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ABSTRACT

Activation of the basic helix-loop-helix (bHLH) gene TALI is the most

common genetic event seen in both childhood and adult T cell acute lymphoblastic

leukemia (T -ALL). Despite recent success in treating T -ALL patients, TALI patients do

not respond well to current therapies. In hopes of leading the way to better therapies for

se patients, we have sought to determine the mechanism(s) of Tall induced leukemia

in mice. By generating a DNA-binding mutant Tall transgenic mouse we have

determined that the DNA binding activity of Tall is not required to induce leukemia. 

have also shown that Tall expression in the thymus affects thymocyte development and

survival. We demonstrate that Tall heterodimerizes with the class I bHLH proteins E47

and HEB in our mouse models of TALI induced leukemia. Severe thymocyte

differentiation arrest and disease acceleration in Tall/E2A+/- and Tall/HEB+/- mice

provides genetic evidence that Tall causes leukemia by inhibiting the function of the

transcriptional activators E47 and HEB which have been previously shown to be

important in T cell development. In pre- leukemic Tall thymocytes, we find the co-

repressor mSin3A/HACI bound to the CD4 enhancer, whereas an E47/HEB/p300

complex is detected in wild type thymocytes. Furthermore, mouse Tall tumors are

sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data

demonstrate that Tall induces T cell leukemia by repressing the transcriptional activity of

E47/HB and suggests that HDAC inhibitors may prove efficacious in T-ALL patients

that express TALI.
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CHAPTER I

INTRODUCTION



T cell acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is the most 
common form of cancer

occurrng in children accounting for more than 50% of the hematopoietic malignancies

observed in the pediatric population. ALL is rare in adults accounting for only 2-
3% of

hematopoietic malignancies(Downing and Shannon, 2002). 
T cell acute lymphoblastic

leukemia (T-ALL) is a malignant disease of thymocytes that accounts for 10- 15% of

childhood and 25% of adult ALL cases and is often accompanied by high 
circulating

blast cell counts and central nervous system infitration (Ferrando et al., 2002).

Chromosomal translocations that place transcription factor genes such as 

BOXII, TALI,

LYLI, LMOl, or LM02 under the control of the T cell receptor loci are observed in some

T -ALL patients. In these patients misexpression of the translocated gene is detected in

the thymus. These chromosomal abnormalities are quite rare in T -
ALL patients, however

a recent study using quantitative RT -
PCR has shown that one or more of the above

mentioned genes is misexpressed in over 90% of both pediatric and adult T -ALL

cases(Ferrando and Look, 2003).

TALI can be ectopically expressed in the thymus by the t(1;14) 
chromosomal

translocation, which puts 
TALI under the control of the regulatory elements of the T-cell

receptor (TCR) () locus. Other translocations which juxtapose 

TALI with the TCR locus

have also been described(Begley and Green, 1999). 
TALI can also be activated in T cells

by a large interstitial deletion within chromosome 1 that places 
TALI under the control of

the promoter of the SIL gene which is expressed in T cells(Aplan et aI., 1991; Begley and

Green, 1999). However, in the majority of T-ALL cases in which TALI is misexpressed



in the thymus, no chromosomal aberrations are detected. In these cases it has been

hypothesized that mutations in regulatory elements of TALI lead to its aberrant

expression(Bash et aI., 1995). Recent studies have demonstrated that TALI as well as

HOXll and LM02 are biallelelically expressed in some T -ALL cases, suggesting that

ectopic expression of these genes in leukemia may result from disruption of the pathways

that normally down-regulate expression of TALI, HOXII and LM 0 2 in mature T

cells(Ferrando et aI. , 2003). In children and adults, TALI misexpression occurs in 60 and

45% of T-ALL cases respectively(Ferrando and Look, 2003).

Great success in the treatment of pediatric T-ALL has been achieved in recent

years by intensifying chemotherapy regimens leading to a five-year event free survival

rate of 80%(Schrappe et aI. , 2000; Silverman et aI., 2001). However, a recent study has

demonstrated that TALI patients have a less favorable prognosis than T-ALL patients

with activation of other oncogenes. Patients with the MLL-ENL translocation have a

100% probabilty of five year survival compared to 92% of patients that have activation

of HOXll(Ferrando et aI., 2002). In contrast, TALI patients have a five-year survival

rate of only 43%(Ferrando et aI., 2002). Therefore, better treatments for TALI induced

leukemia are needed. An understanding of the mechanism(s) by which of TALI induces

disease wil aid in the development of more specific treatments.

T cell development

As thymocytes mature into T cells they go through several stages that are defined

by the surface expression of markers and the status of T cell receptor genes. Progenitor



cells that enter the thymus from the bone marrow lack expression of the T cell receptor

associated CD3, and the coreceptors CD4 and CD8. These double negative thymocytes

can differentiate into ap or yo thymocytes and can be divided into four stages based on

their expression of the adhesion molecule CD44 and the achain of the interleukin 2

receptor, CD25. The most immature cells express CD44 but not CD25; the next stage,

the DN2 stage is defined by the expression of both CD44 and CD25. The DN3

thymocytes exhibit surface expression CD25 but not CD44. During this stage, the T cell

receptor prearranges and interacts with pre- T cell-a. Signaling from the pre- TCR

complex leads to cell proliferation and eventually expression of the CD4 and CD8.

These CD4+CD8+ cells are referred to as double positive thymocytes. T cell receptor

a chain rearrangement occurs in the double positive thymocytes. Positive and negative

selection occurs during the double positive stage leading to differentiation of thymocytes

that recognize self MHC and apoptosis of thymocytes that recognize self-MHC too well.

f::

Positively selected thymocytes down regulate the expression of either CD4 or CD8 to

yield CD4 or CD8 single positive thymocytes(Janeway et aI., 1999). Thymocytes are

induced to proliferate by signals emanating from the pre-TCR and TCR as well as by

cytokine signaling. In particular, IL-2 and IL 7 signaling has been shown to be essential

for T cell proliferation and development(Janeway et aI., 1999; Kim et aI., 1998; Peschon

et aI., 1994).



E proteins

E proteins are widely expressed class I bHLH proteins encoded by the genes 
E2A,

E2- and HEB. The E2A gene encodes for two proteins, E12 and E47, resulting from

differential splicing of the exons coding for the bHLH domain(Sun and Baltimore, 1991).

HEB and E2-2 are encoded by distinct genes and are 60% identical to E47 and E12 in the

bHLH domain(Henthorn et aI., 1990; Hu et aI., 1992). In addition to the bHLH domain

which consists of two amphipathic a-helices separated by a loop sttucture(Murre et aI.,

1989b), E proteins contain two highly conserved transcriptional transactivation domains

termed ADI and loop-helix (LH) domains(Aronheim et aI., 1993; Quong et aI., 1993).

Point mutations in either of these two lransactivation domains severely affects the

transactivation capacity of the proteins(Massar et aI., 1996; Quong et aI., 1993). The

crystal structure of the E47 homodimer revealed the formation of a four-helix bundle

which positions the basic region of E47 t() contact the major groove of DNA and bind the

E box element, CANNTG with each monomer interacting with a three base half-

site(Ellenberger et aI., 1994).

E proteins can form either homodimers or heterodimers with class II bHLH

proteins. In pancreatic cells, E47 interacts with the class II bHLH protein, BETA2 to

regulate insulin gene transcription(Dumonteil et aI., 1998; Naya et aI., 1995), and

mutations in BETA2are associated with type 2 diabetes(Malecki et aI., 1999). In muscle

cells, E proteins heterodimerize with MyoD and regulate muscle cell

differentiation(Lassar et aI., 1991). Other bHLH protein containing complexes are



essential for heart and brain development(Ben-Arie et aI., 1997; Firull et aI., 1998;

Guilemotet aI., 1993; Riley et aI., 1998; Srivastava et aI., 1997).

proteins are also essential for lymphoid development. When E47 is

overexpressed in a pre-T cell line, many of the early events in B cell development occur

such as induction of a germ-line heavy-chain gene transcript and immunoglobulin D-to-

rearangement(Schlissel et al., 1991). E2A null mice die within the first few days after

birth and lack pre-B cells and mature B cells, and have reduced numbers of B cell

progenitors(Bain et aI., 1994). In contrast, HEB and E2- null mice die within the first

two weeks of life, do produce mature B cells but have reduced numbers of pro-

cells(Zhuang et aI., 1996a). This difference in phenotype most likely reflects the

observation that the major protein complex in B cells consists of a E47

homodimers(Shen and Kadesch , 1995). E2A protein target genes in B cells include

RAG 1 , RAG2, A5, EBF and TdT(Bain et aI., 1994; Choi et aI., 1996; Greenbaum and

Zhuang, 2002; Hsuet aI., 2003).

The tight regulation of E47 expression throughout thymocyte development

suggests that E proteins play an important role in thymocyte differentiation. DNI

thymocytes exhibit a low level of E47 expression which increases in the DN2 stage. E47

expression levels decrease again in response to pre- TCR signaling at the DN3 stage and

decrease further as thymocytes differentiate from the CD4, CD8 double positive to the

CD8 or CD4 single positive stage(Engel et aI., 2001). Gene targeting studies have

demonstrated that E proteins are essential for proper thymocyte maturation and selection.

E2A null mice have 5-fold fewer total thymocytes and decreased numbers of CD4,CD8



double positive thymocytes compared to wildtype mice (Bain et aI., 1997). E2A null

mice also exhibit increases in both CDS-single positive and CD4-single positive cells

however the increase in CDS-single positive cells is greater leading to aCD4/CDS

thymocyte ratio of I.S compared to 4.4 in wildtype mice. Thymocytes from E2A

deficient mice are partially arrested at the CD44+, CD2S- , or DNI stage demonstrating

that loss of E2A leads to a partial block at the earliest stage of T cell development(Bain et

aI., 1997). Studies of E2A null mice have also demonstrated a requirement of E proteins

for the regulation of V(D)J recombination in yo T cells(Bain et aI. , 1999).

In contrast to B cells in which E47 homodimers are the predominant E protein

complexes, in T cells E47/HB heterodimers predominate(Sawada and Littman, 1993).

HEB null mice also have S-fold fewer thymocytes than wildtype mice and decreased

numbers of double positive cells(Barndt et aI., 1999). In addition, HEB deficient mice

have increased CDS-single positive cells most of which appear to be immature single

positive cells as assessed by HSA staining(Bamdt et aI., 1999). A partial arest of double

negative thymocytes at the CD44- , CD2S+ or DN3 stage is also observed in H EB

deficient mice(Bamdt et aI. , 1999). E47/HB heterodimers have been implicated in the

regulation of CD4, CDS, Ragl , Rag2 and pre-Ta expression(Bain et aI. , 1994; Herblot et

aI., 2000; Sawada and Littman , 1993; Schlissel , 1991; Zhuang et aI., 1996a). Decreased

expression of these genes likely contributes to the perturbation of thymocyte

development observed in E2A deficient and HEB deficient mice.

It has been suggested that E proteins regulate pre-TCR signaling since E47

deficiency allows the differentiation of double negative thymocytes into double positive



/ .

thymocytes in Ragl-

/- 

mice(Engel et aI., 2001). Further support for this hypothesis comes

from a recent study demonstrating that lack of E47 promotes the development of

thymocytes in mice lacking the pre-T cell receptor signaling proteins Lck, Fyn and

LAT(Engel and Murre, 2003). E47 does not, however, appear to playa role in IL-

receptor signaling despite similarities in the phenotypes of E47 deficient and IL-

receptor deficient mice(Kee et aI., 2002).

E proteins and leukemia

E proteins have been shown to inhibit cell proliferation and induce apoptosis.

E47 expression reduces the proliferation of NIH3T3 cells(Peverali et aI., 1994) and

overexpression of E47 in Jurkat cells induces growth inhibition and apoptosis(Park et aI.,

1999). In addition, a higher percentage of pro-B cells from E2A+/- are cycling than in

wildtype mice(Herblot et aI., 2002). These effects on the cell cycle may be mediated via

the cell cycle inhibitors p21 and p16/INK4a since E proteins has been implicated in

regulating the expression of these genes(Prabhu et aI., 1997) (AI ani et aI., 2001). More

recent data has demonstrated that E47 inhibits cell cycle progression in DN3

thymocytes(Engel and Murre, 2003). Although most E2A null mice die shortly after

birth, of those that survive about fifty percent develop T cell leukemia within ten months

of age demonstrating that E2A can act as a tumor suppressor(Bain et aI., 1997; Yan et aI.,

1997). The postnatal lethality of the HEB null mice is partially rescued by an Id3

deficiency, and HEB nul1Id3 null mice develop T cell leukemia suggesting that HEB can

also act as a tumor suppressor(Bamdt and Zhuang, 1999).



Disruption of the E2A gene has also been observed in human patients. The

t(17;19)(q22;pI3) chromosomal translocation occurrng in a subset of pro-B cell ALL

results in the formation of the E2A-HLF fusion gene in which the transactivation domains

of E2A are linked to the DNA binding and protein dimerization domains of hepatic

leukemia factor (HLF)(Inaba et aI., 1992). Twenty-five percent of pre- acute

lymphoblastic leukemia patients display the t(1;19)(q23;p13) translocation which fuses

E2A to the homeobox protein Pbx. As in the E2A-HLF translocation, the activation

domains of E2A are fused to the DNA binding domain of Pbx(Crist et al., 1990; Kamps

et aI., 1990). Expression of either E2A-HLF or E2A- Pbx in NIH 3T3 cells induces

anchorage independent growth(Kainps et aI., 1991; Yoshihara et aI., 1995). In addition,

expression of either fusion protein in the lymphoid lineage in the mouse results in T cell

apoptosis, B cell developmental arrest and the development of T cellleukemia(Dedera et

aI., 1993; Honda et aI., 1999). Retroviral expression of E2A-Pbx in the bone marow of

lethally irradiated mice led to the development of acute myeloid leukemia(Kamps and

Baltimore, 1993). Taken together, these studies demonstrate the oncogenicity of the E2A

fusion genes. Similarities between the E2A-HLF and E2A-Pbx transgenic mice and the

E2A null mice such as decreased numbers of T cells, B cell maturation arrest and

development of T-ALL suggest that loss of one allele of E2A may contribute to the

oncogenicity of E2A fusion genes.

In a rare chromosomal translocation observed in T- ALL patients, Notchl 

truncated resulting in expression of the activated form of Notch (Ellisen et aI., 1991).

Similarly, mice transplanted with bone marrow cells expressing the intracellular domain



of Notchl develop T cell lymphomas(Pear et aI., 1996). Notchl has been shown 

inhibit E2A transcriptional activity and enhance E2A protein degradation suggesting that

inhibition of E protein activity may also be involved in intracellular notch induced

leukemia(Nie et aI., 2003;Ordentlich et aI., 1995). Overexpression of Notch3 has been

detected in all T -ALL cases examined suggesting that Notch3 may be crucial to leukemic

progression(Screpanti et aI., 2003). In support of this hypothesis, 
Notch3 transgenic mice

develop T cell leukemia(Bellavia et aI., 2000). Recent data demonstrates that Notch3

inhibits E2A activity by activating pre-TCR signaling which downregulates E2A DNA

binding activity(Talora et al., 2003). Therefore, inhibition of E2A activity may be a

common mechanism ofT-ALL.

Id proteins

The Id family of helix-loop-helix class V proteins contains four members, Idl to

Id4(Zebedee and Hara, 2001). Idl and Id3 are widely expressed in developing tissues,

while Id2 and Id4 display a more restricted pattern of expression (Jen et aI., 1997;

Riechmann et aI., 1994). Id proteins can interact with both class I and class II bHLH

proteins but do not contain a basic domain necessar for DNA binding. As a result, Id

proteins act as dominant negative inhibitors of bHLH proteins. Id proteins have been

shown to inhibit the differentiation of a varety of cell types including B cells(Sun, 
1994),

muscle cells(Jen et aI., 1992), myeloid(Kreider et aI., 1992) and erythroid cells(Lister et

aI., 1995; Shoji et aI., 1994). Id3 deficient mice develop normally but have decreased

numbers of CD4 single positive thymocytes and increased CDS single positive



thymocytes(Rivera et aI., 2000). Id3 deficient mice also display defects in B cell

proliferation and humoral immunity(Pan et aI., 1999). Idl deficient mice are normal

however Idl/ld3 double knockout mice die at E12.5 due to cranial hemorrhage (Lyden et

aI. , 1999). Id2 deficient mice also develop normally but lack lymph nodes and Peyer

patches and have reduced numbers of natural killer cells(Yokota et aI., 1999).

Id3 most likely modulates T cell development and B cell function through

inhibition of E protein activity. The decrease in CD4 single positive cells is likely due to

inhibition of E47/HB activation of the CD4 gene. Thymocyte development is normal in

E2A/ld3 double knockout mice, demonstrating a genetic interaction between the two

proteins(Rivera et aI., 2000). In addition, the observation that T cell receptor signaling

induces the expression of Id3 and inhibits E47 DNA-binding activity suggests that Id3

modulates thymocyte differentiation and proliferation through inhibition of E2A (Engel

et aI., 2001).

Id proteins and cancer

Id proteins also appear to playa role in regulating the cellcycIe. Expression

levels of Id genes are high in proliferating cells and low in terminally differentiated

cells(Norton, 2000; Norton et aI. , 1998). Id2 has been shown to bind to the tumor

suppressor retinoblastoma protein and inhibit its function(Lasorella et aI., 1996). In

addition , in transfection studies, Idl has been shown to inhibit E2A-mediated induction

of the cell cycle inhibitors p21 and pl6/Ink4a(Alani et aI., 2001; Prabhu et aI. , 1997). Id2

can induce anchorage-independent growth in NIH3T3 cells(Lasorella et aI., 2002).



Furthermore, overexpression of Idl or Id2 in . the thymus of mice causes T cell

lymphoma(Kim et aI., 1999; Morrow et al., 1999). In addition , transgenic expression of

Idl in B cells or intestinal epithelia of mice results in the development of B cell

lymphomas and adenomas respectively(Sun , 1994; Wice and Gordon, 1998). Id protein

overexpression has also been observed in a variety of human tumors including breast

cancer, melanoma and neuroblastoma(Lasorella et aI., 2002; Lin et aI., 2000; Polsky et

aI., 2001).

Id proteins have also been shown to play an essential role in angiogenesis. The

blood vessels in the brains of embryonic Idl-/- Id3-

/- 

are malformed and express lower

levels of Flkl (VEGF receptor 2)(Lyden et aI., 1999). Id proteins also play an important

role in tumor angiogenesis. When Idl 

+/- 

Id3-

/- 

mice were injected with B6RV2

lymphoma cells or B-CA breast cancer cells, the cancer cells initially grew but then

regressed and the animals remained healthy. In contrast, wildtype mice quickly succumb

when injected with the same tumor cells(Lyden et aI., 1999). However, Lewis lung

cancer cells grew equally well in wildtype and Idl 

+/- 

Id3-

/- 

mice suggesting that not all

tumors require Id proteins for invasion(Lyden et aI., 1999). Angiogenesis of skin tumors

also does not appear to depend on Idl expression(Sikder et aI. , 2003). High levels of Idl

are expressed in invasive breast cancer cell lines and overexpression of Idl in a non-

invasive cell line rendered it invasive(Desprez et aI., 1998; Lin et aI., 2000). Moreover,

reducing the expression of Idl by infection with Idl antisense cDNA decreased the

invasiveness of breast cancer cells both in vitro and in nude mice(Fong et aI. , 2003). In

contrast, low levels of Id2 are detected in aggressive breast cancer cell lines and



overexpression of Id2 in these cells can reduce their invasiveness(Itahana et aI. , 2003). Id

proteins are expressed at low levels in normal adult tissues(Lyden et aI., 1999), therefore

they may represent good targets for cancer therapy. However since Id2 appears to inhibit

breast cancer cell invasion, drugs for breast cancer may be more effective if they

specifically inhibit Idl.

LIM only domain proteins

Lmo2 , formerly known as Ttg2 or Rbtn2, is a LIM only domain protein with two

cysteine-rich, zinc-coordinating, protein-interaction LIM domains as well as an amino

terminal domain that appears to have transcriptional transactivation activity(Visvader et

aI., 1997). Lmo2 is expressed in all tissues except mature T cells(Foroni et aI., 1992;

Neale et aI., 1995) although it is highly expressed in DN 1 and DN2 thymocytes and

expressed at low levels in DN3 and DN4 thymocytes(Ferrando et aI., 2003; Herblot et aI.,

2000). However, recent conditional disruption of Lmo2 demonstrates that Lmo2 is not

essential for the development of T cells or B cells(McCormack et aI., 2003). Lmol has a

more restricted pattern of expression with high levels in the brain and low levels in

lymphoid tissues(Foroni et aI., 1992). Lmo2 deficient mice have a similar phenotype as

Tall knockout mice in that they lack blood cells and are embryonic lethal at embryonic

day 1O. 5(Warren et aI., 1994). By following the fate of Lmo2-null ES cells in chimeric

mice, it was determined that Lmo2, like Tall , is not required for vasculogenesis but is

required for angiogenesis(Yamada et aI. , 2000). Lmo2 binds to Tall, Gatal and Ldbl in



erythroid cells and is thought to act as a bridging molecule in the complex(Osada et aI.,

1997; Wadman et aI., 1994a).

