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ABSTRACT

Dengue viruses (DV) are re-emerging mosquito-borne pathogens for which four distinct

lineages , grouped based on serology and referred to as serotypes 1-4 (D I V - D4 V), have

been described. Epidemiological data imply that re-infection with a "heterologous

serotype , i. , one other than that to which the individual was originally exposed

enhances the risk for development of severe disease , dengue hemorrhagic fever (DHF).

The hallmark of DHF is a transient capilary leakage syndrome of rapid onset, temporally

associated with the resolution of fever and viremia. In its most grave form, the vascular

permeability phenomenon in DHF may progress to dengue shock syndrome (DSS), which

is often fatal in the absence of appropriate medical care.

. Despite the fulminant natue of vascular leakage during DHF/DSS , this

phenomenon does not appear to be due to direct cytopathic effects ofDV. Rather

inappropriate reactivation and/or regulation of dengue-specific memory are the prevailing

theorized (immunopathological) etiologies. Traditional vaccine development techniques

have proven insuffcient for DV

, .

since any vaccine must offer complete protection

against all four serotyes to avoid enhanced pathology on natural viral challenge.

Understanding the underlying mechanisms that contribute to dengue disease, particularly

the development of dengue-specific memory, is therefore of critical importance.

Dengue immunopathology and the specific aspects of immunological memory

that determine disease severity are heatedly debated. Previous research in our lab has

suggested that T cell responses contribute to the severity of dengue ilness. Clinical data

indicate enhanced immune activation in more grave cases of DV infection, and serotype



cross-reactive T cells from multiple individuals are present after both primary and

secondary dengue infections. However, little is known about the conditions under which

T cells are primed and dengue-specific memory is generated.

Dendritic cells (DCs) are bone' marrow-derived cells that playa central role in

directing activity within the immune system. DCs shape quantitative and qualitative

aspects of adaptive- immunity, and therefore the intrinsic characteristics of host memory

to a pathogen. DCs are essential in generating primary immune responses, due to their

particular effectiveness in stimulating naIve T cells. DCs also play important roles in the

reaCtivation of memory to an infectious agent, and as reservoirs for the dissemination of

invading microorganisms. Exposure to pathogens or their products initiates a series of

phenotyic and functional changes in DCs , termed maturation. DC maturation involves a

coordinated response of immunomodulatory surface molecule elaboration and cytokine

production, culminating in antigen presentation to, and co-stimulation of, T cells specific

for the invading agent. The DC response is ostensibly tailored to facilitate effective

eliniination by regulating effective downstream interactions of the DC with T cells.

A number of viruses have evolved to infect DCs and alter their functional

behavior, facilitating their own survival within the host, and the herd. DV readily infects

DCs both in primary cell cultues and in vivo. However, reports on the effects of DV

infection on DC maturation vary both with regard to some of the cytokines produced, and

the phenotyes of infected versus bystander cells. Although DCs appear to be activated

following DV exposure , responses on the single-cell level appear to depend on the

infection state of the cell , hypothetically driven by intracellular virus-mediated effects.

Therefore , downstream responses to these divergent populations- , actively infected

Vll



cells versus uninfected bystander cells-are likely to be the consequence of at least two

modes of DC behavior. Because DCs playa pivotal role in adaptive immune

development, and because the resulting memory response appears to be critical in

affecting disease pathology after heterologous DV re- infection, I sought to explore the

phenom na of DC maturation in response to dengue exposure, and to begin to answer the

question of how active infection alters the fuctional capabilities of bCs. Notably,

primary dengue infection is generally well-controlled with minimal pathology.

Therefore\ this thesis addresses the hypothesis that DV infection ofDCs results in cellular

activation and stimulation of antiviral immunity, despite virus-mediated alteration of DC

maturation.

In order to address this hypothesis , I examined both DV infection-dependent and-

independent effects on DC functional responses including surface molecule regulation

secretory activity, and CD4 T cell allostimulatory priming. DCs derived from human

peripheral blood monocytes were readily infected with multiple strains of DV. DV

infection of DCs derived from separate donors was dose-dependent, with substantial

variability in DC susceptibility to infection. Exposure to live DV activated surface

molecule expression in DCs, similar to the effects of defined maturation stimuli

including a combination ofTNF-a and IFN-a , or LPS. In addition, UV- inactivated DV

induced expression of cell surface molecules, albeit to a lesser extent than did live virus

demonstrating inherenf stimulatory properties of DV particles. Using intracellular

staining for DV envelope (E) protein, I detected increased surface molecule expression

on both infected DCs and uninfected bystander DCs from the same culture, as compared

to mock-infected DCs. These data indicate that activation was not prevented in cells

Vll



undergoing active viral replication. However, the degree of surface molecule induction

depended on the infection state of the cell. Infected DCs had enhanced PD-L2 and MHC

n expression relative to uninfected bystander cells, while PD- , CD80 , CD86 , and

MHC I expression were suppressed with active infection. Therefore, intracellular DV

replication altered the process of cell surface molecule regulation within these cells.

DV infection of DCs also resulted in the secretion of a broad array of cytokines

and chernokines. These included the antiviral cytokine IFN-a, inflammatory cytokines

TNF-a, IL- , and IL- , and inflammatory chemokines IPlO , MCP- , MIP- , and

RANTES. DV infection did not induce DC production of the IL- 12 p70 heterodimer, and

secretion of the immunosuppressive cytokine IL- IO was low in most experiments.

Similar to the results seen with surface molecule induction, UV inactivation ofDV

reduced, but did not eliminate, cytokine and chemokine responses. At the single-cell

level, TNF-a and IPIO production profiles of infected DCs and uninfected bystander DCs

were distinct. DV infection in DCs reduced production ofIPlO , but stimulated TNF-a

as compared to. uninfected bystander cells in the same culture. Blocking experiments

demonstrated that IFN-a/ produced by DCsin response to infection actively inhibited

viral protein expression and drove IPIO, but not TNF-a , production.

DV infection of DCs did not consistently suppress DC stimulation of allogeneic

CD4 T cell proliferation. In cases where infection enhanced DC stimulatory function, T

cell proliferation was less pronounced than that induced by DCs activated with

exogenous TNF-a plus IFN-a. Increasing multiplicity of infection (MOI) ofDCs with

DV resulted in increasing DC infection rates , but a statistically significant trend at the

highest MOIs for decreased T cell alloproliferation, suggesting that direct infection of



DCs reduces their CD4 T cell priming function. MOI-dependent reduction in DC

stimulatory function depended on replication-competent virus. Increased MOIs during

DV infection ofDCs did not cause an elevation in detectable IL- I 0 in supernatants

derived from T-DC co-cultures. In addition, increased DV MOI ofDCs was not

associated with increased levels of either IL- 13 or IFN-y in supernatants from T - DC co-

culture , suggesting that actively infected DC do not skew CD4 T cells towards a specific

T h phenotype. These data demonstrate that DV infection induces functional maturation

ofDCs that is modified by the presence of virus through both IFN-dependent and

independent mechanisms. However, the allostimulatory phenotye of DCs was not

universally enhanced, nor was it skewed towards antiviral (Th l)-type responses.

These data suggest a model whereby dengue infection during primary illness

results in controlled immune stimulation through activation of bystander DCs, and the

generation of mixed T h-type responses.' Direct DV infection of DCs appears to attenuate

activation of, and potentially clearance by, antiviral mechanisms. During secondary

infection, reduced IPlO production and enhanced TNF-a secretion by infected cells

coupled with MHC I downregulation and enhanced PD-L2 expression, would subvert

both T h I CD4 T cell recruitment and result in CD8 T cell suppression and death.

Furthermore, DV -specific effects on DCs would allow for continued viral replication in

the absence of effective clearance. These DV-mediated effects would modify T cell

memory responses to infected DC , and potentially facilitate the expansion of pathologic

T cell subsets. Contributing to this pathological cascade, antibody-dependent

enhancement of infection in monocytic cells and macrophages would shift antigen

presentation and cytokine production paradigms , increasing the risk ofDHF.
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CHAPTER I

INTRODUCTION

. AN OVERVIEW OF VACCINATION AND EMERGING VIRAL DISEASE

The past two centuries have seen remarkable changes in Western medicine; perhaps most

notably in the way we combat infectious disease. Just before the turn of the 18 century,

Edward Jenner s scientific approach to vaccination against smallpox provided a

documented means to combat variola major without the use of variolation-inoculation

with the less virulent form ofsllallpox variola minor (Jenner, 1798). Word of the

success of vaccination swept Europe, and the procedure became increasingly customary,

rapidly gaining in public acceptance. By the close of the 1800s, advances in public and

personathygiene , combined with the work of the pillars of the scientific community

(particularly Ehrlich, Pasteur, Koch, and von Behring), heralded great advances in the

ability of humankind to combat infectious agents. However, with the notable exceptions

of the viruses rabies and smallpox , vaccines were essentially restricted to controlling

bacterial disease (reviewed by Hilleman, 1998).

A few short decades later the HINI influenza pandemic of 1918- l920 left in its

wake an estimated death toll of 50 milion human lives. The panic and devastation that

influenza caused in both civilian and military populations arguably ended the First World

War and eventually led to a massive overhaul of medical institutions in the U.S (Barr,

2004). Federal intervention in U.S. medical practice included wholesale restructuring

(and often elimination) of the vast majority of medical schools, and instigated widespread

rethinking of medical education, including far more rigorous selection and training of



candidate physicians (Barr, 2004). The resulting changes facilitated the rise of modern

medical science in the United States-specifically, medical practice based on scientific

principles , as espoused in Europe (Barr, 2004).

After the end of World War I, viral vaccine technological development

accelerated. Sterile culture methods allowed Theiler to generate a remarkably safe and

effective vaccine against yellow fever virus (YFV), marking yet another pivotal move in

medicine s chess match against viral disease. By the late 1950s, inactivated vaccines

included those for Japanese encephalitis , influenza, poliomyelitis, and adenoviruses. In

particular, Enders s work with poliomyelitis paved the way for the generation of live

. attenuated vaccines , which would soon include those for measles (MV), mumps , and

rubella in the late 1960s (Hileman, 1998). By the close of the 20 century, an improved

understanding of genetics accompanied by the generation of recombinant viral proteins in

cultured vectors (in this case, yeast) provided the means to mass-produce a vaccine

against the hepatitis B virus (HBV) in 1984 (McAleer et aI. , 1984).

Arguably, the halcyon moment of these advances was to come as a return to the

starting point. More than two hundred years in the making, and perhaps the single

greatest accomplishment in medical history, was the elimination from natual circulation

of humankind' s deadliest and most feared foe, smallpox (variola major and minor). The

last documented natural infection with smallpox occurred in Somalia, on the 26th of

October in I 977. Shortly thereafter (in 1980), culminating an aggressive decades- long

vaccination strategy on a global scale, the World Health Organization (WHO) officially

declared this ancient scourge-which may have been responsible for the deaths of

Egyptian pharaohs and the fall of the Aztec empire in Mexico-eradicated (WHO , 1980).



However, despite many great successes , the flow of new vaccines against viral disease

was drying up as the 20 century neared its close.

It wasn t long before the general sense of urgency was joined with the funding

needed to rekindle vaccination studies. On June 5 , 1981 , principal author Michael

Gottlieb and collaborators at UCLA and Cedars-Mt. Sinai reported five cases of a

tyically rare opportnistic infection with the parasite Pneumocystis carin ii in otherwise

healthy young men (Gottliebet aI. , 1981). Today, the virus responsible is known as

human immunodeficiency virs (HIV), the causative agent of acquired

immunodeficiencysyndiome, AIDS. HIV and its associated constellation of

opportnistic and neoplastic diseases became a source of intense public and media focus

and arguably helped drive the burgeoning research and healthcare establishment in the

late 20 century.

Lost in the furor over HIV' sdevastating global impact is the fact that this virus is

. clearly not alone as an emerging infectious disease with major implications for public

health. Also in 1981 , another epidemic was occurrng in Cuba. In the most severe cases

patients experienced abnormal bleeding, hepatomegaly, and a fulminant capilary leakage

syndrome resulting in circulatory failure, shock and sometimes death (Guzman et al.

1990). The causative agent was dengue virus (DV), a small RNA virus closely related to

the virus that causes yellow fever. This and previous dengue epidemics , particularly in

Southeast Asia, represen ed a cautionary message to the world: a viral threat, largely

ignored, was in the midst of a dramatic resurgence. Unlike yellow fever, dengue had not

been so amenable to vaccine development, despite more than five decades of scientific
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progress. Today, several vaccines are in development but none is yet commercially

available, although this may change given growing public demand.

. A HISTORY OF DENGUE ILLNESS

Putative dengue disease had been described in the Americas as early as the late 1700s. In

1780 , Philadelphia physician Benjamin Rush reported treating patients who suffered from

a dengue- like illness in his home city (Rush, 1789). Because of profound differences in

the understanding of disease etiology at that time, a definitive clinical history of the

emergence of DV is limited and largely speculative. However, it has been suggested

based on an analysis of nucleotide substitution rates in multiple dengue viruses that the

most likely timeframe for dengue viral emergence from sylvatic(i, , with monkeys

being the primate host) to sustained human transmission occurred between 280 and 380

years ago , with accelerated genetic divergence appearing in the last century (Twiddy et

aI. , 2003).

During World War II , Japanese scientists first isolated DV (Kimura, 1944), and

American scientists confirmed their findings just a few years later. Interest in dengue as

a disease had been piqued by the toll it exacted on both American and Japanese troops

during the war in the Pacific theater. By 1952, American scientists had isolated and

described another distinct dengue virus (or serotype, as this distinction is based on

serology) and were gainIng an understanding of the relation ofDV serology to disease

(Sabin, 1952). Today, it is understood that there are four dengue virus serotypes (DI 

D4V), which may circulate simultaneously within a given region, a state termed

hyperendemicity." The interrelated roles that antigenic variability and co-circulation of



multiple DV serotyes play in disease will be discussed in greater detail in coming

sections.

. In the years following World War II and up until the present day, major dengue

outbreaks have occured in tropical regions around the globe and appear to be doing so

with increasing frequency and severity. Today, the global incidence of dengue infection

is estimated at over 50 million cases per year (reviewed by Gubler, 2002), with the WHO

reporting 200 thousand to 500 thousand cases of severe disease, dengue hemorrhagic

fever (DHF) (WHO , 2002).

. ECOLOGY OF DENGUE VIRUSES AND THEIR VECTORS

DVs are meinbers of the genus Flavivirus in the family of vi fUses Flaviviridae. Yellow

fever virus is the prototye, and the agent from which the nomenclature is derived (favus

designating yellow in Latin). The flavivirus genus contains over 70 viruses , of which

several are the cause of emergent or re-emergent diseases. Phylogenetic analyses clearly

indicate that flavivirses that belong to the mosquito-borne clades represent a distinct

evolutionary lineage ITom the other vector (tick)-borne flaviviruses (Kuno et ai. , 1998;

Billoir et ai. , 2000). More than half of the flaviviruses are transmitted by mosquito

vectors, as is the case for YFV , DV, and two additional important human pathogens such

as Japanese encephalitis virus (JEV) and West Nile virus (WNV) (reviewed by

Mackenzie etal. , 2004). edes aegypti and Aedes albopictus mosquitoes are the primary

vectors for dengue transmission; the former also transmits YFV, particularly in Africa.

In the life cycle of both viruses primates are the vertebrate host, although unlike YFV



DV does not require a sylvatic reservoir, a characteristic that may have evolved in

concert with the feeding habits of its major vector Aedes aegypti.

Aedes aegypti is a "domesticated" species , having adapted effciently to thrive in

areas affected by human habitation, where it reproduces in standing water collected in old

tires , barrels , and similar refuse, or in stagnant pools in cleared areas. Aedes aegypti 

active throughout the day, and thus adapted to human diurnal behavior. Commonly

. found in urban environments , mosquitoes of this species are fastidious feeders , and a

single mosquito with access to multiple individuals is likely to bite often, and repeatedly,

especially when disturbed (reviewed by Gubler, 1998). This particular characteristic may

be exaggerated by a host of neurological effects that DV infection has on the mosquito

. increasing the time needed for feeding and hypothetically increasing the chance for

interruption and movement to another host (Platt et al. , 1997).

During the first half of the 20 century in the Americas , efforts to reduce yellow

fever through mosquito control, which included spraying and the elimination of

reservoirs for standing water, were effective in limiting the range of endemic dengue

(Gubler, 1998). However, relaxation of these control measures has resulted in re-

establishment of endemic dengue in many historically affected areas. International travel

has exacerbated the problem by introducing variant-and potentially more virulent-

strains into new environs (Gubler, 1998). In effect, human mobility combined with lax

vector control, reduced pUblic education , and significant genetic diversity among DVs all

appear to be contributing to the broadening range and apparent increase in severity of

dengue disease.



. THE BIOLOGY OF DENGUE VIRUSES

Flaviviruses are single-stranded RNA viruses of (+) polarity, with an approximately ll-

kb genome surrounded by capsid (C)'protein. The viral capsid is enclosed in a lipid

envelope that is derived from host.cellular membranes and contains the two other dengue

. structural proteins , membrane (M) and envelope (E). The structural proteins are encoded

at the 5' end of the dengue genome , in the order C , pre-membrane (prM), and E. TheE

protein mediates binding to the host cell membrane, at which point the virus is

internalized through receptor-mediated endocytosis. The seven non-structural proteins

follow, in sequence order, 5' to 3' : NSI , NS2A, NS2B , NS3 , NS4A, NS4B , and NS5. 5'

and 3' untranslated regions flank the coding portion of the genome , which is translated

from a single open reading frame (ORP) to yield a single polypeptide (reviewed by

Lindenbach, 200 I).

A number of molecules have been proposed as the host receptors for dengue

virus , including heat shock proteins (Reyes-Del Valle et ai. , 2005), CD14-associated

molecules (Chen et aI. , 1999) and glycosaminoglycans such asheparan sulfate (Chen et

, 1997), which may be involved in concentrating the virus at the host cell surface.

Several groups have also demonstrated that the C-type lectin, dendritic cell (DC)-specific

intracellular adhesion molecule-3 (ICAM-3)-grabbing non- integrin (DC-SIGN), mediates

infection of dendritic cells , which naturally express DC-SIGN at high levels prior to

activation (TassaneetritHep et aI. , 2003; Lozach et aI. , 2005; Kwan et aI. , 2005).

Immortalized cell lines that are normally ineffciently infected by DV become highly

susceptible to infection following ectopic expression of DC-SIGN or its homologue

liverllymph node-specific ICAM- grabbing non-integrin (L-SIGN). L-SIGN is

expressed on specialized endothelial cells in the liver and lymph nodes , suggesting that



high-level dengue infection may target multiple tissues in vivo. An antibody that cross-

reacts with both DC-SIGN and L-SIGN blocks infection in either ectopic expression

system; this suggests that infection requires binding to a shared epitope on the two

molecules (Tassaneetrithep et aI. , 2003). Surprisingly, in two reports the internalization

sequence of DC-SIGN was dispensable for dengue infectivity, suggesting that additional

. molecules are involved in virs internalization (Lozach et aI. , 2005; Tassaneetrthep et aI.

2003). The broader context of these findings wil be discussed later in this Introduction

(see "Dengue virus infection of dendritic cells "

Studies with the flavivirus tick-borne encephalitis (TBE) virus show that the E

protein undergoes a conformational change upon endosomal acidification, which induces

an irreversible change ITom a packed dimeric structure to a more open trimeric structue

(reviewed by Mukhopadhyay et ai. , 2005) and reveals the active site for membrane fusion

(Allison et aI. , 2001). The nucleocapsid is released into the cytoplasm where dissociation

of the viraLRNA permits' the initiation of translation. Translation occurs at the surface of

the endoplasmic reticulum (ER), with cleavage of the polypeptide mediated by host

signalases and the viral serine protease. The capsid protein mediates translocation of prM

into the lumen of the ER, which in turn mediates similar translocation of the E protein.

Following multiple cleavage events , the prM and E proteins form stable heterodimers in

the ER lumen, while C remains associated with the ER at the cytoplasmic surface. The

RNA genome is then packaged and the immature virion moves through the trans-Golgi

system, undergoing pH - pendent structural rearrangement. This change appears to

allow for the cleavage of a peptide fragment from prM by host furin, which facilitates

switching from a spiked particle surface composed ofprM-E heterodimers to a smooth

particle surface comprised of E homodimers , with the mature M protein essentially



obscured. At this point, the virus is infectious, and is exocytosed from the cell

(Mukhopadhyay et aI. , 2005).

During the process of infection, the multiple dengue non-structural proteins serve

a variety of both indispensable and accessory functions, many of which researchers are

discovering and defining. NS 1 has been implicated in cell signaling through a

glycerophosphatidylinositol (GPI)-linked membrane-bound form which, when expressed

in BeLa cells , induced protein phosphorylation following NS I-specific antibody

treatment (Jacobs et aI. , 2000). NSI-driven signaling also occurs through interaction

with signal transducer and activator of transcription (ST A T)-3~; resulting in the

production of the inflammatory cytokines tumor necrosis factor (TNF)-a and interleukin

(IL)-6 following transfection into murine DCs (Chua et aI. , 2005). NS2B is a cofactor

required for proper function ofNS3 , which has multiple functions including serine

protease activity, nucleoside triphosphatase and helicase functions required for viral RNA

synthesis, and 5 triphosphatase activity involved in RNA capping (reviewed by Clyde et

aI. , 2006). NS5 serves as the viral RNA-dependent RNA polymerase and has

methyltransferase fuction (Clyde et aI. , 2006). NS5 has also been reported to activate

gene transcription resulting in the secretion of the chemokine IL-8 (Medin et aI. , 2005).

IL-8 has been demonstrated to interfere with antiviral IFN-a function by inhibiting 2'

oligoadenylate synthetase (OAS) activity (Khabar et aI. , 1997).

It has been dem6nstrated that the non-structual proteins NS2A, NS4A, and NS4B

directly suppress the effects of interferon (IFN)-mediated signaling. Expression of these

proteins from plasmids transfected into chick embryonal fibroblast (CEF) and human

lung epithelial carcinoma A549 cell lines facilitated the replication ofIFN-sensitive



Newcastle disease virus (NDV) (Munoz-Jordan et aI. , 2003). In the same study (using

293T cells), NS2A, NS4A , and NS4B inhibited activity from an IFN-stimulated response

element (ISRE)-54 reporter construct in response to IFN-~ stimulation, but not Sendai

virus infection. This indicates thatthe noted effect was secondary to inhibition ofIFN-~

signaling, as opposed to effects on interferon regulatory factor (IRF)-3; IRF-3 is critical

in initiating IFN responses to viral infection by itself eliciting IFN-~ production (Sato et

aI. , 2000; Fitzgerald et ai. , 2003).

The effects of the aforementioned dengue NS proteins were synergistic , but NS4B

by itself was sufficient to inhibit ST AT- l phosphorylation and nuclear localization in

response to either exogenousIFN-~ or IFN-y (Munoz-Jordan et aI. , 2003). Additional

studies implicated amino acids 77- 125 as the NS4B inhibitory active site, with a separate

region responsible for ERlocalization required for IFN-inhibitory function (Munoz-

Jordan et aI. , 2005). As previously noted, dengue genome replication occurs at the ER

surface, suggesting a potential role for NS4B in shielding the viral RNA from

intiacellular sensory mechanisms during replication. IFN inhibition appears to be of

critical importance for dengue survival and replication in the host since IFN-a is readily

detected in the plasma of children with dengue infection (Kurane et aI. , 1993), and a

murine model of primary dengue infection demonstrated a requirement for the

combination ofIFN-a and -y to clear the virus (Johnson and Roehrig, 1999).

CLINICAL PRESENTATION OF DENGUE INFECTION

Dengue illness is manifested in a spectrum of symptoms and disease severity. Many

dengue infections are mild, either asymptomatic or presenting as an undifferentiated



febrile ilness. Undifferentiated dengue fever (DF) is particularly common in infants and

very young children, who may also exhibit a maculopapular rash. Such cases represent

most infections in endemic regions , with two separate studies in Thailand reporting from

50% (Endy et aI. , 2002) to 90% (Burke et aI. , 1988) of infections as being sub-clinical.

In older children and adults dengue disease may manifest with more severe symptoms , or

classical" dengue fever. The classical presentation is characterized by high, sometimes

biphasic fever, accompanied by constitutional symptoms that include retro-orbital pain

and headache, and the severe muscle pain (myalgia) for which dengue garnered the

moniker "break-bone fever" (Rigau-Perez, 1998). Anorexia, vomiting, and abdominal

pain or tenderness are not uncommon. There may also be signs of mild coagulation

dysfunction, with mucosal injection, micro hemorrhages and petechiae, and occasionally

occult GI bleeding, although the latter is rare. Patients suffering from DF tyically

. display leucopenia and may also present with thrombocytopenia. Recovery from DF is

generally complete with few lasting sequelae although fatigue and depression may persist

for weeks to months after the resolution of fever (WHO , 1997).

The most severe cases of dengue infection are termed dengue hemorrhagic fever

(DHF). DHF tends to be seen most often in young children and infants, but is not limited

to this age range (WHO , 1997). Beyond high fever (:?39 C) and constitutional

symptoms , the hallmarks of DHF are increased vascular permeability, hemorrhagic

phenomena, and hepatOlhegaly. The clinical case definition ofDHF as described by the

World Health Organization includes the presence of all of the following: high fever

bleeding tendency (including but not limited to a positive tourniquet test, petechiae and

signs of micro hemorrhage, mucosal bleeding, hematemesis and/or melena), severe



thrombocytopenia ( 100 000hnm ), and evidence of plasma leakage, including elevated

hematocrit or signs of pleural effusion (WHO , 1997).

The clinical severity of DHF is graded according to WHO guidelines, with grade

I being defined by the minimal criteria, where the only evidence of hemorrhage is a

positive tourniquet test or brising tendency. Grade 2 includes the additional criterion of

spontaneous bleeding. DHF grades 3 and 4 are cases where dengue shock syndrome

(DSS) is present. DSS is diagnosed when the patient presents with signs of circulatory

failure due to functional hypovolemia. Such signs range from a weak, rapid pulse and

cold, clammy skin accompanied by restlessness (grade 3) to profound shock, with

undetectable pulse and blood pressure (grade 4). DSS is a critical condition, often being

fatal if untreated, as poor organ perfusion leads to multi organ system failure. However

the plasma leakage syndrome, which i 'S roughly concurrent with defervescence , is rapid

and transient. Appropriate medical care, particularly fluid resuscitation and monitoring

for occult bleeding, results in full recovery from DHF (Dung et aI. , 1999).

. IMMUNOPATHOLOGY OF SEVERE DENGUE ILLNESS

The etiology of enhanced vascular permeability that is s en during some cases of dengue

infection is il-defined, although there has been considerable research done in identifying

risk factors for the development ofDHF/DSS. The most prominent of these is

heterologous secondary linfection, that is , infection with a dengue serotype other than the

one to which the individual was first exposed (Nisalak et aI. , 2003; Guzman et ai. , 1990;

Burke et aI. , 1988). It is generally believed that heterologous re-infection activates

inappropriate humoral and cellular immune responses, resulting in disease through failed



immune regulation and inappropriate cytokine cascades , as opposed to direct viral

cytopathic 'effects. The dysregulation of secondary immune responses appears to involve

multiple immune system components of diverse nature, with contributions from factors

intrinsic to both host and virus. The following sections wil discuss these issues , and

introduce the roles that host and viral factors play in target cell infection.

As previously noted, the majority of DHF cases are associated with heterologous

derigue re-infection. In some instances DHF has been noted in infants experiencing

primary infections. It has been hypothesized that reduction in the levels of passively

transferred maternal antibody results in infants becoming susceptible specifically when

antibody levels become sub-neutralizing and may in fact enhance infection (Kliks et aI.

