
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2003-09-03 

Poly(ADP)-Ribose Polymerase Activity in the Eukaryotic Mono-Poly(ADP)-Ribose Polymerase Activity in the Eukaryotic Mono-

ADP-Ribosyl Transferase, ART2: a Dissertation ADP-Ribosyl Transferase, ART2: a Dissertation 

Alan R. Morrison 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Animal Experimentation and Research Commons, Cells Commons, Endocrine System 

Diseases Commons, Hemic and Immune Systems Commons, Immune System Diseases Commons, and 

the Nutritional and Metabolic Diseases Commons 

Repository Citation Repository Citation 
Morrison AR. (2003). Poly(ADP)-Ribose Polymerase Activity in the Eukaryotic Mono-ADP-Ribosyl 
Transferase, ART2: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/xbrq-yp33. 
Retrieved from https://escholarship.umassmed.edu/gsbs_diss/126 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1390?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/969?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/969?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/948?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/933?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1003?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/xbrq-yp33
https://escholarship.umassmed.edu/gsbs_diss/126?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


A Dissertation Presented

Alan Ross Morrson

Submitted to the Faculty of the

University of Massachusetts Graduate School of Biomedical Sciences, Worcester

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 3 , 2003

PROGRAM IN BIOMEDICAL SCIENCES



COPYRIGHT PAGE



Approved as to style and content by:

Kendall Knight Ph.D., Chair of Committee

Joel Moss M.D./Ph.D., Member of Committee (extramural)

Rita Bortell Ph.D., Member of Committee

Robert Carraway Ph.D., Member of Committee

James Evans, PhD., Member of Committee

Aldo Rossini M.D., Dissertation Mentor

Anthony Carruthers Ph.D., Dean of the



Acknowledgements

I shall be telling ths with a sigh
Somewhere ages and ages hence:
Two roads diverged in the woods, and I--
I took the one less traveled by,
And that has made all the difference.

Robert Frost

My personal journey could not have been accomplished without some very impor-

tant people in my life. I would like to acknowledge my parents, Gail and Glen Morrson

for their outstanding love and guidance. They were my first, best mentors in life, and I

could never have arved at this point without them. I would also like to acknowledge my

brother, Gar, who has been an unwaivering rock that I could lean on from time to time.

My wife, Nicole, and our daughter, Alexandra, are the loves of my life. They keep me

fresh and grounded. Nicole has taught me patience and commitment, and her love and

support has cared me through many challenges, both personal and professional.

Aldo Rossini has been an amazing mentor and guide through this PhD experience.

He is a fantastic judge of character and situations and has never failed to recognize areas

where I could improve; I know that I am a much better professional and physician-

scientist for that. Dr. Rossini' s commitment to translational diabetes research is world-

reknown as evidencend by his recent Banting Award accolades. A tremendous part 

that commitment is the training of the next generation of physician-scientists, and I am

honored to be counted among those pupils to whom he has given so much time and en-

ergy.



Rita Bortell, with her vast and broad knowledge, has provided an invaluable re-

source to my education, and her collaborative spirit and guidance made the research ex-

perience so enjoyable. Dale Greiner and John Mordes have been outstanding guides

through the dissertation process and have taken much time out of their busy schedules to

sit with me and discuss data. I would also like to acknowledge the other members of the

Rossini and Moss Laboratories for their support and llendship. The Rossini laboratory

has been like a second home to me, and the faculty, post-docs, students , technicians and

support staff, have always been kind, generous , and eager to share scientific ideas. Spe-

cial thans to Eric Merrthew from the Lambright lab for his advice and guidance about

crystallography data, as well as his aid in designing the strctural figures.

A special acknowledgement to Joel Moss is due for his unwaivering commit-

ment to my education. He has taken countless hours of his time teaching me how to de-

sign better experments and going over experimental data. His refusal to "lower the bar

has brought me to higher levels of science, and I know I wil be more successful because

of it. This little discovery of P ARP activity would never have come about, if I did not

heed his lessons in understanding data and challenging assumptions.

Finally, I would like to than the other members of the thesis committee for tak-

ing time out of their busy schedules to read my dissertation and to sit for my defense. Dr.

Knight, as chair, has really helped to guide me with the timing and writing of this whole

process. Dr. Evans, with his fantastic mass spectrometry core facility, has been a tremen-

dous help oflate with generating the last bits of data needed to complete this work. Dr.



Carraway, whom I've known and respected since medical school classes , has always been

wiling to engage in enthusiastic scientific discussions about recent data or what went on

at the latest conferences.



Abstract

The glycophosphatidylinositol(GPI)-linked membrane protein ART2 is an anti-

genic determinant for T lymphocytes that regulate the expression of diabetes in the BB/W

rat model. Though little is understood of the physiologic role of AR T2 on T lympho-

cytes, ART2 is a member of the mono-ADP-ribosyl transferase subgroup ofthe ADP-

ribosyl transferase (ART) protein family. The ART protein family, which traditionally

has been divided into mono-ADP-ribosyl transferases (mono-ARTs), poly(ADP)-ribose

polymerases (P ARPs), and ADP-ribosyl cyclases, influences various aspects of cellular

physiology including: apoptosis, DNA damage repair, chromatin remodeling, telomere

replication, cellular transport, immune regulation, neuronal fuction, and bacterial viru-

lence. A structural alignent of ART2.2 with chicken P ARP indicated the potential for

ART2.2 to catalyze ADP-ribose polymers in an activity thought to be specific to the

AR subgroup and important for their regulation of nuclear processes. Kinetic studies

determined that the auto-ADP-ribosyl transferase activity of ART2.2 is multitmeric and

heterogeneous in natue. Hydroxylamine-cleaved ADP-ribose moieties from the ART2.2

multimers ran as polymers on a modified sequencing gel, and digestion of the polymers

with snake-venom phosphodiesterase produced AMP and the poly(ADP)ribose-specific

product, PR-AMP , which was resolved by analytical HPLC and structurally confirmed by

ESI-MS. The ratio of AMP to PR-AMP was higher than that of P ARP raising the possi-

bility that the ART2.2 polymers had a different branching strcture than those ofPARP.

This alternative branching was confirmed by the presence of ribose phosphate polymers

V11



in the snake venom phophodiesterase treated samples. The site of the auto-poly(ADP)-

ribose modification was determined to be Rl85 , a residue previously proposed to influ-

ence the level of auto-ADP ribosylation of ART2.2 by mutational analysis. These data

provide the first demonstration of a hybrid between mono-ARTs and P ARPs and are the

earliest indication that P ARP-like enzyes can exist outside the nucleus and on the cell

surace.
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Chapter 1 What is Diabetes?

Chapter Introduction

Since the evolution of glucose metabolism, there has existed the potential for er-

rors. Diabetes, simply put, is the result of one such error caused by an inability to signal

for the uptake of glucose from the blood into cells. The resulting phenomenon is hyper-

glycemia (high blood glucose), from which stems a myrad of secondar problems that

have come to be associated with the disease, diabetes. There are many ways to get to that

disregulation of glucose uptake, and thus there are many forms of diabetes. The follow-

ing dissertation wil center on insulin dependent diabetes mellitus (IDDM), which is com-

monly known as Type 1 diabetes. Though, as the abstract states, ART2 is the focus of

this research, understanding IDDM and how to prevent it are the heart of this project.

How then are diabetes and ART2 connected? To better understand the connection and

where it is going, it becomes important to look at the evolution of the question

, '

what is

diabetes?' Chapter 1 wil t e a brieflook at the evolution of that question from ancient

times to today. It becomes a more complicated question over time, and has expanded in

many directions. In many ways , it seems as though the Heisenberg Uncertainty Principle

applies because as scientists lear more about what diabetes is, it becomes harder to an-

swer what is diabetes. Nevertheless, some very practical answers have developed from

the process allowing physicians to influence patient care and allowing physician-scientists

to ask more sophisticated questions.



Diabetes History

Egypt, circa 1550 BCE

In l872 an Egytologist named Georg Ebers discovered a large medical compen-

dium in an almost perfect state of preservation (1). Analysis ofthis compendium, which

came to be known as Eber spapyrs (Fig l), revealed that it dated back to l550 BCE and

even contained passages with language and text that go back as far as 3400 BCE. Found

in the Eber s papyrs upon translation were some of the earliest descriptions of medical

diseases known to man along with antidotes that were both mythical and magical. Topics

covered a wide range of disciplines including: the anatomy and pathology of the circula-

tory system; morbid conditions of the alimentary and urinar tract; obstetrics and gye-

cology; diseases of skin, teeth, ears, eyes; and even a study of cosmetics. Sections on

remedies" were extremely diverse ranging from thngs like keeping rats out of the gran-

ary to things like getting rid of sweaty feet. Of interest to this disseration, Eber s papyrs

contained what many believe to be the earliest known written descriptions of diabetes.

