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Abstract 

The lifespan of an organism is determined by a complex array of genetic, 

environmental and nutritional factors. Yet single gene manipulations have been 

shown to significantly extend lifespan in several model organisms. Of all the 

genes that have been studied thus far, components of the insulin/IGF-1 signaling 

(IIS) pathway have emerged as the most robust regulators of longevity. In 

addition, IIS also regulates development, energy metabolism and the response to 

stress in a conserved manner. In Caenorhabditis elegans, signaling through this 

pathway is initiated by activation of the insulin/IGF-1 receptor tyrosine kinase 

DAF-2, which then activates a PI3-kinase signaling pathway involving additional 

downstream serine/threonine kinases such as PDK-1, AKT-1, AKT-2 and SGK-1.  

The concerted action of these kinases results in the negative regulation of the 

single FOXO transcription factor homolog DAF-16. Under reduced signaling 

conditions, active DAF-16 is able to translocate into the nucleus and regulate the 

expression of hundreds of genes regulating longevity, stress resistance, 

metabolism and development. 

The PTEN phosphatase homolog DAF-18, which antagonizes IIS at the level 

of PI3-kinase, is a major negative regulator of the pathway. However, not much 

was known about additional phosphatases that negatively regulated the kinases 

in the pathway. Dephosphorylation is a critical regulatory mechanism by which 

cellular signaling homeostasis is maintained. Aberrant hyper-activation of growth 

factor signaling pathways, including IIS, has been implicated in several cancers. 
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In addition, deregulation of IIS is also closely linked to Type II diabetes. 

Therefore, the identification phosphatases that balance kinase activity will 

provide a better understanding of the regulation of the IIS pathway under normal 

as well as disease conditions. A directed RNAi screen using dauer diapause was 

conducted in our lab to identify serine/threonine phosphatases that modulated 

IIS. My work in the Tissenbaum Lab has primarily focused on characterization of 

the top three candidates from this screen, the genes pptr-1, pdp-1 and fem-2. 

From these studies, we have also uncovered novel crosstalk between the IIS and 

TGF-β signaling pathways. 

In Chapter 2, we demonstrate that PPTR-1, a PP2A phosphatase regulatory 

subunit negatively regulates the IIS pathway by modulating AKT-1 

dephosphorylation. PPTR-1 modulates several outputs of IIS similar to DAF-18. 

In addition, PPTR-1 co-localizes and physically interacts with its substrate, AKT-

1. PPTR-1 modulates dephosphorylation of AKT-1 at a conserved threonine site 

and we show the molecular conservation of this interaction in mammalian 

adipocytes. Ultimately, this negative regulation by PPTR-1 results in increased 

DAF-16 nuclear localization and transcriptional activity.  

Next, in Chapter 3, we show how PDP-1 is a novel link between the IIS and 

TGF-β signaling pathways. Similar to DAF-18 and PPTR-1, PDP-1 regulates 

multiple outputs of the IIS pathway and promotes DAF-16 activity. Interestingly, 

PDP-1 acts at the level of DAF-8 and DAF-14, two R-SMAD proteins that 

function in a TGF-β pathway. Our data suggests that PDP-1 may negatively 
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regulate TGF-β signaling to downregulate the expression of several insulin(s). 

Without the insulin ligands, there is less activation of the IIS pathway, and DAF-

16 is more active, thereby promoting transcription of genes that act to enhance 

longevity and stress resistance.   

In Chapter 4, we investigate possible crosstalk between IIS and the TGF-β 

signaling pathways, as the latter was previously considered as a parallel 

independent pathway. From our studies on PDP-1, we knew that this 

phosphatase, despite acting in the TGF-β pathway, was a robust modulator of 

multiple outputs of IIS.  Using double mutant combinations as well as RNAi we 

unravel complex and extensive crosstalk between the two pathways. Importantly, 

our results suggest that DAF-16 is likely to be the most downstream component 

of the two pathways.  

In Chapter 5, we describe genetic characterization of fem-2, and its regulation 

of the IIS pathway. RNAi of fem-2 results in robust suppression of dauer 

formation, similar to pptr-1 and pdp-1 RNAi but this phenotype is only observed 

in the e1370 allele of daf-2.  While knockdown of pptr-1 and pdp-1 suppress 

dauer formation of additional alleles of daf-2, fem-2 RNAi has no effect. These 

results reveal a complex genetic interaction between fem-2 and the daf-2 

receptor.   

Taken together, our results identify several novel regulators of IIS that 

modulate this pathway by distinct mechanisms.   
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Preface to Chapter 1 
The following chapter is an introduction to the biology of aging as well as a 

review of the pathways that have been implicated in the regulation of lifespan. 

Parts of this chapter are based on the following reviews: 

 

Narasimhan SD*, Yen K* and Tissenbaum HA (2009). Converging pathways in 
lifespan regulation (Review) Current Biology Aug 11;19(15) * Co-first author 
 
Narasimhan SD, Mukhopadhyay A and Tissenbaum HA (2009). InAKTivation of 
insulin/IGF-1 signaling by dephosphorylation. (Review). Cell Cycle Dec;8 (23): 
3878-84. 
 
Yen K, Narasimhan SD and Tissenbaum HA (2010). DAF-16/FOXO: Many 
Paths To a Single Fork(head) in The Road (Review). Antioxidants & Redox 
Signalling Aug 1. (Epub ahead of print) 
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Chapter 1: The Biology of Aging 

Part I: Introduction  

Living organisms display remarkable diversity in terms of how long they live. 

Mayflies, upon emergence, survive for no longer than 3 days [1]. In contrast, 

queen termites live ten to fifteen years [2].  Among vertebrates, the short-lived 

pygmy goby fish lives a mere 59 days, while giant tortoises more than 150 years 

old have been recorded [3,4]. Among humans, women outlive men by almost a 

decade [5]. Despite the relative differences in their length of life, a common 

eventuality in most living organisms is that with time they will experience an 

inevitable age-associated decline in function and the ability to survive. Several 

extrinsic factors such as predation, disease, food availability and temperature 

can significantly impede the survival rate of an organism and it is likely that in the 

wild, many animals may never reach old age [4]. Curiously however, eliminating 

these negative factors still does not prevent the eventual mortality caused by 

aging.  

What is aging? Is it a pre-programmed clock that begins ticking as soon as an 

organism is born? Or is it a progressive decline in the adult years that ensues 

after the evolutionary function of reproduction has been completed? A biological 

phenomenon both fascinating and perplexing, aging can be simply defined as the 

accumulation of changes with time that affects most living organisms [6,7].  

These changes include decreased fertility, systemic dysfunction and an 

increased susceptibility to injury or infection, the majority of which are 
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undoubtedly deleterious to the organism [8]. In humans, while the phenotypic and 

physiological changes associated with aging have been recorded by Hippocrates 

back in 400 B.C, today we have a more detailed understanding of the various 

tissues and organ systems that are affected. Importantly, dysfunction at these 

levels manifests in the form of several age-onset diseases such as cancer, type 2 

diabetes, atherosclerosis and neurodegenerative disorders (Table 1.1).  As a 

consequence, aging is associated with an increase in mortality over time. Indeed, 

the rate of death in a population increases as an exponential function of 

increasing age [4]. This seems to be a near-universal phenomenon, as diverse 

species exhibit remarkably similar survival curves, again highlighting the fact that 

with increased age comes the increased probability of death (Figure 1.1).  

When and how does this sudden decline in function occur? And if we understand 

the underlying mechanisms associated with this decline, can we manipulate the 

system so that we delay the onset of aging? Unfortunately to date, no age-

associated biomarker has been conclusively identified.  Lipofuscin, for example, 

is a lipid-enriched pigment that accumulates in different cell types of aged 

organisms.  Lipofuscin is thought to arise from the incomplete lysosomal 

degradation of damaged mitochondria [9]. It is unclear whether lipofuscin is a 

marker of organelle dysfunction alone (mitochondria or proteasome) or if its 

buildup is equally indicative of cellular and even systemic dysfunction. This is 

again reflective of the fact that the aging is defined as the accumulation of 

changes at the cellular as well as systemic level. Currently, the most widely used 
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parameter to measure aging is lifespan. Lifespan, which is defined as the 

measure of how long an organism survives, correlates well with the aging 

process. The terms lifespan and longevity are used synonymously in the rest of 

this study as an indicator of aging in an organism.  

Several theories have been posited to explain how and why aging and age-

associated decline occurs. Unsurprisingly, these are not mutually exclusive. In 

the first part of this chapter, I briefly discuss the different theories on the causes 

of aging and reflect on the available evidence to support these theories. These 

broadly fall under four categories: the genetic basis of longevity, the effect of 

mutations, the role of oxidative stress and the relationship between reproduction 

and aging. The advent of genetic, molecular and genomic tools and the use of 

model organisms have unraveled novel pathways and mechanisms that 

modulate longevity. I describe these pathways in greater detail in the second part 

of the chapter.  
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Table 1.1: List of age-onset disorders classified by tissue or organ-system type 

[10] 
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Figure 1.1: Mortality curves for four different species. Despite the differences in 

their lifespans in terms of absolute number of days, humans, roundworms, mice 

and yeast, the same shape in their mortality curves [11]. 
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Theories of Aging 

A) The Genetic Basis of Aging 

Several biological processes such as embryonic development are genetically 

programmed across phylogeny. Therefore is aging, a seemingly universal 

phenomenon, also the read-out of a genetic program? Genetics clearly seems to 

play an important role in regulating how long an organism lives. Among humans, 

it has been shown that longevity may be an inherited trait, as the children of long-

lived parents live longer than those of parents with average lifespans [12] [13] 

[14]. 

Single-gene mutations that have been found to extend lifespan in several 

model systems are also correlated with increased longevity in humans 

[15,16,17]. Yet if aging were a genetically programmed process, it would be one 

that reduces reproductive fitness and decreases survival. Such a program would 

be disadvantageous to an organism in an evolutionary context. In addition, there 

is a large variability with regards to when age-associated decline affects 

individuals in a population [8]. This is in sharp contrast to a process such as 

embryonic development, that is so tightly regulated temporally and spatially 

Aging, instead, seems to be a consequence of the inability of a system to 

maintain homeostasis. Several genes that have been identified as important 

modulators of longevity in model organisms seem to support this in the sense 

that their actual function is not to enhance or reduce aging per se [7,18].  Instead, 

the modulation of these genes helps the cell survive different biological stresses 
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that it encounters throughout its lifetime. These stresses may include basic 

maintenance functions such as repairing mutations and eliminating damaged 

proteins and organelles or responding to the energy demands of reproduction.  

Many of the theories discussed below suggest that aging is ultimately an 

effect of the accumulation of internal faults within the cell that lead to wear and 

tear with time.  However, external factors such as radiation, pollutants, 

temperature, pathogens and nutrition can also influence the rate of wear and 

tear.  As discussed later in this chapter, simply cutting the amount of food 

consumed can significantly delay the aging process.  Therefore aging involves a 

dynamic and complex interplay between the genes of an organism and its 

environment. The inability to handle these internal and external changes results 

in the failure to maintain a functional system with time, leading to the onset of 

age-associated morbidity and mortality. 

 

 B) Mutations and DNA Damage 

DNA mutations can occur due to cell-intrinsic errors as well as external 

factors such as mutagens. Mutations can prove to be deleterious to an organism 

if they are not effectively repaired. There is experimental evidence to suggest 

that with increasing age, both invertebrates and mammalian models accumulate 

mutations in their somatic tissues [19]. Deregulation of DNA repair and cell cycle 

defects have been implicated in several human premature aging or progeroid 

syndromes such as Hutchinson-Gilford syndrome and Werner syndrome [20]. 
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These diseases are marked by several phenotypic and molecular changes such 

as changes in nuclear architecture and genomic instability that are in part 

associated with human aging but affect patients very early in life.  It is unclear 

whether these diseases truly reflect the physiological changes associated with 

aging, as there are several mutations that can affect basic developmental 

processes that can also drastically reduce lifespan and lead to general sickness 

and poor viability.  

Telomeres, which protect the ends of the chromosomes, have been the focus 

of several cellular aging studies.  Telomeres get progressively shorter with each 

cell division and after finite period of divisions, daughter cells arrest from further 

division and enter cellular senescence. Telomerase, which prevents the loss of 

telomeres is found in germ cells and stem cells [21]. Mammalian studies have 

looked at the effect of both telomerase depletion and overexpression on aging 

phenotypes [22] . While the former results in phenotypes similar to accelerated 

aging, telomerase overexpression leads to an increased incidence of cancer [22].  

In addition, fibroblasts cultured from older people do not reach senescence any 

faster than those from those who were younger [23]. The relationship between 

telomeres and aging, therefore remains to be proven.  

One of the earliest theories linking mutations to aging was the Mutation 

Accumulation Theory put forth by Medawar in 1952 [4]. This theory suggests that 

there may be spontaneous deleterious mutations in an organism that only 

manifest much later in life, after the evolutionary function of reproduction has 
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occurred. The accumulation of these mutations later in life may be driving the 

decline associated with aging. An example of this would be humans with 

Huntington’s disease. Most people with this disease live somewhat normal lives 

for the first three to four decades of their lives despite the presence of mutant 

Huntingtin, and this is the period where reproduction most likely occurs.  

However, by the fourth decade of life, the rapid and debilitating manifestation of 

the disease results in systemic decline. While general cognitive decline occurs 

with age, Huntington’s disease only affects a very small percentage of the 

population. Importantly, since aging is not a genetically programmed process, it 

is still unclear whether there indeed is a specific activation of deleterious genes 

during the latter part of life.    

The Antagonistic Pleiotropy Theory states that genes that have an 

advantageous function early in life or those that may somehow favor reproductive 

fitness may prove deleterious to the animal later in life [4,7]. Again, since they do 

not affect reproduction, they may be selected for despite the negative impact 

during advanced age. One study in worms supports this idea, as reducing the 

function of genes that are required for development and growth later in life 

enhances longevity[24]. In mice, studies suggest that the tumor-suppressor p53 

may have antagonistically pleiotropic functions [25],[26]. Hyperactive p53 

protects the mice from cancer but causes an accelerated aging phenotype. 

These studies are somewhat perplexing, since cancer itself is an age-associated 

disease, and presumably the increased function of a tumor suppressor such as 
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p53 would be expected to be beneficial to the organism.  Further studies may 

lend support to both of these theories.  

C) Oxidative Stress and Aging 

The Free Radical Theory of aging proposed by Harman in 1956 suggests that 

reactive oxygen species (ROS) produced as a byproduct of normal metabolism 

damage macromolecules such as nucleic acids, lipids and proteins by oxidation 

over time[27]. The increased accumulation of damaged molecules results in 

aging and its associated disease phenotypes [14],[28] ROS affect cellular 

components by inducing deletions or modifications in DNA bases, thereby 

promoting erroneous replication and introducing mutations[29]. Mitochondria are 

central regulators of cellular energy metabolism and apoptosis. Normal 

mitochondrial electron transport chain (ETC) function results in the production of 

small amounts of ROS such as the superoxide anion O2.- and hydrogen peroxide 

(H2O2). Increases in cellular energy demands results in increased mitochondrial 

activity, and as a consequence, increased ROS accumulation over time in 

different tissues in the body.  Mitochondrial DNA (mtDNA) is particularly 

susceptible to ROS-induced damage, and with increased age, mtDNA replication 

becomes error-prone, resulting in the accumulation of many mutations 

[30,31,32].  It is thought that with age, these mutations result in dysfunctional 

mitochondria that are unable to meet the energy demands of of the cell.  One 

possible consequence of this is the elevated production of ROS, which then 

gradually damages cellular macromolecules. The role of antioxidant enzymes in 
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reducing the ROS-induced effects on aging is surprisingly unclear.  Studies using 

superoxide dismutase mimetics have reported conflicting results [33,34]. In 

addition, while mutations in superoxide dismutase genes reduce resistance to 

oxidative stress, they do not seem to affect lifespan in general [35]. Importantly, 

studies suggest that ROS may be important mediators of cellular signaling [29]. 

Instead of individual types of enzymes eliminating the damage caused by ROS, it 

is likely that antioxidant defenses work in combination with other molecules such 

as chaperones in protecting the cell. 
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Figure 1.2: Mitochondrial dysfunction and aging. With increasing age, 

mitochondrial DNA (mtDNA) accumulates mutations and its replication becomes 

error-prone. As a consequence, mitochondria become dysfunctional and are 

unable to meet the energy demands of the cell.  Small levels of reactive oxygen 

species (ROS) are usually produced as a byproduct of of normal electron 

transport chain (ETC) function. Dysfunctional mitochondria lead to elevated ROS 

production and subsequent damage to cellular macromolecules.  (Modified from 

[18]) 
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D) The Role of Reproduction  

Cellular functions such as growth, maintenance and repair of damaged 

macromolecules require energy. Kirkwood’s Disposable Soma Theory suggests 

that the allocation of resources towards maintenance and repair versus 

reproduction is essentially a trade-off of one versus the other [8]. Reproduction is 

an energy-consuming process and the resources that could be used towards 

regular maintenance or repair in the cell are now channeled towards this 

evolutionarily critical process.  In case environmental conditions are unfavorable, 

reproduction can be delayed and resources are allocated to promote the survival 

of the organism [36].  This kind of resource allocation has been observed in a 

wide range of organisms right from worms, fish to higher mammals [4]. The 

trade-off between reproduction and longevity has been an area of active 

research, with several interesting observations in different model systems. Germ 

cells, which are passed on along generations are thought to be immortal, while 

the rest of the cells that make up the soma are the ones subject to the perils of 

age-associated decline. Removal of the germline precursor cells in worms results 

in sterility, but also leads to a 60% increase in lifespan [37]. In addition, male and 

female fruitflies live longer when maintained separately or when egg laying as 

well as reproduction is delayed [38,39]. Intriguingly, a study has found that 

centenarian women were four times more likely to have had children late in their 

lives as compared to those who survived till their early 70s [40]. The relationship 

between reproduction and longevity remains an active area of research. 
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Figure 1.3: Allocation of cellular resources is channeled towards reproduction to 

maintain evolutionary fitness. Based upon the disposable soma theory, under 

favorable conditions, an organism will preferrentially ration its energy resources 

towards reproduction, instead of repairing or maintaining its own system.   
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C. elegans  as a model system for aging research 

Testing the different theories of aging is now possible in a laboratory setting 

because of the development of a number of excellent model systems such as the 

budding yeast Saccharomyces cerevisiae, the roundworm Caenorhabditis 

elegans, the fruitfly Drosophila melanogaster and the mouse Mus musculus. 

C.elegans, in particular has been widely used to study the genetics of longevity. 

C. elegans are 1-mm long, free-living organisms that can be propagated in the 

laboratory by feeding them lawns of E.coli on standard agar plates [41] Their 

transparency allows for ease of observation, especially when using fluorescent 

reporters to visualize specific tissues (Figure 1.4) [42]. Adult worms contain only 

959 cells, and the positions of cells as well as the number of cells is constant, 

which provides an incredibly rich resource for studying individual cell fate [43].  In 

addition, C. elegans is amenable to genetic manipulations such as RNA 

interference and with the genome sequence available, powerful forward and 

reverse genetic tools have been applied to study multiple aspects of cellular 

function [41,44].  

The development of a worm starts as an egg, undergoes embryogenesis and 

develops through four larval stages, L1-L4 that are separated by molts, before 

becoming a hermaphroditic adult (Figure 1.4). Single adult worms can produce 

upto 300 progeny [45].  Worms are constantly sensing their environmental 

conditions, with growth as well as reproduction only occurring when conditions 

are favorable.   Under unfavorable conditons such as food deprivation and/or 
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high temperature, increased levels of a constantly secreted pheromone allows 

worms to enter an alternative stage of developmental diapause known as a 

dauer [46].  Dauer larvae are resistant to various stresses and hypometabolic – 

they store elevated levels of fat and metabolize these stores [45]. Early genetic 

studies identified several mutations that either enhanced or suppressed the 

ability of the worm to form dauers [47]. These daf (dauer-formation abnormal) 

genes, as I will discuss subsequently, were identified to be part of conserved 

neuroendocrine signaling pathways that would be later implicated in the 

regulation of longevity, not just in worms but also in higher organisms.   

C. elegans has been extremely useful for aging studies for a number of 

reasons.  They have a short and reproducible lifespan of approximately two 

weeks, and single gene manipulations have been identified that can significantly 

increase lifespan by over 100% [48,49]. As previously shown in Figure 1.1, the 

survival curves of worms and humans share the same shape despite the 

differences in their lifespans. Despite the evolutionary distance between worms 

and humans, several hallmarks of aging also seem to be universal. First, worms 

show an exponential increase in the rate of mortality over time [50].  As 

mentioned earlier, cellular changes such as alterations in nuclear architecture 

and increased macromolecular damage have also been observed [51]. Like 

mammals, aging worms also undergo changes such muscle atrophy, cognitive 

decline and enhanced susceptibility to infection [51,52]. An additional benefit of 

working with worms is the ability to identify the role of an individual protein at an 
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organismal level. As such single-gene manipulations can be directly measured 

as a phenotypic consequence in a worm using simple well-defined assays such 

as lifespan assays and oxidative or heat stress assays [50,53,54]. The response 

to infection can also be assessed by exposing the worms to a pathogen and 

measuring their survival [52].  Changes in fat storage are qualitatively assessed 

using the dyes Oil Red O or Sudan Black and quantitatively assessed using gas 

chromatography, mass spectrophotometry and coherent anti-Stokes Raman 

spectroscopy (CARS) [55,56,57,58,59]. The molecular conservation of the genes 

and pathways that regulate longevity in worms has profound therapeutic and 

economic implications for our understanding of human aging.  Humans today are 

living nearly 35- 40% longer today compared to just 60 years ago, thanks to 

improvements in healthcare and better nutrition [5]. This has lead to a steady 

increase in the elderly population worldwide.  One of the major challenges with 

this increase is the treatment of a myriad of age-associated diseases (Table 1.1). 

As described in the next section, studies from worms and other model systems 

show that the most robust regulators of longevity are pathways that modulate 

energy metabolism. Remarkably, polymorphisms in the genes regulating energy 

metabolism have now been correlated with extreme longevity in humans [16,17]. 
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Figure 1.4: A. Differential interference contrast (DIC) image of an adult worm. B. 

Schematic diagram of the major tissues of the adult hermaphroditic worm. C. Life 

cycle of C. elegans. In a favorable growth environment, the life cycle proceeds 

from an egg through successive larval stages designated as L1-L4 before 

becoming an adult. In an unfavorable growth environment, primarily determined 

by a continuously secreted pheromone along with temperature and food 
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conditions, worms enter a stage of diapause from the L1 or L2 stage to become 

stress-resistance dauer larvae. 
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Part 2: Converging Pathways in the Regulation of Lifespan 

Studies in the past two decades have identified more than a 100 genetic 

determinants of longevity, using approaches such as genome-wide RNA 

interference (RNAi) and mutagenesis screens, microarrays, and protein arrays 

[60] [61] [62] [63]. These studies have led to the identification of several 

important genes that are conserved across phylogeny that are involved in diverse 

cellular processes, including development, mitochondrial function, energy 

metabolism, protein translation, and the cell cycle.  

The insulin/IGF-1 signaling (IIS) pathway and modulation of food intake by 

dietary restriction have the most robust effects on lifespan across species. 

Insulin/IGF-1 signaling is a well-conserved and well-defined pathway that has 

been shown to regulate longevity in C. elegans, Drosophila, and in several rodent 

models [64] (Figure 1.5). In contrast, dietary restriction was long thought of as an 

extrinsic intervention manifesting in physiological changes that ultimately 

enhanced lifespan. Dietary restriction, where the actual number of calories 

ingested by the animal is unknown, differs from calorie restriction, as the exact 

number of calories consumed is known and the food is also supplemented with 

extra nutrients such as vitamins and minerals to prevent malnutrition. Recent 

studies have identified several genes that are necessary for dietary restriction-

mediated lifespan extension, suggesting that like insulin/IGF-1 signaling, the 

longevity-inducing effects of dietary restriction may be regulated by well-defined 

modulators such as the TOR pathway, olfactory and gustatory signaling, sirtuins 
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and transcription factors such as SKN-1 and the forkhead protein PHA-4 [65] [66] 

[67].  Interestingly, the proteins and pathways that are implicated in modulation of 

dietary restriction have been found to either intersect with or indirectly modulate 

IIS. Therefore the IIS pathway represents a convergence point for multiple 

cascades that ultimately modulate longevity and metabolism.  

 

Insulin/IGF-1 Signaling 

The importance of the insulin and IGF-1 pathways in regulating energy 

metabolism and growth has been appreciated for the last sixty years. However 

clues into the role of these pathways in regulating longevity first emerged in C. 

elegans. Initial studies in worms discovered that single gene mutations resulted 

in a profound extension in lifespan [60,64]. Further genetic epistasis analysis 

showed that these genes, age-1 and daf-2, were part of the same genetic 

pathway [50,60,64,68]. Subsequent cloning studies identified the daf-2 gene to 

be equal in homology to both the mammalian insulin and the mammalian IGF-1 

receptors and age-1 as the worm Phosphoinositide (PI) 3-kinase catalytic subunit 

thus revealing a C. elegans insulin/IGF-1 signaling pathway [60,64]. Since then 

the insulin/IGF-1 signaling pathway has emerged as the best characterized 

regulator of longevity across species. Indeed, no pathway has been identified 

with a more pronounced effect on longevity [60,64,69]. Furthermore, the 

components of insulin/IGF-1 signaling show remarkable molecular and functional 

conservation from worms to humans (Figure 1.5 and Table 1.2).   
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Figure 1.5: Insulin/IGF-1 signaling is conserved across phylogeny. The single 

receptor in worms and flies is equally homologous to the insulin and IGF-1 

receptors in higher organisms. Downstream components such as PI3-kinase and 

FOXO are conserved in worms, flies and mammals. [75] 
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A) Insulin-like peptides and the insulin/IGF-1 signaling pathway 

At the cellular level, it is well established that changes in blood glucose levels 

are the main trigger for insulin secretion in mammals. Similarly, in the context of 

the macroenvironment, organisms constantly sense their surroundings. In C. 

elegans, depending upon the availability of nutrients, several olfactory and 

chemosensory neurons are thought to regulate the secretion of insulin-like 

peptides through cyclic GMP and G-protein-coupled receptor signaling pathways 

[61,69]. Ablation of specific gustatory and olfactory neurons results in increased 

lifespan, consistent with a role for insulin/IGF-1 signaling in antagonizing 

longevity [62]. Similarly, studies in flies show that ablation of Drosophila insulin-

like peptide (dilp) neurosecretory cells results in a 10-33% increase in median 

lifespan [70]. The C. elegans genome has an astounding 40 insulin-like (ins) 

genes [71,72](http://www.wormbase.org/ WS198), and Drosophila has 7 insulin 

like peptides (dilp) [70]. Why lower organisms appear to have such an expanded 

family of insulins in comparison to mammals is still not entirely understood. 

Though the precise ligand that binds to DAF-2 is still unknown, studies on 

insulins in C. elegans revealed that potential ligands may function either as 

antagonists (ins-1), agonists (ins-7, daf-28), or both (ins-18) [73]. While most 

studies on insulins in C. elegans have been genetic analyses, one study reported 

biochemical verification of INS-6 binding to the human insulin receptor [74]. 

Therefore there are still no studies that validate the binding of C. elegans insulins 

to DAF-2. Studies in Drosophila have characterized dilp2, dilp3 and dilp5 as 
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important regulators of growth and energy metabolism [70]. Many of these 

insulins in both worms and flies are expressed in distinct tissues such as the 

intestine, specific subsets of neurons and in the muscle, and thus in simpler 

organisms, these ligands may concertedly regulate a neuroendocrine signaling 

axis modulating development, metabolism, and longevity.  

 

B) Insulin/IGF-1 receptor 

Although C. elegans and Drosophila contain a multitude of potential ligands, 

only a single receptor that bears homology to the insulin and the IGF-1 receptors 

has been identified in both organisms: DAF-2 in C. elegans and insulin/IGF-

1receptor (dInR) in Drosophila [70,73]. Reduction of function mutations in daf-2 

result in lifespan extension ranging from 60-100%, indicating that under normal 

signaling conditions, insulin/IGF-1 signaling promotes growth and development 

while antagonizing longevity [58,76]. dInR homozygous mutant flies are not 

viable; however, heteroalleleic female flies live up to 85% longer than their wild-

type counterparts [64,77]. Downstream of dInR, mutations in the fly homolog of 

the insulin-receptor substrate (IRS) chico also extends lifespan up to 48% [70]. 

In mammals, although the insulin and IGF-1 receptors share high homology, 

they modulate distinct processes such as metabolism and growth, respectively. 

Dysregulation of insulin signaling in humans leads to the onset of age-associated 

debilitating diseases such as type 2 diabetes and cancer. Insulin-receptor 

knockout mice have a drastically shortened life span due to ketoacidosis [78]. 
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However, studies using tissue-specific insulin-receptor knockout mice reveal a 

more complex picture. Fat-specific insulin receptor knockout mice not only live 

almost 20% longer than control littermates, but are also leaner, have increased 

insulin sensitivity, and express normal IGF-1 levels [78]. Downstream of the 

receptor, there is contradicting data about whether mice heterozygous for brain-

specific IRS2 have an increased lifespan [70]. Several mammalian studies have 

shown that alterations to the IGF-1-Growth Hormone (GH) axis can increase 

longevity [64,78]. Mice bearing a mutation in the gene encoding GH and mice 

with mutation in either Prop-1 or Pit-1 (transcription factors involved in pituitary 

development) show enhanced longevity compared to wild type littermates [64]. 

These long-lived mice lack several hormones including prolactin and thyroid-

stimulating hormone and have diminished levels of GH and neuropeptide Y [78]. 

Further, GH receptor, GH-receptor-binding protein, and GH-releasing hormone 

receptor knockout mice show increased lifespan [64]. Interestingly, plasma IGF-1 

levels are dramatically low in all of these long-lived mutant mice [79]. In dogs, a 

polymorphism in IGF-1 is a major determinant of size and a dog's size is 

inversely correlated with lifespan [80,81]. In humans, a specific polymorphism in 

the IGF-1 receptor has been associated with increased longevity [16]. Taken 

together, these data suggest that modifying either insulin receptor or IGF-1 

receptor activity can result in changes in longevity across phylogeny. 

 
C) Downstream Kinases 
 

Similar to the signaling pathways in mammals, C. elegans has a well-
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conserved PI 3-kinase signaling pathway downstream of daf-2 and age -1, the 

worm homolog of PI 3-kinase catalytic subunit (Figure 1.5 and Table 1.2) [60]. 

Downstream components such as the phosphoinositide-dependent protein 

kinase-1 (pdk-1), akt-1, akt-2, and serum and glucocorticoid-inducible kinase 

(sgk-1) were identified by both forward and reverse genetic approaches, and 

mutations in these genes result in lifespan extension (Table 1.2) [60,64]. In the 

budding yeast Saccharomyces cerevisiae, where many aging studies have been 

performed, there is limited data as to whether a conserved insulin/IGF-1 pathway 

exists although the conserved Akt homolog SCH9 is important for regulating 

lifespan [82]. Remarkably, reduction-of-function mutations in the insulin/IGF-1 

signaling pathway not only confer increased longevity but also enhance 

resistance to heat and/or oxidative stress. Studies in C. elegans revealed that 

these phenotypes ultimately depend upon the single forkhead box O (FOXO) 

transcription factor daf-16 [61,62],[69]. Loss-of-function mutations in daf-16 result 

in a dramatic suppression of the lifespan extension and stress resistance 

phenotypes of daf-2 mutants [61]. The insulin/IGF-1 signaling pathway activates 

AKT-1/2 and SGK-1 in a PI 3- kinase-dependent manner, and in turn, AKT-1/2 

and SGK-1 negatively regulate DAF-16 by phosphorylation [60,62]. Under these 

conditions, DAF-16 is sequestered in the cytosol by its association with 14-3-3 

proteins [8,13]. This regulation is conserved as mammalian AKT and SGK also 

directly phosphorylate and negatively regulate FOXO proteins [83]. However, 

under low signaling conditions or in loss-of-function kinase mutants such as daf-2 
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and age-1, DAF-16 is less phosphorylated and is able to translocate to the 

nucleus to transactivate or repress its target genes [60,62,83] 

 

D) DAF-16/FOXO: A central regulator of longevity 

What are the important target genes that DAF-16 regulates to confer 

significant increases in lifespan and stress resistance? A number of approaches, 

including genome-wide screens, microarrays, and chromatin immunoprecipitation 

have identified hundreds of genes that are under the control of DAF-16 

[60,62,84]. These include molecular chaperones, superoxide dismutases, 

metabolic genes, and regulators of the cell cycle. It is still unclear how DAF-16 

regulates the activity of so many genes, and if all or a subset of these genes 

actively regulate the phenotypes mentioned above. As a transcription factor, 

DAF-16 may interact with other co-regulators such as co-activators and 

repressors to define particular biological processes. Indeed, the nuclear factor 

SMK-1, the C. elegans homolog of SMEK-1, associates with DAF-16 and is 

required for longevity, innate immunity, and resistance to oxidative stress but not 

for thermotolerance [60,73]. Several other additional transcription factors and co-

activators (HSF-1, HCF-1, CST-1, BAR-1) have been shown to either interact or 

intersect with DAF-16 in the IIS pathway (Table 1.2). The transcription factor 

heat-shock factor 1 (HSF-1) is an important regulator of thermal stress in 

eukaryotes. In response to heat stress, HSF-1 promotes the expression of heat-

shock proteins in a DAF-16 dependent manner [62]. Recently, the C. elegans 
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host-cell factor homolog HCF-1 was found to associate with DAF-16 in the 

nucleus and negatively regulate its transcriptional activity [85]. In addition, CST-1 

and BAR-1 have been shown to regulate the transcription of genes involved in 

oxidative stress in a DAF-16 dependent manner [86]. Their respective 

mammalian homologs, MST-1 and beta-catenin, also interact with mammalian 

FOXO, thereby showing the remarkable conservation from nematodes to higher 

mammals in adaptation to oxidative stress. Thus, depending upon the stressor, 

DAF-16/FOXO may not only associate with distinct transcriptional cofactors but 

also regulate the transcription of discrete sets of genes. DAF-16 can be 

phosphorylated by multiple kinases at residues distinct from the AKT/SGK sites. 

