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ABSTRACT 

Post-transcriptional regulation of gene expression is a mechanism that 

governs developmental and cellular events in metazoans.  In early 

embryogenesis, transcriptionally quiescent cells depend upon maternally 

supplied factors such as RNA binding proteins and RNA that control key 

decisions.  Morphogen gradients form and in turn pattern the early embryo 

generating different cell types and spatial order.  In the nematode Caenorhabditis 

elegans, the early embryo relies upon several RNA binding proteins that control 

mRNA stability, translation efficiency, and/or mRNA localization of cell fate 

determinants essential for proper development.  

MEX-5 and MEX-3 are two conserved RNA-binding proteins required to 

pattern the anterior/posterior axis and early embryo.  Mutation of either gene 

results in a maternal effect lethal phenotype with proliferating posterior muscle 

into the anterior blastomeres (Muscle EXcess).  Several cell-fate determinants 

are aberrantly expressed in mex-5 and mex-3 embryos.  Both proteins are 

thought to interact with cis-regulatory elements present in 3’-UTRs of target 

RNAs controlling their metabolism.  However, previous studies failed to 

demonstrate that these proteins regulate maternal transcripts directly.  

 This dissertation presents a thorough assessment of the RNA binding 

properties of MEX-5 and MEX-3.  Quantitative biochemical approaches were 

used to determine the RNA binding specificity of both proteins.  MEX-5 has a 

relaxed specificity, binding with high affinity to linear RNA containing a tract of six 
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or more uridines within an eight-nucleotide window.  This is very different from its 

mammalian homologs Tristetraprolin (TTP) and ERF-2.  I was able to identify two 

amino acids present within the MEX-5 RNA binding domain that are required for 

the differential RNA recognition observed between MEX-5 and TTP.  MEX-3 on 

the other hand is a specific RNA binding protein, recognizing a bipartite element 

with flexible spacing between two four-nucleotide half-sites.  I demonstrate that 

this element is required for MEX-3 dependent regulation in vivo.  Previous 

studies only identify a small number of candidate regulatory targets of MEX-5 

and MEX-3.  The defined sequence specificity of both proteins is used to predict 

new putative targets that may be regulated by either protein.  Collectively, this 

study examines the RNA binding properties of MEX-5 and MEX-3 to clarify their 

role as post-transcriptional regulators in nematode development.   
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Introduction to MEX-5 and MEX-3; post-transcriptional 

control in nematode development  
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Embryogenesis is one of the most tightly regulated processes in the life of 

an animal.  From the time of fertilization, a large number of decisions are made 

that cause a single pluripotent cell to differentiate into a living organism.  One 

remarkable feature across almost all organisms is that these developmental 

events occur in cells at a time when there is little or no transcription.  For 

example, the Zebrafish embryo does not begin zygotic transcription until the 512-

cell stage when the midblastula transition occurs (Kane and Kimmel, 1993).  In 

most species, zygotic transcription does not occur until after several rounds of 

division.  At this point, embryos have already made a number of critical decisions 

such as establishing the embryonic axis, the timing of cell divisions and cell-fate 

specification.  Therefore, the early embryo depends upon post-transcriptional 

regulatory mechanisms to control the variations in gene expression needed for 

these events to occur (Farley and Ryder, 2008; Kuersten and Goodwin, 2003).  

Prior to the onset of transcription, the maternal load is essential for the fertilized 

zygote to successfully undergo differentiation.  Maternally supplied cytoplasmic 

factors including RNA binding proteins and mRNAs are required to decode the 

genetic information supplied to the early embryo.  However, very little is known 

as to how an mRNA is recognized by specific RNA binding proteins as well as 

the network of RNA targets that are identified by such proteins. 

 One organism that has been used to study post-transcriptional control of 

gene expression in early development is the nematode Caenorhabditis elegans.  

In 1974 Sydney Brenner introduced C. elegans as an organism to study various 
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processes including germline development and embryogenesis (Brenner, 1974).  

This free-living soil nematode is a convenient animal to study these processes.   

C. elegans  have a rapid period of embryogenesis of approximately 16 hours.  

Moreover, there are a fixed number of somatic cells and the entire lineage of 

each cell has been mapped (Sulston and Horvitz, 1977; Sulston et al., 1983).  

This makes it possible for the detailed study of gene function and understanding 

fundamental processes such as cell-fate specification at single cell resolution.  In 

addition, worms are transparent, allowing all of the developmental stages to be 

viewed from a microscope; a variety of molecular techniques may be employed 

to visualize factors that are involved in early development. 

 

Anatomy of the adult C. elegans germline 

 C. elegans are predominantly hermaphroditic organisms, meaning that they 

have both male and female reproductive organs.  Several tightly regulated 

developmental steps are required for the worm to grow into a functional sexual 

reproductive organism.  A wild-type adult hermaphrodite consists of two gonads 

where gametes are produced (Figure 1.1).  Within each gonad, the distal end 

consists of a population of mitotically dividing stem cells.  As these cells progress 

away from the mitotic region, they transition into the meiotic cell cycle.  When the 

mitotic germ cells transition into meiosis, their cell membrane breaks down 

forming a syncytium where the nuclei migrate to the gonad wall.  In this region, 

the same cytoplasm is shared by all nuclei.  This is called the pachytene stage
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Figure 1.1 
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Figure 1.1: Anatomy of a C. elegans germline (dotted line).  The distal end 
consists of a population of mitotically dividing stem cells.  These transition into 
meiosis forming a syncytium where nuclei migrate to the walls of the gonad.  At 
the bend of the gonad arm, nuclei recellularize and form ooctes.  The most 
proximal oocyte is fertilized as it passes through the spermatheca. Fertilized 
embryos are retained in the adult uterus for several rounds of division before 
being layed.  



   
  
  6   
 
 
     

   

where nuclei are arrested in meiosis I.  Here, the cytoplasmic content of the 

oocyte is synthesized.  Nuclei then recellularize as they move further down the 

gonad arm forming immature oocytes that are arrested in diakinesis.  The most 

proximal oocyte then undergoes maturation and ovulates into the spermatheca 

where it is fertilized by spermatocytes. 

 
Embryonic development in C. elegans 
 
 As a result of fertilization, the C. elegans embryo rapidly undergoes 

several polarized events that are critical for establishment of the 

anterior/posterior axis and segregating a number of determinants that are 

necessary for cell-fate specification (Pellettieri and Seydoux, 2002).  The initial 

cue of axis polarity is dependent upon the sperm, which triggers downstream 

events causing changes with the internal cytoplasmic flow and cytoskeletal 

rearrangements (Munro et al., 2004). Furthermore, a network of maternal factors 

begin establishment of the anterior/posterior axis by coordinating the polarized 

distribution of several cytoplasmic factors, including a number of putative RNA 

binding proteins (Bowerman et al., 1997; Pellettieri and Seydoux, 2002).  

Together, these events set the stage for a series of cellular divisions that define 

the fate of a number of all blastomeres within the early embryo.   

 The anterior/posterior axis of the worm is determined as soon as the 

sperm enters the mature oocyte.  Prior research has discovered that the position 

of sperm entry designates the posterior end of the embryo (Goldstein and Hird, 
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1996).  Goldstein and Herd demonstrated that by manipulating the entry point of 

the sperm, it was possible to change the anterior/posterior axis of the zygote, but 

otherwise the embryo underwent normal development.  Later studies showed 

that the spatial cue for polarity is actually derived from nucleation of microtubules 

from the sperm-derived centrosomes (or sperm asters) (Sadler and Shakes, 

2000; Wallenfang and Seydoux, 2000).  The actin cytoskeleton has also been 

shown to play a role in initiating cell polarity with non-muscle myosin II heavy 

chain (NMY-2).  By injecting nmy-2 antisense RNA into C. elegans ovaries, Guo 

and Kemphues observed embryonic partitioning defects and mislocalization of 

downstream polarity factors (Guo and Kemphues, 1996).  Another study further 

established that the one-cell embryo contains a dynamic and contractile 

actomysin network that becomes destabilized at the sperm entry point (Munro et 

al., 2004).  As a result, a flow of cortical NMY-2 and F-actin is initiated toward 

what becomes the anterior pole. 

After the initial cue from the sperm entry, a network of maternal factors 

termed PAR proteins (abnormal embryonic PARtitioning of cytoplasm) further 

establishes the anterior/posterior axis of the zygote.  The par genes encode PDZ 

domain proteins (PAR-3 and PAR-6) and kinases (PKC-3, PAR-1, and PAR-2) 

(Boyd et al., 1996; Etemad-Moghadam et al., 1995; Guo and Kemphues, 1995; 

Hung and Kemphues, 1999; Tabuse et al., 1998). As a result of the cortical flow 

established by the sperm entry, PAR-3, PAR-6, and PKC-3 are localized to the 

anterior pole, whereas PAR-1 and PAR-2 are localized to the posterior.  The 
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localization of the PAR proteins is interconnected in such a way that PAR-3, 

PAR-6, PKC-3 antagonizes PAR-2.  PAR-1 localization is dependent upon all of 

the other PAR proteins.  These asymmetries create distinct cortical domains that 

are critical in maintaining anterior/posterior polarization (Cuenca et al., 2003; 

Nance, 2005).  Two other proteins, PAR-4 and PAR-5 are distributed uniformly in 

the embryo, yet mutation of either gene prevents cell polarity (Morton et al., 

2002; Watts et al., 2000).  Consequently, the partitioning established from the 

PAR proteins coordinates downstream events that are pivotal for cell-fate 

specification.  This cascade of events causes the asymmetric distribution of 

several cytoplasmic factors, including a number of putative RNA binding proteins 

that are essential for specifying various cell types (Figure 1.2).  

 

Cell-fate Specification 

 As the proximal oocyte becomes fertilized, the early embryo undergoes 

several asymmetric divisions, giving rise to a number of founder cells –each 

specifying a different tissue type (Figure 1.3) (Rose and Kemphues, 1998).  The 

establishment of the anterior/posterior axis causes the zygote to divide into two 

unequal daughter cells.  The larger anterior blastomere is AB and the smaller 

posterior blastomere is P1.  AB divides to give ABa and ABp, where differing 

fates including establishing right/left asymmetries result from interactions with 

neighboring cells.  The AB founder cell ultimately specifies the anterior pharynx, 

hypodermis and neurons.  P1 on the other hand goes through another  
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Figure 1.2 
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Figure 1.2: Epistatic model describing the distribution of maternal factors.  
Sperm entry causes the asymmetric distribution of PAR proteins.  The PAR 
network causes MEX-5 and and MEX-3 to be restricted to the anterior 
blastomere(s) of the early embryo.  MEX-5 and MEX-3 are required for the 
polarized accumulation of several cell-fate determinants to the posterior 
blastomere(s).  This schematic summarizes polarized events that occur between 
the one to four-cell stage embryo in C. elegans.  The shaded region of each 
rectangle represents higher levels of protein. 
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Figure 1.3 
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Figure 1.3: Early C. elegans embryogenesis.  The fertilized zygote begins with 
several asymmetric cellular divisions.  This gives rise to several founder cells 
(AB, MS, E, C, D, and P4) where each cell has a defined type of tissue that it will 
specify.  The various kinds of tissue that are produced by each founder cell are 
labeled. 
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asymmetric division yielding EMS and P2.  The daughters of EMS form the 

founder cells E, which specifies intestine, and MS, specifying body wall muscle 

and pharynx.  P2 then goes through another asymmetric division resulting in P3 

and the founder cell C, specifying muscle tissue and hypodermis.  The last 

founder cells are established as P3 divides resulting with the daughter cells D 

and P4, where D specifies muscle and P4 being the precursor to the germline 

lineage.  In total, early patterning of the C. elegans embryo results in six critical 

founder cells that determine the entire tissue composition of the worm. 

Founder cells are specified by maternally supplied cell-fate determinants.  

These include a number of transcription factors such as SKN-1, PAL-1, and PIE-

1. The gene skn-1 encodes a bZIP class transcription factor that is required to 

specify EMS fates (Bowerman et al., 1992). PIE-1 on the other hand is CCCH 

finger protein required to specify the fate of the P2 blastomere and its 

descendents (Mello et al., 1992).  One of its main roles in embryogenesis is to 

repress transcription in the germline lineage.  The gene pal-1 encodes a caudal 

like homeodomain protein required to specify the C and D blastomeres (Hunter 

and Kenyon, 1996).  It activates an embryonic muscle gene regulatory network in 

these cell lineages (Lei et al., 2009).  These examples are just a few of several 

cell-fate determinants that are critical for the specification of various founder cells 

in the early embryo.  Their spatiotemporal regulation is essential for correct 

patterning early on in development.  
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AB Lineage 

 Initially, ABa and ABp are equivalent and eventually take on very different 

cell-fate pathways.  ABa produces cells that form the pharynx, while ABp does 

not generate pharyngeal cells, but rather neuronal and excretory cells (Sulston et 

al., 1983).  Remarkably, both blastomeres can replace each other and take the 

other’s place.  Priess and Thomson performed an experiment where ABa and 

ABp were interchanged early upon division; the resulting embryo developed into 

a newly hatched larva with organs that appeared completely normal (Priess and 

Thomson, 1987).  At the four-cell stage of the embryo, the AB daughter ABp 

receives a signal from the blastomere P2.  This signal causes ABp to be different 

from ABa and contributes to dosal/ventral polarity. Indeed, if ABp is not in contact 

with P2, ABp will develop in a similar manner to ABa. 

 The Notch receptor GLP-1 is a major determinant required to specify the 

AB lineage.  The gene glp-1, which plays a critical role in germline proliferation, is 

also essential for cell polarity between ABa and ABp.  Temperature sensitive glp-

1 mutant worms, when shifted to nonpermissive temperatures, result in embryos 

where the ABp blastomere is abnormal and differentiates similar to ABa (Hutter 

and Schnabel, 1994).  Furthermore, work done by Mello and Priess identified a 

second maternal gene, apx-1, that works with glp-1 to specify the ABp 

blastomere (Mello et al., 1994).  In a screen for maternal effect lethal mutations 

with excess production of pharyngeal tissue, mutations in the apx-1 gene were 

identified that produced twice as much pharynx as in wild-type.  This mutant has 
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a phenotype very similar to the glp-1 mutant.  The apx-1 gene encodes a Delta 

ligand that is localized to the boundary of P2 and ABp (Mickey et al., 1996).  

GLP-1 is present on the surface of both AB cells, but only ABp is in position to 

receive the APX-1 signal (Evans et al., 1994).  

There are several other factors that are essential for specifying the 

anterior founder cell AB and preserving its integrity.  These include genes that 

function as translational regulators, controlling the spatiotemporal expression of 

maternally supplied factors.  For example, glp-1 mRNA is present throughout the 

entire embryo upon fertilization and early embryogenesis.  Yet, the protein isn’t 

expressed until the two-cell stage and only in the anterior blastomeres (Evans et 

al., 1994).  Alternatively, the translational repression of other posterior 

determinants including skn-1, pal-1, pie-1, and many others depend on factors 

that restrict their expression from the anterior end.  The RNA binding proteins 

MEX-5 and MEX-3 are two anterior determinants that are essential for preventing 

AB from taking on a posterior-like fate; they are predicted post-transcriptional 

regulators of maternally supplied mRNAs in AB.   

 

Post-transcriptional regulation of maternal RNAs in C. elegans development 

As alluded to earlier, post-transcriptional regulation of maternal RNAs is 

one of the primary mechanisms to control gene expression in developmental 

processes –this includes both germline development and embryogenesis.  At a 

time when transcription is largely quiescent, variation in gene expression is 
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achieved by post-transcriptional regulatory mechanisms.  Most mRNAs that are 

required for early embryogenesis are transcribed in the germline from germ cells 

during mitosis or early meiosis and silenced until later developmental stages. 

Oftentimes misregulation of these factors is destructive to the worm resulting in 

sterility or embryonic lethality.   

It is known that cis-regulatory elements present in 3’-UTRs of maternal 

transcripts are necessary for the timing and location of translation. A recent study 

has demonstrated that the 3’-UTRs of maternal mRNA are the primary regulators 

of gene expression in the germline (Merritt et al., 2008).  RNA binding proteins 

are predicted to function as trans-acting factors that interact specifically with 

functional elements present in 3’-UTRs to promote mRNA turnover, RNA 

localization, or regulate its translatability.  A large number of RNA binding 

proteins have been identified that are required to regulate mRNAs spatially and 

temporally (Hunter, 2005).  Understanding how these proteins recognize their 

RNA targets is essential to identify bona fide regulatory targets and delineate 

regulatory networks responsible to specify cell-fate.  As such, we will discuss the 

two major anterior determinants MEX-5 and MEX-3 in greater detail. 

 

Introduction to the anterior determinant MEX-5 

 The anterior determinant MEX-5 is required to establish somatic/germline 

asymmetry in the early embryo.  The mex-5 gene was first discovered by 

Schubert, et al. in a genetic screen for maternal-effect lethal mutants with a 



   
  
  17   
 
 
     

   

muscle excess phenotype (mex phenotype) where the embryo develops an 

abnormally large amount of muscle tissue (Schubert et al., 2000).  This 

phenotype is very similar to mutants where the transcription factor SKN-1 is 

misexpressed in the anterior blastomeres.  In a mex-5;skn-1 double mutant 

embryos no longer express excess muscle tissue, and experiments showed that 

SKN-1 protein is misexpressed in the anterior of a mex-5 mutant.  This 

demonstrates that MEX-5 is required for the spatiotemporal expression of SKN-1 

preventing its expression in the anterior and that MEX-5 plays a crucial role in 

specification of the anterior blastomere.  It is not clear whether MEX-5 regulates 

skn-1 directly. 

 In the same study, the Priess lab also identified the homolog mex-6 based 

on sequence identity (Schubert et al., 2000).  MEX-6 is approximately 70% 

identical and 85% similar to MEX-5 in amino acid sequence.  However, RNAi 

experiments as well as mex-6 mutants reveal that this gene is non-essential.  

Knockdown of mex-6 levels or mex-6 alleles results in viable progeny that grow 

into normal adults.  Yet, mex-5;mex-6 double mutants result in a highly penetrant 

terminal phenotype with embryos that lack germ cells and anterior muscles.  

Based on sequence similarity its thought that these proteins have partially 

overlapping biochemical functions. 
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MEX-5 is a CCCH-type tandem zinc finger protein 

 MEX-5 contains two predicted CCCH type zinc finger domains in its amino 

acid sequence (Schubert et al., 2000).  This motif is a conserved RNA binding 

domain that is present in several well-known RNA binding proteins.  One of the 

best-characterized CCCH TZF proteins is the mammalian homolog tristetraprolin 

(TTP) (Lai and Blackshear, 2001; Lai et al., 1999).  TTP is required to regulate 

levels of tumor necrosis factor α (TNF-α).  TTP is induced by TNF-α and other 

factors, functioning in a negative feedback loop regulating the concentration of 

TNF-α.  Regulation of TNF-α is at the mRNA level as TTP binds to an AU-rich 

element (ARE) in the 3’-UTR promoting its deadenylation and degradation (Lai et 

al., 2000).  Biochemical studies have identified the sequence requirements for 

high affinity binding by the zinc finger domain of TTP.  Using fluorescence 

polarization measurements, members of the Wilson lab performed mutagenesis 

studies on the minimal ARE substrate and identified nucleotides that are 

necessary for TTP binding (Brewer et al., 2004).  TTP binds with highest affinity 

(Kd <20nM) to RNA substrates containing AUUUA or AUUUUA flanked by 

uridylate residues.   

