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Preface 
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This question turned out to be much more complex than I originally anticipated; it 

was more complex than the field or even my committee understood at the time. 

But I knew how it looked. “Is this project really that complex, or is this student just 
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forever.” I suppose this is how every committed scientist feels when faced with a 

challenging investigation that sometimes seems hopeless and nobody else 

seems to understand. This feeling really broke me down at times, even to the 

point of tears once or twice. However, deep down, I knew I was not deluded 

about the complexity of the problem before me. I knew that I was making 

progress that would break the story open sometime soon, and that persevering 

against these types of odds is a minimum requirement for survival in science. 

Thus, I met with each of my committee members to ask for just one more year of 

research, explaining to each of them why my luck has not been good and how 
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 In vitro, I was able to generate double-knockout macrophages from non-

viable mice, and studied them using the standard methodology of the field. At 
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first, my results were exciting, since I found a complete phenotype in immortal 

cells and a partial phenotype in primary cells. But something did not feel right 

about these experiments. Coming up with my own methods to control for cell 

death, cell number and intracellular cytokine levels, my original data turned out to 

comprise a panel of various artifacts reflecting different though still important 

biology. Among these new phenomena I was documenting, I made some 

interesting early findings that seemed to highlight the importance of cell death in 

my system. However, after presenting some of these findings at conferences, I 

was scooped by another group, sending me right back to square one. But, I felt 

that this group, which scooped my work, misinterpreted their data. Indeed, the 

more I learned about my field, the more I realized the prevalence of 

misinterpretation and the under appreciation of the biological complexity inherent 

to this system. 

 Then, a little more than a year and a half ago, I had a breakthrough. I 

obtained a reagent called BMV109 from a collaborator that allowed me to 

examine my system with more precision than almost anyone else in the field at 

the time. I developed two real-time assays to measure lysosomal and 

mitochondrial dynamics. I standardized a new approach to siRNA knockdown in 

primary macrophages using Endoporter in combination with RNAiMax to silence 

~98% of the message for multiple genes at once with minimal toxicity. By 

diversifying the experimental approaches I was using and examining multiple 
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angles of inquiry, I had built my own literature base upon which I could 

consistently rely. All I needed was time.  

 The bulk of my dissertation comes from these breakthroughs during the 

last year and a half of my research. I could have taken it much further. But I have 

learned that answering one question just leads to more questions; there is 

inherent entropy to inquiry. For now, having answered my original research 

question, I reached my goal as a Ph.D. student. And, for whatever it is worth, I 

described what I believe to be an important biological concept, if not just a new 

term, which I call “cathosis” (cathepsin-mediated inflammatory necrosis). 
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Abstract 
 
Sterile particles underlie the pathogenesis of numerous inflammatory diseases. 

These diseases can often become chronic and debilitating. Moreover, they are 

common, and include silicosis (silica), asbestosis (asbestos), gout (monosodium 

urate), atherosclerosis (cholesterol crystals), and Alzeihmer’s disease (amyloid 

Aβ). Central to the pathology of these diseases is a repeating cycle of particle-

induced cell death and inflammation. Macrophages are the key cellular mediators 

thought to drive this process, as they are especially sensitive to particle-induced 

cell death and they are also the dominant producers of the cytokine responsible 

for much of this inflammation, IL-1β. In response to cytokines or microbial cues, 

IL-1β is synthesized in an inactive form (pro-IL-1β) and requires an additional 

signal to be secreted as an active cytokine. Although a multimolecular complex, 

called the NLRP3 inflammasome, controls the activation/secretion of IL-1β (and 

has been thought to also control cell death) in response to particles in vitro, the in 

vivo inflammatory response to particles occurs independently of inflammasomes. 

Therefore, I sought to better understand the mechanisms governing IL-1β 

production and cell death in response to particles, focusing specifically on the 

role of lysosomal cathepsin proteases. Inhibitor studies have suggested that one 

of these proteases, cathepsin B, plays a role in promoting inflammasome 

activation subsequent to particle-induced lysosomal damage, however genetic 

models of cathepsin B deficiency have argued otherwise. Through the use of 
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inhibitors, state-of-the-art biochemical tools, and multi-cathepsin-deficient genetic 

models, I found that multiple redundant cathepsins promote pro-IL-1β synthesis 

as well as particle-induced NLRP3 activation and cell death. Importantly, I also 

found that particle-induced cell death does not depend on inflammasomes, 

suggesting that this may be why inflammasomes do not contribute to particle-

induced inflammation in vivo. Therefore, my observations suggest that 

cathepsins may be multifaceted therapeutic targets involved in the two key 

pathological aspects of particle-induced inflammatory disease, IL-1β production 

and cell death.  
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Chapter I: Introduction 
 

Overview 

 
Pathology comes from the Greek roots “pathos” (suffering) and “logia” (the study 

of), and is therefore defined as “the study of suffering”(1). More practically, 

pathology is a branch of biological and medical sciences concerned with 

understanding the process of how something that was going right (physiology), 

ends up going wrong (pathology). Therefore, in order to understand any 

particular type of pathology, one needs to first understand the complementary 

physiology. Since the scope of this thesis is concerned with understanding a 

mechanism of pathology, whereby the immune system goes wrong, a brief 

background on what the immune system normally does right will be described as 

well.  

The goal of this thesis is to examine the pathological basis of the immune 

response to disease-causing sterile particles and to identify tractable therapeutic 

targets with the potential to prevent or alleviate human suffering. It is certain that 

pathology during particle-induced inflammatory disease is initiated by the 

particles themselves, and therefore, the focus of this thesis will be on the cellular 

mechanisms governing the initial response of the immune system to sterile 

particles. But first, I will begin with an overview of particle-induced sterile 

inflammatory disease as it relates to human suffering. 
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Particle-induced Sterile Inflammatory Disease 

 
Exogenous and endogenous sterile particles are known to drive the 

pathogenesis of debilitating and often incurable inflammatory diseases(2). The 

exogenous particles responsible for such diseases include silica and asbestos, 

which cause two of the most common fibrotic restrictive lung disorders in world 

today, silicosis and asbestosis. It should be noted that asbestos is itself classified 

as a silicate(3). Lung disorders of this type are referred to as pneumoconioses, 

and inhalation of these particles is commonly associated with blue-collar jobs, 

such as construction, textile work, masons (especially those who work with 

sandstone), and miners(4). These diseases usually manifest over a period of 10 

years(3, 4). Typical presentations for any pneumoconiosis include progressive 

decline in respiratory function, reported by patients as breathlessness, and 

fibrotic changes detected by X-ray as pleural plaques (asbestosis) or dense 

pulmonary nodules (silicosis)(3, 4). In the case of asbestosis, prognosis in mild 

cases is usually good, with little progression following cessation of exposure and 

effective treatment with bronchodilators and supplemental oxygen(3, 4). 

However, more severe cases lead to steady decline in pulmonary function that 

may require a pulmonary transplant if the disease has not already progressed to 

lung cancer (mesothelioma), as it often does(3, 4). Silicosis, however, is 

relentless and progressive, even following cessation of exposure(3, 4). 
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Progressive massive fibrotic and coalescent nodules may be present in the lungs 

even before symptoms occur(3, 4). Like asbestosis, silicosis often progresses to 

cancer, the risk of which is higher in smokers(3, 4). Additionally, silicosis 

increases the risk of pulmonary infections, like tuberculosis(3, 4). Finally, silicosis 

is also often associated with the development of autoimmune disorders, like 

lupus, rheumatic arthritis, and scleroderma(3, 4). Unfortunately, the only effective 

treatment for silicosis is a lung transplant(3, 4). There are numerous other 

disease-associated particles that will not be discussed further, but they include 

the following: titanium dioxide (5, 6), coal dust(7), and cigarette smoke(8), to 

name a few. Currently, the most effective public health measures have been 

regulations that reduce exposures to these noxious environmental particles. 

 Compared to exogenous particles, preventing exposure to endogenous 

inflammatory particles is not as simple. These particles form inside the body 

upon supersaturation of their precursor solutes within body fluids or their 

overproduction in pathological states. Common diseases like atherosclerosis, 

gout, and pseudogout are known to be driven by crystalline particulates, such as 

cholesterol crystals (CC)(9-11), monosodium urate (MSU)(12), and calcium 

pyrophosphate (CPP)(13), respectively(12). There are numerous other crystals 

associated with diseases in the body: Charcot-Leyden crystals (allergic asthma 

and parasitic diseases)(14), malarial hemozoin (malaria)(15), and calcium/uric 

acid renal stones, gallstones and calculi (gall bladder and renal disease)(1), to 

name a few. Furthermore, there are numerous particulate protein complexes also 



 5 
 

associated with common and/or debilitating human diseases: islet amyloid 

polypeptide (type II diabetes)(16), amyloid A-beta (Alzeihmer’s)(17), alpha-

synuclein and tau (Parkinson’s), serum amyloid A (SAA) (systemic 

amyloidosis)(18-20), beta-2 microglobulin (dialysis-related amyloidosis), 

transtheyretin (familial amyloidosis), immunoglobulin light chain (light chain 

amyloidosis), to name a few(21).  

Given the amount of human suffering associated with this vast array of 

exogenous and endogenous particles, there is considerable impetus for 

understanding how they cause disease. Therefore, I focus here on understanding 

the pathogenesis of these diseases by examining two key events that occur 

concomitantly during the initial immune response to sterile particles: lytic cell 

death and the generation of inflammatory mediators(2, 7). Almost every 

particulate mentioned above has been shown to directly induce lytic cell death 

and inflammation. This phenomenon raises important questions: What 

evolutionarily basis is there for cells to respond to particles this way? How does 

this response cause disease? Here, my investigation is based on the following 

two assumptions:  

 

(1) Lytic cell death and the inflammatory recruitment of immune cells is an 
appropriate and protective host response that can lead to sterilizing 
immunity when host cells are burdened with intracellular pathogens(22-
24).  
 
(2) When induced by sterile particles, such a response has almost entirely 
pathologic consequences(25, 26).  
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Unlike a bacterium or a virus, sterile particles are not themselves dangerous 

pathogens and many of them cannot be destroyed or broken down by immune 

defense mechanisms(9). There is simply nothing there that needs to be killed. As 

noted above, chronic exposure to these particles can lead to severe and 

debilitating pathology over time, characterized by functional decline of the 

affected organs brought on by fibrotic change. This is evident in the non-

compliant lungs of patients with silicosis or asbestosis and in arteries that have 

been thickened and narrowed by atherosclerosis(27, 28). Therefore, engaging 

normal immune defense mechanisms to these particles does not improve their 

clearance, but instead, a continual stimulation of the immune response leads to 

chronic inflammation. Specifically, it seems that particle-induced diseases occur 

as a result of an ongoing cycle of cell death and inflammation(7, 29). Particles 

are engulfed (phagocytosed) by white blood cells of the innate immune system 

called macrophages (named as such according to their main function; literally 

translated, “big eaters”). Next, these macrophages die, releasing intracellular 

debris, inflammatory mediators and any engulfed particles back into the 

environment. These inflammatory mediators recruit more innate immune cells to 

this site, where they engulf these particles, and the cycle begins once again. 

Trying to kill/clear something that cannot be killed or cleared, they destroy the 

surrounding healthy tissue and replace it with fibroses (thick plaques of collagen) 

to isolate (via walls of fibroses) the undefeatable threat. Each time this cycle 
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occurs, another step is taken toward disease and away from normal tissue 

structure, homeostasis and health.  

Although a common understanding of the pathological mechanisms that 

occur downstream of this cycle is still incomplete, I can be certain that particles 

are absolutely required to initiate particle-induced inflammatory disease. 

Therefore, my focus has been on identifying potential therapeutic targets 

involved in the two primary events incited by particles, cell death and 

inflammation. I expect that suppressing these inciting events might prevent the 

downstream pathology. Moreover, I sought to better understand these events by 

examining the primary phagocytic sentinels of the innate immune system, 

present in every tissue in the body, mononuclear phagocytes (macrophages).  
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Chapter I, Figure 1: Particle-induced sterile inflammatory pathology results 
from a repeating cycle of particle-ingestion, lytic cell death, and the release 
of inflammatory mediators. When macrophages encounter inflammatory 
particles, they phagocytose (or ingest) these particles, which lead to lytic cell 
death and the release of the particles & inflammatory mediators, like IL-1β, IL-1α, 
and danger-associated molecular patterns (DAMPs). These mediators recruit 
more innate immune cells, like macrophages and neutrophils, which can once 
again phagocytose the released particles and begin the cycle again. 
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The Immune System: Protection from pathogens 

 
The immune system evolved to protect the body from pathogenic 

microorganisms, including bacteria, fungi, viruses, and parasites(30). Defense 

against these pathogens is generally broken down into two distinct branches of 

immunity: Innate Immunity and Adaptive Immunity(30).  

 The innate immune system provides constant surveillance and protection 

from pathogens that breach the primary epithelial barriers in the skin and 

mucosa(30). This response is rapidly initiated by sentinel cells normally present 

in all tissues of the body called mononuclear phagocytes, referred to herein for 

the sake of simplicity as macrophages (in tissues) or monocytes (in the 

circulation)(30). The vast majority of pathogens are controlled at this stage, 

where they are phagocytosed and digested(30). Minor exacerbations of this 

response, when epithelial barriers are disrupted, often lead to a more robust 

"induced response"(30). During the induced response, macrophages secrete 

proteins that signal changes in the activity of other cells or direct their movement, 

called cytokines and chemokines, respectively(30). Among other things 

discussed below, this recruits secondary innate effectors not normally present in 

tissues called neutrophils, which ingest and enzymatically/chemically degrade 

localized pathogens(30). This induced response produces all the hallmarks of 

inflammation(30). Heat and redness result from vasodilation, which increases the 

activity and delivery of immune cells and humoral (in the blood) factors to the 
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area(30). Pain and swelling result from vascular permeability, which focuses the 

attention of the organism to the problem and facilitates the penetration of immune 

cells and humoral factors into the tissue(30). When severe, but still localized, 

inflammation can also lead to loss of the surrounding tissue and/or organ 

dysfunction(30). And, when systemic, inflammation can lead to either chronic 

organ damage over long periods of time or acute and catastrophic organ system 

collapse and death(30). Therefore, regulation of inflammation is critical for an 

effective yet self-limiting response to pathogens(30). 

 Though many pathogenic challenges are resolved quickly and effectively 

by the innate response, as we are under constant challenge from external 

pathogens, sometimes the innate response is overwhelmed(30). In such cases, 

the adaptive immune response is called into action(30). Unlike the innate 

response, the adaptive response is slow to develop, but it has the capacity to 

generate highly specific, antigen-based (“antigen” is term that originally served as 

an abbreviation for “antibody generator”) responses to pathogens that leave the 

organism with lifelong immunological memory(30, 31). This memory allows the 

adaptive immune system to respond to a second challenge by the same 

pathogen rapidly and robustly(30). This is the principle relied upon for 

vaccination(30). While these qualities make the adaptive immune system 

superior to the innate immune system in some ways, the innate response is 

critical for the induction of the adaptive response(30).  
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 The induced innate response queues up the adaptive immune system by 

activating specialized antigen-presenting cells (APCs), most notably dendritic 

cells (DCs), but also including macrophages and B cells (discussed below)1(30). 

Factors (cytokines and chemokines) produced by innate immune cells enhance 

the expression of co-stimulatory molecules on APCs, allowing them to take the 

information they have acquired through their innate ability to sense pathogens 

and transmit it to adaptive effector cells, which they activate(30). This information 

comes in the form of a molecular signature of the pathogen that is displayed by 

the APC to these adaptive immune cells expressing matching cognate 

receptors(30). Therefore, it is from these APCs, which ingest and process 

pathogen-derived antigens, that the appropriate cells of the adaptive immune 

system receive instructions about when/where to proliferate and what pathogen 

to destroy(30). Moreover, the panel of cytokines and chemokines secreted by 

innate immune cells differs based on the nature of the inciting pathogen, and in 

this way they shape the adaptive response as needed for a particular pathogenic 

challenge(30).  

 Adaptive effector cells, which are comprised of lymphocytes, like thymus-

derived T cells or bone-marrow-derived B cells, depend on the information 

conveyed by innate cells to execute many of their functions(30). While cytotoxic 

T cells engage and kill infected cells directly, they require chemotactic signals 

                                                 
1 B cells are the only strictly adaptive immune cells that are also APCs. 32.Rock, K. L., 
B. Benacerraf, and A. K. Abbas. 1984. Antigen presentation by hapten-specific B 
lymphocytes. I. Role of surface immunoglobulin receptors. J Exp Med 160:1102-1113. 
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from local innate cells to direct them to the area of infection(30). Moreover, 

similar information from innately cued APCs is required for the activation and 

efficacy of the “helper” T-cell (Th) responses, which administrate the entire 

adaptive immune response(30). Th responses, broadly characterized as Type I 

helper T cells (“cell-mediated immune responses”) act primarily by augmenting 

the ability of macrophages to kill ingested pathogens, and type II helper T cells 

(“humoral immune responses”) primarily activate B cells to produce copious 

quantities of antibodies that aid in the opsonization/neutralization/destruction of 

extracellular pathogens/toxins for ingestion and digestion by macrophages2(30). 

Therefore, the innate immune system is vital for the engagement, direction, and 

implementation of adaptive immunity, and inappropriate or excessive activation 

of the innate immune system has the potential to initiate and/or exacerbate 

autoimmune disease(30). For the purpose of this thesis, my focus will be on the 

role of macrophages in the innate immune response, since these sentinel cells 

are at the interface between physiologic responses to pathogens/cellular debris 

and pathologic responses to sterile particles.  

 

Innate Sensing of Pathogens: Janeway’s Pattern Recognition 
Theory 
 

                                                 
2 Antibodies are also important biological tools in laboratory settings. 33. Marshak-
Rothstein, A., P. Fink, T. Gridley, D. H. Raulet, M. J. Bevan, and M. L. Gefter. 1979. 
Properties and applications of monoclonal antibodies directed against determinants of 
they Thy-1 locus. J Immunol 122:2491-2497. 
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Chemokines and cytokines form the basis of the innate inflammatory response, 

and the cytokines IL-1, TNF-α and IL-6 are master regulators of this process(34). 

These cytokines initiate all the hallmarks of inflammation, discussed above. 

Another important class of inflammatory cytokines(34), Type I and II IFNs, direct 

critical facets of antiviral immune responses, cell-mediated immunity, and antigen 

presentation by APCs(34). Importantly, preventing pathological initiation of innate 

and adaptive responses requires that these inflammatory cytokines are produced 

only in response to pathogens (or cell injury, discussed below in the section on 

sterile inflammation). Therefore, macrophages, as well as nonprofessional 

immune cells that participate in innate immune responses (ex- epithelial cells), 

have evolved a set of receptors that recognize foreign pathogens whilst 

maintaining tolerance and measured responsiveness to self-derived stimuli(34).  

In 1989, Charles A. Janeway Jr. proposed that, “effector mechanisms [are] 

activated by nonclonally distributed receptors whose specificity developed over 

evolutionary time to recognize patterns found on the surfaces of large groups of 

microorganisms”(35). Indeed, this has proven to be correct. These germline-

encoded receptors are called PRRs (pattern/pathogen-recognition receptors), 

and they respond to PAMPs (pathogen-associated molecular patterns) by 

initiating the transcription of pro-inflammatory genes, like those encoding the 

cytokines just mentioned above(34). Unlike antigen receptors of the adaptive 

immune system, which are highly adaptable and specific receptors encoded on B 

cells and T cells, PRRs are immutable and have broad specificity for conserved 
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PAMPs(34). Moreover, PRRs allow innate immune cells to immediately 

recognize and respond to these PAMPs, which are evolutionarily conserved 

structures common to a wide variety of pathogens(34). The PRRs encoded by 

macrophages generally fall into four main categories: the cell surface or 

endosomal TLRs (Toll-like receptors), the cell surface CLRs (C-type lectin 

receptors), and the cytosolic NLRs (NOD-like receptors), and RLRs (RIG-I-like 

receptors)(34). There is also a group of cytosolic DNA sensors sometimes 

referred to as the ALRs (AIM2-like receptors)(34). Since, RLRs and CLRs fall 

outside the scope of this thesis, they will be mentioned only briefly. Importantly, a 

particular group of these receptors can form complexes called inflammasomes, 

which are activated by various pathogenic and injurious stimuli(34). One of these 

inflammasomes, NLRP3, governs the inflammatory response to lytic cell death 

and sterile particles(34). Therefore, NLRP3 will be discussed in great detail later 

on. 

 

TLRs – Plasma Membrane and Endosomal Pathogen 
Recognition 
 

TLRs are named after the receptor Toll, originally discovered for its role in 

directing the development of the dorsal-ventral axis in the body plan of 

Drosophila melanogaster (fruit fly)(36). Toll was later shown to be important for 

innate immune signaling in the fruit fly(37). Signaling through Toll by the protein 
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Spatzle, which is activated upon exposure to gram-positive bacteria, fungi and 

parasites, leads to nuclear translocation of a transcription factor homologous to 

mammalian NF-κB (nuclear factor kappa-B), called Relish(38, 39)3. In fruit flies, 

this leads to the synthesis and secretion of antimicrobial peptides. Mammalian 

TLRs have an analogous signaling pathway, culminating with the nuclear 

translocation of NF-κB. Among other things, mammalian NF-κB drives the 

transcription of a diverse set of pro-inflammatory mediators, like TNF-α (tumor 

necrosis factor alpha), IL-6 (interleukin six), pro-IL-1α and pro-IL-1β (pro-

interleukin-1 alpha and beta). IL-6 and TNF-α induction and secretion is 

fastidiously regulated transcriptionally and post-transcriptionally by several 

mechanisms(41-44). Importantly, unlike TNF-α and several other cytokines, the 

IL-1β transcript is translated into a precursor, pro-IL-1β, which is inactive and not 

automatically secreted following synthesis(34). A second signal is required for 

the cleavage-based activation of the 37 kDa precursor pro-IL-1β into the 17 kDa 

mature and bioactive IL-1β, which leads to its secretion by an unknown 

mechanism(34). This extra level of post-translational regulation over active IL-1β 

secretion (there are several additional regulatory mechanisms that will not be 

discussed here) is a testament to the fact that inappropriate IL-1β secretion has 

pathologic potential. Therefore, in the coming sections, much of this thesis will 

focus on the process of IL-1β activation/secretion.  
                                                 
3 Activation of this pathway requires the kinase TAK1. 40. Silverman, N., R. 
Zhou, R. L. Erlich, M. Hunter, E. Bernstein, D. Schneider, and T. Maniatis. 2003. 
Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol 
Chem 278:48928-48934.. 
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All TLRs are membrane bound, containing an intracellular Toll/IL-1R 

homology (TIR) domain for signaling, and an extracellular/luminal LRR (leucine-

rich repeat) domain(34). The LRR domain is the ligand-sensing component of 

TLRs and it determines their specificity(34). The plasma-membrane-bound TLRs 

include TLRs 1,2,4,5 & 6, which sense a variety of lipid and sugar-modified 

pathogen-associated structural and biochemical motifs(34). The endosomal 

TLRs include TLRs 3,7,8 & 9, which sense various forms of microbial (and in 

some cases, host) nucleic acids introduced by invading microbes(34). TLR-

mediated signaling generally proceeds through either of two adaptors: MyD88 

(myeloid differentiation primary response gene 88) or TRIF (TIR-domain-

containing adapter-inducing interferon-β)4(34). While TLRs 1,2,4,5,6,7,8 & 9 

signal through MyD88 leading to NF-κB translocation, TLR3 does not(34). 

Instead, TLR3 signals solely through the adaptor TRIF (TIR-domain-containing 

adapter-inducing interferon-β)(34). Unlike, MyD88, TRIF signaling causes 

slow/weak NF-κB translocation and primarily leads to activation of the 

transcription factor IRF3 (interferon regulatory factor 3), which induces the 

production of the antiviral cytokine IFN-β (interferon-beta)(34). However, in 

specialized DCs (plasmacytoid DCs), TLRs 7,8 & 9 also activate the transcription 

factor IRF7 through MyD88 leading to the production of the functional counterpart 
                                                 
4 MyD88 requires the bridging adaptors TIRAP ((TIR) domain-containing adaptor 
protein) and Mal (MyD88-adapter-like)45. Fitzgerald, K. A., E. M. Palsson-
McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. 
Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, 
and L. A. O'Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like 
receptor-4 signal transduction. Nature 413:78-83.. 
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to IFN- β, called IFN-α, which are together referred to as Type I IFNs(30). Type I 

IFNs are critical antiviral immune regulators, but they are outside the scope of 

this thesis and will not be discussed here in detail.  

Among the TLRs, the best studied is TLR4, which senses a major 

structural component in the cell wall of gram-negative bacteria called LPS 

(lipopolysaccharide)(34). Interestingly, sensing of LPS by TLR4 occurs in 

cooperation with the soluble molecules Lbp (LPS-binding protein) and myeloid 

differentiation factor 2 (MD-2), as well as the membrane-bound co-receptor 

CD14, which is critical for binding free LPS(46). Moreover, TLR4 is the only TLR 

that signals through both the MyD88 and TRIF pathway(34). In fact, MyD88-

dependent signaling by TLR4 has recently been shown to occur at the plasma 

membrane, while TRIF-dependent signaling involves CD14-mediated 

internalization of TLR4 and proceeds from the endosome to induce Type I IFNs 

and a second wave of NF-κB signaling(47, 48). 

 

CLRs – Plasma Membrane Recognition of Fungi and Dead Cells 
 

CLRs are plasma-membrane-bound receptors that bind to carbohydrate moieties 

most often associated with fungal pathogens(34). However, CLRs can also 

sense some bacterial and viral pathogens via surface expressed carbohydrates 

as well(34). Two CLRs important for initiating host defense against Candida 

albicans are dectin-1 and 2, which recognize beta-glucans in the fungal cell wall 
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and initiate inflammatory cytokine production via Syk tyrosine kinase(34). In 

addition to other transcription factors, this pathway also can lead to NF-κB 

activation, although the exact signaling mechanisms are not well described(34).  

Importantly, several CLRs are involved in the sterile immune response to 

cellular debris and are also important mediators of inflammation and vaccine 

responses(34). Lytic cell death exposes intracellular components to the innate 

immune system that are not normally present in healthy tissues(34). Because 

these components are not normally seen by innate immune cells, this debris is a 

sign of ongoing infection or cell injury requiring the activation of immune 

defenses or clean-up and repair(34). This concept will be discussed later in detail 

in the section on sterile inflammation. Two well-studied CLRs worth mentioning 

are Mincle (Clec4e) and DNGR-1 (Clec9a)(34). Mincle is expressed on 

macrophages and neutrophils, and it senses spliceosome-associated protein 130 

(SAP130) released during necrosis(34, 49). Also, DNGR-1 is expressed on DCs 

and senses filamentous actin released from necrotic cells(50, 51). Importantly, 

the DNGR-1 response is critical for the cross-presentation of dead-cell 

associated antigens often incorporated into vaccine designs aimed at inducing 

strong cell-mediated immunity(52-54). Therefore, CLRs are important for sensing 

and responding to both pathogens and tissue injury(34). 

 

NLRs – Cytosolic Recognition of Bacterial Patterns 
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There are three main families of cytosolic PRRs, the NLRs and the nucleic acid-

sensing PRRs (RLRs and DNA sensors/ALRs described below)(34). NLRs are 

named after the cytosolic receptors NOD1 and NOD2 (nucleotide-binding 

oligomerization domain-containing proteins 1 and 2)(34). Like plasma 

membrane-bound TLRs, NOD1 & 2 primarily sense structural components of 

bacteria via LRR domains(34). Upon activation, NODs oligomerize via their NOD 

domains, and recruit effectors through their signaling domains called CARDs 

(caspase-activation and recruitment domains), which leads to NF-κB activation 

similarly to membrane-bound TLRs(34). Importantly, the NLR family includes 

several cytosolic proteins capable of forming a multimolecular complex known as 

the inflammasome, which drives the proteolytic cleavage/activation and secretion 

of IL-1β (discussed below)(34). 

 

RLRs – Cytosolic Recognition of Viral RNA 
 

RLRs (RIG-I-like receptors) are cytosolic and include RIG-I, MDA5 (melanoma 

differentiation-associated gene 5), and LGP2(34). Though they are also primarily 

cytosolic, RLRs have different ligand sensing domains than NLRs and generally 

respond to cytosolic nucleic acids (mostly RNA), thereby inducing Type I IFN 

production(34). Thus, their sensing repertoire and gene induction profiles are 

more similar to endosomal TLRs(34). And like endosomal TLRs, they are critical 

for mounting antiviral responses(34). RLRs share the same downstream 
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transcription factors as these TLRs, but are critically dependent on the 

mitochondrial bound adaptor IPS-1 (IFN-β-promoter stimulator 1, aka 

MAVS)(34). Moreover, together with cytosolic DNA-sensing receptors (discussed 

below), they also depend on TBK1 (tank-binding kinase 1) and the ER-bound 

adaptor STING to activate IRF3 & 7-dependent transcription(34).  

 

Cytosolic DNA Recognition 
 

Cytosolic DNA, usually introduced by DNA viruses or intracellular bacteria, also 

activates strong innate responses through multiple receptors and is typified by 

two classes of cytosolic DNA-sensors(55). The first class includes, cGAS (cyclic 

guanylate adenylate synthase), IFI16 (interferon inducible protein 16), DDX41 

(Dead-box protein 41), and DAI (DNA-dependent activator of IRF), and are 

mainly characterized by their participation in the induction of Type I IFN 

responses(55). As many of these receptors are upregulated by Type I IFNs, have 

overlapping tissue expression, and can stimulate similar downstream responses, 

they may play redundant roles in innate immunity(55).  

However, the second class include a non-redundant and critical aspect of 

cytosolic DNA sensing; the induction of IL-1β responses through the DNA-

sensing inflammasome receptor AIM2 (absent-in-melanoma 2)(56). AIM2, like 

several of the NLRs, forms an IL-1β-activating inflammasome in response to 
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cytosolic dsDNA (a synthetic ligand often used to stimulate this response is 

poly(dA-dT), referred to herein as dAdT (inflammasomes are discussed below)).  

Importantly, nucleic acid-based (especially DNA-based) vaccines are often 

used to provoke protective immune responses involving aspects of both classes 

of DNA-sensors and downstream signaling(57, 58). However, the simultaneous 

induction of these responses can also have disastrous consequences under 

circumstances where DNA accumulates in the cytosol, as it does in several 

pathological conditions. Cytosolic nucleic acid sensors, like AIM2, RIG-I and the 

battery of known Type I IFN inducing DNA sensors can sense undigested nucleic 

acid complexes, which accumulate as a result of DNase or RNase deficiency, 

leading to IFN-driven autoimmune diseases that cause robust inflammatory 

pathology(59-61). Importantly, antibody immune complexes carrying nucleic 

acids (or other TLR ligands) in autoimmune disease are also inflammatory 

particulates, and thus, they relate back to the theme of this thesis. 

 

Inflammasomes 
 

The term “inflammasome” was originally coined by the late Jürg Tschopp in 

2002(62). Inflammasomes are cytosolic multimolecular IL-1β-activating 

complexes that assemble in response to various cellular stresses and pathogenic 

signals(63). As mentioned earlier, inflammasome activation leads to the 

activation/cleavage of pro-IL-1β and subsequent secretion of active mature IL-
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1β(64, 65). However, basally, pro-IL-1β expression is too low to permit a 

productive response(63). Therefore, IL-1β activation by inflammasomes is 

usually described as a two-step signaling process(62, 66). Signal 1 involves the 

“priming” of pro-IL-1β synthesis through TLRs, NLRs, various cytokine receptors, 

and any other receptor that activates NF-κB(67, 68). Signal 2 leads to 

inflammasome “activation” and the secretion of mature IL-1β(63). As noted 

earlier, the additional post-translational regulation of IL-1β activation by 

inflammasomes represents a safeguard to the potent and potentially harmful 

effects of its overproduction. Evidence of this fact can be seen in patients with 

gain-of-function mutations in inflammasome components, which cause 

autoinflammatory diseases(69, 70). This thesis will focus on one of these 

inflammasomes (NLRP3), which is activated inappropriately by disease-causing 

sterile particles. 

Each inflammasome is named after its protein sensor(63). The four most 

highly studied inflammasomes include NLRP1 and NLRP3 (NOD-like receptor 

containing a pyrin domain 1 and 3), NLRC4 (NOD-like receptor containing a 

CARD domain 4), and AIM2(56, 62, 71). In general, activation of these proteins 

leads to the recruitment and oligomerization of the adaptor ASC (apoptosis-

associated speck-like protein) and the effector protease, caspase-1(63). The 

prototypic inflammasome, NLRP3, is made up of the NLRP3 protein with an LRR 

sensing domain (similar to TLRs), a nucleotide-binding domain (NBD) also called 

the NACHT (NAIP, C2TA, HET-E, and TP1) ATPase domain to mediate ATP-
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dependent oligomerization, and a Pyrin domain (PYD)(63). Upon activation, the 

PYD of NLRP3 interacts with the PYD of ASC(63). ASC also has a caspase-

activation and recruitment domain (CARD), which then allows it to recruit and 

interact with the CARD domain of the 45 kDa pro-casapse-1, leading to its 

autocatalytic activation into the 10 and 20 kDa subunits of mature caspase-1(63). 

Though the process just described is typical for the assembly of any 

inflammasome upon activation, each inflammasome has unique structural 

features and activating stimuli.  

AIM2 is distinct from the other inflammasomes, which are NLRs containing 

LRR domains(63). Instead, AIM2 has a HIN200 domain that directly senses AT-

rich dsDNA(63). Like NLRP1 and NLRP3, AIM2 has a PYD(63). However, 

NLRP1 also has a CARD, while NLRC4 (and mouse NLRP1b) has a CARD 

instead of a PYD(63). Therefore, NLRP1 and NLRC4 are both capable of directly 

activating caspase-1 via their CARDs without ASC, but ASC greatly enhances 

activation(63). Interestingly, NLRC4 is further distinguished by the fact that it 

relies on NAIP (neuronal apoptosis inhibitory proteins) proteins in order to sense 

bacterial ligands, namely flagellin(63). NAIPs bind these ligands, oligomerize, 

and these ligand-NAIP complexes are sensed by the LRR of NLRC4(63). 

Especially noteworthy is the fact that NLRP1b senses anthrax lethal toxin 

through the proteolytic cleavage of its LRR(63). It has been shown that 

expression of NLRP1 or NLRP3 without LRR domains makes them constitutively 

active, so it can be inferred that the LRR domains autoinhibit inflammasome 
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activation and their cleavage could lead to activation(63). When bound or 

modified by the appropriate stimulus, the LRRs may also change conformation 

leading to or facilitating inflammasome activation(63). However, in the case of 

NLRP3, the exact mechanism responsible for its activation remains unresolved 

despite over a decade of intense investigation(63). Since the NLRP3 

inflammasome controls the IL-1 response to both necrotic cells and sterile 

particles, I will focus on the mechanisms proposed to govern NLRP3 activation 

later in this chapter. 

A few additional notes about inflammasomes are worth mentioning here. 

Inflammasomes also activate/secrete another pro-inflammatory cytokine, IL-

18(63). Moreover, caspase-11 also contributes to inflammasome activation by 

non-canonical NLRP3-activating stimuli, like cholera toxin and a variety of 

intracellular gram-negative bacteria(72-75). These topics are outside the scope 

of this thesis and will not be discussed in further detail.  

Finally, and importantly, inflammasome activation not only leads to IL-1β 

activation and secretion, but it also causes a lytic form of cell death called 

pyroptosis, which depends on either caspase-1 or caspase-11 (discussed 

later)(24). Originally, it was suggested that caspase-1 activation and IL-1β 

secretion precede pyroptotic cell death(76). However, these studies were 

conducted in bulk cellular assays, so they lacked the precision of single-cell 

analytic techniques. Indeed, more recently, it was shown using single-cell FRET 

(fluorescence resonance energy transfer) techniques that caspase-1 activation 
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and secretion of IL-1β occur simultaneously with pyroptotic cell death(77). 

Moreover, this study showed that inflammasome activation is an all-or-none 

event (if one molecule of caspse-1 is activated, all molecules of caspase-1 in that 

cell are also activated), and no cells that secreted IL-1β survived. Intriguingly, two 

back-to-back studies have recently shown that inflammasome activation releases 

inflammasome complexes into the extracellular environment during pyroptosis, 

which can act as particulate stimuli that propagate NLRP3 activation in other 

cells(78, 79). Thus, lytic cell death and IL-1β activation/secretion are two 

phenomenon intimately tied to one another during inflammasome activation, 

which necessarily releases a particulate inflammatory complex into the 

surrounding environment. 
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Chapter I, Figure 2: General Model of Inflammasome Activation as 
Exemplified by the NLRP3 Inflammasome. The figure shows the two signals or 
steps that occur in order to activate an inflammasome (in this case, the NLRP3 
inflammasome). Signal 1 or “Priming” is initiated by binding of ligands to cytokine 
receptors or PRRs, which causes NF-κB-mediated transcription and translation 
of pro-IL-1β (and in the case of the NLRP3 inflammasome, NLRP3 is also 
synthesized during priming). Upon Signal 2 or “Activation” of inflammasomes, the 
adaptor-binding domain (PYD) of inflammasome main sensor protein is exposed, 
allowing it to bind and recruit the adaptor ASC via homotypic (PYD-PYD) domain 
interactions. ASC can then recruit pro-caspase-1 via homotypic (CARD-CARD) 
domain interactions. This leads to the autocatalytic activation of pro-caspase-1 to 
the active caspase-1. Caspase-1 can then cleave and activate pro-IL-1β into the 
mature IL-1β cytokine, which is then immediately secreted. At the same time, 
caspase-1 induces a type of lytic cell death called pyroptosis (depicted on the 
upper right as membrane disruption). 
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Sterile Inflammation: Matzinger’s “Danger Model”  

 
The immune system is generally considered for its role in protecting the body 

from pathogens(30). However, inflammation does not occur only in the presence 

of microbial stimuli(30). For example, neutrophils and monocytes were shown as 

early as the 1960s to infiltrate sites of cellular necrotic injury in the absence of 

any microbial stimuli(80). Realizing that the immune system also rejects sterile 

organ transplants, Polly Matzinger came up with a model arguing that the 

immune system is not simply discriminating between human tissues and 

microbial pathogens. Instead, she proposed in her “Danger Model” that, “the 

immune system is far more concerned with danger and potential destruction than 

the distinction between self and non-self”(81). In other words, she believed that 

the immune system’s apparent self-non-self discrimination may be an 

epiphenomenon of a higher order process meant to recognize danger regardless 

of the distinction between self and non-self. Indeed, inducing cell injury in the 

absence of microbial stimuli can act as an adjuvant to prime the DC-based 

adaptive response employed by vaccines(82, 83). Moreover, the innate immune 

system is responsible for clearing cellular debris released from damaged tissues 

and promoting the healing process(84). This inflammatory response, which is 

initiated in the absence of microbial stimuli, is now referred to as “sterile 

inflammation.” Since innate immune sentinels, like macrophages, are not sensing 
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microbes in this situation, it has been inferred that what is being sensed are self-

derived “danger signals” released by stressed, damaged or dying cells(30). Thus, 

these danger signals are referred to as DAMPs (danger-associated molecular 

patterns)(30).  

It should be noted that the sterile inflammatory response is operationally 

defined as occurring in the absence of microbial stimuli, but microbes are also 

able to stress, damage or kill host cells(30). Therefore, components of the sterile 

inflammatory response are also often highly active during microbe-associated 

inflammation(30). Moreover, many of the microbe-sensing receptors appear to 

cross-react with DAMPs, suggesting that sterile inflammatory and microbe-

induced inflammatory responses are not mutually exclusive(30). In fact, microbial 

recognition can prime or enhance otherwise sterile inflammatory responses(30). 

Also, in various pathological states, sterile inflammation may even be triggered 

inappropriately by non-microbial stimuli, like particles, via similar mechanisms 

that are actually meant to sense and defend against invading microbes(30). 

 

DAMPs: Danger Signals Released from Necrotic Cells 
 

Many DAMPs have been identified, but only a few will be covered here. It should 

be noted that DAMPs are classically thought to be released from cells dying by 

necrosis, which is an unregulated form of inflammatory lytic cell death. DAMPs 

are generally not released from cells dying by apoptosis, which is a non-
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inflammatory programmed cell death (necrosis vs. apoptosis will be discussed in 

more detail later). For example, HMGB1 (high mobility group box 1) is a 

canonical DAMP released from necrotic cells that induces acute inflammatory 

responses through the receptor RAGE (receptor for advanced glycation end-

products) and TLRs during sterile liver injury(85). HMGB1 is not released from 

apoptotic cells, since apoptosis induces stronger binding of HMGB1 to nuclear 

chromatin(85). Interestingly, HMGB1 does not always act by itself to induce pro-

inflammatory cytokines, as first proposed(86). Instead, it often binds cytokines 

and DNA, carrying them to cytokine receptors and TLR9(87-89). HMGB1 also 

binds LPS to signal through TLR4, IL-1β to signal through IL-1R1, and 

nucleosomes to signal through TLR2(90). In fact, the delivery of TLR ligands via 

various carriers is a common phenomenon. Indeed, this is also the case for 

hemozoin, a crystalline particulate generated by malaria after it digests heme in 

red blood cells. Originally, it was proposed that hemozoin directly activates 

TLR9(91). However, it was later shown that hemozoin actually binds and delivers 

DNA to TLR9(92). Therefore, DAMPs like HMGB1 are released by necrotic cells 

in a mixture of interacting molecules that promote inflammation through a number 

of complex and variable mechanisms. 

HMGB1 is just one among several known DAMPs participating in 

inflammatory responses. Another DAMP, IL-33, can be released from necrotic 

fibroblasts in the peritoneum and it induces an inflammatory response that 

depends on the ST2 receptor on mast cells(93, 94). In contrast to IL-33, HMGB1 
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is not essential for this particular response. HMGB1-deficient necrotic fibroblasts 

induce a similar level of inflammation as WT fibroblasts(85, 95). Thus, multiple 

DAMPs can play redundant roles in inflammatory responses and the dominant 

DAMP can depend highly on cell-specific and stimulus-specific conditions(96, 

97). 

ATP is yet another potent DAMP released from necrotic cells. ATP binds 

the P2X7 receptor (P2X7R), which recruits a pore-forming protein, pannexin-1, to 

induce K+ efflux(98). This somehow activates the NLRP3 inflammasome, leading 

to IL-1β secretion and intravascular neutrophil recruitment(99-101). Conversely, 

ATP is released in smaller quantities from apoptotic cells, which recruit 

monocytes into the area for clearance by signaling through P2Y2 receptors, 

instead of pro-inflammatory signaling through P2X7R(102). Together, HMGB1 

and ATP represent two soluble DAMPs that can promote NF-κB-mediated 

cytokine production and/or directly induce IL-1β activation. But necrotic death can 

also lead to the formation of particulate DAMPs, such as that formed upon the 

precipitation of uric acid.  

Uric acid was arguably the first DAMP identified(103). It was shown that 

uric acid activates DCs and primes in vivo CD8+ T cell responses to dead cell-

associated antigens. As a byproduct of purine metabolism by xanthine oxidase, 

uric acid can reach high concentrations in cells and can precipitate as pro-

inflammatory crystals upon necrotic cell death, a consequence of dietary excess 

or of decreased clearance/increased metabolism of purine nucleotides(96, 104). 
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These crystals can accumulate in the joints, causing a chronic and painful 

inflammatory condition, called gout. In fact, the crystalline form of uric acid, MSU, 

is the active form. For example, it has been shown that human eosinophils 

respond to MSU to induce chemokine and cytokine secretion, but they do not 

respond to soluble uric acid(105). Indeed, not only does MSU drive inflammatory 

pathology in gouty arthritis, as discussed earlier, but it is also a proven activator 

of the NLRP3 inflammasome(12). In vivo, MSU has since been shown to be an 

important inflammatory mediator of fibrotic lung injury that depends on NLRP3 

and it also drives NF-κB-mediated inflammatory responses in renal disease(106). 

Therefore, as a particulate created by cell death that causes inflammation and 

cell death, MSU is the embodiment of particle-associated pathology.  

Stepping back, I introduced particles as agents of pathology that cause 

necrosis and inflammation. Moreover, a plethora of inflammatory DAMPs can 

become complexed with one other or with inflammatory cytokines after they are 

released from cells. These DAMPs are then sensed by a variety of different pro-

inflammatory receptors during necrosis. Thus, one might expect that 

therapeutically blocking all of these responses could be difficult or even 

impossible. Maybe, preventing the initial cell death event would be a more 

feasible strategy. This may prove to be the case indeed. However, it is important 

to note that in vivo, necrotic cells and sterile particles actually generate an acute 

inflammatory response that is almost entirely dependent on a single receptor, IL-

1R1, which is a proven interventional target for certain inflammatory diseases. 
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IL-1: Master Regulator of Sterile Inflammation 
 

IL-1 was the first interleukin identified. Interleukin comes from the root “inter” 

(between) and the suffix “-leukin” (referring to leukocytes; aka white blood cells) 

and signifies the role of interleukins as cytokines that transmit information 

between white blood cells(70). Originally, IL-1 was described as an endogenous 

pyrogen because it triggers fever during systemic inflammatory responses that 

resemble the effects of LPS (called at the time endotoxin - a toxin that is intrinsic 

to the bacteria’s makeup – and also referred to as the exogenous pyrogen) 

during sepsis with gram-negative bacteria(70). IL-1 influences cellular activity at 

very low concentrations by many different cells and tissues, leading to fever 

induction by the hypothalamus, proliferation and survival of bone-marrow-derived 

cells, T-cell activation and differentiation, chemokine and adhesion molecule 

upregulation for recruitment of leukocytes by endothelial cells, and acute-phase 

protein production in the liver for mediating systemic inflammatory 

responses(70). One of the earliest observations made about IL-1 was that it was 

important for protection against microbial pathogens(70, 107). Here, I am 

concerned with the role of IL-1 in sterile inflammation resulting from lytic cell 

death and sterile particulates. 