The AMP-activated protein kinase (AMPK) positively regulates DAF-16/FOXO by 

phosphorylation [83,87]. Similarly, the c-Jun terminal kinase (JNK) 

phosphorylates DAF-16 and promotes its nuclear localization, leading to 

increased lifespan and stress resistance [61,70]. Flies also have a single FOXO 

homolog (dFOXO) that is phosphorylated in response to signals transduced by 

dInsR. Overexpression of dFOXO in the adult fat body results in lifespan 

extension [88]. Similar to worms, a JNK-dependent increase in lifespan and 

stress resistance depends upon dFOXO, and JNK and dFOXO together can 

negatively regulate insulin/IGF-1 signaling by repressing the expression of dilp2 

[70]. Much work has focused on DAF-16 and dFOXO in terms of longevity.  

In mammals, there are four members of the FOXO family that show 

overlapping and distinct tissue expression patterns: Foxo1, Foxo3a, Foxo4, and 
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Foxo6 [34]. Foxo1 plays an important role in angiogenesis and myoblast and 

adipocyte differentiation, and Foxo1 null mutant mice are embryonic lethal 

[89,90]. Foxo3a and Foxo4 null mutant mice are viable and grossly similar to 

their littermate controls but Foxo3a null mutant female mice develop age-

dependent infertility [89]. Expression studies reveal that Foxo6 is expressed in 

the developing brain in embryos as well as the adult brain. Knockout mice have 

not yet been generated for Foxo6. Although the correlation between FOXOs and 

longevity has not yet been clearly defined in mammals, these proteins have a 

well-established role as tumor suppressors [89]. In addition, they regulate the 

expression of stress-responsive genes such as manganese superoxide 

dismutase and Gadd45, and may also regulate adult stem cell proliferation [91].  

Recent studies have found several FOXO polymorphisms associated with 

increased longevity across different human populations [15,17].  

 

Pathways that intersect with IIS 

Besides the IIS pathway, dietary restriction is a pan-species treatment that 

can extend an organism’s lifespan and health [4] . Recent studies have identified 

several pathways and proteins that are important for the beneficial effects of DR. 

Whether the effects of DR occur through IIS or not, is currently not definitive. A 

number of factors such as genetic studies using non-null alleles or technical 

differences in the method of DR have lead to inconclusive results.  Remarkably, 

however, the majority of the proteins that have been identified to be important for 



  31 

modulating the effects of DR are connected to the IIS pathway in a number of 

ways. Of these, the target of rapamycin (TOR) kinase pathway has been the best 

characterized as an important regulator of DR. TOR is active in two separate 

complexes containing both unique and common proteins, and both of these 

complexes are tightly coupled to IIS. Ribosomal S6 kinase (S6K), a downstream 

target of TOR complex 1, feeds back into the IIS pathway by phosphorylating and 

inhibiting IRS-1 [92,93].   Besides phosphorylation by PDK-1 the AKT and SGK 

kinases of the IIS pathway need to also be phosphorylated by TOR complex 2 to 

achieve complete activation [94]. Reduction of TOR signaling produces a 

longevity phenotype and does not further extend the lifespan of IIS mutants 

[95,96].  

The transcription factor SKN-1, an important regulator of oxidative stress and 

the cellular response to toxins, is directly inhibited by the IIS pathway and also 

required for DR-mediated lifespan extension [65,97]. The proteins AMPK and 

SMK-1, which are regulators of DAF-16, have also been found to be important for 

DR-mediated increases in longevity [98,99]. SMK-1 regulates longevity under 

conditions of DR through another forkhead protein, the Foxa transcription factor 

PHA-4[100].  Interestingly DAF-16 and PHA-4 have common consensus binding 

sites within promoters and the regulation of at least two superoxide dismutases 

(sod-1 and sod-5) depends upon both of these transcription factors [100]. The 

sirtuin family of deacetylases has also been implicated in DR and longevity. In C. 

elegans, the lifespan extension mediated by the SIRT1 ortholog sir-2.1 depends 



  32 

upon daf-16, and SIRT proteins can deacetylate FOXO in mammalian cell culture 

[101,102]. As described in further detail in Chapter 4, a TGF-β signaling pathway 

that was previously thought to only modulate dauer diapause has been shown to 

regulate longevity as well as additional outputs through extensive crosstalk with 

the IIS pathway [103].  Taken together, these results suggest that instead of a 

simple linear pathway, IIS is a network composed of multiple inputs and 

branchpoints that ultimately feed in to modulate lifespan, fat storage and 

development. 
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Table 1.2: Modulators of insulin/IGF-1 signaling in yeast, worms, flies and 

mammals [18] 
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Figure 1.6: The different regulators of longevity converge with the IIS pathway. 

Modulators of dietary restriction-induced longevity, such as SKN-1, PHA-4, the 

sirtuins and TOR signaling feed into or intersect with IIS at distinct levels [18].   
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 Part 3: Phosphatases regulating IIS 

The different regulators of IIS and DAF-16/FOXO that have been identified 

until recently include adaptors, chaperones, chromatin modifiers transcriptional 

co-activators/repressors and a vast number of kinases [18]. Indeed, IIS is a well-

studied kinase pathway.  However among all of these regulators, protein 

phosphatases have been surprisingly underrepresented. With regards to the C. 

elegans IIS pathway, the most well studied phosphatase is daf-18, the PTEN lipid 

phosphatase homolog. Mutations in daf-18 can suppress the long lifespan of daf-

2 mutants and result in increased susceptibility to various stresses [2, 11]. This 

shows that similar to its mammalian homolog, DAF-18 acts a negative modulator 

PI 3-kinase signaling and a master regulator of IIS [2]. In contrast, the calcineurin 

A serine/threonine phosphatase catalytic subunit TAX-6 and its regulatory 

subunit B CNB-1, are positive regulators of insulin/IGF-1 signaling, as loss-of-

function mutants in tax-6 and cnb-1 display enhanced longevity [5]. Besides 

these two families of phosphatases, not much was known about additional 

protein phosphatases that modulated the kinases in the IIS pathway and DAF-16.  

Why is it important to find additional phosphatases that modulate the IIS 

pathway? Phosphorylation as an important post-translational modification can 

have several pleiotropic effects on the fate of a protein, including its activation, 

inactivation or degradation.  In particular, in growth factor-induced signal 

transduction pathways such as the IIS pathway, each phosphorylation step acts 

as an amplification signal, ultimately regulating diverse processes such as cell 
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growth, proliferation, energy metabolism and survival [104]. To preserve cellular 

homeostasis and maintain the balance between aberrant growth and increased 

apoptosis, it is critical that signals from the kinases are counterbalanced and the 

phosphorylation events reversed. In this context, protein phosphatases have 

emerged as central regulators of cellular signaling processes [104].  

Protein phosphatases are classified into three main groups: the 

phosphoprotein phosphatase (PPP) family, the divalent cation (Mg2+ or Mn2+)-

dependent phosphatase (PPM family), both of which dephosphorylate 

serine/threonine residues, and the protein tyrosine phosphatase family (PTP) 

[105]. Recent studies have also identified the Asp-based protein phosphatase 

family, which depend on an aspartate residue for their catalytic activity, as an 

additional group of serine/threonine phosphatases [106]. The majority of 

phosphatases encoded in the human genome belong to the PTP family 

[107,108]. A number of PTPs have been well studied as negative regulators of 

insulin signaling with PTPα, PTP1B, SHP2 and LAR implicated in 

dephosphorylation of the insulin receptor as well as the IRS proteins [109,110].  

However, the majority of phosphorylation events in the cell occur on 

serine/threonine residues and yet the human genome encodes for a very small 

number of phosphatases (including the PPP and PPM families) that 

dephosphorylate these residues. [106] [111] [112].  Even in the C. elegans 

genome, there are only approximately 60 serine threonine phosphatases in 

contrast to the 400 plus protein kinases  (S. Padmanabhan, Thesis 2009) [113].  
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How do these few serine/threonine phosphatases effectively counterbalance the 

activity of multiple kinases and substrates? Once thought of as  ‘promiscuous’ 

regulators that exhibit little specificity for their targets, some phosphatases have 

been shown to be capable of dephosphorylating distinct residues even within a 

single protein [112]. Multiple levels of regulation can determine phosphatase 

substrate specificity.  First, the sub-cellular localization of phosphatases may 

define a subset of its substrates; the presence of a nuclear, mitochondrial or 

membrane targeting signal would lead to compartmentalization of the 

phosphatase and thereby direct it to the local substrate(s) [106] [114] . Secondly, 

phosphatases may depend on additional co-factors for their activity. For 

example, PPM phosphatases dephosphorylate their targets without associating 

with additional structural components but depend upon divalent cations such as 

Mn2+ and Mg2+ for their function [115]. Lastly, members of the PPP family such 

as PP1 and PP2A act as holoenzymes: in addition to the catalytic core that 

performs the actual dephosphorylation reaction, the enzyme complex often 

consists of additional structural and/or regulatory subunits that act as a scaffold 

and determine substrate specificity respectively [112,115].  

Reflecting on the part 1 of this chapter, if aging is indeed a consequence of 

homeostatic imbalance, it becomes all the more necessary to identify and 

characterize the small pool of serine threonine phosphatases that balance kinase 

activity in a defined spatio-temporal manner.  Given the central and conserved 

role of IIS in lifespan and energy metabolism regulation, these phosphatases 
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may provide us with a better understanding of the deregulation of this pathway in 

the context of aging as well as several age-onset diseases.  

  



  39 

References 

1. Carey JR (2002) Longevity minimalists: life table studies of two species of 
northern Michigan adult mayflies. Experimental Gerontology 37: 567-570. 

2. Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of 
evolutionary theories of ageing. Nature 389: 958-960. 

3. Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in 
vertebrate life history traits: Insights from coral reef fishes. Ecology 87: 
3119-3127. 

4. Finch C (1990) Longevity, senescence, and the genome. Chicago, IL: 
University of Chicago Press. 

5. Ricklefs RE, Finch CE (1995) Aging : a natural history. New York: Scientific 
American Library : Distributed by W.H. Freeman. xi, 209 p. p. 

6. Bowen RL, Atwood CS (2004) Living and dying for sex. A theory of aging 
based on the modulation of cell cycle signaling by reproductive hormones. 
Gerontology 50: 265-290. 

7. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408: 233-238. 
8. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120: 437-

447. 
9. Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci 

Aging Knowledge Environ 2005: re1. 
10. Martin GM, Bergman A, Barzilai N (2007) Genetic determinants of human 

health span and life span: progress and new opportunities. PLoS Genet 3: 
e125. 

11. Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. 
Annual Review of Microbiology 52: 533-560. 

12. Timiras PS (2003) Physiological basis of aging and geriatrics. Boca Raton, 
FL: CRC Press. 454 p. p. 

13. Cournil A, Kirkwood TB (2001) If you would live long, choose your parents 
well. Trends Genet 17: 233-235. 

14. Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum 
Genet 2: 435-462. 

15. Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, et al. 
(2009) Association of FOXO3A variation with human longevity confirmed 
in German centenarians. Proc Natl Acad Sci U S A 106: 2700-2705. 

16. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, et al. (2008) Functionally 
significant insulin-like growth factor I receptor mutations in centenarians. 
Proc Natl Acad Sci U S A 105: 3438-3442. 

17. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, et al. (2008) FOXO3A 
genotype is strongly associated with human longevity. Proc Natl Acad Sci 
U S A 105: 13987-13992. 

18. Narasimhan SD, Yen K, Tissenbaum HA (2009) Converging pathways in 
lifespan regulation. Curr Biol 19: R657-666. 



  40 

19. Garcia AM, Calder RB, Dolle ME, Lundell M, Kapahi P, et al. (2010) Age- and 
temperature-dependent somatic mutation accumulation in Drosophila 
melanogaster. PLoS Genet 6: e1000950. 

20. Kudlow BA, Kennedy BK, Monnat RJ, Jr. (2007) Werner and Hutchinson-
Gilford progeria syndromes: mechanistic basis of human progeroid 
diseases. Nat Rev Mol Cell Biol 8: 394-404. 

21. Campisi J (1997) Aging and cancer: the double-edged sword of replicative 
senescence. J Am Geriatr Soc 45: 482-488. 

22. Blasco MA (2005) Telomeres and human disease: ageing, cancer and 
beyond. Nat Rev Genet 6: 611-622. 

23. Blackburn EH (2000) Telomere states and cell fates. Nature 408: 53-56. 
24. Curran SP, Ruvkun G (2007) Lifespan Regulation by Evolutionarily 

Conserved Genes Essential for Viability. PLoS Genet 3: e56. 
25. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, et 

al. (2005) Accelerated ageing in mice deficient in Zmpste24 protease is 
linked to p53 signalling activation. Nature 437: 564-568. 

26. Kirkwood TB (2002) p53 and ageing: too much of a good thing? Bioessays 
24: 577-579. 

27. Harman D (1956) Aging: a theory based on free radical and radiation 
chemistry. J Gerontol 11: 298-300. 

28. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a 
metabolic by-product or a common mediator of ageing signals? Nat Rev 
Mol Cell Biol 8: 722-728. 

29. Tuma R (2001) The two faces of oxygen. Sci Aging Knowledge Environ 2001: 
oa5. 

30. Aguilaniu H, Durieux J, Dillin A (2005) Metabolism, ubiquinone synthesis, and 
longevity. Genes Dev 19: 2399-2406. 

31. Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, et al. (2009) 
Random point mutations with major effects on protein-coding genes are 
the driving force behind premature aging in mtDNA mutator mice. Cell 
Metab 10: 131-138. 

32. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, et al. (2005) 
Somatic mtDNA mutations cause aging phenotypes without affecting 
reactive oxygen species production. Proc Natl Acad Sci U S A 102: 
17993-17998. 

33. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, et al. (2000) Extension 
of Life-span with superoxide dismutase/catalase mimetics. Science 289: 
1567-1569. 

34. Keaney M, Gems D (2003) No increase in lifespan in Caenorhabditis elegans 
upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic 
Biol Med 34: 277-282. 

35. Yen K, Patel HB, Lublin AL, Mobbs CV (2009) SOD isoforms play no role in 
lifespan in ad lib or dietary restricted conditions, but mutational inactivation 
of SOD-1 reduces life extension by cold. Mech Ageing Dev 130: 173-178. 



  41 

36. Mukhopadhyay A, Tissenbaum HA (2006) Reproduction and longevity: 
secrets revealed by C. elegans. Trends Cell Biol. 

37. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the 
lifespan of C. elegans. Nature 399: 362-366. 

38. Partidge L, Farquhar M (1981) Sexual activity reduces lifespan of male 
fruitflies. Nature 294: 580-582. 

39. Sgro CM, Partridge L (1999) A delayed wave of death from reproduction in 
Drosophila. Science 286: 2521-2524. 

40. Perls TT, Alpert L, Fretts RC (1997) Middle-aged mothers live longer. Nature 
389: 133. 

41. Stiernagle T (2006) Maintenance of C. elegans. WormBook: 1-11. 
42. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green 

Fluorescent protein as a marker for gene expression. Science 263: 802-
805. 

43. White JG, Southgate E, Thomson JN, Brenner��� S (1986) The structure of 
the nervous system of the nematode Caenorhabditis elegans. Phil Trans 
Roy Soc (London) B 314: 1-340. 

44. Wood WB, editor (1988) The nematode Caenorhabditis elegans. Cold Spring 
Harbor, NY: Cold Spring Harbor Laboratory Press. 

45. Riddle DL, Albert PS (1997) C.elegans II; Riddle DL, T. B, B.J. M, J.R. P, 
editors. Plainview, NY: Cold Spring Harbor Lab. Press. 

46. Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer 
larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, 
editors. C elegans II: Cold Spring Harbor Laboratory Press. pp. 739-768. 

47. Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode 
dauer larva formation. Nature 290: 668-671. 

48. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans 
mutant that lives twice as long as wild type. Nature 366: 461-464. 

49. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in 
Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. 
Genetics 118: 75-86. 

50. Tissenbaum HA, Guarente L (2002) Model organisms as a guide to 
mammalian aging. Dev Cell 2: 9-19. 

51. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, et al. 
(2002) Stochastic and genetic factors influence tissue-specific decline in 
ageing C. elegans. Nature 419: 808-814. 

52. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, et al. (2003) Long-
lived C. elegans daf-2 mutants are resistant to bacterial pathogens. 
Science 300: 1921. 

53. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates 
oxidative stress resistance and Mn-superoxide dismutase gene 
expression in Caenorhabditis elegans. FASEB J 13: 1385-1393. 

54. Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of 
a long-lived mutant of Caenorhabditis elegans. J Gerontol 49: B270-276. 



  42 

55. Le TT, Duren HM, Slipchenko MN, Hu CD, Cheng JX (2010) Label-free 
quantitative analysis of lipid metabolism in living Caenorhabditis elegans. 
J Lipid Res 51: 672-677. 

56. Watts JL (2009) Fat synthesis and adiposity regulation in Caenorhabditis 
elegans. Trends Endocrinol Metab 20: 58-65. 

57. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G (2009) Rictor/TORC2 
regulates fat metabolism, feeding, growth, and life span in Caenorhabditis 
elegans. Genes Dev 23: 496-511. 

58. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin 
receptor-like gene that regulates longevity and diapause in Caenorhabditis 
elegans. Science 277: 942-946. 

59. Yen K, Le TT, Bansal A, Narasimhan SD, Cheng J-X, et al. (2010) A 
Comparative Study of Fat Storage Quantitation in Nematode 
Caenorhabditis elegans Using Label and Label-Free Methods. PLoS ONE 
5: e12810. 

60. Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp 
Gerontol 41: 894-903. 

61. Mukhopadhyay A, Oh SW, Tissenbaum HA (2006) Worming pathways to and 
from DAF-16/FOXO. Exp Gerontol 41: 928-934. 

62. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. 
Cell 120: 449-460. 

63. Dong MQ, Venable JD, Au N, Xu T, Park SK, et al. (2007) Quantitative mass 
spectrometry identifies insulin signaling targets in C. elegans. Science 
317: 660-663. 

64. Barbieri M, Bonafe M, Franceschi C, Paolisso G (2003) Insulin/IGF-I-
signaling pathway: an evolutionarily conserved mechanism of longevity 
from yeast to humans. Am J Physiol Endocrinol Metab 285: E1064-1071. 

65. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced 
longevity in C. elegans. Nature 447: 545-549. 

66. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension 
by dietary restriction. Annu Rev Biochem 77: 727-754. 

67. Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 
mediates intermittent fasting-induced longevity in C. elegans. Nature 457: 
726-730. 

68. Riddle D. BT, Meyer B., Priess J., (1997) C. Elegans II. Cold Spring Harbor: 
Cold Spring Harbor Press. 1222 p. 

69. Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3: 
1565-1571. 

70. Broughton S, Partridge L (2009) Insulin/IGF-like signalling, the central 
nervous system and aging. Biochem J 418: 1-12. 

71. Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, et al. (2001) 
Regulation of DAF-2 receptor signaling by human insulin and ins-1, a 
member of the unusually large and diverse C. elegans insulin gene family. 
Genes and Development 15: 672-686. 



  43 

72. Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin 
superfamily member that is regulated by environmental cues and acts in 
the DAF-2 signaling pathway. Genes Dev 17: 844-858. 

73. Kleemann GA, Murphy CT (2009) The endocrine regulation of aging in 
Caenorhabditis elegans. Mol Cell Endocrinol 299: 51-57. 

74. Hua QX, Nakagawa SH, Wilken J, Ramos RR, Jia W, et al. (2003) A 
divergent INS protein in Caenorhabditis elegans structurally resembles 
human insulin and activates the human insulin receptor. Genes Dev 17: 
826-831. 

75. Yen K, Narasimhan SD, Tissenbaum HA (2010) DAF-16/Forkhead "O" Box 
Transcription Factor: Many Paths to a Single Fork(Head) in the Road. 
Antioxid Redox Signal 14. 

76. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, et al. (1998) Two 
pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, 
reproduction and longevity 

in Caenorhabditis elegans. Genetics 150: 129-155. 
77. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, et al. (2001) A mutant 

Drosophila insulin receptor homolog that extends life-span and impairs 
neuroendocrine function. Science 292: 107-110. 

78. Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol 
Cell Biol 8: 681-691. 

79. Bartke A, Masternak MM, Al-Regaiey KA, Bonkowski MS (2007) Effects of 
dietary restriction on the expression of insulin-signaling-related genes in 
long-lived mutant mice. Interdiscip Top Gerontol 35: 69-82. 

80. Greer KA, Canterberry SC, Murphy KE (2007) Statistical analysis regarding 
the effects of height and weight on life span of the domestic dog. Res Vet 
Sci 82: 208-214. 

81. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, et al. (2007) A 
single IGF1 allele is a major determinant of small size in dogs. Science 
316: 112-115. 

82. Kaeberlein M, Powers RW, 3rd, Steffen KK, Westman EA, Hu D, et al. (2005) 
Regulation of yeast replicative life span by TOR and Sch9 in response to 
nutrients. Science 310: 1193-1196. 

83. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27: 2276-2288. 
84. Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, et al. (2006) 

Identification of direct DAF-16 targets controlling longevity, metabolism 
and diapause by chromatin immunoprecipitation. Nat Genet 38: 251-257. 

85. Li J, Ebata A, Dong Y, Rizki G, Iwata T, et al. (2008) Caenorhabditis elegans 
HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS 
Biol 6: e233. 

86. Antebi A (2004) Tipping the balance toward longevity. Dev Cell 6: 315-316. 
87. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, et al. (2007) An 

AMPK-FOXO pathway mediates longevity induced by a novel method of 
dietary restriction in C. elegans. Curr Biol 17: 1646-1656. 



  44 

88. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila 
dFOXO controls lifespan and regulates insulin signalling in brain and fat 
body. Nature 429: 562-566. 

89. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO 
shuttling: mechanisms of FoxO translocation and transcriptional 
regulation. Biochem J 380: 297-309. 

90. Arden KC (2008) FOXO animal models reveal a variety of diverse roles for 
FOXO transcription factors. Oncogene 27: 2345-2350. 

91. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of 
cellular homeostasis during aging. Curr Opin Cell Biol 20: 126-136. 

92. Di Paolo S, Teutonico A, Leogrande D, Capobianco C, Schena PF (2006) 
Chronic inhibition of mammalian target of rapamycin signaling 
downregulates insulin receptor substrates 1 and 2 and AKT activation: A 
crossroad between cancer and diabetes? J Am Soc Nephrol 17: 2236-
2244. 

93. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, et al. (2004) Absence 
of S6K1 protects against age- and diet-induced obesity while enhancing 
insulin sensitivity. Nature 431: 200-205. 

94. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer 
Cell 12: 9-22. 

95. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, et al. (2003) 
Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426: 
620. 

96. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, et al. (2007) Lifespan 
extension by conditions that inhibit translation in Caenorhabditis elegans. 
Aging Cell 6: 95-110. 

97. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, et al. (2008) Direct 
inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling 
in C. elegans. Cell 132: 1025-1038. 

98. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, et al. (2007) The 
energy sensor AMP-activated protein kinase directly regulates the 
mammalian FOXO3 transcription factor. J Biol Chem 282: 30107-30119. 

99. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al. (2008) 
AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol 
Cell 30: 214-226. 

100. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa 
mediates diet-restriction-induced longevity of C. elegans. Nature 447: 550-
555. 

101. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene 
extends lifespan in Caenorhabditis elegans. Nature 410: 227-230. 

102. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W (2005) Suppression of 
FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. Embo J 
24: 1021-1032. 



  45 

103. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans 
TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr 
Biol 17: 1635-1645. 

104. McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine 
phosphatases for drug development. Mol Pharmacol 75: 1249-1261. 

105. Barford D (1996) Molecular mechanisms of the protein serine/threonine 
phosphatases. Trends Biochem Sci 21: 407-412. 

106. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of 
nuclear protein phosphatases. Nat Rev Mol Cell Biol 8: 234-244. 

107. Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR (1998) Regulation of the 
insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol 
Cell Biochem 182: 91-99. 

108. Hendriks WJ, Elson A, Harroch S, Stoker AW (2008) Protein tyrosine 
phosphatases: functional inferences from mouse models and human 
diseases. FEBS J 275: 816-830. 

109. Stoker AW (2005) Protein tyrosine phosphatases and signalling. J 
Endocrinol 185: 19-33. 

110. Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the 
quest for negative regulators of insulin action. Am J Physiol Endocrinol 
Metab 284: E663-670. 

111. Tran HT, Ulke A, Morrice N, Johannes CJ, Moorhead GB (2004) Proteomic 
characterization of protein phosphatase complexes of the mammalian 
nucleus. Mol Cell Proteomics 3: 257-265. 

112. Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein 
phosphatases get a makeover. Mol Cell 33: 537-545. 

113. Manning G (2005) Genomic overview of protein kinases. WormBook: 1-19. 
114. Faux MC, Scott JD (1996) More on target with protein phosphorylation: 

conferring specificity by location. Trends Biochem Sci 21: 312-315. 
115. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of 

protein phosphatases: insights into catalysis and regulation. Annu Rev 
Biophys Biomol Struct 27: 133-164. 

 
 

 



  46 

Preface to Chapter 2 

This chapter describes the genetic and molecular characterization of PPTR-1 as 

a novel negative regulator of the insulin/IGF-1 pathway and modulator of AKT-1 

dephosphorylation. The results of this study are further analyzed in a perspective 

that follows the chapter. The work presented in this chapter was a collaborative 

effort between Dr. Srivatsan Padmanabhan, a former graduate student and Dr. 

Arnab Mukhopadhyay, a former postdoctoral fellow and I. PPTR-1 was identified 

from a RNAi screen previously conducted by S.P. (Padmanabhan, Thesis 2009). 

S.P. and I both performed all the dauer and heat stress assays, and microscopy 

to check PPTR-1 localization. A.M. and I did fat assays. A.M. and S.P. did co-

immunoprecipitation experiments to show PPTR-1 interacting with and 

dephosphorylating AKT-1 respectively. I carried out the PPTR-1 overexpression 

lifespans and growth assays. S.P and A.M. assayed for the role of PPTR-1 on 

DAF-16 nuclear localization and transcriptional activity. All three of us did the 

RNAi lifespan experiments. Dr. Greg Tesz from Michael Czech’s laboratory did 

the experiments using 3T3-L1 adipocytes to validate the role of mammalian 

PPTR-1 (B56) in modulating Akt dephosphorylation. S.P., A.M., Dr. Heidi 

Tissenbaum and I wrote the manuscript. 

The following chapter has been published as: 

Padmanabhan S*, Mukhopadhyay A*, Narasimhan SD*, Tesz G, Czech MP, 
Tissenbaum HA (2009). A PP2A regulatory subunit regulates C.elegans insulin 
signaling by modulating AKT-1 phosphorylation. Cell 136(5) * Co-first author 
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Summary 

 The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in 

the regulation of lifespan, dauer diapause, metabolism and stress response. The 

major regulatory control of IIS is through phosphorylation of its components by 

serine/threonine-specific protein kinases. In a RNAi screen for serine/threonine 

protein phosphatases that counter-balance the effect of the kinases in the IIS 

pathway, we identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme.  

Modulation of pptr-1 affects phenotypes associated with the IIS pathway 

including lifespan, dauer, stress resistance and fat storage. We show that PPTR-

1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking 

conservation, mammalian B56ß regulates Akt phosphorylation at Thr 308 in 3T3-

L1 adipocytes.  In C. elegans, this modulation ultimately leads to changes in 

subcellular localization and transcriptional activity of the forkhead transcription 

factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit 

in modulating insulin signaling through AKT dephosphorylation and thereby has 

widespread implications in cancer and diabetes research. 
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Introduction 

The insulin/IGF-1-like signaling (IIS) pathway is an evolutionarily 

conserved neuro-endocrine pathway that regulates multiple biological processes 

including metabolism, development, stress resistance and lifespan [1,2,3,4].  In 

C. elegans, the insulin-like receptor DAF-2 [5] signals through a PI 3-kinase 

(AGE-1/AAP-1) [6,7] signaling cascade that activates the downstream 

serine/threonine kinases PDK-1, AKT-1, AKT-2 and SGK-1 [8,9,10].  These 

kinases in turn function to negatively regulate the forkhead transcription factor 

(FOXO), DAF-16 [11,12].   

Reduction-of-function mutations in serine/threonine kinases upstream of 

DAF-16 lead to changes in lifespan, development, metabolism and/or stress 

resistance [1,2,3].  Importantly, loss-of-function mutations in daf-16 completely 

suppress these phenotypes [1,2,3,13].  Thus DAF-16 is a major downstream 

target of the IIS pathway.  Phosphorylation of DAF-16 by AKT-1, AKT-2 and 

SGK-1 results in its nuclear exclusion and sequestration in the cytosol [10,14].  In 

contrast, under low signaling conditions, active DAF-16 enters the nucleus and 

transactivates or represses its direct target genes [10,14,15,16,17]. Strikingly, 

this negative regulation of FOXO/DAF-16 is conserved across species.  In 

mammals, the Akt and SGK kinases can phosphorylate and negatively regulate 

FOXO [18,19,20] .   

Although regulation of the IIS pathway by serine/threonine protein kinases 

has been extensively studied, little is known about the phosphatases acting in 
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this pathway. In C. elegans, the lipid phosphatase DAF-18 (homologous to 

mammalian Phosphatase and Tensin Homolog, PTEN), is the only phosphatase 

that has been identified and characterized as a negative regulator of the IIS 

pathway [21,22,23,24]. The increased lifespan of daf-2 mutant worms is 

suppressed by loss-of-function mutations in daf-18 or by daf-18 RNAi [25].  

Therefore, to identify additional regulators of the IIS pathway, we performed a 

directed RNAi screen of serine/threonine protein phosphatases that affect 

phenotypes regulated by the IIS pathway.  

C. elegans development proceeds from an egg, through 4 larval stages 

into a self-fertilizing, hermaphrodite adult.  However, under unfavorable growth 

conditions such as crowding and low food availability, worms enter a stage of 

diapause known as as dauer [26].  Upon favorable growth conditions, dauers are 

able to form reproductive adults. Since worms form dauers constitutively when 

the function of IIS pathway is reduced by mutations, we took advantage of a 

temperature-sensitive (ts) allele of daf-2 for the RNAi screen [27].  We screened 

for genes that suppressed dauer formation in daf-2(e1370) mutants.  In this 

report, we characterize PPTR-1, a regulatory subunit of the PP2A holoenzyme, 

as an important regulator of development, longevity, metabolism and stress 

response in C. elegans. We show that PPTR-1 acts by modulating AKT-1 

phosphorylation and as a consequence controls DAF-16 activity. 
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Results 

1. RNAi screen to identify phosphatases in IIS pathway 

 To identify the serine/threonine phosphatases in the C. elegans genome, 

we performed in silico analyses using both NCBI KOGs (clusters of euKaryotic 

Orthologous Groups) and WormBase (a C. elegans database: 

http://www.wormbase.org; WS152) annotations. A total of 60 genes were 

identified for further analysis (Figure 2.1A).  We obtained RNAi clones for these 

phosphatases from the Ahringer RNAi library [28], generated them using 

available clones from the ORFeome library [29] or cloned them de-novo using 

Gateway Technology (Invitrogen, USA; see Materials and Methods).  We were 

unable to clone 3 of the phosphatase cDNAs and therefore screened a total of 57 

candidates (Srivatsan Padmanabhan, Thesis 2009). In addition, we included 6 of 

the 7 annotated PP2A holoenzyme regulatory subunits (one was not cloned) in 

the screen for two reasons.  First, a preliminary chemical inhibitor screen 

identified the PP2A family of phosphatases as important regulators of DAF-16 

nuclear translocation (Padmanabhan and Tissenbaum, unpublished data).  

