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ABSTRACT 

 Voltage-gated K+ channels associate with multiple regulatory proteins to form 

complexes with diverse gating properties and pharmacological sensitivities.  Small 

molecules which activate or inhibit channel function are valuable tools for dissecting the 

assembly and function of these macromolecular complexes.  My thesis focuses on the 

discovery and use of small molecules to probe the structure and function of the KCNQ 

family of voltage-gated K+ channels.  

One protein that obligatorily assembles with KCNQ channels to mediate proper 

assembly, trafficking, and gating is the calcium sensor, calmodulin.  Although resolution 

of the crystal structures of calmodulin associated with isolated peptide fragments from 

other ion channels has provided some insight into how calmodulin interacts with and 

modulates KCNQ channels, structural information for calmodulin bound to a fully folded 

ion channel in the membrane is unknown.  In Chapter II, I developed an intracellular 

tethered blocker approach to determine the location of calmodulin binding with respect to 

the KCNQ ion-conducting pathway.  Using distance restraints from a panel of these 

intracellular tethered blockers we then generated models of the KCNQ-calmodulin 

complex.  Our model places calmodulin close to the gate of KCNQ channels, providing 

structural insight into how CaM is able to communicate changes in intracellular calcium 

levels to KCNQ channel complexes.     

In addition to pore blockers, chemical modification of ion channels has been used 

to probe ion channel function.  During my initial attempt to chemically activate KCNQ 

channels, I discovered that some boronates modulate KCNQ complexes.  In Chapter III, 
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the activating derivative, phenylboronic acid, is characterized.  Characterization of 

activation by phenylboronic acid showed that it targeted the ion conduction pathway of 

KCNQ channels with some specificity over other voltage-gated K+ channels.  The 

commercial availability of thousands of boronic acid derivatives provides a large class of 

compounds with which to systematically dissect the mechanisms of KCNQ gating and 

may lead to the discovery of a potent activator of KCNQ complexes for the treatment of 

channelopathies. 

All of the electrophysiological studies presented in this thesis were conducted in 

Xenopus oocytes.  Unexpectedly, during the studies described above, the quality of our 

Xenopus oocytes declined.  The afflicted oocytes developed black foci on their 

membranes, had negligible electric resting potentials, and poor viability.  Culturing the 

compromised oocytes determined that they were infected with multi-drug resistant 

Stenotrophomonas maltophilia, Pseudomonas fluorescens and Pseudomonas putida.   

Antibiotic testing showed that all three species of bacteria were susceptible to amikacin 

and ciprofloxacin, which when included in the oocyte storage media prevented the 

appearance of black foci and resulted in oocytes that were usable for electrophysiological 

recordings.  This study provides a solution to a common issue that plagues many 

electrophysiologists who use Xenopus oocytes.   

Taken together, these findings provide new insights into activation of KCNQ 

channel complexes and provide new tools to study the structure-function relationship of 

voltage-gated K+ channels.   
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CHAPTER I: INTRODUCTION 

Efflux of K+ ions is critical for controlling neuronal excitability and maintaining 

cardiac rhythmicity, in addition to regulating hormone and electrolyte homeostasis in 

non-excitable cell types [1].  To achieve proper spatiotemporal release of K+ ions, cells 

employ voltage-gated potassium (Kv) channels.  These membrane embedded proteins 

open and close in response to changes in membrane potential permitting the passive 

diffusion of K+ ions down their electrochemical gradient and across the lipid bilayer.  

Accordingly, inadequate Kv function causes multiple diseases including epilepsy, cardiac 

arrhythmia, deafness, and diabetes [2].  Thus, examining the relationship between the 

structure and function of Kv channels is essential for understanding their role in human 

physiology.   

Kv Channel Structure 

Kv channels are tetramers of pore-forming α-subunits.  Each α-subunit is 

composed of six transmembrane α-helices (S1-S6) (Figure I-1).  Assembly into a tetramer 

forms two essential and coupled domains:  a voltage sensing domain (S1-S4) and pore 

domain (S5-S6).  Upon changes in a cell’s membrane potential, the voltage-sensing 

domain moves, resulting in conformational changes that cause the intracellular gate 

within the pore domain to open allowing K+ ions to flow down their concentration 

gradient.   
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Figure I-1.  Structure of voltage-gated potassium channels 
(A) Topology schematic of KCNQ channels.  The first four transmembrane domains 
(colored yellow and red) comprise the voltage sensing domain with the fifth and sixth 
transmembrane domains (colored purple) forming the inner pore domain.  (B) Ribbon 
representation of the crystal structure of a voltage-gated K+ channel with the front and 
back subunits removed for clarity.  The transmembrane domains are colored as in (A).  
  
 
Schematic of KCNQ topology generated by K. Mruk.  Structure of voltage-gated K+ 
channel generated from PDB: 2R9R.  Reference: Long, SB, Tao, X, Campbell, EB, 
MacKinnon, R. Nature 450, 376-382 (2007).   
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The Pore Domain 

 The S5 and S6 helices of each α-subunit form the inverted tepee-shaped ion-

conducting pore domain (Figure I-2) [3].  The pore domain contains two regulatory 

modules: the selectivity filter and the intracellular channel gate.  Kv channels are 

selectively permeable to potassium over the smaller cations sodium and lithium.  This 

selectivity is achieved through a sequence of amino acids near the extracellular side of 

the ion conducting pathway (Thr-Val-Gly-Tyr-Gly) (Figure I-2) [3-5].  The backbone 

carbonyls of these amino acids coordinate to mimic the hydration shell of potassium ions.  

The positioning of these carbonyls prevents proper coordination of hydrated smaller 

cations; however, it does allow for permeation of the larger rubidium (Rb+) which is 

nearly a perfect K+ analog [3].    

Unlike the selectivity filter, the channel gate is located at the cytoplasmic face of 

the membrane.  The intracellular gate opens and closes to allow ion flow through the ion 

conduction pathway.  The gate is located at a kink in the C-terminal end of the S6 helixes 

termed the helix bundle crossing [6].  In eukaryotes, this kink is formed through a Pro-X-

Pro or Pro-X-Gly motif (where X is any amino acid) that bends the S6 helix to open and 

close the channel (Figure I-1) [7,8].    
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Figure I-2.  The structure of the pore and selectivity filter of a K+ channel 
(A) Ribbon representation of the crystal structure of the bacterial KcsA K+ channel.  The 
front and back selectivity filter loops are removed for clarity.  The selectivity filter is 
highlighted in green and contains four K+ions.  (B) Close-up view of two subunits 
forming the selectivity filter.  Backbone carbonyl atoms form four K+ ion coordination 
sites.   
 

Structures of the pore domain and selectivity filter are generated from PBD: 1JVM.  
Reference: Morais-Cabral, J, Zhou, Y, and MacKinnon, R. Nature 414, 37-42 (2001).   
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The Voltage Sensing Domain 

 The voltage sensing domain is comprised of the S1-S4 helices of the α-subunits 

and is responsible for detecting changes in membrane potential.  The voltage sensing 

domain of one subunit surrounds the pore forming helices of the adjacent subunit, leading 

to tight coupling between voltage sensor movement and gate opening [9].  Upon 

membrane depolarization, the positively charged S4 helices move out toward the cell 

exterior, resulting in a widening of the ion conduction entryway (Figure I-3).  Membrane 

repolarization causes the S4 helices to move back into the membrane, forcing the 

downward displacement of the linker helix between the S4 and S5 transmembrane helices 

(Figure I-3).  This movement towards the intracellular side of the cell compresses the 

gate and prevents ions from entering the ion conduction pathway. 
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Figure I-3.  Model of the coupling between the voltage sensor and intracellular gate 
(A) Membrane view of a model of the KCNQ1 K+ channel in the proposed closed (left) 
and open (right) conformations.  S4-S5 linkers are in red, the kink in the gate is in blue, 
the rest of the pore subunits are tinted.  The voltage-sensing domain is removed for 
clarity.  (B) Cytosolic view of the models from above.  The voltage sensor is depicted in 
grey, the rest of the colors are the same as above.  Notice the differences in the voltage-
sensing domain and the gate between the open and closed conformations.   
 

Closed and open state models were generated from the PDBs attached as supplemental 
material from the following paper: Smith, JA, Vanoye, CG, George, AL, Meiler, J, and 
Sanders, CR, Biochemistry, 46 14141–14152 (2007).   
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KCNQ K+ Channels 

KCNQ channels are a subfamily of Kv channels (Kv7) that are vital for regulating 

membrane excitability, cardiac rhythmicity, and salt and water homeostasis.  Similar to 

other Kv channels, KCNQ α-subunits share the standard topology of six transmembrane 

segments comprising the voltage sensing domain (S1-S4) and pore domain (S5-S6).  

However, KCNQ channels diverge from classical Kv channels outside of the core 

membrane embedded structure.  KCNQ channels have a short cytoplasmic N-terminus 

(~100 residues) and therefore lack a bona fide tetramerization (T1) domain.  Instead, 

KCNQ channel subunits contain a large C-terminal domain (300-500 residues) which 

secondary structure algorithms predict to contain 4 α-helices [10]  (Figure I-4).  The two 

proximal helices (A & B) act as a scaffold for cytoplasmic regulatory molecules [11] 

whereas the last two helices (C & D) act as an assembly domain to direct subunit 

oligomerization [12-15].  Subsequent resolution of the isolated helix D peptide structure 

from two different KCNQ channels confirmed that this domain forms a self-assembled 

tetrameric coiled-coil structure [16,17].  The specific protein-protein interactions found in 

the two crystal structures also provided a structural basis for why KCNQ1 channels 

preferentially form homomeric channels over the heteromeric complexes typically found 

for KCNQ2-KCNQ5 channels [11,14].  The fact that structural determination of a small 

part of the C-terminus can explain their physiological assembly in native cells 

emphasizes the role structure-function studies play in understanding KCNQ physiology.   
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Figure I-4.  Cartoon representation of the KCNQ C-terminus.   
Only two subunits are shown for clarity.  Helices are represented as cylinders.  
Calmodulin is depicted in yellow, phosphorylation sites are depicted with circles.  
Predicted location of cytosolic regulatory factors binding sites are indicated with lines.   
 
 
Schematic generated by K. Mruk. 
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The KCNQ family of K+ channels contains five members (KCNQ1-KCNQ5; 

Kv7.1–Kv7.5) which are characterized primarily by their tissue expression.  KCNQ1 

(Q1) channels are expressed throughout the body, but absent from the central nervous 

system where KCNQ2-5 channels are primarily found (Table I-1) [1].  Although KCNQ 

α-subunits can form functional homotetrameric channels in heterologous expression 

systems, often these homomeric channels do not faithfully recapitulate physiological 

currents.  This is because in native tissues, KCNQ subunits form heteromeric channel 

complexes.   

 

KCNQ1 

The KCNQ1 (Q1) gene was first mapped through a genetic linkage study from a 

family of individuals suffering from the common inherited arrhythmia, Long QT 

Syndrome (LQTS) [18].  When Q1 is expressed in heterologous systems, functional 

channels produce rapidly activating current (Figure I-5).  Q1 channels can also undergo 

voltage-dependent inactivation which can be visualized by a “hook” in tail current 

recordings (Figure I-5).  This hook is due to Q1 channels passing rapidly from the 

inactive state to the open state faster than the channels close [19].  However, this 

inactivation is never observed in currents from native tissues as Q1 α-subunits 

obligatorily co-assemble with KCNE β-subunits which relieve channel inactivation.   
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Table I-1.  Characteristics of the KCNQ channel family. 

Gene

Chromosome
Locus

mRNA
Location

Disease
Association

KCNQ1

11p15.5

Crypt Cells
Heart
Kidney
Lung

Stria Vascularis
Pituitary
Placenta

Cardiac
Arrhythmia

KCNQ2

20q13.3

Nervous System
Pituitary

SCG
Testis

Benign Neonatal
Familial Epilepsy

KCNQ3

8q24

Nervous System
Cochlea
Pituitary

SCG Neurons
Spleen

Benign Neonatal
Familial Epilepsy

Outer Hair Cells

KCNQ4

1p34

Auditory Pathway
Cochlea

Vestibular Hair Cells

Nonsyndromic
Hearing Loss

KCNQ5

6q14

Nervous System
Skeletal Muscle
SCG Neurons

Unknown
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Figure I-5.  Electrophysiological properties of KCNQ1 homomeric and Q1-KCNE 
heteromeric complexes 
Families of macroscopic currents were recorded in high extracellular K+ (50 mM) to 
accentuate the differences in deactivation kinetics.  Currents were elicited by 4 s test 
potentials from –100 to +60 mV in 20 mV increments from a holding potential of –80 
mV followed by a tail pulse to –80 mV.  The arrow indicates the hook in tail currents of 
Q1 homomeric channels indicative of inactivation which is absent in currents from Q1-
KCNE complexes.   Q1/E1 complexes have slow gating kinetics and do not fully close 
within the same amount of time as Q1 channels.  Scale bars indicate 1 µA and 500 ms.  
Dashed line equals zero current.   
 
 
 
Families of currents were recorded by K. Mruk.   
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KCNE β-Subunits 

KCNE β-subunits (KCNE1-KCNE5) are small (~100–170 amino acids), single 

transmembrane spanning proteins with extracellular N-termini [20].  Co-assembly of Q1 

with KCNE peptides lead to dramatic changes in channel conductance, gating kinetics, 

and pharmacology allowing for Q1 channels to function in diverse tissues (Figure I-5) 

[21].  Although KCNE peptides promiscuously assemble with multiple Kv channels in 

native cells, the biophysical properties of Q1-KCNE heteromeric complexes are well 

established.  Q1 subunits form channel complexes with KCNE1 (E1) peptides in the heart 

and inner ear.  These complexes are responsible for maintaining cardiac rhythm and 

providing an avenue for K+ to enter the endolymph [22,23].  Both Q1/E2 and Q1/E3 

complexes are constitutively conducting and contribute to K+ recycling in epithelial cells 

of the gastrointestinal tract [24,25].  When Q1 co-assembles with E4, current is 

dramatically reduced [26].  Although the physiological role for Q1/E4 complexes is 

unclear, two independent studies showed that E4 can co-assemble with Q1/E1 complexes 

[27,28] suggesting E4 may fine tune Q1/E1 channel function.  E5 shifts the voltage 

activation of Q1 channels towards more positive potentials and increases the rate of 

deactivation [29].  Similar to E4, the physiological role for Q1/E5 complexes is not 

established.   
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Q1/E1 Pathophysiology 

 In the heart, Q1 channels co-assemble with E1 in the heart to generate the slow 

delayed rectifier K+ current (IKs) [22,23].  IKs is responsible for shaping the repolarization 

phase of cardiac action potentials (Figure I-6).  Decreases in IKs impair membrane 

repolarization, prolonging the duration of cardiac action potentials.  Similarly, increases 

in IKs lead to a reduction in the plateau phase causing an overall shortening of the cardiac 

action potential (Figure I-6).  Accordingly, individuals with mutations in either Q1 or E1 

which affect proper channel function suffer from cardiac arrhythmias [30-32].   

Over 200 loss-of-function mutations in Q1 subunits and 20 in E1 subunits have 

been identified in patients suffering from the arrhythmia, Long QT Syndrome (LQTS) 

characterized by an elongation in the QT interval on an electrocardiogram (Figure I-6).  

More than 70% of these mutations are due to a single amino acid change highlighting the 

drastic effect a small change in the Q1/E1 complex can have on physiological processes 

[33].  Biophysical and biochemical investigation of these loss-of-function mutations 

group them into two categories:  (1) improper biogenesis and (2) altered voltage-

sensitivity of the channel [34].  Gain-of-function mutations in Q1 channels are associated 

with the cardiac arrhythmia, Short QT Syndrome (SQTS) characterized by a short QT 

interval and sharp T wave (Figure I-6).  SQTS is less prevalent than LQTS and only two 

point mutations have been identified in Q1 subunits [33].  Both of these mutations 

increase the activation kinetics of Q1/E1 complexes, leading to larger currents.  Together, 

the LQTS and SQTS-associated mutations in Q1/E1 complexes emphasize the critical 

influence the channel has on regulating the cardiac action potential.   
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Figure I-6.  Cardiac action potential 
Top:  Schematic of ion channel current associated with each phase of the cardiac action 
potential.  Bottom:  Representation of a normal electrocardiogram compared to that for 
long and short QT syndrome respectively.  The QRS complex reflects ventricular 
depolarization and the T wave ventricular repolarization.  The changes in the action 
potential that cause cardiac arrhythmia are color coded with the respective 
electrocardiogram.   
 
 
Schematics generated by K. Mruk.   
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Q1/E1 channel complexes are also located in the inner ear and provide the sole 

avenue for transport of K+ into the endoplymph [35-37].  Individuals suffering from the 

autosomal recessive form of LQTS are also deaf.  These mutations are primarily 

frameshift or deletion mutations [33] suggesting that the loss of hearing is due to a lack of 

assembled Q1/E1 complexes and not just a reduction in voltage-sensitivity of these 

channels.  Studies using KCNQ1-/- [38] or KCNE-/- [36] knockout mice demonstrate that 

an inability of K+ to enter the inner ear leads to a collapse of the endolymphatic space in 

an adult mouse.  As a result, knockout mice present with symptoms of deafness.  These 

mutations underscore the importance of K+ flux within the inner ear. 

KCNQ2 and KCNQ3 Channels 

 The genes for KCNQ2 (Q2) and KCNQ3 (Q3) were identified as Q1 homologues 

by positional cloning in infants with benign familial neonatal epilepsy [39,40].  Both of 

these channels can be expressed individually in Xenopus oocytes and mammalian cells; 

however, the properties of these homomeric channels do not faithfully recapitulate the 

properties of the non-inactivating K+ current (M-current, IM) found in neurons.  

Expression of both Q2 and Q3 subunits lead to larger currents, altered gating kinetics, 

and different pharmacological sensitivities than homomeric channels suggesting that 

these heteromeric channels are responsible for the native M-current [41].  Unlike Q1 

channels, Q2/Q3 channel complexes activate slowly, do not inactivate, and inward rectify 

at positive potentials (Figure I-7).  This produces smaller currents upon increases in 
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voltage even though the driving force for K+ transport is increasing.  Q2/Q3 complexes 

do not physiologically interact with KCNE subunits as their tissue expression is different.   

Q2/Q3 Pathophysiology 

 Because Q2/Q3 channels do not inactivate, they generate a steady voltage-

dependent outward current in neurons.  This constant K+ current serves as a “brake” for 

neuronal firing by stabilizing the membrane potential in the presence of depolarizing 

currents.  Accordingly, mutations in Q2/Q3 channels which affect generation of the 

neuronal M-current are associated with benign familial neonatal epilepsy (BFNE, 

formerly BFNC) and peripheral nerve hyperexcitability (PNH) [42].  There are over 30 

BFNE-associated Q2 mutations and 4 BFNE-associated Q3 mutations which exhibit 

reductions in Q2/Q3 heteromeric channel current [43].  Similar to Q1, mutations in Q2 

are found throughout the protein and affect either channel biogenesis or voltage 

sensitivity.  The four mutations in Q3 channels fall within the pore region of the Q3 

subunit but have not been biochemically or biophysically characterized [42].  PNH-

associated mutations are located within the voltage-sensor of Q2 channels and exert a 

dominant-negative effect on wild type subunits, causing a significant decrease (>70%) in 

the M-current [39,44]. 
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Figure I-7.  Electrophysiological properties of KCNQ channels. 
Families of current from Q1 homomeric, Q2/Q3 heteromeric, and Q4 homomeric channel 
complexes were recorded in physiological levels of extracellular K+ (2 mM).  Currents 
were elicited by 4 s test potentials from –100 to +60 mV in 20 mV increments from a 
holding potential of –80 mV followed by a tail pulse to –30 mV.  Dashed line indicates 
zero current.  Scale bars represent 1 µA and 0.5 s. 
 
  
Families of currents were recorded by K. Mruk.   
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KCNQ4  

The gene for KCNQ4 (Q4) was cloned and characterized after being mapped to 

the DFNA2 locus in individuals with nonsyndromic hearing loss [45].  Q4 tissue 

expression is limited to the inner ear and brainstem [46].  Q4 channels are predominantly 

homomeric and are responsible for the potassium current activated at negative potentials 

in hair cells of the inner ear (IK,n) [47].  Q4 channels also activate slowly, display no 

inactivation, and inwardly rectify at positive potentials (Figure I-7).  Q4 subunits can co-

assemble with Q3 but it is unlikely that these heteromeric channel complexes contribute 

to the M-current in neurons as Q4’s tissue expression is limited in neurons.  Although co-

expression of Q4 with KCNE peptides in heterologous expression systems does lead to 

changes in channel kinetics and current amplitude, [48] these complexes have not been 

shown to exist in native tissues. 