In the past decade, models of acute inflammatory peritonitis have shown 

that the master receptor of the sterile inflammatory response to necrotic cells is 
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IL-1R1(95). In this model, it has been shown that the recruitment of neutrophils 

and macrophages into the peritoneal cavity of mice is almost entirely absent in 

mice lacking IL-1R1. Specifically, IL-1R1 signaling upregulates adhesion 

molecules and chemokine secretion from endothelial cells that enable neutrophils 

to extravasate into the area of the original insult down a gradient of chemokines 

signaling through CXCR2, like CXCL1(101, 108). While various DAMPs have 

been shown to activate TLRs, in vivo responses to necrotic cells were minimally 

reduced in TLR2 & TLR4 double-deficient mice, but not affected at all in mice 

lacking only single TLRs. Conversely, this response was dramatically reduced in 

MyD88-deficient mice, but not mice lacking TIRAP/Mal or TRIF(95). The 

dependence of this response on MyD88 providing a critical clue that led to the 

identification of the IL-1R as the master receptor for this response. As mentioned 

above, IL-1 comprises two distinct cytokines, IL-1α and IL-1β, both of which 

activate IL-1R1. Like TLRs, IL-1R1 signals through a cytoplasmic TIR domain 

that requires the adaptor MyD88. Indeed, IL-1R1 on radioresistant cells, and not 

bone-marrow-derived cells, was shown to be absolutely necessary for in vivo 

acute inflammatory responses to dead or dying cells(95). Follow-up studies 

focused on identifying the cellular sources of IL-1 driving this response. One such 

study found that CD11b+ cells (macrophages), and not CD11c+ cells (DCs), 

were critical sources of IL-1(109). Macrophages were the dominant source of IL-

1α, while bone-marrow-derived myeloid cells (which include 

macrophages/monocytes, neutrophils, and some types of DCs) and 
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radioresistant cells were together the dominant sources of IL-1β. Similarly, in liver 

injury models, monocyte-derived Kupffer cells were shown to be the NLRP3-

dependent source of IL-1β in response to necrotic death(70, 100, 110).  

In order to understand their unique roles in mediating inflammatory 

responses via IL-1R1, IL-1α and IL-1β activation/secretion must be differentiated. 

As mentioned earlier, both IL-1α and IL-1β are synthesized with C-terminal pro-

peptides. Pro-IL-1β must be cleaved into mature IL-1β to be secreted as a 

biologically active cytokine capable of mediating local and systemic inflammatory 

responses(111, 112). Conversely, pro-IL-1α is constitutively active and usually 

expressed as a membrane-associated cytokine mediating local inflammatory 

responses(113). Moreover, IL-1α is present mainly in epithelial and endothelial 

cells throughout the body, while IL-1β is made primarily by 

monocytes/macrophages and DCs(70). Importantly, the activation/secretion of IL-

1β in these cells is controlled by inflammasome-mediated caspase-1 activation, 

which also controls the secretion of IL-1α by driving a lytic form of cell death 

called pyroptosis(114, 115). Interestingly, it has also been shown that certain 

stimuli require pyroptosis to release HMGB1(85, 116, 117). Indeed, like HMGB1, 

IL-1α is itself a canonical DAMP. Cells such as DCs or vascular smooth muscle 

have been shown to release IL-1α upon necrotic death, whereas apoptosis 

sequesters IL-1α in the nucleus(108, 118). In fact, IL-1α has a nuclear 

localization sequence and is thought to have transcription-related functions(70). 

Moreover, during necrosis, it has been shown that pro-IL-1α is cleaved by a 
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calcium-dependent protease, calpain, converting it into its optimally active 

form(119). Another study found that IL-1RII, a decoy receptor the neutralizes IL-

1α or IL-1β, can bind and prevent IL-1α from signaling following release from 

certain types of necrotic cells, like vascular smooth muscle cells(120). 

Conversely, macrophages dying by pyroptosis were shown to utilize caspase-1 

to degrade IL-1RII, thereby liberating IL-1α. In cells that do not express IL-1RII, 

necrosis was shown sufficient to release active IL-1α. Therefore, cells dying by 

necrosis or pyroptosis will release pro-IL-1β, pro-IL-1α or IL-1α, HMGB1 and 

other DAMPs. While it is presumed that only cells dying by pyroptosis will secrete 

active mature IL-1β, it is also possible that cells that have already activated IL-1β 

intracellularly could release it via necrosis as well(70). 

It is clear that IL-1R1 is critical for these in vivo responses, but the unique 

ways in which IL-1α and IL-1β influence these responses are still under active 

exploration. Interestingly, both IL-1α and IL-1β are critical for the in vivo 

inflammatory response to necrotic cells and sterile particles, as shown in mice 

lacking either gene alone(109, 121). Although the reason for this is not entirely 

clear, since both IL-1α and IL-1β signal via the same receptor, a recent study 

suggested that IL-1α is directly bound by IL-1β and requires IL-1β for its own 

secretion(122). Therefore, preventing the activation and secretion of IL-1β should 

prevent the IL-1RI-driven response triggered by both of these cytokines. 

However, neutralizing antibodies targeting IL-1α, and not IL-1β, nearly ablated 

the inflammatory response to dead or dying cells in vivo, suggesting IL-1α is the 
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dominant mediator(95). As a word of caution on this conclusion, it was proposed 

that the neutralization of IL-1β may have been incomplete in this study. However, 

a subsequent study found again that macrophages deficient in IL-1β, and not 

macrophages deficient in IL-1α, were able to reconstitute these responses in IL-

1R1-deficient mice(109). So the question remains: Why do IL-1α-deficient or IL-

1β-deficient mice have phenotypes equivalent to IL-1α,β double-deficient or IL-

1R1-deficient mice?  

Future studies will be necessary to clarify the relative contribution of IL-1α 

and IL-1β to the IL-1-dependent acute inflammatory response to dead cells and 

sterile particles. Nonetheless, it is worth emphasizing once again that IL-1-

dependent responses can be driven either by necrosis, leading to the release of 

pro-IL-1β, IL-1α, HMGB1 and other DAMPs, or by inflammasome-dependent 

pyroptosis, leading to the release of active IL-1β, IL-1α, HMGB1 and other 

DAMPs. As mentioned earlier, the NLRP3 inflammasome is the only known 

mediator of IL-1β activation and pyroptosis in response to sterile particles and 

necrotic cells. Therefore, I will now describe the theorized mechanisms of NLRP3 

activation as they relate to sterile particles. 

 

Mechanisms of Particle-Induced NLRP3 Activation 

NLRP3 is activated by the most physically and chemically diverse set of stimuli of 

any known inflammasome or PRR (see Fig. 3 below). Moreover, NLRP3 is 
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known to govern the IL-1-response to sterile inflammatory insults, including 

necrotic cells and particulates(123, 124). Direct sensing of such a vast range of 

dissimilar ligands is not likely. Instead, it has been proposed that there is some 

type of non-specific stress that activates NLRP3 under all these conditions(124, 

125). K+ efflux(15, 126-136), ROS(127-130, 135, 137-140), and cathepsins(17, 

126, 128, 136, 140-153) have each been proposed as necessary for nearly all 

NLRP3 stimuli. These, and other stress-related cell biological mechanisms 

implicated in the process of NLRP3 activation, will be discussed in detail below. 

However, I will begin here with some specific requirements that have been 

shown unique to particulate stimuli.  
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Chapter I, Figure 3: A Brief List of the Various Activators of the 4 Best-
Studied Inflammasomes. The figure shows the main activating stimuli for the 
NLRP1, NLRP3, NLCR4 and AIM2 inflammasomes. The list shown here is not 
exhaustive, but is meant as a reference tool for this thesis. Moreover, it should be 
apparent how many stimuli can activate NLRP3 compared to other 
inflammasomes. The diversity of these stimuli suggest that NLRP3 is activated 
by cellular stress induced by these stimuli, rather than by directly recognizing 
these stimuli through binding. 
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Lysosomal Membrane Disruption (LMD) and Cathepsin B 
 

Particulate stimuli require phagocytosis and lysosomal acidification to activate 

NLRP3(12, 144), while lysosome-disrupting detergents require only lysosome 

acidification(154). Originally, the NLRP3-activating mechanism proposed for 

sterile particles and lysosome-disrupting detergents was that lysosomal 

membrane disruption (LMD) releases the cysteine protease, cathepsin B, into the 

cytosol, somehow leading to NLRP3 activation(10, 11, 144). This subject will be 

explored in more depth in chapters III and IV, so I will not go into great detail 

here. However, it should be noted that the involvement of cathepsin B in this 

pathway is controversial given contradictory results obtained by studies using a 

supposedly cathepsin B-specific inhibitor, Ca074Me, and genetic models of 

cathepsin B deficiency(10, 15, 155-163). In brief, Ca074Me blocks NLRP3 

activation, while cathepsin B-deficiency does not. Also, although several studies 

have provided direct evidence supporting the idea that particulate stimuli 

specifically activate NLRP3 (and not other inflammasomes) by inducing LMD and 

the release of cathepsins into the cytosol(17, 124, 136, 144, 145, 148, 150), LMD 

and the release of cathepsins has also been observed during NLRP1 

activation(162). Indeed, Ca074Me has been shown to block NLRP1b-mediated 

IL-1β secretion induced by anthrax lethal toxin(162). Moreover, Ca074Me blocks 

IL-1β secretion by both particulate and non-particulate stimuli, including ATP, 

nigericin, antiviral compounds, A-beta amyloid, silica, alum, cholesterol crystals, 
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titanium dioxide, bacteria, toxins, fungi, viruses, dextran sodium sulfate, DNA and 

RNA(17, 126, 128, 136, 140-153). Therefore, cathepsins may play a role in 

NLRP3 activation by any type of stimulus, and they could possibly have a role in 

mediating the responses of other inflammasomes, so it is worth going into some 

detail here about the other mechanisms proposed for NLRP3 activation and how 

these may relate to activation with sterile particles.  

 

Reactive Oxygen Species (ROS) 
 

One of the most well supported mechanisms proposed for NLRP3 activation 

involves ROS(127-130, 135, 137-140). Originally, it was found that ROS 

inhibitors blocked NLRP3 activation and that shRNA knockdown of a cellular 

ROS inhibitor, thioredoxin, enhanced IL-1β activation by sterile particles, like 

MSU and asbestos(130, 133). This is consistent with the fact that the 

inflammatory character of sterile particles is correlated with their ability to induce 

ROS in host cells(164-166). One of these studies investigating the relationship 

between ROS and sterile particles found that the sequence of events during 

particle-induced NLRP3 activation proceeds in the following order: phagocytosis, 

ROS production, LMD, NLRP3 activation(166). The connections between these 

events will be discussed in more detail later. For now, I will consider the fact that 

the interaction between large (“Frustrated Phagocytosis”) or indigestible particles 

and phagocytic cells initiates a sustained respiratory burst of ROS(167). This 
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respiratory burst is usually used by macrophages to kill and digest pathogens, 

and it is generated by the phagosomal enzyme complex NADPH oxidase, which 

generates superoxide radicals. Indeed, it was shown that shRNA knockdown of 

the p22phox subunit of this complex diminished NLRP3 activation(130). 

However, ROS production occurs with non-particulate stimuli as well, like ATP 

and the antiviral TLR7 ligand, R837, suggesting that ROS are important for 

NLRP3 activation in general(12, 138). On the other hand, it is well known that 

TLR activation causes robust ROS production, but this appears to be insufficient 

for NLRP3 activation(168). Also challenging the ROS hypothesis, it was later 

shown that cells from patients with chronic granulomatous disease, lacking 

functional NADPH oxidase complexes, can respond to particles and actually 

have elevated IL-1β activation(169). Furthermore, elevated ROS by 

macrophages deficient in superoxide dismutase-1 (SOD1), an endogenous ROS 

inhibitor like thioredoxin, causes covalent oxidative modification and inhibition of 

caspase-1(170). Moreover, mice lacking SOD1 are actually protected from 

caspase-1/11-dependent endotoxic shock and have depressed innate immune 

responses in the lungs(170, 171). Therefore, it seems that elevated superoxide 

production can suppress NLRP3 activation. However, it has been suggested that 

there may be another source of ROS, besides NADPH oxidase, that is important 

for NLRP3 activation(172). 

A recent landmark study demonstrated that the critical source of ROS for 

NLRP3 activation is the mitochondria(173). This study found that low 
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concentrations of rotenone (inhibitor of complex I in the ETC (electron transport 

chain)) or antimycin A (AntA; inhibitor of complex II in the ETC) induce 

mitochondrial ROS production and NLRP3-dependent IL-1β activation, whereas 

higher concentrations lead only to cell death. Moreover, they showed that 

inhibition of mitophagy, which is a process used to digest old or damaged 

mitochondria that are prone to spontaneous ROS production, promotes NLRP3 

activation. On a side note, this was also shown later by a group that knocked out 

key proteins involved in autophagy, which is a more general mechanism for 

digesting old or damaged intracellular components(174). Additionally, it was 

shown that upon stimulation with MSU or nigericin (a potassium efflux-inducing 

toxin and robust NLRP3 activator), NLRP3 localizes near the outer mitochondrial 

membrane and the endoplasmic reticulum together with the protein TXNIP 

(thioredoxin-interacting protein)(173). Interestingly, prior to this study, it was 

shown that knockdown of TXNIP reduces NLRP3 activation by a number of 

different stimuli(175). They showed further that ROS liberates TXNIP from the 

antioxidant protein thioredoxin, prior to it’s binding to NLRP3. Moreover, using a 

yeast two-hybrid overexpression system and HEK293 cells, they found that 

TXNIP directly binds to the LRR domain of NLRP3. Finally, in a mouse model of 

diabetes, when they stimulated pancreatic beta-cells with high levels of glucose, 

the resultant IL-1β secretion was dependent on TXNIP. Based on these findings, 

these studies proposed a comprehensive model in which stress-induced 

mitochondrial ROS activates NLRP3 by causing TXNIP to dissociate from 
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thioredoxin, thereby allowing TXNIP to bind and activate NLRP3(137, 176-178). 

This dynamic was shown to occur following stimulation with ATP, silica and MSU. 

Although these results could not be reproduced by one follow-up study(16), 

another study found that amino-functionalized nanoparticles accumulate in 

lysosomes, triggering LMD and cathepsin B-dependent mitochondrial ROS 

production with concomitant release of TXNIP from thioredoxin(179). This made 

TXNIP available to bind and activate NLRP3. Moreover, they showed in silico 

that TXNIP binding to NLRP3 caused a conformational change that moved the 

LRR away from the PYD, allowing NLRP3 to bind ASC. Finally, in the landmark 

study mentioned above, they examined the role of VDAC1 (voltage-dependent 

anion channel 1), which is located on the outer mitochondrial membrane and is 

required for mitochondrial ROS production. They found that VDAC1 was 

essential for NLRP3 activation by particulate and non-particulate stimuli(173). It 

is worth noting here that overexpression of the anti-apoptotic protein Bcl-2, which 

regulates VDAC1, reduces mitochondrial calcium levels and ROS 

production(180). Moreover, Bcl-2 overexpressing macrophages from transgenic 

mice showed reduced IL-1β secretion in response to MSU, alum and 

nigericin(173). Therefore, this connection between Bcl-2 and ROS is important to 

remember, as it relates to concepts discussed in several sections below. Finally, 

the most direct evidence that ROS can activate NLRP3 was reported by a study 

that stimulated LPS-primed macrophages with H202 (hydrogen peroxide), 
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showing that it was sufficient to induce NLRP3 activation(175). However, this 

particular finding has not yet been corroborated (see Appendix 11e)(172). 

Despite the evidence provided, whether ROS provide a final common 

pathway for NLRP3 activation remains in question. ROS studies may be 

confounded given the fact that Signal 1 stimuli, like TLR activators, also evoke 

ROS, but they are insufficient for NLRP3 activation(123, 124, 181-183). 

Moreover, a subsequent study showed that ROS inhibitors suppress Signal 

1/priming and not NLRP3 activation(184). This study demonstrated that due to 

NLRP3’s inherent dependence on priming - basal levels of NLRP3 are too low to 

activate the inflammasome without priming – it is easy to misinterpret variables 

that affect only NLRP3 as being specific to NLRP3 activation and not simply an 

affect on priming(185). Nonetheless, this does not rule out the possibility that 

both priming and ROS are more important for NLRP3 activation and less 

important for the activation of other inflammasomes. Thus, the role of ROS in 

NLRP3-mediated IL-1β secretion remains to be further elucidated(172). 

 

Potassium (K+) Efflux 
 

K+ efflux has been considered in many reports to be a common requirement for 

all NLRP3 stimuli(15, 126-136). In cell-based systems, the role of K+ efflux is 

exemplified by a K+ ionophore, nigericin, and ATP-mediated activation of K+ 

efflux via the P2X7 receptor (P2X7-R)(186). This mechanism was corroborated 
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by an early study where Martinon et. al. noticed that low K+ triggered NLRP3 

assembly in a cell-free system(62). Moreover, it was shown that high levels of 

extracellular K+ (KCl) or a K+ channel blocker (glyburide) inhibit NLRP3 

activation(133, 187). Finally, a recent study suggested that K+ efflux is indeed an 

absolute requirement for NLRP3 activation(154). They showed that even though 

nigericin, ATP and another K+ ionophore, gramicidin, all activate NLRP3, 

gramicidin does so without affecting mitochondrial respiration. Instead, 

depression of mitochondrial respiration was detected 45 min after IL-1β activation 

was observed, suggesting that this effect is downstream of NLRP3 activation. 

Moreover, this study showed that inducing ROS production with mitochondrial 

electron transport chain (ETC) inhibitors does not activate NLRP3, and that ROS 

inhibitors do not suppress NLRP3 activation or K+ efflux induced by gramicidin. 

Likewise, gramicidin did not increase ROS production, although they did not 

specifically measure mitochondrial ROS. They also claim that ROS inhibitors do 

not affect priming, since gramicidin-induced IL-1β secretion was not reduced 

when ROS inhibitors were given prior to LPS priming. However, although K+ 

efflux has also been implicated in LPS-signaling in macrophages and a variety of 

other cell types(188-192), this study did not examine whether pro-IL-1β levels 

(a.k.a. priming pathways) were dependent on K+ efflux(172).  

Interestingly, this study also found that particulate NLRP3 activators 

(silica, alum, CPPD) and a lysosomal detergent (LLOMe) all cause K+ efflux, and 

they assumed this was not a result of cell death because they examined this in 
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NLRP3-deficient macrophages that are unable to undergo pyroptosis(154). It 

should be noted here that they made the assumption that cell death induced by 

particles and LLOMe requires NLRP3. Later, I will provide data that this 

assumption is incorrect. They also demonstrate that LPS priming enhances K+ 

efflux caused by these particles and LLOMe, but not by nigericin or ATP, 

proposing that priming does this by enhancing phagocytosis(193, 194). 

Additionally, they found that the Ca074Me or inhibition of lysosomal acidification 

prevents K+ efflux in response to particulates and LLOMe, but not nigericin or 

ATP. Therefore, this evidence suggested that particulates induce K+ efflux, which 

is enhanced by priming and requires cathepsins and acidified lysosomes. Finally, 

this study found that incubating cells in K+-free medium spontaneously induced 

IL-1β secretion in LPS primed macrophages, supporting their conclusion that K+ 

efflux is both necessary and sufficient for NLRP3 activation. However, how K+ 

efflux does this remains unclear. One possible contribution that should be noted 

is that K+ efflux causes osmotic changes in lysosomal compartments and 

cytosolic acidification, both of which may contribute to NLRP3 activation(126, 

195-201). On the other hand, lysosomal disruption can also acidify the cytosol, 

which would cause K+ influx and H+ efflux at the cell membrane(202). Therefore, 

K+ efflux and LMD may both be independent mechanisms for acidifying the 

cytosol, which could be important for NLRP3 activation. However, cytosolic pH 

effects have never been examined in this context(172). 
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Cytosolic Calcium Influx 
 

Another ion, calcium, has been implicated in NLRP3 activation. Two studies have 

shown that G-protein coupled receptors on the plasma membrane, CASR 

(calcium-sensing receptor)(203) and GPRC6A(204), respond to elevated 

extracellular calcium by inducing extracellular calcium influx, which activates ER-

mediated cytosolic calcium release via PLC (phospholipase C), IP3 (inonsitol-3-

phosphate), and the IP3-receptor on the ER membrane. In each study, activation 

of these receptors led to NLRP3 activation. Moreover, TRP (transient receptor 

potential) cation channels, like TRPV2 and TRPM7, have been shown to induce 

calcium fluxes in response to various cell stresses(205). It was found that IL-1β 

secretion in response to activation of these channels occurs during hypotonic 

stress and induces phosphorylation of TAK1 (transforming growth factor kinase 

1). Indeed, knockdown of TAK1 suppressed IL-1β secretion. Another study 

showed that the ROS-responsive TRPM2 channel also plays a role in NLRP3 

activation by facilitating calcium influx(206). Multiple other studies have since 

found a role for calcium as well(205-209). Importantly, calcium influx induced by 

high extracellular calcium levels or ATP is inhibited by high levels of extracellular 

KCl(154, 207). However, one would expect any downstream effects of ATP-

induced K+ efflux to be blocked by high levels of extracellular KCl anyway. 

Moreover, two other studies found, to the contrary, that elevated extracellular KCl 

does not affect calcium influx during NLRP3 activation by other stimuli(208, 210). 
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Additionally, a subsequent study showed that the concentration of extracellular 

calcium used in the study on the CASR actually precipitates into particulates in 

the growth medium that was used(154). When tested in other mediums that do 

not cause precipitation of calcium bicarbonate crystals, no NLRP3 activation was 

observed. Perhaps, high concentrations of localized calcium release from 

intracellular stores during cell death in bicarbonate buffered mediums could 

induce particulate formation as an incidental byproduct inducing subsequent 

NLRP3 activation. Whether this detracts from the findings of the multiple studies 

implicating calcium in NLRP3 activation is unclear. But this again identifies 

precipitated calcium crystals, which form in necrotic tissues, as endogenous 

sterile particles that potently activate NLRP3(1). 

The comprehensive calcium-dependent model posited for NLRP3 

activation is as follows. Calcium and cAMP (cyclic AMP) are in balance prior to 

stimulation, with cAMP directly inhibiting NLRP3 activation(203). Indeed, they 

found that cAMP can directly bind to the NBD of NLRP3, and that it is unable to 

bind the NBD for NLRP3 proteins carrying mutations associated with NLRP3 

hyperactivity in human patients. Upon stimulation with particulate and non-

particulate NLRP3 stimuli, which have been shown dependent on CASR using 

siRNA, it was suggested that the induction of calcium influx inhibits adenylate 

cyclase. Inhibition of adenlyate cyclase, which normally converts ATP into cAMP, 

causes cAMP levels to fall thereby disinhibiting/activating NLRP3. Moreover, they 

proposed that either a rise in cytosolic calcium or a drop in cAMP is sufficient to 
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activate NLRP3. However, a follow-up study examining the effects of activating 

or inhibiting adenylate cyclase during extracellular-calcium-induced NLRP3 

activation found this had no effect on IL-1β secretion(204). Nonetheless, two 

additional studies examining responses in epithelial cells found that calcium 

influx induced mitochondrial dysfunction and ROS production, either by causing 

ER stress or inducing uptake of calcium directly by the mitochondria(207, 208). 

Similar to the study cited above, which found that mitochondrial ROS induces the 

localization of NLRP3 with the mitochondria, these studies found that calcium 

influx caused NLRP3 to localize with the mitochondria and that this process could 

be inhibited by calcium chelation. Therefore, it may be that calcium influx 

generates ROS or that ROS generates calcium influx and that one or both of 

these events contribute to NLRP3’s localization with mitochondria, but this has 

not been examined closely. Importantly, the original study on the CASR also 

showed that it was not important for responses to the AIM2 activator dAdT or the 

NLRC4 activator flagellin, suggesting that calcium-mediated pathways (at least 

those requiring CASR) are specific to NLRP3(203). Indeed, this group 

meticulously tracked pro-IL-1β levels, which were unchanged in all experiments, 

suggesting that the effects observed also did not play a general role in 

transcriptional priming. However, just like ROS production and K+ efflux, calcium 

efflux has been shown to result from LPS signaling in macrophages and dendritic 

cells by several studies showing that calcium influx is critical for NF-κB and IRF3-

mediated transcription(211-216). Thus, it is unclear why Ca2+, or calcium 
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mobilizing channels, were shown to have no role in Signal 1 or pro-IL-1β 

synthesis in the above studies(172). 

 

Mitochondrial DAMP Release 
 

Together, the mechanisms described above require further investigation before 

any conclusive statements can be made about the definitive pathway for NLRP3 

activation. However, they all seem to indicate that mitochondria are important. It 

should be noted that mitochondria are thought to derive from an evolutionarily 

favored endosymbiotic relationship whereby a pre-eukaryotic cell engulfed an 

ancient prokaryote. Instead of this prokaryote harming the pre-eukaryote, or the 

pre-eukaryote killing it in turn, the fitness of both cells increased; the prokaryote 

was protected inside the pre-eukaryote, and in return, the prokaryote generated a 

copious supply of ATP for its host. Thus, modern eukaryotes harbor mitochondria 

derived from these ancient prokaryotes, suggesting that mitochondrial 

components may be recognized as DAMPs by innate immune cells when 

released into or out of their host cells. Indeed, there are a number of known 

mitochondrial DAMPs, such as mitochondrial DNA (mtDNA) and N-formyl 

peptides, which are released into the circulation following tissue injury(217). 

Given this fact, it is tempting to predict that NLRP3 may sense one of these 

DAMPs following mitochondrial damage induced by various stimuli(172). 
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Two recent studies have proposed that disruption of mitochondria 

releases mtDNA into the cytosol, which can directly activate NLRP3. One of 

these studies showed that defects in autophagy lead to the leakage of mtDNA 

out of old/damaged mitochondria and spontaneous NLRP3 activation in LPS-

primed macrophages(174). Moreover, they showed that LPS and ATP induced 

NLRP3 activation by causing the release of mtDNA into the cytosol. However, 

their data suggested that NLRP3 is necessary for inducing mitochondrial ROS 

and mtDNA release. It is conceptually challenging to understand how the release 

of mtDNA or ROS requires NLRP3 activation while at the same time NLRP3 

activaiton requires the release of mtDNA or ROS. If this is true, it may indicate 

that these events represent a positive feedback loop. However, a follow-up study 

by Shimada et. al. showed that ATP, nigericin and an apoptosis inducer, 

staurosporine (STS), induced mitochondrial dysfunction, the release of oxidized 

mtDNA into the cytosol, and NLRP3-dependent IL-1β activation(218). Moreover, 

they showed that oxidized mtDNA directly binds NLRP3. Indeed, NLRP3 

activation was prevented by inhibiting mtDNA synthesis and the binding of 

mtDNA to NLRP3 was blocked with an oxidized nucleotide analog (8-OH-dG). 

However, this finding has not yet been corroborated (see Appendix 2a). Again, it 

should be noted here that they also found that overexpression or knockdown of a 

protein that prevents mitochondrial disruption, Bcl-2, inversely regulates NLRP3 

activation. Pointing out that both K+ efflux and LMD can lead to mitochondrial 

ROS production and mitochondrial disruption, Shimada et. al. proposed that the 
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release of oxidized mtDNA represents a unifying terminal mechanism for NLRP3 

activation (219). However, whether or not the release of oxidized mtDNA into the 

cytosol occurs or is necessary during NLRP3 activation by sterile particles, 

remain open questions. Moreover, pro-IL-1β levels were not closely examined in 

these reports and so the role of these pathways in mediating Signal 1 remains to 

be examined(172). 

Another study also found that a component of the inner mitochondrial 

membrane, called cardiolipin, might directly activate NLRP3. Iyer et. al. showed 

that an oxazolidinone antibiotic, linezolid, activated NLRP3 independently of ROS 

production by inducing the release of mitochondrial cardiolipin, which directly 

bound to NLRP3(220). Like ATP and silica, they blocked linezolid-induced 

NLRP3 activation using high extracellular KCl or an inhibitor of mitochondrial 

membrane pore formation, cyclosporine A (CsA). Unlike ATP and silica, linezolid 

responses were not prevented by ROS inhibitors or by the ROS-generating ETC 

uncouplers, rotenone and AntA. This suggested that neither ROS nor the ETC 

were necessary for linezolid-induced NLRP3 activation. Moreover, they show that 

ATP, silica and linezolid all induce mitochondrial dysfunction and that silica and 

linezolid induce the physical association of NLRP3 with the mitochondria. 

Additionally, they found that cardiolipin binds the NLRP3 LRR domain (although 

technically the domain they define as the LRR disagrees with public databases). 

Using a “broken cell” system, where they disrupted cell membranes and mixed in 

cardiolipin, cardiolipin was sufficient to induce caspase-1 activation. Finally, they 



 53 
 

found that inhibition of cardiolipin synthase suppressed IL-1β secretion induced 

by ATP, silica and linezolid, but not the NLRC4 activator Francisella tularensis. 

Although these results are intriguing, several weaknesses emerge from this 

study. Firstly, while they show caspase-1 activation in response to cardiolipin in 

the broken cell system, they did not confirm whether this activation depended on 

NLRP3. Secondly, almost all of these experiments were done in a macrophage 

cell line (J774.1) and not replicated in primary macrophages. Therefore, it 

remains to be seen whether these results are generalizable to primary cells. 

Thirdly, the above study did not closely examine whether “priming” or the 

appropriate synthesis of pro-IL-1β was affected in these experiments, which 

would invariably contribute to changes in IL-1β secretion. It is also worth noting 

here that during a process of cell death driven by “death receptors” like TNF-R1, 

called extrinsic apoptosis (discussed below), activation of caspase-8 requires 

binding to cardiolipin on the outer mitochondrial membrane(221). This process is 

carried out by phospholipid scramblase 3 (PLS3), which transfers cardiolipin from 

the inner to the outer mitochondrial membrane as a result of ROS production 

during apoptosis(222, 223). Therefore, if the above model is true, it remains to be 

shown why NLRP3 is not generally activated during apoptosis as a result of 

cardiolipin transfer to the outer mitochondrial membrane(172).  

The two models above suggest that mitochondrial dysfunction leads to the 

release of mitochondrial components that directly activate NLRP3(174, 218, 

220). Moreover, mild mitochondrial dysfunction with low concentrations of ETC 
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uncouplers seems to generate ROS and activate NLRP3(173, 218), while higher 

concentrations of ETC uncouplers induce severe mitochondrial dysfunction and 

actually prevent NLRP3 activation(173, 218, 224). Therefore, it has been posited 

that a partial/temporary disruption of the ETC-dependent mitochondrial 

membrane potential (MMP) can promote NLRP3 activation, while severe 

disruption leads to death and prevents NLRP3 activation(172). One study 

proposed that the reason for this is that two mitochondrial outer membrane 

proteins, mitofusin 1 and 2 (Mfn 1 and 2), directly bind NLRP3 upon activation 

with several RNA viruses(224). Moreover, they show that this association 

depends on an intact MMP and that Mfn2 is required for NLRP3 activation and 

IL-1β secretion. However, this study also does not examine whether this 

association depends on ROS and/or K+ efflux or whether any of their 

experiments affected pro-IL-1β synthesis and Signal 1(172). 

 

Importance of Priming for NLRP3 Activation 
 

In many of the various studies examining the mechanisms of NLRP3 activation, 

little attention has been given to the role of Signal 1. As mentioned earlier, 

priming can be achieved by the activation of NF-κB transcription driven by 

receptors like TLRs, NLRs, IL-1R1, and TNF-R1&2(67, 68). One outcome of 

priming is pro-IL-1β synthesis, which is necessary because pro-IL-1β is not 

normally synthesized at resting state. To this extent, priming is required for all 
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inflammasomes to activate and secrete mature IL-1β. While they are unable to 

activate and secrete IL-1β without priming, other inflammasome proteins, 

including ASC, pro-caspase-1 and pro-IL-18, can support AIM2 or NLRC4 

inflammasome complex formation and IL-18 secretion independently of priming 

as result of adequate basal synthesis(67, 68, 225). Like pro-IL-1β, and unlike 

other inflammasomes, NLRP3 synthesis is dramatically enhanced by priming  

and basal levels of NLRP3 are thought to be insufficient for NLRP3 

inflammasome assembly(67). Therefore, priming is thought to be especially 

important or even an absolute requirement for NLRP3 activation(172).  

In contrast to previous expectations, a more recent study showed that 

basal NLRP3 protein levels are actually adequate for inflammasome activation, 

but that non-transcriptional priming events are required for NLRP3 

activation(226). In this study, they showed that NLRP3 activation occurred after 

stimulation with ATP following only 10 minutes of prior priming, which is too short 

a time for new protein synthesis. Moreover, they showed that when NLRP3 was 

artificially expressed in NLRP3-deficient macrophages, priming substantially 

increased the kinetics and magnitude of NLRP3 activation. Indeed, it has been 

suggested that MyD88 (along with the kinases IRAK1 & 4) is responsible for NF-

κB-dependent transcriptional priming of NLRP3 and pro-IL-1β, while TRIF (and 

IRAK1) is responsible for non-transcriptional priming(67, 172, 227, 228). 

Investigation into non-transcriptional priming of NLRP3 activation has 

begun only recently. So far, it has been shown that NLRP3’s LRR is basally 
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ubiquitinated prior to priming, and that it becomes deubiquitinated upon activation 

of BRCC3 deubiquitinase (shown dependent on mitochondrial ROS production, 

which occurs during priming and is augmented in response to NLRP3 activating 

stimuli)(226, 229). Indeed, several studies have shown that knockdown or 

inhibition of BRCC3 with small molecules prevents NLRP3 activation without 

affecting synthesis of NLRP3 or pro-IL-1β(226, 229, 230). Moreover, 

deubiquitination is also a requirement for activation of ASC(230). Another non-

transcriptional regulatory mechanism of NLRP3 occurs through its stabilization by 

Hsp90 (heat shock protein 90), which binds to the LRR and NACHT domains of 

NLRP3 to prevent its spontaneous autoactivation following its synthesis(231). 

Hsp90 performs this task in association with its co-chaperone SGT1 (a protein 

known to associate with ubiquitin ligases). This study suggested that Hsp90 and 

SGT1 dissociate from NLRP3 upon priming. Moreover, they show that Hsp90 

stabilizes both NLRP3 and pro-IL-1β as they are synthesized, while SGT1 only 

plays a role in regulating NLRP3(172).  

I expect that more mechanisms involved in non-transcriptional priming of 

NLRP3 activation will be described in the near future. For now, it is important to 

realize that the mechanisms I just described for priming imply that the two 

processes of Signal 1 and Signal 2 for NLRP3-mediated IL-1β secretion are 

continuous with one another, rather than two discreet and independent events. 

Indeed, this may relate directly to particle-induced NLRP3 activation, since other 

studies have suggested that priming specifically enhances K+ efflux induced by 
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this class of activators, as described earlier(193, 194). Therefore, addtional 

stimulus-specific priming events are also likely to be uncovered in the near 

future(172). 

There are a few final notes worth mentioning here. First, exogenous 

priming is not necessary in vivo, as inflammasome activation and IL-1β secretion 

occur without it upon stimulation, for unknown reasons(232). No dominant trigger 

for priming has been identified in vivo. Since IL-1-dependent responses require 

MyD88, and multiple cytokine and DAMP receptors signal through MyD88, it is 

reasonable to suggest that many different stimuli could provide this signal as a 

result of stimulus-induced cellular stress or cell death. Second, priming alone can 

activate IL-1β in circulating monocytes, even though this does not occur in tissue 

macrophages(233). The reason for this is that caspase-1 is constitutively active 

in these cells(234). This is the principle reason that LPS or TNF-α can both 

induce IL-1β & IL-18-dependent septic shock(235). Moreover, in macrophages 

from patients with hyperactivating mutations in NLRP3, it has been shown that 

several constraints on inflammasome and caspase-1 activation, like K+ efflux, 

are no longer required(236). Third, stimulation of bone-marrow-derived DCs with 

LPS alone can activate IL-1β via the RIP3 and caspase-8-dependent pathways, 

described below(237). Therefore, in these two latter situations, priming is the one 

and only critical signal driving IL-1β activation(172). 
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Non-canonical IL-1β Processing via RIP3 and Caspase-8 
 

There are several recently documented non-canonical, caspase-1-independent, 

intracellular platforms for IL-1β processing that depend on either RIP3, caspase-

8 or both. As will be explained in more detail later, caspase-8 is an initiator 

caspase that mediates the downstream signaling of TNF-receptor family 

members. Caspase-8 has been shown important for IL-1β activation and 

synthesis in response to various stimuli. One seminal study showed that 

stimulation of TLR4 or TLR3 can activate IL-1β independently of NLRP3 and 

caspase-1, but depended instead on TRIF and caspase-8(238). Conversely, a 

follow-up study was unable to repeat these findings, showing that activation of 

TLR3 by poly(I:C) generates Type I IFN production that inhibits Signal 

1/primng(239). However, since then, other studies have found similar caspase-8-

dependent IL-1β activation is induced by Fas-ligand (activates the receptor Fas 

of the TNF-R family)(240), Dectin-1 receptor activation by fungi (β-glucans of the 

fungal cell wall) and mycobacteria(241, 242), pro-apoptotic chemotherapeutics or 

ER stress(243-245), and bacterial infection of macrophages (Yersinia, 

Salmonella, Escherichia coli, Citrobacter rodentium)(246-248). Importantly, it was 

subsequently discovered that these pathways depend on a downstream TNF 

family receptor kinase called RIP3 (receptor interacting protein kinase 3)(237). 

 RIP3 is now well-known for mediating a process of inflammatory cell death 

driven by either RIP1 (receptor interacting protein kinase 1)-dependent TNF 
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receptor family activation or by TRIF-dependent TLR3/TLR4 activation(249). This 

process, called necroptosis, occurs under conditions where TRIF is upregulated 

via TLR4 or Type I IFNs or when the synthesis of a proteins like cFLIP or 

IAPs(inhibitor of apoptosis proteins)/TAK1 are too low to allow or prevent 

apoptotic signaling, respectively (discussed below)(249-252). For instance, it has 

been shown the treatment of LPS-primed macrophages with Smac mimetic 

(Smac is discussed below), which inhibits IAPs, causes RIP3 and caspase-8-

dependent IL-1β activation and cell death(253). This same study also found that 

IL-1β activation via this pathway is also partly NLRP3-dependent. Unlike in 

necroptosis, RIP3’s involvement in caspase-8-mediated IL-1β activation is 

independent of its kinase function, depending instead on its ubiquitinase 

activity(237). Also, RIP3 and caspase-8 normally regulate each other, leading to 

embryonic lethal phenotypes in capase-8—deficient mice due to hyperactive 

RIP3-mediated necroptosis and vice versa(254-256). However, under the 

conditions described above, RIP3 and caspase-8 work together in a complex to 

mediate IL-1β activation. 

 

Cathepsins: Lysosomal Proteases in IL-1β Activation & Cell 
Death 
 

What are cathepsins and how are they regulated? 
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Lysosomes were discovered in 1955 by Christian de Duve, an achievement that 

earned him the Nobel Prize in physiology and medicine in 1974(257-259). He 

observed that these intracellular granules contained numerous hydrolytic 

enzymes that are active at acidic pH, and therefore called them “lysosomes”(258, 

259). Lysosomes represent one of two main protein degradation centers inside 

cells, the other being the cytosolic proteasome(259). However, lysosomes also 

contain a variety of hydrolases that include proteases, amylases, lipases and 

nucleases(259). The proteases are divides into three groups: aspartic, serine and 

cysteine proteases(259). Cathepsins are cysteine proteases, with the exception 

of the aspartic proteases cathepsin D and E, and the serine proteases 

cathepsins A and G(259). They are designated as being part of the cysteine 

protease clan CA, which are highly evolutionarily conserved among species, and 

can be further classified in the subgroup of the C1 family of papain-like cysteine 

proteases(259). Proteases in this family exist in plants, like papain in papaya, 

parasites, helminthes, insects, viruses, and of course, mammalian 

lysosomes(259). 

The name cathepsin comes from the Greek word “kathepsein,” which 

means “to digest”(259). Indeed, much like the stomach of mammals, which 

contains acidic fluid facilitating optimal digestion by its enzymes, lysosomes 

contain cathepsins in a low pH environment (pH ~3.5-5) in which they are 

optimally active and perform a similar function(260). However, cathepsins have 

other roles beyond intracellular (and extracellular) digestion, which will be 
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discussed shortly. In humans, there are eleven cysteine cathepsins, including 

cathepsins B, L, C, S, and X, which will be examined in this thesis(259). 

However, there are also cathepsins K, H, F, O, V, and W(259). Additionally, in 

mice, there are a total of nineteen cathepsins, eight of which are not expressed in 

humans and are expressed mostly in the placenta(261). 

Cathepsins are synthesized as prepro zymogens(259). A preprocathepsin 

carries an N-terminal signal peptide that is cleaved off upon transport into the ER 

during N-linked glycosylation with a mannose-6-phosphate that targets the 

immature procathepsin to the endosomes and lysosomes(259). The pro-peptide 

folds over into the active site, blocking enzyme activity(259). Upon acidification in 

endosomes, or lysosomes, procathepsins generally undergo autocatalytic 

activation into the mature cathepsin, which can be in the form of single or 

disulfide-linked double-chain enzymes(259). However, according to some 

reports, cathepsins C and X require cathepsins L or S for their activation(259, 

262). Additionally, glycosaminoglycans (GAGs) are particularly influential in 

accelerating the autocatalytic activation of cathepsins, as has been shown for 

cathepsins B and S(259, 263, 264). 

Generally, the cellular compartmentalization and acidic pH dependence of 

cathepsins prevents them from degrading important intracellular components 

instead of ingested proteins(259). However, cathepsins do remain active for a 

short period of time in neutral environments before their activity is lost as a result 

of irreversible unfolding, and they can also be stabilized by binding to their 
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substrates(259, 265-268). Moreover, disruption of lysosomes, as occurs during 

some types of cell death (discussed below) can lead to cytosolic 

acidification(259, 269). Indeed, cathepsins exhibit activity in a range of various 

non-lysosomal environments, including the nucleus, cytoplasm, and plasma 

membrane(259). Moreover, they can also be secreted into the extracellular 

environment(259). In the nucleus, cathepsins L and F have been shown to 

associate with and proteolytically process histones, like histone H3(259, 270). 

Cathepsin S is unique in that it maintains almost normal enzymatic activity at 

neutral and slightly basic pH, which suggests that it is capable of functioning 

efficiently if released into the cytosol(259). Indeed, several cathepsins have been 

shown to target certain cytosolic substrates directly relevant to their roles in 

initiating cell death, as will be discussed shortly(259). Moreover, it has been 

shown that at the cell membrane, and in the extracellular environment, 

glycosaminoglycans (GAGs) within the matrix can facilitate the activity of certain 

cathepsins whilst inhibiting others(259). Therefore, not only do GAGs play an 

important role in facilitating cathepsin activation, but they also regulate the ability 

of cathepsins, such as K and L, to degrade extracellular tissue matrix 

components like collagen and elastin(259). Likewise, cathepsin X is 

predominantly located in the extracellular matrix on the plasma membrane, 

where it plays a part in activating integrins and modifying T-cell activity and/or 

migration(259, 271-274).  
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Tissue expression of cathepsins is similarly variable(259). Cathepsins B, 

L, C, X, H, F, and O are expressed in virtually all tissues(259). However, 

cathepsin K is primarily expressed in epithelial cells, synovium and osteoclasts, 

and plays an important role in bone resorption(259). Cathepsin V, which is 

closely related to human and mouse cathepsin L, is most highly expressed in the 

thymus where it plays a role in antigen presentation(275, 276), and it also resides 

in the testes. Cathepsin W is primarily expressed in CD8 T cells and NK (natural 

killer) cells and presumably participates in cell-mediated toxicity of infected cells. 

Cathepsin S is expressed predominantly in APCs, especially DCs and 

macrophages, and has a role in antigen presentation(276). Finally, and critically, 

cathepsin C is required for the activation of several neutrophil serine 

proteases(277). Importantly, these neutrophil proteases have been shown 

capable of activating pro-IL-1β in cell-free systems(121, 278-281). Therefore, 

specific functions of cathepsins are determined to some extent by the 

tissues/cells in which they are expressed. 

As might be expected of digestive enzymes, charged with breaking down 

almost any substrate that can be engulfed and encountered in lysosomes, each 

cathepsin can potentially cleave a wide array of different substrates with few 

exceptions. Their only restriction seems to be a general preference for cleaving 

proteins after basic and hydrophobic residues(282). Most cathepsins are 

endopeptidases, cleaving at positions within proteins between the C (carboxy) 

and N (amino)-terminus. However, cathepsin X is strictly a 
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carboxymonopeptidase, cleaving only single amino acids at the C-terminus, and 

cathepsin C is strictly an aminodipeptidase, cleaving two amino acids at the N-

terminus. Moreover, in addition to acting as endopeptidases, cathepsin B is also 

a carboxydipeptidase and cathepsin H is also an aminopeptidase. 

The regulation of cathepsin activity is complex. Once active, the ionic 

environment, pH, redox conditions, GAGs and surrounding molecular chemistries 

strongly influence cathepsin activity and specificity, making it difficult to 

generalize their function in cell-free assays to cellular or in vivo 

environments(259, 283, 284). A clear example of this is that cathepsins B, L, H 

and K have been shown to cleave a protein called kininogen in cell-free systems, 

however, only cleavage by cathepsin K was found to occur at the same cleavage 

site in the natural substrate from in vivo samples(259, 285, 286). Moreover, 

cathepsins are under constant regulation from several families of endogenous 

cathepsin inhibitors(259). 

Endogenous cathepsin inhibitors are specific inhibitors of the C1 clan of 

cysteine cathepsins, and can be classified first into emergency inhibitors and 

regulatory inhibitors(259). The emergency inhibitors are not normally inhibiting 

cathepsins, and only do so when cathepsins are displaced from physiological 

locations during cell death and lysosome disruption or when they secreted by 

invading pathogens(259). The regulatory inhibitors, such as cathepsin pro-

peptides, prevent cathepsin activity only prior to activation or before encountering 

a substrate(259). The main class of emergency inhibitors is the cystatins, which 
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can be further sub-classified into Type 1 Cystatins (Stefins), Type 2 Cystatins 

(Cystatins) and Type 3 Cystatins (Kininogens)(259). Type 1 Cystatins are 

generally cytosolic, but can also be found in body fluids, and in humans they 

include stefins A and B (a.k.a. cystatins A and B)(259). Type 2 Cystatins are 

found in a wider variety of locations than Type 1, but they are generally 

secreted(259). This group includes the most dominant cystatin, cystatin C, as 

well as cystatin D, E/M, F, and salivary cystatins. There are other less well-

characterized groups, including the Type 3 Cystatins, Thyropins and the less 

cathepsin-selective Serpins. For the purpose of this thesis, cystatins B and C are 

the most important to understand. Cystatin B inhibits cathepsins L and H almost 

equally, and cathepsin B about 150-fold less well. Cystatin C inhibits cathepsins 

L very strongly, and cathepsins H and B equally to about the same degree as 

cystatin B. Other cathepsins are inhibited by the cystatins as well, but these 

hierarchies are less well studied. 