The description was found under disease of the "cardia" (stomach or mouth) (2). Symp-

toms include weight loss, excessive urine, thirst, and periods of unconsciousness. The

remedies were often varous mythological reagents boiled with beer, strained and taken

by the patient. In one section, a diabetic-like childhood ilness of the "accumulation of

urine" called for "an old book cooked in oil and rubbed all over the abdomen (3).
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Figure 1. A. Imhotep, the Egyptian God of Medicine. This is a copy of a rendering

of Imhotep, also known as Thoth (or Athothis), a mortal who lived around the time of

3400 BCE. Thoth is known as a mortal who gathered such a great sum of healing knowl-

edge and rendered such an extraordinar service to mankind that he was acclaimed a god

by a grateful people and raised to the Egytian Pantheon as the God of Healing Ars (3).

Thoth passed into the Greek mythos as the god Hermes. B. A "Page" from the Papyrus

Ebers. The Papyrs Ebers, containing some of the most ancient descriptions of diseases

that stil plague manind today, is one of the oldest intact documents of the practice of

medicine and can be found in a preserved state in the University Library of Leipzig. The

Papyrs is merely one long scroll; twelve inches in diameter and 61.l25 feet in length.

Thoughout its length, however, it was divided into "pages" like the one copied above.

Each page was of equal size and averaging twenty lines.



Greece and Rome , circa 200 CE

Little else is known to be written of diabetes until about 1700 years after the writ-

ings of Eber s papyrs, when a famous Greek physician, Aretaeus ofCappedocia, actually

coined the term "diabetes" for a series of patients with whom he had worked (I). The

word, diabetes, is Ionian greek and literally means

, "

to siphon or to pass through." Are-

taeus wrtes of diabetes:

the patient never stops makg water, but the flow is incessant, as if ITom the open-

ing of aqueducts. The natue of the disease is chronic... but the patient is short-

lived. .. for the melting is rapid, the death speedy. Moreover, life is disgusting
and painl; thrst, unquenchable; excessive drg, which, however, is dispropor-
tionate to the large quatity of ure, for more urie is passed and one canot
stop them (the patients) either ITom drg or makg water.

Around the same time Roman physicians were using the terms, diarhea urinosa and dip-

sakos (excessive thirst) to describe similar ilnesses. In many ways, the descriptions of

the Roman and Greek physicians did not differ much with their Egytian predecessors.

Diabetes was an ilness where the patient could not hold fluids: there was excessive thirst

that could not replenish the fluids lost due to the tremendous volumes of urine (2). The

patients appeared to waste away into phases of unconsciousness at first and then finally to

death.

India , circa 600 CE

Two Indian physicians, Susruta and Charka, made two interesting observations

circa 600 CE when characterizing this disease of excessive thirst and excessive urine (1).

The obserations should really be noted for being hundreds of years before their time. 
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fact, it probably was not until the seventeenth century that physicians began to truly ap-

- reciate the significance ofthese observations. The first observation was that the urine of

diabetic patients was of a different consistency than that of the normal population. 

fact, it was described as "sweet tasting like honey, sticky, and attractive to ants." The

second observation made was that the disease seemed to come in two contrasting forms:

the first presenting in ' older, fatter ' people and the second in much ' younger, thinner

people. This second observation appears to be the earliest recognition of diabetes tyes 2

afd l , respectively.

England, circa 1620 CE

About lOOO years after Susrata and Charka, while British colonies were being es-

tablished in America, physicians in Europe continued to be perplexed by the ilness of

diabetes. One such physician, Thomas Wilis, had written a statement that in some sense

stil holds true today. He wrote

, "

as to what belongs the cure, it seems a most hard thing

inthis disease to draw propositions for curng, for that its cause lies so deeply hid, and

hath its origin so deep and remote." Many physicians at the time were operating under a

false assumption made by Paracelsus a centu earlier (2). Paracelsus, noted as one of the

first physicians to receive special training in chemistr, concerned himself with diabetes

and after boiling down the urine of diabetic patients, he found a sizable amount of white

stals he interpreted to be salt. The result was a theory that linked diabetes solely with

kidneys, and that theory predominated the better par of a few centuries of medicine.

. Wills, like Susruta and Charuka, made reference to the sweet taste of diabetic urine, but



it was not until a centu later that Matthew Dobson of Liverpool would identify the

sweet white crystalline substance in urine as sugar (l). Dobson went on to discover that

the sugar came from serum. This was the first evidence of what could be thought of as a

systemic ilness rather than a urinary/kidney disease. Around the same time, Michel-

Eugene Chevrl, a French chemist, made similar independent finds (2). Further evidence

of a systemic ilness came from Richard Mead, another contemporar of the time period

who was the first to observe that the livers of diabetics were "fatty compared to normal

persons.

Germany, 1869 CE

In the late nineteenth century, a 2l year-old doctoral student in Berlin, Paul

Langerhans, would discover the islets which now bear his name embedded in the pan-

creas (l). Langerhans refrained from postulating any function for his islets but instead

focused on describing them with great accuracy. However, by the tu of the twentieth

centu, Edouard Laguesse and Jean de Meyer realized that the islets were endocrine tis-

sue and reasoned that this tissue was the source of insulin (from the Latin insula for is-

land), a largely hypothetical sugar/glucose-lowering hormone.

Canada, 1921 CE

A well-known fact at the turn of the twentieth century was that the diagnosis of

diabetes was a death sentence for any patient, but by October 3l , 1920, that fact began to

radically change (4). At the time, a dissatisfied, practicing physician, named Frederick

Grant Banting, was busy preparng a lecture on carbohydrate metabolism for the physiol-



ogy deparent of London s Western University. After working on the lecture, Banting

read a copy of the article

, "

The Relation of the Islets of Langerhans to Diabetes with Spe-

cial Reference to Cases of Pancreatic Lithiasis " by Moses Barron in the November issue

of Surgery, Gynecology, and Obstetrics. Baron was relaying the observation that though

acinar cells atrophied upon pancreatic duct obstrction, the islets surived intact. The

data further supported the rising hypothesis that although the pancreas appeared to be in-

volved in diabetes, the health of the islets was the important factor in the etiology of dia-

betes. Whle mullng over his life in bed that night, the combination of the lecture prepa-

ration and the article strck Banting with the idea that an experimental ligation of the

pancreatic duct and subsequent atrophy ofthe acinar cells might allow for purification of

the islet secretions. Those secretions according to his hypothesis should relieve glyco-

surea in pancreatectomized animals. He soon introduced his idea to J.J .R. Macleod in

Toronto, and though Banting had little research experience, Macleod was impressed

enough with Banting s idea that he allowed Banting to work on the experiment over the

summer of 1922. Charles Best, a medical student at the time, was assigned by Macleod

to work with Banting on the project. Though it was a diffcult and hot sumer in the

physiology laboratories, Banting and Best succeeded at getting their pancreatic extracts to

alleviate the blood glucose levels of pancreatectomized dogs (Fig 2). The experments

won them the Nobel Prize for Physiology and Medicine in 1923 and evolved into the

most successful treatment for diabetes to date.
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Figure 2. Banting Journal Entry. This is a photocopy of the famous "page 48"

from the laboratory journal of Fredrick Grant Banting in the summer of 1921. The actual

journal sits in the library ofthe University of Toronto. This page depicts the first experi-

mental success that Banting and Best had at reviving a dying diabetic dog with their pan-

creatic extracts. As the page states, at "5:00 am the dog suddenly became lifeless and ap-

peared to be dying with saliva dribbling from its mouth." After a couple injections of

their extract containing insulin, the page states that within a few hours the blood sugar

dropped and the dog was able to stand up. This page marks the beginning of a virtal

overnght success as insulin treatment rapidly became the mainstay for patients around

the world with diabetes.



Diabetes Today

Spectrum

Today the term diabetes reflects a broad spectrum of heterogeneous disorders with

two etiologic poles; absolute insulin deficiency and relative insulin deficiency (Fig 3).

