution of ACR-12 receptor 

complexes to the excitability of neurons in the motor circuit, we evaluated 

independent strains carrying putative loss of function alleles of acr-12 during 

acute exposure to the cholinesterase inhibitor aldicarb. Treatment of C. elegans 

with aldicarb leads to elevated levels of synaptic ACh and causes paralysis over 

time due to prolonged muscle contraction (Nguyen et al., 1995). The contractile 

state of muscles reflects the summed activity of excitatory ACh and inhibitory 

GABA synaptic inputs; genetic mutations that alter this balance will shift the time 

course over which aldicarb leads to paralysis. For example, manipulations that 

reduce or eliminate inhibitory GABA signaling cause enhanced muscle activation 

and more rapid paralysis (Loria et al., 2004; Vashlishan et al., 2008). acr-

12(uf77) was isolated as a suppressor of acr-2(gf) and is a missense mutation 

affecting a splice acceptor site that results in premature termination prior to 

transmembrane domain 4 (aa 387) (Barbagallo et al., 2010). acr-12(ok367) is a 

deletion mutation that eliminates 1368 bp of chromosomal DNA, including 

sequence encoding transmembrane domains 1-3 (Figure 2-1). Strains carrying 

either of these alleles were viable and gross connectivity of the nervous system 
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was normal (not shown), indicating that ACR-12 is not required for normal 

development of the nervous system. We found the acr-12(uf77) and acr-

12(ok367) mutations both accelerated the time course of aldicarb-induced 

paralysis (Figure 2-2A), suggesting loss of ACR-12 led to enhanced excitability. 

In contrast, previous work showed removal of ACR-2Rs slightly delayed paralysis 

in response to aldicarb treatment (Barbagallo et al., 2010; Jospin et al., 2009). 

The differential effects of aldicarb across acr-2 and acr-12 mutants suggested 

ACR-12 has additional roles in the nervous system independent of ACR-2. To 

better define potential functions for ACR-12 signaling, we constructed double 

mutants lacking both acr-12 and unc-49. The unc-49 gene encodes an essential 

subunit of ionotropic GABAA-like receptors at inhibitory neuromuscular synapses 

and mutations in unc-49 cause aldicarb hypersensitivity (Figure 2-2A) (Bamber et 

al., 1999; Vashlishan et al., 2008). unc-49;acr-12 double mutants exhibited no 

additional hypersensitivity beyond that of unc-49 single mutants, suggesting that 

acr-12 and unc-49 may act in the same pathway.  

acr-12 is reported to have broad expression in the nervous system 

(Gottschalk et al., 2005) but a precise description of the motor neuron classes 

that express acr-12 has remained unclear. To address this issue, we generated 

transgenic strains expressing ACR-12 tagged with GFP (green fluorescent 

protein) at the C-terminus together with a red fluorescent reporter (Pacr-

2::mCherry) labeling ACh motor neurons, and examined the cellular distribution 

of ACR-12-GFP in the ventral nerve cord. ACR-12-GFP fluorescence was 
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broadly visible in motor neuron cell bodies and partially overlapped with Pacr-

2::mCherry expression, confirming that acr-12 is expressed in cholinergic motor 

neurons (Figure 2-2D). In addition we coexpressed ACR-12-GFP with a red 

fluorescent protein reporter for the A class and VC motor neurons (Punc-

4::mCherry) and observed a partial overlap of ACR-12-GFP that did not include 

the VC neurons (Figure 2-2E). Fluorescence was also clearly visible in additional 

motor neurons along the ventral cord. To confirm the identity of these neurons, 

we imaged animals co-expressing ACR-12-GFP with a reporter labeling GABA 

neurons (Punc-47::mCherry) and observed overlapping fluorescent signals 

(Figure 2-2F). Our results indicate ACR-12 contributes to iAChRs expressed by 

both ACh and GABA motor neurons. Furthermore, the limited expression of 

some ACR-2R constituents to ACh MNs strongly suggests the iAChR 

populations expressed by ACh and GABA motor neurons are molecularly distinct 

(Barbagallo et al., 2010; Jospin et al., 2009). 

To dissect functional roles for ACR-12 across motor neuron classes, we 

specifically expressed ACR-12 in either ACh or GABA motor neurons of acr-12 

mutants and tested the responses of these animals to aldicarb treatment (Figure 

2-2B). Specific expression of acr-12 in ACh MNs did not alter the aldicarb 

hypersensitivity and paralysis of acr-12 mutants. In contrast, specific expression 

of acr-12 in GABA neurons restored wild type sensitivity to aldicarb. Our results 

suggest that postsynaptic ACR-12 receptor complexes regulate GABA motor 



40 
 

neuron activity and inhibitory neuromuscular signaling under conditions when 

ACh levels are elevated. 

 

iAChRs requiring ACR-12 have distinct patterns of localization and 

functional roles across motor neuron classes 

We examined the subcellular distribution of ACR-12 in motor neurons by 

expressing a rescuing ACR-12-GFP fusion protein under control of the native 

promoter (Figure 3B). ACR-12-GFP expression was clearly visible in motor 

neuron processes of both the ventral and dorsal nerve cords of adult animals, 

and exhibited two contrasting patterns of fluorescence. In the ventral nerve cord 

we observed regions of punctate and diffuse localization while, in the dorsal cord, 

we observed punctate fluorescence almost exclusively (Figure 2-3B). In contrast, 

specific expression of ACR-12-GFP in ACh MNs produced only diffuse 

fluorescence in the ventral nerve cord and no detectable fluorescent signal in the 

dorsal nerve cord (Figure 2-3C). Axons and dendrites of ventrally directed 

cholinergic motor neurons (ventral A and B classes) extend through the ventral 

nerve cord. Cholinergic motor neurons innervating dorsal musculature (dorsal A 

and B classes) extend axons into the dorsal nerve cord, where they make dyadic 

synaptic contacts with body wall musculature and dendrites of ventrally directed 

GABA motor neurons (ventral D class) (Figure 2-3A) (White et al., 1986). The 

diffuse localization of ACR-12 in ACh MNs is consistent with our previous finding 

that ACR-12 contributes to heteromeric receptor complexes (e.g. ACR-2R) 
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without obvious postsynaptic localization in these neurons (Barbagallo et al., 

2010). Specific expression of ACR-12-GFP in GABA MNs produced solely 

punctate fluorescence (Figure 2-3D). Many of these ACR-12-GFP puncta were 

located immediately opposed to regions of cholinergic motor neuron axons in 

which the synaptic vesicle marker mCherry-RAB-3 was concentrated (Figure 2-

4A-C) (Klassen and Shen, 2007; Mahoney et al., 2006). Our results provide 

evidence that ACR-12 complexes in GABA MNs are clustered in receptor fields 

located opposite presynaptic specializations of ACh MNs. 

 

GABA motor neuron expression of ACR-12 is required for normal levels of 

inhibitory synaptic activity 

To directly test the requirement for ACR-12 in regulating motor neuron 

activity, we used standard electrophysiology recording techniques to measure 

the frequency of synaptic events at the NMJ in vivo (Figure 2-5) (Francis and 

Maricq, 2006). We employed two independent strategies to distinguish between 

GABA and ACh post synaptic currents (PSCs): 1) Recordings were made under 

ionic conditions where GABA and ACh mediated events were separable based 

on the directionality of the currents (see Experimental Procedures for details) and 

2) We recorded from unc-29;acr-16 double mutants that are devoid of functional 

iAChRs on body wall muscles and lack excitatory neurotransmission at the NMJ 

[18, 19]. In both cases, we observed a significant reduction in the rate of 

endogenous GABA mediated inhibitory PSCs in mutants lacking ACR-12 
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receptors (53%, p<0.001 and 69 %, p<0.01 respectively) (Figure 2-5). We did not 

observe a significant difference in the amplitude of endogenous inhibitory PSCs 

(wild type, 26 ± 1.8 pA; acr-12, 23.4 ± 2 pA, p>0.05, Figure 5). To distinguish 

whether the reduction in inhibitory PSC frequency arose as a consequence of 

loss of ACR-12 from GABA MNs or arose due to reduced excitation levels in 

presynaptic ACh MNs, we recorded from animals that expressed acr-12 

specifically in ACh or GABA MNs (Figure 2-5). The reduced IPSC rate was 

partially rescued by expression of acr-12 in GABA motor neurons, while 

expression in ACh MNs was not sufficient for rescue. Additionally, the acr-12 

deletion mutation did not significantly reduce the rate or amplitude of 

endogenous excitatory PSCs (wild type, 28.6 ± 1.8 pA; acr-12, 26.8 ± 1.3 pA, 

p>0.05), although we did note a trend toward reduced frequency (33%, p = 0.07) 

(Figure 2-5E). Thus, the reduction in endogenous IPSC frequency cannot be 

explained by decreased excitation of presynaptic ACh MNs. Our results indicate 

that independent populations of ACR-12 receptors act cell autonomously in ACh 

and GABA MNs to regulate their activity. 

 

ACR-12 mediated signaling onto motor neurons regulates locomotion 

To determine how ACR-12 mediated signaling onto motor neurons 

contributes to normal locomotory behavior, we tracked animals during 

exploratory movements on agar plates. The sinusoidal locomotory wave 

appeared more erratic in acr-12 animals (Figure 2-6A). To examine this in more 
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detail, we monitored consecutive body bends during extended periods of 

uninterrupted forward movement (Figure 2-6A and B). Wild type animals 

displayed remarkable consistency in their movement with only a few irregularities 

in their sinusoidal tracks. In the absence of ACR-12 receptors (ok367 and uf77), 

the motor pattern was less stable, showing significantly increased variability in 

body bend amplitude from one body bend to the next (Figure 2-6C, p<0.001). 

Furthermore, acr-2(ok1887) mutants do not have an irregular waveform 

suggesting loss of GABA-specific ACR-12 iAChRs is required for coordination of 

a consistent waveform. Animals expressing a genomic ACR-12-GFP reduced 

variability to wild type levels (Figure 2-6C green). In addition to an inconsistent 

waveform we observe a modest reduction in the average amplitude of body 

bends (~14% for both uf77 and ok367, p<0.05 and p<0.01 respectively) (Figure 

2-6D). Body bend amplitude was reversed by ACR-12 expression using the 

native promoter. In addition, specific expression of ACR-12 in GABA motor 

neurons, but not cholinergic motor neurons reversed the reduction in body bend 

amplitude. Moreover, acr-2(ok1887) mutants did not exhibit changes in body 

bend amplitude. These disruptions in body bend variability and amplitude likely 

contribute to the overall decrease acr-12(ok367) mutant movement (Figure 2-

6E). In addition to changes in the number of body bends over time acr-12(ok367) 

mutants also exhibit an increase in the frequency of spontaneous reversals 

(Figure 2-6E). This increase may indicate important roles for ACR-12 iAChRs in 

the interneurons. Here we highlight how ACR-12 receptors under laboratory 



44 
 

conditions mediate subtle attributes of locomotory patterning leading to changes 

in the overall number as well as the quality of those body bends. 

 

ACR-12 receptors mediate GABA neuron activity under elevated conditions 

of ACh release. 

To investigate how synaptic activation of ACR-12 receptors on GABA MNs 

contributes to motor control under elevated levels of ACh release, we expressed 

the light-activated ion channel channelrhodopsin (ChR2) in A and B class ACh 

MNs (ufIs23) that make direct synaptic contacts onto GABA MNs. Wild type 

animals expressing ChR2 exhibited a behavioral response to light stimulation 

that was largely invariant from animal to animal (Figure 2-7A). Immediately 

following the onset of simulation, animals typically slowed or paused forward 

movement and initiated muscle contraction in the posterior portion of the body. 

More prolonged exposure (>~5 s) led to a complete cessation of forward 

movement for the duration of the stimulation period and a characteristic bending 

of the tail (Figure 2-7B). Normal forward movement could be reinitiated 

immediately following optogenetic stimulation and these effects were completely 

dependent on the presence of exogenous retinal (Figure 2-7B and C). Head 

movements were unimpaired throughout the stimulation period, presumably 

because the acr-2 promoter does not provide for efficient expression in motor 

neurons that synapse onto head and neck muscles (Barbagallo et al., 2010; 

Jospin et al., 2009). These observations suggest that photostimulation of wild 
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type animals impaired movement through synchronous depolarization of ACh 

MNs and simultaneous activation of both body wall muscles and GABA MNs 

along the length of the body. We found that loss of ACR-12 receptors 

ameliorated this effect (Figure 2-7C and D, ACh MN only (Pacr-2), p<0.0001). 

acr-12 mutants expressing ChR2 were able to execute sinusoidal body bends 

and maintain coordinated movement even during prolonged periods of light 

exposure (15-20 s). Thus, loss of ACR-12 receptors diminishes the intensity of 

the behavioral response to synchronous ACh MN depolarization. As ACR-12 

receptors are located on GABA MNs that are directly postsynaptic to the 

photoresponsive ACh MNs, our results suggest that synaptic drive onto GABA 

MNs is reduced in acr-12 mutants and that synchronous excitation of GABA MNs 

is critical for the behavioral response to optical stimulation. Furthermore, acr-

2(ok1887) mutants showed no suppression of the ChR2 effect (Figure 2-7C and 

D). When we express ChR2 with a cell specific promoter for all cholinergic motor 

neurons (ufIs53) we see dramatic changes in behavior that acr-12(ok367) 

mutants do not suppress (Figure 2-7C and E). However, simultaneously 

activating all cholinergic motor neurons may activate alternative neuronal circuits 

that feed back into GABAergic neurons through other signaling mechanisms 

such as neuropeptides or G-protein coupled receptors. 

DISCUSSION  

Characterizing functional diversity among receptor families will provide 

insights into signaling mechanisms that maintain a well balanced circuit. 
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Conditions that arise from a shift in the balance of excitation and inhibition have 

profound effects on behavior. For example changes in GABAA receptor 

composition have been linked to patients with epilepsy, a seizure disorder. 

Specifically, α1β3γ2 receptors are replaced by α4β3γ2 receptors in the 

extrasynaptic regions of the thalamus and hippocampus (Lagrange et al., 2007). 

Additionally, this alteration in subunit composition augments the kinetics of the 

receptor which correlates with susceptibility to seizures (Lagrange et al., 2007). 

Furthermore, in some cases of temporal lobe epilepsy there is a down regulation 

of the δ subunit and an increase in α4 and γ2 subunits in peri-synaptic regions of 

the dentate gyrus. These altered receptors negatively affect tonic inhibitory 

currents (Zhang et al., 2007b).    

We show here that subunit composition also affects receptor function in 

the C. elegans motor circuit. At least 2 classes of iAChRs requiring ACR-12 

participate in shaping activity of this circuit. While receptors on cholinergic motor 

neurons appear diffusely distributed and may act to maintain appropriate levels 

of activation through an extrasynaptic mechanism (Barbagallo et al., 2010; 

Jospin et al., 2009), receptors located on GABA neurons appear positioned at 

synapses to mediate direct coupling of excitatory and inhibitory motor neurons. 

At least two subunits of iAChRs present on ACh MNs (ACR-2R*) are not 

expressed in GABA MNs (Jospin et al., 2009), implying that distinct receptor 

subunit combinations are expressed by each motor neuron class. The two 

localization patterns we observed may arise from differences in subunit 
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composition of the receptor or differential expression of localization factors 

unique to each motor neuron subtype. Further characterization of the iAChR 

constituents in GABA MNs will be key to addressing this important question, as 

well as understanding potential effects of differing biophysical properties across 

receptor types. Interestingly, iAChRs play similarly diverse roles in the 

mammalian nervous system where they are primarily postsynaptic at autonomic 

synapses and primarily presynaptic or extrasynaptic in the brain (Dani and 

Bertrand, 2007). 

Our experiments also reveal the presence of additional signaling pathways 

onto GABA MNs that function independently of ACR-12 receptors. GABA IPSCs 

continued at a reduced rate in acr-12 mutants, indicating GABA MN activity 

persists even when synaptic drive from ACh MNs is reduced. Consistent with this 

result, the absence of ACR-12 receptors led to variability in the locomotory wave 

but did not disrupt gross movement or lead to phenotypes similar to that of 

mutants in which GABA signaling is absent (McIntire et al., 1993). Finally, under 

conditions of elevated ACh release, as is the case with the photostimulation 

experiments, we showed the behavioral response to synchronous depolarization 

of ACh MNs was altered in acr-12 mutants. This suggests that the reduced 

synaptic coupling of ACh and GABA MNs in acr-12 mutants allows GABA MNs to 

function independently of synchronously active ACh MNs during 

photostimulation. Under these conditions, the timing of GABA MN activation may 
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be coordinated either by timing mechanisms intrinsic to GABA MNs or through 

activity of other neurons not expressing ChR2 that lie presynaptic to GABA MNs. 