In summary, it is critical to recognize that the non-specific nature of 

cathepsins for various substrates, and their complex multi-faceted regulation, has 

made it notoriously difficult to assign specific functions to specific cathepsins. It is 

only in the few cases listed above, for cathepsins L, V, K, C and S, that non-

redundant activity or specific localization has allowed specific functional 

assignment with some degree of confidence. Cell permeant inhibitors tend to be 

non-specific, as do fluorogenic cellular substrates. This was shown clearly in one 

study showing that a supposedly specific cathepsin B inhibitor, Ca074Me, 
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inhibited nigericin-induced cell death, while knockdown of cathepsin B did 

not(147). Moreover, two other studies have found that lysosome disruption 

correlates with increased cleavage of a supposedly cathepsin B-specific 

fluorogenic substrate, Magic Red R-R, but this cleavage was inhibited by 100 µM 

CA074Me and not 10 µM (a concentration of Ca074Me already shown to 

completely block cathepsin B activity), suggesting that other cathepsins can also 

cleave this substrate(142, 157, 162). There are numerous examples of this in the 

literature, several of which will be described later in chapters III and IV(259). 

However, newer and better tools for cathepsin research are being developed all 

the time.  

The recent development of activity-based probes (ABPs) has made it 

possible to determine the relative activity of specific cathepsins under various 

conditions in living cells and whole animals with a high degree of 

confidence(287). Combining these probes with quenched fluorescent substrates, 

which fluoresce only when the probe is bound to active cathepsins, has made the 

non-noninvasive assessment of intracellular, in vivo, and inhibitor activity easier 

and more accurate than ever before(288-293). Upon labeling of active cathepsins 

in live cells, their activity and localization can be visualized with fluorescent 

imaging tools. Additionally, the probe-bound cathepsins can be extracted from 

these tissues, then separated and specifically identified by molecular weight. In 

this case, not only can one determine the exact identity of the cathepsins, but 

also their level of activity can be correlated directly with the intensity of the signal 
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generated by fluorescent probe. Indeed, the use of these tools will likely prompt 

researchers to visit earlier conclusions made with less precise technology. 

 

Basic Pathways of Cell Death 
 

Understanding how cathepsin-mediated cell death (discusses below) stands in 

relationship to known pathways for cell death requires some basic background. 

Multiple pathways have been described for cell death(294). However, cell death 

can generally be broken down, with a few exceptions, into necrosis and 

apoptosis(294). Pyroptosis, described earlier as being caspase-1/11-dependent 

cell death that occurs during inflammasome activation has features of both 

necrosis and apoptosis; membranolysis being the important necrosis-like 

characteristic worth considering for this thesis(24). Necrosis is generally 

considered pro-inflammatory, non-programmed cell death that results in cellular 

swelling and the loss of membrane and organelle integrity (a.k.a. lytic cell 

death)(294). Generally, necrosis is caused by sudden or extensive cell damage 

following the chemical or physical disruption of cells(294). However, there are 

pathways described for programmed necrosis, like necroptosis, which depends 

on RIP1, RIP3 and caspase-8, as discussed above(295). Another necrotic or 

apoptotic pathway involves cathepsins and LMD, which will be discussed in more 

detail below(294). In contrast to necrosis, apoptosis is generally non-

inflammatory programmed cell death that results in nuclear condensation, DNA 
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fragmentation and membrane blebbing without loss of membrane integrity(294). 

Furthermore, apoptosis can be subdivided into two pathways, intrinsic apoptosis 

and extrinsic apoptosis(294).  

Intrinsic apoptosis can be initiated by LMD, DNA-damage, growth factor 

withdrawal, and other various cellular perturbations that lead to mitochondrial 

outer membrane permeabilization (MOMP)(294). In general, MOMP is regulated 

by the Bcl-2 family, which is made up of anti-apoptotic (ex- Bcl-2, Bcl-xL, Mcl-1) 

and pro-apoptotic proteins (Bid, Bax and Bak)(294). Anti-apoptotic and pro-

apoptotic Bcl-2 family members are in a constant balance, neutralizing one 

another under basal conditions(296). When the balance between anti- and pro-

apoptotic proteins is tipped in favor of apoptosis, the key terminal effectors 

required for MOMP, Bax and Bak, form a pore in the mitochondrial outer 

membrane. This dissipates the proton gradient generated across this membrane 

required for the production of ATP by oxidative phosphorylation, which 

consequently is also required for the production of ROS. MOMP also causes the 

release of pro-death factors from inside in the mitochondria, which include 

cytochrome C and Smac. Importantly, in order for cytochrome C to be released 

from sequestration, an inner mitochondrial membrane lipid, cardiolipin, must 

undergo ROS-mediated peroxidation, which is initiated by activated Bid, cytosolic 

phospholipases or neutral sphingomyelinases that disrupt the mitochondrial 

respiratory chain(297-300). Upon release from mitochondria in the cytosol, 

cytochrome C binds and activates apoptotic protease-activating factor 1 (Apaf-1), 
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which forms a multimolecular cytosolic complex closely resembling 

inflammasomes. This complex activates the initiator caspase-9, which then 

activates the executioner caspases 3,6 & 7. Caspases 3,6, & 7 begin a cascade 

of downstream enzymatic hydrolysis throughout the cell leading to all the final 

morphologic features of apoptotic death. Smac, on the other hand, inhibits the X-

chromosome-linked inhibitor of apoptosis protein (IAP) called XIAP, as well as 

the cellular IAPs, cIAP1 and cIAP2, which normally inhibit caspases 3,7 & 9 to 

prevent apoptosis.  

Similarly, the terminal steps in the extrinsic pathway of apoptosis also 

activate the executioner caspases 3,6 & 7. However, this pathway is initiated by 

death-receptor signaling through TNF receptor superfamily members (TNF-R1, 

TNF-RII, Fas, TRAIL-R) on the plasma membrane, which are activated by stimuli 

outside of the cell(294). Under conditions where XIAP, cIAP1 and cIAP2 are 

unable to perform their usual function of promoting NF-κB-mediated transcription 

of pro-survival factors, like when protein translation is blocked, this leads to the 

formation of a death-inducing signaling complex (DISC)(294). The DISC 

activates caspase-8 (or caspase-10 in some cases)(294). Caspase-8 can directly 

activate caspases 3,6, & 7 in some cell types, but in others it leads to cleavage of 

Bid, which activates Bax and Bak, leading to MOMP and the terminal pathway 

described above(294). It is worth noting here that Bid can be cleaved by a 

number of proteases, including caspase-8, caspase-3, granzyme B, calpain, 

cysteine cathepsins, and cathepsin D(294, 301). Therefore, it is thought that Bid 
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senses cell injury or stress that may result in any one of multiple pathways for 

intracellular protease activation and cell death(294). 

 

Cathepsins and Lysosomal Cell Death 
 

Lysosomal cell death was first recognized and described by Christian de 

Duve(257, 302). Although this pathway of cell death was acknowledged by the 

field early on(257, 303), it was soon dismissed as just another caspase-

dependent form of apoptotic death since caspase inhibitors, now known to inhibit 

cathepsins as well, suppressed this response(257, 304). However, genetic 

models of cathepsin deficiency, where LMD has been confirmed to be causative 

for cell death, have shown otherwise(257). Cathepsin B-deficiency has been 

shown to protect cells from lysosomal cell death in response to growth factor 

withdrawal and etoposide toxicity in monocytes(257, 305), TNF-α/Death 

Receptor Activation/TNF plus protein synthesis inhibitors known to cause 

necrosis in either fibroblasts or hepatocytes/hepatocellular carcinoma cells(257, 

306-310), parvovirus in brain tumors(257, 311), and LLOMe in breast cancer 

cells(257, 312). Similar results were obtained for growth factor withdrawal and 

TNF plus protein synthesis inhibitors in cathepsin L-deficient cells(257, 305, 306). 

Also, cathepsin D-deficiency (an aspartic protease) has also been protective in 

fibroblasts treated with adriamycin, etoposide or TNF-α(313, 314), spontaneous 

death of neutrophils(315), STS in T cells(257, 316), interferon-gamma and death 
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receptor activation HeLa cells(257, 317), and HIV-1/Nef killing of human CD4 T 

cells(257, 318).  

Most of the pathways described for LMD-mediated cell death are 

described as apoptosis(257). However, it has been shown that while mild LMD 

leads to apoptosis, more severe LMD leads to necrosis(319, 320). Regardless of 

the ultimate cell death phenotype, LMD has been shown to cause caspase-

independent cell death in response to a variety of different stimuli(197, 321-323), 

and in situations where inhibition of activated caspases fails to suppress cell 

death(311, 324). Therefore, LMD appears to initiate and independent pathway of 

programmed cell death. Although only a few intracellular death-related substrates 

have been described so far, cathepsins are considered by experts in the field to 

be “death-executing proteases” in their own right(257, 259). 

Many different stimuli cause LMD, but LMD is not always the cause of cell 

death when it occurs(257). In fact, any type of cell death will mostly likely cause 

LMD at some point(257, 325). Moreover, LMD is easy to overlook since leakage 

of lysosomal contents can occur without causing readily observable changes in 

lysosomal ultrastructure(257, 326). Therefore, determining whether LMD is the 

cause or result of cell death requires either direct induction of LMD with 

lysosomotropic detergents, genetic evidence of dependence on cathepsins, or 

observation of LMD plus inhibition of cell death with cathepsin inhibitors in cases 

where other cell death pathways are ruled out(257). Lysosomotropic detergents 

accumulate in lysosomes (or other acidic compartments) because they are 
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weakly basic amphiphilic molecules that can diffuse across membranes at 

neutral pH, but they become protonated and no longer able to pass through 

membranes at acidic pH(257, 327). This is called, “Ion Trapping.” One of the 

most commonly used lysosomotropic detergents is LLOMe, which requires 

cathepsin C-mediated cleavage in lysosomes in order to induce LMD(328, 329). 

Importantly, other stimuli known to induce LMD are viruses, pore forming toxins 

(like nigericin) from bacteria, fungi, spiders and snakes, ROS, various lipids and 

their metabolites, ultraviolet light (UVA/B) and DNA-damage-mediated activation 

of p53(257). There are many other inducers of LMD, but an exhaustive list is 

outside the scope of this thesis. However, it is worth noting that a major 

intracellular inhibitor of LMD is Hsp70(324). This may have special relevance to 

inflammation. Hsp70 can be degraded by calpain (described earlier as the 

protease that cleaves pro-IL-1α), which has been shown to contribute to LMD by 

a variety of studies in neurons(199, 257, 330-333). Next, I will focus on one more 

mechanism for promoting LMD as it relates to the consequences of crosstalk 

between lysosomes and mitochondria in cell death. 

 

Lysosomal-Mitochondrial Crosstalk in Cell Death 
 

One of the first cytosolic substrates established for cathepsins was a pro-

apoptotic Bcl-2 family protein, Bid(334). This cleavage activates Bid, now called 

truncated Bid (t-Bid), and can be achieved by multiple redundant cathepsins 
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(including cathepsins B, K, L and H), as shown in both cell-free and cellular 

systems(335, 336). Indeed, cathepsins also have been shown to cleave and 

inactivate anti-apoptotic Bcl-2 family proteins, including Bcl-2, Bcl-xL, Mcl-1 and 

XIAP(200, 336). In fact, it has been shown that microinjection of cathepsins B or 

D directly into cells can trigger MOMP(337, 338). Indeed, many different LMD-

inducing stimuli have been shown to induce MOMP via cathepsins, such as 

viruses(339) and amino-functionalized nanoparticles(179). Therefore, there 

seems to be a linear relationship between LMD, cathepsins, the Bcl-2 family and 

MOMP(257). 

Interestingly, in cell-free conditions, cathepsin B has been shown capable 

of directly cleaving caspase-11 at neutral pH(142), and caspase-1 at acidic 

pH(308, 310, 340-343). Moreover, in a human monocyte cell line (THP-1 cells) 

cathepsin B was shown to directly cleave caspase-1. However, unlike its normal 

autocatalytic cleavage pattern (into 10 and 20 kDa subunits), this generated 37 

and 40 kDa fragments making the significance of this cleavage in cellular 

systems unclear(142). Thus, cathepsins have multiple known cytosolic targets 

that can lead to MOMP and cell death via the pathways for intrinsic apoptosis or 

possibly pyroptosis, as described above(257). 

Interestingly, the Bcl-2 family has also been suggested to regulate LMD. It 

has been shown that Bax can induce pore formation in isolated lysosomes and 

that it is responsible for inducing LMD in in vitro and in vivo models of 

Parkinson’s disease(344, 345). Also, it has been shown that a pro-apoptotic Bcl-
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2 protein, Bim, can recruit Bid to lysosomal membranes and enhance LMD 

following stimulation of the death receptor TRAIL-R in hepatocytes(346, 347). 

However, there are several studies showing that Bcl-2 overexpression or Bax-

Bak double-deficiency do not prevent LMD under various circumstances, 

suggesting that the Bcl-2 family may be sufficient, but not necessary, to cause 

LMD(322, 323, 348-350). Nonetheless, activation of MOMP by cathepsins via the 

Bcl-2 family also causes a burst of ROS from the mitochondria, and ROS are 

important mediators of LMD.  

Experts in the field of lysosomal cell death agree that ROS are among the 

most important inducers of LMD(78, 197-199, 219, 269, 294, 351-355). As 

mentioned earlier, phagocytosis of LMD-inducing particles generates ROS, and 

the inflammatory character of sterile particles is directly related to their ability to 

induce ROS production(164-167). Moreover, ROS-dependent LMD has been 

observed in neutrophils, neurons, and cardiac muscle cells(198, 315, 352, 356). 

The reason that lysosomes are especially susceptible to LMD caused by ROS is 

that various iron-containing molecules accumulate in the lysosomes of 

macrophages and other cells, either via phagocytosis of red blood cells or 

autophagy of old mitochondria. This “ferruginous material” can be oxidized by 

membrane permeant intracellular ROS, like H202, leading to conversion of the 

reduced ferrous form of iron into the oxidized ferric form (Fenton Reaction: H202 

+ Fe2+  Fe3+ + OH. + OH-), which results in the production of highly reactive 

hydroxyl radicals(294, 352). Indeed, H202 is used in common models for LMD 
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and cell death(78, 175, 219). Hyroxyl radicals cause membrane lipid peroxidation 

leading to disruption of these phospholipid barriers. Interestingly, iron 

supplementation is contraindicated for patients suffering from inflammation or 

infection, and this makes sense given the current discussion(1). Finally, various 

endogenous lysosome-disrupting molecules in cells are activated by ROS, 

including PLA2 (phospholipase A2), N-aspartyl chlorin e6, and siramesine(323, 

357, 358). 

But where does all this ROS come from? Although NADPH oxidase can 

generate ROS, as mentioned earlier, the vast majority of ROS production in cells 

is generated by the mitochondria through the ETC pathway for oxidative 

phosphorylation(359). The release of lysosomal enzymes into the cytosol has 

been shown to cause mitochondrial dysfunction and a burst of mitochondrial 

ROS production(360). Thus, in a feed-forward loop, LMD can potentially enhance 

LMD via lysosomal-mitochondrial crosstalk. In summary, whether or not the Bcl-2 

family directly or indirectly induces LMD via mitochondrial ROS, there are 

important interactions between lysosomes and mitochondria that are worth 

considering when evaluating LMD and cell death. 

 

Summary, Research Question, Hypothesis 

Exogenous and endogenous particle-induced sterile inflammatory diseases 

cause widespread human suffering and most have no cures. Disease-causing 
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sterile particles initiate cycles of cell death and inflammation that are 

symptomatic of inappropriate innate immune macrophage activation meant for 

the destruction of intracellular pathogens. The type of lytic cell death caused by 

these particles is known to be inflammatory as a result of DAMP release and the 

activation of multimolecular inflammasome complexes, which further exacerbate 

a form of enhanced inflammatory cell death called pyroptosis. Despite the 

complexity of the inflammatory response generated by these particles, it seems 

to depend almost entirely on the IL-1R. The IL-1R can be activated by IL-1α or 

IL-1β. Although the processing and secretion of these two cytokines is different, 

these events are inextricably linked to lytic cell death. Therefore, it is highly 

probable that blocking either or both lytic cell death and IL-1α,β 

production/secretion induced by sterile particles has potential therapeutic 

benefits in the treatment of particle-induced sterile inflammatory disease. 

My main research question is as follows. What role do cathepsins play, 

if any, in particle-induced sterile inflammation? Moreover, there is another 

more peripheral question I have been asking during my investigation into the 

role(s) of cathepsins in particle-induced sterile inflammation that has direct 

clinical relevance. Are cathepsins tractable therapeutic targets mediating IL-

1α,β production/secretion and lytic cell death induced by sterile particles in 

macrophages? A key word in this question is “tractable.” Besides vaccines, the 

vast majority of successful therapeutics target enzymes (ex- proteases). Other 

successful targets are receptors and ion channels. While the field of biologics, 
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which deals with mostly blocking-proteins, has been promising, there are 

significant drawbacks to this approach. Patients suffering from genetic mutations 

that cause hyperactive or inappropriate inflammasome activity, Hereditary 

Periodic Fever (HPF) syndromes, respond dramatically to IL-1-neutralizing 

biologics(361-363). Moreover, the use of these biologic for treatment of various 

inflammatory disease has demonstrated that IL-1 is a valid therapeutic 

target(364), and such treatments have even been shown to attenuate 

atherosclerosis in mice(69). However, the IL-1-blocking biologics tested so far 

have been complicated by expensive production and storage requirements, short 

half-lives, injection-site reactions, development of neutralizing antibodies and 

infectious adverse effects that are exacerbated as the IL-1-blocking agent 

becomes more effective(364). On the other hand, small-molecule drugs that 

target enzymes, receptors or ion channels have significant advantages. Firstly, 

the cost of synthesis and stability of small molecules makes long-term 

preventative studies possible. Furthermore, membrane penetrating small 

molecules would allow intracellular targeting of particle-specific NLRP3 activating 

pathways. Greater specificity translates into less-generalized 

immunosuppression. Importantly, compared to IL-1-blocking, specific inhibition of 

NLRP3 would actually allow broader coverage over the effectors mediating its 

pathology by reducing both IL-1β and IL-18 activation. If pro-IL-1β and pro-IL-1α 

synthesis and particle-induced cell death can be inhibited as well, this would be 
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even better. Therefore, intracellular targets that can be accessed by small-

molecule drugs are what I mean here by “tractable.” 

Another key term in my second research question is “therapeutic.” That is 

to say, what tractable drug targets will give the effects I want; reduction of 

particle-induced cell death and IL-1 secretion? Firstly, ROS have been implicated 

by all the different mechanisms of NLRP3 activation, including those relating to 

sterile particles. However, decades of clinical trials testing antioxidants have 

failed to demonstrate significant therapeutic efficacy in a number of inflammatory 

conditions, mostly because of the inherent difficulty in targeting a specific type of 

ROS at the right time and in the right location(365). Therefore, these targets are 

currently not tractable. Potassium efflux and calcium influx both seem integral to 

NLRP3 activation, but neither has been directly implicated as being necessary for 

lytic cell death by sterile particles. Moreover, systemic KCl treatment is known to 

directly induce sudden cardiac death, and therefore would not be therapeutic. 

Likewise, inhibitors of mitochondrial ROS that block the ETC are also deadly 

poisons. Given all of the various IL-1β-activating and cell death mechanisms 

discussed above, there are two likely candidates as tractable therapeutic drug 

targets: caspase-1/11 or cathepsins. 

My hypothesis is as follows: Particle-induced IL-1β secretion and cell 

death are both dependent on cathepsins, and therefore, cathepsin 

inhibitors and genetic models of cathepsin deficiency should suppress 

these responses in vitro and exhibit an anti-inflammatory effect in vivo that 



 79 
 

surpasses the effect of caspase-1/11 deficiency. Therefore, I believe 

cathepsins may be the tractable therapeutic drug targets I am seeking. Chapters 

III and IV will introduce the rationale for this hypothesis, and describe the 

controversies that investigating this hypothesis will invariably address. Moreover, 

these chapters will describe my interrogation of this hypothesis in great detail. 

Other key questions that will be addressed in my investigation include the 

following:  

 

1. Are cathepsins involved in particle-induced NLRP3-mediated 

IL-1β secretion?  

2. Are cathepsins involved in NLRP3-mediated IL-1β secretion 

induced by non-particulates?  

3. Are cathepsins involved in particle-induced cell death?  

4. How and which cathepsins?  

5. Which cathepsins are inhibited by Ca074Me and at what 

concentrations?  

6. What is the mechanism of NLRP3 activation by particulates 

and/or non-particulates?  

7. What organelles are involved?  

8. How is lytic cell death connected to NLRP3-mediated IL-1β 

secretion?  



 80 
 

9. How do cathepsin inhibitors/deficiencies compare to caspase 

inhibitors/inflammasome deficiencies? 
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Chapter I, Figure 4:  
Hypothetical model for the role of cathepsins in particle-induced sterile 
inflammatory pathology. The figure shows a macrophage encountering a 
microbe or a sterile particle in the peripheral tissues. Upon ingestion 
(phagocytosis), the microbe or particle induces LMD, which leads to 
NLRP3/Caspase-1 activation. This results in IL-1β activation and secretion, 
which recruits neutrophils and other inflammatory cells to the site, as well as 
pyroptotic cell death. Cathepsins may be involved somehow in NLRP3/Caspase-
1 activation or independently involved in promoting cell death. If this is this case, 
the cathepsin-dependent cell death can cause the release of DAMPs and pro-IL-
1β, similar to the way pyroptosis does so, and these DAMPs may also recruit 
neutrophils. Neutrophils may then release cathepsin C-dependent serine 
proteases that can activate IL-1β extracellularly and drive the IL-1-dependent 
inflammatory response independently of NLRP3/Caspase-1. In the case of an 
invading microbe, this is most likely a protective response that releases the 
microbe attempting to invade the macrophage and recruits other immune 
defenses to kill this microbe. In contrast, when particles induce this response, cell 
death, inflammation and re-release of the particle leads to a cycle of chronic 
pathology. If cathepsins are driving these two responses to particles (cell death 
and IL-1β secretion), then cathepsins may be tractable therapeutic targets for the 
treatment of particle-induced sterile inflammatory diseases. 
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Chapter II: Materials and Methods 
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Chapter II: Materials and Methods 
 

Reagents and Antibodies 

Abs for flow cytometry were against mouse Ly-6G (1A8; BD Biosciences), Ly-6C 

(7/4; AbD Serotec) and the dead cell marker was 7-AAD (LifeTechnologies). 

Antibodies for western blots were against mouse IL-1β (R&D Systems), caspase-

1 p10 (sc-514; Santa Cruz Biotechnology), β-actin (C4; Santa Cruz 

Biotechnology) and GAPDH (6C5; EMD Millopore). ELISA kits were purchased 

for mouse IL-1β (BD Biosciences), pro-IL-1β, TNF-α, IL-6, MCP-1, and RANTES 

(eBioscience). Ultrapure LPS was from Salmonella minnesota (Invivogen). 

Poly(deoxyadenylic-deoxythymidylic) acid and nigericin were purchased from 

Sigma-Aldrich (St. Louis, MO). Silica crystals (MIN- U-SIL 15) were obtained 

from U.S. Silica (Frederick, MD). Cholesterol crystals were synthesized by 

acetone supersaturation and cooling(10), Alum (Imject alum adjuvant; a mixture 

of aluminum hydroxide and magnesium hydroxide) was from Pierce 

Biotechnology, and Leu-Leu-OMeHCl was from Chem-Impex International. 

ZVAD-FMK, Ac-YVAD-CMK and Ca-074-Me were from Enzo Life Sciences and 

K777 was initially gifted to us by Stephanie A. Robertson and James H. 

McKerrow at UCSF, and further stocks obtained through services from the 

NHLBI’s SMARTT Program. ABT199, ABT263 and AT406 were from Selleck 

Chemicals. Lipofectamine 2000, RNAiMax and all siRNA smart pools were from 

Life Technologies and Endoporter was from Gene Tools. 
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Production and Measurement of Cytokines & Cell Death 

Peritoneal exudate cells were elicited by i.p. injection of 3 mL 1% thioglycollate 

and collected after 72 h by peritoneal lavage. Prior to experimentation, non-

adherent cells were decanted, leaving primarily macrophages behind. Bone 

marrow–derived macrophages were generated as described(366). Bone marrow 

neutrophils were isolated from whole bone marrow, following RBC lysis, using 

the anti–Ly-6G Microbead Kit from Miltenyi Biotec. Purity was assessed to be 

95–98% by flow cytometry. Murine bone marrow-derived mast cells were derived 

from whole bone marrow using murine rIL-3 (PeproTech), and purity was 

assessed to be 95% by toluidine blue(367). Cells were plated overnight in 96-well 

plates (ELISA), or 12-well plates (SDS-PAGE, cathepsin activity labeling with 

BMV109, and western blotting). Unless otherwise stated, the “Standard Protocol” 

followed herein is as follows: Priming in RPMI 1640 (or MC/9 medium for mast 

cells(367)) for 3h with LPS (200 ng/mL), with or without the addition of inhibitors 

after 2h of priming, followed by 6h of stimulation. Inhibitors were added in a final 

concentration of ≤0.1% DMSO, which has no effect on readouts compared to 

media alone. Supernatants were collected, with or without addition of Promega’s 

10x lysis solution for measuring intracellular cytokines or LDH measurement by 

plate reader at OD490 using Promega’s Cytox96 Non-radioactive cytotoxicity 

assay, and cytokine levels were analyzed by ELISA. In the same samples 



 85 
 

assayed for IL-1β and TNF-α, cell death was assessed using either LDH or MTS 

assays as recommended by the manufacturer (Promega). 



 86 
 

Chapter II, Figure 1: Standard Assay for Understanding Inflammasomes. 
The figure shows the treatment schema following for the core assay used in most 
of the experiments described in this thesis. This approach is not conventionally 
used in the inflammasome field, but it includes controls that permit the 
simultaneous examination of at least 3 different cytokines (IL-1β, pro-IL-1β and 
TNF-α) in the supernatants as well as intracellular cytokines (most importantly IL-
1β & pro-IL-1β) by using the LDH assay lysis buffer and measuring these 
cytokines by ELISA. Moreover, supernatants are used to measure cell death 
(LDH) and the cells left behind can be used to assess cell viability (MTS). By 
comparing the LDH (OD490) in lysed controls or MTS (OD490) in non-lysed 
controls, comparison of cell numbers between different genotypes can be 
compared to make sure that differences observed in the other readouts are not 
due to difference in cell number. Altogether, this system simultaneously 
measures several variables critical for interpreting and understanding 
inflammasome experiments. 
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Animal and Cell Lines 

Wild-type C57BL/6 mice were purchased from Jackson Laboratories. Caspase-

1–deficient (Casp1-/-) mice(114) were previously described, NLRP3-deficient 

(Nlrp3–/–) mice(368) and ASC-deficient (ACS–/–) mice(368) were provided by 

Millennium Pharmaceuticals, and RIP3-defcient (RIP3-/-) mice were provided by 

Francis K. Chan (UMMS, Worcester). Caspase-1–deficient mice also lack 

caspase-11(73). Cathepsin S(369), L(275), and B(370) deficient mice were 

provided by Dr. Hal Chapman (UCSF, San Francisco) and Dr. Hidde Ploegh 

(Harvard Medical School), cathepsin C deficient mice(277) were provided by Dr. 

Christine Pham (Washington University School of Medicine, St. Louis) and all 

mice have been backcrossed to C57BL/6 background. All animal protocols were 

approved by the University of Massachusetts IACUC. 

 

Generation of Bone Marrow Chimeras 

Adult wild-type (WT) C57BL/6 mice were lethally irradiated (1100 rads) and 

reconstituted for at least 8 weeks with bone marrow collected from age-matched 

WT or mutant donor mice 1-2 wks old. Some recipient mice in each group 

expressed the leukocyte marker Ly5.1 (CD45.1), while all donors expressed 

Ly5.2 (CD45.2), allowing confirmation of >90% chimerism to be determined by 

flow cytometric analysis of peripheral blood samples.  
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(see Appendix 3 for an alternative method for collecting hematopoietic 

stem cells from fetal livers, which can be done by predicting the day of 

conception based on the weight of pregnant female mice.) 

 

siRNA Knockdowns 

Each targeting siRNA was compared with a control non-targeting siRNA pool 

(NT2) and used at a 50 nM final concentration (or control siRNA at 100 nM for 

double-knockdowns) after complexation in a mixture of Endoporter (GeneTools) 

and RNAiMax (Life Technologies) at a ratio of 0.11 μL:0.15 µL in OptiMEM 

(Gibco), respectively, per 0.1 mL final volume (in 10% FCS). Complexes were 

combined with 10% FCS-containing RPMI at a ratio 1:10 (complexes:10% FCS) 

and added to cells for 96h. Media was supplemented with 2 mM L-glutamine, 1 

mM Na-pyruvate, 0.2 mM β-Me, 1x NEAAs and 100 μg/mL ciprofloxacin. 

 

(see Appendix 4 for the detailed siRNA protocol used here and a 

demonstration of its superior knockdown in PMs and minimal toxicity from 

limiting the amount of RNAiMax required.) 

 



 90 
 

Immunoblotting & Live-cell Cathepsin Activity Labeling 

In 12-well plates, adherent macrophages were washed with RPMI, and incubated 

with or without LPS as indicated for 3h (inhibitors added after 2h) at which time 

BMV109(293) was added at a final concentration of 1 μM. After 1h with BMV109, 

supernatants were collected, cells were washed with PBS and lysates made with 

Cell Extraction Buffer from Life Technologies with complete protease inhibitor 

cocktail from Roche. Supernatants were precipitated with chloroform/methanol 

and lysate protein concentration was equalized using the Pierce BCA Assay. At 

least 15 µg was loaded for each sample and separated by 15% SDS-PAGE, and 

gels were analyzed with a Typhoon Trio phosphor-imager from GE, and protein 

transferred onto nitrocellulose membranes. Densitometry was performed using 

ImageJ. Images of gels or blots were cropped for the bands of interest and any 

contrast enhancement applied evenly throughout using iPhoto. 

 

Neutrophil and Monocyte Recruitment to Peritoneal Cavity 

Quantification of recruited neutrophils and monocytes to the peritoneal cavity was 

described before(109). Mice were injected i.p. with 0.2 mg of silica crystals in 200 

μL PBS. After 4 of injection, the peritoneum was lavaged with 7 mL RPMI 1640 

with 2% FCS, 3 mM EDTA, and 10 U/mL heparin. The absolute number of 

neutrophils (Ly- 6G+, 7/4+) and monocytes (Ly-6G-, 7/4+) in 100 μL lavage was 
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counted using a flow cytometer equipped with a high throughput sampler (BD 

Biosciences). 

 

K777 Treatment of Mice by Injection or Alzet Pump Infusion 

K777-HCl doses and formulations were as follows: DMSO (10%) / dextrose (5%) 

/ water (85%) for i.v. (100 μL = 62.5 mg/kg for ~20 g mice) or s.c. (200 μL = 125 

mg/kg for ~20 g mice), and Polyethyleneglycol-300 (25%) / Glycofurol (25%) / 

Cremophor ELP (25%) / Ethanol (15%) /Propylene Glycol (10%)(371) for Alzet 

pumps (Durect Corporation, Model 2001), which were surgically implanted s.c. 

on the backs of mice for 1 wk delivering drug or excipient formulation at a rate of 

1 μL/h for the indicated doses of K777. Prior to injection of PBS or silica i.p. on 

the 7th day of treatment, plasma samples were taken from mice and K777 

concentration analyzed by mass spectrometry. 

 

(also, see Appendix 12 for K777 formulation) 

 

Real-time Measurement of LMD & MMP 

In black high-binding 96-well clear-bottom plates, 50 μL of acridine orange 

(LifeTechnologies) in warm HBSS (with Ca2+ & Mg2+) was added to cells in 100 

μL of RPMI containing 10% FCS to reach a final concentration of 3.75 μg/mL and 

then incubated at 37°C for 15 min prior to washing 1x with 200 μL HBSS. Cells 
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were then treated and stimulated as indicated in phenol red-free CO2-

independent Leibovitz’s medium. The same was done for TMRM 

(LifeTechnologies) with a final concentration of 1.25 μM and 45 min incubation. 

Fluorescence was measured in each well every 1-3 min using an incubated 

VictorX5 plate reader. Background fluorescence was subtracted from wells 

treated with dye-free HBSS. 

 

(also, see Appendix 5 for an example of controls that induce LMD or 

mitochondrial depolarization/hyperpolarization) 
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Abstract 

Sterile particles induce robust inflammatory responses that underlie the 

pathogenesis of diseases like silicosis, gout and atherosclerosis. A key cytokine 

mediating this response is IL-1β. The generation of bioactive IL-1β by sterile 

particles is mediated by the NLRP3 inflammasome, although exactly how this 

occurs is incompletely resolved. Prior studies have found that the cathepsin B 

inhibitor, Ca074Me, suppresses this response, supporting a model whereby 

ingested particles disrupt lysosomes and release cathepsin B into the cytosol, 

somehow activating NLRP3. However, reports that cathepsin B-deficient 

macrophages have no defect in particle-induced IL-1β generation have 

questioned cathepsin B’s involvement. Here, we examine the hypothesis that 

multiple redundant cathepsins (not just cathepsin B) mediate this process by 

evaluating IL-1β generation in murine macrophages, singly or multiply deficient in 

cathepsins B, L, C, S and X. Using an activity-based probe, we measure specific 

cathepsin activity in living cells, documenting compensatory changes in 

cathepsin-deficient cells, and Ca074Me’s dose-dependent cathepsin inhibition 

profile is analyzed in parallel with its suppression of particle-induced IL-1β 

secretion. Also, we evaluate endogenous cathepsin inhibitors, cystatins C and B. 

Surprisingly, we find that multiple redundant cathepsins, inhibited by Ca074Me 

and cystatins, promote pro-IL-1β synthesis, and we provide the first evidence that 

cathepsin X plays a non-redundant role in non-particulate NLRP3 activation. 
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Finally, we find cathepsin inhibitors selectively block particle-induced NLRP3 

activation, independently of suppressing pro-IL-1β synthesis. Altogether, we 

demonstrate that both small molecule and endogenous cathepsin inhibitors 

suppress particle-induced IL-1β secretion by inhibiting multiple cathepsins that 

contribute to pro-IL-1β synthesis and NLRP3 activation. 
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Introduction 

Sterile particles induce robust inflammatory responses that underlie the 

pathogenesis of many diseases. These pathogenic particles are diverse, and 

include silica(17, 130, 131, 144), which causes silicosis, monosodium urate(12), 

the etiologic agent in gout, and cholesterol crystals (CC)(10, 11), which are 

thought to contribute to the pathogenesis of atherosclerosis. Importantly, the 

sterile inflammatory response and resultant diseases caused by these particles 

all involve signaling through the interleukin-1 receptor, IL-1R1(109, 121). While 

IL-1R1 can be stimulated by either of two cytokines, IL-1α or IL-1β, it has been 

shown that IL-1β plays a pivotal role in disease pathogenesis(372) because it not 

only directly stimulates IL-1R1-dependent inflammatory signaling, but is also 

needed for the secretion of IL-1α from cells(122). Therefore, it is important to 

understand the exact mechanisms underlying the generation and secretion of 

active IL-1β. However, this process is still incompletely understood and the focus 

of the present report.  

The generation of biologically active IL-1β is highly regulated and usually 

proceeds in two distinct steps(172, 185). The first step (Signal 1 or “priming”) is 

initiated when cells such as macrophages are stimulated by certain cytokines, 

pathogen-associated molecular patterns (PAMPs), or danger-associated 

molecular patterns (DAMPs). Signal 1 leads to the nuclear translocation of NF-

κB, which then stimulates the synthesis of biologically inactive pro-IL-1β and, 
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among other things, NOD-like receptor containing a pyrin domain 3 (NLRP3), a 

protein important for IL-1β activation. The second step (Signal 2 or “activation”) 

induces the formation of a multimolecular complex, known as the inflammasome. 

Inflammasomes are composed of a sensor protein, an adaptor protein, 

apoptosis-associated speck-like protein containing a CARD (ASC), and an 

executioner protease, caspase-1. Each inflammasome sensor detects distinct 

stimuli, thereby initiating multimerization and activating caspase-1, which then 

cleaves pro-IL-1β and facilitates the secretion of bioactive mature IL-1β. Among 

the known inflammasomes, the NLRP3 inflammasome is unique. While all 

inflammasomes rely on the availability of a newly synthesized pool of pro-IL-1β, 

basal levels of NLRP3 itself are limiting, making priming especially critical for de 

novo NLRP3 transcription and subsequent activation(67, 184). Moreover, the 

NLRP3 inflammasome is the exclusive mediator of IL-1β activation in response to 

sterile particles(10-12, 17, 130, 131, 144).  

While the NLRP3 inflammasome is located in the cytosol, how this 

intracellular complex senses the presence of extracellular particles has been of 

considerable interest. It has been shown that internalization of particles by 

phagocytosis is a first essential step in activating the NLRP3 

inflammasome(144). Multiple mechanisms have been proposed as to how 

particles in phagosomes then lead to NLRP3 inflammasome activation, including 

lysosomal membrane disruption (LMD)(17, 126, 128, 136, 140-153, 185), 

potassium efflux(15, 126-136, 154), and the generation of reactive oxygen 
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species (ROS)(127-130, 135, 137-140), among various other mechanisms 

(Reviewed (172)). All of these pathways may contribute to this process. In 

support of the LMD model, it has been shown that particles like silica, CC and the 

adjuvant alum can cause LMD(10, 11, 144), leading to the leakage of the 

lysosomal cysteine protease cathepsin B into the cytosol, where this protease is 

thought to activate NLRP3 through an as yet undescribed mechanism. 

Consistent with this model, particle-induced activation of the NLRP3 

inflammasome is blocked by inhibitors of lysosomal acidification (cathepsins are 

optimally active in acidic conditions) and inhibitors of cathepsin B. However, the 

requirement for cathepsin B in this process is controversial.  

A role for cathepsin B in NLRP3 activation is supported by a number of 

studies showing that Ca074Me, an inhibitor reported to be specific for cathepsin 

B, suppresses IL-1β activation induced by particulate and non-particulate 

stimuli(11, 16, 18, 126, 142, 144, 147, 160, 161, 163, 373-378). However, 

despite a few subsequent studies showing that cathepsin B or L-deficient 

macrophages show partial impairment of this response(10, 160, 161), several 

follow-up studies have found that responses are intact in these same mutant 

cells(15, 162, 163). Thus, it has become unclear whether the efficacy of 

Ca074Me is really a result of cathepsin B inhibition, or whether this is an off-

target effect. Indeed, there are there are several reports demonstrating that 

Ca074Me inhibits other cathepsins as well(155-159). Therefore, one hypothesis 

proposed to explain the discrepancy between Ca074Me and genetic models is 
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that multiple cathepsins, which are a highly conserved family of proteases, play 

redundant roles in NLRP3 activation(370). Redundancy of cathepsins B and L 

has been demonstrated in a mouse model, where deficiency of both results in 

neonatal mortality, while deficiency of either alone does not(379). Similar 

redundancy also been observed in mouse cancer models showing upregulation 

of cathepsin X when cathepsin B is knocked out(380). However, the role of 

redundant cathepsins has not been examined in the context of NLRP3 activation 

and remains an open question.  

 Here, we utilize genetic inactivation of multiple cathepsins, together with 

exogenous and endogenous inhibitors of these proteases, and an activity-based 

probe to investigate the role of cathepsins in NLRP3-dependent particle-induced 

IL-1β secretion. This analysis reveals that multiple cathepsins indeed contribute 

to IL-1β secretion. Surprisingly, our data also demonstrate that cathepsins 

contribute, not only to the inflammasome-mediated cleavage of pro-IL-1β into 

mature IL-1β (Signal 2), but also, to the priming step of pro-IL-1β synthesis 

(Signal 1). In addition, we found a unique role for cathepsin X in nigericin-induced 

NLRP3 activation, a protease not previously implicated in the IL-1 response. 

Together, these data clarify the contribution of cathepsins to particle-induced IL-

1β responses and define a previously unappreciated role for cathepsins and their 

inhibitors in regulating pro-IL-1β synthesis. In doing so, this study provides insight 

into the mechanistic regulation of IL-1β production and points to cathepsins as 
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unique therapeutic targets for controlling particle-induced sterile inflammatory 

responses. 
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Results 

Genetic and biochemical analysis of the impact of individual 
cathepsin deficiency on particle-induced IL-1β secretion 
 
The role of cathepsins in NLRP3 activation remains controversial. Some studies 

describe a role for cathepsin B or L(10, 160, 161), while others show no role for 

either cathepsin in particle-induced NLRP3 activation and IL-1β secretion(15, 

162, 163). One interpretation of these data suggests that other cathepsins, 

besides B or L, may be the key players in this response. Therefore, we examined 

the impact that genetic deficiency of five closely-related individual cathepsins has 

on particle-induced IL-1β secretion. Unless noted otherwise, IL-1β secretion was 

induced with various stimuli following 3h of LPS priming. First, we examined 

peritoneal macrophages (PMs) elicited from mice lacking cathepsins B, L, S or C. 

However, these cathepsin-deficient PMs displayed no difference in IL-1β 

secretion in response to silica compared to PMs derived from wild-type (WT) 

mice (Fig. 1a). To examine the role of cathepsin X, we silenced cathepsin X in 

PMs by siRNA knockdown, and then these cells were stimulated with silica, the 

soluble NLRP3 activator nigericin, or the Absent In Melanoma 2 (AIM2) 

inflammasome activator poly(deoxyadenylic-deoxythymidylic) acid (dAdT) (Fig. 

1b). We confirmed a 90-95% knockdown of cathepsin X mRNA by quantitative 

PCR (qPCR) (Fig. 1c) and noted a similar loss of cathepsin X activity using the 

fluorescent activity-based probe BMV109 (Fig. 1d), which binds covalently to 
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active cathepsins inside live cells(293). In lysates generated from these cells, the 

proteins were separated by SDS-PAGE, and then the activity of specific 

cathepsins was assessed in the gels using a laser phosphor-imager to analyze 

the degree of fluorescence for each cathepsin at the appropriate m.w.’s. Again, 

we noted no significant difference in IL-1β secretion between cathepsin X-

sufficient and cathepsin X-deficient PMs in response to either silica or dAdT. 

Strikingly, cathepsin X deficiency significantly reduced IL-1β secretion in 

response to nigericin. In contrast, LPS-induced TNF-α secretion was unaffected 

by the loss of any of the cathepsins tested. Therefore, the individual cathepsins 

B, L, S, C and X are dispensable for silica-induced IL-1β secretion, but we found, 

unexpectedly, that in the response induced by nigericin, cathepsin X plays a non-

redundant role. 

Using cathepsin knockout animals to study IL-1β secretion could 

potentially be confounded if some cathepsins are upregulated in order to 

compensate for the deficiency of others(379, 381, 382). Using BMV109, we 

examined the activity of specific intracellular cathepsins in the LPS-primed WT 

and cathepsin-deficient PMs that were tested above in Fig. 1a and b. Indeed, 

knockdown of cathepsin X with siRNA resulted in an upregulation of cathepsin L 

and S activity (Fig. 1d). Moreover, PMs lacking cathepsin L showed increased 

cathepsin S activity, while those deficient in cathepsin S upregulated cathepsin X 

activity (Fig. 1e). Together, these data indicate that the cathepsins examined, 

including cathepsins B, L, S and X, are not essential for particle-induced IL-1β 
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secretion, and they cannot be readily studied using genetic methods due to 

compensation issues upon knockdown. 
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Chapter III, Figure 1  
Sterile particle-induced IL-1β secretion does not require cathepsins B, L, C, 
S or X, but nigericin is partially dependent on cathepsin X. (A) LPS-primed 
PMs from WT mice or mice deficient for cathepsins B (B-/-), L (L-/-), S (S-/-) or C 
(C-/-), were stimulated with silica (40 μg/mL). (B) PMs were treated with non-
targeting (NT) control siRNA or siRNA targeting cathepsin X (siX) before priming 
with LPS and stimulating with media control (-), silica (80 μg/mL), nigericin (1.5 
μM) or dAdT (0.5 μg/mL). IL-1β & TNF-α were measured in supernatants by 
ELISA. (C) PMs from “B” were analyzed for cathepsin X (CtsX) expression by 
qPCR following siRNA (siX) treatment and LPS priming; data are normalized to 
GAPDH expression and plotted relative to NT siRNA, or (D) cathepsin X activity 
was probed with BMV109; lysates were processed and pro-IL-1β & β-Actin 
analyzed by western blot; dashed box highlights upregulated cathepsin L/S 
activity; m.w. markers are on the right in kDa. (E) LPS-primed PMs from WT or 
cathepsin-deficient mice in “A” were probed for cathepsin activity with BMV109; 
dashed boxes highlight upregulated cathepsin S or X activity in L-/- and S-/- 
macrophages; m.w. markers are on the right in kDa. Error bars represent (A) 
range bars of technical duplicates, (B) S.D. of technical quadruplicates, and (C) 
S.D. of technical triplicates. (B) Statistical analysis was performed by Two-way 
ANOVA and Sidak’s multiple comparisons test; ****P<0.0001. All data are 
representative of at least three independent experiments. 
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Analysis of small molecule cathepsin inhibitors 
 
The absence of a phenotype in cathepsin B-deficient macrophages, shown here 

and reported by others, contradicts the results reported with cathepsin B 

inhibitors(15, 162, 163). Despite several reports demonstrating that the cathepsin 

inhibitor Ca074Me inhibits multiple cathepsins in biochemical and cellular 

assays(155-159), Ca074Me is cited as a cathepsin B-specific inhibitor and used 

to implicate cathepsin B in NLRP3 activation in many studies(11, 16, 18, 126, 

142, 144, 147, 160, 161, 163, 373-378). The non-selective pro-drug methyl ester, 

Ca074Me, is processed in lysosomes into the highly cathepsin B-selective free 

acid, Ca-074. However, this processing occurs slowly and allows time for 

Ca074Me to inhibit multiple cathepsins(155-159). Therefore, in the context of 

NLRP3 activation, Ca074Me’s targets in intact cells have not yet been verified 

and closely examined as a function of inhibitor concentration. Here, we re-

examine both Ca074Me and a newly described broad cathepsin inhibitor, K777 

(N-methyl-piperazine-phenylalanyl-homophenylalanyl-vinylsulfone-phenyl), 

whose anti-inflammatory properties have not yet been tested. K777 inhibits 

cathepsins B, L, S, C, V and K in cell-free assays(383). Using Ca074Me or K777 

in combination with the active site probe allowed us to correlate their effects on 

IL-1β secretion with the extent of inhibition of specific cathepsins as a function of 

concentration.   
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 To examine the inhibition profile of K777, we treated PMs with K777 or 

solvent control (DMSO) for 1h (after 2h of LPS priming, unless stated otherwise), 

after which we probed for cathepsin activity in the intact cells with BMV109. As 

previously reported, K777 inhibited cathepsins B, L and S(383) over a titration 

range from 0.1 - 30 μM (Fig. 2a,b). Interestingly, we also found that K777 

inhibited cathepsin X at high concentrations, but unexpectedly increased 

cathepsin X activity at lower concentrations. These paradoxical effects can be 

explained by K777’s greater potency towards cathepsin S, which fits with our 

data, in Fig. 1e above, showing that cathepsin S deletion causes an increase 

cathepsin X activity. Therefore, K777 inhibits cathepsin S at low concentrations, 

which likely causes a compensatory increase in cathepsin X activity.  