Examples of absolute insulin deficiency include primar (idiopathic) disorders such as

IDDM (insulin-dependent diabetes mellitus or tye l) as well as secondar disorders like

pancreatectomy and chronic pancreatitis (5). Primar disorders such as NIDDM (non-

insulin-dependent diabetes melltus or tye 2) fall under the auspices of a relative insulin

deficiency. The primar symptom of all forms of diabetes, irrespective of where they lie

along the two etiologic poles, is hyperglycemia (high blood glucose). It is estimated that

diabetes causes about l44 000 deaths each year, making it the seventh leading cause of

death in the United States. The focus ofthis dissertation is IDDM; also known as tye l

juvenile-onset, and ketosis-prone.

IDDM

IDDM is a varant of the forms of absolute insulin deficiency that accounts for

about 10-20% of all cases of idiopathic diabetes in the United States, with the other 80-

90% of idiopathic diabetes being primarly caused by the relative insulin deficiency,

NIDDM. Clinically, IDDM patients often present before the age of 20 and fall in the

category of the "young, thin" patients described by Sasruta and Charuka, nearly l500

years ago. The prevalence of cases in the United States is 2-3 per thousand, a number

that vares from country to country. IDDM is largely viewed as having its etiology from
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Figure 3. Diabetes Spectrum. Diabetes is thought to be a large spectrum of disorders

with two primar etiological poles; absolute insulin deficiency and relative insulin defi-

ciency. At the center of the spectrum regardless of etiology, there is a single common

resulting symptom of all diabetogenic phenomena; hyperglycemia (high blood glucose).



both genetic and environmental factors which give rise to an autoimmune phenomenon

that targets the insulin-secreting P-cells of the pancreas for destrction (6).

Genetics

Early evidence for the influence of genetics on diabetes comes from susceptibility

studies of families. The concordance rate of monozygotic twins tends to average 50%

suggesting some level of genetic influence (7-9). In the same studies, dizygotic twins

have the same rates as non-twin siblings. The concordance rate for first order (parent to

offspring) inheritance averages 5- l0%.

In more recent studies, a genome-wide search identified at least 4 genetic markers

for diabetes expression in the human (lO). In addition, a number of susceptibility loci in

mice and rats have been identified and mapped to various chromosomal regions. Preva-

lence of the susceptibility genes vares with ethnicity and may explain why diabetes is

common in Scandinavia and Sardinia, but uncommon in China (11). One susceptibility

locus is found on human chromosome 6 , in the genes encoding for the major histocom-

patabilityregion, HLA-D (10;l2). The HLA-D region contains three subregions: DP

DQ, and DR; the regions are highly polymorphic with numerous alleles. The HLA-

DQ3. 2(DQBl *0302) gene is most common in whites and is present in 70% of patients

giving individuals with this gene an eight-fold increase over those without for risk of de-

veloping IDDM (13). DR3 has also been linked to increased risk for IDDM and there

appears to be synergism between DQ3.2 and DR3 , resulting in a 20-fold increased risk for



diabetes. One of the major characteristics of the different susceptibilty genes is that they

code for an amino acid other than aspartate at position 57 on the beta chain of the HLA

molecule (14). Conversely, there exists protective alleles (DQBl *0602 0303 0301 , and

0403), most of which have an aspartate at position 57 and appear to decrease the risk of

diabetes (14).

Other alleles not linked to the HLA region have also been found in the human as

well as the two major animal models for IDDM, the NOD (non-obese diabetic) mouse

and the BB rat. Although considered extremely important, the MHC genes are not suffi-

dent for the development of diabetes, suggesting that there is some level of polygenic

inhertance (10) In the human, there are three such genes that map to chromosomes II

(IDDM2) (15), l5 (IDDM3) (10), and 2 (IDDM 13) (10;l6). It has been demonstrated

that the IDDM210cus appears to regulate insulin transcription (l5). The IDDM13 locus

appears to affect insulin-like growth factor binding protein 2 , but how a mutation in this

gene affects susceptibility is unclear at present (l6).

Environment

The same studies that provide rationale for a genetic component to IDDM 1 also

provide the argument for environmental influences. After all , monozygotic twin concor-

dance is not lOO%, suggesting influences outside the realm of the genome. If one looks

worldwide, the prevalence of IDDM varies from countr to country. Finnish children

have a 60 to 70 fold increased risk for IDDM than Korean children (5). Though one

might argue that this is genetic, regional susceptibility studies involving Japanese, Israeli



and Canadian emigrants have revealed that over time the emigrants assume risk ratios that

more closely mimic those of the destination country. Regional susceptibility is not the

only arguent for environmental influences of diabetes. In the clinical setting, one often

finds viral associations with overt IDDM onset. Mumps , measles , rubella, infectious

mononucleosis, and Cocksackie B virus had all been correlated to early onset of diabetes

(17).

Other data that support the role of the environment on IDDM expression comes

from studies concerning diet (l8). Studies of infants weaned from breast milk to cow

milk earlier in life reveal an increased incidence ofIDDM. These patients contain anti-

bodies to BSA (bovine serum albumin). It is thought that a 17 amino acid region of BSA

stimulates the immune system to form antibodies against an islet j3-cell protein called p69

through the process of molecular mimicry (19). Other studies have indicated another

form of molecular mimicry between the F2C protein of Cocksakie B4 virus and GAD

(glutamic acid decarboxylase, an enzyme found in the islets) that appears to influence

diabetes expression (20;21).

Autoimmunity

e combination of a genetic predisposition and an environmental insult is

thought to lead to the development of an autoimmune process that ultimately culminates

in the selective destruction of the pancreatic j3-cells , the very cells that secrete insulin.

Evidence for this comes from both human and animal studies where, early in the diabetic

process, during a period called the "honeymoon" phase, there is vast mononuclear infil-



tration of the islet cell mass of the pancreas. This insulitis (inflammation of the islet)

eventually resolves with a selective loss of the 
-cells (Fig 4) and .culminates in the fully

diabetic state, because without -cells generating insulin, there is an absolute insulin defi-

ciency that results in an inability to regulate blood glucose levels. The patients and ani-

mal models often develop antibodies specific to the islet 
-cell, and in humans, there

have been associations ofIDDM with other autoimmune disorders like Graves ' disease

Addison s disease, thyroiditis, and pernicious anemia (5;22). The BB rat, an anmal

model ofIDDM, also demonstrates an association of diabetes with thyroiditis (23). Fur-

ther evidence of an autoimmune phenomenon comes from patient studies, demonstrating

that the presentation of diabetes can be delayed or prevented by immuno-suppression

(24;25).

In the clinic, many patients present with an elevated presence in the bloodstream

of antibodies specific to the Islet cells (6;26). Proteins like GAD (glutamic acid decar-

boxylase), insulin, carboxypeptide H , glima 38 , p40 tyosine phosphatase, and insuli-

noma-associated protein 2 (IA- , tyosine phosphatase) have all been targets of these

autoantibodies. Islet cell cytoplasmic antibodies have also been demonstrated. In the

NOD (non-obese diabetic) mouse, another animal model for IDDM, a T cell response tar-

geting GAD appears to precede overt diabetes (27). Further, autoantibodies to GAD are

found in about 70% of patients with IDDM at the time of diagnosis (28). There is reac-

tivity to GAD epitopes early in the honeymoon phase, and tolerance to GAD in the NOD

mouse appears to prevent other autoantigens and insulitis from occurrng (29). The
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Figure 4. 
Histological progression of spontanseous autoimmune diabetes melltus

in the BB/W rat. A. Normal islet, H & E stain, x250. B. Insulitis progresses with an

intense destructive mononuclear infiltration into the islet interior, H & E, x250. C. "End

stage" islets exhbit a reduced cellular mass when insulitis subsides, H & E , x250. D.

With two-color immunohistochemistry, islet glucagon, somatostatin and pancreatic poly-

peptide cells comprise the peripheral islet mantle (blue) of a normal islet and the pre-

dominant insulin-positive cells are seen in the islet interior (brown), peroxidase immuno-

histochemistr, xl60. E. Cytotoxic inflammatory cells are specifically targeted against

the insulin producing p-cells within the islet interior and mantle glucagon, somatostatin

and pancreatic polypeptide-producing cells (brown) remain intact, peroxidase immuno-

histochemistry, x250. F. At the conclusion of autoimmune insulitis, non-imflammed

end-stage" islets remain and are devoid of insulin-positive cells and are comprised of

exclusively glucagon, somatostatin, and pancreatic polypeptide-producing cells (brown),

peroxidase immunohistochemistr, x250. Images were courtesy of Mike Appel of the

University of Massachusetts Medical Center Diabetes Division.