C. elegans locomotion is a dynamic and remarkably complex behavior. 

While the anatomical connectivity of the C. elegans nervous system was 

described over 30 years ago, we have only recently been able to reconcile this 

static picture of nervous system wiring with measures of functional connectivity 

(White et al., 1986). One of the barriers to progress in understanding the neural 

circuit mechanisms responsible for the generation of movement has been an 

inability to independently manipulate ACh and GABA MNs. For example, 

mutations that alter the activity of ACh MNs also impact synaptically coupled 

GABA MNs. The identification of signaling molecules, like ACR-12, responsible 

for mediating functional connectivity between these neuron classes will be 

essential in our continuing efforts to understand how coordinated excitation and 

inhibition in this circuit gives rise to a stable motor pattern. The presence of 

diverse signaling mechanisms in the control of motor neuron excitability may 

provide for behavioral flexibility in the face of changing levels of neuronal activity 

or environmental conditions. Support for this idea comes from the recent 

characterization of behaviorally important G-protein coupled receptor populations 

present on motor neurons, indicating additional levels of fine control (Chase et 

al., 2004; Dittman and Kaplan, 2008; Schultheis et al., 2011). Identification of the 

comprehensive set of relevant molecular signals and their physiological roles will 

enable detailed analyses of how functional differences across signaling 
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molecules contribute to signal integration by neurons, neural circuit function and 

motor control.  
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Figure 2-1 
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Figure 2-1 ACR-12 gene sequence.  (A) acr-12 amino acid sequence. cys-loop 
(*), vicinal cysteines present in alpha subunits (^^), GFP insertion site (green 
box), transmembrane domains (blue boxes), ok367 deletion (red lettering), uf77 
mutation (yellow box). Sequences are from GeneBank (B) Schematic of ACR-12 
receptor subunit with approximate locations of annotations from A. cys-loop (*), 
vicinal cysteines present in alpha subunits (^^), GFP insertion site (green box), 
transmembrane domains (M1-4), ok367 deletion (red shading), uf77 mutation 
(yellow star).  
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Figure 2-2 
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Figure 2-2 ACR-12 iAChRs regulate GABA motor neuron activity. 
(A) Time course of paralysis in the presence of aldicarb (1 mM) for wild type 
(blue) [n=11], acr-12(ok367) mutants (red) [n=12], acr-12(uf77) mutants (gray) 
[n=8], unc-49(e382) mutants (brown)[n=11], and acr-12(ok367);unc-49 double 
mutants (dark green) [n=10], and ACR-12-GFP rescue using the native promoter 
(green) [n=12]. Data represent mean ± SEM. n=the number of experiments done 
with at least 10 animals per experiment. (B) Time course of aldicarb (1 mM) 
paralysis for wild type (blue) [n=13], acr-12(ok367) mutants (red) [n=14], ACh-
specific (Pacr-2) ACR-12-GFP rescue (purple) [n=10], and GABA-specific (Punc-
47) ACR-12-GFP rescue (black) [n=10]. (C) Diagram of C. elegans ventral nerve 
cord. Blue box indicates the region imaged in D-F. (D) Confocal image showing 
coexpression of ACR-12-GFP (ufIs38) and a cholinergic motor neuron-specific 
marker (ufIs43) in the posterior ventral nerve cord. For D-F, asterisks indicate cell 
bodies co-expressing reporters and scale bars indicate 50 µm. (E) Confocal 
image showing coexpression of ACR-12-GFP (ufIs38) and a GABA-specific 
marker (ufIs34) in the posterior ventral nerve cord. (F) Confocal image showing 
coexpression of ACR-12-GFP (ufIs38) and a Punc-4::mCherry (ufIs26) in the 
posterior ventral nerve cord.  
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Figure 2-3  



55 
 

Figure 2-3 ACR-12 is differentially localized across motor neuron populations. 
(A) Schematic of C. elegans locomotory circuit. Dark green shading indicates 
ACh MNs (VA, VB, DA, DB) and light green indicates GABA MNs (DD and VD). 
Dark blue and light shading represent body wall muscles. Figure modified from 
WormAtlas.  (B) Confocal images of ACR-12-GFP localization in ventral and 
dorsal nerve cords as indicated (ufIs57). For B-D, scale bar indicates 10 µm. (C) 
Confocal image of ACR-12-GFP (ufIs78) localization in ACh MNs of the posterior 
ventral nerve cord. (D) Confocal images ACR-12-GFP (ufIs92) localization in 
GABA MNs of the posterior ventral and dorsal nerve cords as indicated.  
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Figure 2-4  



57 
 

 
 
Figure 2-4 ACR-12 is localized at synapses on GABA motor neurons. (A) 
Confocal image of a 50 µm region of the dorsal nerve cord showing 
colocalization of mCherry-RAB-3 expressed in cholinergic motor neurons (ufIs63) 
with ACR-12::GFP expressed in GABA MNs (ufIs92). All images are oriented 
with the tail to the right and scale bar represents 10μM. (B, C) Bar graphs 
showing the average number of ACR-12 and RAB-3 puncta and percentage 
overlapping puncta.  
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Figure 2-5 
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Figure 2-5. Loss of ACR-12 receptors reduces inhibitory signaling. (A) 
Representative recordings of endogenous inhibitory PSCs recorded at 0 mV for 
the indicated genotypes. Rescue refers to acr-12 mutants expressing ACR-12 
under control of either the unc-47 (GABA) or acr-2 (ACh) promoters. (B) Average 
endogenous IPSC frequency for the genotypes indicated. WT, n=7; acr-12, n=10; 
acr-12 rescue (GABA), n=6; acr-12 rescue (ACh), n=4. For (B) and (D-E), error 
bars show SEM. *p<0.01. (C) Representative recordings of endogenous 
inhibitory PSCs recorded at -60 mV for the indicated genotypes. Recordings 
were made using 115 mM KCl in the pipette. (D) Average endogenous IPSC 
frequency for the genotypes indicated. unc-29;acr-16, n=12; unc-29;acr-16;acr-
12, n=11. (E) Average excitatory PSC frequency for the genotypes indicated. 
WT, n=17; acr-12, n=21. (F) Representative recordings of endogenous excitatory 
PSCs recorded at -60 mV for the indicated genotypes. Also refer to supplemental 
Figure S2 for PSC amplitude. 
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Figure 2-6 
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Figure 2-6 (continued)  
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Figure 2-6 ACR-12 receptors are required for consistent motor patterning. (A) 
Still images of locomotory paths for wild type and acr-12(ok367) mutants as 
indicated. Tracks are marked by white dashed lines. Scale bars indicate 2 mm. 
(B) Body bend amplitudes for 10 consecutive body bends of four representative 
animals of the indicated genotype plotted relative to average body bend 
amplitude. Gray shading indicate separate animals. (C) Coefficient of variance 
for body bend amplitude averaged over ten consecutive body bends for wild type 
(blue) [n=23] animals, acr-12(ok367) (red) [n=18], acr-12(uf77) (gray) [n=11], 
ACR-12-GFP rescue with native promoter (green) [n=11], acr-2(ok1887) (black) 
[n=13]. Asterisks indicate significant difference from wild type: acr-12(ok367) 
p<0.0001, acr-12(uf77) p<0.0001. (D) Scatter plot of body bend amplitudes for 
wild type, acr-12(uf77), acr-12(ok367), and rescue strains as indicated.  Wild type 
(blue) [n=45], acr-12(uf77) mutants (gray) [n=31], acr-12(ok367) mutants (red) 
[n=52], ACh-specific (Pacr-2) ACR-12-GFP rescue (purple) [n=20], GABA-
specific (Punc-47) ACR-12-GFP rescue (orange) [n=20], genomic rescue (green) 
[n=20], acr-2(ok1887) (black) [n=24].Each point represents an average of three 
consecutive body bends for an individual animal. Mean ± SEM is indicated by 
horizontal lines.  Asterisks indicate significant difference from wild type: acr-
12(ok367) p<0.01, acr-12(uf77) p<0.02, ACh specific rescue p<0.05. (E) Bar 
graphs of the average number of body bends and average number of 
spontaneous reversals of wild type (blue) [n=20], acr-12(ok367) (red) [n=20], and 
genomic rescue (green) [n=10] animals. Asterisks indicate significant difference 
from wild type: average movement acr-12(ok367) p<0.0001, average 
spontaneous reversal acr-12(ok367) p<0.005. 
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Figure 2-7 
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Figure 2-7 continued 
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Figure 2-7 GABA neuron-specific ACR-12 receptors mediate elevated levels 
ACh signaling. (A) Schematic depicting experimental protocol for 
photostimulation experiments. Asterisks indicate timing of still images shown in 
B. (B) Still images showing representative responses of wild type animals and 
acr-12 mutants expressing ChR2 (ufIs23) at the times indicated. Asterisks 
indicates posterior bend. (C) Quantification of percentage of animals responding 
to photostimulation of cholinergic motor neurons (ACh MN) (left) and all 
cholinergic neurons (ACh) (right). Asterisks indicate significant difference from 
ChR2 (ACh MN) p<0.0001. (D) Distribution of response to photostimulation of 
cholinergic motor neurons (ufIs23, ACh MN) types using the descriptive 
behavioral classifications indicated. ChR2+retinal [n=74], ChR2;acr-
12(ok367)+retinal [n=43], ChR2;acr-2(ok1887)+retinal [n=73], ChR2 no retinal 
[n=36], ChR2;acr-12(ok367) no retinal [n=28], ChR2;acr-2(ok1887) no retinal 
[n=27]. (E) Distribution of response to photostimulation of all cholinergic neurons 
(ufIs53) types using the descriptive behavioral classifications indicated. For C-E 
the sample sizes are as follows: ChR2+retinal [n=63], ChR2;acr-
12(ok367)+retinal [n=51], ChR2 no retinal [27], ChR2;acr-12(ok367) no retinal 
[n=27]. For D and E no retinal controls are not shown as there were no 
responses to blue light.  
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Chapter III: 
 

A sensitized nAChR leads to spontaneous 

contractions and GABA neuron toxicity in 

the C. elegans locomotory circuit 
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Abstract 
 

Behavior is shaped by the precise coordination of activity in neuronal 

circuits. Recent findings utilizing sensitized nicotinic acetylcholine receptors 

(nAChRs) have provided valuable insights into mechanisms of regulating 

neuronal activity. Here we engineer a gain of function ACR-12 [ACR-12(V/S)] 

transgene to identify specific roles for neuronal subsets in generating the 

sinusoidal movement of C. elegans. We previously demonstrated a similar gain 

of function subunit in ACR-2R, specifically the acr-2 subunit, resulted in neuronal 

toxicity and cell death (Barbagallo et al., 2010). However, transgenic ACR-

12(V/S) expression resulted in the generation of spontaneous contractions and 

dramatically reduced movement. We were able to use cell specific drivers to 

identify the cholinergic motor neurons as sufficient to generate spontaneous 

contractions. Activation of DA and DB neurons did not have an obvious affect on 

movement or on the generation of contractions. Unexpectedly, we found 

expression of ACR-12(V/S) results in cell autonomous degeneration of GABA 

neurons. This degeneration has no obvious impact on downstream inhibitory 

NMJ receptors. Here we demonstrate sensitized nAChRs as a useful tool in 

identifying mechanisms of neuronal circuit activity in adapting behavior. Further 

development of ACR-12(V/S) and similar tools will enable genetic approaches to 

identify modifiers of nAChR signaling as well as investigation of the molecular 

pathways underlying differential susceptibility of neuronal populations to ion 

channel mediated toxicity. 
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Introduction 
 

Subtle changes in the activity of neuronal circuits can profoundly shape 

behavior. The nervous system adapts behavior through the precise coordination 

of both excitatory and inhibitory signaling. Identifying the molecular mechanisms 

that regulate neuronal activity is important for understanding how balanced 

signaling is achieved and behavior is adapted. The inappropriate activation of 

neuronal circuits can have profound negative effects including disorders such as 

epilepsy, Parkinson’s, and addiction (Dani and Harris, 2005; Drenan et al., 2008; 

Futatsugi and Riviello, 1998; Quik and McIntosh, 2006). Ionotropic receptors are 

a functionally diverse family of ion channels activated by neurotransmitters to 

facilitate neuronal activity. Much of our understanding of their structure and 

function is derived from the first receptor to be isolated and studied, nicotinic 

acetylcholine receptors (nAChR) (Changeux et al., 1970; Popot and Changeux, 

1984).  

Characterization of nAChRs identified the second transmembrane (TM2) 

domain as lining the ion channel pore (Gotti and Clementi, 2004; Unwin, 2005). 

Mutations in specific residues of the pore region and the area directly 

surrounding the pore can dramatically alter kinetics, prolonging channel open 

time, desensitization (Figure 1-3), and ion selectivity. Reconstitution studies 

revealed the kinetics of mammalian homomeric α7 nAChRs were dramatically 

altered by mutating a residue in the second transmembrane domain (Galzi et al., 
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1991; Imoto et al., 1988; Revah et al., 1991). Mutating residue 247 from a non-

polar leucine to a polar serine has the most pronounced effect on mean channel 

open time (Revah et al., 1991). Hypersensitive or gain-of-function nAChRs have 

since been used to examine the role of cholinergic signaling in the CNS. Using 

an α4 gain of function knock in mouse model, researchers were able to identify 

interactions of nAChRs and dopamine D2 receptors in regulating cholinergic 

interneuron activity (Zhao-Shea et al., 2010). Mutations in the pore lining domain 

of α6 (α6L9’S) nAChR subunit identified α6α4β2* receptors as a key target for 

disorders associated with reduced dopamine release. The researchers were able 

to specifically link the behavioral deficits of α6L9’S animals to α6α4β2* receptors in 

dopamine releasing neurons in vivo (Drenan et al., 2010). Additional work with 

gain of function α6 subunits has demonstrated a role for β3 subunits in promoting 

the function of α6 containing receptors (Dash and Lukas, 2012). 

Here we use a similar strategy to explore the function of nAChRs in the C. 

elegans locomotory circuit. The C. elegans locomotory circuit is an attractive 

model for probing mechanisms that regulating opposing signaling. In C. elegans, 

excitatory cholinergic motor neurons (ACh MNs) make synaptic contacts onto 

both muscle cells and GABA MNs that, in turn, make inhibitory synaptic contacts 

onto opposing musculature (Figure 1-4) (White et al., 1986). Proper function of 

this circuit produces temporally coordinated and balanced excitatory and 

inhibitory signals that pattern movement. While the anatomical connectivity of this 

circuit has been well characterized, the signaling mechanisms that underlie 
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coordinated motor neuron activity are not well understood. Expression studies 

have revealed that many of the 29 ionotropic acetylcholine receptor (iAChR) 

subunits encoded by the C. elegans genome are expressed in motor neurons, 

suggesting that cholinergic signaling may play a prominent role in regulating 

movement (Cinar et al., 2005; Fox et al., 2005; Jones et al., 2007; Rand, 2007). 

Finally, the nematode nervous system uses many of the same neurotransmitters 

as mammals including acetylcholine, GABA, and glutamate.<--This doesn’t really 

fit with the rest 

Previous studies have shown that cholinergic motor neurons express a 

class of heteromeric acetylcholine-gated ion channel complexes known as ACR-

2R (Barbagallo et al., 2010; Jospin et al., 2009). ACR-2Rs are ionotropic 

receptors of the nicotinic acetylcholine receptor superfamily composed of five 

distinct subunits (ACR-2, ACR-3, UNC-38, UNC-63 and ACR-12), each subunit 

of which is essential for function in heterologous expression studies (Jospin et 

al., 2009). Loss of ACR-2R leads to relatively subtle changes in behavior; 

however, gain-of-function acr-2 mutations have profound consequences 

including hyperactivation and, in extreme cases, death of ACh MNs. In addition 

to the ACR-2R we have identified the role of a second class of nAChRs 

containing the ACR-12 subunit (ACR-12R). These receptors are localized to 

synapses of GABA neurons and maintain consistency of body bend movements 

(see Chapter 2).  
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Here, using cell specific promoters and a gain of function approach we 

have isolated behaviors specific to subsets of motor neurons. In addition, we 

show that subsets of motor neurons appear selectively vulnerable to toxicity 

caused by expression of a gain of function ACR-12 receptor. 

EXPERIMENTAL PROCEDURES 
C. elegans strains 

C. elegans strains were grown under standard laboratory conditions at 22°C. All 

strains are derivatives of the N2 Bristol strain (wild type). Transgenic strains were 

obtained by microinjection to achieve germline transformation. Multiple 

independent extragenic lines were obtained for each transgenic strain and data 

presented are from a single representative transgenic line unless noted 

otherwise. In all cases, lin-15(n765ts) mutants were injected with the lin-15 

rescuing plasmid (pL15Ek; 30ng/ul) and one or more of the following plasmids: 

pPRB5 [Punc-47::mCherry], pPRB53 [ACR-12-GFPICL] (intracellular loop), 

pPRB77 [Pacr-2::ACR- 12-GFPICL], pHP7 [Punc-47::ACR-12-GFPICL], pPRB59 

[ACR-12(V/S)::GFP], pPRB65 [Punc-47::ACR-12(V/S)::GFP], pPRB79 [Pacr-

2::ACR-12(V/S)::GFP], and pHP8 [Punc-129::ACR-12(V/S)::GFP]. Stably 

integrated lines were generated by X-ray integration and outcrossed at least four 

times to wild type. The following strains were used in this study: IZ914: acr-

12(ok367)X; IZ853: acr-12(ok367)X;ufIs57[ACR-12-GFPICL]; IZ984: acr-

12(ok367);ufIs78[Pacr- 2::ACR-12::GFPICL]; IZ556: acr-12(ok367);ufIs92[Punc-

47::ACR-12-GFPICL]; CB382: unc-49(e382)III; IZ712: acr-12(uf77); IZ719: acr-
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12(ok367);ufIs90[ACR-12(V/S)::GFP]; IZ538: acr-12(ok367);ufIs74[Pacr-2::ACR-

12(V/S)::GFP]; IZ1058: ufIs102[Punc-47::ACR-12(V/S)::GFP]; IZ1077: acr-

12(ok367);ufIs111[Punc-129::ACR-12(V/S)::GFP]; IX697: acr-12(ok367);acr-

2(ok1887);ufIs90[ACR-12(V/S)::GFP]; RB1559: acr-2(ok1887); IZ324: acr-

2(ok1887);acr-12(ok367); LX949: lin-15(n765ts);vsIs48[Punc-17::GFP]; IZ829: 

ufIs34[Punc47::mCherry]; IZ759: ufIs34[Punc-47::mCherry];vsIs48[Punc-

17::GFP]; IZ736: acr-12(ok367);ufIs34[Punc-47::mCherry];vsIs48[Punc-

17::GFP];ufIs90[ACR-12(V/S)::GFP]; IZ1027: ufis8[ACR-16::GFP];ufIs90[ACR-

12(V/S)::GFP]; EG1653: lin-15(n765ts);oxIs22[UNC-49::GFP]; IZ758: 

ufIs34[Punc-47::mCherry];oxIs22[UNC-49::GFP]; IZ766: ufIs34[Punc-

47::mCherry];ufIs90[ACR-12(V/S)::GFP];oxIs22[UNC-49::GFP]. 