 An NMR structure of the TIS11d/ERF2 TZF domain, a mammalian 

homolog of TTP, bound to sequence UUAUUUAUU has been solved (Hudson et 

al., 2004).  Specificity of RNA recognition is achieved by hydrogen bonds 

between Watson-Crick edges of the bases and amide and carbonyl functional 

groups of the ERF2 backbone.  Additionally, this protein/RNA complex is 
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stabilized through stacking interactions of aromatic side chains and RNA bases.  

Further detail of this complex is described in Chapter III.  As MEX-5 is a close 

family member of TTP and ERF2 (~50% identical), it is possible that it also 

recognizes RNA in a similar manner.  However, previous studies show no 

evidence that this is the case.   

 

PAR proteins function upstream of MEX-5 

 Upon fertilization, MEX-5 protein is restricted predominantly to the anterior 

blastomeres until the four-cell stage (see Chapter III for a detailed description).  

The localization of MEX-5 depends highly upon the PAR proteins, which includes 

the anterior determinant PAR-3 and the posterior determinant PAR-1 (Figure 1.2) 

(Schubert et al., 2000).  Mutation of either of these genes results in equal 

distribution of MEX-5 in all blastomeres of the early embryo.  A similar expression 

pattern of MEX-5 is observed when two other PAR proteins, PAR-4 or PAR-5 are 

depleted from embryos (Morton et al., 2002; Tenlen et al., 2008).  On the 

contrary, the distribution of PAR proteins appears normal at the one-cell stage in 

a mex-5;mex-6 double mutant embryo (Schubert et al., 2000).  This implies that 

the PAR proteins are upstream of MEX-5.  A recent study has shed some light on 

how PAR proteins function to control MEX-5 localization.  It appears that 

phosphorylation of MEX-5 by PAR-1 and PAR4 are necessary for its anterior 

localization (Tenlen et al., 2008).  Priess and coworkers suggest that 

phosphorylation of MEX-5 may promote its association with actomyosin, perhaps 
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restricting MEX-5 mobility.  As an aside, MEX-5 is also suggested to play a role 

in promoting the expansion of the posterior domain of the one-cell zygote 

(Cuenca et al., 2003).  PAR-1 and MEX-5 are thought to function in a feedback 

loop, decreasing levels of MEX-5 in the posterior, which limits the expansion of 

the posterior domain. 

 

MEX-5 is required for the asymmetric distribution of cell fate determinants 

 MEX-5/6 (refers to experiments performed with or describing both MEX-5 

and MEX-6) is required for the correct expression pattern of several cell-fate 

determinants (Schubert et al., 2000).   Along with SKN-1, a number of germline 

proteins MEX-1, PIE-1 and POS-1, as well as the posterior determinant PAL-1 

depend upon MEX-5/6 for their correct localization pattern (Figure 1.2).  In 

addition, two proteins that are normally expressed in the anterior, GLP-1 and 

MEX-3, have decreased levels in mex-5;mex-6 double mutants, suggesting that 

MEX-5 is required to promote their protein expression.  Moreover, work by others 

has shown that MEX-5 may regulate the RNA abundance of mex-1, pos-1, and a 

third determinant nos-2 (D'Agostino et al., 2006; Tenlen et al., 2006).  

Additionally, RNA-rich granules called P granules that specify the germline 

lineage are delocalized in mex-5;mex-6 mutants.  In wild-type embryos, P 

granules are polarized to the posterior germline lineage, yet in the absence of 

MEX-5/6 they are found in all blastomeres. 
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MEX-5 regulation of nos-2 mRNA 

 It is possible that MEX-5 is regulating some of the determinants mentioned 

above at the post-transcriptional level.  Studies from the C. elegans Nanos 

homolog nos-2 support this idea (Subramaniam and Seydoux, 1999). NOS-2 is 

required for the incorporation of primordial germ cells into the gonad.  It also is 

necessary to maintain germ cell viability during larval development.  The 

translation of nos-2 mRNA is restricted primarily to the germline lineage being 

turned on in the precursor P4 at the 28-cell stage.  Work by D’Agostino et al. has 

shown that the protein expression pattern of NOS-2 relies solely upon the 3’-UTR 

of nos-2 (D'Agostino et al., 2006).  A nos-2 3’-UTR reporter was shown to 

recapitulate the endogenous expression pattern of NOS-2.  This reporter uses 

GFP fused to histone H2B, which drives the GFP signal to the nucleus.  The GFP 

signal is expressed ectopically in all cells of the early embryo when levels of 

mex-5/6 are reduced using RNAi.  Moreover, it was shown that nos-2 RNA is 

stabilized when knocking down mex-5/6 RNA levels, suggesting that MEX-5/6 is 

required for the degradation of nos-2 RNA.  Based on these experiments, MEX-

5/6 is predicted to be a post-transcriptional regulator of nos-2 (Figure 1.2). 

   

MEX-5 activation of ZIF-1 

 MEX-5 may not only function through post-transcriptional regulatory 

mechanisms.  The somatic degradation of three TZF P-lineage determinants 

(PIE-1, POS-1 and MEX-1), along with MEX-5 was previously shown to require 
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one of the CCCH finger domains within each protein (Reese et al., 2000).  The 

first zinc finger of PIE-1, POS-1 and MEX-1, and the second finger of MEX-5 are 

necessary to target their turnover in the somatic blastomeres, suggesting that 

these proteins may be targeted for degradation by factors that interact with the 

zinc finger domains.  In an attempt to identify trans-acting factors that were 

responsible for CCCH finger dependent degradation, the Seydoux lab conducted 

a yeast-two hybrid screen for proteins that interact with the zinc fingers of PIE-1 

(DeRenzo et al., 2003).  In this study, they identified a new protein that they 

named ZIF-1 (zinc finger interacting factor 1) –a SOCS-box protein that interacts 

with and is thought to recruit the E3 ubiquitin ligase subunit elongin C.  It is 

suggested that ZIF-1 acts as a substrate for E3 ubiquitin ligase subunits 

promoting the ubiquitination and degradation of target CCCH finger proteins.  

ZIF-1 was shown to interact with all zinc finger proteins mentioned above 

including MEX-5.  Moreover, zif-1 is required for their somatic degradation.  

These studies demonstrated that high levels of MEX-5 early in the soma are 

required to activate ZIF-1 dependent degradation of PIE-1, MEX-1, POS-1, and 

MEX-5 itself (Figure 1.2). Based on these experiments we can conclude that the 

localization of some cell fate determinants is at least in part due to a post-

translational mechanism.   Yet, it is not clear how MEX-5 activates zif-1.  

Understanding the RNA binding properties of MEX-5 may clarify this 

discrepancy.   

  



   
  
  23   
 
 
     

   

Introduction to the cell fate determinant MEX-3 

 The KH (hnRNP K homology) domain protein MEX-3 is a second 

determinant that plays a vital role in specifying the AB blastomere in C. elegans 

early embryos.  The gene mex-3 was first identified in a screen for maternal-

effect lethal mutations that caused proliferation of muscle in the anterior embryo 

(Draper et al., 1996).  The anterior blastomeres of mex-3 embryos take on a fate 

that is reminiscent of the posterior founder cell lineage C with excess muscle 

tissue and hypodermis.  In addition, these embryos have additional germline 

precursor cells.  As opposed to two germ cells, mex-3 embryos have three to six 

cells that resemble germ cells.   

Several years later, it was discovered that MEX-3 along with a second 

RNA binding protein, GLD-1, are essential in maintaining totipotency in the 

germline (Ciosk et al., 2006).  The gene gld-1 is required for meiotic cell cycle 

progression during oogenesis and worms that lack GLD-1 result in ectopic 

proliferation of mitotically dividing stem cells (Francis et al., 1995).  It was then 

discovered that worms lacking both MEX-3 and GLD-1 develop 

transdifferentiated germline tumors that develop various somatic tissues such as 

neuron and muscle cells (Ciosk et al., 2006).  In addition, MEX-3 was also shown 

to play a redundant role with another RNA binding protein, PUF-8, in promoting 

the mitotic proliferation of germline stem cells (Ariz et al., 2009).  These findings 

demonstrate that MEX-3 has multiple roles, which include cell fate specification 

of the early embryo and preserving the integrity of the germline. 
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MEX-3 is a dual KH domain protein 

 MEX-3 contains two highly conserved KH RNA binding domains. Of the 

ten mex-3 alleles identified, three contain a missense mutation within one of the 

KH domains (Draper et al., 1996).  This motif is found in several known RNA and 

ssDNA binding proteins (Valverde et al., 2008).  Though nucleic acid recognition 

by KH domains is versatile, they typically consist of a binding pocket that 

accommodates four unpaired bases mainly through Van der Waals forces and 

hydrophobic interactions.  Yet, prior studies have not defined the requirements 

for specific RNA recognition by MEX-3.   

 C. elegans MEX-3 is orthologous to four human MEX-3 proteins (hMEX-

3A, -3B, -3C, -3D/TINO) (Buchet-Poyau et al., 2007; Donnini et al., 2004).  These 

proteins are discussed in greater detail in Chapter IV.  Qualitative binding 

experiments suggest that these proteins also interact with RNA implying that 

hMEX-3 proteins are involved in post-transcriptional regulation (Courchet et al., 

2008).  However, the precise sequence specificity has not been determined for 

any of the human homologs.    

 

MEX-3 expression is dependent upon MEX-5/6 

 In early embryos, MEX-3 is localized predominantly to the anterior 

blastomeres until the four-cell stage (see Chapter IV for a complete description of 

the MEX-3 expression pattern) (Draper et al., 1996).  Expression of MEX-3 

protein in embryos is dependent upon MEX-5/6 activity (Figure 1.2) (Schubert et 
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al., 2000).  Embryos that lack MEX-5/6 have low levels of MEX-3 that is 

distributed uniformly as opposed to asymmetrically.  Work from the Hunter lab 

suggests that MEX-5/6 may function to activate MEX-3 in the anterior through 

protein/protein interactions (Huang et al., 2002).  Using a yeast-two hybrid screen 

for MEX-3 interacting proteins, a number of RNA binding proteins were identified, 

among which MEX-6 was discovered.  They demonstrated that MEX-6 is 

necessary to promote MEX-3 activity in the anterior blastomeres ABa and ABp 

and describe how the absence of MEX-5/6 in the posterior may subject MEX-3 to 

inactivation and consequently turned over by other factors.  However, the precise 

mechanism of this regulation remains unclear. 

 

MEX-3 regulation of pal-1 and nos-2 

MEX-3 is thought to function as a post-transcriptional regulator of maternal 

mRNAs to specify AB as well as germline development.  Hunter and Kenyon 

revealed the cause of excess muscle in mex-3 embryos as they studied the 

transcription factor pal-1 (Hunter and Kenyon, 1996).  PAL-1 is required to 

specify the posterior blastomere C for muscle tissue differentiation.  They 

showed that this factor is misexpressed into the anterior blastomeres in a mex-3 

mutant background.  They also found that injection of pal-1 antisense RNA 

maternally in mex-3 mutant worms dramatically reduced the amount of body-wall 

muscle cells observed in mex-3 embryos.  Based on these experiments, they 
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conclude that pal-1 function is required for AB-derived muscle tissue in mex-3 

mutant embryos.  

In conjunction with these studies, Hunter and coworkers showed that both 

MEX-3 and GLD-1 function to repress pal-1 translation in the germline (Mootz et 

al., 2004).  They demonstrated that GLD-1 mediates a developmental switch 

controlling pal-1 levels in the distal germline.  GLD-1 represses pal-1 in the distal 

end of the germline and as GLD-1 levels diminish around the bend of the gonad 

arm, pal-1 repression is taken over by MEX-3 as it accumulates in the proximal 

germline.  As mentioned previously, a gld-1;mex-3 double mutation gives a 

transdiffentiated germline phenotype, which includes somatic muscle tissue.  

This is partly due to misregulation of pal-1 as in a gld-1;mex-3;pal-1(RNAi) worm, 

the number of muscle cells is reduced, partly rescuing the gld-1;mex-3 

phenotype (Ciosk et al., 2006).   

A second putative target of MEX-3 is nos-2.  Similar to mex-5 mutant 

embryos, worms that are deficient in MEX-3 misexpress NOS-2 both spatially 

and temporally (Jadhav et al., 2008).  As mentioned earlier, NOS-2 is not 

expressed until the germline precursor cell P4.  However, in mex-3 mutant 

worms, the nanos homolog is present in all blastomeres beginning at the one-cell 

stage.  MEX-3 is believed to regulate both nos-2 and pal-1 mRNA translation in a 

3’-UTR dependent manner (Figure 1.2); evidence that supports this is described 

in detail in Chapter IV. 
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It is clear that both MEX-5 and MEX-3 play critical roles in patterning the 

early embryo, specifically the anterior founder cell AB.  Moreover, MEX-3 has 

been shown to function with the translational regulator GLD-1 to preserve the 

pluripotent state of the germline.  Both MEX-5 and MEX-3 have highly conserved 

RNA binding domains and are thought to regulate a number of maternal mRNAs 

through post-transcriptional regulatory mechanisms (See Figure 1.2 for a 

summary of gene interactions).  However, there has been little evidence 

demonstrating direct regulation of target mRNAs by MEX-5 and MEX-3.  

Furthermore, the requirements for RNA recognition by these two proteins have 

not been previously described.   

This dissertation tests the hypothesis that MEX-5 and MEX-3 are specific 

RNA binding proteins that promote anterior development through targeted 

regulation of maternal transcripts. I provide a thorough dissection of the RNA 

binding properties of MEX-5 and MEX-3 using quantitative biochemical 

approaches.  In Chapter II, I also present a brief survey of the predominant 

experimental strategy used to monitor protein/RNA interactions in the proceeding 

chapters.  The remaining two chapters (Chapter III and Chapter IV) provide data 

that describe the basis of RNA recognition of MEX-5 and MEX-3. 
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CHAPTER II 

 

Quantitative methods to monitor protein-nucleic acid 

interactions using fluorescent probes 
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Abstract 

Sequence-specific recognition of nucleic acids by proteins is required for 

nearly every aspect of gene expression.  Quantitative binding experiments are a 

useful tool to measure the ability of a protein to distinguish between multiple 

sequences.  Here, we describe the use of fluorophore-labeled oligonucleotide 

probes to quantitatively monitor protein/nucleic acid interactions. We highlight 

two complementary experimental methods, fluorescence polarization and 

fluorescence electrophoretic mobility shift assays, that enable quantitative 

measurement of binding affinity.  We also present two strategies for post 

synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes.  

The approaches discussed here are efficient and sensitive, providing a safe and 

accessible alternative to the more commonly used radioisotopic methods. 



   
  
  30   
 
 
     

   

Introduction 

A myriad of cellular processes require sequence specific recognition of a 

nucleic acid sequence by a protein.  For example, transcription factors bind to 

specific DNA elements to enhance or repress transcription at a defined locus 

(Barrasa et al., 2007; Carrera and Treisman, 2008; Deplancke et al., 2006; 

Noyes et al., 2008).  Likewise, RNA-binding proteins coordinate translation, 

mRNA localization and stability, pre-mRNA splicing through association with 

defined sequences in target transcripts (Iwasaki et al., 2009; Johnstone and 

Lasko, 2001; Jurica and Moore, 2003; Nilsen, 2002; Singh and Valcarcel, 2005; 

Varnum et al., 1991).  As such, it is critically important to understand the basic 

mechanisms by which DNA and RNA binding proteins identify their appropriate 

target sequences. 

There are many ways a protein can recognize a specific DNA or RNA 

sequence. Most DNA binding proteins rely on variations in the pattern of 

hydrogen bond acceptors and donors in the major groove to achieve sequence 

specific recognition (Seeman et al., 1976).  Others identify specific sequences 

through their relative flexibility that induces distortions in the DNA duplex (Kim et 

al., 1993; McClarin et al., 1986).  RNA-binding proteins can recognize specific 

sequences through readout of the hydrogen bonding patterns on the Watson-

Crick and Hoogsteen faces of the bases, or through shape specific recognition of 

RNA secondary and tertiary structure (Hall, 2005; Howe et al., 1994; Hudson et 

al., 2004; Valegard et al., 1994). 
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To identify the determinants of specificity, it is often necessary to measure 

quantitative parameters of binding, such as relative binding affinity and 

stoichiometry (Ryder et al., 2004; Ryder and Williamson, 2004).  There are a 

number of methods that can be used to monitor protein/nucleic acid complexes 

(Royer and Scarlata, 2008; Ryder et al., 2008; Wong and Lohman, 1993).  One 

of the more prominent techniques is the electrophoretic mobility shift assay 

(EMSA) (Ryder et al., 2008).  EMSA is a powerful technique that allows 

visualization of the interaction between a protein and a labeled DNA or RNA 

probe.  Equilibration reactions that include a fixed concentration of a 32P-

radiolabeled oligonucleotide probe and varying amounts of protein are run on a 

native polyacrylamide gel to separate bound from free nucleic acid.  Gels are 

dried and then exposed to film or a phosphorimager plate in order to determine 

the fraction of bound probe as a function of protein concentration.  This data can 

be fit to determine the apparent equilibrium dissociation constant.  

The use of radioactive material has the advantage of making the assay 

extremely sensitive.  Very small amounts of 32P can be detected using common 

equipment.  Another advantage is that the labeled and unlabeled probes are 

chemically similar, reducing the chance that the binding reaction is perturbed due 

to indirect effects caused by the label.  However, radiolabled probes also have 

several disadvantages, including safety, environmental, and regulatory 

challenges.  Moreover, radioactive labels are costly, and due to the short half-life 
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of 32P, probes have to be frequently re-labeled and radioisotope stocks re-

ordered, costing time and money.  

Practical alternatives to radioisotopes exist.  The use of fluorescent probes 

has become a favorable alternative in many biochemical assays (Royer and 

Scarlata, 2008).  With modern instrumentation, detection of fluorescent probes 

now rivals that of 32P-labeled probes.  In this survey, we present two methods to 

generate end-labeled fluorescent probes using commercially available 

fluorescent dyes and simple aqueous phase chemical reactions that can be 

performed in any laboratory (Czworkowski et al., 1991; Reines and Cantor, 

1974).  In addition, we present two complementary approaches to measure the 

affinity of a protein for labeled DNA and RNA probes that rely on different 

physical properties of the complex—fluorescence polarization (FP) and 

fluorescence EMSA (F-EMSA) (Hellman and Fried, 2007; Pagano et al., 2007; 

Ryder et al., 2008).  Both assays can be applied to the same equilibration 

reactions because the FP measurements do not destroy the sample.  