1988). A study from Bangkok, Thailand reported that the serotyes most commonly

isolated during primary infection in infants (D2V and D3V) were the same serotypes

most commonly seen in secondary infection in older children, suggesting common

pathologic mechanisms (Nisalak et aI. , 2003). Cross-reactive sub-neutralizing antibodies

are responsible for the in vitro phenomenon of antibody-dependent enhancement (ADE),

where antibody-coated virus enters phagocytic cells, especially monocytes and

macrophages , via Fcgamma receptors (FcyR). FcyR on the cell surface recognize the

constant fragment (Fc) of virus-coating IgG antibody, and mediate uptake of infectious

immune complexes (reviewed by Tirado and Y oon, 2003).

ADE has been &monstrated in vitro for several viruses , including DV and HIV

(Littaua et aI. , 1990; Morens and Halstead, 1990; Jolly and Weiss, 2000). This process

not only increases cellular infection, it can also induce distinct signaling patterns in

infected cells when cOnipared to naked virus , including IL- l 0 production and suppression



of antiviral responses (Mahalingam and Lidbur, 2002). Further evidence for the role of

an in vivo ADE-type phenomenon in severe dengue disease is supported by the

observation of a protective effect on the risk of developing DHF for a histidine to

arginine mutation at position 133 in the: FcyRIIA allele (Loke et aI. , 2001). The arginine

mutation was shQWn to be responsible for reducing uptake of IgG I but not IgG2b when

compared with the common histidine variant (Clark et ai. , 1991).

Mathematical modeling suggests that evolutionary pressure on dengue viruses

confers a selective advantage on strains that develop the capacity for ADE, thus

increasing their virulence (Cummings et aI. , 2005). However, that model also predicted

that as multiple serotypes developed greater ADE capability, the system would became

destabilized and chaotic. There would be large oscillations in the overall incidence of

infection, risking viral extinction through exhaustion of secondary infection-susceptible

hosts. Despite the aforementioned findings, there is some dispute regarding the role that

pre-existing cross-reactive antibodies play in determining the severity of dengue ilness.

Studies performed on clinical samples to correlate levels of enhancing-antibody with an

outcome of increased disease severity have not proven definitive , with both supporting

(Kliks et aI. , 1989) and refuting (Laoprasopwattana et aI. , 2005) evidence in the literatue.

An in vivo ADE-type phenomenon is not the only theory to espouse a link

between humoral immune responses and severe dengue disease. During acute dengue

disease, the viral NS I prbtein has been measured in plasma at high levels in a soluble

form that may also be involved in dengue pathogenesis (Young et aI. , 2000; Libraty et aI.

2002). In one study, polyclonal antibodies generated against dengue NSI in mice

recognized epitopes on human targets , particularly clotting factors, platelets , and



endothelial cells (Falconar, 1997). Monoclonal antibodies developed in the same study

reacted with multiple human proteins , including ICAM- , fibrinogen, factors VII and IX

and prothrombin. Work performed by a separate group found that binding of antibody

specific for NS 1 to endothelial cells induced caspase-dependent death; this effect was

enhanced in the presence of complement (Lin et aI. , 2003). Anti-NS 1 antibodies may

also induce endothelial cell nitric oxide (NO) production, resulting in apoptosis (Lin et

aI. , 2002) and potentially blood vessel dilatation. Thus, dengue NSI appears to

contribute both to vascular leakage and platelet and coagulation factor consumption

risking disseminated intravascular coagulation (DIe), hemorrhage, and shock.

Humoral immunity represents only one of the two arms of adaptive immune

responses. It is also theorized that cell-mediated immunity contributes to the

immunopathological mechanisms in DHF (Rothman and Ennis , 1999). Early studies

found evidence of increased T cell activation during dengue disease, and suggested that

these effects were exacerbated in cases with greater pathology (Kurane et aI. , 1991;

Green et ai. , 1999a). Subsequent work has identified the presence of serotye cross-

reactive T cells following both primary (Green et aI. , 1997; Kurane et aI. , 1998; Bashyam

et aI. , 2006) and secondary infections (Mathew et ai. , 1998; Mongkolsapaya et aI. , 2003).

MHC Class I HLA polymorphisms have. also been correlated with disease risk as well

further suggesting that certain T cell responses may be either protective or pathogenic

and may have a strong h6st genetic factor (Loke et aI. , 2001).

Work specifically addressing the role of CD8 T cells in secondary dengue

infection reported expansion ofCD8 T cells with higher affinity for epitopes from

heterologous serotypes , rather than the subsequent infecting serotye, an effect termed



original antigenic sin" (Mongkolsapaya et aI. , 2003). That same study also reported that

the CD8 T cells responding during acute secondary infection were apoptotic. Separate

studies on whole peripheral blood mononuclear cells (PBMC) obtained from individuals

following experimental dengue vaccination found that CD8 T cells were responsive to

peptide epitopes from the homologous strain as well as variant peptides derived from

heterologous strains (Bashyam et aI. , 2006). In that study, there were also clear

differences between vaccinated donors regarding quantitative and qualitative aspects of

the dengue-specific CD8 T cell memory pool. Cytokine production profies varied both

between donors for a given epitope and within a given donor for variant epitopes

revealing donor- and epitope-dependent variation in function of dengue-specific CD8 T

cells following reactivation,

Beyond CD8 T cell responses , CD4 T cells have also been examined in regards to

the pathogenesis of dengue infection. In a prospective study of dengue ilness in Thai

schoolchildren, dengue antigen stimulation of pre-secondary ilness PBMC demonstrated

poor responses against the secondary infecting serotye (D3V). However, there was a

broad serotye-cross-reactive IFN-y secretory response , particularly in non-hospitalized

subjects , while TNF-a secretory responses were found only in subjects who were

hospitalized during secondary infection (Mangada et aI. , 2002). Further studies using

intracellular cytokine staining ofPBMC from dengue-vaccinated individuals found a

trend for elevated TNF- /IFN-l CD4 T cell ratios following heterologous antigen

stimulation, again suggesting a role for TNF -a in pathologic immune reactivation

(Mangada and Rothman, 2005).



These results demonstrate that functionally diverse T cell repertoires are present

. following infection withDV, and that specific T cell subsets as well as some functions of

the cells comprising these subsets may be associated with immunopathology or

immunoprotection. When reviewing these studies, interesting questions emerge regarding

the priming history of the cells being studied. Elucidation of the potential range of

functional activities (including secretion ofIL- , IL- , or granulocyte macrophage

colony stimulating factor (GM-CSF), which all affect APC function and/or T cell

function) in these cells may reveal additional insight into the mechanisms of severe

disease. The qualitative and quantitative aspects of T cell priming induced by APCs that

have been exposed to or infected with DV is thus an important avenue of investigation.

One consistent theme of the multiple hypotheses regarding DHF pathogenesis is

the influence of soluble mediator cascades. A number of studies with clinical samples

have identified cytokines and chemokines associated with increased risk of severe

disease. Several studies have demonstrated that elevated plasma levels of IL- I 0 , which

has immunosuppressive properties, are independently correlated with risk of severe

disease or thrombocytopenia (Perez et aI. , 2004; Green et aI. , 1999b; Libraty et aI. , 2002).

Elevated levels of plasma IL- I 0 also correlate with poor disease outcome in Ebola virus

infection of humans , which results in a fulminant hemorrhagic fever associated with high

mortality (Baize et aI. , 2002; Villinger et aI. , 1999). These findings suggest that induction

of immunosuppression m'ay enhance virulence for some RNA viruses , although it may

alternatively be postulated that elevated IL- I 0 production associated with severe disease

is a function of enhanced counter-regulatory mechanisms induced following uncontrolled

initial activation. Interestingly, IFN-y concentrations in plasma do not correlate with



disease severity in dengue infection-in agreement with findings that suggest a protective

role for this cy okine in dengue ilness (Mangada et aI. , 2002). Because of the

antagonistic role that IL- I 0 plays in. IFN -y signaling, these findings suggest that elevated

, IL-JOmay exert pathogenic effects by blocking protective IFN-y. activity early in ilness

when antiviral activity may be important in suppressing viral load and immune

activation.

Another cytokine associated with severe dengue disease is TNF-a. Seru levels

ofTNF-a were found to be elevated'in the sera of patients with dengue , as compared to

controls, and this effect correlated with hemorrhagic manifestations (Azeredo et ai.

2001). In a study of children and adults with DHF, the highest serum TNF-a levels were

found in patients with DHF grades III and IV (Hober et ai. , 1993). One study

investigating the role ofTNF-a in Thai children with dengue found that 80-kilodalton

soluble TNF-a receptor (sTNFR80) concentrations in plasma were higher in patients with

DHF than with DF or other febrile illnesses and correlated with the pleural effusion

index, ameasure of capilary leakage. That same study also detected TNF-a in plasma

more frequently in cases ofDHF than DF (Green et aI. , 1 999a). TNF-a is thought to

regulate changes in vascular endothelium , and acute sera from DF patients has been

demonstrated to induce microvascular endothelial cell activation that was inhibited by

addition of TNF -a blocking antibodies; the same sera induced apoptosis in these cells as

well (Cardier et aI. , 2005).

The chemokines IL-8 and RANTES (Regulated on Activation, Normal T cell

Expressed and Secreted) have also been investigated in studies of dengue disease

severity. In a report from India, serum IL-8 levels were demonstrated to be highest in



patients experiencing DSS , with statistically significant differences in DHF grade IV

patients as compared to grades I and II , while IL- 8 was not detected in the sera of healthy

controls (Raghupathy et aI. , 1998). A separate study from Indonesia reported similar

results, detecting IL-8 most frequently and at the highest median levels in DHF grade IV

patients as compared to-other DHF grades, patients with DF, or healthy controls. That

study also found elevation in plasma elastase levels with severe disease, which the

authors proposed might have been due to IL-8-mediated neutrophil activation (Juffrie et

al.; 2000). Plasma levels of RANTES , on the other hand, were shown to be lower in

DHF patients later during the course of disease than were levels in patients with DF, or in

healthy controls (Perez et aI. , 2004).

Taken as a whole, these data suggest that specific cytokine responses (i. , high-

level IL.:lO , TNF-a , and IL-'8production , or weak RANTES induction) may predispose

an individual to development of pathology during dengue infection. This provides

further evidence for the importance of iilmunopathogenesis in dengue illness and

indicates that both host- and virus-associated factors that influence cytokine and

chemokine cascades may dictate disease outcome.

Epidemiological evidence is compelling for a role of virus-associated factors in

determining the severity of dengue illness. The occurrence of DHF in the Western

Hemisphere has been specifically linked to the arrival of Asian genotypes ofD2V

despite the presence of chculating American D2V genotypes (Rico-Hesse et aI. , 1997).

For example , during an outbreak of American genotye D2V in Iquitos , Peru, in a

population previously exposed to D I V, severe dengue illness in the form of DHF /DSS

was conspicuously absent (Watts et aI. , 1999). In a longitudinal study from Bangkok



Thailand, although multiple serotyes were associated with epidemic dengue, D2V was

the most frequent serotype isolated from secondary infection, yet it was the only serotype

that did not independently contribute to the presence of DHF during an epidemic (Nisalak

et aI. , 2003). The most severe epidemics (based on incidence) were associated with

dengue 3 serotypes , and D3V was the most common isolate from primary DHF (Nisalak

et aI. , 2003). Lastly, the frequency of isolating D 1 V correlated with the yearly proportion

of primary disease cases , suggesting that D 1 V strains in this region had particular

virulence in children who lacked prior dengue priming (Nisalak et ai. , 2003). Together

these studies highlight the complex role that viral characteristics play in determining

disease pathology. In vitro studies aimed at determining virulence factors examined

regions in the 5' and 3' UTRs of the dengue genome and those resulting in changes in the

non-stmctural genes, which might also be important in determining disease severity

(Mangada and Igarashi , 1997; Mangada and Igarashi; 1998).

In dengue research, it is particularly important to combine clinical and

epidemiological data with in vitro studies because of the prohibitive ethics of studying

the priming process in vivo in the natural human host. Although the murine system is

arguably ideal for studying basic immunological principles , mouse models are inherently

problematic when studying dengue infection. Major issues include the drastic gene

manipulation, non-physiologic infection routes, and/or specific virus strains required to

generate dengue disease ift susceptible murine infection models (Johnson and Roehrig,

1999; Shresta et ai. , 2006; Kurvila et aI. , 2007). Also , disease pathology in mice does

not effectively recapitulate that seen in humans. Fundamental differences in the human

and murine immune systems might also be considered prohibitive, particularly given the



species-specific adaptation of dengue to human hosts. Therefore , a great deal of effort

has been directed at investigating the effects of DV infection on the responses of human

target cells in vitro.

. CELLULAR TARGETS OF INFECTION

Several reports indicate a range of susceptible in vivo targets of dengue infection

including leukocytes , endothelial cells , and hepatocytes (Jessie et aI. , 2004; Rosen et aI.

1989; Couvelardet aI. , 1999). However, these data are far from definitive and rely on

small sample numbers, with low detection rates. Obtaining human tissue samples for

analysis is diffcult since the potential research benefit does not justify the danger to

patients inherent in biopsy of internal organs. Therefore, the use of in vitro model

systems for dengue infection has served as a surrogate for in vivo work.

Due to the ease of manipulation and maintenance, researchers have directed a .

great deal of effort towards the use of immortalized cell lines in the study of DV. The

potential involvement of the liver in vivo has lead several groups to address infection

using 'the hepatoma cell line HepG2. Dengue infection of HepG2 cells was found to

induce apoptosis through NFKB activation (Marianneau et aI. , 1997), as well as induction

of the chemokines IL- , RATES , and macrophage inflammatory protein (MIP)- l a, and

MIP- l~ (Medin et ai. , 2005), suggesting that hepatocyte infection in vivo might be

associated with pathology via direct mechanisms as well as damage through the

recruitment of cellular immune effectors.

Attempts to understand the vascular permeability phenomenon that occurs during

severe dengue infection have led some researchers to explore the role of histamine , which



is secreted by mast cells and basophils and has potent vasodilatory functions. Histamine

has been implicated in disease for both human patients (Tuchinda et aI. , 1977) and in a

murine dengue infection model (Chaturvedi et aI. , 1991). The human mast cell line

KU8l2couid be infected with DV through an ADE-mediated mechanism, releasing

inflammatory cytokinesIL- l~ and IL-6 (King et aI. , 2000). In a comparison of ADE of

infection of KU812 cells and the monocytic cell line U93 7 , KU8l2 cells alone induced

production of the chemokines RANTES , MIP- Ia and MIP- l~ by 72 hours post- infection

(King et aI. , 2002). Surprisingly, however, neither study implicated DV as a stimulus for

mast cell degranulation and histamine release, suggesting that a role for histamine may

involve more complex mechanisms than cellular infection alone. One possibility is that

in some individuals , DV may stimulate IL- 13 production by T cells during priming, with

elevation of DV-specific IgE production (and mast cell degranulation on secondary

exposure) .

As noted previously, ex vivo analyses have not provided definitive evidence for

lymphocyte infection, although one study implicated B cells specifically as being the

predominantly infected cell in PBMC (King et aI. , 1999). DV infection of both

lymphocytes and monocytic cell lines has been accomplished, with the authors reporting

the establishment of persistently infected cell lines , indicating the susceptibility of

multiple cell lineages to dengue infection, at least in vitro in immortalized cells (Kurane

et aI. , 1990). Most notab\y, monocytic cell lines were of particular interest in early 

vitro studies given the putative role of ADE in severe dengue etiology. Investigators

identified roles for FcyRI and FcyRII in mediating ADE in infection ofU937 and K562

cell lines , respectively (Littaua et aI. , 1990). IFN-y enhanced this process by increasing



FcyR expression (Kontny et aI. , 1988). Unlike much of the evidence regarding infection

of other cell lines , infection of monocytic cells has translated rather consistently into

investigations of primary cell cultue , although infection rates are generally low.

Similar to research on cell lines , early studies of dengue infection in primary cells

focused predominantly on cells of myeloid/monocytic lineage (Morens and Halstead

1990; Kliks et ai. , 1989). More recent literature reports of monocytic/macrophage cell

infection, including liver sinusoid-resident Kupffer cells, suggest that these cells are

activatedduring.infection and produce inflammatory cytokines, although infection of

Kupffer cells was not productive (Chen and Wang, 2002; Marianneau et ai. , 1999).

Infection of monocytic cells and macrophages was a prominent topic of study for some

time, although recent work has expanded to include other primary cell tyes as well. DV

infection of primary human ,umbilical vein endothelial cells (HUVEC) results in virion

production and multiple inflammatory events , including the secretion of IL-6 and IL-

and platelet adhesion (Huang etaL , 2000; Huang et aI. , 2002). Despite these findings of

primary cell activation following DV exposure , infection rates are low. This is tre even

for monocytes and macrophages , particularly in the absence of enhancing antibody. DCs

however, are a notable exception to the typically poor susceptibility to infection that is

seen with other primary cells.

As previously noted, DV binds to the C-type lectin DC-SIGN, a molecule

expressed at high levels pecifically on DCs. These findings followed the seminal

discovery that DV infects human DCs, both in vivo and in vitro (Wu et ai. , 2000). In that

study, the authors first reported the infection of blood monocyte-derived DCs following

exposure to the prototype D2V strain New Guinea C. Infected DCs failed to induce



dendritic cell- lysosome associated membrane protein (DC-LAMP) compared with

uninfected bystander cells, suggesting that dengue infection interferes with normal

processes associated with DC activation. DC infection occurred in situ in skin explants

. derived from cadavers , with dengue protein expression in 60-80% of emigrant HLA DR-

expressing cells following tissue inoculation. Although the authors also reported

Langerhans cell infection, this was proposed based on CDla expression (a marker also

expressed by monocyte-derived DCs), and the emigration of the infected cells following

superficial skin inoculation, therefore leaving this conclusion in question. The authors

also identified cells co-staining for dengue antigens and the DC marker CD I a in skin

biopsies from a dengue-vaccinated donor. By directly demonstrating efficient infection

of human skin-derived cells both during acute infection and in tissue explants and

correlating these findings ",ith an established in vitro model, this study opened an

intriguing avenue into investigating the pathogenesis of dengue infection. Definitive

evidence for an in vivo cell target highly susceptible to infection was identified, and the

particular cell type, the DC , was known to be intimately involved in the generation of

immune responses. What follows in the remainder of this introduction is the story of

DCs-their origins, functions , and role in generating adaptive immunity. The growing

body of work on DV infection of DCs , and the results of similar studies with other

viruses , will also be addressed.

. THE BIOLOGY OF DENDRITIC CELLS

DCs are a vital component of the innate immune system and are critical in the detection

of and response to microbial challenge. DCs are derived from bone marrow precursors



and include cells of both plasmacytoid and conventional lineages (reviewed by

Villadangos and Schnorrer, 2007). Conventional (i. , myeloid) DCs migrate via the

blood to final sites of residence, where their differentiation is arrested in an "immatue

or pre-activated state. Immature DCs are present in the epidermis (as Langerhans cells),

vascularized interstitial tissues of the dermis and solid organs, and mucosal surfaces such

as those of the gastrointestinal, and respiratory tracts (Banchereau and Steinman, 1998).

Immature DCs constitutively sample their surrounding environment and employ a vast

array of intracellular and cell-surface-bound receptors. Many of these receptors act as

sensory mechanisms to detect both endogenous and exogenous antigens (Villadangos and

Schnorrer, 2007). The range of antigen moieties recognized is strikingly diverse: DCs

express receptors for each of the major classes of biomolecules , including proteins

nucleic acids , sugars , and lipids. In many cases, binding of pathogen-derived products to

. specific receptors on the DC induces signal transduction cascades that culminate in

transcriptional, functional , and morphological changes to the DC. A microbial "danger

signal" (Matzinger, 1994) thus initiates a program of DC "maturation" (Banchereau and

Steinman, 1998).

Functionally, DC matuation includes a transient burst of antigen uptake followed

by a switch to enhanced antigen processing and presentation, the secretion of cytokines

and chemokines , and homing to secondary lymphoid tissues to stimulate T cell responses

(Banchereau and Steinmdn, 1998; Reis e Sousa, 2006). The maturation process evolves

as the DC encounters additional signals , i. , intracellular viral double-stranded RNA

(dsRNA) (Cella et aI. , 1999), or the binding ofCD40 ligand (CD40L) (O' Sullivan and

Thomas , 2002), which is expressed on T cells during co-stimulation. Plasticity in DC



activity ostensibly allows for priming of the most appropriate adaptive response for

pathogen clearance.

DC co-stimulatory molecule expression influences quantitative aspects of T cell

responses to DCs. A major aspect of DC maturation is the regulation of surface

molecules involved.in DC- T cell interactions. Early studies of DCs indicated that

inflammatory mediators such as TNF-a or IFN-a stimulated increased expression of

, surface molecules that are involved in initiating T cell proliferation (Sallusto and

Lanzavecchia, 1994; Luft et ai. , 1998). Some of the earliest DC-expressed molecules

studied included the B7-familyco-stimulators CD80 and CD86 , which bind both

activating and deactivating receptors on responding T cells during T cell-dendritic cell

co-regulation. The more recently discovered programmed death- lligands (PD-L), PD-

LI and PD- , are members of the same family of molecules as CD80 and CD86

(Freeman ,et al.; 2000; Latchman et aI. , 2001). However, these proteins appear to act as T

cell suppressor molecules through binding to programmed death- l (PD- I) expressed on

activated T cells (Cai et aI. , 2004; Freeman et aI. , 2000; Latchman et aI. , 2001). The

phenotyic changes DCs underwent after exposure to activating stimuli also

demonstrated the induction of CDS3 , a marker considered specific for matue DCs (Zhou

and Tedder, 1995; Zhou and Tedder, 1996). The DC surface-bound TNF-family co-

stimulator CD40 binds CD40 ligand (CD40L) expressed on activated T cells, and is

crucial for both effective IT cell "help" and memory generation and for antibody isotype

switching (reviewed by Quezada et ai. , 2004). DCs present endogenous and/or

exogenous peptides in the context of class I and II Major Histocompatibility Complex

proteins , which in turn signal to antigen-specific CD8 and CD4 T cells , respectively.



DCs are effective cross-presenters as well , i. , they are able to load peptides normally

destined for MHC II presentation into the context of MHC I (Viladangos and Schnorrer

2007). Therefore, expression of DC surface molecules serves to initiate and control T

cell responses , and differential expression of specific molecules allows DCs to finely tune

the responses of antigen-specific T cells.

DC co-stimulatory molecule expression also influences qualitative aspects of T

cell responses to DCs. In a study using the experimental allergic encephalitis model in

mice; blocking CD80 signaling reduced disease incidence, while blocking CD86

enhanced disease severity (Kuchroo et aI. , 1995). These effects were related not to the

magnitude of T cell responses , but to selective induction of a transferable, protective T h

type response when CD80 was blocked during immunization. Since the co-

administration of anti-IL-4 antibody abolished the effect, the authors concluded that

blocking CD80 enabled endogenous IL-4 production in responding T cells, facilitating

the protective Th2 response (Kuchroo et aI. , 1995). In vitro while PD-Ll suppresses both

l and T tye resporises, PD-L2 appears to selectively suppress Th l responses only

(Latchman et ai. , 2001). CD40 expression on DCs can aid in Th l skewing during

interaction with CD40L, through the stimulation of DC IL- 12 secretion and induction of

T cell IFN-y production (Cella et aI. , 1996).

IL- 12 represents the most well-defined DC-derived cytokine responsible for the

induction of Th I-type imhmne responses (reviewed by Moser and Murphy, 2000).

However , human DCs are futher able to initiate and direct additional immune responses

through the production of a wide variety of cytokines and chemokines (Banchereau and

Steinman, 1998). DCs secrete IFN-a , which in humans can direct Th l development (i.



IFN-y production) through phosphorylation of STAT4 , which does not occur in mice

(Moser and Murphy, 2000). This effect is in addition to the well-described antiviral

functions of type I IFNs, the downstream activities of which include mRNA translation

inhibition RNA degradation, RNA editing, nitric oxide (NO) production, and the

. induction of MHC molecules involved in the presentation of viral antigens to T cells

(reviewed by Samuel, 2001). DCsalso produce inflammatory cytokines such as TNF-a

IL- , and IL-6. TNF-a in paricular can affect T cell responses through kiling of

actively proliferating T cells (Zheng et aI. , 1995; reviewed by Lenardoet aI. , 1999). IL-

10 production by DCs can affect a variety of cells, including the DC itself. IL- IO inhibits

cytokine signaling including that by IFNs , regulates T cell proliferation and cytokine

release, and faciltates B cell development (Pestka et aI. , 2004). DCs also produce a vast

array ofchemokines , a function exemplified by a report examining virus infection of

human DCs Wiqueras et aI. , 2006). In that report, chemokine secretion by DCs occurred

in three temporal waves, each associated with recruitment of distinct immune effector

populations. Chemokines such as IPlO (CXCLlO), ITAC (CXCLll), and Mig (CXCL9)

are associated with the recruitmentofTh l T cells, enhancing Th l-type responses, while

others , such as MDC (macrophage-derived chemokine , CCL22) attract T h2 cells. The

range .of secreted products induced following DC activation is incredibly diverse

highlighting the central role of these cells in the stimulation and orchestration of immune

responses.

DCs are kinetic beasts. The response of a DC to stimulation, even with a purified

non- living agent, is not a snapshot-the adoption of a fixed functional phenotype-but

rather a dynamic continuum of complex signaling. Two factors that modify T cell



responses to DCs are 1) the temporal relationship to stimulus exposure and 2) the antigen

dose presented to the T cell in the context of the DC. During co-cultue with autologous

naIve CD4 T cells and toxic shock syndrome toxin (TSST), Th l priming was enhanced by

reducing the time after lipopolysaccharide (LPS)'stimulation ofDCs , increasing the

antigen (i. TSST) dose, and addition of exogenous IL- 12 (Langenkamp et ai. , 2000).

Conversely, in the same study, increasing the time post-stimulation of DCs , low antigen

dose; and IL-4 supplementation all enhanced T h2 priming. The same conditions

associated with T h2 priming also preferentially induced non-polarized CC-chemokine

receptor-7 (CCR7)-expressing "central memory" T cells which secreted the T cell growth

factor IL- , but not Th effector molecules IFN-y or IL- , at levels comparable to CCRT

effector memory" T cells (Langenkamp et aI. , 2000). Thus , DCs have intrinsic

properties for primingTh and memory phenotypes of naIve CD4 T cells , which depend

on multiple facets of DC function at any given point in time.

The strength and duration of the signal that T cells receive during priming are also

critica:l in the development ofT cell memory, particularly the T cell' s "fitness." T cells

that are weakly stimulated can proliferate in response to IL- , but they fail to adopt

characteristics that allow them to persist in a homeostatically controlled environment

where survival depends on successfully competing for space and growth factors such as

IL-7 and IL- 15 (Gett et aI. , 2003). As a result, when T cells respond to virus-infected

DCs, weak stimulation atid activation may limit their viability during homeostatic

expansion and contraction. Their relative numbers in the memory pool would thus

decline , making cell-mediated immunity upon re-exposure to the pathogen less effective.



"" .

. VIRAL INFECTION OF HUMAN DCs: A BRIEF OVERVIEW

The infection of DCs by viruses can be instrumental in viral dissemination (Wang et aI.