 

Molecular Biology 

The ACR-12-GFPICL transgene (pPRB53) was generated by cloning the GFP 

coding sequence in-frame into the sequence of an acr-12 genomic fragment (-

1514 to +4799 bp relative to the translational start site) encoding the intracellular 

loop (ICL) between transmembrane domains (TM) TM3 and TM4. ACR-12-

GFPICL was localized in neuronal processes and expression of this construct was 

sufficient for rescue of acr-12 mutants. Punc-47::ACR-12-GFPICL (pHP7) and 

Punc-47::ACR-12-GFPICL (pPRB77) were generated by subcloning a 4.9 kb 

NruI/BglI fragment containing GFP from pPRB53 into constructs encoding the 

acr-12 cDNA under control of the appropriate promoters (pBB25 and pHP3, 
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respectively). The ACR-12(V/S)-GFP was generated using Qiagen’s site directed 

mutagenesis kit. Point mutation was confirmed using enzymatic digest and 

subsequent sequencing. The cell specific versions were generating using the 

same cloning as the previously mentioned wild type versions. Punc-47::mCherry 

(pPRB5) was generated by subcloning mCherry coding sequence downstream of 

a 1.3 kb promoter for the unc-47 gene. 

 Microscopy  

Confocal microscopy was performed using a Zeiss Axioskop 2 microscope 

system and LSM Pascal 5 imaging software (Zeiss). Epifluorescent imaging was 

performed using a Zeiss Axioimager M1 microscope and Axiovision software 

(Zeiss). All images of adult animals used staged animals 24 h after the L4 stage 

and were processed using ImageJ software. For the developmental timeline, 

synchronized populations were obtained by bleaching gravid animals on NGM 

plates seeded with OP50. The resulting progeny were allowed to mature at room 

temperature. Animals were imaged at 16, 28, 38, and 48 h after bleaching using 

wide-field epifluorescent microscopy. 

Behavioral assays  

All behavioral analyses were performed using staged populations of young adult 

animals (24 h following L4) at room temperature (22°C-24°C). Strains were 

scored in parallel, with the researcher blinded to the genotype during both 

experiment and analysis. For aldicarb assays, staged populations of adult 

animals (≥10) were transferred to NGM plates containing 1 mM aldicarb 
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(ChemService), and movement was assessed every 15 min for 2 h. Movies and 

still images for behavioral analyses were obtained using an Olympus SZ61 

upright microscope equipped with a FireWire camera (Imaging Source). For 

gross movement, individual worms were transferred to 100mm (large) unseeded 

plates. The number of body bends were counted manually over 1-minute 

intervals for 3-minutes and averaged. Spontaneous contractions were assessed 

observing individual worms on large seeded plates. The number of contractions 

were counted manually over 1-minute intervals for 3-minutes and averaged. For 

stimulated contractions animals were individually assessed on large plates 

seeded with OP50. Animals were stimulated five times at 30s intervals using an 

eyelash on the tip of the nose and then the average was calculated as a 

percentage of response per five stimulations. 

Results 
 
ACR-12(V/S) has dramatic consequences for behavior 
 

The C. elegans genome encodes 29 nAChR subunits that contribute to 

the formation of unique classes of homo- and hetero- pentameric receptors 

(Jones et al., 2007; Rand, 2007). Six of these nAChR subunits form two classes 

of nAChRs expressed in body wall muscle cells and are required for 

neuromuscular signaling (Francis et al., 2005; Richmond and Jorgensen, 1999; 

Touroutine et al., 2005). Previous work from our lab and others has shown that 

the expression of several nicotinic acetylcholine receptor subunits, including the 

α subunit acr-12, is enriched in motor neurons of the ventral nerve cord (see 
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Chapter 2) (Barbagallo et al., 2010; Cinar et al., 2005; Hallam et al., 2000; Jospin 

et al., 2009).  

To explore the role of ACR-12 in regulating motor neuron activity, we 

developed a gain-of-function strategy. The second transmembrane domains of 

Cys-loop family ligand-gated ion channel subunits line the ion channel pore and 

play a critical role in the properties of the channel (Galzi et al., 1991; Galzi et al., 

1992; Gotti and Clementi, 2004; Imoto et al., 1988) . Substitution of a polar amino 

acid (e.g., serine) for the non polar leucine at a highly conserved position within 

M2 (9’, so called because it is the 9th residue from the beginning of the 

membrane-spanning segment) produces a gain-of-function effect, resulting in 

increased receptor activation and very slow inactivation (Labarca et al., 1995; 

Revah et al., 1991). In the case of acr-12 this position also has a non polar 

residue, valine (Figure 3-1). We engineered a valine-to-serine point mutation into 

the sequence encoding the M2 9' position of an acr-12 rescuing construct to 

generate ACR-12(V/S) (Figure 3-1). Transgenic animals expressing an 

integrated ACR-12(V/S) array (ufIs90) in the acr-12(ok367) mutant background 

were used for all subsequent analyses. These animals are viable; however, are 

slightly delayed developmentally compared to wild type animals. Moreover, we 

noted obvious locomotory defects in transgenic ACR-12(V/S) animals (Figure 3-

2). These defects were observed across all larval stages including adult animals. 

Transgenic ACR-12(V/S) animals have a 75% reduction in body bends per 

minute compared to their wild type counterparts and a 50% reduction when 
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compared to acr-12 mutants (Figure 3-2B). ACR-12(V/S) animals exhibit a 

“shrinker” phenotype in response to touch along the body, similar to the response 

typical of GABA deficient mutants (Bamber et al., 1999). In addition to this 

phenotype, transgenic ACR-12(V/S) animals also exhibit spontaneous 

contractions (Figure 3-2A). These contractions are qualitatively similar to those 

previously described for a strain isolated in the Jin laboratory that carries a gain-

of-function acr-2 allele (Jospin et al., 2009). The dramatic changes in behavior as 

a result of ACR-12(V/S) expression suggest we can identify mechanisms for 

coordinating signaling and tease apart the contributions of subsets of motor 

neurons to movement.  

 

Cell specific expression of ACR-12(V/S) identifies specific roles for subsets 

of motor neurons 

Our previous work has shown ACR-12 to be broadly expressed in the 

nervous system (see Chapter 2). In order to tease apart mechanisms for 

coordinating movements and determine which subsets of motor neurons 

contribute to patterning movement, we used cell specific promoters to drive ACR-

12(V/S) expression in acr-12(ok367) mutants. We quantified movement by 

counting the number of body bends/minute. We found that animals expressing 

ACR-12(V/S) in cholinergic (ACh) motor neurons (Pacr-2) had improved 

movement compared to animals expressing ACR-12(V/S) under the endogenous 

acr-12 promoter (Figure 3-2). However this movement was not restored to wild 
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type levels, likely due to the presence of a secondary phenotype, spontaneous 

contractions. In contrast, movement in transgenic animals expressing ACR-

12(V/S) specifically in GABA neurons (Punc-47) was similar to that of acr-

12(ok367) mutants despite being in a wild type background (denoted with ‡ in 

Figure 3-2B). Movement of transgenic ACR-12(V/S) animals carrying a loss-of-

function allele (ok1887) of acr-2, an obligate subunit of the cholinergic ACR-12* 

receptor, was similar to acr-12 mutants. In this strain the ACR-12(V/S) is still 

present in GABA neurons with an acr-12 mutant background. This suggests 

GABA specific expression of ACR-12(V/S) does not significantly alter the speed 

of movement relative to acr-12 mutants. However, cell specific expression of 

ACR-12(V/S) in DA and DB neurons also reduces the movement to acr-

12(ok367) levels (Figure 3-2B). As previously mentioned, the excitatory 

cholinergic motor neurons (ACh MNs) make synaptic contacts onto both muscle 

cells and GABA MNs. These contacts are patterned across the ventral and 

dorsal musculature. One might expect simultaneous activation all dorsal ACh 

neurons to alter the precise timing of activation in body wall muscle. As a result 

we would expect an additional reduction in movement beyond that seen in the 

acr-12 mutant background.  

As noted above, the stimulated and spontaneous contractions we observe 

in ACR-12(V/S) animals are similar to those observed previously in a strain 

carrying an alternative acr-2(gf) allele (Jospin et al., 2009). In fact cell specific 

expression of ACR-12(V/S) in ACh motor neurons recapitulates these 
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contractions; while mutations in acr-2(ok1887) mutants suppressed the 

contractions (Figure 3-2). These results suggest the bilateral contraction of the 

body wall muscle we see upon ACh motor neuron-specific expression of ACR-

12(V/S) occurs when there is ACh build up along both dorsal and ventral body 

axis (Figure 3-2C and D). In contrast, cell-specific expression of ACR-12(V/S) 

solely in DA and DB motor neurons does not lead to spontaneous contractions. 

This may indicate that elevated levels of ACh directed along one axis of the body 

are not sufficient for the the generation of contractions. We did not see any 

spontaneous contractions with GABA specific expression of ACR-12(V/S). 

However there was a small increase (~20%) in the number of stimulated 

contractions (Figure 3-2C and D).  

 

Expression of ACR-12(V/S) leads to GABA motor neuron specific toxicity 

 Since we observed dramatic changes in behavior we wanted to confirm 

the health of the nervous system. To address this issue, we generated a 

transgenic strain co-expressing GFP (green fluorescent protein) in all of the ACh 

neurons (Punc-17::GFP), a red fluorescent reporter for GABA neurons (Punc-

47::mCherry), and the ACR-12(V/S) transgene under the endogenous acr-12 

promoter, and examined the ventral and dorsal cords. In wild type animals we 

observed clear separation of the two reporters and normal nervous system 

connectivity, including intact commissural projections that extended the length of 

the dorsal cord (Figure 3-3A). When we examined animals carrying the ACR-
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12(V/S) transgene we observed that the cholinergic nervous system appeared 

intact with no obvious differences compared to the wild type strain. In contrast, 

we observed dramatic changes in the structure of the GABA nervous system, 

including decreased numbers of GABA motor neurons, migration defects in the 

commisures, defasciculation of the ventral nerve cord, and large gaps in the 

dorsal nerve cord (Figure 3-3B). The degeneration of the GABA nervous system 

can be observed as early as L1 (Figure 4). The degree of degeneration varied 

across populations of ACR-12(V/S) animals. A few animals exhibited no 

degeneration while others were missing several GABA neurons and had almost 

no dorsal cord coverage. Loss of GABA neurons may explain why we observed a 

small number of stimulated shrinking events in animals expressing ACR-12(V/S) 

specifically in GABA neurons (Figure 3-2D).  

 

ACR-12(V/S) degeneration is a cell autonomous effect 

 The degeneration caused by ACR-12(V/S) expression could arise from 

three possibilities. First, the degeneration may be caused by over activation of 

the GABA neurons through elevated levels of ACh release from presynaptic 

cholinergic motor neurons. Second, ACR-12(V/S) expression in the GABA 

neurons may lead to prolonged activation of the channel resulting in tonic 

activation of GABA neurons and subsequent degeneration. Finally, toxicity of the 

neurons may arise from some combination of the first two scenarios. In order to 

identify the mechanism of toxicity, we expressed cell specific versions of ACR-
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12(V/S) with the previously mentioned reporters for ACh (Punc-17::GFP) and 

GABA (Punc-47::mCherry) neurons. Animals expressing the GABA specific 

ACR-12(V/S) and a GABA neuron reporter exhibited degeneration (Figure 3-5A 

and B). Animals co-expressing ACR-12(V/S) specifically in ACh motor neurons 

with a GFP reporter that labeled the entire cholinergic nervous system had no 

obvious difference from wild type animals (Figure 3-5). Similarly, the GABA 

nervous system appeared normal with expression of ACR-12(V/S) in ACh motor 

neurons (data not shown). These results indicate that degeneration of the GABA 

nervous system arises from cell autonomous expression of ACR-12(V/S) in the 

GABA neurons. 

 

UNC-49 receptors remain localized after GABA neuron degeneration 

 UNC-49 is the GABA receptor at the NMJ that mediates relaxation of 

contralateral body wall muscle. We wanted to investigate whether GABA motor 

neurons are required for maintenance of the post synaptic specialization. To test 

this we coexpressed a red fluorescent reporter (Punc-47::mCherry) for GABA 

neurons with a GFP reporter for UNC-49 receptors Figure 3-5C). In wild type 

animals we observed a clear distribution of GFP puncta along the dorsal cord 

apposed to the GABA neuron reporter. Interestingly, in ACR-12(V/S) animals we 

saw no obvious changes in UNC-49 puncta even in cases where we noted 

substantial defects in the number and/or connectivity of GABA motor neurons 

(Figure 3-5C). There are two possibilities for the normal localization of UNC-49 
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receptors. First, the presence of the GABA motor neurons may only be required 

for establishing post synaptic sites and not for the maintenance of the UNC-49 

receptor localization. Second, we cannot be sure how long presynaptic GABA 

neuron terminals have been absent from their normal site of innervation on body 

wall muscles, in which case there may not have been sufficient time for changes 

in UNC-49 receptor localization to take place. 

 
Discussion 
 

The development of sensitized nAChRs has provided researchers with 

new tools for identifying the mechanisms of cholinergic regulation of neuronal 

activity (Drenan et al., 2010; Galzi et al., 1991; Liu et al., 2012; Revah et al., 

1991). Reconstitution studies using gain of function receptors have provided 

insights into the functional contributions of specific subunits in receptors. For 

example, β3 subunits act to enhance the activity of α6* receptors (Dash and 

Lukas, 2012). Here we have engineered a gain of function mutation in the 

second transmembrane domain of ACR-12 containing receptors in order to 

identify mechanisms involved in coordinating the precise timing of alternating 

movements in C. elegans. Similar mutations in the pore lining domain of the 

mammalian α6 (α6L9’S) nAChR subunit identified α6α4β2* containing receptors as 

a key target for disorders associated with reduced dopamine release (Drenan et 

al., 2010). A α4 gain of function knock in mouse model identified interactions of 

nAChRs and dopamine D2 receptors in regulating cholinergic interneuron activity 
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(Zhao-Shea et al., 2010). We have demonstrated expression of a similar 

sensitized nAChR in C. elegans, ACR-12(V/S), leads to spontaneous bilateral 

contractions of body wall muscles. Cell specific drivers identified the cholinergic 

motor neurons as sufficient to recapitulate these contractions. Transgenic ACR-

12(V/S) animals carrying a deletion mutation in the acr-2 gene suppressed the 

spontaneous contractions. These results suggest the spontaneous contractions 

of ACR-12(V/S) arise from the activity of a receptor containing both ACR-2 and 

ACR-12 (ACR-2R) and not the presence of an aberrant nAChR.   

One might expect the spontaneous contractions to arise out of 

deregulated timing mechanisms in the circuit. Interference with the timed 

activation of cholinergic neurons, which drive the locomotory circuit, could be 

sufficient for generating locomotory phenotypes. However, animals expressing 

ACR-12(V/S) solely in dorsal cholinergic motor neurons did not exhibit 

spontaneous contractions. This suggests the bilateral excitation of body wall 

musculature from ACR-12(V/S) in all cholinergic motor neurons is required for 

spontaneous contractions. Furthermore, cell-specific expression of ACR-12(V/S) 

solely in dorsal cholinergic motor neurons did not lead to profound changes in 

movement (Figure 3-2). One reason for this could be the presence of the acr-

12(ok367) mutant background. Previous behavior analysis has revealed acr-12 

mutants have reduced body bends/minute compared to wild type and an 

inconsistent waveform (Chapter II). This mutant background could be masking 

subtle changes in movement as a function of ACR-12(V/S) expression in DA and 
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DB motor neurons. Nervous system development is not obviously affected by 

specific expression of ACR-12(V/S) in DA and DB neurons, and increased 

aldicarb sensitivity suggests these animals have increased ACh release.  

Unexpectedly we found cell specific expression of ACR-12(V/S) in GABA 

neurons produced toxicity and subsequent loss of GABA neurons. The toxicity 

was cell autonomous suggesting fundamental differences in the susceptibility of 

motor neuron populations to toxicity. This finding could provide valuable insights 

into the unique properties of GABA neurons. Perhaps GABA neurons express 

specific proteins that makes GABA neurons more sensitive to changes in activity. 