In parallel to examining its effects on cathepsin activity, we also tested the 

effect of K777 on IL-1β secretion (Fig. 2c). PMs were primed with LPS and 

treated with K777 as done above (2h after LPS priming and 1h prior to 

stimulation) at which point they were exposed to various stimuli for an additional 

6h of incubation; this is the “Standard Protocol” used for the rest of this study, 

unless stated otherwise. At concentrations where multiple cathepsins were 

inhibited, K777 suppressed silica-induced IL-1β secretion. In contrast to silica, 

K777 was much less effective at suppressing IL-1β secretion induced by 

nigericin. Presumably, this is because K777 has opposing effects on cathepsin X, 

which is uniquely required for the nigericin response, shown in Fig. 1b. Moreover, 

K777 had a negligible affect on the IL-1β response induced by dAdT. We also 
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confirmed that K777 is similarly selective and/or efficacious at suppressing IL-1β 

secretion induced by other particles, including alum and CC, and in other primary 

myeloid cell lines, including bone marrow-derived macrophages, mast cells and 

neutrophils (Supp. Fig. 1a,b). Importantly, K777 did not affect LPS-induced TNF-

α production within the tested concentration range, suggesting specific inhibition 

of IL-1β secretion.   

We performed similar analyses for Ca074Me (Fig. 2d-f). While Ca074Me 

was selective for cathepsin B at concentrations below 1 μM, at higher 

concentrations (typically used in previous studies) it inhibited cathepsins broadly 

(Fig. 2d,e). Moreover, >10 μM of Ca074Me was required to completely inhibit 

cathepsin B. Unlike K777, Ca074Me suppressed nigericin and silica-induced IL-

1β secretion with similar potency, presumably because Ca074Me inhibits 

cathepsin X more potently than K777 (Fig. 2f). Interestingly, the concentration 

required to achieve and maximize these effects exceeds the range in which 

Ca074Me is selective for cathepsin B. In reviewing previous studies examining 

Ca074Me’s effects on IL-1β responses, the concentrations used were also in the 

range that would inhibit multiple cathepsins (10-200 μM)(11, 16, 18, 126, 142, 

144, 147, 160, 161, 163, 373-378). Therefore, our findings likely explain the 

difference in results seen for the genetic loss of cathepsin B compared to small-

molecule inhibitors of this protease. In summary, although both K777 and 

Ca074Me inhibit multiple cathepsins at concentrations required to suppress IL-1β 
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secretion, K777 blocks particle-induced NLRP3 activation more selectively than 

Ca074Me. 

To further investigate whether Ca074Me or K777 can inhibit IL-1β 

secretion in PMs from cathepsin-deficient mice, these cells were LPS primed and 

treated with inhibitors prior to stimulation. Indeed, K777 inhibited IL-1β secretion 

to the same extent in WT cells as in cathepsins B, L, S, or C-deficient cells (Fig. 

3a). Moreover, across a titration range for both K777 and Ca074Me, the extent to 

which they suppressed IL-1β secretion was the same in both WT and cathepsin 

B-deficient PMs (Fig. 3b). Again, LPS-induced TNF-α secretion was relatively 

unaffected by cathepsin B deficiency or inhibitor treatments. Together, these data 

indicate that the individual cathepsins examined, including cathepsin B, are not 

essential for the activation of particle-induced IL-1β secretion or as targets for 

cathepsin inhibitors that suppress this response. 
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Chapter III, Figure 2 
Both Ca074Me and K777 inhibit multiple cathepsins at concentrations 
needed to block IL-1β secretion. (A) PMs were given media control (No LPS) 
or LPS-primed (Plus LPS; +K777) and subsequently treated with media control 
(No LPS; Plus LPS) or the indicated concentrations of K777 (+K777), after which 
cathepsin activity was labeled with BMV109 in live cells before lysates were 
processed by SDS-PAGE and phosphor imaged; m.w. markers are on the right in 
kDa. (B) Concentration-dependent inhibition of cathepsin activity by K777 
analyzed by densitometry of “A”: cathepsin B (square) and X (circle), large (L(l); 
square) and small (L(s); circle) m.w. isoforms of cathepsin L, cathepsin S (circle) 
and overlapping m.w. isoforms of S and L (S/L; square). (C) LPS-primed PMs 
were treated with media control or the indicated concentrations of K777 and 
stimulated with silica (40 μg/mL), nigericin (2 μM) or dAdT (0.5 μg/mL); data 
shows percent inhibition of IL-1β secretion measured in supernatants compared 
to no inhibitor treatment. (D-F) Same as “A-C”, but with Ca074Me instead of 
K777. Error bars represent (B) S.E. of means from three independent 
experiments, (C) S.D. of means from four independent experiments (0.1-15 μM) 
or S.D. of means from three independent experiments (30 μM), (E) range bars of 
the means from two independent experiments, or (F) S.D. of the means from 
three independent experiments (0.5-15 μM), or range bars of the means from two 
independent experiments (30 μM).  
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Chapter III, Supplemental Figure 1 
(A) LPS-primed PMs were treated with media control (solid line) or K777 
(+K777/dashed line; 15-20 μM) and then stimulated with the indicated 
concentrations of silica, alum, CC, nigericin or dAdT; IL-1β (upper graphs) and 
TNF-α (lower graphs) were measured in supernatants. (B) LPS-primed bone 
marrow-derived macrophages (BM Mac), mast cells, or neutrophils were treated 
with media control (black bars) or K777 (+K777/white bars; 15 μM) and then 
stimulated with media control (-), silica (40 μg/mL; 100 μg/mL for neutrophils), 
nigericin (2 μM for BM Macs; 1 μM for neutrophils) and/or dAdT (0.3 μg/mL); IL-
1β (graphs on left) and TNF-α (graphs on right) were measured in supernatants. 
Error bars represent (A) S.D. from technical triplicates (CC and dAdT) or range 
bars of technical duplicates (silica, alum and nigericin), (B) S.D. from technical 
triplicates (BM Mac for silica or nigericin; mast cells and neutrophils) or range 
bars from technical duplicates (BM Mac for dAdT). Statistical analysis was 
performed by (B) Two-way ANOVA and Sidak’s multiple comparisons test; 
****P<0.0001. All data are representative of at least three independent 
experiments.  
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Chapter III, Figure 3 
Cathepsin inhibitors suppress particle-induced IL-1β secretion 
independently of individual cathepsins. IL-1β (upper graphs) and TNF-α 
(lower graphs) were measured in supernatants. (A) LPS-primed WT PMs or 
those lacking cathepsins B (B-/-), L (L-/-), S (S-/-) or (C-/-) were treated with silica 
(black bars; 40 μg/mL) or silica plus K777 (white bars; 15 μM). (B) LPS-primed 
WT (closed circles, solid line) or cathepsin B-deficient (open circles, dashed line) 
PMs were treated silica (50 μg/mL) or silica plus a range of K777 or Ca074Me 
concentrations (1, 5, 10, 15 or 30 μM). Error bars represent range bars of 
technical duplicates. Statistical analysis was performed by Two-way ANOVA and 
Sidak’s multiple comparisons test; ****P<0.0001. Data are representative of two 
(“B” for Ca074Me) or three (“A”; “B” for K777) independent experiments.   
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Analysis of compound cathepsin deficiencies 
 
The analyses above suggest that multiple cathepsins likely play compensatory 

roles in particle-induced IL-1β secretion. This is in line with some genetic 

evidence that has shown partial or conditional involvement for cathepsin B or L in 

NLRP3 activation(10, 160, 161). In fact, these two cathepsins have been shown 

to compensate for one another in a study demonstrating that combined cathepsin 

B and L deficiency is neonatal lethal in mice, but deficiency of either protease 

alone is non-lethal(379). Therefore, a dual-deficiency of cathepsins B and L may 

have a greater effect on the IL-1β response(10).  

 To test this hypothesis, we bred mice lacking both cathepsins B and L. 

Since combined cathepsin B and L deficiency is neonatal lethal(379), we could 

not analyze responses directly in these animals. Instead, we harvested bone 

marrow from neonates and used it to reconstitute lethally irradiated adult WT 

mice. In these chimeric mice, cells of hematopoietic origin lack cathepsin B and L 

(B&L-/-). For comparison, we made similar chimeras with WT, cathepsin B-/- and 

cathepsin L-/- bone marrow. Then we elicited PMs from these chimeric mice, and 

treated them as above. We verified that the PMs collected from these chimeric 

mice lacked activity for the appropriate cathepsins using BMV109 (Supp. Fig. 

2a). Again, we observed upregulation of cathepsin S activity upon loss of 

cathepsin L. However, cathepsin B-/-, L-/- or B&L-/- PMs showed no attenuation 

of IL-1β secretion in response to the lysosome-disrupting agent Leu-Leu-OMe 
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(LLOMe), silica, nigericin or dAdT (Fig. 4a). Moreover, there was no defect in IL-

1β secretion over a broad titration of silica (Fig. 4b). Interestingly, K777 still 

suppressed silica-induced IL-1β secretion in the absence of cathepsins B and/or 

L (Fig. 4c), suggesting that other cathepsins potentially contribute to this 

response.  

 Since both K777 and Ca074Me inhibit more cathepsins than just B and L 

at the concentrations required to block particle-induced IL-1β secretion, we 

examined the particle-induced responses of macrophages genetically deficient in 

up to five cathepsins (Fig. 4d,e). To do this, we elicited PMs from WT mice or 

mice deficient in the three cathepsins B, C and S (BCS-/-), which are viable with 

no obvious physical or behavioral pathology. In addition, in both WT and BCS-/- 

macrophages, we silenced cathepsins X and L with siRNA (siXL; XL), or treated 

cells with non-targeting siRNA (WT). This resulted in a 90-95% reduction in 

mRNA of each targeted gene and reduction in enzyme activity, as assayed with 

BMV109 (Supp. Fig. 2b,c). Finally, PMs were primed with LPS, with media or 

K777 treatment, and stimulated with silica, nigericin or dAdT, as done above. 

Indeed, macrophages deficient in the five cathepsins B, C, S, X and L (BCSXL) 

showed a significant, though small, reduction in IL-1β secretion in response to 

silica, but not nigericin or dAdT (Fig. 4d). However, K777 was still effective at 

further suppressing IL-1β secretion in these macrophages. Interestingly, in the 

lysates of samples treated with LPS only, we observed a similar decrease in 

intracellular IL-1β levels, suggesting that lower levels of IL-1β synthesis may be 
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contributing to the reduction in IL-1β secretion seen for both BCSXL deficiency 

and K777 treatment (Fig. 4e). Again, we observed a compensatory upregulation 

of cathepsin activity, with cathepsin B and S activity upregulated in the cathepsin 

XL knockdown and increased cathepsin X activity in the cathepsin BCS-/- PMs 

(Supp. Fig. 2c). This may explain why nigericin was not significantly affected by 

knockdown of cathepsin X in combination with these other cathepsin 

deficiencies. As above, TNF-α secretion was unaffected, suggesting that 

compound cathepsin deficiency specifically impacts the IL-1β pathway (Supp. 

Fig. 2d-h). Thus, compound deficiency of cathepsins B, C, S, X and L 

demonstrates a reproducible, albeit minor, attenuation of particle-induced IL-1β 

secretion. However, the fact that cathepsin inhibitors have shown, yet again, 

more profound effects on IL-1β secretion than that caused by genetic deficiency, 

it remains possible that additional cathepsins might be involved in particle-

induced IL-1β secretion.    
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Chapter III, Figure 4  
Compound cathepsin-deficiency causes a minor reduction in particle-
induced IL-1β secretion. IL-1β was measured in supernatants. (A-C) Lethally 
irradiated WT mice were reconstituted with bone marrow from WT, cathepsin B 
(B-/-), L (-/-), B and L (B&L-/-), or NLRP3 (NLRP3-/-)–deficient donor mice. LPS-
primed PMs elicited from these mice were stimulated with (A) media control (-), 
silica (40 μg/mL), LLOMe (0.75 mM), nigericin (2 μM), or dAdT (0.4 μg/mL), (B) a 
range of silica concentrations, (C) silica plus media (black bars) or silica plus 
K777 (white bars; 20 μM). (D) PMs elicited from WT or mice deficient in the three 
cathepsins B, C and S (BCS) were treated with non-targeting siRNA (WT) or 
siRNA targeting both cathepsins X and L (“XL” when given to WT, or “BCSXL” 
when given to BCS) and subsequently LPS-primed and stimulated with media 
control (-), silica (80 μg/mL), nigericin (1.5 μM), or dAdT (0.5 μg/mL). XL and 
BCSXL macrophages were also treated with K777 (XL+K777 and BCSXL+K777; 
white bars; 15 μM). Error bars represent (A-C) range bars of technical duplicates, 
or (D) S.E. of means from either five independent experiments (WT, XL, BCS, 
BCSXL) or three independent experiments (+K777). Statistical analysis was 
performed by (A-C) Two-way ANOVA and Sidak’s multiple comparisons test, or 
(D-E) Two-tailed Student’s t-test *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
All data are representative of at least three independent experiments. 
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Chapter III, Supplemental Figure 2  
(A,D-F) Lethally irradiated WT mice were reconstituted with bone marrow from 
WT, cathepsin B (B-/-), L (L-/-), B and L (B&L-/-), or NLRP3 (NLRP3-/-)–deficient 
donor mice. PMs elicited from these mice were LPS-primed and (A) probed for 
cathepsin activity with BMV109 in live cells; lysates were processed by SDS-
PAGE and phosphor imaged; dashed boxes highlight upregulated cathepsin S 
activity for L-/- & B&L-/- and m.w. markers are on the right in kDa, (D) stimulated 
with media control (-), silica (40 μg/mL), LLOMe (0.75 mM), nigericin (2 μM), or 
dAdT (0.4 μg/mL), (E) stimulated with a range of silica concentrations, or (F) 
stimulated with silica plus media (black bars) or silica plus K777 (white bars; 20 
μM). (B,C,G) PMs elicited from WT or mice deficient in the three cathepsins B, C 
and S (BCS) were treated with non-targeting siRNA (WT) or siRNA targeting both 
cathepsins X and L (“XL” when given to WT, or “BCSXL” when given to BCS) 
and stimulated with media control (-), silica (80 μg/mL), nigericin (1.5 μM), or 
dAdT (0.5 μg/mL). XL and BCSXL macrophages were also treated with K777 
(XL+K777 and BCSXL+K777; white bars; 15 μM). Knockdown (siXL) was verified 
by (B) cathepsin X (CtsX) and L (CtsL) expression analysis by qPCR; data are 
normalized to GAPDH expression and plotted relative to non-targeting siRNA 
(NT), and (C) Labeling of cathepsin activity with BMV109 in live cells, as done in 
“A”; dashed boxes highlight upregulation of cathepsins B & S for siXL and 
cathepsin X for BCS-/- treated with NT; m.w. markers are on the right in kDa. (D-
G) TNF-α was measured in supernatants. Error bars represent (A,D-F) range 
bars of technical duplicates (G) S.E. of means of either five (WT, XL, BCS, 
BCSXL) or three (+K777) independent experiments. Statistical analysis was 
performed by (A,D-F) Two-way ANOVA and Sidak’s multiple comparisons test or 
(G) Two-tailed Student’s t-test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. All 
data are representative of at least three independent experiments. 
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Analysis of endogenous cathepsin inhibitors 
 
While technical limitations prevent us from genetically deleting all potentially 

relevant cathepsin activity, these proteases are specifically inhibited by a family 

of endogenous regulators called cystatins(384). Therefore, we examined the 

effects of genetically disabling the activity of the endogenous cathepsins 

inhibitors, cystatin C and B, on particle-induced IL-1β secretion.  

 We used siRNA to silence cystatin C, B or C and B in PMs to investigate 

their role in IL-1β secretion (Fig. 5). In all cases, we achieved ~95% knockdown 

of cystatin expression (Supp. Fig. 3a). Indeed, cystatin C deficiency alone 

caused a significant increase in silica and nigericin-induced IL-1β secretion, but 

not following stimulation with dAdT (Fig. 5a). Moreover, combined deficiency of 

cystatin B and C synergistically enhanced IL-1β secretion for all stimuli tested. In 

the absence of these cystatins, K777 selectively reduced silica-induced IL-1β 

secretion. Therefore, cystatins C and B appear to non-specifically regulate the 

level of IL-1β secretion, while cystatin C preferentially affects particulate and 

NLRP3-activating stimuli.  

 Surprisingly, knockdown of cystatin C and/or B caused an upregulation of 

pro-IL-1β transcription induced by LPS priming, and an increase in the level of 

mature IL-1β and pro-IL-1β detected in lysates; mature IL-1β detected in lysates 

by ELISA after LPS priming directly reflects levels of pro-IL-1β (Fig. 5b-e). While 

this effect is more prominent with cystatin C deficiency, knockdown of both 
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cystatin C and B synergistically enhances pro-IL-1β synthesis. Assessment of 

cellularity by detergent-induced LDH release (OD490) indicated that the elevation 

in pro-IL-1β levels was not a result of enhanced proliferation during knockdown 

(Supp. Fig. 3b). Interestingly, the observed elevation in pro-IL-1β synthesis was 

proportional to increases observed in IL-1β secretion following stimulation with 

silica, nigericin or dAdT. Moreover, K777 suppressed the increase in pro-IL-1β 

synthesis and IL-1β secretion resulting from cystatin C and B knockdown, 

specifically for silica. The fact that K777 reduced pro-IL-1β synthesis more 

effectively than it reduced IL-1β secretion induced by nigericin and dAdT may 

reflect that intracellular levels of pro-IL-1β were not limiting for these stimuli 

and/or that there are kinetic differences in pro-IL-1β induction with the different 

stimuli. Alternatively, cathepsins may also play a selective role in particle-induced 

NLRP3 activation (Signal 2) as originally proposed.  

Given that cathepsins are not known to play a role in Signal 1 (LPS 

priming), our finding that cystatins regulate pro-IL-1β synthesis is surprising. 

However, this is consistent with our observation that the multiply-deficient BCSXL 

PMs have a lower level of IL-1β detected in the lysate that seems proportional to 

the reduction in IL-1β secretion. In fact, this indicates that previous findings of 

lower IL-1β secretion from cathepsin-deficient macrophages may be a direct 

result of depressed pro-IL-1β synthesis. Indeed, careful examination revealed 

that cathepsin B&L-/- or BCS-/- macrophages have partial but significant 

reductions in intracellular IL-1β/pro-IL-1β detected in lysates after LPS priming by 
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either ELISA or western blot (Fig. 5f,g). The fact that we did not see a significant 

reduction in secreted IL-1β corresponding to the reduction in intracellular IL-

1β/pro-IL-1β is presumably because the reduced pro-IL-1β levels were not below 

the threshold required to limit the response. Importantly, no single-cathepsin 

deficiency significantly reduced intracellular IL-1β levels (Supp. Fig. 3c,d). 

Therefore, this effect was not responsible for the reduction in the response to 

nigericin after silencing cathepsin X (Supp. Fig. 3d and Fig. 1d). In any case, 

our data indicate that cathepsins do indeed play a role in pro-IL-1β synthesis. 

Notably, LPS-induced TNF-α secretion is relatively unaffected, suggesting that 

the impact of cystatin deficiency or K777 treatment on pro-IL1β synthesis does 

not apply to all NF-κB-dependent cytokines (Supp. Fig. 3e). Our data indicate a 

previously unreported and significant role for cathepsins and their endogenous 

inhibitors in pro-IL-1β synthesis and that cystatins C and B regulate particle-

induced IL-1β secretion by suppressing multiple cathepsins involved in mediating 

pro-IL-1β synthesis.   
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Chapter III, Figure 5 
Endogenous cathepsin inhibition by Cystatins C & B regulates particle-
induced IL-1β secretion and LPS-induced pro-IL-1β synthesis. In all 
experiments, PMs were LPS-primed and treated with media control or K777 
(+K777; white bars; 15 μM) prior to stimulation or analysis. (A-E) PMs were 
transfected with non-targeting (NT), cystatin C (siCstC), cystatin B (siCstB), or 
both cystatin C and B (siCstC&B) siRNA. (A) PMs were stimulated with media 
control (-), silica (80 μg/mL), nigericin (1.5 μM) or dAdT (0.5 μg/mL), and IL-1β 
measured in supernatants. (B-E) After priming, PMs were treated with media 
control for 6h. (B) IL-1β or (C) Pro-IL-1β were measured in cell lysates by ELISA. 
(D) IL-1β (IL1b) expression was analyzed by qPCR; data are normalized to 
GAPDH expression and plotted relative to NT siRNA. (E) Lysates were 
processed, then pro-IL-1β and β-Actin analyzed by western blot; m.w. markers 
are on the right in kDa. (F,G) PMs from WT mice and cathepsin BCS-/- mice, or 
chimeric WT mice lethally irradiated and reconstituted with WT or cathepsin BL-/- 
bone marrow. PMs were treated with media for 6h after LPS priming. (F) IL-1β 
(hatched bars) was measured in lysates by ELISA; data are normalized to LDH 
(OD490) and plotted as fold-change in IL-1β relative to WT controls. (G) lysates 
were processed and analyzed for pro-IL-1β and β-Actin by western blot 
(measured by densitometry); data are plotted as pro-IL-1β levels normalized to β-
Actin and relative to WT controls. Error bars represent (A) S.D. of technical 
quadruplicates, (B,C) range bars of technical duplicates, (D) S.D. of technical 
triplicates, (F) S.E. of means from nine (WT vs. BCS-/-) or twelve (WT vs. BL-/-) 
independent experiments, (G) S.E. of means from five (WT vs. BCS-/-) or four 
(WT vs BL-/-) independent experiments. Statistical analysis was performed by 
(A) Two-way ANOVA and Dunnett’s multiple comparisons test, (B-D) One-way 
ANOVA and Sidak’s multiple comparisons test, or (F,G) Two-tailed Student’s t-
test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. All data are representative of 
at least three independent experiments. 



 129 
 



 130 
 

Chapter III, Supplemental Figure 3  
In all experiments, PMs were LPS-primed and treated with media control or K777 
(+K777; white bars; 15 μM) prior to stimulation or analysis. (A,B,E) PMs were 
transfected with non-targeting (NT), cystatin C (siCstC), cystatin B (siCstB), or 
both cystatin C and B (siCstC&B) siRNA. (A) Cystatin C (CstC; black bars) or 
cystatin B (CstB; white bars) expression was analyzed by qPCR; data are 
normalized to GAPDH expression and plotted relative to non-targeting (NT) 
siRNA. (B) After priming, PMs were treated with media control for 6h and LDH 
(OD490; hatched bars) was measured in the lysates with a plate reader. (E) PMs 
were stimulated with media control (-), silica (80 μg/mL), nigericin (1.5 μM) or 
dAdT (0.5 μg/mL) and TNF-α was measured in supernatants. (C) LPS-primed 
PMs from WT mice or mice deficient in either cathepsin C (C-/-), S (S-/-), L (L-/-), 
or B (B-/-) were treated with media for 6h after LPS priming and IL-1β (hatched 
bars) was measured in lysates by ELISA; data are normalized to LDH (OD490), 
measured with a plate reader, and plotted as fold-change in IL-1β relative to WT 
controls. (D) PMs were transfected with NT siRNA or siRNA targeting cathepsin 
X (siX), then primed with LPS, treated with media for 6h, and IL-1β (hatched 
bars) was measured in lysates by ELISA. Error bars represent (A) S.D. of 
technical triplicates, (B) range bars of technical duplicates, (C) S.E. of means 
from three (C-/- and S-/-) or twelve (L-/- and B-/-) independent experiments, or 
(E) S.D. of technical quadruplicates. Statistical analysis was performed by (E) 
Two-way ANOVA and Dunnett’s multiple comparisons test; *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. All data are representative of at least three 
independent experiments. 
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Analyzing the effect of small molecule cathepsin inhibitors on 
pro-IL-1β synthesis 
 
We demonstrated that cathepsin deficiency attenuates pro-IL-1β synthesis, while 

cathepsin deregulation by cystatin C and B knockdown enhances pro-IL-1β 

synthesis. These data indicate that cathepsin inhibitors may suppress IL-1β 

secretion by affecting pro-IL-1β synthesis. However, if this is true, it is surprising 

that K777 and Ca074Me did not similarly suppress dAdT-induced IL-1β secretion 

in previous experiments. However, the kinetics of LPS priming is an important 

variable when considering the effect of inhibitors on IL-1β secretion, and 

influences on priming seem to be selective for NLRP3-dependent stimuli 

compared to those activating other inflammasomes(184). Therefore, we 

examined whether cathepsin inhibitors affect pro-IL-1β synthesis and how the 

timing of inhibitor treatment affects their specificity.  

 To test the effect of cathepsin inhibitors on pro-IL-1β synthesis, we varied 

the timing of inhibitor treatment relative to LPS priming using an “Early versus 

Late Inhibitor Treatment Protocol” (Fig. 6a-c). First, we treated PMs with K777, 

Ca074Me or the pan-caspase inhibitor ZVAD immediately prior to LPS priming. 

In a parallel sample set, we added these inhibitors just prior to stimulation, 3h 

after LPS priming, and examined how treatment with inhibitors at this time point 

compares with the former. K777 or Ca074Me treatment prior to LPS priming 

suppressed both pro-IL-1β in macrophage lysates (Fig. 6a) and IL-1β secretion 
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by silica, nigericin and dAdT (Fig. 6b). Moreover, these effects were greater for 

inhibitor treatment just prior to priming. K777 or Ca074Me treatment 3h after LPS 

priming (just before stimulation) had no effect on dAdT and, as shown earlier, 

Ca074Me had a more potent effect on nigericin-induced IL-1β secretion (Fig. 

6b).  

To determine whether the reductions in IL-1β secretion that we previously 

observed were also a reflection of reduced pro-IL-1β levels, we re-tested K777 

and Ca074Me using the “Standard Protocol” described for these earlier 

experiments and examined their effects on pro-IL-1β synthesis (Fig. 6c-e). 

Indeed, treatment with K777 or Ca074Me after only 2h of LPS priming reduced 

pro-IL-1β levels in lysates (Fig. 6d) and also reduced pro-IL-1β transcription (Fig. 

6e). In fact, K777 even suppressed NLRP3 transcription, although the reduction 

in NLRP3 transcription caused by Ca074Me was not significant. In contrast to the 

near complete inhibition of IL-1β secretion by all stimuli, ZVAD treatment had no 

effect on intracellular IL-1β or pro-IL-1β levels detected in LPS-primed 

macrophage lysates (Fig. 6a-e, Supp. Fig. 4a). Moreover, ZVAD did not 

suppress pro-IL-1β and NLRP3 transcription or cathepsin activity. Again, under 

all these conditions above, TNF-α secretion remained unaffected (Supp. Fig. 

4b). Therefore, cathepsin inhibitors suppressed the synthesis of pro-IL-1β and 

not TNF-α. When added just prior to LPS priming, cathepsin inhibitors also 

attenuated NLRP3-independent IL-1β secretion, yet they maintained some 

selectivity for NLRP3-dependent IL-1β secretion (Fig. 6b). These finding are 
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consistent with a previous study finding that several inhibitors, which also affect 

Signal 1, preferentially affect NLRP3-dependent stimuli(184).  Indeed, the 

persistent selectivity of cathepsin inhibitors for NLRP3-dependent stimuli may 

reflect a unique dependence of these responses on Signal 1, based on the 

requirement for de novo NLRP3 transcription or some other factor yet to be 

defined. However, this is less likely a reflection of differences in Signal 2 kinetics, 

which are similar for silica and dAdT (Supp. Fig. 4c,d).  
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Chapter III, Figure 6 
Small-molecule cathepsin inhibitors suppress pro-IL-1β synthesis. In all 
experiments, PMs were primed with LPS for 3h, and then treated with media 
control (-), K777 (15 μM), Ca074Me (15 μM), or ZVAD (10 μM) at the indicated 
time points. (A,B) Inhibitors were added at the same time as LPS (Inhib at 0h; 
hatched or filled bars) or 3h after LPS (Inhib at 3h; white bars) prior to the 
addition of media control (-), silica (80 μg/mL), nigericin (1.5 μM) or dAdT (0.5 
μg/mL) for an additional 6h, at which point (A) pro-IL-1β was measured in 
lysates, or (B) IL-1β was measured in supernatants by ELISA. (C) Comparison of 
the inhibitor protocol followed in prior figures and “D and E” (Standard Protocol) 
with the protocol used in “A” and “B” (Early vs. Late Inhibitor Protocol). (D,E) 
Inhibitors were added 2h after LPS priming for 1h, as in the Standard Protocol, 
then cells were treated with media for 4h. (D) Cathepsin activity was probed with 
BMV109 in live cells; lysates were processed by SDS-PAGE and phosphor 
imaged, or analyzed for pro-IL-1β and β-Actin by western blot; m.w. markers are 
on the right in kDa. (E) IL-1β (IL1b) or NLRP3 (Nlrp3) expression was analyzed 
by qPCR; data are normalized to GAPDH expression and plotted relative to 
media controls (-). Error bars represent (A,B) S.D. of technical triplicates (-), (B) 
duplicates (silica, nigericin, dAdT), (E) S.E. of means from three independent 
experiments. Statistical analysis was performed by (A) Two-way ANOVA and 
Dunnett’s multiple comparisons test, or (E) Two-tailed Student’s t-test; *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001. All data are representative of at least three 
independent experiments. 
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Chapter III, Supplemental Figure 4  
(A,B) LPS-primed PMs were treated with media control (-), K777 (15 μM), 
Ca074Me (15 μM), or ZVAD (10 μM), which were added at the same time as LPS 
(Inhib at 0h; hatched or filled bars) or 3h after LPS (Inhib at 3h; white bars) prior 
to stimulation with media control (-), silica (80 μg/mL), nigericin (1.5 μM) or dAdT 
(0.5 μg/mL) for an additional 6h. (A) IL-1β was measured in lysates, or (B) TNF-α 
was measured in supernatants by ELISA. (C,D) LPS-primed PMs were 
stimulated with silica (40 μg/mL; circle), nigericin (2 μM; square) or dAdT (0.3 
μg/mL; triangle); IL-1β & TNF-α were measured in supernatants after 0.75, 1.5, 
3, 6, or 9h of stimulation. (E,F) PMs were primed with LPS for 5.5h and treated 
with either media control (-), K777 (15 μM), Ca074Me (15 μM), CHX (1 μM), 
K777 combined with CHX, or Ca074Me combined with CHX for another 0.5h, 
and then treated with media control (-), silica (80 μg/mL), nigericin (1.5 μM), or 
dAdT (0.5 μg/mL) for another 3h. (E) IL-1β (hatched bars) was measured in 
lysates, or (F) TNF-α (filled bars) was measured in supernatants by ELISA. Error 
bars represent (A,B) S.D. of technical triplicates (-), (B) duplicates (silica, 
nigericin, dAdT), (C,D) S.D. of technical duplicates, (E) S.D. of technical 
triplicates, (F) S.D. of technical triplicates (media or CHX), duplicates (K777 & 
Ca074Me ±CHX), sextuplicates (silica, nigericin, dAdT ±CHX), or triplicates 
(silica, nigericin, dAdT with K777 & Ca074Me ±CHX). Statistical analysis was 
performed by (A) Two-way ANOVA and Dunnett’s multiple comparisons test; 
****P<0.0001. Data are representative of (A-D) at least three independent 
experiments, or (E,F) two independent experiments. 
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Analyzing the effect of cathepsin inhibitors on Signal 2 of NLRP3 
activation 
 
We found that cathepsin inhibition by both small molecules and endogenous 

regulators suppresses pro-IL-1β synthesis. However, we expected that these 

effects on pro-IL-1β synthesis would affect all stimuli equally, but cathepsin 

inhibition had a greater impact on silica-induced IL-1β secretion compared to 

nigericin or dAdT. Moreover, this selectivity cannot be completely explained by 

kinetics. Therefore, it was important to determine whether cathepsin inhibitors 

suppress IL-1β secretion by blocking NLRP3 activation, independently of their 

effects on pro-IL-1β synthesis.  

To determine whether cathepsin inhibition blocks NLRP3-dependent IL-1β 

secretion (Signal 2) independently of suppressing pro-IL-1β synthesis, we 

examined the effect of K777 or Ca074Me treatment on IL-1β responses in 

macrophages with a pool of preexisting pro-IL-1β (Fig. 7a-c). Following an 

extended priming protocol, we primed PMs with LPS for 5.5h to build up an 

intracellular pool of pro-IL-1β, at which time we added K777, Ca074Me, 

cycloheximide (CHX), or CHX combined with K777 or Ca074Me, and stimulated 

30 min later with silica, nigericin or dAdT for an additional 3h; CHX blocked new 

IL-1β synthesis so that we could isolate and analyze the effect of the protease 

inhibitors on the processing of pro-IL-1β. K777 and Ca074Me had minimal effect 

on IL-1β or pro-IL-1β protein levels in LPS-primed macrophage lysates at this 
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late time point, and also had no additional effect when combined with CHX 

compared to CHX alone (Fig. 7a, Supp. Fig. 4e). Importantly, K777 and 

Ca074Me still attenuated silica-mediated IL-1β secretion, both alone and in the 

presence of CHX, while only Ca074Me affected nigericin-induced activation of 

the pathway. Again, neither K777 nor Ca074Me blocked dAdT-induced IL-1β 

secretion, and TNF-α secretion was unaffected (Fig. 7b, Supp. Fig. 4f). 

To determine whether K777 selectively attenuates particle-induced 

NLRP3 activation, we examined caspase-1 cleavage in response to silica, CC, 

nigericin or dAdT (Fig. 7c,d). Following our standard protocol, we treated PMs 

with media or K777, 2h after LPS priming and 1h prior to stimulation with silica, 

CC, nigericin or dAdT (Fig. 7c). After 6h of stimulation, we examined caspase-1 

cleavage by western blot. Interestingly, while K777 reduced pro-IL-1β levels in 

lysates of LPS-primed macrophages, K777 also suppressed caspase-1 activation 

and mature IL-1β secretion only after stimulation with silica or CC, and not with 

nigericin or dAdT (Fig. 7d). Therefore, in addition to suppression of pro-IL-1β 

synthesis, both K777 and Ca074Me can also independently suppress NLRP3 

activation, while K777 does so selectively for particles.  

Taken together, our data suggests a hitherto unrecognized role for 

cathepsins in inflammasome-mediated IL-1β responses to sterile particles. 

Furthermore, our study implicates a complex role for cathepsins and their 

endogenous regulators, cystatins, in regulating not only IL-1β secretion but also 
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IL-1β induction, highlighting a multi-step involvement of this family of proteases 

during particle-induced inflammation. 
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Chapter III, Figure 7 
Cathepsin inhibitors also suppress NLRP3 activation independently of 
effects on pro-IL-1β synthesis. (A,B) PMs were primed with LPS for 5.5h and 
treated with either media control (-), K777 (15 μM), Ca074Me (15 μM), CHX (1 
μM), K777 combined with CHX, or Ca074Me combined with CHX for another 
0.5h, and then treated with media control (-), silica (80 μg/mL), nigericin (1.5 μM), 
or dAdT (0.5 μg/mL) for another 3h. (A) Pro-IL-1β (hatched bars) was measured 
in lysates, or (B) IL-1β (filled bars) was measured in supernatants by ELISA. (C) 
Comparison of the inhibitor protocol followed in prior figures (Standard Protocol) 
with the protocol used in “A” and “B” (Extended-Priming Protocol). (D) PMs were 
either unprimed or primed with LPS and treated with K777 (20 μM) 2h after LPS 
priming, as in the Standard Protocol, and cells were treated 1h later with media 
control (-), silica (40 μg/mL), CC (100 μg/mL), nigericin (2 μM) or dAdT (0.4 
μg/mL) for an additional 6h, then lysates were processed by SDS-PAGE and 
analyzed for pro-caspase-1, active caspase-1 (p-10), pro-IL-1β, active IL-1β (p-
17) and GAPDH by western blot; m.w. markers are on the right in kDa. Error bars 
represent (A) S.D. of technical triplicates, (B) S.D. of technical triplicates (media 
or CHX), duplicates (K777 & Ca074Me ±CHX), sextuplicates (silica, nigericin, 
dAdT ±CHX), or triplicates (silica, nigericin, dAdT with K777 & Ca074Me ±CHX). 
Statistical analysis was performed by (B) Two-way ANOVA and Dunnett’s 
multiple comparisons test; ***P<0.001, ****P<0.0001. Data are representative of 
two (A,B) or at least three (D) independent experiments.  
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Discussion 

Cathepsin B has been implicated in the activation of NLRP3 inflammasomes by 

particulate stimuli. In this report, we show that contrary to earlier suggestions, 

multiple cathepsins are involved redundantly in the production of IL-1β induced 

by sterile particles. These data address and potentially reconcile earlier 

controversies on the role of cathepsins. Surprisingly, we also found that 

cathepsins not only play a role in the NLRP3-dependent maturation of pro-IL-1β, 

but they also have a substantial role in the priming phase of this response. 

Given the controversial role of cathepsins in NLRP3-dependent IL-1β 

responses(11, 15, 16, 18, 126, 142, 144, 147, 160-163, 373-378), it was 

important to clarify their contribution by performing a rigorous analysis of two 

confounding variables that have likely influenced prior results and caused 

confusion. First, we found that the loss of certain cathepsins causes a 

compensatory upregulation in the activity of other cathepsins. Since the cysteine 

cathepsin family shares considerable homology and broad substrate 

specificities(259), functional redundancy may obscure the contribution of any one 

cathepsin. Therefore, the lack of a phenotype in any single cathepsin knockout 

does not rule out the involvement of that cathepsin or other cathepsins.  

Second, as we show here, the inhibitor Ca074Me actually inhibits multiple 

cathepsins in living cells at the concentrations used in prior studies of NLRP3 

activation(11, 16, 18, 126, 142, 144, 147, 160, 161, 163, 373-378). In fact, we 
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found that, at doses where Ca074Me is cathepsin B-specific, it does not block 

NLRP3-dependent IL-1β secretion; at higher doses where it inhibits multiple 

cathepsins, its blockade of IL-1β secretion increases. Indeed, Ca074Me 

suppresses IL-1β secretion in cathepsin B-deficient macrophages, and we found 

similar results with the other cathepsin knockouts as well. Concomitant testing 

with K777, an orally bioavailable broad inhibitor of cathepsins(385-391), yielded 

comparable results to Ca074Me. Given this new evidence, its is now clear that 

the broad specificity of cathepsin inhibitors (Ca074Me and K777) is concordant 

with a role for multiple cathepsins in particle-induced IL-1β secretion. Moreover, 

even if it plays an important role in NLRP3 activation under some conditions, our 

data indicate that cathepsin B is not essential for this response.  

Importantly, we document these two confounding variables above using a 

recently developed activity-based probe, BMV109(293). Although a separate 

report has shown that Ca074Me can inhibit cathepsins B, S and L in live cells 

with a similar probe(155), this is the first time that the concentration-dependent 

inhibition of these cathepsins, or the compensatory upregulation of cathepsin 

activity, has been demonstrated in parallel with an examination of IL-1β 

secretion. Moreover, BMV109 labels cathepsin X, which allowed us to investigate 

the role of this cathepsin in IL-1β secretion.  

It is critical to note that, of the five cathepsins tested herein, cathepsin X 

was the only one that played a non-redundant role in IL-1β secretion. Cathepsin 

X appeared to be uniquely required for the IL-1β response to nigericin. In fact, we 
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show that Ca074Me potently inhibits cathepsin X, and this likely accounts for its 

ability to strongly suppress nigericin-induced IL-1β secretion. Unlike Ca074Me, 

K777 inhibits cathepsins S at low concentrations, and deficiency of cathepsins S 

upregulates cathepsin X activity. Thus, this may explain why K777 is less 

effective against nigericin than Ca074Me, and how its broader specificity for 

cathepsins paradoxically makes it a more selective inhibitor of particle-induced 

responses. Therefore, pharmacological suppression of IL-1β secretion induced 

by particular stimuli likely depends on, not only on how many but, which 

cathepsins are inhibited and at what concentrations.  

While Ca074Me and K777 could have non-cathepsin off-target effects 

responsible for their suppression of particle-induced IL-1β secretion, we strongly 

favor the interpretation that they are achieving this effect by inhibiting multiple 

functionally redundant cathepsins. Although we observed a minor but 

insignificant reduction of particle-induced IL-1β secretion in the cathepsin BL-/- 

PMs, and a small but significant reduction in the pentuple cathepsin BCSXL-/- 

PMs, we believe that the residual cathepsin activity in these cells, as shown by 

BMV109 labeling, could be sufficient to mediate NLRP3 activation. In fact, a 

recent study demonstrated that inflammasome activation is an “all-or-none” 

response(77), which gives credence to earlier proposals that only a few 

molecules of active cathepsins may be sufficient to reach a minimum threshold 

for inflammasome activation(162). Whether this is true or not remains to be 
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demonstrated. However, we did find more robust genetic evidence supporting an 

unexpected role for cathepsins in regulating the priming phase of IL-1β secretion. 

Because we could not genetically suppress cathepsin activity to the same extent 

as inhibitors, which further reduced IL-1β secretion by these genetically deficient 

cells, we adopted an alternative strategy. Instead of examining cathepsin 

deficiency, we evaluated the effect of cathepsin deregulation by silencing two 

broadly active endogenous cathepsin inhibitors, cystatins C and B. Like the 

cathepsin family(392), the cystatin family is large(384), as might be expected of 

regulators of a large family of proteases. Moreover, individual cystatins 

specifically regulate multiple cysteine cathepsin proteases, including B, L and 

S(384). Indeed, knockdown of cystatin C and B synergistically enhanced IL-1β 

secretion, but did so for all stimuli tested. Further analyses revealed that the 

increase in IL-1β secretion we observed was directly proportional to the 

upregulation of pro-IL-1β transcript and protein synthesis. In fact, reexamination 

of the compound cathepsin knockouts (BL-/- & BCS-/-) also showed that multiple 

redundant cathepsins play a partial, but significant, role in LPS-induced pro-IL-1β 

synthesis. As far as we know, these findings are among the first to implicate and 

clarify the role of endogenous cathepsin inhibitors, cystatins, in regulating IL-1β 

responses.  

While an association between cystatins and inflammation has been widely 

reported, the mechanism underlying this association has not been established. 

Given this context, our evidence that both cystatin B and especially cystatin C 
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play a role in the IL-1β response is enlightening. In fact, lower serum levels of 

cystatin C, considered the “dominant” cystatin(393), are associated with 

numerous inflammatory conditions(384), including sterile inflammatory arterial 

disease(394). Furthermore, cystatin B deficiency in mice exacerbated LPS-

induced sepsis and elevated IL-1β levels in the serum(395). This latter study 

demonstrated higher caspase-1 and/or -11 activity and mitochondrial ROS, 

suggesting that loss of cystatin B increased inflammasome activation(395). 

However, the authors noted that there were no signs of LMD or elevated 

cathepsin activity in the cytosol, and effects on pro-IL-1β were not measured. 

Thus, our data demonstrating that cystatin deficiency increases pro-IL-1β 

synthesis offers a different perspective that may help to explain these results. In 

this context, it is interesting that other studies have shown that cystatin B 

interacts with cathepsin L in the nucleus(396), and that cathepsin L can play a 

role in NF-κB activation(397). Moreover, cystatin B-deficient macrophages have 

lower IL-10 expression(398), and IL-10 transcriptionally downregulates IL-1β 

synthesis(239).  

While unexpected, our data with cystatins shed further light on the 

mechanism by which small molecule cathepsin inhibitors may impact IL-1β 

secretion by modulating pro-IL-1β synthesis. Indeed, we directly demonstrated 

that exogenous cathepsin inhibitors also suppress LPS-induced pro-IL-1β 

synthesis, and that this effect contributes substantially to their suppression of IL-

1β secretion by inflammasome-activating particulates and non-particulates. 
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Importantly, K777 and Ca074Me reduce pro-IL-1β synthesis in response to LPS 

priming alone, prior to any IL-1β being secreted, and they do not affect TNF-α 

secretion. Thus, it is unlikely that inhibitors are reducing the autocrine-like 

priming of pro-IL-1β synthesis simply by suppressing TNF-α or IL-1β secretion 

upon stimulation. Together, these findings reiterate the importance of examining 

both Signal 1 and 2 when interpreting inflammasome studies. In fact, a recent 

paper emphasized this point by demonstrating that several ROS inhibitors 

thought to suppress NLRP3 activation actually affect Signal 1(184). We also find 

that the timing of inhibitor treatment relative to LPS priming can confirm this 

phenomenon. If inhibitors are added earlier with respect to LPS priming, effects 

on priming become more pronounced and less NLRP3-specific. In some 

contexts, this may actually be a therapeutically advantageous characteristic.  

Our findings are consistent with a prior study demonstrating that a 

cathepsin B inhibitor, Z-FA-fmk, suppresses LPS signaling(399). Finding 

discordant results with cathepsin B-deficient cells, the authors suggested this 

was a non-cathepsin off-target effect. Similarly, we cannot completely exclude 

the possibility that the various exogenous and endogenous cathepsin inhibitors 

are reducing IL-1β responses through off-target effects. However, given our 

results, it is likely that redundant cathepsins compensated for the loss of 

cathepsin B, and even more likely that Z-FA-fmk is non-specific for cathepsin B. 