2007; MacDonald and Johnston, 2000). This infection process is a common phenomenon

having been demonstrated for multiple RNA and DNA viruses responsible for a broad

range of di&eases. Conventional DCs are targets for a variety of RNA viruses , including

measles virus (MV) (Grosjean et aI. , 1997), respiratory syncytial virus (RSV) (de Graaff

et aI. , 2005), HIV (Granelli-Piperno' et aI. , 1996; Canque et aI. , 1996), hantaan virus

(HTNV) (Raftery et aI. , 2002), YFV l7D (Barba-Spaeth et aI. , 2005), and influenza

viruses (InN) (Cella et aI. , 1999). The observation that many viruses infect DCs may

indicate that viruses have evolved a common "targeting" mechanism designed to subvert

. or exploit DC immune functions. Viruses can thus facilitate their own survival by

infecting DCs and altering the interface of innate and adaptive immunity in the process.

. Although literatue reports often use DC phenotypic changes to denote

matuation " this connotatio.n does not account for functional activity. Phenotypic

changes and cytokine production have been traditionally associated with enhanced DC

function during co-culture with T cells. However, these activation events often belie

broad diversity in DC APC function that is based on stimulus, time, and the products

generated by (and in response to) infectious agents (reviewed by Reis e Sousa, 2006).

With regards to infection, diverse function often includes agent-specific modulations that

reveal themselves only up0n discrimination between infected and uninfected cells or

further pertrbation of the culture system, such as the addition of T cells. An example of

this is measles virus (MV) infection of DCs , where T cell-associated signals such as

CD40L enhance viral replication and elicit IL- I 0 production that is not seen in uninfected



cells (Servet-Delprat et aI. , 2000). The following sections address the effects of viral

infection of DCs , with specific attention to virus-mediated modulation of DC functions.

. VIRUSES ASSOCIATED WITH IN VITRO SUPPRESSIVE RESPONSES

Multiple early studies in vitro using MV to infect DCs indicated that proliferative

. responses of both syngeneic , activated whole T cells and allogeneic resting CD4 T cells

to MV-infected DCs were profoundly reduced when compared to responses initiated by

uninfected DCs (Fugier-Vivier et aI. , 1997; Schnorr et aI. , 1997; Grosjean et aI. , 1997).

These findings contrasted' starkly to the observation that DCs infected with measles

matured " by increasing their surface expression levels of a wide number of

immunoregulatory proteins, including co-stimulatory molecules CD40 , CD80 , and CD86

the DC activation marker CD83 , and MHC molecules (Schnorr et ai. , 1997; Servet-

Delprat et aI. , 2000). It was also demonstrated that enhanced expression of CD80 and

CD86 was a function of the autocrine activity ofIFN-a/~ released in response to MY

infection, indicating that the DCs had preserved IFN responsiveness (Dubois et aI. , 2001).

Determining which mechanisms were involved in suppressing T cell proliferative

responses to MV-infected DCs began with the finding that CD40-CD40L interactions-

normally associated with facilitating immune responses-triggered both potent DC

down-regulation of surface molecule expression and an increase in MV replication

(Servet-Delprat et aI. , 2000; Fugier-Vivier et ai. , 1997). Massive cell death was observed

during T cell-DC co-cultue, with apoptosis of the latter cells (but not the former)

depending on Fas-mediated signals , which also facilitated virion release through DC lysis

(Servet-Delprat et aI. , 2000). Additional studies suggested that DCs were inducing death



signals themselves through expression ofTNF-related apoptosis- inducing ligand

(TRAIL), which was found to be sequestered intracellularly (Vidalain et aI. , 2000). The

effects of infection on DC function during co-culture depended on viral replication, since

UV-inactivated MY treatment ofDCs did not have the profound consequences that

infection with live virus did (Fugier-Vivier et aI. , 1997; Grosjean et aI. , 1997). Also , the

observed effects were not the result ofT cell trans-infection, since treatment of infected

DCs with paraformaldehyde fixation or UV irradiation to eliminate infectious virus did

not restore T cell proliferation, and T cell expression of measles antigen during co-culture

was rare (Grosjean et al.; 1997;Schnorr et ai. , 1997; Fugier-Vivier et aI. , 1997).

MV replication in DCs also appeared to modify intracellular cytokine induction

pathways , sinceCD40-CD40L interactions specifically facilitated IL- l 0 production in

MV- infected DCs , yet did not appear to prevent IL- 12 production (Fugier-Vivier et ai.

1997; Servet-Delprat et aI. , 2000; Dubois et aI. , 2001). IL- 12 production was also

preserved following stimulation of MV - infected DCs with LPS (Schnorr et aI. , 1997).

However, IL- IO has multiple immunosuppressive activities, as evidenced by the

accelerated apoptosis of, and suppressed surface expression of immunostimulatory

molecules by, epidermal DCs (Langerhans cells) in response to this cytokine (Ludewig et

aI. , 1995). IL- lO also opposes the signaling induced by IFN-y and IFN-a (Ito et aI.

1999).

The message of thbe findings is that MV utilizes a number of strategies to

prevent or exploit immune responses initiated by DCs after infection. These include the

induction ofT cell and DC death, the utilization ofT-DC interactions (specifically,

CD40-CD40L binding) to increase virion production and reduce co-stimulatory molecule



expression, the death of DCs to facilitate virion release, and the induction of IL- l 0 to

inhibit antiviral responses and suppress DC and T cell functions. Expression of the MV

glycoprotein itself on the surface of infected DCs may be crucial for some of these

observed effects, particularly suppression ofT cell proliferation (Dubois et aI. , 2001).

Thus , MY appears to facilitate multiple APC-opposing feedback loops, in which the

prototypical antiviral agents IFN-a and IFN-y are functionally marginalized due to DC

IL- lO production, whilst at the same time eliminating substantial MV -specific immunity

through the deletion of DCs and T cells. In vivo these T - DC interactions would be

dependent on cognate recognition, suggesting that MY is able to ablate MY -specific

adaptive immune responses induced by infected DCs. The mechanisms described here

are clearly advantageous to the virus for its survival and dissemination, increasing viral

replication while likely retarding viral clearance , and permitting sufficient time for

transfer to another susceptible host.

Respiratory syncytial viral (RSV) is similar to MV in that they are both typically

diseases of childhood, yet they differ significantly in terms of the generation of

immunity. While MV results in transient profound immunosuppression followed by

lasting immunity, RSV appears to have particularly poor inimunogenicity. In the absence

of vaccination (no effective vaccine being available), individuals are exposed to RSV

throughout life, may be repeatedly infected, and are subject to the risk of more severe

disease with age-related in\mune senescence and underlying disease (reviewed by

Schmidt et ai. , 2004). Clinically, RSV-specific antibody production is not necessarily

correlated with protection, and may even be involved in the pathogenic manifestations of

disease (Chin, 1969).



Reminiscent of findings with MV in vitro studies with primary human cells

, showed that despite elevated surface molecule expression on DCs after RSV exposure

infected DCs essentially ablated autologous naive CD4 T proliferative responses in

response to either the superantigen staphylococcus enterotoxin B (SEB), or anti-CD3

antibodies , during co-culture. T cells derived from these same co-cultures demonstrated

weak cytokine production (including IFN-y, IL- , IL- , and TNF-a) as compared to

cells co-cultured with DC infected with influenza virus, or treated with synthetic dsRNA

, (in the form of poly I:C , a toll-like receptor (TLR)-3 agonist), or IL- I~ plus TNF-a (de

Graaff et aI. , 2005). Although suppression of proliferation appeared to be due to a

soluble mediator, neither IL- l 0 nor transforming growth factor (TGF)-~ was responsible

for the reduced proliferation seen in response to RSV -infected DCs (de Graaff et aI.

2005). These data suggest that RSV infection of DC induces a functionally defective

state, in which the DC is unable to facilitate T cell priming, reminiscent of the poor

immunogenicity ofRSV in vivo.

The results highlighted above reflect earlier in vitro work with a similar system

examining T cell responses to autologous RSV-infected DCs, with cells being derived

from children at birth, age 1 , and age 4. Sorted naIve CD4 T cells in co-culture with DCs

and the superantigen toxic shock syndrome toxin (TSST) revealed deficient IFN-

production by intracellular staining in response to RSV-infected DCs, an effect that was

stable over time for a given individual. In the same report, the authors performed an

analysis on children at the age of I who were sorted based on RSV disease history, using

the same culture system. In this comparison, lower frequencies of IFN-y producing T

cells were found in co-cultures with cells derived from individuals with a history of



bronchiolitis rather than a benign disease course (Schauer et aI. , 2004). Previous work by

the same group had demonstrated that the reduced IFN-y production by T cells in this co-

culture system was dependent on replication-competent RSV infection of DCs, was

associated with selective DC CD86 induction, and could be overcome by stimulation of

the DCs with poly I:C, but not by CD40L stimulation (Bartz et aI. , 2003). Because of the

role of dsRNA in IFN-a/~ induction and activation of DCs (Cella et aI. , 1999), this

suggests that RSV may have evolved to avoid stimulating DC functions specifically

associated with type I IFN s. Indeed, a clinical isolate of RSV was associated with

ablation of typically potent IFN-a induction in plasmacytoid DCs (Schlender et aI.

2005), and RSV encodes IFN-antagonizing proteins (Spann et ai. , 2004). Taken together

these data indicate that DC functional maturation following RSV infection is defective

that at least some of the defects are associated with poor type I IFN responses, and that

these defects are influenced by viral and host genetic components.

In RSV infection, the T h type-skew induced during primary exposure may have

consequences for disease pathology during repeated challenges , as evidenced by

increased incidence in severe RSV disease noted following use of a formalin-inactivated

RSV vaccine (Chin, 1969; Fulginitti 1969). This vaccine is thought to have biased RSV-

specific responses towards a T 2-type response due to the nature of the adjuvant (alum

precipitation was used in vaccine preparation) included with the inactivated virus, and the

pulmonary eosinophilia noted following post-vaccination natural infection (Chin, 1969).

There is also evidence, derived from experiments in a murine model of RSV infection

that additional factors may predispose the host to development of pathogenic T cell

subsets. This argument is based on the observation that an oligo clonal, potently



expanded subset ofV~14 CD4 T cells specific for the RSV G protein are associated with

RSV-mediated pathology, with elimination of this subset providing protection against

severe disease upon RSV challenge (Varga et aI. , 2001). However, the role of DC in

generation of these pathogenic T cells (i. , their priming history) is not yet defined. In

the vast majority of human RSV cases , the individual recovers effectively from infection;

this may occur serially until adaptive RSV -specific responses are sufficient to make re-

exposure asymptomatic.

Viral infection of DCs associated with immune suppression is also implicated in

the development of indolent infection and chronic disease. Studies in humans and mice

suggest that, like acute immunosuppression, chronicity may be achieved through

utilization of IL- I 0 to attenuate host antiviral responses. This has been proposed to be

the case in humans for HCV (Hofer et ai. , 2005), and has been elegantly demonstrated for

the arenavirus , lymphocytic choriomeningitis virus (LCMV) clone 13 infection of mice

(Brooks et aI. , 2006). In the latter case , LCMV clone 13 is a derivative of LCMV strain

Armstrong. Although infection with the Armstrong strain is acute in nature , clone 13

establishes persistent infection in adult mice. A single amino acid change in the LCMV

glycoprotein (GP) is known to enhance binding to DCs (Oldstone, 2002). In the

experiments by Brooks et aI. , clone 13 , but not Armstrong, was associated with DC IL- I 0

production, and persistent infection induced by clone 13 infection was absent in IL- I 0

knockout mice.

Taken as a whole , these data serve to ilustrate multiple pathways by which

viruses can subvert DC function to facilitate their own survival and replication. 

particular, several of the aforementioned systems highlight the induction of IL- I 0 and



suppressionofIFN (particularly IFN-a/~) as convergent evolutionary tactics utilized by

viruses to modulate host immunity. Paradoxical T cell suppression in the context of

phenotyic activation is not uncommon, and in some cases appears to reflect DC

functions that are elicited by reverse signaling (i. , T cell signals to the DC) during

priming and co-stimulation events.

VIRAL INFECTION ASSOCIATED WITH DENDRITIC CELL ACTIVATION

AND T CELL STIMULATION

Not all cases of DC infection with viruses result in immunosuppressive outcomes. In a

study examining infection of DCs with the attenuated yellow fever virus, vaccine strain

17D, despite active replication in DCs , these cells did not express CD83 , which is

considered a prototypical marker of myeloid DC maturation. However, infected DCs

were able to stimulate YFV -specific autologous CD4 T cell and CD8 T cell responses in

a YF- immune donor, as well as responses in a flavivirus-naIve donor when an influenza

peptide was inserted into the NS2B-3 junction of the 17D virus used for DC infection

(Barba-Spaeth et aI. , 2005).

Additional studies on YFV indicated that infection of human monocyte-derived

DCs induced TNF-a, IL- , and, to a lesser extent, IL- IO production, in addition to the

chemokines IPIO and MCP- l. While IPlO and IL-6 induction were abrogated when the

virus was either UV- ina tivated or heat inactivated, TNF-a was absent only with heat

inactivation. Together, these data suggest a multi-tiered response to YFV l7D infection

in DC , with alternate pathways activated by distinct viral components or processes. The

authors reported only very modest DC CD83 induction with YFV infection, similar to the



previous report (Barba-Spaeth et aI. , 2005), and only at the highest MOI of I. However

YFY induced both CD80 and CD86, demonstrating a disconnection between the

traditional DC maturation marker, CD83 , and two of the B-7 family co-stimulatory

mo.le'cules often associated with phenotypic maturation. The same study, using murine

DCs in vitro revealed TLR- , 7 , 8 , and 9- dependent activation ofCDllc+ DCs by YFV

in the absence of DC infection. The authors also reported DC activation in vivo in l7D-

challenged mice, demonstrating YFV -specific expansion of CD8 T cells. Notably, the

data suggested a mixed Th l/Th2 response to the virus , with Thl/Tc l responses appearing

to' be inhibited through TLR2 activation (Querec et aI. , 2006).

Taken together, these two studies suggest that YFV l7D activates DCs and

facilitates their T cell priming capabilities. One could speculate further that, given the

superior effectiveness of the 17D vaccine, ideal vaccination strategies target multiple DC

signaling modalities and thus promote a balanced Th l/Th2 response in addition to

cytotoxic CD8 T cell activity.

It has also been demonstrated that Hantaan virus (HTNV), a bunyavirus that

causes hemorrhagic fever with renal syndrome, infects both blood- and culture-derived

DCs (Raftery et aI. , 2002). Infection neither induced apoptosis , nor inhibited HLA-DR-

specific antibody-induced apoptotic signaling. The authors reported production of both

TNF-a and IFN-a in response to infection; following exposure to HTNV , the DCs

increased expression of CD40 , CD80 , CD86 and HLA molecules to a level similar to that

of cells treated with TNF -a. In co-culture with whole allogeneic T cells , the response of

infected DCs again proved similar to TNF -a treated cells, as HTNV infection of DCs

improved their capacity to induce T cell proliferation (Raftery et aI. , 2002).



. These reports demonstrate that, for some viruses , infection results in a DC

phenotype associated with functional activation, including cytokine production and

importantly, . the ability, to prime T cell responses. This observation is in contrast to the

immunosuppressive effects of viruses described in the previous section, and serves to

highlight the broad diversity in DC responses induced by a range of viral pathogens.

Lastly, beyond simply regulation of DC function, viruses may utilize DCs as reservoirs

for transmission to other cell types and/or dissemination of infection.

. VIRAL DISSEMINATION AND THE PECULIAR CASE OF HIV

In the case of HI V, there is considerable evidence that DCs are not a primary target of

infection in the classical sense , in that there is little replication of the virus in the infected

cell. The "infection" process appears to occur through binding of the HIV virion to DC-

SIGN, an event that preserves the infectivity of the virus and results in transfer to , and

infection of, resting T cells (Geijtenbeek et ai. , 2000a). In particular, DC-SIGN

expression on the DC induces T cell clustering through binding of T-cell expressed

ICAM- , allowing HIV to enrich its microenvironment with available targets. In this

case , the DC acts as a "Trojan horse , internalizing and sequestering the virus and

maintaining it in a non- lysosomal low pH compartent, and presenting it to CD4 T cells

which are then infected in trans , an effect that has been observed in both in vitro and 

vivo (Kwon et ai. , 2002; C meron et aI. , 1992). Therefore , HIV is able to utilize DCs for

temporary survival in the host while accumulating target cells , a strategy that fosters

rapid replication and dissemination and eventually establishes a state of chronic disease.

To the point, these observations demonstrate that DCs need not serve as an active source

! I



, of virion production to facilitate viral replication. Rather, viruses may use DCs as a

temporary " safe house " enabling the virus to avoid detection whilst manipulating DC

functions to further their own ends.

. DENGUE INFECTION OF DENDRITIC CELLS

As noted previously, DCs were originally shown to be infected by DV both ex vivo and 

. vitro by Wu et al (2000). Shortly thereafter, subsequent work demonstrated that DV

induces DC phenotyic changes and cytokine production in DCs generated in vitro from

adherent blood moriocytes (Libraty et aI. , 2001; Ho et aI. , 2001). In one study, these

inCluded increases in co-stimulatory molecules CD80 , CD86 , and HLA DR, induction of

CD83 , arid secretion ofTNF-a and IFN-a, but not IL- l2 or IL-6. In the absence of

feeding cytokines , infected DCs showed slightly higher levels of apoptosis before 22

hours, but had greater survival by 46 hours (Ho et aI. , 2001). Similar results were found

in a second study, in which following infection DCs induced CD40 , CD83 , CD80 , CD86

and both MHC class I and II molecules at 48 hours (Libraty et aI. , 2001). In that study,

intracellular staining for dengue antigen revealed that infected DCs had significantly

reduced expression ofCD83 , CD80, CD86 , and MHC Class I when compared to

uninfected bystanders. Consistent with the report by Ho et al (200 I), the authors reported

that in response to infection DCs secreted TNF-a and IFN-a without a significant IL-

p70 response , and DV infection did not induce IL- lO. Libraty et ai. (2001) also noted

that IFN -y treatment at the time of infection reduced virus output, restored surface

molecule expression in infected cells , and increased IL- 12 p70 secretion, suggesting that



earlyIFN-y i duction in vivo during secondary infection might enhance DC activation

and adaptive immune stimulation.

A later in vitro study addressed the issue of virus strain on DC infection. The

investigators generated chimeric infectious clones by replacing specific regions of the SE

Asian D2V strain 16681 with sequences from another SE Asian D2V strain or an

American D2V strain. When monocyte-derived DCs were exposed to these viruses , the

infectious clone generated from 16681 and the 1668l parent virus infected DCs more

efficiently than either an infectious clone with three American genotype structure inserts

(and a SE Asian backbone) or the parent American genotype virus (Cologna and Rico-

Hesse, 2003). In that report, of the three American structures introduced, the E protein

mutation was most critical for reduced virion output.

The importance of the E protein becomes more apparent.when viewed in light of

the role that this protein serves in binding to the DC receptor, DC-SIGN, as discussed in .

the section on dengue virus biology. Strengthening the hypothesis that DC infection is

critically involved in dengue pathogenesis , a multi-site study performed in Thailand

. found that the more rare "G" polymorphism in the promoter region of DC-SIGN (denoted

DCSIGNI-336by the authors) had a significantly lower frequency in individuals

diagnosed with dengue fever, with an incidence in DF cases of 4.7%. The frequency of

individuals carring the G allele among DHF patients (22.4%) was similar to that in the

control population (19. 5%). These results suggest that the G form of the allele is

associated with protection from DF but not DHF , potentially by affecting an Spl binding

site and reducing transcriptional activity from the DC-SIGN locus (Sakuntabhai et ai.

2005). In particular, this may reduce susceptibility of DCs to infection by DV in



individuals carring the G allele. Additional evidence for host genetics affecting DC

function in dengue infection may be implied from the observation that a single nucleotide

polymorphism (SNP) in the vitamin D receptor (VDR) is associated with reduced risk of

DSS (Loke etaL , 2002). Signaling through the VDR has been shown to attenuate the

activation and function ofDCs (Griffin et aI. , 2001).

During preparation of this thesis, additional reports emerged on the effects of DV

on DCs , including suppression of T cell stimulation. The first of these indicated that

although dengue infection activated bystander cells, actively infected DCs failed to

increase surface molecule expression, with CD40 and HLA DR reduced even in

comparison to mock infected cells (Palmer et aI. , 2005). In accordance with earlier

studies (Libraty et aI. , 2001; Ho et aI. , 200 I), Palmer et aL (2005) reported TNF -a and

. IFN-a secretion with minimal detection ofIL- 12 p70. In contrast to the study by Libraty

et at (200 I), Palmer et ai. (2005) also reported IL 1 0 production by DC in response to

dengue infection, and elevated levels ofIL- I 0 when dengue-infected as opposed to

mock- infected DC were co-cultued with allogeneic T cells. Thus, the authors

hypothesized that IL- l 0 was responsible for the observation of lower T cell proliferative

responses to DCs infected at higher MOIs (Palmer et aI. , 2005).

Additional work by the same group found that CD40 ligation on DCs following

DV infection increased both the percentage of infected DCs and virion output in the

exposed cultures , similat to what had been observed for MV a number of years prior (Sun

et aI. , 2006). In that study, TNF-a and IL- 12 p70 secretion were enhanced, while IFN-a

secretion appeared to be suppressed by CD40L stimulation (Sun et aI. , 2006). Also in

that study, although DC apoptosis following dengue infection was lower than that seen



with mock infection, the addition of CD40L reduced cell death in both populations , in
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contrast to observations in the MV system. Lastly, CD40L stimulation of infected

cultures restored CD80 , CD86 , and CD83 expression on infected DCs when compared to

bystanders and erianced IFN-y production in co-culture with allogeneic CD4 T cells , but

A later study compared DC responses on the single-cell level following infection
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did not reverse the decrease in Tcell proliferative responses to DCs seen with increasing
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with either parent (strain l6681) or attenuated (PDK53) D2V strains. Regardless of the

infvction state of the DC, both strains increased CD80, CD83 , and CD86 expression

compared to control treatment while MHC class I and II expression were elevated

. following 1668l exposure alone (Sanchez et aI. , 2006). That study also used

intracellular staining for cytokines and dengue protein, demonstrating that after PDK53

infection, TNF -a production occurred primarily in infected cells , while both infected and

bystander DCs produced TNF -a following 16681 infection; only l6681 induced IL-

which was detected in both infected and bystander DCs (Sanchez et aI. , 2006).

Therefore, active replication and virus genetics both contribute to the surface expression

and secretory phenotype of DCs following DV infection. IL- 12 p70 production and

secretion were minimal, and although the authors reported some low-level IL-

secretion, intracellular cytokine staining did not reveal IL- I 0 production and thus the

infection state of the respon'sible cells (Sanchez et aI. , 2006). This may have been a

failure in either the quality of the staining antibody or a function of low IL- l 0 production

levels , resulting in inadequate signal strength for flow cytometry (Sanchez et aI. , 2006).



. Consistent with reports ofIFN- interference by DV in cell lines , DV has also been

shown to alter IFN-dependent signaling in primary human DCs. Work by Ho et al (2005)

demonstrated that, similar to findings in multiple cell lines (Diamond et aI. , 2000), IFN-a

andIFN-

y '

could inhibit DV infection and replication in DCs , although IFN-a required

pretreatment to be effective. DV induced STATl , 2 , and 3 phosphorylation, with STAT3

showing early (3hr) activation and DNA binding, while slower kinetics (24hr) were

observed for STATl. Infected DC were resistant to exogenous IFN-a mediated

activation of STAT 1 and 3 , but responded to IFN-y (Ho et ai. , 2005), reminiscent ofIFN-

y effects on DC phenotype in work by Libraty et al (2001). The phosphorylation 

STATl , but not STAT3 , depended on endogenous IFN-a production, and active infection

reduced IFN-amediated Tyk2 phosphorylation (Ho et aI. , 2005)

As a w401e , the stlldies highlighted here demonstrating DV infection of DC begin

to elucidate some of the mechanisms by which the virus is able to modulate host immune

responses. Blockade ofIFN-a/~, elicitation ofIL- , and interference with the

expression of DC surface molecules all represent manipulations of DC function that can

have profound consequences for the development of dengue-specific immunity in vivo.

THESIS OBJECTIVES

Primary dengue infection is associated with the generation of serotype-specific protective

immune responses , with complete clearance of the virus and, in the vast majority of

cases, minimal pathology. Memory to dengue appears to playa critical role in the

etiology of the most severe manifestation of disease, DHF. Dengue infection of dendritic

cells likely plays a crucial role in determining downstream immune responses , serving as



a source of virus production, initiating immune activation, and driving T cell

differentiation and functional behavior. The presence of replicating ;virus in DCs

. resulting in production of dengue proteins and RNA, means that infected DCs are

, influenced in a manner that differentiates them from uninfected, bystander cells that are

exposed to an otherwise identical microenvironment. Therefore , the functions of these

two distinct populations are expected to differ, with consequences for the development of

dengue-specific immunity.

My hypothesis was therefore that dengue virus infection of dendritic cells

results in the activation of functions consistent with immune regulation and antiviral

immunity, with intracellular replication inhibiting activity critical to viral clearance.

The experimental work of this thesis is presented in three sections:

Chapter III: INFECTION AND PHENOTYPIC MATURATION OF DENDRITIC CELLS

FOLLOWING DENGUE VIRUS EXPOSURE

Enhanced expression of surface molecules on DCs prior to , and during, antigen

presentation has contact-dependent consequences for the nature ofT cell priming. Both

quantitative and qualitative regulation ofT cell function can be affected, determining the

effectiveness of downstream immune responses. Therefore, I sought to determine if DV

exposure was a stimulus for the increased expression of DC surface molecules involved

in T cell regulation. In addition, exposure to viral particles affects DC phenotypic change

through multiple pathways , including the direct effects of binding, internalization and

replication, and the indirect effects of subsequent soluble mediator release. Thus , I also

sought to elucidate the contributions of each aforementioned pathway to changes in DC

phenotype. These aims were addressed as follows:



ci) Generation of monocyte-derived DCs and infection with DV

Whole culture phenotypic matuation responses of DCs following DV

infection and comparison to defined stimuli and killed virus

Comparison of phenotypic matuation responses of actively infected DCs and

uninfected bystanders in the same culture

Chapter IV: INDUCTION AND REGULATION OF DENDRITIC CELL CYTOKINE

AND CHEMOKINE RESPONSES BY DENGUE VIRUS

Soluble mediators released following exposure ofDCs to virus have autocrine and

paracrine effects on DCs. These effects include induction of an infection-resistant state

changes in cell surface phenotype, and secondary release of further soluble mediators.

Soluble factors further influence DC function by modulating their interactions with

downstream cellular responses. This can include the selective recruitment of specific sets

of cellular effectors , as well as regulation of the activity of these effectors , based on the

signaling induced in responding cells by DC-released molecules. Therefore, I sought to

determine the effects of DV on DC cytokine and chemokine production, by again

addressing both direct (particle- and replication-dependent) and indirect (secondary

secretory response) effects. I addressed these issues by:

Whole culture secretory responses of DCs to infection with DV and

comparison to LPS or kiled virus

Dose-responsiveness of whole culture secretory responses of DCs to

infection with DV

Comparison ofTNF-a and IPlO response profiles in infected DCs as

compared to uninfected bystanders

Effects ofIFN-a/~ blockade on single-cell TNF-a and IPlO production



e). Differences in single-cell DC IP I 0 production profies following

infection with variant D2V strains

Chapter V: EFFECTS OF DENGUE INFECTION ON THE ABILITY OF DENDRITIC CELLS TO

PRIME ALLOGENEIC RESTING CD4 T CELLS

Arguably the most critical function of DCs following exposure to pathogens such as

viruses is the. induction ofT cell-'mediated immune responses. Proper regulation ofT

cell responses is crucial in determining both the appropriate magnitude of the response, as

well as the. direction of that response with regards to effector actions of T cells. 

properly regulated T cell response wil facilitate effective elimination of the invading

pathogen. . T cell expansion is particularly important, given the relative paucity of

pathogen-specific T cells in a naIve individual. While Th type responses characterized

by IFN-y production are considered critical for elimination of intracellular pathogens

such as viruses , I 2-type responses characterized by IL-4 and - 13 are thought to be

important in effective antibody production by B cells and elimination of extracellular

agents. IL- lO is important in the attenuation of the magnitude of T cell responses, as well

as inhibition of IFN-y function. I therefore sought to determine if DV infection of DCs

promoted proliferation and T h-skewing in responding CD4 T cells.