Lmol and Lmo2 in leukemia

Like TALI, both LMO 1 and LM 0 2 can be involved in chromosomal

translocations in human T -ALL patients. These translocations place the genes under the

control of the T cell receptor regulatory elements and result in misexpression in the

thymus. LMOI and LM02 are involved in the t(11;14)(p15;qll) and t(ll ; 14)(p13;qll)

translocations respectively(Rabbitts etaI., 1999). Activation of LM02 is also implicated

in gene therapy induced T -ALL that occurred in two patients in a recent gene therapy

clinical trial for X-linked severe combined immunodeficiency(Hacein-Bey-Abina et aI.,

2003a). In both patients, the retroviral vector inserted near the LM02 gene resulting in

overexpression of LM02(Hacein-Bey-Abina et aI., 2003b).

Transgenic expression of Lmo2 in the thymus leads to an increase in CD4- , CD8-

double negative T cells and development of T cell leukemia with a mean latency of 9-

months(Fisch et aI., 1992; Larson et aI., 1994; Larson et aI., 1995). Fifty percent of lck-

! .

Lmol transgenic mice also develop T cell leukemia with a median latency of 10.

months(McGuire et aI., 1992). Tall can collaborate with both Lmol and Lmo2 to cause

leukemia in mice. Ninety-five percent of Tall/Lmol bitransgenic mice develop leukemia

within 6 months(Aplan et aI., 1997) and Tall/Lmo2 bitransgenic mice develop leukemia

with a mean latency of 7 months(Larson et aI., 1996). The thymocyte differentiation

arrest observed in the bitransgenic mice is also more severe than in the single 
Lmol and



Lmo2 transgenic mice, suggesting that differentiation arrest is important in the

development of disease(Chervinsky et aI., 1999; Larson et aI., 1996). In addition, co-

expression of Lmo2 and Tall is often observed in thymic lymphomas from Lmo2

transgenic mice(Grutz et aI., 1998) and from mismatch repair gene null rnice(Lowsky et

aI., 1997). Cooperation of these two oncogenes in human T-ALL is supported by RT-

PCR analysis of human T-ALL cell lines and patients samples demonstrating that TALI

is usually expressed along with either LMOI or LM02(Ferrando and Look, 2003; Ono et

aI., 1997). Moreover, one of the gene therapy patients with LM02-induced leukemia had

SIL- TALI chromosomal deletion(Hacein-Bey-Abina et aI., 2003b).

Similarities in the phenotypes of Tall/Lmol bitransgenic mice and E2A null mice

suggest that Lmol acts by inhibiting E proteins. Like E2A null mice, Tall/Lmol

bitransgenic mice display decreases in total thymocyte numbers, decreases in CD4+,

CD8+ cells and increased numbers of DNI thymocyte precursors(Bain et aI., 1997;

Chervinsky et aI., 1999). In transfectionstudies, expression of both Tall and Lmol

inhibited luciferase expression driven by an E box promoter better than expression of

Tall alone(Chervinsky et aI., 1999). However, CASTing experiments have demonstrated

that Lmo2 expressed in T cells forms part of a complex that binds a two E-box site in

DNA(Grutz et aI., 1998). This site differs from the E box-GATA site that Lmo2-

containing complexes have been shown to bind in erythroid cells by similar

methods(Wadman et aI., 1997), suggesting that Lmo2 may regulate the expression of

novel target genes when expressed in T cells. The DNA-binding, Lmo2-containing

complex in T cells also contains E2A, Tall and Ldbl(Grutz et aI., 1998). Therefore,



Lmol/Lmo2 may cause leukemia either by inhibiting E proteins or other proteins to

which it binds or by paricipating in a complex that activates novel gene targets. It is also

possible that both mechanisms contribute to Lmol/Lmo2 induced leukemia.

TALI

TALI (also termed SCL or TCLS) was first discovered due to its involvement in a

translocation in a human leukemic stem cellline(Begley et aI., 1989). Tall encodes a

42kD basic helix-loop-helix (bHLH) protein of 331 amino acids as well as a smaller

22kD form generated by initiation at an internal methionine(Cheng, 1992). Both Tall

gene products contain a basic DNA binding domain as well as a helix-loop-helix

dimerization domain. The shorter form of Tall lacks the transcriptional transactivation

domain(Wadman et aI. , 1994b). Tall protein is detected in the embryonic and

extraembryonic mesoderm at embryonic day 7.S (E7.S), in blood islands of the yolk sac

at E8.S, and in adult erythroid, myeloid, megakarocyte and mast cells(Kallanpur et aI.,

1994). Tall is also expressed in endothelial cells and cells of the developing and adult

central nervous system(Drake et aI., 1997; Green et aI., 1992; Kallanpur et aI., 1994).

Tall in neuronal development

In situ hybridization experiments on embryonic day 14.S embryos demonstrated

the expression of Tall in the developing brain, most abundantly in the dorsal part of the

metencephalon and the roof of the mesencephalon(Green et aI., 1992). In addition,

northern analysis of adult mouse brain revealed expression of Tall in mature



neurons(Green et aI., 1992). In order to further define the expression pattern of Tall 

the central nervous system, Tall- LacZ mice were created in which LacZ expression is

controlled by the Tall promoter(Elefanty et aI., 1998). At embryonic day 10. 5, Tall was

expressed in the presumptive spinal cord and at E12. Tall expression was detected in

the midbrain. Tall expression was also seen in the ventral surface of the brainstem in

both embryonic and adult mice(Elefanty et aI. , 1999). A more recent and extensive study

of the expression pattern of Tall in the brain detected Tall expression in the

diencephalic, mesencephalic and metencephalic adult neurons(van Eekelen et aI. , 2003).

Tall is also expressed in post-mitotic neurons but not in the brain regions that give rise to

the neural stem cells. Therefore, a role for Tall in late neuronal differentiation and in

maintenance of mature neurons has been suggested(van Eekelen et aI., 2003). The early

embryonic lethality of Tall deficient mice has precluded the analysis of Tall in later

stages of development. Conditional disruption of Tall in the brain may be useful in

determining the role of Tall in late neuronal development.

The expression patterns of other bHLH proteins such as Tal2 and Mashl are

similar to that of Tall. Therefore , these proteins could compensate loss of Tall

expression in the brain. Gene targeting studies have demonstrated essential functions

for both Mashl and Tal2 in neuronal development. Mashl deficient mice lack olfactory

receptor neurons and chromaffin cel1s(Cau et aI., 2002). Tal2 deficient mice develop

normally and have no defects in hematopoiesis, but do not survive past 32 days and

display defects in midbrain and hydrocephalus development demonstrating that Tal2



plays an important role in the development of the mature nervous system(Bucher et aI.,

2000).

Tall in hematopoietic and vascular cell development

The expression pattern of Tall suggests that it may be important in blood cell

development. In fact, overexpression of Tall in mouse erythroleukemia cells induced

erythroid differentiation while expression of antisense Tall inhibited

differentiation(Aplan et aI., 1992). However, expression of antisense Tall in the human

erythroleukemic cell line K562 induced differentiation(Green et aI., 1991). Gene

targeting studies in mice have demonstrated that Tall is essential for embryonic

hematopoiesis(Robb et aI., 1995a; Shivdasani et aI., 1995). Tall deficient mice die

between embryonic day 8.5 and 10.5 and are completely bloodless(Robb et aI., 1995a;

Shivdasani et aI., 1995). By studying the capacity of Tall /- embryonic stem cells to

differentiate in vitro or in chimeric mice, it was established that Tall is required for the

development of all hematopoietic lineages(Porcher et aI., 1996; Robb et aI., 1996).

However, conditional disruption of Tall in the adult mouse has revealed that Tall

expression is essential for the production of hematopoietic stem cells (HSC) and for their

differentiation into erythroid and megakarocyte precursors but not for HSC engraftment,

self-renewal or differentiation into myeloid or lymphoid cells(Hall et aI., 2003; Mikkola,

2003) (Figure 1).

It has recently been shown that Tall is expressed in the DN1, DN2 and DN3

mouse thymocyte precursors. Tall is not, however, normally expressed in mature T-



cells(Ferrando et aI., 2003; Tremblay et aI., 2003). The role of Tall in thymocyte

precursors is not clear, however when Tall is disrupted in the adult mouse a skewing

towards the T cell lineage over the B cell lineage is observed(Mikkola, 2003), suggesting

that loss of Tall promotes thymocyte differentiation.

The expression of Tall in both hematopoietic and endothelial cells suggests that

Tall may playa role in the hemangioblast, a precursor of both the hematopoietic and

endothelial lineages. The existence of the hemangioblastis supported by the phenotypes

of the vascular endothelial growth factor (VEGF) receptor- 2, Flkl, deficient mice and

cloche mutant zebrafish which have defects in both blood and endothelial cell

development(Shalaby et aI., 1995; Stainier et aI., 1995). In addition, the blast colony

forming cells (BL-CFCs) derived from embryonic stem cells can differentiate into both

blood and endothelial cells in vitro(Choi et aI., 1998; Nishikawa et aI., 1998). In

zebrafish, primitive erythroid cells and endothelial cells originate from the posterior

lateral mesoderm (PLM) which gives rise to primitive erythroid cells and endothelial

cells of the major trunk vessels, and the anterior lateral mesoderm (ALM) from which

endothelial cells and myeloid cells originate(Hsu et aI., 2001; Roman and Weinstein,

2000; Zhong et aI., 2001). Tall is expressed in both the PLM and ALM supporting the

idea that Tall expression is important for the development of the hemangioblast(Gering

et aI., 1998). Overexpression of Tall in the zebrafish embryo by mRNA microinjection

leads to an overproduction of red blood cells, endothelial cells and Tall +lFlk+ cells that

appear to represent the hemangioblast cells(Gering et aI., 1998). Moreover, expression of

Tall in cloche mutant zebrafish rescues both the hematopoietic and vascular
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developmental defects(Liao et aI., 1998). More recent experiments in zebrafish embryos

demonstrate that ectopic expression of Tall can convert mesodermal cells into

hemagioblasts at the expense of somatic paraxial mesoderm. However, overexpression

of both Tall and Lmo2 is necessary to convert non-axial mesodermal cells into

hemangioblasts(Gering et aI., 2003).

Despite the effects of Tall overexpression on the development of the

hemangioblast in zebrafish , endothelial cells in the yolk sac of Tall deficient mice

develop normally(Visvader et aI., 1998). The hematopoietic defects in Tall deficient

mice were rescued by expressing Tall in hematopoietic cells using the GAT Al

promoter(Visvader et aI., 1998). Despite the production of blood cells in T all- /GAT AI.

Tall mice, they do not survive past E9.5 due to defects in angiogenesis(Visvader et aI.,

1998). In the yolk sac of wildtype embryos, an organized network of vitellne vessels is

observed. In contrast, in Tall- /GATAl- Tall mice, the vessels are smaller and less

organized suggesting that Tall is not necessary for the specification of vascular cells but

is essential for angiogenesis(Visvader et aI., 1998). The presence of endothelial cells in

Tall- /GATAI- Tall mice may reflect compensation by other bHLH proteins such as

Lyll that have similar expression patterns.

Tall protein interactions

Tall, Gatal and Lmo2 deficient mice have similar phenotypes suggesting that

these proteins work together to specify embryonic hematopoiesis(Fujiwara et aI., 1996;

Shivdasani et aI., 1995; Warren etaI., 1994). Gatal deficient mice die between EIO.



and El1.5, and the embryos stain weakly with benzidine reagent, exhibit extreme pallor,

and contain erythroid cells arrested at the proerythroblast-like stage(Fujiwara et aI.,

1996). The complete absence of erythroid cells in Tall deficient mice(Shivdasani et aI.,

1995) demonstrates that Tall plays an earlier role in blood cell development than Gata1.

Gata2 may replace Gatal in early erythroid cell development. High levels of Gata2

. i expression are observed in early progenitors of hematopoietic cells(Leonard et aI., 1993).

Consistent with this early role in erythroid differentiation, Gata2 deficient mice die

between EI0 and Ell of severe anemia(Tsai et aI., 1994). Lmo2 deficient mice die at

EIO.5 due to a complete absence in erythropoiesis, however, in contrast to Tall deficient

yolk sac cells which .cannot differentiate into erythroid or myeloid cells in vitro,

macrophages can develop from Lmo2 deficient yolk sac cells(Shivdasani et aI., 1995;

Warren et aI., 1994). These results demonstrate that although Tall, Lmo2 and Gatal play

essential roles in blood cell development, Tall alone is essential for a myelo-erythroid

progenitor.

Tall is a class II bHLH protein due to its inability to bind DNA as a homodimer

and due to its tissue-restricted expression pattern. Other class II bHLH proteins include

MyoD, myogenin, NeuroD/BET A2 and Atonal. Tall forms heterodimers through their

HLH domains with the class I bHLH E 1?roteins, E47, E12, and HEB which are also

capable of binding to DNA as homodimers(Hsu et aI., 1991; Hsu et aI., 1994b; Voronova

and Lee, 1994). In erythroid cells, Tall is part of a large transcriptional complex that

includes E proteins, Lmo2, Ldbl, and Gatal proteins(Valge-Archer et aI., 1994; Wadman

et aI., 1997). The helix-loop-helix domain of Tall is also required for its interaction with



Lmo2(Wadman et al., 1994a). However since Lmo2 cannot bind DNA, it is thought to act

as a bridging molecule in the complex(Wadman et aI., 1997). LdbllNl is a widely

expressed protein that interacts with Lmo2 as well as several other LIM domain

containing proteins(Visvader et aI., 1997). Ldbl contains a nuclear localization domain,

an amino-terminal homodimerization domain and a carboxy-terminal LIM interaction

domain(Matthews and Visvader, 2003). The Tal-l/E2A/Gatal/Lmo2/Ldbl complex

binds to an E-box-GATA consensus sequence in erythroid cells, and expression of all

five proteins in a reporter assay is necessary for full transcriptional

transactivation(Wadman et aI., 1997). Tall has also been shown to form a complex with

E2A, Lmo2, Ldbl and Rb in erythroblasts. This complex binds to the dual E-box

sequence in the c-kit promoter and down-regulates c-kit expression(Vitell et aI., 2000).

A Tall mutant that is unable to bind DNA is able to rescue primitive

erythropoiesis in Tall null ES cells, however DNA binding is required for the full

differentiation of erythroid and megakaryocyte cells(Porcher et aI., 1999). These studies

suggest that Tall may have both DNA binding dependent and DNA binding independent

functions in hematopoiesis. The authors propose that Tall may function in

hematopoiesis without binding DNA either by sequestering proteins or by being par of a

large transcriptional complex in which the DNA binding activity of Tall is not

required(Porcher et aI., 1999). In addition , a complex containing Tall, E47, Lmo2, Ldbl,

Gata1l2 and Spl regulates c-kit expression in hematopoietic cells even if the DNA

binding activity of Tall is abolished(Lec!lyer et aI., 2002). However, the DNA binding
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activity of Tall is required to activate the expression of the red cell membrane skeleton

component, protein 4.2(Xu et aI., 2003).

Taken together, these studies suggest that Tall regulates genes important in

erythroid and megakaryocyte differentiation. Tall also plays a critical role in embryonic

hematopoietic stem cell development and in vasculogenesis. However, it remains unclear

how Tall regulates these -biological events. Tall may regulate the expression of genes

required for the proliferation and self-renewal of hematopoietic stem cells; similar targets

may contribute to the Tall induced transformation of thymocytes. In addition, the

observation that the DNA binding activity of Tall is dispensable for primitive

erythropoesis raises the possibilty that Tall does not act as a transcriptional

transactivator in leukemia. The interaction parners of Tall in erythroid cells, namely E

proteins and LIM only domain proteins, have also been implicated in leukemia

suggesting that interactions between Tall and these proteins in thymocytes may

contribute to leukemogenesis.

TALI and leukemia

Several groups have attempted to model Tall induced leukemia in the mouse

with variable success. One group expressed Tall in the mouse thymus using the CD2

promoter(Robb et aI., 1995b). Despite high expression of Tall at the both the RNA and

protein level, these mice did not develop T cell leukemia. In addition, the 
Tall transgene

did not accelerate Moloney murine leukemia virus induced leukemia(Robb et aI., 1995b).

Another group expressed the human TALI gene in the thymus of mice using the same



CD2 promoter(Larson et aI., 1996). These TALI transgenic mice also did not develop

leukemia. However they were able to accelerate leukemia in CD2-Lmo2 transgenic mice

demonstrating that TALI can act as an oncogene(Larson et aI., 1996). In contrast,

expression of either mouse or human Tall in the mouse thymus using the proximallck

promoter leads to the development of T cell acute lymphoblastic leukemia(Condorell et

aI., 1996; Kellher et aI., 1996).

It is not clear why the CD2- Tall transgenic mice do not develop leukemia.

Although, Tall is expressed at high levels in mature thymocytes in these mice, the

expression of Tall in thymocyte precursors was not examined. Expression of Tall

throughout thymocyte development may be necessary to cause leukemia in mice. 

addition, one group reported that the shorter, pp22 form of Tall was not expressed in

their mice(Robb et aI., 1995b). It is possible that this form of Tall is required to cause

leukemia. This hypothesis is supported by a study demonstrating that the pp22 fonn of

TALI collaborates with LMOI to cause T cell leukemia in mice(Aplan et aI., 1997). In

addition , the pp22 form is only species expressed in some human T -ALL patients, but it

is not expressed in erythroleukemic cell lines , suggesting that expression of the shorter

form is specific to T cells(Bernard et aI. , 1992; Cheng, 1992).

Twenty-eight percent of lck- Tall transgenic mice develop leukemia with a

median latency of 350 days(Kellher et aI., 1996). The long latency of Tall induced

leukemia in the mouse suggests that additional mutations are required for disease

progression. Leukemia development is fully penetrant in Casein kinase IIfJall

bitransgenic mice with a median survival time of 74 days(Kellher et aI., 1996).



Phosphorylation of E47 by casein kinase II (CKII) reduces E47 homodimer DNA binding

and transcriptional activation(Johnson et aI., 1996). Therefore, casein kinase II may

accelerate Tall induced leukemia by inhibiting E protein function. Casein kinase II also

phosphorylates Myc and regulates its stability(Channavajhala and Seldin, 2002).

Moreover, the development of T cell lymphomas is accelerated in Myc/CKII

bitransgenic mice(Seldinand Leder, 1995). So, the disease acceleration in Tall/CKII

bitransgenic mice may be a result of increased c-myc protein levels.

In T-ALL patients activation of TALI is often accompanied by LMOI or LM02

activation , loss of the cell cycle inhibitors p16/INK4A and p14/ARF, and Myc

overexpression(Ferrando and Look, 2003). Retroviral insertional mutagenesis studies

using the Moloney murine leukemia virus in Tall transgenic mice have been performed

in our laboratory. We have identified Notch 1 , Myc and dominant negative lkaros 

collaborating oncogenes of Tall(Leslie Cunningham, unpublished data). Future work

wil confirm that these oncogenes can collaborate with Tall to induce leukemia in mice

and wil determine how they contribute to disease progression. Additional hits may

inhibit apoptosis or promote cell cycle progression.

The observations that E2A deficient mice and ldl and Id2 transgenic mice

develop T cell leukemia, raises the possibilty that Tall induces leukemia by acting like

an Id protein. Further support for this hypothesis comes from the studies demonstrating

that the DNA binding activity of Tall is not required for some of its functions(Lecuyer et

aI., 2002; Porcher et aI., 1999; Ravet et aI., 2004). Therefore, Tall and other bHLH

proteins such as Ta12, BHLHBI or Lyll that are activated in human T-ALL may act by
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inhibiting the function of E proteins. All four proteins interact with E proteins 

vivo(Hsu et aI., 1994b; Miyamoto et aI. , 1996; Wang et aI., 2000; Xia et aI., 1994).