NOTE: Panel D - blue cells are identified using an antibody slurr of primary antibodies

havig a final dilution as follows: glucagon (1 :2000 prepared by M. Appel); somatostatin

(1:1000, a gift from J. Einsink); and pancreatic polypeptide (l:1000, DAKO). Insulin

primary antibody (l :lOOO, produced by M. Appel) identified brown cells. In panels E and

, brown cells are identified by the antibody slur and insulin cells are absent.



signficance of GAD is stil debated, however, since cloned T cells that do not respond to

GAD can stil transfer diabetes to other mice.

Antibodies targeting insulin also appear early in overt diabetes. It has been esti-

mated that ::80 percent ofT cells infiltrating islets in four week old NOD mice recognize

the same epitope on the insulin B chain (30). There are similar responses in the periph-

erallymphocytes from patients with recent-onset IDDM (3l). Furthermore, administra-

tion of insulin or B chain during the prediabetic phase can prevent or delay diabetes in

susceptible mice (32;33). Though little is understood as to how insulin would become a

target for the immune system, it has been shown that alternate forms of insulin can lead to

misfolding and the blockage of transport of proinsulin from the endoplasmic reticulum to

the Golgi apparatus, resulting in an absolute insulin deficiency in the Akta diabetic

mouse (34). One might hypothesize that under the right conditions, altered presentation

of insulin to the immune system could account for the initiation of the diabetic autoim-

munity. However like GAD, the signficance of insulin in the initiation of autoimmunity

is stil widely debated.

Several drugs, some immunosuppressive, have been shown to prolong the "hon-

eymoon phase " effectively delaying the onset of IDDM. Azathioprine, an immunosup-

pressive drug, which inhibits T cell responses to antigen in combination with glucocorti-

coids demonstrated such effects (35). Cyclosporine also had similar effects in patients

sending some patients into a remission period of up to three years (36). Nicotinamide

was found in the NOD and steptozotocin toxicity mouse models of diabetes to protect the
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-cells from undergoing cell death (37;38). It is thought that nicotinamide, an inhibitor

ofPARP, acts to protect 
cells by preventing energy depletion (see Okamoto Model

Chapter 3) (39). In clinical trials with nicotinamide, endogenous insulin production

measured by C peptide in the sera, was prolonged though patients did not show signs of

remission (40).

Chapter Conclusions

The understanding of the etiology of diabetes has evolved tremendously over the

last 3000 years from the early basic obserations of poly-urea and poly-phagia. The ob-

seration of sweet-tasting urne has evolved to excess sugar in urne and then to excess

glucose in the blood, leading to the understanding that diabetes is a systemic ilness. The

observations that there are two general types of diabetes occurrng in either young and

thn patients or old ard obese has evolved into a theory that diabetes is a complex disor-

der with multiple etiologies but with two main poles, absolute or relative insulin defi-

ciency. For IDDM, there is a general recogntion that both genetics and the environment

play an important role in the initiation of overt diabetes. The role of GAD and insulin

and other islet cell antigens in the initiation of autoimmunity is currently under active in-

vestigation. Though there have been answers to some basic questions, there are stil even

more questions to the etiology of diabetes. To answer those questions, scientists tu 
anmal models. Chapter 2 wil introduce a few models and lead into some of the major

hypotheses that drive this work.



Chapter 2 Rat models of IDDM, and in particular the SS rat

Introduction

For the past eighty years, insulin has been the mainstay of treatment for patients

with IDDM, but there are many caveats that come with insulin. There are patients that

have aversions to needles; a diabetic injects insulin an average of 30 000 times over the

course of his /her life. There are "brittle" patients who have difficulty controllng their

blood glucose levels regardless of how rigidly they monitor their blood glucose levels.

Even with the best care, there are several secondary ilnesses related to chronically ele-

vated blood glucose that these patients have to worr about: neuropathies, angiopathies

and hear and kidney diseases. The overarching hypothesis is that a fuller understanding

of the etiology of diabetes might allow physicians to recognize predisposed individuals

and allow treatment that prevents the onset of diabetes. For those who already have the

disease, transplantation of islets without immuno-suppression or recurrence of the auto-

immunty is the goal.

The study of human diseases can often be quite limited and diffcult due to var-

. ous ethical and practical considerations that limit access to human tissue for experimental

work. In the case of diabetes, practical considerations include inaccessibility of the dis-

eased organ, the difficulty in identifyng predisposed individuals (curently due to costly

and imprecise technologies), the complexity of having multiple genes involved, and the

difficulty of isolating and identifyng the environmental influences. To resolve these is-

sues, the development of animal models for various ilnesses has become a widespread



practice (4l). Over the past few decades several animal models for IDDM have been de-

veloped: the BB rat, the NOD mouse, the Komeda rat, and the congenic LEW rat

(LEW.1ARlIZtm- iddm). Chapter 2 wil serve to briefly introduce the various rat models.

The focus of the chapter wil be the BB rat from which are derived the major hypotheses

of this dissertation.

Komeda rat

The Komeda rat is an animal model ofIDDM that was developed in the late

1990' s (42). It is a diabetes-prone substrain ofthe Long-Evans Tokushima lean rat. The

Komeda is characterized by autoimmune destrction of the pancreatic J3-cells that results

in over diabetes. Unlike other diabetic models such as the BB rat, there is no significant

T cell lymphopenia associated with ths phenomenon. The cumulative frequency of dia-

betes is 80% at 220 days of age, though moderate to severe mononuclear lymphocyte in-

filtration ofthe pancreatic islets occurs in most animals. Genome-wide scans for diabetes

susceptibility revealed the MHC (major histocompatabilty complex) on chromosome 20

which functions in a mostly recessive manner, and Iddm/kdpl on chromosome ll , which

functions in a completely recessive manner (43). The locus was placed in a 9.3 then 4.

then 3. 0 cM region between DIIM16Mit14 and DIIM16Mit46.

Recently, the Iddm/kdpl susceptibility locus was identified, using positional clon-

ing of the region (44). The result was a nonsense mutation in Cblb a member of the

Cbl/Sli family of ubi quit in-protein ligases. Cbl-b has been shown to regulate the depend-

ence ofT-cell activation on CD28 co-stimulation in mice (45). Cbl- knock-out mice do



not require CD28 engagement for interleukin-2 (IL-2) production. Lymphocytes ofthe

u Komeda rat infiltrate into the pancreatic islets, the thyroid, and the kidneys, indicating

autoimmunty involving multiple tissues (44). This is similar to the 
Cbl- knockout

mice, which develop an autoimmune encephalitis that appears to mimic multiple sclerosis

(45). The theory is that these animals experience enhanced T cell activation. Because 

these findings , Cbl-b has been termed a negative regulator of autoimmunity as well as one

of the major non-MHC susceptibility loci for diabetes in the rat.

Congenic LEW rat

The Congenic LEW (LEW. lARlIZtm- iddm) rat was first described in 2001 (46).

It arose through a spontaneous mutation in congenic Lewis rat strain with the defined

MHC haplotypes (RTl. B/Du ). The incidence of diabetes was 20% by 60 days of

life. Unlike the BB rat, the proportion ofT cells in the periphery expressing the ART2.

differentiation antigen was normal. There is severe mononuclear infitration of the islets

with selective J3-cellloss. By electron microscopic strctural analysis , the J3-cells have an

apoptotic phenotye. GAD, islet cell cytoplasmic, and IA-2 antibodies were not detected

in the LEW. Concavalin A-stimulated T cells could adoptively transfer diabetes with an

increased incidence of 64%.

BB rat

The focus of this thesis has developed from studies of the BB rat, the oldest

known rat model ofIDDM, which began as a spontaneously diabetic rat colony from

BioBreeding Laboratories in Ottawa, Canada, in 1974 (47). From this colony, several



secondar breeding colonies were produced and selective breeding has established colo-

nies with ;:90% frequency of spontaneous diabetes (48). The BB rats mimic the presenta-

tion and pathology of the human IDDM disease. Spontaneous insulitis occurs, followed

by selective 
-cell destruction that results in an absolute insulin deficiency and hypergly-

cemia (49). Unless treated with exogenous insulin, hyperglycemic rats progress to fatal

ketoacidosis. Also similar to the human is the association of diabetes with other autoim-

mune phenomena. In particular, the BB rat often develops a thyroiditis that occurs at dif-

ferent frequencies depending on the subcolony (48). Like the Congenic LEW and other

autoimmune predisposed rat models, the BB rat has pancreatic insulitis, and severe -cell

destrction appears to correlate with the class II RTl MHC (48). Unlike the LEW, in the

BB rat there is a severe lymphopenia associated with spontaneous diabetes.