Comparison of resting CD4 T cell proliferative responses to DV-

infected DCs versus mock-infected or cytokine-matured DCs

Effects ofindreasing DV MOI of DC on their CD4 T cell priming

function

Effects of infectious immune-complexed virus on DC priming function



CHAPTER II

MATERIALS AND METHODS

. MONOCYTE ISOLATION AND CULTURE

We generated monocyte-derived DCs following the methods of Sallusto and

Lanzavecchia (1994) with minor modifications. Briefly, peripheral blood mononuclear

cells (PBMC) were obtained from the heparinized blood of healthy adult volunteers in a

dengue non endemic region using Ficoll-hypaque (Amersham/GE Healthcare Bio-

Sciences AB , Uppsala Sweden), under a protocol approved by the University of

Massachusetts Medical School Institutional Review Board. Monocytes were isolated

from PBMC using MACS (Miltenyi) CDl4 positive selection, according to the

manufacturer s protocol, and were separated on an LS column (Miltenyi) using a

MidiMACS magnet (Miltenyi). The CDI4- fraction was collected and used for T cell

isolation (see below). CDI4+ cells were washed and re-suspended at 1.4- 1.8xl0

cells/mL in 24-well plates, in RPMI 1640 containing penicillin/streptomycin (1 mg/mL

each), and 10% heat-inactivated fetal calf serum (FCS; Hyclone) supplemented with 800

U/mL recombinant human (rh) GM-CSF and 500 U/mL rhIL-4 (Peprotech). At day 3-

5 mL of medium was removed and replaced with fresh medium containing 1600 U/mL

rhGM-CSF and 1000 U/mL rhIL-4. On day 6- , vigorous pipetting and gentle scraping

collected DCs. These cells were CD3-, CD8- , CDI4- , CD19- , and CD56- , but were MHC

class n , MHC class I 1ow , and expressed the myeloid DC marker CDla . Cells had an

immature DC phenotype (as shown in Figue I) by low staining for CD83.



. T CELL ISOLATION

CD45RA + CD45RO. CD4 T cells were isolated by negative selection using a naIve T cell

isolation kit (StemSep;StemCell Technologies) according to the manufacturer s protocol.

Briefly, the CDI4- fraction of cells generated by positive selection ofmonocytes was

washed and re-suspended with MACS buffer at a final concentration of 5xl 0 cells per

mL. Biotinylatedanti-CD45RO was added and incubated for 30 minutes at 4 C. Anti-

lineage/anti-biotin antibodies were added and the mixture was incubated for 30 minutes

at 4 C. Cells were washed two times with 5 mL of MACS buffer and separated using a

MidiMACS magnet and LScolumn (Miltenyi). The cells were washed , counted, and

re-suspended in RPMI 1640 supplemented with penicillin/streptomycin and 10% heat-

inactivated human AB serum (Gemini BioProducts) (RPMI ABlO) at 1.0xl06 cells/mL.

Human AB serum was used in lieu of FCS at all steps during isolation and culture of T

cells due to an observed tendency of FCS to induce non-specific proliferation. T cells

isolated in the manner described were typically 90-95% CD3 , and :?95% CD4 . The

CD3+CD4+ cells were routinely :?98% CD45RA +CD45RO- (not shown). T cells were

added to wells in a 96-well plate at 50 000 T cells in 50 ilL for co-culture experiments.

. DENGUE VIRUS INFECTION OF DENDRITIC CELLS

D2V New Guinea C (NGC) is a laboratory-adapted prototype Southeast Asian D2V

strain obtained from A TCt. D2V 16681 and D3V CH53489 are prototype strains

originally obtained from the Walter Reed Army Institute of Research. D4V 814669 is a

prototype strain originally obtained from the National Institutes of Health. D2V INH and

VEN are American genotype viruses originally obtained from Dr. Rebeca Rico-Hesse



Southwest Foundation for Biomedical Research. Dengue 2 strain COl66/96 is a low-

passage clinical isolate from a Thai DF patient (Vaughn et aI. , 1997). Viruses were

. propagated in the mosquito cell line C6/36. Virus titers were determined by plaque assay

on Vero eells. Inactivated, non-replicative virus was prepared by,placing an aliquot of

virus stock 5-6 em under a germicidal lamp (2300 Jl W/cm2 UV A irradiation at 254 nm)

and incubating for 30 minutes on ice.

For infection, DC pellets in 15 mL polypropylene tubes were incubated at 37

5% C02 for 90 minutes with supernatant from C6/36 cultures (mock infection), UV-

inactivated virus , or live virus. Tubes were left loosely capped and the pellets were

disrupted using vortex mixing every 30 minutes. Following adsorption, the cells were

washed and plated in 24-well plates (1.0 mL/well) or 48-'well plates (0. 50 mL/well) at

1.0x10 cells/mL and maintained at37 , 5% C02. TNF-a at 50 ng/mL (R&D systems;

Peprotech) and IFN-a 1000 U/mL (5 ng/mL) (Peprotech), or LPS (50ng/mL, from

coli; Sigma) was added where noted. For DC infection using a range ofMOIs , virus

stock was serially diluted 5-fold in medium as needed, and DCs were infected in a fixed

volume as described above.

INFECTION OF DENDRITIC CELLS WITH IMMUNE-COMPLEXED

DENGUE 2 VIRUS

Uninfected C6/36 mosq ito cell supernatant or live D2V NGC was combined with either

control plasma or plasma from a dengue 3 immune donor at a dilution of 1 :20, which was

previously determined to enhance DV infection ofK562 cells (Laoprasopwattana et aI.

2005). The virus-plasma mixtures were incubated on ice for 30 minutes prior to addition



to DCs alan MOI=I. Following adsorption, DCs were washed and re-cultured for 24,

hours as previously described.

MULTIPLEX ANALYSIS OF CVTOKINES AND CHEMOKINES

Analysis of cell culture supernatants for cytokines and chemokines utilized BeadLyte

cytokine assay kits (Upstate) as per the manufacturer s protocol; analyses were

performed at the Baylor Institute for Immunological Research. Cytokine concentrations

were calculated using Bio-Plex Manager 3. 0 software with a 5-parameter curve-fitting

algorithm applied for standard curve calculations. Assay specifics: In Figure 7 , the lower

limit of detection threshold was 10 pg/mL for all analytes , with the exception of IL-

p40 (40 pg/mL), IFN-y (13 pg/mL), Eotaxin (69 pg/mL) and MIP- la (86 pg/mL). In

this. assay, upp r limits of detection were greater than 10 000 pg/mL with the exception of

RANTES (8750 pg/mL). Samples were diluted 2. fold for analysis. For the purposes of

graphical analysis, samples outside the limits of detection were plotted at the limit. In

this assay, IPlO levels in DV-infected DC supernatants were not quantifiable according

the analysis software. Samples from which the data in Figures 8 and 9 were derived were

diluted 7. 5- fold for analysis. Lower limits of detection were 10 pg/mL. Samples from

which the data in Figure 10 were derived were diluted 2-fold for analysis. Some data for

IPIO in Figure 10 represent extrapolated values beyond the high value in the five-point

standard curve based on the linearity of the high end of the curve. These values were not

determined to be out of range by the analysis software and represent quantifiable values

(John Connolly, Baylor Luminex Core Facility, personal communication). Lower limits



of detection were 10 pg/mL. Samples from which the data presented in Figure 18 were

derived were diluted 2-fold for analysis; lower limits of detection were 10 pg/mL.

ANTIBODIES FOR FLOW CYTOMETRIC ANALySIS

The following monoclonal antibodies to human targets were purchased from

. BD/Pharmingen: FITC anti-CD3 , FITC anti-CD45RA, FITC IgG , FITC IgG1 , PE anti-

HLA A, B , C , PE anti-CD40 , PE anti-IPlO, PE anti-CD45RO , PE apti-CD56 , PE anti-

COla, PE-anti PD- , PE anti-CD80 , PE IgG , PE IgG1 , PerCP anti-CD4 , PerCP

IgG1 , APCanti-CD3 APC anti-CD19, APC anti-CD56 , APC anti-CD83 , APC anti-

CD la, APC anti-HLA DR, APC anti-PD- , APC anti-CD86 , APC anti-TNF-a, and

APC IgG1k. Purified mouse IgG1 k was purchased from BD and used as a blocking

antibody in some experiments, Monoclonal cross-reactive anti-dengue complex

antibody (clone M8051l25 , IgG2a) was purchased from Fitzgeraldlndustries (Concord

MA) and was either custom-conjugated to FITC or labeled with Zenon Pacific Blue

(Molecular Probes/Invitrogen) reagent according to the manufacturer s protocol. In

some experiments , viral envelope staining was performed using FITC goat anti-mouse

IgG (Sigma) as a secondary antibody.

IMMUNOCYTOCHEMISTRY AND FLOW CYTOMETRIC ANALYSIS

For staining of cell surface markers, DCs were washed twice with DPBS (Gibco) 2%

FCS , 0. 5% sodium azide, (PBS-azide wash buffer, P A WB). In some experiments , DCs

were incubated for 15 minutes with 500 ng mouse IgG1k to reduce non-specific staining.

Cell-marker specific antibodies were added at 50 ng per antibody for 30 minutes at 4



Cells were washed three times and fixed using Cytofix (BD) or Cytofix/Cytoperm (BD)

according to the manufacturer s protocol. Cells were assayed for dengue E protein

expression bypermeabilization and staining for 30 minutes with anti-dengue (I I-g)

antibody. For inttacelhilarcytokine staining, ll-g ofbrefeldin A (Golgiplug, BD) per

million cells was added 6-8 hours prior to harvesting and fixation. DCs were washed 2

times with PermWash (BD), and then anti-IPlO (0. 5 I-g) and/or anti-TNF..a (0. 5 I-g), and

anti.;dengue '(I I-g) antibody were added for 30 minutes, after which the cells were

washed three times with Perm/Wash buffer and re-suspended in PAWB for analysis.

Flow cytometry was performed on F ACSCalibur, F ACSAria, or LSRII flowcytometers

(BD Immunocytometry Systems , San Jose, CA) with data collection utilizing CellQuest

3 or F ACSDiva 5.x software. Data were analyzed using FlowJo ver.6 and up

software (Treestar).

INTERFERON ALPHA/BETA BLOCKING EXPERIMENTS

DCs were harvested and washed as previously described. The cells were then incubated

with medium alone, or with medium plus IgG or anti- CD 118 (interferon-alpha receptor

subunit 2; IFNAR2) antibody (PBL laboratories) at 50 I-g/mL for 30 minutes. The

addition of virus resulted in dilution of antibody to 10 I-g/mL. Viral adsorption

washing, and DC culture were carried out as previously described, in the presence of

antibody where specified. Upon re-suspension, the appropriate antibody (IgG or anti-

IFNAR2) was added at 10 I-g/mL for the duration of culture as required.



DENDRITIC CELL-T CELL CO-CULTURE

For co-cultures examining a range ofT: DC ratios , D2V-infected, mock- infected, or

cytokine-treated DCs were harvested, washed, and re-suspended in RPMI ABlO at 10

cells/mL , then serially diluted as needed. DCs were added to T cells (5xl04 cells in 50

ItL) in 100 IJL aliquots in .quintuplicate wells for each condition to a final volume of 150

pL/well in 96-well plates. In experiments utilizing a range of MOIs , DCs were washed

and re-suspended as described above , with a final count of 5x I cells/mL, and added to

100 ItL ofT cell suspension (at 5x105 T cells/mL) in aliquots of 50 ItL (2500 DC, T: DC

ratio of20: I) in quintuplicate wells in 96-well plates. For experiments with immune-

complex treated DCs, DCs were washed and re-suspended as previously described, at

5xl04 cells/mL , then serially diluted as needed and 50 ItL of the appropriate dilution

added to 100ltL ofT cells (at 5x105 T cells/mL) in quintuplicate wells in 96-well plates

(T: DC ratio of 20: 1). T cells incubated with ug/mL phorbol myristoyl acetate (PMA)

plus 0. 1 Itg/mL ionomycin (Sigma) served as positive controls. Negative control wells

were T cells receiving medium alone.

TRITIATED THYMIDINE INCORPORATION

Following 3-4 days of co-culture, tritiated thymidine (Perkin-Elmer) was added to each

well at a concentration of 1 ItCi in 50 ItL ofRPMI ABIO , 18-20 hours before harvesting.

Cells were harvested onto glass fiber fiter mats and the incorporation of radioactive

thymidine measured using a Betaplate liquid scintillation ~-counter. PMAIionomycin

stimulated cells routinely produced counts in the range of 50 000 to greater than 100 000

cpm; negative controls were routinely less than 100 cpm (not shown).



STATISTICS

All statistical analyses utilized the nonparametric Wilcoxonsigned rank test. Forcell

. surface phenotyping, the ratio of mean fluorescence intensities (MFI) was calculated for

each comparison and compared to a hypothetical value of 1. Statistical analyses of co-

culture experiments were performed between groups on mean raw cpm values derived

from replicate (quintuplicate) wells. For all analyses , P values of 05 were considered

statistically significant.
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CHAPTER III

INFECTION AND PHENOTYPIC MATURATION OF DENDRITIC CELLS

FOLLOWING DENGUE VIRUS EXPOSURE

GENERATION OF IMMATURE MONOCYTE-DERIVED DENDRITIC CELLS AND

. THEIR SUSC)!PTIBILITY TO INFECTION WITH DENGUE VIRUS

Immature monocyte-derived DCs (iDC)are the in vitro counterparts of in vivo myeloid

DCs, including dermal interstitial DCs (Banchereau and Steinman, 1998). Early studies

demonstrated dengue virus infection of in vitro-cultured DCs (Wu et ai. , 2000; Ho et ai.

2001; Libraty et ai. , 2001). Therefore, in order to study the effects that dengue virus has

on the functional activities oftarget cells , we generated myeloid DC in culture and

infected them with the laboratOly-adapted D2V New Guinea C strain (NGC). Positive

selection of monocytes from the PBMC of anonymous whole blood donors with

MACS allowed us to isolate highly purified populations of CD l4-expressing

monocytes. Following supplementation with GM-CSF and IL- , monocyte-derived DCs

exhibited uniform forward- and side-scatter morphology, large proportions (tyically

85% or more) of CD la-expressing cells , and low expression ofCD83 (Figure fA). Cells

generated in this manner also expressed high levels of HLA DR, intermediate levels of

HLA A, B, C , and lost CDl4 expression (not shown), characterizing them as immature

myeloid DCs.

Following generation of these cells , we first sought to determine the period of

maximal viral protein production following infection with D2V. A previous report
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Figure 1 Monocyte-derived dendritic cells (DCs) are highly susceptible to
infection with dengue virus.
A) Flow cytometric analysis of immature DCs derived from CD14-positively
selected monocytes. Results are representative of at least 10 experiments. DCs
were CD14- HLA A , 8 , Cmid

HLA DW (not shown). B) DCs were mock infected
(black fill) or infected for 24 (red line) or 48 (blue line) hours with live dengue 2 virus
New Guinea C strain (D2V) at a multiplicity of infection (MOl) of 2. Infection was
performed by adsorbing with virus for 90 minutes , washing, and returning the DCs to
culture. At the specified time , DCs were intracellularly stained for dengue E protein
using a FITC monoclonal anti-dengue complex antibody. The data shown are
representative of three similar experiments. C) DCs were infected with live virus (red
line) as in (8), or with virus pre-treated for 30 minutes on ice using short-wave
(254nm) UV irradiation (green line). Gating based on dengue-specific staining of
mock- infected cells is represented by the black line at the base of the figure. The
data shown are representative of more than five experiments.



indicated that D2V NGC infection ofDCs resulted in the appearance of viral protein at

12 hours and peak production between 24 and 48 hours (Wu et aI. , 2000). Therefore

after 6-8 days in ' culture , we harvested and infected DCs with D2V NGC, then returned

them to cultue for 24 or 48 hours. After the respective time period, we harvested the

DCs and fixed them, then performed intracellular staining for dengue viral E protein

using a monoclonal anti-dengue E protein antibody. Following infection with D2V NGC

we found maximal E protein production before 48 hours (Figure IB).

One of the principal functions ofDCs is antigen uptake andprocessing. To

ensure that dengue E protein staining was indicative of de novo viral protein synthesis

and was not simply unprocessed viral protein taken up via endocytosis , we compared

staining for E protein after infection with live or UV-inactivated D2V NGC. At 24 hours

only DCstreated with live D2V , and not cells exposed toUV.. irradiated virus, expressed

detectable dengue E protein (Figure 1 C). These data demonstrate that D2V readily

infects DCs , and that dengue E protein was synthesized de novo in infected cells.

DENDRITIC CELL INFECTION WITH MUL TIPLE DENGUE

VIRUS STRAINS

Since D2V New Guinea C is a laboratory-adapted virus, we sought to determine if other

dengue viruses were able to infect DCs. We included prototype strains of dengue

serotypes 2 (strain 1668l9, 3 (strain CH53489), and 4 (strain 814669) and low-passaged

dengue 2 strains isolated from patients (COI66/96, VEN , INH) at an MOI=2.

Intracellular staining at 24 hours post-infection detected the presence of DV E protein in

DCs infected with all of the virus strains tested (Figure 2). These results demonstrate
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. that multiple dengue viruses , including low-passage clinical isolates , are able to

efficiently infect immature DCs.

DOSE-DEPENDENT INFECTION OF DENDRITIC CELLS WITH DENGUE 2

VIRUS STRAIN NEW GUINEA C

Previous reports using other strains of dengue to infect dendritic cells have utilized

varying input levels of virus (Ho et ai. , 2001; Libraty et aI. , 2001; Palmer et ai. , 2005;

Sanchez et ai. , 2006). In order to determine dose-dependence of infection, and the

amount of virus required forieproducible, quantifiable infection in DC , we infected cells

from multiple (N=7) donors, each with the same range of virus concentrations. To do so

we performed 5- fold serial dilutions ofD2V NGCin medium and adsorbed the virus 

DCs at MOIs of 0. , 0. , I , and 5. Following adsorption, the cells were washed and

returned to culture for 24 hours , after which they were harvested, fixed, and stained for

intracellular dengue E protein (Figure 3). Non-specific staining of un infected DC with

the anti-dengue antibody was 0.75% or lower (mean:JSD of 0.45:J0. 17%).

Infection was evident in some instances even with the lowest amount of input

virus (MOI=0.04), with three of seven donors ' DCs demonstrating antigen expression of

greater than 2% (range , 2. 7. 8% r Although substantial infection (greater than 20%)

occurred in five of seven donors at an MOI=1 (range, 24-50%), dengue E protein was

essentially undetectable in donor 2 and was low (2%) in donor 1. We found consistently

high levels of dengue infection at an MOI of 5 (mean:JSD , 53. 5:J19. 1 % , range, 20%-

73%). There was substantial variability in infection rates, which was not wholly

dependent on the virus preparation used or the day of assay, since donors I to 5 were

infected using a single virus stock, and donors 1 , 2 , and 3 were infected simultaneously in
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Figure 3. Dose responsiveness of multiple donors ' DCs to
infection with D2V New Guinea C strain.
DCs from seven donors were infected with D2V NGC at varying MOls , using five-
fold serial dilutions in three Independent experiments (experiment 1 , donors 1-
experiment 2 , donors 4 and 5; experiment 3 , donors 6 and 7). Virus adsorption
washing, and DC re-culture were performed as previously described. At 24 hours
DCs were harvested and intracellularly stained for dengue E protein.



a single experiment. Together, the data indicate that infection of immature DC with

dengue' virus is dose-dependent, and suggest donor-dependent variability in the

permissiveness of DC to infection.

DENDRITIC CELL IMMUNOMODULATORY SURFACE MOLECULE

EXPRESSION CHANGES AFTER INFECTION WITH DENGUE 2 VIRUS

Cytokines produced in response to viral infection, including IFN-a and TNF-a, are

implicated in the process of DC activation and maturation (Luft et ai. , 1998; Honda et aI.

2003; Sallusto and Lanzavecchia, 1994). One aspect of DC matuation is the induction

of surface molecules involved in the regulation of adaptive immune responses. To

determine if D2V activates DCs and induces expression of these immunoregulatory

proteins , we used flow cytometry to compare DC surface phenotypes following infection

with live dengue virus, treatment with TNF-a/IFN-a or LPS , or mock infection.

When compared to isotype control staining, mock-infected cells expressed low

levels ofCD40 and PD-L2 and intermediate levels ofMHC class I and PD-Ll. CD86

CD80 , and HLA DR were expressed by approximately 50%, 90%, and 95%, respectively,

of DC following mock infection (Figure 6). CD83 expression was similar to isotype

control staining, although in most experiments a small population (less than 15%) ofDCs

were CD83 (refer to Figure 6). In order to quantify changes related to treating these

DCs with additional stimuli , we calculated fold-expression by normalizing the MFI for

each condition relative to mock infection for the same donor s DCs. Both D2V infection

and TNF-a/IFN-a treatment induced similar patterns of surface molecule expression
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Figure 4: Live dengue virus activates DC surface molecule expression.
DCs were adsorbed for 90 minutes with control medium (mock) or D2V New
Guinea C, MOI=2 , then washed and returned to culture for 24 hours. For positive
control comparisons , immediately following mock adsorption , some cells received

treatment with TNF-a/IFN-a (50ng/mL and 1000 U/mL=5 ng/mL , respectively) or

LPS (from E. coli , 50 ng/mL). At 24 hours cells were harvested and surface
stained for the specified protein markers. Values are represented as a fold-
expression versus mock treatment alone, calculated as a ratio of geometric mean
fluorescence intensities: MFI(treatment)/MFI(mock). Each line/color represents 
single DC donor. White diamonds represent mean values for each condition from

the four experiments. The black line at 1 represents no change in expression from
mock treatment (fold expression=1).



(Figure 4). Relative expression to mock infection of CD83 (mean:1SEM, 4. 73:10.

versus 3.18:10. 15) and CD80 (2.48:10.29 versus 1.77:10.21) was clearly higher in

cytokine-matured cells as compared to infected cells , while differences in CD40

(1.58:10.04 versus 1.32:10. 02) and HLA DR (1.96:10.41 versus 1.47:10. I 1 ) induction were

less pronounced. Expression levels ofCD86 , PD- , PD- , and HLA A C showed

similarly small differences between D2V- infected and cytokine-treated DCs, although

cytokine-matured cells had higher mean expression in all cases.

As expected, LPS (50 ng/mL) was a potent stimulus for DC activation, inducing

the greatest increases in expression for all markers tested. CD83 , CD80, CD86 , and PD-

Llshowed the greatest induction of expression in response to LPS, with mean geometric

MFI values 4- to 6-fold those seen with mock infection (5.44:10. 80:10. 37:10.

and 5.9l:0. respectively)o CD40 , PD- , HLA A, B , C , and HLA DR showed less

induction than the aforementioned products when compared with mock infection, ranging

from 1.77:10.11 for CD40 t02. 17:10.24 for PD-L2. These data indicate that live D2V

exposure stimulates expression of immunomodulatory surface molecules on DC. The

degree of stimulation following infection with D2V was slightly lower than that of TNF-

a/IFN-a treatment and clearly less pronounced than seen with high-dose LPS.

EFFECTS OF UV LIGHT INACTIVATION OF DENGUE VIRUS ON DENDRITIC

CELL SURFACE MOLECULE EXPRESSION

In order to determine if D2V replicative capability was necessary for the induction of

surface immunomodulatory molecules , we compared mock-infected DCs to DCs exposed

to either UV-inactivated or live D2V (Figure 5). We found that exposure to UV-

inactivated virus significantly enhanced expression of the B7- family molecules CD80
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Figure 5: Replication enhances surface molecule expression changes
induced following D2V exposure: DC were mock infected, infected with live
D2V New Guinea C strain at an MOI=2 , or infected with the same virus,
inactivated with UV light as previously described (UV-D2V). DCs were harvested
and surface stained as previously described , then analyzed by flow cytometry to
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(treatment)/MFI(mock). Each line/color represents a single DC donor. White
diamonds represent mean values for each condition from the six experiments.
The black line at 1 represents no change in expression versus mock treatment
(fold expression=1).



(mean::SEM, geometric MFI ratio to mock infection, 1.42::0. , p=0. 03), CD86

(2.23::0. , p=0. 03), PD-LI (1.76::0. , p=0. 03), and CD83 (1.84:: 20). PD-

expression following exposure to UV-inactivated virus was also consistently higher than

expression following mock infection, although the changes were modest (1.26::0.

p=0. 03). Treatment ofDCs with UV-inactivated virus also enhanced MHCII expression

although this effect did not reach statistical significance (1.24::0. , p=0.06). DC

expression ofHLA A, B , C (1.09::0. , p=0.29) and CD40 (1.04::0. , p=0. 3l)

demonstrated minimal changes in response to UV -inactivated virus , which were not

statistically significant. Infection with live virus resulted in statistically significant

increases in expression for all molecules tested when compared to mock infection

(p=0.03), with the greatest increases in PD-Ll (3.27::0.41) and CD83 (3.02::0. 28),

smaller increases in expression level for CD86 (2.48::0.24) and CD80 (1.91:0.25). Viral

induction of CD40 (1.32::0.08), PD-L2 (1.57::0. I I ), HLA A, B , C (1.33::0. 12) and HLA

DR (1.51:0.09) was less pronounced. Despite more clear activation in response to live

virus than UV- inactivated virus when comparing each treatment to mock infection, only

PD-L2 expression was statistically significantly greater in a comparison of live virus to

inactivated virus treatment (p=0. 03); CD40 , CD83 , and MHC-I showed a trend toward

greater expression following live virus infection that did not reach statistical significance

(p=0. 06). Weaker trends were seen for PD-Ll and MHC II (p=0.09) and CD80 (p=0. 14),

while CD86 expression was essentially identical (p=1.0). These experiments demonstrate

that both live and inactivated D2V stimulate increases in the expression of DC surface

molecules , and demonstrate that viral replication further enhances DC activation.