However, it is also possible that these proteins regulate the expression of novel target

genes in the thymus. Both Lyll/E2A and Tall/E2Aheterodimers preferentially bind to

similar DNA sequences that are distinct from the sequences that E2A homodimers

bind(Hsu, 1994; Miyamoto et aI., 1996), and Tall/E2A heterodimers do exhibit

transcriptional transactivation in vitro(Hsu et aI., 1994c). In fact, a complex containing

Tall, E47, Lmo2, and Gata3 has been shown to induce the transcription of the

retinaldehye dehydrogenase 2 gene in T-ALL celllines(Ono et al., 1998). However,

Tall/E2A heterodimers are weaker transcriptional transactivators than E2A homodimers

but E2A homodimers are more sensitive to inhibition by Id proteins(Hsu et aI., 1994c).

Therefore, Tall may act to positively or negatively regulate transcription depending on

the cellular context.

Tall may inhibit E proteins and down regulate the transcription of their target

genes by two different mechanisms. Tall may act by the sequestration model (Figure 2)

in which it interacts with E proteins and sequesters them away from the gene regulatory

elements to which they normally bind. Alternatively, Tall may actively repress

transcription by interacting with E proteins and gene regulatory elements. The

transactivation domain of Tall may be weaker than that of E proteins or it may be

incompatible with the transactivation domain of E proteins. It is also possible that Tall

displaces a coactivator or recruits a corepressor to gene regulatory elements normally

bound by E proteins resulting in gene repression. In fact, E proteins have been shown to
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interact with histone acetyltransferases and the transcriptional coactivators p300, CBP,

.""

and PCAF in muscle and B cells (Bradney et aI., 2002; Eckner, 1996). Tall has been

shown to interact with the corepressor mSin3A in undifferentiated mouse
'e.

erythroleukemic cells(Huang and Brandt, 2000). The observation that the C-terminus of

T ALl in addition to the bHLH domain is required for inhibition of E2A-mediated

transcriptional transactivation supports the idea that TALI must interact with another

protein in order to repress transcription(Hofmann and Cole, 1996).

The work presented in this thesis demonstrates that the DNA binding activity of

Tall is not required to cause leukemia in mice suggesting that Tall does not cause

leukemia by transactivating the expression of novel target genes. To provide genetic

evidence that Tall causes disease by interfering with the class I bHLH E proteins, we

mated our Tall transgenic mice to E2A or HEB heterozygous mice. We observe

significant disease acceleration in Tall/E2A+/- and Tall/HEB+/- mice. Furthermore, we

observe decreased expression of the E protein target genes Ragl , Rag2, and pre-Tain

thymocytes from our Tall transgenic mice. Taken together, these studies demonstrate

that Tall causes leukemia by interfering with the function of the class I bHLH proteins

E47 and HEB. In addition, we show that Tall can recruit the corepressor mSin3A to the

CD4 enhancer suggesting that Tall can actively repress the transcription of E47/HB

target genes.
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The NF-KB family of transcription factors includes pSO/plOS, pS2/pI00 , c-Rel,

ReIA(p6S) and RelB, all of which contain an N-terminal 300 amino acid Rei homology

domain. The pSO and pS2 proteins are processed from plOS and plOO respectively.

Activation of NF-KB is controlled in part by the shuttling of NF-KB dimers from the

cytoplasm to the nucleus. In the cytoplasm, NF-KB dimers associate with the inhibitory

proteins IKBaor IKB~. In response to a variety of stimuli including TNF- , IL-

bacterial infection, or viral infection, the IKK complex consisting of IKKa, IKK~, and

the regulatory subunit, IKKy (NEMO)phosphorylates IKB leading to its ubiquitination

and subsequent degradation(Karn and Ben-Neriah, 2000). The release of IKB from NF-

KB exposes the nuclear localization signal (NLS) on NF- and leads to the translocation

of NF-KB dimers to the nucleus(Baldwin, 1996). RelNpSO dimers bind to the consensus

sequence GGGRNNYYCC and RelNc-Rel dimers bind to HGGARNYYCC where H is

an A C, or T; R is a purine and Y is a pyrimidine(Baldwin, 1996). However, in vitro

experiments have shown that p6S and c-Rel containing complexes can regulate the

expression of the same genes, suggesting functional redundancy between the family

members(Garoufalis et aI., 1994; Tan et aI. , 1992). Several NF-KB target genes involved

in immunity and inflammation are known including GM-CSF, IL-6, IL-8 and IL-

2(Baldwin, 1996).
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NF -KB and lymphocyte development

Gene targeting of the NF-KB proteins in mice have revealed their essential

functions in the immune system. p50/pl05 deficient mice develop normally however

they exhibit multiple defects in immune system function(Sha et aI., 1995). B cells from

p50-

/- 

mice do not proliferate normally in response to LPS and do not produce normal

levels of antibodies. In addition, p50/pl05 null mice are more susceptible to Listeria

monocytogenes and Streptococus pneumoniae infection(Sha et aI., 1995). RelB null mice

also survive but have immune system defects. The mice exhibit splenomegaly,

infitration of inflammatory T cells to other organs and decreased antigen presenting

dendritic cells in the thymus(Weih et aI., 1995). Mature Band T cells from Rel /- mice

do not proliferate normally in response to a variety of mitogens(Kontgen et aI., 1995).

The RelA deficient mice have a much more severe phenotype in that they die during

embryogenesis due to massive apoptosis in the liver(Beg et aI., 1995). Therefore, RelA

appears to playa role in inhibiting apoptosis. Because RelA null mice die so early in

development, the role of RelA in lymphoid development could not be determned.

In order to determine the role of p65 in lymphocyte development, lethally

irradiated mice were transplanted with p65 null fetal liver cells. Modest decreases in

fetal liver-derived Band T cells were observed in reconstituted mice(Horwitz et aI.,

1997). However, when mice were transplanted with cells that lack both p50 andp65, no

fetal liver derived B or T cells were observed demonstrating that p50 and p65 are

essential for lymphopoiesis(Horwitz et aI., 1997). Lymphopoiesis was rescued by

cotransplant of p50- p65-

/- 

fetal liver cells with wildtype bone marrow cells suggesting



that developing lymphocytes require NF-KB signaling in stromal cells(Horwitz et aI.,

1997). To gain more insight into the role of NF-KB in lymphocyte development, IKBa

was overexpressed in T cells of the mouse from a transgene driven by the CD2 promoter

(Esslinger et aI., 1997). Expression of this transgene leads to an inhibition of the

activation of all NF-KB complexes-not only pSO/p6S. A decrease in overall thymic

cellularity was observed. In addition, transgenic mice had decreased numbers of CD4-

single positive and CDS-single positive thymocytes(Esslinger et aI., 1997) demonstrating

that NF-KB activation is required for proper T cell development.

Another group expressed a N-terminal truncated form of IKBathat cannot be

phosphorylated and degraded in the mouse thymus using a transgenecontrolled by the

proximal lck promoter(Boothby et aI., 1997). Although thymic cellularity was

unaffected in lck-mllda transgenic mice, CDS-single positive cells were reduced about

fold(Boothby et aI., 1997). In the periphery, both CDS-single positive and CD4-single

positive cells were reduced however CDS-single positive cells were more severely

affected. The authors also observed that the transgenic thymocytes did not proliferate as

well as wildtype thymocytes and were more susceptible to apoptosis in response to

mitogenic stimuli(Boothby et aI., 1997) supporting a role for NF-KB in protecting

thymocytes from apoptosis. Double positive thymocytes from CD2-ml1cBa transgenic

mice are resistant to a-CD3-induced apoptosis(Hettmann et aI., 1999), suggesting that

NF-KB may be pro-apoptotic in double positive thymocytes. NF-KB dependent

thymocyte apoptosis may involve down-regulation of Bcl- (Hettmann et aI., 1999) or up

regulation of Fas ligand(Ayroldi et aI., 1997).



Recent studies have linked pre-Ta signaling to NF-KB activation. It has been

demonstrated that the highest levels of NF-KB activation are in the DN3 and DN4

populations, the cells that express elevated levels of the pre- T cell receptor(Aifantis et aI.,

2001; Voll et aI., 2000). In addition, expression of the components of the pre-T cell

receptor led to NF-KB activation in a T cellline(Voll and Ghosh, 1999). Inhibition 

NF-KB activity by transgenic expression of the mutant IK B athat cannot be

phosphorylated or degraded led to decreased numbers of DN3 and DN4 cells. In

contrast, expression of a constitutively active IKK~ resulted in an increase in DN4

cells(Voll et aI., 2000). Interestingly, anti-CD3 treatment, overexpression of activated lck

and y-irradiation can substitute for pre-TCR signaling in pre-Ta null mice(Fehling et aI.,

1997). All of these signals also activate NF-KB suggesting that NF-KB activation may be

able to replace' pre-TCR signaling(Voll and Ghosh, 1999) and promote differentiation of

double negative thymocytes into double positive thymocytes.

NF-KB and cancer

The first NF-KB family member discovered was the viral oncogene 
Rel. This

gene causes lymphoid malignancy in chickens and leads to T cell lymphoma when

overexpressed in the mouse(Carrasco et aI., 1996; Gilmore, 1999). Moreover,

chromosomal rearrangement and amplification of NF-KB genes has been observed in a

variety of human cancers. Rel amplification has been reported in diffuse large cell

lymphoma, primary mediastinal B-celllymphoma, and follcular lymphoma(Houldsworth

et aI., 1996; Joos et aI., 1996; Rao et aI., 1998). Rel is also involved in chromosomal
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rearrangements in some cases of follcular lymphoma and diffuse large cell

lymphoma(Lu et aI., 1991). Overexpression of c-Rel was found in half of the non-small

cell lung carcinomas examined suggesting that c-Rel does not only contribute to

lymphoid malignancies(Mukhopadhyay et aI., 1995). RelA is infrequently involved in

chromosomal rearrangements, however it has been shown to be amplified or

overexpressed in some solid tumors including squamous head and neck carcinomas,

breast adenocarcinomas, and stomach adenocarcinomas(Mathew et aI., 1993).

In the past few years there have been many reports of constitutive NF-

activation in a wide variety of human cancers making NF-KB an attractive target for

chemotherapy. High levels of nuclear pSO/p65 heterodimers are detected in melanoma

cells(Yang and Richmond, 2001), prostate cancer cells(Palayoor et aI., 1999), pancreatic

cancer cells(Wang et aI., 1999), and breast cancer cells(Sovak et aI. , 1997) among many

others. In addition, constitutive NF-KB activation is also observed in chronic

myelogenous leukemia(Guzman et aI., 2001), Hodgkin s lymphoma(Bargou et aI., 1996),

and in 39 out of 42 childhood acute lymphoblastic leukemia samples(Kordes et aI., 2000).

Inhibition of NF-KB activation by overexpression of a non-degradable form of IKBain

pancreatic cancer cells, Hodgkin s lymphoma cells and squamous cell carcinoma

inhibited tumor growth in mice(Bargou et aI., 1997; Duffey etaI. , 1999; Fujioka et aI.,

2003). NF-KB activation is also required for the development of tumors caused by

expression of the chimeric oncoprotein Bcr-Abl(Reuther et aI. , 1998). When mice with

prostate tumors were treated with the NF-KB inhibitor DHMQ, a significant decrease in

tumor size was observed, suggesting thatNF-KB activation contributes to the growth of
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these tumor cells(Kikuchi et aI., 2003). Inhibition of NF-KB activation in lung carcinoma

cells did not affect their growth but did inhibit metastasis(Andela et aI., 2000). 

contrast, overexpression of the NF-KB superinhibitor in the skin of the mouse led to the

development of squamous cell carcinoma(van Hogerlinden et aI., 1999). Therefore, the

effect of NF-KB inhibition may depend on the cell type.

The prevalence of NF-KB activation in human cancer including childhood T cell

acute lymphoblastic leukemia, prompted us to determine whether NF-KB was activated in

our mouse model of Tall induced leukemia. We observed NF-KB activation in Tall

thymocytes and tumors, however inhibition of NF-KB by expression of the non-

degradable form of IKBa did not affect tumor growth or metastasis 
in vivo. These results

suggest that TALI leukemia patients may not respond well to the use of NF-

inhibitors.



Figure 1. Gene targeting experiments in mice have established that Tall 

essential for hematopoiesis and angiogenesis. Tall is expressed in all cell types shown

in red. Tall deficient mice have demonstrated that Tall is essential for embryonic blood

cell development. Tall is also required for embryonic angiogenesis and for the

development of hematopoietic stem cells. Conditional disruption of Tall in the adult

mouse demonstrated that Tall is not required for HSC proliferation, engraftment, or the

differentiation of HSCs to myeloid or lymphoid lineages. Continued Tall expression is

required for the differentiation of HSCs to erythroid cells and megakaryocytes.

Misexpression of Tall in T cells occurs in the majority of childhood T cell acute

lymphoblastic leukemia cases. Figure adapted from(Barton et aI. , 1999).
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Figure 2. Models of Tall leukemogenesis. The sequestration model postulates that

ectopic expression of Tall in the thymus disrupts E47/HB heterodimer formation and

leads to a down-regulation of genes 
critical for thymocyte differentiation. In the

inhibition model Tall represses E47/HB target genes by recruiting a corepressor. The

transactivation model suggests that Tall/E47 or Tall/HEB complexes induce novel

oncogenes. All three models may contribute to Tall leukemogenesis.
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CHAPTER II

THE DNA BINDING ACTIVITY OF TALI IS NOT
REQUIRED TO INDUCE LEUKEMIAI YMPHOMA IN

MICE



Introduction

The basic helix-loop-helix protein TALI is normally expressed in hematopoietic

progenitors and erythroid, megakaryocytic and mast cell precursors, as well as

endothelial cells and the central nervous system(Begley and Green, 1999). Gene

targeting experiments in mice have established Tall as an essential regulator of blood cell

and vascular development(Porcher et aI., 1996; Shivdasani et aI., 1995; Visvader et aI.,

1998). Deregulated expression of TALI in humans by either chromosomal translocation,

interstitial deletion or mutation occurs in 60% of patients with T cell acute lymphoblastic

leukemia (T-ALL)(Bash et aI., 1995). Ectopic expression of Tall in the thymus of mice

results in the development of clonal T cellleukemia/lymphomas(Condorell et aI., 1996;

Kellher et aI., 1996), further demonstrating the oncogenicity of Tall. Yet, the

mechanism(s) of Tall- induced leukemogenesis remains unclear.

In human leukemic Jurkat cells, TALI does not homodimerize, but forms stable

heterodimers with the ubiquitously expressed bHLH E2A proteins, E12 and E47(Hsu et

aI., 1994b). Members of the E2A family include E2-2, HEB and the products of the E2A

gene, E47 and El2(Henthorn et aI., 1990; Hu et al., 1992; Murre et aI., 1989a).

T AL1/E2A heterodimers preferentially recognize the E-box consensus sequence

CAGATG(Hsu, 1994) and exhibit transcriptional transactivation activity 
in vitro(Hsu 

aI., 1994a). Consequently, it was proposed that TALI functions as a direct

transcriptional activator in leukemia.

In erythroid cells, Tall associates with E12 and E47(Condorell et aI., 1995; Hsu

et aI., 1991; Hsu et aI., 1994b), the cysteine-rich LIM-only protein Lmo2, Ldbl(Valge-



. .

Archer et aI., 1994; Visvader et aI., 1997; Wadman et aI., 1997) and the erythroid-specific

zinc finger protein Gatal(Wadman et aI., 1997). The Tall/E2A/mo/Gata1 complex

binds a composite E-box GATA site(Wadman et aI., 1997) and presumably regulates

genes involved in erythroid differentiation. E-box-GATA sites have been identified in

several erythroid genes, including enhancers of the erythroid specific EKLF and Gatal

transcription factors(Anderson et aI., 1998; Cohen-Kaminsky et aI., 1998; Vyas et aI.,

1999). Hence, Tall/E2A heterodimers may function as direct transcriptional regulators

in both hematopoietic development and leukemia.

However, in vitro Tall/E2A heterodimers are reported to be relatively weak

transcriptional activators compared to E2A homodimers(Doyle et aI., 1994; Hsu et aI.,

1994a; Park, 1998). Yet, under physiologic conditions where inhibitory HLH Id proteins

are expressed, Tall/E2A heterodimers exhibit significantly increased transcriptional

activity relative to the E2A homodimer, presumably due to the stabilty of the TalllE2A

heterodimer(V oronova and Lee, 1994). Thus, two models have been proposed to explain

the leukemogenic effects of Tall expression in T cells(Begley and Green, 1999). Tall-

induced leukemogenesis may reflect the aberrant transactivation of novel target genes by

the Tall/E2A heterodimer. Alternatively, Tall may sequester E2A proteins, resulting in

the subsequent alteration of E2A target genes. Support for the sequestration model

comes largely from studies of E2A deficient mice, where approximately fifty percent of

the surviving E2A-

/- 

mice develop spontaneous T celllymphomasl1eukemi et aI.,

1997; Yan et aI. , 1997).



To determine whether Tall transforms thymocytes by acting 
as a direct

transcriptional activator, we created transgenic mice expressing a known DNA binding

mutant of Tall(Hsu et aI., 1994a). Mutagenesis of the myogenic bHLH proteins,

myogenin and MyoDl, identified amino acid residues within the basic domain critical for

DNA binding(Brennan et aI., 1991; Davis et al" 1990). Replacement of two 
of the

conserved, contact arginines with glycines within the basic domain of 
Tall, (designated

Tall RI88G;RI89G), obliterated binding to the Tall/E47 consensus sequence and

destroyed E-box reporter activity(Hsu et aI., 1994a). To elucidate the mechanism(s) of

Tall-induced leukemia, we tested the transforming potential of the 

Tall R188G;R189G

DNA binding mutant. Three transgenic lines of mice expressing 
TallRI88G;RI89G in

the thymus were generated and characterized. Approximately half of the mice expressing

a DNA binding mutant of Tall developed disease. This study provides direct evidence

that the DNA binding activity of Tall is not required to induce 
leukemia/lymphoma in

mice and demonstrates that Tall contributes to leukemia by interfering with E2A protein

function(s).
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Results

Tall R188G;R189G transgenic mice

A transgenic construct was generated by placing the human TALI cDNA

containing the R188G;R189G mutations under control of the 
lck proximal promoter

(Figure 3A). The 3' untranslated region of this construct contains introns, exons and the

polyA addition site of the human growth hormone gene(Abraham et aI., 1991). The 
lck-

Tall R188G;R189G construct was microinjected into the pronuclei of fertilzed FVBIN

oocytes(Taketo et aI., 1991). Four transgenic founders were identified initially and three

were studied in detail. The three Tall R188G;R189G lines expanded for study expressed

high levels of Tall R188G;R189G mRA as shown by ribonuclease protection assay; the

fourth line expressed less Tall R188G;R189G mRA and was not studied further (Figure

3B, lanes Mut Tall/+). As expected, no Tall message was detected in wild type thymus.

Thymocytes from the three Tall R188G;R189G Jines expressed similar levels of Tall

R188G;R189G protein (Figure 3C lanes Mut Tall/+). Furthermore, the protein

expression levels of the Tall Rl88G;Rl89Gmutant were similar to that achieved in the

wild type Tall transgenic lines, in murine erythroleukemic (M) cells, and human Jurkat

cells (J)(Figure 3C).

T cell acute lymphoblastic leukemia/ymphoma in 
Tall R188G;R189G transgenic

mice

The three Tall R188G;R189G transgenic lines developed leukemia with a median

survival of 215 days (Figure 4). Twenty-nine of sixty-two (48%) Tall R188G;R189G



mice from three lines developed disease compared to twenty one of seventy-five (28%)

of wild type Tall transgenic mice (Figure 4). Both the wild type Tall and the Tall

R188G;R189G transgenic animals exhibit respiratory distress, ruffled coat and weight

loss. Necropsy revealed the presence of a thymic mass, often accompanied by

hepatosplenomegaly. Histologic.al examination of the thymus revealed effacement of the

normal thymic architecture by a monomorphic infiltrate of lymphoblastic cells with

prominent nucleoli and scant cytoplasm (Figure SA and D). Similar cells invade the

surrounding para-sternal muscle, pericardium andother organs such as spleen, liver and

kidney (Figure SB, C, E and F). Lymphoblasts were detected in the peripheral blood of

diseased animals at the time of sacrifice.

The histologic appearance of the thymic tumors as well as the leukemic blood

profiles of the Tall R188G;R189G mice were indistinguishable from that previously

observed for wild type Tall transgenic mice(Kellher et aI., 1996). This study

demonstrates that the DNA binding properties of Tall are not required to induce

leukemia/ymphoma in mice and suggests that Tall transforms via an Id-like mechanism,

potentially by sequestering E proteins.