Q4 Pathophysiology 

 Multiple mutations within the KCNQ4 gene have been associated with inherited 

nonsyndromic progressive hearing loss.  Single point mutations in Q4 map to the pore 

domain of Q4 subunits and cause dominant negative effects on wild type subunits [49].  

Two deletion mutations have also been identified which result in truncated nonfunctional 

Q4 subunits [49].  Studies using KCNQ4-/- knock-out mice and heterozygous mutant mice 

KCNQ4G285S/+ demonstrate that a lack of K+ efflux leads to chronic depolarization of the 

hair cells causing degeneration of outer hair cells [50].  The role of Q4 function in 
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congenital deafness once again highlights the role KCNQ channels play as a “brake” to 

regulate cellular excitability.   

KCNQ5 

KCNQ5 (Q5) is the only member of the KCNQ family not associated with a disease and 

as such the gene was found through a GenBank homology search instead of genetic 

linkage analysis and positional cloning [51].  The tissue expression pattern for Q5 is 

similar to both Q2 and Q3 [52].  Q5 α-subunits can co-assemble with Q3 leading to 

speculation that Q5 may contribute to the M-current.  Q5 homomers have the slowest 

activation kinetics of all the KCNQ members and also exhibit “crossover” at positive 

membrane potentials indicative of inward rectification.  Similar to Q4 channels, Q5 

channels do not display inactivation and interact with KCNE β subunits in expression 

systems but have not been shown to physiologically interact with KCNE β subunits [53].  

KCNQ Modulation 

Although KCNQ channels are voltage-gated, many small cytoplasmic signaling 

molecules can modulate the channels’ response to changes in membrane potential.  Many 

of these molecules do not directly bind to KCNQ channels.  Rather, intracellular proteins 

act as sensors for these molecules and in turn bind to KCNQ channels to modulate 

channel function.  The interaction between KCNQ channels and cytoplasmic proteins is 

critical as mutations in KCNQ channels that disrupt these protein-protein interactions are 

often associated with KCNQ channelopathies.   
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cAMP, phosphorylation, and A-kinase anchoring proteins 

It was first demonstrated that cAMP levels modulate KCNQ channels when the 

Kass laboratory showed that addition of cAMP analogs to ventricular cells could increase 

cardiac IKs, and that this increase in IKs was mediated through protein kinase A (PKA) 

[54].  Later, electrophysiological studies using cloned α- and β-subunits in Xenopus 

oocytes demonstrated that cAMP increased Q1/E1 currents through PKA activation [55].  

PKA does not directly bind to Q1 but rather forms a macromolecular signaling complex 

with the regulatory phosphatase PP1 and the AKAP protein Yotiao (AKAP9) [55].  

Yotiao binds to a leucine zipper motif on Q1 channels in between helices C and D of the 

C-terminus (Figure I-4).  Anchoring of the complex by Yotiao is critical for PKA 

phosphorylation of serine 27 in the N-terminus of Q1 subunits which in turn activates Q1 

channels and increases channel current.  This activation is short lived as PP1 rapidly 

dephosphorylates serine 27 [56].  Mutations in the leucine zipper motif of the Q1 C-

terminus which disrupt Yotiao binding to Q1/E1 channels are associated with LQTS [57].  

Genetic mutations in Yotiao which reduce interactions with Q1 channels have also been 

identified in LQTS patients [58] further demonstrating the physiological importance of 

the Q1/E1-Yotiao complex.   

 Similar to cardiac IKs, the M-current, and outer hair cell IK,n are also regulated by 

cAMP levels [59,60].  Studies using cloned α-subunits determined that increases in 

cAMP levels elevate current levels from heteromeric Q2/Q3 channels and homomeric Q4 

channels [59-61].  As with Q1/E1 complexes, this increase in current is mediated by 
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PKA.  Q2 channels contain a consensus site for PKA phosphorylation at serine 52.  The 

site of cAMP mediated phosphorylation on Q4 channels has not been mapped as no 

obvious consensus sites are contained within the amino acid sequence.  Whether PKA 

can directly bind to Q2/Q3 and Q4 channels or is localized through AKAP binding is 

unknown. 

Phosphorylation by PKC 

In addition to activation by cAMP, the M-current is suppressed by activation of 

muscarinic receptors.  It was suggested that suppression occurs through activation of 

protein kinase C (PKC) as activators of PKC can suppress the M-current in neurons but 

inhibitors of PKC do not promote receptor-induced inhibition of the M-current [62-65].  

Therefore, it was proposed that suppression of IM may involve macromolecular signaling 

complexes, a likely candidate being the neuronal anchoring protein, AKAP79/150, which 

binds to helix A in the C-terminus of Q2 channels (Figure I-4) [66,67].  AKAP79/150 

contains a binding site for PKC and was later shown to form a trimeric complex with Q2 

channels [68].  Further examination of the Q2 C-terminus revealed two PKC dependent 

phosphorylation sites, serine 534 and serine 541 [69].  Inhibition of Q2 currents through 

phosphorylation requires the presence of the trimeric Q2/PKC/AKAP complex.  Q3-Q5 

channels may be subject to the same modification as they contain a conserved threonine 

residue at position 541 and directly bind AKAP79/150 [70]; however, PKC-dependent 

phosphorylation at this residue has not been investigated in those channels.   
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PIP2 

 KCNQ currents quickly run-down in excised patches leading to the hypothesis 

that KCNQ channels are also modulated by levels of the membrane phospholipid 

phosphatidyliniositol 4,5-biphosphate (PIP2).  Although both Q1/E1 and Q2/Q3 

complexes as well as Q4 homomers run-down upon PIP2 hydrolysis, PIP2 activates 

KCNQ channels through different mechanisms [60,71,72].  PIP2 activates Q1/E1 

complexes by slowing the deactivation kinetics of the channel and shifting the voltage 

dependence to more negative potentials, suggesting that PIP2 modulates the voltage 

sensitivity of the Q1/E1 complex [71,73].  In contrast, PIP2 increases the open probability 

of Q2-Q5 homomeric channels and Q2/Q3 complexes [74].  Two lines of evidence 

suggest that PIP2 directly binds to the C-terminus of KCNQ channels.  First, the C-

terminus of KCNQ channels contains a cluster of conserved basic amino acid residues 

which has been shown to direct PIP2 binding to other ion channels [75].  Second, three 

LQTS-associated genetic mutations within this region of Q1 channels have reduced 

affinity for PIP2 [76,77].  However, to date, the exact PIP2 binding site has not been 

mapped onto KCNQ channels.   

Ubiquitin and Nedd4-2 Ligase 

Ubiquitin is a small regulatory protein that is attached to proteins to target them 

for degradation.  The Nedd4-2 ubiquitin ligase binds to the C-terminus of KCNQ 

channels to regulate their cell surface expression [78,79].  Ubiquitination of Q1 channels 

requires Nedd4-2 to bind to the PY motif downstream of Helix D in the C-terminus 



 

 

23

(Figure I-4).  Similarly, Nedd4-2 ubiquitinates both Q2 and Q3 homomeric channels but 

binding to Q3 subunits is required for downregulation of both Q2/Q3 and Q3/Q5 

complexes.  However, whether Nedd4-2 interacts with Q3 subunits through a PY motif or 

a macromolecular signaling complex remains unclear.   Overexpression of the ubiquitin-

specific protease 2 (USP2) increases the total and surface-expressed amount of Q1 

protein, protects Q1 from ubiquitination, and counteracts the effect of Nedd4-2 [80].  

This interplay between Nedd4-2 and USP2 is well-established for other ion channels and 

further investigation into their modulation of KCNQ channels may provide insight into 

disease-associated mutations which affect channel stability.    

Ca2+ and calmodulin 

 Fluctuations in Ca2+ concentration differentially modulate KCNQ function.  

Increases in Ca2+ activate both homomeric Q1 channels and Q1/E1 complexes [81].  

Furthermore, upon stimulation of cardiac myocytes, IKs increases in a Ca2+-dependent 

manner leading to shorter action potentials [82].  In contrast to IKs, increases in Ca2+ lead 

to suppression of the M-current [83].  Although KCNQ channels are modulated by 

intracellular calcium, they do not directly bind calcium.  Instead, they employ the 

ubiquitous Ca2+ sensor, calmodulin (CaM).  CaM promotes channel modulation directly 

by binding to KCNQ channels or indirectly by regulating the binding of additional factors 

to the C-terminus.   

 CaM directly binds to two CaM binding motifs in the C-terminus of KCNQ 

channels:  a Ca2+ independent (IQ-like) motif and a Ca2+ dependent (1-5-10) motif, 
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located in helices A and B respectively (Figure I-4) [10].  CaM can bind to either of these 

isolated sites in vitro, but both binding sites must be intact for CaM to interact with full-

length KCNQ channels [84].  Fittingly, genetic mutations in either of these binding 

motifs that perturb CaM binding reduce channel current and are associated with both 

LQTS and BFNE, suggesting that CaM binding is required for proper KCNQ function 

[81,85-87].  CaM binds to KCNQ channels in the presence or absence of Ca2+ which is 

similar to what is observed for other ion channels [88].  In vitro, CaM binding to KCNQ 

channels promotes solubility of the isolated C-terminal domain suggesting that the 

KCNQ-CaM interaction is required for proper channel assembly and trafficking to the 

plasma membrane [17,81].  However, the Villaroel lab showed that a Q2 mutant 

containing a single point mutation in the C-terminus which abrogates CaM binding can 

still traffic normally to the cell surface, suggesting that CaM is not constitutively tethered 

to KCNQ channels during channel biogenesis [84].  As seen with other ion channels, 

calcification of either the N- or C- lobe of CaM allows for the modular regulation of 

KCNQ channels.  Overexpression of calcified but not apoCaM leads to overall decreases 

in Q2, Q4, and Q5 currents but not Q1 or Q3, consistent with what is seen when 

intracellular Ca2+ levels in native cells increase [89].  This observed Ca2+ sensitivity 

requires calcification of only the N-lobe of CaM. 
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KCNQ1 FALKVQQKQRQKHFNRQIPAAASLIQTAWRCYAAENPDS---STWKIYIRKAPRSH-----------------------TLLSPSPKPKKS-VVVKKKKF
KCNQ2 FALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATNLSRTDLHSTWQYYERTVTVPMYRLIPPLNQLELLRNLKSKSGLAFRKDPPPEPSPSQKVSLKDRV
KCNQ3 LALKVQEQHRQKHFEKRRKPAAELIQAAWRYYATNPNRLDLVATWRFYESVVSFPF-----------------------FRKEQ-LEAAASQKLGLLDRV

KCNQ1 KLDKDNGVTPGEK-------MLTVPHITCDPPEERRLDHFSVDGYDSSVRKSPTLLEVSMPHFMRTNSFAEDLDLEGETLLTPITHISQLREHHRATIKV
KCNQ2 -FSSPRGVAAKGKGSPQAQTVRRSPSADQSLEDSPSKVPKSWSFGDRSRARQAFRIKGAASRQNSEEASLPGEDIVDDKSCPCEFVTEDLTPGLKVSIRA
KCNQ3 RLSNPRGSNTKGK--------LFTPLNVDAIEESPSKEPKPVGLNNKERFRTAFRMKAYAFWQSSEDAGT-GDPMTEDRGYGNDFLIEDMIPTLKAAIRA

KCNQ1 IRRMQYFVAKKKFQQARK
KCNQ2 VCVMRFLVSKRKFKESLR
KCNQ3 VRILQFRLYKKKFKETLR
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Figure I-8.  The proximal C-terminus of KCNQ channels. 

(A) Sequence alignment of the first two helices of the KCNQ C-termimus.  Identical 
residues are marked with black background, similar residues in grey.  The nitrosylated 
cysteine in Q1 is highlighted in red.  (B) The Q2 carboxy-terminal tail contains 
overlapping binding sites for multiple regulatory molecules.  PI(4,5)P2, 
phosphatidylinositol-4,5-bisphosphate (red); AKAP, A-kinase anchoring protein (green); 
CaM, calmodulin (blue); S511, S534, and S541, residues phosphorylated (purple), 
syntaxin 1A (yellow).   

 

Schematics generated by K. Mruk. 
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 In addition to acting as a Ca2+ sensor, CaM binding to KCNQ channels affects the 

ability of other cytoplasmic factors to bind to the C-terminus.  Because the AKAP79/150 

binding site overlaps with the first CaM binding motif in helix A of the C-terminus of 

Q2-Q5 channels, it was postulated that CaM and AKAP79/150 may interact with KCNQ 

channels through a macromolecular signaling complex (Figure I-8).  Indeed, calcified 

CaM, but not apoCaM, disrupts AKAP79/150 binding to Q2-Q5 channels by competing 

for an overlapping binding site on KCNQ channels [70].  Furthermore, overexpression of 

wild type CaM disrupts the functional effect AKAP79/150 has on heteromeric Q2/Q3 

channels, suggesting that CaM prevents phosphorylation by PKC.   

CaM binding to the isolated CaM binding motifs from KCNQ channels is reduced 

in the presence of PIP2, suggesting that they too share overlapping binding sites [90].  

However, competition experiments between CaM and PIP2 on full length KCNQ 

channels have not been attempted.  Modulation of Q2-Q5 channels by PIP2 and CaM is 

reciprocal but additive for Q1/E1 complexes, suggesting that PIP2 and CaM may possess 

overlapping functionality to modulate KCNQ function [74].  Interestingly, the proposed 

site for PIP2 binding to KCNQ channels also overlaps with the AKAP79/150 binding site 

(Figure I-8).  The Shapiro lab has shown that AKAP79/150 can decrease PIP2 affinity for 

KCNQ channels, suggesting that the three molecules (CaM, AKAP, and PIP2) may form 

heteromeric signaling complexes [70]. 

 In addition to regulating the binding of cytoplasmic factors that modulate all 

members of the KCNQ family, CaM can interfere with subunit specific regulators 
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including the SNARE protein, syntaxin 1A and the signaling molecule, nitric oxide.  

Syntaxin 1A binds to Q2 channels at helix A to modulate channel current [91] (Figure I-

8).  CaM binding to Q2 channels is increased in the presence of syntaxin 1A.  However, 

in the presence of either calcified CaM or apoCaM, the modulatory effects of syntaxin 

1A on Q2 channels are lost [92].  This suggests that there is functional interplay between 

CaM and syntaxin 1A upon binding to Q2 channels to modulate channel function.  Nitric 

oxide binds to Q1/E1 channel complexes at residue cysteine 445, which is located in the 

linker region between helices A and B of the Q1 C-terminus [93] (Figure I-4 and I-8).  In 

the presence of calcified CaM, Q1 channels are nitrosylated.  Overexpression of apoCaM 

prevents nitrosylation suggesting that the binding of calcified CaM is required for 

nitrosylation of Q1 channels [93].  Binding of calcified CaM to Q1 channels may cause 

structural changes in the C-terminus such that cysteine 445 becomes exposed and 

available for nitrosylation.   

 Currently, what is known about the protein interactions between CaM, KCNQ 

channels, and additional regulatory factors is limited to functional studies.  Although 

crystallographic studies have provided molecular insight into how CaM binds to target 

peptides, the location and orientation of CaM bound to fully folded ion channels in the 

membrane is unknown.  Without additional structural information, it is difficult to discern 

the molecular mechanisms that govern CaM regulation of the binding of additional 

cytoplasmic factors to KCNQ channels.   
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Tools to Study Kv Channels 

Kv channel complexes are difficult to study by traditional biochemical methods 

due to their membranous lipid environment and large size.  Instead, Kv channel 

complexes have been investigated using chemical probes in combination with electrical 

recordings allowing for the simultaneous probing of Kv structure and function.  This 

combinatorial approach not only provides insight into modulation of Kv channels but also 

aids in the discovery of therapeutic compounds to treat Kv channelopathies.   

 

Pharmacology and Screening Libraries 

 Most genetic mutations in KCNQ channels that are linked to human disorders 

arise from an overall decrease in K+ current [43].  Therefore, small molecule modulators 

of KCNQ channel complexes that increase K+ current provide a new avenue of 

pharmacological treatment.  Although inhibitors of KCNQ channels are abundant, small 

molecule activators are rare [94], challenging to synthetically derivatize, and are often 

less effective on the physiologically relevant heteromeric KCNQ complexes as compared 

to KCNQ homomeric channels [95-97].   Furthermore, since ion channels share a 

common core topology, many Kv channel activators cross-react with other channels [98] 

relegating them to an investigative tool instead of suitable drug candidates.   

 In an attempt to discover small molecule modulators of Kv channels, two high-

throughput approaches have been utilized.  The first is a fluorescence-based approach in 

which a dye that is sensitive to changes in membrane potential is applied to mammalian 

cells expressing the Kv channel of interest  [99,100].  Small molecules that modulate Kv 
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channel function are physiologically associated with changes in membrane potential that 

can then be visualized as changes in fluorescence.  This approach was successfully used 

to identify specific Kv channel inhibitors from a library of 20,000 compounds [99].  The 

second assay uses atomic absorption spectroscopy to measure nonradioactive Rb+ flux 

from mammalian cells expressing ion channels.  This approach allows for identification 

of both Kv inhibitors and activators as most Kv channels readily conduct Rb+ ions which 

provide a direct measurement of channel function.  This approach was used to identify 

the KCNQ specific activator, zinc pyrithione, out of over 20,000 compounds [95].   

 Although these high-throughput screening methods have increased the number of 

compounds that can be tested on Kv channels, only a few activators have been identified.  

In fact, many activators, such as the benzodiazepine R-L3, are often found randomly 

when screening for Kv channel blockers [96] instead of through screens for activators.  

One of the main hindrances in screening for activators is a lack of structural data 

available for Kv channels.  Mutagenesis studies have revealed that most activators of 

KCNQ channels bind deep within the pore region to small binding pockets, such that 

additional chemical modifications render the molecules unable to bind to the KCNQ 

channels [101].  Therefore, increasing the amount of structural data in combination with 

functional data of Kv channels could aid in the discovery of channel activators.   

 

Tethered Blockers 

Channel blockers bind to sites on either end of the selectivity filter where they get 

physically stuck and block the passage of K+ ions.  The two most commonly used 
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channel blockers are quaternary ammoniums (QAs) and peptide toxins.  Kv channel 

block by QAs is rapid, reversible, and subunit specific, allowing for the probing of Kv 

channel complex assembly.  The differential sensitivity of KCNQ subunits was used to 

show that in hippocampal neurons, the M-current is primarily generated through Q2/Q3 

complexes with a minor contribution from Q3/Q5 complexes [102] and later to show that 

the stoichiometry of the Q2/Q3 complex in superior cervical ganglia neurons is 2:2 [103].  

Increased sensitivity to QAs can be engineered into channel subunits through single point 

mutations allowing for the biophysical characterization of the ion conducting pathway in 

otherwise insensitive Kv channels.  Indeed, the Kass laboratory employed this technique 

to show that coassembly of Q1 with E1 β-subunits, which leads to a decrease in QA 

sensitivity, did not change the structure of the outer vestibule of the Q1 channel [104].  In 

contrast to QAs, peptide toxins bind to Kv channels with high affinity.  The scorpion 

toxin, charybdotoxin (CTX), has been used to determine the stoichiometry of the Shaker 

Kv channel [105] and later to further investigate inactivation in these channels [106].  

Although, KCNQ channels are not sensitive to CTX, mutagenesis studies have allowed 

toxin sensitivity to be engineered into these and other otherwise insensitive channels.  

Using a Q1 CTX-sensitive channel, our lab and others have determined the stoichiometry 

of the Q1/E1 channel complex to be 4 α-subunits:2 β-subunits [107,108].    