BB rats contain a varety of autoantibodies which are present in some substrains

but not others. GAD antibodies for the most par are reportedly absent in most lines of

the BB , but may be present in the BB/OK strain. IA-2 antibody is either absent or present

at low levels in BB rats. IAs (insulin auto-antibodies) also appear to be present in some

strains ofthe BB rat and not others. As in the human, the extent to which humoral im-

munity may playa role in the pathogenesis of the disease in unclear at present.

Diabetes Prone

The diabetes-prone BB rat (BBDP) is a strain derived from the original BB rats

which through selective breeding has a cumulative frequency of diabetes ;:90%. A ma-

jority of the animals tu diabetic between the ages of 55 and l20 days. Like the human



IDDM, lOO% of diabetic rats have insulitis during the early stages of overt diabetes. 

the rats that are non-diabetic, approximately 50% have insulitis. Treatment of DP rats

with cyclophosphamid has been shown to inhibit diabetes expression (50).

The BBDP strain is also noted for its marked peripheral lymphopenia. This lym-

phopenia is due to a frameshift mutation in the 
lyp/iddm 1 gene, recently identified as

Ian4 (5l), which appears to be a survival factor for T cells that matue through the thymus

(52). Ian4 is a member of a unque set of G proteins and is expressed in the mitochondria

(53). It is thought to stabilize mitochondrial membrane potential ofnai've T cells because

BBDP T cells have decreased mitochondrial membrane potential and appear to undergo

apoptosis. Treatment with cyclosporin A can rescue these T cells from apoptosis. The

, lymphopenia affects paricular subsets ofthe lymphocyte populations and in paricular

ART2-expressing cells (48). The remaining lymphocyte fractions appear to contain an

autoimmune-effector population that can adoptively transfer diabetes to nude recipients.

Diabetes Resistant

The diabetes-resistant (DR) sub line of the BB rat was established from inbreeding

DP rat forebears that were normoglycemic, nonlymphopenic, and immunocompentent

(48). Unlike the DP , the DR does not contain the nonsense mutation for Ian4

(lyp/iddml). When housed in a viral antibody free (V AF) vivarium, 0 % of the rats be-

come diabetic. One interesting feature of the DR rat is its propensity to become diabetic

in response to environmental perrbation. A viral infection such as KRV, a combination

treatment of the ART2-deleting antibody, DS4, with an immune stimulus such as polyI:C



low-dose irradiation, and cyclophosphamide (counter to its effects in the DP) are tyical

.. 

examples ofthe environmental queue. The DR appears to harbor a population of auto-

- immune effector cells that are normally regulated by subpopulations of ART2+ T lym-

phocytes. Like other autoimmune models and the human, DR rats are susceptible to other

, autoimmune states and in paricular, collagen-induced arthrtis and thyroiditis.

The BBDR rat is thought to model human diabetes more accurately than its DP

predecessor because of the non-lymphopenic state and the need for environmental queues

as well as the genetic components (49). As with humans the inheritance of the disease is

associated with a permissive MHC , designated iddm2 for the rat. This is the RTl u allele

mentioned earlier. An additional susceptibility locus has been determined by backcrosses

to normal WF rats and selection for inducible diabetes using the low-dose poly I:C and

/A 

ART2-deleting antibody, DS4 (54). The locus was mapped to chromosome 4 and termed

!f" iddm4. As it stands iddm4 is centered on a small segment of chromosome 4 bound by

the proximal marker D4Rat135 and the distal marker D4Got51 an interval of 8 cM.

The allele has 79% sensitivity and 80% specificity in prediction of diabetes in rats that

'! . segregate for this locus. That suggests that iddm4 is a major non-MHC determinant of

susceptibility for IDDM.

The Balance Hypothesis

The etiology of autoimmunity with respect to IDDM has been depicted as analo-

gous to a teeter-totter through a working hypothesis derived from the BB rat (Fig 5) (48).
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Figure 5. The Balance Hypothesis of Autoimmunity as it pertains to IDDM in the

BB/W Rat Model. Depicted are the diabetes prone (DP-BB) and the diabetes resistant

(DR-BB) rats, together with the situations known to alter the balance between autoreac-

tive (A) and ART2

+ "

regulatory" (R) cells. Also indicated are the genetic susceptibility

loci associated with DP-BB and the DR-BB strains. The DP-BB rat is in a state of dis-

equilbrium between its autoreactive cells and "regulatory cells because of the lym-

phopenia caused by iddml/ian4. The end result is that the autoreactive cells selectively

squelch the j3-ce11s of the pancreatic islets. Balance can be restored by transfusion of his-

to compatible ART2+ T cells. The DR-BB rat is in a natural state of equilibrium, but that

equilibrium can be pertrbed by a depletion of ART+ cells in conjunction with a strong

immune stimulus such as poly I:C. Infection with a virus such as KRV (Kilham rat virus)

can also disrupt the balance leading to overt diabetes expression.



The hypothesis states that expression of diabetes is dependent on a balance between

autoreactive effector cells and "regulatory" suppressor-like cells that keep these autoreac-

tive cells in check. With the DPBB , the ability to adoptively transfer splenic populations

to non-diabetic animals causing overt diabetes , suggests the presence of some autoreac-

tive lymphocytic population. . The abilty to prevent disease in the DPBB rat by transfer-

ring AR T2+ T cells to deficient animals suggests some sort of regulatory population

amongst the ART2+ cells. The DRBB provides a secondar example that further supports

the "Balance Hypothesis . Because there is no lymphopenia in the DRBB , the balance

between autoimmune effector populations and regulatory populations is favorable. 

pertrbing that balance with a depleting antibody for ART2+ cells and an immune stimu-

Ius such as poly I:C , one can generate a state that results in overt disease. Cyclophos-

phamide and low dose irradiation can also precipitate diabetes in the DRBB as can viral

infection with KRV (Kilham rat virus). Adoptive transfer experiments have shown that

the DRBB harbor autoreactive populations, similar to the DP , that are capable of attack-

ing the pancreatic j3-cells.

ART2

Because ART2 has remained a major marker that differentiates between autoim-

mune effector cells and regulatory cells, the physiologic role of ART2 becomes an impor-

tant question for immunologists. What is ART2? ART2 is a glycosylphosphatidylinosi-

tol (GPI) - linked protein found on the surface of varous populations ofT lymphocytes

NK cells, and intra-epithelial gut lymphocytes (IELs) (55). As previously noted, ART2 is



an antigenic deterinant of "regulatory T cell populations that prevents diabetes expres-

. sion in the BB rat. ART2 comes in two forms: cell associated (GPI-linked) and soluble.

In the rat, ART2 is encoded at a single locus on chromosome l; two alleles, ART2. l and

ART2.2 have been identified. ART2. l and ART2.2 are 95% identical differing by ten

. amino acids. Within that ten amino acids, ART2. l contains a glycosylation consensus

site; ART2. l has been demonstrated to be glycosylated on lymphocytes (56). In the

mouse, ART2 is found as two genes from a duplication event; Ar2a and Art2b (57). The

human ART210cus contains a pseudogene with thee stop codons and is not expressed

(58). Though this fact has caused some controversy over the relevance of studying

ART2, there are at least four other known ARTs that are expressed in the human and two

ofthem have already been demonstrated to be expressed by the immune system, ARTl

and ART4 (59).

ART2 is a member of the mono-ADP-ribosyl transferase family of proteins in-

eluding the bacterial toxins , cholera toxin and pertssis toxin (60). This protein family

exerts its effects by catalyzing the ADP-ribosylation of proteins in a post-translational

modification that, analogous to phosphorylation, can modulate target function. The result

of ths ADP-ribsoylation is either activation or inactivation of the target molecule. ART

activity in the BB rat appears to alter T cell immune function and may modulate directly

diabetes expression (6l). In the mouse, ART2 levels are known to correlate inversely

with autoimmunity in at least two models (62;63). There is also evidence in normal mice

that an ART2-1ike molecule is important in regulation ofT cell cytotoxicity (64).



ART2 Hypothesis

The long-term hypothesis ofthis dissertation is that as a member of the ADP-

bosyl transferase super-family of proteins, ART2 modulates immune function via the

enzymatic activities that are intrinsic to that super-family. Furthermore, ART2 immuno-

C modulation may playa role in regulating the autoimmune effector cells that can, when

unrestrained, initiate processes that lead to overt diabetes in the BB rat model.

