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ABSTRACT 

 

Several aspects of Drosophila telomere biology indicate that telomere protection 

can be regulated by an epigenetic mechanism.  First, terminally deleted chromosomes can 

be stably inherited and do not induce damage responses such as apoptosis or cell cycle 

arrest.  Second, the telomere protection proteins HP1 and HOAP localize normally to 

these chromosomes and protect them from fusions.   Third, unprotected telomeres still 

contain HeT-A sequences at sites of fusions.  Taken together these observations support a 

model in which an epigenetic mechanism mediated by DNA damage response proteins 

protects Drosophila telomeres from fusion. 

Work presented in this thesis demonstrates that the Drosophila proteins ATM and 

Nbs are required for the regulation of DNA damage responses similar to their yeast and 

mammalian counterparts.  This work also establishes a role for the ATM and ATR DNA 

damage response pathways in the protection of both normal and terminally deleted 

chromosomes.  Mutations that disrupt both pathways result in a severe telomere fusion 

phenotype, similar to HP1 and HOAP mutants.  Consistent with this phenotype, HOAP 

localization at atm,atr double mutant telomeres is completely eliminated.  Furthermore, 

telomeric sequences are still present, even at the sites of fusions.  These results support a 

model in which an epigenetic mechanism mediated by DNA damage response proteins 

protects Drosophila telomeres from fusion. 
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Herman Muller first proposed the concept of telomeres almost 70 years ago when 

he made the observation that following irradiation, broken chromosome ends always 

fused together and resulted in gross chromosomal aberrations (Muller 1941; Muller 

1954).  He also noted that a broken chromosome end never fused to an unbroken end and 

suggested there is a “permanent distinct organelle” at the end of the chromosome that 

protects it from fusing and is required for genomic integrity (Muller 1941; Muller 1954).  

Muller’s observations were not distinct to Drosophila; Barbara McClintock made similar 

observations in maize.   She demonstrated that in maize endosperm, a chromosome 

broken during meiosis fuses with its sister chromatid following replication to form a 

dicentric chromosome (McClintock 1939).  During anaphase the fused chromosomes 

form a bridge that is broken when the cell enters telophase.  The cell continues this 

fusion-bridge-break cycle indefinitely or until the broken end is healed (McClintock 

1941).  McClintock demonstrated that in the embryo the broken chromosome could be 

healed, indicating that a chromosome could acquire a new telomere.   

Telomeres were later shown to serve two essential functions.   First, as Muller and 

McClintock initially suggested, telomeres protect genomic integrity by preventing the 

ends of chromosomes from fusing with each other (Zakian 1995; Blackburn 2001).   

Second, telomeres prevent the loss of terminal sequences due to the inability of 

polymerase to fully replicate the chromosome end (the end replication problem) (Watson 

1972)    .  In addition, telomeres also help position the chromosomes within the nucleus 

and aid in chromosome segregation. 



 3

The model proposed by Muller and McClintock suggested that a cell must be able 

to differentiate between a double strand break and the end of a chromosome.  If a 

telomere is recognized as a double strand break the results could be catastrophic; a DNA 

damage response could result in cell cycle arrest, apoptosis or repair.  Repair could then 

result in a fusion.  However, organisms have evolved a sequence specific mechanism to 

help solve the problem of distinguishing a chromosome end from a double strand break.  

In most organisms studied, telomeres are composed of short, tandem guanine rich repeats 

that are added by the reverse transcriptase, telomerase, after every round of replication 

(Zakian 1995; Blackburn 2001).  In cells that do not express functional telomerase, the 

ends of chromosomes gradually shorten until a critical length is reached, at which point 

the telomere no longer exists and the cell undergoes senescence.  Sequence-specific DNA 

binding proteins recognize the terminal repeat sequences and contribute to telomere 

elongation and protection (Cooper et al. 1997; Shore 1997; de Lange 2002; Karlseder 

2003).   

One problem with the model described above is that it does not take into account 

the role of DNA damage response proteins in telomere protection.  There is abundant 

evidence from a variety of organisms indicating that DNA damage response proteins are 

integral components of telomeres (d'Adda di Fagagna et al. 2004).  This creates a paradox 

because DNA damage response proteins are required for initiating cell cycle checkpoints, 

DNA repair and apoptosis at sites of double strand breaks while inhibiting the same 

responses at telomeres.  Why DNA damage response proteins activate a damage response 

at double strand breaks but not at telomeres is an active area of research.      
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A second problem with the sequence specific model is that it does not explain the 

sequence-independent protection of Drosophila telomeres.  Drosophila telomeres are 

replicated by a telomerase-independent mechanism (Mason and Biessmann 1995; 

Biessmann and Mason 2003; Melnikova and Georgiev 2005).  The telomeric specific 

retrotransposons HeT-A and TART attach to the ends of Drosophila chromosomes 

following replication.  However, HeT-A and TART sequences are not required for 

protection in Drosophila.  Terminally deleted chromosomes, which lack all telomeric 

sequences, can be isolated and do not induce a damage response or result in fusions 

(Mason et al. 1984; Mason et al. 1997; Ahmad and Golic 1998).  Furthermore, they can 

be stably maintained for several generations even though they continue to lose terminal 

sequences (average loss is 75bp per generation) (Biessmann and Mason 1988).  The 

terminal sequences change after every round of replication indicating that telomere 

protection can be inherited via a sequence-independent or epigenetic mechanism.   The 

results described in this thesis support an end recognition-model in which DNA damage 

response proteins recognize a DNA structure at the chromosome end and recruit or 

stabilize telomere protection proteins.    

 

Mammalian and Yeast Telomere Structure and Maintenance 

 

This section will provide an overview of the canonical sequence specific telomere 

maintenance mechanisms used by most eukaryotic organisms (see Figure 1.1).   This 

section is broken into three parts that focus on eukaryotic replication, telomere specific 
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binding proteins, and telomere architecture.   Emphasis will be on the role of the more 

extensively studied telomere binding proteins TRF1 and TRF2.   Finally, a brief summary 

of yeast telomere binding proteins and their role in telomere maintenance will be 

provided. 

 

Replication.  Mammalian and yeast telomeres are composed of short, tandem 

guanine rich repeats as well as subtelomeric sequences (Zakian 1995; Blackburn 2001).  

The short repeat sequences range from 5-8bp (depending on the organism) and can 

extend for a couple hundred base pairs in yeast to several kilobase pairs in humans.  The 

specialized reverse transcriptase, telomerase, which contains its own internal RNA 

template, extends the ends of chromosomes by adding the short repeat sequences after 

every round of replication (Figure 1.1A).  In the absence of telomerase mediated 

elongation, yeast and mammalian telomeres can also be elongated by telomerase-

independent mechanisms that rely on recombination (Biessmann and Mason 1997; 

Biessmann and Mason 2003; de Lange 2006).  

 

Sequence Specific Telomere Binding Proteins.  In mammals, the protein complex 

known as Shelterin regulates telomere elongation and protection (de Lange 2005). 

Shelterin consists of six protein components that are found exclusively at telomeres: 

TRF1, TRF2, POT1, RAP1, TIN2, and TPP1.   TRF1 and TRF2 are sequence dependent 

DNA binding proteins, which directly bind telomeric double stranded DNA while POT1 

is the only known protein to bind the  
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Figure  1.1.   

 

Figure 1.1.  The canonical telomere maintenance pathway.  (A) The reverse 

transcriptase, telomerase, which has its own RNA template, solves the end replication 

problem by adding short G-rich repeat sequences after every round of replication.  (B) 

Sequence specific telomere binding proteins help regulate telomere elongation and 

telomere protection.  (C) In mammals the 3’ overhang loops back and invades the duplex 

DNA forming the t-loop.  The t-loop hides the telomere from DNA repair enzymes and 

represents a second means of protection.
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3’single stranded DNA overhang (Broccoli et al. 1997; Baumann and Cech 2001).   The 

remaining proteins in the Shelterin complex are proposed to participate in protein-protein 

interactions that help form the stable complex (Figure 1.1B)(de Lange 2005). 

TRF1 plays an important role in the regulation of telomere elongation.  Over-

expression of wild type TRF1 results in shortened telomeres while cells expressing a 

dominant negative form of TRF1 exhibit elongated telomeres (van Steensel and de Lange 

1997). Taken together, these results suggest that TRF1 plays a role in the negative 

regulation of telomerase.   Shortened telomeres have less telomeric DNA for TRF1 to 

bind resulting in increased telomerase access and subsequent elongation of the telomere.   

Therefore, when dominant negative TRF1 is expressed, only a small amount of 

endogenous TRF1 binds to the telomere resulting in enhanced telomerase access and 

increased elongation. When wild type TRF1 is over-expressed there is an abundance of 

TRF1 bound to the telomere, blocking telomerase access. 

Like TRF1, TRF2 also plays a role in the negative regulation of telomere length 

(Smogorzewska et al. 2000).  In addition, TRF2 is a key component of the mammalian 

telomere protection complex.  Over-expression of a dominant negative TRF2, which 

disrupts its DNA binding activity, induces chromosome fusions in metaphase and DNA 

bridges in anaphase indicating that TRF2 is required for telomere protection (van 

Steensel et al. 1998).   Genetic studies have demonstrated that these fusions are 

dependent on ligase IV and the NHEJ pathway (Smogorzewska et al. 2002).  The TRF2 

dominant negative phenotype closely resembles that of senescent cells except that the 

fusions still contain telomeric DNA (van Steensel et al. 1998).  In addition, loss of TRF2 
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results in activation of p53- and ATM-dependent apoptosis indicating that unprotected 

telomeres can be recognized as damaged DNA (Karlseder et al. 1999; Smogorzewska et 

al. 2002).  Finally, over-expression of TRF2 in senescent cells extends the lifespan and 

reduces the frequency of fusions (Karlseder et al. 2002).  These observations suggest that 

TRF2 is also important for the protection of critically short telomeres.  

The other components of the Shelterin complex all interact with either TRF1 or 

TRF2 and have been shown to contribute to the negative regulation of telomerase-

mediated elongation and to telomere protection (de Lange 2005).  Only tankyrase, a 

telomeric poly(ADP-ribose) polymerase has been demonstrated to positively regulate 

telomerase-mediated elongation by inhibiting TRF1 telomere access (Smith and de Lange 

2000). Since TRF2 and TRF1 bind to sequence specific telomeric DNA, loss of terminal 

DNA results in a loss of binding sites.  Therefore, it is not possible to distinguish 

unambiguously between the elongation and capping “protection” function of telomere-

associated proteins in mammals.       

 

Telomere Architecture.  Mammalian sequence specific binding proteins also help 

organize the telomere into a higher order DNA structure known as a t-loop (telomeric 

loop) (Figure 1.1C) (Griffith et al. 1999; de Lange 2004).  Following replication the 

telomere undergoes resection to form a single strand overhang of the 3’ G-rich strand.   

The t-loop structure is the result of the single stranded 3’ overhang folding back and 

invading the double strand DNA to form a loop.    The proposed role of the t-loop is to 

hide the chromosome end, which resembles a double strand break, from DNA repair 
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proteins and nuclease degradation (de Lange 2002).   Therefore, establishment of the 3’ 

overhang is an important component in the protection of mammalian telomeres. 

 

Yeast Telomere Binding Proteins.  Like mammals, terminal-repeat binding 

proteins in yeast help regulate telomere function, indicating a conserved mechanism for 

telomere maintenance.  Mutations in the fission yeast TRF homolog, Taz1, result in 

defects in both telomeric silencing and telomere length regulation (Cooper et al. 1997).  

Mutations in Taz1 alone do not cause telomere fusions, suggesting it does not have a 

direct role in telomere protection (Ferreira and Cooper 2001).  Like Taz1, the budding 

yeast protein, Rap1, binds telomeric repeat sequences.   Disruption of Rap1 results in an 

increase in the mean telomere length and a defect in telomere gene silencing (the 

reversible silencing of genes close to telomeres) (Lustig et al. 1990; Kyrion et al. 1993).   

In fission yeast, disruption of the Rap1 homolog, which does not directly interact with 

telomeric DNA results in impaired telomere length control, TPE (telomere position 

effect) and telomere clustering (Kanoh and Ishikawa 2001).   Furthermore disruption of 

Rap1 in both budding and fission yeast results in NHEJ dependent telomere fusions 

(Miller et al. 2005; Pardo and Marcand 2005).  Similar to fission yeast the human Rap1 

homolog does not directly bind DNA but instead is recruited to telomeres by TRF2 and 

plays a role in the negative regulation of telomere length (Li et al. 2000; Li and de Lange 

2003; O'Connor et al. 2004).   Interestingly, t-loop structures have not yet been identified 

in yeast.  
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Drosophila Telomere Structure and Maintenance 

 
Drosophila telomeres are not maintained by the canonical telomere maintenance 

mechanism described for mammals and yeast (see Figure 1.2).  Therefore, this section 

will provide an overview of the unusual structure and maintenance of Drosophila 

telomeres and highlight the differences and similarities between Drosophila telomeres 

and other eukaryotic telomeres.   

 

Drosophila Telomere Elongation.  The failure of telomeric DNA from other 

organisms to hybridize to Drosophila telomeres and the recovery of terminally deficient 

chromosomes were the first indicators that Drosophila telomeres were different (Mason 

and Biessmann 1995).   Subsequently, Drosophila were found to lack telomerase and the 

canonical short repeat sequences (Biessmann et al. 1990a).  Instead, Drosophila 

telomeres are maintained by a telomerase-independent mechanism, despite serving an 

evolutionarily conserved function (Pardue and DeBaryshe 1999; Biessmann and Mason 

2003).  Sequence analysis of Drosophila telomeres revealed that in place of short G-rich 

repeats, Drosophila telomeres are composed of multiple copies of the telomere-specific 

non-LTR retrotransposons, HeT-A and TART (Figure 2A) (Biessmann et al. 1992; Levis 

et al. 1993; Mason and Biessmann 1995). Recently, a third retrotransposon with 

similarities to both HeT-A and TART, designated TAHRE (TART and HeT-A related), 

has been identified (Abad et al. 2004).  These retroelements form randomly mixed arrays 

at the ends of chromosomes that can range from 10kb to 147kb long.  HeT- A and TART 

elements are unique in that they  
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Figure 1.2.   

 

Figure 1.2.  The Drosophila telomere maintenance pathway.  Drosophila telomeres 

are maintained by a telomerase independent mechanism.  (A) Drosophila telomeres are 

elongated by the addition of telomere specific non-LTR retrotransposons HeT-A, TART, 

and TAHRE.  (B) The telomere-associated proteins HP1 and HOAP are required for 

telomere protection.  (C) Terminally deleted chromosomes lacking all telomere different 

types of broken chromo indicating that the transposition of these elements does not 

associated sequence can be stably inherited and maintain a functional telomere protection 

complex. 
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transpose only to telomeres, although some elements have been found in other 

heterochromatic regions (mostly on the Y chromosome); none have ever been identified  

in euchromatin (Pardue and DeBaryshe 1999).  Furthermore they can attach to many of 

these elements does not depend on a specific target sequence (Biessmann et al. 1990b). 

Both TART and TAHRE are similar to other retrotransposons in that they encode 

both Gag and Pol proteins (Pardue et al. 2005).  HeT-A however only codes for a Gag 

protein, suggesting that the reverse transcriptase activity is provided in trans, possibly by 

TART or TAHRE.   HeT-A and TART are targeted to telomeres by the HeT-A encoded 

Gag protein (Rashkova et al. 2002; Rashkova et al. 2003).  In addition to HeT-A, TART, 

and TAHRE, Drosophila telomeres also contain more proximally located telomere-

associated sequences (TAS).  In Drosophila the TAS appear to play an important role in 

telomeric gene silencing (Wallrath and Elgin 1995; Cryderman et al. 1999; Mason et al. 

2000; Mason et al. 2003a; Mason et al. 2003b).   

Although the mechanism of telomere elongation in Drosophila appears very 

different from other eukaryotes, there are actually several similarities (Pardue et al. 1997; 

Pardue et al. 2005).  HeT-A and TART form head to tail arrays that resemble the repeat 

arrays found at the end of eukaryotic chromosomes that are elongated by telomerase.   

However, the retroelements are much more complex than the short repeat sequences.   

Therefore, Drosophila have much more diverse telomeric sequences compared to other 

eukaryotic telomeres.  In addition, like mammals and yeast, HeT-A and TART are 

reverse transcribed directly onto the ends of the chromosomes.    Transposition of HeT-A 

and TART requires the activity of a reverse transcriptase, mechanistically similar to 



 13

telomerase-dependent elongation. These similarities suggest that the telomeric 

retrotransposons are evolutionarily related to telomerase (Pardue et al. 1997; Pardue et al. 

2005).  

Although HeT-A and TART elements are found at the ends of almost all 

chromosomes they appear to be dispensable for chromosome stability. In yeast and 

mammals, loss of telomeric sequences leads to a senescent phenotype and chromosome 

fusions (Blackburn 2001; Maser and DePinho 2002).   In contrast, Drosophila terminally 

deleted chromosomes, which lack the transposable elements and TAS, do not result in 

fusions or initiation of a damage response (Mason et al. 1984).  Furthermore, terminally 

deleted chromosomes can be stably transmitted over several generations even though 

they continue to lose terminal sequences (Biessmann and Mason 1988; Ahmad and Golic 

1998).  Thus, unlike mammalian and yeast telomeres, the replication and capping 

(protection) function in Drosophila are separable, providing a useful system in which to 

study proteins involved in telomere maintenance.   

Telomere length homeostasis in Drosophila is regulated by a variety of different 

proteins.  Mutations in Heterochromatin Protein 1 (HP1) result in long telomeres and an 

increase in HeT-A transcription (Savitsky et al. 2002; Perrini et al. 2004), though the 

increase in transcription may be due to the increase in HeT-A copy numbers.  Mutations 

in the RNAi components, aubergine and spindle-E, result in an increase in HeT-A and 

TART transcription and in HeT-A and TART attachment to broken chromosomes in the 

germline (Savitsky et al. 2006).  The gene disrupted in the Tel1 (yeast ATM homolog) 

mutant also plays a role in telomere length maintenance (Siriaco et al. 2002).  Finally, 
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recent studies demonstrate that heterozygous mutations in the DNA repair proteins Ku70 

and Ku80 result in long telomeres due to an increase in the frequency of HeT-A 

attachment and in the frequency of terminal DNA conversion (elongation using terminal 

DNA sequence from another chromosome) (Melnikova et al. 2005). 

Similar to yeast and mammals, recombinatorial events such as gene conversion 

can contribute to telomere elongation in Drosophila (Mikhailovsky et al. 1999; Kahn et 

al. 2000).  Conversion can occur between sequences on the same chromosome or 

between sequences of homologous chromosomes.  Whether or not Drosophila telomeres 

have a similar 3’ overhang and t-loop structure remains to be determined.  In mammals 

the 3’ overhang plays an important role in telomere protection, of interest will be if it has 

a similar function in Drosophila.  A t-loop structure seems unlikely at Drosophila 

telomeres because they do not have the short repeat sequences required for t-loop 

formation. 

 

Drosophila Telomere Protection Proteins.  The sequence independent-protection 

of Drosophila terminally deleted chromosomes suggests that Drosophila telomere 

protection is regulated by an epigenetic mechanism.  Consistent with this, no telomeric 

sequence (HeT-A, TART) specific DNA binding proteins (TRF2/TRF1 like proteins) 

have been identified in Drosophila.  However, several telomere-associated proteins that 

are required for telomere protection in Drosophila are known.   These proteins include 

Heterochromatin Protein 1 (HP1), Heterochromatin protein 1/ORC2 Associated Protein 

(HOAP), ubiquitin ligase, UbcD1, and the recently described transcription factor Without 



 15

children (Woc) (Cenci et al. 1997; Fanti et al. 1998; Cenci et al. 2003b; Raffa et al. 

2005).   This section will provide an overview of Drosophila telomere protection 

proteins.   The main focus will be the role of the telomere-associated proteins HP1 and 

HOAP.   

  

Heterochromatin Protein 1 (HP1).  HP1 is best known for its role in gene 

silencing and transcriptional regulation. However the role of HP1 in telomere protection 

will be the focus of this thesis.  The mechanism by which HP1 contributes to 

heterochromatin assembly is important for understanding how it functions to protect 

telomeres.  Therefore, this section will provide background on the better-known roles of 

HP1 and then focus on the role of HP1 in telomere protection. Finally, results supporting 

a conserved role for HP1 in telomere protection in other organisms will be provided.  

 

The Role of HP1 in Gene Silencing and Regulation.  HP1 is a non-histone protein 

encoded by the modifier of position effect variegation Su(var) 2-5 locus (Eissenberg et al. 

1990).  Position effect variegation (PEV) is the epigenetic phenomenon in which a 

normal expressing euchromatic gene is silenced when placed close to or in a 

heterochromatic region following a chromosomal rearrangement (Weiler and Wakimoto 

1995).  This phenomenon has been extensively studied in Drosophila using the white 

gene, a gene normally found in a euchromatic region on the X chromosome.  The product 

of the white gene is cell autonomous and expression in all pigment cells is required for a 

uniformly red eye.  When the white gene is placed in or near pericentric heterochromatin 
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the result is a variegating phenotype resulting from repression of white expression in 

some cells but not others.  Genes next to telomeric heterochromatin can also exhibit 

repressed and variegated expression.  This phenomenon is referred to as telomeric 

position effect (TPE) (Mason et al. 2000; Wallrath 2000). 

Genes that influence PEV (heterochromatin formation) are known as either 

enhancers of variegation e(var)s or suppressors of variegation su(var)s.  Heterozygous 

mutations in HP1 result in a less silencing of variegating genes at pericentric regions and 

at the fourth chromosome telomere, while over expression of HP1 enhances silencing of 

variegating genes indicating that PEV is sensitive to the dose of HP1 (Wallrath and Elgin 

1995).  The effect of HP1 on PEV is due to a direct role in heterochromatin assembly.  In 

addition to its effects on centric heterochromatin HP1 also effects silencing of genes 

located in other regions of the chromosome.  Experiments by Li et al demonstrated that 

tethering HP1 upstream of a reporter transgene inserted into euchromatic sites was 

sufficient to nucleate heterochromatin, indicated by silencing of the transgene (Li et al. 

2003).  Interestingly, a microarray study performed by Cryderman et al demonstrated that 

HP1 is also required for the expression of some euchromatic genes (Cryderman et al. 

2005).  