Second, RNAi of the catalytic (C) and structural (A) subunits of PP2A resulted in 

lethality (data not shown). 

 daf-2(e1370) carries a mutation in the insulin receptor tyrosine kinase 

domain that results in a ts phenotype for dauer formation [5]. daf-2(e1370) worms 

arrest as 100% dauers at 25oC whereas at 15oC they have a normal reproductive 

cycle [26,30]. At an intermediate temperature of 20 oC, a significant percentage 
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of daf-2(e1370) worms form dauers.  Therefore, at this temperature, one can use 

RNAi to easily assess the contribution of any gene in suppressing daf-2 dauer 

formation. For the screen, daf-2(e1370) mutants were grown on RNAi-expressing 

bacteria for two generations, and eggs were picked onto 3 plates for each RNAi 

clone (Figure 2.1B). The plates were incubated at 20oC and scored 3.5-4 days 

later for the presence of dauers and non-dauers.  Since DAF-18 is the only 

known phosphatase that negatively regulates the IIS in C. elegans, we used daf-

18 RNAi as a positive control in all our experiments. From a total of 63 RNAi 

clones (57 phosphatases and 6 regulatory subunits), we identified two 

phosphatases that dramatically decreased daf-2(e1370) dauer formation to a 

level similar to daf-18 RNAi (Figure 2.1C).  Our top candidate, fem-2 

(T19C3.4) regulates C. elegans sex determination [31,32].  However, further 

analysis with an additional daf-2 allele, daf-2(e1368), revealed that fem-2 RNAi 

suppresses dauer formation in an allele-specific manner.  fem-2 RNAi 

suppressed dauer formation of daf-2(e1370) but not daf-2(e1368) (Chapter 5) 

and therefore, we focused on the next top candidate. The next candidate, pptr-1 

(W08G11.4), is a member of the B56 family of genes encoding regulatory 

subunits of the PP2A protein phosphatase holoenzyme. The C. elegans genome 

contains 7 known PP2A regulatory subunit genes (pptr-1 and pptr-2, B56 family; 

sur-6, B55 family; F47B8.3, C06G1.5, rsa-1 and T22D1.5, B72 family; currently 

F47B8.3 is not annotated as a PP2A regulatory subunit according to WormBase 

Release WS194). To determine the specificity of pptr-1 in regulating dauer 
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formation, we re-tested six of seven PP2A regulatory subunits included in the 

initial screen for their ability to regulate dauer formation in daf-2(e1370) worms. 

As shown in Figure 2.1D, only pptr-1 RNAi suppressed daf-2(e1370) dauer 

formation comparable to daf-18 RNAi.  We next analyzed the effect of pptr-1 

RNAi on dauer formation of daf-2(e1368).  pptr-1 RNAi significantly suppressed 

dauer formation of daf-2(e1368) (69.2 ± 9.4 % on  vector RNAi versus  3.8 ± 

4.4% on pptr-1 RNAi; Table 2.1). Therefore the effect of pptr-1 RNAi on daf-2 

mutants is not allele-specific and together these results indicate that pptr-1 may 

function downstream of daf-2.  In addition, pptr-1 is the only PP2A regulatory 

subunit to affect daf-2 dauer formation. 
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Figure 2.1: pptr-1, a regulatory subunit of the PP2A holoenzyme, was identified 

as a top candidate in a directed RNAi screen to identify serine/threonine 

phosphatases that regulate the IIS pathway. 

A) The different families and classes of the phosphatases included in the RNAi 

screen.  

B) A schematic representation of the RNAi screen.  All the assays were 

performed in triplicate. 

C) The top two candidates that dramatically suppressed daf-2(e1370) dauer 

formation at 20°C (fem-2, and pptr-1). Both fem-2 and pptr-1 RNAi were able to 

suppress daf-2 dauer formation to a similar level as daf-18 RNAi. Error bars 
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indicate the standard deviations among the different RNAi plates within one 

experiment. Data shown [% Dauers ± Std. Dev. (n)] are from one representative 

experiment. 

D) pptr-1 is the only PP2A regulatory subunit family member that dramatically 

suppresses daf-2(1370) dauer formation. Error bars indicate the standard 

deviations among the different RNAi plates within one experiment. Data shown 

are from one representative experiment.  
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2. pptr-1 regulates dauer formation through the IIS pathway 

To further investigate the role of pptr-1 in dauer formation, we performed 

genetic epistasis analysis.  In addition to the C. elegans IIS pathway, a second 

parallel TGF-β pathway also regulates dauer formation [33,34]. In this pathway, 

loss of function mutations in daf-7 (TGF- β ligand), daf-1 and daf-4 (receptors) or 

daf-14 and daf-8 (R-Smads) lead to constitutive dauer formation. Loss-of-function 

mutations in daf-3 (Co-Smad) or daf-5 (Sno/Ski) suppress these phenotypes 

[35,36,37,38,39].  However, null mutations in daf-3 do not suppress daf-2(e1370) 

dauer formation [40].  In a daf-2(e1370);daf-3(mgDf90) double mutant, the input 

from the TGF- β  pathway for dauer formation is essentially removed and 

presumably dauer formation is regulated by DAF-16.  In this strain, the dauer 

formation was suppressed by pptr-1 RNAi (94.5  ± 0.8 % dauers on vector RNAi 

to 42.7 ± 14.6. % dauers on pptr-1 RNAi; Table 2.1).  This data suggests that 

pptr-1 controls dauer formation specifically through the IIS pathway and not 

through TGF-β signaling. 

 

3. pptr-1 affects longevity, metabolism and stress response downstream of 

the daf-2 

In addition to dauer formation, the C. elegans IIS pathway also regulates 

lifespan, fat storage and stress resistance [4,13]. Since pptr-1 regulates dauer 

formation specifically via the IIS pathway, we next determined whether this gene 

could also affect these other important phenotypes.  



  57 

Mutations in daf-2 result in lifespan extension [41] that is suppressed by loss-of-

function mutations in daf-18 [22,25].  To investigate whether pptr-1 can regulate 

lifespan similar to daf-18, we determined whether knocking down pptr-1 by RNAi 

could affect daf-2(e1370) lifespan.  We grew wild type and daf-2(e1370) worms 

on vector, daf-18 and pptr-1 RNAi and measured their lifespan (Figure 2.2A).  

Similar to daf-18 RNAi, knock down of pptr-1 resulted in a significant reduction in 

daf-2(e1370) lifespan (mean lifespan of daf-2(e1370) on vector RNAi is 33.9 ±  

0.7 days , on pptr-1 RNAi is  27.7 ± 0.9 days and on daf-18 RNAi is 20.4 ± 0.6 

days , p value < 0.0001; Figure 2.2A).  In contrast, lifespan of wild type was 

unaffected by pptr-1 RNAi (mean lifespan of wild type on vector RNAi is 22.8 ± 

0.4 days, is 21.9 ± 0.5 days on pptr-1 RNAi and 18.6 ± 0.3 days on daf-18 RNAi; 

Figure 2.2B). Thus, pptr-1 affects phenotypes regulated by the IIS pathway, such 

as lifespan as well as dauer formation Lifespan extension correlates well with 

increased stress resistance [42 ,43]. For example, daf-2(e1370) mutants are not 

only long-lived but are also extremely resistant to various stresses such as heat 

and oxidative stress [44,45,46]. Therefore, we next analyzed the effect of pptr-1 

RNAi on the thermotolerance of daf-2(e1370) mutants. As anticipated, pptr-1 

RNAi also significantly reduced the thermotolerance of daf-2(e1370) mutants (on 

vector RNAi, daf-2(e1370) had a mean survival of 15.2 ± 0.7 hrs, whereas on 

pptr-1 RNAi the survival was 13.8 ± 0.5 hrs (p value< 0.006). pptr-1 RNAi did not 

affect the thermotolerance of wild type worms; mean thermotolerance was 9.8 ± 

0.4 hrs on vector RNAi, versus 9.3 ± 0.3 hrs on pptr-1 RNAi; Figure 2.2C).  In 
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addition to enhanced lifespan and stress resistance, daf-2 mutants have 

increased fat storage [5,47]. We next asked whether pptr-1 could also affect fat 

storage in wild type and daf-2(e1370) worms using Sudan black staining.  

Consistent with our lifespan and stress resistance results, pptr-1 RNAi 

suppressed the increased fat storage of daf-2(e1370) without affecting wild type 

fat storage (Figure 2.2D). Finally, daf-2 mutants have a slow growth phenotype 

[48,49] that is suppressed by knockdown of daf-16 by RNAi (Figure 2.2E). Similar 

to daf-16 RNAi, pptr-1 RNAi suppresses this slow growth phenotype. Together, 

these experiments suggest that pptr-1 regulates multiple phenotypes associated 

with the IIS pathway in C. elegans. 

 

 

 

 

 

 

 

 

 

 

 

  



  59 

 

 

 

 

 

 

 

 

 

 

 

E 

 

 

 

 

 

 

 

Figure 2.2: pptr-1 regulates lifespan, thermotolerance, fat storage and growth 

through the IIS pathway. Data shown are from one representative experiment. 
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A) pptr-1 RNAi significantly reduces the lifespan of daf-2(e1370) mutants similar 

to daf-18 RNAi (mean life on vector RNAi is 33.9 ± 0.7 days (n=77), pptr-1 RNAi 

is 27.7 ± 0.9 days (n=63) p <0.0001and on daf-18 RNAi is 20.4 ± 0.6 days 

(n=40), p <0.0001) 

B) pptr-1 RNAi does not affect the lifespan of wild-type worms (mean lifespan on 

vector RNAi is 22.8 ± 0.4 days (n=61), pptr-1 RNAi is 21.9 ± 0.5 days (n=49). 

daf-18 RNAi reduces mean lifespan of wild type worms to 18.6 ± 0.3 days (n=48) 

p <0.0001).  

C) The thermotolerance of daf-2(e1370) worms is reduced by pptr-1 as well as 

daf-18 RNAi (mean survival of daf-2(e1370) worms at 37 oC on vector RNAi was 

15.2 ± 0.7 hrs (n=34), whereas on pptr-1 RNAi the survival was 13.8 ± 0.5 hrs (p 

value< 0.006) (n=36)  

and 10.3 ± 0.7 hrs (p value< 0.0001) (n=29) on daf-18 RNAi.  pptr-1 RNAi did not 

affect the thermotolerance of wild type worms; (mean survival was 9.8 ± 0.4 hrs 

on vector RNAi (n=32), 9.3 ± 0.3 hrs on pptr-1 RNAi (n=35) and 9.7 ± 0.4 hrs on 

daf-18 RNAi (n=32). 

D) Sudan black staining showing that pptr-1 RNAi reduces the increased fat 

storage of daf- 2(e1370) worms, similar to daf-18 RNAi but has no effect on wild 

type fat-storage. Arrows indicate the pharynx. A representative picture from one 

of three independent experiments (n=30) is shown. 

E) pptr-1 regulates growth in daf-2(e1370) mutants, similar to daf-18 and daf-16 

RNAi. 



  61 

4. pptr-1 functions at the level of akt-1 

Signals from DAF-2 are transduced to the PI 3-kinase AGE-1 to activate the 

downstream serine/threonine kinase PDK-1 [6,8,25]. PDK-1 in turn 

phosphorylates and activates three downstream serine/threonine kinases, AKT-

1, AKT-2 and SGK-1 [9,10]. These kinases together regulate the transcription 

factor DAF-16 by direct phosphorylation [10].  Mutations in daf-16 suppress the 

enhanced dauer formation of pdk-1 [8] or akt-1/akt-2 mutants [9,43]. Thus far, our 

analysis suggests that pptr-1 functions in the IIS pathway.  We sought to identify 

the potential target of pptr-1 by performing genetic epistasis experiments.  

First we analyzed the effect of pptr-1 RNAi on dauer formation of pdk-1 

mutant. The dauer formation of pdk-1(sa680) was suppressed by pptr-1 RNAi 

(95.6 ± 1.0 % dauers on vector RNAi versus 9.5 ± 0.3 % dauers on pptr-1 RNAi, 

Table 2.1). In contrast, daf-18 RNAi had no effect on pdk-1(sa680) dauer 

formation (Table 2.1).  Therefore, these results place pptr-1 downstream of pdk-1 

and are consistent with the current understanding that daf-18 acts upstream of 

pdk-1.Next, to investigate whether pptr-1 acts at the level of akt-1, akt-2 or sgk-1, 

we first analyzed dauer formation in akt-1(ok525), akt-2(ok393) and sgk-1(ok538) 

single mutants and the akt-1(ok525);akt-2(ok393) double mutant. While akt-

1(ok525), akt-2(ok393) and sgk-1(ok538) single mutants  do not arrest as dauers 

at either 20 or 25oC, the akt-1(ok525);akt-2(ok393) double mutant forms 100% 

dauers at all temperatures [43]. To circumvent this problem, we generated 

double mutants of daf-2(e1370);akt-1(ok525), daf-2(e1370);akt-2(ok393) and daf- 
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2(e1370);sgk-1(ok538) and tested these strains for dauer formation on vector, 

daf-18 and pptr-1 RNAi.  We reasoned that in a daf-2 mutant background, the 

akt-1, akt-2 and sgk-1 mutants would exhibit temperature-induced dauer 

formation. Indeed, all three double mutants were able to form dauers at 20 oC  

(Table 2.1 - see panel for vector RNAi).  Importantly, pptr-1 RNAi significantly 

suppressed dauer formation in daf-2(e1370);akt-2(ok393) ( 36.8 ± 3.8 % dauers 

on vector RNAi versus 10.8 ± 4.3 % on pptr-1 RNAi; Table 2.1). In addition, pptr-

1 RNAi suppressed dauer formation of daf-2(e1370);sgk-1(ok538) worms (65.4 ±  

4.9 % dauers on vector RNAi versus 0 % on pptr-1 RNAi,  Table 2.1). In contrast, 

pptr-1 RNAi did not affect dauer formation of daf-2(e1370);akt-1(ok525) mutants 

(vector RNAi is 94.8. ± 3.1 % versus 96.0 ± 1.7 % on pptr-1 RNAi; Table 2.1).  

However, daf-18 RNAi can suppress daf-2(e1370) akt-1(ok525) dauer formation 

(dauer formation was reduced to 10.5 ± 0.8%; Table 2.1). These observations 

genetically place pptr-1 at the level or downstream of akt-1 in the IIS pathway.
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Table 2.1: Epistasis analysis of dauer formation IIS pathway mutants 
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5. PPTR-1 and AKT-1 are expressed in the same tissues 

 Since pptr-1 and akt-1 have a genetic interaction, we wanted to investigate 

whether they have a common expression pattern. We generated or obtained akt-

1::gfp, akt-2::gfp, sgk-1::gfp and pptr-1::mC-flag transgenic lines (see Materials 

and Methods; GFP refers to protein while gfp stands for transgene).  We made 

double transgenic worms by crossing pptr-1::mC-flag worms to each of the 

above-mentioned GFP lines. Similar to published data, we observed AKT-1::GFP 

predominantly in the pharynx, several head neurons, the nerve ring, 

spermathecae and vulva [9]; AKT-2::GFP in the pharynx (predominantly in the 

anterior region), somatic muscles, vulva muscles, spermathecae [9]; SGK-

1::GFP in amphid neurons, intestine and pharynx (predominantly in the anterior 

region), somatic muscles, vulva muscles, spermathecae [9]; SGK-1::GFP in 

amphid neurons, intestine and some tail neurons [10] (Figure 2.3A, B, C middle 

panel).  PPTR-1::mC-FLAG was also observed in the pharynx, head neurons, 

nerve ring, spermathecae and vulva (Figure 2.3A, B, C left panel). To observe 

the sub-cellular localization of PPTR-1, we stained pptr-1::mC-flag worms with 

DAPI. We find that PPTR-1 is predominantly cytosolic with little DAPI overlap 

(Figure 2.3). As shown in Figure 2.3A-C (Merge) there is remarkable overlap 

between the expression patterns of PPTR-1 and AKT-1.  We also observed 

partial overlap between AKT-2::GFP and PPTR-1::mC-FLAG, predominantly in 

the pharynx (Figure 2.3B, Merge). SGK-1 and PPTR-1 are expressed in different 

tissues and we do not see any significant overlap (Figure 2.3C, Merge). 
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Figure 2.3: PPTR-1 co-localizes with AKT-1. akt-1::gfp;pptr-1::mC-flag, akt-

2::gfp;pptr-1::mC-flag and  sgk-1::gfp;pptr-1::mC-flag transgenic worms were 

mounted and visualized by fluorescence microscopy using Rhodamine (mCherry) 

and FITC (GFP) filters. PPTR-1 expression is observed mainly in the pharynx, 

vulva and spermatheca (A-C, mCherry). 

A) Expression of PPTR-1::mC-FLAG (mCherry) and AKT-1::GFP (GFP) in a akt-

1::gfp; pptr-1::mC-flag strain. Expression of PPTR-1::mC-FLAG overlaps with 

AKT-1::GFP (Merge). 
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B) PPTR-1::mC-FLAG and AKT-2::GFP colocalize in some tissues in a akt-

2::gfp; pptr-1::mC-flag strain (Merge). 

C) SGK-1::GFP and PPTR-1::mC-FLAG do not colocalize in sgk-1::gfp;pptr-

1::mC-flag transgenic worms (Merge). 

Arrows indicate the following tissues: p-pharynx, v-vulva, s-spermatheca, i-

intestine 

D) Upper panel: High resolution image of pptr-1::mC-flag stained with DAPI at 

600X magnification. Arrow indicates the pharynx. A) mCherry (B) DAPI (C) 

Merge (D) DIC. 

Lower panel: Subcellular localization of PPTR-1 as visualized in a single plane by 

spinning disk confocal microscropy after DAPI staining to delineate nuclei. Left, 

middle and right panels are mCherry at 561nm, DAPI at 405 nm and the merge, 

respectively. 
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6. PPTR-1 regulates AKT-1 phosphorylation 

Given the genetic epistasis as well as the overlapping expression 

patterns, we next determined whether PPTR-1 directly interacts with AKT-1 by 

co-immunoprecipitation (co-IP) in C. elegans. For all biochemical experiments, 

we used the PD4251 strain as a control. This strain contains Pmyo-3::gfp with a 

mitochondrial localization signal and Pmyo-3::lacZ-gfp with a nuclear localization  

signal [50]. This strain will be referred to as myo-3::gfp. We prepared lysates 

from mixed-stage cultures of akt-1::gfp; pptr-1::mC-flag and myo-3::gfp; pptr-

1::mcherry-flag transgenic worms.  Following immunoprecipitation with either 

anti-FLAG or anti-GFP antibody, we found that PPTR-1 specifically interacts with  

AKT-1 and not with MYO-3::GFP (Figure 2.4A; see Materials and Methods). We 

also performed co-IP experiments to investigate whether PPTR-1 and AKT-2 

interact, since we observed partial overlap in expression pattern of these 

proteins. We find that PPTR-1 does not interact with AKT-2 (Figure 2.4D). 

Although we find that PPTR-1::mC-FLAG and SGK-1::GFP interact in our co-IP 

experiments (Figure 2.4D), our epistasis analyses show no genetic interaction 

between pptr-1 and sgk-1. Moreover, we observe no overlap in the expression 

pattern of these two proteins using confocal microscopy (data not shown). 

Hence, we do not believe this biochemical interaction to have a measurable 

functional output and did not pursue it further.   

In mammals, Akt is activated by PDK phosphorylation at Thr 308 and 

PDK-2/TORC-2 protein complex at Ser 473 [51,52,53]. In C. elegans AKT-1, 
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these sites correspond to Thr 350 and Ser 517, respectively. We generated 

affinity-purified phospho-specific antibodies (21st Century BioChemicals, USA; 

see Materials and Methods) against both sites to further investigate the role of 

PPTR-1 on AKT-1 phosphorylation. Following immunoprecipitation with anti-GFP 

antibody from either akt-1::gfp or akt-1::gfp;pptr-1::mcherry::flag strain, we 

compared the phosphorylation status at these two sites. We find that 

overexpressing PPTR-1 can dramatically decrease the phosphorylation of the 

T350 site while having a marginal effect on the Ser 517 site (Figure 2.4B). As a 

control experiment, we treated the immunoprecipitated AKT-1::GFP samples with 

lambda phosphatase and observed loss of the Thr and Ser phosphorylation, 

showing the specificity of the phospho-AKT antibodies (data not shown).  Thus, 

in C. elegans, PPTR-1 functions by directly regulating the dephosphorylation of 

AKT-1 primarily at the Thr 350 (mammalian Thr 308) site. 

 

7. Mammalian PPTR-1 homolog regulates AKT-1 phosphorylation 

Given the evolutionary conservation of the C. elegans IIS pathway, we next 

determined if this mechanism of AKT-1 dephosphorylation mediated by PPTR-1 

is also conserved in mammals. The mammalian B56 family of PP2A regulatory 

subunits has 8 members encoded by 5 genes that express in different tissues 

[54]. We used 3T3-L1 adipocytes to perform these studies since in this system, 

there is a well-characterized insulin signaling pathway that is responsive to 

changes in insulin levels [55,56].  We used microarray data comparing the 



  70 

expression profiles of fibroblasts to differentiated 3T3-L1 adipocytes [57] to 

determine which B56 members were expressed in the adipocytes.  We identified 

2 genes, PPP2R5A (B56a) and PPP2R5B (B56b) as the top candidates. We 

knocked down either one or both these regulatory subunits by designing 

Smartpool siRNAs (Dharmacon, USA) and verified the silencing by quantitative 

RT PCR. Serum-starved siRNA-treated 3T3-L1 adipocytes were then stimulated 

with increasing concentrations of insulin. The cells were lysed and the proteins 

analyzed by western blotting using mammalian Akt phospho-specific antibodies 

(see Materials and Methods).  Knockdown of B56b results in a dramatic increase 

in phosphorylation at the Thr 308 site of Akt with relatively less changes in Ser 

473 phosphorylation (Figure 2.4C). However, silencing of B56a had no effect on 

the phosphorylation status of Akt at either site. We observed that siRNA against  

at Thr 308 but not at Ser 473. Together, our data suggests that PPTR-1/B56a 

regulatory subunits function to modulate AKT-1 phosphorylation in a conserved 

manner across phylogeny. 
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Figure 2.4: PPTR-1 interacts with and modulates AKT-1 phosphorylation.  

A) PPTR-1 directly interacts with AKT-1 in C. elegans. AKT-1::GFP and MYO-

3::GFP were immunoprecipated (IP) using anti-GFP antibody and were analyzed 
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by western blotting (WB) using anti-Ds-Red or anti-GFP antibodies. In addition, 

PPTR-1::mC-FLAG was immunoprecipitated with anti-FLAG antibody and 

analysed by WB using using anti-Ds-Red or anti-GFP antibodies. Lysates were 

used for WB analysis.  

B) PPTR-1 overexpression reduces AKT-1 phosphorylation in C. elegans. AKT-

1::GFP and MYO-3::GFP were immunoprecipitated from  akt-1::gfp, akt-

1::gfp;pptr-1::mC-flag and myo-3::gfp;pptr-1::mC-flag followed by western blotting 

using pThr 350 or pSer 517 antibodies (upper panels). Total lysates were 

analyzed by western blotting (lower panels). 

Quantification of changes in AKT-1::GFP phosphorylation upon PPTR-1 

overexpression is shown below each lane. 

C) Knock down of the mammalian B56a regulatory subunit by siRNA in 3T3-L1 

adipocytes decreases insulin-stimulated AKT phosphorylation at Thr 308. The 

3T3-L1 adipocytes were transfected with scrambled (Scr), PP2Aca/b, B56a, 

B56 b or B56a/b siRNA. These cells were then treated with increasing 

concentrations of insulin and phosphorylation status of Akt was analyzed by 

western blotting using pThr 308 (left) and pSer 473 antibodies (middle). Total Akt 

antibody was used as a loading control (right). Quantification of fold changes in 

Akt phosphorylation is shown below each lane. 

D) PPTR-1 directly interacts with AKT-1 in C. elegans but not with DAF-16, AKT-

2 or GFP (control). We observe a biochemical interaction between PPTR-1 and 

SGK-1 in our co-IP experiments but do not see a genetic interaction or any tissue 
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overlap between these proteins. PPTR-1::mC-FLAG was immunoprecipated (IP) 

from akt-1::gfp; pptr-1::mC-flag, akt-2::gfp; pptr-1::mC-flag, sgk-1::gfp; pptr-

1::mC-flag , daf-16::gfp; pptr-1::mC-flag and myo-3::gfp; pptr-1::mC-flag using 

anti-FLAG antibody and interactions with AKT-1::GFP, AKT-2::GFP, SGK-

1::GFP, DAF-16::GFP or MYO-3::GFP (control) and were analyzed by western 

blotting (WB) using anti-GFP or anti-Ds-Red antibodies. 
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8. PPTR-1 positively regulates DAF-16 nuclear localization and activity 

We next determined the consequences of modulating PPTR-1 dosage on 

the IIS pathway.  In C. elegans, one of the major targets of AKT-1 is the forkhead 

transcription factor, DAF-16. Active signaling through the IIS pathway results in 

the phosphorylation of DAF-16 by AKT-1, AKT-2 and SGK-1, leading to its 

nuclear exclusion. However, under low signaling conditions, DAF-16 translocates 

into the nucleus, where it can directly bind and activate/repress the transcription 

of target genes involved in dauer formation, lifespan, stress resistance and fat 

storage [17].  We asked whether pptr-1 regulates IIS pathway-specific 

phenotypes by modulating DAF-16 function.  Since we observed reduced 

phosphorylation of AKT-1 upon overexpression of PPTR-1, we first looked at the 

effect of PPTR-1 overexpression on DAF-16 nuclear localization [14,15,16].  

We generated a daf-16::gfp;pptr-1::mC-flag strain and then compared the 

DAF-16 nuclear localization in these worms with a daf-16::gfp strain (daf-16::gfp, 

a kind gift from the Ruvkun lab, Figure 2.5A). We categorized DAF-16::GFP 

localization as completely cytosolic, mostly cytosolic, mostly nuclear or 

completely nuclear. We find that DAF-16::GFP nuclear localization is enhanced 

when PPTR-1 is overexpressed (Figure 2.5A).  To determine the specificity of 

this response, we used mCherry RNAi to effectively knock down mCherry 

expression in pptr-1::mC-flag thereby reducing the expression of pptr-1 

transgene (data not shown).  Our results show that the enhanced nuclear 

localization upon PPTR-1 overexpression is suppressed when pptr-1::mC-
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flag;daf-16::gfp worms are grown on mCherry RNAi (Figure 2.5A). However, 

mCherry RNAi has little effect on DAF-16 localization in daf-16::gfp worms. 

These experiments suggest that increased dosage of pptr-1 affects DAF-16 

nuclear localization.  Consistent with its role in the C. elegans IIS pathway, we 

find that overexpression of pptr-1 significantly increases the lifespan of wild type 

worms but does not further enhance the lifespan daf-2(e1370) worms (Figure 

2.5B, mean lifespan of wild type  is 23.9 ± 0.3 days, pptr-1::mC-flag is 30.1 ± 0.5 

days, p<.0001, and the unc-119(+); unc-119(ed3)  control strain is 22.6 ± 0.3 

days).  

We next looked at the effect of pptr-1 RNAi on DAF-16 nuclear 

localization. For this, we generated a strain with a daf-2(e1370);daf-16::gfp strain. 

At the permissive temperature of 15oC, DAF-16::GFP is excluded from the 

nucleus in the daf-2(e1370);daf-16::gfp worms. However, at the non-permissive 

temperature of 25oC, progressive nuclear localization of DAF-16::GFP is 

observed. We grew daf-2(e1370);daf-16::gfp worms on either vector, pptr-1 or 

daf-18 RNAi and measured the extent of nuclear/cytosolic localization at 25oC. 

We find that pptr-1 RNAi significantly reduced DAF-16 nuclear localization, 

similar to the effect of daf-18 RNAi (Figure 2.5C). Together, these experiments 

suggest that changes in PPTR-1 levels affect the activity of AKT-1 and as a 

consequence, modulate DAF-16 sub-cellular localization. Increased dosage of 

PPTR-1 results in enhancement of DAF-16 nuclear localization while pptr-1 RNAi 

causes DAF-16 to be more cytosolic.  
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9. DAF-16 target genes 

DAF-16 regulates the transcription of many downstream genes such as sod-3, 

hsp-12.6, sip-1 and mtl-1 [17,58,59,60,61].  We next tested the effects of pptr-1 

RNAi on these DAF-16 transcriptional targets.  We first tested sod-3 which has 

been shown to be a direct target of DAF-16 by chromatin immunoprecipitation 

[17] and its expression changes in response to modulation of the IIS pathway 

[61,62]. We grew a daf-2(e1370);Psod-3::gfp(muIs84) strain on either vector, daf-

18 or pptr-1 RNAi to look at the  effect on GFP expression.  Similar to worms 

grown on daf-18 RNAi, pptr-1 RNAi reduces expression of GFP (Figure 2.5D).  

Therefore, modulation in the levels of pptr-1 can affect the expression of direct 

DAF-16 target genes. We further analyzed the expression of known DAF-16 

target genes by quantitative RT-PCR in a daf-2(e1370) mutant background.  As a 

control, we analyzed whether each of these target genes expressed in a daf-16-

dependent manner as previously reported [17,58,59]. As shown in Figure 2.5E, 
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daf-16 RNAi dramatically suppressed the expression levels of these genes.  

Next, we tested the effects of either pptr-1 or daf-18 RNAi on the expression of 

these genes. We found that pptr-1 RNAi also suppressed the expression of these 

genes to a level similar to daf-18 RNAi.  Taken together, our data suggests that 

PPTR-1 positively regulates DAF-16 nuclear localization and thereby its activity. 
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Figure 2.5: PPTR-1 regulates DAF-16 localization and activity. Data shown are 

from one representative experiment. 

A) Over-expression of PPTR-1 promotes DAF-16 nuclear translocation. On 

vector RNAi, DAF-16 is more enriched in the nucleus in a pptr-1::mC-flag;daf-

16::gfp strain, compared to a daf-16::gfp strain.  This effect is specific to the 

functional transgene, as knocking down pptr-1::mC-flag with mCherry RNAi 

decreases the extent of nuclear DAF-16. 

B) Overexpression of PPTR-1 significantly increases the lifespan of wild type 

worms. Mean lifespan of wild type worms is 23.9 ± 0.3 days (n=154), pptr-1::mC-

flag is 30.1 ± 0.5 days (n=202), p<.0001, and the unc-119(+); unc-119(ed3)  
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control strain is 22.6 ± 0.3 days (n=145). Data shown are from one representative 

experiment. 

C) In a daf-2(e1370);daf-16::gfp strain, DAF-16 is enriched in the nucleus on 

vector RNAi, whereas on pptr-1 RNAi as well as daf-18 RNAi, DAf-16 is mostly 

cytosolic.  

D) pptr-1 RNAi affects DAF-16 transcriptional activity. sod-3 is one of the direct 

targets of DAF-16. pptr-1 RNAi reduces Psod-3::GFP expression in a daf-

2(e1370);Psod-3::gfp(muIs84) strain, similar to daf-18 RNAi.  

E) Transcript abundance of known DAF-16 target genes decrease when daf-

2(e1370) worms are grown on pptr-1 RNAi, similar to daf-18 RNAi, as detected 

by real-time PCR. 

F) Proposed model illustrating the role of PPTR-1 in the insulin/IGF-1 signaling 

pathway. Signals from DAF-2 are processed by a PI3-kinase pathway that leads 

to the phosphorylation and activation of downstream serine/threonine kinases 

such as PDK-1, AKT-1, AKT-2 and SGK-1. PPTR-1, the PP2A holoenzyme 

regulatory subunit, regulates the dephosphorylation and activation status of AKT-

1 at T350. This in turn affects the nuclear translocation of DAF-16 and the 

expression of genes involved in lifespan, dauer formation, stress resistance and 

fat storage. 
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Discussion 

 The insulin/IGF-1 (IIS) signaling pathway regulates growth, metabolism and 

longevity across phylogeny. Given the large number of cellular processes that 

this pathway controls, understanding the mechanisms that modulate IIS is of 

paramount importance. IIS is a well-studied kinase cascade but few 

phosphatases in the pathway are known. Identification of these phosphatases, 

especially those that counterbalance the activity of the kinases, will provide a 

better insight into the regulation of this important pathway.  C. elegans is an 

excellent system amenable to genetic manipulations including RNAi. In addition, 

the worm IIS pathway controls several well-defined phenotypes such as lifespan 

and dauer formation that can be easily quantitated. Therefore, to identify novel 

phosphatases regulating the IIS pathway, we performed a directed RNAi screen 

using dauer formation as an output. We specifically looked for serine/threonine 

phosphatases, as the majority of phosphorylations in the cell, including the 

insulin signaling pathway, occur on serine or threonine residues [63].  We 

identified pptr-1 as a top candidate in our screen. This gene encodes a protein 

that bears homology to the mammalian B56 family of PP2A regulatory subunits 

[64].  PP2A itself is a ubiquitously expressed phosphatase that is involved in 

multiple cellular processes including the regulation of insulin signaling by C. 

elegans PP2A regulatory subunit PPTR-1 modulates insulin signaling by 

specifically regulating AKT-1 phosphorylation and activity in the context of a 

whole organism. Furthermore, we show that this mechanism of regulation is 
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conserved in mammals.  We identify PPTR-1 as a novel and integral component 

of the C. elegans IIS pathway.  