In order to gain more knowledge about the structural architecture of K+ channels, 

labs have turned to using tethered blockers.  Typically, tethered blockers contain a QA or 

toxin that is linked to a cysteine-modifying group which allows for covalent attachment 

to the channel of interest (Figure I-9).  Because QAs have low affinity for K+ channels, 
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inhibition is highly dependent on the effective concentration generated by the length of 

the linker between the cysteine-modifying group and the QA.  Therefore, QA-tethered 

blockers are often used as molecular calipers to measure distances between extracellular 

segments of K+ channels to the entrance of the pore [109].  More recently, tethered 

blockers containing QAs have expanded beyond probing channel structure to controlling 

Kv channel function in native tissues [110,111].  In one approach, the tether contained an 

azobenzene linker which adopts an extended trans conformation in visible light but a 

condensed cis confirmation under UV light (Figure I-9).  These linkers allow for the 

temporal control of channel function through the use of light which can be used to study 

the roles that Kv channels, including the KCNQs, play in native cells [112].  Because 

CTX binds to Kv channels with high affinity, unlike QAs, channel inhibition by CTX is 

insensitive to linker length.  Therefore, the cysteine-reactive moiety reacts with the Kv 

channel before CTX can unbind, creating a covalently tethered blocker which precludes 

additional blockers from binding to the channel.  This essentially irreversible inhibition 

has been used to demonstrate that Q1 channels can form heteromeric complexes with 

multiple KCNE β-subunits [27].  Additionally, our lab has shown that using a chemically 

cleavable linker can allow for multiple rounds of sequential labeling, providing a method 

to deliver chemical handles to functional channels [113].  Although tethered blockers 

have been widely successful in gathering structural information about Kv channels, to 

date, their use has been limited to probing the extracellular surface of Kv channels. 
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Figure I-9.  Tethered Blockers 
(A) Cartoon of the tethered blocker strategy using a quaternary ammonium.  If the tether 
is long enough, the blocker will reach its binding site and block K+ conduction whereas 
shorter tethers prevent the blocker from effectively inhibiting channel function.  Because 
the effective concentration of the blocker is dependent on tether length, the magnitude of 
inhibition provides a distance between the chemically modified residue and the internal 
blocker site.  (B) Chemical linkers used in tethered blocker studies.  The glycine linker 
allows for changes in length.  The bis(N-phenylcarbamoyl)disulfane linker is cleavable 
allowing for delivery of small molecules.  The azobenzene linker isomerizes in response 
to light, allowing for photocontrol of channel block.    
 
 
Figures generated by K. Mruk.   
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 The Oocyte Expression System 

Intact oocytes extracted from Xenopus laevis are a versatile expression system for 

the structural and functional investigation of ion channels and transporters.  One 

advantage of using oocytes over mammalian cells is that they do not express a large 

number of endogenous ion channels.  In addition to rapid co-expression of mRNA, 

microinjection also allows for facile incorporation of unnatural amino acids [114], as well 

as examination of recombinant proteins [115] and isolated membranes from native cells 

[116].  Microinjection also allows for precise control of protein subunit expression which 

is critical for heteromeric Kv channels [117].  Channel function can be investigated 

electrophysiologically in the traditional whole-cell configuration (two-electrode voltage 

clamp - TEVC) or in excised patches of membrane [118].  The large size of the oocyte 

also makes single cell biochemistry possible, enabling the direct comparison of cell 

surface expression and electrical recordings [119-121]. 

Although many studies are easier to do in Xenopus oocytes than mammalian cells, 

oocytes also have some experimental disadvantages.  The vitelline envelope of the oocyte 

can cause decreases in small molecule potency and must be removed for many 

experiments [118] resulting in decreased viability.   Furthermore, the cellular trafficking 

of oocytes is different from native cells, precluding the study of channel mutations which 

affect trafficking [122].   In addition, oocyte quality can be variable based on husbandry 

conditions and season, rendering them unusable at times for electrophysiological 

recordings [122-126].  The inconsistency of oocyte quality has caused many labs to turn 
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to mammalian expression systems which are less amenable to the currently available 

tools to study Kv channels.   

 

Structural Prediction and Bioinformatics 

 Out of the 30 identified homomeric mammalian Kv channels, only the crystal 

structure of one mammalian Kv channel (rKv1.2) is known.  However, based on the high 

resolution structures of the bacterial K+ channels (KcsA and KvAP) as well as rKv1.2, 

structural features of other Kv channels have been predicted.  There are two main 

techniques used to predict the structure of Kv channels.  The first uses structural 

bioinformatics tools and the second uses molecular dynamics simulations [127].  The 

bioinformatics approach relies on a combination of secondary structure predictions and 

homology modeling to construct structural models that are homologous to known K+ 

channel structures.  This method was used to generate both open and closed state models 

of Q1 channels using the crystal structures of rKv1.2 and KcsA respectively [128].  These 

models were used in subsequent studies to model the interaction between Q1 α-subunits 

and E1 β-subunits [129].  Unlike structural bioinformatics, molecular dynamics explores 

the conformational space of proteins within a pre-defined environment.  For ion channels, 

molecular dynamic simulations are typically run in a membrane mimetic environment 

[130] allowing for a wealth of information to be collected about the movement and 

energetics of K+ permeation through the selectivity filter.  Typically, these two methods 

are used together to generate models of the interactions formed between small molecule 

and peptide toxins with Kv channels [131-134].  More recently, the Seebohm lab used 
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structural bioinformatics to create a homology model of the Q1/E1 channel complex and 

applied molecular dynamic simulations to ascertain the stability of the complex [135].  

As more high resolution structures of ion channel accessory subunits are solved, 

structural bioinformatics provides an avenue to piece together this structural data with 

functional data in an attempt to fully understand modulation of Kv channels.   

Outline of Thesis 

My thesis work focuses on the discovery and use of small molecules to probe the 

assembly and function of heteromeric KCNQ channel complexes.   

Chapter II illustrates the synthesis and utilization of a modified version of the 

tried-and-true tethered blocker approach allowing for the study of the intracellular 

structure of KCNQ channels.  Using the distance restraints generated from our 

intracellular tethered blockers and structural bioinformatics, we built models of the 

KCNQ-CaM complex.  Our models place CaM close to the gate of KCNQ channels 

where it is able to communicate changes in intracellular calcium levels to modulate 

KCNQ current levels.   

Chapter III describes the serendipitous discovery of an activator of KCNQ 

complexes, phenylboronic acid (PBA).  PBA activates both homomeric KCNQ channels 

as well as the physiologically relevant Q1/E1 and Q2/Q3 channel complexes.  Although 

the potency of PBA is weak (millimolar), the commercial availability to thousands of 

PBA derivatives provides a large class of compounds to systematically dissect the 

mechanisms of KCNQ gating.   
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Chapter IV addresses the common problem of microbial contamination of 

Xenopus oocytes after surgical removal.  Microbial contaminated oocytes have negligible 

electric resting potentials and poor viability resulting in eggs that are unsuitable for 

electrophysiological recordings.  We identified multi-drug resistant bacteria as the source 

of the contamination and developed an antibiotic cocktail to treat compromised oocytes.  

The development of the tools used in this thesis, provides new reagents to further 

our understanding of Kv channel complexes.   
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CHAPTER II: STRUCTURAL INSIGHTS INTO NEURONAL KCNQ-

CALMODULIN COMPLEXES 

 

Abstract 
 
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that directly binds to and 

modulates a wide variety of ion channels.  Despite the large repository of high resolution 

structures of CaM bound to peptide fragments derived from ion channels, there is no 

structural information about CaM bound to a fully folded ion channel at the plasma 

membrane.  To determine the location of CaM docked to a functioning KCNQ K+ 

channel, we developed an intracellular tethered blocker approach to measure distances 

between CaM residues and the ion conducting pathway.  Combining these distance 

restraints with structural bioinformatics, we generated the first quaternary structural 

model of an ion channel-CaM complex in the open state.  These structural models place 

CaM strikingly close to the cytoplasmic gate where it is well-positioned to modulate 

channel function.   
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Introduction 

Voltage-gated ion channels respond to fluctuations in Ca2+ concentration in order 

to regulate membrane excitability, cardiac rhythm, and synaptic transmission between 

neurons.  Although many ion channels are regulated by intracellular calcium, most 

voltage-gated channels do not directly bind calcium; instead, they employ the ubiquitous 

Ca2+ binding protein, calmodulin (CaM).  CaM consists of two globular domains (N- and 

C-lobes), each of which contains two calcium binding EF hand structures permitting the 

binding of up to four Ca2+ ions.  CaM communicates changes in intracellular Ca2+ levels 

by binding to consensus sites known as CaM binding motifs (e.g. IQ, 1-5-10, 1-8-14) 

[136] in both the presence and absence of Ca2+  leading to changes in channel function 

(calmodulation) [137-140].  Furthermore, calcification of either the N- or C- lobe of CaM 

allows for the modular regulation of channel assembly and gating through lobe specific 

interactions of CaM with voltage-gated ion channels [141,142]. 

For the KCNQ family of potassium channels (Q1 – Q5; Kv7.1 – Kv7.5), CaM 

binds to the intracellular C-terminus to regulate channel assembly [17,81], trafficking 

[85,86], and function [81,87,89].  The KCNQ C-terminus contains two CaM binding 

motifs:  a Ca2+ independent (IQ-like) and Ca2+ dependent (1-5-10), which are separated 

by ~ 135 residues [10].  CaM binds to KCNQ channels in the absence or presence of 

calcium; however, CaM binding requires both motifs to be intact, consistent with in vitro 

studies that indicate a 1:1 stoichiometry for the CaM:KCNQ C-terminus protein-protein 

interaction [17,84,87].  Fittingly, mutations that disrupt CaM binding to either of these 

motifs in Q1 and Q2 channels are associated with long QT syndrome (LQTS) and benign 
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familial neonatal convulsions (BFNC), respectively [81,85-87].  Taken together, these 

studies indicate that one CaM molecule will simultaneously interact with both CaM 

binding motifs in the KCNQ C-terminus.  

Current structural information for ion channel-CaM complexes is limited to 

structures of CaM bound to peptides derived from the cytoplasmic parts of ion channels.  

In many of these high resolution structures, CaM wraps around a single α-helical peptide 

[143,144].  However for KCNQ subunits harboring two CaM binding motifs, the KCNQ-

CaM complex is predicted to be similar to the structures of CaM bound to peptides 

derived from either the SK Ca2+ activated K+ channel or the pre-IQ domain of Cav1.2 

voltage-gated Ca2+ channel, where CaM wraps around multiple helices [145-147].  

Although these published structures (and the inevitable structure of CaM bound to a 

KCNQ-derived peptide) are expected to faithfully mirror the structure of CaM when 

bound to a functioning channel, these isolated structures do not provide any information 

about the quaternary structure of the full-length ion channel-CaM complex.  To 

determine where CaM resides on a functioning KCNQ channel, we developed an 

intracellular tethered blocker approach to measure distances between CaM residues and 

the crystallographically-known quaternary ammonium blocking site on voltage-gated K+ 

channels (Kv).   Using these distance restraints, we generated three-dimensional 

structural models of the Q2/Q3 channel-CaM complex in the open state using the rKv1.2 

and CaM-CaV1.2 crystal structures.  These models place CaM strikingly close to the 

cytoplasmic gate where it is well-positioned to communicate changes in intracellular 

calcium to a functioning Q2/Q3 channel. 
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Materials and Methods 

Molecular Biology 

KCNQ2 and KCNQ3 constructs were kindly provided by G. Seebohm (Ruhr University).  

Inactivation-removed Shaker (Shaker-IR) was subcloned into pBluescriptII KS (+).  The 

constructs were linearized with the appropriate restriction enzyme (New England 

Biolabs) and cRNA was synthesized using in vitro run-off transcription with SP6 or T7 

polymerase (Promega). Calmodulin (CaM) DNA was obtained from David Yue (Johns 

Hopkins) and subcloned into the pET-DUET1 vector for protein expression and 

purification.  Cysteine point mutants were introduced by Quikchange site-directed 

mutagenesis (Strategene).  The CaM binding mutant truncation was generated by PCR 

and subcloned into pET-DUET1.  Mutations were confirmed by DNA sequencing of the 

entire gene.     

CaM Expression and Purification  

CaM constructs were transformed and expressed in E.Coli strain BL21 (DE3) 

(Stratagene).  Protein expression was induced with 0.4 mM isopropyl--D-

thiogalactoside (IPTG) overnight at 20°C.  The bacterial pellet was resuspended in lysis 

buffer containing (in mM): 2 EDTA, 0.2 phenylmethanesulfonyl fluoride (PMSF), 1 β-

mercaptoethanol (βME), and 50 Tris-HCl, pH 7.5.  Cells were lysed by sonification, 

clarified by centrifugation, and the supernatant adjusted to a final concentration of 5 mM 

CaCl2.  Supernatant was applied to a Phenyl-Sepharose CL-4B column (GE Healthcare) 

equilibrated with (in mM) 5 CaCl2, and 0.1 NaCl, 1 βME, 50 Tris-HCl, pH 7.5.  The 

column was washed with 4 column volumes of Wash Buffer #1 containing (in mM): 0.1 
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CaCl2, 0.1 NaCl, 1 βME, 50 Tris-HCl, pH 7.5 and 4 column volumes of Wash Buffer #2 

(in mM): 0.1 CaCl2, 0.5 NaCl, 1 βME, 50 Tris-HCl, pH 7.5.  Proteins were eluted in 

buffer containing (in mM): 1 EGTA, 1 βME, 50 Tris-HCl, pH 7.5.  Purified CaM was 

dialyzed against distilled water and lyophilized. 

Linker Synthesis, CaM Labeling and Purification 

The panel of maleimido-quaternary ammoniums were synthesized and purified as 

previously described [109].  To chemically-derivatize CaM with a maleimido-quaternary 

ammonium, a CaM cysteine mutant was dissolved in 1 mL of phosphate buffered saline 

(PBS) and reacted with 10-fold excess of tris(2-carboxyethyl)phosphine (TCEP) for 10 

min at room temperature (pH = 7.6).  12-fold excess of the glycine linker was dissolved 

in 1 mL of PBS and added dropwise to the CaM solution.  Labeling was allowed to 

proceed for 2 hours after the addition of linker.  To synthesize the N-ethylmaleimide-

capped version (CaM-NEM), the T35C CaM protein was was dissolved in 1 mL of 

phosphate buffered saline (PBS) and reacted with 10-fold excess of TCEP for 10 min at 

room temperature (pH = 7.6).  12-fold excess of the N-ethylmaleimide was dissolved in 1 

mL of PBS and added dropwise to the CaM solution.  Labeling was allowed to proceed 

for 2 hours after the addition of linker.  The reaction mixtures were transferred to a 3 mL 

Slide-A-Lyzer (3500 MWCO; Thermo Scientific) and dialyzed against 3 L of PBS at 

room temperature.  Labeled CaM was separated from unlabeled CaM using a Proto 300 

C4 column (250 x 10 mm) composed of 5 µm particles.  The aqueous phase contained 

(v/v) 95% water, 5% acetonitrile, and 0.1 % trifluoroacetic acid (TFA). The organic 

phase was composed of (v/v) 95% acetonitrile, 5% water, and 0.1% TFA. The labeled 
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proteins were eluted using a linear gradient of 0.4% organic/min between 35 and 50% 

organic at a flow rate of 5 mL/min.  Fractions containing strong absorption at 214, 260, 

and 280 nm were collected and lyophilized.  Labeling was confirmed by ESI mass 

spectrometry (Table II-1).  Calcium Binding Assay:  300 µg of each CaM construct was 

preloaded with 5 mM CaCl2 and applied to a Phenyl-Sepharose CL-4B column (GE 

Healthcare) as described above.  Fractions from the wash and elution buffers were 

collected in 5 mL increments.  10 µL of each fraction was diluted with SDS-PAGE 

loading buffer containing 100 mM DTT, separated on a 15% SDS-polyacrylamide gel, 

and resolved by Coomassie staining.   

Electrophysiology 

Oocytes were surgically removed from Xenopus laevis, defolliculated and stored as 

previously described [148].  The extraction procedure and care of Xenopus laevis was 

approved by the University of Massachusetts Institutional Animal Care and Use 

Committee.  Oocytes were microinjected with 15.2 ng of mRNA and (27 – 130 ng) 

purified CaM 8 – 24 hours after surgery.  For Q2/Q3 heteromeric channels, an equal 

amount of mRNA (7.6 ng) for each subunit was injected.  The final CaM concentration 

inside the oocyte (3 – 15 µM) was calculated by assuming a volume of 500 nL for each 

oocyte.  After 66 – 74 hr (24 hr for Shaker), currents were recorded using Warner 

Instrument OC-725 two-electrode voltage clamp (TEVC), and the data were acquired 

with Digidata 1322A using pClamp 10 (Axon Instruments).  Electrodes were filled with: 

3 M KCl, 10 mM HEPES, pH 7.6.  Currents were measured in ND96 recording buffer 

containing (in mM):  96 NaCl, 2 KOH, 0.3 CaCl2, 1 MgCl2, 10 HEPES, pH 7.6.  Families 
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of current were measured by holding at –80 mV and stepping to a series of test potentials 

for 4 s (100 ms for Shaker) in 20 mV increments, followed by a tail pulse at –30 mV (–80 

mV for Shaker).   

Data Analysis 

Analysis of data was performed with Clampfit 10 (Axon Instruments) and Prism 5 

software (Graphpad).  TEA Injection Studies:  Families of Q2/Q3 current were first 

measured by holding at –80 mV and stepping to a series of test potentials for 4 s in 20 

mV increments, followed by a tail pulse at –30 mV.  After recording, oocytes were 

injected with TEA so the in ovo final concentration was 1 –10 mM and allowed to 

recover for 2 h at 16°C.  Families of current were then re-measured and the amount of 

block was determined for each oocyte.  The IC50 value for internal block by TEA was 

calculated by plotting the amount of block at 40 mV and fitting the data to a hyperbola.  

CaM-Gly7-QA Injection Studies:  Inhibition by labeled CaM was determined by batch 

comparison of oocytes injected with channel mRNA alone versus channel mRNA with 

CaM protein.  The percent inhibition obtained from each batch was normalized to the 

maximal inhibition value.  Normalized values were plotted as a function of extended 

tether length for each modified CaM.  Distance curves were fit to the Boltzmann equation 

above to generate a midpoint distance (d1/2).  Cell Surface Experiments:  Families of 

Q2/Q3 current were first measured as described for the TEA injection studies.  After 

recording, oocytes were injected with 27 ng of CaM-Gly7-QA and allowed to recover for 

2 h at 16°C.  Families of current were then re-measured and the amount of inhibition was 

determined for each oocyte.  Current remaining after injection was calculated at 40 mV 
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and normalized to uninjected controls.  Binding Site Models:  The magnitude of CaM-

Glyn-QA inhibition will depend on the number of tethered blockers that are bound to a 

Q2/Q3 channel complex.  Assuming endogenous CaM and CaM-Glyn-QA equally 

compete for binding sites on a Q2/Q3 channel, the incorporation of CaM-Glyn-QA into a 

population of Q2/Q3 channels will follow a binomial distribution.  Therefore, the amount 

of inhibition observed can be described by the following equation:  
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where n is the number of CaM binding sites on the Q2/Q3 channel, k is the number of 

Q2/Q3 channel subunits with CaM-Glyn-QA bound, and P0, the probability of CaM-Glyn-

QA incorporation based on the concentration of tethered blocker injected.  P0 was 

calculated using the limits of the range of endogenous CaM that was reported for oocytes 

(6 or 15 µM) [149,150]: 
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For Keff, we used the range of 2 ± 1 mM as was previously reported for glycine linkers. 

The IC50 of free TEA for Q2/Q3 channels (2 mM) was used as the approximate Kd for 

CaM-Glyn-QA block. 

KCNQ2/3–CaM Model Generation 

The rKv1.2 potassium channel (PDB: 2A79) [9] and CaM–Cav1.2 peptide (PDB: 3G43) 

[145] o CaM-SK2 peptide (PDB: 1G4Y) [147] crystal structure coordinates were 

obtained from the Protein Data Bank (www.rcsb.org) and processed using PyMOL 

http://www.rcsb.org/�
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(Schrodinger LLC) to isolate putatively extracellular and intramembranous regions of the 

rKv1.2 channel and a CaM chain from respective PDB coordinates. Using PyMOL, a 

dummy atom was placed 20 Å below the quaternary ammonium binding site to indicate 

the inflection point of a flexible chemical linker as it would angle into the channel pore.  