Casein kinase II accelerates leukemia/ymphoma induced by Tall R188G;R189G

CKII has been shown to modulate the activity of several transcription factors 

vitro and to synergize dramatically with 
Myc- and with wild type Tall in inducing

lymphocytic leukemia in bitransgenic mice(Kelliher et aI., 1996; Seldin and Leder,

1995). The presence of CKII consensus phosphorylation sites in Tall and E47 and the



fact that CKII phosphorylation has been shown to inactivate E47 DNA binding

activity(Johnson et aI., 1996) prompted us to test whether CKI might collaborate with a

DNA binding mutant of Tall to induce leukemia in mice. To test this, one Tall

R188G;R189G transgenic line (Fo23) was mated with mice which expressed the catalytic

subunit of CKII in lymphocytes via the immunoglobulin heavy chain promoter-

enhancer(Seldin and Leder, 1995). The CKII transgenic mice develop clonal T cell

lymphomas after a long latency (median survival of 400 days)(Seldin and Leder, 
1995).

Previously, we had shown that wild type 
Tall and CKII cooperate to induce disease in

mice(Kellher et aI., 1996). All bitransgenic Tall/CKII animals developed leukemia with

a median survival of 72 days (Figure 4). When mated to the Tall R188G;R189G

transgenic mice, a strikingly similar acceleration of disease onset and increase in disease

penetrance was observed. All bitransgenic 
Tall RI88G;R189G/CKII animals developed

aggressive disease with a median survival of 69 days (Figure 4). In the 
Tall

RI88G;R189G/CKII animals, the disease was characterized by thymic enlargement, often

accompanied by splenomegaly and lymphadenopathy. As observed 
in wild type Tall

transgenic mice, the thymic architecture was obliterated by neoplastic cells and numerous

clusters of apoptotic cells were observed.

The nearly identical survi val curves observed for Tall/CKII and Tall

RI88G;R189G/CKII suggests that CKII does not synergize by potentiating the

transcriptional activity of Tall. Furthermore, this experiment supports the idea that wild

type Tall and its DNA binding mutant (Tall RI88G;RI89G) transform thymocytes by

similar mechanisms.
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Tall RI88.G;RI89G induces clonal or oligoclonal disease

The dramatic acceleration of disease onset in the Tall R188G;R189G/CKII

bitransgenic mice prompted us to determine the clonal nature of the disease. DNA was

isolated from cell lines derived from the tumors restricted with Hind III and examined by

fiter hybridization with the TCR J~2 probe. Clonal- or oligoclonal rearangements were

ected in both the Tall R188G;R189G and in the bitransgenic Tall

R188G;R189G/CKIl tumor cells analyzed and in most cases, both TCR 13 alleles were

rearranged (Figure 6). In animals where disease involved multiple organs such as

thymus, spleen, liver and kidney, the specific ~TCR bands were evident in all tissues. 

expected, the immunoglobulin heavy chain locus was retained in its germline

configuration (data not shown).

Tall R188G;R189G thymomas do not express CD4

Tumors from the Tall R188G;R189G and Tall R188G;R189G/CKII mice were

examined by flow cytometry to determine the phenotype(s) of the primary tumor. All of

the tumors appeared to be of T cell origin, although at varying stages of thymocyte

development (Table 2). None of the Tall R188G;R189G or Tall RI88G;R189G/CKII

tumors expressed the B cell specific antigen B220 or surface immunoglobin heavy chain

(data not shown).

Two predominant immunophenotypes were observed: four of seven tumors

consisted of predominantly CD3-positive, CD4-negative and CD8-positive cells,

presumably arising from the mature, single positive thymocyte population. The



remaining three tal- lR188G;R189G tumors expressed CD3 but failed to express either

CD4 or CDS. The bitransgenic Tall R188G;R189G/CKII tumor cells exhibited similar

immunophenotypes. Half (2/4) of the tumors analyzed were CD4-negative and CDS-

positive and the remaining two tumors examined were both CD4-negative and CD8-

negative.

Interestingly, no CD3-positive, CD4-positive, CDS-negative tumors were

observed in either the Tall R188G;R189G or Tall R188G;R189G/CKII mice, suggesting

that Tall R1SSG;R1S9G expression stimulates CD4-negative, CDS-positive thymocyte

differentiation and inhibits development (or survival) of CD4-positive, CDS-negative

thymocytes.

Thymic expression of wild type Tall and Tall R188G;R189G perturbs thymocyte

development

The absence of CD4-positive tumor target cells derived from Tall R188G;R189G

mice prompted us to further examine the effects of Tall expression on thymocyte

development. Thymus from disease-free, age-matched, Tall, Tall R188G;R189G

transgenics and control littermates was stained with antibodies to CD4 and CD8 and

analyzed by flow cytometry. The wild type Tall transgenic mice had 2- fold fewer

thymocytes compared to Tall R188G;R189G transgenic or control littermates (not

shown). Yet, analysis of the CD4/CDS thymic profies revealed the presence of all

thymocyte subpopulations. However, mice expressing either wild type Tall or the Tall

DNA binding mutant (RI8SG;R1S9G) consistently showed significant decreases in the



percentage of the CD4-positive, CDS-negative population (Table 3 and Figure 7 A).

Tall-expressing thymocytes exhibited concomitant increases in the percentage of CD4-

negative, CDS-positive population, resulting in markedly different CD4/CDS ratios (0.

for Tall/+; S for Tall R188G;R189G/+ compared to 3.45 for wild type littermates

(Table 3 and Figure 7 A). These data suggest that Tall may interfere with CD4

coreceptor expression, potentially by sequestering other bHLH transcription factors.

Consistent with this idea, thymocyte developmental abnormalities have also been

observed in both HEB deficient mice(Zhuang et aI., 1996a) and 
E2A deficient mice(Bain

et aI., 1997).

Studies in E2A null mice have demonstrated that the E2A gene products are

essential for the proper regulation of V(D)J recombination. Rearrangements in the

TCRY/Oloci that normally occur only in adult thymocytes are rearranged in fetal

thymocytes and vice versa(Bain et aI., 1999). To test whether V(D)J recombination is

also affected in Tall transgenic mice, double negative thymocytes from wildtype and

Tall/+ transgenic mice were stained with anti- Vy2-PE and anti-GL3-FITC (Figure 7B).

The percentage of Vy2 cells is reduced three fold in Tall/+ transgenic mice;

rearrangement of this loci is also reduced in the thymocytes of 
E2A null mice(Bain et aI.,

1999). In addition, PCR analysis of thymus DNA from four-week-old wildtype, Tall/+

and Mut Tall/+ mice revealed an increased rearrangement of the Vy3 locus (Figure 5C).

This locus is normally exclusively rearranged in fetal thymocytes but is also seen

rearranged in E2A null mice of a similar age(Bain et aI., 1999). The aberrant yo T cell

rearrangements observed in our Tall and Mut Tall transgenic mice suggest that Tall



affects yo T cell development as well as a~ and provides further evidence that Tall acts

by inhibiting the function of E proteins.

Wild type Tall and the DNA-binding mutant Tall R188G;R189G form stable

heterodimers with E47 and HEB

The tissue-specific bHLH proteins, like Tall, do not bind DNA because they do

not form homodimers(Littlewood, 1998). Thus, heterodimer formation is essential for

the DNA-binding activity and functional properties of these proteins. A stable Tall/E2A

complex has been detected in Jurkat cells(Hsuet aI., 1994a). However, it remains

unclear whether this complex is a consistent feature associated with Tall induced

leukemia. To test whether a Tall/E2A complex contributes to leukemia development in

the mouse, Tall tumor cell lysates were immunoprecipitated with either a preimmune

(PI) or anti-Tall polyclonal antiserum (I). Coprecipitating proteins were tested for the

presence of E47 by immunoblotting with an anti-E47 monoclonal antibody. E47

coprecipitated with Tall in murine erythroleukemia cells (MEL) and in the Tall induced

thymomas tested (Figure 8A, lanes 2, 4 and 6). Thus, a stable Tall/E7 heterodimer is

present in the leukemic cells of the Tall transgenic mice. By the same method, we were

also able to detect the presence of Tall/HB heterodimers in Tall tumor cells.

Although cells expressing the Tall R188G;R189G DNA binding mutant have

been shown to lack DNA binding activity(Hsu, 1994), it was unclear whether mutation of

the Tall basic domain might interfere with its ability to interact with E47 and HEB. 

test whether the mutant Tall R188G;R189G protein is capable of forming stable



heterodimers in vivo, lysates were prepared from thymomas derived from the Tall

R188G;R189G mice. Tall R188G;R189G/E7 and Tall Rl88G;Rl89G/HBcomplexes

were readily detected in the two thymomas tested, demonstrating that these basic domain

mutations do not interfere with formation/stabilty of the Tall/E7 or Tall/HB complex

in Tall R188G;R189G thymomas.

E47/HB heterodimers are depleted in Tall transgenic mice

We sought to determine whether the interaction of Tall with E47/HB disrupts

the formation of E47/HEB heterodimers, the predominate E2A dimers present in

thymocytes(Sawada and Littman, 1993). Thymocytes from wildtype and Tall mice were

lysed in a low stringency lysis buffer. Equal amounts of each lysate were

immunodepleted with three overnight incubations with anti-Tall to remove all Tall

containing complexes. The lysates were then immunoprecipitated with anti-E47 and

separated ona SDS-P AGE gel. The blot was then probed with anti-HEB to detect

E47/HB dimers (Figure 8B). Significantly less HEB protein was detected in the Tall

lysates indicating that fewer E47/HB dimers exist in Tall thymocytes compared to

wildtype thymocytes. Similar results were also obtained using Tall R188G;R189G

thymocytes. This experiment provides evidence that Tall acts by disrupting the E2A

protein complexes that normally form in thymocytes further supporting our hypothesis

that Tall acts by inhibiting E proteins. In addition, by gel shift analysis using the

sequence from the immunoglobulin heavy chain gene enhancer that contains E boxes, we



were able to demonstrate that fewer E47/HEB dimers bind this sequence in Tall

transgenic thymocytes compared to wildtype thymocytes (Figure SC).

Lmo2 expression is not required for Tall induced disease

Stable complexes between TALI1E7 and the cysteine-rich LIM-only protein

LM02 have been detected in the leukemic cells of some T-ALL patients(Wadman et aI.,

1994a) and transgenic coexpression of Tall and Lmo2 results in accelerated tumor

development(Larson et aI., 1996). Moreover, gene targeting experiments support a

cooperative relationship between Tall and Lmo2, as mice deficient for either gene exhibit

defects in erythropoiesis(Shivdasani et aI., 1995; Warren et aI., 1994). Together, these

studies suggest that Tall may induce Lmo2 expression in leukemia.

To test whether Lmo2 expression is required for Tall induced leukemogenesis in

mice, tumor celllysates were prepared from Tall and Tall R188G;R189G thymomas and

analyzed for Lmo2 expression by immunoblotting with an anti-Lmo2 antisera. The 22

kD Lmo2 protein was detected in Lmo2-transfected 293T cells and in the MEL cells,

however, no Lmo2 expression was detected in any of the Tall or Tall R188G;R189G

tumors examined (Figure SC). To ensure that samples contained equivalent amounts of

nuclear protein, extracts were examined for expression of E47. Similar amounts of E47

were detected in nuclear extracts prepared from MEL cells and 
Tall tumor cells (data not

shown). Hence, Lmo2 activation does not contribute to Tall induced leukemogenesis in

mICe.



Tall R188G;R189G /E2A complexes isolated from leukemic cells fail to bind DNA

Although previously shown to obliterate DNA binding 
in vitro, it remained

possible that Tall R188G;R189G/E2A protein complex retained some abilty to bind

DNA in vivo. To test this possibilty, nuclear extracts were prepared from thymomas and

subjected to gel mobilty shift analysis using the Tall/E47 consensus E-box motif

(CAGATG) as a probe(Hsu, 1994). Incubation of this probe with nuclear extracts from

Jurkat cells generated three distinct protein-DNA complexes (Figure 9). All three

complexes were eliminated by incubating the extract with an E2A polyclonal antisera.

The middle two complexes were also abrogated by incubating the extract with an

antiserum raised against human TALI but not with the corresponding preimmune serum.

Tall encodes two phosphoproteins; the full- length pp42 and a truncated polypeptide

pp22. The upper Tall/E2A complex corresponds to a pp42TAL/E2A heterodimer whereas

the pp22TAL/E2A forms the lower complex(Hsu, 1994). Nonspecific complexes were also

detected (labeled n.

Similar complexes were detected when the Tall/E7 probe was incubated with

nuclear extracts from Tall mouse thymomas (Figure 9, Tall tumor lanes). All three

complexes were depleted by incubating the extract with the anti-E2A antisera but not

with the corresponding preimmune antisera. The two lower complexes were depleted

when the mouse tumor extract was preincubated with an anti-Tall antisera,

demonstrating the presence of a pp42
ta1/E2A and pp22

ta1/E2A complexes in mouse

leukemic cells.



To test whether the Tall R188G;R189G DNA binding mutant protein exhibited

DNA binding activity in vivo, nuclear extracts were prepared from thymomas isolated

from the Tall R188G, R189G transgenic mice. As expected, no Tall R188G;R189G/E2A

heterodimers bound the Tall/E7 consensus sequence. However, E protein homodimers

did bind to the Tall/E47 consensus sequence in nuclear extracts from DNA binding

mutant Tall tumors. Taken together, this study argues that Tall contrbutes to leukemia

by interfering with E protein function(s) in thymocytes.



Discussion

We have demonstrated that the DNA binding properties of Tall 
are not required

to induce leukemia in mice. Forty eight percent of 
Tall R188G;R189G mice from three

lines died of clonal T lymphoblastic leukemia. Furthermore, we show that in all the 

Tall

induced thymomas tested, a stable Tall/E2A complex was detected. 
This provides direct

evidence that transformation by Tall does not require DNA binding and demonstrates

that Tall transforms by an Id-like mechanism, preventing the formation of E protein

homodimers.

Tall encodes a basic helix-loop-helix protein that is required for embryonic

hematopoietic and vascular development(Porcher et aI., 1996; Shivdasani 
et aI., 1995;

Visvader et aI., 1998). A recent structure-function analysis of the regions of Tall

required for hematopoiesis revealed that DNA binding by Tall is not required for

primitive erythropoiesis in embryonic stem cells(Porcher et aI., 1999). 
Thus, the DNA

binding activity of Tall is dispensable in both embryonic hematopoiesis and in leukemia.

When expressed in the thymus, wild type Tall and the DNA binding mutant (Tall

RI88G;RI89G) perturb thymocyte differentiation, stimulating the development CD8-

single positive thymocytes and inhibiting the development of CD4-single positive

thymocytes. The E2A proteins paricipate in lymphocyte development(Bain et aI., 
1997)

and are involved in transcriptional activation of the immunoglobulin and CD4 coreceptor

genes(Murre et aI., 1989a; Sawada and Littman, 1993). The ratio of CD4 to CD8 single

positive thymoctyes is also affected in 
E2A deficient mice(Bain et aI., 1997), further

implicating E2A protein sequestration in Tall induced disease.



These studies have major implications for current work focused on identifying

Tall target genes. Our work argues that Tall transforms by interfering with genes

activated or repressed by the E2A proteins, E12 or E47. One potential E47 target gene is

thecyclin-dependent kinase inhibitor p21(Prabhu et aI., 1997). Tall has been shown to

inhibit E47-mediated activation of a p21 reporter construct in BeLa cells(Park, 1998),

implicating p21 
CIPIIWAFIISdil as a potential target gene in human T -ALL. However, no

differences in p21 
CIPllWAFIISdil expression levels were observed in tumors isolated from

Tall (or Tall R188G;R189G) transgenic mice (data not shown), indicating that other E47

target genes are likely involved. Future cDNA microarray analyses of genes

activated/repressed upon Tall expression or E47 deletion should identify the cooperating

oncogene(s ).



Materials and Methods

Generation of transgenic mice

The human TALI cDNA containing the R188G;R189G mutations (generously provided

by Dr. Richard Baer) was isolated as a Bam HI-Bgi II fragment and cloned into the

BamH cloning site of p1017, a plasmid cassette containing the proximallck promoter

and the human growth hormone splice and poly A addition sites(Abraham et aI., 1991).

After being checked for proper orientation and sequenced to confirm presence of the

R188G;R189G mutations, the plasmid was linearized by digestion with SpeI and

microinjected into the FVBIN pronuclei. Transgenic mice were identified by probing

Southern blots of EcoRI- digested tail DNA with a 32 Iabeled random-primed 585 bp

EcoRI - EcoRI TALI partial cDNA fragment. Southern blots were hybridized and

washed as previously described(Kellher et aI., 1996). Transgenic lines were propagated

by crossing founder animals with FVBIN animals.

Histology

Upon necropsy, all tissue samples were preserved in Optimal Fix (American Histology

Reagent Company, Inc.). Four mm sections were cut and stained with hematoxylin and

eosin for histologic evaluation in the Transgenic Core Pathology Laboratory at the

University of California at Davis.

Antibodies and Fluorescence-activated flow cytometry analysis

Mouse thymomas were gently teased with frosted glass slides in order to produce single

cell suspensions. The cells were washed with PBS and stained with fluorescent-labeled

antibodies and subjected to flow cytometry at the FACS facilty at the University of



( c

Massachusetts Medical Center. Antibodies used in flow cytometry included FITC-

conjugated anti-mouse CD3, FITC-anti-mouse L3T4 (CD4), FITC-anti-mouse Ly-

(CD8), FITC-anti-mouse IL-2 receptor (CD25), FITC-anti-B220, FITC-polyclonal goat

anti-rat immunoglobulin antibody, PE-conjugated anti-mouse L3T4, FITC-anti-GL3 and

PE-conjugated V 2 (PharMingen, San Diego, CA). Dead cells were eliminated by gating

for cells which stained with LDS-751 (Exciton). Data were analyzed using FlowJo

software (Treestar, Inc.

Tumor DNA analysis

Southern blots of HindU/-digested DNA (lOJ.g) obtained from primar tumors and from

tumor cell lines were hybridized with a 32P-labeled 2 kb EcoR/ fragment containing the

murine TCR Jf32B exon(Malissen et al., 1984). Genomic DNA from tail samples was

also digested with EcoR/ transferred to GeneScreen Plus (New England Nuclear), and

hybridized to a 32P-Iableled 1.5 kb Pst! J. fragment(Early et aI., 1980). Blots were

washed in IX SSC, 1 % SDS, followed by a higher stringency wash containing O. IX SSC,

1 % SDS.

RNase protection analysis

Total RNA was isolated from thymus from age-matched, disease':free Tall

R188G;R189G transgenic mice and controllittermates. T3 and T7 antisense probes were

synthesized and hybridized to RNA samples as previously described(Kreg and Melton,

1987). The probe for human Tall R188G;R189G was derived by linearization of a 625

bp partial cDNA clone with SacI, resulting in a probe that protects 500 nucleotides.



Rearrangement PCR

500ng of thymocyte DNA was analyzed by PCR with primers specific for the Vy3

(CCAGCAGCCACT AAAA TG'tC)(Goldman aI., 1993 ) and Jyl

(AGAGGGAATTACTATGAGCT)(Asarnow et aI., 1988) loci. Twenty cycles were

performed with 1 minute at 94 C, 1 minute at 58 C and 1 minute at 72 C. The entire PCR

reactions were separated on a 2.2% Nusieve (Cambrex Bioscience Rockland, ME) gel

and blotted. The blot was then hybridized with an oligo specific for Vy3

(GCGGGAGTGGGACTTGTCTTGTT)(Goldman et aI., 1993). A control PCR was

performed with primers specific forthe TNllocus.

Immunoprecipitation and Western Blotting

To analyze transgene expression levels, lysates were prepared from the thymus of 4-

week-old Tall R188G;R189G transgenic mice and controllittermates and Tall protein

detected by immunoblotting with imti- Tall polyclonal antisera (gift of Dr. Richard Baer,

Columbia University). Tall protein levels were compared to levels expressed in Jurkat

and mouse erythroleukemia cells. For the co-immunoprecipitation experiments, Tall

tumor cell lines and murine erythroleukemia cells were lysed in a low stringency lysis

buffer (lOmM Hepes pH 7.6, 250mM NaCI, I% NP-40, 5mM EDTA)(Lassar et aI.,

1991), pre-cleared with protein A-agarose and immunoprecipitated with either pre-

immune or anti-Tall polyclonal antiserum. The immune complexes were washed twice

in lysis buffer and resolved by SDS-PAGE. The Tall RI88G;RI89G-associated proteins

were detected by immunoblotting with either an anti-E47 or anti-EI2/HB monoclonal

antibody (PharMingen). To determine whether Lmo2 expression contributed to Tall



induced disease, celllysates were prepared from murine erythroleukemic cells (M), five

Tall tumors and one Tall R188G;R189G tumor. As a positive control for Lmo2

expression, 293T cells were transfected with the pEFpGKpuro expression

vector(Visvader et aI., 1997) containing the Lmo2 cDNA (gift of Dr Stuart Orkin,

Harvard Medical School) or with vector alone. Equal amounts of total protein were

examined by immunoblotting with an anti-Lmo2 specific antisera (Dr. Stuart Orkin,

Harvard Medical School).