Chapter Conclusions

Intrnsic to development of a plan for diabetes prevention is a better understanding

of the underlying etiologies that lead to overt disease. In the human, as described in

Chapter l , a combination of genetics and the environment appear to lead to an autoim-

mune state that selectively attacks and destroys the pancreatic P-cells, the very cells that

are responsible for insulin secretion. Several animal models have been developed over

the years to better understand the varyng genetic, environmental , and immune states that

. can lead to overt diabetes. The focus of this work has been the BB rat from which the

Balance Hypothesis was derived. Important to the hypothesis is the antigenic determinant

ART2 , which remains the only marker that distinguishes between autoimmune effector

cells and "regulatory" cells over the 30 years since the discovery of the BB rat. This leads

to the question

, '

what is ART2?' ART2 is a GPI- linked T cell surface protein that is part

of a family of enzymes called ARTs. Often an intrinsic enzymatic activity can provide

ight into the physiologic role of a protein. Before exploring ART2 further, the next



chapter wil serve to introduce the ART superfamily and provide the background needed

.10 take a closer look at the ART2 molecule.



Chapter 3 ADP-Ribosyltransferase Super-family

Chapter Introduction

The purpose of this chapter is to introduce the ADP-ribosyltransferase (ART) su-

per-family and its varous subgroups and develop an understanding of how their enzy-

matic fuctions can influence physiologic conditions. What has previously been estab-

lished about ARTs, their catalytic activities as well as their relationships to ART2 wil be

introduced. The chapter wil take a two-pronged approach; first, an introduction to the

biology of these molecules and second, a closer inspection of the strctural biochemistr

behind the catalytic activities. Since the pool of ARTs that have been modeled by x-ray

crystallography is steadily growing, patterns should emerge that provide insights into the

activities of the entire super-family.

Prokaryotic ADP-Ribosyltransferases

Cholera toxin

Early studies ofthe mono-ARTs center on the bacterial toxins involved in the

pathogenesis of cholera, diphtheria, and pertssis. The toxins playa major role in viru-

lence of colonizing bacteria and are often responsible for the pathogenesis of disease.

Cholera, a disease with the principal symptom of severe, dehydrating diarhea, is endemic

to the developing countries of Asia and Amca. It was among a group of emerging infec-

tious diseases of the 1990' s particularly in South and Central America where the Vibrio

cholera Ol serotype reached epidemic levels (65;66). A second and new major serotype



0139 spread from India throughout Asia and the Middle East at almost epidemic levels in

1992 (67;68). There are also several other "non-O l" strains that are responsible for the

sporadic cases of gastroenteritis that can occur. Cholera is caused by ingestion of food or

water contaminated by the bacteria Vibrio cholerae. In fact, municipal water supplies

were determined to be the source of a majority of cases in the Peruvian epidemics of the

1990' s (69). The seminal observation that water was one of the major routes for cholera

transmission was made by John Snow durng the cholera epidemic of London in l854

(70). In l883 , Robert Koch was the first to demonstrate that cholera is produced by an

organism that he designated the "comma-shaped" bacteria (71).

Following colonization ofthe intestinal tract V. cholerae go on to produce their

major virulence factor, cholera toxin (CT). CT is an oligomeric protein consisting of one

catalytic A subunit and five B subunits (72) (Fig 6). The B subunit of the toxin binds to

ganglioside GMl on the surface of epithelial cells (73). Upon GMl binding, CT is then

endocytosed and follows retrograde transport from the endosomes to the Golgi and ER

before translocation to the cytosol (74). The A subunit is then activated by reduction into

fragments AI , the enzatically active ART, and A2, the anchor to the B subunit (72).

Al passes into the cytosol and ADP-ribosylates an arginine residue in the a-subunit of the

heterotrmeric GTP-binding protein, Gs, which is the stimulatory subunit of the adenylyl

cyclase complex (75). This leads to constitutive activation of the adenylyl cyclase com-

plex, resulting in increased and sustained production of the second messenger, cAMP.

Because of the effects of cAMP on various cellular systems, there is increased chloride

secretion. This results in decreased sodium absorption, and because of the subsequent
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Figure 6. Illustration of Cholera Toxin (CT) Biology. Cholera toxin is secreted by

the bacteria Vibrio cho/erae upon colonization of the intestinal tract. CT is an oligomeric

protein consisting of one catalytic A subunit and five B subunits. The B subunits bind to

GMl ganglioside on the surface of epithelial cells and promote the internalization ofthe

A subunt. Upon translocation to the cytosol, the A subunit proceds to make use of intra-

cellular stores ofNAD to catalyze the ADP-ribosylation ofthe GsCl -subunit ofthe ade-

nylyl cyclase complex. This results in constitutive activation of the adenylyl cyclase

complex and elevation of cytosolic levels of cyclic AMP (cAMP), a potent second mes-

senger which influences varous processes such as the transcription of cytokines and the

regulation of cr ion pumps. Disruption of cr pumps results in massive fluid and electro-

lyte losses that culminate in a severe, dehydrating diarhea, the hallmark symptom of

cholera.



osmotic effects , massive fluid losses that translate to the severe, dehydrating diarrhea and

electrolyte loss that are the hallmark of the disease.

Secondary effects of elevated cAMP include changes in the transcription and

translation ofthe immunoregulatory cytokines , IL-6 and ILIO , which are secreted from

the epithelial cells. CT may also lead to increased prostaglandin production which has

been suggested to be even more relevant to the gastrointestinal fluid and electrolyte

losses. This stems from data showing decreased fluid and electrolyte loss in animals that

are treated with inhibitors to prostaglandin synthesis (76). Other correlative data have

demonstrated that patients with cholera have increased prostaglandin E2 concentrations in

their intestinal samples (77).

Pertussis

Pertssis Toxin (PT) is the main virulence factor of several toxins secreted by the

bacterium Bordetella pertussis which causes the disease commonly known as whooping

cough (78). Vaccination against this toxin can actually confer considerable protection

against infection by B. pertussis (79). Like CT, PT is an A-B toxin. The Sl subunit (A)

contains the catalytic domain for ADP-ribosyltransferase activity (78). The B oligomer is

composed of subunits S2 , S3 , S4 (x2), and S5 , and is responsible for binding to the cells.

Pertssis toxin catalyzes the transfer of ADP-ribose from NAD to cysteine residues of the

a-subunit ofheterotrmeric, inhibitory G-proteins. The a-subunit of OJ, an inhibitory

protein, becomes uncoupled from its receptor, resulting in constitutive activation of ade-

nylyl cyclase, thus accomplishing an effect similar to cholera toxin though through a



different target. PT also ADP-ribosylates cysteine 347 oftransducin, an abundant retinal

heterotrimeric GTP-binding protein that couples the rod outer segment light receptor

rhodopsin, to a cGMP phosphodiesterase involved in retinal signal transduction (80).

Diphtheria

Diphtheria is an acute respiratory disease caused by Corynebacterium diphtheria

a pleiomorphic gram-positive bacilus. Toxigenic strains cause a pseudomembranous

phargitis with myocarditis, neurtis and, nephrtis developing as secondary complica-

tions. The principal cause of virulence in toxigenic strains is diphtheria toxin (DT),

which was actually the first toxin found to produce its effect through ADP-ribosylation

(8l). DT is a 58 kDa protein secreted by strains ofC. diphtheria that are infected by a

phage that cares the DT gene (82). DT consists of three domains; R, T d C. The R

and T domains assist with binding and deliver of the catalytic C domain to the cytosol of

the host cell. The N-terminal C domain of22 kDa, is proteolytically cleaved and reduced

(Fig 7) to become the active toxin during delivery (83;84). The active fragment catalyzes

the transfer of the ADP-ribosyl moiety to the diphthamide (85) ofthe eukarotic protein

elongation factor 2 (eEF-2), inactivating eEF-2 in a way that results in inhibition of pro-

tein synthesis (81). Diphthamide is a unique, posttranslationally modified histidine resi-

due found only in EF-2. By shutting down protein synthesis, DT effectively kils the tar-

get cell. Dilution studies have revealed that the catalytic activity of diphtheria toxin is so

efficient at inactivating eEF-2 that it only takes a single molecule of fragment A ofDT to

kil an entire cell (86).
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Figure 7 . Diphtheria Toxin Biology. Diphtheria toxin (DT) is secreted by the bacte-

rium Corynebacterium diphtheriae and is composed of three domains. The N-terminal

C domain is responsible for catalytic activity. The C domain is activated by a process of

proteolytic nicking and sulfhydryl reduction as it enters the cytosol. In the cytosol , DT

makes use of the cellular NAD stores to ADP-ribosylate eukaryotic elongation factor 2 .