DIFFERENTIAL EXPRESSION OF DENDRITIC CELL SURFACE MARKERS

ON INFECTED VERSUS BYSTANDER CELLS

Previous reports have identified several dengue proteins involved in modulating

intracellular signaling (Munoz-Jordan et aI. , 2003; Munoz-Jordan et aI. , 2005; Jones et

aI. , 2005; Chua et aI. , 2005). Additionally, there are conflicting reports regarding the

expression of co-stimulatory molecules on dengue infected DCs versus uninfected

bystander cells within the same culture (Libraty et aI. , 2001; Sanchez et ai. , 2006; Palmer

et aI. , 2005). Therefore , we expanded our studies of cell-surface immunomodulatory

proteins by infecting DC cultures and combining surface antibody staining for phenotyic

markers with intracellular staining for dengue E protein, to discriminate between infected

and bystander DCs (Figure 6). Again, we quantitated differences in the expression of

surface markers by normalizing geometric MFI values for each molecule to mock

infection. Both infected and bystander cells increased surface expression of all molecules

tested when compared to mock infection (p":0.02), with the exception of HLA A, B , C on

infected DCs (p= 1.0). However, we noted reduced expression of the B-7 family

molecules CD86 (geometric MFI ratio to mock- infected cells::SEM for eight donors

1.86::0. 14 versus 2.61:0. 17), PD-Ll (2.62::0.26 versus 3. 33::0. 32), and CD80 (1.63::0.

versus 1.82::0.20), as well as MHC class I molecules HLA A, B , C (1.05::0. 08 versus

1.36::0. 10) (p..0. 02 for all comparisons) on infected DCs , in comparison to bystander

cells. CD83 was also lower on infected DCs (2. 72::0.21 versus 3. 1 0::0.2 I ) when

compared to bystanders , although this difference was not statistically significant

(p=0.055). Conversely, infected DCs had significantly greater expression than did

bystander cells ofPD-L2 (geometric MFI relative to mock- infected cells::SEM
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1.95:10. 14 versus 1.49:10. 10) and HLA DR (1. 78:10. I I versus 1.39:10.09) (p':0. 02 for

both comparisons). CD40 (1.35:10. 07 vs. 1.30:10.07) was unaffected by the presence of

viral antigen (p=0.31). These data demonstrate that D2V exposure activates DCs through

both direct and indirect mechanisms. The differences in protein expression could not be

explained solely by viral suppression of IFN-a/~ signaling, since relative differences

were bi-directional. Active DV replication both positively and negatively modifies DC

phenotye, depending on the surface molecule in question.

CHAPTER SUMMARY

In this chapter, we demonstrated that DCs could be efficiently generated from PBMC

following CDl4-positive selection ofmonocytes and culture with GM-CSF and IL-

Monocyte-derived DCs were permissive for infection with multiple serotyes and strains

of DV, including both prototype viruses and low-passage clinical isolates. Dengue E

protein staining was highest at 24 hours post-infection with D2V NGC strain and

declined at 48 hours post-infection. While infection with D2V NGC was dose-

dependent, there was substantial variability in the susceptibility of DC preparations from

different donors.

D2V infection activated DC to express increased levels of surface molecules

involved in immunoregulation. The changes seen in response to D2V were similar to , but

slightly lower than, those seen with TNF-a/IFN-a, and were clearly lower than those

seen following LPS treatment. The enhancement of surface molecule expression did not

require replication-competent virus , although the magnitude of the changes seen with live

virus were greater than those seen with UV-inactivated virus. While both infected and



bystander DCs had enhanced surface molecule expression, these two populations

demonstrated statistically significant differences in phenotype. Specifically, actively

infected DCs had reduced expression ofCD80 , CD86 , PD- , CD83 , and MHC Class I

molecules but increased expression ofPD-L2 and MHC Class II molecules when

compared to bystander DCs in the same culture,



CHAPTER IV

INDUCTION AND REGULATION OF DENDRITIC CELL CYTOKINE AND

CHEMOKINE RESPONSES BY DENGUE VIRUS

DENDRITIC CELL INFLAMMATORY MEDIATOR SECRETION PATTERNS

Previous in vitro studies with other viruses indicated that monocyte-derived DCs were

capable of production ofa wide range of secreted products (Ziliox et ai. , 2006; Piqueras

et aI. , 2006). D2V infection ofDCs has been reported to cause the production of

inflammatory cytokines such as IFN-a and TNF-a (Libraty et aI. , 2001; Ho et aI. , 2001),

and chemokines including IL-8 and RANTES (Medin et aI. , 2005). We hypothesized that

dengue infection ofDCs would induce a largely donor-independent, characteristic

. secretory response. Using:a multiplex cytokine bead assay, we compared the secretory

responses in 24-hour supernatants of mock-infected and D2V-infected DCs. Virus

infection was a potent stimulus for the secretion of chemokines (Figure 7). IP 1 0

RANTES , MIP , and MCP-l were all found at substantially higher levels in

supernatants from infected cultues when compared to those from mock-infected DCs.

Of these , IP I 0 reached the highest concentrations , uniformly greater than the maximum

threshold for quantitation in this assay, at 18750 pg/mL. Concentrations ofIL-8 and

Eotaxin also increased with virus infection, although the effect of dengue exposure was

less pronounced, as basal levels with mock infection were generally higher than those

seen for IPlO , RANTES , MIPl-a , and MCP-

Inflammatory cytokines including TNF-a , IL- , and IL- la were increased 

culture supernatants when compared with mock-treated cells. Of these , IL- Ia reached



IL-1 a IL-1 b IL- IL-6 IL- IL-B IL.10 IL-
p40

NTE MIP.1a IP10

III1

III

Iii

11'

li!11

Iii

il:

Iii

II:!

ill;
'I:,

Iii

I!ii

!I,

!I'

il!

ili

Ili

Ii'

i:i'
II,

II:'

I'I

I:i

il'

,I:
ii!

ii,

lll:
Ii'I,!,
ill

:!I

:1:

100000

10000

1000

100

Figure 7 D2V infection of DC cultures induces a broad inflammatory cytokine
and chemokine secretory response.
DCs were mock-infected (M) or infected with D2V NGC strain (D2V) as previously
described, at an MOI=2. Cells were washed and re-suspended at 10 DCs per mL.
Supernatants were collected at 24 hours and analyzed using Luminex technology for a
panel of immune mediators. Shown are the results from four independent experiments.
Samples for which the values fell below the limit of detection are plotted at the detection
limit. Samples for which the values exceeded the maximum threshold are plotted at the
upper limit of quantitation, as determined by the highest value utilized in preparation of
the standard curve (See Materials and Methods).

1:1
!il



1 000000

1 00000

10000 .

1000

100

iL- IL- IFN-
alpha

Mean

TNF-
alpha

MCP- MIP- RANTES IP-
1 alpha

Figure 8 DC responses to LPg and D2V differ both qualitatively and
quantitatively. Immature DC from three donors were mock-infected or
infected with live D2V NGC at an MOI=2 as previously described. Following
the virus adsorption period and return to culture at 1.0x1 0 celis/mL , some
mock-treated cells were activated with LPS at 50 ng/mL. Supernatants were
collected after 24 hours and stored at - C for analysis. Samples were
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donors; black bars and lines represent geometric mean values.



the highest levels (mean, 2316 pg/mL; range , 1764-2734 pg/mL). TNF-a appeared to be

the most inducible, being undetectable in all mock-treated cultures and reaching a mean

concentration of 1216 pg/mL (range, 24-3673 pg/mL) in supernatants from infected DCs.

We also detected elevated levels of the T cell growth factor IL- 7 and the PDC growth

factor IL-3 following dengue viral infection of DCs. IFN-a secretion was undetectable in

mock-infected cells, but became elevated in three of four donors in response to D2V

infection (mean, 200 pg/mL; range 75-420 pg/mL). IFN-a was undetectable in

supernatants following either treatment in one donor (experiment 2 see Figure 7). This

donor notably appeared to have a blunted overall response. This was evident in IL-

p40 production as well, where three of four experiments showed 3- to 20- fold increases

following infection, while this donor showed essentially no change, despite an infection

rate of 3 5% of DCs in the culture (not shown). In all experiments the levels of IFN-

inducing IL- 12 p70 heterodimer were 1-2 orders of magnitude lower than those of the

subunit IL- 12 p40 , and there was no clear virus-specific response for this cytokine. IL-

production was detected slightly above the assay threshold in one of four mock-infected

samples (10 pg/mL) and one of four D2V-infected samples (23 pg/mL). Separate

experiments demonstrated no differences in transforming growth factor beta (TGF-~)-

, -

, or -3 isoform secretion between mock- and D2V- infected cultures (data not shown).

To confirm that DCs were capable ofIL- lO and high- level IL- 12 production, we

compared secretory responses in mock infected DC cultures to those treated with live

D2V or the known DC activator LPS. This set of experiments compared 24-hour culture

supernatants from three donors ' DCs after mock- infection, infection with live virus , or

stimulation with LPS at 50 ng/mL (Figure 8). LPS treatment induced the secretion of



IL- lO (mean, 327 pg/mL; range, 259-433 pg/mL, N=3), while IL- lO was undetectable in

mock- infected cultures and was detectable (12 pg/mL) in only one D2V-infected culture

supernatant. Secreted levels of IP I 0 with LPS stimulation were similar to those seen

with dengue infection, while IFN-a secretion was slightly lower. Levels ofTNF-a

MCP- , IL- 12 p40, MIP- , RANTES , and IL-6 were much greater with LPS treatment

than with dengue virus infection. These data demonstrate that iDCs produce and secrete a

broad array of immune mediators in response to D2V infection that is clearly distinct

from LPS stimulation, with low relative IL- I 0 production.

EFFECTS OF UV LIGHT INACTIVATION OF DENGUE VIRUS ON

SECRETORY RESPONSES TO INFECTION

The putative DC receptor for dengue, DC-SIGN, is a C-type lectin capable of

intracellular signaling (Caparros et aI. , 2006; Hodges et aI. , 2007). Viral replication is

associated with the activation of intracellular signaling pathways as well, most notably

through dsRNA-sensing pathways such as RIG- I and mitochondrially-associated MA VS

(Y oneyama et aI. , 2004; Hiscott et aI. , 2006) or endosomal TLR3 (Lee et aI. , 2006)

(Alexopoulou et aI. , 2001). In order to distinguish cytokine responses to virion binding

from those requiring viral replication, we compared cytokine and chemokine levels in

supernatants from mock- infected, UV- inactivated virus-treated, or live-virus infected DC

(Figure 9). In experiments with four separate donors , both UV- inactivated virus and live

virus induced the secretion of several cytokines and chemokines, most convincingly
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bars represent the geometric means of the four independent values for
each analyte under each condition.



MCP- I and IP- IO. Levels ofMIP- , RANTES , IFN-a, and TNF-a were lower in UV-

treated DC supernatants than in those from virus- infected DCs. Neither treatment with

inactivated virus nor live. virus induced secretion ofIL- 12 p40 or IL- la in these

experiments. These results demonstrate that binding of D2V is sufficient for the

induction of some secretory responses, but that viral replication augments DC cytokine

secretion.

DOSE-REsPONSIVENESS OF DENDRITIC CELL SECRETORY RESPONSES

TO INFECTION WITH DENGUE VIRUS

In order to determine if the secretion of cytokines and chemokines by DCs following

D2V exposure was related to the virus dose and the percentage of infected cells , we

measured TNF;.a, RANTES , MIP- , IFN-a, IP- , and IL- lO in culture supernatants

from seven donors ' DCs following infection with D2V over a range ofMOIs (Figure 10).

In this series of experiments , we noted distinct profiles between these products. Levels 

TNF-a, RANTES , and MIP- la in the culture supernatants increased with increasing

MOI , although DCs from donor 2 were the exception for each cytokine. For example

DCs from donor 2 showed potent TNF-a secretion at lower MOIs (peaking at ?700

pg/mL at an MOI=0.2), despite absent detectable dengue E protein, but unlike the

remaining six donors , detection ofTNF-a decreased at the highest MOIs , when infection

became evident.

A similar pattern was detected with both RANTES and MIP- Ia production, as

these chemokines were produced at progressively higher levels with increasing MOI for

all donors ' DCs save donor 2. Both of these chemokines were potently induced at low
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MOIs by DCs from both donor 2 and, to a lesser extent, donor I , despite neither donors

DCs demonstrating substantial infection except at an MOI of 5. Dose-responsiveness 

IFN-a production was highly variable between DCs from different donors. For example

DCs from donor 3 showed minimal IFN-a production at all MOIs studied. On the other

hand, supernatants from donors ' 4 , 6 , and 7 DCs showed high IFN-a levels at an

MOI=0. , with detected levels showing a plateau in DC supernatants from donor 6, a

rapid drop in donor 4, and a milder drop in donor 7 at higher MOIs. IPlO, on the other

hand, was secreted at high levels in all donors, even with minimal infection (at an

MOI=0.04). IPlO levels reached a plateau in the midrange ofMOIs , and in four of seven

donors, dropped as infection rates increased.

IL- IO was detected in culture supernatants from DCs derived from all donors in

th.is series of experiments. IL- IO levels showed progressive dose-dependent increases and

were highest at an MOI=5 for supernatants from four of the seven donors (I , 3 , 4 , and 5);

supernatants from the remaining donors ' DCs demonstrated peak levels at an MOI=0.

High-level (:;800 pg/ml) IL- lO secretion was detected in supernatants from the DCs of

donor 4 , although infection rate response curves for this donor s DCs were similar to

those in DCs from donors 3 and 5 , which had much lower (63 pg/mL and 85 pg/mL

respectively) IL- I 0 production.

These results demonstrate that TNF-a, MIP- , and RANTES production by DCs

in response to D2V infection increase progressively as the D2V dose increases , while

IFN-a and IL- IO production show similar effects in only some donors, and decrease at

higher MOIs in others. High- level IPlO secretion was not dose-dependent.



DIFFERENTIAL PRODUCTION OF TNF-ALPHA AND IPIO BY INFECTED

VERSUS BYSTANDER CELLS FOLLOWING DENGUE EXPOSURE

Because dengue proteins are implicated in interferon inhibition (Munoz-Jordan et ai.

2005; Munoz-Jordan et aI. , 2003), we hypothesized that a consequence of differential

interferon signaling would be distinct cytokine production profiles in actively infected

versus bystander DCs. To answer this question, we first mock- infected DCs , or infected

them with either UV-inactivated or live D2V, and used brefeldin A treatment coupled

with intracellular cytokine staining to measure TNF-a and IPIO production in the 16-

hour time period, while using anti-dengue staining to distinguish infected from uninfected

cells. We chose these analytes based on high levels of secretion suggesting adequate

detectability, and to reflect two different types of response , specifically, inflammation

versus chemoattractiono In addition, these products showed differing patterns of dose-

dependence. Mock-infected cells produced neither TNF-a nor IPlO , and UV-inactivated

virus induced low levels of IP I 0 , without causing TNF -a production during this

timeframe (Figure 11). However, in DCs infected with live D2V , we noted marked

production of both proteins (Figures , 12). In addition, we found a clear disparity in

production of these proteins on the single-cell level , depending on the presence of

detectable viral E protein (Figure 12A). IP I 0 induction occurred primarily in bystander

cells, while TNF-a was predominantly associated with infected cells (Figure 12C).

Analysis of multiple experiments demonstrated that the frequency of cells staining

positive for IP I 0 was consistently lower in infected cells than in bystanders (mean::SD

252::0. 160 vs. 0.455::0.216), p=O. OOI) (Figure 12B). Bystander DCs demonstrated a

range ofIPIO staining, including IPlO-high populations, whereas infected DCs had



Mock UV-D2V D2V

085 16. 28.

100 98. 10. 44,

. .. ,...'

IP10

056 099 16.

' ,

99. 99.

.. " '''

TNF-a

Figure 11: Replication-competent virus is required for detection of
intracellular production of TNF-a and IP10. DCs were mock-infected or

infected with UV-inactivated D2V NGC at an MOI=2 (UV-D2V), or live D2V
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18 hr. , and the cells harvested and fixed at 24 hr. Cells were stained using an
anti-dengue E protein monoclonal antibody and monoclonal antibodies for
IP10 (top), orTNF-a. (bottom). Results are representative of at least 3
independent experiments for each cytokine/chemokine under each specified
condition
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uniformly low to negative IPlO staining. On the other hand, TNF-a positive cells were

6 times more abundant in the infected DC population than in uninfected bystander cells

(mean:iSD frequency, 0.248:i0.on vs. 0.096:i0. 084 , p=O. OOOI) (Figure 12 D). These

findings demonstrate that on a single-cell level, D2V infection of DCs differentially

regulates IP I 0 and TNF -a , inhibiting IP I 0 production while enhancing that of TNF -a.

, '

ENDOGENOUS DENDRITIC CELL-DERIVED IFN-ALPHA/BET A

INHIBITION OF DENGUE VIRUS INFECTION

Dengue susceptibility to the antiviral effects of interferons has been described in

immortalized cells , but required pretreatment to be effective (Diamond et ai. , 2000;

Diamond and Harris, 200 I). Although monocyte-derived DCs produce substantially less

IFN-a than plasmacytoid DCs in response to viruses (Izaguirre et aI. , 2003; Colonna et

aI. , 2002), we hypothesized that the endogenous IFN-a/~ induced following D2V

exposure might inhibit active infection. We utilized the anti-CD I 18 (IFN-a receptor

subunit 2; IFNAR2) monoclonal antibody to block IFN-a/~ signaling in DCs during

virus adsorption and cultue. DCs infected in the presence of blocking antibody

exhibited a higher percentage of dengue antigen-positive cells than DCs infected in the

absence of antibody or the presence of a control antibody (Figure 13A). In five

experiments , the percentage of cells infected at 24 hours was similar for D2V alone

(mean:iSD , 28.0:i8. 2%) and D2V plus control IgG antibody (26.2:i5. %), but increased

with blocking antibody (38. 8:i7. 5%, p=0. 06) treatment (Figure 13B). These results

demonstrate that IFN-a/~ produced by monocyte-derived DCs inhibits ongoing D2V

infection.
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dengue antigen staining. Black fill: Mock- infected cells treated with IFNAR2
blocking antibody; Red: Infected cells treated with IgG2a; Green: Infected
cells treated with IFNAR2 blocking antibody. B) Percent of DC staining
positive for dengue E protein in experiments with five separate donors.



EFFECTS OF IFN.ALPHAIBETA SIGNALING ON DENDRITIC CELL IPIO

AND TNF-ALPHA PRODUCTION AFTER INFECTION WITH DENGUE VIRUS

Viral antigen expression was posItIvely assocIated with TNF-a production and negatively

associated with IP I 0 production. Potent IP 10 productIOn II bystander cells suggested

that a soluble factor was responsible, and IFN-a is capable of inducing IPIO in

monocyte-derived DCs (Padovan et aI. , 2002). We therefore hypothesized that blocking

IFN-a/~ would suppress DC IPlO production in response to infection with D2V, but

would not affect the expressIOn ofTNF-a. For these experiments , we pre-treated DCs

with anti-CDll8 (a blocking antibody for the IFN-a receptor subunit 2), isotype control

antibody, or medium alone , followed by adsorption ofNGC at an MOI of 2, washing, and

re-cultue in the presence of the original antibody treatment. In control experiments , we

used a similar approach to pre-block CD118 , followed by mock infection, washing, re-

culture, and addition ofIFN-a at 1000 U (:;5. 5 ng) per milliliter, or roughly 5- to lO-fold

greater concentrations than the peak levels we observed in supernatants from infected

cultures (refer to Figures , 8, 9 and 10).

In this series of experiments, we had three cultures where we measured greater

than 20% of all cells staining positive for IPIO after infectIOn with dengue 2 virus NGC

(Figure 14A). IP I 0 production in DCs infected wIth hve virus and treated with anti-

CDl18 blocking antibody was reduced (mean::SD frequency of all IPlO+ DC

156::0.041) compared with isotype control antibody (0.414::0. 124) or no antibody

(0. 38H0.100) (Figure 14B). IPIO inhibitIOn by IFN-a/~ block occurred in both the

infected and bystander cell populations. In control experiments , we noted total inhibition

ofIPIO productIOn II response to exogenous IFN-a using this concentration of blocking
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antibody (Figure 14 C). IFN-a/~ block had minimal effects on the overall frequency of

TNF -a + cells (Figure 15A and B). In five experiments , the mean::SD frequency of all

TNF-a+ DC with virus treatment alone (0. 14::0.0 I 8) was similar to cultures treated with

the addition of isotype control IgG (0. 131:0.026), and anti-CD 118 antibody

(0. 117::0. 025) treatment had no effect on the overall expression ofTNF-a (Figure 15 B).

These results demonstrate that endogenous IFN-a/~ produced by DCs in response to DV

infection acts in an autocrine/paracrine manner to induce IPlO production. The lack 

complete blocking, in light of the fact that high-dose exogenous IFN-a treatment could

be fully inhibited in our system, suggests that IP I 0 induction was not solely IFN-a/~

dependent.

STRAIN-DEPENDENT DIFFERENCES IN DENDRITIC CELL IPIO INDUCTION

FOLLOWING INFECTION WITH DENGUE VIRUS

Previous studies using intracellular cytokine staining have indicated that there are

differences between attenuated and wild type dengue strains in the viral antigen-

dependence of dendritic cell cytokine responses , including TNF-a (Sanchez et ai. , 2006).

We therefore postulated that dengue viral strains might also differ in the patterns of

induction of IP 1 O. In four experiments , we infected DCs from the same donor using

control C6/36 supernatant (mock infection), live D2V strain NGC , or live D2V strain

C0166/96 , a low-passage clinical isolate from a DF patient in Thailand (Vaughn et aI.

1997). Both viruses were tested at an MOI of 2. Using intracellular staining for dengue E

protein and IPIO as previously described, we quantitated IPlO-producing DCs and
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compared infection rates , in addition to assessing the respective abilities of the two

viruses to induce IP lOin both infected and bystander DCs.

We noted a clear distinction between IPIO responses to NGC and those to the low

. passage clinical isolate. Representative flow cytometry shown in Figure 16A

demonstrates that NGC induced IPIO potently in bystander DCs, and weakly in infected

cells. By way of comparison, the Thai CO 166/96 isolate largely failed to induce IP lOin

either infected or bystander cell populations (Figure 16B). The percentage of DCs

infected varied among donors for both viruses (Figure 16C), however overall infection

rates were similar across the four experiments between NGC (mean::SD , 29.2::10.0%)

and C0166/96 (26. 5::8. 6%) strains.

To determine if the relative lack ofIPlO with low-passage strain infection at the

24-hour time point was explained by altered kinetics ofIPlO production, we performed a

24-hour time course experiment. We treated DCs with brefeldin A for three different 

hour intervals over the 24-hour infection period. DCs from each 8-hour timeframe (0-

hours , 8- 16 hours , and 16-24 hours) were harvested and fixed immediately following

their respective incubation period (8 , 16, or 24 hours). DCs from all samples were

simultaneously stained following completion of the experiment. Although dengue E

protein was detected earlier with CO I 66/96 than with NGC infection, IPlO was not

(Figure 16D).

Together, these data indicate that our low-passage D2V strain was deficient in

IPIO induction when compared with the laboratory-adapted strain NGC. This effect was

neither related to differences in susceptibility to infection, nor was it due to kinetic

differences in antigen or IP I 0 expression between viruses for this time period.
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CHAPTER SUMMARY

In this series of experiments , we found that D2V stimulated DC secretion of a wide range

of inflammatory cytokines and chemokines. Initial experiments comparing mock-

infected DCs to D2V -infected DCs revealed that in terms of absolute amounts the

chemokines IPIO , MCP- , MIP- , and RANTES were the most potently induced

molecules assayed. D2V infection of DCs also consistently induced the secretion of

inflammatory cytokines such. as TNF -a, IL- , and IL- l ; three of four donors also

responded with IFN -a secretion. D2V was not a potent stimulus for the release of IL-

p40 , as this cytokine was only weakly induced in two independent series of experiments

and IL- 12p70 was not a factor in the DC response to D2V.

Results regarding IL- I 0 were inconsistent, as D2V did not induce this cytokine in

two sets of analyses , while in virus dose-response experiments we detected IL- l 0

secretion, albeit low in most donors. A substantial IL- I 0 response was observed in only

one of seven donors ' DCs in the dose-response experiments. UV- inactivated D2V

induced similar levels ofMCP- , IPlO , as did live D2V, and IL- 12 p40 and IL-6 levels

were also similar with both treatments. DC secretion of the chemokines MIP- la and

RANTES , as well as the cytokines TNF-a and IFN-a , was lower in UV-inactivated DV-

infected DCs than DCs infected with live virus.

Using increasing amounts of input virus, we found that MIP- , TNF-a, and

RANTES secretion were dose-dependent, although one of seven donors ' DCs responded

most potently at low MOIs for all three molecules. In contrast, IFN-a secretion peaked

before the highest MOI (of 5) in five of seven donors, with substantial variation in dose-



responsiveness and absolute amounts detected between donors. IP 10 was the only

analyte measured in this experiment that was consistently secreted at high levels

following treatment with the lowest virus dose; in all donors, IP I 0 secretion reached a

plateau early; and in some donors production decreased as MOI increased.

Intracellular cytokine staining from 16- or 18- to 24 hours demonstrated that

TNF-a and IPlO production during this time period depended on replicating virus , and

that the production profiles of these molecules in DCs were also replication-dependent.

Specifically, D2V infection induced potent IPlO production in uninfected bystander cells

while infected DCs had low, and often absent, staining for IPIO, suggesting that

autocrine/paracrine activation through a soluble mediator was responsible for triggering

IP I 0 and that signaling by this molecule was inhibited by active D2V infection. TNF-a

production, on the other hand, was significantly more common in infected cells

implicating replication as the stimulus for expression. Blocking experiments

demonstrated a role for endogenous IFN-a/~ in both the inhibition of viral replication

and in the stimulation of IP 1 0 production, although not in the regulation of TNF-

a production. In addition, experiments comparing NGC and a low-passage Thai patient

isolate , CO I 66/96 , demonstrated an absence of IP I 0 production with CO 166/96 infection

of DCs. This effect was not related to the efficiency of infection, or viral replication

kinetics , and in light of the results demonstrating IFN-a/~ dependence for IPIO secretion

by NGC- infected DCs , suggests that C0166/96 does not induce IFN-a/~ secretion

following infection of DCs.



CHAPTER V

, .

EFFECTS OF DENGUE INFECTION ON THE ABILITY OF DENDRITIC CELLS TO

PRIME ALLOGENEIC RESTING CD4 T CELLS

OUTCOME OF DENGUE INFECTION ON DENDRITIC CELL PRIMING OF

RESTING CD45RO- CD4 T CELLS

Our studies on expression of cell surface molecules indicated that DVwas an activating

stimulus for DCs following infection, although infected and bystander cells had different

levels of expression of a number of the surface molecules we tested. Similarly, we found

that although DCs were induced to produce and secrete a number of cytokines and

chemokines in response to infection, infected and bystander cells were again distinct in

their activities. Therefore, we were interested in examining the effect of DV infection of

DCs onthe T cell priming capabilities of these cells. Priming of CD4 T cells is a major

function ofDCs in the stimulation of adaptive immune responses , through both cell-

surface-bound and soluble mediators.

To investigate whether iDCs gain T cell priming function upon exposure to

dengue virus , we compared DCs for their ability to stimulate proliferative responses

following mock infection, D2V- infection or cytokine-mediated maturation, using co-

cultures with allogeneic, negatively selected, resting CD45RA + CD45RO- CD4 T cells

from CDI4- PBMC. Isolated cells were typically ::90-99% CD3 , of which 95% were

CD4. Of the CD3 CD4 cells , 98% or greater were CD45RA+ CD45RO- . We cultured

these T cells with allogeneic DCs 24 hours after mock infection, treatment with TNF-a



plus IFN-a or infection with D2V strain NGC. We measured T cell proliferation on day

4 or 5 by tritiated thymidine incorporation.

. As expected, we noted a dose-dependent increase in CD4 T cell proliferation with

increasing numbers, of DCs; regardless of DC treatment (Figure 17 A). In comparison with

mock infection, D2V increased the T cell priming capacity of DC cultures. This effect

was statistically significant (PsO.03) at T: DC ratios of20: I and 40: I , and was

associated with the highest values for stimulation index (SI, calculated as (cpm DV-

infectedJ/( cpm mock- infectedJ; (Figure 17B) between 2500 and 313 DC/well

corresponding to T: DC ratios between 20: 1 and 160: 1.