In our model (Figure 2.5E), PPTR-1 acts to negatively regulate signals 

transduced through the IIS pathway, ultimately controlling the activity of the 

FOXO transcription factor DAF-16. Under low signaling conditions, DAF-16 is 

able to translocate to the nucleus and transactivate or repress its downstream 

targets. It is well established that AKT modulates DAF-16 sub-cellular 

localization. Thus, the activity of AKT-1, as governed by its phosphorylation 

status, directly translates into the activity of DAF-16. In this study, we show that 

PPTR-1 directly interacts with AKT-1 and regulates its activity by modulating its 

phosphorylation, predominantly at the Thr 350 site. Less active AKT-1 results in 

increased DAF-16 nuclear localization. Indeed, DAF-16 is found to be more 

nuclear throughout the worm when PPTR-1 is overexpressed. As a corollary, 

knocking down pptr-1 by RNAi results in less nuclear DAF-16 as well as reduced 

expression of DAF-16 target genes such as sod-3, hsp-12.6, mtl-1 and sip-1.  

These genes are known to play a combinatorial role in adaptation to various 

stresses, leading to enhanced dauer formation and increased lifespan.  

Consistent with the decreased levels of these important genes, pptr-1 RNAi 

results in a significant decrease in the dauer formation, lifespan as well as 

thermotolerance of daf-2(e1370) worms.  In addition, pptr-1 also regulates other 

DAF-16-dependent outputs of the IIS pathway such as fat storage. Thus, we find 

that normal levels of pptr-1 are important under low insulin signaling conditions.  
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However, pptr-1 RNAi does not affect IIS pathway-associated phenotypes in wild 

type worms. There could be several reasons for this observation. Firstly, under 

normal signaling conditions, AKT-1, AKT-2 as well as SGK-1 are active and 

negatively regulate DAF-16. Therefore, changes in the AKT-1 activity alone 

brought about by pptr-1 RNAi may not have a significant effect on DAF-16-

dependent phenotypes.  Secondly, PPTR-1 itself may be negatively regulated by 

the IIS pathway, leading to increased AKT-1 phosphorylation. Along similar lines, 

in mammals, insulin signaling can downregulate the expression and activity of 

the PP2A catalytic subunit [56,65,66]. Thus, under normal conditions, further 

down regulation of pptr-1 by RNAi may have no effect. We speculate that in C 

elegans, in response to changing environmental cues, PPTR-1 helps to 

downregulate the insulin signaling pathway to promote DAF-16 activity, enabling 

the worm to either enter diapause or enhance its tolerance to stress as adults.  

In mammals, Akt controls a myriad of secondary signaling cascades that 

regulate glucose transport, protein synthesis, genomic stability, cell survival and 

gene expression [67].  Previous studies have implicated roles for PP2A and 

PHLPP phosphatases in the negative regulation of Akt [68]. The PP2A inhibitor 

Okadaic acid can increase Akt phosphorylation predominantly at Thr 308 and 

enhance glucose transport in adipocytes [69]. Consistent with this, our results 

show that siRNA knockdown of the PP2A catalytic subunit and more importantly, 

the B56β regulatory subunit results in enhanced Akt phosphorylation at Thr 308 

in 3T3-L1 adipocytes. Thus, our study points at the remarkable functional 
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conservation of the B56/PPTR-1 regulatory subunit of PP2A in regulating AKT 

phosphorylation between C. elegans and higher mammals. In worms, we also 

see a modest effect on Ser 517 (equivalent to mammalian Ser 473) 

phosphorylation by PPTR-1 overexpression. However, we do not observe a 

difference in Ser 473 phosphorylation in adipocytes. This difference may be 

explained by the fact that in worms, we are determining the phosphorylation of 

AKT-1 in the context of a whole organism. Additionally, in mammals 

phosphorylation state of one Akt site may influence the status of the other 

[70,71]. We do not see a role for the PP2A B55 subunit (sur-6) in the C. elegans 

IIS pathway.  However, a recent report using cell culture has implicated the 

mammalian B55 in the regulation of AKT [68]. 

Dysregulation of Akt has been implicated in diseases such as cancer and 

diabetes [69,72,73,74]. In fact, the onset of diabetes is often associated with 

changes in Akt phosphorylation [74]. In several cancer models, loss of function 

mutations in the PTEN results in hyper-phosphorylated and activated Akt 

[75,76,77,78] Our studies show that like PTEN, PPTR-1 acts to negatively 

regulate the insulin/IGF-1 signaling. Given the important role of PPTR-1/B56 in 

modulating Akt activity, this protein may be a potential therapeutic target for 

treatment of diabetes as well as cancer.  
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Materials and Methods 

Strains  

All strains were maintained at 15°C using standard C. elegans techniques 

[79]. Double mutants were made using standard genetic methods while 

transgenic worms were made by microparticle bombardment. For all RNAi 

assays, the worms were grown for at least two full generations on the RNAi 

bacteria.  

 
Preparation of RNAi plates 

RNAi plates were prepared by supplementing Nematode Growth Media 

(NGM) media with 100 µg/ml ampicillin and 1 mM IPTG. After pouring, the plates 

were kept at room temperature (RT) for 5 days to dry. RNAi bacteria were grown 

overnight at 37°C in LB media supplemented with 100 µg/ml ampicillin and 12.5 

µg/ml tetracycline. The next day, the cultures were diluted (1:50) in LB containing 

100 µg/ml ampicillin and grown at 37°C until an OD600 of 0.9. The bacterial 

pellets were resuspended in 1X PBS (phosphate-buffered saline) containing 

1mM IPTG. About 200 µl of the bacterial suspension was seeded onto the RNAi 

plates. The seeded plates were dried at RT for 3 days and stored at 4°C. 

 

Strain Construction 

For making double mutants, daf-2(e1370) males were mated to either akt-

1(ok525), akt-2(ok393) and sgk-1(ok538) hermaphrodites, respectively. A total of 
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40 putative F1 cross progeny were singled onto individual plates and allowed to 

have progeny at 25°C. The F2 dauers were then selected and allowed to recover 

at 15°C. The recovered dauers were singled and transferred to 25°C and allowed 

to have progeny. For plates where the F3 progeny formed 100% dauers at 25°C, 

parents were tested for akt-1(ok525), akt-2(ok393) or sgk-1(ok538) deletion by 

PCR.   

For making the daf-2(e1370); daf-3(mgDf90) double mutant, daf-2(e1370) 

males were crossed to daf-3(mgDf90) hermaphrodites. The F1 progeny males 

(daf-2(e1370)/+; daf-3(mgDf90)) were selected and mated back to daf-3(mgDf90) 

hermaphrodites. Forty putative F2 cross progeny were transferred to individual 

plates and incubated at 25°C. After 4-5 days, parents were selected from plates 

where the F3 progeny were 100% dauers and the daf-3 deficiency was checked 

by PCR, as described previously[38]. Dauers were recovered to establish the 

strain. 

For co-localization and immunoprecipitation experiments, pptr-1::mC-flag 

males were mated to hermaphrodites of each of the following strains myo-3::gfp 

(Fire et al., 1998), akt- 1::gfp (SP209) [9]akt-2::gfp; unc-119(+);unc-119(ed3), 

sgk-1::gfp (BR2773; kind gift from Ralf Baumeister) [10]and daf-16::gfp (kind gift 

from Ruvkun Lab). Potential F1 cross progeny were picked to individual plates 

and allowed to have progeny. The F2 progeny were examined for progeny 

homozygous for both GFP and mCherry under a fluorescence microscope. For 

akt-1::gfp and sgk-1::gfp, the extrachromosomal lines akt-1::gfp (SP209) and 
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sgk-1::gfp (BR2777) were integrated into the genome by UV irradiation prior to 

making the strains. The daf-2(e1370); daf-16::gfp and daf-2(e1370); Psod-

3::gfp(muIs84) strain were generated by crossing daf-2(e1370) males to either 

daf-16::gfp (kind gift from Ruvkun Lab) or Psod-3::gfp(muIs84) hermaphrodites. 

About 40 putative F1 cross progeny were transferred to individual plates and 

allowed to have progeny at 25°C. For plates with dauers, the F2 dauers were 

selected from each plate and allowed to recover at 15°C. The recovered dauers 

were then checked for the presence of GFP, and GFP-positive worms were 

transferred to individual plates and incubated at 25°C and allowed to have 

progeny. Plates where 100% of the progeny were dauers and GFP positive were 

selected and established as the strain for the assays.  

 

Dauer assays 

For the dauer assays, approximately 5 L4 or young adult worms were 

transferred to the RNAi bacteria and maintained at 15oC. F2 adult worms were 

then picked to a fresh RNAi plate and allowed to lay eggs. About 120 eggs were 

picked from these plates onto 3 fresh plates containing the RNAi bacteria and 

incubated at the indicated temperatures. The plates were scored for the 

presence of dauers or non-dauers after 3.5-4 days, with some exceptions. For 

assays involving daf-2(e1370); sgk-1(ok538), the strain is slow growing with a 

prolonged L1/L2 arrest and only forms dauers on vector RNAi after 7-8 days. 

Similarly, daf-2(e1370); akt-1(ok525) worms grown on vector and pptr-1 RNAi 
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were also scored after 7-8 days. The pdk-1(sa680) worms have an Egl 

phenotype. For the pdk-1(sa680) dauer assays, eggs were obtained by 

hypochlorite treatment of gravid adults worms grown on vector, daf-18 and pptr-1 

RNAi plates [79]. 

 

Lifespan assays 

All lifespan analyses were performed at 15ºC. Strains were synchronized by 

pickingeggs on to fresh RNAi or OP50 plates and allowed to grow for several 

days until they became young adults. Approximately 60 young adult worms were 

transferred to each of 3 RNAi plates for every RNAi clone tested (vector, daf-18 

and pptr-1). For lifespan experiments with overexpression strains, approximately 

60 young adult worms were transferred to 3 fresh OP50 plates for every strain 

tested. Lifespans were performed on RNAi plates or OP50 plates overlaid with 5-

fluorodeoxyuridine (FUDR) to a final concentration of 0.1 mg/ml of agar [80]. We 

observed significantly fewer worms bursting at 15ºC by transferring young adult 

animals rather than L4 animals to FUDR plates. Worms were then scored as 

dead or alive by tapping them with a platinum wire every 2-3 days. Worms that 

died from vulval bursting were censored. Statistical analyses for survival were 

conducted using the standard chi-squared-based log rank test. 

 

daf-2(e1370) Growth Assay 

daf-2(e1370) worms were maintained on vector, pptr-1, daf-18 and daf-16 
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RNAi plates for two generations at 15°C. Approximately 100-150 eggs were 

picked on to two fresh plates for every RNAi clone tested and the plates were 

incubated at 20°C. Worms were scored based upon their stages as larval stages 

1/2 (L1/L2), dauers, larval stage 3 (L3), larval stage 4 (L4) or adults after 3.5 

days. 

 

Heat stress assays 

Wild type and daf-2(e1370) animals were maintained on RNAi bacteria at 

15ºC. From these plates, approximately 30 young adult worms were picked onto 

fresh vector, daf-18 and pptr-1 RNAi plates. These plates were shifted to 20°C 

for 6 hrs. The plates were then transferred to 37oC and heat stress-induced 

mortality was determined every few hours until all the animals were dead. 

Statistical analyses for survival were conducted using the standard chi-squared-

based log rank test. 

 

Fat staining 

Sudan Black staining of stored fat was performed as previously described 

(Kimura et al., 1997). Briefly, wild type and daf-2(e1370) worms on RNAi plates 

were synchronized by picking eggs on to fresh RNAi plates and grown until the 

L3 stage. The worms were then washed off the 3 plates and incubated in M9 

buffer for 30 minutes on a shaker at RT. After 3 washes with M9 buffer, the 

worms were fixed in 1% paraformaldehyde. The worms were then sequentially 
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dehydrated by washes in 25%, 50% and 70% ethanol. Saturated Sudan Black 

(Sigma, USA) solution was prepared fresh in 70% ethanol. The fixed worms were 

incubated overnight in 250µl of Sudan Black solution, on a shaker at RT, 

mounted on slides and visualized using the Zeiss Axioscope 2+ microscope. 

 

DAF-16::GFP localization assay 

The daf-2(e1370);daf-16::gfp strain was maintained at 15oC on vector, daf-18 

or pptr-1 RNAi plates. About 20-25 L4 or young adults were transferred to fresh 

RNAi bacteria and the plates were shifted to 25oC for 1hr. The worms were then 

visualized using Zeiss Axioscope 2+ microscope. Worms were classified into four 

categories based on the extent of DAF-16::GFP nuclear-cytoplasmic distribution. 

+: completely cytoplasmic; ++: nuclear in some tissues but cytoplasmic in 

majority of the tissues; +++: cytoplasmic in some tissues but nuclear in majority 

of the tissues; ++++: nuclear localization in all tissues [10] 

 

Psod-3::GFP expression 

daf-2(e1370); Psod-3::gfp(muIs84) worms were grown at 15oC on RNAi 

plates as described above. About 25-30 L4/young adults were transferred to 

fresh RNAi plates and shifted to 25oC for 2 hrs. The expression of GFP was 

visualized using Zeiss Axioscope 2+ microscope. Worms were classified into 

three categories based on the intensity of GFP expression. High: bright GFP 

expression seen throughout the worm; Medium: Low GFP expression in the 
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worm body; Low: weak or barely detectable GFP expression in the body. GFP 

expression in the head region does not change dramatically.  

 

Transgenic worms 

A 3 kb sequence of the pptr-1 promoter and the pptr-1 ORF were cloned into 

separate entry vectors [29,81] using Gateway Technology (Invitrogen, USA) and 

confirmed by DNA sequencing. The promoter and ORF were then combined 

using multi-site Gateway cloning into the pSCFTdest vector to create thepSCFT-

pptr-1. An unc-119 promoter::ORF fusion mini-gene was constructed as 

described [82] and cloned into pUC-19 vector between EcoRI sites. The unc-119 

mini-gene insert was then excised by EcoRI digestion, followed by gel 

purification, and then blunt ended with T4 DNA Polymerase (Roche 

Biochemicals, USA) and cloned into pSCFT-pptr- 1 (at the filled-in SphI site) 

giving rise to the pSCFT-pptr-1-unc-119 vector. This construct was used in 

biolistic transformation (Biorad, USA) of unc-119(ed3) mutants [82,83] Integrated 

lines were back-crossed four times to wild-type and used for further analysis. For 

the akt-2::gfp construct, a 3 kb sequence of the akt-2 promoter was cloned into 

the corresponding entry vector and the akt-2 ORF from the ORFeome were 

combined using multisite Gateway technology into the R4-R2 destination vector 

[29]to create akt-2::gfp-unc-119(+) vector. This vector was verified by restriction 

digestion and integrated transgenic lines were obtained by biolistic 

transformation (Biorad, USA) [82,83] 
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C. elegans immunoprecipitation (IP) and western blotting 

 Transgenic worms were grown in three 100 mm plates seeded with OP50 

bacteria at 20 oC. Worms were harvested by washing with M9 buffer and pellet 

collected by centrifugation. The pellet was resuspended in 250 µl lysis buffer (20 

mM Tris-Cl, 137 mM NaCl, 10% glycerol, 1% Triton X-100, 25 mM β -

glycerophosphate, Protease inhibitor cocktail (Roche Biochemicals, USA), pH 

7.4). The worms were sonicated with Bioruptor (Diagenode, USA) using 

maximum power output (1 min sonication, 2 min off-repeated 10 times). The 

lysate was cleared by centrifugation and protein content estimated by Bradford 

method. Lysate equivalent to 1.5 mg total protein was pre-cleared with 50 µ l of 

protein-G agarose beads, fast flow (Upstate, USA) and then immunoprecipitated 

overnight at 4 oC using either anti-GFP monoclonal antibody (Sigma, USA) or 

anti-FLAG M2 gel (Sigma, USA). The following morning, 50 µl protein-G agarose 

beads, fast flow were added to the GFP IP to capture the immune complex. The 

agarose beads were then washed 5 times with lysis buffer. Following this step, 

the beads were boiled in Laemelli’s buffer. For western blot analysis, 

immunoprecipitated protein samples was resolved on a 10% SDS-PAGE and 

transferred to nitrocellulose membranes. Membranes were blocked in TBST (Tris 

Buffered Saline containing 0.05% Tween 20, ph 7.4) containing 5% non-fat milk 

at RT for 1 hour.  Membranes were then washed with TBST and incubated 

overnight with 1:1000 dilutions of antibodies in TBST containing 5% non-fat milk 

4 ºC.  Membranes were washed 3 times with TBST and then incubated with 
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TBST containing 5% non-fat milk containing a 1:10,000 dilution of the secondary 

antibody.  

Antibodies used for western were: 

Living Color DsRed antibody (Clontech, USA; Catalog no. 632496) 

Living Color Rabbit polyclonal GFP antibody (BD Biosciences, USA; Catalog no. 

632460) 

Monoclonal mAb 3e6 GFP antibody (Invitrogen, USA; Catalog no. A11120) 

Anti-FLAG M2 Affinity Gel (Sigma, USA; Catalog no. A2220). 

 

C. elegans phospho-AKT western blotting: 

Transgenic worms were grown at 20 oC in 3-4 large (100 mm) plates 

seeded with OP50. Worms were collected by washing with 1 X PBS and the 

pellet was then immediately frozen in dry ice. Around 500 µ l lysis buffer, 

supplemented by Sigma Phosphatase inhibitor cocktails I and II (50x) and 

Protease inhibitor cocktail (Roche Biochemicals, USA) was added to the pellet 

and sonicated using a Misonix (3000) sonicator (Misonix, USA; power output set 

at 4, 3 pulses of 10 secs each with 1 min interval between pulses). The lysates 

were clarified by centrifugation at 13000 rpm for 10 mins at 4oC and the protein 

content estimated by Quick Bradford (Pierce). About 3.5 µ g of anti-GFP 

monoclonal antibody (3E6, Invitrogen USA) was used for each IP from lysates 

containing 1.7 mg protein in a volume of 1ml. IPs were performed overnight at 

4oC and antibody-protein complexes were captured using 50 µ l of protein-G 
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agarose beads, fast flow (Upstate, USA) for 2 hrs at 4oC. The pellets were 

washed 3 times with lysis buffer supplemented by protease and phosphatase 

inhibitors and boiled in Laemelli’s buffer. The IP samples were then resolved on a 

10% SDS-PAGE, western blotted and analyzed with phospho-specific antibodies.  

 

Mammalian cell culture and phospho-Akt Western blotting 

3T3-L1 adipocytes were cultured and differentiated as previously 

described [84].   For siRNA transfections, cells from 4 days post-induction of 

adipocyte differentiation were used as previously described [85].  Cells were 

stimulated with increasing concentrations of insulin and isolated proteins were 

analyzed by Western blotting.  

 

Cell culture and siRNA transfection: 

3T3-L1 adipocytes were cultured and differentiated in complete Dulbecco’s 

modified Eagle’s medium (10% fetal bovine serum, 50 units/ml penicillin, and 50 

g/ml streptomycin) as previously described [84]. For siRNA transfections, cells 

from 4 days postinduction of adipocyte differentiation were used as previously 

described (Tang et al., 2006). Briefly, 1.125 x 106 cells were electroporated using 

6 nmol of siRNA and then plated in 5 wells of a 12-well plate. Cells were 

recovered in complete DMEM and cultured for 48 h after the transfection prior to 

the experiments. 
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Insulin stimulation and phospho-Akt western blotting 

3T3-L1 adipocytes transfected with siRNA were serum-starved for 18 hours. 

Cells were stimulated with increasing concentrations of insulin for a period of 30 

minutes. Following insulin stimulation, the cells were washed with ice-cold PBS 

and harvested on ice as described previously [84]. Protein samples were 

resolved on 8% SDS-PAGE and transferred to a nitrocellulose (NC) membrane. 

Antibodies used were Phospho-Akt Ser 473 (Cell Signaling, USA; Catalog no. 

9271), Phospho-Akt Thr 308 (Cell Signaling, USA; Catalog no. 9275), total Akt 

antibody (Cell Signaling, USA; Catalog no. 9272). Secondary antibody incubation 

was performed as above in 1% BSA. Changes in the phosphorylation of Akt pSer 

473 and pThr 308 were quantified through densitometry using NIH ImageJ and 

normalized for loading against the non-phosphorylated total Akt levels. 

 

RNA isolation and real-time PCR 

RNA was isolated using Trizol (Invitrogen, USA). Briefly, worms grown on 

vector, daf-16, daf-18 or pptr-1 RNAi were washed off the plates with M9 buffer. 

Next, 0.3 ml of Trizol reagent was added and the worm mixture was vortexed 

vigorously. The RNA was then purified by phenol:chloroform:isoamylalcohol 

extraction and ethanol precipitation. The concentration and the purity of the RNA 

were determined by measuring the absorbance at 260/280 nm. To further 

determine the quality of the RNA, the quality of the ribosomal 28 S and 18 S was 

visually inspected on an agarose gel. Next, cDNA was synthesized using 2 µg of 



  95 

RNA and the SuperScript cDNA synthesis kit (Invitrogen, USA).  Gene 

expression levels were determined by real time PCR using the SYBR® Green 

PCR Master Mix and 7000 Real-Time PCR System (Applied Biosystems, USA). 

Relative gene expression was compared to actin as an internal loading control.  

 

DAPI Staining 

pptr-1::mC-flag worms were grown on a plate with OP50 as the food source. 

Worms were washed off the plate with PBS and rinsed an additional three times 

with PBS collecting the worms each time by briefly spinning the worms at 3000 

rpm for 1 minute. After the final spin, the supernatant was removed and 500µl of 

3% Formaldehyde (diluted with potassium phosphate buffer, KH2PO4) was 

added to the worm pellet. The samples were fixed for 15-20 minutes with gentle 

shaking, followed by addition of 500µl of PBS-Tween (0.1%) and another gentle 

mix. The samples were then spun at 3000rpm for 1 minute and washed twice 

with PBS-Tween and the supernatant was removed. 2µl of DAPI (1mg/mL, 

Sigma D9542) added to 500µl of PBS and the samples were incubated in this 

solution for 15-20 minutes before mounting on slides and visualized using the 

Zeiss Axioscope 2+ microscope. 
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Table 2.2: List of Strains used in this study 

Strains used in this study: N2 (wild type), Pdaf-16a::daf-16a::gfp, CB1370 [daf-
2(e1370)], DR1572 [daf-2(e1368)], RB759 [akt-1(ok525)], JT9609 [pdk-1(sa680)], 
VC204 [akt-2(ok393)], VC345 [sgk-1(ok538)] and PD4251. Strains generated for this 
study are listed below. 
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 Preface 
 

This section provides a further perspective on our findings from Chapter 2.  We 

discuss additional aspects of PPTR-1 function and regulation in the context of 

insulin/IGF-1 signaling. 

 

The following section has been published as: 

 

Narasimhan SD, Mukhopadhyay A and Tissenbaum HA (2009). InAKTivation of 
insulin/IGF-1 signaling by dephosphorylation. (Review). Cell Cycle Dec; 8(23): 
3378-84 
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Summary 

Signal transduction pathways are tightly regulated by phosphorylation-

dephosphorylation cycles and yet the mammalian genome contains far more 

genes that encode protein kinases than protein phosphatases. Therefore, to 

target specific substrates, many phosphatases associate with distinct regulatory 

subunits and thereby modulate multiple cellular processes. One such example is 

the C. elegans PP2A regulatory subunit PPTR-1 that negatively regulates the 

insulin/insulin-like growth factor signaling pathway to modulate longevity, dauer 

diapause, fat metabolism and stress resistance.  PPTR-1, as well as its 

mammalian homolog B56β, specifically target the PP2A enzyme to AKT and 

mediate the dephosphorylation of this important kinase at a conserved threonine 

residue. In C. elegans, the major consequence of this modulation is activation of 

the FOXO transcription factor homolog DAF-16, which in turn regulates 

transcription of its many target genes involved in longevity and stress resistance. 

Understanding the function of B56 subunits may have important consequences in 

diseases such as Type 2 diabetes and cancer where the balance of Akt 

phosphorylation is deregulated. 
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Introduction 

Recent studies have identified B56 regulatory subunit of PP2A as a critical 

modulator of insulin/IGF-1 signaling in the nematode Caenorhabditis elegans (C. 

elegans) and mammalian cells as well as in the fruitfly Drosophila melanogaster 

[86,87]. Here we discuss how this regulatory subunit directs the otherwise 

broadly expressed PP2A to Akt and regulates its dephosphorylation at its 

conserved Threonine residue [86].  In C. elegans, this results in changes in 

longevity, fat metabolism, dauer diapause and stress resistance [86]. The 

insulin/IGF-1 signaling pathway is structurally as well as functionally conserved 

between nematodes, flies and higher organisms such as rodents and humans 

(Figure 2.6)[4]. In C. elegans, the insulin/IGF-1 signaling pathway regulates 

longevity, dauer diapause, fat metabolism and stress resistance [1,2,3]. This 

pathway is typically termed insulin/IGF-1 signaling as the receptor in the 

pathway, encoded by the gene daf-2, is equally related to both, the mammalian 

insulin receptor and insulin-like growth factor receptor [5]. Further, the ligand for 

this receptor has not been verified biochemically.   

Downstream of the daf-2 receptor is a phosphatidylinositol (PI) 3-kinase 

signaling pathway that ultimately regulates the major target of this cascade, the 

Forkhead transcription factor box O  (FOXO) homolog daf-16 [11]. In mammals 

and worms, PI 3-kinase activation results in the conversion of membrane 

phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2) to phosphatidylinositol 

(3,4,5)-trisphosphate (PI(3,4,5)P3) [88]. In mammals and presumably in worms, 
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PI(3,4,5)P3 phosphoinositides recruit phosphoinositide-dependent kinases such 

as phosphoinositol-dependent kinase 1 (PDK-1) and Akt to the plasma 

membrane through their pleckstrin homology (PH) domains, subsequently 

leading to their activation [89].  

C. elegans has two different AKT proteins, AKT-1 and AKT-2 [9]. In addition, 

the serum- and glucocorticoid-inducible kinase 1 (SGK1), which is closely related 

to Akt, has been shown to act at the same level as Akt in the pathway [90]. 

Similar to mammals, in C. elegans activated AKT-1/2 and SGK-1 can 

phosphorylate DAF-16/FOXO on distinct serine/threonine residues, and this 

leads to its inactivation as well as cytoplasmic sequestration by the 14-3-3 

proteins (Figure 2.6) [11]. Under low insulin-signaling conditions, DAF-16/FOXO 

is able to translocate into the nucleus and transactivate or repress its many target 

genes. Several genome-.wide studies have revealed antioxidant genes, 

molecular chaperones, detoxification genes, antimicrobial genes and metabolic 

genes as direct or potential targets of DAF-16 [58]. These target genes may 

regulate longevity, stress-resistance, dauer diapause and metabolism in a 

combined manner.  

Given that insulin/IGF-1 signaling regulates multiple cellular processes, tight 

regulation of kinase activity at each step is important to maintain the threshold of 

signals to elicit appropriate cellular responses. While many of the kinases in 

insulin/IGF-1 signaling have been well characterized, little is known about the 

phosphatases that downregulate signals through the pathway. The most well 
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studied negative regulator of insulin/IGF-1 signaling is the lipid phosphatase and 

tensin homolog PTEN [91]. In C. elegans, the PTEN homolog DAF-18 negatively 

regulates PI3-kinase signaling to ultimately promote DAF-16 nuclear localization 

and function. Loss-of-function mutations or knockdown by RNA interference of 

daf-18 results in stress resistance, dauer suppression and reduced fat storage 

[86].  

 

PPTR-1/B56 regulates Insulin/IGF-1 Signaling 

We reasoned that there would be additional phosphatases in the pathway in 

addition to DAF-18/PTEN to counterbalance the effects of the kinases.  We 

performed a directed RNAi screen in C. elegans that assessed the role of 60 

putative serine/threonine phosphatases in modulating the insulin/IGF-1 signaling 

pathway by using dauer diapause as a readout [86]. We also included six 

regulatory subunit genes of the PP2A holoenzyme (explained further below). In 

the screen, we assayed for the contribution of the different serine/threonine 

phosphatases on daf-2 dauer formation. Our positive control was daf-18 RNAi, 

as we were primarily interested in genes that functioned as negative regulators of 

the pathway. We did, however, identify several genes that when knocked down 

by RNAi, resulted in enhanced dauer formation. These may represent 

phosphatases that act as activators of the pathway or even positive regulators of 

kinase activity. Among the negative regulators identified in the screen, our top 

candidate was the gene protein phosphatase two A (2A) regulatory subunit-1  
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Figure 2.6: PPTR-1/B56ß is a conserved regulator of insulin/IGF-1 signaling  
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(pptr-1) [86]. Knockdown of pptr-1 by RNAi resulted in robust suppression of 

dauer formation similar to daf-18 RNAi. 

  In addition to dauer diapause, the insulin/IGF-1 pathway also regulates 

longevity, stress resistance and fat metabolism [2]. Phenotypic analyses revealed 

that pptr-1 was a robust modulator of these additional outputs. Indeed, while pptr-

1 RNAi resulted in a reduction in the lifespan of long-lived insulin/IGF-1 receptor 

(daf-2) mutants, overexpression of pptr-1 conferred almost 30% extension in 

lifespan [86]. Further, pptr-1 RNAi resulted in decreased thermotolerance as well 

as decreased fat storage in daf-2 mutants, but not in wild type animals. Similarly, 

a recent screen performed in the fruitfly Drosophila melanogaster to identify 

phosphatases that function in the insulin/IGF-1 signaling pathway identified the 

pptr-1 homolog widerborst as negative regulator of the pathway and consistent 

with our findings, widerborst was found to be an important regulator of fat 

metabolism [87]. 

As mentioned earlier, pptr-1 encodes a regulatory subunit of the PP2A 

holoenzyme. PP2A is an abundant serine/threonine protein phosphatase that 

functions as a holoenzyme consisting of a 36 kDa invariant catalytic core, a 

65kDa structural scaffold and a variable regulatory subunit [92]. PP2A has been 

implicated in several cellular processes such as insulin signaling, cell cycle 

progression and translation [93]. In our screen, we found that RNAi knockdown of 

the PP2A catalytic and structural subunits in C. elegans resulted in lethality, 

substantiating the fact that knockdown of such a broadly required phosphatase 
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produces detrimental effects on multiple cellular functions. Importantly, it is the 

association of the catalytic and structural core with distinct regulatory subunits 

that enables the PP2A holoenzyme to modulate multiple processes and yet 

retain substrate specificity [92,94,95].  

There are three predominant families of mammalian PP2A regulatory 

subunits: the B/B55/PR55, B’/B56/PR61 and B’’/PR72 families [92] and currently 

at least 15 human genes have been identified that encode distinct regulatory 

subunits [96]. Further, these genes may have additional splice forms that vastly 

increase the total number of regulatory subunits that associate with the catalytic 

and structural subunits, ultimately providing substrate specificity as well as 

distinct spatio-temporal localization within the cell.  Post-translational 

modifications such as methylation and phosphorylation of the C-terminal tail of 

the PP2A catalytic subunit can affect the binding of members of the B subunit to 

the holoenzyme [64]. This may constitute additional level of regulation to achieve 

substrate specificity. 

 C. elegans has at least seven genes that encode for regulatory subunits and 

they fall into each of the three PP2A regulatory subunit families 

(www.wormbase.org) [86]. pptr-1 belongs to the B56 family of PP2A regulatory 

subunits.  In our studies, we examined six out of the seven regulatory subunits 

and found that only pptr-1, and none of the other five genes, showed significant 

effects on dauer formation, thus highlighting a specific role for this regulatory 

subunit [86]. Tissue-expression patterns of these regulatory subunits indicate that 
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they are not as broadly expressed, spatially or temporally, as the catalytic subunit 

of PP2A. Indeed, we found that PPTR-1/B56β was only expressed in discrete 

sets of tissues, including the spermatheca, vulva and several neurons in the 

worm (Figure 2.7)[86]. In Drosophila as well as mammals, members of the B56 

family show distinct sub-cellular localization patterns as well, with B56α, B56β 

and B56ε showing cytosolic expression while B56γ shows both, nuclear as well 

as cytosolic expression [63,87]. In agreement with this finding, DAPI staining and 

confocal microscopy showed that C. elegans PPTR-1/B56β was predominantly 

cytosolic [86].  