This toxicity was variable across animals and could be observed as early as L1 

animals. The cholinergic nervous system remained intact with no obvious 

changes in connectivity, while the GABA nervous system exhibit neuronal 

degeneration which was severe in some animals. The variability in degeneration 

may arise from specific activity requirements of subsets of neurons. Perhaps the 

more heavily active neurons during development are more susceptible to toxicity 

while other neurons with less activity demands are able to compensate for 

excess signaling. It will be interesting to see if the GABA neurons that are 

degenerating are of a specific class, VD or DD. During the transition from the first 

larval stage to the second larval stage (L2) the number of ventral nerve cord 

motor neurons increases substantially, with the addition of >50 motor neuron cell 

bodies (Sulston and Horvitz, 1977). The loss of GABA neurons has surprising 

effects on the postsynaptic receptors. 
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We found that despite the dramatic loss of dorsal cord coverage of GABA 

neurons the UNC-49 receptor remained localized to discrete sites along the 

dorsal cord. One might expect in the absence of presynaptic motor neurons the 

inhibitory post-synaptic receptor field would not develop properly. Alternatively, 

the receptor field may develop normally, but not be maintained and slowly 

degenerate over time. One possibility is that internalization or delocalization of 

receptors requires more time. From these experiments it is difficult to assess how 

long the presynaptic GABA neurons have been absent. Another possibility is 

once the NMJ has formed the proper localization of the excitatory NMJ receptors, 

ACR-16 and UNC-29, aid in maintaining UNC-49 localization.    

One might then expect these animals to exhibit phenotypes similar to the 

phenotypes of GABA deficient mutants. Similar to GABA deficit mutants GABA 

specific expression of ACR-12(V/S) resulted in aldicarb hypersensitivity (data not 

shown) and reduced movement. However, these transgenic animals exhibited a 

low occurrence of the shrinker phenotype associated with GABA deficient 

mutants such as unc-49(e382). One possibility is that the remaining GABA 

neurons expressing sensitized ACR-12(V/S) are enough to compensate for the 

increased excitation in the locomotory circuit. Another possibility is the sensitized 

ACR-12(V/S) receptor actually inhibits GABA neuron activity but the neurons still 

have residual tonic activity.  
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In conclusion, ACR-12(V/S) has provided us with the opportunity for 

characterizing timing mechanisms of cholinergic motor neurons in generating 

spontaneous contractions. Additionally ACR-12(V/S) has shown the GABA 

neurons to be more susceptible to ion channel-mediated toxicity compared to 

their cholinergic motor neuron counterparts. Moving forward it will be interesting 

to identify the mechanism underlying degeneration of GABA neurons, examine 

mechanisms for regulation of the inhibitory NMJ in more detail, and investigate 

additional mechanisms underlying GABA neuron activity.  
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Figure 3-1 
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Figure 3-1 Mutating in a conserved residue of ACR-12. (A) Alignment of the 
second transmembrane domain of ACR-12 (green), other C. elegans nAChR 
(yellow), and various mammalian subunits (blue). The site of the 9’ valine to 
serine gain-of-function mutation is indicated (red). Sequences from Genbank. (B) 
Schematic of ACR-12 receptor in cell membrane. Arrow indicates location of the 
valine to serine gain of function mutation. 
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Figure 3-2 
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Figure 3-2 ACR-12(V/S) animals exhibit dramatic behavioral deficits. (A) Still 
images showing representative spontaneous contractions of ACR-12(V/S) 
animals over a 7 second time interval. Black lines indicate original starting 
position of the nose and tail in t=0s still. Asterisks indicates posterior bend. (B) 
Bar graphs of the average number of body bends of ACR-12 Ox (genomic 
rescue) (white) [n=16], ACR-12(V/S);acr-12(ok367) (dark blue) [n=21], GABA-
specific (Punc-47) ACR-12(V/S) (orange) [n=19], DA/DB-specific (Punc-129) 
ACR-12(V/S) (light blue) [n=10], ACh MN-specific (Pacr-2) ACR-12(V/S) (black) 
[n= 19], ACR-12(V/S);acr-2(ok1887);acr-12(ok367) (red) [n=6], and acr-
2(ok1887) (grey) [n=10]. For reference † indicates number of body bends for wild 
type animals and ‡  acr-12(ok367) mutants (see chapter 2) (C, D) Bar graphs of 
the average number of spontaneous contractions and average number of 
stimulated contractions of wild type (white) [n=21], [n=45], ACR-12 Ox (genomic 
rescue) (white) [n=22], [n=22], ACR-12(V/S);acr-12(ok367) (dark blue) [n=33], 
[n=22], GABA-specific (Punc-47) ACR-12(V/S) (orange) [n=11] [n=27], DA/DB-
specific (Punc-129) ACR-12(V/S) (light blue) [n=11], [n=10], ACh MN-specific 
(Pacr-2) ACR-12(V/S) (black) [n= 23], [n=22], ACR-12(V/S);acr-2(ok1887);acr-
12(ok367) (red) [n=10], unc-49(e382) (purple) [n=25], [n=20], ACh-specific (Pacr-
2) ACR-12-GFP rescue (grey) [n=11], [n=11], GABA-specific (Punc-47) ACR-12-
GFP rescue (white) [n=11], [n=11], acr-2(ok1887); acr-2(ok1887);acr-12(ok367) 
(white [n=10]; acr-12(ok367) (white) [n=31], [n=43], and acr-2(ok1887) (white) 
[n=10], [n=10]. Sample sizes are listed where appropriate and respectively. For 
B-D genotypes in the acr-12(ok367) mutant background are indicated beneath 
each graph with a +. 
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Figure 3-3 
  



91 
 

Figure 3-3 Expression of ACR-12(V/S) is toxic in GABA motor neurons. (A) 
Confocal image of a wild type animal showing coexpression of a cholinergic 
motor neuron-specific marker (ufIs48, Punc-17::GFP), and a GABAergic specific 
marker (ufIs34, Punc-47::mCherry) in the ventral nerve cord. (B) Confocal image 
of an ACR-12(V/S);acr-12(ok367) (ufIs90) animal showing coexpression of a 
cholinergic motor neuron-specific marker (ufIs48), and a GABAergic specific 
marker (ufIs34) in the ventral nerve cord. Scale bars indicate 100 µm and 
animals are oriented with their tail to the right. 
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Figure 3-4 
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Figure 3-4 ACR-12(V/S) toxicity is observable in L1 larva. (A) Epifluorescence 
image of a wild type L1 animal (16hrs) showing coexpression of a cholinergic 
motor neuron-specific marker (ufIs48), and a GABAergic specific marker (ufIs34) 
in the ventral nerve cord. (B) Epifluorescence image of an ACR-12(V/S);acr-
12(ok367) (ufIs90) L1 animal (16 hrs) showing coexpression of a cholinergic 
motor neuron-specific marker (ufIs48), and a GABAergic specific marker (ufIs34) 
in the ventral nerve cord. Scale bars indicate 50µm and animals are oriented with 
their tail to the right. Asterisk indicates weak expression. 
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Figure 3-5 
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Figure 3-5 GABA-specific expression of ACR-12(V/S). (A) Confocal image of a 
wild type and GABA-specifc (Punc-47) ACR-12(V/S) (ufIs102) animals showing 
expression of a GABAergic specific marker (ufIs34) in the ventral nerve cord. (B) 
Confocal image of a wild type and GABA-specifc (Punc-47) ACR-12(V/S) 
(ufIs102) animals showing expression of a GABAergic specific marker (ufIs34) in 
the dorsal nerve cord. For A and B scale bar indicates 100 µm. (C) Confocal 
image of a wild type and GABA-specifc (Punc-47) ACR-12(V/S) (ufIs90) animals 
showing coexpression of a GABAergic specific marker (ufIs34) and UNC-
49::GFP (oxIs22) in the dorsal nerve cord. Scale bars indicate 50 µm. For A-C 
animals are oriented with their tail to the right. 
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Chapter 4: 
 

Discussion 
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In this thesis I have explored the mechanisms that drive neuronal activity. 

Using the C. elegans locomotory circuit I have made several interesting 

discoveries. First, similar to the mammalian CNS, I have identified diverse roles 

for distinct nAChRs subtypes in regulating neuronal activity. Two distinct classes 

of ACR-12 containing receptors are expressed in cholinergic motor neurons and 

GABA neurons. The cholinergic ACR-2R* is diffusely localized in dendrites and 

has a modulatory role in regulating neuronal activity, whereas the GABA neuron 

nAChR, ACR-12R* is localized to synapses, maintains consistency in movement, 

and mediates GABA neuron activity under conditions of elevated ACh release. 

Second, similar mutations in different subunits of the same receptor have 

dramatically different consequences for neuronal activity, suggesting receptor 

composition is crucial for function. Expression of ACR-2(L/S) resulted in toxicity 

of cholinergic motor neurons and subsequent degeneration, while expression of 

ACR-12(V/S) resulted in no obvious changes in neuronal architecture but 

profound behavioral consequences. Third, behavior can be adapted by altering 

the activity of subsets of neurons within a circuit. Over-activation of cholinergic 

motor neurons leads to the generation of spontaneous contractions while over-

activation of GABA neurons resulted in decreased movement. Unexpectedly, I 

found that subsets of neurons within a circuit can exhibit differences in tolerances 

to over-active signaling. Interestingly, specific expression of ACR-12(V/S) in 

GABA neurons resulted in the loss of GABA neurons and commissural defects; 

in contrast, the integrity of the cholinergic nervous system was not obviously 
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affected. Lastly, I demonstrated that degeneration of subsets of neurons does not 

immediately affect postsynaptic receptors. Inhibitory NMJ UNC-49 receptors 

remained localized to discrete sites despite the absence of presynaptic GABA 

motor neurons. Taken together, this work provides exciting new insights into 

molecular mechanisms coordinating the activation of subsets of neurons in a 

circuit and the behavioral consequences.  

Importance of regulating neuronal activity 

 The brain is capable of processing large amounts of stimuli with subtle 

changes in neuronal activity that translates into modified behavior. Maintaining 

tight coordination of circuit activity is critical for appropriately modifying behavior. 

When the patterned activation of neurons is deregulated there are profoundly 

adverse effects on behavior. For example, epilepsy, addiction, autism, dementia 

and depression are associated with deregulated or inappropriately modified brain 

signaling (Calabresi et al., 2007; Dani and Harris, 2005; Dzhala et al., 2012; 

Futatsugi and Riviello, 1998; Nordberg et al., 1992; Quik and McIntosh, 2006). 

Epilepsy is a clear example of the consequences associated with unregulated 

neuronal activity. Patients with epilepsy have what is called a “hyperexcitable” 

brain. Basically, patients suffer from one of two possibilities: (1) an excess of 

excitatory signaling or (2) a loss of inhibitory signaling which mimics an increase 

in excitation (Futatsugi and Riviello, 1998; Mulley et al., 2005; Raggenbass and 

Bertrand, 2002). As a result these patients suffer from convulsions (e.g., 

absence, grand mal, or partial) that have the potential to cause permanent brain 
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damage or, in extreme cases, death. Current treatments involve synthetically 

compensating for unregulated signaling to restore the brain to a more balanced 

state (Calabresi et al., 2007; Haut et al., 2006; Lee et al., 1995; Luszczki, 2009). 

Identifying the sources of inappropriate signaling will provide better therapeutic 

targets for maintaining a balanced brain state. 

Advances in research have leaned on using models with dramatic 

cognitive defects to identify genes important for coordinating neuronal activity 

(Holmes and Zhao, 2008; Liu et al., 2012; Zhao-Shea et al., 2010). Yet, many 

fundamental questions about neuronal activity in physiological conditions remain 

unclear. For example, what are the molecules that regulate the timing of neural 

circuit activation and how is signaling between various neural circuits achieved? 

In order to adequately address how the nervous system functions, we have to 

focus on addressing these questions. It is critical that we identify the roles for 

ionotropic receptors in neuronal activity and how those changes in activity can 

affect signaling. We need to understand how activation of subsets of neurons is 

achieved and modifies behavior. Addressing these questions will provide 

valuable insights in our understanding of nervous system. 

Identifying the versatile roles of nAChRs in neuronal function—are distinct 

receptor compositions functionally relevant? 

A common feature of LGIC members such as GABA receptors or nAChRs 

is the diversity of subunits within the receptor family. This diversity suggests the 

subunit composition of fully formed receptors has functional significance. Within a 
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neuronal circuit individual neurons have specific roles in driving the activity of the 

circuit and the roles of each neuron can be very different. One possibility is 

diverse subunits fulfill the wide range of signaling requirements across the 

nervous system by forming distinct receptor types. Evidence of distinct receptor 

types suggests neuronal activity can be modified with a high degree of precision. 

In vertebrates, nAChRs are localized predominantly at pre-synaptic 

terminals, although there are post-synaptic nAChRs in the sympathetic ganglia 

and muscle (Lindstrom et al., 1991; Rassadi et al., 2005). There are 17 nAChR 

subunits: α1-10, β1-4, δ, γ, and ε (Lindstrom, 2003; Millar and Harkness, 2008) 

which combine to form a myriad of distinct receptors. Nicotine’s effects in the 

reward pathways are an excellent example of diverse roles for distinct nAChRs. 

Glutamatergic neurons that project to the ventral tegmentum area (VTA) contain 

pre-synaptic α7 containing subunits (α7*) (Millar and Gotti, 2009). These 

receptors act to increase excitation of post-synaptic dopamine neurons in the 

VTA. The dopamine neurons express α4β2* receptors that regulate the activity of 

neurons, and β2* containing receptors at presynaptic terminals to modulate 

release of neurotransmitter (Dani and Bertrand, 2007; Dani and Harris, 2005; Liu 

et al., 2012). In addition, inhibitory GABA neurons make synaptic contacts with 

the dopamine neurons in the VTA express α4β2* receptors. Each of these 

nAChR classes has different localization patterns and affinity for nicotine (Dani 

and Harris, 2005). The actions of nicotine on nAChRs in this circuit result in 

nicotine dependence.  
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Similar to vertebrate models I have demonstrated nAChR have diverse 

functions in regulating the activity of locomotory neurons in C. elegans. ACR-2R 

receptors are diffusely localized in the upstream cholinergic motor neurons and 

modulate activity of the neurons (Barbagallo et al., 2010; Jospin et al., 2009). 

However, ACR-12R in GABA neurons localize to synapses and function to 

maintain the consistency in the amplitude of body bends over long forward runs. 

Under elevated levels of ACh release, ACR-12R can directly regulate GABA 

neurons activity (see Chapter II). Evidence for the importance of subunit 

composition in determining receptor functional properties can be found at the C. 

elegans NMJ as well. Previous work has identified nAChRs that mediate 

signaling at the excitatory NMJ. The homomeric ACR-16 receptor is responsible 

for nearly 90% of the excitatory signal yet deletion of this receptor subunit 

produces no obvious phenotype (Francis et al., 2005; Francis and Maricq, 2006). 

In contrast, UNC-29 receptors make up the remaining 10% of excitatory signal 

and have a more obvious uncoordinated movement (Culetto et al., 2004; Francis 

et al., 2005; Touroutine et al., 2005). Taken together, the distinct classes of 

nAChR in C. elegans with diverse roles reinforce the concept that subunit 

composition is an important factor in determining how receptors regulate 

neuronal activity.  

It seems unlikely that subunit composition is established simply based on 

the expression profiles of the individual subunits. Expression profiling of neuronal 

subsets, including dopaminergic neurons in the substania nigra and mitral cells, 
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shows expression of more than 5 nAChR genes within a population (D'Souza 

and Vijayaraghavan, 2012; Salminen et al., 2004). Dopamine neurons of the VTA 

express at least two distinct classes of nAChRs both of which contain the β2 

subunits (Dani and Harris, 2005). Similar studies in C. elegans indicate the 

presence of at least three additional nAChR subunits, acr-9, acr-14, and lgc-11, 

in GABA neurons (Cinar et al., 2005; Fox et al., 2005). In preliminary 

pharmacological experiments, I observed that mutation of any of these genes led 

to a different effects compared to mutation of acr-12, suggesting these subunits 

are unlikely to be obligate partners in a GABA neuron specific ACR-12R (data 

not shown). Some nAChR subunits preferentially interact with other specific 

subunits. For example, in vertebrates β3 subunits preferentially associate with α6 

subunits (Alkondon and Albuquerque, 2001; Drenan et al., 2008; Salminen et al., 

2004). These data suggest there are mechanisms in place to determine the 

subunit composition of receptors. One possibility is that signaling motifs in the 

individual subunits regulate their interactions with other subunits. Another 

possibility is subsets of neurons express unique factors that establish appropriate 

subunit interactions. In the future these questions could be addressed by creating 

chimeric receptors. For example, it would be interesting to determine if swapping 

the large intracellular loop of a subunit that does not associate with ACR-12 with 

the intracellular loop of a subunit that does reconstitutes a functional receptor. 

Another approach would be to create knockouts of all the nAChRs expressed in 
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a subset of neurons and transgenically express the subunits of a receptor not 

found in that subset of neurons. 

The punctate expression of GABA neuron specific ACR-12R* provides an 

opportunity to examine mechanisms of localization. Using GFP screens or a 

candidate gene approach we could determine proteins important for the 

localization and clustering of ACR-12R*s. Another possibility is subunit 

composition is important for the localization of receptors. This would suggest the 

subunits unique to the two distinct ACR-12Rs are driving their differential 

localization. Answers to these questions await determination of the precise 

subunit composition of the ACR-12 receptor in GABA motor neurons.  

Identifying mechanisms that modify behavior—coordinating excitation and 

inhibition 

Behavior is generated by the coordinated activation of neuronal circuits. 