Consistent with a role in heterochromatin assembly, HP1 localizes predominantly 

to heterochromatic regions in addition to telomeres and several euchromatic sites (James 

et al. 1989; Fanti et al. 1998).  The HP1 protein consists of two conserved domains, the 

chromo domain and the chromo shadow domain (Hiragami and Festenstein 2005).  A 

hinge region separates the two domains.  The chromo shadow domain mediates 
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interactions between HP1 and a variety of proteins.  The chromo domain is required for 

binding to methylated lysine 9 of histone H3 (meK9H3), a histone modification found 

primarily in heterochromatic regions (Hiragami and Festenstein 2005).   

Methylation of lysine 9 of histone H3 is mediated by the conserved methyl 

transferase Su(var)3-9.  Similar to HP1, Su(var)3-9 exhibits dosage dependent effects on 

PEV (Schotta et al. 2002) . Studies in mammals and Drosophila demonstrate that 

Su(var)3-9 creates a binding site for the HP1 chromo domain and interacts with the HP1 

chromo shadow domain (Bannister et al. 2001; Lachner et al. 2001; Schotta et al. 2002).  

In Drosophila, Su(var)3-9 co-localizes with HP1 at centromeric and telomeric sites but 

not at euchromatic sites.  The localization of HP1 and Su(var)3-9 to heterochromatin is 

mutually dependent (Schotta et al. 2002).  In HP1 mutants, Su(var)3-9 still associates 

with heterochromatin but localizes to additional euchromatic sites, indicating that HP1 

may be required to restrict Su(var)3-9 binding.  In Su(var)3-9 mutants, HP1 is reduced at 

the chromocenter and an abundance of unbound HP1 can be observed in the nucleus.  

However fourth chromosome localization of HP1 and methylation of histone H3 is 

unaffected, suggesting that there may be another methyl transferase (Schotta et al. 2002).   

The current model for HP1-mediated heterochromatin formation suggests a 

stepwise mechanism in which meK9H3 recruits HP1, which can in turn recruit the 

histone methyl transferase Su(var)3-9 (Maison and Almouzni 2004).  Su(var)3-9 can in 

turn methylate adjacent lysines, creating additional binding sites for HP1 and propagation 

of heterochromatin along the chromosome.  Human Suv39H1 can partially rescue the 
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silencing defects of a Drosophila su(var)3-9 mutant, indicating a conserved mechanism 

for Su(var)3-9 and HP1 mediated heterochromatin formation (Schotta et al. 2002) . 

Both HP1 and Su(var)3-9 localize to telomeres suggesting that they may also 

contribute to the maintenance of telomeric heterochromatin.   Further support is provided 

by recent studies demonstrating that Drosophila telomeres are enriched in trimethylated 

lysine 9 of histone H3 (Cowell et al. 2002; Schotta et al. 2002). Furthermore, the role of 

HP1 and Su(var)3-9  in the epigenetic inheritance of chromatin modifications during cell 

division suggests that a similar activity may contribute to telomere protection.  The role 

of Su(var)3-9 and methylation of histone H3 at Drosophila telomeres is just beginning to 

be revealed.  Su(var)3-9 is not absolutely required for telomere protection because 

mutations in Su(var)3-9 do not result in telomere fusions (Perrini et al. 2004).  Moreover, 

Su(var)3-9 mutations also do not abolish meK9H3 at telomeres suggesting that another 

methyltransferase may compensate or may be required for methylation at telomeres. In 

contrast, studies have demonstrated that HP1 plays an important role in telomere 

protection in addition to telomere silencing and telomere elongation (Fanti et al. 1998).  

 

The Role of HP1 in Telomere Protection.  Analysis of Su(var)2-5  mutant larval 

brain cells revealed a telomere fusion phenotype in which almost 100% of metaphase 

cells have at least one fusion with an average of 4-6 fusions per nuclei (Fanti et al. 1998).  

These fusions persist in telophase suggesting that they are covalent DNA-DNA linkages 

that cannot be resolved during anaphase.  Supporting this assumption, Su(var)2-5 mutants 

exhibit an increased frequency of polyploidy/aneuploidy and chromosomal 
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rearrangements indicating cells have undergone multiple rounds of fusion-bridge-break 

cycles.   

Telomeric functions of HP1 include regulation of telomeric silencing, protection, 

and elongation.  As mentioned, HP1 mutants have elongated telomeres, increased 

transcription of HeT-A/TART, and increased telomere fusions (Fanti et al. 1998; 

Cryderman et al. 1999; Savitsky et al. 2002).  A recent study by Perrini et al shed light on 

how HP1 can mediate three separate aspects of telomere maintenance by utilizing 

separation of function alleles of Su(var)2-5 (Perrini et al. 2004).  Previous studies 

demonstrated that mutations in the HP1 chromo domain did not result in telomere fusions 

indicating that the chromo domain was dispensable for the function of HP1 in telomere 

capping (Fanti et al. 1998).  Perrini el al (2004) demonstrated that the chromo domain is 

required for telomeric silencing and elongation.   Mutations that disrupt the chromo 

domain also abolish meK9H3 at telomeres.  These observations suggest that the telomeric 

silencing and elongation function of HP1 is mediated through its interaction with 

H3meK9.   Furthermore, Perrini et al demonstrated that the telomere capping function of 

HP1 is due to its direct binding with DNA and is dependent on the hinge region of the 

HP1 protein.  HP1 can bind both single and double strand DNA but has preference for 

single strand DNA suggesting that the structural design of Drosophila telomeres may 

contain a single strand 3’ overhang similar to yeast and mammals (Perrini et al. 2004).    

 

Heterochromatin and Orc2 Associated Protein (HOAP).  HOAP was isolated from 

Drosophila embryo extracts as part of a complex with HP1 and ORC2 (Shareef et al. 
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2001).  Analysis of the HOAP protein revealed that it contains an HMG domain and has 

DNA binding activity.   Similar to HP1, mutations in HOAP cause a mild suppression of 

position effect variegation (Shareef et al. 2001) indicating that HOAP may also play a 

role in heterochromatin assembly.  In contrast to HP1, HOAP localizes primarily to 

telomeres while only faint localization is detected at pericentric heterochromatin and 

euchromatic sites (Shareef et al. 2001; Badugu et al. 2003).   Based on the localization of 

HOAP and its DNA binding activity, a likely assumption would be that HOAP binds 

telomeric DNA. However, there is no convincing data suggesting that HOAP binds HeT-

A or TART telomeric DNA.   

Caravaggio (cav), a mutant in the HOAP protein, was isolated from a 

mutagenesis screen designed to identify mutations affecting chromosome behavior 

(Cenci et al. 2003b).   Cytological analysis of cav mutant larval brain cells revealed a 

fusion phenotype similar to that observed for HP1 mutants.  Like HP1 almost 100% of 

metaphase cells have at least one fusion with an average of 4 fusions per nuclei. cav 

mutants also have a high frequency of chromosomal aberrations indicating multiple 

rounds of fusion-bridge-break cycles (Cenci et al. 2003b).  The similar cytological 

phenotypes and the evidence that HOAP and HP1 are part of the same complex suggest 

that they might cooperate in telomere protection.  

 

The HP1 and HOAP Complex.  HOAP has been demonstrated to directly interact 

with HP1 although the significance of this interaction in telomere protection is still not 

clear.   The chromo shadow domain and hinge region of HP1 mediate the interaction 
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between HOAP and HP1 (Badugu et al. 2003).  Interestingly, HP1 is not absolutely 

required for HOAP telomeric localization since HOAP localizes to 70% of HP1 mutant 

mitotic telomeres not involved in fusions (Cenci et al. 2003b). The opposite experiment 

cannot be completed in a HOAP mutant because HP1 localization at mitotic telomeres 

cannot be unambiguously determined from its abundant localization to heterochromatin.   

Therefore, it is not known if HOAP is required for HP1 telomeric localization.   Whether 

HP1 and HOAP are recruited independently to telomeres or if they are recruited together 

as a complex remains unclear.  Interestingly, both HP1 and HOAP localize to terminally 

deleted chromosomes that lack all telomeric sequences and can protect these 

chromosomes from fusions (Figure 2C) (Fanti et al. 1998; Cenci et al. 2003b).  The 

localization of HP1/HOAP to terminally deleted chromosomes indicates that they 

recognize something other than a specific DNA sequences.  

 

UbcD1.  Mutations in UbcD1 result in telomere fusions without loss of telomeric 

DNA or telomere associated proteins (HP1) (Cenci et al. 1997).  The fusions do not 

appear to be covalent DNA-DNA linkages because UbcD1 mutants have a low frequency 

of acentric fragments and aneuploid cells.  Therefore the fusions are most likely resolved 

during anaphase. Because the UbcD1 gene encodes an ubiquitin conjugating enzyme, the 

fusions are proposed to be due to a failure to degrade some telomere associated-

protein(s).  Thus far, UbcD1 telomeric targets have not been identified although one 

potential target has been ruled out.  HP1 localizes normally to telomeres in Ubdc1 

mutants (Cenci et al. 1997).    
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Without Children (Woc). A genetic screen designed to isolate genes involved in 

telomere protection identified the zinc finger protein without children (Woc) (Raffa et al. 

2005).  The screen examined over 1600 third chromosome late lethal mutants for 

telomere fusion phenotypes.  In total, nine independent genes were identified.  Thorough 

cytological analysis of woc mutant larval brain cells revealed an average telomere fusion 

frequency of two fusions per metaphase.  The woc mutant fusion phenotype is mild in 

comparison to the su(var)2-5 and cav mutant fusion phenotype.  Supporting the proposal 

that woc functions as a transcription factor (Wismar et al. 2000), the Woc protein 

localizes to many euchromatic bands in polytene chromosomes however, some diffuse 

Woc staining was observed at telomeres.  Intriguingly, woc appears to act in a separate 

telomere protection pathway from other telomere protection proteins described thus far.  

HP1 and HOAP localize normally to woc mutant telomeres and woc double mutants have 

fusion frequencies equal to the sum of the single mutant frequencies (Raffa et al. 2005).  

Identifying transcriptional targets of Woc and other proteins that contribute to this 

pathway will be of great interest. 

 

Conserved Functions for Drosophila Telomere Protection Proteins.  Many of the 

functions described for Drosophila HP1 are conserved in other organisms.  Mammals 

have three isoforms of HP1: alpha, beta, and gamma.  Over-expression of HP1 alpha in 

Drosophila increases silencing of a white transgene at centric and telomeric 

heterochromatin indicating that human HP1 can participate in heterochromatin formation 

and gene silencing similar to Drosophila HP1 (Norwood et al. 2004).   However, human 
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HP1 does not completely rescue the Drosophila HP1 mutant suggesting that in 

Drosophila, HP1 has other functions (Norwood et al. 2004). It is likely that one of the 

other HP1 isoforms may contribute to those functions in mammals.   

Suv39h1 and HP1 homologs are both required for telomere function in 

mammalian cells. Over-expression of the alpha and beta isoforms of HP1 results in a 

decrease in telomerase binding at telomeres and a subsequent decrease in telomere length 

(Sharma et al. 2003). Expression levels of HP1 also affect telomere binding of Ku70, 

TRF2, and/or TRF1, three proteins known to localize to telomeres and regulate telomere 

length (Sharma et al. 2003). Primary cells from mice expressing a dominant negative 

Suv39h1 have elongated telomeres compared to wild type littermates (Garcia-Cao et al. 

2004).   Although these cells retain protective function (absence of telomere fusions), 

they have a reduction of meK9H3 and cbx proteins (homologous to HP1) at telomeres 

(Garcia-Cao et al. 2004).  Collectively, these results suggest that in mammals, Suv39h1 

plays an important role in telomere length regulation.  Furthermore, these results indicate 

that telomere length in mammals is regulated by a chromatin mechanism. 

Thus far data does not support an absolute requirement for HP1 in telomere 

protection in other organisms. Over-expression of HP1 results in a very small increase in 

telomere fusions compared to the frequency of fusions observed when TRF2 is disrupted 

(Sharma et al. 2003). In fission yeast, HP1 is not required for telomere protection but 

does regulate telomere length, telomere clustering, and telomeric gene silencing (Allshire 

et al. 1995; Ekwall et al. 1995). 
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No mammalian homolog of HOAP has been identified indicating that it might not 

be an evolutionarily conserved protein.  Furthermore, the HOAP protein is encoded by a 

fast evolving gene (Cenci et al. 2003b), which makes sequence comparisons among 

different organisms difficult, in fact a homolog has not been described for any organism 

outside of Drosophila.  The telomeric function of HOAP may be provided by one of the 

many telomeric binding proteins identified in mammals and yeast.   

 

The DNA Damage Response 

 

This section will provide an overview of the DNA damage response pathway 

based primarily on mammalian and yeast data.  This section is divided into three parts the 

first part describes the canonical DNA damage response with emphasis on the sensor 

proteins involved in the activation of cell cycle checkpoints and apoptosis.  The second 

section is a summary of the two primary DNA repair pathways.  The final section 

highlights the human diseases that result from mutations in DNA damage response 

proteins. The Drosophila DNA damage response pathway will be described in a later 

section.  The function of DNA damage response proteins at sites of damage is 

presumably critical for understanding how they function at telomeres.  DNA damage 

response proteins are not only required for telomere protection but are also required to 

activate damage responses at dysfunctional telomeres.   
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The DNA Damage Response Pathway.  DNA damage such as double strand 

breaks poses a considerable threat to a cell’s genomic integrity and survival; unrepaired 

damage can lead to devastating mutations.  Double strand breaks can arise spontaneously 

during normal cellular processes like replication or may be induced by a variety of 

exogenous damaging agents such as X-rays (Karagiannis and El-Osta 2004).   Cells have 

evolved mechanisms to repair double strand breaks, to prevent cells with unrepaired 

breaks from undergoing cell division and transmitting damaged DNA to daughter cells 

(cell cycle checkpoints), or to eliminate cells with unrepairable damage (apoptosis). 

Collectively these mechanisms make up the DNA damage response pathway. 

A cell’s response to DNA damage is similar to other signal transduction 

pathways, in order to be effective, activation of the DNA damage response must be swift 

and precise. Following DNA damage a set of proteins is required to initially sense the 

damage, amplify the signal and transduce it to specific effector molecules in order to 

elicit the appropriate biological response (repair, arrest, or apoptosis).   Mutations in 

genes required for the DNA damage response result in a group of human genetic 

disorders known as genomic instability syndromes (Taylor 2001). 

One of the most well characterized sensors of DNA damage is the MRN complex.  

Components of this complex are some of the earliest proteins recruited to sites of double 

strand breaks (van den Bosch et al. 2003).  The MRN complex consists of the nuclease 

Mre11, the structural maintenance of chromosomes protein Rad50, and NbsI.  Structural 

and biochemical studies indicate that the MRN complex tethers the broken DNA ends 

together and processes the DNA for repair by homologous recombination. Nbs is also 



 26

required for several cell cycle checkpoints and is a known target of the kinase ATM 

following DNA damage (Iijima et al. 2004).   

Central to the cellular response to DNA damage is a conserved family of protein 

kinases that is related to the P(I)3 kinases (Shiloh 2003).   The P(3) like kinases include 

ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PKcs 

(DNA-dependent protein kinase catalytic subunit).    All three kinases cooperate to 

regulate DNA damage responses.  ATM and ATR both recognize and phosphorylate the 

same consensus sequence:  serine or threonine followed by glutamate. To some degree, 

the activation of these kinases depends on the source and type of damage.  ATM and 

DNA-PKcs are predominantly activated by double strand breaks, while ATR is activated 

primarily in response to single strand DNA lesions.  However, the exact contribution of 

each kinase cannot be absolutely determined due to the high degree of complexity in the 

DNA damage cascade; ATM and ATR can phosphorylate many of the same substrates.    

Furthermore, the requirement for ATR during cell proliferation limits the analysis of 

DNA damage responses in its absence (Brown and Baltimore 2000).  

Following DNA damage and activation, ATR and ATM can phosphorylate 

multiple substrates, including the checkpoint kinases Chk1 and Chk2.  In addition, the 

p53 transcription factor can be activated by several of the upstream kinases.  

Phosphorylation of p53 can induce apoptosis, cell cycle arrest, or DNA repair.  

 

DNA Repair.  Eukaryotes have at least two major DNA repair mechanisms, 

nonhomologous end joining (NHEJ) and homologous recombination (HR) (Pastink et al. 
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2001; Valerie and Povirk 2003).  HR is a precise mechanism in which the sister 

chromatid (or the homologous chromosome) is used as a template to repair the broken 

DNA; this process results in complete restoration of the original DNA sequence.  In 

contrast to HR, NHEJ does not require any sequence homology and instead, the broken 

ends are directly ligated together (Hefferin and Tomkinson 2005).  Because some 

processing of the ends is often required in order to make the ends compatible for ligation, 

repair by NHEJ often results in small insertions and deletions.  Therefore, the NHEJ 

repair pathway is considered to be error prone.  A cell’s decision to repair by HR or 

NHEJ depends on several factors, including the phase of the cell cycle and an organism’s 

developmental stage.   For example, during late S and G2 phases of the cell cycle sister 

chromatids are in close proximity making HR more practical.   Furthermore NHEJ plays 

an essential role in immunoglobulin gene rearrangement (V(D)J recombination) in 

mammals (Lieber et al. 2003). 

Proteins involved in the NHEJ repair pathway have been identified through 

genetic and biochemical studies and include the DNA-PK complex and ligase IV (Lieber 

et al. 2003; Collis et al. 2005; Hefferin and Tomkinson 2005).  The DNA-PK complex 

consists of the DNA end binding protein Ku, a heterodimer of Ku70 and Ku80, and the 

catalytic subunit DNA-PKcs.   The current model of repair by NHEJ includes Ku70/80 

acting to bridge the two DNA ends and then recruiting DNA-PKcs and its binding partner 

Artemis.  DNA-PKcs and Artemis are required to process the ends for ligation by ligase 

IV.  Although the NHEJ repair pathway is conserved in yeast, one distinction is that yeast 
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do not have a DNA-PKcs homolog.  Another kinase may provide DNA-PKcs activity in 

yeast.  

Genes required for HR were first identified by genetic experiments in yeast and 

belong to the Rad52 epistasis group (Pastink et al. 2001; Valerie and Povirk 2003).  

Genes in this group include the MRN complex, Rad52, and Rad51.  In mammals, 

mutations in genes involved in HR are lethal suggesting that repair by HR is essential 

during development.  In yeast, the contribution of NHEJ only becomes apparent when the 

HR pathway is inactivated (Hefferin and Tomkinson 2005).  For example, in S.cerevisiae 

ligaseIV mutants are viable and only exhibit sensitivity to IR when in a Rad52 mutant 

background.  Homologous recombination is the primary repair pathway in yeast and is 

critical during mammalian development. 

 

Chromosome Instability Syndromes.  Mutations in many of the proteins involved 

in the DNA damage response have been linked to a variety of distinct human diseases 

known as chromosome instability syndromes (Taylor 2001).  Although these diseases 

result from the disruption or mutation of one particular gene they share some of the same 

clinical features, in addition to some unique clinical consequences.  Furthermore, 

disruption of ATM and NBS1 telomeric functions may contribute to some of the disease 

phenotypes (Callen and Surralles 2004).  

  One of the first chromosome instability disorders to be identified was Ataxia-

Telangiectasia (A-T), a progressive degenerative disease, characterized by the lack of 

muscle control (ataxia) and telangiectasias (dilated, superficial blood vessels) that appear 
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in the corners of the eye (Taylor 2001; Shiloh 2003).  Individuals with this disease have 

several other clinical hallmarks including immunodeficiency, radiation sensitivity, high 

incidence of lymphomas, and premature aging.    A-T is caused by mutations in the gene 

ATM (ataxia telangiectasia mutated), which encodes a protein kinase required for 

sufficient cellular response to DNA damage (see above).    Many mutations affecting 

each of the 66 exons of ATM have been linked to A-T, with truncating mutations that 

reduce the function of the protein being the most common.   

Patients with ataxia-telangiectasia like disorder (ATLD) share the same clinical 

features as A-T but with a less severe clinical course (Stewart et al. 1999).  Originally 

patients with ATLD were misdiagnosed with A-T.  However, later genetic analysis 

revealed that they did not carry mutations in ATM but instead had decreased levels of the 

Mre11 protein.  As described above, Mre11 is found in a complex along with Nbs1 and 

Rad50 that is known to respond to double strand breaks.  Mutations in the Nbs1 gene, 

which encodes the protein Nibrin, give rise to the human disease Nijmegen Breakage 

Syndrome (Matsuura et al. 2004).  The most common mutation that results in the NBS 

disease is a 5 bp deletion in exon 6 that causes a frame shift.  Hallmarks of this disease 

are similar to A-T and ATLD however patients are also plagued with microcephaly 

(reduced head size).  Recently, mutations in the protein kinase, ATR (ATM and Rad3 

related) have been identified in patients with Seckel Syndrome, a disorder that most 

closely resembles NBS because hallmarks include microcephaly and dwarfism but not 

chromosome instability or cancer (Alderton et al. 2004).   The identification of mutations 
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in DNA damage response/repair genes that result in these related diseases strengthens the 

molecular connection between these proteins and the maintenance of genomic integrity. 

 

DNA Damage Response Proteins and Telomere Maintenance 

 
This section discusses the role of DNA damage response proteins in regulation of 

telomere length and telomere protection of both normal and unprotected (dysfunctional) 

telomeres.  The results described in this section are primarily from yeast and mammalian 

genetic experiments.  This section is divided into several parts.  The first part is a 

summary of yeast and mammalian data supporting a role for DNA damage response 

proteins in the maintenance of normal telomeres.   The role of DNA repair enzymes in 

telomere maintenance will be discussed in a separate section because repair proteins play 

counterintuitive roles at telomeres; they contribute to both telomere protection and to the 

fusion process.  The third section describes the role of these same proteins at 

dysfunctional telomeres.  The final section will describe results demonstrating the 

association and activity of damage response proteins with telomeres. 

 

The Role of DNA Damage Proteins at Normal Telomeres.  Genetic experiments 

in both yeast and mammals have demonstrated a conserved role for the P(I)3 like kinases 

and MRN complex in the maintenance of normal telomeres.   Yeast have two members of 

the ATM family of (PI)3 like kinases, Tel1 and Mec1 in S.cerevisiae and Tel1 and Rad3 

in S. pombe.  In both budding and fission yeast, disruption of either tel1 or mec1 (rad3) 

results in moderately shorter but stable telomeres (Naito et al. 1998; Ritchie et al. 1999; 
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Chan et al. 2001).   Simultaneous disruption of both kinases results in complete loss of 

telomeric repeat sequences and telomere fusions (Naito et al. 1998; Craven et al. 2002).  