Threonine residues (34, 44, 110) in the isolated CaM subunit that correspond to the 

chemically labeled residues in the purified protein were mutated to cysteine using the 

mutagenesis wizard within PyMOL, selecting backbone restrained rotamers with minimal 

van der Waals (VDW) clashes as indicated in the PyMOL graphical user interface. The 

mutated CaM subunit was positioned at the intracellular end of the isolated potassium 

channel structure to satisfy the distance restraint between the gamma sulfur atoms of the 

mutated cysteine residues and the quaternary ammonium binding site. VDW clashes 

between the channel and CaM were visualized using PyMOL 

(http://pymolwiki.org/index.php/Show bumps).  Once a CaM orientation was determined 

that satisfied the measured distance restraints without VDW clashes, the remaining three 

CaM molecules were generated using basic symmetry operators within PyMOL and 

confirmed to satisfy the distances without any CaM-channel or CaM-CaM VDW clashes 

as described above. 

http://pymolwiki.org/index.php/Show_bumps�
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Results 

To convert CaM binding into a structural reporter for Q2/Q3 channels, we 

chemically derivatized calmodulin into a “tethered blocker” (Figure II-1A and B) when 

bound to Q2/Q3 channels.  In this intracellular variant, current inhibition requires CaM 

binding to the channel instead of covalent modification of an extracellular target cysteine 

residue [109].  Similar to the extracellular version, inhibition of channel function is 

dependent on tether length; thus, distances between CaM and the blocker’s binding site 

can be determined by comparing the magnitude of current inhibition with a panel of CaM 

proteins chemically derivatized with different length tethers.  For this intracellular tether 

blocker approach to work as cartooned, three requirements must be met: (1) the binding 

site of the blocker is known; (2) the blocker binds to Q2/Q3 channels with low affinity 

such that the freely diffusible tethered blocker does not measurably contribute to channel 

inhibition; (3) inhibition of Q2/Q3 function depends on CaM binding to increase the local 

concentration of the tethered blocker for its binding site.  
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Figure II-1.  Tethered blocker strategy for detecting CaM bound to functioning 
KCNQ channels.   
CaM protein chemically derivatized with an internal channel blocker inhibits KCNQ 
function depending on tether length:  if the tether is long enough, (A) the blocker will 
reach its binding site and block K+ conduction whereas (B) shorter tethers prevent the 
blocker from effectively inhibiting channel function.  Because the effective concentration 
of the blocker is dependent on tether length, the magnitude of inhibition provides a 
distance between a CaM residue and the internal blocker site.  (C) Structures of the 
maleimido-QA linkers:  n, number of glycines in the linker; d, extended length of linkers 
rounded to the nearest angström from the center of the quaternary ammonium (shown in 
red) to the olefinic carbons on the maleimide.  (D) CaM constructs used in this study.  
Cysteines were introduced into the N- (T35C, T45C) and C-lobes (T111C) of full length 
CaM and the N-lobe (T35C) of the truncated, binding deficient CaM mutant (BM). 
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 For the blocker, we chose a quaternary ammonium, tetraethylammonium (TEA), 

because its intracellular binding site on voltage-gated K+ channels is well-established 

[4,151] and TEA internally blocks Q2/Q3 channels at millimolar concentrations in 

excised patches [152].  We chose to perform the tethered blocker experiments in Xenopus 

oocytes to ensure that the chemically-derivatized CaM proteins would co-assemble with 

KCNQ subunits during biogenesis [17,81,85,86].  Therefore, we determined the IC50 

value for internal block of Q2/Q3 channels in Xenopus oocytes by recording current from 

individual oocytes before and after injection with various concentrations of TEA.  

Assuming a cytoplasmic volume of 500 nL [153], the IC50 for internal TEA block of 

Q2/Q3 channels was 2.1 mM, which in contrast to Shaker K+ channels, was essentially 

independent of voltage (Figure II-2).   

With a suitable blocker in hand, we generated a panel of maleimido-quaternary 

ammoniums (QAs) with various length tethers (32 – 66 Å) by varying the number of 

glycines between the two moieties using solid-phase peptide synthesis (Figure I-1C) 

[109].  To transform CaM into a tethered blocker, we engineered individual cysteines into 

the N- and C-lobes of CaM (Figure I-1D), which does not contain any native cysteines, 

and labeled the purified mutants with ~ 10-fold molar excess of a maleimido-QA 

(Methods).  The chemically-derivatized CaM proteins were purified by HPLC and the 

presence of the modification was confirmed by electrospray mass spectrometry (Table II-

1).   Chemical modification of CaM did not disrupt Ca2+ binding, as the QA-derivatized 

CaM proteins bound phenyl-sepharose only in the presence of Ca2+ (Figure II-3). 
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Figure II-2.  Free TEA blocks Q2/Q3 channels internally at millimolar 
concentrations.   
(A) Families of currents recorded from Xenopus oocytes before and after injection of 10 
mM TEA.  Currents were elicited by 4 s test potentials from –100 to +40 mV in 20 mV 
increments from a holding potential of –80 mV followed by a tail pulse to –30 mV.  
Dashed line indicates zero current.  Scale bars represent 0.5 µA and 0.5 s.  (B)  Percent 
block at 40 mV was calculated for a range of TEA concentrations (1 – 10 mM).  The IC50 
value is reported as the mean ± the error of the fit to a hyperbola (n = 4 – 8). 
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Table II-1.  Mass spectrometry data for chemically derivatized CaM 

Construct

CaM-Gly3-QA

CaM-Gly5-QA

CaM-Gly6-QA

CaM-Gly7-QA

CaM-Gly8-QA

CaM-Gly9-QA

CaM-Gly10-QA

CaM-Gly11-QA

CaM-Gly12-QA

BM-Gly7-QA

Fully Extended
Tether Length

(Å)

32

39

43

46

50

54

58

62

66

46

Molecular Weight
Calculated
(Daltons)

17343

17457

17516

17571

17630

17687

17743

17803

17857

11382

17343

17456

17518

17572

17632

17687

17746

17803

17860

11382

Molecular Weight
Observed
(Daltons)

 
Electrospray mass spectrometry results for labeled CaM constructs.  Observed masses 
were the same (within one Dalton) for all three threonine to cysteine mutants (T35C, 
T45C, and T111C). 
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Figure II-3.  QA-derivatized proteins retain calcium binding and can exchange with 
endogenous CaM at the cell surface.   
(A) Purified CaM binds to phenyl sepharose in the presence of calcium and dissociates 
upon chelation with EGTA.  SDS-PAGE resolved fractions from a phenyl sepharose 
column loaded with underivatized or derivatized CaM.  (B)  Families of Q2/Q3 currents 
recorded before and after injection of 3 µM CaM-Gly7-QA.  Currents were elicited by 4 s 
test potentials from –100 to +40 mV in 20 mV increments from a holding potential of –
80 mV followed by a tail pulse to –30 mV.  Dashed line indicates zero current.  Scale 
bars represent 0.5 µA and 0.5 s.  (C)  Inhibition of Q2/Q3 current by CaM-Gly7-QA is 
not dependent on time of injection.  Quantification of current levels from oocytes injected 
with CaM-Gly7-QA.  For oocyte comparison, values are normalized to current levels 
before injection.  Batch comparison data is from Figure 3 for comparison.  Data are 
presented as the mean ± SEM from 6 individual oocytes.     
 
 



 

 

52

 We first determined whether CaM binding to K+ channels could be exploited in 

an intracellular tethered blocker approach by examining CaM derivatized at position 

T35C (N-lobe) (Figure II-4).  To allow the differently derivatized CaM protein to 

compete with endogenous CaM (6 – 15 M) [149,154] during Q2/Q3 channel biogenesis, 

we co-injected CaM protein with channel mRNA.  This experimental design required us 

to compare oocytes injected with derivatized CaM protein to water-injected controls.  

Oocytes were co-injected with KCNQ channel mRNA and CaM-T35C protein and 

families of Q2/Q3 currents were measured 3 days after co-injection.  Oocytes injected 

with CaM-Gly7-QA (3 M in ovo) resulted in 43 ± 4% decrease in current, as compared 

to water injected control (0 M) (Figure II-4A and D).  Inhibition was dependent on the 

amount of CaM-Gly7-QA injected (Figure II-4A) and at 13 M (Figure II-4D) was 

comparable to maximal block with 10 mM TEA (Figure II-2), consistent with the injected 

CaM protein competing with endogenous CaM for binding to Q2/Q3 channels.   

Inhibition of Q2/Q3 current required the presence of the blocker (Figure II-4B) because 

neither unlabeled CaM-T35C nor an N-ethylmaleimide (NEM)-capped version (CaM-

T35C-NEM) reduced the current (Figure II-4B and D). 
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Figure II-4.  Chemically-derivatized CaM proteins behave as intracellular tethered 
blockers.    
(A)  Families of Q2/Q3 currents recorded from oocytes injected with channel mRNA or 
co-injected with T35C-Gly7-QA protein.  Currents were elicited by 1 s test potentials 
from –100 to +40 mV in 20 mV increments from a holding potential of –80 mV followed 
by a tail pulse to –30 mV.  Dashed line indicates zero current.  Scale bars represent 0.5 
µA and 0.2 s.  (B)  Families of Q2/Q3 currents recorded from oocytes injected with 
Q2/Q3 mRNA or co-injected with CaM protein.  Currents were elicited by 4 s test 
potentials from –100 to +40 mV in 20 mV increments from a holding potential of –80 
mV followed by a tail pulse to –30 mV.  Dashed line indicates zero current.  Scale bars 
represent 0.5 µA and 0.5 s.  (C)  Families of Shaker-IR currents were elicited by test 
potentials from –100 to +60 mV in 20 mV increments from a holding potential of –80 
mV.  Scale bars represent 1 µA and 10 ms. (D) Quantification of current levels at 40 mV 
from oocytes co-injected with CaM.  Values are normalized to oocytes injected with only 
channel mRNA.  Data are presented as the mean ± SEM from 2 – 4 batches of oocytes.    
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Although Q2/Q3 inhibition with CaM-Gly7-QA was a ~ 1,000-fold more potent 

than internal block by TEA (3 µM compared to 2 mM), this increased potency did not 

directly demonstrate that the observed inhibition with CaM-Gly7-QA was due to CaM 

binding to Q2/Q3 channels.  To determine whether CaM binding was required for 

inhibition, we first tested CaM-Gly7-QA on Shaker-IR, which is a TEA-sensitive K+ 

channel that does not directly bind CaM [155].  Co-injection of CaM-Gly7-QA with 

Shaker-IR mRNA did not reduce current levels (Figure II-4C) consistent with the notion 

that CaM binding is required for inhibition with CaM-Gly7-QA.  We also derivatized a 

truncated CaM mutant (Figure II-1C) with maleimido-Gly7-QA to generate a tethered 

blocker (BM-Gly7-QA) that cannot bind Q2/Q3 channels [10].  Similar to the Shaker-IR 

control, BM-Gly7-QA did not inhibit Q2/Q3 currents (Figure II-4B and D).   Together, 

these results confirmed that CaM-Gly7-QA requires binding for inhibition, fully 

satisfying the requirements of a tethered blocker.   

We first used the tethered blockers to determine a distance between the N-lobe of 

CaM and the TEA binding site on Q2/Q3 channels. At the N-lobe residue, T35C, six 

different tether lengths were tested at 3 M final oocyte concentration (Figure II-5A).  As 

expected for a bona fide tether blocker, the magnitude of channel inhibition was 

dependent on tether length: the shortest tether, CaM-Gly3-TEA, showed little to no 

inhibition; intermediate length tethers showed partial inhibition and all tethers that 

contained more than six glycine residues showed maximal inhibition (~ 50%).  Plotting 

inhibition (normalized to maximal inhibition) as a function of fully extended tether length 
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(Figure II-5, right panel) resulted in a monophasic curve, indicating that the tethered 

blockers are reporting from a single CaM binding site on a KCNQ subunit.  To calculate 

a distance, previous tethered blocker studies on the Shaker K+ channel have used the fully 

extended linker length of the tethered blocker that results in the first sign of inhibition 

[109].  However, this metric for tether length yields distances that are systematically 

shorter than the atomic distances in the subsequently published rKv1.2 structure [9].  A 

reexamination [156] of these data revealed that a better metric for calculating a tethered 

blocker distance is the end-to-end tether length of the linker that results in half maximal 

inhibition (d1/2).  Therefore, we plotted inhibition (normalized to maximal inhibition) as a 

function of extended tether length (Figure II-5A, right panel) and fit the data to a 

Boltzmann equation to obtain a d1/2 of 40 ± 1 Å between the N-lobe residue, T35C, and 

the Q2/Q3 TEA binding site.  This mathematical fit to a Boltzmann equation has no 

physical meaning and was solely used to objectively calculate d1/2.   
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Figure II-5.  Distance measurements for CaM residues: T35, T45 and T111.   
(Left)  Superimposed currents recorded from oocytes injected with 3 µM (A) TEA-Glyn-
T35C; (B) TEA-Glyn-T111C; (C) TEA-Glyn-T45C.  Currents were elicited with 4 s test 
potentials to +40 mV from a holding potential of –80 mV followed by a tail pulse to –30 
mV.  Dashed line indicates zero current.  (Right)  Normalized inhibition values plotted as 
a function of linker length.  Data are presented as the mean ± SEM from 2 – 4 batches of 
oocytes.  The data were fitted to a Boltzmann equation to generate the midpoint of 
inhibition (d1/2):  (A) 40 ± 1 Å (B) 50 ± 1 Å (C) 49 ± 1 Å.  Values are reported as mean ± 
the error of the fit.   
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To determine the precision of the measured distance, we also measured the 

distance from T35C and the Q2/Q3 TEA binding site at different depolarizing potentials 

and with higher in ovo concentrations of derivatized CaM.  Repeating the analysis at 

different test potentials consistently resulted in a d1/2 of 40 ± 1 Å (Table II-2), 

demonstrating that the measured distance is not dependent on the depolarizing pulse.  To 

determine whether the calculated distances were also independent of the amount of 

injected CaM protein, we repeated the experiments at an in ovo concentration of 15 µM 

(Figure II-6A).  As expected, the higher concentration of injected CaM-Glyn-QA that 

contained more than six glycine residues (n = 7 or 8) resulted in maximal inhibition (~ 

85%) that was greater than observed with 3 µM (~ 50%).  In addition, this increased 

inhibition was not due to disrupting CaM homeostasis—as has been observed with CaM 

overexpression [89]—because CaM protein derivatized with shorter tethers did not 

inhibit Q2/Q3 channel function (Figure II-6A).  Moreover, fitting the 15 µM data to a 

Boltzmann yielded a d1/2 of 43 ± 1 Å, demonstrating that the number of tethered blockers 

bound to functioning Q2/Q3 channels does not appreciably affect the distance measured 

between CaM and the TEA binding site.  In total, the consistency of the calculated 

distance at different voltages and in ovo concentrations of derivatized CaM bolstered our 

confidence in both the methodology’s robustness and precision of the distance measured 

with intracellular tethered blockers. 
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Table II-2.  Distances between CaM residues and the Q2/Q3 TEA binding site 

d
1/2

(Å)

Voltage (mV)

 -20

0

20

40

Average

T35C

40

41

41

40

41

T45C

48

48

48

49

48

T111C

49

49

50

49

49

 
 
Data from individual inhibition curves obtained from 2 – 4 batches of oocytes.  Curves 
were fitted to a Boltzmann function to yield d1/2 as described for Figure 4. 
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Figure II-6:  Multiple CaM-Glyn-QA subunits assemble with Q2/Q3 channels at the 
cell surface. 

(A) Distance measurement of CaM residue T35 at higher concentrations (13 – 18 µM) of 
injected CaM-Glyn-QA.  Percent inhibition values plotted as a function of end-to-end 
linker length.  Data are presented as the mean ± SEM from 1 – 2 batches of oocytes.  The 
data were fitted to a Boltzmann equation to generate the midpoint of inhibition (d1/2):  
T35C:  43 ± 1 Å.  (B) Binding site models for CaM-Glyn-QA using equations described 
in Methods.  Upper limit:  6 µM endogenous CaM; Keff = 3 mM.  Lower limit:  15 µM 
endogenous CaM; Keff = 1 mM.  Data are mean ± SEM obtained from 1 – 4 batches of 
oocytes.
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 We next switched to the C-lobe of CaM and tested residue, T111C.  Compared to 

T35C, T111C is further away from the TEA binding site, as maximal inhibition required 

tethers with at least ten glycine residues (Figure II-5B, left panel).  Fitting the data to a 

Boltzmann equation afforded a d1/2 of 50 ± 1 Å (Figure II-5, right panel).  Lastly, to fully 

triangulate the position of CaM bound to Q2/Q3 channels, we picked an additional CaM 

residue, T45C, to generate a third distance restraint.  Although this residue is in the N-

lobe of CaM, its d1/2 (49 ± 1 Å) was comparable to the C-lobe residue, T111C (Figure II-

5C). 

Since no high resolution structural information exists for the Q2/Q3-CaM 

complex, we modeled a quaternary structure using ion channel domains with known 

structures and our distance constraints.  For Q2/Q3, we used the membrane-embedded 

portion of rKv1.2 (PDB: 2A79) [9] to model the S1 – S6 segments and transplanted the 

crystallographically-determined TEA binding site from the KcsA–tetrabutylantimony 

structure (PDB: 2HJF) [4].   For CaM, the crystal structure of CaM bound to the Cav1.2 

pre-IQ domain (PDB: 3G43) [145] was used for three reasons: (1) both CaM binding 

motifs must be intact for the KCNQ-CaM protein-protein interaction, suggesting that 

CaM wraps around a two helices; (2) hydrophobic residues in the pre-IQ domain that 

make contact with CaM are also present in the KCNQ CaM binding motifs (Figure II-

7A).  (3) CaM binds to both KCNQ and Cav channels in the absence and presence of 

calcium [88,146,157].  To apply the radial distance restraints to these high resolution 

structures, we approximated the trajectory taken by the tethered blocker from CaM to the 

quaternary ammonium binding site (Figure II-7, large purple sphere).  Therefore, the first 
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20 Å was modeled as a straight line until it emerged from the Kv inner vestibule 

(depicted as a blue sphere) where it was allowed to splay off at an angle collinear with 

the S6 helix that enabled the four-fold arrangement of CaM proteins.  Four CaM 

molecules (sans Cav1.2 peptides) were modeled because in vitro data indicate a 1:1 

KCNQ:CaM stoichiometry [17,87] .  Two KCNQ-CaM quaternary models satisfied the 

distance restraints within 1 Å without observable van der Waals clashes (Figure II-7B 

and C).  The lack of a single KCNQ-CaM model arises from the degeneracy with which 

CaM binds to its targets; thus, Figure II-7B depicts one structural model where T111C 

faces the channel whereas in Figure II-7C the CaM subunits are essentially inverted (note 

the position of T111C).  In both models, the modeled CaMs are close to the KCNQ 

channel gate (Figure II-5B and C, left panels). 

We also generated quaternary structural models (Figure II-8) of the complex 

using the crystal structure of CaM bound to a peptide from the SK2 channel (PDB: 

1G4Y) [147] because functional data suggests that CaM binds to a continuous KCNQ 

peptide [92].  Using the SK2-CaM structure as a model of the KCNQ-CaM protein-

protein interaction, however, did not fit the distance restraints and required the systematic 

addition of 5 Å to yield quaternary structures that did not contain non-native contacts.  

Thus, our experimentally-determined distance restraints indicate the protein fold of CaM 

in the Cav1.2 pre-IQ domain structure [145] may better represent CaM when it is bound 

to full-length Q2/Q3 channels.   
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Figure II-7.  Structural models of the Q2/Q3-CaM complex using the Cav1.2 crystal 
structure (PDB: 3G43).  (A) CaM binding motifs from Q2, Q3, Cav1.2, and SK 
channels.  The IQ and 1-5-10 motifs in Q2/Q3 are highlighted.  (B) Side and cytoplasmic 
views of the complex, showing the channel subunits colored grey and the four CaM 
molecules in different pastels.  In the side view, only three subunits are shown for clarity.  
Residues T35C (red), T45C (green), and T111C (blue) are shown in spacefill. (C) 
Membrane and cytoplasmic view of the complex with CaM subunits inverted.  Colors are 
the same as in (A).   
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Figure II-8.  Structural models of the Q2/Q3-CaM complex using the SK crystal 
structure (PDB: 1G4Y).  Distance restraints were systematically loosened by 5 Å to 
ensure non-native contacts.  (A) Membrane and cytoplasmic views of the complex, 
showing the channel subunits colored grey and the four CaM molecules in different 
pastels.  In the side view, only three subunits are shown for clarity.  Residues T35C (red), 
T45C (green), and T111C (blue) are shown in spacefill. (B) Membrane and cytoplasmic 
view of the complex with CaM subunits inverted.  Colors are the same as in (A).  
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Discussion 

Motivated by the plethora of high resolution structures of isolated ion channel 

domains, we developed an intracellular tethered blocker approach to generate quaternary 

structural models of ion channel-CaM complexes.  Using a panel of intracellular tethered 

blockers to generate distance restraints between CaM and the Kv channel TEA binding 

site, we generated quaternary models of the Q2/Q3-CaM complex in the open state.  In 

these models, CaM is very close to the cytoplasmic gate of Q2/Q3 channels where it 

well-positioned to modulate Q2/Q3 channel gating (calmodulation).  The juxtaposition of 

the “CaM ring” to the Q2/Q3 channel gate results in a cytoplasmic vestibule that is 

continuous with the Q2/Q3 pore domain, which is in contrast to the hanging gondola 

structure observed in classic Kv channels (Kv1 – 4).  This elongated permeation pathway 

predicts that the potassium ions will enter and exit the Q2/Q3-CaM complex through the 

center of the CaM ring.  Given that the spacing between the first CaM binding motif and 

the cytoplasmic “bundle crossing” [6] is conserved in the KCNQ family, our quaternary 

models serve as structural scaffolds for all KCNQ-CaM complexes.  