However, the mechanisms that regulate the coordination of circuit activity remain 

unknown. The development of sensitized nAChRs has provided researchers with 

new tools for identifying the mechanisms of cholinergic regulation of neuronal 

activity. Reconstitution studies with gain of function receptors have provided 

insights into the functional contributions of specific subunits in receptors. For 

example, β3 subunits act to enhance the activity of α6* containing receptors 

(Dash and Lukas, 2012). Here we have engineered a gain of function mutation in 

the second transmembrane domain of ACR-12 containing receptors in order to 
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identify additional mechanisms coordinating the precise timing of alternating 

movements in C. elegans. Similar mutations in the pore lining domain of 

mammalian α6 (α6L9’S) nAChR subunit identified α6α4β2* containing receptors as 

a key target for disorders associated with reduced dopamine release (Drenan et 

al., 2010). A α4 gain of function knock in mouse model identified interactions of 

nAChRs and dopamine D2 receptors in regulating cholinergic interneuron activity 

(Zhao-Shea et al., 2010). We have demonstrated that ACR-12(V/S) animals 

exhibit spontaneous contractions. Cell specific drivers identified the cholinergic 

motor neurons as sufficient to recapitulate these contractions. Transgenic ACR-

12(V/S) animals carrying a deletion for acr-2 have suppressed spontaneous 

contractions. These results suggest the spontaneous contractions of ACR-

12(V/S) arise from the activity of a previously characterized ACR-2R and not the 

presence of an aberrant nAChR.   

One might expect the spontaneous contractions to arise out of 

deregulated timing mechanisms in the circuit. Interference with the timed 

activation of cholinergic neurons, which drive the locomotory circuit, could be 

sufficient for generating locomotory phenotypes. However, animals expressing 

ACR-12(V/S) in cholinergic motor neurons along the dorsal side with a cell 

specific promoter did not exhibit spontaneous contractions. This suggests the 

bilateral excitation of body wall musculature from ACR-12(V/S) in all cholinergic 

motor neurons is required for spontaneous contractions. Furthermore, these 

animals did not exhibit any profound changes in locomotory movement. One 



105 
 

reason for this could be the presence of the acr-12(ok367) mutant background. 

Previous behavior analysis has revealed acr-12 mutants have reduced body 

bends/minute compared to wild type and an inconsistent waveform (Chapter II). 

This mutant background could be masking subtle changes in movement as a 

function of ACR-12(V/S) expression in DA and DB motor neurons. Nervous 

system development is not obviously affected by the expression of ACR-12(V/S) 

and increased aldicarb hypersensitivity suggests these animals have increased 

ACh release. Transgenic ACR-12(V/S) animals have provided insights into the 

diverse roles of cholinergic signaling in the C. elegans locomotory circuit. In the 

future we will be able to address additional questions about subunit composition, 

localization, and alternative degrees of excitability. 

As previously mentioned in the introductory chapter of this thesis the 

activity of the locomotory circuit starts with command interneurons and is 

executed through excitatory and inhibitory motor neurons. Sensory information is 

relayed through command interneurons that synapse onto excitatory motor 

neurons. These excitatory motor neurons form dyadic synapses with body wall 

muscle and inhibitory GABA motor neurons(White et al., 1986). There are 5 sets 

of command interneurons: AVA, AVD, and AVE, for regulating backwards 

movement and AVB and PVC which regulate forward movement. The AVA, AVE, 

and AVD initiate backward movement through electrical and chemical contacts 

with the A motor neurons (backwards movement). AVB and PVC regulate 

forward movement via gap junctions and chemical synapses with B type motor 
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neurons (forward movement) (Chalfie et al., 1985; Wicks et al., 1996; Zheng et 

al., 1999). Specifically, AVA and AVB are directly connected with their respective 

motor neuron populations through gap junctions and function to drive forward 

and backward directionality of the animal. Animals mutant for innexins, UNC-7 

and UNC-9, shortened body bends, or kinking, which arise from equal activation 

of both forward and backward motor neurons. Interestingly, experiments where 

the activity of either motor neuron population was reduced, the animals resumed 

movement biased by the shift in the activity equilibrium (Kawano et al., 2011).  

One model for the diverse roles of ACR-12R* in cholinergic and 

GABAergic neurons would be support maintaining the activity equilibrium of the 

motor neurons. For example, during forward movement spill over of ACh from the 

synapses of B motor neurons activate ACR-2* receptors on the dendrites of B 

motor neurons. Activation of these receptors maintains a higher activity level in B 

motor neurons than that of A motor neurons and therefore maintains forward 

movement. Animals expressing the light activated ion channel, channelrhodopsin 

(ChR-2), in both A and B motor neurons exhibited a dramatic decrease in 

movement and ability to propogate a wave with blue light exposure. This further 

supports the idea that changes in this equilibrium will result in changes in 

directionality of the animal (Kawano et al., 2011). To address this one experiment 

would be to express ACR-12(V/S) using cell specific promoters in A or B motor 

neurons in order to hyperactivate specific classes of neurons in innexin mutants 

and look for a restoration in either directionality of movement. Further down the 
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neuronal circuit is the timed activation of GABA neurons and body wall muscle. 

We have identified a unique class of ACR-12R* that play a role in maintaining the 

coordination of body bends. Loss of these receptors leads to variability in long 

forward runs (Chapter II). Taken together these results suggest mechanisms 

dedicated to coupling each level of the locomotory circuit are important for the 

overall propagation of the sinusoidal wave. Interestingly, we found that loss of 

ACR-12R* in GABA motor neurons ameliorated the paralysis induced by the 

expression of ChR-2 in cholinergic motor neurons. The animals were able to 

move forward exhibiting only mild effects from blue light exposure. The presence 

of forward movement suggests that ACR-12R* in GABA motor neurons alters the 

motor circuit equilibrium to favor forward movement. One possibility is that a 

decrease in synaptic drive from photoresponsive ACh MNs allows for 

coordination of GABA MN activity through other pathways, enabling movement.  

The many roles of nAChRs in nematode movement provides an 

opportunity to address additional questions surrounding cholinergic signaling that 

will be beneficial for our understanding of vertebrate CNS function. Are there 

changes in downstream NMJ receptor localization when cholinergic motor 

neurons are hyperactive? Are there obvious changes in behavior in a more 

challenging environment for movement? For example, in swimming behaviors do 

transgenic ACR-12(V/S) animals exhibit changes in body wall muscles due to 

over activation. Mutations to alternative amino acids have less profound effects in 

channel kinetics, using these mutations we can potentially identify alternative 
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phenotypes associated with a more mild increase in signaling (Imoto et al., 1988; 

Revah et al., 1991). For example, it would be interesting to see if alternative, less 

severe mutations in the second transmembrane domain of ACR-12 could affect 

the generation of spontaneous contractions.  

Characterizing preferential neuronal degeneration—mechanisms of toxicity for 

GABA neurons 

Unexpectedly, we found cell specific expression of ACR-12(V/S) in GABA 

neurons produced toxicity and subsequent loss of GABA neurons. The 

cholinergic nervous system remained intact with no obvious changes in 

connectivity, while the GABA nervous system exhibit neuronal degeneration that 

was severe in most animals. Toxicity was cell autonomous, suggesting 

fundamental differences in motor neuron populations. This finding could provide 

valuable insights into unique properties of GABA neurons. Perhaps GABA 

neurons express specific protein(s) that makes GABA neurons more sensitive to 

changes in activity. Alternatively, these neurons may lack a protein protective of 

toxicity. This toxicity was variable across animals and could be observed as early 

as L1 animals. The variability in degeneration may arise from specific activity 

requirements of subsets of neurons. Perhaps the more heavily active neurons 

during development are more susceptible to toxicity while other neurons with less 

activity demands are able to compensate for excess signaling. It will be 

interesting to see if the GABA neurons that are degenerating are of a specific 
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class, VD or DD. During the transition from the first larval stage to the second 

larval stage (L2) the number of ventral nerve cord motor neurons increases 

substantially, with the addition of >50 motor neuron cell bodies (Sulston and 

Horvitz, 1977). In the future we can identify the additional subunits of this 

receptor by looking for suppression of degeneration. Additionally, genetic 

screens could identify the mechanisms of degeneration or proteins important for 

the synthesis of nAChRs. The loss of GABA neurons has surprising effects on 

the postsynaptic receptors. 

Despite dramatic defects in GABA motor neuron innervation of the dorsal 

musculature, we found the UNC-49 receptor remained localized to discrete sites 

along the dorsal cord. One might expect in the absences of presynaptic motor 

neurons there would be consequences for the downstream inhibitory receptors of 

the NMJ. One possibility is that the internalization or delocalization of receptors 

requires more time. While we observe defects as early as the L1 stage, we 

cannot be sure that degeneration does not also occur in later life stages. 

Therefore, at this time we cannot say the presynaptic neuron has been 

degenerated for a pre-determined amount of time. It is possible the gaps in 

coverage in the dorsal cord we see are from recent loss of presynaptic neurons. 

Another possibility is once the NMJ has formed the proper localization of the 

excitatory NMJ receptors, ACR-16 and UNC-29, aid in maintaining UNC-49 

localization. In the future it will be interesting to examine the localization of UNC-
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49 receptors under conditions where we can track degeneration of presynaptic 

GABA neurons.  

One might then expect these animals to exhibit phenotypes similar to the 

phenotypes of GABA deficient mutants. Similar to GABA deficit mutants GABA 

specific expression of ACR-12(V/S) resulted in aldicarb hypersensitivity (data not 

shown) and reduced movement. However, these transgenic animals exhibited a 

low occurrence of the classical shrinker phenotype associated with GABA deficit 

mutants such as unc-49(e382) (Bamber et al., 1999). One possibility is that the 

remaining GABA neurons expressing sensitized ACR-12(V/S) are enough to 

compensate for the increased excitation in the locomotory circuit. Another 

possibility is the sensitized ACR-12(V/S) receptor actually inhibits GABA neuron 

activity but the neurons still have residual tonic activity. In this case, using the 

previously mentioned method of alternative second transmembrane domain 

mutations we may be able to examine behaviors associated with mild increases 

in GABA neuronal activity.  

In conclusion, identification of a distinct class of nAChRs in driving the 

activation of subsets of motor neurons during nematode locomotion has provided 

us with insights into the mechanisms of vertebrate CNS functions. nAChRs can 

have dramatically different roles in regulating the activity of neuronal circuits 

depending on the amount of neurotransmitter present. ACR-12 mutants in low 

levels of ACh release were unable to maintain consistent amplitude across 
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consecutive body bends, while these mutants were able to suppress paralysis 

induced by elevated levels of ACh release induced by Channelrhodopsin-2. 

Interfering with the timed activation of cholinergic motor neurons activating the 

dorsal body muscle was not sufficient to generate spontaneous contraction. 

However, simultaneous activation of all the cholinergic motor neurons is sufficient 

for spontaneous contractions. In the process of this thesis work we have 

obtained several tools to examine new questions of subunit composition, 

localizations and mechanisms of activity. Moving forward we will also be able to 

characterize factors mediating the unique toxicity tolerance of GABA neurons 

compared to their cholinergic motor neurons counterparts. Additionally, it will be 

interesting to identify the mechanisms maintaining the inhibitory NMJ regulation, 

and additional mechanisms for GABA neuron activity.  
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Abstract 

Inappropriate or excessive activation of ionotropic receptors can have 

dramatic consequences for neuronal function and, in many instances, leads to 

cell death. In Caenorhabditis elegans, nicotinic acetylcholine receptor (nAChR) 

subunits are highly expressed in a neural circuit that controls movement. Here, 

we show that heteromeric nAChRs containing the acr-2 subunit are diffusely 

localized in the processes of excitatory motor neurons and act to modulate motor 

neuron activity. Excessive signaling through these receptors leads to cell-

autonomous degeneration of cholinergic motor neurons and paralysis. C. 

elegans double mutants lacking calreticulin and calnexin—two genes previously 

implicated in the cellular events leading to necrotic-like cell death (Xu et al., 

2001)—are resistant to nAChR mediated toxicity and possess normal numbers of 

motor neuron cell bodies. Nonetheless, excess nAChR activation leads to 

progressive destabilization of the motor neuron processes and, ultimately, 

paralysis in these animals. Our results provide new evidence that chronic 

activation of ionotropic receptors can have devastating degenerative effects in 

neurons and reveal that ion channel-mediated toxicity may have distinct 

consequences in neuronal cell bodies and processes. 

 
Introduction 

Roles for ionotropic receptor-mediated signaling in the nervous system 

extend far beyond a well characterized participation in cell– cell communication 



114 
 

at synapses. Ionotropic receptor activation is one of several key factors that 

influence cell survival in developing and mature nervous systems. For example, 

signaling through nicotinic acetylcholine receptors (nAChRs) promotes the 

elimination of neurons in the developing avian autonomic nervous system 

(Hruska et al., 2009; Hruska and Nishi, 2007), and inappropriate pharmacological 

activation of nAChRs in the Caenorhabditis elegans nervous system leads to 

developmental arrest (Ruaud and Bessereau, 2006). In the mature nervous 

system, inappropriate or excessive ion channel activation can have dramatic 

consequences. In mammals, hypoxic events, such as stroke, lead to excitotoxic 

cell death as a consequence of excess glutamate release and hyperexcitation of 

ionotropic glutamate receptors (iGluRs) (Sattler and Tymianski, 2001). Likewise, 

mutations that cause prolonged activation of nAChRs or iGluRs can lead to 

neurodegeneration and cell death in organisms ranging from nematodes to 

mammals (Heintz and Zoghbi, 2000; Labarca et al., 2001; Miwa et al., 2006; Orb 

et al., 2004; Orr-Urtreger et al., 2000; Treinin and Chalfie, 1995; Zuo et al., 

1997). Excess ion channel activation is also a contributing factor in 

neurodegenerative diseases. For example, the selective vulnerability of motor 

neurons to cell death in amyotrophic lateral sclerosis (ALS) is believed to arise, 

at least in part, from hyperactivation of calcium-permeable AMPA type iGluRs 

(Grosskreutz et al., 2010; Kwak and Weiss, 2006). Interestingly, in various 

mouse models of motor neuron diseases, including ALS, genetic manipulations 

that prevent the death of motor neuron cell bodies are not successful in halting 



115 
 

disease progression (Gould et al., 2006; Sagot et al., 1995). This result implies 

that ion channel hyperactivation may contribute to degenerative events that 

persist even under conditions when neuronal cell death is attenuated. Shared 

features of ion channel-mediated degeneration across these diverse receptor 

types and systems suggest that aspects of this process may be broadly 

conserved across organisms (Driscoll and Gerstbrein, 2003). In most cases, 

however, a cohesive picture of the cellular events that influence the progression 

toward cell death as a consequence of ion channel hyperactivation remains 

unclear. 

Ionotropic receptor signaling and its contribution to neurodegeneration can 

be dissected in detail in the compact nervous system of the nematode 

Caenorhabditis elegans. Here, we provide evidence that the non-α nAChR 

subunit ACR-2 contributes to a heteromeric receptor that is important for 

regulating the activity of excitatory motor neurons. A pore modification in ACR-2 

leads to loss of motor neurons and paralysis of the animal. Genetic ablation of 

nAChR subunits that coassemble into a heteromeric receptor complex with ACR-

2 suppresses ACR-2(L/S) (where L/S is leucine-to serine substitution) toxicity. In 

addition, C. elegans double mutants lacking two genes previously implicated in 

calcium homeostasis and necrotic cell death (crt-1/calreticulin and cnx-

1/calnexin) are resistant to nAChR-mediated toxicity and possess normal 

numbers of motor neuron cell bodies. Nonetheless, we observe a progressive 

degeneration of the motor neuron processes that leads to paralysis in these 
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animals. Thus, ion channel hyperactivation has distinct consequences for 

neuronal cell bodies and processes. 

Materials and Methods 

Molecular biology 

AChR subunit constructs. The full-length ACR-2::GFP transgene 

(pDM1232) was generated by introducing the green fluorescent protein (GFP) 

coding sequence in-frame into the sequence of an acr-2 genomic fragment (-

3353 to +7776 bp relative to the translational start site) encoding the  intracellular 

loop between transmembrane domains TM3 and TM4. The full-length ACR-

2(L/S) construct (pBB9) was generated by PCR-based site directed mutagenesis 

using mutant primers and pDM1232 as the template. The Pacr-2::ACR-12 cDNA 

(pHP3) and Punc-47::ACR-12 cDNA (pBB25) constructs were generated by 

amplifying the acr-12 cDNA from the expressed sequence tag yk1093d12 (gift 

from Yuji Kohara, National Institute of Genetics, Mishima, Japan) using 

sequence-specific primers designed to the start and stop codons of acr-12 and 

subcloning it into the NheI/SacI sites of a plasmid containing an ~3.3 kb promoter 

for the acr-2 gene or into a plasmid containing a 1.3 kb promoter for the unc-47 

gene. 

Transcriptional reporters. The Punc-47::mCherry construct (pPRB5) was 

generated by subcloning an AgeI/AatII fragment that contained the full-length 

mCherry coding sequence into a vector containing a 1.3 kb promoter for the unc-

47 gene. The Pacr-2::GFP (pPRB19) construct was generated by subcloning an 
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AatII/BamHI fragment that contained an ~3.3 kb promoter for the acr-2 gene into 

a vector containing the GFP coding sequence. 