In S. pombe the fusions can result in stable, circular chromosomes, which ultimately 

contribute to the viability of the mutant organism (Naito et al. 1998). Consistent with 

these results, a more severe phenotype is observed in tel1 rad26 (Rad3 interacting 

protein) double mutants (Nakamura et al. 2002).  Therefore in yeast, the upstream DNA 

damage protein kinases mediate parallel telomere maintenance pathways. The MRN 

complex (MRX in Budding yeast) also plays a role in telomere length and maintenance of 

normal telomeres in yeast (Tsukamoto et al. 2001; Ueno et al. 2003).   Mutations in MRN 

components result in short telomeres similar to the Tel1 mutant phenotype.  Double 

mutant analysis components of the MRN complex and tel1 and mec1 revealed that the 

MRN complex acts in the same telomere maintenance pathway as Tel1 (Ritchie and Petes 

2000; Mieczkowski et al. 2003).   

Similar to yeast, the upstream kinases and MRN complex also contribute to 

telomere maintenance in mammals.   ATM deficient cells exhibit a modest increase in 

chromosome end-to-end fusions as well as accelerated telomere shortening (Pandita et al. 

1995; Metcalfe et al. 1996; Pandita 2002).  Inactivation of Nbs1 in human cells by RNAi 

results in an increase in telomere associations (Zhang et al. 2005).  To date a role for 

ATR in normal mammalian telomere maintenance has not been described.  This could be 

due to the fact that ATR mutant mice are early embryonic lethal and mutant ES cells 

(embryonic stem cells) fail to proliferate and exhibit massive chromosome fragmentation 
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(Brown and Baltimore 2000; de Klein et al. 2000).  Chromosome fragmentation and 

proliferation defects may mask any telomere defects. 

 

DNA Repair Enzymes and Telomere Maintenance.  The function of DNA repair 

proteins at telomeres is conserved from yeast to humans.   Mutations in DNA-PKcs result 

in telomere fusions in metaphase and anaphase bridges but do not affect telomere length 

or telomerase activity in mice (Bailey et al. 1999; Goytisolo et al. 2001).  This suggests a 

direct role for DNA-PKcs in telomere capping.  In mice, loss of DNA-PKcs in telomerase 

deficient cells results in a faster rate of telomere repeat sequence loss and suppression of 

telomere fusions (Espejel et al. 2002).  Taken together, these results indicate that NHEJ 

components are not only required to protect normal telomeres but are also required for 

the fusion of critically short telomeres.   

In S. cerevisiae, mutations in the NHEJ proteins Ku70 and Ku80 result in defects 

in telomere silencing and short telomeres (Nugent et al. 1998).   Because Ku is able to 

bind telomerase RNA, others have proposed that the short telomeres are a result of 

impaired telomerase regulation (Stellwagen et al. 2003).  In contrast to budding yeast, 

fission yeast Ku70 and Ku80 are not required for telomeric position effect but do play a 

role in telomere length homeostasis (Baumann and Cech 2000; Miyoshi et al. 2003) 

(Manolis et al. 2001).  Like the DNA damage sensor proteins, NHEJ components also 

associate with telomeric DNA, indicating a direct role for these proteins in telomere 

maintenance (Miyoshi et al. 2003).  
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In mammals mutations in the Ku70 and Ku80 DNA binding proteins result in 

telomere fusions in mouse cells, demonstrating a role for Ku in telomere protection 

(Bailey et al. 1999; Hsu et al. 2000).  A similar phenotype was observed in human cells in 

which Ku80 function had been disrupted (Jaco et al. 2004) (Myung et al. 2004).  Ku also 

plays a role in telomerase mediated telomere elongation.  Mutations in human Ku80 

result in shorter telomeres suggesting that like yeast, human Ku is required for telomerase 

regulation (Jaco et al. 2004; Myung et al. 2004).   Finally, human Ku has also been 

demonstrated to interact with TRF1 further supporting a role for Ku in telomere length 

regulation (Hsu et al. 2000). The exact role of Ku in telomere length maintenance in mice 

is less clear although it is apparent that it has some function in the regulation of telomere 

elongation.  Two separate studies using Ku-deficient MEFs describe opposite results.  

D’Adda di Fagagna et al. claim that telomeres become shorter in the absence of Ku while 

Jaco et al. claim that Ku80 mutant mice have longer telomeres.  Differences in mouse 

strains could contribute to these conflicting results (d'Adda di Fagagna et al. 2001; Jaco et 

al. 2004). 

The role of HR proteins in telomere regulation has not been extensively studied. 

Recent studies in mammals demonstrate that proteins required for repair by homologous 

recombination play a significant role in telomere maintenance.  Deletion of Rad51D in 

both ALT (alternative lengthening of telomeres) and in telomerase positive cells results in 

shorter telomeres, apoptosis, and telomere fusions but normal TRF2 localization to 

telomeres (Tarsounas et al. 2004).  Furthermore, Rad51D colocalizes with TRF2 at 

telomeres but does not directly interact with TRF2. These results suggest that Rad51D 
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acts in a separate telomere protection pathway from TRF2.  In yeast, Rad51 plays a more 

significant role in telomere maintenance in the absence of telomerase (when elongation 

occurs by alternative mechanisms) (Le et al. 1999). 

  Disruption of the Rad51 interacting protein Rad54 results in significant loss of 

telomeric sequences without loss of telomerase, indicating a role for Rad54 in length 

maintenance (Jaco et al. 2003).  Rad54 mutant MEFs also exhibit telomere fusions 

indicating a role in protection.   Recently, a role for Rad9 in telomere maintenance has 

been described.  Expression of a dominant negative form of Rad9 results in an increase in 

telomere fusion indicating a role for Rad9 in telomere protection (Pandita et al. 2006).  

 

The Role of DNA Damage Response Proteins at Dysfunctional Telomeres.  In 

addition to their role in the protection of normal telomeres, DNA damage response 

proteins also mediate apoptosis and cell cycle checkpoints in response to dysfunctional  

(unprotected) telomeres.  Unprotected telomeres result in an ATM- and p53-dependent 

apoptotic response (Karlseder et al. 1999).  Expression of dominant negative TRF2, but 

not ionizing radiation results in telomere dysfunction-induced foci (TIFs) (d'Adda di 

Fagagna et al. 2003; Takai et al. 2003).  These foci colocalize with TRF1 and are 

composed of many DNA damage response proteins including MRE11, ATM, H2AX, 

Rad17 and 53BP1 (d'Adda di Fagagna et al. 2003; Takai et al. 2003).   These results 

provide direct evidence that uncapped telomeres do resemble double strand breaks and 

are recognized by damage response proteins. The number of TIFs is diminished in A-T 

cells expressing dominant negative TRF2, suggesting that ATM is the main transducer of 
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the telomere dysfunction response (Takai et al. 2003).  Some residual signal was 

observed at telomeres indicating that other proteins besides ATM, possibly one of the 

other P(I)3 like kinases can partially transduce the telomere dysfunction signal.   

If damage response proteins contribute to normal telomere protection and are 

required for the response to uncapped telomeres, how then do telomeres prevent damage 

responses at capped telomeres and during S phase?  Karlseder et al (2004) propose a 

model in which TRF2 blocks ATM-mediated DNA damage responses at telomeres 

without affecting responses elsewhere.  Following irradiation, over expression of wild 

type TRF2 abrogates cell cycle arrest, induction of p53 and its targets, and 

autophosphorylation of ATM.  Furthermore, the region of ATM that contains the damage 

induced autophosphorylation site was demonstrated to directly interact with TRF2 

(Karlseder et al. 2004). 

Another mechanism for how telomeres prevent a damage response at capped 

telomeres is based on results from a study in yeast that suggests the telomeric repeat 

sequence may act as an anti-checkpoint (Michelson et al. 2005).  Induction of breaks 

adjacent to a telomeric repeat sequence results in an abbreviated checkpoint that depends 

on mec1 and requires the MRN complex.  A normal checkpoint is initiated when an 

induced break is greater than 0.6kb away from the repeat sequence.  This data suggest 

that sequences near the telomere may not be repaired, and indicate a role for the repeat 

sequences in telomere protection (Michelson et al. 2005).  Since all eukaryotic telomeres 

contain repeat sequences this function could be conserved in other organisms. 
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Telomeric Association and Activity of DNA Damage Response Proteins.  In 

human cell, studies designed to find proteins that interact with TRF2 identified the MRN 

complex (Zhu et al. 2000).  MRE11 and RAD50 colocalized with TRF1 and TRF2 

throughout the cell cycle while NBS1 colocalized with TRF2 during S-phase only.  

Recently, Verdun et al demonstrated by chromatin immunoprecipitation that ATM, 

MRE11, and phosphorylated NBS1 and phosphorylated ATM associate with telomeric 

DNA during late S- and G2 phases (Verdun et al. 2005).  These results suggest that the 

association of DNA damage response proteins with telomeres is cell cycle dependent.   In 

addition DNA repair enzymes have also been demonstrated to localize to telomeres in 

mammals (Hsu et al. 1999; d'Adda di Fagagna et al. 2001) 

Tel1 and Mec1 associate with telomeric DNA in a cell cycle dependent manner 

(Takata et al. 2004).  Mec1 predominately associates with telomeres during S phase, 

which may be a result of its specificity for single stranded DNA. Thus the two kinases 

appear to be recruited to telomeres independently.  The kinase activity of Mec1 is 

required for its association with telomeric DNA suggesting phosphorylation of substrates 

is part of its telomere function.  In contrast, the kinase activity of Tel1 is not required for 

its telomeric association (Takata et al. 2004).    

 

The Drosophila DNA Damage Response Pathway 

 

Genetic experiments in Drosophila demonstrate that the DNA damage response 

pathway is conserved in flies.   Like mammals, following DNA damage flies initiate 
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repair mechanisms, cell cycle checkpoints, and apoptosis.  Drosophila p53 and Mnk 

(Chk2 homolog) mediate irradiation-induced apoptosis, and mutations in these two genes 

result in a defect in induction of apoptosis (but normal cell cycle arrest) following X-ray 

treatment (Brodsky et al. 2000b; Ollmann et al. 2000; Brodsky et al. 2004).   Similar 

genetic experiments have demonstrated that damage-induced cell cycle arrest (and not 

damage-induced apoptosis) is mediated by Mei-41 (ATR) and mus304 (ATRIP) and the 

downstream checkpoint kinase Grps (chk1 homolog) (Hari et al. 1995; Ahmad and Golic 

1999; Brodsky et al. 2000a; Brodsky et al. 2000b; Ollmann et al. 2000). Initially these 

two pathways appeared to be distinct, however results described here and results from 

others suggest that these pathways share some common mediators. 

Microarray studies have demonstrated that Drosophila p53 regulates the induction 

of the proapoptoic genes rpr, hid, skl and components of the NHEJ repair pathway 

(Brodsky et al. 2003).  Although the function of p53 in mediating damage-induced 

apoptosis is conserved in flies, there are some p53 functions that do not appear to be 

conserved (Brodsky et al. 2000a).   Unlike mammalian p53, Drosophila p53 does not 

seem to play a role in the regulation of the G1 checkpoint.   Another major difference 

between mammalian p53 and Drosophila p53 is its regulation.  To date, no Drosophila 

Mdm2 homolog has been identified and there are no obvious candidates in the genome 

database (Sekelsky et al. 2000).  Mdm2 is the major regulator of p53 protein levels in 

unstressed cells.  Consistent with these observations, there is no rapid accumulation of 

p53 protein following DNA damage (Brodsky et al. 2003).  Similar to mammalian p53, 
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Drosophila p53 is phosphorylated by Chk2 following DNA damage (Brodsky et al. 

2003).    

Currently, upstream activators of Drosophila p53 and chk2 are not known, but 

ATM is a probable candidate based on mammalian data.  Drosophila encodes two 

damage response proteins in the ATM kinase family, Mei-41, which is most similar to 

ATR and CG6535/ATM, which is most similar to human ATM.  Drosophila ATM likely 

plays a role in one or both of the DNA damage response pathways (Hari et al. 1995; 

Sekelsky et al. 2000; Laurencon et al. 2003; Brodsky et al. 2004).   The role of 

Drosophila ATM in DNA damage responses and telomere protection will be the focus of 

Chapter 2.   Other candidates in Drosophila likely to be upstream mediators of the DNA 

damage response pathways include the components of the MRN DNA repair complex.   

Drosophila has orthologs of all three components and studies have demonstrated that 

both Mre11 and Rad50 play a role in DNA repair and in the regulation of apoptosis.   

Mutations in Mre11 or Rad50 result in a high frequency of chromosome breaks and 

spontaneous apoptosis (Ciapponi et al. 2004; Gorski et al. 2004).  In addition, Mre11 

mutants exhibit a partial defect in cell cycle arrest following X-ray induction of DNA 

damage (Oikemus et al. 2006).   The role of Nbs, the third component of the MRN 

complex, in the DNA damage response pathway is the focus of Chapter III. 

Drosophila telomeres can be maintained by a sequence independent mechanism, 

which allows the elongation and protection processes to be studied separately. Our results 

demonstrating that Drosophila DNA damage response proteins are required for normal 

telomere protection are described in Chapters II and III.  
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CHAPTER II 

DROSOPHILA ATM/TELOMERE FUSION IS REQUIRED FOR 

TELOMERIC LOCALIZATION OF HP1 AND TELOMERE 

POSITION EFFECT 
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Foreword 

 
The work presented in this chapter has been published:  Oikemus, SR., McGinnis, 

N., Queiroz-Machado, J., Tukachinsky, H., Takada, S., Sunkel, SE., Brodsky, MH.  2004.  

Drosophila atm/telomere fusion is required for telomeric localization of HP1 and 

telomere position effect.  Genes & Dev.  18:  1850-1861. 

Specific contributions are as follow:  The atm cDNA rescue construct was created 

by Nadine McGinnis, Figure 2.1A.  Analysis and quantification of HeT-A DNA at 

mitotic telomeres was contributed by Joana Queiroz-Machado, Figure 2.7A-E.  Analysis 

of HeT-A sequences at telomeres of polytene chromosomes was performed by Nadine 

McGinnis, Figure 2.7F-G.   Hanah Tukachinsky contributed to the analysis of   anaphase 

bridges, Table 2.4. 

 

Introduction 

 

Telomeres are specialized DNA-protein structures required to replicate and 

protect the ends of eukaryotic chromosomes (Zakian 1995; Blackburn 2001). In most 

organisms, the reverse transcriptase telomerase prevents the loss of terminal sequences by 

adding short repeat sequences during S-phase. Sequence-specific DNA binding proteins 

that recognize telomere repeat sequences help regulate telomere length and protection 

(Cooper et al. 1997; Shore 1997; de Lange 2002; Karlseder 2003). DNA damage repair or 

signaling proteins also regulate telomere function (Chan and Blackburn 2002; Bertuch 
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and Lundblad 2003), possibly by recognizing DNA structures at telomeres that resemble 

damaged chromosomes.  

A family of proteins related to the ATM kinase plays conserved roles in DNA 

repair and telomere function. Mutations in human ATM cause the inherited cancer 

predisposition syndrome ataxia telangiectasia (Shiloh 2003). Loss of ATM in humans or 

mice causes high levels of genomic instability and hypersensitivity to ionizing radiation. 

ATM phosphorylates multiple substrates, including the Chk2 checkpoint kinase and p53 

transcription factor, which promote apoptosis, cell cycle arrest, and DNA repair 

following DNA damage. Two ATM-related kinases, ATR and DNA-PKcs, are also 

activated by DNA damage and cooperate with ATM to regulate the cellular response to 

DNA damage (Shiloh 2003). ATM also regulates telomere length and protection (Pandita 

et al. 1995; Metcalfe et al. 1996; Pandita 2002). ATM function is, at least partly, 

telomerase-independent as mice mutant for both telomerase and ATM have shorter 

telomeres and more anaphase bridges than single mutant mice and exhibit striking defects 

in stem cell populations and aging (Wong et al. 2003). Because of the intimate linkage 

between telomere length and telomere protection, it is difficult to determine if the targets 

of ATM are enzymes that extend or degrade telomere DNA or proteins that directly 

mediate telomere protection. Identification of these targets may help define telomerase-

independent pathways that regulate telomere function. 

Budding and fission yeast have homologs of ATM and ATR. While loss of one 

ATM-like kinase can affect telomere length and repression of gene expression near 

telomeres (telomere position effect), loss of both ATM and ATR in yeast causes rapid 
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shortening and fusion of yeast telomeres (Naito et al. 1998; Ritchie et al. 1999; Chan et 

al. 2001; Craven et al. 2002; Chan and Blackburn 2003). Assays that directly measure 

telomere protection demonstrate that these proteins prevent telomeres from being fused to 

double-strand DNA breaks or to other telomeres (DuBois et al. 2002; Chan and 

Blackburn 2003; Mieczkowski et al. 2003). As in mice, the yeast ATM-like kinases act, 

at least partly, in a telomerase-independent pathway (Ritchie et al. 1999; Nakamura et al. 

2002; Chan and Blackburn 2003). Thus, in both yeast and humans, ATM can regulate 

telomere function independently of telomerase. 

Analysis of telomere function in Drosophila has revealed that an epigenetic 

mechanism contributes to telomerase-independent protection of telomeres. Drosophila 

telomeres are composed of two non-LTR retrotransposons Het-A and TART as well as 

more proximal telomere-associated sequences (Biessmann et al. 1992; Karpen and 

Spradling 1992; Levis et al. 1993; Mason and Biessmann 1995; Cryderman et al. 1999; 

Fanti and Pimpinelli 1999). Terminally-deleted chromosomes, lacking all telomere-

specific sequences, can be isolated following DNA damage (Mason et al. 1984; Tower et 

al. 1993; Mason et al. 1997; Ahmad and Golic 1998). Once obtained, the ends of these 

chromosomes are protected from end-to-end fusion; this property is stably inherited 

despite the gradual loss of terminal sequences due to the incomplete replication of 

chromosome ends by DNA Polymerase (Biessmann and Mason 1988). The heritable and 

sequence-independent protection of the ends of terminally-deleted chromosomes 

indicates that this aspect of Drosophila telomere function can be regulated by an 

epigenetic mechanism. 
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The Drosophila heterochromatin protein 1 (HP1) and heterochromatin protein 

1/ORC2 associated protein (HOAP) are localized to telomeres and required for telomere 

function. HP1 proteins play an evolutionarily conserved role in heterochromatin function 

(Eissenberg and Elgin 2000; Grewal and Elgin 2002; Badugu et al. 2003; Kellum 2003).  

In Drosophila, HP1 is prominent at centromeric and telomeric heterochromatin, but is 

also observed at euchromatic sites (James et al. 1989; Fanti et al. 1998; Fanti et al. 2003). 

HOAP forms a complex with HP1 and is strongly localized to telomeres (Shareef et al. 

2001; Badugu et al. 2003). Loss of either HP1 or HOAP leads to striking telomere fusion 

phenotypes, suggesting that chromatin structure plays a central role in telomere 

protection (Fanti et al. 1998; Cenci et al. 2003b).  Chromatin-modifying proteins also 

regulate Drosophila telomere position effect (TPE) in Drosophila. TPE at the second and 

third chromosomes is sensitive to the dose of Polycomb group genes while TPE at the 

fourth chromosome or at a terminally deleted minichromosome is sensitive to the dose of 

HP1 (Cryderman et al. 1999; Donaldson et al. 2002; Boivin et al. 2003). These results 

demonstrate that regulation of chromatin structure by HP1 is required for both telomere 

protection and TPE. 

Interestingly, terminally deleted chromosomes have normal levels of HP1-HOAP 

at their telomeres (Fanti et al. 1998; Cenci et al. 2003b).  The sequence-independent 

localization of these proteins to telomeres suggests that a structural feature of telomeres, 

perhaps chromosome ends, helps establish or reinforce the localization of these telomere 

protection proteins. Gatti and colleagues have suggested that DNA damage detection 
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proteins may help recruit HP1-HOAP complexes to telomeres by recognizing 

chromosome ends (Cenci et al. 2003b). 

Drosophila encodes two damage response proteins in the ATM kinase family, 

MEI-41, which is most similar to ATR, and CG6535/ATM, which is most similar to 

human ATM (Hari et al. 1995; Sekelsky et al. 2000; Laurencon et al. 2003; Brodsky et al. 

2004). ATR/MEI-41 is required for ionizing radiation (IR)-induced cell cycle arrest, but 

not p53-dependent apoptosis (Hari et al. 1995; Ahmad and Golic 1999; Brodsky et al. 

2000a; Brodsky et al. 2000b; Ollmann et al. 2000; Brodsky et al. 2004). Telomere fusions 

have not been described in mitotic cells lacking ATR/MEI-41 or its binding partner, 

ATRIP/MUS304 (Gatti 1979; Hari et al. 1995; Brodsky et al. 2000b). 

In this study, we characterize the role of Drosophila ATM in telomere function. 

Drosophila ATM is required for viability and for eye, wing, and bristle development. We 

find high frequencies of telomere fusions and anaphase bridges in the absence of ATM. 

We demonstrate that chromosomes mutant for the telomere fusion (tef) gene (Queiroz-

Machado et al. 2001) carry truncation mutations in ATM. In atm/tef animals, telomere 

fusions are accompanied by greatly elevated levels of spontaneous apoptosis during 

tissue growth. This apoptosis is suppressed by mutations in p53, suggesting that loss of 

telomere protection induces an ATM-independent, but p53-dependent, apoptotic signal. 

We demonstrate that ATM is specifically required for normal levels of HP1 and HOAP at 

telomeres, but not at centric heterochromatin. atm mutations suppress TPE,  

demonstrating that atm is required for normal telomere chromatin structure. In situ 

hybridization with telomere-specific sequences demonstrates that the telomere defects in 
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atm mutant cells are not due to loss of telomere sequences. These results support a model 

for telomere protection in which the recognition of DNA structures at chromosome 

termini by the ATM kinase provides a sequence-independent mechanism to help recruit 

telomere protection proteins. 

 

Results 

 
 

A Drosophila ATM homolog.  The genomic structure of atm/CG6535 is shown in 

Figure 2.1A. Based on cDNA sequencing and transgene rescue, we have identified a 

functional atm cDNA. Comparison of the predicted peptide sequence to mammalian 

checkpoint kinases indicates that it is the Drosophila homolog of atm. To characterize 

atm function, a deletion mutant, Δ356, was used that disrupts four kilobases of atm, 

including the start codon, and all of the adjacent gene hsc70-4 (Bronk et al. 2001) (Fig. 

