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Abstract 

 Early events in folding can determine if a protein is going to fold, misfold, 

or aggregate. Understanding these deterministic events is paramount for de novo 

protein engineering, the enhancement of biopharmaceutical stabilities, and 

understanding neurodegenerative diseases including amyotrophic lateral 

sclerosis and Alzheimer's disease. However, the physicochemical and structural 

biases within high energy states of protein biopolymers are poorly understood.   

 A combined experimental and computational study was conducted on the 

small β/α-repeat protein CheY to determine the structural basis of its sub-

millisecond misfolding reaction to an off-pathway intermediate. Using 

permutations, we were able to discriminate between the roles of two proposed 

mechanisms of folding; a nucleation condensation model, and a hydrophobic 

collapse model driven by the formation of clusters of isoleucine, leucine, and 

valine (ILV) residues. We found that by altering the ILV cluster connectivity we 

could bias the early folding events to either favor on or off-pathway 

intermediates. 

 Structural biases were also experimentally observed in the unfolded state 

of a de novo designed synthetic β/α-repeat protein, Di-III_14. Although 

thermodynamically and kinetically 2-state, Di-III_14 has a well structured 

unfolded state that is only observable under native-favoring conditions.  This 

unfolded state appears to retain native-like structure, consisting of a hydrophobic 
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core (69% ILV) stabilized by solvent exposed polar groups and long range 

electrostatic interactions. 

 Together, these results suggest that early folding events are largely 

deterministic in these two systems. Generally, low contact order ILV clusters 

favor local compaction and, in specific cases, long range electrostatic 

interactions may have stabilizing effects in higher energy states.  
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Chapter I - Introduction 
 

Brief History 

 The discovery of proteins dates to the early 19th century when, up to that 

point, these molecules were ambiguously grouped into the term "animal 

substance" which was used to describe complex animal tissues including muscle, 

dermis, and blood. In 1838 the distinguished Swedish chemist, Jön Jacob 

Berzelius coined the term "protein" to describe these isolated molecules, a 

reference to their significance in nutrition1. For the remainder of the 19th century 

protein research nebulously focused on the processes of what are now known as 

egg albumin aggregation and hemoglobin coagulation as both proteins were 

readily available in abundant quantities. It wasn't until 1899 that the process of 

albumin aggregation was proposed to be a 2-step process, the first being 

denaturation and the second being aggregation2. It was later shown in 1925, 

through thermal unfolding experiments in water, that the denaturation process 

was conformational and not compositional. The aggregation reaction was found 

to be absent of expected ammonium or other nitrogen containing degradation 

products, an expected consequence of the known nitrogen rich chemical 

composition of proteins 3. This evidence was further substantiated with the 

finding that hemoglobin denaturation was reversible3 thus leading to the modern 

fundamental understanding of protein folding within the context of conformational 

thermodynamics.  
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 With the introduction of x-ray crystallography in the 1950's, the structure of 

natively folded proteins began to be well understood. In 1958 Kendrew et al4 

obtained the first x-ray crystal structure of a protein using myoglobin as the target 

molecule. Although the resolution of 6 Å was too poor to resolve individual 

sidechains, the chain conformation and length led to the postulations of 

secondary structure composition in terms of percent α-helix, and percent 

extended chain. Perhaps even more importantly, it began the dialogue 

suggesting that the structure and the function of a given protein are 

interdependent.  The culmination of these findings led to what is generally 

regarded as the beginning of modern protein folding research, Anfinsen's dogma. 

 In 1973 Anfinsen showed that with the chemical denaturant, Urea, he 

could unfold Ribonuclease A and refold it by rapidly diluting the denaturant 

resulting in the recovery of biological function5. From this, Anfinsen proposed that 

the amino acid sequence encodes for the three-dimensional structure of the 

protein and contains all of the information necessary for the protein to fold from 

the unfolded state to the native state. However, as Levinthal had pointed out in 

19686, the folding mechanism from the denatured state to the native state must 

have some physical bias as a stochastic search for the lowest energy conformer 

would require folding times far longer than what would be biologically relevant. 

 To better understand the physicochemical biases of a protein chain, 

polymer theory was applied to the folding problem using three-dimensional lattice 

models. In these models, a "beads on a string" approximation of a protein is 
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placed within a three dimensional grid. Using simplified physical parameters of 

only hydrophobic-to-hydrophobic attractions, the beads are arranged to a 

minimum energy state in order to better understand the conformational 

constraints involved in protein folding7,8. Results from these experiments show 

that there are generally many optimal configurations, and thus the 

parameterization must be more complex to be representative of protein folding. 

These results eventually lead to modern Molecular Dynamics (MD) simulations in 

which sets of equations describing the molecular or quantum mechanics of the 

system are solved for a protein chain within a solvent until achieving the global 

free-energy minima using replica exchange and simulated annealing techniques. 

β/α - repeat proteins as models for early events in folding 

 The β/α-repeat class of proteins encompasses one of the most diversified 

enzyme platforms, the triosphosphate isomerase (TIM)-barrel (β/α)8 motif9, as 

well as the Leucine-rich repeat, Trefoil knot fold, Thioredoxin fold, Rossman fold, 

and the Flavodoxin fold motifs among others.  The TIM-barrel family of proteins, 

which represents the majority of enzyme folds in the Protein Data Bank database 

of known structures10,  is estimated to be present in nearly 10% of all enzymes11, 

and maintains high structural homology with low sequence homology10. The TIM-

barrel motif consists of 8 repeating βα units, forming a ring with 8 parallel β-

strands on the interior, surrounded by 8 outer helices. Folding studies have 

shown that off-pathway intermediates are populated during refolding of the TIM-

barrel proteins E. coli alpha subunit of tryptophan synthase (αTS)12, and S. 
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solfataricus indole-3-glycerol-phosphate synthase (sIGPS)13,14. These stable off-

pathway structures are populated within milliseconds and limit access to 

productive folding via their unfolding rates.  

The CheY-like superfamily of the second most abundant  β/α-repeat motif, 

the Flavodoxin fold, has also demonstrated this behavior15,16, implicating it as a 

common theme across the β/α-repeat class of proteins. Structurally, the 

flavodoxin fold approximates half of a TIM-barrel motif with an α/β/α-sandwich 

architecture in which a 5 parallel stranded central β-sheet resides between two 

sets of helices, 3 on one side, and 2 on the other. Thus the folding properties of 

the Flavodoxin fold may have implications for the much broader TIM-barrel motif.  

 It is unknown what the biological significance of an off-pathway folding 

intermediate is, or whether or not it is subject to evolutionary pressures. However 

the existence of these intermediates in relatively small Flavodoxin fold proteins 

provide the protein folding community with a model to understand complicated 

protein folding pathways and possibly illuminate sequence or structural 

properties of proteins that have a propensity to misfold. Ideally, insights from this 

model could be used to prevent misfolding of engineered proteins, optimize 

protein therapeutics, and provide insight into protein misfolding diseases such as 

Alzheimer's or ALS. 
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Folding mechanism of CheY 

 The small (129 AA) bacterial response regulator CheY has a well studied 

folding mechanism15–20 and serves as a model protein for understanding off-

pathway intermediates.  Structurally, the N and C-termini of CheY reside in two 

helices on one side of the β-sheet, opposed by three helices on the alternate 

side21 (Fig 1.1). An interesting feature of the central β-sheet is the strand 

sequence which contains an intercalated β1 strand between β2 and β3, yielding 

a β-sheet strand sequence of 2-1-3-4-5. This topology, although simple, appears 

to have complicated kinetic folding properties that manifest as an off-pathway 

intermediate15.   

 The proposed kinetic folding mechanism15 (Fig. 1.2) involves two parallel 

folding channels defined by the cis and trans isomers of the prolyl peptide bond 

between K109/P110. The unfolded protein in both the major trans (90%) and 

minor cis (10%) channels, Ut and Uc, sample an off-pathway sub-ms 

intermediate, IBPt  and IBPc, prior to the rate-limiting isomerization reaction in the 

IBPt→IBPc step. IBPc  unfolds to the Uc state before  accessing the productive TSE 

leading to the native conformation in the Uc →Nc step. Further complicating the 

mechanism is an on-pathway intermediate, ION, between Uc and Nc that has been 

observed by equilibrium NMR measurements20 and in Gō-model simulations22 

but not by CD or FL experiments.  Mutational analysis18,19 has revealed a 

nucleation-condensation folding mechanism for CheY, in which the N-terminal 

subdomain (residues 1-70, (βα)1-2β3) serves as the nucleus for the subsequent 
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condensation of the C-terminal subdomain (residues 70-129, α3(βα)4-5), 

providing structural details of the folding mechanis
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Figure 1.1. Topology diagram of CheY.  CheY is a βα-repeat, α/β/α sandwich 

motif. The central parallel β-sheet is flanked on both sides by helices.  On one 

side sequence distal α1 and α5 pack onto the β-sheet, while the opposing side 

consists of consecutive helices.  The strand order of the central β-sheet is an 

interesting feature as the β1 strand is intercalated between β2 and β3.
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Figure 1.1. Topology diagram of CheY
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Figure 1.2 Folding Mechanism of CheY. The folding mechanism of CheY is 

complicated by the K109/P110 trans->cis prolyl isomerization reaction occurring 

on the order of 100 seconds. This reaction splits the reaction mechanism into two 

parallel channels. Under strongly refolding conditions the dominant UT state folds 

to IBPT, an off-pathway intermediate. After the isomerization reaction IBPC unfolds 

and then continues to fold rapidly to the NC state.  The folding reaction times of 

the dominant pathway are included for reference.
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Figure 1.2. Folding Mechanism of CheY 
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Complexities and general principles of globular protein folding 

 The complexity of the protein folding problems stems from the chemical 

and physical diversity of the 21 naturally occurring amino acids. Generally, each 

amino acid side-chain can be categorized into one of 3 categories: polar 

charged, polar un-charged, or non-polar.  Within these individual categories each 

side-chain has unique properties including thiol reactivity (i.e., redox potential), 

aromatic stacking ability, hydrogen bond character, acceptable phi/psi angles in 

backbone flexibility, degrees of freedom in side-chain flexibility, and pKa. All of 

these properties, within the context of folding, are susceptible to the influence of 

the solvent system including properties like hydrophobicity, pH, ionic strength, 

oxidation potential, temperature, and viscosity. Further complicating these 

general properties are protein specific considerations like disulfide scrambling23, 

metal ion binding24, ligation of prosthetic groups25,26, and proline isomerization 

reactions26. 

 As complicated as the exact interplay of all these properties are, there 

exists at least three major general principles of globular protein folding that have 

been used in simple computational models and can generally describe the 

folding phenomenon. First, helical structure occurs very rapidly in aqueous 

solvent, preceding hydrophobic collapse27. Second, side-chains mostly adhere to 

their partition coefficients preference for their local environments7,28, such that in 

aqueous solvent hydrophobic residues have a preference to be buried within the 
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core of a protein and polar residues prefer to be solvent exposed. Lastly, protein 

folding is a cooperative event28.  

 Although these principles can describe the collapse of a polypeptide chain 

to some globule structure, this information content alone is not complete enough 

to capture the native state from a random-coil chain. Including the 

parameterization for polarization, torsion angles, and solvent effects greatly 

increases the computational expense of the calculations making full trajectory 

simulations of protein folding impossible just a few decades ago29.  This impasse 

has led to the development of targeted computational models for both structure 

prediction algorithms, like Rosetta, and coarse-grained simulations, like Gō-

models, such that the computational load could be decreased while still 

approximating a reasonable solution. 

 Rosetta was designed to predict the native fold of a given sequence. 

Initially, predictions were based on sequence-structure correlations30 and grew 

into a process involving the comparison of sequence alignments across a 

database of known structures to identify structured fragments that could then be 

assembled and subsequently subjected to simulated annealing experiments31. 

This process was relatively successful and ultimately led to further developments 

resulting in RosettaDesign, which produced the first successful prediction of a 

completely engineered protein with a novel fold, Top732. However, the limitations 

of predicting a native state from a sequence does little to explain the mechanism 

of folding. In fact, it was later shown experimentally that the folding mechanism 
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for Top7 was exceedingly complex33 despite the simple two-state thermodynamic 

characteristics that it was initially shown to have in the seminal design 

publication32. 

 Conversely, Gō-model simulations were designed to gain insights into the 

folding mechanism while using simplified potential functions8.  These models 

attempt to only describe the folding landscape and not the native structure. In 

fact, this particular modeling strategy is native-centric and relies on existing 

knowledge of the final structure. As in other simplified models, the protein chain 

is approximated to a beads-on-a-string model at the cα position. The chemical 

properties of the sidechains are parameterized at each position and the simplified 

potential drives each bead to the native tertiary contacts22. Although simplified 

and highly biased, these models allow for the observation of kinetic complexities 

like intermediates14–16,34, and even non-native interactions35. Using coarse-

grained potential functions decreases the computational load immensely, 

allowing users to calculate full trajectories of protein folding reactions in a matter 

of hours instead of months.  The caveat, however, is the exact opposite of 

Rosetta's, in that changes to the protein sequence will not reveal changes to the 

final structure. 

 All atom simulations, although computationally expensive, offer the 

greatest insight into both the folding mechanism and the determination of the 

native state. In a fully parameterized all-atom MD simulation the computational 

power required to simulate the full folding trajectory of a protein approaching 100 
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amino acids in length now requires supercomputers36 or large distributed 

computing networks37. Even then, the resulting data is immense and often 

difficult to interpret without the context of experimental data.  Realistically, each 

full trajectory will be different, and in the case of the statistically assembled 

Markov State Models (MSM), the primary pathway for folding may not be 

obvious. Simply stated, even with our most sophisticated calculations, it is 

difficult to recapitulate the experimental responses which are generally described 

as simple exponentials. 

Experimental and computational timescales and resolutions 

 A related challenge to the computational expense of folding simulations, 

and one approach towards better understanding the differences between 

computational and experimental responses, is the validation of computational 

results with experimental data.  Unfortunately, the majority of atomistic folding 

simulations are on the timescale of ns to μs, with very few breaking the ms 

barrier. In contrast, for most naturally occurring proteins the folding times are on 

the ms to min timescales. Thus the results of the folding simulations are difficult 

to confirm as it is unknown whether or not the trajectory would ever reach the 

natively folded state. Additionally, there is generally an insufficient overlap of data 

between the two approaches to robustly sync the results of the simulations with 

the results of folding experiments. Verifying the similarities between the datasets 

is further complicated by the difference in resolutions across the two approaches. 

Thus as Moore's law lengthens the accessible simulation times, experimentalists 
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need to also be approaching faster time scales to achieve reasonable 

agreement.  

 Recent advances in mixing techniques are improving the time resolution of 

protein folding experiments while simultaneously diversifying the compatible 

measurement techniques38,39, improving the signal-to-noise with better detectors 

and analysis40, and reducing the sample consumption41,42. Not only do these 

improvements increase the applicability of the experiments to a broader set of 

protein systems, but the improved time resolution and signal-to-noise ratios 

produce high-quality and simulation compatible data such as time resolved 

population distributions or pair-wise distances for direct comparison to the 

computational dataset.  

 With the exception of time resolved distance distributions, it remains 

challenging to combine the information content across the two platforms because 

of the differences in the resolution. There exist only few types of single molecule 

experiments; optical tweezer pulling43, atomic force microscopy pulling44, and 

single molecule Förster resonance energy transfer45 which can be directly 

compared to appropriately designed simulations46,47. Comparison of simulations 

with ensemble experimental data sets is complicated by the reduction of the data 

down to only a few metrics. These metrics include ΔG, m-value, rate constants, 

and pairwise or global distance measurements. With the exception of Markov 

State Models, simulations are effectively a set of single molecule experiments 

(i.e. single molecule trajectories).  Determining the appropriate weighting of the 



33 
 

populations in simulations to recapitulate the simulation data remains an 

outstanding challenge.  Further, calculating the expected raw data from a set of 

simulations for a direct comparison suffers from this same issue, even when 

using straight-forward calculations like pairwise distances. 

Folding models: pathways and landscape theory 

 The observation that protein folding experiments generally exhibit simple 

exponential responses is consistent with Levinthal's supposition that the folding 

process must be pathway specific6. He proposed that through global energy 

minimization, a protein chain folds from an unfolded ensemble to the native state 

in a manner where specific structures are adopted in a specific sequence of 

increasing structure and decreasing free-energy48.  If this were true then simple 

kinetic responses will be observed and, logically, must then describe the entire 

energy surface.   In fact there are several models that stem from the simplicity of 

experimental observables.  

 In the nucleation-condensation folding model49 it is postulated that the 

formation of continuous  and local secondary structure will result in tertiary 

contacts that other secondary elements can then condense upon.  However, this 

model fails to describe stable kinetic intermediates as it supposes that the rate-

limiting step of folding is the nucleation event48,50. Other models suggest a less 

continuous accumulation of structure to better explain the presence of 

intermediate states.  
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 In the framework and diffusion-collision models it is suggested that 

secondary structural elements are formed first and then collapse together to form 

a molten globule. In the framework model the rearrangements of tertiary contacts 

are rate-limiting51, while in the diffusion-collision model, adhesion of secondary 

elements is rate-limiting48,50, describing different mechanisms of kinetic traps. 

 Lastly, the hydrophobic collapse model supposes that hydrophobic 

collapse occurs which reduces the chain entropy and accelerates folding. 

Subsequent structural rearrangements, including topological and secondary 

structure rearrangements, are considered to be the rate-limiting step48.  

 Although these models appear to be consistent with the pathway-centric 

experimental view, computational experiments demonstrate pathway 

independence as there are always multiple favorable pathways capable of 

traversing the same free-energy difference.  These observations have led to the 

idea of landscape theory in which there are many micro-states that a protein 

chain can sample enroute to the lowest energy state. Conceptually, this idea is 

imagined as a funnel-shaped, continuous energy surface where conformational 

entropy describes the width of the funnel and the free-energy describes the 

height52. Depending on the protein system, the funnel will have a varying degree 

of ruggedness on the surface representing local energy minima and maxima. 

Thus the folding of a given protein sequence is free to sample any combination of 

consecutive points, guided by statistical thermodynamics, along a decreasing 

energy gradient. Within this context, the simplified kinetic responses 
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overwhelmingly observed in experiments are rationalized to be the weighted 

average of the diverse sampling of the energy landscape such that 

experimentally observed kinetic intermediates represent statistically favorable 

units of structure that occur in a consistent temporal sequence. 

The BASiC hypothesis 

 Each folding model presumes that sequence local contacts initiate folding. 

Recent work has correlated the stable core of a diverse set of globular proteins 

with the presence of Branched Aliphatic Side Chain (BASiC) residues: isoleucine, 

leucine, and valine (ILV)53,54. The basis of this model is that ILV residues are the 

most hydrophobic residues55, and are capable of packing tightly and sliding over 

each other with minimal energetic penalty. These qualities permit a tightly packed 

yet malleable platform for protein folding events to build upon. The formation of 

these cores are implicated in early intermediates15,22,56,57 and therefore may play 

a larger role in biasing the mechanism through which a given protein will fold. 

Role of sequence and chain connectivity in protein folding 

 Within the context of landscape theory, it follows that the primary 

sequence could produce a statistical bias in the free-energy landscape through 

altering the local physicochemical properties of the chain58. In the context of point 

mutations59–62 the folding mechanism is generally conserved along with the 

native topology.  Therefore, the effects of small sequence perturbations manifest 

predominately in the modulation of the state interconversion rates. This 

phenomenon is so ubiquitously observed that it is the basis of phi value analysis, 
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a method of protein engineering where point mutations are used to determine the 

presence of interactions at a given residue exist within the transition state61. 

 In larger sequence perturbations, like structurally homologous proteins  

that can vary extensively in sequence, differences in state interconversion rates 

are also observed15,63. Within the context of the contact order model of folding 

proposed by Plaxco et al64, these changes are suggested to be the result of 

differences in the structure of the transition state, much like the aforementioned 

point mutations, such that sequences that have a low contact order fold faster 

than those that have a high contact order. Extrapolating these findings to proteins 

with intermediate states suggests that depending on the relative contact order of 

the intermediates, the preferable order of folding events could be modulated by 

changes to the contact order.  