Moreover, since we observed concordant results with two chemically distinct 

cathepsin inhibitors, Ca074Me and K777, as well as the endogenous cathepsin 
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inhibitors, we favor the idea that the common effect of these inhibitors on pro-IL-

1β synthesis is attributable to their common cathepsin targets.  

Importantly, Ca074Me and K777 were consistently more effective against 

NLRP3-mediated IL-1β secretion compared to that mediated by AIM2 via dAdT, 

and the effects of cystatin deficiencies were similarly biased. Therefore, it 

appeared that cathepsins may indeed have a role in mediating stimulus-

specific/priming-independent NLRP3 activation. While this is one interpretation, 

others would predict that NLRP3-mediated IL-1β secretion is particularly 

sensitive to the levels of pro-IL-1β or that the levels of NLRP3 itself are 

significantly impacted by inhibitor treatment. Given the importance of LPS 

priming kinetics, deducing priming-independent effects on IL-1β secretion can be 

achieved via prolonged priming and/or concomitant inhibition of protein 

synthesis. Indeed, by inhibiting further pro-IL-1β synthesis with CHX following a 

prolonged period of LPS priming, we show that subsequent treatment with K777 

and Ca074Me affects Signal 2, independently of Signal 1. This indicates that 

cathepsins may also play a role in NLRP3 activation, as originally proposed.  

Whether cathepsins play a role in Signal 1 or Signal 2, it is likely that the 

proteolytic activity of cathepsins is necessary, given the efficacy of inhibitors; if 

true, the substrate involved remains to be elucidated. Importantly, both TLR4 and 

NLRP3, which sequentially mediate the priming and activation of IL-1β secretion, 

respectively, have large leucine-rich repeats (LRRs). It is presumed the LRRs act 

as autoinhibitory motifs that block activation until induction of structural changes 
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or ligand binding. In fact, cathepsin inhibitors have been used to demonstrate 

that cleavage of the LRRs for TLRs 3, 7 and 9 is necessary for optimal 

activation(400, 401). Moreover, it has also been shown that NLRP1 activation 

can be directly mediated by proteolytic cleavage of its LRR(402, 403), and that 

expression of a transgenic NLRP3 protein lacking an LRR motif makes it 

constitutively active(404). Although this is still all speculation, LRR-targeted 

cleavage of TLR4 and NLRP3 by cathepsins remains an intriguing possibility that 

might explain our findings. 

Together, this study identifies a previously unappreciated role for 

cathepsins and cystatins in the regulation of pro-IL-1β synthesis (as well as IL-1β 

secretion), and provides compelling evidence that cathepsins play redundant and 

compensatory roles in these processes. Furthermore, we have re-confirmed that 

Ca074Me inhibits multiple cathepsins and demonstrate conclusively that 

cathepsin B is not the sole target of this agent that mediates its effect on IL-1β 

secretion. Moreover, we identified cathepsin X as a previously unappreciated 

player in nigericin-induced NLRP3 activation, and raised important questions as 

to the relative importance of cathepsins in mediating Signal 1 and 2 during 

particle-induced NLRP3 activation and IL-1β secretion. Finally, we have 

characterized a cathepsin inhibitor, K777, which selectively reduces particle-

induced induced IL-1β responses and possesses pharmacological properties 

warranting its investigation as a potential anti-inflammatory therapeutic(385-391). 

Indeed, cathepsins are tractable targets for the development of small molecule 
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inhibitors. Our data predict that inhibitors that broadly inhibit cathepsins, like 

K777, might have potential as therapeutic inhibitors of particle-induced sterile 

inflammation. 
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Abstract 

Sterile particles are known to cause a number of chronic inflammatory diseases 

characterized by cycles of particle phagocytosis and inflammatory cell death that 

releases these particles back into the local environment. These particles are 

known to activate IL-1β secretion via NLRP3 inflammasome. However, caspase-

1-deficient mice often show similar IL-1-dependent particle-induced inflammatory 

responses compared to WT mice in vivo, suggesting that caspase-1-independent 

processes are promoting inflammation in this setting. While it is often assumed 

that particles induce cell death through caspase-1-dependent pyroptosis in LPS-

primed macrophages, one group has recently reported that lysosomal membrane 

disruption (LMD) and the particle alum cause inflammasome-independent 

necrosis, which antagonizes NLRP3 activation. Although multiple reports have 

shown that the cathepsin inhibitor Ca074Me (which is thought to block 

inflammasome activation initiated by the lysosomal protease cathepsin B) 

suppresses particle-induced cell death, cathepsin B knockouts do not reproduce 

this effect. Therefore, the involvement of cathepsin B in particle-induced NLRP3 

activation and cell death has been controversial. Our most recent study 

demonstrated a substantial redundancy in the contribution of cathepsins to pro-

IL-1β synthesis. Here, we find similar redundancy for cathepsins in promoting 

particle-induced cell death. Moreover, we find that particles induce 

inflammasome-independent cell death and that severe LMD antagonizes NLRP3 
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activation by disrupting mitochondrial membrane potential (MMP), which we 

show to be essential for pro-IL-1β synthesis and particle-induced NLRP3 

activation downstream of cathepsins. Finally, we find that a cathepsin inhibitor 

suppresses particle-induced IL-1-dependent peritonitis, suggesting that 

cathepsins, and not caspase-1, play fundamental roles in particle-induced 

inflammatory responses in vivo.  
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Introduction 

Particle-induced sterile inflammation underlies the pathogenesis of a number of 

common and often chronic diseases(2). Silica particles cause silicosis, the most 

prevalent work-associated pneumoconiosis in the world(17, 130, 131, 144). 

Monosodium urate crystals (MSU) cause gout, a prevalent inflammatory joint 

disease(12). Moreover, cholesterol crystals (CC) have been recently implicated 

in the development of atherosclerosis, which is the leading cause of cardiac 

death worldwide(10, 11). In the current report, we focus on the mechanisms 

inciting this inflammatory pathology on a cellular level in macrophages.  

Two events occur concomitantly during the leukocyte response to particles: 

cell death and the generation of inflammatory mediators(2). The death of cells 

that have ingested pathogens may be beneficial to the host by helping to limit 

infections (22-24). However, for sterile particles, which cannot replicate or be 

destroyed by immune defenses, cell death is not thought to be beneficial but 

instead results in pathology(9, 25, 26). In fact, chronic pathology in response to 

sterile particles has been described as a repeating cycle of particle ingestion, 

inflammatory cell death, and the release of particles back into the environment 

for re-ingestion by other cells(29). In addition, phagocytes are stimulated by 

particles, and also by dying cells (e.g. those killed by ingestion of particles), to 

produce mediators that cause inflammation(9-11, 109). Although the initial 

inflammatory response to particles has been shown to depend on signaling 
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through the IL-1 receptor (IL-1R1), the exact mechanisms responsible for the 

production and release of IL-1β are not completely understood(95, 109, 121). 

Therefore, a better understanding of the processes regulating both cell death and 

IL-1β secretion is important and may help identify tractable drug targets for 

suppressing particle-induced sterile inflammation. 

In macrophages in vitro, the induction of IL-1β secretion by sterile particles 

requires two steps. The first step, often referred to as “priming”, occurs when 

macrophages are stimulated through a receptor, such as TLR4, that leads to the 

activation of the transcription factor NF-κB, which then drives the transcription of 

pro-IL-1β and NOD-like Receptor containing a Pyrin domain 3 (NLRP3)(67, 184). 

In the second step, ingestion of particles by macrophages stimulates the 

assembly and activation of the NLRP3 inflammasome, which includes NLRP3, 

the adaptor apoptosis-associated speck-like protein with a CARD domain (ASC), 

and the effector caspase-1(10, 12, 64, 65, 144). Upon NLRP3 activation, 

caspase-1 converts pro-IL-1β into active IL-1β for secretion. In addition, caspase-

1 can also drive a lytic form of inflammatory programmed cell death, called 

pyroptosis(115), and this has often been assumed to be the mechanism through 

which ingestion of particles kills primed macrophages. Therefore, activation of 

the NLRP3 inflammasome can lead to both cell death and mature IL-1β 

secretion. 

One of the models proposed for particle-induced NLRP3 activation (and 

lytic cell death) is that phagocytosed particles cause lysosome membrane 
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disruption (LMD) that then initiates inflammasome activation and cell death (10, 

11, 144). According to this model, a lysosomal cysteine protease, cathepsin B, is 

released into the cytosol and somehow activates NLRP3 leading to 

pyroptosis(10, 11, 144). In support of this model, an inhibitor that had been 

assumed to be specific for cathepsin B, Ca074Me, was shown to suppress cell 

death and IL-1β secretion during NLRP3 activation induced by particulate and 

lysosome disrupting stimuli(155, 163, 376, 405). However, the dependence of 

cell death on cathepsin B during particle-induced NLRP3 activation has not been 

demonstrated using genetic tools, such as cathepsin B-deficient cells. The latter 

kind is important because several reports have now shown that Ca074Me inhibits 

multiple cathepsins at concentrations used to block NLRP3 activation in prior 

studies(155-159, 406). Moreover, studies examining genetic deficiency of 

cathepsin B and/or L in these responses have yielded conflicting results, with 

some showing a partial role for both of these proteases in NLRP3 activation(10, 

160, 161), and most others showing no role for either(15, 162, 163). A 

confounding factor in these genetic experiments is that loss of one cathepsin can 

result in a compensatory upregulation of other functionally redundant cathepsins 

(379, 380, 406). More recently, we have found that multiple redundant cathepsins 

participate in particle-stimulated IL-1β production and do so by both enhancing 

IL-1β priming and NLRP3-dependent pro-IL-1β cleavage. Whether multiple 

cathepsins are also involved in particle-induced cell death, remains an open 

question.  
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In vivo, IL-1β has been shown to be a critical mediator of particle-induced 

sterile inflammatory diseases(407-410). However, in contrast to the absolute 

requirement for inflammasome-dependent caspase 1 activation for IL-1β 

responses in vitro, several studies have shown that caspase-1-deficient mice 

have, on average, <50% reduction in particle or dead cell-induced responses 

compared to WT animals; in other studies, these responses were not reduced at 

all(10, 12, 121, 130). Two explanations were proposed for these findings. One 

explanation proposed that an unidentified inflammasome-independent pathway 

drives particle and dead cell-induced IL-1β activation by intact cells in vivo(121). 

As far as we know, there is currently no evidence for this. The second 

explanation proposed that this response is driven by caspase-1-independent lytic 

cell death, which releases IL-1α, pro-IL-1β and various other pro-inflammatory 

danger-associated molecular patterns (DAMPs) into an extracellular environment 

where cathepsin C-dependent neutrophil proteases can further process pro-IL-

1β(121). Indeed, there is some evidence that sterile particles induce 

inflammasome-independent cell death during NLRP3 activation(155, 163). 

Therefore, the considerable caspase-1-independent component of the in vivo 

response suggests that understanding the caspase-1-independent mechanisms 

involved in particle-induced IL-1 production and cell death may be of 

considerable value to our understanding inflammatory diseases caused by 

particles.  
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In the current study, we examine whether particle-induced cell death during 

NLRP3 activation depends on inflammasomes or cathepsins using both inhibitors 

and genetic models. We find that particle-induced cell death is not inflammasome 

dependent, as has often been assumed, but instead depends on multiple 

redundant cathepsins. Furthermore, we investigate the relationship between 

particle-induced cell death and IL-1β secretion, and find that the Bcl-2 family 

influences both responses, presumably through their effects on mitochondria. 

Interestingly, although pro-apoptotic Bcl-2 family members can cause 

mitochondrial disruption, and some have suggested that mitochondrial disruption 

can stimulate NLRP3, we find that a substantial disruption of the mitochondrial 

membrane potential (MMP) actually antagonizes NLRP3-mediated IL-1β 

secretion by interrupting the priming of pro-IL-1β and NLRP3 synthesis. 

Therefore, this study highlights the requirement for intact mitochondria during 

particle-induced IL-1β secretion and distinguishes the IL-1β-promoting function of 

LMD from the IL-1β-antagonizing role of mitochondrial outer membrane 

permeabilization (MOMP). 
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Results 

Particle-induced cell death is inflammasome-independent 
 
Sterile particles ingested by macrophages stimulate inflammasome activation 

and cell death(2, 10-12). The mechanism of particle-induced cell death has often 

been assumed to be inflammasome-dependent pyroptosis that is inititated by 

activated caspase-1. Contrary to this assumption, two recent studies reported 

that lysosome disruption and alum particles actually elicit inflammasome-

independent necrosis in LPS-primed macrophages, although this was not 

examined side-by-side with IL-1β responses(155, 163). Therefore, we examined 

whether other particle-induced cell death depends on inflammasomes in LPS-

primed macrophages.  

In all the following experiments, unless otherwise noted, we primed 

peritoneal macrophages (PMs) with LPS and followed a “Standard Protocol”: 

LPS priming for 2h  Add Inhibitors or Media Control for 1h  Add Stimuli for 6h 

 Analysis. Here, we stimulated PMs from WT mice or mice deficient in the 

inflammasome components NLRP3, ASC or caspase-1 with various NLRP3-

activators: a lysosomotropic detergent (LLOMe), particles (silica & MSU) or the 

soluble potassium ionophore (nigericin) (Fig. 1a). The cell death induced by 

LLOMe, silica, and MSU was inflammasome-independent, although the IL-1β 

measured by these same stimuli was completely inflammasome-dependent. In 
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contrast, nigericin-induced cell death and IL-1β production were both 

inflammasome-dependent. Interestingly, the broad cathepsin inhibitor K777 

suppressed silica-induced cell death in PMs lacking inflammasome components. 

In contrast, cell death and IL-1β responses induced by dAdT (a stimulator of 

Aim2 inflammasomes) were both dependent on inflammasome components, 

whereas the cell death and most of the IL-1β response induced by this stimulus 

were not blocked by the cathepsin inhibitor K777 (Fig 1b). In all the experiments 

above, TNF-α secretion was unaffected by K777, demonstrating that this agent is 

selectively affecting cell death and IL-1β (Supp. Fig. 1a-c). These data suggest 

that despite being absolutely critical for IL-1β secretion in vitro, inflammasomes 

are not essential for particle-induced cell death in LPS-primed macrophages, and 

point instead to a role for cathepsins in this process. 



 167 
 

Chapter IV, Figure 1  
Particle-induced cell death is inflammasome-independent in LPS-primed 
macrophages. In all cases, PMs were primed with LPS. (A) PMs from WT, 
NLRP3-/-, ASC-/- or Caspase-1-/- (Casp1-/-) stimulated with media control (-), 
LLOMe (1 mM), silica (50 μg/mL), MSU (250 μg/mL) or nigericin (2 μM). (B) PMs 
from WT, ASC-/- or Caspase-1-/- (Casp-1-/-) mice treated with K777 (30 μM) 
before stimulation with silica (80 μg/mL) or dAdT (1 μg/mL). (A,B) S.D. of 
technical triplicates. All data are representative of at least three independent 
experiments. 
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Particle-induced cell death and IL-1β secretion are co-dependent 
on cathepsins and the Bcl-2 family 
 
Sterile particles have been shown to induce LMD during NLRP3 activation(10, 

11, 144). Moreover, previous studies have shown that LMD releases cathepsins 

into the cytosol, where these proteases can activate Bid and inactivate Bcl-2, and 

thereby tip the balance between pro-survival and pro-death Bcl-2 family 

members in favor of cell death(200). In the context of NLRP3 activation, it has 

been shown that Ca074Me inhibits cleavage of Bid induced by dsRNA, a 

stimulus that can activate NLRP3 as well as other pattern recognition receptors 

(377). Moreover, two studies showed that Bcl-2 overexpression reduced cell 

death and IL-1β secretion induced by particulate and non-particulate stimuli(173, 

218), and one of these studies showed that Bcl-2 knockdown enhances cell 

death and IL-1β secretion induced by the soluble NLRP3 activator ATP(218). 

Therefore, we examined whether cathepsins and the Bcl-2 family are involved in 

particle-induced cell death and IL-1β secretion in LPS-primed macrophages. 

First, we examined the effects cathepsin inhibitors on particle-induced cell 

death during NLRP3 activation and compared them to the standard pyroptosis 

blocking caspase inibitors. We treated PMs with either YVAD (caspase-1 

inhibitor), ZVAD (pan-caspase inhibitor), Ca074Me (cathepsin B-selective 

inhibitor at ≤1 µM) or K777 (broad cathepsin inhibitor) and then stimulated with 

silica, CC, nigericin or the AIM2 inflammasome activator poly(deoxyadenylic-
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deoxythymidylic) acid (dAdT) (Fig 2a). K777 and Ca074Me suppressed both 

particle-induced cell death and IL-1β secretion, but Ca074Me was more effective 

than K777 against these responses induced by the soluble NLRP3 activator, 

nigericin. Neither K777 nor Ca074Me had much effect on dAdT; the small effect 

shown here is likely due to their suppression of pro-IL-1β synthesis (406). 

Conversely, though YVAD and ZVAD blocked IL-1β secretion induced by all 

stimuli tested, they did not suppress cell death induced by silica or CC. 

Surprisingly, they also did not block cell death induced nigericin of dAdT either, 

suggesting that these inhibitors may be having toxic off-target effects that 

interfere with their suppression of pyroptosis. Therefore, inhibitors of cathepsins, 

and not caspases, suppress both particle-induced IL-1β secretion and cell death. 

 As this is the first report examining the effects of K777 on cell death during 

NLRP3 activation, we further characterized this inhibitor. In addition to 

suppressing particle-induced cell death and IL-1β secretion in PMs, K777 also 

did so for these responses induced by the LMD agent LLOMe, without affecting 

TNF-α (Supp Fig 1d). Consistent with our previous report, demonstrating K777’s 

selective suppression of particle-induced IL-1β secretion(406), K777 selectively 

inhibited cell death across a broad range of silica and alum concentrations while 

having no effect on cell death induced by nigericin or dAdT at any concentration 

tested (Supp Fig 1e). Moreover, these effects were not limited to PMs. K777 

also selectively suppressed particle-induced cell death in bone marrow-derived 

macrophages and mast cells, although K777 did not suppress neutrophil cell 
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death (Supp. Fig 1f). Importantly, our most recent study demonstrated that the 

timing of cathepsin inhibitor treatment relative to LPS priming affects their 

selectivity, since they can affect priming (406). Using these same protocols for 

K777 and Ca074Me, addition of inhibitors at the start of LPS-priming or 3h later 

at the time of stimulation with silica, nigericin or dAdT, did not affect their 

selectivity for NLRP3 stimuli or K777’s selectivity for particulates (Supp. Fig 1g). 

Moreover, to further verify priming-independent effects of cathepsin inhibitors on 

particle-induced cell death, we followed an extended LPS-priming protocol 

(priming 5.5h instead of only 2h before adding inhibitors). This allowed time for 

pro-IL-1β and NLRP3 synthesis before we blocked new translation and 

subsequently examined the effects of cathepsin inhibitors on the 

translation/priming-independent response. To do this, K777 and Ca074Me were 

added alone or combined with the protein translation inhibitor cycloheximide 

before stimulating with silica, nigericin, or dAdT. Again, we found that 

suppression of cell death by these inhibitors was independent of translation-

dependent priming (Supp. Fig 1h). Therefore, these data suggest that K777 is a 

selective inhibitor of particle-induced IL-1β secretion and inflammasome-

independent cell death, which likely depends on cathepsins.  

 Next, we examined the role of the Bcl-2 family on particle-induced cell 

death during NLRP3 activation. PMs were treated with YVAD as a control or Bax 

Inhibitory Peptide V (BaxIP5)(411), an inhibitor of the pro-death Bcl-2 family 

protein Bax, then stimulated with silica, nigericin or dAdT. Similar to cathepsin 
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inhibitors, BaxIP5 selectively suppressed both cell death and IL-1β secretion 

induced by silica, while YVAD affected only IL-1β (Fig 2b). In contrast, nigericin 

and dAdT-induced responses were only mildly affected by BaxIP5 or not at all. 

Next, in PMs we silenced pro-survival Bcl-2 with siRNA (~80% knockdown by 

qPCR (Supp. Fig. 2b)), then primed them with LPS and stimulated with silica. 

Consistent with our findings with the Bax inhibitor, Bcl-2 deficiency had the 

opposite effect to BaxIP5; it increased both silica-induced cell death and IL-1β 

secretion, and both of these responses were suppressed by K777 (Fig 2c). In the 

above experiments, TNF-α was not significantly affected (Supp. Fig 2a,c). 

Together, these data indicate that cathepsins and the Bcl-2 family specifically 

modulate particle-induced cell death and IL-1β secretion during NLRP3 

activation. 
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Chapter IV, Figure 2 
Particle-induced cell death and IL-1β secretion are co-dependent on 
cathepsins and the Bcl-2 family during NLRP3 activation. In all cases, PMs 
were primed with LPS. (A) PMs were treated with media control (black bars; (-)), 
caspase-1 inhibitors (gray bars; YVAD (20 μM), ZVAD (10 μM)) or cathepsin 
inhibitors (white bars; K777 (20 μM), Ca074Me (20 μM)) before stimulation with 
media control (-), silica (50 μg/mL), CC (75 μg/mL), nigericin (1.5 μM), or dAdT 
(0.5 μg/mL). (B) PMs treated with media control (-), BaxIP5 (200 μM) or YVAD 
(20 μM) stimulated with media control (-), silica (50 μg/mL), nigericin (2 μM) or 
dAdT (0.3 μg/mL); cell death analyzed by MTS assay. (C) PMs treated with NT 
control siRNA or siRNA targeting Bcl-2 (siBcl2) were primed with LPS and 
treated with media control or K777 (15 μM) as indicated and stimulated with silica 
(80 μg/mL). Error bars represent (B) range bars of technical duplicates, or (C) 
S.D. of technical quadruplicates. Statistical analysis was performed by (B) Two-
tailed Student’s t-test or, (C) Two-way ANOVA and Dunnett’s multiple 
comparisons test, or; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Data are 
representative of (A) three or, (B,C) two independent experiments. 
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Chapter IV, Supplementary Figure 1  
In all cases, cells were primed with LPS. (A) PMs treated with media control 
(black bars; (-)), caspase-1 inhibitors (gray bars; YVAD (15 μM), ZVAD (10 μM)) 
or cathepsin inhibitors (white bars; K777 (20 μM), Ca074Me (20 μM)) before 
stimulation with media control (-), silica (50 μg/mL), CC (75 μg/mL), nigericin (1.5 
μM), or dAdT (0.5 μg/mL). (B) PMs from WT, NLRP3-/-, ASC-/- or Caspase-1-/- 
(Casp1-/-) stimulated with media control (-), LLOMe (1 mM), silica (50 μg/mL), 
MSU (250 μg/mL) or nigericin (2 μM). (C) PMs from WT, ASC-/- or Caspase-1-/- 
(Casp-1-/-) mice treated with K777 (30 μM) before stimulation with silica (80 
μg/mL) or dAdT (1 μg/mL). (D) PMs treated with media control or K777 (white 
bars; 30 μM) and stimulated with silica (50 μg/mL), LLOMe (0.75 mM), or dAdT 
(0.5 μg/mL). (E) PMs treated with media control (solid line) or K777 (dashed line; 
15 μM) before stimulation with a titration of silica, alum, nigericin or dAdT. (F) 
Bone marrow derived macrophages (BMDM), neutrophils (Nφ) or mast cells 
treated with K777 (white bars; 15 μM) and then stimulated with silica (40 μg/mL 
for BMDMs and mast cells, 100 μg/mL for Nφ), nigericin (1 μM) or dAdT (0.3 
μg/mL). (G) PMs treated with media control (-) or inhibitors (15 μM K777 & 
Ca074Me, 10 μM ZVAD) at the same time as LPS (Inhib at 0h; filled bars) or 3h 
after LPS (Inhib at 3h; white bars) before stimulation with media control (-), silica 
(80 μg/mL), nigericin (1.5 μM) or dAdT (0.5 μg/mL) for an additional 6h. (H) PMs 
were primed with LPS for 5.5h and treated with either media control (-), K777 (15 
μM), Ca074Me (15 μM), CHX (1 μM), K777 combined with CHX, or Ca074Me 
combined with CHX for another 0.5h, and then treated with media control (-), 
silica (80 μg/mL), nigericin (1.5 μM), or dAdT (0.5 μg/mL) for another 3h. Error 
bars represent (A,D,E) range bars of technical duplicates, and (B,C,F) S.D. of 
technical triplicates. (G) S.D. of technical triplicates (-) or range bars of duplicates 
(silica, nigericin, dAdT), and (H) S.D. of technical triplicates (media or CHX; 
silica, nigericin, dAdT with K777 & Ca074Me ±CHX), sextuplicates (silica, 
nigericin, dAdT ±CHX), or range bars of duplicates (K777 & Ca074Me ±CHX). All 
data are representative of at least (A-G) three or (H) two independent 
experiments.  
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Chapter IV, Supplemental Figure 2 
In all cases, PMs were primed with LPS. (A) PMs treated with media control (-), 
BaxIP5 (200 μM) or YVAD (20 μM) stimulated with media control (-), silica (50 
μg/mL), nigericin (2 μM) or dAdT (0.3 μg/mL). (B) PMs treated with NT control 
siRNA or siRNA targeting Bcl-2 (siBcl2) were primed with LPS and treated with 
media control or K777 (15 μM) and Bcl-2 (Bcl2) expression analyzed by qPCR 3h 
after priming. (C) PMs treated with NT control siRNA or siRNA targeting Bcl-2 
(siBcl-2) were primed with LPS, treated with media control or K777 (15 μM) as 
indicated before stimulation with silica (80 μg/mL), nigericin (1.5 μM) or dAdT 
(0.5 μg/mL). (D,F,G) PMs treated with media control or K777 (15 μM) where 
indicated, and after 3h of LPS priming (top) cathepsin activity labeled with 
BMV109; lysates were processed and β-Actin or GAPDH analyzed by western 
blot; arrows on the left indicate the bands marking activity of specific cathepsins 
and m.w. markers are on the right in kDa, or (bottom) gene expression 
(cathepsin X = CtsX, cathepsin S = CtsS, cathepsin L = CtsL) analyzed by qPCR; 
data are normalized to GAPDH expression and plotted relative to non-targeting 
(NT) siRNA. (D) PMs treated with NT control siRNA or siRNA targeting cathepsin 
X (siX), or (F) PMs from WT mice irradiated and reconstituted with bone marrow 
neonatal WT or cathepsin B and L-deficient (BL-/-) mice treated with NT siRNA 
or siRNAs targeting cathepsins X and S (siXS), or (G) PMs from WT mice or 
cathepsin B, C, and S-deficient (BCS-/-) mice treated with NT siRNA or siRNAs 
targeting cathepsins X and L (siXL). (E) PMs were treated with media control or 
the indicated concentrations of K777 (top figures) or Ca074Me (bottom figures) 
and stimulated with silica (40 μg/mL), nigericin (2 μM) or dAdT (0.5 μg/mL); data 
shows percent inhibition of cell death compared to media control. Error bars 
represent (A) range bars from technical duplicates representing (silica and dAdT) 
three or (nigericin) two independent experiments, (B) S.D. of technical triplicates 
representing two independent experiments, (C) S.D. of technical quadruplicates 
representing two independent experiments, (D,F,G; bottom) S.D. of technical 
triplicates representing three independent experiments or, (E) S.D. of means 
from four independent experiments (K777 from 0.1-15 μM), S.D. of means from 
three independent experiments (Ca074Me from 0.1-15 μM; K777 at 30 μM), 
range bars from two independent experiments (Ca074Me at 30 μM).  
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Particle-induced cell death is dependent on multiple redundant 
cathepsins. 
 
Since cathepsin inhibitors blocked particle-induced cell death, we next sought to 

test whether loss of individual cathepsins similarly inhibited this process. 

Deficiency of cathepsin B, L, C or S failed to significantly attenuate cell death in 

response to silica (Fig. 3a). K777 attenuated cell death induced by silica equally 

well in cells sufficient or deficient for any one of these cathepsins, indicating that 

K777 does not suppress this response by inhibiting only one of these cathepsins. 

To examine the role of cathepsin X, we silenced cathepsin X in PMs with siRNA. 

We confirmed a 90-95% knockdown of cathepsin X mRNA by qPCR and saw a 

similar loss of enzyme activity was observed with the fluorescent cathepsin 

activity-based probe BMV109(293) (Supp. Fig. 2d). After silencing cathepsin X, 

we stimulated these cells with silica, nigericin or dAdT. There was no significant 

difference between cathepsin X-sufficient or cathepsin X-deficient macrophages 

in the amount of cell death induced by either silica or dAdT (Fig. 3b). Similar to 

our previous observations for the nigericin-induced IL-1β response, deficiency of 

cathepsin X significantly reduced nigericin-induced cell death (406). Therefore, 

these data suggest that cathepsin X plays a previously unrecognized non-

redundant role in nigericin-induced NLRP3-dependent cell death, while the 

individual cathepsins examined, including cathepsins B, L, C, S and X, are not 

essential for particle-induced inflammasome-independent cell death during 
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NLRP3 activation.  

 Next, we determined the concentrations of Ca074Me and K777 necessary 

to inhibit cell death induced by silica, nigericin or dAdT, and compared this to the 

cathepsin inhibition profile of these inhibitors that has been established in this cell 

type(406). This analysis revealed that at the concentrations of these agents that 

were needed to inhibit cell death, they were inhibiting multiple cathepsins (Supp 

Fig. 2e); these results were similar to what we recently observed for the 

concentrations needed to block IL-1β responses(406). Similar results were 

obtained when these cathepsin inhibitors were titrated with cathepsin B-deficient 

macrophages (Fig. 3c,d). In these experiments K777 again selectively inhibited 

particle-induced cell death, while Ca074Me inhibited nigericin-induced cell death 

as well.  These data indicate that Ca074Me likely inhibited other cathepsins, not 

just cathepsin B, at the concentrations used to inhibit particle-induced cell death 

during NLRP3 activation in other studies(155, 163, 376, 405). 

 Finding that particle-induced cell death does not require any of the single 

cathepsins examined and that cathepsin inhibitors only blocked responses at 

doses that inhibited multiple cathepsins suggested that multiple cathepsins might 

play redundant roles in particle-induced cell death. To test this hypothesis, we 

bred mice deficient for both cathepsins B and L. Because mice doubly deficient in 

cathepsin B and L die within the first few weeks of life(379), we could not directly 

analyze PMs from these animals. To circumvent this limitation, we harvested 

bone marrow from these neonatal double knockout mice and used it to 
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reconstitute lethally irradiated adult WT mice. In these chimeric mice, cells of 

hematopoietic origin lack cathepsin B and L (B&L-/-) activity(406). For 

comparison, we also made chimeras with bone marrow from neonatal WT, 

cathepsin B-/- and cathepsin L-/- mice. We elicited PMs from these various 

chimeric mice and then stimulated as done above. Again, cathepsin B, L or B&L-

deficient macrophages showed no attenuation of cell death induced by LLOMe, 

silica titration, nigericin or dAdT (Fig. 3e,f). K777 treatment still attenuated silica-

induced cell death in the absence of these cathepsins (Fig. 3g), suggesting that 

K777’s suppresses this response by inhibiting more cathepsins at once than just 

B and L. 

 Since we have shown that K777 and Ca074Me inhibit more cathepsins 

than just B and L at concentrations required to block particle-induced cell death, 

we examined the particle-induced response of PMs deficient in up to four or five 

cathepsins. To do this, we examined the PMs deficient for both cathepsins B&L 

that were described above, and also elicited PMs from WT mice or mice deficient 

for the three cathepsins B, C & S (BCS-/-); these mice were viable with no 

obvious physical or behavioral pathology. In the WT or B&L-/- (BL) macrophages, 

we silenced cathepsins X and S with siRNA. Similarly, in WT or BCS-/- (BCS) 

macrophages, we silenced cathepsins X and L with siRNA. In both cases, 

treatment with siRNA resulted in a >90% reduction in the mRNA of each gene 

and a corresponding reduction in cathepsin activity, as assayed with BMV109 

(Supp. Fig. 2f,g). Indeed, compound deficiency of cathepsins B, L, X and S 
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(BLXS) or cathepsins B, C, S, X and L (BCSXL) both resulted in a specific and 

significant attenuation of cell death induced by silica and not by nigericin or dAdT 

(Fig. 3h,i). Importantly, K777 was able to further attenuate particle-induced cell 

death in the BLXS and BCSXL macrophages, suggesting that other and/or 

residual cathepsins may still be involved. While cathepsin XL deficiency 

significantly reduced nigericin-induced cell death, the other combinations of 

cathepsin X-deficiency examined did not. This is likely because of the unique 

dependency of nigericin-induced responses on cathepsin X activity, and the fact 

that cathepsin X is upregulated in cathepsin S-deficient macrophages (406). 

Altogether, these data suggest that multiple cathepsins play redundant roles in 

particle-induced cell death during NLRP3 activation. 
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Chapter IV, Figure 3  
Particle-induced cell death is initiated by multiple redundant cathepsins, 
and does not require cathepsin B, during NLRP3 activation. In all cases, 
cells were primed with LPS. (A) WT PMs or those lacking cathepsins B (B-/-), L 
(L-/-), S (S-/-) or (C-/-) treated with silica (black bars; 40 μg/mL) or silica plus 
K777 (white bars; 15 μM). (B) PMs treated with non-targeting (NT) control siRNA 
or siRNA targeting cathepsin X (siX) before priming with LPS and stimulating with 
media control (-), silica (80 μg/mL), nigericin (1.5 μM) or dAdT (0.5 μg/mL). (C,D) 
WT (closed circles, solid line) or cathepsin B-deficient (open circles, dashed line) 
PMs treated a range of K777 or Ca074Me concentrations (1, 5, 10, 15 or 30 μM) 
before stimulation with silica (50 μg/mL). (E-G) Lethally irradiated WT mice were 
reconstituted with bone marrow from WT, cathepsin B (B-/-), L (-/-), B and L 
(B&L-/-), or NLRP3 (NLRP3-/-)–deficient donor mice. LPS-primed PMs elicited 
from these mice were stimulated with (E) media control (-), silica (40 μg/mL), 
LLOMe (0.75 mM), nigericin (2 μM), or dAdT (0.4 μg/mL), (F) a range of silica 
concentrations, (G) silica plus media (black bars) or silica plus K777 (white bars; 
20 μM). (H,I) PMs elicited from (H) chimeric WT or knockout mice from “E-G”, or 
(I) WT mice or mice deficient in the three cathepsins B, C and S (BCS), were 
treated with non-targeting siRNA (WT) or siRNA targeting both (H) cathepsins X 
and S (“XS” when given to WT, or “BLXS” when given to B&L-/- labeled as “BL”), 
or (I) cathepsins X and L (“XL” when given to WT, or “BCSXL” when given to 
BCS), and subsequently LPS-primed and stimulated with media control (-), silica 
(80 μg/mL), nigericin (1.5 μM), or dAdT (0.5 μg/mL). XL, BCSXL, BL, BLXS 
macrophages were also treated with K777 (white bars; 15 μM). Error bars 
represent (A,C,D,E-G) range bars of technical duplicates, (B) S.D. of technical 
quadruplicates, (H) S.E. of means from either two independent experiments, or 
(I) five independent experiments (WT, XL, BCS, BCSXL) or three independent 
experiments (+K777). Statistical analysis was performed by (A,B,G) Two-way 
ANOVA and Sidak’s or (H,I) Dunnett’s multiple comparisons test; *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001. Data are representative of (A,C,B-G,I) at 
least three, or (D,H) two independent experiments.   
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Bcl-2 inhibition induces inflammasome & RIP3-independent cell 
death and IL-1β secretion. 
 
Finding that the Bcl-2 family regulates particle-induced cell death and IL-1β 

secretion during NLRP3 activation, we sought to better understand this 

connection. MOMP is the major mechanism described for cell death mediated by 

the Bcl-2 family. MOMP results in the generation of mitochondrial reactive 

oxygen species (ROS) production and the eventual loss of MMP(200). 

Importantly, common terminal events proposed to activate NLRP3 involve a 

combination of MOMP and mitochondrial ROS(173), which lead to the liberation 

of oxidized mitochondrial DNA(174, 218) or cardiolipin(220) into the cytosol to be 

sensed by NLRP3(172). This pathway could potentially lead to cell death 

upstream of NLRP3 activation, which would be consistent with the cathepsin-

dependent mechanism described above. Therefore, we examined whether 

pharmacologically promoting the activity of pro-death Bcl-2 family members 

following LPS-priming can initiate NLRP3-dependent or independent cell death 

and/or IL-1β secretion.  

 First, we stimulated WT or NLRP3-/- PMs with a Bcl-2-specific inhibitor 

(ABT199)(412, 413), and compared this response to responses induced by silica, 

nigericin, or dAdT. As an inflammasome-independent control, we also tested a 

Smac mimetic drug (AT406)(253) since drugs in this class have been shown to 

induce RIP3-dependent cell death and IL-1β secretion(253). ABT199 and the 
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other stimuli tested induced both IL-1β secretion and cell death (Fig 4a). 

Although we found above that Bcl-2 knockdown did not result in IL-1β secretion 

and cell death with LPS priming alone, it is likely that the sudden or non-specific 

inhibition of the anti-apoptotic Bcl-2 family with ABT199 caused more of a 

disruption in the balance with pro-apoptotic Bcl-2 family members. As expected, 

both of these outcomes were NLRP3-independent for AT406 and dAdT-induced 

responses. Again, IL-1β secretion induced by silica and nigericin depended on 

NLRP3, while only nigericin-induced cell death required NLRP3. Surprisingly, 

ABT199-induced IL-1β secretion and cell death was NLRP3-independent, 

suggesting that NLRP3 activation is not downstream of the Bcl-2 family. 

 Next, we tested whether other inflammasomes are involved in ABT199-

induced cell death and IL-1β secretion, and whether cathepsin inhibition can 

block these processes. We stimulated PMs from either WT, ASC-/- or 

caspase1&11-/- mice with ABT199, AT406, or dAdT. As expected, IL-1β 

secretion and cell death induced by AT406 were largely inflammasome-

independent, while these responses induced by dAdT were inflammasome-

dependent (Fig. 4b). Again, ABT199 induced these responses independently of 

inflammasomes. Interestingly, K777 partially reduced cell death induced by 

ABT199, which may suggest that cathepsins could be also downstream of 

ABT199 possibly from enhancement of lysosomal disruption. Moreover, K777 

suppressed ABT199 and AT406-induced IL-1β secretion, and to some extent 

reduced IL-1β secretion induced by dAdT as well. This is consistent with our 
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most recent study showing that cathepsins are important for pro-IL-1β synthesis 

(406). To examine this more directly, we looked at the effects of Ca074Me and 

K777 on responses induced by ABT199 and AT406. After 6h of stimulation, 

lysates were analyzed by western blot. Indeed, K777 and Ca074Me suppressed 

IL-1β secretion induced by these inflammasome/NLRP3-independent stimuli 

primarily by reducing pro-IL-1β synthesis (Fig. 4c). 

 Finally, given that ABT199 may be inducing MOMP and the release of 

Smac from the mitochondria, we also examined whether cell death and IL-1β 

secretion induced by ABT199 may be dependent on RIP3, as has been shown 

for other Smac mimetics(414). We stimulated PMs from either WT or RIP3-/- 

mice with silica, ABT199, AT406 or dAdT. Importantly, silica-induced cell death 

and IL-1β secretion was RIP3-independent (Fig. 4d). As expected, this was also 

the case for dAdT. Conversely, AT406-induced cell death and IL-1β secretion 

depended largely on RIP3, confirming findings from a recent study(414). 

Surprisingly, ABT199-induced cell death and IL-1β secretion were RIP3-

independent. Moreover, similar results were observed across a wide range of 

stimuli concentrations (Supp. Fig. 3a). Again, TNF-α is not significantly affected 

in all experiments above (Supp. Fig. 3a-d). Therefore, ABT199 initiates a 

pathway of concomitant cell death and IL-1β secretion that does not depend on 

any of the known IL-1β activating pathways. Moreover, these data indicate that 

by blocking pro-IL-1β synthesis, cathepsin inhibition can suppress, not only cell 
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death by particulate stimuli, but also, IL-1β secretion by diverse stimuli regardless 

of the pathways involved. 
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Chapter IV, Figure 4  
Bcl-2 inhibition induces inflammasome and RIP3-independent cell death 
and IL-1β secretion, but cathepsin inhibition still suppresses IL-1β 
secretion. In all cases, except part of “C”, PMs were primed with LPS.  (A) PMs 
from WT or NLRP3-/- mice were stimulated with silica (40 μg/mL), nigericin (2 
μM), ABT199 (5 μM), AT406 (7.5 μM), or dAdT (0.4 μg/mL). (B) PMs from WT, 
ASC-/- or Caspase-1-/- (Casp1-/-) mice were treated with media control or K777 
(30 μM) before stimulation with ABT199 (5 μM), AT406 (10 μM) or dAdT (0.5 
μg/mL). (C) PMs were primed (LPS) or not primed (No LPS) prior to treatment 
with K777 (15 μM) or Ca074Me (15 μM) then stimulated with AT406 (15 μM) or 
ABT199 (15 μM); lysates and supernatants were processed and pro-caspase-1, 
pro-IL-1β, mature IL-1β (p17), and β-actin analyzed by western blot; m.w. 
markers are on the right in kDa. (D) PMs from WT or RIP3-/- mice were 
stimulated with silica (50 μg/mL), ABT199 (5 μM), AT406 (10 μM) or dAdT (0.3 
μg/mL). Error bars represent (A,B) range bars of technical duplicates or (D) S.D. 
of technical triplicates. Data are representative of (A for ABT199; C) two or 
(A,B,D) three independent experiments. 
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Chapter IV, Supplemental Figure 3  
In all cases, PMs were primed with LPS. (A) PMs from WT or RIP3-/- mice were 
stimulated with titrations of silica, ABT199, AT406 or dAdT. (B) PMs from WT or 
NLRP3-/- mice were stimulated with silica (40 μg/mL), nigericin (2 μM), ABT199 
(5 μM), AT406 (7.5 μM), or dAdT (0.4 μg/mL). (C) PMs from WT, ASC-/- or 
Caspase-1-/- (Casp1-/-) mice were treated with media control or K777 (30 μM) 
before stimulation with ABT199 (5 μM), AT406 (10 μM) or dAdT (0.5 μg/mL). (D) 
PMs from WT or RIP3-/- mice were stimulated with silica (50 μg/mL), ABT199 (5 
μM), AT406 (10 μM) or dAdT (0.3 μg/mL). Error bars represent (A-C) range bars 
of technical duplicates or (D) S.D. of technical triplicates. Data are representative 
of (B for ABT199) two or (A-D) three independent experiments. 
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Particle-induced IL-1β secretion is antagonized by mitochondrial 
disruptive cell death. 
 
MOMP and the release of mitochondrial DAMPs into the cytosol is thought to be 

a terminal event leading to NLRP3 inflammasome activation(172-174, 218, 220). 

Despite our data suggesting that the Bcl-2 family modulates particle-induced 

inflammasome-dependent IL-1β secretion, direct Bcl-2 inhibition induced IL-1β 

secretion via a pathway that depended on neither inflammasomes nor RIP3. 

Therefore, we examined whether Bcl-2 inhibition might positively (or negatively) 

modulate NLRP3-dependent IL-1β secretion induced by sterile particles.   

 First, we stimulated PMs with ABT199 in the presence or absence of 

particulate NLRP3 activators (silica, CC, MSU), soluble NLRP3 activators (ATP, 

nigericin), or the AIM2 activator dAdT. Surprisingly, ABT-199 did not enhance IL-

1β secretion by any of these stimuli. Instead, ABT199 strongly enhanced cell 

death induced by particulates and dAdT (Fig. 5a). This is in line with the 

possibility that ABT199 causes a more pronounced disturbance in the balance 

between pro- and anti-apoptotic Bcl-2 family members. However, ABT199 did not 

enhance cell death induced by ATP or nigericin, likely because they had already 

induced a high level of cell death. Next, we stimulated PMs with an inhibitor of 

pro-survival Bcl-2, Bcl-xL and Bcl-w (ABT263)(415), alone or in combination with 

silica, nigericin, or dAdT. Like ABT199, ABT263 alone induced IL-1β secretion 

and cell death (Supp. Fig. 4a). However, similar to ABT199, ABT263 strongly 
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enhanced cell death induced by silica, and also by nigericin and dAdT, but failed 

to enhance IL-1β secretion. In the experiments above, TNF-α was not 

significantly affected (Supp. Fig 4b, c). Together, these data indicate that Bcl-2 

inhibitors do not act cooperatively with particle-induced IL-1β secretion, but 

instead, they strongly promote cell death and may even interfere with pathways 

promoting IL-1β secretion.  

 Our data showing that Bcl-2 inhibition, which should induce MOMP, did 

not promote particle-induced IL-1β secretion (and that it induced IL-1β secretion 

in NLRP3-/- macrophages) seems inconsistent with the hypothesis that MOMP 

induces NLRP3-dependent IL-1β secretion. However, the Bcl-2 family has been 

shown to influence the integrity of both the mitochondrial and the lysosomal 

membranes(172). Therefore, which organelle Bcl-2 inhibition is affecting may be 

important for interpreting these results. In fact, a recent study reported that robust 

LMD induced by LLOMe also promotes cell death and antagonizes NLRP3-

mediated IL-1β secretion(155). If LMD is the mechanism whereby ABT199, 

LLOMe and silica promote a form of inflammasome-independent cell death that 

antagonizes IL-1β secretion, then inhibiting cell death induced by these stimuli 

may paradoxically promote sustained IL-1β secretion. Therefore, we compared 

the effects of Bcl-2 inhibition, LLOMe, and silica on lysosomal and mitochondrial 

integrity. 

 To examine the effects of stimuli on lysosomes and mitochondria in real-

time, PMs were incubated with either the lysosomotropic dye acridine orange 
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(AO) or the MMP indicator tetramethylrhodamine (TMRM), primed with LPS, then 

stimulated with LLOMe, silica, ABT199 or dAdT; changes in fluorescence were 

measured at short intervals (Fig 5b). Deviations in baseline fluorescence of the 

resultant traces were interpreted using positive controls; AO green fluorescence 

increased upon LMD induced with LLOMe or Bafilomycin A (BafA) (Supp. Fig. 