Furthermore, the F-EMSA method conveniently enables the gels to be analyzed 

immediately after electrophoresis, avoiding the need to dry and expose the gel 

and reducing the time requirement of the assay.  

We have used the approach described herein to study four RNA-binding 

proteins required for germline development and/or embryogenesis in the 

nematode C. elegans (Farley et al., 2008; Pagano et al., 2009; Pagano et al., 

2007) and two proteins that regulate oligodendrocyte differentiation in 
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vertebrates.  Others have used it to study the association of bacteriophage PP7 

coat protein and vertebrate ZBP variants to their cognate RNA sequences (Chao 

et al., 2008; Chao et al., 2010). The data show that the method is generally 

applicable to a wide variety of protein-RNA complexes. 

 

Labeling Strategies 

5’-end labeling of DNA and RNA oligonucleotides 

Chemically synthesized single-stranded DNA and RNA oligonucleotides can be 

efficiently post-synthetically labeled at the 5’-end using a two-step semi-

enzymatic synthesis strategy described by Czworkowski and coworkers (Figure 

2.1A) (Czworkowski et al., 1991).  In the first step, T4 polynucleotide kinase 

(PNK) is used to transfer the γ-phosphorothioate group from 5'-O-(3-thio) 

adenosine triphosphate (ATPγS) to the 5’-hydroxyl of the oligonucleotide probe.  

Next, following an ethanol precipitation step, 5-iodoacetamidofluorescein (5-IAF) 

is reacted with the phosphorothioate group on the probe in HEPES pH 7.4-

buffered water to create a covalent adduct between the oligonucleotide and the 

fluorophore.  Unreacted dye is removed by ethanol precipitation followed by a 

size exclusion spin column.  Analytical denaturing polyacrylamide gel 

electrophoresis is used to assess purity.  The reaction yield is measured 

comparing the absorbance at 491 nm (fluorescein) to that at 260 nm (nucleotides 

and fluorescein, Figure 2.1B).  We typically observe 80-95% labeling efficiency. 
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Figure 2.1 
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Figure 2.1: 5’-end labeling of DNA and RNA oligonucleotides.  A.  The 5’-end 
labeling strategy involves reacting unphosphorylated DNA or RNA with T4 PNK 
and ATP[γ]S to yield a thiol reactive group on the 5’ end. 5-
iodoacetamidofluorescein (5-IAF) is then reacted with the thiol group.  B.  An 
example of a UV spectrum of a DNA oligonucleotide that was labeled with 5-IAF 
on the 5’-end.  The DNA absorbs at 260 nM and the fluorescein label absorbs at 
492 nM. 
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The reaction is simple, efficient, and does not require pre-existing chemical 

modification of the DNA or RNA oligonucleotide.  DNA probes labeled in this way 

can be used as primers in primer extension, PCR, or RT-PCR assays; the label 

does not interfere with subsequent enzymatic applications.  The reaction is 

compatible with other iodoacetamide fluorescent dyes, including 7-diethylamino-

3-((4'-(iodoacetyl)amino)phenyl)-4-methylcoumarin (DCIA) and 

tetramethylrhodamine-5-iodoacetamide, enabling a wide variety of downstream 

applications in several colors.  Moreover, the approach is not limited to 

chemically synthesized DNA or RNA oligonucleotides.  In principal, any substrate 

of PNK can be labeled in this manner. 

 

3’-end labeling of RNA 

In 1974, Reines and Cantor described a simple synthetic method to conjugate 

fluorescent dyes to RNA molecules at the 3’-end (Reines and Cantor, 1974).  

This approach takes advantage of the vicinal hydroxyls present only at the 3’-end 

of ribonucleotides to achieve specific labeling without the need to protect other 

sites in the RNA.  In the first step of the reaction, the RNA is incubated with 

sodium periodate (NaIO4) in mildly acidic sodium acetate buffer (pH 5.1) in order 

to oxidize the vicinal hydroxyls to aldehyes (Figure 2.2A).  Following an ethanol 

precipitation step, the oxidized RNA is then reacted with fluorescein-5-

thiosemicarbazide (FTSC) in order to generate a covalent thiosemicarbazone 

linkage with the RNA.  This can then be reduced with sodium cyanoborohydride 
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to limit chemical reversibility, but this is not usually necessary.  The labeled RNA 

is resolved from unreacted dye by ethanol precipitation followed by a size 

exclusion spin column.  The products are analyzed as described above in the 5’-

end labeling procedure (Figure 2.2B). 

 As above, the reaction is straightforward and does not require prior 

modification of the RNA oligonucleotide.  Any molecule with vicinal hydroxyls can 

be labeled this way, including ribonucleotides and longer RNA molecules 

produced by in vitro transcription.  This is an important caveat; if in vitro 

transcribed RNA is used as the substrate, care must be taken to purify the RNA 

away from other nucleotides present in the transcription reaction.  Several 

aldehyde reactive dyes are available.  The chemistry is the same for any 

thiosemicarbazide or hydrazide, including commercially available Alexa dyes 

(Invitrogen) in a wide variety of colors, and the useful affinity tag 

biotinamidocaproyl hydrazide (BACH).  As with the prior strategy, labeling 

efficiency is usually greater than 80%. 

 There are, of course, other suitable labeling strategies, including PCR or 

in vitro transcription with fluorescent nucleotide analogs in order to body-label the 

nucleic acid; or incorporation of amino, azido, or thiol groups during chemical 

synthesis of DNA or RNA oligonucleotides that can react with a wide variety of 

fluorescent dyes.  These strategies work well and can be used to make labeled 

material for the quantitative applications outlined below.  However, we prefer the 

methods presented above as any oligonucleotide can be labeled without the  
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Figure 2.2: 3’-end labeling of RNA oligonucleotides.  A.  The 3’-end labeling 
strategy involves reacting vicinal hydroxyls of an RNA molecule through sodium 
periodate cleavage followed by an addition reaction with Fluorescein 5-
thiosemicarbazide (FTSC).  B. An example of a UV spectrum of an RNA 
oligonucleotide that was labeled with FTSC on the 3’-end.  The RNA absorbs at 
260 nM and the fluorescein label absorbs at 492 nM. 
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need to incorporate reactive moieties during synthesis, and certain applications 

require an end label rather then random incorporation of a body label.  Thus, the 

methods presented here remove a barrier to the use of fluorescent dyes by 

making post-synthetic labeling as convenient as current strategies used to 

radiolabel nucleic acids. 

 

Quantitative fluorescence methods to monitor protein-nucleic acid 

interactions 

FP and F-EMSA are two effective techniques that can be used to determine the 

binding affinity and specificity of a DNA or RNA-binding protein (Figure 2.3).  

Both assays rely on different physical properties of the complex; FP measures 

the extent that a complex tumbles within the lifetime of the fluorophore, while 

EMSA depends upon the ability of a protein to alter the migration rate of a 

labeled probe within an electric field in a gel.  Both techniques require 

recombinant protein that has been purified to >95% homogeneity and a 

fluorescently labeled DNA or RNA probe.  

 

Fluorescence polarization assays 

Fluorescence polarization is a useful technique to study the thermodynamic and 

kinetic properties of a protein nucleic acid interaction.  FP takes advantage of the 

change in tumbling properties of a fluorescent ligand upon binding to a larger 

macromolecule; in our case a fluorescent DNA or RNA probe and a nucleic acid  
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Figure 2.3 
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Figure 2.3: An overall schematic of the presented binding assays.  The 
experiment is typically setup in a 96-well plate (black) format.  A dilution series of 
the nucleic acid binding protein is equilibrated with trace amounts of fluorescently 
labeled oligonucleotides.  After the experiment has been given time to reach 
equilibrium, the fluorescence polarization (FP) of each sample is measured.  In 
the FP illustration shown, a sample is excited with polarized light.  Emitted light is 
then measured using filters both parallel and perpendicular to the plain of 
excitation.  Samples can then be run on a native gel (F-EMSA) directly after 
measuring FP.  Measurements of either polarization (mP) or the fraction of RNA 
bound is then plotted as a function of protein concentration.  The experimental 
design described provides two complementary approaches that depends upon 
different physical properties of the complex and enables quantitative 
measurements of the interaction. 
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binding protein.  Polarized light is used to excite the fluorophore, and emitted 

light is measured in planes both parallel and perpendicular to the plane of 

excitation.  A labeled probe that is free in solution tumbles more rapidly because 

of its comparatively low molecular weight, leading to depolarization of the emitted 

light.  However, tumbling is reduced when the nucleic acid is bound to protein, 

causing an increase in polarization.  The maximal extent of the increase is 

dependent on the size of the protein, the size of the labeled probe, and the 

lifetime of the fluorophore. 

To measure the apparent affinity of the protein nucleic acid complex, a 

series of equilibration reactions are set up with varying concentration of protein 

and fixed trace amounts of labeled probe.  After equilibration, polarization is 

determined using using a fluorometer or a fluorescence plate reader equipped 

with polarizers.  The extent of polarization is influenced by the relative 

concentration of each fluorescent species in the equilabration reaction.  As such, 

polarization is directly proportional to the fraction of bound probe at each protein 

concentration.  It is also important to note that if higher order species are formed, 

or if there is unreacted dye in the equilibration reaction, these will contribute to 

the apparent polarization value as well.  The effective polarization, expressed in 

units of millipolarization (mP), is related to the fluorescence intensity (I) in the 

parallel (para) and perpindicular (perp) planes by equation (i).  Most plate 

readers capable of FP measurements output this value automatically.  
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(i)     

 

mp =1000 × Ipara− Iperp
Ipara + Iperp
 

 
 

 

 
  

 

The data are then plotted as a function of protein concentration and fit to the Hill 

equation (ii) in order to determine the apparent equilibrium dissociation constant 

(Kd) and the apparent cooperativity (n) between a macromolecule (Pt) and its 

ligand (Figure 2.4).  The equation presented here uses the maximum (m) and 

base (b) signals as normalization factors that represent the polarization values at 

the upper and lower asymptote of the titration (Hill, 1910).  

 

(ii)     

 

φ = b + (m − b) 1
1+ (Kd / Pt[ ])n

 

 
 

 

 
  

 

Other parameters that can be measured by this approach include the 

stoichiometry of the complex, determined by repeating the equilibration reactions 

at elevated probe concentration and fitting mP as a function of molar ratio to a 

quadratic equation derived by Rambo and coworkers (Rambo and Doudna, 

2004).  FP is especially amenable to kinetic measurements, as the change in 

polarization can be measured in real time in many instruments. 

The primary limitation of FP is that it requires a relatively small labeled 

ligand, usually ten kilodaltons or smaller when using fluorescein dyes.  The 

lifetime of the fluorophore defines the size limit of the ligand.  If the labeled probe 
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Figure 2.4 
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Figure 2.4: A sample fluorescence polarization assay.  Raw fluorescence 
polarization data of the RNA binding protein MEX-3 interacting with one of its 
target RNA sequences is shown (Pagano et al., 2009). The data is given in units 
of millipolarization (mP) and the equilibrium dissociation constant (Kd,app) is given 
for the complex.  Shown is a single replicate experiment.  
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cannot efficiently depolarize the emitted light within the lifetime of the 

fluorophore, it is not possible to measure the change in depolarization caused by 

binding to a protein.  Other factors that contribute to the size limit include the 

shape and flexibility of the ligand.  We typically use this approach for single 

stranded RNA probes that are thirty nucleotides or less.  Smaller probes may be 

necessary for double stranded DNA or RNA. 

 

Electrophoretic mobility shift assays 

 A different but complementary approach to measure the affinity of an 

interaction between a nucleic acid and a protein is EMSA.  This method relies on 

the ability of a protein to influence the migration of a labeled nucleic acid through 

a native polyacrylamide or agarose gel (Hellman and Fried, 2007; Ryder et al., 

2008).  The migration depends upon the length, and as a result the overall 

charge, as well as the shape of the nucleic acid.  If association of a protein 

perturbs these parameters, it can change the rate of migration, enabling 

separation of bound and free probe.  As with FP, a series of equilibration 

reactions are set up such that protein concentration varies while a fixed, trace 

amount of labeled probe remains the same in each reaction.  After equilibration, 

the reactions are loaded onto the gel and subjected to electrophoresis in order to 

separate bound from free RNA.  Then, the fraction of bound RNA is determined, 

and then fit as a function of protein concentration to the Hill equation as above.  

The primary advantage of this approach is that it enables visualization of both 
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free and bound probe.  Thus, if multiple proteins bind to the DNA or RNA 

sequence, this usually manifests as multiple shifted species.  Moreover, if the 

probe has degraded, this can be assessed as well.  The disadvantage of this 

approach is that it does not provide a true equilibrium measurement.  Complexes 

with fast off rates will dissociate in the time it takes to load the sample, perturbing 

the apparent affinity. 

Traditionally, EMSA is performed with radioactively labeled oligos in 

vertical gel equipment (Hellman and Fried, 2007; Ryder et al., 2008).  We have 

observed that fluorescent probes provide sufficient sensitivity so that they can be 

used in experiments that require that the labeled oligo be present in low 

nanomolar amounts.  To achieve sufficient sensitivity, we adapted the EMSA 

approach to horizontal submarine polyacrylamide gels, which enables loading of 

more sample per gel compared to standard vertical gel equipment.  Moreover, 

the horizontal format enables multiplexing of experiments as more than one 

comb can be used to create wells in the gel matrix.  Immediately following 

electrophoresis, the gel is imaged using a fluorescent capable phosphoimager 

equipped with the appropriate laser to excite the fluorophore (Fuji FLA-5000 or 

similar, Figure 2.5).  The assay conveniently uses the same experimental setup 

used in FP, so only a single series of binding reactions is required for both 

assays.  Since the FP is nondestructive, samples may be electrophoresed 

immediately following the polarization measurement.  Samples are run on a 
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native acrylamide gel separating free nucleotides from those that are bound to 

protein.   
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Figure 2.5 
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Figure 2.5: A sample fluorescent gel shift assay. The RNA binding protein MEX-
3 interacting with one of its target RNAs is shown (Pagano et al., 2009). 
Fluorescently labeled RNAs are shown in the gel as green bands.  A plot of the 
fraction RNA bound at varying MEX-3 concentrations is given.  The equilibrium 
dissociation constant (Kd,app) is given for the complex.   
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Concluding Remarks 

 In this survey, we focused primarily on quantitative approaches to monitor 

protein-nucleic acid interactions with the use of fluorescently labeled probes.  

There are a number of ways to label an oligonucleotide using chemical and 

enzymatic strategies.  Labeled probes can be used in both FP and EMSA to 

provide a dual readout of the same experimental setup.  This approach is fast, 

safe, and affordable providing an effective strategy to perform quantitative 

biochemical experiments to dissect protein/nucleic acid interactions in vitro.  

These approaches are adaptable to many different strategies demonstrating the 

versatility and usefulness of fluorescence methodologies. 
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CHAPTER III 

 

Molecular basis of RNA recognition by the embryonic 

polarity determinant MEX-5 
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Abstract 

Embryonic development requires maternal proteins and RNA.  In Caenorhabditis 

elegans, a gradient of CCCH tandem zinc finger (TZF) proteins coordinates axis 

polarization and germline differentiation.  These proteins govern expression from 

maternal mRNAs by an unknown mechanism.  Here we show that the TZF 

protein MEX-5, a primary anterior determinant, is an RNA-binding protein that 

recognizes linear RNA sequences with high affinity but low specificity.  The 

minimal binding site is a tract of six or more uridines within a nine to thirteen 

nucleotide window.  This sequence is remarkably abundant in the 3’-untranslated 

region of C. elegans transcripts, demonstrating that MEX-5 alone cannot specify 

mRNA target selection.  In contrast, human TZF homologs tristetraprolin (TTP) 

and ERF-2 bind with high specificity to UUAUUUAUU elements.  We show that 

mutation of a single amino acid in each MEX-5 zinc finger confers TTP-like 

specificity to this protein. We propose that divergence of this discriminator 

residue modulates the RNA-binding specificity in this protein class.  This residue 

is variable in nematode TZF proteins, but is invariant in other metazoans.  

Therefore, the divergence of TZF proteins and their critical role in early 

development is likely a nematode-specific adaptation. 
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Introduction 

Embryogenesis is the process by which a fertilized oocyte transforms into 

a multicellular organism.  Although the zygote contains all of the information 

required for development, zygotic DNA alone is not sufficient to drive patterning.  

Somatic cell nuclear transfer experiments, like those used to clone Dolly the 

sheep, demonstrate that maternal factors present in the oocyte cytoplasm are 

needed for the initiation of development (Wilmut et al., 1997).  These maternal 

factors are proteins and quiescent mRNAs (Seydoux and Braun, 2006); they 

coordinate early development prior to the onset of zygotic transcription. 

In the nematode worm Caenorhabiditis elegans, polarization of the body 

axes occurs after fertilization and requires several highly conserved maternal 

factors termed PAR proteins (Etemad-Moghadam et al., 1995; Goldstein and 

Hird, 1996; Guo and Kemphues, 1995; Kemphues et al., 1988; Kirby et al., 1990; 

Levitan et al., 1994; Tabuse et al., 1998; Wallenfang and Seydoux, 2000).  Prior 

to fertilization, these proteins are uniformly distributed in the cytoplasm.  Once 

the sperm penetrates the oocyte, they localize to opposing cortical domains in a 

process that requires microtubules derived from the asters of the sperm 

pronucleus.  The PAR network coordinates asymmetric translation of several cell 

signaling proteins (Mello et al., 1994; Thorpe et al., 1997) (glp-1, apx-1, mom-2, 

and mom-5) and transcription factors (Maduro et al., 2005) (skn-1, pal-1, and 

pop-1) encoded by maternal mRNAs present throughout the 1-cell embryo. The 
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PAR proteins are thought to locally deactivate maternal RNA-binding proteins 

thereby modulating the stability or translation efficiency of maternal mRNAs. 

Consistent with this hypothesis, posterior localization of PAR-1 promotes 

anterior localization of two putative RNA-binding proteins, MEX-5 and MEX-6 

(Cuenca et al., 2003; Schubert et al., 2000).  Though these proteins are 70% 

identical, their contributions to development only partially overlap.  Disruption of 

mex-5 causes embryonic death with a terminal phenotype that includes 

proliferation of muscle (MEX = Muscle Excess).  In contrast, deletion of mex-6 

does not affect viability.  Two major roles in development have been attributed to 

MEX-5.  First, it controls segregation of the germline from the soma by activating 

zif-1, which promotes anterior turnover of three germline-specific maternal 

proteins (POS-1, PIE-1, and MEX-1) (DeRenzo et al., 2003).  The overall result 

of this pathway is a gradient of MEX-5/6 from anterior to posterior and an 

opposing gradient of POS-1, PIE-1, and MEX-1 (Figure 3.1a).  Second, MEX-5 

plays a relatively uncharacterized role in maintaining PAR polarity via a feedback 

loop with PAR-1 (Cuenca et al., 2003).  It is not yet clear if the two roles are 

linked at the molecular level.  Additionally, there may be other roles for MEX-5 

that have not yet been described.  For example, residual posterior MEX-5 

accumulates on the posterior centrosome and in P-granules, RNA-rich bodies 

that segregate with and determine the germline lineage (Cuenca et al., 2003; 

Schubert et al., 2000).  The functional ramifications of this localization are not 

known. 