C. elegans strains 

C. elegans strains were grown on nematode growth medium (NGM) plates 

with the OP50 strain of Escherichia coli at 22°C using standard laboratory 

procedures. Wild-type animals are the N2 Bristol strain. All transgenic strains 

were obtained by microinjection of plasmid DNA into the germ line and data 

presented are from a single representative transgenic line unless noted 

otherwise. In all cases, lin-15(n765ts) mutants were injected with the lin-15 

rescuing plasmid (pL15EK; 30 ng/μl) and one or more of the following plasmids 

(30 ng/μl): pBB9, pBB25, pDM1232, pHP3, pPRB4, pPRB5, pPRB14, pPRB19. 

Multiple independent extragenic lines were obtained for each transgenic strain. 

Stably integrated lines were generated as necessary by x-ray integration and 

outcrossed at least four times to wild type. The transgenic strain expressing the 

integrated ACR-2(L/S) transgene (ufIs25) was outcrossed 10 times to wild type.  

The following strains were used in this study: RB1559 acr-2(ok1887 ), 

IZ421 acr-12(ok367 ), RB2071 ced-3(ok2734 ), VC1801 cnx-1(ok2234 ), RB1021 

crt-1(ok948), IZ74 unc-29(x29), CB904 unc-38(e264), CB306 unc-50(e306), 

VC731 unc-63(ok1075), CB883 unc-74(e883), IZ380 ufIs31, IZ814 ufIs25, IZ625 

ufIs25;ufIs31, IZ790 ufIs49, IZ627 ufIs42, LX949 vsIs48, IZ924 ufIs25;vsIs48, 

IZ950 ced-3(ok2734); ufIs25;vsIs48, IZ877 cnx-1(ok2234);ufIs25;vsIs48, IZ926 

crt-1(ok948); ufIs25;vsIs48, IZ976 crt-1(ok948);cnx-1(ok2234 );ufIs25;vsIs48, 
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IZ971 crt-1(ok948);cnx-1(ok2234);vsIs48, IZ927 crt-1(ok948);cnx-1(ok2234); 

ufIs42, IZ787 unc-29(x29);ufIs25, IZ928 acr-3(ok2049);ufIs265, IZ929 acr-

5(ok180);ufIs25, IZ930 acr-9(ok933);ufIs25, IZ931 acr-19(ok967); ufIs25, IZ932 

acr-23(ok2840);ufIs25,IZ446 unc-38(e264);ufIs25, IZ659 unc-50(e306);ufIs25, 

IZ921 unc-63(ok1075);ufIs25, IZ490 unc-68(e540); ufIs25, IZ604 unc-

74(e883);ufIs25, IZ673 acr-12(ok367 );ufIs25;ufEx148, IZ937 acr-

12(ok367);ufIs25;ufIs60, IZ861 acr-12(ok367);ufIs25;ufEx191. 

Genetic screen and identification of suppressors of 

ACR-2(L/S)-induced paralysis 

Paralyzed animals expressing the integrated ACR-2(L/S) array (ufIs25) 

were mutagenized with 50 mM ethyl methanesulfonate (Brenner, 1974). Young 

adult F2 progeny of ~20,000 mutagenized animals were washed twice with M9 

buffer and transferred to fresh plates. After allowing time for the animals to 

disperse, moving animals were picked to single plates. Eighty one candidate 

suppressors were isolated. A secondary screen showed that fifty-one of these 

were resistant to the paralyzing effects of levamisole. For genetic 

complementation tests, males carrying a mutation in candidate levamisole-

resistance genes were crossed with hermaphrodites carrying the ACR-2(L/S) 

transgene and a suppressor mutation. F1 progeny were scored for paralysis. A 

cross was performed in parallel using N2 males to identify X-linked suppressor 

mutations and determine dominance recessivity. The mapping of acr-12 alleles 

was performed in the presence of the ACR-2(L/S) transgene. A strain carrying 
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the integrated ACR-2(L/S) transgene (ufIs25) on linkage group I was 

backcrossed 7X to the CB4856 Hawaiian strain. acr-12 alleles were mapped to a 

region the right of +8 on the X chromosome using the SNP mapping procedure 

as described previously (Davis et al., 2005; Wicks et al., 2001). 

Behavioral assays 

All behavioral analysis was performed with young adult animals (24 h post-L4) at 

room temperature (22°C–24°C); different genotypes were scored in parallel, with 

the researcher blinded to the genotype. 

Aldicarb and levamisole assays. Staged populations of adult animals 

(~10) were transferred to NGM plates containing 1mM aldicarb (Chem- 

Service), and movement was assessed every 15 min for 2 h. Data represent 

the mean ±SEM of at least four assays. For levamisole assays, staged 

populations of adult animals were scored for paralysis after 120 min on plates 

containing 200 μM levamisole. 

Body bend analysis. Body bends were scored on unseeded NGM agar. 

Animals were transferred from their culture plate to an unseeded plate and 

allowed to crawl away from any food that might have been transferred. The 

animals were then gently transferred without food to another unseeded plate and 

allowed to recover for 1 min. After the recovery period, the animals were filmed 

for 5 min using an ImagingSource DMK 21F04 FireWire camera and iMovie 

software. 

Microscopy 
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Confocal microscopy was performed using a Zeiss Axioskop 2 microscope 

system and LSM Pascal 5 imaging software (Zeiss). Images were processed 

using ImageJ software (open source). Epifluorescent imaging was performed 

using a Zeiss Axioimager M1 microscope and Axiovision software (Zeiss). 

Movies and still images for behavioral analyses were obtained using an Olympus 

SZ61 upright microscope equipped with a FireWire camera (ImagingSource). For 

the developmental timeline, synchronized populations were obtained by 

bleaching gravid animals on NGM plates seeded with OP50. The resulting 

progeny were allowed to mature at room temperature. Animals were imaged at 

16, 28, 38, and 48 h after bleaching using wide-field epifluorescent microscopy, 

and the number of surviving cell bodies were counted manually with the 

researcher blinded to genotype. 

Results 

acr-2 encodes a nicotinic receptor subunit expressed in cholinergic motor 

neurons 

The C. elegans genome encodes 29 nAChR subunits that contribute to 

the formation of distinct classes of homopentameric and heteropentameric 

receptors (Jones et al., 2007; Rand, 2007). Two classes of nAChRs formed from 

six of these subunits are expressed in body wall muscle cells and required for 

neuromuscular signaling (Francis et al., 2005; Richmond and Jorgensen, 1999; 

Touroutine et al., 2005). Previous studies have suggested that the expression of 

several nicotinic acetylcholine receptor subunits, including the non-α subunit acr-
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2, is enriched in motor neurons of the ventral nerve cord (Cinar et al., 2005; 

Hallam et al., 2000; Jospin et al., 2009). To determine which ventral cord motor 

neurons express acr-2, we examined transgenic strains that expressed GFP 

(Chalfie et al., 1994) under the control of acr-2 regulatory sequences. Expression 

of Pacr-2::GFP was limited to the nervous system and largely restricted to 

neurons located in the ventral nerve cord. Expression of Pacr-2::GFP did not 

overlap with expression of a GABAergic mCherry reporter (Punc-47::mCherry), 

indicating that expression of acr-2 was limited to cholinergic motor neurons (DA, 

VA, DB, VB) in the ventral nerve cord of adult animals (Figure A1-1A). To 

determine the subcellular localization of ACR-2, we generated transgenic strains 

that expressed a full length ACR-2::GFP fusion protein in which GFP was 

inserted in frame in the intracellular loop region located between transmembrane 

domains three and four (Figure A1-S1, available at www.jneurosci.org as 

Supplemental Material). Expression of the GFP reporter construct could be 

observed at all larval stages and in the adult. We noted the onset of expression 

in late embryogenesis by the threefold stage (~550 min after fertilization). In first 

larval stage (L1) animals, when DA and DB motor neurons are the sole excitatory 

motor neurons present, ACR-2 expression was clearly visible in ventral nerve 

cord processes. DA and DB motor neuron dendrites receive synaptic input in the 

ventral cord, and these neurons extend commissural axons to the dorsal cord 

where they form neuromuscular synapses with the dorsal musculature. In adult 

animals, we found that the fusion protein was diffusely localized to neuronal 
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processes of the dorsal and ventral nerve cords. Our analysis suggests that 

ACR-2 is diffusely localized with enriched expression in the dendritic 

compartment of cholinergic motor neurons. The locomotory control interneurons 

provide synaptic input to the excitatory motor neurons; however, the role of 

acetylcholine (ACh) in this signaling remains unclear. To evaluate whether the 

locomotory control interneurons are cholinergic, we examined transgenic strains 

that coexpressed GFP under control of regulatory elements for the gene 

encoding the ACh vesicular transporter (Punc-17::GFP) together with the red 

fluorescent protein mCherry expressed under the control of the regulatory 

elements for the nmr-1 gene (Pnmr-1::mCherry) (Figure A1-S2). nmr-1 is 

expressed in the AVA, AVD, AVE ,and PVC locomotory control interneurons, as 

well as the RIM and AVG neurons (Brockie et al., 2001). We noted no overlap in 

the pattern of the red and green fluorescent signals with the possible exception of 

the interneuron AVE, indicating that these two reporters labeled almost 

completely independent cell populations. These data are consistent with the idea 

that the locomotory control interneurons are not primarily cholinergic. The 

enriched expression of ACR-2 in the dendritic compartment of motor neurons 

may reflect the involvement of ACR-2 receptor complexes at synapses between 

AVE and cholinergic motor neurons; however, the lack of Punc-17::GFP 

expression in a majority of locomotory control interneurons and the diffuse 

distribution of ACR-2 are inconsistent with an exclusive role at synapses. 

acr-2 mutants have motor deficits  
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The cholinergic motor neurons in the ventral nerve cord make synaptic contacts 

onto the body wall musculature that drives nematode locomotion. To evaluate the 

contribution of ACR-2 to cholinergic motor neuron excitability and motor output, 

we obtained a strain carrying a deletion mutation (ok1887) in the acr-2 genomic 

locus. The acr-2(ok1887) eliminates ~2.8 kb of chromosomal DNA, including the 

transcriptional start, and is likely to be a null. Animals homozygous for the 

ok1887 allele are healthy and viable. acr-2(ok1887) mutants are not obviously 

uncoordinated, though closer inspection revealed a modest decrease in 

locomotion rate (Figure A1-1B). Expression of the full-length ACR-2::GFP fusion 

protein in acr-2(ok1887) mutants was sufficient to restore normal movement.  

The acetylcholinesterase inhibitor aldicarb has proven to be a useful tool 

for detecting alterations in neurotransmitter release from cholinergic motor 

neurons. To test whether ACR-2 receptor complexes may be important for 

regulating activity of the cholinergic motor neurons, we examined whether acr-2 

mutant worms exhibit altered sensitivity to the paralyzing effects of aldicarb. acr-2 

mutant animals were slightly resistant to paralysis by aldicarb, and this effect was 

normalized by expression of ACR-2::GFP (Figure A1-1C). These data are 

consistent with the notion that ACR-2 plays a role in modulating the activity of 

cholinergic motor neurons but suggest that ACR-2 is not absolutely required for 

motor neuron depolarization. 

Introducing a dominant mutation in ACR-2 leads to profound motor deficits  
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The second transmembrane domains of Cys-loop family ligand-gated ion 

channel subunits are well known to line the ion channel pore and play a critical 

role in channel gating. In particular, a highly conserved nonpolar residue 

(typically leucine) in the M2 region has been shown to have profound effects on 

receptor activation properties (Figure A1-S3). Substitution of a polar amino acid 

(e.g., serine) for the leucine at this position produces a gain-of-function effect, 

resulting in increased receptor activation and very slow inactivation (Labarca et 

al., 1995; Revah et al., 1991).  

We engineered the homologous leucine-to-serine point mutation into the 

sequence encoding the M2 9' position of an acr-2 rescuing construct to generate 

ACR-2(L/S) (Figure A1-S3). Transgenic animals expressing an integrated ACR-

2(L/S) array (ufIs25) were used for all subsequent analyses. These animals are 

viable and have roughly normal brood sizes; however, adult animals are smaller 

than their wild-type counterparts (Figure A1-2). Moreover, we noted obvious 

locomotory defects in transgenic ACR-2(L/S) animals (Figure A1-2C). These 

defects were present in all larval stages as well as adult animals. Transgenic 

ACR-2(L/S) animals generated almost tenfold fewer body bends than the wild 

type and failed to propagate the sinusoidal wave that is typical of nematode 

movement, although animals remained capable of head foraging movements. 

The effects of ACR-2(L/S) were dominant, consistent with the notion that the 

phenotypes arose as a consequence of expression of a gain-of-function receptor. 
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Our results suggest that motor output to head muscles is unaffected, while 

control of body wall musculature is dramatically impaired in these animals. 

ACR-2(L/S)-induced motor neuron degeneration  

Examination of the ventral nerve cord region of transgenic ACR- 2(L/S) 

animals by differential interference contrast (DIC) microscopy showed that a 

subset of the ventral nerve cord neurons that normally express acr-2 swelled 

beyond their normal diameter and eventually disappeared, presumably as a 

result of cell death (Figures A1-3, 4). These results suggest that enhanced 

cholinergic signaling mediated by receptors incorporating ACR-2(L/S) leads to 

motor neuron toxicity. To characterize this in more detail, we examined the 

effects of ACR-2(L/S) expression in strains carrying fluorescent reporters that 

label populations of cholinergic neurons. We observed only dim Pacr-2::GFP 

fluorescence in the ventral nerve cord of ACR-2(L/S) animals, suggesting that 

many of the neurons labeled by this reporter were lost (data not shown). To 

evaluate the specificity of this effect for neurons that expressed acr-2, we 

examined a Punc-17::GFP reporter that is expressed in all cholinergic neurons 

(Figure A1-3) (Chase et al., 2004). While ACR-2(L/S) expression did not produce 

obvious differences in the number of head neurons labeled by Punc-17::GFP, we 

observed a dramatic decrease in the number of ventral nerve cord motor neuron 

cell bodies; yet, several motor neuron cell bodies remained present. The 

surviving neurons included the six VC motor neurons that do not normally 

express acr-2 and a more variable group of 10–12 additional excitatory motor 



126 
 

neuron cell bodies (Figures A1-3; Figure A1-S4). Based on the position and 

number of cell bodies and commissural processes, the additional surviving 

neurons included both DA and DB motor neurons that normally express acr-2, as 

well as AS motor neurons that do not. Similar to our observations for ACR-

2(L/S)-induced paralysis, the effects of ACR-2(L/S) on motor neurons were 

dominant. To evaluate the effects of ACR-2(L/S) on GABA motor neurons, we 

coexpressed ACR-2(L/S) together with a mCherry transcriptional reporter that 

labeled GABA neurons (Punc-47::mCherry) (Figure A1-3C,D). We observed that 

the full complement of GABA neurons was present and morphologically normal. 

These data suggest that ACR- 2(L/S) acts cell autonomously to promote 

degeneration of motor neurons and that specific neurons are differentially 

susceptible to the effects of ACR-2(L/S) expression. 

Motor neuron loss occurs soon after onset of ACR-2(L/S) expression  

As noted above, we observed clear ACR-2::GFP fluorescence in late 

embryogenesis. We found that threefold embryos coexpressing ACR-2(L/S) with 

the Pacr-2::GFP transcriptional reporter possessed normal numbers of GFP-

positive neurons, suggesting that ACR-2(L/S) toxicity occurred after hatch 

(Figures A1-S4). To precisely determine the onset of motor neuron cell death, we 

imaged transgenic ACR-2(L/S) animals that coexpressed the Punc-17::GFP 

transcriptional reporter at various time points ranging from newly hatched larvae 

to adults (Figure A1-4). We observed significant motor neuron loss in newly 

hatched larvae. Roughly 40% of the 16 cholinergic motor neurons present in L1 
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animals were lost within 16 h after hatch. During the transition from the first larval 

stage to the second larval stage (L2) the number of ventral nerve cord motor 

neurons increases substantially, with the addition of >50 motor neuron cell 

bodies (Sulston and Horvitz, 1977). In transgenic ACR-2(L/S) animals we 

observed only a slight increase in the number of cell bodies labeled by Punc-

17::GFP over the course of development. Even by the time transgenic ACR-

2(L/S) animals had clearly reached adulthood, the number of Punc-17::GFP 

labeled motor neuron cell bodies was roughly comparable to that of a wild-type 

L1 animal. The VC motor neurons do not express acr-2 and are clearly present in 

transgenic ACR-2(L/S) animals (Figure A1-3; Figure A1-S5). Therefore, the small 

developmental increase in the number of motor neuron cell bodies that we 

observe in transgenic ACR-2(L/S) animals likely represents the postembryonic 

addition of VC neurons. These results suggest that the other classes of motor 

neurons that are born postembryonically and normally express acr-2 (e.g., VA, 

VB) are almost completely absent in adult transgenic ACR-2(L/S) animals.  