4d) and TMRM red fluorescence increased upon depolarization of MMP with 

carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) and decreased 

upon hyperpolarization with oligomycin A (OMA) (Supp. Fig. 4e). It should be 

noted that, after hyperpolarization, OMA causes the depolarization and collapse 

of MMP. Interestingly, LLOMe and ABT199 both caused LMD (Fig 5b; top) and 

MMP depolarization (Fig 5b; bottom). However, LLOMe induced both of these 

processes early and robustly, while ABT199 caused MMP depolarization first and 

LMD later. ABT199 eventually caused LMD, which is consistent with our finding 

that K777 partially reduced the resultant cell death, as shown in Fig. 4b, and 

indicates that cathepsins are likely involved in cell death downstream of ABT199-

induced LMD. Indeed, reagents that influence MMP, like the electron transport 

chain (ETC) uncouplers used above, FCCP and OMA, as well as antimycin A 

(AntA), also disrupted lysosomal pH gradients (Supp. Fig. 4d,f). As expected, 

dAdT did not induce either LMD or MMP depolarization, suggesting that neither 

of these events are required for initiating inflammasome-dependent pyroptosis. 

Importantly, silica caused a mild, gradual disruption of lysosomes without 
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affecting MMP, suggesting that silica-induced NLRP3 activation does not involve 

robust MOMP. 

 To compare the proportion of cell death induced by these stimuli to the 

resultant IL-1β secretion, we stimulated PMs with the reagents above. 

Importantly, stimulation with LLOMe or ABT199, which both caused early and 

robust disruption of MMP, both generated significantly more cell death and less 

IL-1β secretion compared to silica or dAdT (Fig. 5c). These results were 

recapitulated when expressed either as the amount of IL-1β secreted per unit of 

cell death, which was significantly lower for LLOMe or ABT199, or as the amount 

of cell death per unit of IL-1β secreted, which was significantly higher for LLOMe 

and ABT199 (Fig. 5d). Although MOMP has been proposed as a terminal event 

activating NLRP3, these data suggest that disruption of the mitochondria, and not 

necessarily LMD, promotes a pathway of cell death that actually antagonizes 

NLRP3-mediated IL-1β secretion. 
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Chapter IV, Figure 5 
Particle-induced cell death and IL-1β secretion do not require 
mitochondrial disruption, which actually antagonizes IL-1β secretion. In all 
cases, PMs were primed with LPS. (A) PMs stimulated with media control (-), 
ABT199 (white bars; 5 μM) or silica (40 μg/mL), CC (100 μg/mL), MSU (200 
μg/mL), ATP (2 mM), nigericin (2 μM) or dAdT (0.4 μg/mL) combined with media 
control (black bars) or ABT199 (white bars). (B) PMs stained with A.O. (top; 
increasing values = disruption of lysosomes/pH gradient) or TMRM (bottom; 
increasing values = disruption of mitochondrial membrane potential) were 
stimulated with LLOMe (1 mM), silica (50 μg/mL), ABT199 (5 μM), or dAdT (0.4 
μg/mL); fluorescence traces monitored by plate reader at short intervals and 
plotted as fold change over LPS. (C) PMs stimulated with LLOMe (0.75-1 mM), 
Silica (40-50 μg/mL), ABT199 (5 μM), or dAdT (0.4-0.5 μg/mL). (D) Data from “C” 
are plotted as (top) “IL-1β (ng/mL) per % Cell Death”, or (bottom) “% Cell Death 
per IL-1β (ng/mL)”. Error bars represent (A,B) range bars of technical duplicates, 
or (C,D) S.E. of means from eight independent experiments. Statistical analysis 
was performed by (C,D) Two-tailed Student’s t-test; *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. All data are representative of at least three 
independent experiments.  
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Chapter IV, Supplemental Figure 4 
(A,B) LPS-primed PMs stimulated with media control (-), ABT263 (white bars; 15 
μM) or silica (40 μg/mL), nigericin (2 μM) or dAdT (0.4 μg/mL) combined with 
media control (black bars) or ABT263 (white bars). (C) LPS-primed PMs 
stimulated with media control (-), ABT199 (white bars; 5 μM) or silica (40 μg/mL), 
CC (100 μg/mL), MSU (200 μg/mL), ATP (2 mM), nigericin (2 μM) or dAdT (0.4 
μg/mL) combined with media control (black bars) or ABT199 (white bars). (D) 
PMs stained with A.O. (increasing values = disruption of lysosomes/pH gradient) 
were treated with media control (untreated = UT) or primed with LPS before 
treatment with media control or K777 (15 μM) prior to stimulation with media 
control or LLOMe (1 mM); fluorescence traces monitored by plate reader at short 
intervals and plotted as fold change over baseline; after ~6h, samples from the 
indicated traces were treated with media control (UT), Bafilomycin A (BafA; 50 
nM), FCCP (2 μM) or OMA (5 μg/mL); and after ~8h, samples from all traces 
treated with AntA (All; 5 μM). (E,F) PMs stained with (E) TMRM (increasing 
values = disruption of mitochondrial membrane potential), or (F) A.O., were 
primed with LPS, then treated with FCCP (2 μM) or OMA (5 μg/mL); fluorescence 
monitored as above and plotted as fold change over LPS. (G) LPS-primed PMs 
treated with media control (-), AntA (5 μM), FCCP (10 μM) or OMA (50 nM) and 
stimulated with media control (-), silica (80 μg/mL), nigericin (1.5 μM), or dAdT 
(0.5 μg/mL). (H) PMs were primed with LPS for 2h, and treated with media 
control (-), K777 (15 μM), AntA (5 μM), FCCP (10 μM), OMA (50 nM), MitoTrk (3 
μM), R123 (25 μM), or TMRM (5 μM) for an additional 4h; NLRP3 (Nlrp3) 
expression analyzed by qPCR and plotted relative to media control (-). (I) PMs 
stained with TMRM, as above, were primed with LPS for 2h, then (left) treated 
with media control or K777 (15 μM) for 1h, then (middle) LPS or (right) 
LPS+K777 treated samples were treated again with either FCCP (2 μM) or OMA 
(5 μg/mL) for another 2h; fluorescence monitored as above. Error bars represent 
(A-D,F,G,I) range bars of technical duplicates, (H) S.E. of means from three 
independent experiments. Statistical analysis was performed by (G) Two-way 
ANOVA and Dunnett’s multiple comparisons test, or (H) Two-tailed Student’s t-
test; *P<0.05, **P<0.01, ***P<0.001. Data are representative of (I) two or (A-H) at 
least three independent experiments. 
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Particle-induced IL-1β secretion and pro-IL-1β synthesis require 
an intact MMP. 
 
Our findings suggest that silica-induced cell death and NLRP3 activation are 

downstream of LMD, and not MOMP. As shown with LLOMe, robust LMD is likely 

required to induce cell death through downstream MOMP. Instead of activating 

NLRP3, LLOMe or ABT199-induced MOMP seems promote a mode of cell death 

that antagonizes or prevents NLRP3 activation. By inducing MOMP well before it 

causes LMD, ABT199 appear to preclude LMD-mediated NLRP3 activation 

altogether. Indeed, it has been shown that complete loss of MMP antagonizes 

NLRP3 activation induced by several RNA viruses(224). Therefore, we sought to 

understand whether MMP is also required for particle-induced NLRP3 activation. 

 We primed PMs with LPS before treating them with media control, K777, 

or electron transport chain (ETC) uncoupling agents, and then stimulated with 

silica, nigericin or dAdT. We found that ETC uncoupling with FCCP, OMA or 

AntA selectively antagonized IL-1β secretion induced by silica, but had no 

significant effect on cell death (Fig. 6a). FCCP caused the most pronounced 

reduction in IL-1β secretion, which was still selective for silica compared to its 

more minor effect on nigericin and dAdT-induced IL-1β secretion. There was no 

significant effect on TNF-α (Supp. Fig. 4g). In addition, we also examined the 

effects of these inhibitors on pro-IL-1β synthesis in LPS-primed PMs. As shown 

in our most recent study (406), K777 suppressed pro-IL-1β synthesis, which was 
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evident at the level of the transcript (Fig. 6b) and protein (Fig. 6c). Surprisingly, 

ETC uncouplers or high concentrations of MMP-dependent dyes (MitoTracker 

Red CMXRos (MitoTrk), Rhodamine 123 (R123) or TMRM) also suppressed pro-

IL-1β transcript levels/protein synthesis (Fig 6b,c) and there was a similar but 

less pronounced suppression of NLRP3 transcript (Supp. Fig. 4h). Interestingly, 

ABT199, which also induced the rapid loss of MMP, as shown in Fig. 5b, also 

reduced pro-IL-1β levels, as shown above in Fig. 4c. The fact that these effects 

were selective for silica compared to nigericin and dAdT may reflect that pro-IL-

1β levels are not limiting for their response under these conditions. Alternatively, 

an intact MMP may be more important for NLRP3 activation induced by 

particles/LMD. 

 Our finding that both cathepsin inhibitors and ETC uncouplers inhibit pro-

IL-1β and NLRP3 synthesis suggests that lysosomes and mitochondria play 

important roles in macrophage priming. To further test this, we incubated PMs 

with either AO or TMRM, primed them with LPS, but measured fluorescence 

levels during LPS priming instead of during the subsequent stimulation with 

particles or other stimuli. LPS priming alone caused a low level of gradual LMD 

and mitochondrial depolarization (Fig 6d), but to a lesser extent than that caused 

by LLOMe or ABT199, shown in Fig. 5b. Importantly, K777 did not depolarize, 

but instead, repolarized the MMP (Supp. Fig. 4i). This indicates that, instead of 

destroying MMP, K777 counteracts LPS-induced depolarization. Deviation in the 

TMRM fluorescence trace was interpreted according to controls, as done before 
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(Supp. Fig. 4e). However, subsequent to K777 treatment during priming, the 

degree of depolarization induced by FCCP was greater than that following LPS 

priming alone (Supp. Fig 4i). This reaffirmed our conclusion that K777 had 

repolarized the MMP. Moreover, FCCP also inhibited cathepsin activity (as 

measured in living cells using the activity-based probe BMV109), probably by 

disrupting the lysosomal pH gradient (Fig. 6c). However, AntA and OMA 

suppressed pro-IL-1β synthesis without affecting cathepsin activity. This 

indicated that ETC uncouplers, independently of affecting cathepsin activity, can 

suppress pro-IL-1β synthesis. In summary, inhibition of cathepsins is sufficient, 

but not necessary, to inhibit pro-IL-1β synthesis, which requires an intact MMP 

that is uniquely important for particle-induced NLRP3 activation, but not for 

cathepsin-dependent cell death. 
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Chapter IV, Figure 6 
Particle-induced IL-1β secretion and pro-IL-1β synthesis, and not cell 
death, requires an intact MMP. In all cases, except part of “D”, PMs were 
primed with LPS. (A) PMs treated with media control (-), AntA (5 μM), FCCP (10 
μM) or OMA (50 nM) and stimulated with media control (-), silica (80 μg/mL), 
nigericin (1.5 μM), or dAdT (0.5 μg/mL). (B,C) PMs were primed with LPS for 2h, 
and treated with media control (-), K777 (15 μM), AntA (5 μM), FCCP (10 μM), 
OMA (50 nM), MitoTrk (3 μM), R123 (25 μM), or TMRM (5 μM) for an additional 
4h and (B) IL-1β (IL1b) expression analyzed by qPCR; data are normalized to 
GAPDH expression and plotted relative to media control (-), or (C) PMs were 
probed for cathepsin activity with BMV109; lysates processed and analyzed by 
SDS-PAGE, phosphor imaging of specific cathepsin activity (arrows on left), and 
western blotting of pro-IL-1β and β-actin; m.w. markers are on the right in kDa. 
(D) PMs stained with A.O. (top; increasing values = disruption of lysosomes/pH 
gradient) or TMRM (bottom; increasing values = disruption of mitochondrial 
membrane potential), then treated with media control (UT) or primed with LPS 
and fluorescence traces monitored by plate reader at short intervals; traces 
indicate fold change over UT samples. Error bars represent (A) S.D. of technical 
quadruplicates (IL-1β for silica, nigericin, dAdT), range bars of technical 
duplicates (IL-1β for AntA, FCCP, OMA; %Cell Death for silica, nigericin, dAdT), 
or technical singlets (%Cell Death for AntA, FCCP, OMA), (B) S.E. of means 
from three independent experiments or, (D) range bars of technical duplicates. 
Statistical analysis was performed by (A) Two-way ANOVA and Dunnett’s 
multiple comparisons test, or (B) Two-tailed Student’s t-test; *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. Data are representative of (D, bottom) two or (A-C) at 
least three independent experiments.   
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Particle-induced sterile inflammation is suppressed by 
cathepsin inhibition in vivo. 
 
The IL-1-dependent sterile inflammatory response to particles has recently been 

shown to be largely caspase-1-independent in vivo(10, 12, 121), despite 

caspase-1 being absolutely required for IL-1β secretion in vitro(10, 12, 144). In 

fact, a recent study published by our group demonstrates a role for cathepsin C, 

showing that combined caspase-1 and cathepsin C-deficiency further suppresses 

this response(121). Moreover, our most recent study demonstrated that a 

bioavailable cathepsin inhibitor, K777, which has been shown to inhibit 

cathepsins B, L, S, X, V, K and C, selectively blocks both pro-IL-1β synthesis and 

NLRP3-activation induced by sterile particles(383, 406). Given our finding that 

K777 also inhibits caspase-1-independent particle-induced cell death, caspase-1-

independent pro-IL-1β synthesis, and NLRP3 activation, it seemed likely that 

K777 could suppress caspase-1-independent particle-induced inflammation in 

vivo. 

 We examined the effect of K777 treatment in a model of IL-1-dependent 

silica-induced acute peritonitis(121). Indeed, pretreatment with K777, either i.v. or 

s.c., strongly suppressed both neutrophil and macrophage recruitment in 

response to silica (Fig. 7a). Given the role implicated for cathepsin C in this 

response(121), we performed the same experiment above with cathepsin C-

deficient mice and found again that K777 strongly suppresses this response (Fig. 
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7b). This suggests that, even though K777 has been reported to inhibit cathepsin 

C(383), a substantial proportion of its effect in vivo is independent of cathepsin C. 

We also sought to determine the target concentration of K777 in the plasma 

necessary to achieve efficacy. To do this, we treated mice via s.c. infusion of 

K777 at different doses by loading it into osmotic Alzet pumps, which we 

surgically implanted in the backs of mice for 1 wk. Then, we examined the i.p. 

silica response as described above. Again, K777 markedly attenuated this 

response in a dose-dependent manner (up to ~70% reduction) (Fig. 7c), and the 

effective concentration of K777 in the plasma was ~0.75uM (Fig. 7d). Together, 

these data demonstrate in an in vivo model that a cathepsin inhibitor, K777, can 

suppress the IL-1-dependent acute inflammatory response to sterile particles 

independently of cathepsin C. 
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Chapter IV, Figure 7  
Silica-induced acute peritonitis is suppressed by systemic treatment with a 
cathepsin inhibitor, K777, independently of cathepsin C. (A-C) Quantification 
of IL-1-dependent cellular exudates by flow cytometric analysis following i.p. 
injection of 100 uL PBS or silica (0.2 mg) for 4h. Effect of single-bolus excipient (-
) or K777 treatment (62.5 mg/kg i.v., 125 mg/kg s.c.) 1h prior to silica injection is 
shown in (A) WT mice, or (B) Cathepsin C-/- mice. (C) Effect of 1wk s.c. infusion 
of excipient (0) or different doses of K777 (mg/kg/day) prior to silica injection in 
WT mice. (D) Concentration of K777 in the plasma after 1 wk of treatment with 
the doses described in “C”. Error bars represent (A-D) S.E. of means from the 
indicated number (n) of mice. Statistical analysis was performed by (A,B) Two-
tailed Student’s t-test, or (C,D) One-way ANOVA and Dunnett’s multiple 
comparisons test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
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Discussion 
 
In mouse models, it has been shown that diseases like gout, osteoarthritis, and 

irritant-induced muscle inflammation are driven by IL-1β, but they do not depend 

on caspase-1(407-410). Importantly, systemic treatment with the bioavailable 

cathepsin inhibitor, K777, suppressed the IL-1-dependen in vivo inflammatory 

response to silica. The degree of suppression observed with K777 was more 

dramatic than that observed in caspase-1-deficient mice examined in most 

previous studies(10, 12, 121, 130), and this effect was largely independent of 

cathepsin C. Therefore, it is likely that inhibition of caspase-1-independent pro-IL-

1β synthesis and cathepsin C, as well as caspase-1-depedent NLRP3-mediated 

IL-1β secretion, each contributed to K777’s attenuation of this response.  

 Importantly, independently of caspase-1, pro-IL-1β may be a substrate for 

an unidentified inflammasome-independent IL-1β activation pathway in intact 

cells that occurs only in vivo. Here, we demonstrated that Ca074Me and K777 

can suppress the secretion of IL-1β induced by two different inflammasome-

independent stimuli by reducing pro-IL-1β synthesis. Therefore, cathepsin 

inhibition likely has the potential to be broadly effective against a variety of 

different inflammasome-dependent and independent IL-1β activating 

mechanisms that may contribute to in vivo responses. Moreover, during an 

inflammasome-independent form of lytic cell death, pro-IL-1β could be a 

substrate for cathepsin C-dependent neutrophil proteases upon release into the 
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extracellular milieu(121, 278-281), along with constitutively active IL-1α and 

DAMPs like HMGB1. Indeed, one research group has shown that lysosome 

disrupting agents, like LLOMe, or alum particles induce inflammasome-

independent cell death(155, 163). Although IL-1β generation is not demonstrated 

in parallel with the findings of these studies, we find similar inflammasome-

independence here in parallel with conditions and concentrations of LLOMe or 

particulate stimuli that induce robust IL-1β secretion. Moreover, in contrast to our 

study, this group found that a caspase inhibitor, Boc-D-CMK, also suppresses 

cell death during inflammasome activation. However, it is well known that Boc-D-

CMK also inhibits cathepsin B(162), and likely other cathepsins as well. In 

contrast, we found that only cathepsin inhibitors, and not caspase-1 or pan-

caspase inhibitors, suppress particle-induced cell death during NLRP3 activation. 

Although the impact of this caspase-1-independent cell death response to in vivo 

pathology has not yet been quantified experimentally, we make the case here 

that cathepsin inhibitors have an advantage over caspase-1 inhibitors in 

suppressing two key pathological responses to particles. 

 Many studies have shown that the cathepsin B selective inhibitor 

Ca074Me suppresses cell death induced by LLOMe, particles and soluble 

NLRP3 activators(11, 16, 18, 142-144, 155, 160-163, 373, 375-377, 405, 416, 

417). However, it is highly likely that these effects have been achieved by 

inhibiting multiple cathepsins at the concentrations used ((155-159), OUR REF). 

Here, we found that PMs deficient in the four cathepsins B, L, S and X or in the 
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five cathepsins B, C, S, L and X showed a large and significant reduction in cell 

death induced only by silica and not nigericin or dAdT. This phenotype was not 

evident in single or double (B&L) cathepsin-deficient macrophages. Thus, these 

data conclude that particle-induced cell death is largely inflammasome-

independent, but we also demonstrate a hitherto unrecognized contribution of 

multiple redundant cathepsins to particle-induced cell death during NLRP3 

activation.  

 Surprisingly, we find that cathepsin X plays a previously unrecognized and 

non-redundant role in nigericin-induced cell death. As in our previous study, this 

is consistent with the observation that K777 is a less potent inhibitor of cathepsin 

X than Ca074Me, which more potently suppresses nigericin-induced cell death 

and IL-1β activation(406). Indeed, nigericin-induced cell death is entirely 

dependent on the inflammasome, and our recent study examining cathepsin X in 

IL-1β responses found that its role in the nigericin response was independent of 

pro-IL-1β synthesis(406). Therefore, cathepsin X appears to be upstream of 

nigericin-induced NLRP3 activation and is not essential for priming. Moreover, 

these data show that K777 is a selective inhibitor of, not only IL-1β secretion, but 

also, cell death induced by sterile particles during NLRP3 activation. 

 Our investigation into the mechanism of cathepsin-mediated particle-

induced cell death during NLRP3 activation yielded some expected and 

unexpected results. Our data are consistent with findings of previous studies 

showing that the Bcl-2 family modulates cell death and IL-1β secretion induced 
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by a variety of particulate and non-particulate NLRP3 activators(173, 218). 

However, we found a selective involvement of the Bcl-2 family in these 

responses to silica and not nigericin or dAdT. The difference in results for non-

particulate activators is unclear, but possibly could be due to differences in the 

cell types analyzed (PM vs bone-marrow-derived macrophages). 

 The terminal events of NLRP3 activation are thought to require the 

mitochondria in some way, whether it be the stress-induced evolution of 

mitochondrial ROS(173), oxidized mitochondrial DNA(174, 218), or 

cardiolipin(172, 220). Because the Bcl-2 family is known to mediate cathepsin-

dependent cell death, which leads to mitochondrial dysfunction and MOMP(172, 

200), it would be logical to predict that cathepsin-mediated MOMP causes cell 

death and NLRP3-dependent IL-1β activation. However, pharmacological 

activation of MOMP with Bcl-2 inhibitors did not lead to NLRP3 activation. On the 

contrary, this response triggered a previously unappreciated pathway for 

concomitant cell death and IL-1β secretion that depends on neither 

inflammasomes nor RIP3.  

 Surprisingly, we also found that Bcl-2 inhibition does not enhance particle-

induced IL-1β secretion, but instead, strongly enhances cell death. A previous 

study examining LMD during NLRP3 activation made similar observations for 

LLOMe, suggesting that LMD actually antagonizes NLRP3-mediated IL-1β 

secretion(155). Here, we demonstrate that LLOMe and Bcl-2 inhibition both 

induce early and robust loss of MMP, while silica induces only mild LMD. Indeed, 
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loss of MMP correlated with high levels of cell death and low levels of IL-1β 

secretion. Therefore, our data suggest that it is not LMD that antagonizes IL-1β 

secretion, but rather, it is the loss of MMP. Moreover, this indicates that NLRP3 

activation induced by LMD is favored under conditions where MMP is intact.  

 Together, these data favor a model whereby MMP-dependent processes, 

like ROS production, contribute to the particle-induced pathway for NLRP3 

activation(173). This interpretation contrasts the conclusions of a recent study. 

That study suggested that mitochondrial ROS are not important for NLRP3 

activation since the induction of mitochondrial ROS with ETC uncouplers does 

not induce IL-1β activation in LPS-primed macrophages(154). While ETC 

uncoupling can generate mitochondrial ROS, this method for generating 

mitochondrial ROS also simultaneously destroys the MMP. Here, we show that 

an intact MMP is necessary for particle-induced NLRP3 activation. Interestingly, 

we find that this dynamic was less relevant to nigericin-induced NLRP3 

activation. We believe that this dichotomy, where particulate NLRP3 activators 

are more dependent on MMP than non-particulates, actually indicates a 

disparate dependency of these two classes of NLRP3 activators on cathepsin 

and MMP-dependent priming.  

 There is a complex relationship between priming and NLRP3 

activation(172). While altering the synthesis of pro-IL-1β can affect any 

downstream IL-1β activation pathway, the need to prime de novo NLRP3 

synthesis is a unique feature among inflammasomes(67). In addition, we find 
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here, and in a previous study, that priming is also more important for particulates 

compared to a non-particulate NLRP3 stimulus (nigericin)(406). Why this is the 

case is not clear, however, it could be the result of transcription-independent 

processes recently implicated in NLRP3 activation(226). For example, one study 

demonstrated that potassium (K+) efflux is a common and essential event for all 

NLRP3 stimuli, but they also found that LPS priming enhanced K+ efflux 

generated by silica, alum, calcium pyrophosphate crystals, and LLOMe, but did 

not do so for nigericin or ATP(154). Moreover, in that study, Ca074Me and 

inhibition of lysosomal acidification suppressed K+ efflux triggered by particulates 

and not ATP or nigericin. Therefore, particulate stimuli, but not soluble ones, may 

need a priming step to be able to trigger the prerequisite K+ efflux. 

 In summary, this study characterizes a number of potentially important 

therapeutic characteristics of cathepsin inhibitors relating to the mechanisms of 

particle-induced inflammatory responses. We show that a bioavailable cathepsin 

inhibitor is effective at suppressing a largely caspase-1-independent in vivo 

response to sterile particles, and it does this by targeting more than just 

cathepsin C. Furthermore, we confirm that particles induce inflammasome-

independent cell death that depends on multiple cathepsins during NLRP3 

activation and identify a novel and non-redundant role for cathepsin X in 

nigericin-induced cell death and NLRP3 activation. We also implicate the Bcl-2 

family specifically in particle-induced cell death and IL-1β secretion, but 

demonstrate that Bcl-2 inhibition induces a previously undescribed pathway for 



 216 
 

concomitant cell death and IL-1β secretion that is independent of and 

antagonistic toward NLRP3 activation. Indeed, we find that cathepsins are likely 

involved in priming via a pathway of lysosomal-mitochondrial cross-talk, which 

requires a stressed but intact MMP, and that this pathway is uniquely important 

for particle-induced NLRP3 activation. In summary, multiple cathepsins mediate 

caspase-1-independent particle-driven cell death and pro-IL-1β synthesis, and 

therefore, they represent tractable and multifaceted drug targets for potential 

therapeutics aimed at treating IL-1-dependent sterile inflammatory diseases. 
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Chapter V:  Discussion 
 

Cathepsins as Therapeutic Targets for the Treatment of Particle-
induced Sterile Inflammatory Disease 
 
I have shown that cathepsin inhibitors are able to suppress two fundamental 

pathological responses to sterile particles: lytic cell death and IL-1β secretion. 

Moreover, I recapitulated these effects with more than 25 different cathepsin 

inhibitors that selectively suppress particle-induced IL-1β secretion and cell death 

(see Appendix 6). Therefore, it is unlikely that all of these inhibitors have the 

same non-cathepsin off-targets. Indeed, my genetic data suggests that multiple 

cathepsins, not just cathepsin B, play redundant roles in both particle-induced 

lytic cell death and IL-1β secretion. In fact, this redundancy is a hallmark of 

cathepsin biology, which reflects the major function of cathepsins as non-specific 

digestive proteases(260, 379, 380). For a researcher, this redundancy presents a 

formidable challenge. As I have shown, genetic knockouts of single cathepsins 

and biochemical techniques can overlook the redundant roles for cathepsins in 

complex biological processes. Therefore, in order to elucidate a role for 

cathepsins in particle-induced lytic cell death and IL-1β secretion, I generated 

multigene knockouts and used state-of-the-art biochemical tools. Since I found 

concordant results from cathepsin deficiency and inhibition of multiple 

cathepsins, I believe that the biological effects I observed with cathepsin 
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inhibitors resulted mostly from on-target effects. However, in my discussion on 

lysosomotropic drugs, I will explain why there is ample room for caution when 

interpreting the effects of inhibitors. My inhibitor data never matched up perfectly 

with my genetic data, so the potential role of off-target drug effects that are 

unrelated to cathepsins must be carefully considered. For the sake of this 

discussion on cathepsins as therapeutic targets, I will assume that cathepsin 

inhibitors suppress lytic cell death and IL-1β secretion by inhibiting cathepsins. If 

this assumption is true, then my findings have important implications for the roles 

of cathepsins in particle-induced inflammatory disease. 

I believe that cathepsins are unique candidates as therapeutic targets for 

the treatment of particle-induced sterile inflammatory disease. As stated above, 

the response of macrophages to sterile particles is fundamentally two-sided. 

Particles induce pathologic cycles of cell death and inflammation(7, 29). My data 

suggests that cathepsins play fundamental roles on either side of this response, 

promoting both particle-induced cell death and pro-IL-1β synthesis/IL-1β 

secretion during NLRP3 activation. Besides cathepsins, no other tractable targets 

that play a role in both of these responses to sterile particles (and that do not 

inhibit more general processes like phagocytosis or lysosomal acidification) have 

been characterized in primed macrophages. Therefore, cathepsins may promote 

particle-induced inflammatory disease at multiple levels of its pathogenesis.  

My data suggests that cathepsins promote pro-IL-1β synthesis. By 

inhibiting cathepsins, suppression of pro-IL-1β synthesis could influence particle-
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induced inflammatory responses under conditions where inhibition of 

inflammasome activation may not be effective. As covered in Chapter IV, there is 

a substantial caspase-1-independent component of the in vivo acute sterile 

inflammatory response to necrotic cells and particles(109, 121). Since pro-IL-1β 

synthesis is a prerequisite for IL-1β activation/secretion by any stimulus, 

cathepsin inhibitors can potentially suppress IL-1β-dependent responses in vivo 

that are driven by any activation or secretion pathway. Indeed, I have shown that 

by blocking pro-IL-1β synthesis just before priming (instead of after several hours 

of priming), cathepsin inhibitors suppressed IL-1β secretion induced by 

particulate and soluble NLRP3 activators, as well as IL-1β secretion induced by 

AIM2 inflammasome activation in vitro and in vivo (see Appendices 7j and 8b). 

Moreover, this principle extended to inflammasome-independent responses as 

well. I showed that cathepsin inhibitors suppress IL-1β secretion induced by a 

previously undocumented IL-1β-activating pathway that is initiated by Bcl-2 

inhibitors. Moreover, I have shown that IL-1β secretion can also be induced by a 

membrane permeant cathepsin D (an aspartic protease) inhibitor and two 

different DNA-damage promoting chemotherapeutics (doxorubicin and 

etoposide) (see Appendix 9). Interestingly, IL-1β secretion induced by the pro-

apoptotic (protein-kinase-inhibiting) chemotherapeutic staurosporine (STS) is 

resistant to cathepsin inhibitor-mediated suppression (see Appendix 9). The 

reason for this is unknown at this time. Therefore, in order to initiate IL-1β-

dependent inflammatory responses, inflammasomes and almost any other 
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intracellular IL-1β activating pathways rely on cathepsin-dependent pro-IL-1β 

synthesis.  

In vitro, I have also shown that cathepsin inhibitors suppress particle-

induced cell death. It is likely that this is the same cell death-inducing mechanism 

that occurs in vivo when macrophages ingest inflammatory particles. However, 

even if I find in the future that cathepsin-independent mechanisms (responsible 

for the residual amount of cell death that remains even when I treat cells with 

cathepsin inhibitors) drives the response to sterile particles in vivo, cathepsin 

inhibitors will nonetheless limit the availability of pro-IL-1β to post-lytic 

extracellular activation mechanisms (ex- neutrophil proteases)(328, 329). An 

added benefit of inhibitors like K777 is that K777 inhibits cathepsin C, which 

these neutrophil serine proteases rely on for their activation. But keeping to the 

hypothetical future scenario where particle-induced cell death cannot be 

completely blocked by cathepsin inhibitors in vivo, the mutual dependence of IL-

1α and IL-1β on NF-κB-mediated transcription would lead one to predict that 

cathepsin inhibitors can also suppress pro-IL-1α synthesis. If so, then cathepsin 

inhibitors may actually suppress both halves of the IL-1-dependent in vivo 

response without having to completely block caspase-1 activation or cell death. 

However, K777 does not appear to inhibit all NF-κB-dependent cytokine 

production, as it spares TNF-α and some other cytokines for unknown reasons 

(see Appendix 10a,b). This disparity in results will be discussed in more detail 

later. For now, a role for cathepsins in the priming of pro-IL-1α synthesis remains 
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to be shown. Regardless, inhibition of cathepsin-dependent pro-IL-1β synthesis 

will limit the availability of this substrate for almost any extracellular IL-1β 

activating mechanisms that contribute to IL-1β-dependent inflammatory 

responses resulting from cathepsin-independent lytic cell death.   

Importantly, there are situations in which priming is the most important 

facet of the IL-1-dependent inflammatory response. Since caspase-1 is 

constitutively active in circulating monocytes, priming alone can activate IL-

1β(233, 234). This is interesting since pyroptosis should occur constitutively in 

these cells as a result of caspase-1 activation, but this does not appear to be the 

case. However, Klebisiella pneumoniae has been shown to induce NLRP3 and 

ASC-dependent HMGB1 release and pyroptotic-like cell death without requiring 

caspase-1 in vivo, so caspase-1 activation may not necessarily induce pyroptosis 

in these cells(418). Whatever may be the case for cell death, IL-1β secretion 

appears to be regulated primarily at the level of priming in circulating monocytes. 

Therefore, inhibition of priming may be particularly useful for the treatment of 

septic shock, in which systemic activation of monocyte-derived IL-1β is known to 

play a critical role(235). Moreover, patients with hyperactivating inflammasome 

mutations that have fewer restraints on caspase-1 activation are also likely to 

benefit from inhibition of pro-IL-1β synthesis(236). Therefore, whether IL-1β is 

activated by caspase-1-independent intracellular or extracellular mechanisms, or 

immediately upon priming, priming is an essential aspect of all IL-1β-dependent 

inflammatory responses that may be targeted therapeutically. 
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In vivo, I expect that cathepsin inhibitors will block particle-induced cell 

death during NLRP3 activation. Blocking lytic cell death has as multifaceted a 

therapeutic implication for IL-1-dependent sterile inflammatory disease as 

blocking IL-1β or IL-1β synthesis. As alluded to in the introduction to this thesis, 

inhibiting or not inhibiting cell death is a critical crossroad in the sterile 

inflammatory cascade that, once reached, will lead to either the containment or 

release of copious pro-inflammatory DAMPs. Given that the acute inflammatory 

response to both necrotic cells and sterile particles depends almost entirely on 

signaling through IL-1R1(109, 121), the most relevant DAMPs to consider during 

cell death-induced inflammatory responses are those with direct IL-1 signaling 

potential. Just as suppressing pro-IL-1β synthesis will prevent extracellular IL-1β 

activation by neutrophil proteases, so too will prevention of pro-IL-1β release by 

suppressing particle-induced cell death. Moreover, without lytic cell death, IL-1α 

cannot be secreted(113-115). In fact, pro-IL-1α becomes more inflammatory as a 

result of molecular interactions that occur during lytic cell death(119). By 

inhibiting this type of cell death, the IL-1-dependent inflammatory response will 

most likely be driven only locally by surface-bound pro-IL-1α. Moreover, without 

lytic cell death, there will be no release of HMGB1, IL-33, uric acid, ATP, 

filamentous actin, mitochondrial DAMPs and many other potent inflammatory 

mediators(50, 51, 85, 93, 94, 98, 103, 116, 117, 217). Thus, cathepsin inhibitors 

can block both the production and release of inflammatory mediators known to 

drive particle-induced sterile inflammatory responses.  



 226 
 

The dualistic quality of cathepsin inhibitors in suppressing both particle-

induced IL-1β secretion and cell death stood out among the different inhibitors I 

examined. Besides cathepsin inhibitors, most other inhibitors that affected IL-1β 

secretion were unable to suppress particle-induced cell death (again, not 

counting inhibitors of phagocytosis and lysosome acidification). Importantly, K777 

does not affect phagocytosis, which would otherwise account for its selective 

effects on particulate stimuli (see Appendix 8c). Also, as I have shown, caspase 

inhibitors do not block particle-induced cell death. Instead, ZVAD and YVAD 

often actually increased cell death. Moreover, inhibition of mitochondrial ROS 

(with Mitotempo) blocked only IL-1β secretion induced by silica and LLOMe 

without affecting cell death (see Appendix 11d). This suggests that 

mitochondrial ROS are likely only involved in priming and/or NLRP3 activation, 

not cell death induced by particles and LMD. Conversely, inhibition of 

mitochondrial ROS blocked both IL-1β secretion and cell death induced by the 

Bcl-2 inhibitor, ABT199, suggesting that both of these responses depend entirely 

on mitochondrial ROS. Although H2O2 has been shown to activate NLRP3 in one 

study, I found that it does not induce IL-1β secretion, but only causes cell death 

that cannot be suppressed with either ROS inhibitors, like butylated 

hydroxyanisole (BHA), or K777 and ZVAD. Over the course of my study, the only 

non-cathepsin inhibitor that suppressed both particle-induced IL-1β secretion and 

cell death was the Bax inhibitor, BaxIP5. However, I did not investigate the Bax 

inhibitor’s effect on pro-IL-1β synthesis, so the mechanism its effect on IL-1β 
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secretion is unclear. Later on, I will discuss some lysosomotropic inhibitors that 

inhibit particle-induced IL-1β secretion and cell death, but it is unclear whether or 

not they do this by inhibiting cathepsins. 
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Chapter V, Figure 1: 
Cathepsins as Therapeutic Targets. The diagram shows that cathepsins 
regulate particle-induced IL-1-dependent inflammatory responses by promoting 
inflammasome activation (NLRP3-ASC-Caspase-1&11), pro-IL-1β synthesis 
(which provides pro-IL-1β for activation by inflammasome-dependent or 
independent mechanisms, including pro-IL-1β release during lytic cell death 
allowing its activation by cathepsin C-dependent neutrophil (Nφ) serine 
proteases), and cell death (which can leads to the activation and release of 
DAMPs and IL-1α). Inhibition of cathepsins with drugs, like K777, could therefore 
suppress multiple components thought to be involved in particle-induced IL-1-
dependent inflammatory responses promoted by cathepsins. 
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K777 as a Therapeutic for Particle-induced Sterile 
Inflammatory Disease 
 
I have shown that K777 blocks particle-induced IL-1β secretion and cell death 

during NLRP3 activation. Moreover, K777 does this selectively; K777 reduced 

these two responses induced by particulates much more so than those induced 

by soluble NLRP3 activators, like the K+ ionophore nigericin, or the AIM2 

activator dAdT. Selectivity is important. As discussed in the introduction, sterile 

inflammatory mechanisms driven by IL-1 serve a physiologic function in response 

to both cellular injury (eliciting responses for cleanup and repair) and pathogenic 

infections (killing pathogens induced by sterile particles)(22-24, 84). Therefore, 

the selectivity of K777 (or new cathepsin inhibitors designed with this application 

in mind) may provide a therapeutic window in its dose-range where it suppresses 

pathological responses to sterile particles without unacceptably prohibiting 

protective responses to microbial pathogens. Of course, cathepsins have basal 

physiologic roles as well, which must be considered. 

Complete abrogation of normal/basal cathepsin activity could be 

detrimental. Cathepsins play critical roles in antigen presentation, cell-mediated 

immune defense, and general digestion of proteinaceous 

extracellular/intracellular products(275-277). Therefore, for K777 to be safe and 

effective, there must be a therapeutic window where partial inhibition of the 

cathepsin repertoire permits suppression of overactivity in pathologic 
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circumstances whilst providing enough basal activity to carry out normal 

cathepsin functions. The considerable functional redundancy of the mammalian 

cathepsin repertoire may be consistent with this goal. Since cathepsins generally 

play a role in digesting proteins in the phagosomes, one might expect that 

cathepsin deficiencies would result in lysosomal storage diseases. However, 

there are a minority of lysosomal storage diseases that actually result from 

cathepsin deficiency, including cathepsin K (Pycnodysostosis) or the aspartic 

protease cathepsins D and E(419-421). Nonetheless, as discussed below, a 

cathepsin K inhibitor has already successfully gone through clinical trials for the 

treatment of osteoporosis(422-424). In fact, cathepsin inhibitors are effective at 

killing parasites because, unlike mammalian cysteine cathepsins, parasite 

cathepsin orthologs lack this redundancy. Instead, parasites often depend 

entirely on only one or a few cathepsins for proteolysis during their life 

cycle(425). This is one of the major reasons why treatment of parasitic diseases 

with cathepsin inhibitors, including K777, has been achieved in mammalian 

models without significant toxicity that might result from inadequate lysosomal 

function(386-391). On a side note, host-parasite interactions have provided other 

important insights relevant to cathepsins and inflammation. It has been shown 

that a variety of parasites encode their own cathepsin inhibitors that suppress 

inflammatory host-defense mechanisms(426). For example, taeniaestatin from 

Taenia taeniaeformis (tape worms) has been shown to suppress IL-2 production 

and IL-1-dependent T cell proliferation in mice(427). Whether or not parasite-
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derived cathepsin inhibitors implicate a direct role for cathepsins in IL-1β 

production has not yet been determined, but this represents an interesting 

correlation nonetheless. Thus, there is a reasonable basis to suggest that there 

is a therapeutic window in which K777 may be used as an anti-inflammatory 

therapeutic. 

I demonstrated K777’s anti-inflammatory efficacy in vivo, without 

observing any obvious systemic intolerance in mice. However, efficacy and 

systemic tolerability are only two aspects of K777’s pharmacology that need to 

be considered regarding its future as a clinically useful drug. To that effect, a 

great deal of research investigating K777 as an anti-parasitic or anti-metastatic 

drug has provided some invaluable foresight into K777’s future as an anti-

inflammatory therapeutic. K777 has been through extensive preclinical evaluation 

for the therapeutic targeting of cruzain (the CatL ortholog of Trypanosoma cruzi), 

other parasite cathepsin orthologs, cathepsins B and L for their roles in the 

progression of certain cancers, and it has been shown to suppress inflammation 

during pancreatitis by inhibiting cathepsins B, L and S(385-391, 428). Through in 

vitro and in vivo testing, many early studies have shown that K777 has suitable 

oral bioavailability, pharmacokinetics and –dynamics, and an acceptable toxicity 

profile in rodents, canines and apes(389). Unfortunately, given the results of 

some more recent (unpublished) studies, K777’s disposition as an oral anti-

inflammatory drug is not encouraging.  
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Although phase I clinical trials were expected to begin in late 2013 for the 

treatment of Chagas’ disease (Trypanosoma cruzi) with K777, the project was 

halted due to tolerability issues discovered during comprehensive preclinical 

tolerability testing (personal communication with the project director at UCSF, 

Stephanie Robertson, Ph.D.)(390). While mice were highly tolerant of doses as 

high as 125 mg/kg/day, canines experienced severe dose-related nausea, which, 

according to Dr. Robertson, is highly predictive for human nausea. Moreover, 

since K777 irreversibly inhibits the metabolic liver enzyme CYP3A4, which can 

lead to drug interactions, it caused some liver toxicity at doses >100 mg/kg/day. 

At 150 mg/kg/day, canines also began to show noticeable weight loss. 

Importantly, early pharmacokinetic studies also found that the dose-response to 

K777 was non-linear as a result of CYP3A4 inhibition and inhibition of the 

endogenous drug-efflux transporter P-glycoprotein (PgP), making dose-related 

exposure of the targeted peripheral tissues difficult to control(385, 429). At low 

oral doses, K777 does not reach peripheral tissues well; but at higher doses, 

inhibition of PgP can result in over exposure. However, this was not the case for 

i.v. administration, which bypasses first-pass metabolism in the liver that occurs 

via oral routes5. Nonetheless, the FDA expressed concerns to Dr. Robertson’s 

team that K777 is sequestered in lysosomes (see discussion below on 

                                                 
5 First-pass metabolism is a phenomenon that occurs when drugs are absorbed through 
the digestive tract. These drugs go directly to the liver, where a large fraction of the drug 
is processed, metabolized, and excreted prior to delivery to the rest of the body. I.V. or 
S.C. administration of drugs largely bypasses first-pass metabolism, leading to greater 
(~10x) peripheral drug exposure at lower doses with lower liver-associated toxicity. 
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lysosomotropic drugs) and that it inhibits so many cathepsins. In fact, the first 

cathepsin inhibitor to make it through clinical trials, Odanacatib (a cathepsin K 

inhibitor for the treatment of osteoporosis), was specifically designed to be non-

basic so that it does not accumulate in lysosomes(422-424). Despite this barrier 

to moving into clinical trials, K777 has a proven track record for tolerability in 

many preclinical animal models(389). Thus, K777 can still be investigated in 

animal models of inflammatory disease as proof-of-concept studies. However, I 

recognized some properties of K777 that, according to Dr. Robertson, have not 

been considered in these latest tolerability studies. These properties of K777, 

which I am about to discuss, may have confounded their results. 

 K777 has challenging properties for pharmaceutical formulation that may 

have contributed to its failure in canine tolerability studies. Firstly, K777 is poorly 

soluble, making it difficult to keep in solution at higher concentrations necessary 

to deliver adequate doses to mice via an Alzet pump (see Appendix 12). 

Moreover, when I injected K777 too rapidly i.v., mice died almost instantly, 

probably as a result of K777’s precipitation leading to embolic strokes. The HCl 

salt of K777, which I used in all experiments, was designed to enhance its 

aqueous solubility by reducing the pH of aqueous solutions and ionizing the 

molecule. However, this results in acidic formulations that, when delivered s.c. 

via Alzet pumps, led to K777’s inevitable precipitation after neutralization by 

interstitial fluids. For the purpose of demonstrating its efficacy in vivo, I was able 

to implement a formulation for poorly soluble drugs that caused K777 to 
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precipitate in a monodispersed (uniform) micellar suspension that facilitated its 

absorption(371). However, the acidity of K777’s HCl salt in solution (pH range 

from 2-6) likely resulted in the severe local inflammatory responses that I 

observed in my s.c. Alzet pump study (see discussion on acidity and 

inflammation below). Therefore, s.c. and i.v. formulations of K777 have been 

complicated by either poor solubility or unacceptable acidity. From my 

communications with Dr. Robertson, this phenomenon of precipitation was not 

fully appreciated in the latest toxicity studies. These latest tolerability studies for 

K777 were done using oral dosing. Since oral drugs are ideal for eventual 

prescription, alternative routes were not evaluated for K777 at this stage of 

development. Moreover, during oral dosing of K777, solubility/pH is probably not 

such an obvious concern; absorption is likely facilitated by the low pH 

environment of the stomach. In these studies, K777 was probably absorbed well 

enough by the stomach not to raise any red flags, so there was nothing 

prompting an examination of K777’s actual solubility in the stomach or of its 

precipitation in the basic pH environment of the duodenum downstream. 

Therefore, it may be that the tolerability issues relating to nausea in these studies 

were related to blockage/irritation of the intestines due to K777’s precipitation. 

Moreover, the non-linear pharmacokinetics of K777, resulting from first-pass 

metabolism and its inhibition of clearance mechanisms, likely made it difficult to 

achieve effective systemic exposure and simultaneously prevent liver toxicity. 

Therefore, between the nausea in canines, the elevation of liver enzymes, and 
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the unpredictable oral pharmacokinetics, it is not surprising that oral toxicity 

testing failed. However, the causes of this toxicity/intolerance may not have been 

accurately attributed since precipitation and alternative routes/formulations, 

which have linear dose-response kinetics, were not examined.  