   
  
  57   
 
 
     

   

MEX-5, MEX-6, POS-1, PIE-1, and MEX-1 are all CCCH-type tandem zinc 

finger proteins (Figure 3.1B, hereafter TZF).  This class is typified by 

tristetraprolin (TTP), a mammalian protein involved in regulating inflammation 

response by destabilizing TNF-α transcripts (Carballo et al., 1998; Lai et al., 

1999; Taylor et al., 1996; Varnum et al., 1991).  The expression pattern of 

several key maternal transcripts is perturbed in TZF mutants leading to the 

hypothesis that they directly regulate maternal mRNA stability or translation 

efficiency (D'Agostino et al., 2006; Ogura et al., 2003; Reese et al., 2000; 

Schubert et al., 2000; Tabara et al., 1999).  If so, then the network of maternal 

RNA regulation in the embryo may be governed by differences in the RNA-

binding specificity of each protein.  Consistent with this model, TTP is an 

exquisitely specific RNA-binding protein; it recognizes nonameric UUAUUUAUU 

sequences present in the 3’-untranslated region (UTR) of its targets (Brewer et 

al., 2004; Carballo et al., 1998; Lai et al., 1999; Lai et al., 2006).  An NMR 

structure of the mammalian TTP homolog ERF-2 (also known as Tis11D) 

demonstrates that each zinc finger individually recognizes a UAUU repeat 

(Hudson et al., 2004).  In contrast, an interaction between any of the TZF 

proteins from C. elegans and RNA has not been demonstrated, and as such their 

mRNA target specificity has not been explored.   

MEX-5 and MEX-6 diverge from TTP in a few notable ways (Figure 3.1B):  

(i) nine amino acids rather than eight separate the first two cysteines in each zinc 

finger, (ii) the spacing between fingers is lengthened, and (iii) several highly 
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conserved amino acids that contribute to RNA-binding in mammalian TZF 

proteins are not conserved in MEX-5 and MEX-6.  These differences could 

impact the ability of MEX-5 and MEX-6 to bind to RNA.  Moreover, MEX-5 has 

been shown to interact with ZIF-1 protein in a yeast two-hybrid assay (DeRenzo 

et al., 2003), suggesting that it may not regulate this factor at the RNA level.  We 

set out to describe the RNA-binding properties of MEX-5 in order to probe its role 

in patterning the anterior/posterior axis. 
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Figure 3.1 
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Figure 3.1: C. elegans tandem zinc finger proteins.  A.  Reciprocal gradients of 
the TZF proteins MEX-5, MEX-6, POS-1, PIE-1, and MEX-1 from the 1–4 cell 
stages of development.  MEX-5 and MEX-6 are represented in red, POS-1, PIE-
1, and MEX-1 are represented in blue.  DIC and fluorescence images of GFP-
MEX-5 in a live 4-cell embryo are shown.  The pattern was observed in live 
embryos by Seydoux and co-workers with GFP reporters (Cuenca et al., 2003) 
and by Priess and colleagues using immunofluorescence in fixed embryos 
(Schubert et al., 2000).  The protein accumulates predominantly in the cytoplasm 
of the anterior blastomeres (a, ABa and ABp), but is also in P-granules (p) and 
on the centrosome of P2 (c).  The cells are labeled in the DIC image.  B.  Domain 
structure of MEX-5.  The location of the two CCCH zinc fingers (ZF1 and ZF2) is 
shown in blue.  The numbers represent the primary amino acid sequence.  
Alignment of C. elegans zinc finger domains MEX-5, MEX-6, and POS-1 with 
mammalian TTP and ERF-2.  The C. elegans proteins are boxed.  Gray bars 
denote the three cysteines and one histidine that coordinate the zinc ion.  The 
asterisks represent points of contact with RNA observed in the NMR structure of 
ERF-2 (Hudson et al., 2004).  The adenosine recognition pocket is boxed.  The 
discriminator position is colored red for acidic side chains, blue for basic side 
chains, and green for hydrophobic side chains.  Amino acids in italics were 
mutated in the present work. 
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RESULTS 

MEX-5 and MEX-6 bind to ARE repeat elements  

To clarify the role of MEX-5 and MEX-6 in development, we set out to test 

whether these proteins, like TTP, bind with high affinity and specificity to RNA.  A 

recombinant fragment of each protein comprising the TZF domain was purified 

from bacteria and tested for the ability to interact with an established TTP binding 

sequence – the AU-rich element (ARE) of TNF-α mRNA (Brewer et al., 2004).  

Two approaches were employed to measure affinity to this RNA:  electrophoretic 

mobility shift (EMSA) and fluorescence polarization (FP) assays.  Both methods 

reveal that MEX-5 and MEX-6 bind to TNF-ARE RNA.  The EMSA experiments 

show that multiple binding sites are present in this sequence.  The apparent 

dissociation constant (Kd, app) of MEX-5 for TNF-ARE RNA is 17 ± 1 nM by EMSA 

and 14 ± 4 nM by FP (Figure 3.2A, B, Table 1).  Similarly, MEX-6 binds to this 

RNA with an affinity of 4 ± 3 nM by EMSA and 12 ± 3 nM by FP (Figure 3.2A).  

Both proteins are capable of binding to RNA with high affinity.  Furthermore, 

because the EMSA and FP results are nearly equivalent, it is clear that both 

assays can effectively monitor RNA binding by these proteins. 

TNF-ARE RNA contains several UUAUUUAUU repeat sequences and 

therefore can bind multiple molecules of TTP (Brewer et al., 2004).  To determine 

the affinity of MEX-5 for a shorter RNA variant containing only one TTP site, we 

repeated the binding analyses with ARE13 RNA (AUUUAUUUAUUUA).  The 

apparent dissociation constant for this sequence is 55 ± 15 nM by EMSA and 97  



   
  
  62   
 
 
     

   

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.2
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Figure 3.2: MEX-5 is an RNA-binding protein.  A.  MEX-5 binds to the ARE 
element of TNF-a mRNA 3’-UTR and a shorter variant termed ARE13 by 
electrophoretic mobility shift.  The interaction of MEX-6 with TNF-ARE RNA is 
shown for comparison.  The unshifted RNA is denoted by an asterisk for each 
gel.  The sequences of the RNA are shown.  A fit of free RNA fluorescence 
intensity as a function of MEX-5 concentration is presented below each gel.  The 
Kd, app and fit error is given for the specific gel above.  B.  Fluorescence 
polarization analysis of MEX-5 binding to TNF-a ARE and ARE13 RNA.  Raw 
polarization values are presented.  A fit of the data is shown, and the Kd, app and 
error are as in panel A. 
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± 4 nM by FP (Figure 3.2).  In contrast, TTP binds to ARE13 RNA with 5-10 fold 

tighter affinity (Brewer et al., 2004).  Together, the results show that MEX-5 binds 

to UUAUUUAUU repeat sequences, but with an overall affinity that is weaker 

than TTP. 

 

MEX-5 binds to regulatory elements in glp-1and nos-2 3’-UTRs 

Prior work demonstrates that several factors are aberrantly expressed in 

mex-5 mutants (Schubert et al., 2000).  Ectopic expression of five proteins (SKN-

1, PIE-1, MEX-1, POS-1, and PAL-1) and reduced levels of two others (GLP-1 

and MEX-3) result from mex-5 mutation.  Furthermore, MEX-5 is required to 

activate zif-1, which in turn targets TZF proteins for degradation (DeRenzo et al., 

2003).  Lastly, recent studies reveal that MEX-5 is required for anterior 

degradation of mex-1, nos-2, and pos-1 transcripts (D'Agostino et al., 2006; 

Tenlen et al., 2006).  Although the results are consistent with MEX-5 regulating a 

network of maternal genes, this regulation has not been shown to be a direct 

result of MEX-5 binding to target mRNAs. 

Extended UAUU sequence repeats similar to the TNF-ARE are not 

present in the 3’-UTR of any candidate MEX-5 regulatory target.  However, 

several functional regulatory elements have been identified in the 3’-UTR of glp-1 

and nos-2 mRNAs (Figure 3.3A, B).  Two translational control elements are 

present in the 3’-UTR of glp-1 mRNA, a spatial control region (SCR) and a 

temporal control region (TCR) (Evans et al., 1994).  Furthermore, five elements 
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(subA-E) found in the 3’-UTR of nos-2 mRNA coordinate translational silencing, 

mRNA localization, and 3’-end formation (D'Agostino et al., 2006).  To determine 

if MEX-5 can bind these functional elements, we performed EMSA and FP 

experiments with overlapping thirty nucleotide fragments of the TCR and all five 

elements from the nos-2 3’-UTR (Figure 3.3, Table 3.1).  Surprisingly, MEX-5 

binds with high affinity to all of the TCR fragments and three of the elements from 

nos-2 mRNA (TCR1-4, subA, subC, subE, Kd, app ~ 25 – 100 nM).  MEX-5 binds 

moderately to nos-2 subD (Kd, app = 200 ± 20 nM) and poorly to nos-2 subB (Kd, 

app 400 ± 50 nM by FP, > 1 µM by EMSA). 

Because a single shifted species is observed with TCR2 RNA, we decided 

to investigate the stoichiometry of the complex by repeating the FP experiments 

with elevated TCR2 RNA concentration (Figure 3.3C, D).  The apparent 

stoichiometry is approximately one to one (equivalence point N is 0.9 ± 1 by a 

quadratic fit), demonstrating that there is only one binding site in this RNA and 

that the recombinant protein is nearly 100% active (Figure 3.3D).  Consistent with 

these results, analytical gel filtration chromatography reveals that the TZF 

domain is predominantly monomeric at concentrations well above the apparent 

dissociation constant for this RNA sequence (17 µM, Kd, app = 31 ± 9 nM, Figure 

3.3D). 

Inspection of the RNA fragments reveals that all of the interacting 

sequences contain a tract of six to eight uridines within an eight-nucleotide 

window.  This feature is absent in nos-2 subB, suggesting that MEX-5 requires 
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Figure 3.3



   
 
  67 
 
   
Figure 3.3: MEX-5 can interact with regulatory elements in the 3’-UTR of glp-1 
and nos-2 transcripts.  A.  Regulatory elements in glp-1 transcripts.  Plots of 
normalized polarization as a function of MEX-5 concentration are shown.  
Uncorrected mP values ranged between 263 and 530.  B.  Regulatory elements 
in the 3’-UTR of nos-2 mRNA.  Curves are as in panel A.  The mP values ranged 
between 274 and 530 C.  EMSA of MEX-5 binding to TCR2 RNA.  The fit shown 
below is as per figure 2.  The Kd, app and napp are given for the experiment shown.  
Errors represent the uncertainty of the fit.  D.  Stoichiometric binding of MEX-5 to 
TCR2 RNA.  The total RNA concentration is shown.  The lines represent linear 
fits to the pre- and post- saturation data.  The stoichiometry is approximated from 
the intersection of the two lines, and from a fit of the data to the quadratic 
equation.  The equivalence point N is given from the quadratic fit.  The error 
represents the uncertainty of the fit.  D.  MEX-5 is predominantly monomeric at a 
concentration well above the Kd, app for TCR2 RNA (17 µM).  The calculated 
molecular weight of MBP-MEX-5 (gray) and five standards (dashed line) are 
shown. 
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this element in order to bind.  To test this model, a mutant version of the second 

TCR fragment where all of the uridines are replaced by adenosine was prepared.  

As expected, this sequence does not bind to MEX-5 (Table 3.1).  The results 

show that MEX-5 does not require UAUU repeats in order to bind to RNA with 

high affinity, and suggest that MEX-5 can bind to sequences harboring an 

extended uridine tract. 

 

MEX-5 binds to polyuridine   

TTP displays an 80-fold preference for UAUU repeat sequences over 

polyuridine (Brewer et al., 2004).  In contrast, our data show that MEX-5 binds 

with high affinity to uridine-rich RNAs lacking canonical ARE motifs.  To test 

whether uridine nucleotides are sufficient to promote MEX-5 binding, EMSA and 

FP experiments were performed with a thirty-nucleotide polyuridine sequence.  

MEX-5 binds to this RNA with an apparent Kd of 29 ± 6 nM by EMSA and 23 ± 2 

nM by FP (Figure 3.4A).  The data show that MEX-5 can bind to polyuridine with 

affinity similar to that of TNF-ARE.  This demonstrates that MEX-5 binds with less 

specificity than TTP. 

To further probe MEX-5 specificity, EMSA and FP experiments were 

performed with fifteen-nucleotide polyuridine, polyadenosine, polycytidine, and 

polyguanosine sequences.  As before, MEX-5 binds to polyuridine with slightly 

weaker affinity than a similar length AUUUA repeat RNA (ARE13), but does not 

bind to polycytidine, polyadenosine, or polyguanosine (Figure 3.4A, Table 3.1).   
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Figure 3.4 
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Figure 3.4:  MEX-5 binds to polyuridine sequences.  A.  Interaction of MEX-5 
with polyuridine 30, polyuridine 15, and polycytidine 15 sequences by 
fluorescence polarization.  The curves are as in figure 3.  B.  Competition 
experiments of unlabeled ARE13 RNA and U6 RNA into the complex of MEX-5 
with labeled ARE13 RNA. 
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Together, the results show that uridine tracts are both necessary and sufficient to 

promote MEX-5 binding. 

In order to identify the shortest RNA fragment that can bind to MEX-5, 

competition EMSA and FP experiments were performed with even shorter 

polyuridine sequences (U6 and U9).  Competition experiments were favored with 

shorter RNA sequences to prevent the possibility that steric hindrance by the 3’-

fluorescein label would influence the apparent affinity.  Disruption of the complex 

between MEX-5 and labeled ARE13 RNA was used to probe the affinity of 

unlabeled competitor sequences.  The apparent dissociation constant of the 

competitor (Kc, app) was determined by a fit of the data to the Lin and Riggs 

equation (Lin and Riggs, 1972; Weeks and Crothers, 1992).  By self-competition, 

Kc, app for ARE13 is equivalent within error to the Kd, app determined by direct 

titration (Figure 3.4B).  In contrast, U6 and U9 are unable to compete for MEX-5 

binding (Kc, app > 1 µM).  Together, the results demonstrate that the minimal MEX-

5 binding site is greater than nine nucleotides in length.  

 

Uridine tracts are remarkably abundant in C. elegans 3’-UTR sequences  

It is possible that MEX-5 specifically regulates only those maternal genes 

that contain uridine tracts in their 3’-UTRs.  To identify potential MEX-5 targets, 

we searched every annotated 3’-UTR in Wormbase release WS165 for octamer 

sequences containing at least six uridines using the PATSCAN algorithm 

(Dsouza et al., 1997).  Amazingly, 91% of 3’-UTRs harbor at least one potential 
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MEX-5 binding site.  This demonstrates that C. elegans 3’-UTRs are remarkably 

rich in uridine tracts, and implies that MEX-5 alone cannot specify mRNA targets 

for regulation. 

 To further explore this hypothesis, we repeated the PATSCAN search with 

every possible octamer sequence (48 sequences) in the C. elegans 3’-UTR 

database.  There are 11,938 unique 3’-UTRs annotated in Wormbase.  These 

UTRs are rich in uridine and adenosine but are relatively poor in guanosine and 

cytidine.  To determine if tracts of uridine are overrepresented, we determined 

the theoretical distribution of octamer units weighted by the relative base content 

in 3’-UTRs using a binomial distribution.  If a given base has a propensity to 

segregate into tracts of high and low base content, the frequency of octamers 

containing six to eight occurrences of the base will be greater than expected from 

the random distribution.  Similarly, the frequency of octamers containing zero to 

three base occurrences will also be greater than the expected amount.  

Therefore, a plot of octamer frequency versus the number of base occurrences 

will appear more broad and shallow than the theoretical random distribution 

(Figure 3.5A).  In C. elegans 3’-UTRs, the observed distribution of uridine and to 

a lesser extent adenosine reveals a propensity to segregate into high and low 

base content tracts, while the observed distributions of guanosine and cytidine 

very closely match the random distribution (Figure 3.5A).  This is consistent with 

a selective pressure that favors runs of uridine and adenosine.  When the 
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Figure 3.5 
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Figure 3.5: Analysis of the distribution of base content in octamer windows of all 
annotated C. elegans 3’-UTRs.  A.  A plot of the relative frequency of octamer 
sequences with zero through eight occurrences of a given base (dark line) 
compared the expected frequency based on a random distribution weighted by 
the nucleotide distribution (dashed line).  The fraction of each base present in C. 
elegans 3’-UTR space is shown above each chart.  B.  The identity of the top 30 
most frequent octamer elements present in C. elegans 3’-UTRs and the 
frequency of occurrence in Wormbase release WS165 is shown. 
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distribution of observed octamer sequences is plotted as a function of relative 

frequency, we find that the most frequently observed octamer is U8, and 29 of 

the top 30 octamers contain at least six uridines (Figure 3.5B).  This highlights 

the preponderance of uridine tracts in the 3’-UTRs of C. elegans genes, and 

demonstrates that MEX-5 does not bind with sufficient specificity to select 

mRNAs for regulation on its own. 

 

MEX-5 and PIE-1 localization do not depend on MEX-3 

 If MEX-5 regulates specific maternal transcripts, it must do so as part of a 

complex with a more specific RNA-binding protein.  If so, a likely candidate is 

MEX-3.  MEX-3 is a KH domain RNA-binding protein that is also required for 

anterior development (Draper et al., 1996).  Mutation of mex-3 results in the 

same terminal phenotype as mex-5, and the protein displays a similar distribution 

throughout the 1-4 cell stages of development.  Moreover, MEX-6, which is 70% 

identical to MEX-5, was identified in a yeast two-hybrid screen for MEX-3 

interacting proteins (Huang et al., 2002).  Finally, the localization pattern of MEX-

3 protein is perturbed in mex-5 mutants (Schubert et al., 2000). 

Because the localization pattern of MEX-3 depends on MEX-5 (Schubert 

et al., 2000), it is possible that the two proteins localize in a complex.  If so, then 

anterior MEX-5 accumulation might depend upon the presence of MEX-3.  In 

addition, because MEX-5 activation of zif-1 drives posterior accumulation of PIE-

1 (DeRenzo et al., 2003), localization of this protein should be altered in the 
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absence of MEX-3 if it serves as a zif-1 co-activator.  To test these hypotheses, 

we knocked down MEX-3 levels using RNAi in worms expressing GFP-MEX-5 or 

GFP-PIE-1 by feeding them Escherichia coli expressing double stranded RNA 

targeted against mex-3 transcripts.  The cellular distribution of GFP-MEX-5 and 

GFP-PIE-1 in embryos was determined by wide field fluorescence microscopy.  

No difference is observed in the expression pattern of GFP-MEX-5 or GFP-PIE-1 

in mex-3 RNAi embryos (n = 135, n = 127, respectively; only embryos in the 1-8 

cell stage were counted) compared to control embryos (n = 101, n = 111, Figure 

3.6).  More than 90% of the embryos laid onto mex-3 RNAi plates failed to hatch 

(n > 500), indicating that RNAi was disrupting mex-3 function.  We conclude that 

MEX-3 is not required for MEX-5 accumulation in the anterior or for activation of 

zif-1.  The results argue against a functional role for a MEX-3/MEX-5 complex.  