Gel Mobilty Shift Assay

Nuclear extracts were prepared from Jurkat cells and from tumors isolated from 

Tall and

Tall R188G;R189G transgenic mice (Mut Tall) as previously described(Grimm et aI.,

1996). EMSAs were performed with equivalent amounts of nuclear extract (20 J.g),

incubated with a 32 Iabeled double-stranded oligonucleotide probe containing the

preferred sequence for Tall/E47 heterodimers (E box underlined, sense strand

ACCTGAACAGATGGTCGGCT(Hsu et aI., 1994a). Some reactions were

supplemented with 1 J.1 of a rabbit anti-Tall or anti-E2A antisera (gift of Dr. Richard

Baer, Columbia University). EMSAs were also performed on thymocytes from age-

matched wildtype and Tall transgenic mice. Nuclear extracts from these thymocytes

were incubated with the murine immunoglobulin heavy-chain gene enhancer, J.E5

(underlined, sense strand GAACCAGAACACCTGCAGCA).



Figure 3. Structure and expression of the Tall R188G;R189G trans gene (A).

Diagrammatic representation of the lck-Tall R188G;R189G fusion construct used to

create transgenic mice. The human Tall R188G;R189G cDNA subcloned into a vector

with the proximal lck promoter and human growth hormone (hGH) splice and poly(A)

addition sequences was used to establish four lines of transgenic mice designated 2, 5, 6,

and 23. Expression of the Tall R188G;R189G trans gene (B). RNA prepared from

thymus of wild-type (+/+) and transgenic (Mut Tall founder lines 2, 5, 6 and 23) was

subjected to RNase protection analysis with an antisense riboprobe. The endogenous

Tall RI88G;RJ89G mRNA protects 500 bases. RNA levels were compared to the

human Tall expressing T -ALL cell line, Jurkat. RNA from the U937 and yeast tRNA

served as negative controls. Expression of the TALI protein (C). The 42 kDa TALI

polypeptide was detected in the thymocytes of four week old Tall R188G;R189G

transgenic mice from lines 2, 5, and 23 (Mut Tall) by immunoblotting with an anti-

human TALI antibody (gift of Dr. Richard Baer). Similar levels of TALI protein

expression were detected in the thymocytes of age-matched Tall transgenic mice (Tall),

using an anti-mouse TALI antibody (gift of Dr. Richard Baer, Columbia University). A

murine erythroleukemic cell line (M) and Jurkat cells (J) were used as a positive controls,

and wildtype thymus (lane 6) as a negative control for pp42-Tall protein expression.

Figure contributed by S. Oikemus and M. Bila.
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Figure 4. Kaplan-Meier survival plot of 
Tall, Tall R188G;R189G, Tall/CKllaand

Tall R188G;R189G/CKlla transgenic mice. Survival plot for the Tall,' Tall

R188G;R189G (Mut Tall), Tall/CKlIa (Tall/CKlI) 
and Tall R188G;R189G/CKIIa

(Mut Tall/CKIl) transgenic and bi-transgenic lines. The cohort of Tall mice consisted of

n=75 animals, the Tall R188G;R189G cohort consisted of n=62 animals, the 
Tall/CKIIa

bitransgenic cohort consisted of n=14 animals, and the Tall R188G;R189G/CKII

bitransgenic cohort consisted of n=30. All animals were monitored daily for any

evidence of disease. Upon onset of disease, the mice were sacrificed and a post-mortem

examination was performed.
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Figure 5. Histology of the Iymphoproliferative disease in Tall R188G;R189G

transgenic mice. A thymus from an adult Tall R188G;R189G transgenic mouse that

developed a thymoma shows the effacement of the normal thymic architecture (A; 100X)

and the proliferation of large lymphoblasts with prominent nucleoli (B; 400X). Similar

cells invaded the visceral organs such as the liver (C and D) and the kidney (not shown).
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Figure 6. Tall R188G;R189G and Tall R188G;R189G/CKIIa tumors are clonal or

oligoclonal. DNA prepared from tumor cell lines and wildtype genomic tail DNA was

digested with Hind III and analyzed by Southern Blot analysis. T cell receptor J~ chain

rearrangements were detected with a probe that identified a 5 kb DNA fragment in the

germline position of genomic tail DNA (lane T). Mut Tall lanes contain DNA isolated

from tumor cell lines derived from Tall R188G;R189G mice, whereas Mut Tall/CKIl

lanes contain DNA from Tall R188G;R189G/CKIla bitransgenic tumor cell lines.

Figure contributed by M. Bila.
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Figure 7. Tall expression perturbs thymocyte development. Thymocytes from four

week old wildtype, Tall/+ and Mut Tall/+ were stained with anti-CD4-FITC and anti-

CDS-PE and analyzed by flow cytometry (A) The results shown are 
representative of

more than ten experiments. Thymocytes from four-week-old 
wildtype and Tall/+ mice

were stained with anti-CD4 Tri-color, anti-CDS Tri-color, anti- Vy2 PE and anti-GL3

FITC and analyzed by flow cytometry. Staining with anti-Vy2 PE and anti-GL3 FITC is

shown on Tri-color-negative cells. DNA prepared from the thymus of four-week-old

wildtype, Tall/+ and Mut Tall/+ mice was subjected to PCR with primers specific for

the Vy3 and Jyl loci. The PCR reactions were separated on a 2.2% Nusieve gel and

blotted. The blot was then hybridized with an 
internal probe. A control PCR was

performed on the TNFRllocus (B).
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Figure 8. Wild type Tall and mutant Tall form stable heterodimers with E2A

proteins (A). Wildtype Tall and mutant Tall leukemic cell lines were lysed under low

stringency conditions and the lysates were immunoprecipitated with either anti-Tal

antiserum or the corresponding pre-immune serum. The samples were fractionated by

SDS-PAGE and coprecipitating proteins detected by immunoblotting with an anti-E47 or

an anti-EI2/HB monoclonal antibody. A murine erythroleukemic cell line was used as

a positive control. E47/HB heterodimers are depleted in Tall thymocytes (B). Equal

amounts of total protein lysates from wildtype and premalignant 
Tall thymocytes were

immunoprecipitated three times with anti-Tall. The Tall depleted lysates were then

immunoprecipitated with anti-E47 and the E47/HEB complexes were detected by

immunoblotting with anti-EI2/HB. Nuclear extracts from wildtype thymocytes and

Tall premalignant thymocytes were incubated with a radiolabeled oligonucleotide probe

corresponding to the murine immunoglobulin heavy chain gene enhancer (J1E5). In some

cases, the reaction was supplemented with the indicated antiserum. The binding reactions

were fractionated on a 5% non denaturing, polyacrylamide gel and the DNA-protein

complexes were detected by autoradiography. Lmo2 expression is not required for

Tall- induced leukemia (C). 293T cells were transfected with the EF puro

mammalian expression vector or with the vector expressing LM02. Nuclear extracts

containing an equal amount of protein from the Lmo2-transfected 293T cells, MEL cells,

and Tall tumor cells were resolved by SDS-PAGE and Lmo2 protein detected by

immunoblotting with an anti-Lmo2 rabbit polyclonal antisera.
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Figure 9. Mutant Tall/E2A complexes fail to bind DNA. Nuclear extracts from

Jurkat cells , a wildtype Tall leukemic cell line and mutant Tall R188G;R189G leukemic

cell lines were incubated with a radiolabeled oligonucleotide probe corresponding to the

TalllE7 consensus binding sequence(Hsu et aI., 1994a). In some cases, the reaction was

supplemented with the indicated antiserum. The binding reactions were fractionated on a

5% nondenaturing, polyacrylamide gel and the DNA-protein complexes were detected by

autoradiography. Tall/E2A complexes were not detected in any of the six Mut Tall cells

lines analyzed by EMSA.
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Table 2. Immunophenotypes of Tall R188GjR189G and Tall R188Gj

R189G/CKlla tumors

Animal Genotype %CD3+ %CD4+ %CD8+ Survival
(days)

5721 Mut Tall/+ 139

5578 Mut Tall/+ 183

5591 Mut Tall/+ 115

5577 Mut Tall/+ 146

1326 Mut Tall/+ 147

5378 Mut Tall/+ .:1 .:1 140

1320 Mut Tall/+ .:1 185

5495 Mut Tall/CKII

5522 Mut Tall/CKII

5535 Mut Tall/CKII

5538 Mut Tall/CKII .:1

Table contributed by M. Bila.



Table 3. Expression of wild type Tall and Tall R188G;R189G (Mut Tall)
uerturbs thvmocyte develoument.

Genotype % CD4- CDS- % CD4+,CDS+ %CD4+ %CDS+ CD4:CDS

+/++/+

82 

+/+

Tall/+
Tall/+
Tall/+ 0.3

Mut Tall/+

Mut Tall/+
1.0

Mut Tall/+



CHAPTER III

TALI TRANSFORMS BY REPRESSING E47/HB
TRANSCRIPTIONAL ACTIVITY



Introduction

T cell acute lymphoblastic leukemia (T-ALL) accounts for 10- 15% of pediatric

and 25% of adult ALL cases(Ferrando et aI., 2002). Activation of the basic helix-Ioop-

helix TALI gene occurs by chromosomal translocation, interstitial deletion or mutation in

over 60% of children and adults with T-ALL (Bash et aI., 1995). In contrast to T-ALL

induced by other oncogenes such as HOXII or MLL-ENL, patients with TALI

activation respond poorly to therapy with only 50% of patients surviving 5 years

(Ferrando et aI., 2002).

TALI heterodimerizes with class I or A bHLH proteins including E12, E47, HEB

and E2-2(Hsu et aI., 1991; O'Neil et al., 2001; Voronova and Lee, 1994) and in

hematopoietic cells, is par of a large transcriptional complex that includes Gatal and the

LIM-only proteins Lmo2 and Ldbl(Valge-Archer et aI., 1994; Wadman et aI., 1997).

Mice deficient for Tall have no primitive or definitive hematopoiesis and exhibit

angiogenic defects (Shivdasani et aI., 1995; Visvader et aI. , 1998). Surprisingly,

conditional inactivation of Tall in adult mice does not result in defects in the lymphoid or

myeloid lineages, suggesting that Tall is critical for the genesis of the hematopoietic

stem cell (HSC), but not required for its maintenance(Mikkola, 2003). The function of

Tall in the hematopoietic stem cell has suggested that Tall activation in leukemia may

stimulate the activation of genes important in stem cell expansion and/or self-renewal.

In mouse Tall tumors and in Jurkat cells, a human leukemic cell line that

expresses TALI , stable Tall1E7 and Tall/HB heterodimers are readily detected(Hsu et

aI., 1994b; O'Neil et aI., 2001), and the related bHLH proteins L YLI and BHLHI may



contribute to leukemia by interfering with E protein function(s). Consistent with this

idea, a percentage of surviving deficient mice develop T cell

leukemia/lymphoma(Bain et at, 1997; Yan et aI., 1997). Disruption of E2A function is

also believed to be the consequence of chromosomal translocations involving the LIM-

only domain proteins, LMO 1 and LM02, recently also found activated in gene therapy-

induced T-ALL(Kohn et at, 2003; Rabbitts, 1998). Yet, how LM01l2 inhibit E2A

function and contribute to leukemia remains unclear. In some leukemic patients, LM02

and TALI are co-expressed(Ferrando et at, 2002), suggesting that leukemic

transformation is dependent on the expression of both the TALI and LM02 proteins.

Consistent with this idea, a TALI/LM02/E2A complex is detected in a human T-ALL

cellline(Ono et aI., 1998) and leukemogenesis is observed in mice that express Tall and

Lmo2(Larson et aI., 1996). However, not all human T-ALL patients that express TALI,

also express LMO 1 or LM02(Ferrando et aI., 2002). Similarly, only one of six mouse

Tall tumors examined express Lmo2 (Jennifer Shank, unpublished data), revealing that

Lmo2 expression is also not required for 
Tall induced leukemogenesis in the mouse.

To test whether Tall induces leukemia by interfering with E protein function(s),

we expressed the Tall oncogene in an E2A or HEB heterozygous background. We

observe thymocyte differentiation arrest and disease acceleration in 
Tall/E2A+/- and

Tall/HEB+/- mice, providing genetic evidence that Tall induces leukemia by interfering

with E47/HB. Consistent with the differentiation arrest, gene expression profiing of

premalignant Tall thymocytes reveals repression of several genes important for

thymocyte differentiation. The expression of the E47/HB target genes, Rag2 and pre-



Ta are decreased, on a per cell basis, in premalignant Tall cells and further decreased in

Tall/E2A+/- thymocytes. Tall mediates gene repression by depleting the E47/HB

heterodimer and by recruiting the mSin3A/AC 1 corepressor complex to target loci.

The results of this study demonstrate that Tall, like the leukemogenic fusion proteins

PML-RARa and AML- l/ETO, contributes to leukemia by repressing gene expression

and inducing differentiation arrest.



Results

Thymocyte developmental perturbation in 
Tall/E2A+/- and Tall/HEB+/- mice

Expression of Tall in the thymus results in a 50% decrease in overall thymocyte

cellularity (Figure lOA), a 3- fold decrease in double positive thymocytes, as well as

decreases in CD4 single positive thymocytes. Increases in the immature CDS single

positive thymocytes are also observed. Analysis of thymocytes from Tall/E2A+/- and

Tall/HEB+/- mice revealed severe decreases in double positive thymocytes (average

43% for Tall/E2A+/- and 40% for Tall/HEB+/-) and increases in CDS single positive

thymocytes, suggesting that Tall expression in an E2A or HEB heterozygous background

results in further decreases in DP and CD4 single positive thymocytes. Although

thymocyte development is normal in 
E2A+/- or HEB+/- mice(Bain et aI., 1997; Zhuang

et aI., 1996a) Tall expression in an E2A or HEB heterozygous background results in S-

fold decreases in the absolute number of DP thymocytes (Figure lOB). The decrease in

DP thymocytes observed in Tall mice may reflect an inabilty to express adequate

amounts of the CD4 co-receptor (Figure lOB and C). The expression of the CD4 co-

receptor, TCR a and ~ chains and CD5 are decreased in mice deficient for E2A or HEB,

suggesting that these are bona fide E47/HB target genes in thymocytes (Zhuang et aI.,

1996; Bain et aI., 1997). Consistent with the CD4 repression, we also observe 4- fold

decreases in TCR ~ chain expression in thymocytes from 
Tall/E2A+/- mice (not shown)

as well as decreased CD5 expression (Table 5 and Figure 13), suggesting that Tall

interferes with the E47/HB heterodimer.



Increases in DN thymocyte precursors were also observed in 
Tall/E2A+/- 

Tall/HEB+/- mice, suggesting that thymocyte development may be arested in these

mice. Tall transgenic mice exhibit a partial thymocyte arrest at the DN2 stage of

thymocyte development with increases in the CD44-positive, CD25-positive DN

thymocytes (Figure lOD). We found DN thymocyte development severely affected in

Tall/E2A+/- and TalllHEB+/- mice, with arrest at the DN2 and DN3 stages,

respectively. Tall expression in an E2A or HEB heterozygous background, induces

differentiation arrest similar to that observed in E2A or HEB deficient mice(Bain et aI.,

1997; Barndt et aI., 1999).

Diseae acceleration in Tall/E2A +/- and Tall/HEB+/- mice

We have previously demonstrated that thymocyte differentiation arest is a central

feature associated with the development of Tall induced leukemia in the mouse(O'Neil et

aI., 2001; O'Neil et aI., 2003). The severe thymocyte developmental arrest observed

when Tall is expressed in an E2A or HEB heterozygous background suggested to us that

leukemogenesis may be accelerated in these mice.

Tall/E2A+/- and Tall/HEB+/- mice develop disease rapidly within a median

survival period of 216 days (pc:0.0001) and 143 days (pc:0.0001), respectively (Figure

11). In contrast, Tall/E2A+/+ and Tall/HEB+/+ littermates develop disease at a similar

frequency as Tall transgenic mice (Kelliher et aI., 1996). Thus, disease acceleration

, -

reflects effects of Tallon E2A and HEB proteins and does not appear to reflect genetic



differences between the strains of mice. Meanwhile, leukemia is not observed in 
E2A 

HEB heterozygous mice.

In addition, we observed a highly significant increase in disease penetrance in

both the Tall/E2A+/- and Tall/HEB+/- mice compared to Tall transgenic mice. T cell

lymphoblastic leukemia is completely penetrant in Tall/E2A +/- and Tall/HEB+/- mice

whereas, only 28% of Tall transgenic mice develop disease in one year (Kellher et aI.,

1996).

Upon necropsy , all animals exhibited lymphoblastic cells in the peripheral blood

and thymic masses, often accompanied by hepatosplenomegaly and lymphadenopathy.

Histopathological examination of the thymus revealed effacement of the normal thymic

architecture and the proliferation of lymphoblastic cells with prominent nucleoli and

scant cytoplasm. The histological appearance of the thymic tumors were

indistinguishable from that previously observed in Tall transgenic mice(Kellher et aI.,

1996). In addition, examination of other tissues revealed evidence of tumor infitration to

organs such liver and kidney.

Tumors induced are clonal or oligoclonal and display a variety of

immunophenotypes

The disease acceleration observed when Tall is expressed in an E2A or HEB

heterozygous background, suggested to us that polyclonal tumors may develop in these

mice. To examine this possibilty, DNA isolated from Tall/E2A+/- and Tall/HEB+/-

tumors was digested with HindII and analyzed by Southern blot analysis with a TCR J~2

probe(Figure 12A).. All tumors analyzed were clonal or oligoclonal and in most cases



... ,.,.

/f'

\' 

both TCR ~ alleles were rearranged. Similar to what is observed in E2A deficient

mice(Bain et aI., 1997), clonal or oligoclonal tumors were observed in Tall/E2A+/- 

HEB+/- mice, revealing that a deficiency of E2A and HEB proteins is not sufficient to

induce leukemia in these mice and that additional genetic changes are required.

Tumors from Tall/E2A+/- and TalllHEB+/- mice were also analyzed by flow

cytometry to determine the phenotype of the tumor target cell. All tumors were of T cell

origin but appear to be at various stages of thymocyte development (Table 4). Diverse

tumor phenotypes were also observed in Tall transgenic mice (Kellher et aI., 1996).

However, about twenty percent of the Tall/E2A+/- and Tall/HEB+/- tumors failed to

express CD3, CD4 and CDS, indicating that a more immature cell type may be

transformed in some of the Tall/E2A+/- or HEB+/- mice.

Disease acceleration is not accompanied by loss of heterozygosity in Tall/E2A+/-

mice

The observation that a percentage of E2A deficient mice are susceptible to the

development of T cell leukemia/lymphoma led to the idea that the E2A locus may act as a

lymphoid-specific tumor suppressor(Bain et aI., 1997; Yan et aI., 1997). Hence, tumors

that develop in Tall/E2A+/- mice may exhibit loss of heterozygosity (LOH). To examine

this possibility, we isolated DNA from tumors derived from 
Tall/E2A+/- mice and

analyzed the E2A locus by Southern blotting (Figure 12B). All Tall/E2A+/- tumors

tested retained the wild type allele of E2A indicating that LOH is not a feature associated

with disease acceleration in Tall/E2A+/- mice. However, loss of E2A expression in the



Tall/E2A+/- tumors could involve methylation of regulatory sequences. To confirm that

the remaining E2A allele is expressed, we prepared nuclear lysates from 
Tall/E2A+/-

tumors and were able to detect E47 expression by immunoblotting (not shown). Similar

results were obtained on tumors from Tall/HEB+/- mice, indicating that Tall is not

simply cooperating with loss of E2A or HEB proteins to induce leukemia in mice.

Thymic expression of the Tall oncogene is associated with gene repression

To identify potential target genes deregulated by 
Tall activation, we performed

gene expression profilng of premalignant Tall thymocytes using high density DNA

microarrays. We isolated RNA from sorted CD4- and CDS-positive premalignant

thymocytes and used it to interrogate Affymetrix DNA microarays, representing 6,000

known genes and 6,000 EST clusters. Transcription profies of sorted double positive

thymocytes from age-matched, wildtype and 
Tall transgenic mice were compared.

Consistent with the differentiation arrest observed in the 
Tall transgenic mice(O' Neil et

aI., 2003), we found the lymphoid specific-cyclin D3 decreased in thymocytes that

expressed Tall (Table 5). Moreover, the expression of several genes important in

thymocyte differentiation were also reduced in 
Tall thymocytes, including those

encoding CD3, CD6, CD5, Ragl, Rag2 and RORy (Figure 13 and data not shown).