DCs matured with the addition of exogenous TNF-a/IFN-a were likewise

superior to mock- infected DCs as stimulator cells , at all T: DC ratios (PsO.03), with SI

values highestwhen the number of added DCs was lowest (T: DC ratio , 80: I;

mean=34. , range, 4. 58.6 and T: DC ratio, 160:1; mean=36.4 , range , 5. 144.4). T cell

proliferation induced by cytokine-matured DCs was also statistically significantly higher

than that observed with D2V.. infected DC with addition of2500 or fewer DC

(corresponding to 20: 1 and higher T: DC ratios; psO.03). These results demonstrate that

dengue infection of DC cultures enhances their ability to stimulate CD4 T cell

alloresponses , in concert with the observed changes in cell phenotype. Again reflecting

previously observed differences in cell surface phenotype , DCs infected with D2V were

somewhat less effective than DCs treated with exogenous cytokines at inducing CD4 T

cell proliferation.
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EFFECTS OF INCREASING MULTIPLICITY OF INFECTION ON DC CAPACITY

FOR INDUCING T CELL PROLIFERATION AND TIl OR TIl2 DEVELOPMENT

In previous experiments , we noted differences between infected and bystander DCs in

cytokine/chemokine production profiles and surface molecule expression. Therefore , we

postulated that the efficiency of T cell priming would also be related to the level of

infection within DC cultures exposed to D2V. To test this hypothesis , we infected DCs

with D2V using a range ofMOIs from 0.04 to 5 and co-cultured them with T cells using

a T: DC ratio of 20: 1. In seven experiments, DC infection was dose-dependent, albeit

with considerable variability between DC donors at any given MOI 
(Figure 18A; data

also shown in Figures and 10).

In this series of experiments, we found the lowest proliferative responses to DCs

infected at an MOI=5 , whereas DCs infected at an MOI=0.04 induced the greatest

proliferative responses (Figure 18B). CD4 T cell proliferation responses to DCs infected

at MOI=0. 04 or 0.2 (mean::SD cpm 20261:4207 and 175 I 5::2895 , respectively) were

higher than that to mock-infected DCs (MOI=O; cpm 10919::6739), although these

differences were not statistically significant. However, DCs infected at an MOI=l

(11545::5073) induced lower T cell proliferation than did DCs infected at an MOI=0.

or MOI=0. , a statistically significant effect (p-c0.02). Proliferative responses to DCs

infected at an MOI=5 were lowest of all conditions tested (7982::48l5), and was

statistically significantly lower when compared to virus infection at lower MOls

(p-C0. 008). These results indicate that actively infected DCs are PQor stimulators ofT cell

proliferation when compared to bystander DCs.



Two previous reports from the same group suggested that IL- I 0 production was

responsible for reduced T cell proliferative responses to DV- infected DCs, but that

CD40-CD40L interactions enhanced IFN-y. secretion in co-cultures of resting CD4 T cells

with DV- infected DCs (Palmer et aI. , 2005; Sun et aI. , 2006). Therefore, we assayed

supernatants from this series of experiments in order to determine if increasing DC

infection with D2V resulted in a characteristic Th response , by measuring IL- , IL-

and IFN- (Figure panels C-E) using multiplex cytokine analysis. We found minimal

IL- IO in the majority of co-culture supernatants, regardless of the MOI used to infect

DCso Both IL- 13 and IFN-y were produced at similar levels, and neither cytokine

showed a consistent response to increasing the MOL These results indicate that co-

culture of resting CD4 T cells with D2V -infected DCs is not associated with substantial

. IL- l o production, and suggests that increasing numbers of infected DCs do not skew

alloresponsive CD4 T cells towards a Th l or Th2 phenotype during priming.

In order to determine if viral replication was responsible for the reduced

proliferation noted at high MOIs , we compared T cell proliferation in co-cultures with

DCs infected using either live dengue virus at an MOI=5 , or the same virus inactivated

with UV-irradiation. In four of five co-culture experiments where T cell proliferative

responses to live virus infected DCs were reduced relative to mock infection, we did not

note a similar effect for DCs infected with UV- inactivated virus; in one co-culture, the

results were similar for both treatments (Figure 18F). These data demonstrate that viral

replication is the determining factor in reduced allostimulatory functions of directly DV-

infected DCs.
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,figure' 18: Higher rates of DV infection in DC are associated with
decreased resting allogeneic CD4T cell proliferation without Th skewing. DCs
were mock- infected or infected at varying MOls by using 5-fold serial dilutions.
Following 24 hours of culture , DC were harvested, washed, counted, and added to
50, 000 negatively-selected allogeneic CD4 T cells at a T: DC ratio of 20: 1. A) 

from each experiment were intracellularly stained to determine infection rates
(results previously shown in figure 3). E) After 4 days of co-culture
supernatants were collected and frozen at - C, 1 Ci of tritiated thymidine was
added per well , and the cells incubated for a further 18-20 hours. Co-cultures were
harvested and quantified using a -counter. B) Proliferative responses in seven T-
DC co-cultures. Data points represent the mean cpm from quintuplicate wells. DC
from donors 4 and 5 were each tested against T cells from two donors. For these
experiments, mean values were calculated as described above for each T cell
donor, and the mean of the values obtained from both T cell preparations plotted.
Symbols in the legend to the right in (8) represent the same donors ' DCs in each
panel A-E. *pc:0. 05 vs. MOI=0. 04 and 0.2. **pc:0. 05 vs. MOI=0. , 0. , and 1. Co-
culture supernatants were analyzed using a multiplex cytokine analysis for
production of C) IL 10 0) IL- 13 and E) IFN-y to determine Th skew. Solid lines
represent geometric mean concentrations. LOD=limit of detection. F) Comparison
of proliferative responses in T-DC co-cultures where DCs were mock infected (0),
infected withUV- inactivated D2V at an MOl of 5 (UV-5) , or infected with live D2V
at an MOl of 5 (5). Shown are five T:DC combinations where live virus treatment
induced lower proliferation than mock treatment alone. DC4 represents donor 4
from panels A-E; DC8 and DC9 are additional donors.



Because response patterns were variable, particularly with regards to baseline

proliferation induced by mock-infected DCs, we sought to determine the relative

contributions ofDCs and T cells to inter-experimental variability. When DCs from two

donors were each tested against two different allogeneic T cell preparations , both T cell

response curves to a given DC donor were highly concordant (Figure 19). These results

demonstrate that the proliferative responses observed in this series of assays are largely a

product of the qualities of the DCs utilized in the assay, and less so the characteristics of

the T cells.

FAILURE OF HETEROSPECIFIC DENGUE IMMUNE PLASMA TO ALTER

DV EFFECTS ON DC PRIMING FUNCTION

The presence of antibodies from a prior dengue infection has been proposed to contribute

to severe disease in secondary dengue infections by increasing infection of FcyR-positive

cells, particularly monocytes and monocyte-derived cells (Morens and Halstead, 1990).

In addition, antibody-complexed Ross River virus (an alphavirus) has been demonstrated

to inhibit antiviral responses and induce IL- l 0 production in the mouse macrophage line

RAW 264. 7 (Mahalingam and Lidbury, 2002). Although previous studies reported that

heterologous dengue antibody failed to enhance dengue infection of DC (Wu et ai.

2000), we hypothesized that DC functions might be modified by infection with DV-

antibody complexes.

We infected DC with D2V (MOl = 1) alone, D2V combined with control (dengue-

naIve donor) plasma, or D2V combined with dengue 3 immune plasma. Final plasma

dilutions were I :20 , a concentration previously shown to enhance D2V infection of K562
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Experiment 1

DC Donor 1

60000
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8 40000
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o 0.04 0.

Multiplicity of Infection

Experiment 2

DC Donor A DC Donor B

o 0.04 0. o 0.04 0.

Figure 19: DCs largely determine the qualitative aspects of alloresponsive
resting CD4 T cell proliferation. In each experiment , DCs from two separate
donors were simultaneously generated , infected , and co-cultured with CD45RO.
CD4T cells freshly prepared from two allogeneic donors in a 2x2 matrix. Shown are
the results from two independent experiments. Data are presented as proliferation
response curves to both T cell preparations (open or closed squares) in a given
experiment with each donor DC. Values are mean:tSEM cpm of quintuplicate wells.

I 0 I



cells (Laoprasopwattana et ai. , 2005) and monocytes (unpublished data). Plasma and

virus were pre-incubated for 30 minutes prior to addition to DC.

In experiments using four separate donors ' DCs , we noted minimal differences in

infection rates between DCs infected with virus alone or virus pre-incubated with either

control plasma or D3V-immune plasma (Figure 20A). When these DCs were co-cultured

with CD45RO- CD4 T cells and assayed for proliferation, we again noted no differences.

DCs infected with D2V alone, D2V plus control plasma, and D2V plus D3V-immune

plasma all demonstrated enhanced allostimulatory function compared to mock infection

in the presence or absence of control plasma or immune plasma (Figure 20B). These

results indicate that this dengue heterospecific imune plasma neither enhanced infection

of DCs nor altered DC priming functions following infection with D2V.

CHAPTER SUMMARY

In this series of experiments , we demonstrated that infection of DC cultures enhanced the

ability of these cells to stimulate alloproliferation in resting CD4 T cells over mock

infection alone. This effect became increasingly pronounced as the levels of alloantigen

(i. , the number of DCs) became limiting, and was similar to the effects seen when DCs

were pretreated with a combination ofTNF-a and IFN-a prior to co-culture, although the

proliferation induced by infected DC cultures was clearly less pronounced than with

cytokine treatment. Despite the increase in proliferation of allogeneic CD4 T cells noted

in co-cultures with DCs that had been exposed to live virus , further experiments revealed

that increasing the MOl of D2V used to infect DCs resulted in a reduction in the ability

of the DCs to stimulate T cells at a T: DC ratio (20: I) that demonstrated a significant
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increase in stimulatory functions of infected DCs in our first series of experiments. Thus

increasing MOl (and increasing infection rate) was associated with a reduction in the T

cell allostimulatory activity of DV -infected DCs. This effect depended on replication-

competent virus , since UV - inactivated virus at an MOI of 5 did not suppress DC

stimulatory functions in comparisons to live virus. Experiments in which two T cell

donors were tested against two DC donors revealed that DCs were largely responsible for

determining the qualitative aspects of the responses we observed (i. , virus-dose

dependent stimulation or suppression). In addition, cases of reduced proliferation in T-

DC co-cultures could not be explained by IL- l 0 production, since we detected only low

levels of this cytokine in nearly all T-DC co-cultures. Finally, increasing MOI

(increasing infection rate) did not have an effect on the Th-typeskewing of responding T

cells, since the levels of secreted IFN-y and IL- 13 measured in co-culture supernatants

were stable across the range of MOIs used to infect DCs.
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CHAPTER 

DISCUSSION

In this thesis work, I sought to identify the properties that DCs adopt following

exposure to D2V and to elucidate the direct and indirect roles that D2V plays in

determining the responses ofD2V-exposed DCs. Exposure of whole DC cultures to

D2V infection resulted in cellular activation, as measured by enhanced expression of cell

surface molecules, secretion of inflammatory mediators , and increased capacity for

eliciting allospecific CD4 T cell proliferation. However, measuring these effects was

complicated by the fact that direct cellular infection has its own unique consequences for

the functional properties of targeted DCs. Th challenge , therefore , was to discriminate

between multiple responses: 1) the response of all DCs to the virus particle , 2) the

response of infected cells to internal viral replication, 3) the response of all DCs in

culture to products secreted following infection, and 4) the virally-modified secondary

responses of infected cells. The experimental plan was to observe whole culture

responses to infection and then to determine which responses required viral replication

and, where possible, to discriminate between the functions of infected and bystander

cells. I applied this methodology to three levels of DC function:

phenotypic maturation

cytokine and chemokine production and secretion

CD4 T cell priming
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DCs in DV -exposed cultures demonstrated phenotypic maturation by increasing

the expression of immunoregulatory molecules in comparison to mock-infected cells.

Since UV- inactivated virus increased expression of several phenotypic markers , part of

that effect was attributed to binding and/or internalization of virs particles. Replication-

competent DV was required for the full effect. In cultures exposed to live virs, both

infected (dengue antigen positive) and uninfected (dengue antigen negative) DCs

demonstrated an activated surface phenotype when compared to mock-treated cells.

However, the densities of surface molecules induced on infected versus bystander cells in

the same culture were different. Of eight molecules tested, DV- infected cells had

significantly lower surface expression than bystander cells for CD80 , CD86 , PD- , and

MHC I, and trended towards lower CD83 expression. On the other hand, infected DCs

had greater expression of PD-L2 and MHC II , and in the case of CD40 , expression levels

were equivalent. Therefore, although DV activated surface molecule expression on all

cells , replicating virus altered the phenotype of actively infected cells.

To determine if DV stimulated a characteristic DC cytokine and chemokine

secretion pattern in response to infection, we measured a range of inflammatory

mediators in culture supernatants following DV exposure, I observed that live DV was a

potent stimulus for secretion of multiple cytokines and chemokines. By contrast, UV-

inactivated virus induced only a partial secretory response. Furthermore, the secretory

response that D2V infection elicited differed both qualitatively and quantitatively from

the defined TLR4-mediated signaling of LPS. Examination ofthe dose-responsiveness of

DCs to DV infection revealed that TNF-a, RANTES , and MIP- la production increased

with increasing virus dose. IFN-a and IL- IO responses were more variable , and IPIO
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secretion was high even at the lowest Mal. When responses were analyzed on the

single-cell level , infected DCs had dramatically reduced intracellular staining for IP 1 0

when compared with uninfected bystander cells; conversely, infected cells had enhanced

TNF-a expression. DV infection resulted in DC release of biologically active IFN-a/

with consequences for both infected and bystander DCs. Endogenous IFN-a/ produced

during infection process inhibited further infection of DCs and was the major factor

driving DC IPlO production. IPlO production differed between D2V strains , suggesting

strain-dependent differences in IFN-a/~ induction. This series of experiments indicated

that DV causes DCs to secrete a broad range of inflammatory cytokines and chemokines

but the specific responses of infected and bystander DCs to DV were distinct. Both direct

and indirect effects of virus mediated secretory responses , effects that were distinct in a

comparison of culture-adapted and wild tye dengue viruses.

One main function of DCs is to initiate and direct primary immune responses; a

series of experiments was designed to quantify DC priming function using multiple

resting CD4 T cell activities as the readouts. Introducing D2V into DC cultures generally

increased the ability ofDCs to stimulate T cells; however, increasing the virus dose

weakened or even abrogated this effect. When compared to mock- infected DCs , in most

cases DV - infected DC cultures induced greater proliferation of resting allogeneic CD4 T

cells. These effects were observed consistently across a range ofT:DC ratios and were

most pronounced when DC numbers were limited. The effect was less pronounced

however, when compared with the differences between cytokine-matured DCs and mock-

infected DCs. In another set of experiments, DCs infected at lower MOIs were

consistently better stimulators than cells infected at higher MOIs. In cases where DCs
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suppressed T cell proliferation at high Mal , replicating virus was required since UV-

inactivated virus did not have an equivalent effect. IL- IO induction during co-culture did

not explain the reduced alloproliferation observed at high MOI , since I detected minimal

IL- lO secretion in T-DC co-cultues. Nor was increasing MOI associated with Th-type

skewing, since similar levels of1L- 13 and IFN-y were detected in co-culture supernatants

and did not show Mal-dependent effects. Infection ofDCs with DV in the presence of

serotype-heterospecific antibodies neither enhanced infection of these cells , nor altered

their ability to induce proliferation in co-culture with quiescent CD4 T cells. My results

indicate that exposure to DV stimulates proliferative priming function in bystander cells

an effect that is not infuenced by infection with immune-complexed DV. By comparison

DV -infected DCs appear to be relatively poor CD4 T cell stimulators and do not

potentiate the development of a specific T h I or T h2 response.

GENERATION OF DENDRITIC CELLS AND INFECTION WITH DENGUE VIRUS

Positive selection ofCD14-expressing monocytes and subsequent culture with GM-CSF

and IL-4 allowed us to generate DC cultues with high conversion rates to CD la-

expressing cells. This result was in accordance with previous literature reports , including

those addressing dengue infection (Wu et aI. , 2000; Palmer et ai. , 2005). Monocyte-

derived DCs have the advantages of being primary cells , are readily generated , use

established laboratory cutture methods , and result in generally high purity of the desired

cell population. However, being primary cells they must be isolated from multiple

donors , thus introducing a substantial element of experimental variability into the system.
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Following exposure of DCs to dengue virs , we noted peak antigen staining prior

to 48 hours, in agreement with previous work using D2V NGC (Wu et ai. , 2000).

Therefore, we used a 24-hour time point post- infection for our subsequent analyses. In

several other studies the investigators utilized a 48-hour time point post-infection

(Libraty et ai. , 2001; Palmer et ai. , 2005; Sanchez et ai. , 2006). The 24-hour time point in

our studies was also selected based on a report that suggested increasing apoptosis in

mode-infected cells with prolonged culture (Ho et ai. , 2001). Since this could potentially

artificially skew our observations in favor of greater differences between mock infection

and DV infection at later time points, we chose an earlier time than in previous studies.

Additional studies indicate that DV infection has either no effect on, or actually reduces

apoptosis in DC cultures infected at an MOl of 1 (Palmer et ai. , 2005; Sun et ai. , 2006).

The finding that dengue antigen staining was greater at 24 hrs than at 48 hours post-

infection suggests either selective attrition of infected cells or reduced virus production

for example, as a consequence of the paracrine effect ofIFNs. We were interested in

examining DCs during the period of peak viral replication, when these cells would be

expected to be migrating in vivo and arriving in secondary lymphoid organs. Temporal

effects are reported to have significant influence on the fuctions of DCs following their

stimulation (Langenkamp et ai. , 2000).

New Guinea C strain was selected based on original experiments with DV

infection ofDCs (Wu ettii. , 2000), and the ready availability of virus stocks. We found

that, as expected, infection with NGC was dose-dependent, as infection rates increased

with increasing Mal. For most experiments , I utilized an MOI of2 , similar to previous

reports (Wu et ai. , 2000; Ho et ai. , 200 I; Libraty et ai. , 2001; Palmer et al. 2005). In my

109



analyses , there was substantial variation in the susceptibility to infection of DC derived

from different donors , which was evident even in cultures infected on the same day.

High variability in infection rate between DC preparations was previously reported

suggesting that this is a common effect in the DV-DC system (Cologna and Rico-Hesse

2003; Sanchez et aI. , 2006).

The question of donor-to-donor variability in susceptibility to infection is an

interesting one. Regarding our findings, the variability we noted could not be explained

solely by the virus stock used or the day of infection, since donors ' DCs infected on the

same day (see Figure , donors 1-3) or donors infected using a single virus stock (see

Figure , donors 1-5) stil demonstrated variability in infection. In contrast, infection

rates were similar for separate cultures of DCs from the same donor infected on the same

day with and without addition of control IgG (refer to Figure 13), or control human

plasma (refer to Figure 20 A). Therefore it is unlikely that the variation we observed in

the infectivity of DCs derived from separate donors was due solely to intra-experimental

effects inherent to the infection procedure itself. These results suggest that donor-

specific traits of DCs have substantial influence on the variability in this experimental

system. This conclusion is supported by a report that promoter activity for DC-SIGN

appears to be protective against DF (Sakuntabhai et ai. , 2005). This observation suggests

that relative DC-SIGN expression levels between individuals may determine the

development of symptomatic disease through influence on DC infectivity. Additional

downstream responses , such as donor-dependent efficiency of IFN-a/ production by

DCs in response to DV infection, the activity of PDCs in a given individual, or the
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sensitivity of an individual's conventional DCs to IFN-a/~ signaling likely also playa

significant role in determining DC susceptibility to infection, either in vitro orin vivo.

Donor-dependent variability in DC responses to infection (and in other responses

including cytokine production, which is addressed later in this discussion) is an important

observation for future research in the role of DCs in dengue disease etiology. The

occurrence of outliers among donors might highlight rare aspects of DC responses to DV

that either enhance or reduce the risk for disease pathology. This may be argued to be

critical in the study of dengue, since individuals developing the most severe disease

represent only a small fraction of those who contract the virus. Thus

, "

common

responses observed in studies such as ours , and others using similar systems which

identify trends consistent between donors, may be more likely to reveal global responses

associated with protective, rather than pathological, immunological behavior.

Because NGC is a laboratory-adapted strain, we addressed the issue of infection

with other dengue viruses. Similar to previous reports , we report the susceptibility of

DCs to multiple serotypes ofDV (Cologna and Rico-Hesse, 2003; Wu et ai. , 2000; Ho et

ai. , 2001), which in our study included low-passage clinical isolates of American and

Asian strains ofD2V. Our results , combined with the observations of others , indicate

that DC infection with NGC performed in this body of work can be readily reproduced

with other dengue viruses. Work with multiple viruses is important, since differences in

cellular responses (such as cytokine/chemokine induction, which we noted) may reflect

mechanisms of viral adaptation that contribute to virulence , and pathology.

Although analyses of functional differences between viruses were limited in the

scope of this thesis , one literature report began to address this question by comparing DC

ill
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infection with both parent and attenuated vaccine strains of D2V, reporting differences

between the two strains in DC responses as determined by surface molecule expression

and cytokine production (Sanchez et ai. , 2006). Another study examining the replicative

capacity of different D2V genotypes in DCs found that genome structures of American

D2V strains were associated with reduced infection and virus production, as compared

with those of Asian strains (Cologna and Rico-Hesse, 2003). Future investigation into

the role that virus strain plays in DC susceptibility to infection, and the comparison of

responses that different viruses elicit from DCs wil prove an exciting avenue to pursue.

In particular, comparisons of DV strains from individuals with severe disease against

strains which are known to be attenuated, or are isolated from individuals with very mild

disease, will facilitate the understanding of the mechanisms by which DV infection of

DCs contributes to disease pathogenesis. Important molecules to address are IFN-a and

IL- , among others. Differences between strains in their effects on DC functions in

alloreactions may also reveal important strain-dependent differences in quantitative

and/or qualitative priming ofT cells.

EFFECTS OF DENGUE VIRUS EXPOSURE ON DENDRITIC CELL

SURFACE PHENOTYPE

DV exposure enhanced the expression of a panel of immunoregulatory surface proteins in

both infected and bystan er DCs. In a comparison of D2V to lmown DC activators

(TNF-a/IFN-a and LPS), although D2V was the weakest stimulus , surface molecule

expression changes seen with live virus were generally similar to those seen with high-

dose cytokine treatment. This was apparent despite the fact that the concentrations of

exogenous cytokines added were more than 5- 10 fold those detected in culture following
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infection (specifically, TNF-a at 50 ng/mL and IFN-a at approximately 5 ng/mL). D2V

infection was most consistent with TNF-a/IFN-a treatment in the induction of CD40

PD- , PD- , CD86, and HLA A, B , C, and relative changes in CD80 were also

somewhat similar between D2V infection and TNF-a/IFN-a treatment. The comparison

to defined activators such as TNF -a/IFN -a and LPS were not addressed in previous

related studies (Ho et ai. , 2001; Libraty et ai. , 2001; Palmer et ai. , 2005; Sanchez et ai.

2006). Thus , D2V infection of DCs was not only able to activate phenotypic matuation

of DCs , but the magnitude of the effect observed was substantial when viewed in light of

the degree of change inducible in this system.

In experiments comparing UV-inactivated D2V to live virus, replication was not

required for the induction of surface molecule expression, since significant increases in

CD80 , CD86 , PD- , and PD-L2 expression occurred following treatment with UV-

inactivated D2V as compared with mock infection. However, we observed greater

expression levels in DCs infected with live virus when compared to UV -inactivated virus

indicating a role for viral replication in enhancement of phenotypic maturation. Although

most differences between live and inactivated virus were not statistically significant

increases in expression levels following live virus treatment were statistically significant

in comparison to mock infection for all molecules assayed, while UV -inactivated virus

induced statistically significant changes in B-7 family molecules only. Therefore

increased surface marker lexpression on infected DCs as compared with UV -inactivated

virus infected DCs likely represent real differences related to activation occurring

secondary to viral replication.
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Since I confirmed that there was no detectable residual infectious virus in the UV-

inactivated samples , these data suggest that the binding and/or uptake of virus particles

alone, possibly via E protein recognition by DC-SIGN, causes signaling within the DC

resulting in the observed changes in DC phenotype. Two studies found that DC-SIGN

ligation by DC-SIGN specific antibodies did not result in phenotypic changes in DCs

(Geijtenbeek et aI. , 2000b; Caparros et ai. , 2006), although the second study found

phosphorylation of the signaling kinases extracellular regulated kinase (ERK) 1/2 and

Akt, without p38 mitogen-activated protein kinase (MAPK) activation, and noted PLC-

phosphorylation and transient calcium influx. However, the structual epitope recognized

by DC-SIGN specific antibodies influences their effects on signaling, as antibodies with

both activating and ligand-blocking functions have been identified (Hodges et ai. , 2007).

Therefore , DV binding to DC-SIGN could be responsible for the changes in cell surface

phenotype that we observed.

Alternatively, virion internalization may be necessary to elicit cellular responses.

DC-SIGN has internalization motifs , which are responsible for the uptake of HIV (Kwon

et ai. , 2002). Antibody blocking of DC-SIGN binding prevents infection-induced

phenotypic changes to DlV, however, abrogation of DC-SIGN internalization motif

function does not prevent DV uptake, suggesting a role for additional molecules in DV

internalization (Lozach et aI. , 2005; Tassaneetrithep et aI. , 2003). Therefore , virion

binding alone to DC-SIGN may fail to induce, or induce weak and/or transient, activation

that could be amplified when the DV particle is internalized. In one report, DC-SIGN-

mediated human papilloma virs (HPV) pseudovirion (virus- like particle, VLP) binding

to DCs , and antibody blocking of DC-SIGN specifically inhibited HPV VLP-induced
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MHC I induction (Garcia-Pifieres et aI., 2006). The lack of nucleic acid in VLPs

demonstrates that the effects seen were dependent on protein structual components

alone, although these findings cannot rule out a role for additional signaling mechanisms

secondary to VLP binding by DC-SIGN. DC-SIGN binding by multiple pathogens

including mycobacteria, measles , and HIV- , has also been demonstrated to activate

signal transduction through Raf- l mediated acetylation ofNF-KB p65 , although this

required prior TLR-mediated NFKB activation (Gringhuis et aI. , 2007). Therefore

additional receptor-ligand interactions (or activation of intracellular pathways) may be

essential for signaling following DV binding as well. These findings also suggest that

DC-SIGN binding by DV may regulate later activation and intracellular signaling events

that are dependent on replication. It should be noted, as discussed in the introduction

that multiple cellular receptors for DV have been postulated; the studies discussed above

highlight the importance of determining additional cell-surface targets for both DV

internalization and signaling beyond DC-SIGN.

It is possible that C6/36 cellular contaminants in the virus inoculum, such as heat-

shock proteins , are partially responsible for DC activation in these experiments.

Nevertheless , the observed differences in responses of DC to live virs and UV-

inactivated virus show that DCs respond specifically to dengue viral replication and

additional intracellular signaling events. We observed viral protein production in

response to NGC infectiop. between 8 and 16 hours (refer to Figure 16 D), consistent with

previous reports (Wu et aI. , 2000). Therefore, phenotypic responses to replicative virus

and resulting autocrine/paracrine cytokine signaling would likely become evident at 24

hours post- infection and later time points.
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One study utilizing UV-inactivated DV suggested that viral particles themselves

did not induce phenotypic maturation of DC, although the data were not shown (Libraty

et al. , 2001). Other studies using formalin inactivation or heat inactivation reported

similar results to those of Libraty et al. (2001), although again, the data were not shown

(Palmer et aI. , 2005; Sanchez et al. , 2006). Our data are in contrast to these findings , but

demonstrated a reproducible and statistically significant effect. One possible explanation

for the disparity between our studies and those described above is the magnitude of the

response to UV-inactivated virus observed in our system, which was low for PD-

CD40 , and MHC molecules (although statistically significant in the case ofPD-L2). We

observed larger expression level changes in CD80 , CD86 , PD- , and CD83 (all of

which were statistically significant), indicating that the choice of surface markers

analyzed would affect conclusions regarding the effects of UV - inactivated virus.