 One way to perturb the contact order is through the use of circular 

permutations. Circular permutations are a special case of sequence diversity for 

a given protein because the physicochemical properties are nearly entirely 

conserved with the exception of local chain entropy, which is affected by the new 

chain connectivity. The effect of this perturbation is that local in sequence 

contacts can be made to be distal contacts, and vice versa. These modifications 

have been shown to change the transition state in folding65,66 as well as populate 

low energy intermediates67. Therefore, permutations appear to differ from 

mutational perturbations in that they are more likely to change the location of 

early folding events on a sequence-local, and therefore contact order dependent 
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basis. Notably, in most reported cases, permutations are surprisingly well 

tolerated in terms of achieving the native state regardless of changes to early 

structural biases65,67,68. 

 At a glance, it is perhaps not surprising that the amino acid sequences of 

proteins are nearly universally malleable in terms of achieving the nominal native 

state. From an evolutionary perspective it is desirable that mutations are 

tolerated to permit sequence variations that can lead to improved fitness or novel 

functions. What is surprising is the conservation of the kinetic pathways across 

diverse sequence-space. Permutations, having the ability to significantly change 

the early folding events of a given polypeptide chain, may hold a key to 

understanding the sequence-structure relationship. 

Scope of this thesis 

 This dissertation focuses on the early folding events of β/α-repeat 

proteins, specifically the chemical and physical origins of such events and their 

effect on the folding reaction. In Chapter II,  the origins of sub millisecond folding 

intermediates in CheY are examined, in Chapter III early biases in folding via a 

compact unfolded state of a synthetic β/α-repeat protein are described,  and in 

Chapter IV improvements in experimental mixing techniques are described with a  

proposed method of robust MSM analysis using experimental data.  

 In Chapter II the folding mechanism of the small Flavodoxin fold protein 

CheY is examined. CheY, a 129 residue chemotaxis signaling protein in E. coli, 

has been extensively studied in the protein folding field. Its folding mechanism is 
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of particular interest because it populates a sub-ms off-pathway folding 

intermediate which is not typical of a protein of this size15.  The folding 

mechanism, Ioff ⇌ N ⇌ U, is further complicated by the single rate-limiting 

K109/P110 proline isomerization reaction, which results in parallel pathways 

separated by the prolyl-bond isomerization reaction, totaling 6 interconverting 

states (Fig. 1.2). 

 Structurally, experimental evidence suggests that CheY folds via a 

nucleation condensation reaction, where the N-terminal half of the protein 

nucleates the folding reaction followed by the condensation of the C-terminal 

domain upon the nucleated scaffold19. This order of events also correlates with 

the contact density of the two domains69. However little is currently known about 

the structural correlates of either intermediate state outside of what has been 

gleaned from previous Gō-model simulations15,16.  These data suggest that the 

off-pathway intermediate results from the premature accumulation of native 

structure consisting of most of the secondary structural elements of the N-

terminal domain and two subsequent elements of the C-terminal domain, α3 and 

β415.  This structural information, however, is limited by the native-centric bias of 

the Gō-model simulations in that non-native contacts will not be observed by the 

methods that have been employed .  

 Interestingly, the severity of the observed topological frustration, across a 

set of 3 structurally homologous proteins, is correlated with the calculated size of 

the native state stabilizing ILV clusters15. Application of the BASiC hypothesis to 
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this observation suggests that early coalescence on ILV residues in a non-native 

configuration may be playing a role in the experimentally observed frustration. 

Initial attempts to resolve this information with hydrogen-deuterium exchange 

mass spectrometry were not capable of resolving significant structural details due 

to the relatively low stability of the intermediate state and the associated 

challenges involved with pulse-labeling a sub-ms intermediate.  

 In Chapter II we collaborate with two computational groups: the Brooks lab 

at Michigan who are experts with Gō-model simulations, and the Pande lab at 

Stanford who use the distributed computing platform Folding@Home to run large 

atomistic simulations. Along with our technology development efforts towards 

decreasing the dead time of continuous flow experiments and interfacing 

microfluidic mixing technology with SAXS experiments, we arrive at overlapping 

and comparable data that can be used to enhance the resolution of our classical 

folding studies. We make use of circular sequence permutations to directly 

change the sequence connectivity of the ILV clusters in CheY. The experimental 

kinetic, dimensional, and thermodynamic measurements are aligned with the 

results from the Gō-model simulations in order to directly test the application of 

the BASiC hypothesis in the early folding events of CheY and how those events 

relate to the off-pathway intermediate. Likewise, the fast folding events captured 

by SAXS are leveraged to identify the atomistic details of both on and off-

pathway folding intermediates from the data obtained from the Folding@Home 

simulations which complement the Gō-models by including non-native contacts. 
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 In Chapter III the focus shifts to even earlier events in folding, residual 

structure in the unfolded state, using the de novo designed β/α-repeat protein Di-

III_14.  This protein was engineered by the Baker group using the Rosetta suite 

of design tools70. Previous work from the Baker group in de novo design resulted 

in the successful design of Top7, a small protein that had a fold that has not been 

found in nature.  This protein was cooperatively folded and thermodynamically 2-

state. However, the later work showed that the kinetic folding mechanism was 

exceedingly complex and suggested that the non-natural development of the 

Top7 fold was absent of the natural selection for a smooth landscape33. 

 In designing Di-III_14, the principles used for the design were loop length 

optimization to predict the native topology, optimizing hydrophobic packing in the 

interior of the protein, and positioning polar sidechains on the surface. Unlike 

Top7, the loop lengths were calculated for Di-III_14 such that the topology would 

mimic a naturally occurring fold. The Baker group was again successful in 

predicting the experimental native state and in designing a cooperatively folded 

thermodynamically 2-state protein. It was suggested that the energy landscape 

would be smooth because the fold was naturally occurring and the protein was 

optimized for sequence-local contact70. Work in Chapter III investigates this claim 

with thermodynamic and kinetic experiments.  Native state hydrogen exchange 

observed by NMR was also used to gain further details of energy surface of Di-

III_14. 
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 In Chapter IV, technical advances in continuous flow mixing technology 

interfaced with small angle x-ray scattering is discussed.  Improvements in the 

time resolution of continuous-flow mixing experiments permit a robust dataset, 

ranging from global to residue level resolutions, to be collected in the 

microsecond to millisecond time regime. These data can be can be directly 

compared to simulation data using easily calculated distance distributions. 

 We propose a method for model refinement based on the experimental 

data without direct mechanistic input for large MSM models of proteins with 

known complicated folding mechanisms. Simulations of proteins consisting of 

100 amino acids or more and proteins containing slow phase folding complexities 

are still very challenging to approach with computational methods as they 

generate large datasets that can be difficult to interpret independently. 

Accounting for processes like proline isomerization or disulphide bridges during 

folding require assumptions to be incorporated into these models, biasing the 

results and complicating the analysis. Without introducing a mechanistic bias, 

experimental distance distributions can be used to refine the analysis of an MSM 

dataset, relying only on the synchronicity of the time domain. In this way high 

confidence and high resolution structural details of the folding process can be 

extracted. 

 Chapter V concludes this dissertation with a summary of the previous 

chapters. Future directions are also discussed. 
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Chapter II - Early Folding Events in CheY 
 

 This chapter has been published previously as:  

 

Nobrega RP, Arora K, Kathuria SV, Graceffa R, Barrea RA, Guo L, Chakravarthy 

S, Bilsel O, Irving TC, Brooks CL 3rd, Matthews CR. " Modulation of frustration in 

folding by sequence permutation" PNAS. 2014 June 13; 111(29): 10562–10567 

 

 The published work presented in this chapter was a collaborative effort. 

Gō-model simulations were performed and analyzed by Dr. Karunesh Aurora. All 

experimental work was performed by myself. Data interpretation and the writing 

on the manuscript was the work of myself and Dr. C. Robert Matthews. 

 This chapter has been expanded with data from another collaboration that 

I am currently involved with.  The SAXS contributions are the work of myself and 

Dr. Sagar Kathuria, while the Molecular Dynamics simulations and analysis are 

the work of Jade Shi and T.J. Lane under the guidance of Dr. Vijay Pande. The 

manuscript is currently being written by Jade Shi and Vijay Pande.   
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Introduction 

 Highly-denatured states of globular proteins resemble statistical random 

coils when examined with low resolution techniques such as x-ray scattering71 

and hydrodynamic analyses72.  A higher resolution view, provided by 

experimental models27,73–75 and simulations76, however, shows that the 

conformational ensemble is biased towards low contact order (CO) structures, 

e.g., α-helices, β-turns and β-hairpins, that form and melt in less than a few 

microseconds.  During folding, these nascent structures presumably coalesce 

into higher order assemblies of ever-increasing free energy until reaching the 

transition-state ensemble (TSE) that leads to the native conformation.  From 

another perspective, this assembly process mediates a global collapse of the 

chain in an unfavorable solvent77.  Landscape theory78 posits that, in the simplest 

scenario, native-like substructures appear and lead without pause to the TSE 

and the native conformation in an apparent 2-state fashion.  However, 

simulations have found that topological frustration, e.g., the premature formation 

of sub-structure that impedes access to the productive TSE, can lead to the 

accumulation of intermediates that must unfold to some extent to successfully 

traverse the folding reaction coordinate16,22,77.  Experimental and computational 

studies on the folding of the alpha subunit of Trp synthase79,80, the response 

regulator CheY 15,22, a pair of apo-Flavodoxins71,77,81 and tandem titan domains82 

revealed frustration in the form of off-pathway intermediates.  Thus, yet 
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unexplored aspects of sequence and structure can add complexity to folding 

reactions. 

 The observed inverse relationship between CO and folding rate constant83 

implies that elements of secondary structure that are near in sequence and near 

in space will associate preferentially over those that are distant in sequence.  

However, if such low CO substructures are not involved in the productive TSE, 

they could serve as sources of frustration.  A case in point is CheY, a member of 

the very common Flavodoxin-fold family with its classic α/β/α-sandwich 

architecture.  The (β/α)5 motif displays the α1 and α5 helices on one face of the 

parallel β-sheet and the α2, α3 and α4 helices on the opposing face (Fig. 

2.1A,B).  The proposed kinetic folding mechanism15 (Fig. 2.1C) involves two 

parallel folding channels defined by the cis and trans isomers of the prolyl 

peptide bond between K109/P110. The unfolded protein in both the major trans 

(90%) and minor cis (10%) channels, Ut and Uc, sample an off-pathway sub-ms 

intermediate, IBPt  and IBPc, prior to the rate-limiting isomerization reaction in the 

IBPt→IBPc step. IBPc  unfolds to the Uc state before  accessing the productive TSE 

leading to the native conformation in the Uc →Nc step. Further complicating the 

mechanism is an on-pathway intermediate, ION, between Uc and Nc that has been 

observed by equilibrium NMR measurements20 and in Gō-model simulations22 

but not by CD or FL experiments.  
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Figure 2.1. Topology, clusters, and subdomains of CheY. (A) Topology 

diagram of CheY. The N-terminal folding subdomain is highlighted in yellow, and 

the C-terminal folding subdomain is highlighted in blue. The effects of each 

permutation on the continuity of cluster 1 (blue), and cluster 2 (red) are shown. 

(B) Clusters of ILV residues are superimposed on the crystal structure of CheY 

(Protein Data Bank ID code: 3CHY). Cluster 1(blue) has a lower CO and resides 

on the α2/α3/α4 side of the central β-sheet. The larger cluster 2 (red) contains 

high-CO contacts and resides on the α1/α5 side of the β-sheet. (C) The folding 

mechanism of WT CheY. The major pathway is highlighted in red. The Uc →Nc 

step, involving the on-pathway intermediate, is designated by the triple dots.
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Figure 2.1. Topology, clusters, and subdomains of CheY  
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 Mutational analysis18,19 has revealed a nucleation-condensation folding 

mechanism for CheY, in which the N-terminal subdomain (residues 1-70, (βα)1-

2β3) serves as the nucleus for the subsequent condensation of the C-terminal 

subdomain (residues 70-129, α3(βα)4-5) (Fig. 2.1A).  However, native-centric 

simulations identified contacts between the N- and C-terminal subdomains, 

centered around (βα)3-4, early in folding that is incompatible with access to the 

productive TSE and that lead to frustration in the folding mechanism22.  Another 

perspective is provided by the BASiC hypothesis, which supposes that large 

clusters of isoleucine, leucine and valine (ILV) side chains serve as cores of 

stability in folding intermediates15,16. Both of these clusters have been shown to 

have a high contact density84. CheY has two ILV clusters, each serving to fuse 

the surface helices to each other and to the central β-sheet (Fig. 2.1B).  The 

smaller cluster (Cluster 1) contains 10 side chains and primarily links α2(βα)3β4 

on one face of the β-sheet; the larger cluster (Cluster 2) contains 15 side chains 

and links the β-strands to α1 and α5.  The sequence spanned by the smaller 

cluster agrees closely with the (βα)3-4 segment identified as the source of 

frustration in the simulations and, importantly, only involves low CO contacts.  If 

Cluster 1 were to form early and, by sequestering β3, impede the development of 

the productive TSE in the N-terminal subdomain, (βα)1-2β3, the BASiC 

hypothesis would provide an alternative explanation for frustration in the folding 

of CheY.   
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 Permutations in the sequence of CheY provide a means to compare the 

subdomain model and the ILV cluster model as explanations for the frustration in 

folding detected by simulations and experiments.  By fusing the natural N- and C-

termini with a short linker peptide (Gly-Ala-Gly) and inserting new termini in the 

loops after β2, β3 and β4, it is possible to cleave within the N-terminal 

subdomain, Cpβ2, between the subdomains, Cpβ3, and within the C-terminal 

subdomain, Cpβ4. Related to the ILV clusters, Cpβ2 cleaves Cluster 1 and 

leaves Cluster 2 largely intact, Cpβ3 cleaves both clusters and Cpβ4 only 

cleaves Cluster 2 (Fig. 2.1A). Our simulations and experiments on these 

permutants show that aspects of both models describe the relationships between 

sequence, structure and frustration in the folding of CheY.  The results also show 

that frustration can be modulated by sequence permutations that can bias the 

initial stages of folding towards the productive TSE and away from kinetic traps. 

Results 

Permutations differentially affect the secondary structures of the folded 
state 

 We introduced sequence permutations into the F14N variant of CheY, 

denoted CheY*, to increase the stability of the platform and its tolerance for the 

introduction of the linker and the new termini; the folding mechanism for CheY* is 

unchanged from the WT protein18.  The new N-termini for Cpβ2, Cpβ3, and Cpβ4 

become D38, D64 and E89, respectively. An additional glycine residue at 

position -1 is a remnant of the cleaved 6-His affinity tag. The far-UV CD spectrum 

of Cpβ2 is markedly different from CheY* (Fig. 2.2), with the relative intensities of 
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the double minima at ~210 and ~222 nm reversed from those of the CheY* 

protein. Unfortunately, the substantial perturbation of the secondary structure 

precluded Gō-model simulations that rely on a knowledge of the native structure. 

The CD spectra of Cpβ3 and Cpβ4 display the same relative double minima as 

CheY*; the spectrum of Cpβ4 is coincident with CheY* and Cpβ3 is reduced in 

amplitude by ~15% (Fig. 2.2).  Although the secondary structure of Cpβ3 

appears to fray to some extent, the basic β/α/β architecture is preserved. 

Therefore, both Cpβ3 and Cpβ4 were deemed to be good candidates for a 

combined experimental and computational analysis of their folding mechanisms. 

Stability analysis of the permutants 

 The concerted disruption of secondary and tertiary structure with 

increasing concentrations of urea revealed an apparent 2-state process, N⇌U, 

for CheY* and Cpβ2 (Fig. 2.3, Table 2.1).  Fits of the data to a linear dependence 

of free energy of folding on the denaturant concentration85 showed that the 

stabilities varied from 2.11 kcalmol-1 for Cpβ2 to 8.0 kcalmol-1 for CheY* protein 

(Table 2.1).  The denaturant dependence of the free energy of folding, the m-

value (a measure of the change in buried surface area86), varied from 0.77 

(kcalmol-1)Murea
-1 for Cpβ2 to 1.99 (kcalmol-1)Murea

-1 for CheY*.  
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Fig. 2.2. Secondary structure. The CD spectrum of each construct under native 

conditions is shown. CheY* (black) and Cpβ4 (red) are superimposable, Cpβ3 

(blue) has a small decrease in ellipticity but maintains the same relative minima, 

and Cpβ2 (magenta) has a unique native CD spectrum. 
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Figure 2.2. Secondary Structure of Permutants
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Fig. 2.3. Analysis of N and IBP stability. Filled symbols display the urea melts 

derived from the ellipticity at 222 nm for CheY* and each of the permuted 

variants; the denaturant-induced unfolding reactions are fully reversible. The 

open symbols display the urea dependence of the ellipticity at 222 nm after 5 ms 

of refolding. With the exception of Cpβ4, the solid and dashed lines show the fits 

of these data to two-state equilibrium models. The data for Cpβ4 are fit to a 

three-state model. 
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Figure 2.3. Analysis of N and IBP stability  
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Table 2.1. Thermodynamic parameters for CheY* and  circular permutants. 

CD (2-state) ΔG°N⇄U 
(kcalmol-1) 

mN⇄U 
(kcalmol-1  Murea

-1) 
ΔG°IBP⇄U 

(kcalmol-1 ) 
mIBP⇄U 

(kcalmol-1  Murea
-1) 

CheY* 8.00±0.15 1.99±0.41 2.02±0.24 0.83±0.13 
Cpβ4 6.19±0.07 1.32±0.02 4.31±0.19 0.99±0.04 
Cpβ3 6.79±0.08 1.62±0.02 0.84±0.44 0.59±0.27 
Cpβ2 2.11±0.08 0.77±0.02 -- -- 

CD (3-state) ΔG°N⇄I 
(kcalmol-1 ) 

mN⇄I 
(kcalmol-1Murea-1) 

ΔG°I⇄U 
(kcalmol-1) 

mI⇄U 
(kcalmol-1Murea-1) 

Cpβ4 3.88±0.93 0.81±0.21 4.31±0.19 0.99±0.04 

FL Fit ΔG°I⇄U 
(kcalmol-1 ) 

mI⇄U 
(kcalmol-1Murea

-1) 

Cpβ3 4.14±0.06 1.34±0.02 
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Notably, Cpβ3 displayed complex equilibrium unfolding reaction, with non-

coincident CD and FL denaturation transitions (Fig. 2.4C).  The lower Cm of the 

FL unfolding transition most likely reflects the introduction of the new N-terminus 

only a few residues downstream from the single tryptophan, W58.  The stability 

estimated for the global unfolding reaction, indicated by the CD transition, is 6.79 

kcalmol-1.  Although the titration data for Cpβ4 could be fit to a 2-state model, 

kinetic analysis (see below) revealed the presence of a stable intermediate and 

dictated a 3-state model. The melting temperatures estimated from the heat 

capacities calculated by the simulations (Fig. 2.5) are in the same rank order as 

the midpoint points in the urea titrations (Fig. 2.3):  Cpβ3 < CheY* < Cpβ4.  

Experimental thermal melts by both DSC and CD were irreversible and a reliable 

experimental measurement of Tm could not be obtained. Further experiments on 

Cpβ2 were not pursued. 