However, we cannot rule out the possibility that they co-regulate other maternal 

transcripts. 

 

A single residue in each finger defines MEX-5 RNA-binding specificity 

The NMR structure of the mammalian TTP homolog ERF-2 reveals that 

each zinc finger recognizes adjacent UAUU repeats (Hudson et al., 2004).  In 

order to understand the molecular basis for differential MEX-5 RNA-binding 

specificity, we prepared a homology model of MEX-5 based on the ERF-2 

structure using SWISS-MODEL (Schwede et al., 2003) (Figure 3.7A).  The model 

reveals several amino acid differences in the RNA-binding interface that may 
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Figure 3.6 
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Figure 3.6: MEX-5-GFP and PIE-1-GFP expression in mex-3 RNAi embryos.  A.  
DIC images of a 4-cell and a comma stage embryo compared to the terminal 
mex-3 RNAi phenotype.  The anterior and posterior pole are labeled in the 4-cell 
embryo.  B.  Comparison of the 4-cell stage localization pattern of GFP-MEX-5 or 
GFP-PIE-1 in untreated or mex-3 RNAi embryos. 
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  81 
 
   
Figure 3.7: A discriminator amino acid in each finger defines RNA-binding 
specificity.  A.  A homology model of MEX-5 bound to RNA based upon the NMR 
structure of ERF-2 (Hudson et al., 2004).  Amino acids that are conserved 
between the two are colored green.  Amino acids that are different are in red.  
The RNA (5’-UUAUUUAUU-3’) is denoted in blue.  The box denotes the 
adenosine recognition pocket.  B.  Recognition of adenosine by MEX-5 (red) and 
ERF-2 (green).  The numbering corresponds to the sequence in MEX-5.  E 
denotes the position of the discriminator residue, which is an arginine in MEX-5 
zinc finger 1 and a glutamate in ERF-2 zinc finger 1.  C.  Electrophoretic mobility 
shift of wild-type MEX-5 with polyuridine 30 RNA and the R274E/K318E mutant 
with polyuridine 30 and TNF-ARE RNA.  Unshifted RNA is denoted by an 
asterisk.  A fit of the normalized free fluorescence intensity as a function of 
R274E/K318E concentration is shown for TNF-ARE and polyU30 RNA.  
Fluorescence polarization data are shown for R274E/K318E mutant with TNF-
ARE and polyU30 RNA. 
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contribute to the difference in specificity.  Most notably, three adjacent residues 

(E, L, C) in each finger of ERF-2 combine to form an adenosine recognition 

pocket.  In MEX-5, the glutamate residue is replaced with arginine (R274) in the 

first finger and lysine (K318) in the second (Figure 3.1C).  In the NMR structure, 

the glutamate side chain forms a hydrogen bond with the exocyclic amine of the 

adenosine base.  In the homology model, the basic residues rotate away from 

the adenosine and form backbone contacts with adjacent nucleotides (Figure 

3.7B).  The model predicts that loss of base-specific hydrogen bonds and 

formation of additional backbone contacts contributes to the relaxed specificity of 

MEX-5.  If so, mutation of the basic residues to glutamate might confer TTP-like 

specificity to this protein. 

To test this hypothesis, we prepared mutant variants of MEX-5 where 

either or both of these basic residues were replaced with the glutamate residue 

present in TTP (R274E, K318E, and R274E/K318E).  A substitution at an 

unrelated position in the RNA interface (M288Y) was prepared as a control.  

First, we examined the ability of the mutants to interact with the TNF-ARE 

sequence.  The R274E and the K318E mutations do not affect the interaction, 

while the double mutation binds with four-fold reduced affinity to this sequence 

(Table 3.2).  A small loss in affinity is expected due to increased electrostatic 

repulsion from the glutamate residues.  The M288Y mutation has no effect on 

TNF-ARE affinity. 
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In contrast, the effect of glutamate mutations on binding to the thirty-

nucleotide polyuridine RNA is significantly more drastic.  The individual glutamate 

mutations reduce binding by two to four fold, while the double mutation 

significantly reduces binding (>15 fold by EMSA, 7.5 fold by FP, Figure 3.7C, 

Table 3.2).  As before, the M288Y mutation has no effect.  Because all variants 

retain the ability to bind to TNF-ARE RNA, and because all are soluble and 

monomeric as determined by analytical size exclusion chromatography, we 

conclude that reduction in polyuridine binding results from a change in binding 

specificity rather than from protein misfolding effects.  The data demonstrate that 

a single glutamate in each finger confers the ability to discriminate between 

UAUU repeat RNA and polyuridine, thus defining the molecular basis for the 

difference in RNA discrimination between MEX-5 and TTP/ERF-2.  
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Comparison of mutant MEX-5 RNA-binding specificity 
 

 Polyuridine 30 RNA TNF-a ARE RNA  

Protein Kd, app 
(nM) 

Relative 
Affinity 

Kd, app 
(nM) 

Relative 
Affinity 

Fold 
Discrimination 

MEX-5 29 ± 6 1 18 ± 1 1 1.6 
M288Y 28 ± 0.5 1 12 ± 7 0.7 2.3 
R274E 28 ± 4 1 16 ± 2 0.9 1.8 
K318E 110 ± 30 3.9 28 ± 1.5 1.6 4.0 

R274E/K318E >1000 >35 70 ± 7 4 >15 
MEX-5 (FP) 23 ± 2 1 14 ± 4 1 1.5 

R274E/K318E 
(FP) 170 ± 7 7.5 23 ± 3 1.6 7.5 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

Table 3.2 
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Discussion 

Accurate post-transcriptional regulation of gene expression requires the 

ability to distinguish specific transcripts from the total pool of cellular RNA.  

Regulatory factors target mRNA through sequence-specific or structure-specific 

interactions (Auweter et al., 2006).  In the case of microRNAs, the mechanistic 

basis for mRNA recognition is easy to conceptualize; complimentary base pairing 

of a seven or eight nucleotide seed drives mRNA discrimination (Brennecke et 

al., 2005).  In contrast, the sequence code recognized by eukaryotic RNA-binding 

proteins usually includes a greater degree of degeneracy. 

In C. elegans, early embryogenesis requires a class of divergent CCCH-

type tandem zinc finger proteins.  They segregate to opposite poles of the 1-cell 

embryo in response to PAR protein activity (Cuenca et al., 2003; DeRenzo et al., 

2003; Mello et al., 1996; Schubert et al., 2000).  Because they are homologous to 

mammalian TTP, most are thought to regulate maternal gene expression at the 

RNA level.  Our data show that two of the C. elegans TZF proteins, MEX-5 and 

MEX-6, can in fact bind to RNA with high affinity but with relaxed specificity 

compared to TTP.  The results are consistent with the hypothesis that they 

directly regulate maternal transcripts, but also suggest that accessory factors are 

required for mRNA targeting. 
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Implications for RNA recognition by other CCCH-type TZF proteins 

 The difference in specificity between MEX-5 and TTP is governed by a 

single amino acid substitution within a highly conserved region of each finger.  

Our data indicate that the amino acid identity of this discriminating position 

defines a code that predicts the specificity of other TZF proteins.  We predict that 

glutamate residues encode selectivity for UUAUUUAUU RNA, while basic 

residues lead to promiscuous binding to uridine-rich RNA sequences including, 

but not limited to, UAUU-repeat sequences, as seen in TNF-ARE RNA. 

To determine the variability of the discriminator residue in TZF proteins, 

we performed a BLAST search of the C. elegans genome using the TZF domain 

of MEX-5 as a query (Figure 3.8).  Sixteen hits result from this analysis.  

Variability is observed at the discriminator position, but the other two residues 

that comprise the adenosine recognition pocket are conserved.  Of the sixteen, 

only MEX-5 and MEX-6 contain basic amino acids in both fingers at the 

discriminator position.  One protein, F38B7.1, has a glutamate at both positions 

similar to TTP and ERF-2.  We predict that this protein binds specifically to 

UAUU repeat RNAs.  Interestingly, five proteins (POS-1, Y116A8C.19, 

Y116A8C.20, Y57G11C.25, and F38C2.5) have small hydrophobic residues in 

both discriminator positions, an alanine in finger one and a valine in finger two.  
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Figure 3.8 
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Figure 3.8:  Identity of the discriminator amino acid (bold) in the adenosine 
recognition pocket of each finger for all C. elegans TZF proteins (boxed) is 
presented.  The acidic, basic, hydrophobic, and mixed TZF protein classes are 
labeled. 
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Experiments with recombinant POS-1 protein indicate that it binds to RNA with 

specificity that is different from both MEX-5 and TTP (Farley et al., 2008).  

Therefore, small hydrophobic residues at the discriminator position may define a 

third specificity class for TZF proteins. 

The remaining TZF proteins have a combination of basic, small 

hydrophobic, or acidic/polar amino acids at the discriminator position.  Three 

proteins required for oocyte maturation (OMA-1, OMA-2, and MOE-3) have a 

valine in the first finger and a lysine in the second.  We predict these proteins will 

display hybrid specificity between POS-1 and MEX-5.  In contrast, PIE-1 contains 

an arginine in finger one and a glutamine in finger two.  Like glutamate, 

glutamine can accept a hydrogen bond from adenosine, but it can also donate a 

hydrogen bond to the O6 carbonyl of a guanosine base as well.  F38C2.7, 

C35D6.4, and MEX-1 have the combination of a small hydrophobic residue in 

one finger and a polar amino acid (serine or asparagine) that could theoretically 

accept and/or donate a base-specific hydrogen bond in the RNA complex.  The 

variations of the discriminator residue imply differences in RNA-binding specificity 

by the divergent C. elegans TZF proteins.  Further experiments will determine the 

possible RNA interactions allowed by each discriminator amino acid within this 

class of proteins. 

 Remarkably, the variations in the TZF protein discriminator residue found 

in C. elegans are absent in higher eukaryotes.  Blast analysis reveals that every 

vertebrate CCCH-TZF protein in GenBank has a glutamate residue at both 
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discriminator positions.  In contrast, homologs with variable discriminators are 

present in Caenorhabditis briggsae and Caenorhabditis remanei, and in more 

divergent Nemata including parasitic species.  Since the identity of the 

discriminator correlates with its RNA-binding specificity and thus its molecular 

function, the critical role of divergent TZF proteins during early development must 

be a special adaptation of this phylum. 

The role of the PAR proteins in establishing cell polarity is conserved from 

worms to flies to mammals (Pellettieri and Seydoux, 2002).  Asymmetric 

expression of signaling proteins and transcription factors from maternal mRNAs 

is also highly conserved (Seydoux and Braun, 2006).  Yet the cassette of RNA-

binding proteins that connect these two layers is clearly highly divergent 

(Johnstone and Lasko, 2001).  Defining the basis of RNA-binding protein function 

in early development will provide a framework by which mechanistic differences 

in the regulation of maternal mRNAs contribute to variability of metazoan body 

plan. 
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Materials and Methods 

Protein expression constructs 

 Fragments of mex-5 and mex-6 containing the TZF domain (amino acids 

236-350 and 250-400, respectively) were amplified from ORFeome clones (Open 

Biosystems) and sub-cloned into the vector pMal-c (NEB).  Mutations of pMal-

MEX-5(236-350) were prepared by site-directed mutagenesis using quickchange 

(Stratagene). 

 

Purification of recombinant proteins 

 TZF domains from MEX-5, MEX-6, and mutants thereof were expressed 

and purified from E. coli JM109 cells as C-terminal fusions to maltose binding 

protein.  Liquid cultures grown at 37 deg. C were induced in mid log phase with 

0.1 mM IPTG.  Zinc acetate was added to a final concentration of 100 µM at the 

time of induction.  Harvested cells were resuspended in lysis buffer (50 mM Tris 

pH 8.8, 200 mM NaCl, 2 mM DTT, EDTA free protease inhibitor tablet (Roche), 

100 µM Zn(OAc)2) and lysed by sonication.  Soluble protein was purified over an 

amylose column (NEB).  Fractions containing the fusion protein were pooled and 

dialyzed into Q buffer (50 mM Tris, pH 8.8, 20 mM NaCl, 2 mM DTT, and 100 µM 

Zn(OAc)2) and then further purified over a Hi-trap Q HP column (GE Healthcare).  

Final purification was achieved by combining fractions containing the protein and 

dialyzing them into S buffer (50 mM MOPS, pH 6.0, 20 mM NaCl, 2 mM DTT, 

100 µM Zn(OAc)2) before running them over a Hi-trap S HP column (GE 
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Healthcare).  Care was taken to minimize the amount of time the protein was 

exposed to pH 6.0 buffer.  Pure fractions as determined by coomassie-stained 

SDS-PAGE were combined and dialyzed into storage buffer (20 mM Tris, pH 8.0, 

20 mM NaCl, 100 µM Zn(OAc)2, 2 mM DTT).  After dialysis, the protein 

concentration was determined using Beer’s law by measuring absorbance at 280 

nm and a calculated extinction coefficient determined using the ProtParam server 

(Gasteiger et al., 2003).  The protein was concentrated to approximately 50 µM 

before storage at 4 deg. C. 

 

Analytical Gel Filtration Chromatography   

A Superdex 200 10/300 GL column (10mm x 300 mm, GE Healthcare) 

was used to determine the apparent molecular weight of MBP-MEX-5 (236-350) 

and its mutants.  The column was equilibrated on an AKTA FPLC with two 

column volumes of filtration buffer (50 mM Tris, pH 8.0, 300 mM NaCl) at a flow 

rate of 0.5 ml min-1 prior to loading the protein sample.  Approximately 50 µl of 

sample (17 µM) was loaded on to the column and eluted with 1.5 column 

volumes of filtration buffer.  Retention time was determined in relation to 

standards (Bio-Rad). 

 

RNA labeling protocol 

All of the RNA sequences used in this work were prepared by chemical 

synthesis and deprotected/lyophylized as the manufacturer directed (Dharmacon 
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or Integrated DNA technologies).  Lyophilized samples were resuspended in 300 

µl of TE buffer, pH 8.0, and the concentration was measured by determining the 

absorbance at 260 nm using a calculated extinction coefficient based on the 

nucleotide content. 

Fluorescein 5-thiosemicarbazide (FTSC, Invitrogen) was used to 3’-end 

label each RNA via the method of Reines and Cantor (Reines and Cantor, 1974).  

A typical 50 µl reaction consisted of 0.5 nanomoles RNA, 100 mM NaOAc, pH 

5.1, and 5 nmoles NaIO4. After a ninety minute incubation at room temperature, 

the sample was ethanol precipitated with 1 µl RNase free glycogen (Invitrogen 20 

µg/µl), 5 M NaCl (1/20 the volume), and 2 volumes of 100% ice-cold ethanol.  

The resulting pellet was resuspended in 50 µl of 100 mM NaOAc, pH 5.1 

containing 1 mM FTSC.  This reaction was incubated overnight at 4°C and 

unreacted label was removed using a Roche G-25 spin column.  The labeling 

efficiency was determined by calculating the ratio of fluorescein absorbance at 

490 nm to RNA-fluorescein absorbance at 260 nm.  Typical efficiencies were 60–

80%. 

 

Electrophoretic mobility shift assays  

Electrophoretic mobility shift assays were used to measure the binding 

activity of recombinant MEX-5 and MEX-6 to fluorescein-labeled RNA 

oligonucleotides.  Typical reactions consisted of 2–4 nM labeled RNA 

equilibrated with varying concentrations of protein in equilibration buffer for 3 
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hours.  Equilibration buffer is 0.01% IGEPAL CA630 (a mild detergent used to 

prevent adhesion or protein and RNA to tubes, microplates, and gel wells), 0.01 

mg/ml tRNA (a polyanionic non-specific binding inhibitor), 10 mM Tris, pH 8.0, 

100 uM Zn(OAc)2, and 100 mM NaCl.  The RNA was heated to 60 deg. C and 

allowed to cool to room temperature before use.  Immediately prior to loading, 

one-fifth volume of 30% v/v glycerol, 0.01% w/v bromocresol green was added to 

each reaction as a dye marker.  A 40 µl sample of each reaction (100 µl total) 

was loaded onto a 1% agarose gel (EMD Biosciences, some lot to lot variability 

was observed) in 1X TB buffer.  The gels were run for 40 minutes at 120 volts 

then immediately scanned using a fluor-imager (Fujifilm FLA-5000) with a blue 

laser at 473 nm.  The fluorescence intensity of unbound RNA was determined as 

a function of protein concentration using ImageGuage software.  The data were 

fit to a sigmoidal dose response function (equation 1) in order to determine the 

half maximal saturation point (Kd, app): 

 

1)      

 

φ = b + (m − b) 1

1+
Kd ,app

P
 

 
 

 

 
 

n  

 

where m is the maximal signal, b is the minimal signal, P is the protein 

concentration, and n is the apparent Hill coefficient.  It is important to note that 

Kd, app is not equivalent to the thermodynamic equilibrium dissociation constant for 

RNA sequences that contain multiple overlapping binding sites.  In all cases, the 
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reported value is the average of at least three experiments and the reported error 

is the standard deviation. 

Competition assays were performed as above except a constant 

concentration of sub-saturating recombinant MEX-5 was used in the equilibration 

while varying concentrations of unlabeled competitor RNA were added to the 

reaction.  The apparent dissociation constant of the competitor RNA was 

determined by a fit of the data to a quadratic solution of the Lin and Riggs 

equation (Lin and Riggs, 1972; Weeks and Crothers, 1992) as described (Ryder 

et al., 2004). 

 

Fluorescence Polarization assays 

Equilibration reactions (100 µL volume) were set up using the same 

conditions as the electrophoretic mobility shift experiments above in 96-well black 

plates (Greiner). The apparent fluorescence polarization was determined using a 

Victor 3 plate reader (Perkin Elmer) equipped with fluorescein sensitive filters 

and polarizers.  A total of five reads were measured for each experiment and the 

average and standard deviation of the millipolarization value (mP) were 

calculated for each protein concentration.  The data were fit to equation 1 in 

order to extract the apparent dissociation constant.  The reported value is the 

average of at least three experiments and the error is the standard deviation. 

Stoichiometric binding experiments were performed as above except the 

reactions were supplemented with unlabeled RNA to a final concentration of 1.5 



   
  
  96   
 
 
     

   

µM.  The elevated concentration of RNA enables determination of the apparent 

stoichiometry by measuring the equivalence saturation point.  This value was 

estimated by plotting polarization as a function of molar equivalents of protein to 

RNA and performing linear fits to pre- and post-saturation data.  The equivalence 

point was determined by the intersection point of the two lines, and separately by 

a fit of the data to the quadratic equation as described (Rambo and Doudna, 

2004). 