 

PPTR-1/PP2A and Akt  

To investigate how a single regulatory subunit, PPTR-1, was able to modulate 

multiple outputs of insulin/IGF-1 signaling, we performed genetic epistasis 

analyses with mutants in the insulin/IGF-1 signaling pathway. Epistasis analyses 

using dauer formation as a readout of the insulin/IGF-1 signaling pathway 

revealed that pptr-1 acts downstream of pdk-1, at the level akt-1 [86]. Knockdown 

of pptr-1 by RNAi could strongly suppress dauer formation of daf-2, and pdk-1 

single mutants as well as daf-2; akt-2 and daf-2; sgk-1 double mutants. However, 

pptr-1 RNAi had no effect on the dauer formation of daf-2; akt-1 double mutants, 

and therefore, we concluded that there was a genetic interaction between pptr-1 

and akt-1.  
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 Akt belongs to the AGC family of protein kinases that also include Protein 

Kinase A, C, ribosomal S6 kinase (S6k) and SGK1 [74]. Akt has been shown to 

be at the crossroads of several signaling cascades such that active Akt is a 

regulator of cell cycle progression, cell survival, glucose metabolism as well as 

protein synthesis [67,97]. Mammalian studies have shown that activation of Akt is 

achieved through the phosphorylation of two main residues, Threonine 308 and 

Serine 473 [53,67,97]. While the Thr308 residue is phosphorylated by the PDK-1 

kinase, the mammalian target of rapamycin  (mTOR) complex 2 (TORC2) 

phosphorylates Serine 473 [53]. At the protein level, C. elegans AKT-1 and AKT-

2 share nearly 60% sequence homology [9]. Interestingly, AKT-1 contains both 

the Thr 350 (mammalian 308) as well as the Serine 517 (mammalian 473) 

residues, whereas AKT-2 lacks the C-terminal serine residue [9,86]. Tissue 

expression analyses show that AKT-1 and AKT-2 share overlapping expression 

in multiple tissues [9,86]. 

In C. elegans, AKT-1, AKT-2 and SGK-1 can form a complex to negatively 

regulate DAF-16 by direct phosphorylation [10]. However these kinases show 

phenotypic differences as well. Reduction of function mutations or RNAi of akt-1 

and/or akt-2 results in enhanced dauer formation as well as lifespan extension 

[9]. Mutation or RNAi of sgk-1 has been shown to either increase or decrease 

lifespan and have a minor effect on dauer formation [10]. As shown in Figure 2.7, 

there are also differences in the expression patterns in C. elegans for AKT-1, 

AKT-2 and SGK-1. 
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Humans have three Akt proteins, Akt1, Akt2 and Akt3 that are encoded by 

distinct genes and share nearly 80% sequence homology [98]. Based on 

homology, C. elegans AKT-1 is more related to mammalian Akt2 while C. 

elegans AKT-2 shows homology to mammalian Akt3. Studies using gene 

knockouts in mice have revealed more specific roles for each Akt isoform: Akt1 

null mice are small and show defects in placental development. In contrast, Akt2 

null mice show severe defects in glucose metabolism including insulin resistance 

and age-dependent loss of adipose tissue while Akt3 null mice show a reduced 

brain size [98]. Consistent with the role of Akt in growth and cell survival, all three 

Akt mutants show greatly reduced cell size as well as mass [98,99].  

Our genetic epistasis studies showed that pptr-1 acted at the level of akt-1 but 

not on the closely related akt-2 or sgk-1.  Tissue expression analyses revealed a 

remarkable overlap in the expression of PPTR-1 with AKT-1, partial overlap with 

AKT-2 and little or no overlap with SGK-1, pointing at the specificity of the pptr-

1/akt-1 interaction (Figure 2.7) [86].  Consistent with this, in Drosophila, genetic 

epistasis analysis placed widerborst within the PI 3-kinase pathway at the level of 

Akt1 [87]. From these results, we hypothesized that PPTR-1 was modulating 

insulin/IGF-1 signaling and DAF-16 activity by regulating AKT-1 phosphorylation. 

Using affinity-purified phospho-specific antibodies raised against each of the two 

AKT phosphorylation sites in C. elegans, we showed that PPTR-1 modulated Thr 

350 dephosphorylation, and to a lesser extent, Ser 517. This interaction was then 

verified in mammalian 3T3-L1 adipocytes, where mammalian B56β but not other 
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B56 regulatory subunits robustly regulated Akt dephosphorylation at Thr308 [86] 

and the Ser 473 site was unaffected. In Drosophila, Widerborst interacts with 

Akt1 and regulates its dephosphorylation in a PP2A-dependent manner [87]. 

These phosphorylation experiments highlight the remarkable conservation of the 

insulin/IGF-1 signaling pathway in terms of regulation and functionality between 

worms, flies and mammals.  Importantly, regulation of AKT phosphorylation is 

critical in humans as well. Reduced AKT phosphorylation has been associated 

with insulin resistance in patients with type 2 diabetes and hyperphosphorylated 

AKT is common in cancers where PTEN is mutated [74]. 

Recent mammalian studies identified the PH domain leucine rich repeat 

protein phosphatases (PHLPP), members of the PP2C family as important 

regulators of Ser 473, but not Thr 308 of Akt [71,100]. Specifically, PHLPP1 can 

dephosphorylate Akt1 and Akt3 at Ser 473, while PHLPP2 can dephosphorylate 

Akt2 and Akt3 at Ser 473 [100]. As a consequence, these two phosphatases 

elicit different outputs of Akt signaling such as cell cycle control and glycogen 

metabolism respectively. The PHLPP homolog in C. elegans did not affect dauer 

formation in our screen (Padmanabhan and Tissenbaum, unpublished data). 

Consistent with this, our mammalian data showed that siRNA of B56ß or PP2A in 

insulin-stimulated 3T3-L1 adipocytes resulted in enhanced Akt Thr308 

phosphorylation but had no effect on Ser473 phosphorylation [86]. Together, 

these studies reveal how distinct phosphatases can dephosphorylate two distinct 
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residues within a single protein, thereby achieving a remarkable level of 

complexity in the modulation of signal transduction pathways. 

 

PPTR-1/B56 modulates DAF-16/FOXO activity  

What are the functional consequences of PPTR-1-dependent modulation of 

AKT-1 in C. elegans? The major output of C. elegans insulin/IGF-1 signaling is 

the negative regulation of DAF-16/FOXO [2]. Dosage modulation of PPTR-1 had 

opposite effects on DAF-16 nuclear localization: while pptr-1 RNAi resulted in 

more cytosolic and inactive DAF-16, pptr-1 overexpression enhanced DAF-16 

nuclear localization as well as the lifespan of the worms [86]. Similarly, 

overexpression of widerborst in flies results in a reduction in the adult eye, a 

phenotype similar to dFoxo overexpression and co-overexpression of both genes 

results in the enhancement of the dFoxo overexpression phenotype [87]. 

Therefore, both of these studies show that modulation of the PPTR-1/B56β 

dosage can affect FOXO-dependent phenotypes. 

 Phosphorylation of FOXO by Akt at three serine/threonine residues is an 

important determinant of its sub-cellular localization in mammals [101]. In 

addition, DAF-16/FOXO is also positively regulated by JNK, MST-1 and AMP-

dependent kinase (AMPK) through phosphorylations at separate residues [3,13]. 

Therefore, there may be phosphatases that directly dephosphorylate and 

activate/inhibit DAF-16/FOXO itself. In a genome-wide screen for kinases and 

phosphatases that modulated dFOXO subcellular localization, activity and protein 
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stability in Drosophila S2 cells, several kinases were identified, including many 

well-known regulators such as JNK and AKT1, but few phosphatases were 

identified [102].  Since kinases can have both stimulatory and inhibitory functions 

and multiple phosphorylation sites exist, the identification of a DAF-16/FOXO 

phosphatase(s) may require a more detailed approach. For example, the 

sensitization of the insulin/IGF-1 pathway, the type of stress or metabolic state 

(fed versus starved) may result the association of DAF-16/FOXO proteins with 

distinct phosphatases.  Given that DAF-16/FOXO nuclear-cytosolic localization is 

so dynamic, the interaction with the phosphatase(s) may be transient and difficult 

to capture.  Identification of phosphatases that directly modulate DAF-16/FOXO 

function will not only provide a better perspective on the hundreds of genes that 

FOXO proteins transcriptionally activate/repress, but also have implications in 

our understanding of FOXOs in disease [103] [104].  

 

Future directions  

Several questions regarding PPTR-1/B56 and its regulation of the insulin/IGF-

1 pathway via AKT dephosphorylation stem from these findings.  

 

1) Regulation of PPTR-1  

We found that PPTR-1 function was more important under low signaling 

conditions. This was evident by the fact that pptr-1 RNAi reduced the lifespan, fat 

storage and thermotolerance of daf-2 mutant worms but did not affect wild type 
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worms.  It is possible that under low insulin/IGF-1 signaling, PPTR-1 functions to 

sensitize the pathway even further to ultimately promote survival. In the context 

of mammals, it will be intriguing to further study the role of PPTR-1/B56, and 

determine if levels of blood glucose (or more broadly, nutritional status) modulate 

the activity of this protein. Studies have shown that PP2A itself is downregulated 

under normal insulin signaling conditions [66].   

Similarly, PPTR-1 itself, may also be regulated either at the transcriptional 

level or posttranscriptionally. Indeed in cardiomyocytes, an increase in wild type 

or constitutively active FOXO resulted in a corresponding decrease in PP2A 

activity and subsequent activation of Akt, thereby indicating a feedback loop 

[105].  Therefore, further studies will help to identify the upstream cues that 

activate or repress PPTR-1/B56 activity.  

2) The role of other subunits 

Our studies in C. elegans show that PPTR-1 modulates multiple processes 

associated with insulin/IGF-1 signaling. Importantly, given that AKT is at the focal 

point of several signaling pathways, the question that arises is whether PPTR-1 

is a broad regulator of AKT activity, or does it specifically play a role in insulin-

dependent activation of AKT?  The other regulatory subunits did not significantly 

affect dauer diapause, but are likely to modulate other PP2A-dependent 

processes, even possibly other outputs of the pathway such as lifespan, stress 

resistance and fat metabolism. Biochemical approaches such as 
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immunoprecipitation followed by mass spectrometry may help to identify the C. 

elegans substrates for these other regulatory subunits and PP2A.  

 

3) Tissue-specificity 

A third aspect that would be interesting to investigate further is the tissue-

specific regulation of PPTR-1/B56. Although PPTR-1 is expressed in a subset of 

tissues, modulation of PPTR-1 dosage resulted in changes in organismal 

longevity suggesting that cell non-autonomous regulation and neuroendocrine 

signaling is important for this function (Figure 2.7). In addition to the head 

neurons, PPTR-1 shares remarkable overlap with AKT-1 in the spermatheca and 

vulva. Interestingly, AKT-1::GFP[9,86] and PPTR-1::GFP [86] did not show any 

expression in the intestine, the major tissue for fat storage in the worm. 

Moreover, tissue-specific studies have shown that the intestine is the most 

important tissue for DAF-16-dependent regulation of lifespan [62]. Akt-dependent 

phosphorylation is the major mechanism by which the activity of DAF-16/FOXO 

is regulated. Therefore, how and when does the direct regulation of AKT and 

DAF-16 occur? Further studies are necessary in worms as well as mammals to 

determine how PPTR-1/B56 regulates insulin/IGF-1 signaling in the context of 

the whole organism. 

All of our expression studies and biochemistry experiments in C. elegans 

used overexpression strains, as we were unable to pull-down endogenous AKT-

1. It is possible that there are low levels of expression that we could not detect in 
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the intestine or that the AKT-1::GFP strain for some reason was not expressed in 

the intestine.  We found that SGK-1::GFP and PPTR-1::mCherry-FLAG showed 

no overlap in their expression, and yet AKT-1, AKT-2 and SGK-1 have been 

shown biochemically to form a complex to regulate DAF-16 activity [10]. It is 

unclear if the tagged versions of these proteins entirely phenocopy the roles of 

native proteins and further experiments such as immunostaining with antibodies 

to target endogenous AKT, SGK-1 and PPTR-1 may provide a better 

understanding of their expression patterns, interaction and regulation. Finally, we 

identified a number of additional candidates in our RNAi screen that could 

potentially be important regulators of insulin/IGF-1 signaling. The phosphatases 

that negatively regulate PDK-1, AKT-2, SGK-1 and DAF-16 itself are currently 

unknown and identification of these would provide us with a much better 

understanding of the regulation of this important pathway. 

Taken together, the PPTR-1/B56 regulatory subunit of PP2A is a novel and 

robust modulator of the insulin/IGF-1 signaling pathway. By regulating the 

dephosphorylation of a conserved threonine residue on Akt, PPTR-1/B56 can 

activate DAF-16/FOXO and positively regulate its transcriptional activity. The 

genes that are up/downregulated as a consequence are likely to play a 

combinatorial role in regulating longevity, stress resistance, dauer diapause and 

fat metabolism.  Given its extensive conservation and the key role AKT-1 plays in 

mammals, further studies on PPTR-1/B56 could be of critical importance for 

diseases, such as cancer and diabetes. 
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Figure 2.7: Overlapping and distinct expression patterns of insulin/IGF-1 

signaling components suggest a possible neuroendocrine regulation of the 

pathway. 
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Preface to Chapter 3 

This chapter describes the characterization of the phosphatase PDP-1 and its 

role in modulating the insulin/IGF-1 signaling pathway through negative 

regulation of TGF-β signaling. The work in the following chapter was a 

collaborative effort. Ankita Bansal, a graduate student in the lab, did the fat 

staining assays in Figure 3.2 and dauer assays in Figure 3.3. I performed all the 

other experiments in this chapter. This chapter is a part of the following 

manuscript that Dr. Heidi Tissenbaum and I wrote that has been submitted for 

publication: 

 

Narasimhan SD, Yen K, Bansal A, Padmanabhan S and Tissenbaum HA 
(2010). PDP-1 Regulates Lifespan, Fat and Development through the 
Insulin/IGF-1 and TGF-β signaling pathway (Submitted). 
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Summary 

The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of 

longevity, development and metabolism. In C.elegans, IIS involves activation of 

DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI3-kinase) and 

additional downstream serine/threonine kinases that ultimately phosphorylate 

and negatively regulate the single FOXO transcription factor homolog DAF-16. 

Phosphatases help to maintain cellular signaling homeostasis by 

counterbalancing kinase activity. However, few phosphatases have been 

identified that negatively regulate IIS pathway.  

Here we identify and characterize PDP-1 as a novel negative modulator of the 

IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as 

longevity, fat storage and a developmental stage known as dauer. In addition, 

PDP-1 promotes DAF-16 nuclear localization as well as transcriptional activity. 

Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β 

signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. The 

DAF-7/TGF-β signaling pathway regulates insulin gene expression in worms and 

consistent with this, we find that PDP-1 modulates the expression of several 

insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 

activity.  

Dysregulation of IIS and TGF-signaling has been implicated in diseases such 

as Type 2 diabetes, obesity and cancer. Our results may provide a new 
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perspective in our understanding of the regulation of these pathways under 

normal conditions and in the context of disease.  
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Introduction 

Insulin/IGF-1 signaling (IIS) is a conserved neuroendocrine pathway that 

regulates longevity, development and energy metabolism across phylogeny [1,2]. 

In the roundworm Caenorhabditis elegans, activation of the DAF-2 insulin/IGF-1 

receptor tyrosine kinase intiates an AAP-1/AGE-1 PI 3-kinase signaling cascade 

involving the downstream serine/threonine kinases PDK-1, AKT-1, and AKT-2 

[3,4,5,6,7]. Activated AKT-1 and AKT-2 phosphorylate DAF-16, the single 

Forkhead O family transcription factor homolog in C.elegans [8]. Phosphorylation 

of DAF-16 results in its inactivation and sequestration in the cytosol [9,10]. Under 

low signaling conditions, DAF-16 translocates into the nucleus, where it can 

transactivate/repress hundreds of target genes [9,10,11,12,13].  

The dauer is an alternative survival stage that worms can enter upon poor 

environmental conditions and crowding [14]. Mutations in the kinases upstream 

of DAF-16 result in an increase in lifespan, dauer formation, fat storage and/or 

stress resistance, and loss-of-function mutations in daf-16 completely suppress 

these phenotypes [15,16,17,18]. Besides the IIS pathway, dauer formation in 

C.elegans is also regulated by a TGF-β like pathway [19,20,21]. Activation of 

TGF-β signaling is achieved through binding of the DAF-7 BMP-like ligand to the 

DAF-1/DAF-4, the Type I/II receptors, which phosphorylate and activate the 

downstream receptor-associated SMAD (R-SMAD) proteins DAF-8 and DAF-14. 

Under normal signaling conditions, these SMADs act to antagonize the 

transcriptional activity of the DAF-3 Co-SMAD and the DAF-5 SNO-SKI repressor 
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[22,23,24,25,26,27]. Reduction of function mutations in daf-7, daf-1, daf-4, daf-8 

and daf-14 show temperature-sensitive constitutive dauer-formation and 

mutations in daf-3 and/or daf-5 completely suppress this phenotype [21,28].   The 

DAF-7/TGF-β is thought to act in a parallel manner with IIS to modulate dauer 

formation [29,30,31]. 

   The PTEN lipid phosphatase homolog DAF-18, which antagonizes signaling at 

the level of AGE-1/PI3-kinase, is a major negative regulator of IIS.  In contrast to 

the kinases, loss-of-function mutations in daf-18 result in a reduction in lifespan, 

fat storage, dauer formation and stress resistance [30,32,33,34,35,36]. We 

recently performed a directed RNA interference (RNAi) screen for 

serine/threonine phosphatases that regulate C.elegans IIS using dauer formation 

as an output [37].  We identified the PP2A regulatory subunit PPTR-1 as an 

important regulator of AKT dephosphorylation as well as of DAF-16-dependent 

phenotypes [37]. Here we characterize PDP-1, another candidate from this 

screen.  Dosage modulation of PDP-1 regulates multiple outputs of the IIS 

pathway. PDP-1 shares significant homology with mamalian pyruvate 

dehydrogenase phosphatase (PDP). PDP-1 is an important metabolic enzyme 

that positively regulates the pyruvate dehydrogenase enzyme complex (PDHc). 

To our surprise, RNAi of components of the PDHc in worms have little effect on 

dauer formation and other outputs of the pathway. Interestingly, we report that 

PDP-1 acts in the DAF-7/TGF-β pathway but is a robust modulator of IIS as well 

as DAF-16 activity. Through these studies, we suggest that IIS and TGF-β 
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signaling are more tightly connected than previously appreciated and we point to 

the insulins as a potential mediator of the crosstalk between these two pathways.  
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Results 

1. C.elegans PDP-1 regulates daf-2 dauer formation independent of PDH 

 Our RNAi screen was designed to identify serine/threonine phosphatases 

that modulated dauer formation of daf-2(e1370), a temperature-sensitive mutant 

of the insulin/IGF-1 receptor daf-2 [38]. We were particularly interested in 

phosphatases that would negatively regulate IIS similar to DAF-18/PTEN, and for 

all RNAi based assays described below, daf-18 RNAi was used as a positive 

control [37].  From this screen, we identified pdp-1 as a modulator of daf-

2(e1370) dauer formation (Fig 3.1A and Fig 3.3).  We find that pdp-1 RNAi 

significantly reduces dauer formation of daf-2(e1370) worms, similar to daf-18 

RNAi (Figure1). This phenotype is not allele-specific, as pdp-1 RNAi results in 

suppression of dauer formation in a different allele of daf-2, daf-2(e1368) (Figure 

3.1B and Fig 3.3). Similar to the results with the RNAi, a mutation in pdp-1 also 

affects dauer formation - pdp-1(tm3734); daf-2(e1370) double mutants form  

significantly fewer dauers when compared with the daf-2(e1370) parental strain 

(Figure 3.3). 

   The gene pdp-1 bears approximately 54% homology with fly and mammalian 

pyruvate dehydrogenase phosphatase (PDP), based upon BLAST search 

results.  Given its homology to PDP in higher organisms, we wondered whether 

the effect of pdp-1 knockdown on daf-2 dauer formation was a consequence of 

modulating the activity of the pyruvate dehydrogenase enzyme complex (PDHc). 

The PDHc is a multi-subunit enzyme complex consisting of three major enzymes: 
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E1 pyruvate dehydrogenase, E2 dihydrolipoyl acetyltransferase and E3 

dihydrolipoyl dehydrogenase that regulate energy metabolism [39]. Active PDHc 

converts pyruvate to acetyl-coA, which can either enter the TCA cycle or be used 

for fatty acid synthesis. In mammals, regulation of PDHc activity is primarily 

achieved through reversible phosphorylation/dephosphorylation of the E1α 

subunit by pyruvate dehydrogenase kinase (PDHK) and pyruvate dehyrogenase 

phosphatase (PDP), with phosphorylation inactivating the enzyme complex [39].   

All of the components of the PDH complex have conserved C.elegans 

homologs, encoded by the genes T05H10.6 (E1α), C04C3.3 (E1β), F23B12.5 

(E2), LLC1.3 (E3), pdhk-2 (PDHK) and pdp-1 (PDP). To test whether modulation 

of PDHc activity affects daf-2 dauer formation, we grew daf-2(e1370) worms on 

PDHc RNAi. We observed significant reduction in the transcripts of the PDHc 

components with our RNAi clones (Figure 3.1H). To our surprise, RNAi of the 

E1α subunit had no effect on daf-2 dauer formation, while pdp-1 RNAi resulted in 

dauer suppression (Figure 3.1C). In addition, RNAi of both the E1 subunits, E1α 

and E1β, or the E2 subunit did not affect daf-2 dauer formation (Figure 3.1). 

Knockdown of the E3 subunit resulted in lethality (data not shown). Interestingly, 

pdhk-2 RNAi resulted in slight suppression daf-2(e1370) dauer formation (Figure 

3.1) but this was observed to be an allele-specific effect as pdhk-2 RNAi had no 

effect on dauer formation of daf-2(e1368) as well as on pdk-1(sa680) mutants 

(Figure 3.1D & E). 
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 In addition, we did not observe significant overlap between the tissue 

expression patterns of PDP-1 with those of the E1 and E2 subunits (Figure 3.1). 

PDP-1 expression was enriched in the head muscle, several neurons in the head 

and pharynx, intestine and tail neurons. We did not observe any expression in 

the pharynx. In contrast, E1 and E2 expression was observed throughout the 

body of the worm but was significantly enriched in the pharynx. Based upon our 

genetic and expression data, PDP-1 modulates daf-2 dauer formation and this 

function is likely to be independent of its role in regulating the PDHc. 
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a The experiments for pdhk-2 RNAi were performed independently 
 

Figure 3.1: PDP-1 regulates daf-2 dauer formation independent of the PDHc 

Error bars indicate the standard deviation among the different RNAi plates within 

one experiment. Data shown are from one representative experiment in all the 

assays except for Figure 3.1H 
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A) pdp-1 RNAi suppresses daf-2(e1370) dauer formation similar to daf-18 RNAi. 

Dauer formation of daf-2(e1370) was 56.5 ± 8.0 % (n=278) on vector RNAi, 18.9 

± 0.8 % (n=79)  on daf-18 RNAi (p<0.05) and 10.5 ± 5.3 % (n=293) on pdp-1 

RNAi (p<0.05). 

B) pdp-1 RNAi suppresses dauer formation of daf-2(e1368) worms similar to daf-

18 RNAi. Dauer formation of daf-2(e1368) was 77.1 ± 13.2 % dauers (n=297) on 

vector RNAi, 9.4 ± 6.4 % (n=258) dauers on daf-18 RNAi (p<0.06) and 25.9 ± 3.9 

% (n=636) dauers on pdp-1 RNAi (p<0.05).  

C) RNAi of other components of the PDHc including the E1α subunit does not 

affect daf-2(e1370) dauer formation. Dauer formation of daf-2(e1370) on PDHc 

RNAi was 23.3 ± 4.1 % (n=282) on vector RNAi, 1.3 ± 0.2 % (n=219) on daf-18 

RNAi (p<00.04), 1.6 ± 0.6 %  (n=185) on pdp-1 RNAi (p<0.03), 13.1 ± 1.0 % 

(n=233) on pdhk-2 on RNAi (p<0.05), 18.2 ± 2.0 % (n=193) on E1α RNAi, 23.5 ± 

0.5 % (172) on a combination of E1α and E1β RNAi and 33.3 ± 7.1 % (n=25) on 

E2 RNAi. 

D) pdhk-2 RNAi has no effect on dauer formation of daf-2(e1368) mutants. Dauer 

formation was 79.4 ± 0.9 % (n=504) on vector RNAi, 21.6 ± 12.8 % (n=617) on 

daf-18 RNAi and 70.0% ± 9.8 % (n=645) on pdhk-2 RNAi. 

E) pdhk-2 RNAi has no effect on dauer formation of pdk-1(sa680) mutants. 

Dauer formation was 91.9 ± 5.9 % (n=458) on vector RNAi and 82.5 ± 2.7 % 
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F) Expression pattern of pdp-1 as visualized using a Ppdp-1::gfp transcriptional 

fusion strain. Di-I staining shows co-localization in amphid neurons in the head 

and tail. 

G) The Ppdp-1::gfp strain does not show complete overlap with the expression 

patterns of transcriptional fusion strains of the PDHc, PE1β::gfp and PE2::gfp.  

H) Quantitative PCR experiments from two independent repeats showing the 

knockdown of components of the PDHc by RNAi.  
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2. PDP-1 regulates multiple outputs of the IIS pathway 

In addition to dauer formation, the IIS pathway also regulates longevity, stress 

resistance and fat storage [17,18]. Mutations in daf-2 and age-1 result in a 

significant extension in lifespan, enhanced resistance to various stresses and 

increased fat storage [7,33,40,41,42,43]. These phenotypes are suppressed by 

loss-of-function mutations in daf-18 and daf-16 [30,32,33]. We therefore 

investigated whether dosage modulation of PDP-1 would affect additional outputs 

of the pathway.  We first tested the role of PDP-1 in regulating lifespan (Figure 

3.2). The lifespan of wild type worms was not significantly reduced on pdp-1 

RNAi when compared to vector RNAi (Figure 3.2A). However, pdp-1(tm3734) 

mutants show a slightly reduced lifespan relative to wild type animals (Figure 

3.2D). In contrast, pdp-1 RNAi significantly reduced the mean and maximal 

lifespan of long-lived daf-2(e1370) and age-1(hx546) mutants (Figure 3.2B and 

3.2C). We did not observe any effect of pdhk-2 RNAi on the lifespan of wildtype 

and daf-2 animals (Addendum). To examine the effect of increased dosage of 

pdp-1, we generated translational fusion strains of pdp-1 fused to gfp driven by 

its own promoter (pdp-1::gfp). In addition, we also crossed pdp-1::gfp to daf-

2(e1370) mutants to generate the daf-2(e1370); pdp-1::gfp strain. 

Overexpression of pdp-1 results in a significant extension in lifespan compared to 

wild type worms (Figure 3.2D).  Interestingly, pdp-1 overexpression further 

extends the lifespan of daf-2(e1370) mutants (Figure 3.2B). Therefore, dosage 

modulation of PDP-1 regulates lifespan. We next asked if PDP-1 modulated 
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additional outputs of the IIS signaling pathway.  We first tested whether PDP-1 

regulates stress resistance by assaying the survival of pdp-1 mutants and 

transgenic animals when exposed to heat stress at 37°C (Figure 3.2E).  Dosage 

modulation of pdp-1 affects the response to heat stress, with a pdp-1 mutation 

decreasing and overexpression slightly enhancing thermotolerance (Figure 

3.2E). Importantly the pdp-1 mutation drastically reduced the thermotolerance of 

daf-2 mutants. Besides longevity, dauer formation and the response to stress, 

the IIS pathway also regulates metabolism.  Therefore, we next used Oil Red O 

Staining [44] and Sudan Black Staining [7] to investigate its role in regulating fat 

storage [45] (Figure 3.2F). pdp-1 overexpression or mutation in a wild type 

background had negligible effects on fat storage. However, a pdp-1 mutation 

drastically reduced the increased fat of daf-2(e1370) mutants (Figure 3.2F). This 

was observed in dauers, larval stage 3 (L3) animals and adults, suggesting that 

PDP-1 is an important regulator of fat storage in daf-2 mutants. We did not 

observe any changes in fat storage when wild type and daf-2 mutants were 

grown on E1α RNAi (Addendum). Therefore, PDP-1 modulates all four well-

characterized outputs of the IIS pathway. pdp-1(tm3734) mutants exhibit a slow 

movement phenotype, which  we quantified using locomotion assays (Figure 3). 

This slow movement was rescued by the pdp-1::gfp transgene.  However, pdp-

1(tm3734); daf-2(e1370) mutants also have an additional phenotype where the 

majority of the eggs laid remained unhatched.  We quantified this phenotype with 

a brood size analysis of wild type worms, daf-2(e1370), pdp-1(tm3734) and pdp-
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1(tm3734); daf-2(e1370) mutants (Figure 3.3).  While pdp-1(tm3734) worms 

showed a slight decrease in the number of progeny compared to wild type and 

daf-2 mutants, only 5% of the pdp-1(tm3734); daf-2(e1370) eggs yielded progeny 

(Figure 3.3). daf-2 mutants have a slightly reduced brood size, and a pdp-1 

mutation severely enhances this phenotype [46,47]. Taken together, PDP-1 

regulates multiple outputs of the IIS pathway as well as locomotion and brood 

size.  These phenotypes are more severe, especially under conditions of reduced 

signaling as in the case of a daf-2 or age-1 mutant. Importantly, PDP-1 acts as a 

negative regulator of IIS, similar to DAF-18/PTEN.  
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Figure 3.2: PDP-1 regulates multiple outputs of the IIS pathway 

Data shown are from one representative experiment. 

A) pdp-1 RNAi does not significantly reduce the lifespan of wild type worms. 

Mean lifespan of wild type worms was 23.8 ± 0.5 days (n=93) on vector RNAi, 

14.5 ± 0.9 days (n=34) on daf-18 RNAi (p<0.0001) and 23.8 ± 0.5 days (n=93) 

and 22.6 ± 0.6 days (n=68) days on pdp-1 RNAi (p<0.08).  

B) The increased lifespan of daf-2(e1370) worms is reduced by pdp-1 RNAi. 

Mean lifespan of daf-2(e1370) worms was 38.9 ± 0.9 days (n=75) on vector 

RNAi, 24.5 ± 0.5 days (n=59) on daf-18 RNAi (p<0.0001) and 23.8 ± 0.5 days 

(n=93) and 31.7 ± 0.8 days (n=66) days on pdp-1 RNAi (p<0.0001).  



  143 

C) pdp-1 RNAi reduces the increased lifespan of age-1(hx546) mutants. Mean 

lifespan of daf-2(e1370) worms was 42.8 ± 0.8 days (n=84) on vector RNAi, 28.0 

± 0.9 days (n=81) on daf-18 RNAi (p<0.0001) and 36.5 ± 1.0 days (n=67) on pdp-

1 RNAi (p<0.0001).  

D) pdp-1 overexpression increases the lifespan of wild type and daf-2(e1370) 

worms while pdp-1 mutants live slightly shorter than wild type animals. Mean 

lifespan of wild type worms was 29.4 ± 0.5 days (n=104), pdp-1(tm3734) mutants 

was 27.1 ± 0.7 days (n=98), p<0.05,  pdp-1::gfp mutants was 34.5 ± 0.8 days 

(n=92) p<0.0001,  daf-2(e1370) was 38.7 ± 0.7 days (n=108) and  daf-2(e1370); 

pdp-1::gfp was 42.8 ± 0.7 days (n=105) days p<0.0001.  

E) PDP-1 regulates thermotolerance. Mean survival of wild type worms was 18.3 

± 0.7 hours (n=37), pdp-1(tm3734) mutants was 17.1 ± 0.8 hours (n=27) p<0.2, 

pdp-1::gfp worms was 19.7 ± 0.9 days (n=25) p<0.09, daf-2(e1370) worms was 

21.6 ± 0.6 hours (n=30) and pdp-1(tm3734); daf-2(e1370) worms was 18.6 ± 0.9 

hours (n=19), p<0.0007). 

F) Oil Red O staining reveals that pdp-1(tm3734); daf-2(e1370) worms store less 

fat than daf-2 worms across different stages in the worm life cycle: dauers (left), 

L3 worms (middle) and adults (right). Arrows indicate the lower bulb of the 

pharynx.  
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Figure 3.3: PDP-1 mutants have a slow movement phenotype and reduced 

brood size 

Data shown are from one representative experiment. Error bars indicate the 

standard deviation among the different plates within one experiment. 

A) pdp-1(tm3734) mutants have a slow movement phenotype when compared to 

wild type worms (p<0.001). This movement can be rescued by expression of a 

pdp-1::gfp transgene in the mutant background (p<0.002). Lower panel: Traces 

of wild type, pdp-1(tm3734), pdp-1::gfp and pdp-1::gfp; pdp-1(tm3734) worms 

moving on a lawn of OP50.  
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B) Brood size of wild type, daf-2(e1370), pdp-1(tm3734) and pdp-1(tm3734); daf-

2(e1370) animals as scored after 22.5 hours (total number of eggs laid) and 38 

hours (total number of progeny). 