I provided strong evidence that K777 suppresses what I presume to be 

fundamental aspects of particle-induced inflammatory pathology. Therefore, 

there is a reasonable incentive for the continued investigation of K777. Based on 

my observations and the recent tolerability studies, I believe that the clinical 

application of K777 as an anti-inflammatory therapeutic may still be possible 

through its reformulation for non-oral routes with the free base (instead of the HCl 

salt). To that end, Dr. Rock and I had the free base form of K777 synthesized for 

us by Julian Adams and John Lee at Infinity Pharmaceuticals in Cambridge. 

However, future large-scale investigations of K777 in animal models should be 

conducted along side the development of new/alternative cathepsin inhibitors 

that possess more manageable pharmaceutical characteristics.    

 There are other cathepsin inhibitors, like Ca074Me, which have shown 

similar promise in some in vivo models of inflammatory disease. Ca074, the 

cathepsin B-specific counterpart to Ca074Me, has been shown to inhibit the 

activation of caspase-1 and caspase-11 in the brain using a mouse model of 

focal cerebral ischemia(430). Also, beta-amyloid levels and memory have been 

improved by intrathecal administration of Ca074Me, or the pan-cathepsin 

inhibitor E64d, in guinea pig models of Alzheimer’s(431, 432). Moreover, in 
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models of polymyositis, Ca074Me has also been used to suppress lung 

interstitial inflammation and fibrosis in rats, as well as muscle inflammation and 

apoptosis in guinea pigs(433, 434). In a rat model of adjuvant-induced arthritis, in 

which cathepsin activity was elevated in inflamed ankle joints, systemic 

administration of only 2 mg/kg/day (incorporated into the diet) of a vinyl-sulfone 

(like K777) cathepsin inhibitor reduced inflammation(435). Finally, deficiency of 

single cathepsins (Cat K, L & S), or treatment with a cathepsin S inhibitor, has 

been shown to be protective in mouse models of atherosclerosis (LDL-R-/- or 

ApoE-/-)(436-438). However, I found no role for cathepsin B or both cathepsins B 

& L in hematopoietic cells in an LDL-R-/- mouse model of atherosclerosis (see 

Appendix 1). On the other hand, caspase inhibitors have a more ambiguous and 

perhaps less impressive track record.  

 Caspase inhibitors have a well known propensity for inhibiting cathepsins, 

suggesting that efficacy of these inhibitors in models of inflammatory disease 

may be a direct result of these off-target effects. For instance, caspase inhibitors, 

including BocD-CMK, Z-VAD-FMK, Ac-YVAD-CMK, and Z-WEHD-FMK, have all 

been shown to inhibit cathepsin B with IC50s ranging from 1-10 μM(162). This 

has been observed in multiple other studies as well(142, 342, 343, 439, 440). 

Moreover, caspase inhibitors have toxicity issues of their own. ZVAD’s metabolic 

byproduct, fluoroacetate, has been shown to be highly hepatotoxic(441). Toxicity 

aside, caspase inhibition with minocycline failed Phase III trials for the treatment 

of ALS (Amyotrophic Lateral Sclerosis) due to inefficacy, and it actually caused 
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more rapid disease progression(442, 443). Therefore, there is a significant 

portfolio of studies showing cathepsin inhibitors are effective in the treatment of 

inflammatory diseases in animal models, while caspase inhibitors seem to have 

all the same pharmacological drawbacks as cathepsin inhibitors without the 

ability to inhibit pro-IL-1β synthesis or particle-induced cell death during NLRP3 

activation.  

 
 

Importance of Cell Death during NLRP3 Activation 

Lytic cell death and IL-1β activation are intimately connected to one another. One 

of my key findings was that cell death induced by severe mitochondrial disruption 

limits IL-1β activation. While cell death may seem to be an obvious impediment 

to IL-1β secretion, the influence of cell death on IL-1β activation at the cellular 

level is not that straightforward. Moreover, the influence of cell death on IL-1β 

activation has been neglected by most studies. To holistically evaluate the 

influence of cell death and other critical variables over the course of my study, I 

developed a technique of monitoring relative cell numbers, pro-IL-1β production, 

IL-1β secretion, TNF-α secretion, LDH release (quantifying cell death) and MTS 

metabolism (quantifying cell survival) all from the same set of samples in a 96-

well format (see methods section). In doing so, I gained an appreciation for 

numerous otherwise neglected phenomena that influence various measurements 

of cell death and NLRP3-mediated IL-1β secretion. Moreover, I found that the 
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important factor for how cell death influences IL-1β production is not simply how 

much cell death occurs. Instead, it is how cell death occurs, which is paramount 

to its influence on IL-1β activation.     

When IL-1β activation and cell death occur strictly by pyroptosis, both 

events are completely dependent on caspase-1 and/or caspase-11(24). Although 

pyroptotic cell death will eventually destroy the synthetic, metabolic, and 

biochemical machinery necessary to produce, process and secrete IL-1β, IL-1β 

will be secreted as a natural consequence of caspase-1/11 activation prior to this 

destructive phenomenon nonetheless. In fact, there should be a relatively high 

standard of efficiency for IL-1β secretion as function of concomitant pyroptotic 

cell death that can be derived mathematically from experimental data:  

 

 IL-1β Secretion Efficiency = IL-1β secreted / % Cell Death 

 

Pyroptotic stimuli, like nigericin or dAdT, induce high levels of IL-1β secretion 

compared to the amount of concurrent cell death. Perhaps, this equation could 

be improved by incorporating the fractional activation of synthesized pro-IL-1β 

into the above equation: 

 

Fractional IL-1β Activation = IL-1β / (IL-1β + pro-IL-1β) 
 
IL-1β Activation Efficiency = [IL-1β / (IL-1β + pro-IL-1β)] / % Cell Death 
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Whichever equation is used, this can indicate whether non-pyroptotic 

mechanisms of cell death are occurring during IL-1β activation. Moreover, this 

can provide information as to the extent of non-pyroptotic death and how this 

concomitant type of death is influencing IL-1β secretion. Well-characterized (their 

molecular targets are known) stimuli that induce responses tangential to NLRP3 

activation, which interfere with or promote IL-1β activation, can be 

mechanistically informative using the above concepts (or actual calculations). For 

example, I have shown that LLOMe and the Bcl-2 inhibitors (ABT199 & ABT263) 

induce very little IL-1β secretion compared to dAdT, which depends completely 

on the inflammasome for cell death. At the same time, LLOMe and Bcl-2 

inhibitors induce much more cell death than dAdT. Taking the ratio of IL-1β 

secretion per % cell death augmented (and highlighted) the differences 

measured between these two sets of stimuli (there is a greater difference 

between IL-1β secretion per % cell death upon stimulation with dAdT and LLOMe 

compared to the differences in IL-1β secretion or cell death examined between 

these two stimuli in isolation). This informed my interpretation in two ways. First, 

it told me that these stimuli induce an inflammasome-independent mechanism of 

cell death; had these stimuli, instead, induced cell death through caspase-1, 

each unit of cell death would have occurred with a concomitant unit of IL-1β 

secretion. Second, it told me that this mechanism of cell death antagonized IL-1β 

activation, since the ratio of cell death to IL-1β secretion was so high that 100% 

cell death would be reached before IL-1β secretion reached the levels induced by 
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dAdT. Conversely, the concentrations of silica I used induced similar ratios of IL-

1β secretion to cell death as dAdT. Therefore, even though I found that silica-

induced cell death was inflammasome-independent, this told me that it was 

occurring in parallel with IL-1β activation rather than antagonizing IL-1β 

activation. Moreover, as discussed later, in inflammasome-sufficient 

macrophages, silica-induced cell death may occur entirely by pyroptosis despite 

the fact that cathepsin-dependent cell death takes over in inflammasome-

deficient cells. Although the above equations would predict this is the case, this is 

a matter for future investigation. In making this connection, that LLOMe and Bcl-2 

inhibition induce disproportionate amounts cell death for a given amount of IL-1β 

secretion, my subsequent observation that LLOMe and Bcl-2 inhibitors cause 

early and robust mitochondrial depolarization, while silica and dAdT did not, 

suggested that severe mitochondrial disruption antagonizes IL-1β activation. 

Indeed, on further examination, I found that an intact MMP is critical for priming 

of pro-IL-1β synthesis and probably particle-induced NLRP3 activation as well. 

This helped me explain my finding that cathepsin C-deficient macrophages, 

which are less able to induce LMD with LLOMe, die less and actually secrete 

more IL-1β in response to high concentrations of LLOMe (see Appendix 21). 

This finding was corroborated by another study, and suggested that LMD 

antagonizes IL-1β activation and secretion(163). But, as I just discussed, it does 

not seem to be direct LMD that is responsible for this, but rather it is 

mitochondrial disruption downstream of severe LMD. Thus, having information 
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about concurrent cell death to complement my other measurements of IL-1β 

synthesis and secretion gave me critical insight into specific phenomena that I 

may otherwise overlooked. Moreover, without this insight, I may have even 

misinterpreted my data. 

A lack of attention to the influence of cell death is pervasive in the field of 

inflammasomes. Indeed, this has led to the misinterpretation of published results. 

For example, the landmark study, which showed that K+ efflux is a common 

requirement for NLRP3 activation by all stimuli, is a good example(154). I will 

refer to this study as “the K+ study” from now on. The K+ study found that LPS 

enhances K+ efflux by particulates and LLOMe, and not by ATP or nigericin. 

Their interpretation of this result included the following assumptions:  

 

1) Particles and LLOMe induce K+ efflux, but not as a result of 
cell death, since this experiment was done in NLRP3-/- 
macrophages.  
 
2) Enhancement of particle and LLOMe-induced K+ efflux by 
LPS was not a result of LPS enhancing cell death, since this 
experiment was done in NLRP3-/- macrophages.  

 

If this study had actually examined cell death, they would have realized that 

particle and LLOMe-induced cell death in LPS-primed macrophages is not 

NLRP3-dependent. Having shown in my study that particle and LLOMe-induced 

cell death are actually inflammasome-independent, this merits some 

reinterpretation of these results. 
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In the K+ study, K+ efflux most likely occurred as a result particle and 

LLOMe-induced cell death, rather than as part of a mechanism leading to the 

activation of pyroptosis. Considering this, it is interesting that I have not found 

any inhibitors that reduce particle-induced cell death without causing an 

equivalent reduction in IL-1β secretion. Perhaps, by causing this drop of 

intracellular K+ concentration, cathepsin-dependent lytic cell death fulfills the 

requirement for lowering intracellular K+ to facilitate NLRP3 activation. However, 

my pentuple cathepsin-deficient macrophages did show a more significant 

reduction in cell death than IL-1β secretion. Therefore, my data suggests particle-

induced IL-1β secretion is not dependent on cathepsin-mediated cell death. In 

fact, as I will discuss later, LPS may also induce K+ efflux during priming, prior to 

Signal 2. In fact, LPS may have enhanced particle and LLOMe-induced K+ efflux 

by enhancing cell death. Indeed, I found that particle-induced lytic cell death is 

partially dependent on MyD88 and TRIF (see Appendix 10d).  

Finally, ignorance of cell death may have led to another misinterpretation 

in the K+ study. The K+ study reported that Ca074Me suppressed K+ efflux 

induced by particles and LLOMe. Their interpretation was that cathepsin B is 

critical for facilitating K+ efflux induced by these stimuli. Once again, if they had 

examined cell death, they would have realized that Ca074Me suppresses 

particle-induced cell death and that this is most likely the reason that Ca074Me 

suppressed K+ efflux in their study. Therefore, examination of cell death along 

side IL-1β secretion is especially critical to understanding and accurately 
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interpreting such a biological system in which these two variables are so 

intimately connected. 

Cathepsin-dependent cell death in LPS-primed macrophages deserves 

further characterization. Particle-induced cell death during NLRP3 activation in 

LPS-primed macrophages may not be equivalent to particle or LMD-induced cell 

death in other cell types. Macrophages are exceptional in their sensitivity to 

particle-induced cell death. A single particle of silica is sufficient to kill a 

macrophage, and prior to the realization that it causes intense inflammatory 

responses, silica was a commonly used tool for selectively depleting 

macrophages in vivo(165, 444-446). Conversely, silica is relatively non-toxic to 

most other cell types (immature DCs are less sensitive than macrophages, but 

are also more sensitive than most other cell types)(165). Thus, macrophages are 

likely the first and possibly the only cells to die during the initial phases of the 

particle-induced inflammatory response. It is also possible that their sensitivity to 

particles indicates mechanistically unique facets of their cell death response, 

which is probably further distinguished under conditions of LPS-priming. 

As discussed briefly above, priming enhances the cell death phenotype of 

macrophages in response to sterile particles. Even though it has been shown in 

other cell types that mild LMD leads to apoptosis, while severe LMD can lead to 

necrosis, this may not be true in LPS-primed macrophages(320). Even though 

the MTS cell death assay quantifies a loss of mitochondrial metabolism/function 

during apoptosis and necrosis, I found that particle-induced cell death measured 
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by the LDH assay (which typically measures lytic/necrotic cell death) was often 

equivalent to that measured by MTS. Therefore, in LPS-primed macrophages, a 

more pro-inflammatory necrosis-like phenotype seemed to predominate (even 

with apoptotic stimuli like STS, doxorubicin and etoposide). Of course, more 

direct techniques are likely required to examine whether there is actually a 

mixture of apoptosis, necrosis secondary to apoptosis, necrosis, and pyroptosis. 

Nonetheless, particle/LMD-induced cathepsin-dependent cell death in LPS-

primed macrophages seems to represent a predominantly necrosis-like 

phenotype. The dependence of this cell death pathway on cathepsins and not 

inflammasomes suggests that it is a distinct and dominant pathway concomitant 

with pyroptotic cell death. The fact that particle-induced lytic cell death occurs in 

the absence of inflammasomes in LPS-primed macrophages does not 

necessarily mean that pyroptosis does not normally occur as the dominant cell 

death response to sterile particles when inflammasomes are present. If particles 

are inducing NLRP3 and caspase-1-dependent IL-1β activation, then they are 

probably also inducing pyroptosis. However, in the absence of inflammasomes, 

cathepsin-dependent cell death mechanisms may occur in lieu of pyroptotic cell 

death mechanisms. While this is just speculation, determining how these two 

pathways for lytic cell death interact with one another in LPS-primed 

macrophages is a matter for future investigation. Since it seems that this 

phenomenon has not been given adequate attention in the inflammasome 

literature, I propose that, in LPS-primed macrophages, cathepsin-dependent 
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necrosis-like cell death should be given a name, such as “cathosis” (and 

cathepsin-dependent apoptosis-like cell death could be referred to as 

“catheptosis”). This terminology may help distinguish this important and distinct 

pathway for inflammatory cell death and facilitate a more rigorous scientific 

discourse into the relationship between cathosis and disease-associated 

inflammatory processes. 

Finally, I should mention some work that has preceded my study on the 

subject of cathepsin-dependent particle-induced cell death in LPS-primed 

macrophages. There are other reports that provide genetic evidence for 

cathepsins in cell death during NLRP3 activation, but I do not believe my work is 

simply a reproduction of these reports. One of these studies found only minor 

reductions in cell death using cathepsin B siRNA in LPS-primed microglia 

stimulated with chromogranulin A for 36h(161). Therefore, the cell type, 

phenotype, time-point and stimulus are distinct from those I examined. Another 

study reported that alum-induced cell death was completely dependent on either 

cathepsin S or cathepsin B(155). They offered no explanation for this finding. 

Indeed, my work suggests that neither cathepsin B nor S depend on one another 

for their own activity and that cathepsin B or S alone are not essential for particle-

induced cell death. However, this may be a special case for alum that does not 

apply to silica. This latter study also found no role for cathepsins X, H and C in 

alum-induced cell death and no role for cathepsins S or B in LLOMe-induced cell 

death. Instead, they did find that cell death induced by LLOMe was completely 
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dependent on cathepsin C. In fact, this same group has reported this same 

finding in three separate studies(155, 163, 405). In their most recent report (and 

in the other two as well), their interpretation of this result is such that they believe 

cathepsin C mediates every process downstream of LMD. However, despite 

them citing papers describing how LLOMe works, they do not seem to either 

acknowledge or realize that LLOMe relies predominantly on cathepsin C inside 

lysosomes to become active and initiate LMD in the first place(328, 329). 

Consistent with my own observations, this same group has also reported that 

LMD induced by LLOMe and alum in LPS-primed macrophages leads to 

inflammasome-independent cell death, showing this data in two separate 

reports(155, 163). However, they did not show this data side-by-side with a 

productive IL-1β response (the data they did show with LLOMe and alum in one 

of these papers show that these reagents induced almost no IL-1β secretion), so 

it is difficult to verify whether these stimuli were activating the inflammasome in 

any of their experiments. In fact, their conclusion was that cathepsins are not 

involved in inflammasome activation at all, but instead, that they are involved in 

necrosis. Therefore, although I am not the first to report this cathepsin-

dependent, inflammasome-independent cell death phenomenon in LPS-primed 

macrophages, I would argue that my data provides a single, accurate and 

thorough examination of this issue that did not exist prior to my investigation. 
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Importance of Priming for NLRP3 Activation 

The importance of Signal 1/priming for NLRP3 activation is often unappreciated 

in the literature. I found a number of reagents that reduce priming, including 

cathepsin inhibitors, ETC uncouplers and KCl, which have been repeatedly cited 

by various studies as having discrete effects on Signal 2 of NLRP3 activation 

(see Appendices 13 & 14). The effects of these reagents on Signal 1 have not 

been appreciated by such studies. There are many more inhibitors that also 

reduce priming and/or NF-κB activation. I will not go into all of them here, but it is 

worth noting the few that have been clearly recognized in studies that have 

examined mechanisms of NLRP3 activation. ROS inhibitors, IL-10 and Type I 

IFNs (acting via IL-10) can all block transcriptional priming(184, 239). Moreover, 

BRCC3 deubiquitinase inhibitors can block transcription-independent 

priming(226, 229, 230). However, careful attention to Signal 1 in studies 

examining mechanisms of NLRP3 activation is the exception, not the rule. 

It is not surprising that the distinction between Signal 1 and Signal 2 is not 

fully understood. This relationship is complex. For instance, some stimuli provide 

Signal 1 and Signal 2. The clearest example of this occurs during stimulation with 

some pathogens that can both prime and activate NLRP3, like bacteria or 

viruses(74, 447). Alternatively, other stimuli induce Signal 2 responses that have 

a unique requirement for a particular facet of Signal 1 in order to activate NLRP3. 

For example, gram-negative bacteria not only induce priming on their own via 

LPS, but they also require TRIF downstream of LPS priming to induce Type I 
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IFN-dependent caspase-11 production in order to activate NLRP3(74). In this 

example, gram-negative bacteria are uniquely dependent on TRIF signaling, 

which is largely independent of MyD88-dependent pro-IL-1β synthesis. 

Therefore, examining pro-IL-1β synthesis or NF-κB activation are not the only 

transcriptional facets of Signal 1 that are important for Signal 2 of NLRP3 

activation for certain stimuli. In fact, overlooking other facets of Signal 1 that are 

particular to NLRP3 activation in general, like NLRP3 synthesis, have led to 

much confusion in the field.  

Generally, studies examining whether an inhibitor or variable is specifically 

affecting the mechanism for Signal 2 of NLRP3 activation have relied on NLRP3-

independent stimuli as negative controls. This method makes two key 

assumptions, which are as follows:  

 

1) Anything that affects priming will affect all 
inflammasomes equally. 
 

2) Any variable that affects NLRP3-dependent IL-
1β activation without affecting NLRP3-
independent IL-1β activation must play a 
specific role in Signal 2 of NLRP3 activation. 

 
 

Since a requirement for de novo NLRP3 transcription is a facet of priming unique 

to NLRP3 inflammasomes, the first assumption is false(67). Moreover, this 

principle can be extended to non-transcriptional priming mechanisms that are 

also unique to NLRP3(226). Because the first assumption is false, the second 

assumption is also false. Given a differential dependence on Signal 1, a lesser 



 249 
 

degree of Signal 1 suppression is likely necessary to reduce NLRP3 activation 

before Signal 1 also becomes limiting for other inflammasomes. Therefore, there 

is a window of suppression where one may find that NLRP3 activation is 

reduced, while activation of another inflammasome is not. Unless a wide range of 

conditions is tested for any variable, one cannot conclude that Signal 1 is not 

being affected just because a single condition shows that the variable only 

affects NLRP3-dependent IL-1β secretion. For example, the K+ study (discussed 

earlier) made the two above assumptions(154). They show that elevated 

extracellular KCl (45 mM) does not affect dAdT induced IL-1β activation. Indeed, 

I also find this to be the case using 40 mM of KCl (see Appendix 14a). However, 

I found that higher concentrations (80 mM) actually affect dAdT as well (see 

Appendix 14b). While the K+ study states that higher concentrations of KCl are 

toxic, I did not find any increase in cell death caused by 80 mM of KCl. I did not 

see any reduction in cell death either, once again reinforcing my conclusion that 

particle-induced cell death does not depend on NLRP3; this is assuming that KCl 

does, in fact, block Signal 2 of NLRP3 activation. Therefore, KCl suppresses 

NLRP3-mediated IL-1β secretion more than that mediated by AIM2 

inflammasomes (activated by dAdT), but its effects are not exclusive to NLRP3. 

Indeed, other studies have shown that high extracellular KCl also inhibits the 

NLRP1 inflammasome(133). Therefore, I believe KCl actually blocks Signal 1, as 

will be discussed in more detail shortly. Indeed, any variable affecting Signal 1 is 

likely to have effects that are exclusive to NLRP3 activating stimuli under certain 
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conditions, leading some studies to reach the conclusion that the variable they 

are examining is specific to the mechanism for Signal 2 of NLRP3 activation. The 

reality of the situation appears to be much different.  

The available data indicate that Signal 1 and Signal 2 do not play discrete 

roles in NLRP3 activation. Instead, Signal 1 and Signal 2 appear to be 

continuous events. This continuity is evident at the functional level (Signal 2 for 

NLRP3 activation depending more on Signal 1 than other inflammasomes), as 

just described above, but it is also evident temporally. Priming seems to continue 

for much longer than just a few hours. Even six hours after priming, I found that 

inhibition of protein synthesis with CHX for three additional hours significantly 

reduced pro-IL-1β synthesis, as well as IL-1β and TNF-α secretion. Indeed, in 

standardizing this assay, I found that pro-IL-1β levels inside cells continue to 

increase for almost 9h after priming with LPS (data not shown). Moreover, a 

continuous replenishment of the intracellular pool of IL-1β is evident when 

examining IL-1β activation by immunoblotting (see Chapter III, Fig. 6). After 3h 

of priming and 6h of IL-1β secretion, the pool of intracellular pro-IL-1β is not 

necessarily drained by IL-1β secretion compared to LPS priming alone. For IL-1β 

secretion to occur without pro-IL-1β levels dropping insides cells, intracellular 

pro-IL-1β stores must be continuously replenished as IL-1β is secreted. Since it 

has been shown that expression of hyperactive NLPR3 mutants in HEK293 cells 

also exhibit elevated NF- κB activity, inflammasomes might somehow provide 

positive feedback that primes pro-IL-1β synthesis(416). Surprisingly, this does 
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not seem to be an autocrine effect of IL-1β or TNF-α, as one might expect. 

Instead, I have shown that IL-1R1-/- and TNF-RI&II-/- macrophages exhibit no 

defect in IL-1β secretion (see Appendix 15b,c). Moreover, I have shown that the 

various inhibitors I mentioned above suppress pro-IL-1β synthesis in 

macrophages treated only with LPS, so these effects are not a result of 

suppressing inflammasome-driven positive feedback. Therefore, not only is 

Signal 1 continuous on a functional level with NLRP3 activation, but Signal 1 (or 

downstream effects of Signal 1) also persists at some level throughout 

inflammasome activation for at least nine hours after LPS treatment.  

Rather than being a discrete event, Signal 1 overlaps or is continuous with 

Signal 2, making it difficult to examine Signal 2 in isolation. However, by blocking 

protein translation during priming with CHX, I was able to stop transcription-

dependent priming prior to providing Signal 2 (assuming mRNA does not itself 

play a role in these responses without being translate into protein). After stopping 

transcription-dependent priming, cathepsin inhibitors were still able to reduce 

silica and nigericin-induced IL-1β secretion. This suggested a role for cathepsins 

in NLRP3 activation. However, despite inhibiting pro-IL-1β synthesis, K777 

suppressed silica-induced IL-1β secretion more than that induced by nigericin. 

Conversely, Ca074Me reduced IL-1β secretion induced by silica and nigericin to 

a similar degree. The reason for this seems to relate to different dependencies 

on cathepsin X (nigericin-induced IL-1β secretion depends more on cathepsin X, 

which is inhibited more effectively by Ca074Me than by K777). Although 
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cathepsin inhibitors reduce IL-1β secretion induced by these NLRP3-activating 

stimuli in the absence of transcriptional priming, this does not prove that they are 

inhibiting Signal2 for NLRP3 activation. Since I know that non-transcriptional 

priming plays a role in NLRP3 activation, I must consider the possibility that 

cathepsin inhibitors suppress NLRP3 activation by inhibiting non-transcriptional 

priming(226, 229, 230).  Indeed, my data seems to suggest that this is the case 

since I observed that the role of cathepsins in Signal 1 was specific to IL-1β 

without affecting other NF-κB-dependent cytokines. 

Although I already emphasized the special requirement of NLRP3 

transcription for NLRP3 activation, it should be noted that LPS-induced 

transcriptional and post-transcriptional priming is not a singular event. To the 

contrary, LPS-priming appears to be diverse and multifaceted. For example, one 

of my more perplexing findings was that cathepsin inhibitors suppress pro-IL-1β 

(and to some extent IL-6 and MCP-1) production induced by LPS, but they do not 

suppress TNF-α or RANTES synthesis (see Appendix 10a,b). Presumably, my 

observation that the steady-state pools of IL1b and Nlrp3 transcript are affected 

by cathepsin inhibitors and ETC uncouplers suggests that NF-κB activation was 

affected. This is also suggested, and even demonstrated, by the findings of 

another study examining the effects of the cathepsin inhibitor Z-FA-fmk(399). 

However, the fact that cathepsin inhibition did not affect all NF-κB-dependent 

cytokines indicates additional layers of complexity to these pre- and post-

transcriptional priming events. In recent years, the complexity of NF-κB-mediated 
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gene regulation and crosstalk with other signaling pathways and transcription 

factors has been gaining appreciation(448). In fact, there are five members of the 

NF-κB family that play different roles in transcriptional regulation dependent on 

prevailing signaling pathways that can lead to a canonical, non-canonical and 

atypical pathway of NF-κB gene transcription. Perhaps, cathepsin inhibitors affect 

only one part of this pathway and not others. Alternatively, cathepsin inhibitors 

may differentially affect post-transcriptional regulatory mechanisms governing the 

stability or degradation of these cytokines. Before considering this possibility, I 

would like to propose a possible upstream pathway to provide some context. 

Based on my data, it seems that lysosomal-mitochondrial crosstalk may 

contribute to the priming of pro-IL-1β and NLRP3 synthesis. LPS has been 

shown to induce mild LMD, the production of mitochondrial ROS(123, 124, 181-

183), K+ efflux(188-192), and metabolic changes that cause cytosolic 

acidification(449). I have shown that LPS also causes mild LMD and mild 

mitochondrial depolarization, which is blocked by cathepsin inhibition with K777. 

Indeed, ROS inhibitors have been shown to block priming, and mitochondrial 

ROS have been suggested by multiple reports to be important for NF-κB 

activation(184, 450). Moreover, I found that inhibition of cathepsins, the ETC, or 

K+ efflux also blocks priming. Since I also found that ETC uncoupling can inhibit 

priming without affecting cathepsin activity, the preponderance of existing data 

suggests that mitochondria are downstream of cathepsin-dependent priming 

events. Therefore, K777 may inhibit priming by inhibiting cathepsin-dependent 
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pro-death Bcl-2 family member activation necessary to induce mitochondrial 

ROS-mediated NF-κB activation. How K+ efflux fits into all of this may need to be 

resolved by further experimentation, but K+/H+ exchange at the plasma 

membrane could potentially facilitate cathepsin activity in the cytosol through 

cytosolic acidification(202). Indeed, cytosolic acidification is another well-

documented effect of LPS priming (via the Warburg Effect) and a phenomenon 

closely associated with inflammatory cell types(449). Given the apparent 

involvement of LMD, cathepsins, the ETC, ROS, and K+ efflux in priming, 

claiming these processes as events exclusive to Signal 2 of NLRP3 activation 

should require extensive efforts to differentiate Signal 1 from Signal 2. 

 Having proposed the lysosomal-mitochondrial LPS-priming pathway 

above, the role of cathepsins in regulating pro-IL-1β synthesis, and not the 

synthesis or TNF-α, may be explained by the following. Besides cytosolic 

acidification, the LPS-induced Warburg Effect causes another metabolic 

disturbance that directly relates to pro-IL-1β synthesis. By increasing glutamine 

metabolism via the mitochondrial TCA cycle, LPS induces an elevation in the 

glutamine metabolite succinate in the cytosol via the mitochondrial transporter 

VDAC(451). While mitochondrial ROS can promote IL-1β transcription by 

inducing NF-κB-dependent HIF-1α synthesis, succinate is necessary to stabilize 

the intracellular pool of HIF-1α(451-453). Under these conditions, stabilized HIF-

1α can act as a transcription factor to directly initiate late/sustained pro-IL-1β 

transcription without affecting the production of TNF-α(451). Therefore, during 
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LPS-mediated mild lysosome disruption, it is possible that cathepsins initiate 

mitochondrial stress via the Bcl-2 family, leading to ROS production, HIF-1α 

synthesis and stabilization, and the selective promotion of pro-IL-1β synthesis. 

Presumably, severe mitochondrial disruption prevents further ROS production 

and succinate-mediated stabilization of HIF-1α, thereby abbreviating pro-IL-1β 

synthesis. It is also possible that, via the above 

lysosomecathepsinmitochondria pathway, cathepsins can somehow 

specifically enhance the stability of IL1b mRNA. Indeed, it is well-known that the 

steady-state pool of IL1b mRNA is stabilized by LPS-signaling(454). Additionally, 

it may also be the case that other variables, which have been previously 

implicated in Signal 2 of NLRP3 activation, actually roles related to the above IL-

1β-specific LPS-priming pathways that have been overlooked. 

While it may not be fully understood, the distinction between Signal 1 and 

Signal 2 is often not given appropriate consideration in experimental approaches. 

Many tools used to examine Signal 2 of NLRP3 activation, like fluorescent 

indicator dyes, have been used in such a way as to mistake Signal 1-related 

phenomena as being components of Signal 2. These tools depend on measuring 

signal changes that are relative to a given baseline, and this baseline is often 

chosen after priming. For instance, the K+ study examines K+ efflux and ROS 

production relative to a baseline generated in LPS-primed macrophages(154). If 

it were true that priming is completed within a few hours after LPS stimulation, 

and no longer playing any role in NLRP3 activation, choosing an LPS-primed 
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baseline instead of an untreated baseline is a reasonable approach to examining 

Signal 2 of NLRP3 activation. However, as I have shown, LPS-priming causes 

changes in both lysosomal integrity and MMP that are observed only when data 

are plotted relative to untreated (unprimed) controls. As a result, in the K+ study, 

the effects of priming on K+ efflux, and of K+ efflux on priming, were not 

measured. Even though K+ efflux is a known effect of LPS-signaling in 

macrophages and a variety of other cell types(188-192), the K+ study did not 

measure LPS-induced K+ efflux or consider its role in the priming of NLRP3 

activation. Conversely, I examined this and found that high extracellular KCl does 

indeed affect IL-1β synthesis and that KCl can non-specifically inhibit both 

NLRP3 and AIM2-mediated IL-1β secretion (see Appendix 14). Another recent 

study claims that K+ efflux is induced by the interaction of crystals with plasma 

membrane, and that IL-1β activation induced by this process can be inhibited 

with high extracellular KCl or ion channel blockers(455). However, while they do 

not examine pro-IL-1β levels for the ion channel blockers, in the only western blot 

in which they show pro-IL-1β levels and KCl treatment, pro-IL-1β is dramatically 

reduced. Therefore, when investigating any cellular dynamic for its role in NLRP3 

activation, unless already established, the baseline measurement should be 

untreated, unprimed controls. Alternatively, pro-IL-1β, intracellular IL-1β or some 

other indicator of priming should be measured in all experiments. 

Given all of the issues I just examined, it is also possible that Signal 1 and 

Signal 2 are fundamentally inseparable events. Perhaps, LPS-signaling alone is 
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insufficient to provide a strong enough signal to activate NLRP3, and thus, Signal 

2 may augment Signal 1 enough to reach the threshold for NLRP3 activation. 

This has been suggested previously by studies showing that overexpression of 

NLRP3 causes spontaneous activation of the NLRP3 inflammasome(185, 456). 

In this sense, activators of NLRP3 may only be differentiated from one another 

based on what complementary components of Signal 2 they provide to augment 

Signal 1 and/or the upstream mechanisms of how they induce these cellular 

changes. 

 

Silica Vs. Nigericin-induced NLRP3 Activation 

Particles require phagocytosis and lysosomal acidification to activate 

NLRP3(144). This indicates a role for lysosomal proteases or lysosomal acidity 

itself in NLRP3 activation. Indeed, as I have shown, inhibiting lysosomal 

acidification reduces silica-induced IL-1β secretion more than it affects that 

induced by nigericin (see Appendix 13). However, if lysosomal acidity were 

equally important for both stimuli, they would both be affected equally. Since they 

are not affected equally, lysosomal acidity is not equally important for both 

stimuli. Here, I hypothesized that cytosolic acidification following LMD contributes 

to NLRP3 activation, which might explain why lysosomal acidity may more 

important for particle-induced NLRP3 activation (269). Nigericin, on the other 

hand, induces K+ efflux, which is known to induce cytosolic acidification via 

H+/K+ exchange at the cell membrane(201, 202). Therefore, the reason why 
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inhibition of lysosomal acidification affects silica-induced IL-1β activation more 

than that induced by nigericin may be linked to their different methods of 

cytosolic acidification.  

While K+ efflux and the disruption of lysosomes or mitochondria have all 

been implicated in NLRP3 activation, they are also known mechanisms for 

acidifying the cytosol(269, 457, 458). Moreover, the cytosol acidifies during 

apoptosis in response to a variety of stimuli, and nigericin is often used in these 

studies as a positive control for cytosolic acidification(457). Furthermore, it has 

been shown that apoptotic stimuli induce cytosolic acidification via Bax-induced 

mitochondrial alkalinization, which is inhibited by OMA(458). In agreement with 

that study, a subsequent study showed that Bcl-2 overexpression in transgenic 

mice, or OMA treatment, prevents cytosolic acidification and protects against 

ischemia-reperfusion injury(459). This same study found that Bcl-2 directly 

associated with and inhibited VDAC activity, which is interesting since it has also 

been shown that cytosolic acidification dramatically increases VDAC activity and 

the MMP(460). The fact that all of the variable that affect cytosolic acidification 

also seem to influence NLRP3 activation may not be coincidental.  

 In contrast to inhibition of lysosomal acidification, KCl affects nigericin-

induced IL-1β secretion more than it affects that induced by silica (see Appendix 

13). As expected for a K+ ionophore, this suggests that nigericin is more 

dependent on K+ efflux than silica, which likely acidifies the cytosol via LMD 

independently of K+ efflux mechanisms. I also found that nigericin and ATP 
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(which also induces K+ efflux) induce rapid loss of lysosomal pH gradients (likely 

by cytosolic acidification) and loss of lysosomal cathepsin activity (see Appendix 

16). This suggests that cathepsin activity is not essential for NLRP3 activation by 

non-particulate stimuli, but that cytosolic acidification is common to both 

particulate and non-particulate stimuli. Furthermore, when I incubated 

macrophages in basic medium, which alkalinizes the cytosol, silica and nigericin-

induced IL-1β secretion were reduced equally (see Appendix 17a). When I 

incubated macrophages in acidic medium (RPMI lacking bicarbonate), silica and 

nigericin-induced IL-1β secretion are enhanced equally (see Appendix 17b). 

Although this may relate to Signal 2 in some way, this is all more likely due to 

affects on Signal 1, since IL-1β production is clearly reduced in basic medium. 

Moreover, dAdT is affected similarly in both of the conditions of altered pH 

described above. Cytosolic acidification will be discussed in more detail again 

below. For now, I would like to emphasize that Signal 1 and Signal 2 are difficult 

to differentiate from one another, while the upstream mechanisms of NLRP3 

activation (direct LMD or direct K+ efflux) can be distinguished for different 

stimuli. 

 Incidentally, I observed that in RPMI without bicarbonate CaCl2 is unable 

to activate NLRP3. The reason for this seemed to be that without bicarbonate, 

CaCl2 does not precipitate with as a particulate carbonate salt, a finding that was 

corroborated by a subsequent study and raised questions about whether the 



 260 
 

release of intracellular calcium stores in certain mediums (like RPMI) can cause 

precipitation and NLRP3 activation(154).  

Although the upstream mechanisms described are recognizably distinct 

from one another, I found a more downstream variable important of NLRP3 

activation that distinguishes silica from nigericin (also, see discussion on 

cathepsin X below). IL-1β secretion induced by silica seems more dependent on 

the ETC than nigericin or dAdT. I know this because, like cathepsin inhibitors, 

ETC uncouplers reduce pro-IL-1β synthesis despite suppressing silica-induced 

IL-1β secretion more than that induced by nigericin or dAdT. On one hand, it 

makes sense that these inhibitors reduce silica-induced IL-1β secretion more 

than they reduce dAdT-induced IL-1β secretion, since NLRP3 must be 

synthesized during priming prior to NLRP3 inflammasome activation. On the 

other hand, it is surprising that these inhibitors do NOT reduce nigericin-induced 

IL-1β secretion more than they reduce that induced by dAdT, since nigericin also 

depends on NLRP3 synthesis during priming in order to induce IL-1β secretion. 

While K777 also preferentially suppressed silica-induced IL-1β secretion 

compared to that induced by nigericin, the special non-redundant involvement of 

cathepsin X in nigericin-induced NLRP3 activation seemed to explain this 

difference to some degree (K777 is not a great inhibitor of cathepsin X). The 

situation appears to be different for ETC uncouplers. OMA and AntA uncoupled 

the ETC and reduced silica-induced IL-1β secretion without affecting cathepsin 

activity or nigericin-induced IL-1β secretion. Therefore, regarding the particulate 
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bias of ETC uncouplers, cathepsins do not seem to explain this difference. 

Whatever the reason may be, there is something about the ETC that is especially 

important for particle-induced IL-1β secretion and this could relate to either 

effects on Signal 1 or 2. A recent study reported cathepsin-dependent 

mitochondrial dysfunction and ROS production follows virus-induced LMD(339) 

and another study using RNA viruses found, as I have, that complete loss of 

MMP antagonizes NLRP3 activation(224). Therefore, it seems that mitochondrial 

ROS may be the factor generated by an intact, but not completely destroyed, 

ETC/MMP that is especially important for particle-induced NLRP3 activation. 

Indeed, I found that ROS inhibitors, especially the mitochondrial ROS inhibitor 

Mitotempo, preferentially reduce silica and LLOMe-induced IL-1β secretion (see 

Appendix 11). And, just like ETC uncouplers, Mitotempo did not reduce cell 

death induced by LLOMe or silica, indicating the ROS and ETC-dependent 

mechanism of particle-induced IL-1β secretion is downstream of cathepsins. 

However, like anything else, although I observed a preferential affect on silica 

and not nigericin, this does not necessarily mean that silica and nigericin do not 

depend more or less on different facets of Signal 1 that are being mediated by 

mitochondrial ROS.  

Despite the inherent ambiguity of this system, a mechanistic role for ROS 

in NLRP3 activation is worth serious contemplation. I noticed that the LRR region 

of NLRP3 seems to have an unusual repeating motif of evenly spaced cysteines 

that is not present to the same degree in other LRRs, and this pattern has not 



 262 
 

been recognized in the literature (see Appendix 18). Cysteines are easily 

oxidized by ROS, and those present on NLRP3 may become oxidized by 

mitochondrial ROS. Subsequently, they may also be reduced again by cytosolic 

acidification (via processes discussed below) and form disulfide bonds intra or 

inter-molecularly. Either by oxidation or oxidation followed by reduction of these 

cysteine may thereby cause conformational changes in NLRP3 that are important 

its NLRP3 activation, such as changes that permit cleavage of its LRR by 

cathepsins (as has been suggested to occur for the LRRs of TLRs 3,7 & 9)(400, 

401). This is an intriguing hypothesis that warrants further investigation. 

 
 

Lysosomal tropism, Lysosomal pH & Cytosolic 
Acidification in IL-1β Activation 
 
Over the course of my investigation, I was forced to ask whether cathepsin 

inhibitors were acting via off-target effects. Off-targets of drugs are usually 

targets closely related or similar in function to on-targets, which might include 

other cathepsins, other cysteine proteases or proteases in general. In fact, while 

my collaborators at UCSF have used a cell-free system to screen a diverse panel 

of potential cysteine and non-cysteine protease targets for K777(personal 

communication), their screen failed to identify cathepsin X as a target of K777. 

This indicates that cell-free inhibitor screens do not always agree with in situ 

biochemistry. Therefore, it is difficult to know how many other closely related off-

targets there might be for K777.  
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 Besides active-site-based off-targets, another possibility for off-target drug 

effects is when the chemical moieties of a drug that are not part of the on-target 

binding interface (parts of the chemical not designed for a particular active site) 

bind in some way to other unrelated enzymes or molecules. While there are 

constraints limiting the variability of any small molecule inhibitor’s on-target 

moiety, there can be much more variability in other parts of a small molecule. 

Therefore, it is unlikely for different inhibitors in the same class to have share off-

targets unrelated to their intended targets, since their only common structural 

feature is their on-target moiety. And since I have shown that the effects of K777 

and Ca074Me on particle-induced IL-1β secretion and cell death are reproduced 

by most of the 25 or more different cathepsin inhibitors I examined, K777 and 

Ca074Me most likely affect these responses via their on-target moieties. (see 

Appendix 6). Conversely, these drugs may still have similar effects on particle-

induced IL-1β secretion and cell death because they share a more general 

biochemical property. Indeed, one characteristic shared by most of these 

cathepsin inhibitors is that that they are amphiphilic lysosomotropic weak bases 

with secondary and tertiary amines.  

It is well established that weak amphiphilic bases can cause dose-

dependent increases in lysosomal pH(461-463). As mentioned in the 

introduction, when discussing lysosomotropic detergents, lysosomotropic agents 

are amphiphilic so they can pass through membranes(464). They are also 

weakly basic, causing them to become ionized and trapped in acidic 
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compartments(464). This ionization occurs via their acquisition of a hydrogen ion 

(H+) from hydronium (H3O+), leaving one less H+ to contribute to the acidity of 

the solution. Thus, these agents increase lysosomal pH. While the molecule-

specific chemistries influencing the neutralizing property of weakly basic drugs 

are diverse, causing wide variations in the dose-to-pH relationship, the 

concentration of weak base necessary to increase lysosomal pH by 1 generally 

occurs within a range from ~1 - 1000 μM(461). Therefore, despite my genetic 

evidence for the roles of cathepsins in NLRP3 activation and priming, it seems 

that some additional off-target effects of these inhibitors may be achieved by their 

influence on lysosomal pH. To investigate this, I made a short-list of amphiphilic 

drugs that are weak bases and began to randomly probe the literature for reports 

these drugs have anti-inflammatory properties. What I found was surprisingly in 

line with my suspicions. 

A landmark paper for the IL-1 field came out in 1990, discovering that IL-

1α and IL-1β are secreted via an unconventional route (CytoplasmSecreted 

instead of ERGolgiExosomeSecreted)(465). This same study also noted 

that a classic lysosomotropic weak base, methylamine (CH3NH2), inhibited IL-1β 

secretion. Another classic agent known to raise lysosomal pH, chloroquine, has 

also been shown in numerous studies to reduce IL-1β and IL-6 expression(466). 

Moreover, another study found that a whole class of newly-synthesized diaminic 

carbonates, which are diprotic weak bases, protected mice from LPS-induced 

shock(467). Though this study noted a striking similarity between the effects of 
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these diaminic carbonates and those they observed for chloroquine, they were 

unable to figure out exactly why these both types of compounds were reducing 

inflammatory responses.  

This theme of lysosomotropic weak bases having unexplained anti-

inflammatory effects is pervasive. Time and again, various studies have 

attempted to connect the on-target effects of weakly basic drugs with their anti-

inflammatory properties. In contrast, I recognized through meta-analyses that 

anti-inflammatory properties are common features of weakly basic drugs. For 

example, Imatinib (Gleevec) is a treatment for chronic myelogenous leukemia, 

which targets several kinases (such as c-kit and c-abl) involved in driving 

malignant proliferation(468). Moreover, studies with imatinib have noticed that it 

has profound anti-inflammatory properties. One study found that it prevents TNF-

α production and NF-κB activation by inhibiting IκB phosphorylation and that it 

also protects mice from LPS-induced liver failure(469). This study attributes the 

kinase inhibitory activity of imatinib to this effect, and this may be accurate. 

However, no specific target has since been attributed to this effect of imatinib. As 

another example, the anti-depressant imipramine (also a weak amphiphilic base) 

was shown as early as 1966 to have potent anti-inflammatory effects in a rat 

model of arthritis(470). Moreover, various macrolide antibiotics, like azithromycin, 

have been shown to possess anti-inflammatory properties, such as reducing 

neutrophil/macrophage chemotaxis and the expression of IL-1, IL-6 and TNF-

α(471). The list goes on. Again, the anti-inflammatory mechanism of action for 



 266 
 

these drugs is unknown, but they are all known to be amphiphilic weak bases 

(usually amines)(463). Here, I propose that their effects are at least partly due to 

increasing lysosomal pH and that this should be considered in future drug and 

inhibitor-based studies. 

Intriguingly, prior to finding an association between these weakly basic 

drugs and their anti-inflammatory properties in the literature, I had already begun 

testing this hypothesis using several of these lysosomotropic drugs. Out of a 

random sample of lysosomotropic drugs, I found that they all had the ability to 

inhibit pro-IL-1β synthesis as well as particle-induced IL-1β secretion and cell 

death (see Appendix 13a). Moreover, I found similar effects using 

lysosomotropic dyes, indicating that the use of these dyes to study lysosomal 

function in biological processes must be done carefully and in parallel with other 

confirmatory techniques. Whether a study examines a lysosomotropic dye or 

drug, the resulting data should be interpreted with due consideration for the 

effects of these chemicals on lysosomal pH.  