 

UTR sequence analysis 

C. elegans 3’-UTRs were retrieved from Wormbase release WS165. To 

determine the frequency of each possible octamer sequence in 3’-UTR-space, a 

Ruby script was written to enumerate each possible octamer and send it to the 

pattern searching tool PATSCAN (Dsouza et al., 1997).  The PATSCAN output 

files were analyzed using standard UNIX text processing tools. The total number 

of occurrences of each class of A, C, G, or U-containing octamers was 

determined by summing up the number of occurrences of each octamer in that 

class. The theoretical distribution of each class was determined by a binomial 

distribution weighted by the fractional proportion of each base in all C. elegans 

3’-UTRs. 

 

 

 



   
  
  97   
 
 
     

   

RNAi 

C. elegans strains expressing GFP-MEX-5 (JH1448) or GFP-PIE-1 

(JH1327) were obtained from the Caenorhabidits Genetics Center and cultured 

by propagating animals with the roller phenotype.  Embryos were harvested from 

young adult hermaphrodites grown on OP50 food by bleach treatment and then 

deposited on NGM plates seeded with OP50 or NGM-IPTG plates seeded with 

mex-3 RNAi food (generously provided by Dr. Craig Mello) and cultured as 

described (Brenner, 1974).  Embryos were collected from gravid adult 

hermaphrodites by dissecting the worms in M9 on a 4% agarose pad with a fine 

gauge needle.  DIC and GFP images were collected with live specimens using a 

Zeiss Axioskop microscope with 40X or 100X objectives.
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CHAPTER IV 

 

RNA recognition by the embryonic cell-fate determinant and 

germline totipotency factor MEX-3 
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Abstract 

Totipotent stem cells have the potential to differentiate into every cell type.  

Renewal of totipotent stem cells in the germline, and cellular differentiation during 

early embryogenesis, rely upon post-transcriptional regulatory mechanisms.  The 

Caenorhabditis elegans RNA binding protein MEX-3 plays a key role in both 

processes.  MEX-3 is a maternally-supplied factor that controls the RNA 

metabolism of transcripts encoding critical cell fate determinants.  However, the 

nucleotide sequence specificity and requirements of MEX-3 mRNA recognition 

remain unclear.  Only a few candidate regulatory targets have been identified, 

and the full extent of the network of MEX-3 targets is not known.  Here, we define 

the consensus sequence required for MEX-3 RNA recognition, and demonstrate 

that this element is required for MEX-3 dependent regulation of gene expression 

in live worms.  Based on this work, we identify several candidate MEX-3 targets 

that help explain its dual role in regulating germline stem cell totipotency and 

embryonic cell fate specification. 
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Introduction 

Totipotent stem cells have the capacity to differentiate into an entire 

organism.  Multicellular organisms maintain a population of totipotent stem cells 

in the germline in order to assure reproductive potential (Seydoux and Braun, 

2006).  These stem cells give rise to the gametes that eventually produce the 

next generation.  The gametes that arise from these cells encode all of the 

information necessary to pattern the development of a new organism.  This 

information is carried in the form of DNA, epigenetic marks, and cytoplasmic 

components.  All of this information must be established and maintained in 

totipotent germline stem cells. 

 After fertilization, totipotency is lost in most cellular lineages as tissues 

and organs begin to differentiate.  In many organisms, cell-fate specification 

occurs early during embryogenesis at a time when the organism’s genome is 

transcriptionally quiescent (Farley and Ryder, 2008; Seydoux and Braun, 2006).  

Thus, post-transcriptional regulation of maternally and paternally-supplied gene 

products provides the basis for the loss of totitpotency and cell fate specification. 

 In the nematode Caenorhabditis elegans, the conserved dual KH (hnRNP 

K homology) domain protein MEX-3 is required for both maintaining totipotency 

in the germline and cell fate specification in the early embryo (Figure 4.1A) 

(Ciosk et al., 2006; Draper et al., 1996).  Worms with a homozygous null mex-3 

mutation have a fully penetrant maternal-effect lethal phenotype, resulting in 

embryos that fail to undergo body morphogenesis and produce excess muscle 
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and hypodermal cells (Draper et al., 1996).  Furthermore, these embryos 

produce between three and six cells that resemble germline progenitor cells, as 

opposed to two in a wild-type embryo.  In addition, worms that are mutant for 

mex-3 and a second KH domain protein, gld-1, are sterile with a germline tumor 

that contains numerous trans-differentiated cells forming a cell mass similar to a 

germline teratoma (Ciosk et al., 2006).   

 In the germline, MEX-3 protein is expressed in distal germ cells and 

maturing ooctyes (Draper et al., 1996).  Upon fertilization, cytoplasmic MEX-3 is 

present throughout the entire embryo and then becomes restricted predominantly 

to the anterior founder cell (AB) at the end of the two-cell stage (Figure 4.1B-D).  

After the four-cell stage, MEX-3 begins to disappear from the embryo. A small 

amount of MEX-3 remains in the posterior germline lineage, where it localizes to 

RNA rich bodies including germ granules in early embryos and CAR-1/CGH-1 

granules in late oocytes (Draper et al., 1996; Gallo et al., 2008; Jud et al., 2007; 

Jud et al., 2008).   

A family of related human proteins (hMex-3A–D and TINO) are 

differentially recruited to RNA granules involved in post-transcriptional regulatory 

mechanisms (Buchet-Poyau et al., 2007; Donnini et al., 2004).  In addition to a 

region of MEX-3 homology, these factors contain a carboxy-terminal RING finger 

domain and numerous phosphorylation sites.  Qualitative experiments show that 

hMex-3A, -3B, and -3C bind directly to RNA homopolymers while hMex-3D/TINO 

binds to a sequence that contains AU-rich elements (Buchet-Poyau et al., 2007;
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Figure 4.1: MEX-3 in C. elegans development.  A.  Domain structure of the RNA 
binding protein MEX-3.  The two KH domains (KH1 and KH2) are shaded dark 
grey.  The numbers represent the primary amino acid sequence.  B.  A 
transgenic worm expressing GFP::MEX-3 (GFP and Nomarski overlay).  This 
strain recapitulates most of the expression pattern of endogenous MEX-3 
(Draper et al., 1996), being translated in oocytes [O], early embryos [E], and 
localized to p-granules [P].  However, expression is not observed in the distal 
end of the germline, and polarized expression from the 2-4 cell stage is less 
pronounced than endogenous MEX-3.  C.  A model representing the MEX-3 
expression pattern in the 1-4 cell embryo.  At the end of the 2-cell stage MEX-3 is 
restricted predominantly to the anterior blastomere (AB), shown in dark grey.  
The blastomeres AB, EMS, and P are labeled.  D.  Cellular lineage of early 
embryogenesis. 
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Donnini et al., 2004).  The precise sequence specificity and affinity of the MEX-3 

family has not been defined. 

 Because MEX-3 contains conserved RNA-binding domains, it likely exerts 

a role in development at the post-transcriptional level.  Consistent with this idea, 

several lines of evidence indicate that MEX-3 regulates the spatial and temporal 

translation of two key targets, pal-1 and nos-2.  PAL-1 is a Caudal-like 

homeodomain protein required to specify the posterior blastomere C (Hunter and 

Kenyon, 1996).  Its protein expression pattern is anti-correlated with that of MEX-

3 in early embryos, as expected if MEX-3 negatively regulates pal-1 translation. 

PAL-1 expression is not observed until the four-cell stage where it accumulates 

in the nuclei of the posterior blastomeres.  mex-3 mutant embryos show ectopic 

expression of PAL-1, and the anterior blastomeres take on a C-like fate resulting 

in excess muscle in the anterior (Draper et al., 1996).  The gene encoding the 

Nanos homolog NOS-2 is also dependent upon MEX-3 for its protein expression 

pattern (Jadhav et al., 2008).  This protein is required for the proper development 

of primordial germ cells and their incorporation into the somatic gonad.  In the 

early embryo, NOS-2 is not observed until the sixteen-cell stage in the germline 

precursor P4.  However, in mex-3 mutant embryos, NOS-2 is expressed 

ectopically throughout the entire embryo (Jadhav et al., 2008).   

Translational reporter experiments suggest that MEX-3 is regulating its 

targets in a 3’-UTR dependent manner (Hunter and Kenyon, 1996; Jadhav et al., 

2008).  An RNA reporter containing the 3’-UTR of pal-1 fused to lacZ is 
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translated in early embryos in a pattern that matches endogenous PAL-1 (Hunter 

and Kenyon, 1996).  In the absence of MEX-3, ectopic expression of the reporter 

is observed in oocytes and anterior blastomeres.  Furthermore, recent work 

demonstrates that MEX-3 represses nos-2 mRNA translation through its 3’-UTR 

(Jadhav et al., 2008).  Using a GFP::H2B translational reporter transgene, 

several cis-regulatory elements within the 3’-UTR required for the spatial and 

temporal control of nos-2 mRNA translation (subA-E) were identified (D'Agostino 

et al., 2006).  Both in vitro and in vivo experiments suggest that MEX-3 represses 

nos-2 translation by interacting with a repeat sequence present within the 

regulatory elements subB and subC (Jadhav et al., 2008), yet the precise 

specificity determinants remain unknown. 

Ectopic expression of NOS-2 in the mex-3 mutant likely explains the 

presence of extra germline precursor cells in terminal mutant embryos.  Likewise, 

ectopic expression of PAL-1 likely explains the presence of excess muscle.  

However, the mex-3 mutant phenotype, and its role in maintaining germline 

totipotency, suggests that MEX-3 regulates additional mRNA targets.  In order to 

determine the nucleotide binding specificity of MEX-3 and identify new candidate 

regulatory targets, we set out to define the determinants of MEX-3 binding and 

map the cis-acting elements within nos-2 and pal-1 required for MEX-3 

regulation.  
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Results 

Identification of a high affinity MEX-3 RNA aptamer 

 To better characterize how MEX-3 recognizes its mRNA targets we 

performed an affinity elution-based in vitro selection experiment (SELEX) (Figure 

4.2A) (Ellington and Szostak, 1990; Loughlin et al., 2009; Tuerk and Gold, 1990).  

With a starting pool of ssRNA comprised of 30-nucleotides of randomized 

sequence, RNA target sequences were selected by immobilizing the RNA 

binding domain of MEX-3 fused to the C-terminus of maltose binding protein 

(MBP) on amylose resin.  To monitor the progress of the selection, an 

electrophoretic mobility shift assay (EMSA) was performed where fluorescently 

labeled RNA samples from either pool 0, pool 4, or pool 7 were equilibrated with 

varying concentrations of MEX-3 and resolved on a native polyacrylamide slab 

gel (Figure 4.2B).  After seven rounds of selection and enrichment, a pool of RNA 

that binds with high affinity to MEX-3 was identified. 

To analyze the sequences present within pool 7, the cDNA was cloned 

and DNA from individual transformants was sequenced.  Out of 69 recovered 

sequences, 56 segregate into two major classes (Figure 4.3A).  The remaining 

sequences display no obvious similarity (Figure 4.2C).  The first group is 

comprised of 39 highly-related sequences with only 0-3 variable nucleotides 

between them.  The other main group consists of 17 sequences that are highly 

purine-rich.  To test whether MEX-3 binds with high affinity to either of these 

sequence classes, EMSA experiments were performed with the most abundant 
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Figure 4.2 
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Figure 4.2: In vitro selection of MEX-3 RNA aptamers.  A.  A schematic of the 
affinity elution-based in vitro selection experiment.  B.  An electrophoretic mobility 
shift assay (EMSA) of MEX-3 bound to fluorescently labeled Pool0, Pool4, or 
Pool7.  C.  Thirteen sequences from the selection that are unrelated to the two 
main classes of sequences.  The sequences that are bold were used in EMSA 
experiments.  D.  An EMSA experiment with fluorescently labeled seq.44 and 
seq.63. 
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Figure 4.3 
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Figure 4.3: Analysis of MEX-3 RNA aptamers. A.  The two main sequence 
classes recovered after seven rounds of selection are shown.  The first class is 
the most abundant with 39 sequences and the second class is purine-rich.  
Underlined are the examples tested for binding activity.  The copy number of 
each clone is listed next to its sequence.  B.  An EMSA of MEX-3 bound to 
seq.14 and seq.4 RNA.  C.  A graph of MEX-3 versus fraction bound of seq.14 
and seq.4 RNA is plotted and fit with the Hill equation.  The calculated apparent 
equilibrium dissociation constant (Kd,app) for seq.14 is reported as the average ± 
one standard deviation of at least three replicates. 



   
  
  111   
 
 
     

   

RNA sequence from each group.  Quantitative analysis reveals that MEX-3 binds 

to the purine-rich example (seq.14) with high affinity (Kd,app= 18 ± 3 nM; Figure 

4.1B and C).  In contrast, MEX-3 binds with lower affinity to the RNA example 

(seq.4) from the most abundant group (Kd,app= 160 ± 6 nM).  It is not clear why 

seq.4 and its variants dominate the in vitro selection yield.  To test if MEX-3 binds 

with high affinity to any of the unrelated RNAs, EMSA experiments were 

performed with two representative sequences.  Neither sequence binds to MEX-3 

with high affinity (Figure 4.2D).  Because seq.14 binds to MEX-3 with 9-fold 

higher affinity than seq.4, we chose to investigate seq.14 in more detail. 

 

Identification of a 12-nucleotide element sufficient for MEX-3 binding 

In order to determine the minimal sequence required for binding, 

truncation analysis was performed where either the 5’ or 3’-end of seq.14 was 

shortened by three nucleotide fragments (Figure 4.4).  The binding affinity of 

MEX-3 to these sequences was determined by EMSA.  As many as fifteen bases 

from the 5’-end (Kd,app < 43 nM) or six bases from the 3’-end (Kd,app < 21 nM) can 

be removed without a dramatic reduction in affinity.  The results identify the 

region that is essential for recognition by MEX-3 (Figure 4.4, shaded region).  

Based on these results, we designed a 12-nucleotide fragment (seq.14min) that 

encompasses this region and tested its ability to interact with MEX-3.  Indeed, 

MEX-3 binds to this sequence with high affinity (Kd,app = 36 ± 5 nM; Figure 4.5).   
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Figure 4.4 



   
  
  113   
 
 
     

   

Figure 4.4: Truncation analysis of seq.14 RNA.  Binding data for 3’ and 5’ 
truncations of seq.14 RNA.  The Kd,app for each sequence is given. NB stands for 
no binding observed.  The shaded region represents the nucleotides that are 
critical for MEX-3 binding. 
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Figure 4.5
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Figure 4.5: A 12-nucleotide element sufficient for MEX-3 binding.  An EMSA 
experiment showing MEX-3 bound to seq.14min RNA with a plot of MEX-3 
versus fraction bound of seq.14min RNA.  The Kd,app is reported on the graph.
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These experiments reveal the minimal region of the aptamer required for high 

affinity MEX-3 binding. 

 

Determination of the MEX-3 consensus sequence 

 To determine the MEX-3 consensus sequence and analyze the 

thermodynamic contribution of each base, EMSA was employed to measure the 

change in standard free energy change (∆∆G°) of every single point mutation of 

seq.14min RNA (Figure 4.6A).  Mutation of eight positions causes a significant 

reduction in binding affinity (positions 2-9, ∆∆G > 0.5 kcal mol-1), whereas 

mutation of four positions has little or no effect on binding (positions 1, 10-12, 

∆∆G < 0.5 kcal mol-1).  The cutoff of 0.5 kcal mol-1 represents a two-fold 

reduction in binding affinity at 20 degrees C.  Based on this quantitative assay, 

we define the MEX-3 recognition element (MRE) as 

(A/G/U)(G/U)AGU(U/A/C)UA.  Analysis of this sequence reveals that five 

positions have a fixed nucleotide specificity, while three positions are partially 

degenerate allowing one or more base substitution at each position.  The first 

four bases are predominantly purine-rich and the last four bases are AU-rich.  

MEX-3 contains two KH domains and the typical binding surface of this motif is a 

four-nucleotide element with variable specificity (Braddock et al., 2002; Gamarnik 

and Andino, 2000; Lewis et al., 2000; Makeyev and Liebhaber, 2002; Valverde et 

al., 2008).  Therefore, we predict that each KH domain in MEX-3 recognizes a 

four base half-site within the MRE.
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Figure 4.6: Mutagenesis of seq.14min RNA.  A.  This sequence was mutated 
systematically and the Kd,app was determined for every single point mutation.  
This was compared to the Kd,app of seq.14min to calculate the change in standard 
free energy change (∆∆G°).  The bars represent the ∆∆G° for each point 
mutation indicated on the x-axis.  Base substitutions that have greater than a 
two-fold loss in binding affinity are shown in dark grey (dotted line, ∆∆G° > 0.5 
kcal mol-1), while mutations that have less than a two-fold loss in binding affinity 
are in shown in light grey.  The error was propagated from the standard deviation 
of seq.14min and the respective point mutation.  B.  The parent sequence 
containing the eight-nucleotide consensus with a background of cytodine is 
shown followed by nine spacing mutants (C1-C9).  The shaded nucleotides 
represent each half-site within the MEX-3 consensus sequence.  C.  The Kd,app of 
each spacing mutant was compared to the Kd,app  of the parent sequence in order 
to calculate ∆∆G°.  The spacing mutant that has greater than a two-fold loss in 
binding affinity is shown in dark grey (dotted line, ∆∆G° > 0.5 kcal mol-1). 
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To test this hypothesis, a series of spacing mutants were made where 0-9 

cytidines were inserted between positions G5 and U6 (Figure 4.6B).  A 

background of cytidine was used because this base is not tolerated in the MRE 

with the exception of one position (U7).  These experiments reveal that MEX-3 

binds to a bipartite recognition element that can tolerate as many as eight 

nucleotides in between each specificity determinant (Figure 4.6C).  Based on this 

data, we re-define the MRE is as (A/G/U)(G/U)AGN(0-8)U(U/A/C)UA.   

 

MEX-3 binds specifically to MREs present in nos-2 and pal-1 transcripts 

 Next, we asked if the regulatory targets of MEX-3 (nos-2 and pal-1) harbor 

an MRE within their 3’-UTR.  A search of the 3’-UTR of nos-2 and pal-1 reveals 

that both transcripts contain two copies of the MRE (Figure 4.7A).  In the case of 

nos-2, the MREs are present within the previously defined regulatory elements of 

subB and subC (Figure 4.7A).  This suggests that the MRE is a functional cis-

regulatory sequence. 