2.A). Animals homozygous for this deletion and carrying a transgene containing the 

hsc70-4 gene (Dasika et al. 1999) can be used to study the function of atm alone (Fig. 

1A).  We will refer to this combination as atmΔ356. A second deletion, Δ16, includes 

hsc70-4 but not atm and serves as an isogenic control (Bronk et al. 2001). As described 

below, we have also identified two mutations; atmtef  and atmRed31 that are predicted to 

truncated the ATM protein (Fig. 2.1A-C).  

In contrast to Chk2 and p53, Drosophila ATM is required for normal 

development and viability. atmΔ356 animals die shortly before or after eclosion with a 

rough eye phenotype, misshapen wings, and missing or abnormal bristles. atmΔ356  
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produces similar defects in combination with a Deficiency, Df(3R)PG4 that includes atm 

(Dasika et al. 1999). atmΔ356/ atmtef animals exhibit similar morphological phenotypes 

(Fig. 2.1D-I), but survive longer as adults. Defects were observed in 75% of bristles and 

90% of wings (Tables 2.1 and 2.2). atmred31 homozygotes are also viable with rough eyes, 

but weaker wing and bristle phenotypes (not shown).  Similar eye and bristle phenotypes 

have been previously observed in Drosophila following DNA damage or in mutant 

strains with high levels of genomic instability (Engels et al. 1987; Ahmad and Golic 

1999; Brodsky et al. 2000b). Extensive aneuploidy is predicted to disrupt bristle 

morphology because bristles are sensitive to haploinsufficiency of ribosomal genes, 

which are present on all major chromosome arms (Ashburner, 1989). In our experiments, 

the specific bristles affected varied between individuals, consistent with aneuploidy in a 

variable subset of cells, rather than a specific defect in the pattern of bristle cell 

specification.  

 

Table 2.1.  atm mutant bristle phenotype 
                                # of bristles       # of normal       # of reduced      #of missing 
       scored              bristles               bristles      bristles_________ 
wild type                       60                   60 (100%) 
     
atm-         60                   16 (27%)           25 (42%)     19 (32%) 
Five wild type (w1118) and atm mutant (atmΔ356/atmΔ356) adult females were examined for 
bristle defects (12 bristles each).  Bristles scored included orbitals (A,P), ocellar, verticals 
(A,P), and postverticals.  Bristles were scored as defective if they were at least 50% 
shorter than the corresponding wild type bristle. 
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Table 2.2.  atm mutant wing phenotype 
           # of wings           # of wings             # of wings           # of wings 
       with no notches     with 1 notch       with 2 notches              with >2 notches 
wild type     30/30(100%)                       
     
atm-           3/31(10%)      11/31(35%)         14/31(42%)            4/31(13%)         
Wild type (w1118) and atm mutant (atmΔ356/atmtefu) adult wings were scored for notches in 
the wing margin. 

 

To confirm that these phenotypes were due to loss of ATM, the Gal4-UAS system 

(Brand and Perrimon 1993) was used to demonstrate that an atm cDNA could rescue the 

observed atm phenotypes (Table 2.4). In addition, these experiments indicate that over-

expression of atm does not disrupt normal development. Together, these results 

demonstrate that Drosophila atm has an essential role during normal development and 

identify a cDNA sequence sufficient to rescue ATM function.  
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Figure 2.1 
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Figure 2.1.  Molecular characterization of Drosophila ATM.  (A) Diagram of 

Drosophila ATM gene structure and mutations.  Black boxes indicate the exons of the 

ATM gene; blue boxes indicate the exons of the adjacent gene hsc4.  Black arrows 

indicate the direction of transcription.  Red arrows indicate the position of the ATMred31 

and ATMtefu point mutations.   The ATMred31 chromosome also contains a large deletion.  

DNA deletions are represented by a dashed line. The Δ356 deletion removes the entire 

hsc4 gene and approximately 4kb of the 5’ region of the ATM gene. Df(3R)PG4 removes 

part of the hsc4 gene, all of ATM, and an undetermined number of additional genes. 

Δ16 removes only a portion of the hsc4 gene.  The p[hsc4] transgene rescues hsc4 

function and when used in combination with the Δ356 deletion results in a mutation in 

the ATM gene. (B) Schematic representation of ATM protein domains.  The percent 

sequence similarity for the N-terminal region, FAT domain, and Kinase domain of 

Drosophila and human ATM proteins are shown.  Numbers above the alignments 

indicate amino acid position.  Red arrows indicate the position of the ATMred31 and 

ATMtefu mutations in the ATM protein.  (C) The tefu and red31 point mutations.   The tefu 

mutation is a four base pair insertion at cDNA nucleotide 3940, changing cysteine 1307 

to a stop codon.  The red31 mutation is a single base pair change at nucleotide 4320, 

changing serine 1434 to a stop codon.  Both the tefu and red31 mutations are predicted to 

form truncated proteins lacking the conserved FAT and Kinase domains.  (D) Wild type 

pharate adults have a characteristic pattern of bristles on the head with reproducible 

lengths and positions. (E) ATM pharate adults have many defective or missing bristles. 

Which bristles are affected varies among individuals. 
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ATM mutant tissues have high levels of spontaneous apoptosis.  Because human 

ATM is required for damage-induced apoptosis, apoptosis was examined in animals 

mutant for Drosophila atm. Late third instar larvae were irradiated with 0 or 4000 rads of 

ionizing radiation (IR) and wing imaginal discs were stained for apoptotic cells using 

either the vital dye acridine orange (Fig. 2.2A-E) or an antibody against activated 

Caspase 3 (Fig. 2.2F-O). In these experiments, apical optical sections (Fig. 2.2F-J) reveal 

apoptotic cells dispersed among living cells with normal nuclear morphology while basal 

sections (Fig. 2K-O) highlight a mass of apoptotic cells with activated caspase staining 

and pyknotic nuclei, suggesting that these basal cells had progressed to late apoptotic 

stages. Untreated wild type discs exhibit very low levels of apoptosis (Fig. 2.2A, F, K). 

IR induces a substantial increase in the number of apoptotic cells throughout the wing 

disc (Fig. 2.2B, G, L).  In contrast to wild type, untreated wing discs from atm animals 

exhibit extremely high levels of spontaneous apoptosis, particularly in the basal region of 

the disc (Fig. 2.2C, H, M). Because of the spontaneous apoptosis in atm discs, it is 

difficult to determine whether IR can induce increased apoptosis in the disc as a whole 

(Fig. 2.2D) or in basal sections of the disc (Fig. 2.2N). However, most cells in the apical 

region of atm wing discs are not apoptotic (Fig. 2.2I). In contrast to wild type discs (Fig. 

2.2F, G), atm discs do not show a substantial increase in apical apoptotic cells following 

IR (Fig. 2.2H, I). Together, these results indicate that atm is required both to suppress 

spontaneous apoptosis during development and for normal induction of apoptosis in 

response to IR.  
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We considered the possibility that the spontaneous apoptosis in atm discs is due to 

activation of a DNA damage response pathway. Since Drosophila p53 is required for 

DNA damage-induced apoptosis, the effect of a null mutation in p53 (Rong et al. 2002; 

Brodsky et al. 2004) on the spontaneous apoptosis and lethality due to loss of atm was 

examined. Compared to atm single mutant animals, atmΔ356, p531 double mutant animals 

exhibit substantially reduced levels of acridine orange staining (Fig. 2.2E), activated 

caspase staining (Fig. 2.2J, O), and pyknotic nuclei (not shown). Although most 

apoptosis is suppressed by removal of p53, the levels of spontaneous apoptosis in atm, 

p53 mutant discs are still elevated compared to wild type (compare Fig 2.2A, F, K with 

2.2E, J, O), revealing some p53-independent apoptosis. Loss of p53 did not rescue atm 

lethality, as double mutant animals still died as pharate adults with missing or defective 

bristles (not shown). Thus, most of the spontaneous apoptosis in atm animals is p53-

dependent, but suppression of that apoptosis is not sufficient to restore normal 

development or viability. 
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Figure 2.2. p53 –dependent apoptosis in ATM mutant wing discs.  Third instar larval 

wing discs were stained with acridine orange (A-D) to detect apoptotic cells or DAPI (E-

H) to visualize pyknotic nuclei associated with apoptosis. Discs are shown with anterior 

to the left. Optical cross sections of the DAPI stained discs (E-H) are shown below each 

disc with apical top and basal below. Apoptotic cells accumulate in the basal regions of 

these discs. Little apoptosis in untreated wild type discs (A, E). Increased apoptosis in 

wild type discs following irradiation (B, F). High levels of apoptosis in untreated ATM 

mutant discs (C, G). Suppression of apoptosis in untreated ATM, p53 double mutant discs 

(D, H). 
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atm is not required for damage-induced cell cycle arrest.  Because human cells 

lacking ATM are defective in cell cycle arrest following ionizing irradiation (IR), the role 

of Drosophila ATM in damage-induced cell cycle arrest was tested. The wing imaginal 

disc exhibits a G2/M DNA damage checkpoint following X-irradiation, which is 

dependent on Drosophila homologs of ATR and ATRIP (Hari et al. 1995; Brodsky et al. 

2000b). Both wild type and atm wing discs exhibit a reduction in the numbers of mitotic 

cells at time points from one to eight hours following X-irradiation (Fig. 2.3A-G, data not 

shown). Thus, Drosophila ATM is not essential for G2 arrest following DNA damage.  

Interestingly, higher magnification of the mitotic cells in unirradiated atm discs 

revealed anaphase bridges not observed in wild type discs (Fig. 2.3D, H). Anaphase 

bridges are typically the result of dicentric chromosomes entering mitosis. These results 

suggest that atm is required to prevent the formation of dicentric chromosome aberrations 

such as fusions or translocations.     
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Figure 2.3.  Drosophila ATM is not required for damage-induced cell cycle arrest.  

Third instar larval wing discs were stained with a mitosis-specific antibody against 

phospho-histone H3.   The pattern of mitotic cells in wild type (A-D) and ATM discs (E-

H) is shown following no irradiation (A, D, E, H), one hour (B, F), or 4 hours (C, G) after 

irradiation with 4,000 Rads X-rays. Mitosis is blocked in both wild and ATM mutant 

wing discs.  At higher magnification, anaphase bridges (arrows) are seen in ATM mutant 

(H) but not in wild type discs (D). 
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atm is required to prevent telomere fusions and is mutated in the telomere fusion 

animals.  To examine chromosome structure in atm animals, metaphase and anaphase 

chromosomes were prepared from wild type and atm larval neuroblasts. atm neuroblasts 

exhibit a high frequency of chromosome end fusions and anaphase bridges (Fig. 2.4A-L, 

Table 2.3, Table 2.4). The aberrations observed indicate that Drosophila ATM is required 

to protect telomeres from fusion and that these unprotected telomeres can undergo at least 

one round of a fusion-bridge-break cycle. 

 

Table 2.3.  Abnormal metaphase configurations in atm- larval brains 
  
                                                     Telomere Fusions              
                                                                         
                                                                              Double         
                        Cells                                                                   Aneuploid/    %Metaphase 
Genotype       Scored      Normal     Single     Linear    Rings     Polyploid       with fusions 
 
wild type              407          402           5              0           0               0                      1 
  
atm-                       445            87         158          277        48             67                    80 
Telomere fusions were scored in wild type (w1118) and atm mutant (atmΔ356/atmΔ356) 
metaphases.  Fusion categories are similar to those previously described (Fanti et al. 
1998), for detail see Material and methods. 
 
 

The telomere fusion phenotype observed in atm neuroblasts resembles the mutant 

phenotype of the previously described telomere fusion (tef) gene (Queiroz-Machado et al. 

2001). tef maps near atm by meiotic recombination and fails to complement a 

chromosome with a deficiency (Df(3R)red31) in the cytological region 88B5-C. 

Although atm is in cytological region 88E3, atm mutations fail to complement both tef 

and Df(3R)red31. atmΔ356/tef and atmΔ356/Df(3R)red31 trans-heterozygous animals exhibit 
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high levels of spontaneous apoptosis similar to the atmΔ356 homozygous animals (data not 

shown).  tef and Df(3R)red31 also fail to complement Df(3R)PG4, which encompasses 

the atm locus. The phenotypes of atmΔ356/tef animals can be rescued by expression of the 

atm cDNA and sequencing of atm revealed that both the tef and Df(3R)red31 

chromosomes contain stop mutations in atm (Fig. 2.1). To further demonstrate that the 

phenotype associated with the Df(3R)red31 is not associated with the described deletion, 

the atm mutation was separated from the deletion by meiotic recombination.  These 

results demonstrate that atm and telomere fusion are the same gene. There are some 

differences between the phenotypes previously described for homozygous tef animals and 

those described in this study; some of these may be due to a closely linked second 

mutation on the tef chromosome. 

The effects of different alleles of atm on anaphase bridge frequencies were 

compared (Table 2.4). Animals homozygous for atmΔ356 or heterozygous for atmΔ356 and 

a deficiency that encompasses atm exhibited similar frequencies of anaphase bridges, 

suggesting that this allele is a null. Animals heterozygous for an atm deficiency and 

either tef or Df(3R)red31 have similar frequencies of bridges. In addition, these allelic 

combinations also exhibit the high levels of spontaneous apoptosis seen in atmΔ356 

animals and are not required for G2 arrest following IR (data not shown). 
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Table 2.4.  Anaphase bridges in Drosophila atm mutant neuroblasts 
Genotype                                  Lethal Stage             Number of                  Number of             
                                                                                   Anaphases          Anaphase Bridges  
w1118                                                    -       182    2     (1.0)  
atmΔ356/hsc70-4Δ16                     -       256    2     (0.8)  
atmΔ356/atmΔ356          pupal      149          108     
(72.5)  
atmΔ356/Df(3R)PG4         pupal      104             78     (75.0) 
atmtefu/Df(3R)PG4         pupal      108             86     (79.6)  
atmred31,Df(3R)red31/Df(3L)PG4   pupal      142          104     (73.2)  
GUS-atm, atmΔ356/ 
ActinGal4,P[hsc70-4+];Df(3R)PG4  -                            150    3      (2.0) 
The frequency of anaphase bridges was determined in atm mutant larval brains.  Five or 
more brains were scored for each genotype.  The percent of anaphase bridges for each 
genotype is shown in parenthesis. 
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Figure 2.4.  Telomere fusions in ATM mutant animals.  Neuroblast squashes were 

prepared from wild type (A, I, K) and ATM mutant (B-H, J, L) third instar larval brains.  

In wild type metaphases there are no associations between telomeres (A).  In ATM mutant 

metaphases, a variety of telomere associations (arrows) are observed including: single 

fusions between homologs (B), single fusions between sisters, double fusions between 

homologous (E, F) and heterologous (G) chromosomes. Ring chromosomes (E, 

arrowhead), possible chromosome translocations (F, arrowhead), and more complex 

rearrangements (G) or polyploidy (H) are also observed.  Chromosome bridges are seen 
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in ATM mutant cells in anaphase (J) and telophase (L), but not in wild type cells (I, K). 

The frequencies of these abnormalities are shown in Tables 2.3 and 2.4. 

atm mutations reduce HP1 and HOAP levels at telomeres and suppress telomere 

position effect. The phenotypes described above indicate that Drosophila atm is required 

to protect telomeres from fusion. HP1 and HOAP localize to the telomeres of polytene 

chromosomes, as well as other sites, and are required for telomere protection in mitotic 

cells (James et al. 1989; Fanti et al. 1998; Shareef et al. 2001; Cenci et al. 2003b). 

Immuno-staining was used to examine the distribution of HP1 and HOAP on wild type 

and atm polytene chromosomes (Fig. 2.5). Wild type and atm polytene chromosomes 

were prepared in parallel, all samples were treated with the same antibody solutions, and 

all images were captured using the same exposure times.  For each genotype, 

chromosomes were prepared from ten different animals and immuno-stained with 

antibodies to both proteins. DNA was detected by DAPI staining. HP1 staining at the 

chromocenter, fourth chromosome, and several euchromatic sites is unaffected by loss of 

atm while HP1 staining is reduced at most atm telomeres (Fig. 2.5C, D, G, H, and Table 

2.5). At the tip of chromosome 2R, similar levels of HP1 staining at an internal site 

(cytological position 60F, arrows in Figure 4 insets) can be observed in wild type and 

mutant chromosomes while HP1 is specifically reduced at the telomere of the mutant 

chromosome (asterisks in Figure 2.5 insets). Similar HP1 staining at wild type and 

mutant chromosomes was observed using a second, rabbit polyclonal HP1 antibody (data 

not shown). The normal levels of HP1 at sites other than the telomere indicates that the 

lack of telomere staining at atm chromosomes is not due to differences in chromosome 
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preparations or to global changes in chromatin structure in atm cells. Rather, atm is 

specifically required to recruit or maintain HP1 to chromosome ends. 

Immuno-staining of the same chromosomes for HOAP revealed reduced staining 

at the telomeres of most atm chromosomes compared to wild type (Fig. 2.5A, B, E, F, 

Table 2.5). Similar decreases in HP1 and HOAP localization at telomeres were seen in 

atmΔ356/ Df(3R)PG4 (Fig. 2.5) and atmtef/ Df(3R)PG4 (not shown) animals, indicating that 

this phenotype is not allele-specific (data not shown). Quantification of the fluorescence 

intensity associated with HOAP and HP1 staining further demonstrates that there is a 

reproducible reduction at atm telomeres compared to wild type (Fig 2.5I, J). In contrast, 

HP1 staining at an internal chromosomal site (60F) is not reduced. 

 

Table 2.5.  Reduced levels of HP1 and HOAP at atm mutant salivary gland 
telomeres 
                Total*          ++               +  +/-         -              
HP1  
wild type   156              128 (82)           28 (18)               0                     0          
atm-  198            6 (3)               7 (4)               42 (21)          143 (72) 
 
HOAP              
wild type   156              153 (98)             3 (2)                 0             0  
atm-           198       6 (3)           111 (56)             74 (37)              7(4) 
 
 Wild type and atmΔ356/Df(3R)PG4 polytene chromosomes were prepared from ten 
different animals and immuno-stained with antibodies to both HOAP and HP1. From 
each squash, images of ten chromosomes spreads with most telomeres visible were taken 
using identical microscope and camera settings in order to compare staining intensities. 
Staining was scored as follows: ++, normal; +, reduced; +/-, strongly reduced; -, not 
detected. Percentages are shown in parentheses. *Total number of telomeres scored. 
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Because HP1 and HOAP are required to prevent telomere fusions in mitotic cells, 

but not salivary glands, localization of these proteins in wild type neuroblasts was 

examined. However, the wide spread distribution of HP1 on metaphase chromosomes 

prevents the unambiguous identification of telomeric HP1. HOAP staining was observed 

at the telomeres of both wild type and mutant neuroblasts, but the staining is too variable 

to conclude whether it is reduced as seen in salivary glands (not shown). 

HP1 promotes heterochromatin formation, in part, by recruiting histone 

modifying enzymes. To probe if atm mutations alter chromatin at the telomeres mitotic 

cells, telomere position effect (TPE) at three telomeres was examined (Fig. 2.6). When 

the white reporter gene is placed adjacent to telomere-associated sequences (TAS), gene 

expression is silenced (Cryderman et al. 1999; Wallrath 2000). At each site tested, TPE is 

partially suppressed by mutations in atm (Fig. 2.6A-C, E-G). Previous studies have 

demonstrated that the TAS from the telomere of chromosome arm 2L is sufficient to 

silence white expression in transgenes inserted at non-telomeric sites (Kurenova et al. 

1998). Unlike TAS in their normal location adjacent to telomeres, silencing by the non-

telomeric TAS was not suppressed by atm mutations (Fig. 2.6D, F). These results 

indicate that the suppression of TPE is due to the specific action of atm on gene 

expression near telomeres.  

In other organisms, attrition of telomeric sequences due to incomplete 

chromosome replication can eventually lead to failure to protect chromosome ends from 

fusion (Blackburn 2001; Maser and DePinho 2002). Although it is possible to recover 

terminal deletions that remove all telomere-specific sequences, these observations do not 
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rule out the possibility that telomere-specific sequences contribute to telomere protection 

or TPE at normal Drosophila telomeres. In fact, the number of telomere repeats has been 

shown to influence some forms of TPE (Mason et al. 2003a). To test if the telomere 

defects in atm animals could be due to loss of telomere sequences, fluorescent in situ 

hybridization was performed using a probe to the Het-A retrotransposon, which is 

specific to telomere DNA. Hybridization was performed with wild type and atm diploid 

and polytene chromosomes. In mitotic chromosomes from diploid neuroblast cells, the 

levels of Het-A hybridization are variable, but not significantly different between wild 

type and atm mutant cells (Fig. 2.7A-C). In polytene chromosomes HeT-A sequences are 

strongly detected at two telomeres of both wild type and atm chromosomes (Fig. 2.7F, 

G). Previous analysis of HP1 mutants demonstrated that telomere-specific sequences 

were still present at chromosome fusion sites (Fanti et al. 1998). In atm mutant cells, Het-

A hybridization is also detected at sites of chromosome fusion (Fig. 2.7D, E). These 

results indicate that the reduction of telomeric HP1-HOAP and the fusion of telomeres in 

atm cells is not a direct or indirect result of telomere sequence loss.  
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Figure 2.5 
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Figure 2.5. Reduced HP1 and HOAP levels at ATM mutant telomeres.   Wild type 

(A-D) and ATM mutant (E-H) polytene chromosomes were immunostained with 

antibodies against HOAP (A, B, E, F) and HP1 (C, D, G, H).  Chromosomal DNA was 

stained with DAPI (B, D, F, H). All telomeres are marked with arrowheads except for 2L, 

which is marked with an asterisk. Insets show a higher magnification view of the 

telomere of chromosome 2L. Strong HOAP staining is observed at all wild type 

telomeres (A, B), but is significantly reduced at ATM telomeres. Wild type chromosomes 

have HP1 staining at telomeres, the chromocenter, the forth chromosome, and at 

euchromatic sites (C, D). ATM mutant chromosomes have reduced levels of HP1 at 

telomeres, but normal levels at other sites (G, H).  Comparison of HP1 staining at the 

telomere of chromosome arm 2L and a nearby euchromatic binding site illustrates the 

specific loss of telomere staining on ATM chromosomes. 
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Figure 2.6 
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Figure 2.6. atm mutations suppress telomere position effect.    Amimals hemizygous 

for white transgenes inserted in the telomere associated sequence (TAS) of the right and 

left arms of chromosome 2 (lines 39C-27 and 39C-5) and in the telomeric region of 

chromosome 4 (line 118E-15) exhibit repression of the reporter gene, i.e. telomere 

position effect (A, B, C). A transgene containing a fusion of white to 6 kilobases of TAS 

sequence from chromosome 2L (line 836I) also represses white expression (D). Animals 

homozygous mutant for atm and hemizygous for a telomere insertion show derepression 

of the reporter gene (E, F, G). Repression of reporter gene expression by TAS at a non-

telomeric position is not affected by atm mutations (H). 
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Figure 2.7 
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Figure 2.7. Analysis of Het-A sequences in ATM cells.  Wild type and ATM 

chromosomes were hybridized with a DNA probe to the telomere-specific 

retrotransposon HeT-A in mitotic and polytene cells. Mitotic chromosomes from control 

(A) and ATMtefu (B) neuroblast cells were hybridized with a probe for Het-A (green) and 

the DNA was counterstained with propidium iodide (red). The fluorescent intensity of the 

Het-A signal at the telomeres of the two large autosomes was quantified in controls 

(n=31) and tefu (n=19) cells (C). The results do not show significant difference in 

intensity between controls and mutant cells suggesting that the mutant has not lost 

telomeric sequences. (D-G) tefu mutant cells showing telomere fusions that were 

hybridized with a probe for Het-A. (E) Cell showing telomere fusion of two autosomes 

(arrow) with Het-A sequences at the fusion site.  (G) Cell showing fusion between two X 

chromosomes (arrowhead) in which the Het-A sequences extend along the entire fusion 

site. The cell also has the fourth chromosomes (back arrowhead) joined at the Het-A site.  