While developing the intracellular tethered blocker approach, we were also able to 

glean some information about the available CaM binding sites and dynamics of the 

KCNQ-CaM complex at the plasma membrane.  Because the chemically-derivatized 

CaM proteins compete with endogenous CaM for binding to KCNQ channels (Figure II-

4A), we subsequently plotted the magnitude of inhibition versus the concentration of 

injected tethered blocker and fit the data to different binomial biding site models (Figure 

II-6B).  This post-hoc analysis revealed that there are multiple CaM binding sites 
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equidistant from the TEA binding site on the full-length KCNQ channel; however, the 

inability to exquisitely control the total CaM concentration in the cell precluded us from 

confirming the predicted 4:4 stoichiometry of the KCNQ-CaM complex [17,87].  

Similarly, insight into the dynamics of the KCNQ-CaM protein-protein interaction came 

from experiments where CaM-Gly7-QA was injected into oocytes already expressing 

Q2/Q3 currents (Figure II-3B).  Injecting CaM-Gly7-QA into oocytes already expressing 

Q2/Q3 currents resulted in a similar magnitude of inhibition compared to co-injection 

with channel mRNA (Figure II-3C).   The rapid onset (~ 2 hr) indicates that the 

chemically-derivatized CaM proteins need not co-assemble with Q2 and Q3 channel 

subunits during biogenesis and can bind to functioning channels at the plasma membrane.  

These results suggest that at least one CaM binding site is free or the injected CaM 

rapidly exchanges with KCNQ-bound CaM proteins or other intracellular scaffolding 

proteins (e.g. Syntaxin 1A and AKAP79/150) [68,91].  Both scenarios illustrate the 

dynamic nature of the KCNQ-CaM complex. 

 Although the KCNQ-CaM protein-protein interaction is dynamic, the 

monophasic inhibition curves indicate that the tethered blockers are reporting from a 

single location (within ~ 66 Å) on the KCNQ C-terminus and are not oscillating between 

the two CaM binding motifs.  A single CaM on the KCNQ C-terminus is also consistent 

with previous functional data that suggest the Syntaxin 1A and AKAP79/150 abrogate 

CaM binding by partially masking only one CaM binding motif [70,92].  In spite of this 

competition for the KCNQ C-terminus, the distance restraints did not depend on the 

amount of injected tethered blocker (Figure II-5 and 6), suggesting that KCNQ need not 



 

 

69

be fully occupied with QA-derivatized CaM molecules to determine the location of CaM 

bound to KCNQ channels. 

As with all structural determinations that rely on functional measurements, there 

are some limitations to the intracellular tethered blocker approach.  First, the models 

depict the Q2/Q3-CaM complex in the open state.  Second, the distances measured by 

tethered blockers are radial; thus, the absolute position of CaM with respect to a 

particular KCNQ subunit cannot be determined.  To approximate the position of each 

CaM molecule in the quaternary structures, we have positioned the KCNQ subunit such 

that the S6 pore helix bisects the center of each CaM molecule.  Given the short distance 

between the bundle crossing and the first CaM binding domain (~ 15 amino acids), this is 

a good approximation of the absolute position of CaM in the full-length complex.  Third, 

the approach does not speak to how the KCNQ C-terminus is threaded through the lobes 

of CaM.  With a high resolution structure of a CaM-KCNQ peptide complex, a single 

Q2/Q3-CaM quaternary model could be generated using tethered blockers; however, the 

molecular details of the protein-protein interaction inherent to the full-length complex 

such as whether a single CaM binds to one KCNQ C-terminus or to two adjacent C-

termini simultaneously will not be resolvable.  Lastly, we do not know whether the 

measured distances using wild type protein are from fully calcified, half-calcified, 

uncalcified, or an amalgam of differently calcified CaM proteins.  Because injecting 

micromolar amounts of purified CaM protein does not affect Q2/Q3 function (Figure II-

4), our current structural models are most likely representative of the Q2/Q3-CaM 

complex under endogenous calcium concentrations.  Future studies that utilize CaM 
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calcium binding mutants (CaM12, CaM34, etc.) [158] will provide insight into how 

calcification of the different CaM lobes affects its position on the full-length channel. 

Given that the number of high resolution structures of CaM bound to peptide 

fragments from ion channels is steadily increasing, the need to connect these structures to 

their respective ion-conducting domains is vital for unraveling the mechanisms of 

calmodulation.  By chemically derivatizing CaM with different channel blockers, the 

intracellular blocker approach can be expanded to determine the location of CaM on a 

wide variety of ion channels.  Moreover, the approach is not limited to CaM, and can be 

applied to other cytoplasmic regulatory and scaffolding proteins that are essential for ion 

channel modulation. 
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CHAPTER III: DISCOVERY OF A NOVEL ACTIVATOR OF KCNQ1-KCNE1 
K+ CHANNEL COMPLEXES 

 
 

Abstract 
 
KCNQ1 voltage-gated K+ channels associate with the family of five KCNE peptides to 

form complexes with diverse gating properties and pharmacological sensitivities.  The 

varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ 

channel to function in both excitable and non excitable tissues.  Small molecule activators 

would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE 

complexes; however, there are very few known activators of KCNQ1 channels and most 

are ineffective on the physiologically relevant KCNQ1-KCNE complexes.  Here we show 

that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 

complexes co-expressed in Xenopus oocytes at millimolar concentrations.  PBA shifts the 

voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative 

potentials.  Analysis of different-sized charge carriers revealed that PBA also targets the 

permeation pathway of KCNQ1 channels.  Activation by the boronic acid moiety has 

some specificity for the KCNQ family members (KCNQ1, KCNQ2/3, and KCNQ4) since 

PBA does not activate Shaker or hERG channels.  Furthermore, the commercial 

availability of numerous PBA derivatives provides a large class of compounds to 

investigate the gating mechanisms of KCNQ1-KCNE complexes. 



 

 

72

Introduction 

The five KCNQ voltage-gated K+ channels (Kv7.1 – Kv7.5) are responsible for 

membrane excitability, cardiac rhythmicity, and maintaining salt and water homeostasis.  

The KCNQ family is divided by their tissue expression:  KCNQ1 (Q1) channels are 

expressed throughout the body, but are noticeably absent from the central nervous system 

where KCNQ2-5 channels are primarily found [1].  KCNQ2-5 subunits form homo- and 

heterotetrameric K+ channels.   KCNQ2/3 (Q2/Q3) channels contribute to the M-current 

and mutations in these channels cause benign familial neonatal convulsions (BFNC) [61].  

Homotetrameric KCNQ4 (Q4) channels have also been implicated in disease.  Mutations 

in Q4 cause an autosomal dominant form of progressive hearing loss in humans [46].  In 

contrast, Q1 channels only form homotetramers and function in non-excitable as well as 

excitable tissues [159].  In order to properly function in these diverse tissues, Q1 channels 

co-assemble with KCNE peptides, affording complexes with different gating properties 

and pharmacological sensitivities [21].  Although KCNE peptides promiscuously 

assemble with many voltage-gated K+ channels in expression systems [21], the 

physiological relevance of most of the Q1-KCNE (E1, E2, and E3) complexes are well-

established.  Q1 subunits form a complex with KCNE1 (E1) peptides in the heart and 

inner ear, generating the cardiac IKs current and providing an avenue for K+ to enter the 

endolymph, respectively [22,23,35].  Mutations in either Q1 or E1 that decrease the 

conductance of the complex prolong the cardiac action potential, leaving individuals with 

these mutant proteins susceptible to long QT syndrome [160].  In contrast to the slowly 

activating and deactivating Q1/E1 complex, both Q1/E2 and Q1/E3 complexes are 
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constitutively conducting and contribute to K+ recycling in epithelial cells of the 

gastrointestinal tract [24,25].  

Although the different KCNE peptides have diametrically opposite effects on Q1 

channel function, the molecular mechanisms involved in KCNE modulation of Q1 

channel gating are starting to be revealed [161-163].  Simple, small molecules that 

activate Q1-KCNE complexes would be valuable tools for investigating KCNE 

modulation of Q1 channel gating.  Indeed, low-affinity blockers such as the quaternary 

ammoniums have been instrumental in the biophysical characterization of the permeation 

pathway of K+ channels [151,164-166].  However, small molecule activators of voltage-

gated K+ channels are rare [94] and often synthetically challenging to derivatize.  

Moreover, KCNE peptides are known to affect the sensitivity of pharmacological agents 

that modulate Q1 function [167].  Inhibitors of Q1 function are typically more potent 

when the channels are co-assembled with KCNE peptides [120,133,168,169].  

Conversely, small molecules that activate homomeric Q1 channels are often ineffective 

on Q1/E1 complexes.  Two known examples of this phenomenon are the Q1-specific 

activator, R-L3, and the recently discovered KCNQ activator, zinc pyrithione [94,96,97].  

The non-specific Cl– channel blockers, mefanamic acid and DIDS, are the exceptions to 

the rule as they cross-react with and activate Q1/E1 complexes [98,169].  Thus, there 

remains a dearth of small molecule activators for the biophysical study of Q1-KCNE 

complexes. 

During our initial efforts to chemically activate Q1 channels by specifically 

modifying the arginines in the voltage sensor, we serendipitously discovered that some 
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boronates were modulators of Q1/E1 complexes.  Examination of a small panel of 

boronic acids revealed that the aromatic derivative, phenylboronic acid (PBA), activates 

Q1/E1 complexes at millimolar concentrations.  Activation of Q1/E1 by PBA is due to a 

shift in the voltage sensitivity of the complex and is specific for the boronic acid moiety.  

The permeation pathway is also affected by PBA since the magnitude of Q1 channel 

activation is dependent on the charge carrier.  PBA shows some selectivity as it activates 

other members of the KCNQ family, but does not activate Shaker or hERG K+ channels.  

Since derivatives of PBA are common building blocks for organic synthesis, there 

currently exists a vast array of structurally diverse phenylboronic acids with varied 

physiochemical properties.  The accessibility to thousands of PBA derivatives provides 

an opportunity to systematically dissect the mechanisms of Q1-KCNE gating and may 

lead to the discovery of a potent activator of Q1/E1 complexes for the treatment of 

cardiac arrhythmias.  
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Materials and Methods 

Molecular Biology 

cDNA encoding human KCNQ1, E1, and E3 were individually subcloned into the vector 

pSG01MX, which contains the 5’ and 3’UTRs from the Xenopus β-globin gene for 

increased protein expression.  Inactivation-removed Shaker (Shaker-IR) was in 

pBluescriptII KS (+).  KCNQ2, Q3, and Q4 were kindly provided by G. Seebohm and 

hERG was kindly provided by M. C. Sanguinetti.  The constructs were linearized with 

the appropriate restriction enzyme (New England Biolabs) and cRNA was synthesized 

using in vitro run-off transcription with SP6 or T7 polymerase (Promega). 

Electrophysiology 

Oocytes were surgically removed from Xenopus laevis.  The extraction procedure and 

care of Xenopus laevis was approved by the University of Massachusetts Institutional 

Animal Care and Use Committee.  Oocytes were defolliculated using 2 mg/mL 

collagenase (Worthington Biochemical Corp.) in OR2 solution containing (in mM): 82.5 

NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4 for 60-80 minutes.  Isolated oocytes were 

rinsed and stored in ND96 storage solution containing (in mM):  96 NaCl, 2 KCl, 1.8 

CaCl2, 1 MgCl2, 5 HEPES, 50 µg/mL of both gentamicin and tetracycline pH 7.4, at 

18°C.  Oocytes were microinjected 24 h after surgery with Shaker, Q1, Q4, or hERG 

mRNA (15.2 ng).  Additionally, Q1 mRNA (7.6 ng) was co-injected with E1 or E3 

mRNA (3.8 ng).  For Q2/Q3 heteromeric channels, an equal amount of mRNA (7.6 ng) 

for each subunit was injected.  After 2–4 days, currents were recorded using Warner 

Instrument OC-725 two-electrode voltage clamp (TEVC), and the data were acquired 
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with Digidata 1322A using pClamp 9 (Axon Instruments).  Electrodes were filled with: 3 

M KCl, 5 mM EGTA, 10 mM HEPES, pH 7.6.  Currents were measured in ND96 

recording buffer containing (in mM):  96 NaCl, 2 KOH, 0.3 CaCl2, 1 MgCl2, 10 HEPES, 

pH 7.6.  All chemical compounds were from Sigma Aldrich and dissolved directly into 

ND96 recording buffer to a final concentration of 10 mM unless otherwise noted.  For the 

initial Borax experiments, 10 mM sodium tetraborate was used as a buffer instead of 

HEPES.  The time courses of current changes upon compound application and washout 

were generated by repeatedly depolarizing and measuring the change in current at the end 

of the pulse.  Channels were held at –80 mV and pulsed to +40 mV (0 mV for hERG) for 

2 s  (100 ms for Shaker) every 30 s to illicit current.  For EC50 experiments, current 

changes were measured for a range of PBA concentrations (1–10 mM).  Current-voltage 

relationships were measured in the presence or absence of 10 mM PBA by holding at –80 

mV and stepping to a series of test potentials for 4 s in 10 mV increments, followed by a 

tail pulse at –30 mV.  For Q1/E3 complexes, the current-voltage relationships were 

measured in KD50 containing (in mM): 48 NaCl, 50 KOH, 0.3 CaCl2, 1 MgCl2, 10 

HEPES, pH 7.6 by holding at –80 mV and pulsing to a series of potentials for 2 s in 20 

mV increments, followed by a tail pulse to –80 mV.  For charge carrier experiments, 

currents were measured in modified KD50 containing either 50 mM KOH, RbCl, or 

CsCl.   

Data Analysis 

Analysis of data was performed with Clampfit 9 (Axon Instruments) and Prism 5 

software (Graphpad).  The maximal change in current upon PBA washout at 40 mV was 
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calculated as ∆gmax.  EC50 values were calculated by plotting the ∆gmax values as a 

function of PBA concentration and fitting the data to a hyperbola.  The amplitude of tail 

currents was measured 6 ms (100 ms for Q1) after repolarization to –30 mV (–80 mV for 

Q1/E3 and 50 mM external charge carriers) and normalized such that the maximal tail 

current in the absence of drug was equal to 1.  Normalized tail currents were plotted 

versus the test potential to produce activation curves.  Activation curves were fit to the 

Boltzmann equation: Itail = A1 + (A2 – A1) / (1 + e ((V – V½)*(–zF/RT))), where V½ is the 

voltage of half-maximal activation and z is the slope factor.  A Student’s paired t-test was 

performed to determine whether PBA activation was significantly different than 

activation by benzyl alcohol.  Deactivation time constants for Q1 were measured after a 

depolarizing pulse to 40 mV and fitting the tail current at –80 mV to a single exponential.  

Time constants were fit after recovery from inactivation.  For the comparison of outward 

and inward currents, the amplitude of the Q1 current was measured 2 s after 

depolarization for outward, 100 ms after repolarization for inward.  The outward and 

inward currents were normalized to 1 after the onset of PBA inhibition (defined as time = 

0).  Subsequent values were plotted as percent increase as a function of PBA exposure 

time.   
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Results 

Borax is a commonly used buffer for protein modification reactions that 

specifically neutralizes positively charged arginine residues [170]; thus, we initially 

determined whether borate buffer would have any effect on Q1/E1 complexes.  Figure 

III-1A shows normalized Q1/E1 current elicited by 40 mV, 2 s depolarizations in 

standard ND96 buffer.  Switching the solution to a buffer that contains 10 mM sodium 

tetraborate resulted in reversible inhibition of the Q1/E1 complex.  Intrigued by the 

inhibitory effect of borate, we determined whether boronic acid derivatives had a similar 

effect on Q1/E1 complexes.  Methylboronic acid in ND96 with HEPES as the buffer had 

little to no effect on Q1/E1 complex function; however, perfusion of 10 mM 

phenylboronic acid (PBA) caused a rapid inhibition followed by a slower activation, 

resulting in a net doubling of current (Figure III-1A).  Upon washout of PBA, inhibition 

was quickly and completely relieved, resulting in a dramatic rise in current amplitude.  

Although PBA’s inhibitory effect was rapidly reversible, activation of Q1/E1 complexes 

slowly diminished upon removal of PBA, but never fully washed out.  To determine 

whether activation was due to a shift in the voltage sensitivity of Q1/E1 complexes, we 

measured the effect of PBA at different voltages (Figure III-1B).  Tail current analysis 

(Figure III-1C) in the presence PBA resulted in a left-shift of the midpoint of activation 

(V1/2) and a decrease in the voltage-dependence (z) of Q1/E1 complexes (Table III-1).  

Since PBA both activates and inhibits Q1/E1 complexes, we utilized the kinetic 

difference in washout to measure the maximal activation of Q1/E1 complexes by PBA.   
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Figure III-1.  Modulation of Q1/E1 channels by boronates.   
(A) Time course of Q1/E1 current measured in ND96 at +40 mV at the end of a 2 s pulse.  
The current was normalized before compound application.  Borax reversibly inhibits 
while methylboronic acid has little to no effect on channel current.  Phenylboronic acid 
(PBA) initially inhibits current and then slowly potentiates.  Benzoic acid reversibly 
reduces Q1/E1 channel current whereas benzyl alcohol reversibly activates the channel 
complex.  (B) Families of currents recorded before and during treatment with PBA or 
benzyl alcohol.  Currents were elicited by 4 s step test potentials from –80 to +60 mV in 
10 mV increments from a holding potential of –80 mV followed by a tail pulse to –30 
mV.  Dashed line indicates zero current.  Scale bars represent 1 µA and 0.5 s.  (C) 
Voltage-activation curves for Q1/E1 calculated from tail current analysis.  Solid curves 
represent Boltzmann fits to the data.  Data are presented as the mean ± SEM (n = 10).   
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Table III-1.  Electrophysiological Properties of KCNQ Channels in the presence of PBA 
or Benzyl Alcohol 

 

Data from individual activation curves obtained from 4–10 oocytes.  Activation curves 
were fit to a Boltzmann function.  V½ is the voltage of half-maximal activation and z is 
the slope factor.  ΔV1/2 and Δz are the changes induced by addition of 10 mM 
compound.   Δgmax values were determined during the washout of inhibition, as 
described in the Materials and Methods.  EC50 values were determined during the 
washout of inhibition for PBA concentrations ranging from 1–10 mM.  All values are 
mean ± SEM except for EC50 values, which are reported as the error of the fit to a 
hyperbola.  *Indicates significant (Student t-test; p < 0.05) when compared to benzyl 
alcohol.   
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 Upon washout of PBA, inhibition was quickly relieved resulting in a rapid rise in current 

(Figure III-1A) and the maximum current was measured and defined as gmax (Table III-

1).  Making this measurement with different concentrations of PBA afforded an EC50 of 

1.6 mM for Q1/E1 complexes. 

To examine the importance of the boronic acid moiety, we tested the structurally 

similar compounds:  benzoic acid and benzyl alcohol.  Perfusion of benzoic acid 

reversibly inhibited Q1/E1 whereas benzyl alcohol reversibly activated the complex, but 

to a lesser extent than PBA (Figure III-1).  Benzyl alcohol also had a significantly smaller 

effect on the V1/2 of the complex compared to PBA (Figure III-1C and Table III-1).  

Therefore, we subsequently compared PBA and benzyl alcohol to determine whether the 

geminal diol of the boronic acid would activate other K+ channels and Q1-KCNE 

complexes. 

Q1 channels co-expressed with KCNE3 (E3) were also activated by PBA (Figure 

III-2A).  In contrast to Q1/E1, Q1/E3 currents were primarily activated by PBA though a 

small amount of recovery from inhibition was observed as a rapid increase in current 

when the reagent was washed out.  Since Q1/E3 complexes are open at negative 

potentials, we used a high external potassium solution (50 mM) to visualize both the 

outward and inward currents generated from a family of test potentials (Figure III-2B).  