Specifically, none of the aforementioned studies addressed PD-Ll or PD-L2 expression

both of which we found to be significantly enhanced following UV- inactivated virus

treatment of DCs. Low numbers of replicates , differences in viral strains , and temporal

effects (with our studies performed at 24 hours, and previous work performed at 48 hours

(Libraty et al. , 2001; Palmer et al. , 2005; Sanchez et al. , 2006) may all be contributing

factors in the discordance of our data and the work of other groups , although we can only

speculate on the former, as none of those studies presented data on the effects of

inactivated virus on DC urface molecule regulation.

Ideally, to answer the question of dengue particle-mediated effects on DCs , a

highly purified preparation of virus could be utilized for infection, allowing comparison

in the absence of potential medium contaminants including cellular debris. Studies 
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dengue VLPs in comparison to UV-inactivated whole virus would allow for

differentiation between structural protein and nucleic acid-mediated effects. Heat

inactivation could also be used to denature virion components (or cellular protein

contaminants) that may be responsible for signaling. Our findings indicate that DCs are

partially activated following exposure to non-replicative virus, and therefore warrant

further investigation into the mechanisms by which the DV particle itself induces

signaling. One group of candidate DC-expressed molecules , which are involved in

pathogen recognition and may be involved in DV-induced signaling, are the Toll- like

receptors (TLRs). TLR recognition has been shown to be involved in the responses of

murine DCs to YFV, a close relative of dengue (Querec et ai. , 2006).

When we examined the phenotypes of infected and bystander DCs based on

dengue E protein expression, our data included the novel finding that DV induces

expression of both PD-LI and PD- , the known ligands for programmed-death- l (PD-

1). PD- I is expressed on activated T cells , and binding to either of its ligands results in

co-suppressive signals which inhibit T cell proliferation and cytokine production in vitro

using primary human cells (Brown et ai. , 2003; Cai et ai. , 2004). We also found enhanced

expression of CD40 , CD83 , CD80 , CD86 , and MHC class II molecules on both infected

and bystander cells, while only bystander cells up-regulated MHC class 1. These data

demonstrate that both actively infected cells and uninfected bystanders increase

expression of surface moll:cules involved in immune regulation following live DV

infection of DC cultures.

In a contrast of infected to bystander DCs following DV exposure, PD- , CD80

CD86 , and MHC Class I expression were lower in infected DCs; conversely PD-L2 and
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HLA DR surface levels were enhanced. Using murine cells, PD-Ll has been shown to

effectively inhibit both Th l and Th2 responses in antigen-specific T cells , while PD-

preferentially inhibited Th l responses alone (Latchman et ai. , 2001). In experiments with

human DCs in co-culture with CD4 T cells , blocking PD-Ll and PD-L2 had additive

effects, although in this case, PD-L2 was the more potent cytokine and proliferation

suppressor (Brown et aI. , 2003). The fact that both of these molecules were differentially

regulated on infected versus bystander DCs in our experiments suggested that priming

functions between these two populations may differ, particularly with regard to T 

skewing, although we did not confirm such an effect (refer to Figure panels C-E).

IFN-a induces PD-Ll in cultured DC and renal tubular cells (Schreiner et ai. , 2004;

Waeckerle-Men et ai. , 2007), and we observed up-regulation of both PD-Ll and PD-

in response to IFN-a treatment of DC (data not shown). Type I interferons (IFN-

have been implicated in the regulation of other B7-family molecules in DCs , and

enhance the expression ofMHC Class I (Luft et ai. , 2002; Mohty et ai. , 2003). We also

found that MHC Class II expression on DC could be induced by IFN-a (not shown);

although DV infection has been shown to inhibit IFN-a/~ signaling within infected cells

(Munoz-Jordan et ai. , 2003; Munoz-Jordan et ai. , 2005; Ho et ai. , 2005), HLA DR and

PD-L2 expression were selectively enhanced on infected DCs when compared to

bystander cells in our system. These findings indicate that the observed differences

between infected and bystander DC surface molecule expression could not be explained

on the basis of DV -mediated IFN-a/~ inhibition alone. Therefore, additional regulatory

pathways affecting surface molecule expression, attributable to replicating virus , are

active in DCs following infection, This is not surprising in that both dengue NS 1 and
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NS5 are implicated as mediators of intracellular signaling (Chua et aI. , 2005; Medin et

aI. , 2005).

There is general agreement in the literatue that bystander DCs have enhanced

expression of co-stimulatory and MHC molecules following dengue exposure (Libraty et

aI. , 2001; Palmer et aI. , 2005; Sanchez et aI. , 2006). In one study, CD80 and CD83

expression appeared to be slightly enhanced in infected DCs when compared to bystander

cells , although this effect was not statistically significant (Sanchez et aI. , 2006). In that

study, infection and culture were carried out at 32 C and used both a D2V attenuated

vaccine strain, PDK53 , and the parent prototype strain 16681. In a second study using

D2V strain 16681 , the authors reported that CD83 , CD40 , CD80 , CD86 , and MHC I and

II molecule expression were all enhanced versus mock infection in both infected and

bystander DCs , although infected cells had lower expression of CD83 , CD80 , CD86 , and

MHC I relative to bystanders (Libraty et aI. , 2001). Another study reporting on the same

panel of markers found that DCs infected with the D2V prototype strain 16803 showed

no induction of surface molecule expression when compared to mock infection, despite

increases in surface expression of all of the molecules assayed in bystander DCs, and

concluded that there was potent virus-specific suppression of responses (Palmer et aI.

2005). Our findings were in contrast to the report by Palmer et al. (2005), being most

consistent with those of Libraty et al. (2001), although we found enhanced expression of

MHC Class II on actively infected DCs. In summary, including our work, three of four

studies indicate differences in phenotypic maturation between infected and bystander

DCs , and three of four studies report statistically significant phenotypic responses

specifically in infected cells compared with mock infection. The differences in findings
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regarding surface molecule expression between studies likely reflect differences between

virus strains , genetic polymorphisms between DC donors , and the kinetics of surface

molecule expression.

. WHOLE CULTURE DENDRITIC CELL CYTOKINE AND CHEMOKINE

RESPONSES TO DENGUE 2 VIRUS INFECTION

When we infected DCs with dengue virs , we noted a broad inflammatory cytokine and

chemokine response , with the most striking changes being in chemokine production.

Previous work in our laboratory indicated that DV induced DC expression of the

chemokines MIP- , MIP- , IL- , RANTES , and MCP- l (Medin et aI. , 2005). Here

we report similar findings, along with the observation that dengue also induces high- level

secretion ofIPlO from monocyte-derived DCs. This additional finding is potentially

significant, since IPlO and not the other CXCR3 ligands MIG (monokine induced by

gamma interferon, CXCL9) and IT AC (interferon-inducible T cell alpha chemoattractant

CXCLll) was reported to be critical for survival in a murine model of primary dengue

ilness (Hsieh et al. , 2006).

Similar to previous reports (Ho et al. , 2001; Libraty et al. , 2001; Palmer et al.

2005), we found that dengue was also a potent inducer of inflammatory cytokines IFN-a

and TNF-a, and that IL- 12 p70 was not induced in response to DV infection. We did

find increased IL- 12 p40 induction by some donors ' DCs in response to dengue infection

in several experiments (Figures 7 , 8 , and 9), suggesting that failure to produce IL- 12 p70

is also related to a failure to produce the IL- 12p3 5 subunit. One potential alternative

pathway for IL- 12 p40 is IL- , which utilizes the p40 subunit along with IL-23-specific
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P 19 (Oppmann et aI. , 2000). While IL-23 is reported to induce IL- 17 secretion in CD4 T

cells (Aggarwal et aI. , 2003), in preliminary experiments, we did not note any differences

in IL- 17 levels in co-cultures of T cells combined with mock-infected versus dengue-

infected DC, suggesting that dengue did not specifically enhance IL-23 secretion by DCs

however (data not shown). DV infection was also a stimulus for the release of several

additional inflammatory mediators , including IL-6 and IL- Ia. Infection also stimulated

the release of IL- , which is a growth factor for plasmacytoid dendritic cells (PDCs)

(Strobl et ai. , 1998). PDCs are potent IFN-a producing cells , which are activated through

TLR7 following exposure to DV (Wang et aI. , 2006). In a study of hospitalized children

with febrile illness , those who developed DHF did not demonstrate elevated PDC

frequencies in their PBMC , while those with DF had increased PDC numbers early

during ilness (Pichyangkul et ai. , 2003b). That same study reported that total PBMC

IFN-a secretion in response to PDC-specific stimulation is dramatically reduced during

acute dengue ilness as compared with healthy controls (Pichyangkul et ai. , 2003b).

Thus, PDCs appear to play an important role in dengue ilness , and IL-3 production might

be involved in the early proliferation of these cells following infection.

Similar to our findings on surface molecule regulation, UV -inactivated virus was

capable of inducing the secretion of several cytokines and chemokines , including IL-

MCP- , RATES, and IP 1 O. These results are not surprising, in that DC cytokine

responses to non-replicative VLPs and inactivated virus have been reported. HPV VLP

binding to DCs induced secretion ofTNF-a, IL- , and RANTES (Garcia-Pineres et ai.

2006), while UV-inactivated YFV l7D was able to elicit TNF-a and MCP- l secretion

from DCs (Querec et ai. , 2006). We found that secretion of most molecules , notably
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IFN -a and TNF -a, as well as RANTES , were greater following stimulation with live

virus than with UV -inactivated virus , indicating (similarly to surface molecule

regulation), that D2V exposure stimulates DC functional activity, while replication

enhances this activation. The finding that IFN-a and TNF-a production were increased

specifically by live virs treatment likely reflects dependence on viral protein production

or intermediates such as dsRNA formed during viral replication. As previously

mentioned, DCs produce TNF-a in response to NSI-mediated signals (Chua et ai. , 2005),

and dsRNA activates IFN-a/~ production through multiple pathways (Cella et ai. , 1999;

Y oneyama et aI. , 2004). Autocrine/paracrine signaling by these molecules could then

further influence the secretion of other products.

Our findings with New Guinea C strain reflect previous literature reports

indicating that DV either does not induce, or induces low levels of, IL- lO production in

DCs from most donors (Libraty et ai. , 2001; Palmer et al. , 2005). Specifically, we found

low or absent IL- l 0 production in response to dengue infection in independent

experiments (refer to Figures and 8), results that were consistent with those of Libraty

et al (2001). DCs did consistently produce IL- lO in response to LPS stimulation (refer to

Figure 8), demonstrating their functional capacity to produce this cytokine. In other

experiments where we did detect IL- l 0 (refer to Figure 10 D), responses were low for all

but one donor across a range of virus inocula tested, and reflected levels reported by

Palmer et al. (2005) at 2L1 hours. This assay had the best low-end sensitivity of our three

multiplex analyses , as samples were diluted 2-fold for dose-response experiments , as

opposed to 7. fold in experiments comparing D2V to LPS (See Materials and Methods).

Only one of seven donors ' DCs (donor 4) showed potent IL- I 0 secretion, which was
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dose-dependent. IL- lO induction has been reported to occur late following DC

stimulation, when compared with other cytokines (Langenkamp et al. , 2000), suggesting

that any differences between our results and those of Palmer et al. (2005) may be

temporally related. However, the kinetics ofDV infection did not appear to be

responsible, since in our original analysis (refer to Figure 7), we measured high levels of

intracellular dengue E protein staining at 24 hours post-infection, ranging from 33-90%

(not shown). Therefore, in our system, low or absent IL- lO induction was not simply due

to poor viral replication. Sanchez et al. (2006) reported some secretion of IL- l 0 by DCs

following DV infection, but were unable to detect IL- IO during intracellular cytokine

staining assays , further demonstrating the inconsistency ofIL- 10 induction in the DV-

system. Donor-dependent cytokine responses should be considered, and would represent

an interesting area for further research.

Further studies regarding the role of DC in IL- l 0 secretory responses to dengue

viruses are needed, particularly given our finding that potent IL- lO induction by DV

infection of DCs is an exception, and not the rule. IL- lO levels in plasma from patients

with acute dengue infection are elevated with more severe disease (Perez et al. , 2004;

Green et aI. , 1999b), similar to findings in fatal Ebola virus infection of humans (Baize et

al. 2002). APCs derived from the PBMC of acute dengue patients are unable to

stimulate T cell alloproliferation and recall responses and show poor IFN-a secretory

function (Mathew et al. !1998; Pichyangkul et al. , 2003a). Together, these findings

suggest a role for IL- l 0 in acute APC dysfunction during dengue ilness. Individuals

whose DCs are predisposed to produce IL- I 0 in response to dengue infection might

therefore be at high risk of developing severe disease. In particular, early IL- I 0
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production might suppress antiviral IFN activity and co-stimulatory molecule expression

in APCs (!to et ai. , 1999; Ding et ai. , 1993), as well suppressing cytokine synthesis in Thl

cells (Fiorentino et ai. , 1989). This would inhbit effective memory activation, and

failure to eliminate infected DCs would allow for continued viral replication, triggering

ADE and leading to even higher viremia. The resulting antigen load could cause a

rebound" over-stimulation of adaptive responses , activation of pathological T cell

subsets , and T cell death. Such effects may be reflected by the increased levels of soluble

T cell-associated receptors (CD8 and IL-2R) and CD8 T cell apoptosis seen during acute

dengue infection (Green et ai. , 1999a; Mongkolsapaya et aI. , 2003).

In additional analyses examining the secretory responses of DCs to increasing

input levels ofD2V, we found that production ofTNF-a, MIP- , and RANTES showed

similar patterns, essentially responding in a dose-dependent manner. Experiments

utilizing UV -inactivated virs revealed that replication had a substantial enhancing effect

on the secretion of each of these products. Also germane to the virus-dose responsive

nature of the secreted products noted above was the observation that TNF-a production

occurred far more frequently in infected cells than in bystanders during our ICS assays

(see Figures 11 & 12). Together, these data support the conclusion that the dose-

dependent increases in TNF-a, MIP- , and RANTES secretion were driven by

increasing DV infection ofDCs, particularly in light of the fact that UV-inactivated virus

only marginally induced these products when compared to mock infection. These data

also suggest that MIP- la and RANTES may have similar profiles in intracellular staining

assays as compared with TNF -a.
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On the other hand, variability ofIFN-a levels in relation to virs dose and the

induction ofIP 1 0 at low concentrations of virs are very likely related. This is

particularly evident when viewed in the context of our finding that IFN-a/~ receptor

blockade inhibited IP 1 0 production in intracellular staining assays (refer to Figure 14).

The fact that IFN-a/ receptor blockade mediated biological effects indicates that, during

culture , DCs are binding IFN-a produced in an autocrine/paracrine fashion. Therefore

quantitative measurement ofIFN-a in supernatants is confounded by constant uptake , in

addition to the potential effects ofIFN inhbition by DV (Munoz-Jordan et ai. , 2003;

Munoz-Jordan et ai. , 2005; Ho et ai. , 2005). Viral inhibition ofIFN signaling might

reduce IFN-a secretion through blocking effects on IFN- signaling, particularly as

infection rates and viral protein production increase. IP 1 0 secretion appears to suffer

some degree of inhibition as well at the highest MOIs , when we noted the highest cellular

infection rates. This is not surprising, again, when viewed in light of the intracellular

staining data, which indicate that infected DCs are particularly poor producers of IP I 

(refer to Figure 12).

DIFFERENTIAL INDUCTION OF IPIO AND TNF-ALPHA FOLLOWING DENGUE

2 VIRUS INFECTION AND THE ROLE OF IFN-ALPHA

While we found a wide range of secreted products in response to dengue infection

intracellular staining revealed distinct cytokine production phenotypes for infected and

bystander DCs. IPlO production was potently induced in bystander cells , whereas DCs

with detectable dengue E protein levels demonstrated uniformly low levels of staining for

IPIO (see Figure 12 A). In multiple experiments , the frequencies ofIPlO+ cells in the
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infected cell population were significantly lower than those in bystander cells , an effect

that was statistically significant (Figure 12 B). On the other hand , TNF-a production

was more prominently induced in infected DCs (see Figure 12 C), and frequencies of

TNF -a + cells were higher in the infected cell population than in the uninfected bystander

cell population, also a statistically significant effect (see Figure 12 D). Our findings with

IPI0 are novel, while Sanchez et al. (2006) reported similar results with TNF-a using an

attenuated dengue 2 strain. There are multiple potential effects for these observations

based on the biological activity of these two molecules.

The receptor for IPlO is CXCR3 (Loetscher et al. , 1996). Interestingly, it was

reported that CXCR3 is expressed on "central memory" helper T cells that selectively

become Th type cells producing IFN-y on activation (Rivino et aI. , 2004). IPI0

production by DCs has been shown to be important for clustering and retention of

responding Th l cells in the hepatic lymph nodes in a murine model of granulomatous

liver disease. In that study, blockade ofIP I 0 resulted in hepatic infiltration of T h I cells

and liver injury (Y oneyama et ai. , 2002). Failure of infected DC to produce substantial

IP 1 0 suggests that in vivo these cells are relatively weak recruiters for T cells expressing

CXCR3. Therefore, it is possible that DV-infected DCs fail to recruit and to retain IFN-

producing Th cells from the memory compartment. Such an effect has clear implications

for DC function, since IFN-y-mediated signaling appears to be intact in DV-infected DCs

(Ho et al. , 2005; Libraty d aI. , 2001). Failure to recruit and activate Thl cells would

prevent further DC activation and allow for unchecked viral replication in DCs.

Secondarily, a lack of IFN-y in the local environment would potentially interfere with the

instructive" IFN-y stimulated IFN-y production in responding T cells , negatively
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affecting downstream antiviral mechanisms , including the "conditioning" of DCs to

induce cytotoxic CD8 T cell activity in the absence of immediate (i. , in contact with the

DC) T cell help (Ridge et aI. , 1998). Pathology might be further enhanced by ineffective

retention of dengue-specific T h cells in the draining lymph nodes of affected tissues such

as liver, skin, or bone marrow, resulting in organ infiltration and immune-mediated

damage.

The selective induction ofTNF-a by inected DCs , on the other hand, may be

directly involved in apoptotic signaling in responding T cells. In particular, CD8 T cells

have been shown to be sensitive to TNF -mediated killing, while CD4 T cells are

susceptible to Fas ligand (FasL) (Zheng et ai. , 1995). TNF-mediated cell death would

reduce the number of DV -specific T cells generated during primary infection, and cause

attrition of responding memory cells during secondary infection. In fact, CD8 T cell

apoptosis has been demonstrated for DV epitope-specific MHC-tetramer+ cells during

secondary infection, indicating that these cells are receiving death signals

(Mongkolsapaya et aI. , 2003). During primary infection, CD8 T cell death may be of

relatively little consequence, since cross-priming and presentation of apoptotic cells

could eventually provide a suffcient response to clear the virus. The absence of ADE

and generation of a serotype-specific antibody response would effectively neutralize

circulating virus. However, during secondary infection, kiling of dengue-specific T

cells, particularly CD8 T1cells , would have adverse consequences , since early effective

responses may be crucial to control dissemination of the virus by infected DCs. Failure

to eliminate these cells (as we also noted a lack ofMHC Class I upregulation in infected

DCs) would allow for viral replication and dissemination. At that point, contributing
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factors to the development of severe disease such as ADE effects and pathological T cell

expansion would be facilitated. It would therefore be of interest to examine the responses

of dengue-specific CD8 T cell clones to autologous DV -infected DCs in the absence or

presence of antibodies directed against TNF-a, to determine if antigen-specific activation

followed by TNF-mediated apoptosis occurs in these cells.

IFN-a/ was reported to inhibit DV infection of human cells in vitro but required

pre-treatment to be effective (Diamond et ai. , 2000). Monocyte-derived DCs have been

described as weak IFN-a producers when compared with plasmacytoid DCs (Izaguirre et

ai. , 2003; Colonna et ai. , 2002), and IFN-a levels detected in supernatants from our

experiments were low compared with a number of other DV- induced cytokines and

chemokines. Nevertheless , autocrine and/or paracrine signaling by endogenous IFN-a/

was active in controllng ongoing DV infection in DC cultures. Blocking experiments

revealed that IP 1 0 production in response to virus was largely IFN -a/ dependent. D V

has been shown to suppress IFN actions in multiple in vitro systems (Munoz-Jordan et

ai. , 2003; Munoz-Jordan et aI. , 2005; Jones et ai. , 2005; Ho et aI. , 2005). In light of

those findings , viral inhibition of IFN-a/~ signaling is likely the cause of weak IP 1 0

induction in infected DCs.

In control experiments , anti-IFNAR2 antibody completely blocked IPIO induction

in response to approximately 10- fold higher levels of IFN-a than we measured in culture

supernatants from DV - infected DCs (refer to Figure 14 C), suggesting the production of

additional regulators ofIPIO in this system. These regulators may include IFN-y, which

we detected at very low levels in DC supernatants following infection, or the recently

described IFN-As (Pekarek et ai. , 2007).
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Unlike IPlO , TNF-a production was not affected by IFN-a/~ blockade, and

appeared to represent a direct response to ongoing viral replication in infected DC.

Results with Sendai virus infection of murine DCs were similar to ours , in that IFN-a

was not involved in TNF-a production (Lopez et aI. , 2003). In addition to the report by

Chua et al. (2005) implicating dengue NSI in TNF-a production, intracellular signaling

mechanisms responding to viral products are likely also active in infected DCs , including

the RIG- MA VS pathway (reviewed by Hiscott et ai. , 2006). Alternatively, TNF-a may

be regulated similarly to IL-8 induction, through the dengue NS5 protein (Medin et aI.

2005).

We also found that DCs infected with the low-passage Thai DF patient isolate

CO 166/96 essentially failed to induce IP 1 0 production at all following infection (Figure

16) when compared with NGC, despite the fact that these two viruses resulted in similar

infection levels. That the C0166/96 strain and not NGC was associated with early

dengue antigen expression indicates that this observation was not due to a consequence of

delayed viral replication and therefore delayed secondary activation of IFN-a/(3

production in DCs infected with the CO 166/96 strain. These findings suggest that the

C0166/96 strain does not induce IFN-a production upon infection, or may act to

selectively ablate IFN-a production. Interestingly, both RSV and measles strains which

are able to prevent IFN-a production from plasmacytoid DCs in response to agonistic

stimuli have been identified (Schlender et ai. , 2005). Variant strains of Sendai virus 52

(low production) and Cantell (high production) have also been shown to have vastly

different capacities to induce IFN-a/~ in murine DCs (Lopez et aI. , 2003). Given the

important role of IFN-a/~ in control of viral infection in general , and in dengue infection
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specifically, investigation of the cause of this phenomenon is an extremely important

avenue of future research.

STIMULATION OF T CELLS IN CO-CULTURE WITH DENGUE 2 VIRUS-

INFECTED DENDRITIC CELLS

The experiments we performed on DCs in the absence of secondary stimulation indicated

that D2V activates whole-culture responses. Therefore , we sought to determine if the

activation of phenotypic and secretory function in these cells was reflective of enhanced

function during interaction with CD4 T cells , as a measure of adaptive immune

stimulatory capacity. Specifically, I was interested in determining if DV infection of

DCs facilitated their T cell priming function. In my initial experiments, in accordance

with the activation of DC surface molecule expression, most D2V -infected DC cultures

stimulated allogeneic resting CD4 T cell proliferation. This effect was particularly

striking as DC numbers , and background proliferation stimulated by mock-infected DCs

decreased (see Figures 17 A and B). At lower T: DC ratios , e.g. 5:1 and 10:1 , some DV-

infected DC cultures (but not cytokine-matured DC cultures) showed slightly reduced

allostimulatory function. Specifically, although at both aforementioned ratios, three of

six experiments showed enhanced T cell proliferative responses to DV -infected DC

cultures when compared with mock- infected cultues , two cultures at 5: 1 had reduced

responses and one showe essentially no effect; one co-culture at 10: I had a reduced

response, and two more essentially no change. Even at 20: 1 , responses in three of six

cultures were unchanged or only marginally enhanced (see Figure , experiments l , 4

and 5). Therefore, under some conditions , particularly with high antigen load (high DC

numbers), DV infection of DC cultures has minimal, even negative , effects on T cell
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allostimulation. Interestingly, the variability in SI values (Figure 17B) for DV -infected

DCs co-cultured with T cells appears to be a function of the substantial variability in

absolute responses (i. , cpm values) to mock-infected DCs between experiments (see

Figure 17A Mock), as absolute responses to DV-DCs tended to be consistent between

experiments (Figure 17 D2V). Therefore, the intrinsic capacity of mock-infected DCs

to stimulate the T cell preparation used in a specific experiment has clear weight in

interpreting the results following alternative treatments.

In consistent agreement with our surface phenotyping results, DCs that were

matured with the addition of exogenous cytokines (TNF-a/IFN-a) gained in their ability

to stimulate CD4 T cell proliferation. We saw moderately greater levels of surface

markers on cytokine-matued DCs as compared to DCs infected with D2V, most clearly

for CD83 , but also for HLA DR, CD40 , and CD80 (refer to Figure 4). Although absolute

differences between mean expression levels of HLA DR and CD40 in this comparison

were small , in both cases , they represented a substantial fraction of the " inducibility

within the system, as determined by the maximal stimulus for all molecules tested, LPS.

In addition, PD-Ll and PD-L2 expression levels between DCs from D2V-infected

cultures and cytokine-matured cultures were similar. Together, this indicates that the

balance of co-stimulation versus co-suppression was more favorable in cytokine-matued

DCs as compared to D2V - infected DCs. Not surprisingly, TNF-a/IFN-a treatment was a

more effective and consiSient stimulus for enhancing the ability of DCs to induce resting

CD4 T cell proliferation than was infection with D2V (see Figures 17 A and B). 

comparison of SI values shows that in essentially all cases , cytokine maturation resulted

in enhanced allostimulatory function, while in some instances , particularly at lower T:
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DC ratios (greater alloantigen levels), D2V did not. However, in this experiment, failure

of DCs to increase their allostimulatory activity following DV exposure was an

infrequent finding when considering the sum of responses across the range of T: DC

ratios. This argues against the conclusion that DV infection of DC cultures suppresses

DC allostimulatory activity as reported by Palmer et al. (2005) and Sun et ai. (2006).

Although not as potent a stimulus as cytokine maturation, D2V infection generally

resulted in improved allostimulatory function in DC cultures.

These results indicate that D2V infection of DC cultures does not induce an

inherently allosuppressive culture-wide effect, as has been reported for MV (Fugier-

Vivier et ai. , 1997; Grosjean et ai. , 1997; Schnorr et aI. , 1997; Dubois et ai. , 2001) and

RSV (de Graaff et ai. , 2005; Bartz et ai. , 2003). Rather, results from Figure 18B suggest

that direct infection of a given DC in cultue appears to inhibit the allostimulatory

capability of that specific cell , relative to bystander DCs within the same culture. This

conclusion is drawn from the observation that higher multiplicities of infection, reflected

in increasing infection rates (see Figure 18 A), were associated with reduced proliferation

(see Figure 18 B) when compared to lower MOIs. Surprisingly, the results in this series

of experiments comparing DV-DCs to mock-infected DCs appeared to be discordant on

some levels with the data presented in Figure 17. Infection at lower MOIs in this series

of experiments tended to enhance allostimulatory responses, similar to the results seen in

the experiments comprising Figure 17. However, at higher MOIs that were more in

keeping with the Figure 17 data, mean allostimulation (i. , the values for all seven

experiments combined) tended to be similar to , or lower than, that seen with mock

infection. This effect was not statistically significant, however, and the range of values
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obtained in response to mock infection was highly variable, as previously described for

Figure 17.