 We then asked if MEX-3 binds specifically to the MREs present within the 

nos-2 and pal-1 3’-UTRs.  To address this question, EMSA was performed to 

determine the binding affinity of MEX-3 to the five known regulatory elements of 

nos-2 (subA-E; Figure 4.7B) (D'Agostino et al., 2006) and a 21-nucleotide 

fragment of the pal-1 UTR that harbors one MRE.  We anticipated that MEX-3 

would bind to nos-2 subB, nos-2 subC, and the fragment from the pal-1 UTR, but 

not to nos-2 subA, subD, or subE sequences which lack the MRE.  As expected
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Figure 4.7
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Figure 4.7:  MEX-3 binds specifically to the MRE of nos-2 and pal-1.  A.  
Analysis of the nos-2 3’-UTR reveals two MRE sites (underlined) within the subB 
and subC regulatory elements.  The half-sites are shown in bold.  The conserved 
repeat element is boxed (D'Agostino et al., 2006).  The pal-1 3’-UTR is shown 
with each MRE underlined.  B.  EMSA experiments for nos-2 subC, nos-2 subB+, 
and the pal-1 MRE are shown.  Binding data of MEX-3 with each nos-2 
regulatory element (subA-subE, subB+) and the pal-1MRE site.  Underlined is 
the MRE site within each sequence.  The Kd,app is given for each sequence.   
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MEX-3 binds with high affinity to nos-2 subC (Kd,app= 40 ± 5 nM; Figure 4.7B) and 

the pal-1 3’-UTR fragment (Kd,app = 25 ± 4 nM; Figure 4.7B), and with low affinity 

to nos-2 subA, subD, and subE (Kd,app > 200 nM).  Both nos-2 subC and pal-1 

MRE RNA reveal two shifted species, which is likely due to additional partial 

binding sites present within the sequences.  We were surprised to observe that 

MEX-3 binds with low affinity to nos-2 subB (Kd,app = 420 ± 20).  Because the 

MRE is near the 3’-end of the sequence, we suspected that the fluorescein label 

might be disrupting the predicted interaction.  A longer variant (subB+) was 

prepared that includes seven additional nucleotides downstream.  Consistent 

with our hypothesis, MEX-3 binds to this RNA with four-fold higher affinity (Kd,app 

=106 ± 2 nM; Figure 4.7B).  The data reveal that MREs are present within both 

MEX-3 regulatory targets, and that MEX-3 binds to them with high affinity. 

  To verify that the MRE is essential for the interaction of MEX-3 with its 

mRNA targets, a series of mutations of the nos-2 subC element was prepared 

and the ability of MEX-3 to bind to each was determined (Figure 4.8).  Each half-

site was mutated such that either AUAG or UUUA was changed to CCCC.  In 

each case, the binding affinity is significantly reduced (mut1, mut2; ∆∆G > 0.5 

kcal mol-1).  The binding affinity was then tested when both half-sites were 

mutated to CCCC and a dramatic reduction in binding is observed (mut3; ∆∆G > 

1.5 kcal mol-1).  When the half-site UUUA is mutated to AAAA, a loss in affinity is 

observed similar to mut1 or mut2 (mut5; ∆∆G > 0.5 kcal mol-1).  Control 

mutations outside of the MRE have no significant change in relative binding
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Figure 4.8
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Figure 4.8: Mutagenesis of the nos-2 subC regulatory element.  The bar graph 
represents the ∆∆G° calculated from the Kd,app of each mutant sequence 
compared to the Kd,app of wild-type subC RNA.  Mutations that have greater than 
a two-fold loss in binding affinity are shown in dark grey (dotted line, ∆∆G° > 0.5 
kcal mol-1).  Below the graph are the sequences tested for MEX-3 binding.  The 
MRE half-sites are underlined in the wild-type sequence, and the mutations 
made are shown in bold (Mut1-6). 
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affinity (mut4, mut6; ∆∆G < 0.5 kcal mol-1).  Together, the data show that the 

MRE is required for the high affinity interaction between MEX-3 and nos-2 subC. 

 

The expression pattern of a nos-2 3’-UTR reporter depends upon the MRE 

 To validate the relevance of the MRE consensus in vivo, we examined the 

expression pattern of a nos-2 3’-UTR reporter where specific mutations are made 

to both MRE sites.  We employed MosSCI (Frokjaer-Jensen et al., 2008) to 

generate single copy transgenic strains encoding green fluorescent protein 

(GFP) fused to histone H2B with the nos-2 3’-UTR downstream (Figure 4.9A).  

The pie-1 promoter was used in each transgene to drive germline transcription.  

Based on our biochemical assessment of the interaction between MEX-3 and 

RNA containing an MRE, the first half-site ATAG was mutated to CCCC in each 

MRE present within the nos-2 3’-UTR (MREmut).  We chose to mutate these 

nucleotides because this half-site has the most dramatic effect on MEX-3 binding 

(Figure 4.8).  The UUUA half site is located within a conserved repeat element 

that has previously been shown to be required for MEX-3 dependent regulation 

(D'Agostino et al., 2006; Jadhav et al., 2008).  

The expression pattern of the reporter harboring the wild-type nos-2 3’-

UTR matches the previously reported endogenous NOS-2 expression pattern 

(Figure 4.9B) (D'Agostino et al., 2006; Subramaniam and Seydoux, 1999).  The 

reporter is absent in early embryos, and is only observed in the germline 

precursor cells in older embryos.  In stark contrast, the transgenic reporter that 
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contains the nos-2 MREmut 3’-UTR is observed both in early embryos and in all 

cells of embryos at approximately the 28-cell stage (Figure 4.9B).  Thus, 

mutation of the MREs disrupts both the spatial and temporal regulation of 

reporter expression.  A similar pattern is observed with the wild-type reporter 

when mex-3 mRNA is depleted by RNAi (Figure 4.9B).  The results demonstrate 

that both MEX-3, and the MREs, are required to appropriately pattern the 

expression of the reporter transgene. 

It is interesting to note that reduction of MEX-3 by RNAi appears to have a 

more dramatic effect on nos-2 reporter expression than mutating its cis-acting 

response elements within the nos-2 3’-UTR (Figure 4.9B).  A possible 

explanation for this observation is that residual binding of MEX-3 to nos-2 3’-UTR 

mutants leads to partial repression, as only part of the MRE is disrupted in each 

case.  There may also be other specificity determinants from SELEX that we 

have not distinguished.  Another possibility is that MEX-3 might regulate other 

trans-acting factors that feed back to repress nos-2 translation.  Alternatively, 

other proteins that bind to the nos-2 3’-UTR may facilitate MEX-3 binding and this 

interaction has not been fully disrupted.  Our data cannot distinguish between 

these possibilities. 

 

Candidate MEX-3 regulatory targets based on the MRE 

To identify new candidate MEX-3 targets, we used the MRE consensus as 

a pattern to search annotated C. elegans transcripts for potential MEX-3 binding
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Figure 4.9: Validation of the MRE within the regulatory target nos-2.  A.  A 
Schematic of the nos-2 3’-UTR reporter transgene.  A pie-1 promoter was used 
to drive germline specific transcription.  Below the schematic is the region of the 
nos-2 3’-UTR containing both MRE sites.  Each MRE is highlighted in grey.  The 
conserved octamer is surrounded by a box, which was reported previously to be 
required for translation (D'Agostino et al., 2006).  Half of each MRE site was 
mutated to CCCC (underlined) to make the nos-2 MREmut reporter construct.  B.  
Expression of the GFP::H2B nos-2 3’-UTR reporter constructs in early embryos.  
DIC images of 2-cell stage embryos and later staged (28+cells) are shown.  The 
GFP::H2B reporter expression pattern is compared between the nos-2 3’-UTR, 
nos-2 MREmut 3’-UTR, and the nos-2 3’-UTR reporter in mex-3 RNAi embryos. 
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sites.  MREs throughout the entire genome were identified using the pattern 

matching tool PATSCAN (Dsouza et al., 1997).  Because 3’-UTRs are the 

primary determinant of spatial gene expression within the germline, we cross-

referenced the predicted MREs with 3’-UTR annotations from release WS190 of 

the C. elegans genome (Merritt et al., 2008).  Out of 10,802 genes with an 

annotated 3’-UTR, 2,834 (26.2%) contain at least one MRE in their 3’-UTR (for 

dataset refer to Table S1) (Pagano et al., 2009).  To identify candidate MEX-3 

targets required for embryogenesis, we filtered the results to include only 

transcripts present in 1-8 cell embryos (Baugh et al., 2003) and that result in an 

embryonic lethal phenotype when knocked-down by RNAi (Sonnichsen et al., 

2005).  Based on this analysis, 214 candidate MEX-3 targets were identified 

(7.5% of all MRE-containing 3’-UTRs, Figure 4.10). 

To identify candidate MEX-3 targets that play a role in maintaining 

germline stem cell totipotency, we filtered our primary search results using 

microarray data that identify transcripts enriched in the germline (Reinke et al., 

2004).  Of the germline enriched genes, 527 have at least one MRE (18.6% of all 

MRE-containing 3’-UTRs, Figure 4.10).  Because the role of MEX-3 in the 

germline is only revealed in the context of a mex-3 gld-1 double mutant (Ciosk et 

al., 2006), we rationalized that the most important targets might contain both 

MEX-3 and GLD-1 binding sites.  To identify such transcripts, we searched the 

3’-UTRs of germline enriched genes for both the MRE and the STAR-binding 

element (SBE), recognized by GLD-1 (for dataset refer to Table S1) 
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Figure 4.10 
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Figure 4.10: Bioinformatic analysis of genes that contain an MRE within their 3’-
UTR.  Genes that harbor a MEX-3 binding site were compared with transcripts 
that are expressed in early embryos, required for embryogenesis, enriched in the 
germline, and/or contain a GLD-1 binding site. 
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 (Pagano et al., 2009).  Based on this analysis, a total of 162 genes were 

identified as potential targets of both MEX-3 and GLD-1 (Figure 4.10).  Together, 

the results predict several novel candidate MEX-3 targets that play critical roles 

both in the embryo and in the germline (Table 4.1). 

We wished to examine predicted novel targets in a functional assay.  As a 

first step towards this goal, we determined the MEX-3 dependence of reporter 

expression in ten transgenic lines harboring germline-specific GFP::H2B::3’-UTR 

reporters containing at least one MRE.  These strains represent a subset of a 

germline 3’-UTR reporter library developed by Seydoux and colleagues (Merritt 

et al., 2008).  Worms were grown on either OP50 or mex-3 RNAi food and the 

expression pattern of GFP was determined (Table 4.2).  Two of the ten (pal-1 

and glp-1 3’-UTR reporter strains) demonstrated a change in reporter 

fluorescence upon mex-3 RNAi. ).   pal-1 has previously been demonstrated to 

be a MEX-3 regulatory target and thus serves as a positive control (Hunter and 

Kenyon, 1996).  The glp-1 reporter shows an overall increase in GFP 

fluorescence and ectopic expression in the posterior of early embryos (2-4 cell) 

when mex-3 RNA is depleted (Figure 4.11).  There are two MEX-3 binding sites 

in a conserved region of the glp-1 3’-UTR.  The binding sites surround previously 

characterized binding sites for the RNA-binding proteins POS-1 and GLD-1 

(Farley et al., 2008; Ryder et al., 2004).  The location of the binding sites 

suggests that regulation is direct, and could potentially be influenced by the 

presence of other RNA-binding proteins.  The results identify glp-1 as a new 
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candidate MEX-3 regulatory target; yet demonstrate that the presence of an MRE 

is not the sole determinant of MEX-3 dependent regulation. 
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Table 4.2
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Figure 4.11
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Figure 4.11:  A glp-1 3’-UTR reporter is dependent upon MEX-3 for its 
expression pattern.  A.  There is an increase in GFP expression in early embryos 
when mex-3 mRNA is knocked down by RNAi.  The image compares a 2 and 4 
cell embryo when grown on OP50 food or mex-3 RNAi food.  B.  A group of 
embryos expressing the glp-1 3’-UTR reporter are shown.  Arrows are pointing to 
2 and 4 cell embryos. 
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Discussion 

 Based on in vitro selection and biochemical experiments, we have defined 

the consensus MEX-3 recognition element (MRE: (A/G/U)(G/U)AGN(0-

8)U(U/A/C)UA).  The MRE is a bipartite element that consists of two four-

nucleotide motifs separated by 0-8 nucleotides.  MEX-3 contains two KH RNA 

binding domains.  We predict that each motif binds specifically to one four-

nucleotide half-site.  Previous studies have shown that KH domains typically 

accommodate four nucleotides in their binding pockets, consistent with this 

hypothesis (Braddock et al., 2002; Gamarnik and Andino, 2000; Lewis et al., 

2000; Makeyev and Liebhaber, 2002; Valverde et al., 2008).  Alignment of the 

KH domains between the human hMex-3 proteins and C. elegans MEX-3 reveal 

79-81% sequence identity within the RNA-binding domain (Buchet-Poyau et al., 

2007).  Interestingly, part of the MRE is comprised of an AU-rich half-site, which 

is proposed to be required for hMEX-3D/TINO RNA binding.  We predict that the 

hMEX-3 proteins bind to RNA with similar specificity as their C. elegans homolog 

MEX-3. 

 The MRE is present in the 3’-UTR of approximately 26.2% of all genes in 

C. elegans.  By filtering this list for transcripts expressed in the same tissues at 

the same time as MEX-3, we have narrowed the candidate targets to 214 

transcripts in the embryo and 527 transcripts in the germline.  The two previously 

characterized MEX-3 regulatory targets—nos-2 and pal-1—both contain two 

MRE sites in their 3’-UTR.  Mutating both sites in a nos-2 reporter leads to 



   
  
  139   
 
 
     

   

derepression of the transgene, as does reduction of MEX-3 by RNAi.  Thus, the 

MRE is a critical cis-acting functional element.  

Our search for candidate regulatory targets reveals several genes that 

play key roles during various stages of development.  A number of these genes 

encode other RNA binding proteins, including cbp-3, puf-3, puf-6, puf-7, spn-4, 

mex-1, and gld-1 (Gomes et al., 2001; Jones et al., 1996; Lublin and Evans, 

2007; Mello et al., 1992; Ryder et al., 2004; Stumpf et al., 2008).  Interestingly, 

the mex-3 transcript also has two MREs within its own 3’-UTR.  This suggests 

that MEX-3 may regulate its own mRNA translation. Other candidate mRNA 

targets encode membrane proteins such as glp-1 and ooc-3.  GLP-1 is a Notch 

homolog essential for mitotic proliferation of germ cells and maintenance of 

germline stem cells as well as the development of early blastomeres (Hutter and 

Schnabel, 1994; Hutter and Schnabel, 1995).  Our results suggest MEX-3 

regulates this transcript, but more work is needed to show that regulation is 

direct.  OOC-3 is a putative transmembrane protein localized to the endoplasmic 

reticulum and is required for the correct localization of the polarity determinants 

PAR-2 and PAR-3, two critical proteins that establish asymmetry in the early 

embryo immediately after fertilization (Basham and Rose, 1999; Pichler et al., 

2000). 

Of particular interest is how MEX-3 functions to maintain totipotency in the 

germline.  The unusual trans-differentiated germline teratoma phenotype is only 

observed in worms with mutations in both mex-3 and gld-1, a second KH-domain 
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RNA binding protein (Ciosk et al., 2006).  Moreover, recent evidence indicates 

that MEX-3 and PUF-8, a Puf-domain RNA binding protein, promote mitotic 

division of germ cells (Ariz et al., 2009).  This suggests that MEX-3 is playing 

redundant roles with other RNA binding proteins in order to ensure preservation 

and maintenance of germline stem cells.  One potential mechanism by which this 

may occur is co-regulation of the same mRNA target.  A potential target that is 

recognized by both MEX-3 and GLD-1 is the mRNA encoding the putative 

transcription factor SOX-2.  C. elegans SOX-2 is homologous to human SOX2, 

which is required for embryonic stem cell self-renewal and is one of the factors 

used to induce pluripotency in induced pluripotency stem cells (iPS) (Fong et al., 

2008; Takahashi and Yamanaka, 2006). C. elegans sox-2 mRNA harbors one 

MRE and one SBE (GLD-1 binding sequence), consistent with the hypothesis 

that MEX-3 and GLD-1 play a redundant role in regulating SOX-2 expression.  

Here, we reveal the requirements for RNA recognition by MEX-3 and 

identify cis-acting elements in the 3’-UTR of its mRNA targets nos-2 and pal-1.  

Our results demonstrate that a large number of transcripts contain a MEX-3 

recognition element within their 3’-UTR, but caution that the MRE is not the sole 

determinant of MEX-3-dependent regulation.  Our results reveal a number of 

candidate targets that could potentially explain the diverse roles of MEX-3 in 

regulating embryonic cell fate specification and maintaining totipotency within the 

germline.  Further work is needed to define which candidate targets are the most 

important factors contributing to the mex-3 mutant phenotypes. 
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Materials and Methods 

Protein expression and purification 

The sequence encoding amino acids 45-205 of MEX-3 was amplified from 

the corresponding ORFeome clone (Open Biosystems) and subcloned into pMal-

c (New England Biolabs), a protein expression vector that encodes an N-terminal 

maltose-binding protein (MBP) tag. MBP-MEX-3(45-205) was expressed and 

purified from BL21 (DE3) Gold (Stratagene) Escherichia coli.  A liquid culture 

grown at 37°C was induced at mid-log phase with 1 mM isopropyl 1-thio-β-D-

galactopyranoside and grown for 3 hours before harvesting cells.  Cells were 

lysed and purified using an amylose (New England Biolabs) affinity column, 

followed by HiTrap Q and source 15Q (GE Healthcare) ion exchange columns at 

4°C.  Purified MEX-3 was dialyzed into storage buffer (25 mM Tris, pH 8.0, 25 

mM NaCl, 2 mM DTT) and stored at 4°C. 

 

In Vitro RNA Selection 

RNA library design and in vitro selection protocols were adapted from 

published protocols with a few modifications (Hori et al., 2005; Loughlin et al., 

2009).  The DNA library was amplified from the template 5’- 

GGGAAGATCTCGACCAGAAG-(N30)-TATGTGCGTCTACATGGATCCTCA with 

a forward (5’ – CGGAATTCTAATACGACTCACTATAGGGAAGATCTCG 

ACCAGAAG - 3’) and reverse (5’ – TGAGGATCCATGTAGACGCACATA - 3’) 

primer pair using three cycles of PCR to make the initial double stranded DNA 
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pool.  RNA was transcribed from 10 pmol of starting DNA template and purified 

as described (Loughlin et al., 2009).   

Binding reactions were carried out in 200 µL of selection buffer (25 mM 

HEPES, pH 7.4, 200 mM NaCL, 75 µg/ml tRNA, 0.01% Igepal CA-630).  

Between 1-800 nM of purified MBP-MEX-3(45-205) was equilibrated with 

transcribed RNA in selection buffer for 1 hour and then mixed with amylose resin 

(New England Biolabs).  The amount of protein used was progressively 

decreased in later rounds to increase stringency.  Unbound RNA was separated 

using a Zeba spin column (Pierce) and washed 2-8 times with 200 µL of selection 

buffer.  MEX-3 bound to RNA was eluted from amylose resin with 10 mM maltose 

in selection buffer.  All reactions were carried out at room temperature.  

Recovered RNA was phenol/chloroform extracted, ethanol precipitated and 

resuspended in 10 µL of TE buffer.  RNA was then reverse transcribed and 

amplified with 10-15 rounds of PCR using the SuperScript III One-Step RT-PCR 

kit with Platinum Taq (Invitrogen).  The new DNA pool was in vitro transcribed to 

generate the next RNA pool to be used. 