Some of the genes repressed in Tall thymocytes have been previously thought to be

regulated by E47/HEB heterodimer, notably Ragl/2 and CD5(Bain, 1994; Schlissel,

1991; Zhuang et aI., 1996b). Other genes such as the retinoid-related orphan receptor y

(RORy) have been shown to be important in thymocyte development(He, 2002; Littman



et aI., 1999; Sun et aI., 2000), but have not been linked to E47/HEB regulation.

Interestingly, RORy deficient mice exhibit decreases in double positive and CD4 single

positive thymocytes and develop T cell leukemia/lymphoma at high incidence(Sun et aI.,

2000; Ueda et aI., 2002). To confirm whether RORy expression is decreased in

premalignant Tall thymocytes, we prepared total celllysates from thymocytes from Tall

transgenic and controllittermates. We found RORy levels decreased in cells that express

Tall compared to thymocytes from control littermates (Figure 13D). Moreover

repression of RORy expression was maintained in all seven of the Tall tumors examned,

suggesting that RORy repression may be an important in leukemogenesis. Although not

previously implicated as an E47/HB target gene, conserved, tandem E box sequences

are present in the regulatory region of the mouse and human RORy genes, suggesting that

RORy may also be regulated by the E47/HB heterodimer.

The E47/HEB target genes Rag2 and pre-Ta are reduced on a per cell basis in

Tall and Tall/E2A +/- DN thymocytes

Our microarray experiment suggests that Tall expression affects the expression of

Ragl/Rag2 recombinases, required for T and B cell development (Shinkai et aI., 1992).

To validate these findings and to test whether Rag 2 expression is also affected in 
Tall

DN precursors, we mated our Tall transgenic mice to mice in which GFP has been

introduced into the mouse Rag2 locus by homologous recombination(Yu, 1999).

Thymocytes from age-matched, premalignant Tall mice were stained with antibodies

against CD4 and CDS and the GFP levels in the various subpopulations were examined.



The mean fluorescence intensity (MF) of the Rag2 drven GFP was consistently reduced

on a per cell basis in Tall double positive thymocytes (Figure 14A). The mean

fluorescence intensity was also reduced in double negative thymocytes compared to

controllittermates (Figure 14B; MF=659 for wildtype, compared to MF=438 for 
Tall

thymocytes), indicating reduced Rag2 expression in 
Tall double negative thymocytes. If

Tall functions by inhibiting E47/HB-mediated transcription of Rag2, then one might

predict further decreases in Rag2 expression in Tall/E2A+/- or Tall/HEB+/-

premalignant thymocytes. To test this possibilty, we mated our 
Tall/E2A+/- mice to the

Rag2-GFP mice. In all mice examined, we found Rag2-dr ven expression of GFP further

reduced in the double negative thymocytes from 
Tall/E2A+/- mice compared to Tall

transgenic mice, indicating further E47/HB inhibition in Tall/E2A+/- mice.

In addition to the recombinase genes Ragi/2, the E47/HB heterodimer has also

been implicated in regulation of the pre-Ta chain of the pre T receptor, required for DN

thymocyte expansion and survival (Herblot et aI., 2000; Petersson, 2002; Takeuchi et aI.,

2001; Tremblay et aI., 2003). To determine whether Tall affects the expression of pre-

Ta, we used a similar strategy and mated our Tall transgenic mice to mice in which the

expression of GFP is under the control of the pre-Tapromoter(Reizi , 2001). 

observe a 2- fold decrease in the pre-Ta-driven GFP expression in virtually all DN3

thymocytes in Tall transgenic mice and a further reduction in 
Tall/E2A+/- mice(Figure

14C). The reduced transcription of both Rag2 and pre-Ta in nearly all Tall thymocytes

and the further reduction in 
Tall/E2A 

+/-

thymocytes suggests that the DN3 arrest is

mediated by reduced Rag2 and pre- Ta expression.



Tall recruits the corepressor mSin3A to the CD4 enhancer

Our previous work demonstrated the presence of stable Tall/E7 and Tall/HB

heterodimers in pre- leukemic thymocytes and tumors isolated from 
Tall transgenic

mice(O' Neil et aI., 2001). Thus, Tall may repress E47/HB target genes by depleting

E47/HB heterodimers or by modifying E47/HB activity.

To determine whether the Tall/E7 or HEB heterodimers are localized to regions

of gene repression, we used chromatin immunoprecipitation to ask whether E47/HB or

Tall/E7 heterodimers bound the regulatory regions of the CD4 gene. Thymocytes from

age-matched, pre- leukemic Tall and wildtype mice were treated with formaldehyde and

lysates from these cells were immunoprecipitated using antibodies against Tall, E2A,

and with an anti-RIP antibody. PCR was performed on the immunoprecipitated DNA

using primers that flank the tandem E-box consensus sequences of the mouse CD4

enhancer(Sawada and Littman, 1993). A 200 bp fragment was amplified from DNA

immunoprecipitated with an anti-E2A antibody from wildtype thymocytes. The 200 bp

fragment was also detected when Tall thymocyte DNA was immunoprecipitated with an

anti-Tall or anti-E2A antibodies, indicating that the Tall/E7 heterodimer occupies the

CD4 enhancer (Figure 15A). These studies reveal that Tall does not function like an Id

protein and inhibit E47/HB mediated transcription by sequestering E47 into non-DNA

binding complexes.

Previous work has demonstrated that Tall protein associates with mSin3A in

undifferentiated MEL cel1s(Huang and Brandt, 2000). Thus, we hypothesized that Tall



may cause gene repression in leukemia by displacing coactivators with corepressor

complexes. To test this possibility, we performed additional chromatin

immunoprecipitation experiments using antibodies for the coactivator p300 and the

corepressor mSin3A. In wildtype thymocytes, the 200bp band is amplified from DNA

immunoprecipitated with an anti-p300 antibody, indicating that the coactivator p300 is

also bound to the CD4 enhancer sequence. E proteins have been shown to interact with

histone acetyltransferases and the transcriptional coactivators p300, CBP, and PCAF

(Bradney et aI., 2002; Eckner, 1996). Consistent with the CD4 repression observed in the

pre- leukemic Tall thymocytes (Figure 10), thecoactivator p300 is not detected at the

CD4 locus when Tall thymocytes are immunoprecipitated. Rather, the corepressor,

mSin3A is readily detected bound to the CD4 enhancer (Figure 15B). These results

suggest that Tall represses CD4 transcription by binding to the E box sequences in the

CD4 enhancer and bringing in the corepressor mSin3A. Consistent with its association

with the mSin3A corepressor complex(Zhang et aI., 1997), the histone deacetylase

HDACI is detected at the CD4 locus when Tall preleukemic thymocytes, but not wild

type thymocytes, are immunoprecipitated (Figure 15C).

The recruitment of mSin3A1ACI complex to the CD4 locus and potentially

other E47/HB target genes suggested to us that mouse Tall tumors may be sensitive to

HDAC inhibitors. Treatment with the HDAC inhibitor TSA induced apoptosis in all six

mouse Tall tumors tested, resulting in the death of 75 to 99% of the treated tumor cells

(Figure 15D). HDAC inhibition may stimulate Tall tumor cell apoptosis via direct

effects on E47/HB transcriptional activity. Consistent with its function as a lymphoid



specific tumor suppressor, ectopic E47 expression in T cell tumors that arise in 

E2A-

mice, results in apoptosis(Engel and Murre, 1999), suggesting that in addition to its roles

in differentiation, the E47/HB heterodimer also has proapoptotic activities.



Discussion

Although frequently activated in human T -ALL patients, the mechanism(s) by

which Tall contributes to leukemia/lymphoma remains unclear. Studies suggest that

Tall may transactivate the expression of novel target genes in leukemia(Cohen-

Kaminsky et aI., 1998; Hsu et aI., 1994c) and that the LIM-only protein Lmo2 is required

for Tall induced leukemogenesis(Larson et aI., 1996). We demonstrate that Tall

transforms mouse T cells in the absence of 
Lmo2 activation by inducing differentiation

arest and by interfering with E47/HB function(s). Both Tall/E2A+/- and TallIHEB+/-

mice develop disease rapidly and with complete penetrance. Disease acceleration is

accompanied by induction of a more severe thymocyte developmental arrest in

Tall/E2A+/- and Tall/HEB+/- mice compared to transgenic mice expressing 
Tall or a

DNA binding mutant of Tall(O' Neil et aI., 2001; O'Neil et aI., 2003). Thus, this work

also reveals that differentiation arrest is central for disease development and suggests

E2A proteins may directly regulate the cell cycle in thymocyte precursors.

We found expression of the E47/HB target genes CD4, TCR~ and CD5

decreased in Tall DP thymocytes and Rag2 and pre-Ta decreased in Tall DN thymic

precursors. The expression of Rag2 and pre- are further reduced in Tall/E2A+/- 

Tall/HEB+/- mice, suggesting that decreased expression of these genes may be

responsible for the severe differentiation arrest and disease acceleration observed when

Tall is expressed in an E2A or HEB heterozygous background. Consistent with these

studies, our gene expression profiing reveals evidence of gene repression during the pre-

leukemic phase of the disease.



E47/HB heterodimers appear to regulate CD4 expression in par by recruiting

the coactivator p300 to the enhancer. In contrast, CD4 expression is reduced in pre-

leukemic Tall thymocytes and further reduced in Tall/E2A+/- or HEB+/- thymocytes,

supporting the idea that E47/HB activity is diminished in these mice. In addition to

depleting the E47/HB heterodimer, Tall represses E47/HB target gene expression by

recruiting the mSin3A1ACI corepressor to target loci. This observation provides a

new mechanism to explain how Tall contributes to leukemogenesis. Rather than

operating like an Id and inhibiting the abilty of E proteins to bind DNA, Tall directly

represses gene transcription by recruiting corepressor complexes to the E47/HB target

gene, CD4. It seems likely that decreased expression of the other E47/HB target genes

including TCR a and~, CDS, Rag2 and pre-Ta may also be mSin3A/ACI-mediated.

The fact that all the mouse Tall tumors examined were highly sensitive to HDAC

inhibitors raises the possibilty that T-ALL patients with TALI activation may also be

responsive to HDAC inhibitors. This is an important finding as many of these patients

fail on modern combination chemotherapy and specific therapies are urgently

needed(Ferrando et al., 2002). Finally, Tall repressive effects may not be limited to

genes regulated by E4 7 /HB and may include other genes that regulate proliferation and

survival.

A critical remaining question is how developmental perturbation induced by Tall

expression predisposes thymocytes to leukemia. One possibilty may be that additional

mutations are incurred during the DN arrest, where the thymocyte precursor undergoes

extensive cell divisions. Consistent with this idea, increased cell cycling is observed in



E2A-deficient DN3 precursors, suggesting that E2Aproteins function as cell cycle

inhibitors in thymic precursors(Engel and Murre, 2003). In addition to aberrant cell

cycling, survival pathways may also be activated during the differentiation arest and

maintained throughout leukemic progression. The anti-apoptotic transcription factor NF-

KB is found activated in arrested Tall thymocytes and NF-KB activity is maintained in

mouse Tall tumors, and observed in a majority of human T-ALL samples(Kim et aI.,

2002; Kordes et aI., 2000; O'Neil et aI., 2003). Identification of the anti-apoptotic NF-

taget genes in Tall leukemic cells wil be the focus of future work.



Materials and Methods

Mice and tumor cell culture

Proximallck- Tall transgenic mice have been described previously(Kellher et aI., 1996).

E2A heterozygous mice and HEB heterozygous mice were generously provided by Dr.

Cornelius Murre (UCSD) and Dr. Yuan Zhuang (Duke) respectively. B6 E2A and HEB

heterozygous mice were backcrossed with FVBIN mice for three generations before

being mated to Tall transgenic mice for disease study. Disease development was

monitored in Tall/E2A+/- and Tall/HB+/- mice and compared to littermate controls.

Rag2-GFP mice were provided by Dr. Michel Nussenzweig (Rockefeller University) and

pre-Ta-GFP mice were provided by Drs. Boris Reizis and Philp Leder (Harard Medical

School). Tall tumor cell lines were plated at lx10 cells/ml and left untreated or treated

with trichostatin A (Sigma) at a concentration of 90nM. Cell viability was assessed 24

hours after treatment by trypan blue exclusion.

Flow Cytometry

Thymocytes from four week old, age-matched, wildtype, Tall, Tall /E2A +/- and

Tall/HEB+/- mice were stained with FlTC-conjugated anti-mouse L3T4 (CD4) and PE-

conjugated Ly-2 (CD8) (Pharmingen). For double negative analysis, cells were stained

with antibodies for the lineage markers and the lineage negative cells were stained with

CD25-PE and CD44-FlTC and analyzed by flow cytometry.

Tumor DNA analysis

For clonality studies, southern blots of 
HindIII-digested DNA obtained from primary

tumors were hybridized with a 32 labeled 2 kb EcoRI fragment containing the murine



TCR J 2B exon(Malissen et al., 1984). Blots were washed in lXSSC, %SDS, followed

by a higher stringency wash containing O. IXSSC, 0. %SDS. For loss of heterozygosity

analysis, DNA from primar tumors and from tails from the same mice was digested with

BamH and hybridized with a 32 Iabeled EcoRIXbaI fragment of an E2A genomic clone

(generously provided by Dr. Yuan Zhuang Duke University).

Microarray Analysis

RNA was prepared from sorted CD4-positive, CD8-positive thymocytes from four week

old age-matched wildtype and 
Tall transgenic mice using Trizol reagent (Invitrogen).

cDNA was then synthesized from the RNA samples using the Superscript system

(Gibco). Biotin labeled cRNA was subsequently made from thecDNA using a RNA

transcript labeling kit (Enzo). The labeled cRNA was fragmented and hybridized to the

Affymetrix mouse U74Av2 aray.

Western and Northern Blotting

Tall tumor cell lines and thymi from four-week-old 
Tall/+ transgenic mice and control

littermates were lysed in RIPA buffer. Equivalent amounts of total protein lysates were

resolved on a SDS-PAGE gel. Protein levels were detected by immunoblotting with anti-

RORy (generously provided by Dr. Daniel Littman, New York University 
School of

Medicine). Blots were then stripped and reprobed with anti-pactin (Sigma) to control for

equal protein loading. CD6 expression levels were determined by preparng total RNA

from the thymus of four-week-old 
Tall mice and controllittermates as well as from 

Tall

tumor cells lines. The RNA was electrophoresed on a 1 % agarose gel and transferred to a



membrane which was probed with the mouse CD6 cDNA (generously provided by Dr.

David Fox, University of Michigan Medical Center).

Chromatin Immunoprecipitation

Chromatin immunoprecipitations were performed using the chromatin

immunoprecipitation assay kit from Upstate (Lake Placid, NY). For each

immunoprecipitation, 2X10 wildtype or TaIl thymocytes were treated with

formaldehyde at 37 C for ten minutes. The cells were then lysed and the DNA was

sheared by sonication. Cellular debris was removed by centrifugation. The samples were

prec1eared with salmon sperm DNA/protein agarose slurry and then incubated overnight

with either no antibody or with antibodies against RIP (Transduction Laboratories), p300

(Santa Cruz N- 15), mSin3A (Santa Cruz K-20), Tall, or E2A (generously provided by

Dr. Richard Baer, Columbia University). The DNA-protein complexes were recovered

by incubation with salmon sperm DNA/protein agarose slurry. The beads were washed

and the chromatin was eluted by incubation in %SDS, O. IM NaHC0 . The protein-

DNA crosslinks were reversed by heating at 65 C for four hours. The DNA was

recovered by phenol/chloroform extraction and ethanol precipitation. PCR was

performed on the samples using primers specific for the CD4 enhancer region containing

tandem E-box consensus sites. To increase sensitivity, 0. 1 of lOmCi/ml a CTP

was added for the last five cycles of each PCR reaction. The reactions were separated by

electrophoresis on a 6% acrylamide gel. The gel was then dred and exposed to fim.



Figure 10. Thymocyte developmental perturbation is more severe in Tall/E2A+/-

and Tall/HEB+/- than in Tall transgenic mice. Total thymocyte cell numbers from

four-week-old, wildtype and Tall , Talffal, Tall/E2A+/- and Tall/HEB+/- mice (A).

Tall expression in an E2A+/- or HEB +/- background leads to a reduction in DP and

CD4-positive cells. The absolute numbers of DP and CD4+ SP cells in wt, Tall,

TalllE2A+/- and Tall/HEB+/- in pre-leukemic, four-week-old mice are represented (B).

Thymocytes from four-week-old wt, Tall, Tall/E2A+/- and Tall/HEB+/- mice were

stained with CD4-Cy and CDS-FITC and analyzed by flow cytometry (C). Thymocytes

from Tall/E2A+/- and Tall/HEB+/- mice are partially arrested at the double negative

precursor stage. Cells were stained with antibodies for the lineage markers, IgM,

Ter119, Grl, Macl, PanNK, CD3, CD4, and CD8 as well as CD25-PE and CD44-FITC.

The staining of lineage negative cells with CD25-PE and CD44-FITC is shown (D). The

results shown are representative of six experiments. Thymocyte development in 
E2A and

HEB heterozygous mice is normal.



A. 

Tall/+ TalJ/E2A TalJ/HEB

t 1 14.
u 1

!'""'

102 10 10'
CD8-PE 

10 15.

'ii;r
101 10

CD25-PE

10 2.

10JI

::; ~~~~

101 102 10

-DP
IiCD4

TalJ+ TalJ/E2A TalJ/HEB

1 1 1(J2 10

1 l



Figure 11. Loss of one allele of E2A or HEB leads to disease acceleration in Tall

transgenic mice. Kaplan-Meier survival plot of Tall, Tall/E2A+/- and Tall/HEB+/-

mice. The cohort of Tall mice consisted of n=75 animals, the Tall/E2A+/- cohort

consisted of n=102 animals, and the Tall/HEB+/- cohort consisted of n=114 animals.

Tarone-Ware statistical analysis confirmed a highly significant difference in survival

between Tall/E2A+/- (p.c0.0001) and Tall/HEB+/- (p.cO.OOOl) compared to Tall mice.

The Tall/E2A and Tall/HB survival curves were also significantly different from each

other, p=0.0006. All animals were monitored daily for signs of disease. Upon onset of

disease the mice were sacrificed and a post-mortem examination was performed.
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Figure 12. Tall/E2A +/- and Tall/HEB+/- tumors are clonal or oligoclonal and do

not exhibit loss of heterozygosity. DNA prepared from tumors and wildtype genomic

tail DNA was digested with HindIII and analyzed by Southern blot analysis. T cell

receptor Jp chain rearangements were detected with a probe that 
identified a 5kb DNA

fragment in the germine position of genomic tail DNA (lane 
T)(A). Disease acceleration

is not accompanied by loss of heterozygosity in 
Tall/E2A+/- mice. E2A+/- , E2A-

/- 

tail

DNA, Tall/E2A+/- tail DNA, and DNA prepared from tumors from the same

Tall/E2A+/- mice was digested with BamID and analyzed by Southern blot 
analysis.

Using a portion of an 
E2A genomic clone as a probe, the wildtype 

E2A allele was

identified as a 13kb fragment and the mutant allele as a lOkb fragment (B). Panel A was

contributed by N. Cusson.
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Figure 13. Gene repression in Tall transgenic thymocytes. Thymocytes from four-

week-old age-matched wildtype and Tall transgenic mice were stained with anti-CDS Cy

or with anti-CD3 PE and analyzed by flow cytometry. The results shown are

representative of five experiments (A), (B). Total RNA was isolated from wildtype, 
Tall

premalignant thymocytes and from Tall tumors. The RNA was electrophoresed on a 1 %

agarose gel and transferred to a membrane that was probed with the mouse CD6 cDNA

(C). RORyexpression is decreased in premalignant Tall thymocytes and tumors.

Twenty-five micrograms of protein from wildtype, premalignant 
Tall thymocytes and

Tall tumors was separated on a 10% SDS-PAGE gel and transferred to a membrane. The

membrane was then probed with anti-RORy. The blot was then stripped and reprobed

with an antibody against ~-actin to control for protein loading (D).
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Figure 14. Rag2 and pre- Ta expression is reduced in Tall/E2A +/- mice.

Thymocytes from four-week-old age-matched Rag2- GFP, TalllRag2- GFP and

TalllE2A+/-/Rag2- GFP mice were stained with anti-CD4 PE and anti-CDS Cy and

analyzed by flow cytometry. The mean fluorescent intensity of GFP was determned for

the double positive thymocyte population (A) and double negative thymocyte

population(B). Thymocytes from four-week-old age-matched pre Ta-GFP, and

Tall/preTa-GFP mice were stained with antibodies for the lineage markers, IgM,

Ter119, Grl, Macl, PanNK, CD3, CD4, and CDS as well as CD25-PE and CD44-FIC.