Kinetic analysis of permutant folding 

 We monitored the dynamic responses of the permutants to rapid changes 

in the denaturant concentration in the micro-to-hundreds of seconds time range 

with a combination of continuous-flow (CF), stopped-flow (SF) and manual-

mixing (MM) techniques interfaced to FL, CD and SAXS detection.  For CheY*, a 

large amplitude FL phase occurs within the 25 μs dead time of CF-refolding, 

followed by a small amplitude, several hundred μs phase.  
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Fig. 2.4. Comparison of CD and fluorescence (FL) titrations. Titrations 

monitored by FL emission at 315 nm (open circles) and CD ellipticity (closed 

circles) are plotted for CheY*(A), Cpβ4 (B), and Cpβ3 (C). 
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Figure 2.4. Comparison of CD and fluorescence (FL) titrations
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Fig. 2.5. Heat capacities of folding transitions. Heat capacity as a function of 

temperature for CheY* (black), Cpβ4 (red), and Cpβ3 (blue), calculated from the 

coarse-grained simulation model. 
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Figure 2.5. Heat capacities of folding transitions   
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The subsequent formation of the native state occurs in hundreds of seconds and 

has been attributed to the trans → cis isomerization of the K109-P110 peptide 

bond15 (Fig. 2.6). Unfortunately, refolding along the cis channel for the 

permutants could not be resolved due to its small amplitude in direct refolding 

experiments and interrupted unfolding experiments. A pair of unfolding reactions 

were observed in the seconds to hundreds of seconds time range; the 

interconversion of the native cisP110 conformer to its trans counterpart, Nc →Nt, 

controls unfolding in the transition zone and the direct unfolding of the native 

cisP110 to the unfolded cisP110, Nc →Uc, controls unfolding at high denaturant 

concentrations.  Similar overall responses were observed for Cpβ3 and Cpβ4, 

with the exception that the direct unfolding of the native cisP110 conformer was 

accelerated for Cpβ4. 

Stability and secondary structure of IBP states 

 The orders of magnitude in time separating the μs and 100’s of s folding 

reactions for all three proteins enabled us to measure the stability of the product 

of the μs reaction, IBP, and its CD spectrum. By plotting the ellipticity at 222 nm 

after 5 ms of refolding to varying final denaturant concentrations, the stability can 

be estimated by fitting the resulting titration curve to a 2-state model (Fig. 2.3).  

The IBP species for Cpβ3 is significantly less stable than CheY*, 0.84 kcalmol-1 

vs. 2.02 kcalmol-1, and the m-value is also decreased (Table 2.1).  
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Fig. 2.6. Kinetic properties of folding reactions. Refolding (open symbols) and 

unfolding (closed symbols) relaxation times extracted from manual-mixing (MM), 

stopped-flow (SF), and continuous-flow (CF) kinetic experiments on CheY* 

(black), Cpβ4 (red), and Cpβ3 (blue). Ellipticities at 222 nm were monitored by 

MM and SF techniques (circles), and FL intensities were monitored by MM, SF, 

and CF techniques (triangles). Error bars reflect SD of n = 12 runs except for CF-

FL experiments (n = 2). 
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Figure 2.6. Kinetic properties of folding reactions   
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Very surprisingly, the stability of IBP for Cpβ4 is much greater than CheY*, 4.31 

kcalmol-1, and the m-value is also increased (Table 2.1).  Comparison of the 

denaturation curves for folded Cpβ4 and its IBP species (Fig. 2.3) shows that the 

two curves overlap between 3 and 5 M urea.  By fixing the thermodynamic 

parameters for the IBP↔U reaction to those extracted from the burst-phase 

titration data, the stability and m-value for the N↔U reaction could be estimated 

by fitting the equilibrium titration data for Cpβ4 to a 3-state model.  The free 

energy difference between its native and unfolded forms is 8.19 kcalmol-1 and 

the m-value is 1.80 (kcalmol-1)Murea
-1, comparable to CheY*.  

 We obtained the CD spectra of the IBP species by refolding jumps to the 

same final urea concentration in the folded baseline and varying the detection 

wavelengths in the far-UV range.  The IBP species for CheY*, Cpβ3, and Cpβ4 

recover ~85%, ~80% and ~90% of their native ellipticities at 222 nm within 5 ms 

(Fig. 2.3). The subtle but significant differences previously observed between the 

IBP and native states of CheY*15 (Fig 2.7) indicate that the aromatic side chains 

have not yet attained their native packing.  In contrast, the very similar shapes of 

the spectra for the IBP and native states of Cpβ4 and Cpβ3 show that an exciton 

coupling, likely between the side chains in a cluster of phenylalanines on the 

α1/α5 side of the β-sheet (Fig. 2.7C,D), is present in the IBP state for both 

permutants.  
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Fig. 2.7. Far-UV CD spectra of IBP. The far-UV CD spectra for natively folded 

CheY* (black) (A), Cpβ4 (red) (B), and Cpβ3 (blue) (C) are shown as solid lines. 

The spectra for native CheY* and Cpβ4 are superimposable. Spectra for the 

corresponding IBP species are shown as dashed lines. Note that in the 

difference spectrum (dotted lines) in A, CheY* (black) has a negative inflection 

between 215 and 230 nm indicating a perturbation in exciton coupling. The 

exciton coupling is not observed in the permuted variants (B and C). 
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Figure 2.7. Far-UV CD spectra of IBP 
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Compaction of CheY* and Cpβ4 by CF-SAXS  

 The very surprising increases in the stability and the apparent compaction 

for the IBP species for Cpβ4, the latter implied by the increased m-value for its 

urea melt, motivated us to measure its radius of gyration (Rg) in the ~100 μs to 1 

ms time range by CF-SAXS.  The urea-denatured states of CheY* and Cpβ4 

display Rg’s of ~35 Å, slightly smaller than predicted for space filling random coils 

of 129 amino acids, 38 Å87.  CheY* collapses to an apparent Rg of ~25 Å within 

the ~100 μs dead time, experiences a further compaction to ~23 Å by 1 ms, and 

ultimately contracts to an Rg of 15 Å in the native conformation (Fig. 2.8).  In 

distinct contrast, Cpβ4 collapses to a near-native Rg, ~18 Å, within ~100 μs and 

remains unchanged after 2.4 ms before contracting to the 15.5 Å Rg of the native 

state (Fig. 2.8A). Although the change in connectivity does not have a discernible 

effect on the size of the unfolded ensemble, the cleavage of the chain after β4 

and the fusion of the natural N- and C-termini cause Cpβ4 to collapse more 

rapidly to a near-native radius of gyration.   

Topological frustration by simulations 

 The significant differences in the stabilities of the IBP species of these 

proteins are surprising given the similarity of the kinetic responses observed.  

Unfortunately, the small amplitude of the refolding reaction along the cis-channel 

precluded the use of global analysis to resolve the folding mechanism of the 

permutant proteins.  
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Fig. 2.8. Dimensional analysis of CheY* and Cpβ4 during folding by SAXS 

and simulations. The radius of gyration for CheY* (black) and Cpβ4 (red) from 

CFSAXS (A) and the average Rg from Gō-model simulations (CheY*: n = 46; 

Cpβ4: n = 32) in which the intermediate was observed (B) as a function of folding 

time. Statistical analysis of the simulations finds the intermediate to be highly 

populated within the average time values of the first and last occurrences (green 

box; see Table 2.2 for details).The unweighted Rg values of ION and IOFF species 

from simulations are shown as dotted lines. Arrows indicate the Rg values and 

their estimated uncertainties under equilibrium conditions for the folded and the 

unfolded states (A). Ninety-three points were collected within the mixer channel 

from 142–2,400 μs and averaged over 20 scans. After low-quality data points 

were removed, the remaining data were binned into two parts, 142–959 μs and 

1,055–2,400 μs. CheY* Rg = 25.3 ± 2.2 Å (n = 11, 142–791 μs) and 22.6 ± 2.0 Å 

(n = 15 1,223–1,944 μs). Cpβ4 Rg = 18.0 ± 0.7 Å (n = 21, 142–959 μs) and 17.8 

± 0.7 Å (n = 33 1,055–2,304 μs). 
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Figure 2.8. Dimensional analysis of CheY* and Cpβ4 during folding by SAXS 

and simulations   
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We have therefore used Gō-model simulations to resolve the underlying 

structural basis of the differences in the IBP stability and inform the kinetic model 

that is most consistent with the experimental observables.  Previous 

experimental work has concluded that the off-pathway intermediate is not a 

consequence of the proline isomerization reaction15,19. Likewise, in computational 

work where the trans geometry was enforced via harmonic restraints, CheY was 

still able to access the folded state from the unfolded configurations. Although, 

the folded state is destabilized by 2.1 kcalmol-1 relative to flexible Pro11069, the 

relative energy landscapes of the cis and trans channels in the native and 

intermediate states are similar16,22.  

 Although we employ a model in which native interactions are 

predominantly favored, the model can capture frustration arising from the 

formation of native interactions in an incorrect order88. Figure 2.9 shows the 

influence of chain connectivity on the topological frustration as deduced from 

folding simulations of CheY* and its circular permutants. Our results are 

consistent with those reported earlier22 and show that the folding of CheY* 

proceeds with significant frustration that arises from the competition of 

interactions between N-terminal, C-terminal and interfacial native contacts. At 

Qtotal = 0.4 local unfolding or backtracking of interfacial contacts (negative slope) 

between the N-and C-termini coincides with the sudden increase in the contacts 

of the N-terminal subdomain (Fig. 2.9A,D). These prematurely formed contacts in 

the C-subdomain partially unfold before folding proceeds to the native 
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conformation. Similar results are observed for Cpβ4, however, the interfacial 

frustration is markedly reduced (Fig. 2.9B,E). In Cpβ3 this interfacial frustration is 

absent (Fig. 2.9C,F) because the new termini disrupt the frustrated region. These 

results are also consistent with the ILV cluster model for folding in that the WT 

connectivity is driven to fold to the off-pathway IBP species by the premature 

formation of Cluster 1 spanning the interfacial contacts15. The novel local 

connectivity of the larger cluster (Cluster 2) in Cpβ4 enables it to out-compete the 

formation of Cluster 1.   

 Notably, a minor restructuring event in the N-terminal subdomain is 

observed late in folding at Qtotal = 0.6 in all connectivities. This second event 

corresponds to the loosening of structure that is routinely observed in the folding 

of alpha helices prior to final maturation of the tertiary structure and is not 

comparable to early frustration88.  

Kinetic simulations 

 More detailed structural insights into the folding mechanisms are gleaned 

through simulations from the time evolution of Rg and the corresponding time 

courses of the mean fraction of secondary structure contacts formed for the 

representative folding trajectories of CheY* and permutants.  Cpβ4 collapses 

faster than CheY* (Fig. 2.8B) before both approach a common Rg of ~14 Å in 

their respective native conformations.  Examination of individual trajectories for 
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Fig. 2.9. Frustration observed in Gō-model simulations. (A–C) Ensemble 

averaged fractional contacts of the N-terminal subdomain (dark red), C-terminal 

subdomain (blue), and subdomain interface (green) are plotted as a function of 

fractional total native contacts for CheY* (A), Cpβ4 (B), and Cpβ3 (C). (D–F) The 

interfacial region is dissected in D–F where β3– β4 contacts are shown in 

magenta, α2–α3 contacts are shown in black, and α5–C-terminal contacts are 

shown in green. The C-terminal subdomain is dissected into fragments of β4–β5 

contacts (gold) and α3–α4 contacts (blue) for CheY* (D), Cpβ4 (E), and Cpβ3 

(F). 
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Figure 2.9. Frustration observed in Gō-model simulations
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CheY* and Cpβ4 (Fig. 2.10) revealed pauses, reflecting the transient occupancy 

of partially folded states with discrete Rg values. Of 100 kinetic trajectories, only 

about half pass through this intermediate and persist long enough to be 

observable. Therefore the intermediate can be regarded as a non-obligate on-

pathway intermediate (ION). Statistical analysis suggests that the intermediate for 

Cpβ4 is slightly more compact, 20.2 vs. 21.3 Å, appears earlier, 86 vs. 97 time 

units, and disappears sooner, 104 vs. 151 time units, than its CheY* counterpart 

(Fig. 2.8B; Table 2.2). The Rg’s for these intermediates are in remarkably good 

agreement with those observed by SAXS after 1 ms of folding, ~23 Å for CheY* 

and ~18 Å for Cpβ4 (Fig. 2.8A). The differences in the folding kinetics of CheY* 

and the permutants may reflect the extent of frustration that arises during folding 

of each system. 

 To structurally characterize the intermediates, we extracted structures 

sampled during kinetic folding simulations that fall within 20 Å < Rg < 22 Å and 

measured the probability of forming native contacts in this ensemble. The results 

for CheY* are consistent with previous work22 where the Nheptad was identified as 

the structured region encompassing the first 7 elements (βα)1-3β4 (Fig. 2.11A). 

Further, a subsection of the Nheptad with the highest probability of contact 

formation is apparent at the subdomain interface, β3-β4, a region previously 

described as an area where topological frustration is present74. Through a similar 

analysis of Cpβ4 (Fig. 2.11B) and Cpβ3 (Fig. 2.11C), the differences in chain 

connectivity were found to have structural repercussions on the early folding 
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intermediates.  The probability of forming contacts in the frustrated region is 

diminished as the Nheptad is lengthened to include α5/β5. 
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Fig. 2.10. Representative simulation trajectories. Time evolution of Rg (A and 

C) and fractional contact formation (B and D) from representative folding 

trajectories for CheY* (A and B) and Cpβ4 (C and D).Shown are the time courses 

of contacts formed in the N terminus (red), C terminus (green), and between β3 

and β4 (blue), between α2 and α3 (magenta), between α5 and rest of the protein 

(cyan), and between α1 and β2 (yellow). For clarity, kinetic traces are shown as 

moving averages of 10 successive snapshots. 
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Figure 2.10. Representative simulation trajectories
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Fig. 2.11. Probability of contact formation. Probability for pairwise contacts for 

conformations in kinetic simulations with 20 Å < Rg < 22 Å for CheY* (A) and for 

conformations with 19 Å < Rg < 21 Å for Cpβ4 (B) and Cpβ3 (C) above the 

diagonal. Different colors in the contact map indicate different probabilities as 

quantified by the color scale on the right. The contact maps for CheY*, Cpβ3, and 

Cpβ4 in their native states are shown below the diagonals. The elements of 

secondary  structure are indicated on the ordinate, with α-helices in green and β-

strands in purple. The green box in all three panels indicates the location of the 

Nheptad (ION), and the smaller green box in the upper left quadrant of B and C 

indicates the expansion of the Nheptad to include the β1α1/β5 contacts in the 

permuted proteins. The red ellipse in all three panels indicates the location of the 

contacts in cluster 1, the region of topological frustration defined as IOFF in 

CheY*. 
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Figure 2.11. Probability of contact formation   
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Folding@Home Simulations 

 A landmark 42 milliseconds of all-atom, implicit solvent simulation was 

collected for CheY*. To account for the proline isomerization reaction the 

transition probabilities for the isomerization event were calculated using the 

experimental rate constants. The linked trans-cis model yielded a slowest (non-

equilibrium) implied timescale of 69 seconds, within the same order of magnitude 

as the experimentally observed relaxation time of ~100 seconds. 

 Using Markov State Models (MSMs) to analyze this simulation data, (Jade 

et. al, unpublished data) we identified a putative structure for the kinetic 

intermediate of CheY*, which was then compared with small-angle X-ray 

diffraction data. Theoretical SAXS scattering intensity profiles were calculated for 

each microstate and the Kratky profiles were compared with the 5-ms 

experimental SAXS data by fitting a sixth-order polynomial function to the 

experimental Kratky profile. A two-step method was then used to compare the 

theoretical Kratky profiles with the experimental data. First, the least squares 

deviations between the experimental and individual microstate Kratky profiles 

were computed, and the microstate with minimum least squares deviation was 

chosen as an initial guess for the structure of the sub-millisecond kinetic 

intermediate. Then Ensemble Refinement of SAXS (EROS) was used, which is a 

simulated annealing technique regularized with a prior of maximum entropy, to 

obtain an optimized ensemble-averaged representation of the intermediate. A 

similar approach was taken to identify the on-pathway intermediate of Cpβ4. 
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 The top-weighted structures in IBP/OFF are generally similar to the native 

state. All five native helices and a central β-sheet are formed, and helices α2-4 

are packed against the β-sheet in a native-like manner. However, there are also 

clear non-native motifs present. Namely, the central β-sheet contains a non-

native strand packing of β2 against β3 in contrast to the native ordering β2β1β3 

(Fig. 2.12A). This excludes the N-terminal strand β1 from the central sheet. As a 

result, both β1 and α1 cannot dock to the structured part of the protein and are 

very mobile. Also, the C-terminus is relatively unstructured with α5 frequently 

being loose and not packed natively. 

 In contrast to the CheY* results, β1 is in its native position between β2 and 

β3 in the top-weighted structures of Cpβ4 (Fig 2.12B), and the non-native β2-3 

motif of IBP/OFF is not observed. Also, there is a similar degree of native-like 

packing of α2 and a greater amount of native-like packing of α1 and α5, while α3 

is packed in an almost orthogonal orientation to the central sheet and α4 is 

completely unfolded. 
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Fig. 2.12. Predicted high probability structures of IBP from atomistic models. 

CheY* (A) shows non-native strand order of the central β-sheet. In the native 

arrangement β1 (dark yellow) is intercalated between β2 and β3, in IBP/OFF β1 is 

not assembled into the β-sheet and α5 (yellow) is misplaced. In Cpβ4 (B) the 

strand order of the β-sheet is native like along with the packing of most helices. 

Notably α4 is not folded or packed onto the rest of the structure. 
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Figure 2.12. Predicted high probability structures of IBP from atomistic models   
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Discussion 

 CheY is a member of the Flavodoxin fold family of proteins whose α/β/α 

sandwich architecture represents one of the more common motifs in biology.  

Unlike the Flavodoxins, CheY has a conserved cis proline that controls the 

access to the native conformation15,18.  Like CheY, however, a pair of 

homologous Flavodoxins sample a kinetic trap before successfully traversing the 

productive TSE71,77.  Elucidating the molecular basis for the frustration in folding 

for CheY has implications for an entire motif.  

 CheY*:  The results presented here on the F14N variant of CheY are 

consistent with previous experimental and computational work on the WT 

protein15,22.  By Gō-model simulations, topological frustration arises at the 

subdomain interface before partially unfolding to resume folding from the N-to-C 

terminus. This result is consistent with experimental data that show non-native 

Phe packing in the IBP species (Fig. 2.7). The non-native packing of IBP along with 

the backtracking observed by simulations15 (Fig. 2.6A,D) and the negative m-

value observed through global analysis of experimental data15 argues that CheY 

populates an off-pathway kinetic trap, IOFF. Mechanistic details gleaned from the 

simulations suggest that low CO ILV contacts in Cluster 1 drive early folding 

events and lead to the premature formation of the subdomain interface. Atomistic 

simulations suggest that this frustration may also be due to the incorrect strand 

ordering of the β-sheet (Fig. 2.12A). 
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 Cpβ2: By introducing new termini between β2 and α2, the Cpβ2 

permutant cleaves the N-terminal subdomain while leaving Cluster 1 essentially 

intact and Cluster 2 discontinuous.  The observation that Cpβ2 is incapable of 

adopting the CheY* fold demonstrates an essential role for the intact N-terminal 

subdomain because Cluster 2 is discontinuous in CheY* and all three 

permutants.  This conclusion is consistent with the results of a previous 

mutational analysis, where the N-terminal subdomain was found to be a central 

feature of the productive TSE19.   

 Cpβ3:  The introduction of new termini between β3 and α3 leaves the two 

subdomains intact but cleaves both ILV clusters and the Nheptad.  Notably, the FL 

and CD titrations are non-coincident, suggesting that multiple species are 

present prior to the global unfolding reaction.  However, because the kinetic 

response is similar to CheY* under strongly unfolding conditions, Cpβ3 

transverses the same barriers as CheY* (Fig. 2.6). The additional faster phase in 

unfolding may reflect a small fraction of the protein moving through a parallel 

channel in a limited range of unfolding conditions. 

 Although the amplitude of the CD spectrum of the IBP species for Cpβ3 is 

only decreased by ~15% from its CheY* counterpart, the stability is markedly 

reduced from 2.02 kcalmol-1 for IBPt in CheY* to 0.84 kcalmol-1 in Cpβ3 (Table 

2.1) and the m-value is reduced from 0.83 to 0.59 kcalmol-1M-1.  We attribute 

the decreased stability of IBPt to the cleavage of Cluster 1, postulated to be a key 
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stabilizing component of the IBPt species for WT CheY15.  Interestingly, the loss in 

stability is accompanied by native-like packing of the Phe cluster on the α1/α5 

face of the β-sheet (Fig. 2.3D).   