C) The % hatched eggs calculated from the number of progeny and number of 

eggs laid.  pdp-1(tm3734) worms have fewer progeny (p<0.04) when compared 

to wild type worms, however, this phenotype is far more severe in pdp-

1(tm3734); daf-2(e1370) worms (p<0.005). 

D) A mutation in pdp-1 suppresses daf-2(e1370) dauer formation, similar to the 

effect of pdp-1 RNAi. (p<0.03).   
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 3.  PDP-1 positively regulates DAF-16 

   The FOXO transcription factor DAF-16 is a major target of the IIS pathway 

[2,48]. Under conditions of reduced IIS, DAF-16 translocates into the nucleus, 

where it regulates the expression of hundreds of direct as well as indirect target 

genes [12,13,49,50]. We therefore asked whether PDP-1 modulates DAF-16 

subcellular localization as well as activity (Figure 3.4). daf-2(e1370); daf-16::gfp 

worms were grown on vector, daf-18 and pdp-1 RNAi, and DAF-16 

nuclear/cytosolic localization was visualized using fluorescence microscopy. 

While DAF-16::GFP was mostly nuclear on vector RNAi, its localization was 

enriched in the cytosol on pdp-1 RNAi, similar to daf-18 RNAi  throughout the 

body of the worm (Figure 3.4). The gene superoxide dismutase 3 (sod-3) is a 

direct DAF-16 target [11]. To test whether PDP-1 modulates transcriptional 

activity of DAF-16, we used a Psod-3::gfp reporter strain a daf-2(e1370) 

background [51]. daf-2(e1370); Psod-3::gfp worms were grown on vector, pdp-1, 

daf-18 and daf-16 RNAi and GFP expression was visualized using fluorescence 

microscopy and scored as low, medium or high (Figure 3.4). GFP expression 

was markedly lower on pdp-1 RNAi compared to vector RNAi, suggesting that 

PDP-1 modulates DAF-16 transcriptional activity.  To further validate these 

results, we used quantitative real-time PCR (Q-PCR) to look at the expression 

levels of well-known DAF-16 target genes [52] in daf-2(e1370), pdp-1(tm3734); 

daf-2(e1370)  and daf-16(mgDf50); daf-2(e1370) worms. Notably, the expression 

of sod-3, sod-5 and hsp-12.6 were reduced in pdp-1(tm3734); daf-2(e1370) 
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mutants relative to daf-2(e1370). Therefore PDP-1 positively regulates DAF-16 

activity under conditions of reduced IIS.  
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Figure 3.4: PDP-1 regulates DAF-16 nuclear localization and transcriptional 

activity 

A) DAF-16::GFP localization visualized in daf-2(e1370); daf-16::gfp worms on 

vector, daf-18 and pdp-1 RNAi (top panel) and quantification of DAF-16::GFP 

nuclear-cytosolic localization (lower panel).  Data shown are from one 

representative experiment. (n=68 on vector RNAi, n=88 on daf-18 RNAi and 

n=79 on pdp-1 RNAi). 

B) Representative images of high, medium and low GFP expression in daf-

2(e1370); Psod-3::gfp worms (top panel). Quantification of GFP expression in 

daf-2(e1370);Psod-3::gfp worms on vector, daf-18, pdp-1 and daf-16 RNAi  
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(Lower panel). Data shown are from one representative experiment (n= 31 on 

vector RNAi, n=35 on pdp-1 RNAi, n=27 on daf-18 RNAi and n=28 on daf-16 

RNAi). 

C) Levels of known DAF-16 targets are reduced in pdp-1(tm3734); daf-2(e1370) 

worms when compared to daf-2(e1370) worms. Data shown is an average of 

three independent repeats.  
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4. PDP-1 acts in the DAF-7/ TGF-β signalling pathway 

   Thus far our data indicates that PDP-1 regulates multiple outputs of IIS as well 

as DAF-16 activity. Using dauer formation as the readout, we performed genetic 

epistasis experiments to identify PDP-1’s substrate. Our results ruled out the role 

of PDH in regulating the dauer phenotype. However, it was likely that pathways 

that were parallel or intersecting with the IIS pathway could also affect dauer 

formation. We first focused mutants of genes within the IIS pathway downstream 

of daf-2 (Table 3.1).  pdk-1(sa680), daf-2(e1370); akt-1(ok525) and daf-2(e1370); 

akt-2(ok393) mutants were maintained on vector, daf-18 and pdp-1 RNAi and 

dauer formation was assayed at the appropriate temperatures. Interestingly, pdp-

1 RNAi resulted in suppression of dauer formation of pdk-1(sa680) mutants, daf-

2(e1370); akt-1(ok525) and daf-2(e1370); akt-2(ok393) worms, suggesting  that 

PDP-1 functioned independent of components of the IIS pathway (Table 3.1).   

 Dauer formation in C.elegans is also regulated by a TGF-β like pathway, 

besides the IIS pathway [19,20,21]. In this pathway the DAF-7 BMP-like ligand 

activates the DAF-1/DAF-4, the Type I/II receptors, which phosphorylate the R-

SMAD proteins DAF-8 and DAF-14. DAF-8 and DAF-14 antagonize the 

transcriptional activity of the co-SMAD DAF-3 Co-SMAD and the Ski repressor 

DAF-5 and promote reproductive growth [22,23,24,25,26,27]. Mutations daf-7, 

daf-1, daf-4, daf-8 and daf-14 result in constitutive dauer-formation and mutations 

in daf-3 and/or daf-5 suppressing these phenotypes [21,28]. Since pdp-1 RNAi 

resulted in suppression of dauer formation of the IIS pathway mutants, we 
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therefore performed genetic epistasis assays with mutants of the TGF-β 

pathway.  In these assays, TGF-β pathway mutants were maintained on vector 

RNAi, pdp-1 RNAi and daf-3 RNAi (as a positive control; Table 2). Dauer 

formation of daf-7(e1372) mutants was suppressed on pdp-1 RNAi similar to, 

daf-3 RNAi, suggesting that pdp-1 acts downstream of daf-7 (Table 3.2). 

    The R-SMAD proteins, DAF-8 and DAF-14 proteins contain a conserved 

SSXS phosphorylation motif that has been shown to be important for R-SMAD 

activation in mammals [27,53,54].  Upon activation, R-SMADs can associate with 

a Co-SMAD to regulate the transcription of hundreds of genes [55]. While both 

DAF-8 and DAF-14 are thought to function redundantly, daf-8 mutants exhibit a 

much weaker constitutive dauer formation phenotype compared to daf-14 

mutants, suggesting that DAF-14 is more important of the two R-SMADs for 

dauer formation [27,53]. However, expressing daf-8 in a daf-14 mutant rescues 

the constitutive dauer phenotype [27]. We tested dauer formation of daf-14(m77) 

mutants on vector, pdp-1 and daf-3 RNAi.  Interestingly, pdp-1 RNAi had no 

effect on daf-14 dauer formation. We next looked at dauer formation of daf-

8(m85) mutants and again observed that pdp-1 RNAi had no effect, while in both 

cases, daf-3 RNAi resulted in dauer suppression (Table 3.2), similar to daf-5 

RNAi (data not shown). These results indicate that pdp-1 acts at the level of the 

R-SMADS daf-14 and daf-8. To confirm these results, we investigated whether 

pdp-1 RNAi could suppress dauer formation of daf-2(e1370); daf-3(mgDf90) 

double mutants. In this strain, input from the TGF-β pathway is removed due to 
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the daf-3 null mutation, and dauer formation is presumably mediated through 

activated DAF-16 [37] Therefore, if pdp-1 was indeed acting in the TGF-β 

pathway, we would not see any effect of pdp-1 RNAi on daf-2(e1370); daf-

3(mgDf90) double mutants. Conversely, if pdp-1 acted specifically through the IIS 

pathway, we would expect pdp-1 RNAi to suppress dauer formation in this strain. 

Expectedly, we found that, pdp-1 RNAi had no effect on daf-2(e1370); daf-

3(mgDf90) double mutants (Table 3.2). DAF-3 itself is unlikely to be a substrate 

for PDP-1, as similar to mammalian Co-SMADs, it lacks the C-terminal 

phosphorylation motif [24]. Therefore, pdp-1 acts in the TGF-β pathway at the 

level of the R-SMADs daf-8 and daf-14. 
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Table 3.1: Genetic Epistasis Analysis using IIS Mutants 

 
% Dauers ± Std. Dev (n) 

Strain 
vector RNAi daf-18 RNAi pdp-1 RNAi 

pdk-1(sa680)a,b 85.0 ±  4.7 (520) - 35.3 ±  2.5 (327)* 
daf-2(e1370)c 

daf-2(e1370); akt-1(ok595)c 
8.3 ±  8.6 (476) 

36.9 ±  1.4 (390) 
0 (331) 

3.5 ±  0.9 (265)* 
5.5 ±  1.0 (241) 

16.0 ±  0.4 (375)* 
daf-2(e1370)d 

daf-2(e1370); akt-2(ok393)d 
75.6 ±  4.8 (247) 

61.1 ±  15.3 (289) 
0.3 ±  1.0 (777)* 
4.1 ±  1.7 (308)** 

17.3 ±  8.2 (597)** 
11.5 ±  3.6 (301)** 

a The assays were performed at 25°C 
b As previously reported, pdk-1(sa680) mutants survive poorly on daf-18 RNAi. 
c The assays were performed at 19.2°C 
d The assays were performed at 20°C 
* p<0.01 
**p<0.05 
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Table 3.2: Genetic Epistasis Analysis using TGF-β signaling Mutants 

 
% Dauers ± Std. Dev (n) 

Strain 
vector RNAi daf-3 RNAi pdp-1 RNAi 

daf-7(e1372)a 85.3 ±  1.1 (612) 43.4 ±  0.8 (134)* 32.2 ±  4.9 (122)* 

daf-14(m77)b 81.7 ±  5.6 (543) 18.1 ±  8.9 (441)** 88.7 ±  1.3 (535) 

daf-8(m85)a 32.0 ±  9.7 (392) 2.3 ±  1.8 (396)** 34.6 ±  9.1 (430) 

daf-2(e1370); daf-3(mgDf90)c 50.8 ±  0.4 (302) - 49.5 ±  2.5 (270) 
a The assays were performed at 22.5°C 
b The assays were performed at 20°C 
c The assays were performed at 19.2°C 
* p<0.01 
**p<0.05 
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 5. Insulins are a possible connection between TGF-β signaling and IIS 

How can these two pathways, hitherto considered parallel to each other, be 

mechanistically linked? Thus far our data suggests that PDP-1, a component of 

the TGF-β pathway can modulate multiple phenotypes of the IIS pathway and 

positively regulate DAF-16. A feed-forward model that has been proposed to 

connect TGF-β signaling to the IIS pathway suggests insulins as a possible link 

[56,57]. The C.elegans genome encodes 40 insulin genes [58,59] (WormBase 

215: www.wormbase.org). Studies using mutants and RNAi have characterized 

some of the insulins as agonists or antagonists of the IIS pathway [13,58,59,60]. 

Importantly, microarray studies have identified several insulin genes that are 

regulated by the TGF-β pathway, including ins-1, ins-4, ins-5, ins-6, ins-7, ins-17, 

ins-18, ins-30, ins-33, ins-35 and daf-28 [56,61]. We tested changes in the levels 

of these insulins in TGF-β pathway mutants using Q-PCR (Figure 3.5B, Table 3.3 

& 3.4). Interestingly, both pdp-1(tm3734) and daf-3(mgDf90) showed elevated 

levels of several insulins as compared to wild type worms (Figure 3.5A). In 

contrast expression of these insulins was markedly reduced in daf-14(m77) 

mutants (Figure 3.5B).  In addition, the gene mdl-1 has been previously 

described as a DAF-3 target, with DAF-3 suppressing mdl-1 transcript levels [62]. 

Consistent with this, we find that pdp-1 RNAi results in increased mdl-1 

expression in a Pmdl-1::gfp transgene (Figure 3.5E). Therefore, similar to DAF-3, 

PDP-1 acts as a negative regulator of the DAF-7 pathway. 



  156 

 Next, we tested changes in insulin gene expression in daf-2(e1370) mutants, 

and compared the results with pdp-1(tm3734); daf-2(e1370)  and daf-

16(mgDf50); daf-2(e1370) double mutants. Several insulins were changed 

relative to daf-2(e1370) worms,  however the trend between pdp-1(tm3734); daf-

2(e1370) and daf16(mgDf50); daf-2(e1370) was not always similar (Figure 3.5C).  

Notably, ins-1 levels were drastically reduced in pdp-1(tm3734); daf-2(e1370) 

worms relative to daf-2(e1370) worms. ins-1 has been characterized as a 

potential antagonist of the IIS pathway [58]. Interestingly, ins-7 levels were 

elevated both double mutants (Figure 3.5D,E). Previous studies have shown ins-

7 to be an agonist of the IIS pathway as well as a DAF-16 target gene [13,63]. 

We did not observe any changes in ins-18, another potential DAF-16 target [13]. 

In addition, we did not detect any appreciable differences in insulin gene 

expression in daf-16(mgDf50) mutants. We were unable to detect ins-33 and ins-

35 transcripts in all the strains tested. Our results suggest that PDP-1 modulates 

TGF-β signaling to regulate expression of several insulins that can potentially 

feed into or antagonize the IIS pathway to regulate DAF-16 and its associated 

phenotypes.   
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Table 3.3: List of insulins tested 

 

 

 

 

* Wormbase (WS204) www.wormbase.org 
nt: not tested 
a Pierce et. al, Genes & Dev, 2001 
b Li et. al, Genes & Dev, 2003 
c Kao et. al, Cell, 2007 
d Murphy et. al, Nature 2003 
e Murphy et. al, PNAS 2007 
f Kawano et. al, Biochem Biophys Res Commun, 2000 
g Ouellet et.al, Development, 2008 
h McElwee et. al, Aging Cell, 2003 
i Hristova et. al, Mol Cell Biol, 2005 
j Malone et. al, Genetics, 1994 
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Figure 3.5: PDP-1 modulates the expression of insulin genes that possibly feed 

into the IIS pathway. Data shown are an average of at least two independent 

repeats. 
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A) The expression of several insulins is elevated in both pdp-1(tm3734) and daf-

3(mgDf90) mutants 

B) The same insulins show decreased expression on daf-14(m77) mutants 

C) Insulin levels are changed in pdp-1(tm3734); daf-2(e1370) mutants compared 

to daf-2(e1370) 

D) ins-7 levels are drastically elevated in daf-16(mgDf50); daf-2(e1370) and pdp-

1(tm3734); daf-2(e1370) worms as compared to the parental daf-2(e1370) strain 

E) ins-7 expression is increased upon pdp-1 RNAi (top panel, boxes show the 

lower pharyngeal bulb). PDP-1 negatively regulates the expression of the DAF-3 

target mdl-1, similar to DAF-3 (lower panel, boxes show the pharynx) 

F) Model to link the IIS and TGF-β signaling pathways: Under normal signaling 

conditions, the TGF-β signaling pathway regulates the expression of insulins that 

activate the IIS pathway, resulting in the negative regulation of DAF-16. Under 

reduced signaling conditions, PDP-1 further downregulates signals through the 

TGF-β pathway to promote DAF-3 mediated repression of insulin genes. As a 

consequence, reduced IIS results in the enhancement of DAF-16 regulated 

phenotypes such as longevity, dauer formation and stress resistance.  
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Table 3.4: Summary of trends observed in the Q-PCR Experiments 

 

    nd – No amplicon detected in multiple experiments 
    *ins-7 levels were similar in daf-14 and pdp-1 mutants 
     a None of the insulins tested showed changes in daf-16(mgDf50) mutants 
     b ins-30 and daf-28 levels showed opposite trends in multiple repeats 
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Discussion 

We identified PDP-1 from an RNAi screen for serine/threonine phosphatases that 

modulate daf-2 dauer formation. C.elegans PDP-1 is homologous to mammalian 

pyruvate dehydrogenase phophatase, a metabolic enzyme that is a positive 

regulator of the pyruvate dehydrogenase enzyme complex (PDHc). In humans, 

mutations in the E1 subunit of PDH cause Leigh's disease, neurological disorder 

where patients suffer from lactic acidosis [83,84]. Mutations in PDP manifest in 

the form of symptoms similar to Leigh’s disease [85,86,87]. In worms, pdp-1 

mutants have significantly elevated levels of lactate relative to wild type worms 

(Addendum). This however, is unlikely to account for the suppression of dauer 

formation by pdp-1 RNAi or mutation, as daf-2 mutants themselves have much 

higher lactate levels than wild type worms (Addendum).  Remarkably, RNAi other 

components of the PDHc in C.elegans do not affect daf-2 dauer formation, even 

though we observed a significant reduction in transcript levels. Microarray and 

SAGE studies on dauers have indicated that genes involved in anaerobic 

metabolism are upregulated while genes involved in the TCA cycle and 

mitochondrial oxidative phosphorylation are downregulated, suggesting that 

PDHc activity may not be critical for dauer diapause [1,2,3]. In particular, RNAi of 

E1α subunit did not affect fat storage or lifespan either. In mammals, the 

modulation of PDHc is tightly coupled to IIS, with the pyruvate dehydrogenase 

kinase being upregulated under conditions of starvation as a direct transcriptional 

target of FOXO [88]. We found that in worms, pdhk-2 RNAi resulted in allele-
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specific suppression of daf-2 dauer formation.  It will be interesting to further 

explore the role of pdhk-2 in modulating the IIS pathway. 

Further, annotations indicate that the C. elegans genome encodes 

approximately 60 serine/threonine phosphatases, in contrast to the 400 plus 

protein kinases, suggesting that phosphatases are likely to have a number of 

cellular substrates [38,67].  PDP-1 is broadly expressed in the cell, and we 

observe expression in the cytosol, nucleus and membrane fractions (Addendum). 

Besides dauer formation, we find that PDP-1 also regulates longevity, fat storage 

and stress resistance. Interestingly, these phenotypes are more severe in 

mutants such as daf-2 and age-1, where IIS is reduced. Consistent with this, we 

find that PDP-1 positively regulates DAF-16 activity. A mutation in pdp-1 had only 

a slight reduction in the different outputs of IIS in wildtype worms. Perhaps PDP-

1's function is more important under conditions of stress or low food availability, 

when DAF-16 activation is required. Indeed, mutations in daf-16 only slightly 

shorten lifespan and stress resistance and have little to no effect on fat storage. 

However, in a daf-2 or age-1 background, loss of daf-16 results in dramatic 

effects on the various phenotypes regulated by the IIS pathway.  

 Intriguingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β 

pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. A recent 

functional RNAi screen for serine/threonine phosphatases that modulate BMP 

signaling identified PDP as a SMAD1 phosphatase in Drosophila S2 cells and 

mammalian 293T cells [68].  Our study complements these findings and reveals 
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a molecular conservation in the role of PDP-1 in regulating TGF-β signaling.  

Early genetic epistasis studies had suggested that TGF-β signaling and IIS 

pathways are parallel signaling pathways that modulate dauer diapause [29]. 

Importantly, in these studies, the conclusion was that both these pathways acted 

independently, and it was the IIS pathway that regulated longevity and stress 

resistance [29,30]. However, more recent studies have suggested that TGF-β 

pathway regulates the expression of insulins, and this results in a feed-forward 

model, where signals from the TGF-β pathway are relayed to modulate activity of 

the IIS pathway as well as DAF-16 (Figure 3.5) [56,61]. In support of this model, 

we find TGF-β signaling regulates the expression of several insulin genes. The 

expression of many insulins were markedly elevated in pdp-1 as well as daf-3 

mutants, suggesting that both genes normally act to negatively regulate their 

expression. This is in agreement with previous studies that identify DAF-3 as a 

repressor of gene expression [62,69].  The R-SMADs DAF-8 and DAF-14 

antagonize DAF-3 activity, and consistent with this, daf-14 mutants showed 

reduced expression of several insulins. For example, INS-4 has been previously 

reported as a positive regulator TGF-β pathway and a suppressor of dauer 

formation of daf-7 and daf-8 mutants [70]. ins-4 transcript levels were elevated in 

pdp-1 and daf-3 mutants but reduced in daf-14. Supporting these observations, a 

recent mammalian study has identified the insulin gene as a direct target of TGF-

β signaling [71].  
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Interestingly, the majority of the insulins tested were unchanged in daf-16 

mutants. An exception was ins-7, which was increased in daf-16(mgDf50); daf-

2(e1370), pdp-1(tm3734) as well as  pdp-1(tm3734); daf-2(e1370) mutants. 

Previous studies using ins-7 mutants and RNAi have identified this insulin as an 

agonist of the IIS pathway and a negative regulator of lifespan as well as dauer 

formation [13,63]. In contrast, levels of ins-1, which has been identified as an 

antagonist of the DAF-2 pathway [58], were reduced in pdp-1(tm3734); daf-2 

(e1370). Therefore, in the absence of PDP-1, increased levels of agonists such 

as INS-7 or reduced levels of antagonists such as INS-1 may hyperactivate the 

DAF-2 pathway to negatively regulate DAF-16, thereby affecting the enhanced 

lifespan, stress resistance, dauer formation and fat storage of daf-2 mutants.  

A clear interpretation of our results is complicated by two factors. First, the 

sheer number of insulins in the worm makes it difficult to assess whether they are 

functionally distinct. Secondly, the role of temperature in modulating the readouts 

of the pathway has not been closely explored. For example, we observe the 

effects of pdp-1 RNAi on daf-2 lifespan at 15°C but the effect decreases at a 

higher temperature, as the pathway gets more inactive. It is therefore likely that a 

certain level of signaling through the pathway is required to activate and target 

PDP-1 to its substrates.  At higher temperatures such as 20°C or 25°C, there 

may be extremely low levels of phosphorylated substrate available for PDP-1. 

Therefore, temperature and the level of signaling are important additional inputs 

that need to be considered to better understand the crosstalk between the IIS 
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and the TGF-β pathways. Our results suggest a model where under normal 

(favorable) signaling conditions, signals through the TGF-β pathway result in the 

activation of the SMAD transcriptional complex, that regulates the expression of 

insulins that activate the IIS pathway to favor growth, reproduction and normal 

lifespan (Figure 3.5E). However, under reduced signaling conditions, presumably 

when food is limiting or under harsh survival conditions, TGF-β signaling is 

further downregulated by PDP-1 to activate the co-SMAD DAF-3, to regulate the 

repression of insulin genes that may feed into the IIS pathway. Recent studies in 

worms indicate that when active, DAF-3 can further downregulate the TGF-β 

pathway to suppress gene expression of the daf-7 ligand and daf-8 R-SMAD 

[27].  

   In conclusion, PDP-1 acts via the DAF-7/TGF-β pathway to negatively 

regulate IIS and promote DAF-16 nuclear localization as well as activity. PDP-1 

may mediate this function in part by negatively regulating TGF-β signaling to 

repress expression of several insulins that feed into the IIS pathway. In humans, 

dysregulation of TGF-β signaling and the insulin/IGF-1 signaling axis have been 

implicated in the onset of age-associated diseases such as type 2 diabetes and 

cancer [72,73,74,75,76]. Future studies exploring the interactions between these 

two pathways as well as the factors that modulate these interactions may 

ultimately provide a better understanding of the pathophysiology of these 

diseases.  
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Materials and Methods 

Strains  

All strains were maintained at 15°C using standard C. elegans techniques 

[77]. For all RNAi assays, worms were maintained on the RNAi bacteria for two 

generations except for the assays on the PDHc RNAi. Strains used in this 

manuscript are listed in Table 3.5. 

 
RNAi based assays 

RNAi plates were prepared as previously described [37]. L4 worms were 

picked onto fresh RNAi plates and maintained for two generations prior to the 

assay, with the exception PDHc RNAi plates. Worms exhibit lethality when 

maintained on the following RNAi clones: T05H10.6 (E1α), C04C3.3 (E1β), 

F23B12.5 (E2), or LLC1.3 (E3) [78]. To circumvent this problem, strains were 

maintained on vector RNAi for two generations and transferred to E1α, E1β, E2 

or E3 plates prior to the assay.  

 

Strain Construction 

For the pdp-1(tm3734);daf-2(e1370) double mutant, daf-2(e1370) males were 

mated to pdp-1(tm3734) hermaphrodites. A total of 30 F1 progeny were picked 

onto individual plates and allowed to have progeny at 25 °C. From the F2 

progeny on each plate, dauers were selected and transferred to fresh plates and 

incubated for an additional 24 hours at 25 °C.  The next day, the dauers were 
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allowed to recover at 15 °C until they reached adulthood.  Subsequently, adult 

worms were picked onto individual plates and transferred to 25 °C and allowed to 

have progeny.  Among the F3 progeny, we observed that some plates had 100% 

dauers at 25°C, while worms in some of the plates exhibited a developmental 

delay and could not form complete dauers even after 5-6 days at 25°C. Worms 

from both sets of plates were recovered, picked to individual plates and allowed 

to self at 15°C.  Parents were then tested for pdp-1(tm3734) deletion by PCR.  

As anticipated, the pdp-1(tm3734);daf-2(e1370) double mutants are unable to 

form 100% dauers at 25°C. 

The daf-2(e1370);pdp-1::gfp strain was made by crossing daf-2(e1370) males 

to either pdp-1::gfp hermaphrodites. About 30 F1 animals were transferred to 

individual plates and allowed to have progeny at 25°C.  From the progeny, F2 

dauers were selected from each plate and allowed to recover at 15°C. The 

recovered adult worms were then checked for the presence of GFP, and GFP-

positive worms were transferred to individual plates and incubated at 25 °C. 

Plates where 100% of the progeny were dauers and GFP positive were selected 

and established as the strain for the assays.  

 

Dauer assays 

Strains were maintained on RNAi plates for two generations or regular OP50 

plates at 15oC. Dauer assays were performed by picking approximately 100 eggs 

onto 2 fresh plates and incubated at the appropriate temperature. The pdk-



  168 

1(sa680), daf-7(e1372) and daf-14(m77) worms have a strong Egl phenotype. 

For dauer assays on these strains, gravid adult worms growing on the RNAi 

plates were washed off the plate with sterile PBS onto a 1.5 mL eppendorf tube. 

After 2 washes at 2000g for 30 seconds, the adults were vortexed for 5 mins in 

5ml of 1N sodium hydroxide and 3% sodium hypochlorite (final concentration). 

The samples were then washed twice with sterile PBS and eggs were aspirated 

with a glass pipette onto fresh RNAi plates. For all dauer assays, plates were 

scored for the presence of dauers or non-dauers after 3.5-5.5 days, depending 

upon the strain. Dauer assays were performed at the temperature indicated.  

 

Lifespan Assays 

Strains were maintained at 15ºC and synchronized by picking eggs onto fresh 

RNAi or OP50 plates. Approximately 60 young adult worms were transferred per 

plate to a total of three fresh RNAi or regular OP50 plates containing 5-

fluorodeoxyuridine (FUDR) at final concentration of 0.1 mg/ml [79]. All RNAi-

based lifespan assays were carried out at 15ºC.  Lifespans on OP50 plates were 

performed at the temperature indicated.  Survival was scored by tapping with a 

platinum wire every 2-3 days. Worms that died from vulval bursting were 

censored from the analysis. Statistical analyses for survival were conducted 

using the standard chi-squared-based log rank test. 

 

Heat Stress assay 
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Strains were maintained on RNAi or regular OP50 bacteria at 15ºC, as 

described above. From these plates, approximately 30 young adult worms were 

picked onto fresh RNAi or regular plates and upshifted to 20ºC for 6 hrs. The 

plates were then transferred to 37oC and heat stress-induced mortality was 

determined every few hours till all the animals died. 

 

Fat staining 

Strains maintained RNAi on regular OP50 plates were synchronized by 

picking eggs on to fresh plates and grown synchronously at 15ºC.  The plates 

were then upshifted to 20ºC for 8 hours, at the L2 stage to get L3 worms and at 

the L4 stage to get young adult worms. The worms were then washed off the 

plates into microcentrifuge tubes and incubated in 1x PBS buffer for 20 minutes 

on a shaker at RT. After 2 washes at 3000rpm for 30 seconds with 1x PBS, the 

strains were fixed according to the type of staining performed. Oil Red O and 

Sudan black staining was performed as previously described [44] [37] [45]. After 

incubation overnight at RT, worms were mounted on slides and visualized using 

the Zeiss Axioscope 2+ microscope.  

 

Quantification of Fat Staining 

For Sudan Black Staining, we used Image J software to measure the average 

pixel intensity for a 84-pixel radius below the pharynx of each animal in the 

anterior intestine area.  Next, an 84-pixel radius of the background was 
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measured, and subtracted from the values obtained for the staining. At least 10 

animals were measured for each RNAi clone.  Significance was determined by 

Student's t-test 

For Oil Red O Staining, Image J was used to separate out each color image 

into its RGB channel components.  As previously described [45], Oil Red O 

absorbs light at 510 nm and therefore, the green channel was used for further 

analysis. We measured the average pixel intensity for a 84-pixel radius below the 

pharynx of each animal in the anterior pharynx area. We next measured a 84-

pixel radius of the background, which was later subtracted from the values 

obtained from the staining. At least 10 animals was measured for each RNAi 

clone. Significance was determined by Student's t-test. 

 

DAF-16::GFP localization assay 

DAF-16 localization assays were performed as previously described [38,52]. 

daf-2(e1370); daf-16::gfp worms were maintained on RNAi plates at 15ºC similar 

to the dauer assays. Approximately 30 L4 worms were transferred to fresh RNAi 

bacteria and the plates were shifted to 20ºC for 1hr. The worms were visualized 

under a fluorescence microscope (Zeiss Axioscope 2+ microscope). Worms were 

classified into four categories based on the extent of DAF-16::GFP nuclear-

cytoplasmic distribution: completely cytosolic, more cytosolic than nuclear in 

most tissues, more nuclear than cytosolic in most tissues and  completely 

nuclear.   
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Psod-3::gfp expression 

Quantification of Psod-3::gfp was performed as previously described [38]. daf-

2(e1370);sod-3::gfp worms were grown at 15ºC on RNAi as described above. 

Approximately 30 L4 animals were transferred to fresh RNAi bacteria and shifted 

to 25oC for 1 hr. The expression of sod-3::gfp was visualized using Zeiss 

Axioscope 2+ microscope. GFP expression was categorized as follows: 

High: GFP expression seen throughout the worm  

Medium: Weak expression detected in the body of the worm along with the head 

and the tail 

Low: Low GFP expression only detected in the head and tail 

 

Transgenic worms 

Promoter and ORF entry clones of pdp-1 obtained from the promoterome and 

ORFeome were combined using multisite Gateway cloning (Invitrogen) into the 

pDEST-DD03 or the R4-R2 GFP destination vectors to create the Ppdp-1::gfp or 

Ppdp-1::pdp-1ORF::gfp constructs. [80,81] All constructs contain the unc-119 

minigene. The vectors were verified by sequencing as well as restriction 

digestion. Transgenic worms were generated by ballistic transformation into unc-

119(ed3) mutant worms as previously reported (Biorad, USA)[80]. Integrated 

lines that were obtained were used for further analyses. For the pdp-1::gfp 

translational fusion strain, additional integrated lines were obtained my 
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integration of extrachromosomal array lines by UV irradiation as previously 

described [82]. All translational fusion lines were backcrossed 4x to wild type 

before further analysis.  

 

RT-PCR experiments 

For all RT-PCR experiments, strains were maintained at 15ºC. Eggs were 

obtained from gravid adult worms by hypochlorite treatment described earlier. 

The eggs were seeded onto large plates maintained at 15ºC until the worms 

entered the L4 stage. The plates were then upshifted to 20ºC for 8 hours until 

they became young adults. Worms were then collected with sterile 1xPBS and 

washed twice at 2000g for 30 seconds. The supernatant was removed, and 0.5 

ml of AE buffer (50 mM acetic acid, 10 mM EDTA), 0.1 ml of 10% SDS, and 0.5 

ml of phenol was added to the worm pellet and the mixture was vortexed 

vigorously for 1 min, followed by incubation at 65°C for 4 min. Total RNA was 

purified by phenol:chloroform extraction and ethanol precipitation. The quality of 

the RNA isolated was determined by checking the 28 S and 18 S RNA on an 

agarose gel. 2 ug of total RNA was used for making cDNA using the SuperScript 

cDNA synthesis kit (Invitrogen, USA). The expression of the DAF-16 target and 

insulin genes was checked by RT-PCR using the SYBR® Green PCR Master Mix 

and 7000 Real-Time PCR System (Applied Biosystems, USA). The relative 

expression of the genes tested was compared to actin as an internal loading 

control.  
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Locomotion Assay 

   Young adult wild type and pdp-1(tm3734) worms were picked onto 6 

individual plates each. After 5 minutes, the worms were picked off the plate. The 

average distance covered was calculated by measuring the traces on the 

bacterial lawn using NIH ImageJ. 