(eEF-2) at diphthamide, the posttranslationally modified histidine found only in elonga-

tion factor 2. This ADP-ribosylation inactivates eEF-2 and shuts down all cellular protein

synthesis , ultimately resulting in cell death.



Pseudomonas

Pseudomonas aeruginosa is a gram negative, nonfermenting bacilus that is rela-

tively common in the environment and can contaminate sources of water and distiled wa-

ter (87). In the past , it has been demonstrated to be the cause of infections from hot tubs

and contact lens solutions (88;89). P. aeruginosa is of particular significance because of

its potential as a pathogen in hospitals. It is often found in immunocompromised hosts

(90), bum patients, and cystic fibrosis patients (91). Of concern some strains are resistant

to multiple antibiotics (92).

The virulence of P. aeurigonosa has been demonstrated to be associated with a

number of substances including toxins, proteases, hemolysins, lipases, adhesions, agglu-

tinins, pili, enterotoxins, and various other enzymes (93). Of interest to this present work

are two ADP-ribosyltransferase toxins, exotoxin A(ET A) and exoenze S (ExoS).

ETA, one of the more toxic factors secreted by P. aeruginosa behaves in a similar fash-

ion to DT by ADP-ribosylation of diphthamide on eEF-2 and subsequent inhibition of

protein synthesis followed by cell death (94). ExoS , on the other hand, appears to ADP-

ribosylate arginine residues on members ofthe Ras GTP-binding protein family (95). In

contrast to ETA, ExoS is inserted into the cell by a tye II secretory apparatus requiring

contact between the bacterium and cell during infection. In cultures, ExoS ADP-

ribosylates Ras during the course of infection and disrupts Ras-mediated signal transduc-

tion (96;97). ExoS appears to ADP-ribosylate Ras at two arginine locations, R4l and

Rl28 (97;98). ADP-ribosylation at these sites, in paricular R4l , appears to disrupt gua-



nine nucleotide exchange factor (Cdc25) stimulated nucleotide exchange rates, thus af-

fecting signal transduction (99).

Clostridium botulinum C3 exoenzyme represents a group oftoxin that selectively

modifies the low molecular mass GTP-binding proteins , RhoA, B , and C (1OO;lOl). The

C3 group, which include toxins secreted from C. botulinum and C. /imosum as well as

Bacillus cereus and epidermal differentiation inhibitor (EDIN) from Staphylococcus

aureus tend to be about 25 kDa in molecular mass and are very basic with pIs::9 (102).

Unlike the toxins previously mentioned , the C3 group ADP-ribosylate asparagine resi-

dues, in particular N4l of rho (l03). ADP-ribosylation of rho proteins inactivates them

causing a disruption of the actin cytoskeleton, resulting in depolymerization of the actin

(102). Inactivation of rho also leads to a number of down-stream effects aside from the

disregulation of the actin cytoskeleton. There is disruption of several signal transduction

processes including those involving phosphoinositide- kinase, phosphatidylinositol-

phosphate- kinase, phospholipase D , smooth muscle contraction, endocytosis , and tran-

scriptional activation (including inhibition of IL-2 transcription following ligation of the

T cell receptor) (104; 105).

Eukaryotic ADP-Ribosyltransferases

Mammalian ARTs, in particular ART1 and ART2

Early biological studies of the mono-ARTs, which centered around the principal

virulence factors of cholera, pertssis , and diphtheria, revealed that these toxins influ-



enced cellular physiology by modifyng various target proteins, in paricular, G proteins.

As recently as lO years ago , the first mammalian mono-ART was identified and was as-

sociated with rabbit skeletal muscle (106). The transferase was a GPI-anchored cell sur-

face protein,' termed ARTl , and determined to have NAD-dependent, arginine-specific

ADP-ribosyl transferase activity (59;l06). Though the biological relevance of this activ-

ity was not clear at the time, it became evident that ARTI could play an important role in

signaling. In C2Cl2 mouse myoblasts , GPI-linked ARTl activity increased on differen-

tiation to myotubes (107). Incubation of intact C2Cl2 cells with exogenous NAD re-

suited in the ADP-ribosylation of the laminin-binding protein, integrn a7 , suggesting a

regulatory role for ADP-ribosylation in cell adhesion and myogenesis (59).

Not long after the cloning of ARTl came the recognition that there was a larger

pool of mammalian mono-ARTs. ARTl enzymes had significant sequence identity to the

ART2 (known as RT6 at the time) family of rodent T cell alloantigeps, and ART2 ex-

pressed in mammalian cell lines demonstrated GPI-anchored NAD glycohydrolase activ-

ity but not an arginine-specific transferase activity like ARTI or CT (108). To date, five

mammalian mono-ADP-ribosyl transferases (ARTl-5) have been cloned and their ex-

pression has been demonstrated in cardiac and skeletal muscle, lymphocytes, brain, and

testis (59).

Aside from the correlative relationship that established ART2 as an antigenic de-

terminant for T cells that may regulate the expression of diabetes in the BB/W rat, little is

understood of the physiologic role of ART2. Several lines of evidence began to appear



that suggest ART2 or the other ARTs (ARTl and 4) expressed in lymphocytes may have

a role in modulating T cell function. Enzymatic studies demonstrated that AR T2 fuc-

tions primarily as an NAD glycohydrolase with auto-ADP-ribosyl transferase activity

(109), and in vitro cellular assays established that NAD and related compounds resulting

from the glycohydrolase activity of ART2 appear to inhibit proliferation of rat T cells

(6l). Furter studies demonstrated that exogenous NAD appears to induce T cell apop-

tosis in naive mouse T cells which express Ar2 but not ART I (llO), and in addition

Ar2 double-knockout mice were resistant to NAD-induced apoptosis and NAD-mediated

suppression of proliferation (lll).

Work on T cell lymphomas demonstrated that the signaling kinase p56 k served

as a substrate for ARTl and concominant to the ADP-ribosylation ofp56 lck, T cell recep-

tor activation signalling was suppressed (1l2). Many other mouse T cell surface proteins

like LFA- , CD8 , CD27 , CD43 , CD44, and CD45, also appeared to be ADP-ribosylated

by incubation with exogenous NAD (1l3). ADP-ribosylation of cell surface proteins of

cytotoxic T cells correlated with a reduction in cytolytic activity and decrease prolifera-

tion (l14). The mono-ART(s) that influence CTL activity appeared to be GPI-linked be-

cause activation ofthose cells by antiCD3 , PMA, or IL-2 appeared to clip the GPI-linkage

and release the ART into the media (ll5). Similar shedding studies indicated that the

shedding of ARTs upon activation maybe mediated by a TNF-a-converting enzyme

(TACE) or another closely related metalloprotease (ll6).



Recent studies have demonstrated that innate antimicrobial proteins, called de-

fensins , are also targets for ADP-ribosylation by ARTl-like molecules (ll?). Functional

assays revealed that defensin- l specifically lost its antimicrobial and cytotoxic activities

upon ADP-ribosylation by ARTl but was stil able to stimulate chemotaxis ofT cells and

IL-8 production. The study went on to demonstrate that ADP-ribosylation of defensins

could be detected in humans and that a higher level of ADP-ribosylated defensins could

be found in bronchoalveolar lavage fluids from smokers compared to non-smokers.

What has arsen from these studies is the idea that monoARTs may, in part, playa

physiologic role in modulating T cell function by ADP-ribosylating cell surface proteins

and inhibiting activation induced signaling oflymphocytes. Coversely, when the immune

system is activated, the ART is then clipped and released into the serum where it can no

longer influence the activated lymphocyte. How then is the NAD available? Serum lev-

els ofNAD are estimated to be as low as lO-40nM (ll8). Intracelhllar stores ofNAD

vary from 2001lM- lmM depending on the level of metabolic activity in the cell. There

are three theoretical scenaros that can answer this (Fig 8). The first scenario is that the

cell makes use of Connexin43 hemichannels which can serve as flux pores for NAD and

whose flow may be regulated by Ca2+ levels and pH (1l8). Connexins have already been

implicated in providing NAD for the monoART-related CD38-1ike glycohydrolases

which wil be discussed in the ADP-ribosyl cyclase section of this chapter (1l9; l20).