 Simulations show the elimination of the interfacial frustration of the 

subdomains for Cpβ3, expected if β3 and β4 are segregated to opposite ends of 

the chain. The absence of early frustration in the Cpβ3 simulations may reflect 

the marginal stability of the IBP species, as has been observed previously for a 

CheY homolog, NT-NtrC15. In contrast to CheY*, frustration in Cpβ3 arises late in 

folding around the β1α1/β5α5 interface on the opposite face of the β-sheet (Fig. 

2.13).  The high number of native contacts, [Q] values, where this frustration 

occurs is not consistent with the small m-value for the IBP species for Cpβ3 and 

likely reflects annealing reactions often seen in the late stages of folding in Gō-

model simulations when helix repacking often occurs.  

 The structural basis for the altered folding properties in Cpβ3 can also be 

visualized in 2D contact maps derived from the simulations (Fig. 2.11C).  For its 

IOFF species, CheY* has a high probability of contacts in the α2(βα)3β4 region, 

while Cpβ3 does not. Indeed, the region of high probability of native contacts in 

Cpβ3 shifts to the β1α1 and β5α5 segments that are covalently linked by 

permutation of the sequence.   
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Fig. 2.13. Frustration observed in kinetic simulations of Cpβ3. The mean 

fraction of contacts formed, Qi, is shown as function of the fraction of native 

contacts formed in the entire protein, Qtotal, for contacts within α1 (gold), within 

α5 (blue), between α1 and β5 (dark green), and between α1 and β2 (orange). 
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Figure 2.13. Frustration observed in kinetic simulations of Cpβ3  
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 Cpβ4:  The introduction of new termini between β4 and α4 in Cpβ4 

cleaves the C-terminal subdomain while leaving Cluster 1 intact and Cluster 2 

discontinuous.  The coincidence of the far-UV CD spectra of CheY* and Cpβ4  

(Fig. 2.1) shows that an intact C-terminal subdomain is not essential for proper 

folding and in agreement with the view that the C-terminal subdomain forms after 

the TSE19. The resultant IBP species folds more rapidly, is both more stable and 

more compact than CheY* and has native-like packing of its phenylalanine 

cluster.  The increased stability of IBP provides a logical explanation of the 

accelerated unfolding reaction, via the Hammond effect (Fig. 2.14), and argues 

for its assignment as an on-pathway intermediate.  These surprising 

experimental results are in very good agreement with the predictions of 

decreased frustration from an off-pathway intermediate and a more compact on-

pathway intermediate including β1, α1, β5 and α5 in the Gō-models and the 

atomistic simulations.  

 The 2D contact map of the Cpβ4 folding intermediate reveals an intact 

Nheptad and a high probability for contacts between the covalently-connected β1α1 

and β5α5 sequences.  The linkage of the natural termini leads to the preferential 

formation and stabilization of a species that corresponds to the ION for CheY*.  

The decreased frustration for Cpβ4 likely reflects both the destabilization of the 

C-terminal subdomain via cleavage and the increased competition from the more 

rapidly forming and stable extended Nheptad, including the β1α1/ β5α5 complex, 

which is also suggested to be the case in the atomistic models (Fig. 2.12B). 
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Fig. 2.14. Structures of intermediates and the simplified folding free-energy 

surfaces. The sequence of events in folding is indicated by the arrows. The 

proline isomerization step, occurring between the cis and trans IBP species, is not 

shown. Structured components of each species as determined by Gō-model 

simulations. Elements in gray are not yet formed; colored elements [A: black, 

CheY*; B: red, Cpβ4; C: blue, Cpβ3] are significantly structured; elements 

implicated in topological frustration are orange. (D) Reaction coordinate diagrams 

for CheY* (black), Cpβ3 (blue), and Cpβ4 (red). The barrier heights were 

estimated using the Kramer’s formalism with a prefactor of 1 μs, and m-values 

were calculated from equilibrium and kinetic experiments, when available. Each 

permutant would have a unique unfolded ensemble, but the free energies have 

been aligned for direct comparison. 
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Figure 2.14. Structures of intermediates and the simplified folding free-energy 

surfaces   
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Early folding events by CF-SAXS, simulations and CF-FL   

 The faster collapse of unfolded Cpβ4 observed by CF-SAXS (Fig. 2.8A) 

and simulations (Fig. 2.8B) is not reflected in the CF-FL data, where essentially 

identical relaxation times were found for Cpβ4 and CheY* (Fig. 2.6).  The 

discrepancy can be traced to the small m-value for the 300 μs phase and the 

implied small change in buried surface area accompanying this reaction.  The 

commonality of the relaxation time of this phase for Cpβ3, Cpβ4 and CheY* 

strongly suggests a local folding event at the single Trp residue that does not 

reflect the global collapse monitored by CF-SAXS and simulations.  

Modulation of the folding landscape by permutations 

 Both experiments on and simulations of CheY*, Cpβ3 and Cpβ4 reveal 

that the initial events in the folding are dictated by the connectivity of the chain.  

In another case, Cpβ2, altering the chain connectivity leads to a distinctly 

different but well-defined thermodynamic state.  The combined results for those 

sequences that can attain the wild-type native conformation can be displayed on 

a reaction coordinate diagram shown in Figure 2.14D; the proposed structured 

elements for the various species are shown in Figure 2.14A-C.   

 The path from the unfolded state to the respective intermediate for CheY*, 

Cpβ3 and Cpβ4 is controlled by preferred interactions between low CO elements 

of secondary structure.  The varying structures, stabilities and buried surface 

areas for these partially-folded states can be understood in terms of the 
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thermodynamic compulsion to minimize the chain entropy penalty and maximize 

the participation of their resident aliphatic side chains in one of 2 ILV clusters 

located on either face of the central β-sheet. For CheY*, Cluster 1 forms early 

and stabilizes Ioff.  For Cpβ3, Cluster 1 is cleaved and a fraction of Cluster 2 

drives the formation of a poorly-folded fragile Ioff.  For Cpβ4, the C-terminal 

elements of Cluster 2 reinforce the Nheptad, resulting in a remarkably stable Ion.  

Thus, the folding free energy surface of CheY and its attendant frustration in 

folding can be modulated either by the destabilization of the off-pathway 

intermediate, Cpβ3, or by the stabilization of an on-pathway intermediate, Cpβ4.  

Although the initial sources of frustration for these permuted sequences are quite 

different, all can achieve essentially the same native conformation. 

Subdomain vs. ILV cluster model for the folding of CheY 

 The totality of the results suggests that the ILV cluster model provides the 

more parsimonious and complete description of the early events in folding but 

that the subdomain model better captures the crucial TSE required to access the 

proper native fold.  In other words, low CO clusters of ILV residues can strongly 

influence the early stages of folding before subdomain and global cooperativity 

engage expanding portions of the sequence to reach the native conformation.   

Perspective 

 Chain entropy plays a crucial role in defining the energies and structures 

of partially-folded states on the folding free energy surface of CheY.  Thus, 

frustration can be modulated and productive folding favored by altering the 
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sequence connectivity and, thereby, the local chain entropy.  The local-in-

sequence local-in-space topology of βα-repeat proteins, including the Rossmann-

fold, TIM barrels and the Flavodoxin/CheY folds, make them prime candidates for 

frustration in the early stages of folding.  The associated partially-folded states 

may not only impede the folding reaction, but also may serve to nucleate 

aggregation reactions in pathological sequence variants.  Recognition of the 

early events in folding and the partially-folded structures that they produce 

provides a rational basis for the design of small molecules that might inhibit 

aggregation by binding at the interfaces of these nascent kernels of structure.   

Methods 

Protein expression and purification  

 All CheY variants were engineered with an N-terminal hexahistidine tag 

and an intervening Tev Protease site (GenScript), ligated into the expression 

plasmid pGS-21a, and transfected into the E. coli strain BL21 Codonplus® 

(DE3)RIL for expression. All proteins were isolated from inclusion bodies by 

dissolving the insoluble fraction of the cell lysate in 8 M urea and refolding into 

10 mM potassium phosphate buffer at pH 7.0. Precipitates were removed using 

centrifugation and the soluble fraction was bound to a nickel resin overnight at 

room temperature. The nickel resin was then thoroughly washed and the His-

tagged protein was eluted with a step gradient of 10 mM, 25 mM, and 300 mM 

imidazole. Pure fractions were pooled and dialyzed into 50 mM tris, 1 M urea, pH 

7.8. Overnight incubation with His-tagged Tev Protease was used to cleave off 
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the His-tag from CheY. The reaction product was bound to a nickel resin 

overnight and the cleaved protein was washed off of the resin in 10 mM 

potassium phosphate buffer at pH 7.0.  Protein was concentrated and applied to 

a Q Sepharose column and eluted using a salt gradient from 0 to 400 mM NaCl. 

The purity was confirmed (> 98%) using a Waters Q-TOF ESI mass 

spectrometer. 

Protein sequences  

CheY* (129 AA): G A D K E L K F L V V D D N S T M R R I V R N L L K E L G 

FN N V E E A E D G V D A L N K L Q A G G Y G F V I S D W N M P N M D G L 

E L L K T I R A D G A M S A L P V L M V T A E A K K E N I I A A A Q A G A S G 

Y V V K P F T A A T L E E K L N K I F E K L G M 

Cpβ2 (132 AA): G D G V D A L N K L Q A G G Y G F V I S D W N M P N M D G 

L E L L K T I R A D G A M S A L P V L M V T A E A K K E N I I A A A Q A G A S 

G Y V V K P F T A A T L E E K L N K I F E K L G M G A G A D K E L K F L V V 

D D N S T M R R I V R N L L K E L G F N N V E E A E  

Cpβ3 (131 AA): G D G L E L L K T I R A D G A M S A L P V L M V T A E A K K  

E N I I A A A Q A G A S G Y V V K P F T A A T L E E K L N K  I F E K L G M G A 

G A D K E L K F L V V D D N S T M R R I V  R N L L K E L G F N N V E E A E D 

G V D A L N K L Q A G G Y  G F V I S D W N M P N 
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Cpβ4 (132 AA): G E A K K E N I I A A A Q A G A S G Y V V K P F T A A T L EE 

K L N K I F E K L G M G A G A D K E L K F L V V D D N S T M R R I V R N L L 

K E L G F N N V E E A E D G V D A L N K L Q A G G Y G F V I S D W N M P N 

M D G L E L L K T I R A D G A M S A L P V L M V T A  

Native state Analysis 
Circular Dichroism Structure Analysis 

  Far-UV CD spectra were collected on a JASCO model J810 CD 

spectrophotometer . All samples were buffered with 10 mM potassium phosphate 

at pH 7.0 and 25⁰ C. Measurements were taken in a 0.5 cm path length cuvette 

with a bandwidth of 2.5 nm and a step size of 0.5 nm at a protein concentration 

of approximately 6 μM from 202 nm to 260 nm, with the exception of Cpβ2 which 

was recorded from 198 nm to 260 nm. Three buffer subtracted spectra were 

collected and averaged for each protein with a total averaging time of 3 s per 

wavelength. 

Equilibrium unfolding and refolding  

 Unfolded (9 M urea) and folded (buffer) stocks of protein were diluted with 

varying concentrations of 10 mM potassium phosphate buffered urea at pH 7.0 to 

achieve a final protein concentration of approximately 6 μM protein and a range 

of final urea concentrations from 0 M to 8.25 M. Each sample was thoroughly 

mixed and left to equilibrate overnight at room temperature. CD spectra were 

collected on a JASCO model J810 spectrophotometer under the same conditions 

as the wavelength scan, and by intrinsic tryptophan fluorescence using Horiba 
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Flourolog3 with a slit width of 5 nm, excitation at 295 nm with a 0.5 cm path 

length, and emission spectra collected above 310 nm with a 1 cm path length at 

25⁰ C. The fluorescence and CD data were globally fit to a two state N⇌U model 

as a function of urea using our in-house Savuka software package. 

IBP Analysis 
IBP CD Wavelength Scans 

 Urea denatured protein in 10 mM potassium phosphate at pH 7.0 was 

refolded with a 10-fold dilution of 10 mM potassium phosphate pH 7.0 at 25⁰ C. 

Measurements were recorded at each wavelength from 205 nm to 240 nm using 

a 0.2 cm cuvette at a final protein concentration of approximately 10 μM with a 

bandwidth of 2.5 nm in triplicate. Buffer subtraction of the data and exponential 

extrapolation to 0 time provided the amplitude of the IBP refolding reaction at each 

wavelength.  The difference of U→N and U→IBP amplitudes is plotted as a 

function of wavelength in order to construct the CD spectra of the IBP species.   

Continuous-flow intrinsic tryptophan fluorescence 

 The all-quartz mixer was custom made by Translume, Inc. with channels 

50 μm wide and 100 m high.  Nanoport  connectors for use with 1/32 inch outer 

diameter PEEK tubing (Upchurch) were attached using UV curing epoxy by the 

manufacturer (Translume, Inc.).  Trp fluorescence utilized 292 nm excitation from 

the tripled-output of a Ti:sapphire laser.  A blank and NATA control were 

acquired for each trace to correct for background fluorescence (typically ~1%) 
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and variations in excitation intensity along the channel (typically < 5%), 

respectively.  Computer controlled scanning of the channel was accomplished by 

an x-y translation stage (Biopoint 2, Ludl Scientific). 

Dimensional analysis 
Equilibrium small angle x-ray scattering 

 Equilibrium measurements were collected as previously described 89. The 

protein concentration was 1.5 mg·mL−1 in 10 mM potassium phosphate buffer at 

pH 7.0 and 25⁰ C. 

Continuous-flow small angle x-ray scattering  

 Continuous-flow SAXS measurements were made as previously 

described90. The total flow rate was 20 mL·min−1 using a 1:10 dilution of the 

unfolded protein for a final protein concentration of 1.5 mg·mL−1  in 10 mM 

potassium phosphate buffered 8 M urea at pH 7.0 and refolding with 0 M urea 

buffer. 

Small Angle X-Ray Scattering Data Analysis 

 Radial averaging of the raw SAXS data images was accomplished using 

IGOR Pro (WaveMetrics) macros written by the BioCAT staff at APS. The 

exported scattering profiles were imported into in-house software for further 

analysis. The Rg values were obtained based on the Guinier approximation within 

the Guinier region (RgQmax ≤ 1.3). 

Gō-model simulations 
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System preparation and model 

 Cpβ4 and Cpβ3 were modeled on the crystal structure of WT CheY from 

E. coli (PDB ID: 3CHY)21. Models of both permutants were constructed by joining 

together the N and C termini of the CheY* with a Gly-Ala-Gly peptide and 

cleaving the bond between residues 63 and 64 and residues 88 and 89 for Cpβ3 

and Cpβ4 permutant, respectively. The protein folding simulations were 

performed with an unrestrained prolyl-bond geometry using a coarse-grained 

model developed by Karanicolas and Brooks91. All simulations were performed 

using coarse grained Gō-like model that has been previously successfully 

applied to study protein-folding mechanisms of several proteins91. In the model, 

the protein backbone is represented as a string of beads connected by virtual 

bonds. Each bead represents a single amino acid and is centered at its alpha 

carbon position. Adjacent beads on a string are held together with the potential 

encoding bond angle and bond length constraints. Specifically, bond length is 

kept fixed while bond angle interactions are harmonically restrained. In addition, 

dihedral angles are subject to potentials to mimic backbone chirality and 

Ramachandran conformational preferences. Nonbonded interactions are 

represented using a model in which only residues that are in contact in the native 

state interact favorably. Backbone hydrogen bonds and side-chain pairs with 

non-hydrogen atoms separated by less than 4.5 Å interact via a modified 

Lennard-Jones potential that consists of energy well and a small desolvation 

barrier to ensure folding cooperativity. The sequence dependence is accounted 
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for by weighing the strength of side-chain contacts according to their abundance 

in the Protein Data Bank (PDB)92. All non-native interactions experience volume-

exclusion repulsion. The detailed description of this energy function can be found 

elsewhere91,93. 

Molecular dynamics protocol 

 Molecular dynamics simulations were performed using the CHARMM 

macromolecular mechanics package94. All models were evolved through 

Langevin dynamics, by using a friction coefficient of 1.36 ps-1 and a molecular 

dynamics time step of 22 fs. The virtual bond lengths were kept fixed using the 

SHAKE algorithm. For each permutant, 100 independent folding simulations 

were each performed for 2 × 108 dynamics steps at 0.87 Tf, where Tf is the 

folding transition temperature estimated as a temperature corresponding to the 

peak in the specific heat curve, Cv (T) (See Fig. 2.5). 

Replica exchange simulations 

 For thermodynamic characterization, specifically to estimate heat capacity 

as a function of temperature for all systems (CheY*, Cpβ3 and Cpβ4), we 

performed two-dimensional replica exchange simulations in which each one of 

total 28 replicas was restrained in the chosen temperature (0.87, 0.97, 1.08, or 

1.20 Tf) and radius of gyration value, Rg, (1.0, 1.1, 1.2, 1.3, 1.5, 1.7, and 2.0 R0
g, 

where R0
g is the radius of gyration of the native folded state), with force constants 

0.5, 5.0, 5.0, 5.0, 4.0, 0.8, and 0.5 kcal/mol/Å2 respectively. Conformational 
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exchanges between temperature windows and restraints were attempted every 

40,000 dynamics steps. All structures from different temperatures were combined 

and unbiased using weighted histogram (WHAM) method95. Finally, heat capacity 

was obtained from fluctuations of the potential energy and plotted as a function of 

temperature for all systems (See Fig. 2.7).  

Molecular dynamics protocol for kinetic simulations 

 First, unfolded starting structures for the folding simulations were 

generated by equilibration dynamics at 1.5 Tf (note that the Tf is different for WT 

CheY, Cpb3 and Cpb4) for 107 molecular dynamics steps starting from randomly 

assigned initial velocities. Following, kinetic folding simulations were performed 

for 2 × 108 dynamics steps at 0.87 Tf and protein coordinates were saved every 

105 dynamics steps. The fraction of native contacts formed, Q, was used to 

monitor the folding progress. Each contact was considered formed if its residue 

pair was within a cutoff distance chosen such that the given contact is satisfied 

85% of the time in native-state simulations at 0.83 Tf.  The Gō-models were built 

from the PDB structure in which peptide bond is in cis configuration. We 

performed unrestrained kinetic simulations without placing any specific harmonic 

restraint on the dihedral to enforce sampling of the cis configuration. 
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Chapter III - Residual Structure in the Unfolded State 
of Di-III_14 

 

 This chapter is a body of work that is being prepared for publication. The 

data herein are the results of my own work as well as the work of Laura Deveau, 

a Ph.D. candidate working under the supervision of Dr. Francesca Massi. Laura 

has contributed the NMR experiments and analysis. I have contributed the 

thermodynamic and kinetic characterization. The data interpretation and 

manuscript preparation is the work of myself and Dr. C. Robert Matthews, Dr. 

Francesca Massi, and Laura Deveau. 
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Introduction 

 The unfolded state ensemble is the least accessible and most poorly 

understood region of the protein folding free-energy landscape. Statistical 

thermodynamics describes this state as largely dynamic with few, if any, 

persistent features87. In the current understanding, a protein heteropolymer is 

often approximated to be a statistical random coil due to the assumed high 

conformation entropy of the state. Although this appears to remain true in the 

presence of chemical denaturants96, it is unlikely to be true in aqueous (i.e., 

native-favoring) conditions. Protein heteropolymers consists of diverse sidechain 

chemistries and are composed largely (40-50%) of hydrophobic character in 

soluble globular proteins97. The effect of these chemistries within the primary 

sequence manifests in the phenomenon that protein chains in aqueous solvent 

behave as a polymer within a poor solvent, favoring intra-polymer contacts over 

polymer-solvent interactions77. Therefore, it stands to reason that a given protein 

in dynamic equilibrium will populate a collapsed and structurally biased unfolded 

state under native-favoring conditions. This biologically accessible unfolded state 

is arguably the biologically relevant unfolded state that may lead to protein 

misfolding and aggregation, contributing to such diseases as amyotrophic lateral 

sclerosis98 and Alzheimer's disease99. Unfortunately direct observation of 

residual structure in the unfolded state under native conditions is limited due to 

technical difficulties associated with making such measurements, namely the 

short lifetime of the species, relatively long experimental acquisition timescales, 
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and limited experimental resolution. However, a recently designed unnatural 

protein, Di-III_1470, exhibits intrinsic properties that make these measurements 

accessible, leading to new insights towards what structural elements may persist 

in the unfolded state under native conditions.   