The mean fluorescent intensity of GFP was determned for the DN3 population (C). The

results shown are representative of three experiments.
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Figure 15. Tall recruits the corepressor mSin3A to the CD4 locus and Tall

tumors are sensitive to the HDAC inhibitor, TSA. Chromatin immunoprecipitation

assays were performed on thymocytes from four-week-old wildtype and pre-leukemic

Tall mice using antibodies against E2A and Tall. No antibody and anti-RIP

immunoprecipitations were used as negative controls. Input sheared DNA served as a

positive control. Thirty cycles of PCR amplification were performed on the

immunoprecipitated DNA with primers specific for the CD4 enhancer region (A).

Chromatin immunoprecipitation was performed with antibodies to the corepressor

mSin3A or coactivator p300 or with negative control antibodies (B). Chromatin

immunoprecipitation demonstrates that HDACI also binds to the CD4 enhancer in Tal

thymocytes (C). The results shown are representative of five experiments. Six Tall

tumor cells were left untreated or treated with TSA for 24 hours and tumor cell viabilty

determned by trypan blue exclusion. The average percentage of cell death is shown with

standard deviation for five experiments (D).
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Table 4. Immunophenotypes of Tall/+ E2A+/- and Tall/+ HEB+/- tumors

Animal Genotype CD3 CD4 CD8 CD4,CD8 Survival

Number (Days)

737 Tall/+ E2A+/-
6778 Tall/+ E2A+/-
6831 Tall/+ E2A+/- 104

8583 Tall/+ E2A+/-
388 Tall/+ E2A 

+/-

9845 Tall/+ E2A+/- 144

135. Tall/+ HEB+/- 105

138 Tall/+ HEB+/- 100

8959 Tall/+ HEB+/- 116

9193 Tall/+ HEB+/-
9205 Tall/+ HEB+/-
9232 Tall/+ HEB+/-
8906 Tall/+ HEB+/-



104

Table 5. Genes Activated or Repressed by Tall Expression in Thymus

Descri tion of the Gene (Accession Number)

GM2 activator protein (U09816)
Homeobox protein Pknox1 (AF061270)
CD3 Antigen (M23376)
Recombination Activating Gene 1 (M29475)

Cyclin 3 (M86183)
Dishevelled 2, dsh homolog((U24160)
RAR-related orphan receptor gamma (AFOI9660)
Cdc2/CDC-28-like protein kinase 3 (AF033565)
Recombination Activating Gene 2 (M64796)
Interleukin 4 Receptor ( M27960)
Zinc finger protein (UI4556)
HOX-4.4 and HOX- 5 (X62669)

protein coupled receptor 6-B(YI5798)

CD6 antigen (U 12434)
CD5 anti en (MI5177)

Fold Change
+7.3
+4.

10.
14.

17.



CHAPTER IV

NF -KB ACTIV A TION IN PREMALIGNANT MOUSE
TALI THYMOCYTES AND TUMORS

10S
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Introduction

The transcription factor NF-KB is constitutively active in breast, colon and gastric

cancers and in lymphoid and myeloid malignancies. Initially discovered as a viral

oncogene in an avian retrovirus, NF-KB genes have been increasingly implicated in the

development of malignancy(Rayet and Gelinas, 1999).

The NF-KB gene family consists of Rei A (p65), Rei Band c-Rei. These NF-

proteins form homo or hetero dimers and are bound in the cytoplasm by inhibitor of 

proteins (IKB). Infection or exposure to proinflammatory cytokines activates the IKB

kinase (IKK) which consists of two catalytic subunits IKKa and IKK~ and a regulatory

subunit IKKy or Nemo. The activated IKK complex phosphorylates IKB at two

conserved serines within the IKB N-terminus. Phosphorylation then 
targets IKB for

ubiquitination and subsequent degradation. The NF-KB dimers are then free to

translocate to the nucleus where they transactivate the expression of genes involved in

inflammation, proliferation and cell survival(Karn et aI., 2002).

A recent survey of childhood T -ALL patients revealed that 39/42 patients

exhibited NF-KB activation(Kordes et aI., 2000). Yet the cause or effect(s) of elevated

NF-KB activity in the human T -ALL leukemic cells is not known. The basic helix-Ioop-

helix TALI gene is activated in as many as 60% of pediatric T -ALL patients by a varety

of genetic mechanisms(Begley and Green, 1999). In our mouse models 
of Tall induced

leukemia/lymphoma(Kellh et aI., 1996; O'Neil et aI., 2001), we observe dramatic

decreases in overall thymocyte cellularity and an arrest of thymocyte development.

Similar to what has been reported in human T-ALL(Kordes et aI., 2000), mouse 
Tall
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premalignant thymocytes and tumors exhibit nuclear p65/p50 and increased IKK activity.

Yet, inhibition ofNF-KB in mouse Tall tumors had no effect on tumor growth/survival 

vivo, suggesting that NF-KB activation may contribute to the premalignant phase of Tall

induced disease.
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Results

Tall expression results in decreases in CD4 and CDS double positive thymocytes

and in CD4-single positive thymocytes

Thymocyte expression of the Tall oncogene results in 2-8 fold decreases in

overall thymocyte cellularity (Figure 16A). Moreover, perturbations in the relative

percentage of CD4-positive and CD8-positive thymocytes as well as CD4-single positive

thymocytes are observed (Figure 16B). In mice homozygous for the Tall transgene

(Tall!Tall), there is a 60-fold decrease in the absolute numbers of DP thymocytes and

133-fold decrease in the absolute numbers of CD4-single positive thymocytes.

Interestingly, mice expressing a DNA binding mutant of 
Tall (Mut Tall) also exhibit

thymocyte developmental abnormalities (Figure 16), suggesting that induction of novel

Tall target genes are not required to arest thymocyte development.

Tall transgenic mice and mice expressing a DNA binding mutant of

Tall(RI88G;RI89G, designated Mut Tall) exhibit dramatic arrest at the DN3 stage 

thymocyte development with 79-91 % of the DN cells expressing CD44 and CD25. The

fact that Tall and the DNA binding mutant of Tall both stimulate thymocyte arrest is

consistent with the idea that Tall induces arrest by depleting E2A proteins.

Tall expression stimulates thymocyte apoptosis

In order to determine whether the decrease in the absolute numbers of DP and

CD4 SP thymocytes is due to an increase in thymocyte apoptosis, thymocytes from

disease-free, age matched Tall transgenic and littermate controls were cultured 
in vitro
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for 24 hours and then the percent apoptotic thymocytes quantified by FITC-Annexin V

and propidium iodide staining followed by flow cytometry. The percentage of apoptotic

cells was markedly increased in Tall transgenic thymocytes as compared to thymocytes

from controllittermates (Table 6).

Thymocytes are highly sensitve to Fas-mediated apoptosis and hence Tall

expression in the thymus may induce up regulation of Fas L(Nagata and Golstein, 1995).

To determine whether Tall induced apoptosis is Fas-mediated, we generated Tall/lpr/lpr

mice which express mutant Fas and are resistant to Fas-mediated apoptosis(Watanabe-

Fukunaga et aI., 1992). In spite of defects in Fas signaling, expression of Tall oncogene

sensitized lpr/lpr thymocytes to apoptosis, demonstrating that Tall induced cell death is

not Fas-Fas L-dependent (Table 6).

NF -KBactivation in premalignant Tall thymocytes and tumors

Despite its known role in preventing apoptosis, recent observations in NF-

superinhibitor transgenic mice have demonstrated that NF-KB activation is essential for

CD3 mediated double positive thymocyte apoptosis(Hettmann et aI., 1999). To

determine if NF-KB is activated in thymocytes expressing the Tall oncogene, EMSAs

were performed on nuclear extracts prepared from premalignant 
Tall transgenic mice and

controllittermates. A complex binding to the consensus oligo was detected in the Tall

and Mut Tall thymocytes (not shown) but not in thymocytes from control littermates.

Supershift analysis demonstrated that the complex contains p65 and p50, but not c-Rel

(Figure 17 A). Therefore, Tall expression in thymocytes results in an increase in NF-

1"'0
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(p65/p50) DNA binding activity. However, Tall and the DNA binding mutant of Tall

induce NF-KB activation, suggesting that p65 is not a direct target gene of the 
Tall/E7

heterodimer. We also observe NF-KB activation in thymocytes from E2A null mice

(Figure 17B) providing evidence that the activation observed in 

Tall thymocytes is a

result of E2A depletion.

We then examined three mouse 
Tall and two Mut Tall tumors for evidence of

NF-KB activation. Nuclear extracts were prepared from primary 

Tall and Mut Tall

tumors and EMS As performed. We detected the p65/p50 heterodimer in the nucleus of

all five Tall and Mut Tall tumors examined (Figure 18A and B), suggesting that NF-

activation is associated with Tall induced leukemogenesis in the mouse.

The transcription factor NF- KB controls the expression of several anti-apoptotic

proteins including the inhibitors of apoptosis (clAPs), Bc1-
2 and Bcl- (Chen et aI.,

2000; Grumont et aI., 1999; Zong et aI., 1999). To determine whether 
constitutive NF-

KB activity in Tall tumors correlates with the expression of anti-apoptotic proteins, we

examined Bcl-2 and Bcl- expression levels in Tall tumors. In contrast to wild type

thymocytes, Tall tumors expressed increased amounts of the Bcl-2 protein (Figure 18C),

whereas Bcl- protein was not detected in any of the Tall tumors examined (not

shown). Bcl- expression was also reduced in 
Tall and Mut Tall premalignant

thymocytes and in thymocytes from one week old 

E2A null mice compared with

expression levels in littermate controls (Figure 18D) suggesting that Tall 
decreases Bc1-

through inhibition of E2A. Decreased expression of Bcl- has already been

implicated in NF-KB mediated thymocyte apoptosis(Hettmann et aI., 1999) 
suggesting
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that both the NF-KB activation and the decrease in Bcl- expression may be related to

the thymocyte apoptosis observed in our 
Tall mice and E2A null mice (Table 6 data not

shown).

Elevated IKK activity in premalignant 
Tall thymocytes and Tall tumors

To determine the mechanism of NF-KB activation , we examined IKB kinase

activity in premalignant Tall thymocytes and in Tall tumors using an in vitro kinase

assay and GST-IKB as a substrate. IKK activity was increased in premalignant Tall

thymocytes compared to thymocytesfrom controllittermates (Figure 19). We also detect

elevated IKK activity in E2A null thymocytes (data not shown) supporting our hypothesis

that Tall is contributing to NF-KB activation by inhibiting E protein function. In

addition, IKK activity was increased in the three Tall and two Mut Tall tumors

examined (Figure 19). Taken together, these studies suggest that the nuclear p65

observed in the premalignant Tall thymocytes and in the Tall tumors may reflect

constitutive IKK activation.

Inhibition of NF -KB activity does not alter Tall tumor growth in vivo

Although NF-KB complexes have been detected in human ALL samples(Kordes

et aI., 2000), the contribution of these complexes to leukemogenesis is unclear. In order

to elucidate how NF-KB activation contributes to disease progression 
in vivo, 

introduced a mutated form of IKBa under the control of the 
proximallclc promoter into

three mouse Tall tumor cell lines. This IKB mutant functions as a superinhibitor because
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it binds NF-KB and inhibits DNA binding as well as nuclear translocation(Voll et aI.,

2000). As expected, expression of the superinhibitor in the 
Tall tumor cells leads to a

decrease in nuclear p65/pSO heterodimers. Furthermore, TNF- induced NF-

activation is repressed in 
Tall tumors expressing the mutant IKB (Figure 20).

To test whether inhibition of NF-KB activation affects tumor growth 
in vivo, Tall

tumors and Tall tumors expressing the NF-KB superrepressor were injected into

syngeneic mice. No differences in tumor latency or in tumor size were observed (Table

7). Histopathologic examination of the injected mice did not reveal differences in tumor

invasiveness or metastasis. Ourfailure to observe an effect of the 
IKB superinhibitor on

Tall tumor growth in vivo did not reflect the fact that the injected tumors no longer

expressed the mutant IKB superinhibitor. Thus, inhibition of NF-KB activity in 
Tall

tumor cell lines does not appear to alter tumor growth or invasiveness 

in vivo.

'i\
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Discussion

In this study we demonstrate that Tall expression perturbs thymocyte

development, inducing arest at DN3 (CD44-negative, CD25-positive) and DN2 (CD44-

positive, CD25-positive) stages of thymocyte development. Moreover, 
Tall 

thymocytes are sensitive to apoptosis and exhibit elevated NFKB DNA binding activity in

the Tall thymus at 3-4 weeks of age, well before tumors appear. This study indicates that

constitutive NF-KB activation is an early event in Tall induced leukemogenesis. Others

have observed Rel activation and apoptosis in thymocytes that express Idl or the p22

form of Tall and suggest that aberrant pre- TCR signaling stimulates NF-

activation(Kim et aI., 1999; Kim et aI., 2002). We observe partial developmental arest,

apoptosis and NF-KB activation in Tall transgenic mice. Yet it remains unclear whether

NF-KB activation relates to thymocyte differentiation arest and/or DP apoptosis. These

questions can best be addressed in a conditional 
Tall transgenic model we are currently

establishing. The fact that 
Tall thymocytes and tumors exhibit NF-KB activation

suggests to us that NF-KB contributes to leukemogenesis, potentially by protecting

thymocytes from apoptosis.

Tumors that develop in Tall transgenic mice exhibit constitutive NF-

activation. However, the precise mechanism(s) by which Tall expression 
results in NF-

KB activation is not clear. In some Tall tumors, increases in IKK activity are observed,

whereas in other tumors, TNFa-induced IKB degradation is not observed (not shown),

suggesting that NF-KB activation can result from mutations in IKK components or in 
IKB

gene(s). Consistent with the increased NF-KB activity, expression of the anti-apoptotic
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NF-KB target genes, Bcl-2 and Al are increased in mouse Tall tumor cells, irrespective

of tumor cell phenotype. Microarray studies on human T -ALL samples have detected Al

overexpression in TALI activated human T-ALL samples(Ferrando et aI., 2002). Thus,

activation of the anti-apoptotic NF-KB pathway is also a feature of human ALL.

Moreover, resistance to therapy may also be a consequence of NF-KB activation.

To examine the contribution of NF-KB to Tall induced leukemogenesis, we

inhibited NF-KB activity in mouse Tall tumor cells by overexpressing mutant IKBa

proteins and analyzed their growth 
in vivo. Unlike studies published for NF-KB in the

mouse mammar adenocarcinoma cell line CSMLO(Biswas et aI., 2001), we observed no

differences in growth, survival or metastasis of 
Tall tumor cells, where NF-KB activity

was inhibited. Although NF-KB inhibition in established 
Tall tumor cell lines had no

effect on tumor growth, NF-KB inhibition during the premalignant phase may have

different effects.
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Materials and methods

Flow cytometry

Thymocytes from four-week-old, age-matched, 

Tall, Mut Tall 
transgenic and control

littermates mice were stained with Cytochrome-c-conjugated anti-mouse L3T4 (CD4)

and PE-conjugated Ly-2 (CDS) (Pharmingen, San Diego, CA). For double 
negative

analysis, cells were stained with antibodies for the lineage 
markers and the lineage

negative cells were stained with CD25-PE and CD44-
FITC and analyzed by flow

cytometry. Premalignant thymocytes from four week old 

Tall, Tall/lpr/lpr 
transgenic

mice and controllittermates were plated in 24 well plates at a density of 
5 X 10 cells/ml.

The cells were then incubated in RPMI medium, containing 
10% fetal bovine serum at

C for twenty-four hours. Apoptotic cells were quantified by staining with FITC-

conjugated AnnexinV and propidium iodide and analyzed by flow cytometry.

Electrophoretic mobilty shift 
assay (EMSA) and Western blotting

Nuclear extracts were prepared from wildtype, premalignant 

Tall or Mut Tall

thymocytes and from 
Tall or Mut Tall tumors were incubated with a 32

Iabeled-double-

stranded oligonucleotid
probe containing the NF-KB consensus sequence (promega).

Antibodies against p65, p50 and c-rel used for supershifting were obtained from Nancy

Rice of the National Cancer Institute (Bethesda, MD).

To analyze Bcl-2 and Bcl- expression, wildtype thymocytes and 

Tall tamor cells were

lysed and immunoblotted with antibodies against Bcl-
2 or Bcl- (Pharmingen). The
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blot was then stripped and re-probed with an antibody against ~-actin to control for equal

loading (Sigma, St Louis, MO).

In vito kinase assay

Tall tumors or thymocytes from Tall transgenic or controllittermates were lysed and

immunoprecipitated with anti-IKKy antibody (Santa Cruz Biotechnology, Santa Cruz

CA) and an in vitro kinase assay performed as previously described (Mudgett et aI.,

2000).

Injection of tumor cells into syngeneic mice

Tall tumor cells or Ta 11 tumor cells expressing mutant IKBa were injected

intraperitoneally into two or three syngeneic FVBIN mice. All animals developed

palpable tumors within six weeks post-injection. All tissue samples were histologically

evaluated at the Transgenic Core Pathology Laboratory at the University of California at

Davis.
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Figure 16. Tal1and Mut Tall perturb thymocyte development. Total thymocytes

numbers from four-week-old wildtype and 
Tall/+; Tall!Tall, and MutTall/+ transgenic

mice (A). Tall transgenic mice have reduced numbers of DP and CD4+ cells. 
The

absolute numbers of DP and CD4+ cells in wt, 
Tall/+ , Tall!Tall and Mut Tall/+ four-

week-old mice are plotted (B). Tall expression perturbs 
thymocyte development.

Thymocytes from four-week-old mice were stained with CD4-
Cy and CDS-FITC and

analyzed by flow cytometry (C). Tall expression in the thymus blocks the progression of

cells through the stages of double negative development. Cells were stained for the

lineage markers, IgM, Terll9, Grl, Mac!, PanNK, CD3, CD4, and CD8 as well as

CD25-PE and CD44-FITC. The staining of lineage negative cells with CD25-PE and

CD44-FITC is shown. Numbers in quadrants represent percent of cells stained with

antibodies (D). The results shown are representative of at least five experiments.
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Figure 17. NF-KB activation in premalignant 
Tall transgenic and E2A null

thymocytes. Nuclear extracts were prepared from thymocytes from four-week-old age-

matched wildtype, Tall/+ (A), and E2A null (B) mice. The extracts were incubated with

a oligonucleotide probe containing the NF-KB consensus sequence. The binding

reactions were fractionated on a 5% polyacrylamide gel and the DNA-
protein complexes

were detected by autoradiography. The presence of the NF-
KB subunits was determned

by supershifting with antibodies against p50, p65 and c-Rei.
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Figure 18. Constitutive NF-KB activation and BcI-2 expression in Tall and Mut

Tall tumors. Nuclear extracts were prepared from wild-type thymocytes Tall tumors,

and Mut Tall tumors and incubated with a radiolabeled NF-KB consensus

oligonucleotide probe. As a positive control for NF-KB activation , nuclear extracts were

also prepared from murine embryonic fibroblasts (MEF) left untreated or treated with the

cytokine TNFa. The binding reactions were fractionated on a 5% polyacrylamide gel and

the DNA-protein complexes were detected by autoradiography (A). NF-KB complex in

Tall tumors contains p65/p50. Binding reactions were incubated with antibodies against

p50, p65 and c-rel prior to running on nondenaturing gel (B). Total celllysates (50 J.g)

were fractionated on a 12% SDS-PAGE gel and immunoblotted with the indicated

antibody. Lysates were probed with an anti-~-actin antibody to control for the amount of

total protein (C), (D).
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Figure 19. Increased IKK activation in premalignant Tall thymocytes and

tumors. Thymocytes isolated from 4-week-old Tall transgenic and controllittermates

were lysed and immunoprecipitated with and anti-IKKyantibody and used in an in vitro

kinase assay with GST-IKBa as the substrate. Whole-celllysates were also prepared from

Tall tumor cell lines. To insure that equivalent amounts of IKK were

immunoprecipitated, the lysates were probed with an anti-IKKa antibody.
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Figure 20. Mutant IKBaexpression inhibits TNFa- induced NF-KB activation in

Tall tumors. Tall tumor cells were electroporated with 
lck-l1d3a RR-AA- PEST and a

plasmid containing the neomycin resistance gene. Cells were 
selected with G418 and

treated with TNFa for various time points (times indicated are in minutes). Nuclear

extracts prepared from these cells were incubated with a radiolabeled NF-KB consensus

oligonucleotide and fractionated on a 5% non-denaturing polyacrylamide gel.