 

Brood Size Measurements 

Wild type, daf-2(e1370), pdp-1(tm3734) and pdp-1(tm3734); daf-2(e1370) 

worms were maintained at 15ºC. 5 L4 worms were picked onto individual plates 

and allowed to lay eggs at 22.5ºC.  Worms were transferred to a new plate every 

12 hours. After 22.5 hours, the parental worms were picked off the plates, and 

the total number of eggs laid was scored. The number of progeny from these 

eggs was scored again after 38 hours. The % hatched eggs was calculated as a 

percentage of the average number of progeny over the average number of eggs 

laid.  

 

Lactate Assay 

Strains were maintained at 15ºC until L4s and transferred to 20ºC until they 

became young adults. Worms were washed twice with PBS and frozen at -80ºC. 

For the lactate assay, worms were sonicated in the lactate assay buffer using a 

Misonix (3000) sonicator (Misonix, USA; power output set at 4, 2 pulses of 10 

secs each with 1 min interval between pulses). The lysate was clarified by 
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centrigufation at 12000 rcf for 5 minutes and protein content from the lysate was 

estimated by Quick Bradford (Pierce). The lysate was then deproteinized using a 

10kDa filter (Biovision) by centrifugation at 6000 rcf for 40 minutes.  The samples 

were then assayed in triplicates according to the manufacturer's instructions 

(Biovision Lactate Assay Kit II).   

 

Fractionation Experiments 

Wild type, pdp-1::gfp and myo-3::gfp worms were grown at 20 degrees and 

washed twice with 1 x PBS. Worms were sonicated using a Misonix (3000) 

sonicator (Misonix, USA; power output set at 4, 3 pulses of 10 secs each with 1 

min interval between pulses) in the specific buffers provided by the manufacturer 

(Qiagen QProteome Cell Fractionation Kit). Fractionation was carried out 

according to the manufacturer's instructions and protein content from the lysate  

estimated by Quick Bradford (Pierce). 50ug of protein lysate was used for 

western blot analysis. Protein samples were resolved on a 10% SDS-PAGE and 

transferred to nitrocellulose membranes. Membranes were blocked in TBST (Tris 

Buffered Saline containing 0.05% Tween 20, ph 7.4) containing 5% non-fat milk 

at RT for 1 hour.  Membranes were then overnight with 1:1000 dilutions of 

antibodies in 5% non-fat milk  at 4 ºC.  Membranes were washed 3 times with 

TBST and then incubated win 5% non-fat milk containing a 1:10,000 dilution of 

the secondary antibody.  
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Table 3.5: List of strains used in this study 
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Addendum: Components of the PDHc do not significantly affect 

phenotypes of the IIS pathway. Data shown is representative of one 

experiment. All experiments were carried out at least twice.  

A) pdhk-2 RNAi does not significantly reduce the mean and maximal lifespan of 

wild type worms. A slight extension in the mean lifespan was observed in daf-2 

worms, but this was not seen in an additional repeat. The maximal lifespan of 

daf-2 was unchanged on pdhk-2 RNAi.  

B) Quantification of Sudan Black Staining of daf-2 worms on different RNAi food 

(n=10). Fat levels were reduced on daf-18 (p< 0.001), daf-16 (p< 0.001), pdp-1 

(p< 0.005) and daf-5 (p< 0.001) RNAi respectively.  

C) Quantification of Oil Red O Staining of daf-2 worms on different RNAi food 

(n=10).   Fat levels were significantly reduced on daf-16 RNAi (p<0.001). 

D) Lactate measurements in different mutants of the insulin/IGF-1 and TGF-ß 

signaling pathways. 

E) PDP-1 is broadly expressed in the cell. Fractionation experiments using wild 

type worms, pdp-1::gfp worms and myo-3::gfp worms. Upper panel: 

mitochondrial and cytosolic fractions of pdp-1::gfp (75kDa) and myo-::gfp worms 

(110 kDa). As previously reported [38], this strain contains the myo-3 promoter 

driving the expression of gfp in the mitochondria of muscle cells and was 

therefore used as a control for the mitochondrial fraction. Middle and lower panel: 

Cytosolic and nuclear fractions of wild type and pdp-1::gfp worms probed with 

GFP and the appropriate control antibodies. 
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Preface to Chapter 4 

This chapter is a follow-up study based upon the results obtained in Chapter 3. 

We explore the crosstalk between the insulin/IGF-1 pathway and the TGF-β 

signaling pathway in greater detail using single and double mutants. Dr. Kelvin 

Yen, a postdoctoral fellow in the lab performed the lifespan assays in Table 4.1. 

Ankita Bansal, a graduate student in the lab did the Oil Red O Fat Staining 

experiments in Figure 4.3. I performed all the other assays in this chapter. This 

chapter is part of the following manuscript that Dr. Heidi Tissenbaum and I wrote 

that has been submitted for publication: 

 

Narasimhan SD, Yen K, Bansal A, Padmanabhan S and Tissenbaum HA 
(2010). PDP-1 Regulates Lifespan, Fat and Development through the 
Insulin/IGF-1 and TGF-β signaling pathway (Submitted). 
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Summary 

Genetic epistasis studies from the last two decades have identified important 

roles for the C.elegans insulin/IGF-1 signaling (IIS) and TGF-β signaling 

pathways in modulating dauer diapause. Using single and double mutants of 

both pathways, it was determined that the IIS and TGF-β pathways acted in a 

parallel manner to regulate this phenotype.  Recently, our lab identified the 

phosphatase PDP-1 as a novel negative regulator of the IIS pathway. 

Intriguingly, epistasis studies placed PDP-1 in the TGF-β signaling pathway, 

suggesting that there was active crosstalk between both pathways. Here we 

investigate the interaction between both pathways using functional assays. Our 

studies reveal that TGF-β signaling can intersect with the IIS pathway at multiple 

levels, and the FOXO transcription factor DAF-16 is likely to be the most 

downstream mediator of both the pathways. Since the deregulation of TGF-β and 

insulin/IGF-1 signaling has been implicated in cancer, our studies may provide a 

new insight into the modulation of these pathways.  
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Introduction 

In C. elegans, the decision enter a state of diapause known as dauer is 

regulated by the processing of sensory cues (food availability, temperature, 

crowding) that is relayed through the DAF-7 pathway and the DAF-2 pathway 

that ultimately feed into the DAF-12 nuclear hormone signaling cascade [1]. 

Molecular cloning of the components of these pathways revealed that the DAF-7 

and DAF-2 pathways corresponded to TGF-β-like (BMP) signaling and 

insulin/IGF-1 signaling (IIS) cascades respectively [2,3]. Both of these pathways 

show remarkable molecular conservation in higher organisms. The TGF-β 

superfamily regulates several important biological processes such as cellular 

growth, differentiation and apopotosis while IIS is a central regulator of longevity, 

energy metabolism and development [4,5,6].  

The identification of these pathways has been primarily through genetic 

epistasis studies using mutants that either constitutively form dauers (daf-c) even 

in the presence of food or do not form any dauers (daf-d) when conditions are 

unfavorable [1]. The primary conclusions from these studies were that TGF-β 

signaling and IIS acted in a parallel manner to regulate a common 

phenotype[3,7]. In the IIS pathway, mutations in the kinases in the pathway, daf-

2, age-1, pdk-1, akt-1 and akt-2 result in daf-c phenotypes, with mutations in the 

PTEN phosphatase daf-18 and FOXO transcription factor daf-16 suppressing this 

phenotype completely (daf-d) [3,8]. Similarly, in the TGF-β signaling pathway, 
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mutations in the ligand daf-7, receptors daf-1 and daf-4 and R-Smad proteins 

daf-8 and daf-14 result in daf-c phenotypes [2,9]. Dauer formation in this pathway 

is suppressed by mutations in the co-Smad daf-3 or Sno/Ski repressor daf-5 

[2,9,10,11].   

Recently, we identified and characterized PDP-1, a novel negative regulator 

of the TGF-β signaling pathway (Chapter 3). Surprisingly, we found that pdp-1 

RNAi/mutation can suppress dauer formation of mutants in the IIS pathway. In 

addition, it was previously shown that while the IIS pathway regulates longevity, 

besides dauer formation, the TGF-β signaling pathway had little effect on lifespan 

[12]. More recent studies have suggested that modulation TGF-β signaling 

results in slight but significant differences in lifespan [13] Consistent with this, our 

studies found that as a component of TGF-β signaling was PDP-1 robustly 

regulated organismal lifespan (Chapter 3). To better understand the crosstalk 

between IIS and TGF-β signaling, we obtained or generated double mutants of 

both pathways and performed phenotypic assays on these strains. We 

specifically focused on the most downstream regulators of both pathways, DAF-3 

and DAF-5 in the TGF-β pathway and DAF-18 and DAF-16 in the IIS pathway 

and asked whether mutations in these genes could modulate signaling through 

either pathway. We find that the TGF-β pathway can modulate multiple outputs of 

the IIS pathway, and contrary to the previous conclusions, these pathways are 

more connected than previously appreciated. Importantly, under conditions of 
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reduced insulin/IGF-1 signaling, DAF-3 and DAF-5 antagonistically regulate the 

IIS pathway. Our studies point to distinct roles of DAF-3 in modulating the IIS 

pathway under normal and reduced signaling conditions. Importantly, modulation 

of the IIS pathway by components of TGF-β signaling ultimately depend upon 

DAF-18 and DAF-16.  
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Results 

1. DAF-3 and DAF-5 regulate daf-2 dauer formation 

We first re-investigated the genetic epsitasis analyses of both pathways 

tested dauer formation as a readout. For the dauer assays described below we 

used a ts allele of daf-2, daf-2(e1370). Normal reproductive growth is observed in 

this strain at 15°C but at 20°C it forms a significant percentage of dauers [17]. At 

25°C, 100% of daf-2(e1370) worms form dauers. Enhanced dauer formation by a 

mutation in the daf-2 insulin/IGF-1 receptor is suppressed by mutations in the 

FOXO transcription factor daf-16 [14,15,16]. Therefore, we wondered what effect 

would mutations in the Co-Smad daf-3 and the Sno/Ski repressor daf-5, the most 

downstream components of the TGF-β signaling pathway have on daf-2 dauer 

formation (Figure 4.1). Previous studies had used the e1376 allele of daf-3 for 

epistasis analyses, which contains a point mutation [7]. In this study, we also 

included the mgDf90 null allele of daf-3, which is a deletion of the entire daf-3 

coding region [9]. Since no null alleles are available for daf-5, we tested the effect 

of daf-5 RNAi besides the e1386 allele. daf-2(e1370), daf-2(e1370); daf-

3(e1376), daf-2(e1370); daf-3(mgDf90) and daf-5(e1386); daf-2(e1370) mutants 

were grown at 15°C and dauer formation was assayed at the different 

temperatures indicated in Figure 4.1. Mutations in both alleles of daf-3 

significantly enhanced daf-2 dauer formation, with the null allele resulting in 

almost 100% dauer formation (Figure 4.1A and B).  In contrast, a mutation in daf-

5 significantly reduces daf-2 dauer formation (Figure 4.1C).  To further confirm 
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these results, we grew daf-2(e1370) worms on control (empty vector), daf-3 and 

daf-5 RNAi. We observed an even more significant suppression of daf-2(e1370) 

dauer formation using daf-5 RNAi (Figure 4.1D), suggesting that DAF-5 function 

is important for dauer formation in these mutants. Importantly, at the restrictive 

temperature of 25°C, we did not observe a 100% dauer arrest in daf-5(e1386); 

daf-2(e1370) double mutants (Figure 4.1E). Hence under conditions of reduced 

insulin signaling, such as in a daf-2 mutant, DAF-3 and DAF-5 have opposite 

roles in regulating dauer formation.  This is in contrast to the function of DAF-3 

and DAF-5 in the TGF-β signaling pathway, where they both positively regulate 

dauer formation. 
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Figure 4.1: DAF-3 and DAF-5 can regulate dauer formation of daf-2(e1370) 

mutants.  

Data shown are from one representative experiment. Error bars indicate the 

standard deviation among the different plates within one experiment. 

A) Dauer formation of daf-2(e1370); daf-3(e1376) double mutants is significantly 

enhanced over daf-2(e1370) worms (p<0.004). 

B) Dauer formation of daf-2(e1370); daf-3(mgDf90) double mutants is 

significantly enhanced over daf-2(e1370) worms (p<0.001). 

C) daf-3 (p<0.03) and daf-5 (p<0.06) mutations enhance and reduce daf-2  dauer 

formation. 

D) daf-2(e1370) dauer formation is reduced on daf-5 RNAi (p<0.04), similar to 

daf-18 and pdp-1 RNAi.  

E) daf-5; daf-2 double mutants do not arrest as dauers at 25°C while daf-2 

mutants form 100% dauers 
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2. DAF-16 suppresses dauer formation of TGF-β pathway mutants 

We next tested whether mutations in the PTEN phosphatase daf-18 or FOXO 

transcription factor daf-16, which are negative regulators of the IIS pathway, can 

affect dauer formation of mutants in the TGF-β pathway. For these experiments, 

we grew daf-7(e1372), daf-8(m85) and daf-14(m77) mutants on vector, daf-18 

and daf-16 RNAi and assayed for dauer formation at the appropriate temperature 

(Figure 4.2). We find that daf-16 RNAi can robustly suppress dauer formation of 

all the three mutants tested (Figure 4.2A, C, E). However, the epistasis results 

using daf-18 RNAi were more complex.  There was strong dauer suppression of 

daf-7(e1372) and daf-14(m77) mutants on daf-18 RNAi, but there was no effect 

observed in daf-8(m85) mutants (Figure 4.2A, B, D). Taken together, the 

downstream regulators of both, the IIS and TGF-β pathway can modulate dauer 

formation of either pathway. This suggests that these two pathways are not 

parallel or independent. Importantly, since daf-16 RNAi suppresses dauer 

formation mutants in the IIS pathway [8] as well as dauer formation of all mutants 

tested in the TGF-β signaling pathway in this study, it is likely to be the most 

downstream effector of the two pathways regulating this phenotype.
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Figure 4.2: DAF-18 and DAF-16 can regulate dauer formation of TGF-β pathway 

mutants.  

Data shown are from one representative experiment. Error bars indicate the 

standard deviation among the different plates within one experiment. 

A) Dauer formation of daf-7(e1372) mutants at 22.5°C is significantly suppressed 

by daf-18 RNAi (p<0.05) and daf-16 RNAi  (p<0.005), similar to daf-3 RNAi. 

B) Dauer formation of daf-14(m77) mutants at 20°C is significantly suppressed by 

daf-18 RNAi (p<0.01)  and by daf-16 RNAi (p<0.007), similar to daf-3 RNAi.  
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C) daf-16 RNAi significantly suppresses dauer formation of daf-8(m85) mutants 

at 25°C (p<0.004), but daf-3 RNAi only has a weak effect. 

D) daf-18 RNAi has no effect on dauer formation of daf-8(m85) mutants at 

22.5°C, and neither does pdp-1 RNAi (which has a genetic interaction with daf-

8). daf-3 RNAi can still  significantly suppress dauer formation (p<0.005) 

E) The enhance dauer formation of daf-2(e1370); daf-3(mgDf90) is suppressed 

by daf-18 (p<0.04) but not by pdp-1 RNAi. daf-16 RNAi results in 100% dauer 

suppression in this strain.   
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3. TGF-β signaling regulates longevity through IIS 

Besides dauer formation, the IIS pathway also regulates lifespan, stress 

resistance and fat storage [18,19]. We next tested whether mutations in daf-3 

and daf-5 could also affect these phenotypes by performing lifespan assays, heat 

stress assays and fat staining. Single gene mutations in daf-3, daf-5, daf-18 and 

daf-16 result in slight reduction in the lifespan compared to wildtype worms 

(Table 4.1) [17,20]. In addition, we find that mutations in the upstream 

components of the TGF-β pathway such as daf-7 and daf-14 do not result in 

lifespan extension  (Table 4.1). Similarly, in our earlier studies, found that RNAi 

or mutation of pdp-1 results in a very small effect on lifespan. However, pdp-1 

RNAi results in a significant decrease in the lifespan of long-lived mutants of the 

IIS pathway, such as daf-2(e1370) and age-1(hx546).  Therefore, we next tested 

whether daf-3 or daf-5 mutations or RNAi can modulate the lifespan of these 

long-lived mutants (Figure 4.3 B and C).  Similar to dauer formation, a null 

mutation in daf-3 drastically enhances the lifespan of daf-2(e1370) mutants 

(Figure 4.3B).  However, daf-18 RNAi suppresses lifespan extension in both, daf-

2(e1370) as well as daf-2(e1370); daf-3(mgDf90) mutants, though its 

suppression of the latter is not as robust. In contrast, pdp-1 RNAi only has a 

partial effect on the lifespan of daf-2(e1370); daf-3(mgDf90) double mutants, 

since it acts via the TGF-β pathway.  Along similar daf-5(e1386); daf-2(e1370) 

double mutants show a dramatic reduction in lifespan as compared to the  daf-

2(e1370) parental strain, similar to daf-16 (mgDf50); daf-2(e1370) double 
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mutants (Table 4.1). We next tested the effect of a daf-5 mutation in another 

long-lived mutant, age-1. As shown in Figure 4.3C, age-1(hx546); daf-5(e1385) 

double mutants live significantly shorter than the long lived age-1(hx546) parental 

strain. Again, we find that daf-18 RNAi can suppress the lifespan of both, age-

1(hx546) as well as age-1(hx546); daf-5(e1385) mutants. Our results suggest 

that while mutations in the TGF-β pathway by themselves have only small effects 

on lifespan, components of this pathway are important modulators of longevity 

under conditions of reduced IIS. 
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Table 4.1: Lifespans of IIS and TGF-β pathway mutants 
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Figure 4.3: DAF-3 and DAF-5 regulate lifespan of long-lived mutants of the IIS 

pathway. 
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A) Mutations in components of the TGF-β pathway do not affect lifespan in C. 

elegans, except for pdp-1, which slightly reduces wild type lifespan. 

B) Lifespan of daf-2(e1370); daf-3(e1376) worms is enhanced over daf-2(e1370) 

mutants (p<0.001). pdp-1 RNAi can significantly suppress the lifespan of daf-

2(e1370) worms (p<0.0001) but only has a partial effect on the lifespan of daf-

2(e1370); daf-3(e1376) worms (p<0.01). daf-18 RNAi significantly reduces 

lifespan in both strains (p<0.0001). 

C) age-1(hx546); daf-5(e1385) double mutants live significantly shorter than age-

1(hx546) worms (p<0.0001). Both pdp-1 and daf-18 RNAi significantly reduce the 

lifespan of both strains (p<0.0001).   
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3. TGF-β signaling modulates fat storage and thermotolerance  

 
A number of studies have previously identified roles for the TGF-β pathway in fat 

storage [16,21]. We next further investigated the crosstalk between both 

pathways using fat storage as the readout (Figure 4.4).  As shown by Oil Red O 

Staining in Figure 4.4A, mutations in daf-3, daf-5 and daf-16 have either slightly 

less or comparable levels of fat to wild type worms. In contrast, mutations in 

these genes result in significant changes in the fat storage of “fat” mutants in the 

pathway such as daf-2(e1370) and age-1(hx546).  We find that consistent with 

the lifespan and dauer data, a mutation in daf-3 slightly enhances daf-2(e1370) 

fat storage while a mutation in daf-5 results in reduction of fat stores. In fact, daf-

5(e1386); daf-2(e1370) mutant fat storage was comparable to daf-16(mgDf50); 

daf-2(e1370) worms (Figure 4.4A). Similarly, age-1(hx546); daf-5(e1385) 

mutants stored significantly lesser fat when compared to the parental age-

1(hx546) strain.  We validated the effect of a daf-5 mutation on daf-2(e1370) and 

age-1(hx546) worms fat storage using Sudan Black Staining (Figure 4.4B). Since 

daf-16 RNAi could suppress dauer formation of daf-7 mutants, we tested whether 

it also affected fat storage (Figure 4.4C).  Similar to daf-3 RNAi, daf-16 RNAi also 

results in suppression of fat stores in daf-7 mutant worms Lastly, we assayed 

thermotolerance in the single and double mutants of both pathways (Figure 

4.4D). The results of the thermotolerance assay were slightly different from the 

trends observed for the rest of the assays. While a mutation in daf-5 resulted in 
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significant reduction in the thermotolerance of daf-2(e1370) and age-1(hx546) 

worms, there was no enhancement observed due to the daf-3 mutation (Figure 

4.4D).  In addition, we observed that daf-7(e1372) mutants showed increased 

thermolerance compared to wild type worms, almost to the level of age-1(hx546) 

worms.   

Taken together, our results suggest that DAF-3 and DAF-5 are important 

modulators of the IIS pathway. Importantly, DAF-18 and DAF-16 are likely to be 

the most downstream regulators modulating at least most of the phenotypes of 

the two pathways, namely dauer fomation, lifespan and fat storage.  
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Figure 4.4: Modulation of fat storage and thermotolerance by components of the 

TGF-β pathway. 

A) Oil Red O Staining in adult worms of the IIS and TGF-β pathways. Arrows 

indicate the lower bulb of the pharynx. 

B) Sudan Black Staining of adult worms. Arrows indicate the pharynx. 

C) Sudan Black Staining of L3 worms of daf-7(e1372). Arrows indicate the lower 

bulb of the pharynx. Adults were not analyzed as they have an egl phenotype, 
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which results in increased retention of eggs. The eggs can mask the fat staining 

phenotype in the intestine. 

D) Survival of adult worms of the IIS and TGF-β pathways after 9.5 hours at 

37°C. Data shown is an average of two independent repeats. 
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Discussion 

 In this study, we identify novel crosstalk between the IIS and TGF-β 

signaling pathways. Previous studies exploring dauer formation using genetic 

epistasis analyses had suggested that these two pathways were independent 

and parallel pathways with little overlap. These conclusions could have been 

largely due to the unavailability of null alleles and genetic tools such as RNAi. For 

example, non-null alleles of daf-16 only partially suppressed dauer formation of 

TGF-β pathway mutants and therefore DAF-16 was thought to only affect the IIS 

pathway [7]. Here we re-evaluate the two pathways by looking at the effects of 

single and double mutants as well as RNAi. First, DAF-3 and DAF-5 were 

thought to have similar functions and regulation by the TGF-β signaling pathway 

[22]. In contrast to this, we find that under conditions of reduced IIS, DAF-3 and 

DAF=5 have opposite functions and they affect various outputs of the IIS 

pathway in different ways.  DAF-3, in particular regulates the IIS pathway in 

opposite ways, depending upon whether signaling through the pathway is normal 

or reduced. Importantly, we observed that there is a strong effect of temperature 

the severity of the phenotypes studied [1]. For instance, the enhancement effect 

of a daf-3 null mutation on daf-2 mutant phenotypes is not seen at 15°C but 

observed at higher temperatures. Secondly, similar to the previous studies, the 

TGF-β signaling pathway does not itself have a role in regulating longevity. 

However, components of this pathway are important regulators of long-lived 

mutants of the IIS pathway. Consistent with the dauer and lifespan phenotypes, 
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we find that components of TGF-β signaling can also regulate fat storage under 

conditions of reduced IIS. Taken together, DAF-3 and DAF-5 are novel 

modulators of the IIS pathway. Further investigation into how they regulate this 

pathway will provide a better insight into the crosstalk between both pathways. 

Previous studies, including our own (Chapter 3) have suggested that the TGF-β 

signaling pathway regulates the expression of insulins [13,23,24] (Chapter 3).  

DAF-3 and DAF-5 may either promote or suppress the expression of these 

insulins, which then feed into the IIS pathway (Figure 4.5).  

In addition, IIS and TGF-β signaling may also converge at the 

transcriptional level, where the SMAD proteins and DAF-16 could co-regulate 

several of the well-known DAF-16 targets that may act in a combined manner to 

regulate the phenotypes observed on lifespan, dauer formation, fat metabolism 

and the response to stress. SMAD proteins have low affinity for binding DNA, 

and the orchestration of cellular signals into defined outputs requires their 

association with additional co-factors [25]. Mammalian SMAD proteins can bind 

several co-activators and co-repressor proteins to modulate gene transcription 

[4].  Specifically, a synergy between mammalian FOXO (FOXO1, FOXO3a and 

FOXO4) and SMAD2/3 was identified for the regulation of several genes involved 

in cell cycle regulation and the response to stress [26]. Importantly, these 

interactions required the function of the co-SMAD protein SMAD-4, which is 

homologous to DAF-3 [26]. In a similar manner, DAF-3 and DAF-5 could promote 

or antagonize DAF-16 directly to regulate the expression of its target genes, 
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which include antioxidant genes, chaperones and gluconeogenic enzymes 

[23,27,28]. Despite the different levels of input from the TGF-β signaling pathway, 

we conclude that DAF-16 is likely to the most downstream effector regulating the 

various outputs of the IIS pathway. 
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Figure 4.5: Model linking the TGF-β and IIS pathways and highlighting the 

opposite roles for DAF-3 under different signaling conditions.   

(A) Under favorable environmental conditions, signaling through the TGF-ß 

pathway activates the R-SMAD proteins DAF-8 and DAF-14. The R-SMADs 

regulate insulin gene expression while antagonizing the activity of the Co-SMAD 

DAF-3 and the Sno/Ski repressor DAF-5. These insulins may act as agonists and 

activate the DAF-2 insulin/IGF-1 signaling pathway, thereby promoting 

phosphorylation and suppression of DAF-16 activity.  In this feed-forward model, 

the worm undergoes reproductive growth and has a normal life span.  

(B) The phosphatase PDP-1 negatively regulates TGF-ß signaling through 

dephosphorylation of DAF-8 and DAF-14. Under these conditions, active DAF-3 

and DAF-5 repress the transcription of agonistic insulins. In addition, DAF-3 has 

also been shown to repress the expression of the daf-7 TGF-ß ligand and daf-8, 

leading to further downregulation of the TGF-ß pathway. Alternatively, DAF-3 and 

DAF-5 may also promote the transcription of potential antagonistic insulins. This 

results in reduced signaling through the IIS pathway, promoting DAF-16 nuclear 

localization.  

C) Under low IIS conditions, DAF-16 localization is predominantly nuclear, where 

it regulates the transcription of hundreds of target genes that act in combination 

to regulate longevity, stress resistance, dauer formation and the response to 

stress. Paradoxically, under low IIS conditions, DAF-3 and DAF-5 play opposite 

roles. DAF-5 is likely to synergize with DAF-16 and modulate the activity of its 
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target genes. DAF-3 acts to antagonize DAF-16, either directly or through 

suppression of DAF-16 target genes. Hence the role of DAF-3 in modulating IIS 

depends upon the level of signaling through the pathway.  
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Materials and Methods 

Strains  

All strains were maintained at 15°C using standard C. elegans techniques 

[29]. Strains used in this study are listed in Table 2. 

 
RNAi based assays 

RNAi plates were prepared as previously described [17]. L4 worms were 

picked onto fresh RNAi plates and maintained for two generations prior to the 

assay. 

  
Dauer assays 

Strains were maintained on RNAi plates for two generations or regular OP50 

plates at 15oC. Dauer assays were performed by picking approximately 100 eggs 

onto 2 fresh plates and incubated at the appropriate temperature. The daf-

7(e1372) and daf-14(m77) worms have a strong Egl phenotype. For dauer 

assays on these strains eggs were obtained through hypochlorite treatment as 

previously described [17]. For all dauer assays, plates were scored for the 

presence of dauers or non-dauers after 3.5-5.5 days, depending upon the strain. 

Dauer assays were performed at the temperature indicated.  

 
Lifespan Assays 

Strains were maintained at 15ºC and synchronized by picking eggs onto fresh 

RNAi or OP50 plates. Approximately 60 young adult worms were transferred per 
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plate to a total of three fresh RNAi or regular OP50 plates containing 5-

fluorodeoxyuridine (FUDR) at final concentration of 0.1 mg/ml [30],[31]. All RNAi-

based lifespan assays were carried out at 15ºC.  Lifespans on OP50 plates were 

performed at the temperature indicated.  Survival was scored by tapping with a 

platinum wire every 2-3 days. Worms that died from vulval bursting were 

censored from the analysis. Statistical analyses for survival were conducted 

using the standard chi-squared-based log rank test. 

 
Heat Stress assay 

Strains were maintained regular OP50 bacteria at 15ºC, as described above. 

From these plates, approximately 30 young adult worms were picked onto fresh 

plates and upshifted to 20ºC for 6 hrs. The plates were then transferred to 37oC 

and heat stress-induced mortality was determined every few hours till all the 

animals died. 

 
Fat staining 

Strains maintained RNAi on regular OP50 plates were synchronized by 

picking eggs on to fresh plates and grown synchronously at 15ºC.  The plates 

were then upshifted to 20ºC for 8 hours, at the L2 stage to get L3 worms and at 

the L4 stage to get young adult worms. The worms were then washed off the 

plates into microcentrifuge tubes and incubated in 1x PBS buffer for 20 minutes 

on a shaker at RT. After 2 washes at 3000rpm for 30 seconds with 1x PBS, the 

strains were fixed according to the type of staining performed. Oil Red O and 
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Sudan black staining was performed as previously described [32,33,34]. After 

incubation overnight at RT, worms were mounted on slides and visualized using 

the Zeiss Axioscope 2+ microscope.  
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Table 4.2: List of strains used in this study 
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Preface to Chapter 5 

In the following chapter, I describe a genetic epistasis study on the phosphatase 

fem-2. This phosphatase was identified in a screen conducted by Dr. Srivatsan 

Padmanabhan, a former graduate student in the lab.  
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Chapter 5 

The FEM-2 phosphatase regulates insulin/IGF-1 

signaling in an allele-specific manner 
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Summary 

Activation of the C. elegans insulin/IGF-1 receptor DAF-2 initiates a PI3-kinase 

signaling cascade that ultimately results in the phosphorylation and negative 

regulation of the single FOXO transcription factor DAF-16. Negative regulation of 

the pathway by the PTEN phosphatase homolog DAF-18 or a reduction-of-

function mutation in daf-2 results in enhanced lifespan, fat storage and dauer 

formation. The components of the IIS pathway have been mostly identified 

through genetic epistasis studies using dauer formation as a read out. To identify 

additional negative regulators of IIS, our lab had previously conducted a directed 

RNAi screen for serine/threonine phosphatases that modulated daf-2 dauer 

formation. The top candidate from this screen, fem-2 robustly suppresses dauer 

formation when knocked down by RNAi, similar to daf-18 RNAi.  Here we 

describe additional characterization of fem-2 and how its modulation of the 

pathway is specific to the allele of daf-2 tested.  
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Introduction 

Under favorable growth conditions, C. elegans development proceeds 

normally through four larval stages, L1-L4 to the reproductive adult stage [1]. 

These conditions include a low pheromone to food ratio as a well as an ambient 

growth temperature.  However, when food is limiting or under higher 

temperatures, high levels of pheromone can induce developmental arrest in the 

third larval stage in the form of dauer larvae [1].  The transition to a dauer larva 

involves several anatomical and physiological changes, such as radial 

constriction of the body, pharyngeal constriction, modifications in the cuticle and 

the occlusion of the buccal cavity [1,2]. Dauers store increased fat, are non-

feeding, long-lived and resistant to a variety of stresses, including treatment with 

1% SDS[1,2]. Early genetic studies in C. elegans identified specific pathways that 

were involved in the regulation of dauer formation [3].  Mutants were identified 

that would either form dauers despite plentiful food conditions (dauer formation 

constitutive or daf-c) or be unable to form dauers during unfavorable conditions 

(dauer formation defective or daf-d)[3]. Of these, several of the daf-c and daf-d 

mutations corresponded to genes that were involved in neuroendocrine pathways 

such as insulin/IGF-1 signaling (IIS) and TGF-β signaling [1,2]. Interestingly, 

some of the daf-c mutants also showed a significant increase in adult lifespan 

[4,5].  

Genetic epistasis studies identified these long-lived daf-c mutants as kinases 

of insulin/IGF-1 signaling pathway, encoded by the genes daf-2 (insulin/IGF-1 
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receptor tyrosine kinase), age-1 (PI3-kinase), pdk-1, akt-1 and akt-2.  

Interestingly, two daf-d mutations in the genes daf-18 and daf-16 could 

completely suppress the dauer formation and enhanced longevity observed in 

the kinase mutants, with daf-18 encoding the lipid phosphatase PTEN and daf-16 

a FOXO transcription factor [6,7,8,9,10,11,12]. Under normal signaling 

conditions, signaling through DAF-2 results in the negative regulation of DAF-16, 

thereby regulating growth and reproduction. Negative regulation of the pathway 

by DAF-18 or under reduced signaling conditions, DAF-16 is more active and 

translocates into the nucleus to regulate the transcription of genes involved in 

dauer formation and longevity [13,14,15]. Besides DAF-18, few other negative 

regulators of the IIS pathway have been identified. Our lab recently performed a 

directed RNAi screen for serine/threonine phosphatases that would negatively 

regulate IIS by counterbalancing kinase activity [16] [17]. In this screen, we 

assayed for the contribution of 60 genes in modulating the dauer formation of 

daf-2 mutant. The allele used in this screen, daf-2(e1370) is the most commonly 

used mutant for genetic studies in C. elegans. The top candidate from this screen 

was the gene fem-2.   