Polytene chromosomes from control (H) and ATMd356 (I) salivary gland cells were 

hybridized with a probe for Het-A (in green) and counterstained with DAPI (blue).  Het-A 

hybridization to autosomal telomeres is marked with arrowheads. Staining at the X-

chromosome telomeres is marked with an “X”. Wild type and ATM chromosomes show 

similar levels of Het-A hybridization at three out of the five telomeres including the X 

chromosome (H, I). 
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Discussion 

 

Both wild type and terminally deleted Drosophila chromosomes are protected 

from telomere fusion and are capped with the telomere protection proteins HP1 and 

HOAP (Biessmann and Mason 1988; Fanti et al. 1998; Cenci et al. 2003b). These results 

indicate that sequence-independent mechanisms can recruit and maintain telomere 

protection complexes to chromosome ends. Here, we demonstrate that Drosophila atm/tef 

is required to prevent chromosome end fusions, to regulate levels of HP1 and HOAP at 

telomeres, and to promote telomere position effect. We also find that atm is required for 

induction of apoptosis by ionizing radiation. Given the conserved role of ATM family 

proteins in recognizing DNA breaks, we suggest that Drosophila ATM protects telomeres 

by recognizing chromosome ends and recruiting chromatin-modifying proteins to those 

ends.  

We have not, to date, directly detected ATM protein at Drosophila telomeres 

(unpublished results). Based on results in mammalian cells, it may be necessary to 

develop antibodies specific for activated forms of ATM to probe ATM activity at 

telomeres. However, several observations presented here indicate that Drosophila ATM 

acts at telomeres to prevent chromosome fusions. First, the chromosome rearrangements 

observed are consistent with a defect in telomere protection rather than translocations due 

to defective DNA repair or replication. Most chromosome fusions occur near the ends of 

chromosome arms and we demonstrate that the fused chromosomes still contain DNA 

sequences near chromosome ends. Second, we do not observe a high frequency of 
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acentric chromosome fragments during metaphase. In animals mutant for other damage 

signaling genes such as the Drosophila homologs of ATR and ATRIP, acentric 

chromosome fragments are often observed during metaphase, suggesting that these 

mutations cause a defect in DNA repair or replication that is not observed in atm animals 

(Gatti 1979; Brodsky et al. 2000b). Third, circular chromosomes do not undergo 

rearrangements in tef mutant animals (Queiroz-Machado et al. 2001), strongly indicating 

that chromosome fusions are due to fusion of existing chromosome ends rather than the 

creation of new chromosome breaks. Forth, we show that ATM is specifically required 

for localization of HP1 to telomeres but not centromeric or euchromatic sites. Finally, we 

demonstrate that atm suppresses silencing by telomere-associated sequences when they 

are adjacent to telomeres, but not when they are at euchromatic sites. 

The telomere fusion defect seen in atm animals is consistent with a partial defect 

in telomere protection. While approximately 80 percent of atm metaphases contain a 

chromosome fusion, greater than 95 percent of metaphases from animals lacking HP1 or 

HOAP contain a fusion (Fanti et al. 1998; Cenci et al. 2003b). Furthermore, in some cells 

lacking HP1 or HOAP, nearly all telomeres appear to be fused; we have not observed this 

extreme phenotype in atm mutant nuclei. Consistent with a partial defect in telomere 

protection, we find that the levels of HP1 and HOAP at polytene telomeres are reduced, 

but not eliminated in atm animals. In mitotic cells, formation of repressive chromatin is 

also partially disrupted. Our interpretation of these results is that reduced and variable 

levels of HP1 at the telomeres of atm animals are sufficient to protect some, but not all 

telomeres from fusion. Our results also indicate that another pathway, possibly involving 
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other DNA damage response proteins, must contribute to HP1 and HOAP localization, 

TPE, and telomere protection. 

The direct target of ATM at telomeres is unclear. The decrease in HP1 and HOAP 

levels at atm telomeres is not due to a loss of telomere sequences; wild type and atm 

chromosomes exhibit similar levels of a telomere-specific retrotransposon sequence as 

assayed by FISH and even sites of fusion retain this sequence. This result is consistent 

with previous demonstrations that the sequences at chromosome ends are not required for 

telomere protection or for telomeric localization of HP1 and HOAP (Biessmann et al. 

1990a; Fanti et al. 1998; Cenci et al. 2003b). Instead, ATM is likely to affect the 

interaction of HP1 and HOAP with telomeres by regulating the formation of the HP1-

HOAP complex or by modification of telomeric chromatin. Other proteins in the DNA 

damage response may act with ATM to maintain telomere protection. Although Chk1, 

Chk2, and p53 are targets of mammalian ATM during the DNA damage response (Shiloh 

2003), Drosophila homologs of these proteins do not appear to be required for telomere 

protection since animals lacking one or more of these genes do not exhibit the high levels 

of apoptosis associated with loss of ATM (Brodsky et al. 2004). Mutations in homologs 

of other ATM targets such as NBS1 or SMC1 have not been described in Drosophila.  

Recruitment of HP1 and HOAP by ATM is likely to alter chromatin structure at 

telomeres. HP1 plays a conserved role in heterochromatin structure, histone modification, 

and gene silencing (Eissenberg and Elgin 2000; Grewal and Elgin 2002). In Drosophila, 

both HP1 and HOAP are required for gene silencing at pericentric heterochromatin 

(Eissenberg et al. 1990; Eissenberg and Elgin 2000; Badugu et al. 2003). In addition, HP1 
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is required for gene silencing near fourth chromosome and terminally deleted telomeres, 

as well as repression of P-element transposition by subtelomeric P-element insertions 

(Ronsseray et al. 1996; Ronsseray et al. 1998; Cryderman et al. 1999; Donaldson et al. 

2002). HP1 homologs are also associated with telomere function in other eukaryotes. In 

mammals, all three HP1 homologs are found at telomere and loss of histone H3 K9 

methylases leads to reduced levels of HP1 homologs at telomeres as well as elongated 

telomeres (Garcia-Cao et al. 2004). In contrast, over-expression of mammalian HP1 

homologs is associated decreased telomere length (Sharma et al. 2003). The fission yeast 

homolog of HP1 is not required for telomere protection, but does regulate telomere 

length, telomere clustering, and telomeric gene silencing (Allshire et al. 1995; Ekwall et 

al. 1995; Koering et al. 2002; Garcia-Cao et al. 2004). Interestingly, as in Drosophila 

telomere protection, some aspects of telomere function in fission yeast are controlled by 

an epigenetic mechanism (Sadaie et al. 2003). Together, these observations indicate that a 

requirement for HP1 in telomere function and chromatin structure is conserved, but that 

its precise role at the telomere may differ among organisms.  

Regulation of telomere chromatin structure is also a conserved function of ATM-

like kinases. Fission yeast Rad3 and budding yeast Mec1 are required for gene silencing 

at telomeres (Matsuura et al. 1999; Craven and Petes 2000) while mutations in human 

ATM are associated with altered nucleosomal periodicity at telomeres (Smilenov et al. 

1999). The conserved role of ATM-kinases in telomere protection (see Introduction) and 

telomeric chromatin structure suggests that these functions might be linked. Our finding 

that Drosophila ATM is required for TPE and HP1-HOAP localization to telomeres 
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demonstrates one mechanism by which ATM can influence telomere chromatin. It is 

possible that in organisms that utilize sequence-specific binding proteins such as TRF2 to 

protect telomeres; regulation of telomeric heterochromatin by ATM and HP1 plays a 

minor role in protection of normal telomeres, but a more important role at short telomeres 

that cannot recruit sufficient levels of TRF2. Such a model could explain the synergistic 

telomere defects seen in cells lacking both telomerase and ATM (Ritchie et al. 1999; 

Tsukamoto et al. 2001; Chan and Blackburn 2003; Wong et al. 2003). The lack of 

obvious TRF2 homologs may explain why ATM and HP1 play such striking roles in the 

protection of Drosophila telomeres. 

In addition to preventing chromosome end fusion by DNA repair enzymes, 

telomere protection is required to prevent activation of DNA damage responses including 

the induction of p53-dependent apoptosis and senescence (Chin et al. 1999; Karlseder et 

al. 1999; d'Adda di Fagagna et al. 2003; Takai et al. 2003). Our analysis of the cellular 

effects of ATM loss indicates that induction of p53-dependent apoptosis is a conserved 

consequence of unprotected telomeres in metazoans. Because these unprotected 

telomeres lead to anaphase bridges and chromosome breaks, p53 may be directly 

activated by unprotected telomeres or may be activated by subsequent chromosome 

breaks. ATM is required for the induction of apoptosis following IR. Since the 

spontaneous apoptosis in atm animals is, by definition, ATM-independent, a different 

pathway must be able to activate Drosophila p53 in response to unprotected telomeres. 

Similarly, loss of mammalian ATM reduces, but does not eliminate p53-dependent 

apoptosis in response to unprotected telomeres (van Steensel et al. 1998; Takai et al. 
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2003; Wong et al. 2003). Other DNA damage response pathways may activate 

Drosophila p53 in the absence of ATM. 

 In yeast, insects, and mammals, ATM-kinases are required to activate cellular 

responses to DNA ends generated by exogenous DNA damage, but also to suppress 

activation of these pathways by telomeres. Specific recognition of telomere sequences by 

telomere-repeat binding proteins provides one means to distinguish telomeric DNA ends 

from damage-induced DNA breaks. However, this mechanism is not sufficient to explain 

the epigenetic regulation of telomere protection in Drosophila. The requirement of ATM 

to recruit HP1 and HOAP to Drosophila telomeres suggests that recognition of 

chromosome ends contributes to chromatin-mediated telomere protection. This 

mechanism may help explain how terminally deleted chromosomes can be stably 

inherited without any telomere-specific sequences. Future studies should reveal which 

other damage response proteins help ATM protect telomeres, what their targets are at 

telomeres, and how these proteins distinguish between damage-induced DNA ends and 

the natural ends of linear chromosomes. 
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Materials and methods 

 

Drosophila strains and sequence analysis.  All animals were raised at 25oC.   The 

deletion mutants, atmΔ356 and hsc70-4Δ16 have been previously described (Bronk et al. 

2001).  Df(3R)PG4 and the transgenic rescue p[hsc70-4+] strains were described by Hing 

et al (1999). The tef mutant was described previously (Queiroz-Machado et al. 2001). A 

strain carrying the Df(3R)red31 chromosome was obtained from the Bloomington Stock 

Center.  The atmΔ356; p[hsc70-4+] strain was created by S. Takada.  The p[hsc70-4+]; 

atmΔ356, p531 strain was generated by recombination of the atmΔ356 and p531 mutations 

(Rong et al. 2002).  Sequence analysis was performed using genomic DNA obtained from 

tef/Df(3R)PG4, Df(3R)red31/Df(3R)PG4, and w1118 animals. atm genomic DNA was 

amplified by PCR and directly sequenced using gene specific primers. 

 

Analysis of bristle phenotypes.  Five wild type and five atm female pharate adults 

were dissected from their pupal cases. The following twelve bristles were scored on the 

head of each individual: orbitals (4), ocellar (2), verticals (4), and postverticals (2). 

Bristles were scored as shorter if they were at least 50 percent shorter than the equivalent 

wild type bristle. 

 

Apoptosis and checkpoint assays.  Apoptosis and cell cycle arrest was induced in 

developing wing discs by irradiation of late third instar larvae with 4000 rads X-rays in a 

Faxitron RX650 irradiator. Apoptotic cells were detected 4 hours following irradiation by 
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staining with the vital dye acridine orange (Abrams et al. 1993; Hay et al. 1994) or by 

fixation and staining with a polyclonal rabbit antibody raised against cleaved human 

Caspase 3 (Cell Signaling Technology) used at a 1:100 dilution. Mitotic cells were 

visualized one to four hours after irradiation using an anti-phospho-histone H3 antibody 

(Upstate Biotechnology) at a 1:500 dilution. Secondary antibodies were used at a 1:200 

dilution. Fixation and staining was performed as described previously (Brodsky et al. 

2000b). 

 

Neuroblast preparations.  Mitotic chromosome preparations were obtained from 

third instar larval brains according to Queiroz-Machado et al. (2001).  Briefly, for 

metaphase spreads, brains were dissected in PBS, incubated in 0.05 mM colchicine for 30 

minutes then transferred to a hypotonic solution (0.5% sodium citrate) for 10 minutes.  

Brains were fixed in 45% acetic acid for 1 minute and squashed gently in 60% acetic 

acid.  The squashed brains were stained with 0.2ug/ml DAPI and mounted in vectashield.   

Anaphase spreads were obtained similarly with the following modifications:  colchicine 

treatment was omitted; brains were incubated in hypotonic solution for 2 minutes.   The 

steps that followed remained the same.  

 

Immunostaining of polytene chromosomes.  Polytene chromosomes were 

prepared for immunostaining as described by Shareef et al.  (2001).   Chromosomes were 

incubated with rabbit polyclonal anti-HOAP (gift from R. Kellum; 1:500/5%BSA) mouse 

monoclonal C1A9 anti-HP1 (Developmental Studies Hybridoma Bank; 1:50/5%BSA), 
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and rabbit polyclonal anti-HP1 (a gift from R. Kellum; 1:1000/5%BSA) antibodies at 4oC 

overnight, followed by a 2-hour incubation at room temperature with Cy3-conjucated 

sheep anti-rabbit and FITC-conjugated sheep anti-mouse (Jackson Immunoresearch 

Laboratories Inc; 1:200/5%BSA) secondary antibodies.  For each genotype, salivary 

glands from 10 larvae were prepared and approximately ten chromosomes with good 

morphology and distinct telomeres were analyzed from each preparation.  Stained 

chromosomes were analyzed using a Zeiss Axioskop 2 Plus microscope equipped with a 

Hamamatsu digital camera and Openlab software (Improvision).  For immunostaining 

analysis the camera exposure times were held constant. 

HP1 and HOAP fluorescence staining was quantified by performing z series scan 

on the tip of chromosome 2R using a Leica confocal microscope. Leica software was 

used to calculate the total fluorescence intensity for three regions of interest: the 

telomere, cytological band 60F, and a chromosome region approximately midway 

between the telomere and 60F (background). Five 2R telomeres were analyzed for each 

genotype. 

 

in situ hybridization to polytene chromosomes.  The DIG Labeling DNA Kit 

(Roche) was used to make a probe from 1 microgram of purified PCR product using a 

Het-A clone as a template (Danilevskaya et al. 1994).  One microliter (ul) of probe in 20 

ul of hybridization solution was used per slide. Salivary gland polytene chromosome 

squashes were prepared for hybridization by standard methods (Pardue 1994) except that 

the RNase treatment was not included.  Slides were pre-hybridized at 580C in a moist 
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chamber for 1 hour in hybridization solution (0.6 mg/ml Fish Sperm DNA, 7.5mM 

MgCl2, 3% 50X Denhardt's solution, 75mM NaPO4 pH 7.0, 1M NaCl). Chromosome 

squashes were hybridized with the DIG-labeled probe overnight at 580C.  Hybridized 

probe and DNA were detected using a 1:200 dilution in PBT of sheep anti-DIG FITC 

(Roche) and 0.5 ug/ml DAPI. Images were acquired as described for HP1 and HOAP 

staining above. 

 

in situ hybridization to mitotic chromosomes.  in situ hybridization to mitotic 

chromosomes was performed as described (Carmena et al. 1993). Het-A probe was 

labelled with biotin-14-dUTP using the Bionick Translation System (Gibco, BRL). Slides 

were mounted in Vectashield (Vector Laboratories, UK) containing 5 mg/ml of 

propidium iodide as a DNA counterstain. Quantification of the Het-A fluorescence 

intensity was performed using the Image J software. After selecting the area of Het-A 

signals, the average pixel intensity was determined and multiplied by that corresponding 

area. 

 

Analysis of telomere position effect.  To test the effect of atm mutations on 

telomere silencing, females carrying different telomeric white+ insertions on the second 

chromosome and heterozygous for an atmΔ356 mutation on the third chromosome were 

crossed to males heterozygous for the atmred31 or atmtef mutation.   Eye color was 

compared between homozygous atm mutant animals and wild type or heterozygous 

siblings.  Images were taken using the same lighting conditions and exposure times using 
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a Leica dissecting microscope outfitted with a Zeiss AxioCam digital camera. 

Quantification of the results was performed using Adobe Photoshop.  Images were 

inverted, a region of interest slightly smaller than the area of the eye was selected and the 

total luminosity was determined.  Ten animals from each genotype were analyzed. 
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CHAPTER III 

EPIGENETIC TELOMERE PROTECTION BY 

DROSOPHILA DNA DAMAGE RESPONSE PATHWAYS 
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Foreword 

 

The work presented in this chapter has been published:  Oikemus, SR., Queiroz-

Machado, J., Lai, KJ., McGinnis, N., Sunkel, SE., Brodsky, MH.  2006. Epigenetic 

telomere protection by Drosophila DNA damage response pathways.  PLoS Genetics.  

2(5):  0693-0706. 

Specific contributions are as follows:  Identification and sequence analysis was 

done by Nadine McGinnis, Figure 3.1A.  Analysis of chromosome break frequencies was 

performed by KuanJu Lai, Figure 3.5I.  Analysis of HOAP staining and HeT-A 

sequences was contributed by Joana Queiroz-Machado, Table 3.2, Figure 3.6, Table 3.3, 

and Figure 3.7. 

 

Introduction 

 

The ends of eukaryotic chromosomes can be protected from end-to-end fusion by 

two distinct mechanisms. In most organisms, sequence-specific DNA binding proteins 

recognize telomere-specific sequences and protect telomeres from the activity of DNA 

repair systems (Karlseder 2003; de Lange 2005). However, genetic studies in Drosophila 

have demonstrated that telomeres can also be protected from end-to-end fusion by an 

epigenetic mechanism. The telomeric DNA of Drosophila chromosomes is composed of 

retrotransposons and repetitive telomere-associated sequences (Melnikova and Georgiev 

2005). Terminal deletion chromosomes that completely lack these sequences can be 
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recovered and propagated (Mason et al. 1984; Biessmann and Mason 1988; Tower et al. 

1993; Mason et al. 1997; Ahmad and Golic 1998). The telomeres of these chromosomes 

are protected from fusion and do not induce DNA damage responses such as cell cycle 

arrest or apoptosis. These observations demonstrate that a sequence-independent 

mechanism can protect Drosophila chromosomes from telomere fusion, and suggest that 

a similar mechanism contributes to protection of normal telomeres. The sequence-

independent inheritance of telomere protection is conceptually similar to the epigenetic 

regulation of centromere function in which the function of a chromosomal domain is 

usually associated with a specific set of sequences, but can be stably transferred to 

alternative sequences (Karpen and Allshire 1997; Sullivan et al. 2001). Thus, Drosophila 

telomere protection can be grouped with centromere function and gene expression as 

processes that can be regulated by an epigenetic mechanism.  

Two chromatin-associated proteins, HP1 and HOAP, are required for telomere 

protection and localize to the telomeres of both normal and terminally deleted 

chromosomes (Fanti et al. 1998; Badugu et al. 2003; Cenci et al. 2003b). The role of HP1 

in the epigenetic inheritance of chromatin modifications during cell division (Maison and 

Almouzni 2004) suggests that a similar activity may contribute to telomere protection. 

Inheritance of chromatin modifications is often initiated or stabilized by specific 

chromosome features, such as binding sites for sequence-specific DNA binding proteins 

or repeat sequences at centromeres (Grewal and Rice 2004; Pirrotta and Gross 2005). The 

stable inheritance of terminally deleted chromosomes over many generations indicates 
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that a feature of telomeres other than telomere-specific sequences can recruit or maintain 

HP1 and HOAP at telomeres. 

One signature of telomeres that might contribute to HP1 and HOAP recruitment is 

the chromosome end itself. Studies in yeast and mammalian cells have demonstrated that 

telomere protection requires proteins that act at broken chromosome ends during the 

cellular response to DNA damage; these include the ATM and ATR protein kinases and 

the Mre11/Rad50/NBS1 (MRN) DNA repair complex (d'Adda di Fagagna et al. 2004; 

Maser and DePinho 2004). Analysis of cells lacking telomerase and ATM suggests that 

ATM plays a particularly critical role in cells with short telomeres (Ritchie et al. 1999; 

Chan et al. 2001; Nakamura et al. 2002; Chan and Blackburn 2003). Such cells may be 

least able to utilize sequence-specific mechanisms for telomere protection. In both 

budding and fission yeast, the combined loss of the ATM and ATR pathways results in 

severe telomere protection defects (Naito et al. 1998; Ritchie et al. 1999; Craven et al. 