Tall tumor
Tall tuor

1ck-IKBa RR-
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+/++/++/++/+

undergo apoptosis in vitro.

% apoptotic cells
Table 6. Tall/+ thymocytes

Tall 

/ +

Talll+
Tall/+
Tall 

Tall/+

Tall/+ Ipr/lpr 
Tall/+ Ipr/lpr 

Thymocytes from disease-free, age-matched Tall transgenic, Talllprllpr
transgenic and wildtype mice were incubated at 37 C for 24 hours and

apoptotic cells were quantified by staining with AnnexinV-FITC and PI

followed by flow cytometry.

';v 



126

Table 7. . NF-KB activity does not contribute to Tall induced tumor growth.
Tall tumor line # mice developing tumors avg. tumor size (cm)5721 2/2 2.

57211ck-IKBa RR-AA 2/2 2.1326 2/2 2.
1326 Ick-IKBa RR-AA 1/1 5146 2/2 3.
5146 Ick-IKBa RR-AA 3/3 3.

Five milion tumor cells were IP injected into syngeneic mice. All animals displayed
evidence of disease and were sacrificed six weeks after the cells were injected.
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CHAPTER V

DISCUSSION
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The work presented in this thesis provides insight into how Tall contributes to

leukemia using the mouse as a model system. By expressing a DNA binding mutant

form of Tall in the thymus of mice, we have shown that the DNA binding activity of

Tall is not required to cause leukemia in mice. In fact, mice expressing the DNA binding

mutant Tall exhibit increased disease penetrance (Figure 4). This result was somewhat

surprising given the abilty of Tall to transactivate genes 
in vitro(Hsu et aI., 1994c),

however it is in agreement with studies in 
Tall null ES cells showing that Tall has both

DNA binding dependent and independent functions in the specification of

hematopoiesis(Porcher et aI., 1999). We have also shown genetically that Tall causes

leukemia in mice by interfering with the function of the transcription factors E47 and

HEB. We find several E47/HB target genes repressed in thymocytes that express Tall.

In particular, the expression of Ragl, Rag2, pre- and CDS is decreased in pre-

leukemic Tall thymocytes.

The down regulation of genes such as Ragl/2 and pre-Ta that are important for T

cell development is likely to be responsible for the perturbation of thymocyte

differentiation that we observe in mice expressing Tall or a DNA binding mutant of

Tall(O' Neil et aI., 2001; O'Neil etaI., 2003). The thymocyte differentiation arrest is

more severe in Tall/E2A+/- and Tall/HEB+/- transgenic mice indicating that the

differentiation arrest is central to the development of leukemia. Interestingly, E47 

+/-

Rag1-

/- 

mice develop leukemia, but disease has not been reported in 
E47 heterozygous

mice or in Ragl deficient mice suggesting that loss of Rag activity can collaborate with

decreased E47 protein levels to induce leukemia in mice(Engel and Murre, 2002). 
This
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data provides evidence that the decreased Rag expression levels observed in Tall and

Tall/E2A+/- mice may contribute to the disease phenotype. The development of

leukemia is also accelerated when E47 deficient mice are placed on a TCRll deficient

background, suggesting that decreased pre- TCR signaling may contribute to

leukemia(Engel and Murre, 2002).

Thymocytes in Tall and DNA binding mutant Tall transgenic mice are parially

arested at the DN2 orDN3 stage (Figure 16). However, the thymocytes do progress

through this arest into double positive and single positive thymocytes. Interestingly, E47

deficiency has recently beenshown to promote the differentiation of thymocytes in 
LAT,

Lck and Fyn deficient mice that normally exhibit a complete developmental block at the

double negative stage(Engel and Murre, 2003). These results demonstrate that E47is

necessary to prevent the differentiation of thymocytes without a functional pre- TCR.

Therefore, inhibition of E47 activity may allow the progression of Tall transgenic

thymocytes to the double positive stage despite decreased expression of pre-Ta.

Activation of the Ras, NFAT, and NF-KB signaling pathways have also been shown to

promote the differentiation of double negative thymocytes into double positive

thymocytes (Aifantis et aI. , 2001; Swat et aI., 1996). Up regulation of anyone of these

signaling pathways could promote the differentiation of 
Tall thymocytes. In addition to

promoting differentiation, up regulation of anyone of these three pathways could

contribute to leukemia progression since all have been previously been linked to the

development of malignancy(Neal and Clipstone, 2003; Rayet and Gelinas, 1999).
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Interestingly, our microarray experiment revealed a 3. fold induction of NFAT in

double positive Tall thymocytes (See Appendix).

We also observe NF-KB activation in preleukemic Tall thymocytes(O' Neil et aI.,

2003). As mentioned above, NF-KB activation may be able to substitute for pre-TCR

signaling(Voll and Ghosh, 1999). Therefore, it is possible that NF-KB activation

provides the signal that allows double negati ve Tall thymocytes to differentiate into

double positive thymocytes despite the differentiation arrest and reduced pre-

Ta expression. Alternatively, the NF-KB activation observed may be a consequence of

the double negative thymocyte arrest that we observe in 
Tall transgenic mice since high

levels of activeNF-KB complexes are detected in DN3 and DN4 thymocytes(Voll et aI.,

2000).

Finally, NF-KB activation may be related to the spontaneous thymocyte apoptosis

observed in Tall thymocytes (Table 6) and unrelated to the double negative thymocyte

differentiation arrest since NF-KB activation is pro-apoptotic in double positive

thymocytes(Hettmann et al., 1999). However, since we found no NF-KB targets genes

induced by Tall expression in our microarray experiment performed on double positive

thymocytes, it seems more likely that the NF-KB activation is in double negative

thymocytes. Future experiments on sorted thymocyte populations wil resolve this issue.

Although, it is not clear how Tall induces NF-KB activation, our data showing

NF-KB activation and constitutive IKK activity in 
E2A null thymocytes and tumors

(Figure 17 and data not shown) suggests that inhibition of E2A somehow triggers IKK

activation. Interestingly, E2A inhibition and NF-KB activation are also observed in
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Notch3 transgenic thymocytes(Bellavia et aI., 2000; Talora et aI., 2003). NF-

acti vation may in fact be responsible for the differentiation of E47 null thymocytes in the

absence of TCR signaling(Engel and Murre, 2003).

Interestingly, while this work was being carred out, NF-KB activation was also

observed in Idl and Tall-p22 transgenic mice(Kim et aI., 2002). In addition, mice

expressing Idl or Tall-p22 and a constitutively active form of IKK~ develop a complete

thymocyte differentiation arrest at the double negative stage(Kim et aI., 2002).

Moreover, overexpression of the NF-KB superinhibitor rescues the developmental arest

in Idl transgenic mice(Kim et aI., 2002). This data demonstrates that NF-KB activation is

at least in part responsible for the differentiation arrest observed in Idl and Tall-p22

transgenic mice and likely also contributes to the differentiation arrest in our Tall

transgenic mice.

Yet, NF-KB activation is observed in tumors, suggesting that it may contribute to

tumor survival. However, inhibition of NF-KB activation in tumors did not appear to

affect the growth or metastatic potential of Tall tumors, indicating that tumors are no

longer dependent on activated NF-KB. These studies imply that NF-KB inhibitors such as

proteosome inhibitors or IKK inhibitors may not be useful in treating leukemic patients

with TALI activation.

Our analysis of the contribution of NF-KB to Tall induced leukemia was

performed on Tall tumor cell lines that had been cultured for several months. These cells

may have activated other anti-apoptotic pathways rendering them no longer dependent on

NF-KB activation. Therefore, it is possible that inhibiting NF-KB activation directly in
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developing tumors of Tall transgenic mice may yield different results and implicate NF-

KB in Tall pathogenesis.

NF-KB is activated in response to several chemotherapeutic drugs including

ionizing radiation, danorubicin, and the topoisomerase I inhibitor CPT- l1(Wang et aI.,

1996). Whether inhibition of NF-KB sensitizes cancer cells to chemotherapeutic agents is

controversial(Bentires-Alj et aI., 1999; Cusack et aI., 1999; Sato et aI., 2003; Uetsuka et

aI., 2003). Tall tumor cell lines that express the NF-KB superinhibitor do not display

increased sensitivity to dexamethasone, danorubicin, or gamma irradiation suggesting

that NF-KB inhibition does not promote chemosensitivity in Tall tumor cells (our

unpublished data). These results suggest that NF-KB is not antiapoptotic in Tall tumor

cells and TALI patients may not benefit from the use of NF-KB inhibitors in combination

with other more conventional treatments for T-ALL.

When Tall is misexpressed in the thymus, it depletes the E47/HB heterodimer

(Figure SC). However chromatin immunoprecipitation studies reveal that E47 and HEB

can be detected at target loci, suggesting that Tall may repress transcription by recruiting

corepressors to gene regulatory elements. Previous work has shown that Tall interacts

with the corepressor mSin3A in both Jurkat and undifferentiated MEL cells(Huang and

Brandt, 2000). However this interaction had never been demonstrated at a relevant locus

or directly associated with disease development. We provide evidence that Tall recruits

the corepressor mSin3A and the histone deacetylase HDAC1 ' to the CD4 enhancer

supporting the inhibition model (Figure 2). Future work wil determine whether this is a
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general mechanism of Tall mediated gene repression. Nonetheless, our data suggests

that Tall does not cause leukemia by acting like an Id protein and sequestering E proteins

into non-DNA binding complexes.

Our results demonstrating Tall occupation of the CD4 enhancer may seem in

conflct with our observation that the DNA binding activity of Tall is not required to

cause leukemia in mice. Repression of CD4 expression is more severe in the 
Tall

transgenic mice than in the DNA binding mutant Tall transgenic mice suggesting that the

DNA binding activity of Tall may contribute to the repression of CD4. We have noted

other differences between the Tall and Mut Tall transgenic mice including increased

spontaneous apoptosis in Tall transgenic thymocytes and a more severe double negative

thymocyte differentiation arrest in Mut Tall transgenic mice, revealing that Tall has both

DNA binding dependent and independent functions in thymocytes. The DNA binding

dependent function are not required, however to induce leukemia in the mouse.

The demonstration that Tall occupies the CD4 enhancer does not necessarly

mean that it directly binds DNA. As in erythroid cells, Tall may be part of a large

transcriptional complex in T cells that includes other DNA binding proteins makng the

DNA binding activity of Tall dispensable. Candidates for the other DNA binding

components of the complex include Gata3, the Gata protein expressed in T cells, and Spl

which is par of the Tall containing complex that controls the expression of the c-kit

gene(Lecuyer et aI., 2002). Chromatin immunoprecipitation experiments with

thymocytes from transgenic mice that express the DNA binding mutant of Tall wil

determine whether DNA binding is required for Tall to occupy the CD4 enhancer.
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It is likely that both sequestration and inhibition contribute to the repression of

E47/HB activity in Tall leukemic cells. In fact, it is stil formally possible that

transactivation of novel target genes contributes to Tall induced leukemia. Although our

microarray experiment demonstrated that most genes are repressed by Tall expression in

the thymus, some genes were up regulated (see Appendix). It is possible that Tall

regulates the expression of these genes without binding DNA. Future work wil

determine whether these genes are also up regulated in DNA binding mutant Tall

thymocytes and whether they are direct Tall target genes.

This work has important implications for the treatment of T -ALL patients with

TALI activation. Our observation that Tall acts mainly by repressing E47/HB gene

transcription and recruits the corepressor mSin3A and HDACl , suggests that HDAC

inhibitors may be effective in treating T-ALL patients. We demonstrate that all mouse

Tall tumor cells are sensitive to the HDAC inhibitor TSA, whereas wildtype thymocytes

were only mildly sensitive to TSA treatment.

Several other proteins involved in leukemia interact with corepressor complexes.

AMLI normally activates and represses gene expression but when it is fused to either

ETO or TEL in acute myelogenous leukemia, it represses gene expression through the

interaction of the mSin3-HDAC complex with ETO and TEL(Chakrabarti and Nucifora,

1999; Gelmetti et aI., 1998; Lutterbach et aI., 1998; Wang et aI., 1998). In addition , the

RAR-PML and RAR-PLZF fusions proteins implicated in acute promyelocytic leukemia

recruit the corepressors NCoR and SMRT even in the presence of the retinoic acid,

conditions under which the unfused RAR releases the corepressors. As a consequence,
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target genes remain repressed in the presence of the fusion genes(He et aI., 1998; Lin et

aI., 1998).

The HDAC inhibitor sodium phenyl butyrate has been used successfully to treat

an APL patient and P LZF RARa transgenic mice that develop acute promyelocytic

leukemia(He et aI. , 2001; Warell et aI., 1998). In addition, treatment of AML-ETO cells

with TSA inhibits their growth(Claus and Lubbert, 2003). Several HDAC inhibitors are

already in clinical trials for patients with solid tumors and hematological malignancies

and preliminary results show that the drugs are well tolerated and have anti-tumor

activity(Marks et aI., 2001).

In addition, the Tall/E47 or Tall/HEB heterodimer may be amenable to

therapeutic intervention. In the past it was believed that protein interactions would be

difficult to disrupt with small molecules. However, recent studies have suggested that

this may notbe the case. Screens for small molecules that inhibit the interaction between

the basic helix-loop-helix leucine zipper oncoprotein Myc and its partner Max have

yielded promising results(Berg et aI., 2002; Yin et aI., 2003). Although it is not clear

from these studies whether the drugs bound to the helix-loop-helix or the leucine zipper

domains, other small molecules that specifically disrupt the Id2-E47 interaction (and not

the Id2-HEB, Id2-E2-2 or Id2-E12 interactions) were found in one of the screens

demonstrating that HLH interactions can be disrupted by small molecules(Yin et aI.,

2003). Since Tall cannot homodimerize, small molecules that specifically disrupt the

Tall/E47 and/or Tall/HB interaction would critically inhibit its function in leukemic

cells. Since Tall is required for embryonic hematopoietic stem cell development but not
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for maintenance or differentiation of the adult hematopoietic stem cell(Mikkola, 2003),

inhibition of Tall function in patients may not have serious side effects. It may also be

possible to inhibit Tall function by disrupting the interaction of Tall with mSin3A or

other corepressors.

The work presented in this thesis provides strong evidence to explain the

mechanism of TALI induced leukemia by studying the human disease in the mouse. We

have demonstrated that the DNA binding activity of Tall is not required to induce

leukemia in the mouse. When Tall is misexpressed in the mouse thymus, it perturbs

thymocyte differentiation and represses gene transcription. In addition, we provide

genetic evidence that Tall inhibits the function of the E47/HB transcription factor. We

also demonstrate that Tall recruits corepressor complexes to gene regulatory regions.

Consistent with this, mouse Tall tumor cells are extremely sensitive to TSA treatment,

suggesting that leukemic patients may benefit from a treatment regimen that includes

HDAC inhibitors. Disruption of Tall/E7 or Tall/HBheterodimers may be another

means of inhibiting Tall induced leukemia. Identification of the other components of the

Tall transcriptional complex in leukemic cells may provide other interactions that could

be amenable to drug therapy. Furthermore, this analysis may result in a better

understanding of Tall induced leukemia.

.1.
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Figure 21. Model of Tall induced leukemogenesis. When Tall is expressed in

thymocyte precursors it inhibits E47/HB heterodimer function leading to a down

regulation of genes important in T cell development such as Ragl/2, pre-Ta, and CD3.

Additional mutations such as Notchl activation, Myc overexpression or expression of

dominant negative Ikaros (identified by L. Cunningham in our laboratory by retroviral

insertional mutagenesis) are necessary for the development of leukemia. Using SKY

analysis (performed by David Ferguson, University of Michigan) we have seen gain of

chromosome 15 in some Tall tumors. Amplification of Myc on this chromosome may

contribute to Tall induced leukemia.

Tall leukemogenesis

Rag 1/2

pre-

Gain of chromosome 15 (myc?)
No/chI activationDP . c-Myc overexpression
Expression of dn Ikaros, etc,

tumor
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Genes Activated or Repressed by Tall Expression in the Thymus

Gene Accession Fold Change
Number
U09816 +7.3

AI152867 +6.3
X57111 +5.
Y13361 +5.

AI451701 +5.
AF061270 +4.

D50434 +4.
UI4412 +4.3
X66091 +4.
X95761
X67735

AJ005350
U58882

AF091847 +3.
U54803 +3.

A W106745 +3.
U36576 +3.
U39074 +3.

AFO 19046 +3.
M16724 +3.
U96109 +3.
X61385 +3.
Z12604 +3.3

AI64072 +3.3
U95145 +3.
W49316
D31898
U92885 +2.
D21061 +2.
U76009 +2.

AI427892 +2.
M21000 +2.
L36135 +2.
M21203 +2.

'- 

M16118
AF099808

L35049 2.4
M17080
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f':
fj"

Cysteine rich protein D88793
Jun proto-oncogene related gene dl J04509

IMGE clone AI 120844 

Tip associating protein AF093140
Transaldolase U67611

WW -domain binding protein 2 U40826
Isocitrate dehydrogenase 2 U51167

CD3 antigen M23376 

Thymus leukemia antigen X03052
Histocompatibilty 2, Tregion locus 17 M35247

SIT protein AJ236881
YL- l protein D43643

Hepatoma-derived growth factor D63850
Replication factor C X72711

Interferon-e:amma receptor M28233 3.3
Microtubule associated protein 4 M72414 3.3

I kappa B alpha U57524 3.3
LKB 1 serine threonine kinase AB026255 3.4

COP9 complex subunit 3 AF071313 3.4
IMGE clone AI41025

Histocompatibilty 2, T region locus 10 M35244
Cut alternatively spliced product U66249
E26 avian leukemia oncogene 2 J04103

PEST phosphatase interacting protein U87814
Oxidative stress induced protein U40930

IMAGE clone AI020259
Hemin-sensitive initiation factor 2 alpha kinase AF028808

PQBP- AJ250406
Protective protein for beta-galactosidase J05261

MAD homoloe: 4 U79748
RAGI M29475

Immunoglobulin mu encoding the C-terminus V00821
of the membrane bound form
Proapoptotic protein (Siva) AF033115

Mad3 U32394
Early growth response 1 M28845

TL antie:en D86082
NAKAP95 AB028921
Cathepsin L X06086
Cyclin 3 M86183

AIO L21027 4.3
Retinal short chain dehydrogenase X95281
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RANGTPase activating protein 
U081 10 -4.

TGF beta- AJ009862 -4.
Non-receptor protein tyrosine kinase Ack AF037260

IMGE clone AI591702 -4.
AR5 D87902 -4.

UBF transcription factor X60831
Protein L AB009392
p116Rip U73200

IMGE clone AA940036 

Antigen identified by MRC OX- AF0292
Dishevelled 2 U24160
14- 3 epsilon D87663

Psme3 gene for P A28 gamma subunit AB007139
Zinc finger protein 36 X14678

Heterogeneous nuclear ribonucleoprotein G AJ237846
Serine/threonine kinase 5 D21099 5.3

Cytoplasmic tyrosine kinase, Dscr28C related X55663
Transcription factor GIF Af064088

RAR-related orphan receptor gamma AFO 19660
Thymoma viral proto-oncogene 2 U22445

Inositol polyphosphate- phosphatase AF040094
Schwannoma-associated protein (SAM9) AF026124

Ring finger protein 3 AL009226
Flotilin U90434

Growth factor independent U58972
Stromal interaction molecule 1 U47323

Kallkrein 8 X03994
Casein kinase AB028241

Cdc2/CDC28-like protein kinase 3 AF033565
RAG2 M64796

Id3 M60523 

Prl3 AF035645 

Retinoid X receptor beta D21831
IMAGE clone AA983101

Insulin-like growth factor X71922 7.4
KIC D49544 7.4

Coiled-coil like protein U79024
Interleukin 4 receptor M27960

3BP- X87671
Small proline-rich protein 2A AJ005559

AZI D88509
Mast cell protease 5 M68898
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RNPSI X70067 

Phosphatidylinositol- phosphate 5-kinase 1- AB006916
gama

Somatostatin receptor 3 M91000
Zinc-finger protein U14556

IMAGE clone AA204010 10.
IMGE clone AI646422 11.3

protein couple receDtor kinase 6- Y15798 14.
CD6 antigen U12434
CD5 antigen M15177 17.

IMAGE clone AA881438 23.

RNA was prepared from sorted CD4-positive, CD8-positive thymocytes from four-week-

old, age-matched wildtype and Tall transgenic mice using Trizol reagent (Invitrogen).

cDNA was then synthesized from the RNA samples using the Superscript system

(Gibco). Biotin labeled cRNA was subsequently made from the cDNA using a RNA

transcript labeling kit (Enzo). The labeled cRNA was fragmented and hybridized to the

Affymetrix mouse U74Av2 array.
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