Mutations that suppress paralysis define the subunits of a neuronal nAChR  

To identify genes required for the toxic effects of transgenic ACR-2(L/S) 

expression, we conducted a forward genetic screen for suppressors of ACR-

2(L/S)-induced paralysis. We screened the F2 progeny of mutagenized 

hermaphrodites that expressed ACR-2(L/S) and selected animals that exhibited 

improved movement. A close examination of the mutants isolated from the 

screen showed that two phenotypic classes were easily distinguishable. One 
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class of animals phenocopied strains that lack a well characterized heteromeric 

nAChR that mediates excitatory signaling at the neuromuscular junction (NMJ) 

and is a principal target of the antihelminthic drug levamisole (L-AChR). We 

found that members of this class were strongly levamisole-resistant, and we 

isolated alleles of the levamisole resistance genes unc-38, unc-63, unc-74, and 

unc-50 from these animals (Supplemental Table A1-S1). We also crossed 

available strains carrying single loss-of-function mutations in known levamisole 

resistance genes with transgenic ACR-2(L/S) animals (Table A1-1). Consistent 

with the results from our forward genetic approach, loss-of-function mutations in 

either unc-38, unc-63, unc-74, or unc-50 were sufficient to suppress ACR-2(L/S) 

toxicity and restore movement (Figure A1-5A). Interestingly, we also found that 

unc-29, a non-α subunit required for L-AChR function, was not required for ACR-

2(L/S)-induced paralysis. Likewise, acr-16, an essential subunit of homomeric 

nAChRs at the NMJ, was not required for ACR-2(L/S)-induced paralysis. unc-38 

and unc-63 encode nAChR α subunits that are required for L-AChR function at 

the NMJ but are also expressed in the nervous system (Culetto et al., 2004; 

Eimer et al., 2007; Fleming et al., 1997). unc-50 and unc-74 encode genes 

previously implicated in L-AChR maturation and are broadly expressed in 

muscles and neurons. Our analysis suggests that each of these gene products 

may contribute in a cooperative fashion to the generation of functional ACR-

2(L/S) receptors and subsequent toxicity.  



129 
 

A smaller number of animals isolated from the screen exhibited 

uncoordinated movement with deep body bends and showed normal sensitivity 

to the paralyzing effects of levamisole. We determined that the suppressor 

mutations in this second phenotypic class represented one complementation 

group and were X linked. Using single-nucleotide polymorphism mapping, we 

mapped one allele to the right of +8 on the X chromosome. The nAChR subunit 

gene acr-12 is located in this genomic region. Sequence analysis revealed four 

nonsense mutations and two missense mutations in the acr-12 coding sequence 

among our second class of suppressors (Figure A1-5B). We also found that a 

deletion mutation (ok367) in the acr-12 gene suppressed paralysis in transgenic 

ACR- 2(L/S) animals and prevented the loss of motor neuron cell bodies. 

Expression of a full-length acr-12 rescuing construct in acr-12(ok367);ACR-

2(L/S) animals restored paralysis, verifying that acr-12 is required (Figure A1-

5C,F). In contrast, we found that several other nAChR subunits with restricted 

expression to the nervous system were not required for ACR-2(L/S)- induced 

paralysis (Table A1-1). acr-12 encodes a nicotinic receptor α subunit that is 

broadly expressed in the nervous system, including many ventral cord motor 

neurons, but is not expressed in body wall muscles (Cinar et al. 2005; Gottschalk 

et al. 2005). acr-12(ok367) mutants have grossly normal movement and show 

normal sensitivity to the paralyzing effects of levamisole. To test whether acr-12 

expression solely in cholinergic motor neurons is sufficient for ACR-2(L/S)-

induced toxicity, we specifically restored expression of acr-12 to either ACh or 
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GABA motor neurons of acr-12(ok367) mutants that carried the ACR-2(L/S) 

transgene (Figure A1-5C– H). We found that-specific expression of the acr-12 

cDNA in cholinergic motor neurons of transgenic acr-12(ok367); ACR-2(L/S) 

mutants led to ACR-2(L/S) toxicity and paralysis. In contrast, specific expression 

in GABA neurons had no effect. Our results indicate that acr-12 expression in 

cholinergic motor neurons is specifically required for ACR-2(L/S)-induced cell 

death. Furthermore, our results suggest that coassembly of ACR-2(L/S) into a 

heteromeric receptor complex with UNC-38, UNC-63, and ACR-12 is required to 

produce toxicity.  

ACR-2(L/S)-induced motor neuron loss is suppressed in cnx-1;crt-1 double 

mutants 

 At least two mechanistically distinct types of cell death have been 

described. Programmed cell death or apoptosis is a form of cell death common in 

development and tissue homeostasis and occurs by a genetic program that is 

broadly conserved across metazoans (Danial and Korsmeyer, 2004). Necrosis 

generally occurs following cellular injury and is often characterized by swelling of 

the dying cell (Festjens et al., 2006; Golstein and Kroemer, 2007). Our forward 

genetic screen did not identify genes previously implicated in the execution of 

either of these forms of cell death. To determine how ACR-2(L/S) expression 

leads to cell death, we introduced the ACR-2(L/S) transgene into genetic 

backgrounds deficient for genes essential for either apoptotic cell death or 

necrotic cell death (Figure A1-6). We found that a loss-of-function mutation in 
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proapoptotic ced-3 (Ellis and Horvitz, 1986) or a gain-of-function mutation in anti-

apoptotic ced-9 (Hengartner et al., 1992) had no effect on ACR-2(L/S)-induced 

deaths. Thus, the programmed cell death machinery is not required for ACR-

2(L/S)-induced neurodegeneration.  

Dysregulation of intracellular calcium levels contributes to cell death 

under a variety of circumstances, including necrotic cell death (Mattson et al., 

2000; Rao et al., 2004; Szydlowska and Tymianski, 2010). Calreticulin/CRT-1 

and calnexin/CNX-1 are endoplasmic reticulum (ER) resident proteins that serve 

dual functions as Ca2+ binding proteins and molecular chaperones that facilitate 

glycoprotein folding (Ellgaard and Frickel, 2003). In mice, loss of either calnexin 

or calreticulin produces severe phenotypes: calnexin knock-out mice die within 4 

months of birth, while knock-out of calreticulin results in embryonic lethality 

caused by defects in heart development (Denzel et al., 2002; Mesaeli et al., 

1999). In C. elegans, crt-1 and cnx-1 single mutants are viable, and loss-of-

function mutation in the crt-1 gene or RNA interference knockdown of cnx-1 

expression suppresses several cases of ion channel mediated cell death (Xu et 

al., 2001). We found that the deletion mutation cnx-1(ok2234) had no significant 

effect on ACR-2(L/S)-induced cell death, whereas the deletion mutation crt-

1(ok948) partially suppressed the loss of motor neurons observed in transgenic 

ACR-2(L/S) animals. Neither of these mutations led to significant locomotory 

improvement.  
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As calnexin and calreticulin perform similar cellular functions, we generated a 

strain carrying loss-of-function mutations in both genes to test whether they may 

act redundantly in ACR- 2(L/S)-induced toxicity. cnx-1;crt-1 double mutants were 

viable although smaller in size than wild-type animals, had grossly normal 

movement, and did not show obvious defects in nervous system connectivity.  

While ACR-2(L/S) expression in wild-type animals or cnx-1 and crt-1 single  

mutants caused paralysis across all developmental stages, we found that first 

larval stage cnx-1; crt-1 double mutants expressing ACR-2(L/S) were often 

capable of grossly normal locomotion (Figure A1-7A,B,H). We also observed that 

the full complement of 16 cholinergic motor neuron cell bodies was present in L1 

cnx-1;crt-1;ACR-2(L/S) animals, and we did not detect obvious defects in the 

connectivity of the cholinergic motor neurons (Figure A1-7C). These results 

indicate that embryonic born motor neurons developed normally and made 

appropriate synaptic contacts onto their partner muscle cells, suggesting that the 

combined loss of crt-1 and cnx-1 is strongly neuroprotective against ACR-2(L/S) 

toxicity in L1 animals. We observed that adult cnx-1;crt-1 double mutants 

expressing ACR-2(L/S) also possessed normal numbers of cholinergic motor 

neuron cell bodies, providing additional evidence that the presence of either 

calnexin or calreticulin is required for the cellular events that lead to ACR-2(L/S)- 

induced cell deaths (Figures A1-6F,G, 7D). However, larvae that had progressed 

beyond L1 and adult cnx-1;crt-1;ACR-2(L/S) animals were unable to propagate 

sinusoidal body bends and move effectively. This observation suggested that 
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ACR-2(L/S) expression in cnx-1;crt-1 double mutants led to a progressive 

disruption of motor function even when motor neuron death was attenuated.  

To determine whether altered motor neuron connectivity may underlie the 

paralysis of adult cnx-1;crt-1;ACR-2(L/S) animals, we made a close examination 

of the cholinergic motor neuron processes (Figure A1-7E–G,I). We found that 

defects in the motor neuron processes of control cnx-1;crt-1 double mutants 

occurred only rarely (Figure A1-S6), and these animals exhibited grossly normal 

movement across all stages of development. In cnx-1;crt-1 double mutants that 

expressed ACR-2(L/S), we observed defasciculation of the ventral nerve cord 

neuronal processes (in 96% of animals scored; n=30), as well as defects in the 

morphology of commissural axons (in 75% of axons) (Figure A1-7). We often 

observed several classes of defects within individual animals and, in some 

instances, individual commissural axons contained multiple defects. The defects 

were of several types. First, we observed abnormal axon branches that often 

terminated in growth cone like structures (54% of animals). Second, we observed 

ectopic sprouting with no clear single axonal process present (71% of animals). 

Finally, we observed axons with abnormal trajectories and wandering growth 

(83% of animals). These results suggest that the muscle targets of cholinergic 

motor neuron processes are not appropriately innervated in adult animals. We 

observed that the frequency of these defects increased dramatically after the first 

larval stage (Figure A1-7I), suggesting that a progressive deficiency in the 
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stabilization or maintenance of appropriate neuromuscular connectivity underlies 

the paralysis we observed in mature animals. 

 To better understand the mechanisms underlying the suppression of 

ACR-2(L/S)-mediated cell death in cnx-1;crt-1 animals, we directly evaluated the 

role of intracellular calcium. We found that culturing transgenic ACR-2(L/S) 

animals in the presence of dantrolene, an inhibitor of ER calcium release, or the 

calcium chelator EGTA (Figure A1-8A,B) led to a modest but significant increase 

in the number of surviving motor neuron cell bodies. Similarly, we observed 

reduced ACR-2(L/S) toxicity in unc-68 mutants lacking functional ryanodine 

receptors (Figure A1-8C). These results provide evidence that intracellular 

calcium signaling contributes to cell death in ACR-2(L/S) animals and support the 

idea that altered intracellular calcium in cnx-1;crt-1 double mutants may likewise 

contribute to the neuroprotection we observed. To test whether altered 

expression of ACR-2(L/S) in cnx-1;crt-1 double mutants may also be a 

contributing factor, we measured levels of ACR-2::GFP fluorescence. We 

observed an approximately twofold decrease in ACR-2::GFP fluorescence in 

both the cell bodies and ventral nerve cord of cnx-1;crt-1 double mutant animals 

compared to wild-type animals (Figure A1-8D–G). This result suggests that a 

decrease in the levels of ACR-2(L/S) in cnx-1;crt-1 animals also contributes to 

the neuroprotection we observe.  

Discussion 
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Our analysis of ACR-2-containing nicotinic receptors in C. elegans 

neurons has revealed common features between the function of these receptors 

in the C. elegans nervous system and roles for heteromeric nAChRs in the 

vertebrate brain (Dani and Bertrand, 2007). First, heteromeric nAChRs in the 

mammalian brain are not primarily concentrated at postsynaptic sites; instead, 

they are more variably localized to presynaptic, preterminal, and nonsynaptic 

sites. Similarly, we find that ACR-2-containing nAChRs appear diffusely localized 

to the processes of excitatory motor neurons, suggesting that these receptors 

may function at extrasynaptic sites. Second, heteromeric brain nAChRs primarily 

function to modulate neurotransmitter release and neuronal excitability. Our 

studies of acr-2 loss-of-function mutants indicate that heteromeric nAChRs 

containing ACR-2 modulate the excitability of cholinergic motor neurons but are 

not absolutely required for motor neuron depolarization or ACh release at 

neuromuscular synapses. Third, mouse studies have shown that knock-in 

expression of a heteromeric brain nAChR subunit bearing a L/S pore modification 

homologous to the one we describe here causes dramatic neuron loss and 

perinatal lethality (Labarca et al., 2001). Likewise, transgenic expression of ACR-

2(L/S) leads to cell-autonomous neurodegeneration. 

Importantly, our transgenic approach also enabled us to identify genes 

required for ACR-2(L/S) toxicity. Mutations that suppressed both the paralysis 

and neurodegeneration caused by ACR-2(L/S) expression defined the 

constituent subunits of a putative multimeric ACR-2 receptor complex as well as 
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genes required for receptor trafficking and assembly. Additionally, a single gene 

mutation in crt-1, previously shown to suppress other forms of ion channel-

mediated cell death in C. elegans, partially suppressed ACR-2(L/S) toxicity. We 

found that the loss of motor neurons caused by ACR-2(L/S) expression was 

completely suppressed in adult cnx-1;crt-1 double mutants; yet, these animals 

remained paralyzed. Interestingly, suppression of ACR-2(L/S)- induced cell death 

uncovered a secondary consequence of ACR- 2(L/S) expression: the 

accumulation of morphological defects in the processes of surviving motor 

neurons. These axonal defects resemble outgrowth errors typically associated 

with secondary regrowth of axons (Hammarlund et al., 2007; Knobel et al., 2001). 

Therefore, the severe morphological defects we observed in adult animals may 

reflect inappropriate regrowth subsequent to destabilization. We propose that the 

necrotic-like cell death and destabilization of neuronal processes observed in our 

studies may represent genetically separable events and suggest that our 

transgenic approach may afford a powerful system to tease apart the molecular 

pathways that differentially contribute to these two processes.  

ACR-2 is part of a heteromeric nAChR in cholinergic motor neurons  

We have demonstrated that acr-2 shows restricted expression to 

cholinergic motor neurons of the ventral nerve cord and appears diffusely 

localized in neuronal processes. These results suggest that the ACR-2 receptor 

complex may modulate motor neuron excitability by mediating signaling at 

extrasynaptic sites. Consistent with this notion, acr-2 loss-of-function mutants are 
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not grossly uncoordinated and show only modest resistance to the paralyzing 

effects of the ACh esterase inhibitor aldicarb. Aldicarb-induced paralysis arises 

as a consequence of the prolonged action of ACh in the synaptic cleft; our 

analysis suggests that ACh release from motor neurons is decreased in acr-2 

mutants. Another recent study reached a similar conclusion based on 

electrophysiological analysis of acr-2 loss-of-function mutants (Jospin et al., 

2009). We also show that the locomotory control interneurons (with the possible 

exception of AVE)—the major source of synaptic inputs to excitatory motor 

neurons—do not express a reporter that labels cholinergic neurons, suggesting 

these neurons are unlikely to be cholinergic. Therefore, what is the source of 

ACh for activation of ACR-2 receptor complexes? The presynaptic ACh release 

sites of en passant neuromuscular synapses are highly intermingled and densely 

packed because of the intercalation of neuronal processes in the nerve cord. 

Thus, one possibility is that these receptors are activated by spillover of ACh 

from release sites at nearby neuromuscular synapses.  

Our genetic analysis showed that mutations in three genes encoding 

AChR subunits can suppress the neurotoxic effects associated with expression 

of pore-modified ACR-2(L/S) receptors. unc-38 and unc-63 are highly expressed 

in ventral cord motor neurons and also contribute to a heteromeric receptor 

complex that mediates excitatory neurotransmission at the NMJ (Culetto et al., 

2004; Fleming et al., 1997). acr-12 is broadly expressed in the nervous system 

but is not expressed in body wall muscles (Cinar et al., 2005; Gottschalk et al., 
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2005). Our data are consistent with the notion that UNC-38, UNC-63, and ACR-

12 coassemble with the ACR-2 subunit [either native ACR-2 or transgenic ACR-

2(L/S)] to form heteromeric nAChRs in cholinergic motor neurons (Jospin et al., 

2009). Loss-of-function mutations in any of these genes impair assembly or 

function of ACR-2 receptor complexes in cholinergic motor neurons and 

suppress ACR-2(L/S)-induced cell death. Several pieces of evidence support this 

idea. First, mutations in unc-29 and acr-16—genes that contribute to nAChRs at 

the NMJ and are essential for normal excitatory neurotransmission at 

neuromuscular synapses (Francis et al., 2005; Richmond and Jorgensen, 1999; 

Touroutine et al., 2005)—do not suppress ACR-2(L/S) neurotoxicity, indicating 

that reduced excitatory neuromuscular signaling alone is insufficient to suppress 

ACR-2(L/S)-induced toxicity. Second, specific expression of acr-12 in the 

cholinergic motor neurons of transgenic acr-12 mutants expressing ACR-2(L/S) 

was sufficient to produce paralysis, whereas specific expression of acr-12 in 

other neuron classes was without effect. Third, it has recently been shown that 

coexpression of five subunits—ACR-2, ACR-12, UNC-38, UNC-63, and ACR-3— 

was required for reconstitution of ACR-2 receptor complexes in a heterologous 

system (Jospin et al., 2009).  

Pore-modified ACR-2(L/S) receptors cause ion channel-mediated 

neurotoxicity  

We have shown that expression of the ACR-2(L/S) transgene leads to 

degeneration of the cholinergic motor neurons and paralysis, reinforcing the 
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importance of these neurons in generating sinusoidal movement. The GABA 

motor neurons develop normally even in the absence of ACh motor neurons, 

their major source of synaptic input, indicating that the toxic effects of ACR- 

2(L/S) expression are cell autonomous. We found that mutations in genes that 

are essential for the formation of functional ACR-2 heteromeric receptors 

suppress this effect, consistent with the idea that excessive receptor activity 

leads to neurodegeneration. Our results suggest that the level of receptor activity 

is a critical determinant in the progression toward necrotic cell death. Consistent 

with this idea, a less severe gain-of-function acr-2 allele leads to cellular 

hyperexcitability without obvious loss of motor neurons (Jospin et al., 2009). 