Although these conditions enabled us to measure the inward currents, Q1/E3-expressing 

oocytes became unstable during the long time course needed to observe complete 

activation by PBA (1000 s).   
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Figure III-2.  PBA activates Q1/E3 complexes. 
(A) Time course of Q1/E3 current measured in ND96 at +40 mV at the end of a 2 s pulse.  
The current was normalized before PBA application.  PBA initially inhibits then slowly 
potentiates channel current.  (B) Families of currents recorded in high external potassium 
(50 mM) before and during treatment with PBA.  Currents were elicited by 2 s test 
potentials from –100 to +60 mV in 20 mV increments.  The holding and tail potentials 
were –80 mV.  Dashed line indicates zero current.  Scale bars represent 1 µA and 0.5 s.  
(C) Voltage-activation curves for Q1/E3 calculated from tail current analysis.  Solid 
curves represent Boltzmann fits to the data.  Data are presented as the mean ± SEM (n = 
10).   
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Therefore, we measured the current-voltage relationships after 500 s of PBA application 

(dashed arrow in Figure III-2A).  Tail current analysis revealed that PBA activation of 

Q1/E3 complexes occurred only at potentials greater than – 40 mV (Figure III-2C).  

Accordingly, PBA did not shift the V1/2 of the complex, but apparently increased the 

voltage dependence of the Q1/E3 complex (Table III-1).  This effect was not specific for 

the boronic acid moiety because benzyl alcohol activated Q1/E3 similarly.  

Since Q1-KCNE complexes were activated by PBA, we next asked whether 

activation was KCNE-specific by examining other members of the KCNQ family.  

Specifically, we examined the physiologically relevant heterotetrameric Q2/Q3 channels 

and homotetrameric Q4 channels.  For homomeric Q1 channels, activation by PBA was 

offset by inhibition, resulting in a negligible increase in current.  However, PBA 

significantly left-shifted the V1/2 of the channel and this activation was observed during 

washout (Figure III-3, Q1 panel).  The overall effect of PBA on Q2/Q3 heterotetrameric 

channels was activation (Figure III-3, Q2/Q3 panel).  Benzyl alcohol also activated 

Q2/Q3 channels, however, to significantly lesser extent (Table III-1).  Strikingly, Q4 

channels were only activated by PBA (Figure III-3, Q4 panel).  A ~ 10-fold increase in 

current was observed at 40 mV and the V1/2 of the complex was significantly left-shifted 

(Table III-1).  Moreover, activation is specific for the boronic acid moiety since benzyl 

alcohol did not shift the V1/2 (Table III-1).   
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Figure III-3.  PBA activates all tested members of the KCNQ family. 
Left panel:  Time courses of current recorded in ND96 at +40 mV at the end of a 2 s 
pulse. The current was normalized before PBA application.  PBA initially inhibits and 
then slowly potentiates Q1 and Q2/Q3 current.  PBA only activates Q4 channels.  Middle 
panel:  Families of currents recorded before and during treatment with PBA.  Currents 
were elicited by 4 s test potentials from –100 to +60 mV in 10 mV increments from a 
holding potential of –80 mV followed by a tail pulse to –30 mV.  Dashed line indicates 
zero current.  Scale bars represent 1 µA and 0.5 s.  Right panel:  Voltage-activation 
curves calculated from tail current analysis.  Solid curves represent Boltzmann fits to the 
data.  Data are presented as the mean ± SEM (n = 4–6).   
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Figure III-4.  PBA inhibits other Kv channels. 
(A) Time course of Shaker (inactivation removed) current measured in ND96 at +40 mV, 
100 ms pulse when 10 mM PBA was applied through the bath solution.  (B) Families of 
Shaker currents recorded before and during treatment with PBA.  Currents were elicited 
by 100 ms step test potentials from –100 to +60 mV in 10 mV increments from a holding 
potential of –80 mV.  Dashed line indicates zero current.  Scale bars represent 1 µA and 
0.1 s.  (C) Time course of hERG current measured in ND96 at 0 mV, 2 s pulse when 10 
mM PBA was applied through the bath solution.  (D) Families of hERG currents 
recorded before and during treatment with PBA.  Currents were elicited by 2 s step test 
potentials from –100 to +60 mV in 10 mV increments from a holding potential of –80 
mV.  Dashed line indicates zero current.  Scale bars represent 1 µA and 0.5 s.   
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To determine whether PBA activation was specific for KCNQ family members, we 

examined two different voltage-gated K+ channels:  Shaker and hERG.  Both the 

inactivation removed variant of Shaker (Shaker-IR) and hERG were only reversibly 

inhibited by 10 mM PBA (Figure III-4).  Therefore, activation by PBA appears to be 

somewhat specific for KCNQ1-KCNE channel complexes and KCNQ channels.   

Because Q1 channels rapidly flicker between open and closed, single channel 

events cannot be directly observed; therefore, we indirectly determined whether PBA 

alters the permeation pathway of Q1 channels during the potentiation phase.  We 

examined PBA potentiation in the presence of external cations with diameters larger than 

K+ since the Q1 channel pore readily conducts both rubidium (Rb+) and cesium (Cs+) 

[171,172].  Oocytes expressing Q1 channels were initially bathed in 50 mM external K+, 

Rb+, or Cs+.  PBA (10 mM) was added and after the onset of inhibition, the cell was 

depolarized to 40 mV and returned to – 80 mV to elicit outward and inward currents, 

respectively (Figure III-5, black traces).  The outward and inward currents were 

normalized and defined the current level at time = 0.  During the potentiation phase, 

outward and inward currents were measured every 30 s until equilibrium was reached 

(Figure III-5, right graphs); the final trace is shown in gray in the left panel of Figure III-

5.  For K+, PBA caused a greater increase in outward than inward current (Figure III-5A) 

while in Rb+, both outward and inward current increased equally (Figure III-5B).  In 

contrast, PBA caused a greater increase in inward than outward currents when measured 

in Cs+ (Figure III-5C).   
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Figure III-5.  Activation of Q1 by PBA is dependent on the external charge carrier 
ion.   
Current traces were recorded in (A) 50 mM K+, (B) Rb+, or (C) Cs+.  Left panel:  
Representative overlaid traces elicited by a +40 mV test and –80 mV tail pulse before and 
after the onset of PBA potentiation.  Inset:  Normalized tail currents comparing the 
deactivation kinetics before and after the onset of PBA potentiation.  Tick marks 
represent 200 ms.  Right panel:  Time course of current recorded during the PBA 
potentiation phase.  Outward current measured at the end of a 2 s pulse to +40 mV; 
maximal inward current measured during the –80 mV tail pulse.  Time zero is the amount 
of current after initial inhibition but before potentiation by PBA.  Data are represented as 
the mean ± SEM (n = 5–10).   
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The deactivation kinetics during the potentiation phase (Figure III-5, insets) with the 

different charge carriers were also measured.  PBA slows Q1 channel closing when the 

larger Rb+ or Cs+ ions are charge carriers whereas PBA has no significant effect on 

closing kinetics with external K+ (Table III-2).  Since permeation and voltage-dependent 

gating are intrinsically coupled in Q1 channels [172], we also measured the PBA-induced 

changes in voltage sensitivity with the different charge carriers (Table III-3). PBA caused 

a –14 mV shift in the V1/2 of Q1 channels in both ND96 (2 mM K+
ext) and 50 mM K+

ext 

(Table III-1 and III-3).  However, in the presence of the larger Rb+ and Cs+ ions, PBA 

left-shifted the V1/2 an additional 6 mV.  In total, these results show that activation of Q1 

by PBA is dependent on the external charge carrier. 
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Table III-2.  Deactivation rates of Q1 with different charge carriers 

 
Rates of deactivation were measured by fitting the tail currents to a single exponential 
after recovery from inactivation.  Data is represented as the mean ± SEM (n = 5–10).  
*Indicates significant (Student t-test; p < 0.05) when compared to inhibition by PBA.  
 

 

 

 

 

 

 

Table III-3.  Electrophysiological properties of Q1 with different charge carriers. 

 
Data from individual activation curves obtained from 5–10 oocytes.  Activation curves 
were fit to a Boltzmann function.  V½ is the voltage of half-maximal activation and z is 
the slope factor.  V1/2 and  z are the changes induced by addition of 10 mM PBA.   All 
values are mean ± SEM.  *Indicates significant (Student t-test; p < 0.05) when compared 
to K+.    
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Discussion 

Motivated by the fortuitous discovery that borax modulates Q1/E1 complexes, we 

determined whether the boronic acid moiety was uniquely responsible for modulation of 

KCNQ channels and KCNQ1-KCNE complexes.  By examining structurally different 

boronic acids, we found that the aromatic derivative, PBA, activates Q1/E1 complexes at 

millimolar concentrations.  PBA activation of Q1/E1 is specific for the boronic acid 

functional group because other similar aromatic derivatives (benzyl alcohol and benzoic 

acid) are significantly less effective or inhibitory.   In contrast, both PBA and benzyl 

alcohol similarly activate the Q1/E3 complexes.  Activation of the constitutively 

conducting Q1/E3 complex by PBA is only observed at voltages greater than –40 mV, 

which ostensibly increases the voltage-dependence of the complex.  Homomeric Q1 

channels are also modulated by PBA.  At positive potentials, PBA inhibits and activates 

Q1 channels equally, resulting in no net change in current magnitude.  Although PBA 

does not significantly increase the total current, the voltage sensitivity of Q1 channels is 

shifted with PBA such that they are open at more negative potentials.  These results 

suggest that the presence of the KCNE peptides is not required for PBA to modulate the 

ion conducting subunit; however, an overall increase in current magnitude is only 

observed when Q1 channels co-assemble with KCNE peptides.  Thus, PBA is a more 

effective activator of Q1-KCNE complexes. 

In addition to Q1 channels, PBA activates the other members of the KCNQ 

family.  Activation appears to be somewhat specific for KCNQ channels, as Shaker and 

hERG are not activated by PBA.  Comparing activation curve data for the KCNQ family 
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indicated that PBA activates these channels by shifting the midpoint of activation (V1/2).  

The maximal increase of current (gmax) for KCNQ channels at 40 mV is:  Q4 >> Q1/E1 

≈ Q2/Q3 > Q1.  This activation trend inversely correlates with the reported open 

probabilities for KCNQ channels [74,173-175], suggesting a rationale for the varied 

effectiveness of PBA.  Testing this hypothesis, however, is hampered by the flickery 

nature of Q1/E1 complexes, which precludes the accurate measurement of the open 

probability of these complexes by either single channel recordings or noise analysis 

[176,177]. 

Without the ability to perform traditional single channel analysis, we turned to 

Rb+ and Cs+ as charge carriers to indirectly examine the effect of PBA on the Q1 

permeation pathway.  We found that the inward and outward Q1 currents were 

differentially potentiated by PBA.  PBA increased Q1 outward currents (compared to 

inward) when K+ was in the external bath and inward currents when Cs+ was present.  

The asymmetry of PBA activation of Q1 currents cannot be explained by increasing the 

number of channels and thus points to modulation of the ion conducting subunits.  

Consistent with this premise was the charge carrier dependence of PBA potentiation:  the 

larger the diameter of the permeant ion, the more PBA increased the inward current 

(Figure III-5).  This result suggests that PBA alters the Q1 selectivity filter such that 

larger ions are more permeant.  The larger Rb+ and Cs+ ions also enhanced PBA’s effect 

on the V1/2 and deactivation kinetics of Q1 channels compared to K+.  Although the sum 

of these results do not conclusively rule out an indirect modulatory mechanism, the data 

in total strongly favor PBA directly interacting with the KCNQ pore forming subunit. 
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One commonality of PBA modulation of KCNQ channels is the slow onset of 

potentiation (minutes).  If PBA is directly binding to the channel, the slowed kinetics 

could be explained by a cytoplasmic or buried binding site.  PBA binding may in fact be 

covalent, because boronic acids are known to form covalent, yet reversible bonds with 

diols [178,179].  A covalent interaction is consistent with the previous observations that 

chemical modifications activate KCNQ channels [161,162,175,180].  In addition, a 

slowly reversible covalent interaction may also explain the lack of complete washout 

with some KCNQ channels (Figures III-1A, 2A and 3).  Nonetheless, PBA may still be 

acting indirectly, activating signaling pathways in the cell.  However, these indirect 

pathways must be specific for KCNQ channels since PBA activation was not observed 

for Shaker and hERG channels.  

While PBA activates KCNQ channels, it does inhibit Kv channels weakly at 10 

mM.  Rapid inhibition was initially observed for all Kv channels, except Q4.  The trend 

for inhibition is:  Shaker > Q1 ≈ hERG ≈ Q1/E1 > Q2/Q3 ≈ Q1/E3.  hERG inhibition is a 

concern for small molecule drug design; however, PBA inhibition of hERG does not 

appear to occur by classic inner vestibule block [181,182].  First, PBA is not a positively 

charged molecule, which is typical for hERG blockers that bind to the hydrophobic 

residues in the S6 helix [183].  Second, inhibition is not specific for hERG, as the other 

Kv channels are similarly inhibited at this high concentration of PBA.  Given that PBA 

inhibition is already weaker than activation for KCNQ channels, it should be possible to 

design second generation boronic acid activators that do not inhibit hERG and other Kv 

channels. 
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Unlike recently described activators of KCNQ channels, which are rendered less 

effective when co-assembled with KCNE peptides, PBA activates Q1-KCNE complexes 

more effectively than homotetrameric Q1 channels [96,97].  Both of these previous 

studies suggest that co-assembly with KCNE peptides prevents R-L3 and zinc pyrithione 

from binding to the Q1 channel subunit [94,96,97].  Since PBA activates Q1-KCNE 

complexes, future structure-function studies with PBA and other boronic acids should 

provide insight into its binding site and yield new tools to investigate the molecular 

mechanisms of Q1-KCNE gating.  Although the potency of this unoptimized, simple 

molecule is modest, the non-toxicity of boronic acids (Borax), the catalogues full of 

boronic acids derivatives, and their synthetic utility makes PBA a potential 

pharmacophore for building potent activators of Q1/E1 complexes.  Moreover, since 

boronic acid-bearing compounds are used clinically [184], their inclusion into small 

molecule libraries could generate an array of potential KCNQ activators.  

 



 

 

94

CHAPTER IV: XENOPUS LAEVIS OOCYTES INFECTED WITH MULTI-DRUG 

RESISTANT BACTERIA: IMPLICATIONS FOR ELECTRICAL RECORDINGS 

 

Abstract 

The Xenopus laevis oocyte has been the workhorse for the investigation of ion transport 

proteins.  These large cells have spawned a multitude of novel techniques that are 

unfathomable in mammalian cells, yet the fickleness of the oocyte has driven many 

researchers to utilize other membrane protein expression systems.  Here we show that 

some colonies of Xenopus laevis are infected with three multi-drug resistant bacteria:  

Pseudomonas fluorescens, Pseudomonas putida, and Stenotrophomonas maltophilia.  

Oocytes extracted from infected frogs quickly (3 – 4 days) develop multiple black foci on 

the animal pole, similar to microinjection scars, which render the extracted eggs useless 

for electrical recordings.  Although multi-drug resistant, the bacteria were susceptible to 

amakacin and ciprofloxacin in growth assays.  Supplementing the oocyte storage media 

with these two antibiotics prevented the appearance of the black foci and afforded 

oocytes suitable for whole cell recordings.  Given that Pseudomonas fluorescens 

associated with Xenopus laevis has become rapidly drug resistant, it is imperative that 

researchers store the extracted oocytes in the antibiotic cocktail and not treat the animals 

harboring the multi-drug resistant bacteria.   
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Introduction 

Intact oocytes extracted from Xenopus laevis are a versatile expression system for 

the structural and functional investigation of ion channels and transporters.  Ion transport 

proteins expressed in oocytes can be readily studied in the whole cell configuration (two-

electrode voltage clamp; TEVC) or in excised patches of membrane:  exposing the 

extracellular side (outside-out) or the intracellular side (inside-out) of the protein (and 

membrane) to the bath solution in patch clamp recordings [118].  Additionally, cramming 

inside-out patches back into the egg re-exposes ion transport proteins to intracellular 

components, allowing for the exploration of ion channel regulation [118].  Cutting open 

the oocyte simultaneously provides access to the intercellular milieu and reduces the time 

to charge the membrane, permitting the measurement of fast ionic and gating charge 

currents [185,186].  The oocyte’s physical properties also afford several experimental 

advantages.  Injection of biopolymers into the oocyte cytoplasm is facile, which enables 

the precise control of protein subunit expression [117], incorporation of unnatural amino 

acids [114], and examination of ion transport proteins expressed in bacteria [187] and 

isolated from native cells [116].  The large size of the oocyte also makes single cell 

biochemistry possible, enabling the direct comparison of cell surface expression and 

electrical recordings [119-121].  Even the pigmented animal pole is advantageous—

blocking light from exciting the intracellular components, which facilitates imaging of 

plasma membrane proteins with epi-fluorescence[188].   

Like any membrane protein expression system, oocytes have a dark side.  The 

vitelline envelope must be removed for many experiments [118] and the endogenous 
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currents cause some consternation, limiting the ionic composition of the external 

solution, the range of usable voltages, and the investigation of a few ion transport 

proteins [189].   In addition, several extrinsic factors can affect egg quality, rendering 

them unusable for electrophysiological recordings.  Frog husbandry conditions such as 

water quality, population density, and nutrition have been reported to affect oocyte 

quality [123-125].   Furthermore, many researchers report experiencing unexplained 

seasonal variations in oocyte quality even in laboratory environments where light and 

temperature are strictly controlled [122,125,126].  Once extracted, oocytes are susceptible 

to microbial contaminations, one of which induces marbling of the oocyte pigment and 

rapid death [190].   

Despite good laboratory practices of both our animals and surgically harvested 

eggs, we recently observed a decline in oocyte quality.  A few days post extraction, late 

stage oocytes (V and VI) formed black foci on the animal pole similar to the pigmented 

ring scar formed during wound healing [191-193].  The afflicted oocytes had negligible 

electric resting potentials and poor viability.  Unsurprisingly, attempts to record from an 

injected batch of compromised oocytes were futile.  Since frog skin harbors bacteria 

detrimental for oocyte longevity, we initially made hygienic changes in our animal 

husbandry and egg handling:  none of which were effective and the oocytes remained 

unsuitable for electrophysiology experiments.  Similarly, systematic tinkering with the 

standard antibiotics—penicillin, streptomycin, gentamicin and tetracycline—in the 

storage media did not prevent black foci formation.    To identify the cause of the black 

foci, we cultured the compromised oocytes and discovered that they were infected with 
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multi-drug resistant Stenotrophomonas maltophilia, Pseudomonas fluorescens and 

Pseudomonas putida.   Antibiotic testing showed that all three species of bacteria were 

susceptible to amikacin and ciproflaxin, which when included in the oocyte storage 

media prevented the appearance of black foci and resulted in oocytes that were usable for 

electrophysiological recordings.   
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Materials and Methods 

Husbandry 

Xenopus laevis were ordered from commercial vendors (Nasco, Fort Atkinson, WI; 

Xenopus 1, Dexter, MI; Xenopus Express, Brooksville, FL).   Female frogs used for our 

studies are ordered as adults, with a snout to vent length of 9 cm or greater.  The primary 

Animal Medicine Facility at UMMS only houses frogs from a single vendor, which was 

our original and current vendor.  Upon arrival, frogs are maintained in static tanks for 

clinical observational and acclimation period lasting a minimum of 5 d.    The maximum 

housing density of frogs in each static tank is 1 frog per 2 L of artificial pond water.  The 

water in the static frog housing tanks is changed at least twice weekly.  The room is 

maintained at approximately 20˚C, with a humidity of 30% to 70%, and room lights on a 

12:12-hr light:dark cycle.  Frogs are each fed 5 to 10 pellets of Frog Brittle (Nasco, Ft 

Atkinson, WI) twice weekly.  At the end of the clinical observational period, healthy 

frogs are released to the standard colony housing area.  Colony frogs are housed in either 

a continuous flow-through system (PharmHouse XLS Rack System, Pharmacal, 

Naugatuck, CT) or a recirculating frog housing system (X-Mod, Marine Biotech, 

Beverly, MA).  Room environmental conditions and feeding schedules remain the same.  