A total of 7 rounds of selection were performed.  To increase the selection 

stringency, rounds 6 and 7 included two washes where the salt concentration 

was increased to 500 mM NaCl.  The DNA from pool 7 was subcloned into 

pUC18 using EcoRI and BamHI restriction enzymes, and DNA from individual 

isolates was sequenced. 
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Electrophoretic Mobility Shift Assay 

RNA transcripts or synthetic oligonucleotides (Integrated DNA 

Technologies) were 3’-end labeled with fluorescein 5-thiosemicarbazide 

(Invitrogen) following the protocol previously described (Pagano et al., 2007).  

Electrophoretic mobility shift experiments and data analysis were carried out as 

previously described with a few modifications (Pagano et al., 2007).  Varying 

concentrations of purified MEX-3 were equilibrated with 3 nM of labeled RNA in 

equilibration buffer (0.01% IGEPAL, 0.01 mg/ml tRNA, 10 mM Tris, pH 8.0, 100 

mM NaCl) for 3 hours.  Samples were loaded on a 5% slab polyacrylamide gel in 

0.5X TBE buffer.  Both the gel and running buffer were pre-chilled to 4°C before 

running each sample.  The gels were run for 60 minutes at 120 volts and 

immediately scanned using a fluor-imager (Fujifilm FLA-5000) with a blue laser at 

473 nm.  Due to dissociation in the gel, the 5’ Frag3 RNA EMSA experiment was 

fit to a Langmuir isotherm to determine the apparent equilibrium dissociation 

constant. 

 

Worm Strain Generation 

All transgenic worm strains were made using biolistic transformation 

(Praitis, 2006; Praitis et al., 2001) or MosSCI (Frokjaer-Jensen et al., 2008). The 

unspliced coding region and 3’-UTR of mex-3 was PCR amplified from genomic 

DNA containing NheI and NsiI restriction sites and subcloned into the plasmid 

pJH4.52 (a generous gift of Dr. Geraldine Seydoux, Johns Hopkins University) 
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using the NsiI and SpeI sites to generate the construct pJMP001 (Ppie-

1::GFP::MEX-3::mex-3 3’-UTR). The cloned mex-3 insert was sequenced 

confirming 794 bp from the 5’ end and 191 bp from the 3’ end.  The transgenic 

worm was made using biolistic transformation with unc-119 rescue (Praitis, 2006; 

Praitis et al., 2001).  An equal mixture of pJMP001 and pDEST-DD03 harboring 

the unc-119 gene (a gift of Dr. Marian Walhout, University of Massachusetts 

Medical School) was co-bombarded to generate the transgenic worm 

(sprIs1[Ppie-1::GFP::MEX-3::mex-3 3’-UTR, unc-119(+)]).  

The nos-2 and glp-1 3’-UTR reporter constructs were made using the 

Gateway system (Walhout et al., 2000).  The 3’-UTR of nos-2 was PCR amplified 

from genomic DNA containing attB sites and recombined into pDONRP2R-P3 

with Gateway BP Clonase II Enzyme Mix (Invitrogen) to generate the 3’-UTR 

entry clone pJMP015.  Quickchange was performed on this plasmid to generate 

the nos-2 MREmut 3’-UTR entry clone pJMP044. The glp-1 3’-UTR was 

amplified off of pCM5.40 (provided by the third generation Seydoux Lab Vector 

kit) with attB sites and used to generate pBMF3.1. Multisite Gateway reactions 

were performed using Gateway LR Clonase II Plus Enzyme Mix (Invitrogen) with 

the plasmids pCG142 or pCM1.111, pCM1.35 (provided by the third generation 

Seydoux Lab Vector kit), pCFJ150 (a generous gift from Dr. Erik Jorgensen, 

University of Utah), and either pJMP015 or pJMP044 to generate pJMP046 

(Ppie-1::GFP::H2B::nos-2 3’-UTR), pJMP049 (Ppie-1::GFP::H2B::nos-2 MREmut 

3’-UTR), and pBMF4.1 (Pmex-5::GFP::H2B::glp-1 3’-UTR).  The plasmids 
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pJMP046, pJMP049, or pBMF4.1 were used along with pCFJ90, pCFJ104, and 

pJL43.1 and co-injected into the strain EG4322 to generate single copy gene 

insertions (sprSi1[Ppie-1::GFP::histone H2B::nos-2 3’-UTR cb-unc-119(+)] II; 

sprSi2[Ppie-1::GFP::histone H2B::nos-2 MREmut 3’-UTR cb-unc-119(+)] II; 

sprSi3[Pmex-5::GFP::histone H2B::glp-1 3’-UTR cb-unc-119(+)] II) following the 

direct insertion protocol previously described (Frokjaer-Jensen et al., 2008).  The 

integrated worm strain sprSi3 was confirmed by PCR and strains sprSi1 and 

sprSi2 were confirmed by PCR and sequencing.   

RNAi experiments were performed using mex-3 RNAi food (a generous 

gift from Dr. Craig Mello).  The 3’-UTR reporter strains (JH2436, JH2311, 

JH2236, JH2223, JH2261, JH2324, JH2377, JH2381, and JH2207) used in the 

mex-3 RNAi screen were obtained from the Caenorhabditis Genetics Center 

(CGC).  All strains were grown at 25°C with the exception of sprIS1, sprSI3, and 

JH2261, which were grown at room temperature (~20°C).  This was done to 

decrease the stability of GFP::histone H2B reducing background fluorescence 

that does not recapitulate the expression of endogenous protein.  DIC and GFP 

images were collected with live specimens using a Zeiss Axioskop microscope 

with 40X or 100X objectives.  All GFP::H2B reporter images were taken with the 

same exposure time and contrasted equally for each strain. 
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Bioinformatics  

MREs were identified in release WS190 of the C. elegans genome using 

the pattern matching tool PATSCAN (Dsouza et al., 1997). Using a custom 

MySQL database, the predicted MREs were cross-referenced with the 3’-UTR 

annotations for all transcripts from Wormbase release WS190 to identify genes 

with 3’-UTR containing candidate MEX-3 binding sites.  To identify genes that 

may be regulated by MEX-3, the results were filtered through genome-wide data 

sets describing genes expressed during one to eight cell embryos (Baugh et al., 

2003), genes required to complete embryogenesis (Sonnichsen et al., 2005), and 

genes whose expression is increased in the germline relative to an average of all 

tissues (Reinke et al., 2004).   
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CHAPTER V 

 

Final summary and concluding remarks 
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  The purpose of this study was to test the hypothesis that MEX-5 and 

MEX-3 are specific RNA binding proteins that promote anterior development 

through direct regulation of maternal transcripts in the nematode C. elegans.  

Attention was focused on characterizing the RNA binding specificity as well as 

the mRNA target specificity of both proteins to further elucidate their role in early 

development.  Both quantitative biochemical approaches and molecular 

techniques were employed to dissect the binding parameters of MEX-5 and 

MEX-3. 

 

MEX-5 RNA recognition 

I have demonstrated that MEX-5 is an RNA binding protein that 

recognizes linear RNA containing a tract of six or more uridines within an eight-

nucleotide window.  This is different from its human homologs TTP and Tis11d, 

which bind with high specificity to UUAUUUAUU elements (Hudson et al., 2004). 

To identify residues that may contribute to this difference in RNA recognition 

between MEX-5 and TTP/ERF-2, a homology model was prepared based on the 

NMR structure of ERF-2.  The NMR structure reveals that a glutamate residue 

within each CCCH finger makes a base specific hydrogen bond with the 

adenosine base of UAUU motif (Hudson et al., 2004). MEX-5 on the other hand 

contains a non-conserved arginine and lysine at analogous positions in the first 

and second finger, respectively. The homology model predicts that this residue 

rotates away forming backbone contacts with adjacent nucleotides, a possible 
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explanation for MEX-5 RNA recognition.  Using site directed mutagenesis I was 

able to confer TTP-like specificity to MEX-5 when both basic residues were 

mutated to an acidic glutamate, demonstrating a basis for specificity among 

CCCH TZF proteins.  By understading the binding specificity of MEX-5, we show 

that approximately 91% of annotated 3’-UTRs contains at least one MEX-5 

binding site. In addition, 29 out of the top 30 octamers contain at least six 

uridines.  

 

The role of MEX-5 in early development   

 As my data has shown, MEX-5 is an RNA binding protein with low 

specificity, yet the purpose of this function in early development remains unclear.  

We show that the presence of a MEX-5 binding site is present in 3’-UTR space 

more frequently than expected from a random distribution.  Therefore, 

contrasting with previous hypotheses, MEX-5 does not bind to RNA with 

sufficient specificity to drive regulation of a subset of maternal transcripts. 

The low RNA binding specificity of MEX-5 has several implications for its 

function in development.  It is possible that it is a general mRNA repressor, 

silencing all transcripts in the oocyte and the anterior lineage until it is destroyed 

after the 8-cell stage.  This is unlikely because translation of glp-1 mRNA occurs 

in the anterior and appears to require MEX-5 (Evans et al., 1994; Schubert et al., 

2000).  Alternatively, MEX-5 may be an affinity adapter for a more specific RNA-

binding protein, regulating expression from just a few maternal transcripts as part 
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of a cooperative complex.  If so, then MEX-5 could behave like Drosophila 

melanogaster Nanos protein, which works in complex with Pumilio to regulate 

maternal mRNA expression (Asaoka-Taguchi et al., 1999; Curtis et al., 1997; 

Forbes and Lehmann, 1998).  Finally, MEX-5 RNA-binding activity may not 

contribute to maternal RNA regulation.  Instead, RNA-binding activity may be 

required to target MEX-5 to the posterior centrosome and to P-granules (Figure 

3.1A), two subcellular organelles that contain RNA (Alliegro et al., 2006; Cuenca 

et al., 2003; Pitt et al., 2000; Schubert et al., 2000).  If so, then MEX-5 RNA 

binding activity may play a role in germline maintenance in addition to its role in 

germline formation.   

Further studies should be performed to clarify the purpose of MEX-5 RNA 

binding activity.  One possible approach would be to test if the RNA binding 

activity is required for embryonic development.  This could be addressed by 

performing rescue experiments using variants of the mex-5 gene in a mex-5 

mutant background.  These constructs could contain the same amino acid 

changes described in Chapter III that were shown to change the specificity of 

MEX-5.  An additional approach would be to examine the localization of MEX-5 

when these same mutations are introduced. 

As described in Chapters I and III, MEX-5 is thought to have at least a 

dual role in the early embryo to specify anterior development.  This includes 

regulation of maternal RNAs post-transcriptionally, and also promoting the 

somatic degradation of the germline factors PIE-1, MEX-1, POS-1, as well as 
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MEX-5 itself.  This second function is achieved by MEX-5 activating zif-1, which 

causes the ubiquitination and degradation of target CCCH finger proteins 

(DeRenzo et al., 2003).  Although MEX-5 interacts with ZIF-1 through a yeast-2-

hybrid assay, it remains unclear whether this activity is responsible to activate zif-

1.  This does not exclude the possibility that MEX-5 activates zif-1 at the mRNA 

level, or even indirectly through another factor.  My data reveal that MEX-5 has a 

low RNA binding specificity, so it would be difficult to map possible binding sites 

within the zif-1 transcript with high confidence. 

 

MEX-3 RNA recognition 

 My studies also defined the RNA binding properties of MEX-3.  The MEX-

3 recognition element (MRE) is defined as (A/G/U)(G/U)AGN(0-8)U(U/A/C)UA; a 

bipartite sequence comprised of two four-nucleotide elements with variable 

spacing.  Both putative mRNA targets of MEX-3, pal-1 and nos-2, contain two 

MRE sites and I demonstrate that MEX-3 binds specifically to these elements. To 

test that the MRE is an actual cis-regulatory element, I examined the expression 

pattern of a nos-2 3’-UTR reporter when the MRE sites are mutated.  Mutation of 

these sites leads to derepression of the reporter in a similar manner as reducing 

MEX-3 levels by RNAi.  This is evidence that nos-2 is a direct regulatory target of 

MEX-3.  The MRE is present in the 3’-UTR of approximately 26% of all genes in 

C. elegans.  We also find that the MRE is necessary but not sufficient for 

regulation by MEX-3. 
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The role of MEX-3 in germline and early development 

 The RNA binding activity of MEX-3 is clearly responsible for targeted 

regulation of maternal RNA to promote development of the early embryo.  My 

studies have shown that MEX-3 binds specifically to its putative targets nos-2 

and pal-1, yet it remains unclear what other factors are regulated by MEX-3 to 

specify the AB blastomere.  As AB differentiates into pharynx, its possible that 

MEX-3 is responsible to regulate factors that are necessary for pharyngeal 

development.  Three possible genes are ubc-9, pha-4, and tbx-2, all of which are 

required to specify ABa-derived pharyngeal muscle (Mango et al., 1994; Roy 

Chowdhuri et al., 2006). The 3’-UTR of ubc-9 contains four MRE sites, while tbx-

2 and pha-4 each have one.  Similar to mex-3 mutant embryos, worms that lack 

these genes fail to produce pharyngeal tissue from the ABa blastomere.  My 

results also identify glp-1 as a new putative target, but it is not yet known if this is 

a direct target.  The data suggest that MEX-3 may repress GLP-1 expression in 

the anterior and posterior blastomeres from the two to four-cell stage, but it is not 

clear what role MEX-3 plays in regulating GLP-1.  It is possible that MEX-3 may 

prevent too much glp-1 from being translated in the anterior blastomeres, as it is 

normally expressed in these cells in wild-type embryos. 

As described in Chapters I and IV, MEX-3 also plays a role in germline 

development and may function redundantly with other factors (GLD-1, PUF-8) to 

maintain totipotency in the germline. One group of genes that may be regulated 

by MEX-3 and GLD-1 is the maternal effect sterile (mes) genes.  The proteins 
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MES-3 and MES-6, along with a third protein MES-2 form a DNA-methylating 

Polycomb-like complex that modifies histone H3 and K27 residues thus silencing 

the X chromosome in germline cells (Bender et al., 2004). Post-transcriptional 

regulation of the mes genes by MEX-3 and GLD-1 may be required to ensure 

appropriate transcriptional silencing during germline development and in adult 

germline stem cells.  The 3’-UTR of mes-3 contains both GLD-1 and MEX-3 

binding sites, and the 3’-UTR of mes-6 contains a binding site for MEX-3.  GLD-1 

is already known to bind specifically to the 3’-UTR of mes-3 and represses its 

translation in the meiotic syncitial region of the germline (Xu et al., 2001).  

Transcriptional deregulation caused by mis-expression of the mes genes could 

drive expression of transcripts that promote cellular differentiation. 

 

A mechanistic view of MEX-5 and MEX-3 RNA regulation 

 Thus far, the mechanism of RNA regulation by MEX-5 and MEX-3 remains 

unknown.  I propose that MEX-5 serves as multifunctional protein in terms of 

RNA regulation, while MEX-3 functions as a translational repressor.  In the case 

of MEX-5, previous studies show that MEX-5 protein is required to regulate the 

abundance of nos-2, mex-1, and pos-1 transcript levels, suggesting that MEX-5 

may regulate mRNA stability (D'Agostino et al., 2006; Tenlen et al., 2006).  On 

the other hand, MEX-5 is required for GLP-1 protein expression in the anterior 

blastomeres.  The mRNA of glp-1 is present in all blastomeres, yet the protein is 

only expressed in the anterior descendents of AB at the four-cell stage (Schubert 
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et al., 2000).  This suggests that MEX-5 may also function as a translational 

activator.  However, no mechanistic studies have been performed to test these 

hypotheses.  

 MEX-3 may function as a translational repressor to specify the AB 

blastomere.  In the case of pal-1, the mRNA is present throughout the entire 

embryo at the four-cell stage, yet the protein is expressed only in the posterior 

blastomeres (Hunter and Kenyon, 1996).  This expression pattern of PAL-1 anti-

correlates with MEX-3, suggesting MEX-3 translationally represses pal-1.  

Although this proposes a role for MEX-3 regulation, one cannot rule out the 

possibility that MEX-3 functions to regulate mRNA stability, localization, or other 

mechanisms.  pal-1 is only one of potentially several mRNA targets of MEX-3, 

and there are no mechanistic studies of this RNA binding protein thus far.  

 

mRNA target specificity 

 My findings reveal that MEX-5 and MEX-3 do not recognize RNA targets 

with very high sequence specificity, but instead are more degenerate.  When 

analyzing every annotated 3’-UTR in C. elegans, we observe that over 90% of 

genes contain a MEX-5 binding site, while 26% contain a MEX-3 binding site.  

This leads us to the difficult problem of how mRNA target specificity and/or 

regulation is achieved.  One possibility is that these proteins function in 

multifactor complexes.  Specificity may be accomplished through a combination 

of RNA binding proteins where individually, each has relatively low sequence 
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specificity, but together are very specific to target mRNAs.   Alternatively, the 

location of a binding site within a given UTR may cause a transcript to be more 

accessible for regulation by trans-acting factors.  The determinant glp-1 is an 

example that depends upon several RNA binding proteins for its regulation 

throughout the germline and early embryo (GLD-1, POS-1, MEX-3, MEX-5/6, 

SPN-4, PUF-5/6/7) (Farley and Ryder, 2008).  Analysis of the glp-1 3’-UTR 

reveals a group of previously characterized functional elements present within a 

highly conserved region of the UTR (Figure 5.1).  Perhaps clusters of binding 

sites found within conserved regions of UTR space sets a precedent for mRNA 

target specificity.  This paradigm would greatly facilitate target identification and 

help map out regulatory networks for RNA binding proteins.   

 Another way mRNA target specificity could be achieved is through the 

presence of multiple binding sites within a transcripts 3’-UTR.  As mentioned in 

Chapter IV, both MEX-3 targets nos-2 and pal-1 contain two MREs in their 3’-

UTR.  glp-1 is a new putative target and also has two MRE sites within its 3’-

UTR.  However, MEX-3 is capable of binding to a single MRE with high affinity in 

vitro, and there is no evidence to indicate that a single MRE is not sufficient to 

support MEX-3 dependent regulation.  Future studies will help clarify what role 

the context of a binding site plays that favors regulation of a transcript.  For this 

to be accomplished, it is critical to continue dissecting the requirements for RNA 

recognition of individual RNA binding proteins as was done with MEX-5 and 

MEX-3.  In addition to quantitative biochemical approaches, it will be useful to 
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identify mRNA targets of specific RNA binding proteins using high-throughput 

approaches in vivo.  These include techniques such as RNA co-

immunoprecipitation with sequencing or RT-PCR to screen candidate mRNA 

targets.  Comparing targets identified in vivo with targets predicted in silico may 

reveal regions in sequence space that are preferred for RNA binding.  
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Figure 5.1 
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Figure 5:1: Presence of functional elements within the glp-1 3’-UTR.  The 
binding sites of GLD-1, MEX-3 and POS-1 are located within a highly conserved 
region of the glp-1 3’-UTR.  Conservation predictions are derived from C. 
briggsae, C. remanei, C. brenneri, C. japonica, and Pristionchus pacificus 
genome sequence information. The cluster of functional elements is highlighted 
in pink.  This image has been exported from the UCSC genome browser created 
by the Genome Bioinformatics Group of UC Santa Cruz. 
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