FEM-2 (FEMinization of XX and XO animals 2) has been previously 

implicated in the regulation of sex-determination in C. elegans [18,19]. Wild type 

worms are hermaphrodites, with two X chromosomes while males, which make 

up less than 0.1% of the population, have a single X chromosome. Wild type 

worms undergo spermatogenesis during the L4 stage and the sperm are used to 
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fertilize the oocytes produced when they become adults[1]. Mutations in fem-2 

affect spermatogenesis and result in “feminization” of both, wild type and male 

worms[18]. FEM-2 shares approximately 50% homology to mammalian PPM1F, 

a phosphatase belonging to the PP2C family that has been involved in regulation 

of calmodulin kinase signaling [20]. In our screen, RNAi of fem-2 resulted in 

100% suppression of daf-2(e1370) dauer formation similar to daf-18 as well as 

daf-16 RNAi [16]. Since there were no previous reports linking FEM-2 to dauer 

formation or the IIS pathway, we looked at the effect of fem-2 RNAi on a second 

allele of daf-2, daf-2(e1368). Surprisingly, we observed that fem-2 RNAi did not 

have any effect on, daf-2(e1368) mutants. Due to this allele-specific phenotype, 

we proceeded to perform additional characterization of fem-2 using different 

alleles of 5 other alleles of daf-2 besides e1370.  We confirm that effect of fem-2 

RNAi on dauer formation is only observed in daf-2(e1370) and not the other 

alleles tested. In addition, we describe how the pleiotropy within the different 

alleles of daf-2 may explain some of the effects we observe.   
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indicate the different mutations that were analyzed in this study. Leucine-rich 

domain (L1, L2), Cysteine-rich domain (CR), Fibronectin-type domain (Fn). 

(Modified from [5] and [21]). 
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Results 

DAF-2 shares approximately 35% homology with the mammalian insulin and 

IGF-1 receptors [5]. Similar to mammals, DAF-2 has a N-terminal signal peptide, 

ligand-binding domain with a cysteine-rich region for interchain disulfide bond 

formation, a transmembrane domain and a tyrosine kinase domain (Figure 5.1) 

[5,21].  Several alleles of daf-2 were identified from early genetic studies, and 

sequencing analyses have identified that these mutations are found in the 

extracellular regions and ligand-binding domains as well as the receptor tyrosine 

kinase domain. [5,21]. The six alleles of daf-2 used in this study were daf-

2(e1370), daf-2(e1368), daf-2(e1369), daf-2(m577), daf-2(e1391) and daf-

2(m596) (Figure 5.1). These mutants can be clustered as following: mutation in 

the leucine-rich (L2) region (m596, e1368), mutation in the cysteine-rich (CR) 

region (m577) and mutation in the receptor tyrosine kinase domain (e1391, 

e1370)[21].  The mutation in the e1369 allele does not occur in the coding region 

[21]. 

 

1. fem-2 RNAi suppresses daf-2(e1370) dauer formation 

For all assays worms were maintained on the RNAi bacteria for two generations 

and dauer assays were carried out at the temperature indicated. All assays were 

repeated at least twice. We first verified the results from our RNAi screen 

assaying dauer formation of daf-2(e1370) mutants on vector RNAi, daf-18 RNAi 

and the three top phosphatase candidates, fem-2 RNAi, pptr-1 RNAi and pdp-1 
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RNAi (Figure 5.2). The plates were then scored for the presence of dauers and 

non-dauers animals. As previously reported, dauer formation of daf-2(e1370) 

mutants was robustly suppressed on fem-2, pptr-1 and pdp-1 RNAi [16,22]. Of 

the three phosphatases tested, fem-2 RNAi had the most severe suppression, 

similar to daf-18 RNAi.  
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Figure 5.2: fem-2 RNAi robustly suppresses daf-2(e1370) dauer formation 

similar to daf-18 RNAi. Data shown are from one representative experiment. (A) 

From our earlier screen, the three top candidates fem-2, pptr-1 and pdp-1 

suppressed dauer formation of daf-2(e1370) worms. Dauer formation was ~ 88% 

on vector RNAi (n=105), ~18% on daf-18 RNAi (n=102), ~8% on fem-2 RNAi 
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(n=142), ~ 34% on pptr-1 RNAi (n=79) and ~ 42% on pdp-1 RNAi (n=72). (B) 

Testing dauer formation of daf-2(e1370) at 20°C: dauer formation on vector RNAi 

was ~ 67% (n=173), on daf-18 RNAi was ~3.5% (n=242) and on fem-2 RNAi was 

~ 4.6% (n=203).  
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2. fem-2 RNAi has a slight effect on daf-2(e1368) mutants 

To confirm our results, we next tested the effect of fem-2 RNAi on daf-2(e1368) 

mutants (Figure 5.3). This mutation is considerably weaker than the e1370 allele 

of daf-2,and dauer formation is observed at a higher temperature of 25°C. To our 

surprise, fem-2 RNAi did not have a dramatic effect on dauer formation of daf-

2(e1368) worms. Quantification of dauers on both sets of RNAi plates revealed 

that there were fewer dauers on fem-2 RNAi, however we observed that nearly 

20% of the worms in these plates were dauer-like (Figure 5.3). Dauer-like worms 

have been previously described as larvae with incomplete dauer morphogenesis 

[23].  These worms share some characteristics with dauers such as growth 

arrest, reproductive arrest, remodeling of the cuticle but feeding is not completely 

suppressed and they are not resistant to SDS [23]. We next quantified the 

different larval stages of the worms on the plates to test whether fem-2 RNAi had 

any effect on growth of the worms. On vector RNAi, ~ 30% of the worms were 

L3s and ~19% were adults, while on fem-2 RNAi,  ~18% were L3s, 14% were 

L4s and ~31% were adults. These results suggest that fem- 2 RNAi slightly 

suppresses the dauer phenotype and increases the growth rate of daf-2(e1368) 

worms. In contrast, 100% of the worms on daf-18 RNAi were adults. The e1368 

and e1370 alleles contain mutations in the ligand-binding and the receptor 

tyrosine kinase domains respectively.  
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Figure 5.3: A. fem-2 RNAi slightly reduces dauer formation of daf-2(e1368) 

mutants. Data shown are from one representative experiment. Dauer formation 

on vector RNAi was ~ 48% (n=130), on fem-2 RNAi was ~ 18 % (n=79) and on 

daf-18 RNAi was 0% (n=70).   Quantification of dauer-like animals was ~2% on 

vector RNAi and ~19% on fem-2 RNAi. 

B. A dauer larva (left) and dauer-like animal (right). Both are dark and radially 

constricted, but dauer-like worms are slightly bigger and occasionally show 

pharyngeal pumping. 
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3. No effect of fem-2 RNAi on additional alleles of daf-2 

We next tested two other alleles, daf-2(m596) and daf-2(e1391), which 

contain mutations in the same two domains (Figure 5.1). However we could not 

find a suitable temperature to assay for dauer formation in both of these mutants.  

In the case of the m596 allele, there were no dauers observed any of the RNAi 

plates at 22.5°C, while at 25°C, all the worms formed 100% dauers. In contrast, 

the e1391 allele has an extremely strong daf-c phenotype and worms on all the 

RNAi plates formed 100% dauers at 20°C. At the permissive temperature at 

15°C, we could not detectany significant differences in growth and dauer 

formation was less than 5%.  Therefore, we next looked at the effect on fem-2 

RNAi on daf-2(e1369) mutants (Figure 5.4). This particular mutation is not found 

in the coding region of daf-2, but instead is thought to lie in a cis-regulatory 

region [21].  daf-2(e1369) mutants show enhanced dauer-formation and an 

increased mean and maximal lifespan as compared to e1368 and e1370 alleles 

[24]. We observed no difference in dauer formation of daf-2(e1369) mutants 

between vector RNAi and fem-2 RNAi. In contrast, daf-18 RNAi resulted in 100% 

dauer suppression.  

The m577 allele of daf-2 contains a mutation in the cysteine rich domain of 

the receptor. Disruption of the equivalent residue in the human insulin and IGF-1 

receptors impairs their dimerization as well as localization to the cell membrane 

[21,25]. We did not observe any significant differences in dauer formation 

between vector RNAi and fem-2 RNAi in this allele (Figure 5.5). Quantification of 



  234 

the larval stages was as follows: on vector RNAi, ~ 1% of the worms were L1/L2s 

and ~98% were L4s, while on daf-18 RNAi, ~7% were L1/L2s,  ~26 % were L3s 

and ~67% were adults. On fem-2 RNAi,  ~1% were L1/L2s, 83% were L3s and 

~15% were adults, suggesting a delay in growth compared to control. Taken 

together, fem-2 RNAi suppresses dauer formation only of the e1370 allele of the 

daf-2 insulin/IGF-1 receptor and has no effect on alleles that bear mutations in 

different domains of the receptor. 
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Figure 5.4: fem-2 RNAi does not affect dauer formation of daf-2(e1369) mutants. 

Data shown are from one representative experiment. Dauer formation on vector 

RNAi was ~ 74% (n=110) and fem-2 RNAi was ~ 69% (n=76). 100% of worms on 

daf-18 RNAi were non dauers (n=142).  Since this strain forms a high percentage 

of dauers, a significant number were found in the sides of the plate and the lid. 

These were not included in the count as it was difficult to assess whether they 

had been exposed to the RNAi bacteria. 
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Figure 5.5: fem-2 RNAi does not affect dauer formation of daf-2(m577) mutants. 

Data shown are from one representative experiment. Dauer formation of worms 

on vector RNAi was ~ 1.5% (n=130), on fem-2 RNAi was ~1% (n=187) and on 

daf-18 RNAi was 0% (n=97). Quantification of the different larval stages shows a 

slight delay in growth on fem-2 RNAi when compared to vector RNAi, with a 

majority of the worms on daf-18 RNAi being non-dauer adults.  
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Discussion 

  In this study, we have performed genetic characterization of the 

serine/threonine phosphatase fem-2 and its role in regulating the C. elegans 

insulin/IGF-1 signaling (IIS) pathway. FEM-2 was one of three phosphatases 

identified in a directed RNAi screen for phosphatases that negatively modulated 

insulin/IGF-1 signaling. RNAi of fem-2 robustly suppresses dauer formation of 

daf-2(e1370) mutants similar to daf-18 RNAi [16]. To test whether FEM-2 was 

indeed a novel negative regulator of (IIS), we performed genetic epistasis 

analyses using dauer formation as a readout. Multiple alleles of daf-2 have been 

identified and the mutations have been mapped to distinct domains of the 

receptor. Based upon phenotypic differences, the various alleles of daf-2 have 

been classified into two classes [24]. Mutants in Class I are daf-c, long-lived, 

thermotolerant and show low levels of L1 arrest at higher temperatures. Class II 

mutants share these phenotypes and additionally show motility and anatomical 

defects.  Of the mutants tested in this study, e1368, m596, m577 and e1369 are 

Class I alleles while e1370 and e1391 are Class II alleles [24]. Interestingly, we 

observed that fem-2 RNAi could only suppress dauer formation of the e1370 

allele and had no effect on all of the other alleles tested. The other two candidate 

phosphatases from the screen, PPTR-1 and PDP-1 did not display any such 

allele-specific effects (Chapter 2 and Chapter 3). Besides fem-2, our lab has 

observed e1370 allele-specific dauer suppression with pyruvate dehydrogenase 

kinase (pdhk-2) RNAi (Chapter 3).  



  238 

This confounding result can be attributed to the pleiotropy associated with the 

various alleles of daf-2 itself. The classification of the different alleles were based 

upon the phenotypic differences mentioned earlier as well as their genetic 

interaction with the gene daf-12.  The nuclear hormone receptor DAF-12, 

homologous to mammalian vitamin D and LXR receptors, is the most 

downstream regulator of reproductive growth versus dauer diapause [26,27].  

Under favorable environmental conditions, neuroendocrine signals from the IIS 

pathway and other sensory pathways modulate expression of the ligand for DAF-

12 through a cytochrome P450 pathway, which upon binding to its receptor, 

promotes reproductive growth[27].  When conditions are unfavorable, less ligand 

is produced, and DAF-12 associates with a co-repressor DIN-1 to promote dauer 

diapause[28]. While a mutation in daf-16 can suppress the longevity and daf-c 

phenotypes of the different alleles of daf-2, a mutation in daf-12 has allele-

specific effects. A daf-12 mutation suppresses the longevity and daf-c 

phenotypes of Class I alleles while enhancing the same for Class II alleles 

[21,24].  Similarly, allele-specific effects have been observed for the 

ribonucleoprotein mutant rop-1, which enhances dauer formation of the e1370 

allele but suppresses dauer formation of m596 [29]. 

The m577 and e1370 alleles, Class I and Class II respectively, are daf-c and 

show an increased lifespan [24].  Under low insulin signaling conditions, such as 

in a daf-2 mutant, DAF-16 less phosphorylated and it translocates into the 

nucleus to regulate the transcription of genes involved in longevity, dauer 
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formation and metabolism [13]. Interestingly, while this nuclear localization is 

observed in e1370 mutants, DAF-16 remains unchanged in m77 mutants [21]. 

This difference is likely to be a class difference, as mutations in class I are 

weaker. In addition, microarray studies have identified more gene changes in 

e1370 as compared to the m596, m577 or e1368 alleles, and also greater 

increases in lifespan as well as resistance to hypoxia [30]. These results would 

support use of e1370 as the major allele for looking at the effects of reduced 

insulin/IGF-1 receptor function in worms.   

It will be interesting to explore changes that occur downstream of DAF-2, 

such PI3-kinase activation, AKT phosphorylation and DAF-16 nuclear localization 

pathway upon fem-2 RNAi. The effect of fem-2 RNAi on lifespan of the different 

alleles will reveal whether the complex epistasis holds true for just one 

phenotype (dauer formation) or for multiple outputs of the pathway. Lastly, since 

IIS consists of several branching pathways, it will be interesting to see what 

happens to other connected pathways such as the Ras pathway or the TOR 

pathway in the different daf-2 alleles. Preliminary data in the lab has shown that 

in the e1370 allele, phosphorylation of the threonine 350 (308 in mammals) 

residue of Akt, which is regulated by PI3-kinase signaling, is completely 

abolished while phosphorylation of serine 517 (473 in mammals), which is 

regulated by TOR Complex 2, is only slightly reduced (Dr. Kelvin Yen, personal 

communication). In another example, a mutation in the tyrosine kinase domain in 

the human insulin receptor, R1174Q results in impaired Ras and MAP-kinase 
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signaling but normal IRS phosphorylation and PI3-kinase activation [21,31]. If 

FEM-2 is involved in modulation of IRS signaling or some other yet unidentified 

adaptor protein that associates with the receptor, it is likely that the e1370 

mutation still allows it access to its substrate compared to the other mutations. 

Taken together, FEM-2 is a novel modulator of the C. elegans IIS pathway and it 

will be useful to further understand the function of this phosphatase despite its 

allele-specific regulation, especially given that the e1370 allele physiologically 

mimics conditions of reduced IIS.  
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Materials and Methods 

Strains  

All strains were maintained at 15°C using standard C. elegans techniques 

[32]. For all RNAi assays, worms were maintained on the RNAi bacteria for two 

generations before the assays were carried out.  

 
Preparation of RNAi plates 

RNAi plates were prepared by supplementing Nematode Growth Media 

(NGM) media with 100 µg/ml ampicillin and 1 mM IPTG. After pouring, the plates 

were kept at room temperature (RT) for 5 days to dry. RNAi bacteria were grown 

overnight at 37°C in LB media supplemented with 100 µg/ml ampicillin and 12.5 

µg/ml tetracycline. The next day, the cultures were diluted (1:50) in LB containing 

100 µg/ml ampicillin and grown at 37°C until an OD600 of 0.9. The bacterial 

pellets were resuspended in 1X PBS (phosphate-buffered saline) containing 

1mM IPTG. About 200 µl of the bacterial suspension was seeded onto the RNAi 

plates. The seeded plates were dried at RT for 3 days and stored at 4°C. 

 
Dauer assays 

Strains were maintained on RNAi plates for two generations at 15oC. 

Dauer assays were performed by picking approximately 100 eggs onto 3 fresh 

plates and incubated at the appropriate temperature. For all dauer assays, plates 

were scored for the presence of dauers or non-dauers after 3.5-5.5 days, 

depending upon the strain.  
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Discussion 

The identification of conserved molecular pathways that modulate longevity 

across several species has undoubtedly provided us with a better understanding 

of the aging process. In particular, pathways that regulate energy metabolism 

have been found to play a fundamental role in modulating longevity [1]. These 

pathways are part of a crisscrossing network containing multiple inputs that 

ultimately converge upon the insulin/IGF-1 signaling (IIS) pathway [1]. In C. 

elegans, IIS consists of multiple kinases including the DAF-2 insulin/IGF-1 

receptor tyrosine kinase, AGE-1 PI3-kinase, the serine/threonine kinases PDK-1, 

AKT-1, AKT-2 and SGK-1, all of which act to negatively regulate the FOXO 

transcription factor DAF-16 [2]. Under reduced IIS conditions, DAF-16 activates 

the transcription of hundreds of target genes that regulate longevity, metabolism, 

stress resistance and dauer diapause [3,4,5,6].   

Aging is associated with a decline in the ability to maintain nutrient and 

signaling homeostasis, both at the cellular and systemic level. Importantly, 

aberrant signaling through the IIS pathway is implicated in several age-

associated diseases including type 2 diabetes, cancer, obesity and 

neurodegenerative disorders [7,8,9,10,11]. When this study was started, many of 

the kinases in the pathway and their regulation of DAF-16 had been well studied. 

However, not much was known about negative regulators of the pathway. In 

particular, except for the PTEN phosphatase DAF-18, which antagonizes PI3-

kinase activity, no phosphatases had been identified for other kinases in the 
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pathway[2,12,13,14]. In addition, there was no report of a phosphatase for DAF-

16, which itself is regulated by multiple kinases within the IIS pathway and other 

independent pathways [15]. The majority of the phosphorylation events in a cell 

occur on serine/threonine residues, but only a small pool of serine/thronine 

phosphatases presumably act to dephosphorylate hundreds of substrates [16].  

We were therefore interested in identifying phosphatases that counterbalanced 

serine/threonine phosphorylations in the IIS pathway. My work has focused on 

the identification and characterization of three novel phosphatases that 

negatively regulate IIS through distinct mechanisms.  Through these studies, we 

also identify a role for the TGF-β signaling pathway in modulating IIS. 

 

PPTR-1 and PDP-1: Novel negative regulators of the IIS pathway 

In Chapter 2 and 3, we describe the identification and characterization of two 

novel negative regulators of the IIS pathway. Protein Phosphatase Two A 

Regulatory Subunit -1 (PPTR-1) and Pyruvate Dehydrogenase Phosphatase 

homolog -1 (PDP-1) were two top candidates identified from a directed RNAi 

screen for serine/threonine phosphatases that modulate daf-2(e1370) dauer 

formation. Similar to daf-18 RNAi, pptr-1 RNAi and pdp-1 RNAi results in 

significant suppression of dauer formation. Besides dauer formation, PPTR-1 and 

PDP-1 also regulate longevity, stress resistance, fat storage and positively 

modulate DAF-16 activity.  Therefore, PPTR-1 and PDP-1 are major negative 

regulators of the IIS pathway.  It is currently unclear how these proteins are 
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themselves regulated. We observed that pptr-1 RNAi and pdp-1 RNAi had only 

small effects on the lifespan, stress resistance and fat storage of wild type 

worms, but saw dramatic effects on these phenotypes in a reduced IIS 

background, such as in the long-lived hypomorphic mutants daf-2 and age-1 [17]. 

Yet when signaling was entirely abrogated, we find no effect on lifespan. 

Therefore, it is likely, that a small threshold of signaling is required for the optimal 

function of PPTR-1 and PDP-1 in modulating the pathway.  The level of substrate 

could be a limiting factor for the activation and requirement of these 

phosphatases to modulate the IIS pathway. Under severely reduced signaling 

conditions, DAF-16 is almost entirely nuclear, and therefore loss of PPTR-1 and 

PDP-1 are likely to not affect outputs of the pathway. Instead, both of these 

proteins are more critical when signaling through the pathway needs to be fine-

tuned and downregulated to promote survival under conditions of nutrient or 

environmental stress during the dauer stage or as an adult.  

Despite these similarities, the mechanisms through which these 

phosphatases regulate IIS are starkly different. PPTR-1 is part of holoenzyme 

consisting of a broadly expressed catalytic (PP2Ac) and structural subunit 

(PP2Aa) [2]. PPTR-1 negatively regulates AKT-1 by modulating its 

dephosphorylation at a conserved threonine (T350 in worms/ T308 in mammals). 

Remarkably, this molecular interaction has also been observed in mammalian 

cells and in an independent study in Drosophila [2,18]. In contrast, we observe 

that PDP-1 acts at the level of the R-SMADs DAF-8 and DAF-14, that are part of 
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the DAF-7/TGF-β signaling pathway, and therefore PDP-1 indirectly modulates 

IIS and its multiple outputs. This genetic interaction has also been complemented 

by biochemical studies in Drosophila and mammalian cells, suggesting that in 

higher organisms PDP-1 acts to dephosphorylate the R- Smad protein SMAD-1 

to negatively regulate TGF-β signaling [19]. It is interesting to note how a 

component of TGF-β signaling can so robustly modulate IIS. Several interesting 

questions remain to be answered with regards to both phosphatases. 

 PPTR-1, as a regulatory subunit, provides substrate specificity for the PP2A 

holoenzyme which otherwise has hundreds of cellular targets [20]. Besides AKT-

1, the closely related SGK-1 can also interact with and be dephosphorylated by 

PPTR-1/PP2A (Dr. Kelvin Yen, personal communication) [17,21]. The tissue 

expression patterns of PPTR-1 and AKT-1 have little overlap with SGK-1.  

Additionally, we found no expression of PPTR-1 and AKT-1 in the intestine, 

which is the major tissue for the regulation of lifespan by DAF-16 [22]. In 

contrast, SGK-1 is broadly expressed in the intestine [17,23]. Because both AKT-

1 and SGK-1 directly phosphorylate DAF-16 [23], it is possible that PPTR-1 

regulates the activity of these kinases in a cell or tissue-specific manner. By 

using longer promoters for the transgenes tested in this study or examining the 

tissue expression patterns of PPTR-1 under different conditions (reduced IIS, 

heat stress etc), we may be able to address whether the PPTR-1-SGK-1 

interaction indeed occurs in vivo.  
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In mammals, hyperphosphorylation of Akt has been linked to cancer, while 

the hypophosphorylated form is associated with Type 2 diabetes [24,25]. 

Maximal activation of Akt occurs through phosphorylation at T308 by PDK-1 and 

at S473 by TORC2 [26,27]. While PPTR-1/PP2A regulates T308 (350 in worms) 

dephosphorylation the PHLPP phosphatases dephosphorylate the S473 (517 in 

worms) residue [17,28]. The PHLPP phosphatase homolog has not been 

characterized in worms. It will be interesting to see whether dosage modulation 

of this phosphatase can also regulate IIS in the context of a whole organism, 

similar to PPTR-1 and whether it involves crosstalk with the mTOR pathway. Our 

study observed that dephosphorylation of T350 was enough to promote DAF-16 

activity and regulate longevity. In contrast dephosphorylation of the serine 

residue of Akt in mammals had no effect on Serine 256, the site in FOXO that is 

the critical determinant in its transactivation [29,30]. Therefore, differential 

regulation of dephosphorylation at distinct residues within a single protein, in this 

case Akt, can have pleiotropic effects on outputs of the IIS pathway. PPTR-1 was 

the only one of seven regulatory subunits in worms that affected dauer formation. 

Testing the other regulatory subunits for their roles in modulating other outputs of 

the pathway may reveal specific substrates for PP2A.  

The identification of PDP-1 in the screen as potential modulator of IIS was 

interesting and unexpected. In mammals, it was already established that PDP 

dephosphorylated the E1α subunit of the pyruvate dehydrogenase complex 

(PDHc), resulting in activation of the enzyme complex [31]. Yet in our study, 
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RNAi of the components of the pyruvate dehydrogenase complex (PDHc) in 

worms does not affect dauer formation. This suggested to us that perhaps there 

might be an independent role for PDP-1 in modulating the IIS pathway. 

Interestingly, recent studies have identified additional substrates and roles for 

metabolic enzymes in modulating cellular signaling, with the notable examples 

being GSK3 and GAPDH [32,33]. Despite PDP-1 regulating multiple aspects of 

IIS, using genetic epistasis, we identified it to be acting in the DAF-7/TGF-β 

signaling pathway. Consistent with previous studies establishing a role for TGF-β 

signaling in regulating insulin gene expression in worms and mammals, we find 

that the levels of several agonistic insulins are increased in pdp-1 mutants 

[34,35,36]. Therefore, in our model PDP-1 downregulates the TGF-β signaling to 

reduce the expression of insulins, which subsequently prevents activation of the 

IIS pathway.  Generating phospho-specific antibodies in worms will be useful to 

confirm the dephosphorylation of DAF-8 and DAF-14 by PDP-1. Importantly, 

because deregulation of TGF-β signaling has been implicated in cancer in 

humans, it will be interesting to test the levels and activity of PDP in biopsy 

samples. In addition, it will be explore any correlation between changes in R-

SMAD phosphorylation status and Type 2 diabetes. 

Mitochondrial dysfunction has been associated with changes in longevity in 

worms and higher organisms [37]. It has not been possible thus far to entirely 

uncouple PDP-1’s role in regulating PDH activity in the mitochondria from 

modulation of the TGF-β pathway. Preliminary data using imaging and 
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fractionation suggests PDP-1 is enriched in the mitochondria but also expressed 

in the nucleus and cytosol. The protein sequence of PDP-1 contains a strong 

mitochondrial targeting signal, so it is currently unclear what could account for its 

distribution in other cellular compartments. Based upon current annotations, 

there are no additional pdp-like genes in the worm, and no additional isoforms of 

pdp-1.  

Similar to humans, a mutation in pdp-1 results in increased levels of lactate in 

the worm. However, this increase in lactate alone may not account for its role in 

modulating various phenotypes of the IIS pathway, as mutants of the DAF-2 and 

DAF-7 pathways also show elevated levels of lactate. Interestingly, dosage 

modulation of PDP-1 results in drastic changes in fat storage in worms. 

Therefore, it will also be useful to test whether PDP-1 directly affects pathways 

that regulate adipogenesis or lipolysis.  Unlike PPTR-1, which presumably has no 

enzymatic activity, PDP-1 itself contains the catalytic domain. A regulatory 

subunit had been characterized for bovine PDP but a BLAST search did not 

provide any highly homologous protein in worms [38]. It is therefore possible that 

besides regulating PDHc and TGF-β signaling, PDP-1 has additional cellular 

substrates. Further studies by immunoprecipitating PDP-1 and carrying out 

proteomic analyses such as using multidimensional protein identification 

technology (MUDPIT) can enable us to verify as well as identify PDP-1 

substrates as well as potential regulatory partners that determine substrate 

specificity or regulate its activity.  
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Linking TGF-β signaling and IIS 

In Chapter 4, we investigate the crosstalk between IIS and TGF-β signaling 

pathways. Genetic epistasis studies from the last two decades had concluded 

that in C. elegans, IIS and TGF-β signaling were two independent pathways with 

little overlap [39].  In contrast to these conclusions, we discovered that like PDP-

1, other components of the TGF-β signaling pathway, notably the Co-SMAD 

DAF-3 and Sno/Ski repressor DAF-5 could robustly regulate longevity, dauer 

formation, stress resistance and fat storage. Interestingly, similar to pdp-1, 

mutations in daf-3 and daf-5 do not significantly affect these phenotypes. 

However, under conditions of reduced IIS, DAF-3 and DAF-5 regulate multiple 

outputs of the pathway in opposite ways. It will be interesting to explore how the 

synergy or interaction between DAF-3, DAF-5 and DAF-16 feeds into the DAF-12 

nuclear hormone receptor, which is the main downstream effector required for 

dauer formation. As discussed earlier, a feed-forward model suggests that TGF-β 

signaling regulates the expression of insulin(s), which can then bind the DAF-2 

insulin/IGF-1 receptor and activate the IIS pathway [36]. However, there are 40 

insulin-like genes in worms, and only a few such as ins-1, daf-28 and ins-7 have 

been shown to affect phenotypes of the IIS pathway [5,36,40,41,42]. Studies are 

ongoing in this laboratory to understand the expression and regulation of the 

insulin genes at a systems level. An alternative model suggests a direct 

transcriptional response, where SMAD proteins can either activate or antagonize 

DAF-16. Indeed, a FOXO-SMAD synergy has been previously reported using 
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mammalian cell culture, where both transcription factors regulate cell cycle and 

stress-related genes in combination [43]. The use of phospho-antibodies against 

proteins in both pathways (phospho-SMAD, phospho-Akt and phospho-DAF-16) 

will help to elucidate where and how these pathways intersect. We are currently 

interested in carrying out microarray studies and chromatin immunoprecipitation 

(ChIP) experiments to identify common and distinct targets of DAF-3 as well as 

DAF-16.   

 

Allele-specific regulation of IIS 

  We describe the characterization of the phosphatase FEM-2 in Chapter 5. From 

the original RNAi screen, fem-2 RNAi resulted in the most severe suppression of 

daf-2 dauer formation, comparable to daf-16 RNAi [17]. Yet this phenotype was 

only observed in in the e1370 allele, of the six alleles that were tested. Unlike 

pptr-1 and pdp-1, which showed no allele-specificity, fem-2’s regulation of IIS 

was allele-specific, which lead us to question whether FEM-2 indeed has a 

biological role in this pathway. Besides fem-2, we also observed a similar 

phenotype with the gene pdhk-2, which is homologous to mammalian pyruvate 

dehydrogenase kinase (PDHK). In mammals, PDHK phosphorylates the E1α 

subunit of PDHc and inactivates it [44,45]. PDHK is closely linked to the IIS 

pathway, with levels of this kinase elevated under reduced signaling conditions 

[45]. Additionally, PDHK is a direct target of FOXO [46]. We observed that RNAi 

of pdhk-2 results in suppression of dauer formation of daf-2(e1370) worms. 
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However, there was no effect of pdhk-2 RNAi on a second allele of daf-2 tested, 

daf-2(e1368) or in pdk-1 mutants.  

This apparent paradox can be explained in part by the fact that the different 

daf-2 alleles do not behave similarly and provide somewhat opposite phenotypes 

in some double mutant backgrounds [47,48]. The mutations fall in different 

domains of the receptor, and while some alleles may allow ligand-binding and 

partial activation of the pathway, others may result in complete abrogation of 

signaling. As a consequence, in the different alleles of daf-2, distinct downstream 

components may be activated or inactivated. In addition, a majority of the 

mutants used in the genetic epistasis analyses in the past have been non-null 

(including daf-2, age-1, pdk-1), which is understandable to some extent as null 

alleles result in larval lethality. Microarray studies comparing the e1370 allele, 

which contains a mutation in the receptor tyrosine kinase domain, to other alleles 

have identified more changes in the former. In addition, e1370 is the most widely 

used allele for understanding the effects of reduced IIS in C. elegans, with the 

results of several studies including our own also showing molecular conservation 

in higher organisms. It is therefore likely, that the allele-specific phenotypes 

observed using fem-2 RNAi and other genes such as pdhk-2 RNAi are 

biologically relevant. Importantly, while genetics has been a powerful tool for 

studying IIS and the biology of aging in C. elegans, using biochemical 

approaches such as assaying for PIP2/PIP3 levels, AKT phosphorylation or DAF-
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16 activity will most certainly complement and strengthen any conclusions 

derived from epistasis analyses.  
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Conclusion 

This study unravels three novel phosphatases that negatively modulate IIS 

and are likely to be important for maintaining signaling homeostasis. Additionally, 

we demonstrate that the TGF-β signaling pathway can intersect with IIS at 

multiple levels. Importantly, modulation of IIS by the phosphatases and input 

from TGF-β signaling ultimately converge on the regulation of DAF-16. These 

studies provide a new perspective on our understanding of IIS as well as the 

regulation of longevity and metabolism in the context of a whole organism.  
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Figure 6.1: Model summarizing the major findings of this study. The 

serine/threonine phosphatases PPTR-1/PP2A and PDP-1 (green rectangles) 

negatively regulate the IIS pathway either directly, through AKT-1 

dephosphorylation, or indirectly, through downregulation of TGF-β signaling. The 

latter results in reduced expression of insulin gene expression and therefore 

reduced activation of the DAF-2 insulin/IGF-1 receptor. Recduced signaling 

through the IIS pathway promotes DAF-16 activity, resulting in longevity, stress 

resistance, increased fat storage and dauer diapause. Downregulation of TGF-β 
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signaling also activates DAF-3 and DAF-5, which can potentially synergize with 

or antagonize DAF-16 to regulate its various outputs.  
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