The water supplied to the frog housing area is first passed through a 5 micron particulate 

filter and reverse osmosis system (HP 1200, CUNO/Water Factory Systems, Meriden, 

CT) prior to entering an intermediate holding tank.  Water in the holding tank is treated 

with a commercial artificial lake salt additive (Cichlid Lake Salt, Seachem Laboratories 

Inc., Madison, GA) at a concentration of 5.5 g per 37.85 L of water.  While in the holding 
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tank, the water is continually circulated through a 15 watt ultraviolet light system until it 

is released.  Water conditions in both colony systems are targeted at the following levels:  

Water temperature 17 – 19˚C, pH 6.6 – 7.0, conductivity 1550 – 1650 S, ammonia 0 – 

0.8 PPM, nitrites 0 – 0.75 PPM, nitrates 0 – 20 PPM.  For the blind study, the animals 

from the three vendors were housed in an ancillary facility in static tanks under the same 

environmental and aquatic conditions listed above.   

Oocyte Extraction 

Late stage oocytes (stage V – VI) are removed from the ovaries of adult female frogs in 

accordance with the procedures described in our UMMS IACUC-approved protocol.  

Specifically, the female is anesthetized by gradually cooling the frog in an ice water bath 

at 4˚C over 30 – 45 min.  Once anesthetized, the skin on the frog’s abdomen is sterilized 

by swabbing the surgical site with a 10% povidone iodine solution.  Autoclaved 

instruments are used for the extraction of ovarian tissue, and harvested oocytes are 

defolliculated for 30 – 60 min with 2 mg/mL Type 2 collagenase (290 U/mg dw) 

(Worthington Biochemical Corp) in sterile OR2 solution containing (in mM): 82.5 NaCl, 

2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4.  The same lot number of Type 2 collagenase was 

used for the entire study, which also contained (in U/mg dw): 600 caseinase, 4.6 

clostripain, 0.51 tryptic activity based on the manufacturer’s certificate of analysis. 

Oocyte Storage Conditions 

Post collagenase, isolated oocytes are rinsed with OR2 and stored in ND96-GT storage 

solution containing (in mM):  96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 50 µg/mL 

of both gentamicin and tetracycline (Sigma) pH 7.4, at 16°C.  Oocytes are checked daily 
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for death and rinsed with ND96 solution with freshly supplemented antibiotics.  The 

ND96-ACT storage solution is supplemented with 50 µg/mL of tetracycline and 100 

µg/mL of both amikacin and ciproflaxicin (Sigma).  All solutions containing antibiotics 

should be disposed in accordance with state regulations.  For the Massachusetts 

Department of Environmental Protection, the solution is mixed with a chemical absorbent 

powder, autoclaved and then incinerated. 

Imaging 

Intact oocytes images were captured using SPOT imaging software (Diagnostic Imaging 

Inc, Sterling Heights, MI) using a dissecting scope equipped with a color digital camera.  

Images were processed in Adobe Photoshop and adjustments were limited to levels and 

cropping.  For electron microscopy images of oocytes, the samples were fixed by 

immersion in 2.5% (v/v) gluteraldehyde in Na Cacodylate buffer (pH=7.2) for a 

minimum of 2 hours at room temperature.  The fixed oocytes were then washed three 

times in the same buffer.  Following the third wash, the eggs were dehydrated through a 

graded series of ethanol to 100%, then Critical Point Dried in liquid CO2.  The eggs were 

then affixed with silver conductive paste to the surface of aluminum SEM stubs and 

sputter coated with Au/Pd (80/20).  Examination of the specimens was performed using 

an FEI Quanta 200 FEG MK II scanning electron microscope at 10 Kv accelerating 

voltage.    For imaging of individual bacteria cultured from infected oocytes, the bacteria 

were stained with 1% Uranyl Acetate and spread onto a carbon stabilized formvar 

support film.  Images were captured with a Philips CM 10 TEM at 7900X using an 80KV 

accelerating voltage. 
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Bacterial and Fungal Cultures 

All cultures were submitted to a commercial diagnostic laboratory (IDEXX Preclinical 

Research Services, Grafton, MA).  Bacterial culture samples were streaked onto 10% 

sheep blood agar with Columbia Blood Agar Base or MacConkey agar and were 

incubated at 21˚C and 37˚C for a minimum of 4 – 6 d.  Samples submitted for fungal 

culture were streaked on Inhibitory Mold agar and incubated for 21 d.   

Histopathology 

Oocyte samples were fixed in 10% buffered formalin before preparation with 

hematoxylin and eosin stain for histopathological evaluation.  The histopathology slides 

were submitted to and read by a board certified, contracted veterinary pathologist (Histo-

Scientific Research Laboratories, Mt. Jackson, VA).  
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Results 

 As is with many laboratories that use extracted Xenopus oocytes, our frog 

husbandry, surgical procedures, and oocyte handling were an amalgam of established 

procedures, documented prophylactic measures, and old wives tales (Materials and 

Methods for complete details).  Our Xenopus laevis were housed in circulating tanks, fed 

diligently by animal medicine staff, and bathed in a perfect circadian 12 hr of light per 

day.  We extracted the oocytes using sterilized instruments following our IACUC-

approved surgical procedure that enables survival surgeries to minimize animal usage.  

The extracted oocytes were defoliculated with collagenase and stored in standard ND96 

buffer supplemented with gentamicin in a 16°C incubator.   Many years ago, we observed 

the “marbled egg” phenotype described by Iglauer and co-workers [190]; therefore, we 

included a sterile skin preparation with 10% povidone-iodine solution to our surgical 

procedure and added tetracycline to the oocyte storage media.   With this combination of 

animal husbandry, surgical procedures and antibiotic cocktail, nine out of ten surgeries 

afforded experiment-quality oocytes that would last nearly a week with very little effort 

(daily media change). 

 About three years ago, we frequently observed that an entire batch of extracted 

eggs would develop multiple black foci surrounded by an unpigmented halo on the 

animal pole (Figure IV-1A).  The black foci were reminiscent of the pigmented scar ring 

formed after microinjection [192,193], but would appear on both uninjected and injected 

eggs three to four days after extraction.    
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Figure IV-1.  Xenopus laevis oocytes infected with multiple drug resistant bacteria.  
(A) Bright field micrograph of extracted oocytes showing the characteristic black foci 
and unpigmented halo.  White scale bar is 0.5 mm.  (B) Transmission electron 
micrograph of Pseudomonas fluorescens cultured from compromised oocytes.  (C)  
Scanning electron micrograph of bacteria on the surface of compromised oocytes. 
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In addition to morphological changes, these eggs had weak membranes that easily 

ruptured with typical handling.  More distressingly, voltage-clamped, compromised 

oocytes rapidly developed a large non-specific leak current (> 0.1 A) within two 

minutes of establishing a holding potential (– 80 mV) (Figure IV-2), which continued to 

increase until the oocytes became unclampable.   

 Because oocyte quality can diminish with husbandry conditions [124,125], we 

initially switched our frogs to static tanks and changed the salt solution of the artificial 

pond water; however, these husbandry changes did not prevent the formation of the black 

foci.  To rule out contamination from our animal colony and facility, we ordered new 

frogs from the same vendor that were housed in a different vivarium and a batch of 

surgically harvested oocytes that were directly shipped overnight to the laboratory.  

Disappointingly, the eggs from the new animals and the mail-ordered oocytes developed 

black foci and diminished viability 3 – 4 days after incubation in ND96 storage solution 

supplemented with gentamicin and tetracycline (ND96-GT).  Because the addition of 

tetracycline to the storage media and increasing sterile technique previously prevented 

Pseudomonas fluorescens from killing the oocytes [190], we operated using a surgical 

drape and tried different combinations of antibiotics, including the more traditional 

penicillin:streptomycin (100 U/mL) antibiotic combination.  However, none of these 

changes were able to thwart the formation of the black spots.   
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Figure IV-2.  Infected oocytes exhibit reduced viability which can be prevented with 
amikacin:ciproflaxin supplementation.  Histographs of the absolute change in leak 
current of oocytes incubated for 4 days in gentamicin:tetracycline (ND96-GT) or 
amikacin:ciproflaxin (ND96-ACT) supplemented media.  Change in leak current at – 80 
mV was calculated by subtracting the initial current value upon clamping from the value 
at 2 min.  Data are from 2 – 5 batches of oocytes.   
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 To determine whether the compromised oocytes were infected, we performed 

fungal and bacterial cultures on oocytes with black foci.  Four batches of oocytes were 

tested for fungal contamination and all were negative.  In contrast, ten different batches 

of oocytes were infected with bacteria:  five were infected with either Pseudomonas 

putida or Pseudomonas fluorescens (Figure IV-1B); five were infected with 

Stenotrophomonas maltophilia.  Antibiotic susceptibility data showed that all three 

bacteria were resistant to gentamicin and tetracycline, as well as many other commonly 

used antibiotics (Table IV-1).  Scanning electron microscopy of the oocyte revealed that 

the bacteria were clustered on the cell surface (Figure IV-1C). 

Based on our bacterial culture and sensitivity findings, we modified the antibiotic 

supplementation in the storage solution from gentamicin and tetracycline, to amikacin 

and ciprofloxacin.  At low levels of these antibiotics, 50 µg/mL, the black foci still 

formed on the animal pole of the oocytes; therefore, we increased the concentration to 

100 µg/mL of amikacin and ciprofloxacin (ND96-ACT), which prevented black foci on a 

batch of oocytes.  To rule out dumb luck, we harvested five batches of oocytes from 

different animals and stored the eggs in either ND96-GT or ND96-ACT, which was 

changed daily.  Cultures were then performed on the oocytes after four days of incubation 

in the different antibiotic cocktails.  Four out of five batches of oocytes grew multi-drug 

resistant bacteria when stored in ND96-GT:  three grew a Pseudomonas species and one 

grew Stenotrophomonas maltophilia.  Oocytes in the four samples with bacterial growth 

all developed the characteristic black spots associated with decreased electric resting 

potential and viability (Figure IV-3A).  In contrast, the oocyte cohorts incubated in 
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ND96-ACT did not grow any bacteria.  Moreover, these oocytes did not exhibit any 

evidence of morphological or physiological abnormalities after four days in the storage 

solution (Figure IV-3B) and were useful for electrophysiological studies (Figure IV-2).   

To closer examine the morphological changes induced by the multi-drug resistant 

bacteria, we histopathologically compared the infected and uninfected oocytes.  Black 

foci on the surface of infected oocytes correlated to areas with an increased number of 

pigmentation granules (Figure IV-3C), surrounded by a region with diminished 

pigmentation granules (Figure IV-3E).  On the other hand, oocytes stored in the ND96-

ACT media had continuously smooth membranes with a uniform distribution of pigment 

granules (Figures IV-3D and IV-3F). 

Lastly, we attempted to identify the source of the multi-drug resistant bacteria.  

Although we were able to repeatedly culture multi-drug resistant bacteria from oocytes 

incubated for four days in ND96-GT (Table IV-1), in general, most cultures sampled 

from oocytes directly harvested from the animals were negative for bacterial growth.   

However, one sample did grow a multi-drug resistant strain of Pseudomonas putida.  The 

harvested oocytes from this frog that were not used for culture were collagenased and 

stored in ND96-GT where they developed multifocal to coalescing black foci on their 

surfaces.  After four days of incubation, cultures from these oocytes demonstrated 

continued infection with multi-drug resistant Pseudomonas putida.   
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Table IV-I.  Susceptibility of bacteria found in Xenopus Oocytes 

 
 
Bacterial culture results from ten samples of affected oocytes.  Both Pseudomonas 
fluorescens and Pseudomonas putida (Pseudomonas species) had identical bacterial 
susceptibility.  S = Susceptible, I = Intermediate, R = Resistant.  Minimum inhibitory 
concentration (MIC) is represented in g/ml.  Results without MIC values were 
performed by disc testing.  The number in parentheses represents the number of colonies 
with the indicated susceptibility / the total number of oocyte samples that grew that 
species of bacteria. 
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Figure IV-3.  Amikacin:ciproflaxin supplementation prevents black foci formation.  
Bright field micrographs of extracted oocytes incubated for 4 days in (A) 
tetracycline:gentamicin-supplemented (ND96-GT) or (B) amikacin:ciproflaxin-
supplemented media (ND96-ACT).  Scale bars are 0.5 mm.  (B) Histopathology slices of 
a (C) compromised oocyte and (D) a healthy oocyte stored, magnified in (E) and (F), 
respectively.  Brackets denote areas of increased pigmentation; arrowheads indicate areas 
devoid of pigment molecules, both of which were only observed in infected oocytes. 
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Since only one animal’s oocytes were sufficiently infected to test positive for 

multi-drug resistant bacteria immediately after surgery, we next tested for a 

contamination source in our laboratory and vivarium.  Cultures from our collagenase and 

OR2 solutions grew no bacteria.  Biofilm and water samples from our aquarium grew 

four ubiquitous bacteria:   Pseudomonas pseudoalcaligenes, Aeromonas hydrophilia, 

Corynebacterium sp. and Alcaligenes sp.—all of which were not multi-drug resistant and 

sensitive to gentamicin and tetracycline.  Four skin swabs from nine colony frogs also 

grew bacteria (Acinobacter baumannii  and Acinobacter baumannii) that were similarly 

sensitive to most antibiotics, including tetracycline and gentamicin.  Cultures from the 

skin of these nine frogs after a surgical preparation with povidone-iodine were all 

negative, as were the cultures of their coelomic cavities.  Having tested all conceivable 

sources of contamination (and to have experimental quality oocytes during the “black 

dot” pandemic), we performed a blind study:  our animal medicine facility ordered five 

frogs from three different vendors (our original vendor and two additional vendors), 

which were housed in separate static tanks in an ancillary animal facility.  After 

performing 15 surgeries and storing the eggs in ND96-GT for four days, we only 

observed the black foci on oocytes extracted from animals (4 out of 5) ordered from one 

vendor, which was confirmed by animal medicine to be the original vendor.  In total, 

these data suggest that the animal’s ovarian tissue and/or oocytes are the likely source of 

the multi-drug resistant bacteria. 
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Discussion 

We have shown that Xenopus laevis harbor multi-drug resistant bacteria that 

infect entire batches of surgically harvested oocytes stored in standard antibiotic-

supplemented media.  By including amikacin and ciprofloxacin in the storage media 

(ND96-ACT), we were able to prevent black foci formation to afford experimental 

quality oocytes.  In all of our experiments with amikacin– and ciprofloxacin–

supplemented media, tetracycline was also included in the storage solutions since we did 

not know at the time that Pseudomonas fluorescens had become resistant to tetracycline.  

Based on the antibiotic susceptibility of the bacteria that we cultured from oocytes (Table 

IV-1), amikacin and ciprofloxacin should be sufficient.  Nonetheless, we have yet to 

eliminate tetracycline from our antibiotic cocktail.  Given the strong correlation between 

antibiotic susceptibility and the appearance of the black foci, we believe these multi-drug 

resistant bacteria are responsible for the diminished resting potential and poor viability 

oocytes that we observed.  Although we could switch to another vendor and use ND96-

GT, which is cheaper than ND96-ACT ($9 versus $12 for a 1L solution), we consider the 

quality of extracted oocytes from our original vendor’s animals to be far superior, 

provided they are not infected with multi-drug resistant bacteria. 

The multiple black foci on the animal poles of infected oocytes are highly 

reminiscent of the pigment changes seen during the process of oocyte healing after 

puncture:  an increased region of pigmentation surrounded by a halo of diminished 

pigmentation [191,192].   Amphibian oocytes heal by closure of an actomyosin-based 

purse string [193].  During this process, cytoplasmic pigment granules coalesce to form a 
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dense spot, referred to as a scar, which can be seen on the cell surface.  This scar is most 

visible on the surface of the animal pole of the oocyte due to the large amount of 

pigmentation granules; however, similar processes of healing can be observed on the 

vegetal pole [192].  The striking similarity between wound healing scars and the black 

foci we observed in compromised oocytes suggests that the bacteria on the oocyte cell 

surface (Figure IV-1C) are puncturing the membrane to enter the egg.  The continual 

repair of multiple membrane ruptures is consistent with the observed low electric resting 

potential and cytoplasm leakage from the oocytes.   

It is concerning that tetracycline was previously effective against Pseudomonas 

fluorescens when identified as a contaminant of Xenopus laevis oocytes [190], but is now 

ineffective.  Although it may be tempting to prophylactically treat the frogs or the frog 

housing system with amikacin and ciprofloxacin to prevent oocyte contamination, this is 

not an appropriate course of action.  Overuse and inappropriate dosing of antibiotics are 

considered to be a major cause of the emergence of antibiotic-resistant bacteria [194].  

For amphibian medicine, it is a major issue since there is remarkably sparse 

pharmacokinetic information on safe and effective antibiotic dosing of many species, 

including Xenopus laevis [195-197].  Coincidentally, tetracycline has been one of a few 

antibiotics that have accumulated a modest amount of dosing guidelines for this species.  

Whether tetracycline is utilized with any regularity at the vendor’s facility for treatment 

of health conditions in the frogs is unknown.  If so, the use of tetracycline with Xenopus 

laevis may have contributed to the development of tetracycline resistant Pseudomonas 

fluorescens.  Alternatively, our observation of multi-drug resistant Pseudomonas 
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fluorescens may simply be a reflection of the same global shifts in antibiotic resistance 

observed in the human health industry, which is presumed to be due to years of antibiotic 

use.  With so few antibiotic options left for treating the Pseudomonas and 

Stenotrophomonas species associated with oocyte pathology in Xenopus laevis, judicious 

use of antibiotics in vitro, rather than in vivo, is warranted.   
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CHAPTER V: DISCUSSION AND FUTURE DIRECTIONS 

Studying the structure and function of Kv channels is difficult due to their 

membranous lipid environment, multiple regulatory partners, and dynamic nature.  High 

resolution crystal structures provide structural details of Kv channels and their isolated 

cytoplasmic fragments; however, the relationship between these static images and their 

dynamic physiological function is still not fully understood.  To better define the 

architecture and dynamics of Kv channels, laboratories have turned to using 

combinatorial approaches to study Kv channels.  The tethered blocker approach has been 

instrumental in gathering structural information while simultaneously probing channel 

function.  CHAPTER II describes a modified tethered blocker approach that allows for 

the probing of the intracellular region of Kv channels.   

The results in CHAPTER II, which show that CaM is located close to the channel 

gate, produce a number of questions concerning the calcium sensitivity of KCNQ 

channels.  Although Q1-Q5 channels are all modulated by calcified CaM, the changes in 

current levels are diametric [89].  The spacing between the KCNQ channel gate and the 

first CaM binding site on the channels is conserved, suggesting that the differential 

modulation of KCNQ channels may be due to a Ca2+–induced repositioning of CaM onto 

KCNQ channels, similar to what is found for voltage-gated calcium channels [198], 

rather than structural rearrangements within the gate of KCNQ channels.  Comparison of 

the distances reported in CHAPTER II to those generated from a panel of CaM mutants 

which cannot bind Ca2+: CaM12 (apoN-lobe), CaM34 (apoC-lobe), and CaM1234 (apoCaM) 

[158] can be used to report on the structural changes induced by calcification of each 
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CaM lobe when bound to KCNQ channels and thus shed light on the calcium-sensing 

ability of KCNQ channels.   

The intracellular tethered blocker approach described in CHAPTER II is modular 

in nature allowing for the investigation of additional regulatory proteins which bind to 

KCNQ channels or other ion channel-calmodulin complexes.  Indeed, generating a panel 

of CaM tethered to the Q1 channel inhibitor chromanol [199,200] allows for the detection 

of CaM binding to Q1/E1 channel complexes that are insensitive to internal TEA (Figure 

V-1).  Furthermore, as CaM has been shown to directly bind to some KCNEs [201], this 

approach could be used to probe the structural differences between the Q1-KCNE 

complexes providing insight into their different gating properties and pharmacological 

sensitivities.   

 



 

 

116

 

Figure V-1.  Tethered blocker strategy for detecting CaM bound to functioning Q1-
KCNE channel complexes.   
(A) Structure of the maleimido-chromanol linkers:  n, number of glycines in the linker.   
(B)  Families of Q1/E1 currents recorded from oocytes injected with channel mRNA or 
co-injected with T35C-Glyn-Chromanol protein.  Currents were elicited by 4 s test 
potentials from –100 to +60 mV in 20 mV increments from a holding potential of –80 
mV followed by a tail pulse to –30 mV.  Dashed line indicates zero current.  Scale bars 
represent 0.5 µA and 0.5 s. (C) Quantification of current levels at 40 mV.  Values are 
normalized to oocytes injected with only channel mRNA.  Data are presented as the mean 
± SEM from 2 batches of oocytes.    
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 KCNQ channels are essential for normal cardiac and neuronal repolarization.  