Our genetic evidence for the role of cathepsins in pro-IL-1β synthesis and 

cell death suggests that neutralization of pH by lysosomotropic weak bases 

affects these processes by inhibiting the pH-dependent activity of cathepsins. 

However, there are ~60 different lysosomal hydrolases and 25 known lysosomal 

membrane proteins, most of which rely of acidic lysosomal pH(472). Therefore, it 

seems likely that some additional off-target effects of these inhibitors may be 

achieved by their influence on lysosomal pH and these other lysosomal proteins. 
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However, as I already touched upon, several big questions still remains to be 

answered: Why does lysosomal pH not matter for non-particulate NLRP3 

activators like ATP and Nigericin, or AIM2 activation by dAdT, as much as it does 

for particulate NLRP3 stimuli? Is the acidity of the lysosomal fluid itself important 

for pro-IL-1β synthesis or particle-induced IL-1β secretion and cell death? 

A handful of studies have made a connection between cytosolic 

acidification and NLRP3 activation (see also the section on silica and nigericin 

above). One study showed that extracellular acidosis activates NLRP3(473). In 

this study, acidic medium caused rapid cytosolic acidification and NLRP3 

activation, which depended on K+ efflux (which is likely due to H+/K+ exchange 

at the cell membrane(202)), while basic medium suppressed this response. 

Surprisingly, they also found that dissipation of lysosomal pH using BafA caused 

cytosolic acidification and activated IL-1β. Additionally, it has also been shown 

that the influenza ion channel protein M2 activates NLRP3 by causing cytosolic 

acidification(474). The M2 channel was shown to translocate to the golgi in order 

to achieve this effect on cytosolic pH. Given this evidence, it seems that cytosolic 

acidification may be an important mechanism of NLRP3 activation. Indeed, the 

relationship between cytosolic acidification and inflammation is pervasive. 

Cytosolic acidification occurs under conditions known to favor 

inflammatory states. A phenomenon called the Warburg Effect takes place in 

inflammatory macrophages and DCs, and is characterized by a switch from 

oxidative phosphorylation to glycolysis(449). The opposite is true for M2 (anti-
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inflammatory) macrophages and regulatory T cells. This change in cellular 

metabolism (oxidative phosphorylation  glycolysis) can be induced by stimuli 

like LPS via TLR4 (via NF-κB) and is suppressed by anti-inflammatory cytokines 

like IL-10. Moreover, enhanced glycolysis leads to more mitochondrial ROS 

production (more NADH to complex I and less oxidative phosphorylation leaves 

more mitochondrial respiratory chain components in the reduced state that react 

with O2) and a shunting of pyruvate into lactic acid, thereby acidifying the cytosol. 

Interestingly, the Warburg Effect also occurs in cancer cells. As a result of their 

disruption of normal tissue architecture, tumors tend not to be well vascularized. 

This leads to hypoxia, so cancer cells switch to glycolysis as their primary 

mechanism for ATP generation. Given that cathepsin inhibitors, like K777, have 

been under investigation as anti-cancer therapeutics(385), and here as anti-

inflammatory therapeutics, this connection may be relevant to my study. 

We observed in earlier experiments with immortalized (cancerous) bone-

marrow-derived macrophages (IMMPs) that cathepsin B&L double deficiency 

resulted in complete loss of particle and nigericin-induced IL-1β secretion without 

affecting that induced by dAdT or TNF-α secretion (Appendix 19). Whether this 

is due to metabolic changes, altered cell death mechanisms, or reduced 

redundancy of cathepsins in these cancer cells is unknown. Therefore, this 

remains an intriguing phenomenon for future investigations. 
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Cathepsin X in Nigericin-mediated NLRP3 Activation 

Although it used to be thought that cathepsin X was ubiquitously expressed, its 

expression has recently been shown to be restricted mostly to cells of the 

immune system(475). Moreover, its expression was also shown to be elevated in 

various malignancies and in the glial cells of patients with Alzheimer’s 

disease(475). Importantly, cathepsin X contains integrin-binding motifs (RGD), 

and it is known to bind to heparin sulfate proteoglycans that regulate integrin 

signaling(476, 477). Integrins are important for forming focal adhesions between 

cells or with the extracellular matrix (ECM), which induces actin cytoskeletal 

rearrangements important for facilitating cellular signaling during migration, 

proliferation and differentiation(478). Cathepsin X interacts with and regulates β3-

integrins on monocytes and macrophages as well as β2-integrins involved in 

adhesion and phagocytosis on T cells (LFA-1/CD11a) and monocytes (Mac-

1/CD11b)(274). Therefore, cathepsin X has important roles in regulating integrin-

mediating signaling in immune cells.  

 Integrins are critical players in inflammatory responses. Mac-1 (CD11b) is 

known to regulate a variety of macrophage processes like phagocytosis and the 

oxidative burst, but it has also been shown to regulate TLR-induced NF-κB 

activation(479). Moreover, fibrinogen binding by Mac-1 can stimulate chemokine 

production by macrophages through TLR4(480). Integrins have also been shown 

to modulate caspase activation in neutrophils, and they play a critical role in host 

inflammatory responses carried out by leukocytes in vivo(481, 482). For 
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example, Mac-1 (and LFA-1 & VLA-4) is critical for neutrophil and monocyte 

extravasation during systemic inflammatory responses via its interaction with 

ICAM-1 on the endothelium(483, 484). Therefore, integrins play multiple roles in 

regulating cellular and in vivo inflammatory responses. 

Recently, integrins have been directly implicated in NLRP3 activation. A 

recent study demonstrated that β1-integrins could mediate Signal 1 of 

inflammasome activation in intestinal epithelial cells by binding to pathogenic 

bacteria, like Yersinia enterocolitica(447). Moreover, it has also been shown that 

α5β1 integrin binds to the surface protein (Td92) of a periodontopathogen called 

Treponema denticola, which leads to the simultaneous priming and activation of 

NLRP3(485). Interestingly, cathepsins B and L have been shown necessary for 

ebolavirus to invade host cells and their ability to regulate this process requires 

α5β1 integrin(486). Although cathepsin X may play a role in regulating β1-integrin 

activity to induce NLRP3 activation, this has never been demonstrated.  

Given the existing literature, and my finding that cathepsin X plays a non-

redundant role specifically in nigericin-mediated NLRP3 activation, it seems that 

its integrin-related functions may mediate this role. As I just described, cathepsin 

X can regulate β3 and β2 integrins, which are known to play roles in inflammatory 

responses by regulating adhesion, migration and even TLR-mediated NF-κB 

activation in monocytes, macrophages, and neutrophils. Moreover, β1 integrins 

have been suggested to play a direct role in NLRP3 activation and can also 

modulate cathepsin B and L activity. Whether cathepsins X, B & L play redundant 
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or cooperative roles in these processes is unknown. However, there seems to be 

a strong link between cathepsins, integrins and inflammation. Indeed, I found that 

cathepsin X activity was mostly extracellular, and that the impermeant 

extracellular cathepsin inhibitor JPM-565 was much more effective at reducing 

IL-1β secretion induced by nigericin than that induced by silica (see Appendix 

20b). Moreover, when I examined macrophage responses on cellulose ester 

membranes instead of cell culture treated plastic, IL-1β secretion and cell death 

induced by silica and dAdT were normal (see Appendix 20a). Conversely, these 

responses to nigericin were completely absent. This suggests that cathepsin X 

regulates integrin-mediating signaling, which may be critical for the nigericin-

induced pathway for NLRP3 activation. Moreover, because of cathepsin X’s 

putative role in integrin-mediated signaling, inhibition of cathepsin X by K777 in 

vivo may have reduced IL-1-dependent neutrophil and monocyte recruitment into 

the peritoneum via interference with cell migration, adhesion, or extravasation. 

Therefore, the role of cathepsin X in nigericin-induced (and other) inflammatory 

responses remains an intriguing area of future research.  

 
 

An Evolutionary Perspective on LMD-Mediated NLRP3 
Activation 
 
It is well known that a number of different pathogens (bacteria, viruses, parasites 

etc.) use the phagosome as a means of cell invasion(487). Usually, acidification 

of the phagosome upon fusion with the lysosome activates the pathogenic 
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invasion mechanisms. Alternatively, some pathogens prevent lysosomal fusion 

altogether in order to survive within the phagosome. Interestingly, cathepsins B 

and L have been shown to be critical for entry of corona-, filo- and 

paramyxoviruses into host cells, since these viruses require activation of viral 

glycoproteins required for membrane fusion(488). In fact, in vitro studies have 

shown that K777 can completely block Ebolavirus infection of host cells, or SARS 

(Severe Acute Respiratory Syndrome) coronavirus infection in combination with 

serine protease inhibitors(488). Thus, K777 is now a lead candidate for the 

treatment of Ebola hemorrhagic fever. There are several bacteria that escape 

phagosomes, including Listeria monocytogenes, Shigella flexnari, 

Mycobacterium tuberculosis, and Streptococcus pyogenes(487). Importantly, all 

of these bacteria have been shown to activate NLRP3 through LMD. Listeria 

does so via listeriolysin O (LLO) (375), Streptococcus pyogenes via streptolysin 

O (SLO) (489), and Mycobacterium via the pore-forming protein ESAT6 (490, 

491). Despite activating NLCR4 inflammasomes, Shigella flexnari also activates 

NLRP3 via its type III secretion system(492). Although the innate immune system 

has PRRs designed to recognize these pathogens, many have evolved ways to 

disguise themselves(493). Moreover, after invasion, these pathogens have 

devised ways to co-opt or suppress the host’s cell death and immune defense 

mechanisms(493-495). Therefore, it seems that LMD is the primary event that 

should incite a response from a macrophage being invaded by such a pathogen. 

The moment LMD occurs seems like the most advantageous time for secretion of 
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anti-inflammatory cytokines and lytic cell death, so that the invaded cells can call 

for help from other immune cells and destroy the intracellular niche of the 

pathogen. Conversely, waiting until a pathogen is well inside the cytoplasm, at 

which point it may or may not cause mitochondrial disruption, may be too late. By 

this time, pathogenicity factors may have already silenced the host cell’s defense 

mechanisms, allowing the microbe to establish itself as a long-term resident. In 

line with this reasoning, I have shown that even mild LMD induced by silica, 

without significant MOMP, can cause a profound NLRP3 activation. However, as 

covered in the introduction, this seems to be a pathological response to silica that 

was meant for a pathogen. 

 The purpose of mitochondrial disruptive cell death seems to be much 

different than LMD-mediated cell death. It is well known that mitochondrial 

disruption is the primary organelle orchestrating the initiation of apoptosis, often 

employed by both the intrinsic and extrinsic pathways(294). Apoptosis is 

classically known to be non-lytic and non-inflammatory, as would be expected 

given its physiologic roles in cell turnover during development and tissue renewal 

in adult organisms(496). Apoptosis is therefore a process that cells have 

“decided” to initiate, rather than a reaction to an imminent threat. Indeed, I found 

that IL-1β activation was antagonized by early mitochondrial disruption. In fact, 

severe LMD induced by LLOMe caused robust mitochondrial disruption, which is 

probably the reason why LLOMe induced lots of cell death with little concomitant 

IL-1β secretion. Consistent with this observation, I also found that cathepsin C-
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deficient macrophages, which less efficiently activate LLOMe-mediated lysosome 

disruption, actually secreted more IL-1β and experienced less cell death when 

they were stimulated with high concentrations of LLOMe (see Appendix 21a). 

This has been corroborated by another study as well(163). Similarly, it has been 

shown that completely inactive SLO mutants could not activate NLRP3, while 

partially active SLO mutants induced even better IL-1β secretion than WT 

SLO(497). Whether or not this is because WT SLO caused more mitochondrial 

disruption than partially active SLO mutants remains to be elucidated. 

Nonetheless, as a fundamental mechanism of apoptosis, mitochondrial disruption 

seems to antagonize inflammatory responses. If this is true, it has important 

implications for controlling inflammation in clinical contexts where cell death is 

desirable. For example, apoptosis is the desired response from 

chemotherapeutics in the treatment of cancer, since tumor lysis syndrome is the 

inflammatory and potentially deadly lytic alternative(498). Therefore, in 

formulating therapeutic strategies for cancer, especially hematologic 

malignancies like acute or chronic myelogenous leukemia, it may be appropriate 

to consider ways to disrupt mitochondria as directly as possible to prevent a 

robust inflammatory response. 
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Chapter V, Figure 2: 
A lysosomally dominant crosstalk involving mitochondria is optimal for 
particulate-mediated IL-1β secretion. (A) The diagram depicts the mutual 
involvement of lysosomes and mitochondria in particle-induced IL-1β activation. 
Mitochondrial disruption (left) generally leads to apoptotic death. Although mild 
mitochondrial disruption subsequent to lysosomal disruption (right) occurs 
during NLRP3 activation, severe disruption of either the mitochondria or the 
lysosome leads primarily to cell death without IL-1β activation. Lysosomal 
disruption generally leads to both apoptotic (“Catheptosis”) and necrotic 
(“Cathosis”) phenotypes, though both types of cell death appear to be 
dependent on cathepsins. Cathepsins are known to cause mitochondrial 
disruption via activation of the Bcl-2 family (Bid, Bax/Bak), and the Bcl-2 family 
is known to cause or enhance lysosomal disruption either directly or through 
induction of mitochondrial ROS production leading to peroxidation of the 
lysosomal membranes via the Fenton Reaction. As apoptosis is an active 
process generally initiated through cell signaling and not severe organelle 
damage, this process represents an “internal decision” by cells to die rather than 
a defensive pro-inflammatory mechanism initiated by an “external threat,” as is 
the case with lysosome disruption. (B) The diagram shows a more direct 
relationship between the lysosomal and mitochondrial disruption. Mild LMD and 
MOMP occur during priming to increase pro-IL-1β synthesis and ROS 
production. When a stimulus is provided, LMD upstream of MOMP promotes 
NLRP3 activation and IL-1β secretion. But as LMD becomes more severe, an 
inefficient MOMP-dominant pathway of inflammasome-independent cell death 
and IL-1β activation occurs that antagonizes lysosomal cathepsin activity, 
NLRP3 activation, ROS production and pro-IL-1β synthesis. If this pathway 
begins with MOMP and not LMD, then NLRP3 is not activated at all by the time 
LMD is induced and lots of cell death occurs with concomitant low levels of IL-1β 
activation. 
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Model of Particle-Induced NLRP3-mediated IL-1β 
Secretion and Cell Death 
 
Chapter V, Figure 3:  
When a patrolling tissue macrophage encounters an inflammatory particle, it 
ingests the particle. Unable to digest the particle at first, it starts producing 
NADPH oxidase-dependent ROS and ATP required to increase its efforts to 
digest the particle. However, the particle’s charged/oxidized surfaces can also 
generate ROS leading to further lipid peroxidation and LMD. LMD initiates 
cathepsin-dependent lytic cell death by both unknown mechanisms and through 
activation of pro-death Bcl-2 family members, releasing HMGB1 and other 
DAMPs into the environment that prime other macrophages and epithelial cells 
that contribute to priming via surface expressed pro-IL-1α in the local 
environment.  

Priming in these macrophages is principally driven by NF-κB, but it is also 
promoted by cathepsins, K+ efflux and mitochondrial ROS production; mild LMD 
releases cathepsins into the cytosol causing mild mitochondrial depolarization via 
the Bcl-2 family, which generates mitochondrial ROS that activates redox-
sensitive transcription factors like HIF-1α. At the same time, NF-κB activation 
causes a switch from oxidative phosphorylation to glycolysis, mildly acidifying the 
cytosol with lactic acid (in concert with cytosolic acidification from mild LMD and 
K+ efflux) to facilitate cathepsin activity and generating ATP as the mitochondria 
become progressively more compromised. During priming, pro-IL-1β is 
synthesized along with pro-IL-1α and more NLRP3, which is modified by 
transcription-independent priming mechanisms and recruited to the outer 
mitochondrial and ER membranes. Mitochondrial ROS oxidizes the numerous 
cysteines in the LRR domain of NLRP3, causing conformational changes, but not 
enough for activation.  

Next, one of these primed macrophages encounters a sterile particle 
released by another dying macrophage and ingests it. Again, the particle causes 
some LMD, leading to further cathepsin release and cytosolic acidification to that 
facilitates cathepsin activity. The oxidized NLRP3 LRR is cleaved off of the 
NLRP3 protein by cathepsins, causing its activation. Alternatively, nigericin 
causes rapid cytosolic acidification via cathepsin X-dependent K+ efflux 
channels. This reduces some of the oxidized cysteines in the LRR of NLRP3 that 
facilitates binding to oxidized TXNIP (liberated from thioredoxin by mitochondrial 
ROS) via disulfide bonding. Cleavage or binding of TXNIP moves the LRR away 
from the PYD of NLRP3 allowing the recruitment of ASC and caspase-1 into 
inflammasome complexes. At the same time, more cathepsin-Bcl-2 family-
mediated mitochondrial stress and ROS production continues to drive pro-IL-1β 
synthesis to replenish intracellular stores as IL-1β is secreted via pyroptotic cell 



 278 
 

death. Pyroptosis or cathosis occurs slowly at first, but facilitates K+ efflux to 
balance the Ca2+ influx necessary to activate calpain for pro-IL-1α processing. 
Finally, the mitochondria can no longer maintain membrane potential and they 
disintegrate, leading to the cessation of further pro-IL-1β synthesis. Having lost 
the ATP required to power the Na+/K+ pump, plasma membrane potential is 
completely lost and the cell bursts, releasing mitochondrial components, other 
DAMPs, including IL-1α, and the particles into the environment.  
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Appendices 
 

Appendix 1: Cathepsins B, L or B&L in bone-marrow-derived cells 
are not essential for atherogenesis.  
 
LDL-R-/- mice were lethally irradiated and reconstituted with bone marrow from 
WT mice or mice lacking cathepsins B, L or B&L. After 8 wks of reconstitution, 
these mice were given a high fat atherogenic diet for an additional 8 wks, prior to 
sacrifice. Hearts and aortic trunk were frozen in OTC (Optimal Cutting 
Temperature) medium and serially sectioned by cryostat. Sections the aortic 
sinus were stained with Oil-Red-O before plaque area was quantified and 
averaged. (A) Representative sections of aortic sinus from the indicated chimeric 
mice. (B) Quantification of average (avg.) lesion area from LDL-R-/- chimeric 
mice reconstituted with bone marrow from the indicated donors. Error bars 
represent S.E. of means from the indicated number (n) of mice. 
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Appendix 2: 8-OH-dG does not inhibit NLRP3 activation, 
mitochondrial RNA induces some IL-1β secretion, and silica-induced 
IL-1β secretion can be enhanced by binding to dAdT. 
 
(A) LPS-primed PMs were treated with media control (-) or 8-OH-dG (200 μM) 
and then stimulated with silica (50 μg/mL), nigericin (2 μM) or dAdT (0.5 μg/mL). 
(B) PMs were primed with media control (-) or LPS, then stimulated with 1.5 μg of 
mitochondrial RNA isolated from mouse hepatocytes that was complexed with 
Lipofectamine 2000 using the same protocol as that used for dAdT. (C) LPS-
primed PMs were stimulated with silica (50 μg/mL), dAdT (0.5 μg/mL) without 
complexation to Lipofectamine 2000, silica pelleted alone and resuspended in 
fresh RPMI, or silica mixed with dAdT prior to being pelleted and resuspended in 
fresh RPMI. Error bars represent (A) S.D. of technical triplicates or, (B) range 
bars of technical duplicates. Data are representative of (A,C) one or, (B) two 
independent experiments. 
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Appendix 3: Novel Protocol: Timing the harvest of fetal livers for 
hematopoietic stem cell collection by predicting date of conception 
based on weight curve of pregnant females.  
 
(A) After setting up mating pairs, female mice in each pair were weighed daily to 
establish a general weight curve during pregnancy to aid in the prediction of the 
day of conception. Black line represents the average of weight trends from 15 
pregnant female mice. Blue line represents the curve of a control mouse whose 
date of conception was known based on the identification of a vaginal plug, and 
this mouse was followed until she gave birth. The red line represents the 
trendline for the data from the 15 mice. (B) Fetal mice from 13-14 days post-
conception (top) or 14-15 days post-conception. (C) 14 do cathepsin B-deficient 
(left; black and furry) mice and their cathepsin B&L double-deficient sibling (right; 
pale and hairless). 
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Appendix 4: Novel Protocol: Optimal siRNA knockdown is achieved 
in PMs with minimal toxicity by combining Endoporter and RNAiMax. 
 
(A) PMs were plated in the indicated cell culture dishes at 1x106 cells per well (in 
one case 2x this number of cells was used and in another 0.5x this number of 
cells were used as indicated) and treated with non-targeting siRNA (NT2) or 
siRNA targeting cathepsin X (siX) that was complexed with either 0.1, 0.15, or 
0.2 uL of RNAiMax (RMax 1,2 ro 3, respectively) per 100 uL of final medium 
volume, 0.11 uL of Endoporter (EP) or 0.22 uL of Endoporter (2xEP) per 100uL 
of final medium volume, or 0.15 uL of RNAiMax together with 0.11 uL of 
Endoporter (EP+RMax) per 100 uL of final medium volume. After 48h, cathepsin 
X (CtsX) expression was analyzed by qPCR, normalized to GAPDH expression 
and plotted relative to non-targeting controls. (B) PMs were treated with titrations 
of either Endoporter (EP) (left) or RNAiMax (RMax) (right) for 48h and cell 
viability was analyzed by Alamar Blue. (C) LPS-primed PMs were treated with 
media control or K777 (20 μM) prior to stimulation with Endoporter (EP; 10 μM; 
note that 0.11 uL of EP in 100 uL is 1.1 μM); solid bars indicated analysis of 
supernatants, hashed bars indicated analysis of lysates. Error bars represent (A) 
S.D. of technical triplicates or, (C) range bars of technical duplicates. Data are 
representative of one independent experiment. (see next page for detailed 
protocol) 
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Endoporter & RNAiMax Transfection Solution for Macrophages 
By Gregory M. Orlowski (2014) 

 
Note: These calculations are for exact volumes. The actual calculations should 
account for volumes lost during pipetting and on the sides of tubes (it is critical 
that the scaling of the calculations is done correctly). 
  

Overestimate the Theoretical Final Volume of siRNAMix and carry 
this down through all calculations, but then mix the solutions 
(beginning with both MiniMixes) according to the exact volumes 
needed to arrive at the Actual Final Volume of siRNAMix. 

 
For 50nM siRNA (increase or decrease Endoporter, not RNAiMax, if changing 
siRNA concentration) 

Endoporter (EP)  use 0.11uL per 0.1mL of 10%Media(Final Volume) 
RNAiMax (RMax) use 0.15uL per 0.1mL of 10%Media(Final Volume) 
 

Protocol: 
1) Calculate volume of MasterMix (RMax + EP + siRNA): 

a. 0.2 x Final Volume of siRNAMix in 10% Media = MasterMix 
Volume 

2) Calculate volume of both MiniMixes (RNAiMax in OptiMem & siRNA + EP 
in OptiMem) 

a. 0.5 x MasterMix Volume = MiniMix Volumes 
3) Calculate how much RNAiMax is needed for the RMax MiniMix: 

a. [(Final Volume of siRNAMix)/0.1mL] x 0.15 = RNAiMax Volume 
4) Calculate how much EP and siRNA you will need for your EP/siRNA 

MiniMix: 
a. [(Final Volume of siRNAMix)/0.1mL] x 0.11 = EP Volume 
b. [(50nM)(Final Volume of siRNAMix)]/(Stock siRNA Conc.) = siRNA 

Volume 
5) Add the EP & siRNA to the EP/siRNA MiniMix in OptiMem 
6) Add the RMax to the RMax MiniMix in OptiMem 
7) Wait 5 Minutes Exactly 
8) Combine both MiniMixes(1:1), which is now the MasterMix, vortex briefly 

just to mix, incubate 30min RT 
9) Add 10%Media to MasterMix 

a. 0.8 x Final Volume of siRNAMix = Volume of 10%Media 
10)  Add Final siRNAMix to cells in appropriate final volumes: 

a. 96-well = 70uL/well 
b. 12-well = 0.8mL/well 
c. 6-well = 2mL/well 

11)  Do not change the media until the desired knockdown period is over (96h 
is recommended; add fresh media on top if old media yellows) 
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Appendix 5: Novel Protocol: Acridine Orange and TMRM 96-well 
format for the real-time monitoring of lysosomal and mitochondrial 
disruption. 
 
(A) PMs stained with TMRM (increasing values = disruption of mitochondrial 
membrane potential) were primed with LPS or left untreated (UT), then treated 
with media control (UT or LPS), FCCP (2 μM) or OMA (5 μg/mL); fluorescence 
monitored at short intervals and plotted as fold change over untreated. (B) PMs 
stained with A.O. (increasing values = disruption of lysosomes/pH gradient) were 
treated with media control (untreated = UT) or primed with LPS before treatment 
with media control or K777 (15 μM) prior to stimulation with media control or 
LLOMe (1 mM); fluorescence traces monitored by plate reader at short intervals 
and plotted as fold change over baseline; after ~6h, samples from the indicated 
traces were treated with media control (UT), Bafilomycin A (BafA; 50 nM), FCCP 
(2 μM) or OMA (5 μg/mL); and after ~8h, samples from all traces treated with 
AntA (All; 5 μM). Error bars represent range bars of technical duplicates. Data 
are representative of three independent experiments. 
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Appendix 6: Twenty-five different cathepsin inhibitors all exhibit 
similar efficacy for inhibiting silica and nigericin-induced IL-1β 
secretion and cell death in LPS-primed macrophages. 
 
In all experiments, PMs were primed with LPS. (A,B) PMs were treated with 10 
μM of each cathepsin inhibitor in a final concentration of 1% DMSO (wLXXX 
inhibitors were synthesized by Matt Bogyo’s lab at Stanford and exhibit similar 
pan-cathepsin inhibition profiles) and stimulated with either (A) silica (40 μg/mL) 
or (B) nigericin (2 μM). Data are plotted at percent inhibition of IL-1β secreted or 
cell death relative to treatment with 1% DMSO control and stimulation. Blue 
circles highlight K777 and Ca074Me. Blue lines indicate the theoretical trendline 
for a 1:1 relationship between inhibition of IL-1β secretion and cell death. Black 
lines are the trendlines for the experimental data and the accompanying 
equations and R-squared values are shown on the lower right of each graph. 
Error bars represent range bars of technical duplicates. Data are representative 
of two independent experiments. 
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Appendix 7: Compilation of additional in vivo acute peritonitis 
experiments. 
 
In all experiments, mice were injected i.p. with the indicated stimuli (or PBS 
control) for the indicated amount of time, then peritoneal exudates were collected 
by lavage and analyzed by flow cytometry. (A-D) CC-induced acute peritonitis 
(“A”= 3 mg CC, “B-D” = 0.2 mg CC). (A) Lethally irradiated WT mice were 
reconstituted with bone marrow from the indicated donor mice (WT, cathepsin L, 
B, B&L, or NLRP3-deficient mice). (B) WT mice or cathepsin B, C or B&C-
deficient mice. (C,D) WT mice pre-treated with excipient control (PBS & CC) or 
62.5 mg/kg K777 i.v. (CC+K777) 1h prior to stimulation. (E-I) Silica-induced 
peritonitis (0.2 mg silica). (E) Lethally irradiated WT mice were reconstituted with 
bone marrow from the indicated donor mice (WT, cathepsin L, B, B&L, or 
NLRP3-deficient mice). (F) WT mice or cathepsin B, C or B&C-deficient mice. (G) 
WT mice from either the on-site mouse colony (In-House B6) or ordered <1wk 
prior from JAX Mice (Out-House B6) were pre-treated with excipient control (PBS 
& Silica) or 62.5 mg/kg K777 i.v. (Silica+K777) 1h prior to stimulation. (H) WT 
mice or IL-1R1-deficient mice. (I) WT, cathepsin C-deficient or cathepsin 
C/caspase-1&11 triple-deficient mice. (J,K) dAdT-induced acute peritonitis (3 μg 
dAdT). (J) WT mice pre-treated with excipient control (PBS & dAdT) or 62.5 
mg/kg K777 i.v. (dAdT+K777) 1h prior to stimulation. (K) WT or NLRP3-deficient 
mice stimulated with either Lipofectamine 2000 alone (LFonly) or dAdT 
complexed with Lipofectamine 2000 (dAdT). Error bars represent S.E. of means 
from the indicated number (n) of mice. Statistical analyses were performed by 
Two-tailed Student’s t-test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Appendix 8: K777 selectively suppresses IL-1β secretion and cell 
death induced by particulate NLRP3 stimuli without affecting general 
phagocytic machinery. 
 
In all experiments, cells were primed with LPS. (A) Immortalized bone-marrow-
derived macrophages from B6/129Sev hybrid mice were treated with a titration of 
K777 concentrations and them stimulated with silica (100 μg/mL), nigericin (2 
μM), anthrax lethal toxin (LeTx; 0.5 μg/mL), or dAdT (0.5 μg/mL). (B) PMs were 
treated with media control (-) or K777 (20 μM) and then stimulated with silica (50 
μg/mL), CaCl2 (1 mM), ATP (2 mM), nigericin (2 μM) or dAdT (0.5 μg/mL). (C) 
PMs were kept either on ice (0°C) or incubated (37°C) throughout the procedure 
as indicated. After 2h of LPS priming, PMs were treated with media control or 
K777 (15 μM) as indicated for 1h. Next, FITC-conjugated zymosan particles (400 
μg/mL) were added to PMs for an additional 45 min and then all samples were 
placed on ice, labeled with APC-conjugated anti-CD11b antibodies, diluted in 
0.2% trypan blue (quenches surface bound/extracellular FITC) and the percent of 
CD11b+ cells that were FITC+ (indicated phagocytosis of FITC-zymosan) was 
analyzed by flow cytometry. Error bars represent (A) S.D. of technical triplicates, 
(B) range bars of technical duplicates. Data are representative of three (A,B) or 
one (C) independent experiment(s).  
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Appendix 9: A cathepsin D inhibitor (Pepstatin A-penetratin), 
staurosporine, and chemotherapeutics (doxorubicin and etoposide) 
induce inflammasome-independent IL-1β secretion with variable 
sensitivity to suppression with K777.   
 
In all experiments, PMs were primed with LPS. (A) PMs were treated with the 
indicated concentrations of the poorly membrane permeant cathepsin D inhibitor 
pepstatin A (PepA) and its cell permeant analog pepstatin A-penetratin (PepA-
Penet) and then stimulated with silica (30 μg/mL). (B) PMs were treated with 
media control ((-), lysis or PepAPen) or K777 (20 μM) and then stimulated with 
pepstatin A-penetratin (PepAPen; 22.5 μM). Supernatants (solid bars) or lysates 
(hatched bars) were analyzed. (C) PMs from WT mice or mice lacking caspase-
1&11 or ASC were stimulated with media control (-), staurosporine (STS; 5 μM) 
or PepAPen (22.5 μM).  (D) PMs from WT mice or mice lacking RIP3 were 
treated with media control ((-) or lysis), K777 (20 μM) or Ca074Me (20 μM), and 
then stimulated with media control (LPS) or STS (LPS+STS; 5 μM). (E) PMs 
were treated with media control or K777 (20 μM) and then treated for 20h with 
the chemotherapeutic drugs doxorubicin (10 μM) or etoposide (100 μM). Cell 
death was analyzed by MTS assay. Error bars represent (B-D) range bars of 
technical duplicates or, (E) S.D. of technical triplicates. Data are representative of 
(A,C,D) one or, (B,E) two independent experiments.  
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Appendix 10: Cathepsin inhibitors suppress pro-IL-1β synthesis 
regardless of priming mechanism and silica/nigericin-induced cell 
death depends on MyD88 and/or TRIF. 
 
(A) PMs from WT mice or mice lacking caspase-1&11 (Casp1&11-/-) or ASC 
were primed for 2h, then treated with media control (shaded bars), K777 (15 μM) 
or ZVAD (10 μM) for an additional 7h and the indicated cytokines were measured 
in the lysates by ELISA. (B) Same as in “A” except were treated with K777 (20 
μM), Ca074Me (20 μM) or YVAD (15 μM). (C,D) PMs from WT mice or mice 
lacking MyD88 or MyD88 & TRIF were primed with either LPS (200 ng/mL), 
poly(I:C) (100 μg/mL), Pam2CSK3 (200 ng/mL), or TNF-a (1 μg/mL) for 2h and 
then (C) treated with media control (-), K777 (15 μM), Ca074Me (15 μM) or ZVAD 
(10 μM) for an additional 7h and IL-1β and pro-IL-1β were measured in the 
lysates by ELISA, or (D) treated with media only for 1h and then stimulated with 
silica (80 μg/mL), nigericin (1.5 μM), dAdT (0.5 μg/mL). Error bars represent 
range bars of technical duplicates. Data are representative of (A,B) two, (C) 
three or, (D) one independent experiment(s). 
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Appendix 11: ROS inhibitors selectively attenuate particle-induced 
IL-1β secretion, but not cell death. 
 
In all experiments, cells were primed with LPS. (A) PMs were treated with 
titrations of butylated hydroxyanisol (BHA) or butylated hydroxytoluene (BHT) 
and then stimulated with either CC (1 mg/mL) or dAdT (0.25 μg/mL). (B) PMs 
were treated with BHT (200 μM), K777 (20 μM) or BHT & K777 and then 
stimulated with CC (1 mg/mL). (C) Immortalized bone-marrow-derived 
macrophages from B6-129Sev hybrid mice were treated with BHA (100 μM), 
K777 (20 μM) or BHA & K777 and then stimulated with silica (100 μg/mL), CC (1 
mg/mL), nigericin (2 μM), dAdT (0.5 μg/mL) or anthrax lethal toxin (LeTx; 0.5 
μg/mL). (D) PMs were treated with a titration of the mitochondrial ROS inhibitor 
Mitotempo, then stimulated with silica (40 μg/mL), LLOMe (0.75 mM), nigericin (2 
μM), dAdT (0.3 μg/mL), ABT199 (5 μM) or AT406 (15 μM). (E) PMs were treated 
with media control (-), K777 (30 μM), ZVAD (5 μM) or BHA (10 μM) and then 
stimulated with a titration of hydrogen peroxide (H2O2). Error bars represent (A-
C,E) S.D. of technical triplicates or, (D) S.D. of technical triplicates for 0 mM 
Mitotempo and other samples single data points. Data are representative of (A-
C) two, (D) one or, (E) three (for H2O2 titration, but only 1 repeat for inhibitors) 
independent experiment(s). 
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Appendix 12: Drug Formulation: K777 requires low pH to remain 
soluble at high concentrations, but the ELP formulation permits 
absorption of K777 as a monodispersed suspension that causes local 
inflammation. 
 
(A-F) pH electrode analysis of K777-ELP formulation and solubility (precipitation 
is indicated by “*”). (A) The indicated concentrations of the K777-ELP formulation 
(250 mg/mL or 435 mM K777 in 25% PEG-300, 25% glycofurol, 25% Cremophor 
ELP, 15% ethanol, 10% propylene glycol) were diluted in water. (B) Dilutions of 
the excipient (ELP formulation) alone. (C,D) K777-ELP was diluted 1:10 in water 
(now 25 mg/mL) and the indicated volumes of chemical buffers (top) or 
proteinaceous buffers (bottom) were added, resulting in the corresponding pH 
values until precipitation (*) was observed. (E) K777-ELP was diluted 1:10 in the 
indicated aqueous buffers and pH was titrated with the indicated volumes of 0.1 
N NaOH until precipitation (*) was observed. (F) K777-HPβCD formulation (250 
mg/mL or 435 mM K777 in 43.5% 1-hydroxypropyl β-cyclodextran, 56.5% water) 
was diluted 1:10 in water (now 25 mg/mL) and pH was titrated with the indicated 
volumes of 0.1 N NaOH until precipitation (*) was observed. (G) Comparison of 
DMSO-K777 formulation (300 mM K777 in 50% DMSO, 35% PEG-400, 15% 
ethanol) and ELP-K777 formulation (300 mM K777; formulation as in “A”) after 
precipitation by light microscopy (100X) showing a polydispersed (non-uniform) 
aggregating precipitate for the DMSO formulation (left) and a monodispersed 
(unform) micelle suspension for the ELP formulation (right). (H) Disassembled 
osmotic Alzet pump showing a cross-section of the semi-permeable synthetic 
shell lined with salts that facilitates interstitial fluid influx, thereby compressing the 
rubber bladder and ejecting the drug out of the regulator port (facing downward). 
(I) Alzet pumps containing 75 mg/kg/day doses of K777 in the DMSO (left) or 
ELP (right) formulations were surgically implanted in the backs of mice for 1 wk 
(in the orientation shown in “H”). The DMSO formulation shows the solid 
aggregating precipitate of K777 in the position where the port of the Alzet pump 
was located (red circle), while the ELP formulation is completely absorbed into 
the tissues. (J-L) Hematoxylin/eosin-stained transdermal tissue sections 
(embedded in paraffin) from the backs of mice surgically implanted with Alzet 
pumps for 1 wk; panels on the left and right represent two separate samples at 
10X (top) and 40X (bottom) captured by video light microscopy. (J) The excipient 
ELP formulation (no K777) showing that the formulation itself does not cause 
local inflammation. (K) The K777-ELP formulation dosed at 25 mg/kg/day 
showing tissue edema and some infiltrating macrophages and neutrophils. (L) 
The K777-ELP formulation dosed at 75 mg/kg/day showing intense neutrophilic 
infiltrates and caseating necrosis.    



 298 
 



 299 
 

 

Appendix 13: Lysotropic drugs (amphiphilic weak bases) and 
lysosome/cytosolic acidification inhibitors selectively suppress 
particle-induced IL-1β secretion and cell death. 
 
In all experiments, PMs were primed with LPS. PMs were treated with (A) 
amiodarone (5 μM), azithromycin (80 μM), imatinib (15 μM), K777 (15 μM), 
imipramine (60 μM) or, (B) bafilomycin A (BafA; 200 nM), chloroquine (CQ; 30 
μM), ammonium chloride (NH4Cl; 15 mM) or KCl (50 mM) and then (A,B) 
stimulated with silica (80 μg/mL), nigericin (2uM) or dAdT (0.5 μg/mL). Error bars 
represent range bars of technical duplicates. Data are representative of three 
(K777, KCl, BafA, CQ, NH4Cl; all others for lysates) or two (amiodarone, 
azithromycin, imatinib, imipramine) independent experiments.  
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Appendix 14: Lower concentrations of KCl selectively suppress IL-
1β secretion induced by Silica and LLOMe (& NLRP3-dependent 
stimuli), but higher concentrations of KCl suppress IL-1β non-
selectively. 
 
In all experiments, PMs were primed with LPS. (A) PMs were treated with media 
control (-), KCl (40 mM) or K777 (15 μM), and then stimulated with media control 
((-) or Lysis), silica (40 μg/mL), LLOMe (0.75 mM), ABT199 (5 μM), AT406 (10 
μM) or dAdT (0.5 μg/mL); supernatants (black bars) or lysates (hatched bars). 
(B) PMs were treated with media control (-), KCl (80 mM) or YVAD (20 μM), and 
then stimulated with media control ((-) or Lysis), silica (40 μg/mL), nigericin (2 
μM) or dAdT (0.5 μg/mL). Error bars represent range bars of technical duplicates. 
Data are representative of three (Silica, Nigericin, dAdT) or two (LLOMe, 
ABT199, AT406) independent experiments. 
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Appendix 15: P2X7R, IL-1R1, or TNF-RI&II do not contribute to IL-
1β synthesis or particle-induced IL-1β activation and cell death in 
LPS-primed macrophages.   
 
In all experiments, PMs were primed with LPS. (A) PMs from WT mice or mice 
lacking P2X7R were stimulated with media control (-), ATP (1 mM), silica (40 
μg/mL), nigericin (2.5 μM) or dAdT (0.3 μg/mL). (B) PMs from WT mice or mice 
lacking both TNF-RI and TNF-RII were stimulated with media control (-), the 
indicated concentrations of silica, nigericin (1 μM) or dAdT (0.5 μg/mL). (C) PMs 
from WT mice or mice lacking IL-1R1 were treated with media control (-), K777 
(15 μM), or ZVAD (10 μM), and then stimulated with media control (-), silica (80 
μg/mL), nigericin (1.5 μM), or dAdT (0.5 μg/mL). Supernatants (solid bars) or 
lysates (hatched bars) were analyzed. Error bars represent (A,B) S.D. of 
technical triplicates or, (C) range bars of technical duplicates. Data are 
representative of individual experiments. 
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Appendix 16: ATP and Nigericin rapidly disrupt lysosomal pH 
gradients and intracellular cathepsin activity.  
 
In all experiments, PMs were primed with LPS. (A) A.O.-stained PMs were 
primed with LPS and stimulated with ATP (2 mM), nigericin (2 μM), STS (5 μM), 
ABT263 (15 μM) or AT406 (15 μM) and green fluorescence intensity was 
measured at short intervals by plate reader; data are plotted as fold change of 
the control treated with LPS only and error bars are range bars of duplicates. 
(B,C) PMs were stimulated with media control (LPS), LLOMe (LLMe; 2 mM), 
silica (80 μg/mL), nigericin (2 μM), or dAdT (dAT; 0.5 μg/mL) for either (B) 1h or 
(C) 6h, prior to probing for cathepsin activity for an additional 1h; lysates and 
supernatants were processed by SDS-PAGE, cathepsin activity was measured 
by phosphor-imaging, and pro-caspase-1 (pro-Casp1), pro-IL-1β, IL-1β, 
cathepsin B (CatB), cathepsin L (CatL), and GAPDH were measured by 
Immunoblotting (note: active caspase-1 (p10) could not be examined since 
separating cathepsin bands requires that low m.w. proteins are run off the gel). 
Yellow ovals in “B and C” highlight that cathepsin X activity is mostly extracellular 
(compare with corresponding bands in the lysate), and red ovals highlight LLOMe 
and nigericin both causing a rapid reduction in intracellular cathepsin activity 
during stimulation in “B”. Conversely, red ovals show that silica causes late 
reduction in intracellular cathepsin activity during stimulation, while dAdT does 
not affect intracellular cathepsins activity in “C”.  Data are representative of (A) 
three independent experiments, (B,C) one experiment. 
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Appendix 17: Alkaline medium suppresses IL-1β synthesis, as well 
as particle-induced IL-1β secretion, while acidic medium potentiates 
inflammasome-mediated IL-1β secretion. 
 
(A) PMs were primed for 2h with LPS, treated with media control (-), K777 (15 
μM) or ZVAD (10 μM) for 1h, then placed in either a CO2-supplemented incubator 
(5% CO2) or a CO2-free incubator (No CO2) and stimulated with silica (80 μg/mL), 
nigericin (1.5 μM) or dAdT (0.5 μg/mL) for an additional 6h; supernatants (solid 
bars) or lysates (hatched bars) were analyzed. (B) PMs were primed with LPS 
and stimulated with media control (-), silica (50 μg/mL), nigericin (2 μM), dAdT 
(0.5 μg/mL), etoposide (150 μM), staurosporine (STS; 5 μM) or calcium chloride 
(CaCl2; 1 mM) in either normal RPMI 1640 (RPMI) or RPMI. Error bars represent 
(A) S.D. of technical quadruplicates (cytokines) or range bars of technical 
duplicates (cell death) or, (B) range bars of technical duplicates. Data are 
representative of (A) two or, (B) one independent experiment(s). 
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Appendix 18: Regularly spaced cysteine motifs on the LRR of 
NLRP3 and NLRP3 cleavage sites. 
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Appendix 19: NLRP3-mediated IL-1β secretion is completely 
dependent on cathepsins B&L in immortalized bone-marrow-derived 
macrophages (IMMPs). 
 
(A) LPS-primed IMMPs were stimulated with media control (-), silica (500 μg/mL), 
MSU (300 μg/mL), nigericin (2 μM) or dAdT (0.65 μg/mL) and cytokines analyzed 
in the supernatants by ELISA (top and bottom) or precipitated and IL-1β 
secretion analyzed by immunoblotting (middle). (B) IMMPs from WT or cathepsin 
B&L-deficient mice were treated with media control (-) or primed with LPS for 3h 
prior to analysis of IL-1β (IL1b) and NLRP3 (Nlrp3) expression by qPCR; data are 
normalized to GAPDH expression and plotted relative to (-) from WT cells. Error 
bars represent (A) S.E. of means from four (Silica, MSU, dAdT) or three 
(nigericin) independent experiments or, (B) S.D. of technical triplicates from one 
independent experiment. 
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Appendix 20: Nigericin-induced NLRP3 activation requires strong 
binding of integrins to a substrate and extracellular cathepsin activity. 
 
In all experiments, PMs were primed with LPS. (A) PMs were plated on either 
cell culture treated plastic or cellulose ester membranes (Millipore, Cat# MAHA 
S45 10) prior to stimulation with silica (80 μg/mL), nigericin (1.5 μM) or dAdT (0.5 
μg/mL). (B) PMs were treated with titrations of either the cell-permeant cathepsin 
inhibitor K777 or the cell-impermeant cathepsin inhibitor JPM-565 prior to 
stimulation with silica (300 μg/mL), CC (500 μg/mL), or nigericin (2 μM). Error 
bars represent (A) S.D. of technical quadruplicates or, (B) S.D. of technical 
triplicates. Data are representative of one independent experiment. 
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Appendix 21: Attenuation of robust LMD-mediated cell death 
enhances IL-1β secretion, while early mitochondrial disruption 
suppresses IL-1β secretion. 
 
In all experiments, PMs were primed with LPS. (A) PMs from WT or cathepsin C-
deficient mice were stimulated with a range of LLOMe concentrations. (B) PMs 
were stimulated with either the Bcl-2 inhibitor ABT199 (5 μM) or the Smac 
mimetic AT406 (10 μM) and samples were analyzed at the indicated time points; 
cell death was measured either by LDH assay (Loss of Membrane Integrity) or 
MTS assay (Loss of Mitochondrial Metabolism) to demonstrate how much earlier 
ABT199 causes mitochondrial disruption compared to AT406. Error bars 
represent (A) S.D. of technical triplicates or, (B) range bars of technical 
duplicates. Data are representative of (A) two independent experiments, (B) one 
experiment.  
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