In the series of experiments presented in Figure , proliferative responses to

DV- infected DCs in four of seven co-cultures were greater than responses to mock-

infected DCs , while in three co-cultues responses were suppressed. Notably, in two of

the co-cultures with reduced responses (donors 6 and 7), proliferative responses to mock-

infected DCs were unusually high. DCs from these donors, and from donor 4 (which also

demonstrated reduced allostimulatory function when compared with mock infection) had

the greatest infection rates at an MOI=l , and all demonstrated infection of greater than

50% at an MOI=5. Also , in six of seven co-cultures , proliferation induced by DV-DCs at

the lowest MOI (=0. 04) was greater than that induced by mock-infected DCs , suggesting

that activation of DCs in the absence of high percentages of infected cells (i. , activation

in the presence of a vast majority of bystander cells) is a consistent stimulus for enhanced

alloproliferative activity.

As alluded to above, the failure of DCs infected at high MOIs to induce

alloproliferation in some of the experiments presented in Figure 18 could also be

reflective of the high infection rates noted for this series of DC infections; the

experiments in Figure 17 could not be correlated to DC infection rates. In fact, four

further experiments performed comparing mock-infected DCs to D2V-infected DCs

(MOI=l; shown in Figure 20) found enhanced allostimulatory activity in DV- infected

DC cultures as compared with mock infected DCs , reminiscent of the results in Figure

, albeit with generally lower infection rates than in Figure 18. When taken as a whole

reduced T cell proliferation to DV -infected DC cultures was rare (for example, only 3 of
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17 co-cultures at a T:DC ratio of20:l and MOI=1 or 2; see Figures , 18 and 20).

Again, I interpret these data to mean that bystander DCs in D2V- infected cultures gain in

allostimulatory activity, while the data in Figure 18 argue that directly infected DCs have

generally poor relative allostimulatory function.

Although the T: DC ratio in the Figure 18 experiments was 20: 1 , in most cases

the cpm values were more reflective of the cpm values obtained for T:DC ratios of 5: 1 or

10: 1 than those at 20: 1 shown in Figure 17 (compare responses to mock-infected DCs

and DCs infected at an MOI=l or 5 in Figure 18B to mock-infection or D2V infection in

Figure 17 with addition of 10000 , 5000 , and 2500 DC). Furthermore, these data argue

that increased baseline proliferation (e. , with high DC numbers or in donors whose

mock-infected DCs have unusually high allostimulatory function) reduces the ability of

the system to detect increases in proliferation, while likely increasing the system s ability

to detect suppression. While most pronounced at low T: DC ratios , such an effect

appears to extend to the 20: 1 T:DC ratio chosen for the experiments in Figure 18

indicating that fuher similar experiments at a higher T:DC ratio may have substantial

value in clarifying the results in this experimental series in light of the additional

experiments I have presented here. Thus, a general increase in the proliferative responses

to mock- infected DCs and the presence of outliers with aberrantly high responses to

mock-infected DCs appears to be contributing to the discordant nature of the results

comprising Figure , as! viewed in light of all co-culture data. However, a global

assessment of all T:DC co-cultures performed in the experiments comprising Figures 17

, and 20 indicates that D2V-infection of DC cultures enhances the culture

allostimulatory potential, while Figure 18 specifically suggests that increasing infection
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rates , and thus a higher infected: bystander DC ratio independently reduces

allostimulation. Variability in the susceptibility of donors ' DCs to direct suppression by

internally replicating virus likely contributes to the range of effects (e. , stimulation in

the face of infection versus frankly reduced proliferation) seen in these experiments.

The system I utilized for my co-cultures was unable to directly compare T cell

proliferative responses to infected versus bystander DCs, since surface expression of

dengue proteins was inadequate to effectively sort viable cells. However, in the series of

experiments shown in Figure , in a minority of donors (4 , 6 , and 7), I did observe

decreased T cell proliferation to DV-infected DCs in co-cultures as compared to mock-

infected DC at the highest MOIs (Figure 17 B), and even at low MOIs (donors 6 and 7),

similar to previous reports (Palmer et al. , 2005; Sun et aI. , 2006). Reduced

allostimulation in these experiments was dependent on replicating virus, since equivalent

reductions did not occur with UV-inactivated D2V infection ofDCs (Figure 18 E).

In donor 4, I found high- level IL- IO production during the initial 24-hour

infection period (Figure 10 D), reflecting the mechanism proposed by Palmer et al.

(2005). However, in T-DC co-culture, DCs from this donor had enhanced

allostimulatory function at MOIs of 0. 04 and 0.2 (Figure 17 B). This was despite the

greatest IL- l 0 production of seven donors ' DCs at all MOIs , as measured in supernatants

from the 24-hour period post-infection, prior to use in T cell stimulation assays (Figure

10 D), indicating that IL-I 0 induction alone in this donors ' DCs was not sufficient to

prevent them from developing enhanced allostimulatory capability. Both donors 6 and 7

also showed increases in IL- l 0 production during the infection period, prior to co-culture

particularly at an MOI=0.2. Although IL- lO levels detected in supernatants from these
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donors ' DCs decreased at higher MOIs , the DCs became progressively less functional as

infection rates increased (Figures 17 A and B), with reduced proliferation at an MOI=0.

and higher. Also , donor 1 showed a dose-dependent increase in secreted IL- lO levels to

levels similar to those of donors 6 and 7, yet DCs ffom donor I remained stimulatory,

relative to mock infection, even at an MOI=5 (although T cell stimulation peaked at

MOI=0.04). Together, these results suggest that, in some cases , D2V infection results in

IL- lO production and associated reduction in DC allostimulatory function, although the

magnitude of the effect appears to be highly variable, possibly reflecting the variability in

IL- lO induction. Notably, this did not appear to be a dominant effect, since in four of

seven co-cultures performed across the range ofMOIs , we found greater proliferation at

each MOI as compared with mock infection.

Both previous studies reporting reduced alloproliferative responses to dengue-

exposed DCs showed data in which proliferation decreased as MOI increased (Sun et al.

2006; Palmer et al. , 2005). This contrasts with the data we present here , which shows

that at lower MOIs , DC stimulatory function is enhanced , while as MOl increases , DC

stimulatory function tends to decrease, a statistically significant effect at an MOI=l or 5

as compared with all other conditions using infected DC. The authors of the

aforementioned previous studies interpreted their findings as indicative of D2V -mediated

suppression of DC function, although even at the highest MOIs, proliferative responses

were between 50% and 76% of the responses seen with mock infection (Palmer et aI.

2005; Sun et al. , 2006). Both reports by this group included only representative data

failing to address the consistency of their results (Palmer et al. , 2005; Sun et al. , 2006).

Clearly, the effect noted in those studies , and in similar observations in our studies , is
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mild when compared to results reported for either MV or RSV (Grosjean et al. , 1997;

Fugier-Vivier et al. , 1997; Dubois et al. , 2001; de Graaff et al. , 2005). In addition

Palmer et al. (2005) reported enhanced apoptosis of DCs infected with high MOls of

D2V. Therefore, in that study, reduced T cell proliferation may have been secondary to

increased attrition of infected DCs in culture.

Also in contrast to findings by Palmer et al. (2005), we noted little or no

detectable IL- lO in supernatants from T - DC co-cultures , suggesting that this cytokine

was not produced in response to the alloreaction, and thus does not playa role in

suppressing T cell responses during the course of T - DC co-culture. Sun et al. (2006)

reported lFN-y production during T -DC co-culture, an observation I also made. Here, I

report that T-DC co-culture results in the secretion ofIL- 13 as well. Mean IFN-y and lL-

13 levels were equivalent across the range of DC MOls (see Figures 18D and E). 

addition, neither IFN-y nor IL- 13 showed a dose-responsiveness to DC MOI, indicating

that activation of resting CD4 T cells in co-culture with DV-infected DCs primes a mixed

l/T 2 response, similar to mock infection. Increasing MOl was associated with

increasing infection rates , and in most co-cultures, DV -infected DCs represented the

major fraction of DCs added.

These results indicate that co-culture of DV-infected DCs with CD4 T cells does

not skew responses towards either a Td or Th2 phenotype. This , in turn, suggests that

following DV exposure, ihfected DCs do not develop intrinsic properties for skewing

CD4 T cell responses. These findings contrast with those using RSV, in which case CD4

T cells co-cultured with infected DCs exhibited minimal production ofIFN-y or IL-

although both of these cytokines were produced at substantial levels in T - DC co-cultues
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where DCs were matured using exogenous cytokines , poly I:C, or InN (de Graaffet ai.

2005). Notably, in that study, InN was a particularly potent stimulator ofTh l-skewing,

as IFN-y levels were substantially higher than those ofIL- 13. On the other hand, results

in our experiments were reminiscent of that noted for YFV 17D infection in mice, which

facilitated the induction of both Th l and Th type responses (Querec et aI. , 2006).

Although these experiments did not allow me to discriminate the source of IL- 13 and

IFN -'I, additional experiments are possible to determine this. Restimulation of T cells

with a non-specific stimulus such as phorbol esters (PMA) and ionomycin after 1 week in

culture coupled with intracellular staining would reveal specific functional activities in

CD4 T cell subsets. Analysis of CD4 T cell surface expression of molecules such as the

IL-7 receptor would provide information regarding the ability of cells developed during

co-culture with infected DCs to respond to homeostatic cytokine signaling. Also

functional studies using blocking antibodies to Fas or TNF -a would provide information

as to whether or not these molecules were inducing death signals during co-culture of

CD4 T cells with infected DCs. Performing a similar series of experiments with CD8 T

cells as those presented in this thesis using CD4 T cells would yield information

regarding the stimulatory activity of infected DCs for cytotoxic T lymphocyte function.

Finally, testing autologous PBMC and T cell clones specific for DV against DV-infected

DC targets wil yield specific information regarding how DV infection affects T cell

memory responses to infetted DCs. Such activities might include DC lysis , T cell

cytokine production, and DC-mediated T cell apoptosis (potentially through Fas or TNF-

a as previously mentioned).
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Our findings regarding T cell responses in co-culture with DCs infected with a

range of MOIs clearly demonstrated variable results, despite the consistent trend for

decreased proliferative responses at the highest MOIs. This suggests that donor-

dependent effects may have a strong influence on DC allostimulatory activity, in keeping

with the variability we noted in infection rates and the secretion of soluble factors.

Testing of DCs and T cells in a 2x2 factorial design suggested that the DC source had the

greater influence on the pattern of proliferation responses (refer to Figure 19). However

the characteristics of the T cells are likely also important. We used negatively selected

CD45RO' " resting" CD4 T cells. In contrast , Palmer et al. performed proliferation

assays using positively selected CD3+ T cells, which included both naIve and memory

CD4 and CD8+ T cells. These cells showed higher proliferation responses to mock-

infected DC and may be more readily activated to express PD- , thus becoming

susceptible to inhibition by PD-Ll/PD-L2 expression on the DC (Vibhakar et ai. , 1997;

Latchman et ai. , 2001). In the report by Sun et al. (2006), which used naIve CD4 T cells

selected in a similar manner as in our studies, the effect ofDV infection on DC

stimulation was more modest than that reported by Palmer et al (2005).

The presence of antibody during primary infection is thought to influence disease

severity in infants , putatively through ADE of monocytes or macrophages. We tested the

effects of dengue-immune plasma on the infection of DCs and their allostimulatory

function. This experiment was in response to the question of whether immune-

complexed DV demonstrated distinct effects on DC priming capacity as compared to DV

in the absence of cross-reactive antibodies. In this experiment, we found no effect of

D3V- immune plasma on either DC infection rates , or on the ability of these cells to
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stimulate allogeneic CD4 T cell proliferation. This result indicates that DV in the context

of immune complexes does not have intrinsic properties that differentiate it from naked

virus as related to the induction of DC allostimulatory function. This finding argues

against a role for immune-complex-mediated effects on DC function in disease pathology

during primary infection of infants, or secondary infection in older children and adults.

FINAL WORDS ON DENDRITIC CELL INFECTION AND TRANSLA TING IN VITRO

RESPONSES TO IN VIVO/CLINICAL FINDINGS

An important point to recall when examining the effects of both measles and RSV

infections in vivo versus in vitro in DCs is that the consequences in vivo are rarely as

profound as might be predicted by those in vitro. This might be appreciated most simply

by recalling that living organisms employ myriad semi- (and fully-) redundant

mechanisms to cope with invading pathogens. Rather, the in vitro imunosuppression

noted in T cell-DC co-cultues with these virses may be reflective of a common survival

and dissemination mechanism of acute cytopathic viruses , which replicate rapidly to high

titers, induce potent immune responses, and thus must transmit themselves in as

expeditious a manner as possible (reviewed by Hangartner et ai. , 2006). In such cases

immunosuppression may actually help to keep the host alive long enough to permit the

virus access to a new host, rather than rapidly killing host (and thus virus). Examples of

poorly human-adapted , emergent virses such as Sin Nombre and Ebola, which "burn

fiercely within a host or community thus have either failed to adapt yet to facilitate

transmission via the new host (humans), or induce such profound immunosuppression

that the host is incapable ofrecovery (as appears to be the case with Ebola).
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. A PATHOGENESIS DISCUSSION: FUTURE WORK IN THE DV-DC (AND DV-

APC) SYSTEM

In this thesis work, I found that DV infection of DC cultures activated a range of

functions in these cells. Virion binding alone resulted in phenotypic and secretory

functional responses , but these were quantitatively and qualitatively different in the

presence of replicating virus. Viral replication stimulated IFN-a//3 production, which

drove bystander IPlO production, while production of this chemokine was inhibited in

infected cells. On the other hand, infected DCs potently produced TNF-a. These data

combined with dose-response data, suggest that a number of cytokines and chemokines

have a similar dependence on active replication. Experiments using DV- infected DCs to

stimulate T cell responses demonstrated stimulation by infected cultures, although

substantial evidence indicated that bystander DCs , and not infected DCs , were the more

potent stimulators. I did not note IL- l 0 production in T - DC co-cultures , nor did I note

T h-skewing effects of infected DCs.

Since DCs have been demonstrated to be targets ofDV infection in vivo these

data are extremely relevant to understanding dengue disease pathogenesis. A model

proposed by Palmer et al. (2005) argued for a major role ofIL- lO in DV infection of

DCs , suggesting that DV-induced immunosuppressive effects facilitate the development

of severe disease. However , any model that includes DCs must account for the fact that

there is no difference in DC populations present between disease states (DF vs. DHF) or

exposure histories (primary vs. secondary), suggesting that any potential pathogenesis

arising from DC infection is related to downstream responses. Therefore, I argue that the

Palmer model is inherently flawed, since , if all DCs produced IL- l 0 and caused
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immunosuppression leading to severe dengue ilness , DHF would be equally common in

both primary and secondary infections. Instead, I propose that DCs playa role in the

etiology of severe dengue disease through both typical, and atypical, responses to DV

infection. A discussion of the infection process in light of the data presented in this thesis

follows, with particular attention to the events following inoculation, and the roles that

DCs may play in primary versus secondary infection.

Despite purported susceptibility of a number of cell types to dengue infection

including those previously mentioned in vivo dendritic cells have substantially greater

susceptibility to infection when compared to other cells. However, DCs might be

expected to be relatively rare cells in the tissue microenvironment immediately following

a mosquito bite and subsequent inoculation. Furthermore, the tissue architecture of the

skin likely determines the local susceptibility to infection for resident cell types.

Specifically, the superficial keratinizing stratified squamous epithelium of the skin is

separated from both vascularized papilary dermis and deeper reticular dermis/cutaneous

vascular plexi by a thick basement membrane. Insertion of the mosquito feeding

apparatus transects the avascular epithelial layers , which contain Langerhans cells

basally, and the physical barrier of the basement membrane. Because LCs are physically

separated from the site of vinlS inoculation (which likely occurs most substantially at the

deeper vascular layers) by the basement membrane, these cells might be expected to be

much less common targets for natural infection than cells of the dermis, including

conventional DCs (such as interstitial DCs or monocyte-derived DCs).

Following virus exposure, multiple cell types would be infected at various (but

generally low) rates , based on previously discussed in vivo and in vitro studies. One
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target that is of potential importance early after viral entry is the dermal fibroblast.

Human foreskin fibroblasts are infected by dengue virus, and produce cytokines such as

GM-CSF (Kurane et ai. , 1992). While the infection rate in these cells may be relatively

low, their abundance in the dermis suggests that fibroblast infection may contribute

substantially to downstream events early following exposure. Dermal fibroblasts may

represent the earliest infected cell type, along with interstitial DCs , thus serving as an

important source of virion production if, as might be expected, infected DCs migrated out

of the local microenvironment following maturation. In addition, dermal fibroblasts

would also serve in the recruitment of immune effectors in response to chemotactic

factors and cytokines generated from cellular exposure to and/or infection by DV

particles. In particular, recruitment of monocytes into the inflammatory

microenvironment in the presence of factors such as GM-CSF may provide large

numbers of highly susceptible target cells as viral replication begins to accelerate.

Infection of these cells would become more effcient as they differentiated into a DC

morphology.

Work in the murine system suggests that two major subsets of blood monocytes

distinct based on expression levels of the chemokine receptor CX CRl , represent

precursor cells with divergent functions. Furthermore, analogous subsets are also present

in humans , in which phenotypic distinction can be made based on the human homologue

also CX3CRI (Geissmanr et ai. , 2003). The CX CRl population serves as a short- lived

acute response" to local inflammation, while the CX CRI hi population is longer lived

and migrates to tissue in the absence of inflammation. Both subsets are capable of

differentiation into DCs in vitro and in vivo and have T cell priming capability, with the
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former ostensibly recruited to local sites of infection in order to augment immunity in the

face of an invading pathogen, and the latter likely serving as tissue resident interstitial

DCs (Geissmann et ai. , 2003).

DCs are considered to be critical during viral infections because of their abilities

to cross-prime , or present exogenous antigens in the context of MHC I molecules

(reviewed by(Bevan, 2006)). Although there is considerable disagreement in the

literature regarding the role that monocyte precursors from blood have in this process , it

is possible that during viral infection, monocyte-derived DCs may serve as antigen

transporting cells , carrying endogenously expressed viral epitopes in the context of MHC

I following peripheral exposure to secondary lymphoid tissues , where antigen transfer

may occur either through plasma membrane transfer to T-cell priming DCs , or through

uptake of apoptotic monocyte-derived DCs (Randolph et ai. , 2007). An additional

mechanism may be that viral transport to secondary lymphoid tissues results in local

infection, with locally resident DCs either infected by the virus , or presenting

exogenously acquired viral particles through a cross-presentation pathway. CD4 T cell

stimulation would likewise be stimulated following exogenous particle uptake

particularly in the presence of specific antibodies. CD4 T cell-mediated local IL-

induction and would potentiate outgrowth of the antiviral CD8 T cell population , an

effect that would be enhanced by and environment favoring IFN-y secretion and further

stimulation of DC priming function.

In the case ofDV infection, monocyte-derived DCs are likely to playa critical

role at multiple stages during infection, since this cell population represents a mobile

susceptible reservoir of target cells that would facilitate viral dissemination beyond the
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site of inoculation, and may also be infected secondarily after viremia occurs and target

organ systems become sites for viral synthesis. The high infection rates associated with

monocyte-derived DCs suggests that a substantial portion of emigrating cells from the

initial nidus of infection would carr replicating virus, effectively translocating infection

from the inoculation site to secondary lymphoid tissue as the DCs received maturation

signals from virus-triggered inflammatory mediators , or from the direct effects of viral

replication within a given cell. Once present in secondary lymphoid tissue, the virus

would have access to a highly cellular environment, with a relatively dense target cell

population, and potential for egress into the bloodstream, facilitating generalized viremia.

A modifying factor that likely plays a role early during viral replication and

dissemination is the presence of potent IFN-a/~ producing cells. In this thesis work, I

found that monocyte-derived DCs were able to produce functional type I IFNs that were

then able to inhbit ongoing dengue virion production in infected cultures. However, as

previously mentioned, the role of monocyte-derived DCs in production of type I IFNs is

generally considered to be marginal , depending on the system used, when compared with

PDCs (Izaguirre et ai. , 2003; Colonna et aI. , 2002). An important adjunct cell type for

IFN-a production in response to DV infection is likely the PDC; activity of these cells in

producing IFN-a would spare monocyte-derived DCs (and interstitial DCs) by inducing

maturation and inhibiting viral replication. Interestingly, although PDCs express the

IP10 receptor CXCR3 , re'cruitment appears to depend not on the concentration gradient

of IPlO (or the additional CXCR3 ligands ITAC and Mig), but rather constitutively

expressed chemokines that signal at much greater effectiveness following CXCR3

binding on the PDC (Vanbervliet et ai. , 2003). Therefore , in a pathological cycle , weak
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IPlO induction by infected MDDCs would hamper PDC migration into the inflamed

stroma of DV- infected skin, resulting in greater susceptibility of conventional DCs to DV

infection. Indeed, the clinical use of PDC stimulators such as the TLR7 agonist

imiquimod likely facilitate clearance of viral infections of the skin, such as HPV, through

PDC activation and IFN production.

PDCs would appear to have additional roles in the secondary lymphoid tissue

during DV infection as well. Such activities may include lymph node homing, with IFN-

a dependent protection of cellular constituents following the arrival of peripherally

infected conventional DCs , and IFN-a mediated Th l skewing. In fact, in humans PDCs

are recruited to lymph nodes following natural infection with influenza virus (Cella et ai.

1999), severe dengue disease is associated with reduced PDC numbers in blood early

during disease (Pichyangkul et ai. , 2003), and in vitro PDCs support Th l priming (Cella

et aI. , 2000). Reduced PDC numbers in the blood of severely il patients , as opposed to

the initial spike seen in patients with mild disease, may represent either ineffective

stimulation ofPDC growth and emigration from bone marrow, or possibly enhanced

extravasation to sites of infection (skin, lymphoid tissue, liver, etc. ). PDCs might also be

infected directly with DV, although this has not be demonstrated, and seems unlikely

given the potency with which DV stimulates IFN-a production in these cells (Wang et

ai. , 2006), and the fact that IFN-a production appears to protect PDCs from vir ally-

induced cell death (Cella et ai. , 2000).

The absence of an appropriate PDC response in individuals suffering from more

severe infections suggests a functional defect in type I IFN-mediated immunity secondary

to weak PDC activity. Failed type I IFN activity would predispose these individuals not
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only to increased viral load, but would shift the monocyte-derived DC infected: bystander

ratio towards higher proportions of infected DCs. In some cases , monocyte-derived DCs

may produce IL- l 0 in response to DV infection, which would functionally blunt both

PDC and conventional DC innate immune activity by reducing the effectiveness of

secreted type I IFNs, as well as suppressing antigen-presenting activity. The

consequences of either case would be weaker adaptive immune stimulation and delayed

DV-specific responses. That PDCs can stimulate Thl priming (Cella et ai. , 2000) also

suggests that PDC recruitment to secondary lymphoid tissue, in concert with monocyte-

derived DCs , may be important in providing help to skew T h responsiveness towards an

IFN-y producing paradigm, a capacity that was conspicuously absent in our experiments

when MDDCs alone were co-cultued with CD4 T cells.

Following local infection, monocyte-derived DCs would likely represent the

earliest and most substantial population of cells migrating to secondary lymphoid organs

to stimulate adaptive responses. The previously mentioned role of monocyte-derived

DCs during acute inflammation suggests that there is an increasing influx of monocyte-

derived and interstitial DCs to immune tissues during the course of infection until the

point where viral replication is controlled through adaptive immune mechanisms

including the generation of neutralizing levels of DV -specific antibodies. During primary

infection, the lack of dengue-specific antibodies early during viral replication would

allow for infection of a fJroader range of cell types than might be expected during

secondary infection. In the case of secondary infection, FcyR-expressing cells , including

macrophages and blood monocytes , would be infected at enhanced rates , while non-

FcyR-bearing cells might demonstrate reduced susceptibility with partial viral
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neutralization. During the phase of generalized viremia, either in primary or secondary

infection, the importance of DCs in determining the outcome of infection would likely be

reduced, since in the case of primary infection, adaptive immune responses would be

expanding and combating infection of target organs, while in secondary infection, ADE

would likely shift the APC target population to macrophages and undifferentiated blood

monocytes.

Early, rather than late , events surrounding DC infection are likely the critical

factor (with regards to DCs) in determining the course of ongoing dengue infection.

Since initiation of adaptive immunity is presumably necessary for viral clearance, the

ratio of infected to bystander cells providing virus-specific stimulation is potentially

important in determining the magnitude, if not the quality, of the T cell response. Host

and/or viral factors contributing to a state that predisposes the host to a high ratio of

infected to bystander DCs in secondary lymphoid tissues would therefore reduce the

effectiveness of T cell priming. Some examples include defects in PDC numbers

recruitment, or IFN-a production in response to DV. High DC-SIGN expression on

conventional (particularly monocyte-derived) DCs , high-level IL- lO induction by

monocyte-derived DCs resulting in suppression ofIFN-a signaling, and high-affinity

binding, low-IFN-a inducing, or particularly aggressively replicating strains of DV are

additional examples. The delay in T cell expansion might be further exacerbated by

reduced recruitment of ctll types responsive to IPlO (memory T cells or PDCs) and

capable of potentiating IFN-y production. Lastly, TNF-a production by infected DCs

could result in T cell killng, and the infected DC surface phenotype may favor T cell

inhibition or, in the case of secondary infection, expansion of pathologic memory T cell
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subsets. Pathological responses , however, are likely multifactorial, as in most cases

dengue ilness is effectively cleared. This suggests that in the vast majority of cases , DC

infection (in opposition to the model proposed by Palmer et al.) appropriately directs

downstream immunity.

Based on the findings in this thesis, in the case of common DC responses to DV

infection, I propose that during primary exposure, DV infection of DCs in most

individuals results in immunostimulation. Stimulatory DC function depends on a relative

abundance of bystander DCs , low infection rates , and low DC numbers. Such a situation

would facilitate mixed T h priming, and the generation of appropriate mixed immune

responses that include dengue-specific cellular and humoral immunity, which effectively

clear the infection. The minority of individuals prone to high infection rates , IL-

production, or suppressed T cell responsiveness to infected DCs would exhibit mildly

enhanced pathology.

During secondary infection, suppressed IP 1 0 production and MHC I expression

combined with TNF -a production in infected DCs would result in poor DC recruitment

of Thl-type memory cells (thus affecting IFN-y secretion and further DC activation) and

reduced CD8 T cell-mediated lysis (through inhibition ofMHC I induction and TNF-a

mediated killing of activated high-avidity dengue-specific CD8 T cells). The infected

DCs are thus ineffciently eliminated from circulation, and migrate to secondary

lymphoid tissues , where they serve as reservoirs for DV dissemination. At that point

virus produced by DCs would more efficiently infect monocytes and macrophages

through ADE, targeting organs such as the liver (Kupffer cells), skin macrophages , and

possibly peritoneal/serosal macrophages. ADE-mediated infection of this normally
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infection-resistant group of cells would induce IL- lO secretion and inhibit the antiviral

functions of IFNs , and shift the major epitope-presenting population away from DCs.

This is turn would cause activation of non-protective or pathological T cell subsets

(which are not present during primary infection) that are inefficient in their clearance of

infected APCs , including DCs. This effect would be further exacerbated through the

inhibition of APC function by circulating IL- lO. Factors such as early DC IFN-a

production, low DC susceptibility to infection, and resistance to infection-dependent

blunting of DC function would protect against this pathological cascade. DC IL- l 0

production, higher susceptibility ofDCs to infection, and high levels ofTNF-a secretion

by infected DCs would exacerbate early immune suppression, and predispose the

individual to development ofDHF.
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