Interestingly, mouse studies using knock-in expression of similarly pore-modified 

heteromeric nAChR subunits have reported qualitatively similar degeneration as 

a consequence of excess receptor activation (Labarca et al., 2001; Orb et al., 

2004; Orr-Urtreger et al., 2000). Knock-out of Lynx1, an endogenous negative 

regulator of nAChR function in the mouse brain, also leads to a similar form of 

vacuolating degeneration that is exacerbated by nicotine (Miwa et al., 2006).  

Release of calcium from internal stores plays a major a role in many forms 

of cell death, including some forms of ion channel mediated toxicity. 

Pharmacological or genetic manipulation of intracellular calcium levels led to a 

modest suppression of ACR- 2(L/S)-induced toxicity, providing evidence that 

calcium plays an important role. However, ACR-2::GFP fluorescence was 

decreased substantially in cnx-1;crt-1 double mutants, suggesting that a 
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reduction in protein levels of the toxic transgene also contributes to suppression 

of cell death. Similar to the case for ACR- 2(L/S) expression, cell death because 

of a gain-of-function mutation in another C. elegans nAChR subunit, DEG-3, is 

not suppressed by a single gene mutation in crt-1 (Syntichaki et al., 2002; Treinin 

and Chalfie, 1995; Xu et al., 2001). Our findings suggest that a requirement for 

genes additional to crt-1 may be a common feature of nAChR-mediated neuronal 

death that is distinct from cell death caused by hyperactive Na+ channels such as 

MEC-4(d).  

In mouse models of motor neuron disease, such as progressive motor 

neuronopathy (PMN) or the transgenic SOD1 G93A model of amyotrophic lateral 

sclerosis, apoptosis of neuronal cell bodies was blocked by expression of the 

anti-apoptotic Bcl-2 gene or knock-out of the proapoptotic Bax gene (Gould et al., 

2006; Sagot et al., 1995). In each case, degeneration of the neuronal processes 

continued unimpeded and disease progression was unaffected. ACR-2(L/S)-

induced cell death clearly occurs independently of the apoptotic pathway. 

However, it is interesting to note that we also observe a progressive 

destabilization of the motor neuron processes that leads to paralysis even under 

conditions when death of the cell body is attenuated. Therefore, NMJ denervation 

that occurs independently of the death of neuronal cell bodies is the dominant 

feature shared across each of these cases. In the future, it will be interesting to 

uncover the molecular events leading to degeneration of the neuronal processes 
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and determine whether elements of the degenerative process are conserved 

across these diverse models.  
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Figure A1-1 
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Figure A1-1. acr-2 is expressed in cholinergic motor neurons and 
modulates motor neuron activity. A, Confocal image of the posterior ventral nerve 
cord of an adult animal coexpressing a GABA-specific marker (Punc-
47::mCherry) and an ACR-2- specific marker (Pacr-2::GFP). No overlap is 
observed between GFP-expressing and mCherry-expressing neurons. The 
animal is oriented with the posterior (tail) on the right. B, Quantification of 
movement on a food-free agar plate. Average number of body bends per minute 
for wild type, acr-2(ok1887) mutants, and acr-2(ok1887) mutants expressing full 
length ACR-2::GFP (ufIs42) over a 5 min period are shown. Data represents 
mean ±SEM of at least 10 trials; **p<0.01 compared to wild type. C, Time course 
of paralysis in the presence of the cholinesterase inhibitor aldicarb (1 mM) for 
wild type, acr-2(ok1887) mutants, and acr-2(ok1887) mutants expressing full-
length ACR-2::GFP (ufIs42). The percentage of immobilized animals calculated 
every 15 min over a time course of 2 h is shown. Each data point represents the 
mean ±SEM of at least four trials. *p<0.001, two-way ANOVA. 
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Figure A1-2 
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Figure A1-2. Transgenic animals expressing the dominant ACR-2(L/S) 
transgene are severely uncoordinated. A, B, Still image of a wild-type animal (A) 
and a transgenic animal expressing the ACR-2(L/S) transgene (B). Note the 
coiled posture and reduced size that occurs as a result of ACR-2(L/S) 
expression. C, Quantification of movement on a food-free agar plate. Average 
number of body bends per minute for wild type, acr-2(ok1887) mutants, and 
transgenic animals expressing full-length ACR-2(L/S) (ufIs25) counted over a 5 
min period are shown. Data represent mean ±SEM of at least 10 trials; *p<0.02; 
**p<0.0001. 
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Figure A1-3 
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Figure A1-3. Transgenic expression of ACR-2(L/S) leads to a loss of 
cholinergic motor neurons. A, A1, DIC images of an adult wild type animal (A) 
and an adult transgenic animal expressing ACR-2(L/S) (A1). Triangles denote 
lesions observed along the ventral nerve cord of transgenic animals expressing 
ACR-2(L/S). Images show a region directly posterior of the vulva and are 
oriented with the ventral surface facing up and the anterior of the animal to the 
left. B, B1, Wide-field epifluorescent images of a transgenic animal expressing 
the cholinergic neuron marker Punc-17::GFP (vsIs48) (B) and a transgenic 
animal coexpressing ACR-2(L/S) with Punc-17::GFP (B1). The few Punc-
17::GFP-labeled motor neurons that remain in transgenic ACR-2(L/S) animals 
include the six VCs (indicated) and a more variable group of ~10 –12 neurons 
(arrowheads). C, C1, Wide-field epifluorescent images of a transgenic animal 
expressing Punc-47::mCherry (C) and a transgenic animal coexpressing Punc-
47::mCherry with ACR-2(L/S) (C1). The full complement of Punc-47::mCherry-
labeled motor neurons remains in transgenic ACR-2(L/S) animals and is 
indicated. D, Quantification of the total number of motor neurons in wild-type 
(gray) and ACR-2(L/S) animals (black); *p<0.01. For all images, animals are 
positioned with the head on the left side of the image. 
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Figure A1-4 
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Figure A1-4. ACR-2(L/S)-induced motor neuron cell death is initiated 
before hatch. A, B, Wide-field epifluorescent images of wild-type (A) and 
transgenic ACR-2(L/S) (B) animals expressing Punc-17::GFP imaged 16, 28, 38, 
and 48 h after bleach synchronization of embryos. C, D, Confocal images of first 
larval stage wild-type (C) and transgenic ACR-2(L/S) (D) animals expressing 
Punc-17::GFP. Swollen or dying neuronal cell bodies are indicated (arrowheads). 
E, Quantification of the average number of cell bodies at the time points indicated 
for wild type (black bars) and transgenic ACR-2(L/S) animals (gray bars). Bars 
represent the mean ±SEM for 5– 8 animals at each time point. 
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Figure A1-5 
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Figure A1-5. Mutations in nicotinic acetylcholine receptor subunits suppress 
ACR-2(L/S)-induced paralysis. A, Quantification of the average number of body 
bends per minute for wildtype animals, acr-12(ok367), unc-63(ok1075), unc-
38(e264), unc-74(e883), and unc-50(e306) mutants in the absence (gray bars) or 
presence (black bars) of the ACR-2(L/S) transgene. Animals were placed on a 
food-free agar plate, and the average number of body bends per minute was 
quantified over a 5 min period. Data represent the mean ±SEM of at least 10 
animals for each genotype. B, Schematic of the membrane topology of ACR-12 
with approximate location, allele names, and molecular nature of loss-of-function 
mutations that suppress ACR-2(L/S) toxicity indicated. C, Quantification of the 
average number of body bends per minute for the following genotypes: wild type, 
acr-12(ok367), transgenic ACR-2(L/S), acr-12 mutants expressing ACR-2(L/S), 
acr-12 mutants expressing ACR-2(L/S) together with an extrachromosomal array 
containing Punc-47::ACR-12, and acr-12 mutants expressing ACR-2(L/S) 
together with an extrachromosomal array containing the Pacr-2::ACR-12 cDNA. 
Data represent the mean ±SEM for 5–10 animals. D–H, Still images of adult 
animals on NGM plates without food for the genotypes indicated. “GABA” and 
“ACh” refer to specific expression of the acr-12 cDNA in GABAergic or 
cholinergic neurons using the unc-47 or acr-2 promoters, respectively.  
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Figure A1-6 
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Figure A1-6. ACR-2(L/S)-mediated motor neuron loss is completely prevented in 
animals doubly mutant for calnexin and calreticulin. A–F, Representative wide-
field images of Punc-17::GFP fluorescence in the ventral nerve cord of adult 
animals for the genotypes indicated. For each image the head is oriented to the 
left. The alleles used were ced-3(ok2734), cnx-1(ok2234), and crt-1(ok948). G, 
Quantification of the average number of Punc-17::GFP-labeled cell bodies 
present in the ventral nerve cord for the genotypes indicated. Data represent the 
mean ±SEM for at least 10 animals per genotype. * p<0.01, **p<0.01, compared 
to transgenic ACR-2(L/S) animals. 
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Figure A1-7 
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Figure A1-7. Progressive destabilization of motor neuron processes in cnx-1;crt-
1;ACR-2(L/S) animals. A, B, Frames showing the movement of L1 transgenic 
ACR-2(L/S) (A) or cnx-1;crt-1;ACR-2(L/S) (B) animals 30 s (t 0), 60 s (+30), or 90 
s (+60) after transfer to an agar plate. The black arrow marks the starting 
positions of the worms in each frame. The transgenic ACR-2(L/S) animal does 
not move from where it was placed on the plate. The dashed line shows the 
movement path of the L1 cnx-1;crt-1; ACR-2(L/S) animal over the course of 60 s. 
The additional tracks on the plate show the path of the animal in an ~30 s period 
before imaging began. C, D, Confocal images of a first larval stage (C) or adult 
cnx-1;crt-1;ACR-2(L/S) animals expressing an integrated Punc-17::GFP (D). 
Images show Z-projections of 15 confocal planes (0.5μm/slice) (C) or 16 confocal 
planes (0.5μm/slice) (D). Arrows (D) indicate positions of commissures. Dashed 
box (D) indicates area with multiple neuronal defects. E–G, Confocal images of 
cnx-1;crt-1;ACR-2(L/S) animals taken at hatch (E), 24 h post hatch (F), and 
adulthood (G). In each case, a region immediately posterior of the vulva was 
imaged and the ventral nerve cord is positioned at the top. Arrows indicate 
commissural processes; arrowheads indicate the ventral nerve cord. Images 
show Z-projections of 12 confocal planes (E), 23 confocal planes (F), or 33 
confocal planes (G) (0.5μm/slice). Scale bars represent 10_m. H, Quantification 
of percentage of animals moving at hatch in ACR-2(L/S) and cnx-1;crt-1;ACR-
2(L/S) animals. Data represent the mean number of animals ± SEM making more 
than two consecutive body bends during a 3 min period. I, Quantification of the 
percentage of cnx-1;crt-1 and cnx-1;crt-1;ACR-2(L/S) animals with defective 
neuronal process morphology. Observed defects include defasciculation of the 
ventral nerve cord, wandering commissural processes, or ectopic branching. 
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Figure A1-8 
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Figure A1-8. Perturbation of intracellular calcium and reduced ACR-2::GFP 
levels in cnx-1;crt-1 double mutants suggest dual mechanisms for cell death 
suppression. A–C, Quantification of the average number of Punc-17::GFP-
labeled cell bodies present in the ventral nerve cord in adult animals treated with 
dantrolene (A), L1 animals treated with EGTA (B), and adult unc-68(e540) 
mutant animals (C). Data represent the mean ±SEM for at least eight animals. 
**p<0.01, ***p<0.01, compared to untreated ACR-2(L/S) animals. D, E, Confocal 
images of adult wild type (D) or cnx-1;crt-1 (E) animals expressing ACR-2::GFP. 
Images are taken immediately posterior to the vulva and show Z-projections of 
seven confocal planes (0.5μm/slice). F, G, Quantification of fluorescence levels 
in cell bodies (F ) and ventral nerve cord processes (G) of wild-type and ACR-
2(L/S) animals transgenically expressing ACR-2::GFP. Data represent the mean 
±SEM for at least 10 animals. ***p<0.01, compared to ACR-2(L/S) animals. 
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Figure A1-S1 
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Figure A1-S1. Expression of the non-alpha nAChR subunit ACR-2. (A) 
Schematic depicting morphology of cholinergic DA and DB motor neurons in an 
L1 animal. Wide-field epifluorescent projection images of the ventral (green) and 
dorsal (blue) nerve cords in L1 animals expressing integrated arrays containing 
either the transcriptional reporter Pacr-2::GFP (ufIs49, top), full-length Pacr-
2::ACR-2::GFP (ufIs42, middle) or a presynaptic marker (Punc-4::SNB-1::GFP, 
lower). Pacr-2::GFP fluorescence is present in both ventral and dorsal nerve 
cords. Expression of the synaptic vesicle marker synaptobrevin (SNB-1::GFP) is 
limited to axons of the dorsal nerve cord. ACR-2::GFP fluorescence is limited to 
dendrites in the ventral nerve cord. (B) Projection of a confocal stack showing the 
dorsal and ventral nerve cords of an adult animal expressing full-length ACR-
2::GFP. (C) Confocal image of ventral nerve cord showing diffuse ACR-2::GFP 
fluorescence. (D) Schematic of ACR-2 membrane topology and site of GFP 
insertion. 
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Figure A1-S2 
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Figure A1-S2. C. elegans command interneurons do not express Punc-17::GFP. 
(A-C) Single confocal images of an animal co-expressing an integrated array 
(vsIs48) containing the cholinergic neuron marker Punc-17::GFP together with an 
extrachromosomal array (ufEx158) containing Pnmr-1::mCherry. (D) A confocal 
projection showing the relative positions of neuronal cell bodies expressing Punc- 
17::GFP and Pnmr-1::mCherry in the head of the worm. Neurons expressing 
mCherry are indicated. Only a single AVA neuron expresses mCherry due to 
mosaic expression of the array.  
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Figure A1-S2 
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Figure A1-S3. Sequence features of ACR-2. (A) Amino acid sequence of ACR-2. 
Predicted signal sequence (dashed box), transmembrane domains (underline), 
cys-loop (gray), gain-of-function mutation (box), and site of GFP insertion 
(asterisks) are indicated. (B) Alignment of the second transmembrane domain of 
ACR-2 and various mammalian non-alpha subunits. The site of the 9’ leucine to 
serine gain-of-function mutation is indicated (gray shading). 
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Figure A1-S4 
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Figure A1-S4. Wild type and ACR-2(L/S) animals have the same number of acr-
2 expressing cells at the 3-fold embryo stage. (A and B) Confocal images of wild 
type (A) and ACR-2(L/S) (B) 3-fold embryos expressing an integrated array 
containing Pacr-2::GFP (ufIs49). Images represent Z-projections of 23 slices (0.5 
μm/slice). (C) Quantification of the average number of Pacr-2::GFP labeled cell 
bodies present in wild type and ACR-2(L/S) 3-fold embryos. Data represents the 
mean ± SEM of at least ten animals per genotype. 
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Figure A1-S5 
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Figure A1- S5. The VC neurons remain present in transgenic ACR-2(L/S) 
animals. Confocal images of wild type (A) and ACR-2(L/S) (B) animals 
expressing an integrated array (ufIs26) that contains Punc-4::mCherry. 
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Figure A1-S6 
 
 
 

  



171 
 

Figure A1-S6. Motor neuron processes are irregular in cnx-1;crt-1 double 
mutants expressing transgenic ACR-2(L/S). (A and B) Confocal images of 
commissural processes and ventral nerve cord processes in cnx-1;crt-1 double 
mutants (A) and cnx-1;crt-1 double mutants expressing the ACR- 2(L/S) 
transgene (B). Arrowheads show normally fasciculated ventral nerve cord in cnx- 
1;crt-1 double mutants (A) and defasciculation in cnx-1;crt-1;ACR-2(L/S) animals 
(B). Arrows show normal commissural process in (A) and ectopic sprouting in 
(B). In each case, a region immediately posterior of the vulva was imaged and 
the ventral nerve cord is positioned at the bottom. Images show Z-projections of 
34 confocal planes (A) or 33 confocal planes (B) (0.5 μm/slice). For all 
fluorescent imaging, animals are expressing an integrated Punc-17::GFP 
transgene (vsIs48). (C) Quantification of the percentage of irregular commissural 
processes in wild type (15 commissures from 5 animals), transgenic ACR-2(L/S) 
(39 commissures from 10 animals), cnx-1;crt-1 (75 commissures from 19 
animals) and cnx-1;crt-1;ACR-2(L/S) (93 commissures from 17 animals). Since 
Punc-17::GFP also labels AS motor neurons that project commissural axons and 
do not express acr-2, the percentage of axonal defects in ACR-2(L/S) expressing 
neurons is likely higher. 
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Table A1-S1 
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Table A1-S1. Suppressors of ACR-2(L/S) induced paralysis isolated from a 
forward genetic screen.  
Gray shading denotes available alleles used as reference  
*denotes percentage of animals paralyzed after 120 minutes in the presence of 
200 μM levamisole  
†Alleles listed multiple times indicated duplicate isolates of the same allele. 
Forty-four additional levamisole-resistant mutants (<20% paralyzed) were 
isolated but not characterized further. 
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