 The rational design of unnatural proteins is made possible by the ever 

increasing computational power and the continual development of efficient 

algorithms for structure prediction32.  However, little is known about energy 

surfaces that are not subjected to eons of evolution, or even if the free-energy 

surface itself is subject to evolutionary pressure.  A case in point is the design of 

Top7 by the Baker group32, the first de novo designed novel protein fold. In the 

seminal publication this protein was demonstrated to be thermodynamically 2-

state, and very stable (ΔG = -13.2 kcal mol-1). However, in a subsequent study 

the folding kinetics were examined and found to be multi-state and exceedingly 

complicated33. The folding mechanism was also suggested to be less 

cooperative than previously thought due to elements that are capable of folding 

independently100. The sum of these results obviate the caveat of structure-based 

design; structure does not predict folding kinetics. 

 Further work from Baker and colleagues implemented kinetic folding 

trajectories in order to formulate design rules to favor 5 naturally occurring βα-

repeat fold motifs. The basis of this approach was that successfully biasing the 

kinetics would produce a smooth folding landscape70. Similar to previous work, 

the proteins again appear to be thermodynamically 2-state. The small chain 
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lengths, less than 100 amino acids, of these novel proteins combined with their 

kinetic optimization through simulations suggests that they will fold via a 2-state 

mechanism. Proteins containing less than 100 amino acids typically demonstrate 

2-state folding behavior, presumably due to the small size not being amenable to 

the formation of independently stable subdomains101. However the experimental 

exploration of the energy surface by way of folding kinetic experiments on these 

designed proteins remains to be accomplished. 

 The folding dynamics of a small β1α1β2α2β4β3 protein, Di-III_14, was 

designed to mimic a natural βαβ fold.  It's small size, at 89 amino acids, low 

contact order, and single hydrophobic core should eliminate the presence of 

kinetic complexities15,64 including domain competition100,102, and competing 

hydrophobic cores15,103. The topology of Di-III_14 consists of a 4-stranded β-

sheet with α1 and α2 paired on the same side of the sheet (Fig 3.1A). A single 

closely packed hydrophobic core of 9 tertiary isoleucine, leucine, and valine (ILV) 

contacts connects the two structural features (Fig 3.1B). On the solvent exposed 

surface and central to these contacts on the β-sheet side, there exist 3 salt 

bridges connecting the two central stands of the β-sheet. The intercalated β4 

strand is highly cationic with 3 positively charged solvent exposed residues. 

These residues establish the 3 salt bridges with the adjacent and compensatory 

anionic central β2 strand (Fig 3.1C), suggesting an engineered mode of N state 

stabilization through a reduction in chain entropy that was not previously claimed 

to be rationally engineered.  
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 Comparison of the results of chemical denaturation with those of native-

state hydrogen exchange experiments (HDX) reveal a complex response 

consistent with the retention of native-like topology in the unfolded state of D_III-

14 in the absence of denaturant.  Although not explicitly a feature of the design 

criteria, the unfolded state of Di-III_14 appears to be significantly structurally 

biased towards the native state to which it folds to in tens of microseconds.  The 

conservation of the native topology of the sequence before folding begins 

demonstrates its crucial role throughout the folding reaction coordinate and 

establishes Di-III_14 as a model protein and engineering platform that completely 

avoids kinetic traps. 
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Fig 3.1. Structural elements of Di-III_14. Di-III_14 is a βα-repeat protein with a 

terminal β-hairpin. (A) The topology of Di-III_14 consists of a β-sheet with 2 α-

helices packed onto one side. (B) Calculated ILV clusters bind these elements of 

secondary structure together. (C) Salt bridges are exposed on the solvent 

accessible side of the β-sheet.  The negatively charged residues (black) are well 

segregated in sequence from the positively charged residues (red) in the central 

β-strands.  
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Figure 3.1. Structural elements of Di-III_14
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Results 

Di-III_14 tagless construct 

 Previous work by Koga et. al.70 correctly predicted the structure of Di-

III_14 computationally without a hexahistidine-tag (his-tag) however the 

demonstrated 2-state behavior of Di-III_14 obtained by guanidine denaturant 

(Gnd) melts were conducted on a construct with an additional C-terminal his-tag.  

We redesigned Di-III_14 to have a cleavable N-terminal his-tag to determine the 

importance of the tag in the perceived stability. The tagless variant has a global 

stability of 5.43 ± 0.36 kcal mol-1 and an m-value of 2.34 ± 0.13 kcal mol-1 MGnd
-1 

and appears to be unaffected across the pH range of pH 6.0 to 7.4 (Fig 3.2). 

Compared to the N-tagged variant, there is no observable effect on the 2-state 

global stability of the protein (Table 3.1). Unfortunately, upon cleavage of the tag, 

the protein readily aggregates upon reconstitution of lyophilized product to high 

concentrations (~400 μM) precluding HDX NMR studies. 
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Fig 3.2. Gnd Denaturation melts of tagless Di-III_14 at 222nm by CD. Gnd 

denaturation melts of the tagless construct are pH independent from pH 6.0 

(blue) to pH 7.4 (black).  The data was globally fit to a 2-state model (solid lines). 
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Figure 3.2. Gnd Denaturation melts of tagless Di-III_14 at 222nm by CD 
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Table 3.1. Thermodynamic parameters 

 

 
  



112 
 

Di-III_14 is thermodynamically 2-state 

 Using the N-terminal tagged construct, Gnd melts were performed for 

thermodynamic characterization at pH 6.0, 6.5, and 7.4 prior to HDX NMR. There 

is no apparent pH dependence of the stability of the protein (Fig. 3.3) as the 

denaturant melts are virtually coincident at pH 6.0 and pH 7.4. The global stability 

across this pH range, yields an average global stability of 5.52 ± 0.16 kcal mol-1 

and an m-value of 2.35 ± 0.07 kcal mol-1 MGnd
-1  (Table 3.1). A CD wavelength 

scan at 0 M denaturant reveals that the secondary structure of the Native state  

(N) is likewise unaffected by pH within this range (Fig. 3.4).  

 Gnd melts were also surveyed by total intensity fluorescence (FL) using 

the single intrinsic tryptophan of the construct.  These results also appear to 

demonstrate 2-state behavior and again appear to be virtually coincident at all 

three pHs surveyed (Figure 3.3B). Unfortunately the titrations measured by FL 

total intensity cannot be reliably fit owing to the steep native baselines. Further 

analysis of the data by center-of-mass shows a loss of coincidence due to a 

wavelength shift in the pH 7.4 data (Figure 3.3C) precluding comparable fits 

across the pH range. The thermodynamic stabilities reported herein reflect the 

CD measurements and are consistent with the previous CD measurements made 

on the original construct with the C-terminal his-tag70. 

 Unfolding of the protein by Gnd reveals a midpoint at 2.34 M Gnd.  

Generally the corresponding urea melt should have a midpoint at approximately 

twice (~4.68M) the molar concentration104. Surprisingly, Urea has little apparent 
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effect on the Native state of Di-III_14 from 0-8.5 M (Fig. 3.5), suggesting that salt 

is contributing significantly to the Gnd denaturation profile.  However, repeating 

the urea titration from 0-8 M at the solubility limit of 2.4 M NaCl is insufficient to 

perturb the structure further (Fig. 3.5). 
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Fig 3.3. Gnd titrations of N-tagged Di-III_14. Gnd denaturation melts of the 

tagless construct are pH independent at pH 6.0 (blue), pH 6.5 (red), and pH 7.4 

(black).  The data was globally fit to a 2-state model (solid lines; see Table 3.1). 

(A) Gnd melts observed by CD at 222nm show coincident responses at all 3 pHs. 

(B) Total intensity fluorescence measurements reveal a steep native baseline 

that precludes accurate fits. (C) The center of mass analysis of the fluorescence 

data shows a wavelength shift at high molar Gnd preventing comparable fits 

across the dataset. 
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Figure 3.3. Gnd titrations of N-tagged Di-III_14
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Fig 3.4. CD wavelength scans of Native Di-III_14. There is no apparent pH 

dependence on the Native state of Di-III_14. Scans at pH 6.0 (blue), pH 6.5 (red), 

and pH 7.4 (black) are superimposable. 
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Figure 3.4. CD wavelength scans of Native Di-III_14
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Fig 3.5. NaCl and urea sensitivity of Di-III_14 by CD wavelength scan. The 

native structure of Di-III_14 is superimposable at native conditions (black and red 

dashed lines) with the 2.4 M NaCl condition (red solid line). 8 M urea (black solid 

line) disrupts the native structure but remains more structured than the midpoint 

signal of the Gnd melts (blue dashed line). In 8 M Gnd + 2.4 M NaCl (green solid 

line) there is no further disruption to the structure as compared to the 8 M 

condition. 
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Figure 3.5. NaCl and urea sensitivity of Di-III_14 by CD wavelength scan   
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Di-III_14 is kinetically 2-state 

 The kinetic unfolding and refolding experiments with respect to the Gnd 

denatured state occur faster than can be observed using a conventional stopped-

flow CD with a dead-time of 5 ms at 222 nm.  Although all of the secondary 

structure is formed within this dead time, even when jumping to the midpoint, 

tertiary changes are observable by stopped-flow and continuous-flow mixing 

experiments observed by FL.  Notably, Di-III_14 demonstrates very fast folding 

and unfolding kinetics with an extrapolated refolding relaxation time of  48.0 μs 

and unfolding relaxation time of 479 ms at 0 M denaturant (Fig 3.6).  These 

equilibrium dynamics place the protein within the EX2 regime of hydrogen 

exchange at 25 °C where the average exchange rate of ~9.4 ms is approximately 

196 times slower than the refolding rate, as calculated using SPHERE105 for this 

sequence at pH 7.4 and 25 °C. The chevron plot of the kinetic relaxation times is 

consistent with the thermodynamic analysis as it demonstrates no roll-over 

behavior and fitting the chevron to a 2-state model, with reference to the Gnd 

unfolded state (UGnd ⇌ N), yields a comparable Gibbs free-energy of 5.33 ± 0.05 

kcal mol-1 and an m-value of 2.34 ± 0.14 kcal mol-1 MGnd
-1 (Table 3.1, Fig 3.6). 

The coincidence of the kinetic data at pH 6.0 and 7.4 and with the tagless variant 

suggests a pH and histag independence of the kinetics which is consistent with 

the observed pH independence of the thermodynamics (Fig 3.6).  

 Using time-correlated single photon counting (TCSPC) intrinsic FL lifetime 

measurements were made to determine if there is a detectable burst-phase 
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intermediate. Equilibrium titration by this method describes a 2-state process with 

a comparable free-energy and m-value to the previous equilibrium and kinetic 

studies (Fig. 3.7). Calculation of the quantum yield averaged lifetime from the 0.6 

M Gnd jump describes a two state process as the lifetimes correspond to the N 

and UGnd states observed at equilibrium (Table 3.1). 
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Fig 3.6. Di-III_14 kinetic analysis. Rate constants acquired from folding kinetic 

experiments are plotted against final denaturant concentrations of the kinetic 

jump. The kinetics of tagless (open circles) and N-tagged (closed circles) are 

within error of each other. There is no apparent pH dependence of the data as 

the pH 7.4 data (black) is within error of the pH 6.0 data (blue). Fitting of the data 

to a two state model (solid black line) is consistent with the thermodynamic data 

(see Table 3.1). 
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Figure 3.6. Di-III_14 kinetic analysis
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Fig 3.7. N-tagged Di-III_14 lifetime analysis. The quantum yield weighted 

average lifetimes for the equilibrium Gnd titration measured by TCSPC (black 

dots) are fit to a 2-state model (black line). The fitting parameters are consistent 

with CD and FL kinetic estimates (see Table 3.1). Fitting the CF-TCSPC 0.6 M 

refolding jump yields lifetimes consistent with the equilibrium measurements at 

both 6 M Gnd and 0.6 M (dashed red lines), suggesting that the kinetics are 

entirely 2-state.  
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Figure 3.7. N-tagged Di-III_14 lifetime analysis   
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Native state HDX reveals residual structure in the U state 

 To better survey the "smoothness" of the energy landscape, native state 

HDX experiments observed by NMR were conducted at pH 6.0, 6.5, and 7.4. The 

exchange of 33 out of the total 89 amino acids are observable with a range of 

exchange rates from 9 minutes to 26 hours. Exchange of two amino acids, V31 

and I70 on β-strands 2 and 4, occurs too slow to be reliably fit over a collection 

time of 3 days. Comparison of the observed exchange rates (kobs) across the 

different pHs reveals a symmetric correlation with a slope approximating unity 

along the diagonal (Fig. 3.8), suggesting that exchange is pH independent, and 

thus exchange occurs through an EX1 mechanism (kclose<<kint)106.  Notably, the 

pH 7.4 data, although approximating EX1 behavior, appears to be demonstrate 

slightly faster exchange rates than the pH 6.0 data. Approximating a full 

exchange response as three times the relaxation time, the kinetic response of the 

protein would suggest that in both EX1 or EX2 (kclose>>kint) exchange regimes all 

residues should be fully exchanged well within the 24 min acquisition time of the 

experiment, 1.5 s and 3.3 ms.  Observed rates therefore suggest an apparent 

super-protection that is indicative of an intermediate or residually structured 

unfolded state (URS). Because 63% of the residues are fully exchanged prior to 

the first acquisition and there is no significant correlation between solvent 

accessible surface area (SASA) of the exchangeable amide and exchange rate 

(Fig. 3.9), this residual structure is likely to reside on the unfolded side of the 

barrier.  
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Fig 3.8. Residual structure is slow to exchange. Exchange rates at pH 6.5 

(red) and pH 7.4 (black) are plotted against the rates observed at pH 6.0.  The 

slope of 1 on the diagonal suggests that URS is exchanging via an EX1 

mechanism. EX2 reference lines for pH 6.0 (red) and pH 7.4 (black) are shown 

as dashed lines.
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Figure 3.8. Residual structure is slow to exchange
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Fig 3.9. Solvent accessible surface area of the amide nitrogen. The SASA of 

the amide nitrogen, as calculated by Chimera from the NMR structure, are 

plotted by amino acid position (blue).  The residues persistent in URS are 

superimposed (red circles).  Although many protected residues have no SASA, 

many that are not protected and also have no appreciable SASA.  (B) The 

exchange rates are not correlated to SASA . 
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Figure 3.9. Solvent accessible surface area of the amide nitrogen 
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Mapping the observed exchange rates to the 3-D structure reveals a 

stable hydrophobic core surrounded by solvent exposed polar groups (Fig 3.10). 

In fact 14 of the 33 super-protected residues are hydrophobic with 10 being ILV 

residues calculated to be part of a larger predicted isoleucine, leucine, and valine 

(ILV) cluster (Kathuria et. al, unpublished data). Structural contributions are from 

both helices as well as the 2 central β-strands (Fig. 3.10).  

Interestingly, of the 8 predicted (ESBRI) salt bridges107, 5 span 28 or more 

residues in sequence and connect adjacent secondary structure elements. The 

most notable of these are the three contacts between K67 to D34, K69 to E32, 

and R71 to E30, which all connect the C-terminal β4 strand to the intercalated β2 

strand in the center of the β-sheet (Fig. 3.1C). These β-strands may be stabilized 

by their resident salt bridges as the slow exchange rates are enriched within 

these elements (Fig. 3.10). Notably the slowest rates are at the center of these 

two strands, directly adjacent to E30 and R71. The slowly exchanging V31 and 

I70 are not only flanked two salt bridges in sequence, but are also hydrogen 

bonded to one another. 

Residual structure in the Unfolded state is Sensitive to Guanidine 

 Repeating the HDX NMR experiments in lower molar Gnd demonstrates 

decreasing exchange times with increasing denaturant concentrations (Fig. 

3.11A). These experiments are conducted in low molar Gnd concentrations that 

are well within the native baseline, 0.5 and 1.0 M. At these concentrations the 

rate of  
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Fig 3.10. Structural correlates of exchange rates. All exchange rates are 

superimposed on the NMR structure of Di-III_14 (top left). Only polar residues 

(bottom left), only ILV residues (bottom right), and only hydrophobic residues (top 

right) are shown as spheres.  Elements in grey exchange too quickly to be 

observable. The black elements have observable exchange over a 3 day 

collection window, but are too slow to reliably fit. The scale from red to blue is 

every 20% of the observable range of the rates. 
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Figure 3.10. Structural correlates of exchange rates
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Fig 3.11. NaCl and Gnd sensitivity of exchange rates. (A) In response to 

increasing concentrations of Gnd, a slight decrease in exchange rates is typically 

observed before acceleration, implicating low molar Gnd in slightly stabilizing 

interactions. (B) The residues with observable exchange rates at 0.5 M Gnd are 

mapped onto the NMR structure. All hydrophobic residues are in orange and all 

polar residues are in blue. (C) Increasing concentrations of NaCl generally 

increases the exchange rates. NaCl at 0.5 M is more perturbing than 0.5 M Gnd 

and 1M Gnd (see A). (D) The residues with observable exchange rates at 0.5 M 

NaCl are mapped onto the NMR structure. All hydrophobic residues are in 

orange and all polar residues are in blue. NaCl generally disrupts the β-sheet 

more significantly than Gnd. 
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Figure 3.11. NaCl and Gnd sensitivity of exchange rates   
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refolding at equilibrium differs 10-fold between 0 M and 1 M denaturant and 5-

fold for the rate of unfolding, based on the equilibrium rates. However, the 

observed difference in rates varies only 1.5 to 4-fold across the set of residues, 

excluding residues 31 and 70. These results suggest that the residual structure 

observed in the HDX NMR experiment is perturbed by low concentrations of 

Gnd, in a way that is inconsistent with the kinetic rates.  The different rates at 0 M 

Gnd suggests multiple transitions from URS to the exchange competent unfolded 

state (UEX). Therefore the exchange reaction is limited by barriers that are not 

observed in the UGnd ⇌ N thermodynamic and kinetic studies.  

 The residual structure is mapped onto the NMR structure (Fig. 3.11B). 

These elements suggest a large hydrophobic contribution between the helices 

and the β-sheet within the residual structure.  Surrounding polar groups may also 

be contributing to the stability of the hydrophobic core. 

Residual structure in the Unfolded state is Sensitive to Salt 

 The Gnd dependence of exchange rates considered with inability for urea 

to sufficiently disrupt native structure of Di-III_14 (Fig 3.11A) suggests that the 

ionic strength of the solution may be destabilizing. Under equilibrium conditions, 

there appears to be no effect on the native state at concentrations of 2.4 M NaCl 

(Fig. 3.5). The solubility limit of 2.4 M NaCl with 8M urea preludes a 

determination of the effect of NaCl on the stability of the native state, as no 

significant salt dependence can be extracted between 0 M and 8 M with NaCl 

concentrations as high as 2.14 M.  
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Repeating the HDX experiments in the presence of 0.5 and 1.0 M NaCl 

show an acceleration of exchange rates at 0.5 M NaCl that are faster than the 

accelerated exchange rates observed at 0.5 and 1M Gnd (Fig 3.11A,C). At both 

concentrations of NaCl, aggregation severely limits the signal intensity such that 

no meaningful data could be resolved at 1 M concentrations. This observation 

suggests that the unfolding of URS leads to aggregation prone species, which is 

accelerated upon the observed destabilization of URS. This acceleration of 

exchange rates also suggests that, although both Gnd and NaCl are both 

destabilizing, the Gnd has semi-compensatory stabilizing affect at low molar 

concentrations that modulates the effect of the ionic contributions.  This effect is 

perhaps most pronounced in Figure 3.11A where residues grouped from R46 to 

L51 and A19 appear to show an increase in exchange time from 0 M to 0.5 M 

Gnd. Previous work on Cytochrome C has observed a similar stabilizing affect at 

low molar urea and Gnd concentrations108. Work from Farber and colleagues109 

and Kumar et. al110 also demonstrate that Gnd can bind to the protein backbone, 

increasing rigidity, supporting this observation.  