Because many genetic mutations in KCNQ channels lead to a decrease in overall channel 

conductance, small molecules that activate KCNQ channel complexes could provide a 

new avenue of pharmacological treatment for KCNQ channelopathies.  CHAPTER III 

describes the identification and characterization of a novel KCNQ activator, PBA.  The 

potency of PBA is modest; however, preliminary studies show that it can activate Q1/E1 

complexes harboring a LQTS-associated mutation (S74L) which right-shifts the 

activation curve of these complexes (Figure V-2) [202].  Although PBA can only 

partially rescue the S74L LQTS-associated mutation, these preliminary studies 

demonstrate the promising therapeutic potential PBA has for the treatment and 

characterization of KCNQ channelopathies.   

 Traditional high-throughput screens have been largely unsuccessful in identifying 

KCNQ channel activators [101].  However, since both of the basic structural motifs of 

PBA – the aromatic ring and the boronic acid – are important for KCNQ activation, 

structure-function studies on derivatives of PBA may prove useful in characterizing the 

physiochemical properties of PBA activation and identifying a more potent activator of 

KCNQ channel complexes.  PBA both activates and inhibits KCNQ channels, making 

traditional Quantitative Structure-Activity Relationship (QSAR) analysis using docking 

and computational methods unfeasible.  Because PBA has different effects on Q1 

(inhibition and activation), Q4 (activation), and Shaker (inhibition) channels, chimeric 

channel proteins may be able to differentiate which structural components of the channel 

(voltage sensing domain or pore domain) are responsible for inhibition versus activation.   
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Figure V-2.  PBA partially rescues the KCNE1 LQTS-associated mutant S74L.     
 (A) Time courses of Q1/E1 currents measured in ND96 at +40 mV at the end of a 2 s 
pulse.  The current was normalized to before 10 mM PBA application.  PBA initially 
inhibits current and then slowly potentiates both wild type and mutant channels.  (B) 
Families of currents recorded before and during treatment with PBA in high external 
potassium (50 mM).  Currents were elicited by 4 s step test potentials from –80 to +60 
mV in 10 mV increments from a holding potential of –80 mV followed by a tail pulse to 
–30 mV.  Dashed line indicates zero current.  Scale bars represent 1 µA and 0.5 s.  (C) 
Voltage-activation curves for Q1/E1 calculated from tail current analysis.  Solid curves 
represent Boltzmann fits to the data.  Data are presented as the mean ± SEM (n = 6).   
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 Once the region of the channel responsible for interaction with PBA is 

established, site-directed mutagenesis could be used to determine specific residues that 

are required for PBA’s interaction, allowing for molecular modeling and docking studies.  

In complement to mutagenesis studies, qualitative bioisoterism could be used to 

rationally design PBA derivatives [203] to aid in the elucidation of the mechanism by 

which PBA activates KCNQ channel complexes.  For example, fluorinated boronic acids 

maintain the overall topology of the molecule as fluorine atoms are similar in size to 

hydrogen but their electronegativity alters the pKa of the boronic acid moiety allowing 

for the investigation of the role charge plays in activation.  Preliminary studies with 

fluorinated derivatives of PBA (Figure V-3) suggest that ionization of the boronic acid 

moiety may be responsible for the quick inhibition initially seen upon PBA application.  

Additionally, structure-function studies not only provide insight into PBA’s binding site 

but should yield new tools to investigate the molecular mechanisms of KCNQ gating.  

CHAPTER IV described the determination of the cause of our poor quality 

Xenopus oocytes after surgical removal.  Culturing the afflicted oocytes revealed that 

they were contaminated with strains of multi-drug resistant bacteria.  Our new antibiotic 

cocktail prevents the contamination of oocytes, allowing for electrophysiological 

recordings.  These results lead to two questions: (1) what is the cause of the recent 

antibiotic resistance seen in the laboratory setting and (2) what is the source of the 

microbial contamination?   



 

 

120

 

Figure V-3.  Preliminary SAR results 
Time courses of Q1/E1 currents measured in ND96 at +40 mV at the end of a 2 s pulse.  
The current was normalized to before application of 1 mM boronic acid.  Both PBA and 
2-fluoroboronic acid initially inhibits current and then slowly potentiates wild type Q1/E1 
channel complexes.  Both 3-fluoroboronic acid and pentafluoroboronic acid only inhibit. 
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The widespread misuse and overuse of antibiotics plays a significant role in the 

emergence of resistant bacteria.  Storage media has been supplemented with antibiotics 

for years, but given that oocytes are discarded after each experiment, it seems unlikely 

that the environmental pressure to develop antibiotic resistance stems from laboratory 

use.  Rather, it is more likely that husbandry facilities prophylactically treat amphibians 

with antibiotics.  This is consistent with a previous study that showed P. fluorescens was 

present on the Xenopus skin [190].  Although the skin cultures were negative for the 

observed multi-drug resistant strains found in the oocytes, the fact that the black foci 

were only found on oocytes extracted from animals ordered from one vendor suggests 

that the animal’s ovarian tissue and/or oocytes are the likely source of the multi-drug 

resistant bacteria.  Until the source of the contamination is identified, the judicious use of 

antibiotics in vitro, rather than in vivo, is necessary.   

 Overall, this thesis describes the development of small molecule tools that allow 

for the dissection of the structure-function relationship of KCNQ channels.  Further 

application and optimization of these tools will allow for the continued examination of 

Kv channels as a means to better understanding their role in human physiology and 

disease.   
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CHAPTER AI 

 

Determining the Mechanism of Phenyl Boronic Acid Activation of KCNQ Channels 

 

ABSTRACT 

 

 KCNQ channels (Q1-Q5) are essential for normal cardiac and neuronal 

repolarization.  Because many genetic mutations in KCNQ channels lead to a decrease in 

overall channel conductance, small molecules that activate KCNQ channel complexes 

could provide a new avenue of pharmacological treatment for KCNQ channelopathies.  A 

simple boronic acid, phenylboronic acid (PBA), differently activates KCNQ complexes at 

millimolar concentrations by shifting the voltage sensitivity of the channel complexes.  

To determine the KCNQ region(s) important for activation by PBA, chimeric proteins 

were cloned and treated with PBA.  To further characterize which physiochemical 

properties of PBA are required for activation, derivatives of PBA were tested on wild-

type Q1/E1 channel complexes.  These preliminary results suggest that ionization of the 

boronic acid moiety plays a role in modulation of KCNQ channels.   
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MATERIALS AND METHODS 

Molecular Biology 

cDNA encoding human KCNQ1 and E1 were individually subcloned into the vector 

pSG01MX, which contains the 5’ and 3’UTRs from the Xenopus β-globin gene for 

increased protein expression.  Inactivation-removed Shaker (Shaker-IR) was cloned in 

pBluescriptII KS (+).  Chimeras of Shaker-IR-Q1 and Q1-Q4 were generated by cassette 

mutagenesis.  All constructs were confirmed by sequencing the entire cDNA.  Constructs 

were linearized with the appropriate restriction enzyme (New England Biolabs) and 

cRNA was synthesized using in vitro run-off transcription with SP6 or T7 polymerase 

(Promega). 

Electrophysiology 

Oocytes were surgically removed from Xenopus laevis.  The extraction procedure and 

care of Xenopus laevis was approved by the University of Massachusetts Institutional 

Animal Care and Use Committee.  Oocytes were defolliculated using 2 mg/mL 

collagenase (Worthington Biochemical Corp.) in OR2 solution containing (in mM): 82.5 

NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4 for 60-80 minutes.  Isolated oocytes were 

rinsed and stored in ND96 storage solution containing (in mM):  96 NaCl, 2 KCl, 1.8 

CaCl2, 1 MgCl2, 5 HEPES, 50 µg/mL of both gentamicin and tetracycline pH 7.4, at 

18°C.  Oocytes were microinjected 24 h after surgery with channel mRNA (15.2 ng).  

Additionally, Q1 mRNA (7.6 ng) was co-injected with E1 (3.8 ng).  After 2–4 days, 

currents were recorded using Warner Instrument OC-725 two-electrode voltage clamp 

(TEVC), and the data were acquired with Digidata 1322A using pClamp 9 (Axon 
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Instruments).  Electrodes were filled with: 3 M KCl, 5 mM EGTA, 10 mM HEPES, pH 

7.6.  Currents were measured in ND96 recording buffer containing (in mM):  96 NaCl, 2 

KOH, 0.3 CaCl2, 1 MgCl2, 10 HEPES, pH 7.6.  All chemical compounds were from 

Sigma Aldrich and dissolved directly into ND96 recording buffer.  The time courses of 

current changes upon compound application and washout were generated by repeatedly 

depolarizing and measuring the change in current at the end of the pulse.  Channels were 

held at –80 mV and pulsed to +40 mV for 2 s every 30 s to illicit current.  Current-

voltage relationships were measured in the presence or absence of 10 mM PBA by 

holding at –80 mV and stepping to a series of test potentials for 4 s in 10 mV increments, 

followed by a tail pulse at –30 mV.   

Data Analysis 

Analysis of data was performed with Clampfit 9 (Axon Instruments) and Prism 5 

software (Graphpad).  The amplitude of tail currents was measured 6 ms (100 ms for Q1) 

after repolarization to –30 mV (–80 mV for Q1/E3 and 50 mM external charge carriers) 

and normalized such that the maximal tail current in the absence of drug was equal to 1.  

Normalized tail currents were plotted versus the test potential to produce activation 

curves.  Activation curves were fit to the Boltzmann equation: Itail = A1 + (A2 – A1) / (1 

+ e ((V – V½)*(–zF/RT))), where V½ is the voltage of half-maximal activation and z is the slope 

factor. 
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RESULTS AND DISCUSSION 

 PBA affects the ion selectivity of the Q1 channel suggesting that PBA modulation 

occurs within the pore domain [204].  Additionally, PBA activates other members of the 

KCNQ family further indicating that PBA is directly binding to KCNQ channels. In 

contrast to Q1, PBA only inhibits Shaker-IR channels, and only activates Q4 channels 

(Figure AI-1A). Because PBA does not modulate Kv channels in the same manner or to 

the same extent, we designed chimeras between the voltage-sensing domain and the pore 

domain to determine which regions of the channel confer the varied subunit-specific 

sensitivities to PBA (Figure AI-1B).  We first tested chimeras between Q4 and Shaker-IR 

because PBA had diametrically opposite effects on current; however, these chimeras 

were non-functional.  Because there is a large amount of homology among the KCNQ 

channel family (~ 40% amino acid identity), chimeras made between different KCNQ 

channels are fully functional [205].  Therefore, we generated and cloned chimeras 

between the voltage-sensing domain and pore domain of Q1 and Q4 channels.  These 

constructs were also non-functional suggesting that such large portions of KCNQ 

channels are not interchangeable.  This is consistent with recent data from the Attali lab 

that showed that chimeras between the entire voltage-sensing domain of Q1 and Q2 

channels are non-functional even though chimeras between single transmembrane 

domains are [206].   
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Figure AI-1.  PBA activates Q1 and Q4 channels differently.   
(A) Time courses of current recorded from Q1 and Q4 channels.  The current was 
normalized before PBA application.  PBA initially inhibits and then slowly increases Q1 
current.  PBA only activates Q4 channels.  (B) Schematic of the design of chimeras 
between Shaker-IR, Q1 and Q4 channels.     
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 Because the chimeras were non-functional, we decided to further characterize the 

mechanism of activation by PBA using simple structure-activity studies.  We first tested 

fluorinated boronic acids as the fluorine atom is similar in size to the hydrogen atom, 

keeping the overall topology of the molecule unaffected.  2-fluorophenylboronic acid 

similarly activated Q1/E1 complexes at 1 mM as PBA (Figure AI-2A).  In contrast, both 

3-fluorophenylboronic acid and pentafluoroboronic acid only inhibited Q1/E1 complexes 

(Figure AI-2A).  Because fluorine is similar in size to the hydrogen atom but is an 

electron withdrawing group, the different effect of the fluorinated derivatives of PBA 

suggest that ionization of the boronic acid moiety may be responsible for the quick 

inhibition initially seen upon PBA application.   

 To further establish whether charge may play a role in modulation of Q1/E1 

complexes, we tested nitro-substituted PBA derivatives.  The electron withdrawing nitro 

groups will lower the pKa of the boronic acid moiety.  At 1 mM, 2-nitrophenylboronic 

acid slightly reduced Q1/E1 current levels; however, both 3-nitrophenylboronic acid and 

4-nitrophenylboronic acid strongly inhibited Q1/E1 complexes (Figure AI-2B).  Based on 

the pKa values (Table AI-I) of the derivitized PBA molecules, it is possible that the 

negative charged species of PBA is responsible for inhibiting Q1/E1 channel complexes.   
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Figure AI-2.  Derivatives of PBA also modulate Q1/E1 channels.   
(A) Time courses of current recorded from Q1/E1 channels upon treatment and washout 
of 1 mM fluorinated PBA.  The current was normalized before PBA application.  2-
fluorophenylboronic acid slightly potentiates Q1/E1 current; both 2-fluoroboronic acid 
and pentaphenylboronic acid initially inhibits Q1/E1 current.  (B)  Time courses of 
current recorded from Q1/E1 channels upon treatment and washout of 1 mM nitro-
phenylboronic acid.  2-nitrophenylboronic acid has no significant effect on Q1/E1 
current; both 3-nitrophenylboronic acid and 4-nitrophenylboronic acid inhibit Q1/E1 
channels.   
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Table AI-I. Properties of Phenylboronic (PBA) derivatives. 

    1 mM Compound 

Compound pKa 

Anionic Species 
Concentration 

(mM) 

Neutral Species 
Concentration 

(mM) Effect 

PBA 8.9 0.05 0.95 Inhibition + Activation 
2-fluoroPBA 8.3 0.16 0.84 Inhibition + Activation 
3-fluoroPBA 7.5 0.56 0.44 Inhibition 

pentafluoroPBA 6.1 0.97 0.03 Inhibition 
2-nitroPBA 7.8 0.37 0.63 No effect 
3-nitroPBA 7 0.8 0.2 Inhibition 
4-nitroPBA 7 0.8 0.2 Inhibition 

Benzoic Acid 4.2 1 0 Inhibition 
Benzyl Alcohol 15.4 0 1 Activation 
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 PBA activation of KCNQ channels is slow (minutes) which could be explained by 

a cytoplasmic or buried binding site.  However, PBA may be acting indirectly, activating 

signaling pathways in the cell.  To determine whether PBA may be increasing the number 

of channels on the cell surface, we set out to perform cell-surface luminometry on 

Xenopus oocytes.  We choose oocytes because their large size allows for the direct 

comparison of cell surface expression with the changes observed in current levels upon 

treatment with PBA.  For these experiments, the hemagglutinin A (HA) tag was 

incorporated into the N terminus of E1 between residues 22 and 23 [121].  Unfortunately, 

addition of this extracellular tag rendered PBA ineffective on the Q1/E1 complex.  We 

also performed cell-surface biotinylation on Xenopus oocytes.  However, due to the yolk 

of the oocytes, it was hard to accurately quantitate Q1 protein.  Lastly, we also tried to 

record from oocytes at 4°C.  Similar to what was found in mammalian cells [207], Q1/E1 

channel current was abolished at the lower temperature, which could not be rescued by 

application of PBA.  Although it is possible that PBA may be increasing the number of 

channels on the cell surface, it is unlikely for two reasons:  (1) activation of PBA is slow 

but current levels plateau in minutes which is not enough time for full biogenesis of the 

Q1/E1 complex and (2) many of the proteins involved in forward trafficking (e.g. 

Dynein, Syntaxin1A) promote recycling of ion channels which are not activated by PBA 

[208].  Similarly, since PBA activates all members of the KCNQ family [204] it is 

unlikely that PBA is acting indirectly as KCNQ channels are differently affected by 

intracellular signals ([89,209].   



 

 

132

 Although the molecular mechanism for activation of KCNQ channels by PBA is 

still unclear, this preliminary data provides a framework for designing future experiments 

to answer this question.  In combination with Chapter III, this work provides additional 

evidence to support the use of PBA, and its derivatives, as small molecule probes to 

dissect the mechanism of KCNQ channel function.   
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CHAPTER AII 

 

Additional Compounds Synthesized by Author 

 

Terpyridine cross-linkers 

2,2’:6’,2”-terpyridine (TYP) is a tridentate ligand that forms a stable 

bisterpyridine (bisTYP) complex through coordination with a transition metal ion [210].  

A library of TYP derivatives containing a 4’ cysteine reactive group (SS-Pyr) with 

varying linker lengths can be synthesized using basic amino coupling strategies (Figure 

AII-1).   Our lab has previously showed that the extracellular N-terminus of KCNE1 (E1) 

peptides is reactive small molecules [108].  By engineering cysteines into the N-term of 

E1, we can modify the N-terminus with TYP derivatives.   If the TYP groups are close 

enough in space, the bisTYP complex can form in the presence of iron.  Formation of the 

bisTYP complex can be monitored electrophysiologically as a reduction in current.  

Plotting inhibition as a function of linker length will generate a distance between the N-

termini of the E1 peptides.   

 Previous studies have relied on using maleimide to specifically label the cysteines 

in E1 as the reaction is fast and forms a irreversible thioether bond [27,108]; however, all 

of our attempts to couple TPY to a maleimide we unsuccessful.  Therefore, we chose the 

pyridyl disulfide which was compatible with TPY.  The advantage of the pyridyl 

disulfide group is that it is reversible with reducing agents.  To estimate the rate of SS-

Pyr reaction with E1, we first measured the reaction rate with βME in vitro to obtain a τ 
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value of 32.5 ± 4.7 s and a rate constant of 360 ± 63 M-1s-1.  The quick kinetics of the SS-

Pyr reaction indicates that these experiments can be monitored while recording from 

individual oocytes instead of pre-incubating oocytes in the TPY library.   
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Figure AII-1.  Schemes illustrating the synthesis of a panel of 4’-carboxylic acid and 
4’-carboxylic acid cysteine reactive derivatives of 2,2’:6’,2”-terpyridine.   
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TEA tethered blockers containing PEG linkers 

In Chapter II, we chemically derivatized calmodulin (CaM) into a “tethered 

blocker” using a panel of glycine linkers (Figure AII-1).  Generation of the panel of 

maleimido-quaternary ammoniums (QAs) with glycine linkers requires the use of solid-

phase peptide synthesis which is time consuming and the final linkers are hard to purify.  

To simplify the synthesis of a panel of linkers, we choose to generate a panel of 

polyethylene glycol (PEG) linkers (Figure AII-1A).  PEG linkers are easier to synthesize 

in larger quantities and more water soluble than their glycine counterparts.  A library of 

maleimido-QA derivatives can be synthesized using basic amino coupling strategies 

(Figure AII-1B).   
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Figure AII-2.  Maleimido-Quaternary Ammonium Linkers 
(A) Comparison of Glycine and PEG linkers.  (B)  Scheme illustrating the synthesis of a 
panel of meleimido-quaternary ammonium linkers containing PEG spacers.   
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 We first determined whether the PEG linkers could be exploited in an intracellular 

tethered blocker approach by examining CaM derivatized at position T35C (N-lobe) 

(Figure AII-3) with the shortest linker, CaM-PEG2-QA (21 Å).  Oocytes were co-injected 

with KCNQ channel mRNA and CaM protein and families of Q2/Q3 currents were 

measured 3 days after co-injection.  Oocytes injected with CaM-PEG2-QA (3 µM in ovo) 

resulted in 21 ± 6% decrease in current which was surprising as the longer CaM-Gly3-

QA linker did not inhibit Q1/Q3 current (Figure AII-3A).  We reasoned that the PEG 

linker was more flexible than the glycine linker allowing for the linker to reach the QA 

binding site on Q2/Q3 channels.  We next tested CaM-PEG8-QA because its extended 

length was only 2 Å longer than CaM-Gly7-QA.  Inhibition by CaM-PEG8-QA was 

variable between batches of oocytes (Figure AII-3B) and overall less (29 ± 4%) than 

what was observed for CaM-Gly7-QA (40 ± 6%) (Figure AII-3C).  Lastly, we tested our 

longest linker, CaM-PEG12-QA.  Inhibition by CaM-PEG12-QA was less than that 

compared to the glycine linkers and independent of concentration (Figure AII-3D and E).  

Taken together this data indicates that the PEG linkers cannot be used in an intracellular 

tethered blocker approach.   
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Figure AII-3.  PEG-derivatized CaM proteins do not behave as intracellular 
tethered blockers.  
(A-E)  Quantification of current levels at 40 mV from oocytes co-injected with different 
CaM proteins.  Values are normalized to oocytes injected with only channel mRNA.  
Data are presented as the mean ± SEM from 2 – 4 batches of oocytes.  
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