2002; Chan and Blackburn 2003). In mammalian cell culture, acute inhibition of the 

MRN complex or of the ATM and ATR kinases also induces telomere fusions (Verdun et 

al. 2005). Drosophila homologs of most DNA damage response genes have been 

described (Figure 3.1). The Drosophila telomere fusion (tefu) gene is required to prevent 

fusions in proliferating cells and is encoded by the Drosophila homolog of ATM 

(Queiroz-Machado et al. 2001; Oikemus et al. 2004). Mutations in the Drosophila DNA 

damage response genes tefu, mre11, and rad50 lead to partial loss of telomere protection 

and reduced recruitment of HP1 and HOAP to telomeres (Queiroz-Machado et al. 2001; 

Bi et al. 2004; Ciapponi et al. 2004; Oikemus et al. 2004; Silva et al. 2004; Song et al. 
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2004). Thus, a DNA damage response pathway contributes to the protection of 

Drosophila telomeres; however, HP1 and HOAP can also mediate some degree of 

telomere protection in the absence of this pathway (see discussion in Oikemus et al. 

2004). 

Here, we characterize the role of Nbs and the ATM and ATR DNA damage 

response pathways in the epigenetic protection of Drosophila telomeres. In humans, 

mutations in Nbs1 or ATM result in similar inherited syndromes (Shiloh 2003). In both 

mammals and yeast, Nbs1 forms a complex with Mre11 and Rad50 (the MRN complex) 

that acts in the ATM pathway in response to DNA damage and is required for DNA 

repair and telomere function (van den Bosch et al. 2003; Lavin 2004). We demonstrate 

that Drosophila nbs is required for atm- and atr-dependent DNA damage responses 

including DNA repair. Drosophila mei-41 (the ATR homolog) and mus304 (the ATRIP 

homolog) act in parallel to the atm pathway in telomere protection; cells lacking both 

pathways fail to recruit HOAP to the telomeres of mitotic chromosomes and exhibit a 

severe telomere fusion phenotype. The telomere fusion defect in nbs mutants suggests 

that it acts in both the tefu and mei-41-mus304 telomere protection pathways and in the 

chromosome-joining step. We have taken advantage of the severe telomere fusion 

phenotype in cells lacking both pathways to test the role of DNA damage response 

pathways in the sequence-independent protection of Drosophila telomeres. Analysis of 

these cells reveals that loss of telomeric HOAP and telomere fusions are not due to loss 

of telomeric sequences. Furthermore, these DNA damage response pathways are also 

required to protect the telomeres of terminally deleted chromosomes, directly 
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demonstrating that the DNA damage response pathways are required for epigenetic 

regulation of telomere protection.  

 

Results/Discussion 

 

Drosophila Nbs is required for normal development.  To identify genes that 

cooperate with atm/tefu in telomere protection, we characterized mutations in other 

Drosophila DNA damage response genes including nbs. Figure 3.1F lists several 

Drosophila DNA damage response genes and their mammalian homologs. Similar to nbs 

homologs in other organisms, Drosophila nbs encodes a protein with N-terminal FHA 

and BRCT domains and a short region of similarity to the Mre11 interaction domain 

encoded by human Nbs1 (Figure 3.1A). To identify mutations in Drosophila nbs, we 

screened a collection of lethal mutations in the genetic region containing nbs (Leicht and 

Bonner 1988) for pupal lethality and excess apoptosis during wing development, 

phenotypes previously described for Drosophila atm/tefu, mre11, and rad50 (Queiroz-

Machado et al. 2001; Bi et al. 2004; Oikemus et al. 2004; Silva et al. 2004; Song et al. 

2004). Two mutations with these phenotypes failed to complement each other, and their 

lethality was rescued by a transgene containing the nbs genomic region (Figure 3.1A; 

Materials and Methods). Sequencing of these mutations revealed that l(3)67BDp1 (nbs1) 

contains a 238–base pair (bp) deletion and 1bp insertion that disrupts the open reading 

frame while l(3)67BDr1 (nbs2 ) introduces a stop codon that truncates the reading frame at 
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amino acid position 685 (Figure 3.1A). Both of these mutations are predicted to eliminate 

the ability of Nbs to interact with Mre11. 

Flies homozygous for the nbs1 mutation die as pharate adults with rough eyes and 

missing or abnormal bristles (Figure 3.1B–3.1E). In tefu, mre11, or rad50 flies, this 

phenotype is accompanied by increased genomic instability and apoptosis (Queiroz-

Machado et al. 2001; Bi et al. 2004; Oikemus et al. 2004; Silva et al. 2004; Song et al. 

2004). tefu, but not mei-41 or mus304, is also required for rapid induction (within 4 h) of 

additional apoptosis by X-irradiation (Brodsky et al. 2004; Oikemus et al. 2004). The 

developing wings of nbs mutant animals also exhibit high levels of spontaneous apoptosis 

compared to wild-type animals (Figure 3.1G, 3.1I, 3.1M, 3.1O, 3.1S, and 3.1U). X-

irradiation of these discs does not induce the rapid, large increase in apoptosis observed 

in wild-type discs (Figure 3.1J, 3.1P, and 3.1V). These results suggest that nbs acts in the 

tefu DNA damage response pathway to regulate apoptosis. Consistent with this 

conclusion, nbs tefu double mutant animals also exhibit high levels of apoptosis and fail 

to induce further apoptosis following irradiation (Figure 3.2). 

To determine whether the elevated spontaneous apoptosis in these discs requires 

p53 or mnk (the Drosophila Chk2 homolog), apoptosis was examined in nbs p53 and nbs 

mnk double mutant discs. The Drosophila p53 and mnk genes are required for induction 

of apoptosis by X-irradiation (Brodsky et al. 2000a; Ollmann et al. 2000; Xu et al. 2001; 

Sogame et al. 2003; Brodsky et al. 2004). Previously, the Drosophila p53 gene was 

shown to be required for some, but not all, of the apoptosis observed in tefu mutant discs 

(Oikemus et al. 2004; Song et al. 2004). Apoptosis is substantially reduced in nbs p53 



 87

(Figure 3.1K, 3.1Q, and 3.1W) and nbs mnk (Figure 3.1L, 3.1R, and 3.1X) double mutant 

discs compared to nbs single mutants (Figure 3.1I, 3.1O, and 3.1U). Although p53 has 

been implicated in a variety of stress response pathways, Chk2 homologs appear to 

specifically function in DNA damage responses. Thus, these results suggest that the 

absence of nbs leads to apoptosis via activation of a DNA damage response. This 

response may be directly activated by unprotected telomeres or by chromosome breaks 

formed following telomere fusions. The regulation of this response must, however, differ 

from the regulation of apoptosis 4 h following X-irradiation, which requires wild-type 

nbs and tefu function. 
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Figure 3.1 
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Figure 3.1. Drosophila nbs is an essential gene required for DNA damage–induced 

apoptosis.  (A) Upper: nbs gene structure. The Drosophila nbs gene is composed of four 

exons and encodes a protein (dNbs) with similar domain structure to the human NBS1 

protein (hNBS1). nbs mutations are indicated in red. The P[nbs+] genomic rescue 

construct is shown in blue. Middle: Nbs protein structure. Drosophila and human Nbs 

protein structures are depicted with the forkhead-associated (FHA) domain in orange, the 

BRCT domain in blue, and the Mre11-interacting domain in green. Lower: alignment of 

wild type and mutant nbs genomic DNA sequences. The nbs1 mutation is a 238-bp 

deletion and single bp insertion at nucleotide position 1,536 that results in a frameshift 

and a new stop codon (underlined). The inserted base is shown in red. Bases following 

the deletion are shown in blue. nbs2 is a point mutation at nucleotide 2,113 (shown in red) 

that introduces a stop codon at amino acid position 686 (underlined).  (B–E) Pharate adult 

morphology of wild type (B) and (D) and nbs1/nbs2 (C) and (E) animals. nbs− pharate 

adults have a rough eye and missing bristle phenotype ([D] and [E], arrows).  (F) 

Drosophila DNA damage, response proteins and their mammalian homologs. (G–X) p53- 

and Mnk-dependent apoptosis in nbs mutant wing discs. Wing imaginal discs from wild 

type and nbs mutant third-instar larvae were mock treated or X-irradiated (4,000 rads) 

and stained with acridine orange (G–L) or with an antibody against cleaved caspase 3 

([M–R], apical sections and [S–X], basal sections). Wild-type untreated discs have very 

low levels of apoptosis (G), (M), and (S). nbs mutant discs have high levels of 

spontaneous apoptosis (I), (O), and (U). Irradiation of wild-type wing discs induces high 

levels of apoptosis (H), (N), and (T). Irradiation of nbs mutant discs (J), (P), and (V) does 
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not greatly increase apoptosis beyond the elevated levels of spontaneous apoptosis 

(compare apical sections [N] and [P]). Apoptosis in nbs mutant discs is strongly 

suppressed by mutations in p53 (K), (Q), and (W) and mnk (L), (R), and (X). The mutant 

alleles used in this figure and others are described in Materials and Methods. 
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Figure 3.2.  Drosophila nbs and tefu act in the same damage-induced apoptosis 

pathway. Third instar larval wing discs were stained with acridine orange or an antibody 

against activated caspase 3 in order to visualize apoptosis.  Wild type untreated discs 

have very low levels of apoptosis (A, E and I).  tefu nbs (B, F and J) and nbs mus304 (D, 

H, and L) mutant discs have high levels of spontaneous apoptosis as seen in tefu and nbs 

single mutants. In addition, nbs mus304 discs are small and misshapen compared to wild 

type discs.  Irradiation of tefu nbs double mutant discs does not result in any further 

increase in apoptosis (C, G and K), similar to tefu or nbs single mutant discs. The mutant 

alleles used in this figure and others are described in the Materials and Methods. 
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  DNA damage checkpoint and repair defects in nbs mutant cells.  To further 

compare the function of nbs with tef, mei-41, and mus304, cell cycle arrest and double-

strand DNA break repair were examined. Previous studies have demonstrated that mei-41 

is required for G2 arrest at both high (4,000 rads) and low (500 rads) doses of ionizing 

radiation (Hari et al. 1995; Brodsky et al. 2000b), whereas tefu is primarily required at 

low doses (Queiroz-Machado et al. 2001; Bi et al. 2005a), but not high doses (Oikemus et 

al. 2004; Silva et al. 2004; Song et al. 2004). Dose-response curves confirm that mei-41 

mutant discs fail to arrest in response to a range of irradiation doses whereas tefu mutant 

discs have a partial arrest phenotype at low doses, but not at 4,000 rads (Figure 3.3). 

Similar to mei-41, nbs is required for cell cycle arrest at all doses tested (Figure 3.3). 

These results demonstrate that nbs plays a tefu-independent role in cell cycle arrest and 

suggests that it acts in the atr-atrip pathway to mediate G2 arrest. A cell cycle arrest 

defect at low, but not high X-ray doses has been reported for tefu and mre11 (Bi et al. 

2005a); however, we observe that loss of nbs results in an arrest defect at high doses 

whereas loss of mre11 results in a partial arrest at high doses (Table 3.1). nbs mus304 and 

nbs tefu double mutants also exhibit a cell cycle checkpoint phenotype at high doses; 

however, the reduced number of mitotic cells and smaller discs indicates that mitosis has 

been severely disrupted in the double mutants, making direct comparisons to single 

mutants problematic (Table 3.1, Figure 3.4). We conclude that nbs, mei-41, and mus304 

are all essential for cell cycle arrest at high doses of X-irradiation whereas tefu is not. 
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Figure 3.3.   
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Figure 3.3. Drosophila Nbs is required for damage-induced cell cycle arrest.  Third-

instar larval wing discs were mock treated or treated with various doses (250, 500, 1,000, 

and 4,000 rads) of X-rays and then stained with an antibody against phosphorylated 

histone H3. (A–I) The pattern of mitotic cells in untreated and irradiated wild type (A–C), 

nbs mutant (D–F), and tefu mutant (G–I) larval wing discs are shown. At 1,000 and 4,000 

rads, mitosis is blocked in wild-type wing discs (B) and (C) whereas nbs mutant discs fail 

to arrest (E) and (F). tefu mutant wing discs have a partial mitotic arrest following 

treatment with 1,000 rads (H). At 4,000 rads, mitosis is completely blocked in tefu mutant 

wing discs (I). (J) The ratio of mitotic cells in wild-type, nbs, tefu, and mei-41 mutant 

wing discs following X-irradiation to the number of mitotic cells in untreated discs of the 

same genotype is shown. Error bars indicate the standard error of the mean. 
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Table 3.1.  Average number of phosph-H3 positive cells per wing imaginal disc 
 
Genotype                            Average mitotic cells/disc            Average mitotic cells/disc 
                                                         untreated                    treated (4,000 Rads) 
w1118              348  (+/-19.9)       10  (+/-2.8) 
mei-41-                      386  (+/-17.3)                  278 (+/-22.6) 
tefu-         347  (+/-23)       18  (+/-2.1) 
nbs-         389  (+/-40.6)      276 (+/-20.9) 
mre11         426 (+/-12.1)                                    169 (+/-15.2) 
tefu- nbs-        257  (+/-14.5)      288 (+/-22.1) 
nbs- mus304-            150  (+/-8.3)        139 (+/-7.1)   
Five to ten discs were scored for each genotype and condition.   The standard error of the 
mean is indicated in parenthesis. 
 
Previous studies have demonstrated that mei-41, mus304, rad50, and mre11 are all 

required for DNA double-strand break (dsb) repair in Drosophila (Brodsky et al. 2000b; 

Bi et al. 2004; Ciapponi et al. 2004; Gorski et al. 2004). The effect of nbs and tefu 

mutations on dsb formation and repair was examined in metaphase chromosomes from 

larval neuroblasts (Figure 3.5A–3.5C and 3.5I). As discussed in more detail below, dsbs 

can arise as an indirect result of telomere fusion followed by chromosome breakage 

during mitosis (see Figure 3.7E). Broken chromosomes generated by this mechanism will 

generally retain their centromere. To analyze breaks due to mechanisms other than 

telomere fusion, the number of acentric chromosome fragments was analyzed. In 

untreated cells, these fragments may reflect a role in preventing formation of breaks 

during DNA replication. Both nbs and tefu are required to prevent the spontaneous 

accumulation of dsbs during normal cell cycles (Figure 3.5B, 3.5D, and 3.5I). However, 

nbs, mre11, mei-41, and mus304 mutant cells all have a more severe phenotype than tefu 

(Figure 3.5I). Analysis of double mutant cells suggests that nbs and tefu act in parallel to 
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mus304 to prevent accumulation of dsbs (Figure 3.5I). nbs cells also exhibit defective 

repair of X-irradiation–induced chromosome breaks (Figure 3.5C and 3.5I), consistent 

with the role of Nbs in the MRN DNA repair complex and with previous analysis of 

Drosophila Mre11 and Rad50 (Bi et al. 2004; Ciapponi et al. 2004; Gorski et al. 2004). 

Less severe dsb repair defects are seen following X-irradiation of tefu, mei-41, or mus304 

mutant cells (Figure 3.5I). Following irradiation, nbs tefu or nbs mus304 double mutant 

cells do not exhibit a greater defect than nbs single mutants, suggesting that nbs acts in 

both the tefu and mus304 pathways to mediate repair of induced DNA breaks. 

In summary, nbs acts in both the tefu and mei-41-mus304 DNA damage response 

pathways. Double mutant analysis indicates that Drosophila nbs acts in common genetic 

pathways with tefu and mus304 during DNA repair (Figure 3.5). In addition, nbs has 

DNA damage response phenotypes in common with both tefu (defective induction of 

apoptosis, Figure 3.1) and mei-41-mus304 (defective induction of cell cycle arrest at high 

doses of X-irradiation, Figure 3.3). Although Nbs1 homologs are best known for their 

roles in DNA repair and signaling in the ATM pathway (Shiloh 2003), human Nbs1 has 

also been reported to be required for signaling by the ATR pathway (Stiff et al. 2005). 

Thus, nbs has a conserved role in ATM- and ATR-ATRIP–dependent DNA damage 

responses. 
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Figure 3.4.   Double mutant animals exhibit a cell cycle arrest defect and a reduced 

number of mitotic cells.  Third instar larval wing discs were mock treated or treated with 

4,000 rads and then stained with an antibody against phosphorylated Histone H3.  The 

pattern of mitotic cells was examined in wild type (A, C), tefu nbs (B, D) and nbs mus304 

(C, F) mutant larval wing discs.  At 4,000 rads, mitosis is blocked in wild type wing discs 

(D). However, tefu nbs (E) and nbs mus304 (F) mutant wing discs fail to arrest following 

irradiation.  A direct comparison to the single mutants not possible due to the reduced 

size of the double mutant discs and corresponding reduced number of mitotic cells (Table 

3.1). 
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Two DNA damage response pathways contribute to telomere protection. 

Metaphase larval neuroblasts were also used to examine the roles of different DNA 

damage response genes in telomere protection. Previous studies have demonstrated that 

Drosophila tefu, mre11, and rad50 mutant cells have a partial defect in telomere 

protection (Queiroz-Machado et al. 2001; Bi et al. 2004; Ciapponi et al. 2004; Oikemus 

et al. 2004; Silva et al. 2004; Song et al. 2004). Consistent with these results, nbs mutant 

animals exhibit a high frequency of cells with one or more fusions (Figure 3.5). These 

fusions are observed during both metaphase (Figure 3.5B and 3.5J) and anaphase (Figure 

3.5D and Table 3.2). Another group has also recently described a telomere fusion 

phenotype for nbs1 animals (Bi et al. 2005b). nbs tefu double mutant cells exhibit similar 

fusion rates as tefu single mutants, indicating that these genes act in a common telomere 

protection pathway (Figure 3.5E and 3.5J). These results are consistent with results in 

Drosophila and other organisms, indicating that ATM and components of the MRN 

complex act in a common telomere protection pathway (Nakamura et al. 2002; Bi et al. 

2004; d'Adda di Fagagna et al. 2004). Downstream targets of ATM in the mammalian 

DNA damage response pathway include Nbs1 and the checkpoint kinases CHK1 and 

CHK2. The Drosophila homologs of these kinases are encoded by the grp and mnk genes 

and are required for DNA damage-induced apoptosis and cell cycle arrest (Brodsky et al. 

2004; Song 2005). Both telomere protection and chromosome break repair are normal in 

grp mnk double mutant cells (Figure 3.5I and 3J), indicating that other targets of 

Drosophila tefu and nbs are responsible for their telomere protection and DNA repair 

functions.  
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Compared with mutations in the genes that encode the telomere protection 

proteins HOAP (Figure 3.5J, cav−) and HP1, mutations in tefu, nbs, mre11, and rad50 

exhibit a significantly lower frequency of telomere fusions (Fanti et al. 1998; Queiroz-

Machado et al. 2001; Cenci et al. 2003b; Bi et al. 2004; Ciapponi et al. 2004; Oikemus et 

al. 2004; Silva et al. 2004; Song et al. 2004), indicating that there may be a tefu-nbs–

independent pathway for telomere protection. In mammals, the ATR checkpoint kinase is 

recruited to sites of DNA damage by ATRIP (Cortez et al. 2001; Itakura et al. 2004), and 

acts in parallel to the ATM kinase in the DNA damage response (Shiloh 2003). In 

budding and fission yeast, disruption of both atm/atr homologs results in loss of telomere 

protection (Naito et al. 1998; Craven et al. 2002). Mutations in mei-41 or mus304 do not 

result in telomere protection defects (Figure 3.5J). However, nbs mus304, tefu mus304, 

and tefu mei-41 double mutant animals all show higher rates of telomere fusion than the 

corresponding single mutants (Figure 3.5F, 3.5G, 3.5H, and 3.5J) indicating that the mei-

41-mus304 pathway acts in parallel to a tefu-nbs pathway to mediate telomere protection. 

The higher fusion frequency in tefu mei-41 double mutants compared with tefu mus304 

double mutants may indicate that there is a small amount of mei-41 activity in the 

absence of mus304. 

 
 
 
 
 
 
 
 
 
 



 100

Figure 3.5 
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Figure 3.5.   Drosophila nbs acts with the atm and atr-atrip pathways to protect cells 

from telomere fusions and chromosome breaks.  Mitotic chromosome spreads were 

prepared from wild type and mutant third-instar larval brains. Wild-type cells do not 

exhibit telomeric associations (A). nbs single mutant cells and nbs tefu double mutant 

cells exhibit DNA breaks (arrowheads) and telomere fusions (arrows) in metaphase (B), 

(C), and (E) and anaphase (D). Double mutant cells disrupting both the atm-nbs and atr-

atrip pathways result in a more severe telomere phenotype, in which many telomeres are 

fused (F–H). The labels X, Y, 2, 3, and 4 refer to the relevant chromosome.  The 

frequency of spontaneous (no X-ray treatment [−X-ray]) and damage-induced (treated 

with 100 rads X-rays [+ X-ray) chromosome breaks is elevated in mitotic cells from nbs- 

and other mutant cells (I). Both isochromatid (light shading) and chromatid (dark colored 

portion of the bar) breaks were counted as one break. The frequency of telomere fusions 

per cell is elevated in DNA damage response mutant cells (J). Double telomere 

associations were counted as two fusions. Individual genotypes are discussed in the 

Results section. The total number of cells scored for each genotype is in parenthesis. 

Error bars indicate the standard error of the mean. 
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DNA damage response genes regulate telomeric HOAP.  The formation of 

telomere fusions requires two steps: (1) the failure of telomeric protein complexes, such 

as HP1-HOAP, to prevent telomeric DNA ends from being recognized as damage-

induced ends, and (2) the subsequent ligation of unprotected telomeres by DNA repair 

systems. To probe the role of DNA damage response pathways in the first step, HOAP 

localization was examined in individual mitotic cells (neuroblasts). Previously, it was 

shown that the telomere protection proteins HP1 and HOAP are reduced at the telomeres 

of polytene chromosomes from tefu salivary gland cells (Oikemus et al. 2004), but that 

telomeric HOAP is not strongly reduced in mitotic chromosomes from neuroblasts (Bi et 

al. 2004; Oikemus et al. 2004); these results suggest that in the absence of tefu, 

neuroblasts utilize an alternative mechanism for HOAP localization. In contrast, both 

salivary glands and neuroblasts required mre11 and rad50 for normal HOAP localization 

(Bi et al. 2004; Ciapponi et al. 2004). 