Mapping the protected residues that persist at 0.5 M NaCl onto the NMR 

structure shows a significant loss in residue contributions from the β-sheet of 

both hydrophobic and polar character (Fig. 3.11D). Comparison of the residues 

that remain in 1M Gnd (Fig. 3.11B) to those that remain in 0.5 M Nacl (Fig. 

3.11D) suggest that the salt bridges (Fig. 3.1C)  are disrupted by NaCl but not by 
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Gnd.  This potential disruption would increase the dynamics of the β-sheet and 

therefore increase the exchange rates of the local residues. 

   

Discussion 

Di-III_14 has an electrostatically dependent, native-like structured unfolded 
state 

 The Gnd and NaCl dependent apparent super-protection observed by 

HDX experiments suggests that electrostatic charges play a major role in 

establishing the residual structure in the unfolded state.  The failure of urea to 

unfold the protein, with and without 2.4 M NaCl (Fig. 3.5), demonstrates that 

electrostatics are not the primary mode of stabilization of the N state. Conversely, 

the stability of the URS is largely dependent on electrostatic interactions as the 

exchange rates can be significantly modulated by the presence of either Gnd or 

NaCl (Fig. 3.11). Although the major modes of stability are different between 

these two states, the chemical shifts of the 33 slow exchanging amino acids are 

comparable to the Native state as measured by heteronuclear single quantum 

coherence spectroscopy (HSQC) (Fig. 3.12).  The residual structure of the 

unfolded state, therefore, maintains native like structure that biases the folding 

towards native. This potential conservation of topology in a addition to the low 

contact order may explain the microsecond refolding rates at 0 M denaturant64.  
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Fig 3.12. Native structure in URS. The chemical shift differences (left panel) are 

all less than 1ppm in response to pH (top), Gnd (middle), and NaCl (bottom). The 

Corresponding 15N-HSQC overlays (right panel) with pH 7.4 reference data show 

significant agreement of all cross-peaks. (credit: Laura Deveau) 
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Figure 3.12. Native structure in URS 
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 The ionic sensitivity of the structure of Di-III_14 is potentially explained by 

the unnatural sequence composition.   Unlike naturally occurring globule 

proteins, Di-III_14 is enriched for polar charged amino acids by 10-15%, typical 

of intrinsically disordered protein (IDP) sequences111.  Like IDPs, Di-III_14 can be 

characterized as a polyampholyte with a kappa value of 0.25, indicating a 

significant segregation of opposite charges and therefore an intrinsic ability to 

collapse under native conditions112,113. The charge segregated, and sequence 

distal salt bridges between β2 and β4 are illustrative of this point.   

 Although the his-tag contributes to the charge segregation, the presence 

of a his-tag has previously been reported to be correlated with a reduction of the 

hydrodynamic radius (Rh) of IDPs as a function of total sequence 

representation114, further supporting this point. The N-terminal cleavable his-

tagged construct consists of 89 residues, making a hexahistag 6.7% of the total 

sequence. According to Marsh and Forman-Kay's correlation114, the expected 

compaction from the his-tag would be around 20%. In the case of Di-III_14, 33% 

of the residues are implicated in the residual structure and is thus in probable 

agreement with this estimate.   

The description of the URS from the sum of these studies suggest that the 

residual structure in the unfolded state is native like, compact, and stabilized by 

long range electrostatic interactions. Further, the implication of the his-tag in 

compaction of the structured unfolded state qualitatively agrees with the noted 

increased aggregation propensity of the tagless construct. Structural correlates 
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gleaned from the NMR data further describe this structure as consisting of a 

hydrophobic core between the two central β-strands and the two alpha helices. 

Solvent exposed polar residues flank this core and long range salt bridges span 

the central beta-strands which also share main chain hydrogen bonds, further 

stabilizing the structure. 

Modeling the free-energy landscape of Di-III_14 
Di-III_14 unfolds to a structured intermediate under Native favoring conditions 

 The data presented here suggests evidence for a compact unfolded state 

(URS) that retains native like character (Fig. 3.12), presumably due to a 

combination of long range electrostatic interactions (Fig. 3.1C) and low CO 

hydrophobic contacts (Fig. 3.1B, 3.10, 3.11B).  Based on the equilibrium 

dynamics extracted from the kinetic experiments the exchange mechanism is 

expected to be EX2 and therefore occur entirely within the first acquisition by 

NMR. Approximately 67% of the protein follows this expectation in a manner that 

is not dependent on the SASA of the amide nitrogen (Fig. 3.9), suggesting that 

the remaining 33% of slow exchanging residues is on the unfolded side of the 

barrier (Fig. 3.13). 
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Fig 3.13. Free-energy landscape of Di-III_14. Folding from the Gnd unfolded 

state to N is kinetically a 2-state process (dashed line). Under native-favoring 

conditions, the native state unfolds to a structured unfolded state (URS). URS 

unfolds to the exchange competent unfolded state (UEX) through at different 

rates, suggesting a structurally diverse unfolded state that is more structured 

than the guanidine unfolded state (UGnd). 
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Figure 3.13. Free-energy landscape of Di-III_14 
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URS is not populated in refolding to N from UGnd 

 A compact unfolded intermediate, such as the one observed under native-

favoring conditions, is not observed in equilibrium or kinetic experiments by CD 

or FL. The deviance from a 2-state process under these conditions suggests 

significant differences in the free-energy landscape on the unfolded side of the 

barrier which is dependent on the presence of ionic strength of Gnd and NaCl at 

concentrations that have no observable effect on the Native structure (Fig. 3.5). 

None of these barriers are experimental observed under equilibrium conditions 

observed by CD or FL, Kinetic experiments observed by total intensity FL, or in 

the FL lifetime measurements which describe complete refolding from UGnd → N 

(Fig. 3.6). In agreement with this data is the m-value which is as expected for an 

89 residue protein86. 

The UGnd, UEX and URS states are distinct unfolded state populations 

 Interestingly, the EX1 exchange rates are not homogeneous (Fig. 3.11). In 

EX1 exchange the unfolding rate is much slower than the rate of exchange such 

that106 kex = kopen. Non-homogenous EX1 rates imply that the barriers between 

UEX and URS are also variable. This observation implies that multiple structurally 

unique UEX states must exist that are not in rapid equilibrium with one another. 

Structure in the UEX implies that this state must also be distinct from the UGnd 

which is likely to be random coil87. If this interpretation is correct, it is the first 

experimental evidence, to the best of my knowledge, that may recapitulate the 
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model of the unfolded state described by hub models of folding produced by 

MSM analysis of molecular dynamic simulations37. 

Designing against URS 

 Koga et. al.70 used MD simulations to develop design rules to bias folding 

to the N state from a random coil. Comparison of their predictions with the data 

taken in the Gnd background yields perfect agreement, while data taken under 

native-favoring conditions reveals unexpected complexities on the unfolded side 

of the barrier.  These complexities are likely to be largely due to the charge 

segregation of the sequence112, and specifically to the salt bridges within the β-

sheet. Salt bridges are also seen in the Di_I-5 construct, the only other construct 

to have helices on only one side of the β-sheet. These salt bridges are, likewise,  

between internal strands (1 and 3) in the center of the β-sheet. Unlike DI-III_14, 

the charges alternate on each strand, which may provide a test for the 

hypothesis that the charge segregation is contributing significantly to the URS 

structure. Alternatively mutations within these two β-stands within Di-III_14 may 

be able to decrease the complexities on the unfolded side of the barrier. 

Perspective 

 The successful rational de novo design of proteins has been a long-sought 

after goal since the 1980's115. The success of this idea promises to define the 

fundamentals of the physicochemical basis of protein folding while also providing 

customizable engineered protein therapeutic platforms, and rational stabilization 

methods. Previous work has been promising but has ultimately fallen short of 
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simplifying the kinetic mechanism33 of folding such that misfolding and 

aggregation reactions are avoided. Here we provide evidence to support the 

successful rational engineering of the protein Di-III_14 which is not only stable 

but also maintains a smooth energy landscape over biologically relevant time 

scales, a result of incorporating folding kinetics into the design. However, this 

accomplishment comes at the cost of obfuscating the naturally occurring 

physicochemical basis of protein folding by enriching the sequence to an 

unnaturally high composition of polar charged amino acids (40.5%) for globular 

proteins (typically 25-30%)97. The result is a protein that retains native-like 

structure in a structured unfolded state, completely biasing it's folding trajectory 

and minimizing the degrees of freedom through which it is permitted to traverse 

the folding free-energy landscape.  Complications arise on the unfolded side of 

the barrier in perceived roughness of in the high energy region of the landscape, 

although access is kinetically limited. Therefore, although these results may not 

be entirely generalizable to natural sequences, the success of this design may 

prove to be a valuable model for the collapsed unfolded states as well as a 

platform for the development of conformationally and kinetically stable biologics.   

Methods 

Protein expression and purification 

 Di-III_14 was engineered with an N-terminal hexahistidine tag and an 

intervening Tev Protease site (GenScript), ligated into the expression plasmid 

pGS-21a, and transfected into the E. coli strain BL21 Codonplus® (DE3)RIL for 
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expression. All proteins were isolated from inclusion bodies by dissolving the 

insoluble fraction of the cell lysate in 6 M Gnd and refolding into 10 mM 

potassium phosphate buffer at pH 7.4. Precipitates were removed using 

centrifugation and the soluble fraction was bound to a nickel resin overnight at 

room temperature. The nickel resin was then thoroughly washed and the His-

tagged protein was eluted with a step gradient of 10 mM, 25 mM, and 300 mM 

imidazole. Pure fractions were pooled and dialyzed into the working buffer.  For 

the tagless variant, the protein was dialyzed into 50 mM tris, 1 M urea, pH 7.8. 

Overnight incubation with His-tagged Tev Protease was used to cleave off the 

His-tag from Di-III_14. The reaction product was bound to a nickel resin overnight 

and the cleaved protein was washed off of the resin in 10 mM potassium 

phosphate buffer at pH 7.4.  Protein was concentrated and applied to a Q 

Sepharose column and eluted using a salt gradient from 0 to 400 mM NaCl. The 

purity was confirmed (> 98%) using a Waters Q-TOF ESI mass spectrometer. 

 For NMR experiments, protein was dialyzed in to 10 mM ammonium 

bicarbonate. The concentrations of the fully dialyzed samples were determined 

using Beer's law with the UV absorbance at 280 nm and the calculated extinction 

coefficients of 5500 M-1 cm-1 for the tagless construct and 6990 M-1 cm-1 for the 

N-tagged construct. Appropriate volumes for reconstitution of 600 μM of a 1 mL 

volume were aliquotted and lyophilized, typically from stock concentrations of 

100 μM. 
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Protein sequences 

Di-III 14 [N-terminal tag] (89 AA):  

H H H H H H S S D I E N L Y F Q G L T R T I T S Q N K E E L L E I A L K F I S 

Q G L D L E V E F D S T D D K E I E E F E R D M E D L A K K T G V Q I Q K Q 

W Q G N K L R I R L K G 

Di-III 14 [tagless] (73 AA):  

G L T R T I T S Q N K E E L L E I A L K F I S Q G L D L E V E F D S T D D K E I 

E E F E R D M E D L A K K T G V Q I Q K Q W Q G N K L R I R L K G 

Native state analysis 
Circular dichroism structure analysis 

 Far-UV CD spectra were collected on a JASCO model J810 CD 

spectrophotometer . All samples were buffered with 100 mM NaCl, 5.6 mM 

Na2HPO4, 1.1 mM KH2PO4  at pH 7.4, 6.5, and 6.0 at 25⁰ C. Measurements were 

taken in a 0.5 cm path length cuvette with a bandwidth of 2.5 nm and a step size 

of 0.5 nm at a protein concentration of approximately 5 μM from 202 nm to 260 

nm. Three buffer subtracted spectra were collected and averaged for each 

protein with a total averaging time of 3 s per wavelength. 

Equilibrium unfolding and refolding 

  Unfolded (7 M Gnd) and folded (buffer) stocks of protein were diluted with 

varying concentrations of 100 mM NaCl, 5.6 mM Na2HPO4, 1.1 mM KH2PO4  with 
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and without Gnd at pH 7.4, 6.5, or 6.0 to achieve a final protein concentration of 

approximately 5 μM protein and a range of final Gnd concentrations from 0 M to 

6.0 M. Each sample was thoroughly mixed and left to equilibrate overnight at 

room temperature. CD spectra were collected on a JASCO model J810 

spectrophotometer under the same conditions as the wavelength scan, and by 

intrinsic tryptophan fluorescence using Horiba Flourolog3 with a slit width of 5 

nm, excitation at 295 nm with a 0.5 cm path length, and emission spectra 

collected above 310 nm with a 1 cm path length at 25⁰ C. The fluorescence and 

CD data were globally fit to a two state N⇌U model as a function of Gnd using 

our in-house Savuka software package. 

Kinetic studies 
Stopped-Flow intrinsic tryptophan fluorescence  

 Measurements were collected on a Applied Photophysics model SX.18MV 

stopped flow.  Di-III_14 was injected from stock concentrations of 40 μM and 

mixed with a 1:10 dilution to 4 μM with 100 mM NaCl, 5.6 mM Na2HPO4, 1.1 mM 

KH2PO4  to a the final experimental Gnd concentration. Data was collected for 

0.25 seconds with a logarithmic point density totaling 4000 individual points. 

Each kinetic jump was repeated 20 times. 

 

Continuous-flow intrinsic tryptophan time-correlated single photon counting 
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 The all-quartz mixer was custom made by Translume, Inc. with channels 

50 μm wide and 100 m high.  Nanoport  connectors for use with 1/32 inch outer 

diameter PEEK tubing (Upchurch) were attached using UV curing epoxy by the 

manufacturer (Translume, Inc.).  Trp fluorescence utilized 292 nm excitation from 

the tripled-output of a Ti:sapphire laser.  A blank and NATA control were 

acquired for each trace to correct for background fluorescence (typically ~1%) 

and variations in excitation intensity along the channel (typically < 5%), 

respectively.  Computer controlled scanning of the channel was accomplished by 

an x-y translation stage (Biopoint 2, Ludl Scientific). 

Time-correlated single photon counting data analysis 

 Lifetime data was fit using a 2 exponential fit with the software DecayFit 

(Fluorescence Decay Analysis Software 1.4, FluorTools, www.fluortools.com). 

The quantum yield weighted averages were calculated with equation 3.1, 

   
       

  
 

   

         
   

           (Eqn. 3.1) 

where Qτ is the quantum yield weighted average lifetime, x is the number of 

lifetimes the data is fit to, α is the amplitude of the lifetime, and τ is the lifetime 

decay. 

Hydrogen exchange NMR 
Isotopic Labeling 
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 Labeling with 15N was performed by growing cells in isotopically enriched 

M9 medium, 1g 15NH4Cl per liter. The sample was lyophilized after purification s 

described above. 

2D 1H-15N Heteronuclear Single Quantum Coherence 

 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectra were 

collected using samples of U-15N Di-III_14 in a 90% H2O/10%D2O buffer solution 

of 100 mM NaCl, 5.6 mM Na2HPO4, 1.1 mM KH2PO4 at pH 7.4, pH 6.5, pH 6, 

0.5M NaCl, and 0.5M and 1M guanidine. Assignments were transferred using 

previously assigned spectrum taken from BMRB70.  

NMR for exchange  

 Exchange was initiated by dissolving the lyophilized protein in 2H2O buffer, 

which had been prepared at the required pH and buffer conditions. All pH values 

reported are corrected meter readings. Upon addition of 2H2O buffer, the sample 

was immediately transferred to a 5 mm NMR tube (Wilmad LabGlass, Vineland, 

NJ) and placed in the spectrometer at 25 °C; the protein concentration was ~0.6 

mM. The time between the initiation of exchange, the transfer to the NMR tube, 

placement in the spectrometer, tuning and shimming and the beginning of data 

collection averaged 6 min. 2D 15N–1H HSQC spectra were recorded over a 

period of hours to days, and the sample remained in the spectrometer for the 

entire course of the exchange reactions. All NMR experiments were recorded on 
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a Varian 600-MHz spectrometer, and the spectra were processed in NMRPipe116 

and analyzed with Sparky.  
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Chapter IV - Advances in Continuous Flow Mixing 
and µSAXS to Approach Shorter Experimental 

Time Scales and Compatibility with 
Computational Studies 

 

 This chapter is a combination of a single photon counting methods 

manuscript that is currently being prepared for publication as well as  content 

from publications listed below. For all publications, I  contributed to the content 

through technical developments and/or data acquisition and analysis. 

 

1. Lambright D, Malaby AW, Kathuria SV, Nobrega RP, Bilsel O, Matthews 

CR, "Complementary techniques enhance the quality and scope of 

information obtained from SAXS" Transactions American Crystallographic 

Association. 2013 July; Vol. 44, epub 

 

2. Kathuria SV, Kayatekin C, Barrea R, Kondrashkina E, Graceffa R, Guo L, 

Nobrega RP, Chakravarthy S, Matthews CR, Irving TC, Bilsel O 

"Microsecond Barrier-Limited Chain Collapse Observed by Time-Resolved 

FRET and SAXS" Journal of molecular biology 2014 May;426 (9), 1980-

1994 

 

3. Graceffa R, Nobrega RP, Barrea RA, Kathuria SV, Chakravarthy S, Bilsel 
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Introduction 

Experimentally, early events in protein folding reactions are difficult to 

observe due to heterogeneous conformational ensembles, marginal stabilities 

inherent to high energy states, and the transient lifetimes of structures. As such, 

many techniques are limited by time or measurement resolutions. Kinetic protein 

folding experiments by dilution, although widely used, are limited by time 

resolution, and are unable to provide high resolution structural insights unless 

coupled to other techniques, such as hydrogen-deuterium exchange (HDX) or 

fast photochemical oxidation of proteins (FPOP). Recent advances in mixing 

technology have brought the time resolution of refolding experiments into the 

microsecond time regime while maintaining acceptable rates of sample 

consumption42 (Fig. 4.1). Interfacing efficient mixing strategies with improving 

detection methods can provide residue specific, pair-wise, and direct global 

measurements. Combining measurements at varying resolutions over 

comparable timescales offers the advantage of detailed global analyses117, as 

well as the direct and comprehensive comparison to high resolution simulations. 

Computational approaches to the protein folding problem have been 

successfully implemented since 1975118. Full understanding and validation of 

computational models requires that they be benchmarked with experimental 

data. Successful simulations are therefore capable of significantly enhancing the 

resolution of folding models only when significant agreement between the  
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Fig 4.1. Time line of mixer development. Reported mixing times of turbulent 

mixers (green filled circles), laminar mixers (red filled circles), and chaotic mixers 

(blue filled circles) are plotted as a function of the publication year. All three 

mixing techniques can access a mixing time of few tens of microseconds. The 

sample consumption rate of these mixers is also reported (open triangles) with 

the same color scheme. The exponential decay in the sample consumption of 

turbulent mixers is represented by the green line (fit of the reported flow rates). 

While sample consumption of laminar and chaotic mixers is an order of 

magnitude smaller than their modern turbulent counterparts, the sample 

concentrations required is correspondingly an order of magnitude higher in the 

laminar mixers. In the case of SAXS and CD there has been a significant 

improvement in the interfacing technology and a concomitant decrease in the 

reported mixing times. Improvements over the last 50 years have primarily been 

associated with a reduction in sample consumption more than a reduction in 

mixing times. (Credit: Sagar Kathuria) 
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Figure 4.1. Time line of mixer development  
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experimental and simulation datasets exists.  However, direct comparisons 

between simulated folding trajectories and experimental data are complicated by 

several  factors.  Primarily, until recently119 atomistic simulations could not 

achieve millisecond timescale resolution. Although a minority of small proteins 

can fold completely in the microsecond timescale27, most biological proteins fold 

on the millisecond to minute timescales. Computational expense requirements 

for atomistic simulations not only limit the number of proteins amenable to this 

approach, but also the number of full (U→N) folding trajectories that can be 

obtained that may not properly represent the broad experimental ensemble. 

To overcome limiting computational requirements, especially in the field’s 

infancy, coarse-grained simulations were employed8. Modern implementations of 

coarse-grained simulations offer the acquisition of numerous full trajectories. 

Although the data density and the number of applicable proteins increases with 

this approach, assumptions are made in the parameterization that incorporate 

reasonable doubt for positional accuracy at a residue level within the generated 

models, reducing the effective resolution of the computational dataset.  

Recent advances with graphics processing units (GPU) and distributed 

computing have increased the timescales of atomistic simulations to tens of 

ms119 (see also chapter 2) such that single trajectory simulations can now be 

performed for milliseconds of folding time. However, these simulations are still 

limited statistically by sample size (1 ms trajectories on Anton: n = 1-4), reducing 
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the comparability with experimental data120. The use of Markov State Model 

(MSM) analysis, a method by which a large number of short trajectories are 

combined to describe the folding landscape, allows for a more complete 

sampling of the entire free-energy surface (see review for details: Pande VS et. 

al, 37) and can therefore be readily compared to bulk experimental measurements 

(see Chapter 2).   

Advances in experimental techniques are as necessary as advances in 

computational strategies if the convergence of timescales between the two 

methods is to occur with significant resolution to obtain meaningful agreement.  

Successful comparisons require agreement at all resolutions; residue-specific, 

pair-wise, and global, across the micro-to-millisecond timescales. Robust 

datasets spanning the microsecond-to-millisecond timescales will complement 

the breadth of data that can be obtained at slower time scales by conventional 

stopped-flow and manual mixing techniques at ms-to-hour timescales while also 

converging with growing simulation times. Here, advances in continuous flow 

(CF) mixing technology and the adaptability of such technologies to a range of 

techniques to provide both high and low resolution data for direct comparison to 

simulations are discussed. The analysis strategy described herein is a proposed 

guideline for achieving detailed structural information of folding events through 

the combination of MSM models and CF-mixing data. 
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Advantages of mixing techniques 

Kinetic folding techniques and the unfolded state 

 Several techniques are capable of resolving early protein folding events. 

Laser-induced temperature jump (t-jump)121 and pressure jump (p-jump)122 

experiments are examples of bulk kinetic experiments that have equivalent or 

better time resolution than CF-mixing experiments (Fig. 4.2). However, these 

techniques fail to be as generally applicable and unbiased as CF-mixing 

experiments with reference to the chemically denatured state. The chemically 

denatured state generally obeys random coil statistics by SAXS measurements87 

while temperature and pressure jump experiments reference the cold denatured 

and pressure denatured states, respectively. These states are highly biased by 

secondary structure and the hydrophobic effect owing to the native favoring 

conditions of the solvent123,124.  Referencing the biased unfolded states either 

ignores or misrepresents higher energy states that could lend insight towards the 

fundamental basis of early folding events.
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Fig 4.2. Experiment and folding timescales. Accessible timescales of 

biophysical experiments and simulations (above axis) compared to timescales of 

protein folding processes (below axis). Continuous flow mixing experiments 

overlap significantly with MD simulations and can observe nearly the entire 

process of tertiary contact formation. (Credit: Osman Bilsel) 
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Figure 4.2. Experiment and folding timescales   
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Physical considerations for continuous flow mixing experiments 

 Mixing experiments rely on the dilution of one solvent into another 

resulting in rapid exchange of the solvent of the experimental system. The mixing 

time, t (sec), of this rapid dilution is dependent on the distance by which 

molecules must diffuse, r (cm), and the translational diffusion coefficient, D (cm2 

s-1), appropriate for the size of the molecule (Eqn. 4.1)73.  

        (Eqn. 4.1) 

The diffusion distance is ultimately governed by the characteristics of mixing that 

are described by the dimensionless Reynolds number (Re) quantity. This value is 

calculated as the ratio of inertial forces to viscous forces (Eqn. 4.2)125 

          (Eqn. 4.2) 

 where ρ is the density (g cm-3), v is the flow velocity (cm s-1), d describes the 

dimension scale of the channel (cm), and η is the viscosity (cm2 s-1) of the fluid. 

Under ideal mixing conditions, the lowest possible dead time is the diffusion time 

appropriate for the viscosity limited interspersion of the solutions. At an 

experimentally achievable diffusion length scale, i.e. 0.1 μm with microfluidic 

mixers, the fastest achievable dead time of mixing for biological macromolecule 

(when D = 10-7 cm2 s-1) is 10 μs39. The two most common approaches towards 

achieving near-diffusion limited dead times with continuous flow microfluidics are 

laminar mixing with hydrodynamic focusing and turbulent mixing.  

Laminar mixing is achieved at low Reynolds number flows (Re < 2300). A 

protein refolding experiment under these conditions consists of a protein sample 
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in high molar denaturant being injected between two sheathing flows containing 

the low denaturant refolding buffer (Fig. 4.3). Increasing the flow rates of the 

sheathing flows relative to the sample flow will result in narrower dimensions of 

the sample flow.  Diffusion time across the distance of half of the central channel 

is the limiting factor resulting in the mixing dead time. Using this method, dead 

times as low as 10-20 μs have been reported126,127 with protein flow rates as low 

as 0.5 nL s-1 at concentrations of 100 nM to 100 μM protein128 for Förster 

resonance energy transfer (FRET) and tryptophan fluorescence experiments, 

respectively.  Unfortunately this method of mixing is not as easily interfaced with 

techniques where water can contribute to background noise, such as small angle 

x-ray scattering (SAXS) (Fig 4.3). Additionally, at low Reynolds numbers friction 

between the solvent and the channel walls are not overcome by the flow velocity 

resulting in channel flow with a parabolic leading edge, that is, the flow at the 

center of the channel moves faster than at the walls. This phenomenon, as well 

as the diffusion gradient of the sample, must be corrected for to define the 

reaction time axis and protein concentrations throughout the channel. 

 Under high Reynolds number flows (Re > 4000), mixing occurs in the 

turbulent regime.  Turbulent mixing relies on fast flow rates and shear flows to 

create eddies, the dimensions of which limit the mixing efficiencies. Under ideal 

flow conditions many homogenous and small eddies would be created to 

approach diffusion limited mixing times. The advantages of turbulent flow over 

laminar flow mixing is that upon completion of mixing the entire channel is 
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Fig 4.3. Comparison of turbulent/chaotic and laminar mixing strategies. 

Turbulent and chaotic mixing (left panel) produces a homodispersed channel 

which is advantageous for SAXS detection methods. Laminar mixing with 

hydrodynamic focusing (right panel) maintains the sample in a narrow dimension 

flow, which is a disadvatage for SAXS measurements because the beam focus is 

larger than the sample flow, contributing to background noise. 
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Figure 4.3. Comparison of turbulent/chaotic and laminar mixing strategies   
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homodisperse and the flow rates overcome the solvent to wall interactions 

creating a plug flow. Under these conditions the reaction time axis is simply 

proportional to the length of the flow channel with respect to the flow velocities 

and corrected for the mixing time. The homogeneity of the channel makes this 

mixer type ideal for increasing the signal to noise ratio of SAXS experiments, as 

well as reducing the operable concentrations of fluorescence and FRET 

experiments. Unfortunately, this mixing strategy relies on fast flow rates on the 

scale of mL min-1 which results in much higher sample consumption compared to 

laminar mixing. 

 A third and less explored approach to continuous flow mixing is chaotic 

flow which occurs in the transitional flow regime (2300 < Re < 4000).   In this flow 

regime both lamination of flow streams and turbulent character, such as vortices 

or eddies, are created which accelerate the mixing across the flow interface.  

Optimizing mixing in this regime is best accomplished by using mixer geometries 

to introduce inertial mixing through dramatic changes in flow direction (Fig. 4.4). 

Chaotic flow is advantageous because it retains the advantages of turbulent flow 

(i.e., homodisperse channel, and near plug flow), while also operating at lower 

flow rates to achieve lower sample consumption. The major drawback of chaotic 

mixing is the sacrifice of time resolution compared to turbulent mixing.
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Fig 4.4. Design of a chaotic mixer for SAXS. (A) 3-d CAD drawing of the  

channel, sharp turns are included to induce inertial mixing. (B) COMSOL 

simulation of a 2 mL min-1 1:10 dilution shows that pressures in the observation 

channel are atmospheric. (C) COMSOL simulation of the channel highlighting the 

velocities.  The change in sharp turns show rapid changes in momentum that 

improve mixing efficiencies. 
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Figure 4.4. Design of a chaotic mixer for SAXS   
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CF-SAXS Development at BIOCAT 

Challenges and considerations 

 Physical differences in mixing strategies are perhaps most pronounced 

with CF-SAXS measurements. X-ray diffraction patterns are produced when x-

rays influence the oscillations of electrons which produces coherent scattered 

waves.  As all electrons in the sample produce a scattered wave, the interference 

of these waves creates a diffraction pattern129. In homodispersed solutions of 

dilute biopolymers in aqueous solvent, resolving meaningful diffraction patterns 

are challenging due to the scattering contributions of the bulk water.  In solution 

scattering experiments, the difference of concentration-weighted electron density 

of the solute must exceed that of the solvent for the scattering particles to be 

observable. Protein scattering experiments at concentrations as high as 2-3 mg 

mL-1 are generally low contrast. As mentioned above, the contrast suffers further 

in protein folding experiments when laminar mixing is used as the majority of the 

sample exposed to the beam contains no protein making turbulent and chaotic 

mixers ideal mixing strategies for obtaining these measurements. 

 Although working at higher concentrations can significantly improve the 

signal-to-noise ratio of the experiment due to the coherent nature of the scattered 

waves, it is not an ideal strategy for protein refolding experiments. During protein 

refolding hydrophobic residues and partially structured states are more 

accessible to intermolecular interactions, leading to aggregation. Aggregation 

obscures the Guinier region of the scattering profile and biases the Rg 
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measurement because long pairwise distances have a disproportionately large 

influence on the root-mean-square average over all pairwise distances. In the 

absence of aggregation and at high concentrations, typically in excess of 5 mg 

mL-1, concentration-dependent interparticle effects become apparent and distort 

the low q region to bias the Rg determination towards lower Rg values. 

 Enhancing the signal-to-noise ratio without relying solely on the protein 

concentration can be accomplished by increasing the flux (photon counts sec-1 

m-2), which can be accomplished by using brighter synchrotron sources or 

narrowing the focus of the beam. In CF applications, narrowing the focus of the 

beam is advantageous because the mixer geometries can be correspondingly 

reduced, increasing the mixing efficiency and decreasing the dead time of the 

mixer. However, care must be taken in high flux measurements as radiation 

damage can occur due to the heat and free-radicals produced from the incident 

beam130.  In chaotic and turbulent mixing this is often not a problem as the flow 

rates are generally sufficient to reduce exposure time and maintain the 

temperature of the sample. 

Ongoing Developments 

 The development and optimization of the CF-SAXS apparatus at the 

Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced 

Photon Source, Argonne National Laboratory focused on achieving a high flux 

micro-focused beam, ultra-fast mixing, and decreased sample consumption. The 

initial developments consist of implementing a Kirkpatrick-Baez (KB) mirror 



173 
 

system131 to micro-focus the source beam down to a 20 µm x 5 µm a turbulent 

mixer with post-mixing observation channel dimensions of 100 µm x 400 µm x 2 

cm (Height x Depth x Length), a pilatus 100k pixel array detector, and a 

translation stage for the mixer. With this configuration the duty cycle is optimized 

(~85%) by scanning the mixer across the beam and concurrently acquiring 

detector images. Up to 90 points within the observation channel can be detected, 

with a dead time of 150 µs, and a total acquisition time of 2-3 s per point for 

every 20 mL of 2-3 mg mL-1 of injected protein. The large sample requirements of 

this setup have motivated further developments.  

A major consideration in signal quality is the flux loss acquired by 

implementing the KB based micro-focus. The maximum acceptance of the KB 

mirror system is 0.5 mm x 0.5 mm, which excludes 90% of the available flux90. 

We have since removed the KB mirrors and replaced them with an upstream 

compound refractive lens (CRL). With a focal distance of 2 m the CRL has a 

comparably reduced beam divergence from the 0.5 m distance of the KB micro-

focus. The resulting compact cross-sectional area of the beam at the detector 

extends the observable small q range to achieve a comparable q range to 

conventional equilibrium experiments, while increasing the flux and maintaining 

the focused beam dimensions at the sample (20 µm x 5µm). 

Advances in chaotic mixing are also being made. Using the finite element 

analysis software COMSOL, we are designing new mixer geometries and testing 

them in silico (Fig. 4.4). These efforts are focusing on the development of chaotic 
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mixers that should reduce the sample requirements 4-8 fold while maintaining an 

equivalent signal-to-noise ratio at a minimal cost of ~30% increase in dead time. 

While the dead times of turbulent and chaotic mixers have approached the 

diffusional limits of mixing over the last 60 years, reduction of sample 

consumption has been slower to progress and remains to be nearly an order of 

magnitude higher than that of laminar mixers, in most cases (Fig. 4.1). 

Successful implementation of these designs, in conjunction with careful volume 

handling, is expected to reduce the sample requirements from ~200 mg a scan to 

~50 mg with a dead time of ~300 µs. 

Further developments in data processing are also underway to make the 

process more streamlined including the automation of the masking step required 

for data reduction. Acquiring 50 scans of data (25 for protein and 25 for blank), 

each consisting of 90 detections, produces 4500 tif image files that must be 

analyzed in the correct order for each kinetic jump. The first step in processing 

the image files is to mask out the beamstop and parasitic scattering flares, prior 

to circularly averaging the diffraction pattern. As the majority of SAXS users do 

not change the window position of the observation cell while collecting this step 

has historically been done manually. Translating the mixer window requires a 

mask at each position where data is collected, requiring 90 manual maskings. 

During the initial CF-SAXS development a python/Fit2D script was written to 

automatically mask and circularly average the data using intensity thresholding.  

The exported data was then imported into a custom in-house GUI-based 
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software package, CF-SAXS-bot, for further manipulation. CF-SAXS-bot 

maintained the bookkeeping of the data while manual or automated 

manipulations were applied, including: removal of low quality data, averaging, 

subtractions, simple transformations, SVD, and Guinier analysis. In this way the 

data could quickly and easily be manipulated on a point-by-point or scan-by-scan 

basis.  Although successful, the software is being replaced by the DELA software 

package being developed by Lambright et al40. DELA contains more functions 

and is suited for flexible and large analyses with its scriptable platform. Further 

developments in automated masking are also being pursued to exploit the low 

electronic noise of the photon counting Pilatus detectors to enforce Poisson 

distributions at each q (Fig 4.5) that will remove electronic noise, the beamstop, 

and parasitic scattering in a model independent manner and without 

thresholding. 

Global Measurements with CF-SAXS 

 Monitoring global measurements of a folding reaction define the context 

for the interpretation of higher resolution measurements. SAXS is a particularly 

useful as the dimensional data can provide both an Rg as well as low resolution 

structural models132 . The Rg values are extracted from the low q region of the 

scattering curve using the Guinier approximation. The simplest implementation of 

the Guinier approximation is to first transform the I(q) versus q data of the 
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Fig 4.5. Improving CF-SAXS data analysis. Comparison of the distribution of 

intensities at two frames (0.1 ms [top] and 1.9 ms [bottom]) show significant 

deviation from the expected Poisson distribution. The intensity distribution at low 

Q for the two frames with either buffer or protein is shown with a fit of a Poisson 

distribution around the main peak. The outliers are distinctly different between 

the two frames, indicating the need for treating each frame to a separate mask. 

(Credit: Sagar Kathuria)  
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Figure 4.5. Improving CF-SAXS data analysis   
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scattering profile to Ln[I(q)] versus q2 and fit the low q2 region to the linearized 

expansion of the Guinier approximation in the form of y = mx+b (Eqn 4.3)129,  

           
  

 

 
               (Eqn. 4.3) 

where the slope of the line is described by Rg2/3, I(q) is the scattered intensity, q 

is the magnitude of the scattering vector, I0 is the zero angle intensity, and Rg is 

the radius of gyration. Using the Guinier approximation with good quality data 

yields high quality time resolved dimensional data (Fig. 4.6) that can describe the 

global folding kinetics. However, comparison of Rg measurements to simulation 

data sets is not particularly useful because pairwise conformational constraints 

are absent.  

 A useful metric for comparison with vast computational datasets is the 

pair-distance (P(r)) distribution, which describes the pair-wise distances across 

all pairs. The P(r) distribution can be fit to a given scattering profile and is 

sensitive to small conformational changes.  Comparison of experimental P(r) 

distributions to calculated P(r) distributions of simulated subpopulations of 

structures on equivalent time-scales provides a more detailed comparison of the 

two datasets than using the singular Rg values. A time resolved comparison can 

be used to streamline the analysis of the simulation data and identify high 

probability structures from the simulations from which structural insights can be 

observed. 
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Fig 4.6. CF-SAXS data of Cytochrome C during sub-millisecond refolding. 

(a) The radius of gyration obtained by Guinier analysis, Rg (circles), during 

refolding from 4.5 M GdnHCl to 0.45 M GdnHCl at pH 7.0 in the presence of 0.2 

M imidazole and modeling of Rg
2 versus time (continuous line) to a double 

exponential with fixed time constants of 45 μs and 650 μs are shown. The final 

protein concentration was 2 mg mL−1 and the total flow rate was 20 mL min−1. 

(b) The zero-angle scattering intensity obtained from the Guinier analysis in (a) 

shows that Cytochrome C is monomeric throughout folding.  
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Figure 4.6. CF-SAXS data of Cytochrome C during sub-millisecond 

refolding   
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Pair-wise measurements using CF-SAXS and CF-TCSPC 

 Pair-wise SAXS measurements have been made successfully with large 

DNA macromolecules labeled with gold nanoparticles133,134. Application of this 

approach to globular proteins presents challenges with labeling efficiencies and 

distance resolution as the sizes of proteins are of the same scale as the 

nanoparticles.  Experiments are currently underway to achieve efficient labeling 

of 2 gold labels per protein molecule using gold nano-crystals, which are 

monodispersed at sizes approaching 1.5 nm (unpublished data; Kevin T, 

Halloran, et al.).  

 Time correlated single photon counting (TCSPC), like SAXS, can be 

conducted label-free in the case of intrinsic tryptophan fluorescence experiments 

(see chapter 3), or with labels for monitoring changes in FRET. The basis of this 

approach relies on low-probability single photon emissions that are sampled over 

a large number of excitation events where each photon has a known emission 

time and arrival time. The constructed time-correlated photon distributions from 

these experiments reveal the fluorescence lifetime decay of the probe. Observing 

the decay of the probe is advantageous because, unlike total intensity 

measurements, the lifetime measurements are concentration independent such 

that normalization of the data is not required for comparison across datasets. 

Additionally, the measurements have a high signal-to-noise ratio, and changes to 

individual lifetime amplitudes can be observed, providing separate 

measurements that can yield more descriptive data than a single readout. 
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However, the most noteworthy advantage to TCSPC measurements, when using 

a FRET system, is the ability to fit the photon count distribution to a P(r) 

distribution, which can then be directly compared to computational and global 

SAXS measurements of the same system achieving domain specific distance 

information (Fig. 4.7). The disadvantage of this technique over a comparable 

SAXS approach is that the distance dependence of FRET is weaker as it scales 

with 1/r6, limiting observations to distances smaller than the length scale of most 

biomolecules135. In comparison, pairwise SAXS distances scale as 1/r2, 

permitting accurate measurements of longer distances40 on the length scale of 

most biomolecules. However, in a combinatorial analysis short distance 

measurements can provide significant clarification of contextual data117. In 

conjunction with computational datasets, short distance measurements can be 

used to orient a structure within a low resolution structural model as well as refine 

structures within computational groupings.   
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Fig 4.7. SsIGPS CF-TCSPC FRET. SsIGPs E63W- R238C trp-EADANS FRET 

pair is refolded from 70 μs to 1.07ms and binned every 166 μs (DA1 through 

DA6). Fitting the data to a bimodal distribution reveals two structural 

intermediates with populations changing over the reaction time. (Credit: Kevin 

Halloran) 
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Figure 4.7. SsIGPS CF-TCSPC FRET   
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Residue specific labeling with FPOP 

Residue specific resolution of folding processes is difficult to obtain 

experimentally. The highest throughput approaches for experimentally observing 

residue specific information of protein folding events are hydrogen-deuterium 

exchange (HDX)136, and fast photochemical oxidation of proteins (FPOP)137,138. 