The frequency of neuroblast telomeres with HOAP staining and the intensity of 

staining at those telomeres were examined in wild type and mutant cells (Figure 3.6, 

Table 3.3). Measurements of fluorescence intensity can be used to demonstrate that 

HOAP levels at individual telomeres are reproducibly increased or decreased in different 

genotypes. (However, we note that there may not be a linear relationship between the 

percent change of fluorescence observed and the percent change of telomeric HOAP 

protein levels.) Most wild type, tefu, and mus304 mutant metaphase cells are HOAP 

positive; between 77% and 94% of these cells had HOAP signals at chromosome ends 

(Figure 3.6, Table 3.3). Among the HOAP positive cells, between 66% and 72% of 
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telomeres stained for HOAP. The fluorescence intensity of HOAP staining was similar at 

the telomeres of each of the major chromosome arms in both wild type and mus304 

mutant cells (Figure 3.6G and 3.6H). However, the average intensity of HOAP staining 

was elevated in tefu mutant cells (Figure 3.6G and 3.6H), indicating that although HOAP 

is still recruited to telomeres, the mechanism regulating HOAP levels at telomeres may 

be perturbed. A more severe effect on HOAP localization was observed in nbs mutant 

metaphases, with only 44% of metaphases displaying HOAP signals and only 30% of the 

telomeres in those cells staining for HOAP (Table 3.3). This phenotype is similar to that 

reported for mre11 and rad50 mutant neuroblasts (Bi et al. 2004; Ciapponi et al. 2004). 

At the few HOAP-positive telomeres that are present in nbs cells, HOAP fluorescence 

staining intensity was elevated compared to wild type, similar to the HOAP staining at 

tefu mutant telomeres (Figure 3.6H). Together with the genetic data indicating that tefu 

and nbs act in a common telomere protection pathway, these results suggest that an 

alternative pathway can maintain HOAP levels at telomeres, but that this pathway is 

much less efficient in nbs mutant cells.  

Since mus304 nbs, mus304 tefu, and mei-41 tefu double mutant cells have more 

severe telomere fusion phenotypes than nbs or tefu single mutants (Figure 3.6), the mei-

41-mus304 pathway is a clear candidate to recruit HOAP to telomeres in the absence of 

tefu or nbs. mus304 single mutant animals do not exhibit a defect in either the frequency 

of HOAP-positive telomeres or the intensity of HOAP staining at those telomeres (Figure 

3.6B and 3.6G and Table 3.3). In contrast, we were unable to detect telomeric HOAP 

staining in mus304 tefu or mus304 nbs double mutant cells (Figure 3.6E and 3.6F and 
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Table 3.3). Thus, the mei-41-mus304 pathway partially compensates for the absence of 

tefu, limiting the severity of the tefu telomere fusion phenotype. Cells lacking both 

pathways exhibit loss of telomeric HOAP and a severe telomere fusion phenotype. In a 

report published while this manuscript was in preparation, Bi et al. also find that 

disruption of the Drosophila atm and atr pathways results in a high frequency of telomere 

fusions and loss of telomeric HOAP (Bi et al. 2005b).  

_______________________________________________________________________
Table 3.2.  Percentage of telomeres with HOAP staining 
Genotype               % Metaphases                  % Labeled telomeres        % Fusions with   
                                      with                             in HOAP positive                 HOAP (c)    
                                    HOAP (a)                            metaphases (b) 
 
w-   82 (n=93)         72 (n=1272)        - 
mus304-  77 (n=56)         71 (n=412)        - 
tefu- (d)      94 (n=67)         66 (n=751)  27 (n=110) 
nbs-   44 (n=120)         30 (n=867)  20 (n=40) 
tefu- mus304- (e)       0 (n=69)                -           - 
nbs- mus304-    0 (n=65)     -           - 
a n=number of metaphases analyzed 
b n=number of total telomeres analyzed 
c n=number of chromatid fusions analyzed 
d tefu1 / Df(3R)PG4 
e tefuΔ356 mus304D2 
 

These results support the model that the Drosophila tefu and mei-41-mus304 

DNA damage response pathways mediate telomere protection by recruiting or 

maintaining HOAP at telomeres. The more severe HOAP localization phenotype of nbs 

mutant cells compared with tefu cells indicates that nbs has a tefu-independent role in 

telomere protection. As described above, the common DNA repair and damage response 

phenotypes of nbs with mei-41 and mus304 indicate that nbs also acts in the atr-atrip 
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DNA damage response pathway. Thus, one explanation for the lower frequency of HOAP 

positive telomeres in nbs compared to tefu cells is that nbs mutations both disrupt the tefu 

telomere protection function and partially disable a compensatory telomere protection 

pathway mediated by mei-41-mus304.  

There is a good correlation between the levels of telomeric HOAP and the 

frequency of telomere fusion, except in nbs, mre11, and rad50 mutants. In yeast and 

mammalian cells, some DNA repair genes are required to both maintain telomere 

protection and to promote joining of unprotected telomeres (Williams and Lustig 2003; 

d'Adda di Fagagna et al. 2004). The observed telomere fusion frequency in nbs mutant 

cells may reflect the combined effects of decreased telomere protection and inefficient 

fusion of unprotected telomeres. Although the loss of nbs has a more severe effect than 

tefu on telomeric HOAP (Figure 3.6), nbs and tefu mutant cells have similar telomere 

fusion frequencies (Figure 3.5). nbs mutations have a more severe effect on repair of 

DNA breaks (Figure 3.5), suggesting that nbs mutant cells may also have reduced joining 

of unprotected telomeres. Consistent with a role for nbs in fusion of unprotected 

telomeres, nbs mus304 mutant cells have a lower telomere fusion frequency than tefu 

mus304 cells, despite undetectable levels of telomeric HOAP in both genotypes. 

Similarly, nbs cav double mutant cells have a lower telomere fusion frequency than tefu 

cav double mutant cells (Figure 3.5J). 

In summary, DNA damage response genes are essential for the telomeric 

localization of the protection protein HOAP. Analysis of DNA repair, telomere fusions 

and HOAP localization suggests that the telomere fusion frequency reflects a 
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combination of defective protection and reduced fusion of unprotected chromosomes. 

Although these results do not rule out the possibility that DNA damage response genes 

are also required for modification of HP1 and HOAP complexes at telomeres, they 

strongly suggest that recruitment or maintenance of these complexes to telomeres is 

critical for telomere protection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 107

Figure 3.6 
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Figure 3.6. The Drosophila tefu and mei-41-mus304 pathways are required for 

telomeric localization of HOAP.  HOAP immunostaining of mitotic chromosomes 

prepared from wild type and mutant third-instar larval brains. Wild type, mus304, and 

tefu mutant mitotic chromosomes exhibit HOAP localization (shown in green) at most 

telomeres ([A–C] arrows). nbs mutant cells exhibit a decreased number of telomeres with 

HOAP signal ([D] arrow). No HOAP was detected at the telomeres of nbs mus304 or tefu 

mus304 mutant chromosomes ([E] and [F] arrows). Alleles examined in these 

experiments include (C) tefu1/ Df(3R)PG4 and (E) tefuΔ356 mus304D2. The frequency of 

HOAP-positive telomeres is shown in Table 3.3. The labels X, 2, 3, and 4 refer to the 

relevant chromosome.  (G) The average fluorescence intensity of anti-HOAP 

immunostaining at the telomeres of chromosome arms 2L, 2R, 3R, 3L, and XL was 

determined for wild-type, homozygous mus304−, tefu1/Df(3R)PG4, or nbs− animals. The 

average fluorescence intensity of the HOAP signal is higher in tefu and nbs mutant cells 

compared to wild type or mus304 mutant cells.  (H) The average fluorescence intensity of 

HOAP staining at all telomeres from wild type and mutant cells. Error bars indicate the 

standard error of the mean. 
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DNA damage response pathways are required for epigenetic protection of 

telomeres.  In many organisms, telomere-specific sequences are required to recruit 

proteins that prevent chromosome end fusion. Loss of telomere-specific sequences in 

cells that do not express telomerase or that are mutant for DNA damage response genes 

can result in telomere fusions. However, in Drosophila, the stable protection of terminally 

deleted chromosomes from telomere fusion suggests that a sequence-independent 

mechanism acts to protect the telomeres of normal chromosomes (Mason et al. 1984; 

Biessmann and Mason 1988; Tower et al. 1993; Mason et al. 1997; Ahmad and Golic 

1998). Given the requirement of the tefu and mei-41-mus304 DNA damage response 

pathways for telomere protection, we propose that recognition of chromosome ends 

contributes to this epigenetic phenomenon. One prediction of this model is that cells 

lacking these pathways will exhibit telomere fusion without loss of telomeric DNA 

sequences such as HeT-A. HeT-A sequences should not be lost simply as a secondary 

effect of unprotected telomeres since telomere fusions in cells lacking HP1 function still 

retain these sequences (Fanti et al. 1998). A second prediction is that terminal deletion 

chromosomes lacking telomeric sequences will still fuse in the absence of the DNA 

damage response pathways. This observation would rule out the possibility that the 

epigenetic mechanism for protection of terminal deletions utilizes an alternative 

mechanism to recruit HP1 and HOAP that is independent of the DNA damage response 

pathways. These predictions can be evaluated in animals with the extreme telomere 

fusion phenotype associated with loss of both the tefu and mei-41-mus304 DNA damage 

response pathways.  
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To test the first prediction, the telomere-specific retrotransposon HeT-A was 

analyzed at individual telomeres of DNA damage response defective cells by 

fluorescence in situ hybridization. Measurements of fluorescence intensity can be used to 

demonstrate that HeT-A levels at individual telomeres are reproducibly increased or 

decreased in different genotypes. (However, we note that there may not be a linear 

relationship between the percent change of fluorescence observed and the percent change 

of telomeric HeT-A DNA.) Previously, telomere fusions in tefu mutant cells were shown 

to retain at least some HeT-A sequences (Bi et al. 2004; Oikemus et al. 2004). However, 

these studies only examined mutants with mild telomere fusion phenotypes and were less 

thorough than the analysis presented here. Because the number of HeT-A copies per 

telomere can vary between strains, particularly in strains with altered HP1 function 

(Savitsky et al. 2002), HeT-A signals at free chromosome ends in homozygous mutant 

animals were compared to chromosome fusion sites in the same cells and to free 

chromosome ends in an appropriate heterozygous parental strain (Figure 5, Table 2). 

HeT-A is still present at free telomeres and at chromosome fusion sites in tefu, nbs, tefu 

mus304, and nbs mus304 homozygous mutant cells (Figure 3.7A–3.7F and Table 3.4). 

For each genotype, both the frequency and intensity of HeT-A staining at chromosome 

fusions is equal to or greater than that observed at the free chromosome ends (Table 3.4 

and Figure 3.7G), indicating that loss of telomere-specific sequences does not correlate 

with telomere fusion in cells with defective DNA damage response pathways. Note that if 

a HeT-A–positive telomere fuses with another HeT-A–positive telomere, the intensity of 
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staining will increase; if it fuses with a HeT-A–negative telomere or a chromosome break, 

the intensity should be the same.  

Different genotypes exhibit different relative intensities of HeT-A staining at 

chromosome fusions compared to free ends (Figure 3.7G). These differences may reflect 

different frequencies of telomere–telomere fusions versus telomere–break fusions or 

differences in the precise mechanism of telomere fusion. Nonetheless, the observation 

that the staining intensity at fusions is equal to or greater than the intensity at free 

chromosome ends demonstrates that loss of these sequences is not required for fusion in 

any of these genotypes. 

Table 3.3.  Percent chromosomes with HeT-A staining 

 

Genotype       % Chromosome        % Chromosome         % Chromosome 

         ends with HeT-A           fusions with HeT-A             ends with internal 
                    HeT-A signals 
w-   48.7 (n=624)      -           -      
mus304-/ TM6  94.8 (n=211)      -           -  
mus304-  91.0 (n=486)      -           - 
tefu-/ TM6  40.4 (n=324)      -           -       
tefu- (a)   35.3 (n=241)         40.0 (n=58)              1.7 (n=241) 
nbs-/TM6  88.8 (n=260)      -           - 
nbs-   62.8 (n=290)         89.3 (n=56)   2.0 (n=290) 
tefu- mus304-/TM6 95.4 (n=518)      -           - 
tefu- mus304-  53.2 (n=111)         86.3 (n=80)            28.8 (n=111) 
nbs- mus304-/ TM6 95.5 (n=312)      -           - 
nbs- mus304 (b)  67.7 (n=198)         88.9 (n=54)   6.1 (n=198) 
n= number of telomeres analyzed 
a tefu1 / Df(3R)PG4 
b tefuΔ356 mus304D2 
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The frequency and intensity of HeT-A staining was also compared at the free 

chromosome ends of mutant cells and the corresponding parental strain. The frequency of 

HeT-A staining at chromosome ends in homozygous nbs, nbs mus304, and tefu mus304 

mutant cells is lower than in cells from the corresponding heterozygous strains (Table 

3.4). Although this decrease could reflect removal of telomeric sequences in homozygous 

mutant animals, two other factors are likely to contribute. First, defective DNA repair 

generates chromosome ends without telomeric sequences. As demonstrated above (Figure 

3.5), several of these mutations result in high levels of spontaneous breaks. Second, 

progression of cells with telomere fusions through mitosis generates anaphase bridges 

and chromosome breaks via the fusion/bridge/break cycle. In one example (Figure 3.7E, 

arrowhead), an internal site of HeT-A (the original fusion site) is adjacent to a 

chromosome end without HeT-A (the break site). Chromosome ends with adjacent 

internal HeT-A sites are found in all mutant cells with telomere fusions (Table 3.4). The 

overall frequency of breaks resulting from fusion is underestimated by this analysis since 

some broken chromosomes will not include the original fusion site. Thus, chromosome 

breaks can account for the increased number of ends without HeT-A staining. However, 

at those chromosome ends that are HeT-A positive, the intensity of staining is equal to or 

greater than in the corresponding heterozygous cells (Figure 3.7G). Combined with the 

analysis of HeT-A staining at fusion sites described above, these results indicate that the 

fusion phenotype of single or double mutants in the DNA damage response pathways is 

not due to loss of telomeric sequences.  
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A second prediction of the end-recognition model for Drosophila telomere 

protection is that both normal and terminally deleted chromosomes will exhibit similar 

frequencies of fusion in cells lacking the DNA damage response pathways. The stable 

protection of terminally deleted chromosomes in wild-type cells suggests that the 

telomeres of normal chromosomes are also protected by sequence-independent 

mechanism; however, it is also possible that terminally deleted chromosomes acquire an 

alternative mechanism for telomere protection, and that the DNA damage response 

pathways must act in conjunction with a sequence-specific mechanism. To address this 

possibility, we examined fusion rates of a normal and a terminally deleted X chromosome 

in tefu mus304 double mutant cells. Previous experiments have demonstrated that the 

telomere protection gene UbcD1 is required to prevent fusion of terminally deleted 

chromosomes (Cenci et al. 2003a). In tefu mus304 double mutant cells, a normal and a 

terminally deleted X chromosome fused to the sister or to heterologous chromosomes at a 

high frequency (Figure 3.8). The fusion frequency is similar, but lower, with a normal X 

chromosome (p = 0.019, two-tailed Fisher Exact Test); this difference may indicate that 

the terminally deleted chromosome is slightly less sensitive to the loss of DNA damage 

signaling pathways. Nonetheless, the frequent fusion of terminally deleted chromosomes 

in tefu mus304 double mutant cells directly demonstrates that the DNA damage response 

pathways act in an epigenetic mechanism for telomere protection. 
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Figure 3.7 
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Figure 3.7. Loss of telomeric sequences is not required for telomere fusions in cells  

lacking the tefu and mei-41-mus304 DNA damage response pathways.  (A–F) 

Fluorescent in situ hybridization of mitotic chromosomes from third-instar larval brains 

with a HeT-A probe. Telomeric HeT-A sequences are present at the free ends (arrows) 

and telomere fusion sites (arrowheads) of nbs1 (D) nbs1 mus304D2 / nbs1 mus304D1 (E) 

and tefu1 mus304D2 (F) homozygous mutant chromosomes. Similar levels of HeT-A 

hybridization are seen at the telomeres of the corresponding heterozygous chromosomes 

(A), (B), and (C). Internal sites of HeT-A adjacent to a chromosome end mark sites of 

telomere fusion followed by chromosome breakage ([E], Chromosome 3, arrowhead). 

Pairs of internal HeT-A sites mark sites where breakage was followed by a second fusion 

event ([E], Chromosome 2, arrowhead). The frequency of HeT-A positive telomeres is 

shown in Table 3.4. The labels TM6, X, Y, 2, 3, and 4 refer to the relevant chromosome. 

(G) The average fluorescence intensity of HeT-A signal at both free ends and fused 

telomeres of homozygous and heterozygous mutant animals was determined following 

fluorescent in situ hybridization. The fluorescence intensity of HeT-A signals is similar or 

greater in homozygous mutant cells compared with the corresponding heterozygous cell. 

For a given genotype, the fluorescence intensity of HeT-A signals is similar or greater at 

sites of chromosome fusions compared to free chromosome ends. Error bars indicate the 

standard error of the mean. The number of telomeres scored for each genotype is 

indicated in parenthesis.  
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Figure 3.8 
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Figure 3.8. The Drosophila tefu and mei-41-mus304 pathways act in an epigenetic 

telomere protection mechanism. Normal (A) and terminally deleted (B) X 

chromosomes are not fused in wild-type cells. Normal (C) and terminally deleted X 

chromosomes (D) are fused in tefu mus304 double mutant cells. Both sister chromosome 

fusions (C) and non-sister fusions (D) are observed. High frequencies of X chromosome 

telomere fusions per cell are observed for normal and terminally deleted chromosomes in 

tefu mus304 mutant cells (E). Error bars indicate the standard error of the mean. The 

number of cells scored for each genotype is in parenthesis. The labels X, Y, 2, 3, and 4 

refer to the relevant chromosome. PCR analysis using primers specific for the wild-type 

yellow (y+) gene (A) and control primers specific for both y+ and y2, an allele with a 

transposon insertion in the yellow gene (B) Genomic DNA was isolated from a w1118 male 

(wild-type control, lane 1) and from a yRT814 / y2 sc Y male (lane 2) that carries a 

terminally deleted X chromosome and a Y chromosome carrying a duplication of y2 (lane 

2). PCR analysis of genomic DNA isolated from individual tefu mus304 male larvae from 

the cross, yRT814/+; tefu mus304D2/+ females crossed to +/y2 sc Y; tefu mus304D1/+ males, 

identified mutants carrying the terminally deleted X chromosome (lanes 4, 5, and 6) and 

from those carrying a wild-type X chromosome (lanes 3, 7, 8, and 9). 
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Concluding Remarks 

 

DNA damage response genes have evolutionarily conserved roles in telomere 

function. Unprotected telomeres are recognized by these pathways and elicit a variety of 

cellular responses including apoptosis and end-to-end fusion of chromosomes. However, 

these same pathways are also required to promote telomere protection. We demonstrate 

that the Drosophila ATM and ATR-ATRIP DNA damage response pathways act in an 

epigenetic mechanism to mediate telomere protection. Cells lacking both pathways fail to 

recruit the chromatin-associated protein HOAP to telomeres, and both normal and 

terminally deleted chromosomes undergo fusion at a high frequency. Furthermore, fusion 

of normal telomeres occurs without loss of telomere-specific sequences. Taken together, 

these results support an end-recognition model in which DNA damage response proteins 

recognize a DNA structure at the chromosome end, and recruit or stabilize the telomere 

protection proteins HP1 and HOAP at telomeres; in turn, these proteins act to prevent the 

ligation of chromosome ends by DNA repair enzymes and the activation of p53-

dependent apoptosis (Figure 3.9). In other organisms, a similar epigenetic mechanism 

may act in conjunction with sequence-specific protection mechanisms or may be utilized 

to promote protection of critically short telomeres, which are least able to utilize 

sequence-specific binding proteins. 
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Figure 3.9 

 

Figure 3.9.  Model.  The Drosophila DNA damage response proteins function at sites of 

double strand breaks to induce cell cycle arrest, DNA repair, and apoptosis.   At 

telomeres Drosophila DNA damage response proteins function to recruit and/or maintain 

the telomere protection proteins, HP1 and HOAP in order to prevent ligation of telomere 

ends and activation of  p53-dependent apoptosis.  
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Materials and Methods 

 

Drosophila strains and crosses.  All animals were raised at 25 °C. Mutations in 

nbs were identified from a collection of lethal mutations in the cytological region 67A-D 

(Leicht and Bonner 1988). To identify sequence alterations, genomic DNA from animals 

homozygous for l(3)67BDp1 and l(3)67BDr1 was amplified by PCR and sequenced. An 

nbs rescue construct was created by amplifying a genomic fragment containing the nbs 

transcript and 377 bp of upstream sequence and 102 bp of downstream sequence using 

the following primers: 5’ GGCCAGATCTGGTCAGGTGAGACATGGGTTAC 3’ and 

5’ GGCCGGTACCAGGAAACTGAATCCTCCTCC 3’. The genomic fragment was 

cloned into the BglI and KpnI sites of the pUAST vector (Brand and Perrimon 1993). 

Flies carrying the P[UAS-nbs] rescue transgene were created by P-element–mediated 

germline transformation. Transgene rescue was tested by crossing +/+; nbs1/TM6BTb 

females to P[nbs+]/CyO;Df(3L)Ac1/TM6BTb males and scoring non-balancer animals.  

The w1118 strain was used as the wild-type stock. Where alleles are not otherwise 

indicated, the following alleles or allelic combinations were used: mei-41D3; mnkp6; 

grpfs1; mre11Δ;  tefuΔ356/tefu1; nbs1; and mus304D1/mus304D2. Alleles are described in the 

text or at http://www.flybase.org. Double mutants were created by standard genetic 

crosses and confirmed by complementation analysis or PCR.  

The terminally deleted X chromosome y RT814 was originally generated by Dr. 