Using these techniques, the folding process is pulsed at variable time points for 

approximately 1 µs with a chemical label. These labels probe the solvent 

exposure of each residue at the pulse time.  

The reactions are subsequently quenched and the proteins are then 

analyzed by mass spectrometry or NMR. 

Labeling partially folded states of marginal stability by HDX has been 

accomplished with labeling events occurring as fast as 90 μs, labeling at a pH 9.8 

in a competition format136. Ideally, refolding would occur for a period of time 

before applying a pH pulse label, labeling all non-structured elements at the 

pulse time point. In a competition format, the refolding reaction occurs at basic 

pH such that the folding events occurring faster than the rate of labeling are 

protected and slower events are labeled. Application of this technique within the 

microsecond time regimes is exceedingly challenging due to the high pH of the 

pulse required for labeling on that timescale, which may perturb the fragile 

structures being probed. Further complicating the data acquisition is the 

occurrence of back-exchange that occurs post-quench. Back-exchange 
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decreases the signal of the experiment requiring carefully controlled conditions 

for reproducible and accurate results to be obtained139.  

An analogous technique, fast photochemical oxidation of proteins (FPOP), 

uses the photochemical production of hydroxyl radicals to label amino acid 

sidechains. The covalent nature of the oxidative labeling eliminates the 

complication of back-exchange, simplifying the post-quench sample handling 

conditions compared to HDX. Recent studies have successfully labeled proteins 

in the continuous flow time regime140,141 using laminar mixers. However, the 

current studies have demonstrated low labeling efficiency with good time 

resolutions141 or good labeling efficiencies with poor time resolution140.  In the 

former study, the mixer efficiency provided an excellent time resolution but poor 

labeling efficiency due to the low flux of their doubled Argon ion laser. The latter 

had a better labeling efficiency from the higher flux of a KrF excimer laser but 

lower time resolution due to the beam width and mixer inefficiencies. 

Experiments using a synchrotron source to produce hydroxide radicals through 

the radiolysis of water that appear to efficiently label amino acid side chains due 

to the higher flux142. Future development work at the BIOCAT beamline will 

exploit the micro-focus capabilities used in the CF-SAXS measurements to 

produce high flux and high time resolution FPOP labeling. Further increases in 

flux will be made by removing the monochrometer from the beamline apparatus 

and by employing a cylindrically hydrodynamically focused laminar mixer such 

that entire sample volume is within the beam focus. After collection, the exposed 
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protein will be analyzed using proteolytic digests with tandem mass spectroscopy 

to identify the labeled residues and provide complementary high resolution 

structural data of the same kinetic process observed in the scattering experiment.  

By themselves, HDX and FPOP data can be challenging to accurately 

compare to simulation data as they indirectly describe the solvation of the labile 

nucleus. It is possible to calculate the buried surface area or local dynamics of 

the labeling sites for a given structure143 so that those metrics can be correlated 

to the experimental exchange rates, however an unguided analysis would be 

computationally challenging.  Having first refined the computational data with 

lower resolution experimental data, the buried surface area or dynamic 

calculations would be far more targeted and accessible. If this process were 

successful then the kinetic trajectory of the simulation would be validated by 

experimental measurements and further structural details of the folding process 

could reliably be extracted.  

Discussion 

 Experimentally, folding kinetics are observed as simple exponential 

responses. Generally, computational studies show a much more complicated 

view of protein folding through extensive potential pathways in MSM models and 

variations between individual trajectories in full trajectory MD. In broad 

agreement with folding simulations, landscape theory52 describes a complex free-

energy landscape that implies many favorable routes through which a protein 

could traverse the free-energy difference from the unfolded to folded state to the 
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native basin. Presumably, experiments resolve a weighted average of events, 

with observations being most sensitive to the highest populations, or dominant 

folding pathways. 

 Supercomputers like Anton120 are capable of millisecond timescale full 

trajectory simulations.  However, the computational time to conduct these 

simulations is still taxing, limiting the number of full trajectories used in a single 

analysis. Without significant sampling it is difficult to determine the statistically 

significant features of each different trajectory in the absence of experimental 

data. Therefore computational approaches that rely on a relatively small number 

of full folding trajectories are not ideal for comparison to bulk measurement 

experiments. 

An alternative computational approach, MSM modeling, uses a large 

number of independent short trajectories and models an energy landscape based 

on the interconversion rates between microstates37. Comparison of MSM data to 

experiments is ideal because MSM data represents a more complete view of the 

entire energy landscape, and thus is directly compatible with comparisons to bulk 

measurements.  Although there exist methods to determine the major pathways 

of such models144,145, the analysis becomes more challenging with larger 

datasets and when complicated folding mechanisms are involved (i.e., proline 

isomerization146, disulfide bridges23, etc.) such that assumptions and secondary 

processes must be employed to generate a complete dataset (see chapter 3). 

Furthermore, implicit solvents and other assumptions are often used in long 
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folding time simulations to reduce the computational time. The concessions 

made produce an expectedly imperfect dataset such that absolute quantitative 

agreement is never expected. In these cases a guided analysis with experimental 

data is an ideal compromise between computational time and model 

independence.  

Assuming the time axes of the experiment and simulation are reasonably 

aligned, the application of experimental data for MSM model refinement as 

described above can be applied with little bias.  Beginning with global distance 

distributions, the high probability MSM states can be refined by changing the 

boundaries, within reasonable physical limitations, to maximize agreement with 

the experimental data through comparison of distance distributions. Once a 

reasonable microstate or grouping of microstates is found with reasonable 

representation in the experimental data, further refinement can be made by 

optimizing the boundary conditions to best fit all of the global and pair-wise 

distributions simultaneously. Residue specific data could then be used to assign 

a weighting factor to each structure based on the likelihood that it is significantly 

contributing to the experimental signal. A final round of refinement could then be 

conducted to optimize the weighting factors with the simultaneous optimization of 

all distance distributions. 

With this approach to model refinement, the experimental mechanism is 

not enforced upon the interpretation of the simulation. Instead, the simulation 

time axis is effectively refined to match the experimental time axis with high 
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structural agreement. If the calculated distance distributions are in good 

agreement with the experimental distributions then the simulated structures are 

highly likely to be representative of the experimental ensemble.  High resolution 

structural details can then reliably be observed, and subsequent experiments 

based on these observations can further validate the agreement between the two 

datasets.   
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Chapter V - Discussion 
 

Summary 

Physicochemical properties that bias early folding events 

 Results form Chapter II provided evidence to suggest that ILV clusters 

contribute significantly to the formation of the off-pathway intermediate in CheY.  

Altering the chain connectivity, relative to the calculated ILV clusters, via circular 

permutation is a significant enough perturbation that the populations of the on- 

and off-pathway intermediates can be modulated in a seemingly rational way. We 

suggest that this result is due to both the size and low CO of the ILV clusters. In 

the WT connectivity the smaller but sequence local ILV cluster (cluster 1) initiates 

the earliest folding events as it outcompetes the larger cluster (cluster 2) that is 

split in half by the location of the N and C termini. Changing the chain 

connectivity by linking the larger cluster together in contiguous sequence, permits 

the larger low CO cluster to outcompete the smaller cluster and collapse first. 

This prevents the frustration imparted on the folding reaction by the early 

formation of cluster 1 and disfavors formation of the off-pathway intermediate. 

 Events driven by the collapse of cluster 1 result in frustration of the folding 

reaction, seen by Gō-models as the impedance of forming native contacts 

through structuring regions that must come apart before other native contacts 

can form. At a glance, this frustration seems to be founded on physical principles 

that are not specific to protein folding. However, Gō-models are particularly well 
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suited for low CO folding69 and therefore are useful tools for describing low CO 

protein folding events at low resolutions.  In fact, the atomistic models run on 

CheY* and Cpβ4 are in general agreement with the findings from the Gō-model 

simulations.   

 The higher resolution details from atomistic models offer a glimpse into 

other features that may be playing a role in observed frustration.  The most 

obvious structural defect that may be impeding folding is the non-native order of 

the central β-sheet. In the native configuration β1 is intercalated into the center of 

the β-sheet, between β2 and β3. The atomistic simulations suggest that the off-

pathway intermediate has not yet incorporated β1 in the correct strand ordering, 

requiring an un-structuring event before productive folding can continue. 

Structurally, both sets of simulations describe the subdomain interface as the 

region which must remodel for folding to continue, which according to the 

atomistic models, includes correcting the strand ordering of the β-sheet. In 

atomistic models of the Cpβ4 connectivity, the strand ordering is not observed to 

be non-native and therefore supports both the experimental and Gō-model data 

in describing the off-pathway intermediate as less favorable.  

 Results in Chapter III suggest that ILV residues and long range 

electrostatic interactions give rise to a compact unfolded state under native-

favoring conditions.  The coincidence of the HSQC cross-peaks of this compact 

unfolded state with the native state suggest that the residual structure on the 

unfolded side of the barrier is native-like and therefore structural insights can be 
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gained from superimposing results onto the known structure. In this way we 

observe an intact hydrophobic core of mostly ILV residues flanked by solvent 

exposed polar residues and a β-sheet stabilized in the correct strand order by 

salt bridges inclusive of the intercalated terminal β-strand. The correct strand 

order is therefore maintained in the readily accessible unfolded state, which is 

effectively imprinted with the native topology, driving a fast and smooth folding 

reaction towards the native state.  

 Additional features on the of the free-energy landscape of Di-III_14 at 

higher energies are presumably also resulting from the electrostatic contributions 

to the stability of the structured unfolded state. These complexities are not seen 

in the data obtained from of Gnd denatured state and access to the exchange 

competent state can be accelerated at higher ionic strengths. Interestingly, this 

response suggests that even the exchange competent unfolded states appears 

to contain residual structure. The general implications of this result are 

obfuscated by the unnatural sequence composition of Di-III_14, which we 

assume is largely responsible for the result. However, a few hydrophobic 

residues, M48, L16, F22, L51, and A52, maintain observable exchange rates at 

0.5 M NaCl, suggesting that hydrophobic interactions may still play a significant 

role in biasing the unfolded state under native conditions for non-polyampholyte 

sequences. 
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Increasing the resolution of early events in folding 

 Chapter IV discusses past and present technological developments for 

improving mixing strategies and detection techniques to enhance experimental 

time resolution. Overall, the best option for improving resolution appears to be 

generating high confidence atomistic simulations. Apart from theoreticians 

improving the simulation strategies, experimentalists can focus on improving time 

resolution of various kinetic experiments and obtain large datasets of easily 

comparable data.  This chapter suggests a strategy for using distance 

distributions to refine large MSM models to obtain high structural confidence so 

that high resolution details could be obtained.  

 Chapters II and III had each incorporated computational components that 

suggest that, for the most part, the details we get from simulations are consistent 

with experimental data. Chapter II was computationally intensive and, 

overwhelmingly, the most challenging part of combining experimental and 

computational data aligning the both on the same time axis. For instance, in the 

absence of the CF-SAXS data on CheY and Cpβ4 we would have no reasonable 

way to determine agreement between the two data sets. Only after aligning the 

relative Rg measurements were we able to make sense of the Gō-models relative 

time scale and leverage the simulations for higher resolution details. Although 

this single metric, by itself, is not a confidence inspiring amount of significant 

overlap between the datasets, previous experiments on CheY using a similar 
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combinatorial approach15 further suggests that comparisons across the datasets 

are appropriate. 

 The MSM models, briefly discussed in Chapter II, are currently still being 

analyzed. Finding agreement between MSM models and experimental data is far 

more straightforward than coarse grained or single trajectory simulations, for 3 

reasons.  First, the time axis can be independently calculated with a level of 

confidence suitable for comparison to experimental timescales. This particular 

point is a huge advantage because this cannot be done accurately with coarse 

grained models, including Gō-models, and it is capable of immediately aligning 

experimental and computation data with some degree of confidence. Second, the 

positional accuracy of amino acids is much better which makes comparisons to 

experimental data as straightforward as using simple calculations like distance 

distributions. And lastly, MSM models, unlike full trajectory simulations, 

recapitulate a broad energy surface, much like bulk experiments, so comparisons 

can be refined with population statistics to enhance structural accuracies. 

 The ongoing analysis of the Folding@Home CheY simulations is 

nonetheless still challenging.  The large size of the dataset is very difficult to work 

with and assumptions had to be made to make the simulation reasonable, like 

using implicit solvent and modeling the proline isomerization reaction, which 

complicate the downstream analysis. Current efforts are being made to improve 

agreement with the experimental data, which include refining the model with 

SAXS data.  The advantage of using this approach with a broad model like an 
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MSM, is that refinement can be done independent of a model. In other words, 

refining a time segment of an MSM to fit an experimental distance distribution 

does not consider the connectivity of states that are being weighted.  Therefore, 

as long as the MSM analysis is originally reasonable, the time axes are in 

agreement, and the experimental data is accurate,  fitting to the experimental 

data will only improve the quality of the MSM model by unbiasedly removing 

states and therefore pathways that are not represented in reality. 

Future directions 

The CheY system 

 Results from Chapter II suppose that ILV clusters play a large role in the 

early folding events, causing one cluster to out compete the other depending on 

the connectivity.  These inferences are made from the results of the 

computational models, and therefore it would be prudent to test this hypothesis 

with further experiments. One approach that we are actively pursuing is a multi- 

color FRET experiment to observe correlated motions during folding. In this way 

we will be able to determine if the clusters are, in fact, in competition with one 

another. Sagar Kathuria is currently developing an split-intein strategy to 

accomplish this. By splitting CheY and the permutants into sections that can be 

independently labeled we will not have to rely on stochastic labeling methods and 

can therefore be assured of the site specific labels, while also increasing the 

labeling efficiency and simplifying the purification process.  
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 The supposed on-pathway intermediate is also an interesting experimental 

target.  Experimentally this intermediate has been optically silent across the set 

of permutants. The only experimental data consistent with it is from the Serrano 

group20, which was conducted by NMR at equilibrium. Single molecule 

fluorescence correlated spectroscopy (sm-FCS) may therefore be an appropriate 

experiment to confirm the presence of this intermediate.  In this experiment, low 

concentrations of CheY labeled with a high quantum yield FRET system would 

be observed at equilibrium. At sufficiently low concentrations and low focal 

volumes the experiment would be statistically observing single molecules.  The 

fluctuations of the emission intensities would reflect different distances between 

the dyes that are sampled at equilibrium. If the FRET system is sensitive to the 

on-pathway intermediate, then integrating the dataset across the distance 

domain should reveal distance distributions with an observable on-pathway state, 

analogous to the analysis of force puling experiments147. 

The "Di" set of proteins 

 Experiments of the de novo designed protein Di-III_14 reveal promising 

results that are largely consistent with the design expectations, and notably 

improved from previous attempts32.  However unexpected complexities have still 

been observed by experiment that must be understood to further advance de 

novo design strategies. In the original design70, general principles for design 

rules were applied with seemingly good success. Therefore identification of 

general principles and application to further design may avoid these complexities 
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in the future. Specifically, the two major findings from Chapter III suggest that 

electrostatics play a large role in the complexities by forming salt bridges and 

perhaps by favoring high energy structure due to the charge segregation across 

the sequence. 

 Developing the design rules for salt bridges from the Di-III_14 construct 

requires straight forward mutational experiments. Mutating out a few or all of the 

salt bridges and testing the effects on the kinetics and the observed structured 

unfolded state would serve to identify their contributions to "smoothing" the 

energy landscape, and essentially provide a test for the reoccurring strand-order 

hypothesis of this thesis. From the current data set, it would be expected that 

reducing the number of salt bridges would lower the barrier between the 

structured unfolded state and the exchange competent unfolded state. Likewise, 

the response of removing all salt bridges is expected to completely remove the 

structural complexities on the unfolded side of the barrier  while introducing 

complexities on the native side. It is possible that the reduction to some ideal 

number of salt bridges would yield a smooth energy landscape and would 

therefore serve as a basis for further design rules. 

 The charge segregation of the Di-III_14 sequence may be leading to a 

compact unfolded state that resembles an IDP-like structure under native 

conditions.  Scrambling the charge orders of the β2-β4 salt bridges should be an 

effective way to test if the charge segregation is significantly driving the structure.  

Alternatively, identifying permutations that would reduce the charge segregation 
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would provide different means for the test while isolating the results from the 

independent effect of the salt bridges. 

 Further studies across the current Di set of proteins are also warranted.  

The result of Di-III_14 are promising, but it is possible that these results are not 

representative of the set.  As mentioned in Chapter III, the Di_1-IV protein is the 

only other protein in the set that does not have helices packed onto both sides of 

the β-sheet, and the salt bridge content is significantly different. If the salt bridge 

hypothesis we propose is correct then Di_1-IV would be expected to have a 

smooth energy surface on both sides of the barrier. If this turns out to not be the 

case then other general design principles might be illuminated that are more 

generalizable. Additionally, having helices on both sides of the β-sheet would 

imply that there are other mechanisms than salt bridges that can be used to 

enforce the correct strand order, identifying further design principles.  Although 

the results from Chapter II suggest that ILV clusters may a play a role in this, it is 

yet to be seen if it applies to the Di set of proteins with similar topologies, or even 

if the Di proteins with more complicated topologies are experimental 2-state. 

Conclusion 

 The results from Chapters II and III discuss early events in folding with an 

emphasis on the content of isoleucine, leucine and valine residues (i.e, ILV 

clusters).  Previous research has proposed that ILV clusters contribute 

significantly to the native state stability of globular proteins15,56,57,103. These 

clusters have also been implicated in the formation of kinetic traps in the βα-
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repeat proteins CheY, NtrC, and Spo0f15. Although ILV clusters appear to be 

important, they are perhaps more of a general principle to all globular proteins 

due to their physicochemical properties. Specific to βα-repeat proteins, the strand 

organization of the β-sheet appears to be largely deterministic of the roughness 

of the energy surface. In both CheY and Di-III_14 terminal β-strands are 

intercalated within the β-sheet. In Chapter II we observe differences in folding 

related to β-sheet formation where efficient formation reduces the tendency for 

off-pathway species to be populated. Likewise, in Chapter III, the correct strand 

order is enforced with salt-bridges, driving a smooth 2-state folding reaction. 

Although the exact contributions of both ILV clusters and electrostatics in 

mitigating the complications of the strand ordering are yet to be described in 

detail, our results implicate both in being capable of significantly resolving the 

energetic of the strand ordering events in early folding reactions.  In the βα-

repeat proteins that have the β-sheet organized topologically between sets of α-

helices, ILV clusters are likely to contribute to the strand ordering events, while in 

simpler topologies where α-helices are packed on to one side of the β-sheet, salt 

bridges on the solvent exposed side may prove to be efficient solutions to the 

strand order organization. 

General perspective 

 The βα-repeat motif is found extensively across known structures of 

biological proteins. These proteins represent a large fraction of known enzymes10 

and signaling proteins.  Understanding the folding of these proteins towards 
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appreciable design principles may someday result in efficient methods for 

rationally stabilizing commercial enzymes and the efficient de novo design of 

novel enzymes. More generally, fundamental principles representative of such a 

large representative population of proteins may be applicable to other fold motifs. 

General principles found across motifs have the potential to produce efficient 

assumptions of folding processes that could be used to increase the efficiency of 

computational and predictive modeling. Further, physicochemical principles that 

govern misfolding events and biases in the unfolded state under native 

conditions can potential provide insights towards the underlying processes and 

causes of aggregation diseases. A better understanding of the thermodynamic 

processes can potentially lead to the rational development of molecular 

chaperone-type drugs.  

 The data presented within this work suggests that a small subset of 3 of 

the 21 amino acids, ILV, are significantly represented in early misfolding events 

and biases in the unfolded state under native-conditions. Similarly, salt bridges 

and charge segregation may have similar effects.  Further studies are required to 

elucidate the how general these themes are to develop efficient design principles 

and progress the general understanding of the protein folding phenomenon. 
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