Jim Mason and was obtained from Dr. Maurizio Gatti. The deleted region includes the 

yellow (y) gene and all genes distal to it. In situ hybridization of polytene chromosomes 
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with HeT-A and TART probes was performed to confirm that the y RT814 chromosome 

did not terminate with a retrotransposon. To examine this chromosome in tefu mus304 

double mutant cells, y RT814/+; tefuΔ356 mus304D2/+ females were crossed to +/y2 scY; tefu- 

mus304D1/+ males. Individual larval males carrying the terminally deleted X chromosome 

were identified by PCR analysis of the yellow gene using the following primers, which 

flank the gypsy transposon insertion in the y2 allele: 5’ ATTGTGAATCATCGGTGACG 

3’ and 5’ CATGCAGACAAAAATCCAGAAA 3’. Males with the deletion chromosome 

do not produce a PCR product because the X chromosome deletion removes the y gene 

and the Y chromosome carries the y2 allele (Figure S3A). A second pair of primers to a 

different region of the y gene were used as a positive control to amplify a product in 

animals with either a normal or terminally deleted X chromosome (Figure S3B): 5’ 

CATGCAGACAAAAATCCAGAAA 3’ and 5’ ATTGTGAATCATCGGTGACG 3’. 

tefu− mus304− homozygous animals were identified by their small imaginal disc size and 

confirmed by their chromosome fusion phenotype. In all cases, the disc size and 

chromosome fusion phenotype matched. The high frequency of fusions and small disc 

size was confirmed to be specific for brains homozygous for tefu− mus304− and not for 

brains homozygous for tefu− and heterozygous for mus304 (unpublished data). 

 

Apoptosis and checkpoint assay.  Late third-instar larvae were treated with 4,000 

rads in a Faxitron RX650 (Faxitron X-ray Corporation, Illinois). Apoptotic cells were 

detected in wing imaginal discs 4 h after irradiation as described previously (Oikemus et 

al. 2004). Mitotic cells were visualized using a phospho-histone H3 antibody (Upstate 
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Biotechnology). Fixation and staining were performed as previously described (Brodsky 

et al. 2000b). The number of mitotic cells per wing disc was determined by flattening 

mounted wing imaginal discs and counting the number of phospho-H3–positive cells. 

The number of mitotic cells at each X-ray dose was normalized to the average number of 

mitotic cells in untreated discs. At least five discs were analyzed for each genotype and 

dose. 

  

Fusion and break analysis.  Late third-instar larvae were treated with 100 rads in a 

Faxitron RX650 using an aluminum shield to block lower energy wavelengths. Larval 

brains were dissected 2.5 h following irradiation, and chromosome spreads were prepared 

as described previously (Queiroz-Machado et al. 2001). Spontaneous and irradiation-

induced breaks were quantified by counting chromatid and isochromatid breaks with 

acentric fragments.  

 

Immunostaining of mitotic cells.  Mitotic chromosomes were stained with a rabbit 

polyclonal anti-HOAP antibody (gift of R. Kellum, University of Kentucky). The HOAP 

antibody (1:200 dilution in 10% FBS, 1× PBS, 0.1% Tween) was pre-absorbed with fixed 

embryos overnight at 4 ºC. Neuroblast squashes were prepared as described (Queiroz-

Machado et al. 2001) with the following changes: After hypotonic treatment, larval brains 

were fixed sequentially in formaldehyde solution (2% formaldehyde, 2% triton, 1× PBS) 

for 1 min and then in acetic acid/formaldehyde solution (2% formaldehyde, 45% glacial 

acetic acid in water) for 6 min. Slides were washed in PBST and incubated for 1 h at 
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room temperature in blocking solution (10% FBS, 1× PBS, 0.1% Tween). Slides were 

incubated with anti-HOAP antibody overnight at 4 ºC, then rinsed twice in PBST for 15 

min and incubated for 1 h at room temperature with secondary antibody (anti-rabbit-

Alexa 488, [Vector Laboratories, Burlingame, California, United States, diluted 1/2,000 

in blocking solution). Finally, slides were washed twice in PBST for 15 min and mounted 

in Vectashield containing DAPI (Vector Laboratories). Chromosome preparations were 

observed using an Axiovert 200 Carl Zeiss microscope (Oberkochen, Germany), and 

mitotic figures were collected with the Axiovision 4.4 Zeiss software. Quantification of 

the HOAP fluorescence intensity was performed using the ImageJ software package 

(http://rsb.info.nih.gov/ij/). 

 

Fluorescent in situ hybridization of Drosophila neuroblasts. In situ hybridization to 

mitotic chromosomes was performed as described (Carmena et al. 1993). HeT-A probe 

was labeled with Biotin-14-dUTP using the Bionick Translation System (GIBCO BRL, 

Rockville, Maryland, United States). Slides were mounted in Vectashield containing 

DAPI as a DNA counterstain (Vector Laboratories). Chromosomes were identified 

through their specific peri-centromeric banding pattern after DAPI staining. Chromosome 

preparations were observed using an Axiovert 200 Carl Zeiss Microscope, and mitotic 

figures were collected with the Axiovision 4.4 Zeiss software. Quantification of the HeT-

A fluorescence intensity was performed using the ImageJ software package 

(http://rsb.info.nih.gov/ij/).  
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Accession Numbers.  The National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov) accession numbers for the genes and gene products 

discussed in this paper are ATM (472), ATR (545), ATRIP (11277), Chk1 (1111), Chk2 

(11200), grps (34993), mei-41 (32608), mnk (35288), mus304 (40003), nbs (44259), 

NBS1 (4683), and tefu (41839). 
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CHAPTER IV 

FUTURE DIRECTIONS 
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Analyses of specific experiments and results were given in the results and 

discussion sections of Chapters 2 and 3.  Therefore, this chapter will focus on the future 

directions of the Drosophila telomere field and highlight specific questions that 

developed directly from the work presented in this thesis.    

 

Which Proteins Mediate the Fusion of Unprotected Telomeres in Drosophila? 

 

Which proteins mediate the fusion of unprotected telomeres in Drosophila still 

remains an unanswered question.   NHEJ repair enzymes mediate fusion of unprotected 

telomeres in yeast and mammals (Smogorzewska et al. 2002; Miller et al. 2005; Pardo 

and Marcand 2005; Celli et al. 2006). Therefore, NHEJ repair proteins are likely 

candidates to mediate the ligation of unprotected telomeres in Drosophila.   

                Components of the NHEJ and HR repair pathways are conserved in Drosophila 

(Sekelsky et al. 2000).  Studies in flies can take advantage of several unique techniques 

that permit targeted induction of a single double strand break (Romeijn et al. 2005; 

Beumer et al. 2006; Preston et al. 2006).  Studies using these techniques have revealed 

some similarities and differences in Drosophila repair mechanisms compared to yeast 

and mammals.  In addition these techniques allow the contribution of each repair pathway 

to be analyzed during different developmental stages and in the presence of defects in 

repair genes.  

               Similar to yeast, Drosophila do not have a DNA-PKcs ortholog, however they 

do have both subunits of the Ku complex, Ku70 and Ku80 and a ligase IV ortholog 
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(Sekelsky et al. 2000).   Both Ku70 and Ku80 expression is regulated in response to 

irradiation in a p53-dependent manner (Brodsky et al. 2003), however, the exact 

contribution of the Drosophila Ku complex in DNA repair has not been extensively 

studied.   A role for Drosophila Ku in the regulation of telomere elongation has been 

described using heterozygous Ku deficiencies (Melnikova et al. 2005).  To date a role for 

Ku in Drosophila telomere protection has not been described.  However, if the role of 

Drosophila Ku is similar to mammalian Ku then it is likely to contribute to both the 

telomere fusion event and telomere protection.     

 In mammals Ku70 plays a dual role in both protection of telomeres and in the 

joining of unprotected telomeres.  Mutations in Ku70 result in a low frequency of fusions 

indicating a role in telomere protection (Bailey et al. 1999; Hsu et al. 2000).  

Furthermore, simultaneous induction of telomere fusions by disruption of TRF2 and 

deletion of Ku70 results in a decrease in telomere fusions (Celli et al. 2006), indicating a 

role for Ku70 in the fusion event of unprotected telomeres.  Therefore, it will be 

interesting to determine whether Drosophila Ku suppresses the fusion phenotype of DNA 

damage response mutants and HP1 and HOAP mutants.  However, a lack of established 

Ku mutants has hindered the testing of this hypothesis. 

Several Drosophila ligase IV mutants have been described (Gorski et al. 2003; 

McVey et al. 2004).  Interestingly, NHEJ in Drosophila is largely independent of DNA 

ligase IV.  Ligase IV mutants are viable and exhibit a minor sensitivity to X-irradiation 

during embryogenesis compared to wild type animals.  Studies by McVey et al have 

demonstrated that ligase IV is not required for the repair of double strand breaks induced 



 128

by p-element excision even in the absence of a functio  nal homologous recombination 

repair pathway (McVey et al. 2004).  Therefore, unlike yeast, even when the homologous 

recombination repair pathway is inactivated, ligase IV mutations do not appear to have a 

significant affect on repair by NHEJ.  

                The above findings suggest that Drosophila may have an alternative end 

joining mechanism that is not dependent on ligase IV or there may be an unidentified 

ligase that contributes to NHEJ.   Recent studies have demonstrated that ligase IV may 

have a more significant role in the repair of double strand breaks in somatic cells 

(Romeijn et al. 2005).   Consistent with these findings mutations in ligase IV can 

suppress the atm fusion frequency by 20% (Bi et al. 2004).  This suggests that in 

Drosophila fusion of unprotected telomeres is partially dependent on ligase IV.   What 

proteins are responsible for the ligase IV independent fusion events? 

Preliminary results suggest that Mu2 and p53 may contribute to the fusion of 

unprotected telomeres (Brodsky Lab unpublished results).  Analysis of larval brain cells 

from atm p53 and atm mu2 double mutants revealed a decrease in the frequency of 

fusions compared to atm single mutants.  These results suggest a function for p53 and 

Mu2 in the fusion of unprotected telomeres.   mu2 mutations facilitate the recovery of 

terminal deficiencies at a high frequency indicating that these telomeres have acquired a 

new telomere (discussed in the Introduction) (Mason et al. 1984).  Therefore, the normal 

function of Mu2 is to prevent the establishment of new telomeres, possibly at the sites of 

double strand breaks.   A role for Mu2 in DNA repair in oocytes has been suggested 

(Mason et al. 1997). 
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Sequence analysis of the Mu2 protein revealed two c-terminal BRCT domains.  

BRCT domains bind phospho-proteins and are found predominantly in proteins involved 

in the DNA damage response (Manke et al. 2003; Yu et al. 2003).  Preliminary sequence 

comparisons suggest that Mu2 is most similar to the mammalian 53BP1 (p53 binding 

protein 1) protein (Brodsky Lab, unpublished).   53BP1 was identified in a screen 

designed to uncover proteins that interact with p53 (Iwabuchi et al. 1994).   In mammals 

53BP1 localizes to H2AX containing damage-induced foci and plays a role in both the S 

phase and G2/M cell cycle checkpoints (Schultz et al. 2000; Rappold et al. 2001; Ward et 

al. 2003).  53BP1 is recruited to sites of DNA damage via an interaction with methylated 

lysine 79 of histone H3 (Huyen et al. 2004). 

Interestingly a role for 53BP1 in NHEJ has recently been described.  Nakamura et 

al. demonstrates that 53BP1 facilitates non-homologous end joining in chicken DT40 

cells (Nakamura et al. 2006).  If Mu2 plays a similar role in Drosophila then it is possible 

that the decrease in fusion frequency in atm mu2 double mutants is a direct result of 

inactivation of NHEJ.  Analysis of lig4 atm mu2 triple mutants should reveal if mu2 and 

lig4 are acting in a similar pathway. However mu2 mutations do not completely rescue 

the fusion phenotype suggesting that mutations in mu2 only partially disrupt NHEJ.  It is 

possible that another pathway contributes to the fusion of unprotected telomeres.   It may 

be necessary to simultaneous disrupt several components of the NHEJ pathway in order 

to observe complete suppression of fusions at unprotected telomeres.  

Preliminary results also demonstrated that mutations in p53 could suppress the 

fusions in an atm mutant.  Mutations in p53 can suppress the spontaneous apoptosis in 
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both atm and nbs mutants (Oikemus et al. 2004; Song et al. 2004; Oikemus et al. 2006).  

If Mu2 is the 53BP1 homolog it is logical to propose that Mu2 and p53 may cooperate in 

the fusion of unprotected telomeres.   Analysis of more complex genotypes will provide 

valuable information for determining the exact roles of p53 and Mu2 in the mechanism of 

telomere-telomere ligation. 

Drosophila appear to be more similar to yeast in the sense that HR appears to be 

the primary repair mechanism.  Several genes belonging to the Rad52 epistasis group 

have been identified and studied in Drosophila and include Rad51, Rad54, Rad51D 

SpnB, SpnD, XRCC2 and the MRN complex (Sekelsky et al. 2000).  However, in S. 

cerevisiae the MRN complex does contribute to repair by NHEJ (Daley et al. 2005).  It is 

likely that Drosophila MRN also plays a role in the NHEJ and ligation of unprotected.  

Mutations in both nbs and mre11 result in increased frequency of chromosome breaks 

and a lower frequency of telomere fusions compared to atm mutants (Bi et al. 2004; 

Ciapponi et al. 2004; Oikemus et al. 2004; Ciapponi et al. 2006; Oikemus et al. 2006).  

However, both nbs and mre11 mutant telomeres have less telomeric HOAP compared to 

atm mutants (Bi et al. 2004; Ciapponi et al. 2004; Oikemus et al. 2004; Ciapponi et al. 

2006; Oikemus et al. 2006).  Taken together these results suggest that the Drosophila 

MRN complex functions in both telomere protection and in ligation of unprotected 

telomeres.  Again, disruption of multiple repair proteins may be required to uncover the 

exact contributions of each protein.  
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Telomeric Localization of Drosophila DNA Damage Response Protein 

 

It is not yet known if Drosophila DNA damage response proteins are stable 

components of the telomere cap complex or if they only transiently associate with 

exposed or critically short telomeres.  In yeast, the telomeric association of ATM and 

ATR is cell cycle dependent (Takata et al. 2004).   In human telomerase negative cells 

ATM, MRE11, and phosphorylated NBS1 associate with telomeres during late S and G2 

when POT1 association with telomeres is at it’s lowest and telomeres are more accessible 

(Verdun et al. 2005).  In a separate study, MRE11 and RAD50 were demonstrated to 

associate with telomeres throughout the cell cycle while NBS1 was only observed during 

S phase (Zhu et al. 2000).  Furthermore, inhibition of ATM and the MRN complex in the 

telomerase negative cells resulted in telomere dysfunction in the form of telomere-

telomere fusions (Verdun et al. 2005).  Verdun et al propose that the association of DNA 

damage response proteins with telomeres during G2 is necessary for proper telomere 

processing and formation of the t-loop.  However, they do not show directly that the 

activity of these proteins is responsible for 3’overhang or t-loop formation.  

Although a 3’overhang and t-loop structure has not been demonstrated for 

Drosophila telomeres, damage response proteins may still be required during specific 

phases of the cell cycle and for telomere end processing (or for modification of telomeric 

heterochromatin).    The low expression of most DNA damage response proteins and lack 

of decent Drosophila antibodies against many of the DNA damage response proteins has 



 132

hampered progress on these studies.  However, the creation of GFP tagged versions of 

these proteins would help to answer these questions.  

In addition to the role of ATM and other DNA damage response proteins in the 

maintenance of normal telomeres, what about their role at unprotected telomeres?  The 

role of Drosophila DNA damage response proteins at unprotected telomeres is still 

unclear.  However, with sufficient antibodies the association of these proteins with 

telomeres in HOAP and HP1 mutants could be determined.   

 

Telomeric Structure 

The terminal structure of Drosophila telomeres is till a mystery.  No higher order 

DNA structures similar to the t-loop have been formally described, although Perrini et al 

have reported observing a structure similar to the t-loop at telomeres of polytene 

chromosomes (de Lange 2006). Determining the chromatin modifications that are present 

at unprotected telomeres versus normal telomeres may provide clues to the terminal 

structure that is required to protect telomeres.  Recent studies using indirect 

immunofluorescence to observe chromatin modifications at normal telomeres suggest 

that there are three distinct chromatin domains at Drosophila telomeres, the cap, the 

telomeric retrotransposons, and TAS (Andreyeva et al. 2005).  These domains differ in 

histone modifications and chromatin-associated proteins.  A more sensitive method, such 

as chromatin immunoprecipitation may be required to compare the differences in 

modifications directly at the chromosome terminus.    
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Recent studies have demonstrated that Drosophila telomeres are enriched for 

trimethylated lysine 9 of histone H3 (Cowell et al. 2002).  However, mutations in the 

methyl transferase required for lysine 9 methylation do not result in a telomere fusion 

phenotype suggesting this modification is not important for telomere protection (Perrini 

et al. 2004). It also may be possible that Drosophila have another methyl transferase 

responsible for the methylation of meK9H3 at telomeres and required for telomere 

protection.  In support of this a recent study by Bi et al.demonstrate that lysine 9 

methylation is diminished at the telomeres of atm and atm,atr mutants compared to wild 

type (Bi et al. 2005b).  The question then becomes how does atm contribute to histone 

modifications at telomeres (see section of ATM/ATR targets)?     

In addition to meK9H3 another possible modification that could play a role in 

telomeric structure is methylation of lysine 79 of histone H3.  In mammals this 

modification is required for the recruitment of 53BP1 to sites of double strand breaks 

(Huyen et al. 2004).  The Grappa protein is the methylase responsible for this 

modification in Drosophila (Shanower et al. 2005).   Initial studies indicate that grappa 

mutations can dominantly suppress silencing of transgenes inserted into telomeric 

heterochromatin but have no effect on silencing of transgenes inserted into centromeric 

heterochromatin.  Furthermore, grappa mutants are pupal lethal and exhibit a rough eye 

phenotype (Shanower et al. 2005).  This phenotype is similar to what is observed for nbs 

and atm mutants.  Immunolocalization experiments demonstrated that methylation of 

lysine 79 of histone H3 was under represented at telomeres (Shanower et al. 2005).  It is 
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possible is that this modification is indicative of unprotected telomeres or that a more 

sensitive detection method is required.   

Another modification that may contribute to telomere maintenance is 

phosphorylation of histone H2A.v.  Phosphorylation of the mammalian homolog of 

H2AX is known to occur at sites of double strand breaks and is one of the earliest events 

in the DNA damage response.   In addition H2AX was observed at dysfunctional 

telomeres in mammalian cells (d'Adda di Fagagna et al. 2003; Takai et al. 2003). 

Additionally, ATM and ATR can phosphorylate H2AX.  The ATM/ATR phosphorylation 

site is conserved in Drosophila H2Av (the Drosophila H2AX homolog) indicating a 

conserved function (Madigan et al. 2002).  Moreover, Madigan et al demonstrated that 

H2Av is phosphorylated in response to DNA damage.  H2Av mutants are pupal lethal 

and exhibit increased spontaneous apoptosis in imaginal tissue, a phenotype observed in 

DNA damage response mutants (Madigan et al. 2002).   It is not known whether 

mutations in H2Av result in telomere fusions.  Phosphorylation of H2Av at uncapped 

telomeres (HP1 or HOAP mutants) would indicate that a damage response similar to 

what is observed at dysfunctional mammalian telomeres also occurs at Drosophila 

telomeres. Phosphorylation of H2A.v could also be used as a direct readout for ATM 

and/or ATR activity at telomeres.   
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What are the ATM/ATR Telomere Targets? 

 

ATM and ATR are kinases suggesting that a likely function at telomeres would 

involve phosphorylation of target proteins.  However, it is possible that the telomeric 

function of these proteins does not require their kinase activity.  In yeast the kinase 

activity of Mec1 (ATR) is required for it’s telomeric association implicating it in a 

phosphorylation events at telomeres (Takata et al. 2004).  The kinase activity of Tel1 is 

not required for its telomeric association but it is not known if the function of Tel1 at 

telomeres requires its kinase activity (Takata et al. 2004).  

 Results described in this thesis indicate that the telomeric targets of ATM and 

ATR are different from their DNA damage response targets.  Mutations in the 

downstream checkpoint kinases Chk1(Grps) and Chk2(Mnk) did not result in telomere 

fusions indicating that they do not cooperate with ATM and ATR in the telomere 

protection pathway (Bi et al. 2005b; Oikemus et al. 2006).  HP1 and HOAP are 

predictable telomeric targets of ATM/ATR.  Sequence analysis of the HOAP revealed 

that it contains six ATM/ATR consensus phosphorylation sites (Bi et al. 2004).  A recent 

study by Bi et al demonstrated that ATM does not phosphorylate HOAP in an in vitro 

kinase assay (Bi et al. 2005b).   It is not clear whether HP1 contains any ATM/ATR 

consensus phosphorylation sites.  However, it is still possible that ATM and ATR recruit 

HOAP and HP1 to telomeres through protein-protein interactions.  In addition 

phosphorylation of other proteins by ATM and ATR may be required for the recruitment 

of HOAP and HP1 to telomeres.  
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Based on the end recognition model one plausible target of ATM and ATR are 

HDACs (histone deaceylases).  In this model ATM and ATR would be required to recruit 

HDACs to telomeres, where they would be required for the creation of unmodified sites.  

The unmodified sites could then be methylated by Su(var)3-9 to create binding sites for 

HP1 and propagation of telomeric heterochromatin.   

Supporting this hypothesis both mammalian ATM and ATR have been 

demonstrated to interact with HDACs.  ATR was demonstrated to interact with HDAC2 

(Schmidt and Schreiber 1999).  Although the exact function of the interaction is not 

known several models have been proposed.     ATM was demonstrated to interact with 

HDAC1; this interaction is increased following treatment with X-rays (Kim et al. 1999).  

Furthermore, studies in Drosophila have demonstrated that Su(var)3-9 can interact with 

HDAC1 and that deacetylation of histone H3 is required for efficient methylation by 

Su(var)3-9 (Czermin et al. 2001).  Similar results were observed in mammalian studies 

(Vaute et al. 2002).  

Drosophila encode five HDACs:  HDAC1 (Rpd3), HDAC3, HDAC4, HDA6, and 

HDAC11.  If HDACs are telomeric targets of ATM and ATR then a similar apoptotic and 

fusion phenotype would be expected in HDAC mutants.  However, a phenotype may not 

be observed in single mutants due to compensation by one of the remaining HDACs.  

Treatment with HDAC inhibitors such as TSA (trichostatin A) may solve this issue 

however, not all Drosophila HDACs are sensitive to TSA (Barlow et al. 2001). 

Furthermore, if HDACs are targets of ATM and ATR and are required for recruiting HP1 

and HOAP to telomeres then targeting HP1 to atm mutant telomeres should rescue the 
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telomeric fusion phenotype.  This hypothesis could be tested using the HP1 tethering 

method described by Li et al (Li et al. 2003).   
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