. The second scenerio is that in areas of inflammation where these lymphocytes would



Figure 8

mM (CaHigh pH Basal

extracellular

cytosol

NAD NAD

mM (Ca
Low pH

Cx43

NAD

Inflammation
Cell Lysis

(NAD)

GPI-anchored
ARTs



Figure 8. Theoretical Mechanisms of NAD Availabilty. A. Connexin 43

hemichannels. NAD can diffuse down its concentration gradient through the aid of Con-

nexin 43 hemichannels which are influenced by various conditions of pH and Ca . The

NAD can then act in an autocrine or paracrine fashion to serve as a substrate for extracel-

lular ARTs. B. Inflammation. Under conditions of inflammation and lysis , intracellular

stores ofNAD can be released in high concentrations into the microenvironment and be

available as a substrate for ARTs. C. Endocytosis. Because of their GPI-anchor and its

association with lipid rafts, it is possible that cell surface ARTs may be cycled to and

from endosomal vesicles. Under the right conditions, the ARTs, like their toxin cousins

may undergo retrograde transduction through the Golgi and ER ultimately arving in the

cytosol where they can make use of the intracellular stores ofNAD.



travel, there is enough cell death and lysis to elevate the microenvironment levels ofNAD

to concentrations that are comparable to the cell, thus activating the ARTs (lll). A final

possible scenaro is that under the right conditions , the ART may be internalized in a

manner like the toxins that may allow retrograde transport and release into the cytosol

where the ART can then make use of intracellular NAD stores.

PARPs

The PARPs are a growing subgroup of the ART super-family of proteins and are

involved in regulation of a number of processes in the nucleus. Foremost, P ARs are

shown to be among the earliest responders to DNA damage by synthesizing large poly-

mers of ADP-ribose upon binding to nicks in DNA. P ARP- l activation can mediate cas-

pase-independent cell death in ischemia-reperfusion injury after cerebral ischemia or

myocardial infarction by the translocation of apoptosis-inducing factor (AIF) from the

mitochondria to the nucleus (12l). Tankase, a l42 kD protein witR. a catalytic PARP

module, has been identified and localized to telomeres where it is thought to influence

telomere function by poly(ADP)-ribosylation ofTRF- l (telomeric repeat binding factor-

l), a negative regulator oftelomere length maintenance (l22). Lastly,

Drosophila P ARP has been shown to influence chromatin puffng in response to envi-

ronmental stress as a mechanism for facilitating the transcription of certain heat-shock

proteins (123).

P ARP has also been implicated in the development of diabetes through the Oka-

moto Model developed some twenty years ago (39). The hypothesis of the Okamoto



model first based on the alloxan and streptozotocin models of diabetes proposed that, in

response to alloxan or streptozotocin, free radicals would be generated that would cause

DNA strand breaks upregulating the activity ofP ARP (124). Though the mechanism 

not completely understood , P ARP appears to activate the DNA repair machinery of the

leus in response to these breaks by consuming NAD as a substrate in the process and

leading to a depletion of energy stores and ultimately -cell death. Ths NAD depletion

and -cell death could be dose-dependently blocked by the radical scavengers superoxide

dismutase and catalase and PARP inhibitors such as nicotinamide (125;l26). Furter

support for the Okamoto Model came from laboratories that developed P AR-knockout

mice (127- 129). The PARP-knockout mice were resistant to streptozotocin- induced dia-

betes.

ADP-Ribosyl cyclase

ADP-ribosyl cyclase was first discovered in sea urchin 
(Aplysia califarnica) egg

extracts as catalytic activity that converted NAD to a C 2+ 
-releasing metabolite (130; 13l).

Ths metabolite turned out to be the molecule, cyclic ADP-ribose (cADPR), and its Ca

mobilizing properties were discovered to be distinct from inositol l 5 trphosphate

(132). Since then accumulating evidence indicates that cADPR plays an important role as

a Ca2+ messenger regulating a number of cellular functions in plants and animals. Clon-

ing of the Aplysia ADP-ribosyl cyclase revealed an enzyme with close sequence identity

to CD38 , a lymphocyte antigenic marker for which no activity was previously known

(133). CD38 and a couple of closely related enzymes had primarily NAD glycohydrolase



activity, with a small amount of ADP-ribosyl cyclase activity (132). CD38-like NAD

glycohydrolases generate free ADPR through a short-lived intermediate of cADPR, giv-

ing CD38 a multifunctional role as both ADP-ribosyl cyclase and a cADP-ribosyl hy-

drolase (134; 135).

Cyclic ADP-ribose is a potent and universal calcium mobilizer, and in mammals

cADPR is involved in a number of Ca
2+ -dependent functions including proliferation, con-

traction, and secretion. Because CD38 is an ectoezyme anchored to the cell by a trans-

membrane region, NAD must be trafficked outside the cell to generate the cADPR signal

. and then the cADPR must be trafficked back into the cell to elicit the Ca
2+ -induced sig-

naling (ll8). Recent works have demonstrated that the protein Connexin43 (Cx43), a

gap junction protein, can form hexameric hemichanels that allow effux ofNAD down

its concentration gradient where it can sere as a substrate for CD38 (ll9). Once CD38

catalyzes the cADPR, oligomeric CD38 coupled to the cADPR allows translocation of

the cADPR across the cell membrane and into the cytosol. In 3T3 fibroblasts, this Cx43-

CD38 cross-talk has been demonstrated to have paracrine effects at increasing intracellu-

lar calcium and enhancing proliferation of3T3 fibroblasts (120). In the j3cell , the Oka-

moto group has demonstrated that cADPR generated by CD38 appears to playa role in

the ATP-dependent glucose signaling of insulin secretion (136).

SIR2

The Sir2 (silent information regulator 2) family of histone/protein deacetylases

deserve brief mention as potential distant cousins to the ART superfamily. The Sir2 fam-



ily of enzymes is a unique class of deacetylases that are highly conserved from prokaro-

tes to humans (137). In yeast, Sir2 is required for silencing at the mating-tye loci , te-

lomeres, and ribosomal DNA. Sir2 has also been implicated in life-span extension within

yeast (138) and Caenorhabditis elegans (139). Sir2 is an NAD- dependent enzyme and

though there has been some suggestion in the literature that Sir2 has a low level of ADP-

ribosyl transferase activity (140; 14l), the main catalytic function of Sir2 appears to be as

a deacetylase with the formation of an ADP-ribosylated acetyl group (1-0-acetyl-ADP-

ribose) as the product (l42).

Enzymatic reactions

Now that the biology of some of the ART family members has been established, it

is important to expand on the catalytic activities that appear to be responsible for the

physiologic roles ofthese molecules (Fig 9). ARTs catalyze the transfer of the ADP-

ribose (ADPR) subunit ofNAD to substrates in a covalent modification analogous to

phosphorylation. There are four major classes of substrate for the ADP-ribosylation reac-

tion; amino acid, the ADP-ribose molecule, NAD , and water. The SIR-1ike enzymes

which are considered to be distantly related to the ARTs, catalyze the transfer of ADPR to

acetylated lysines. For a breakdown ofthe different ARTs and their respective activities

and target substrates , see Figure lO.
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Figure 9. ADP-ribosylation Scheme. All ARTs utilize NAD in a reaction that cata-

lyzes the cleavage on the glycosidic bond between nicotinamide and ADP-ribose and

transfers the ribose to some reactive substrate (R). R can be one of a number of amino

acids, ADP-ribose, water, and in the case of the SIR2 family of deacetylases, R can be

acetylated lysine.



Figure 

AMINO ACID ADPR

ART TRASFERASE / AUTO RESIDUE POLY/CYCLIC NADase

Y/N *H* N/N
ETA Y/Y *H* N/N

PARP Y/Y Y/N
ART2 . 2 N/Y N/N

ART 1 Y/Y N/N
Y/Y N/N
Y/N N/N

VIP Y/Y N/N
Y/N N/N

ADPRcyclase N/N **D/Y
SIR2 *Y/N

Notes:
*H* :
*Y:
**D:

diphthamide (post-translationally modified histidine)
low level of transferase acti vi ty detected
low levels of dimerization activity demonstrated



Figure 10. ADP-ribosylation Table. There are varous components to the catalytic

activities ofthe ART family of proteins: amino acid tranferase, exogenous and auto;

poly(ADP-ribo polymerase; ADP-ribosyl cyclase; and NAD glycohydrolase (NADase).

Figure lO summares a series of ARTs and their respective activities. Note that most

ARTs catalyze the NADase reaction; that only P ARs are known to catalyze the poly-

merase reaction; and that only cyc1ases appear to catalyze cyclic bond formation. DT

diphthera toxin; ETA Pseudomonas aeruginosa exotoxin A; P AR , chicken poly(ADP-

ribose) polymerase; ART2. , rat ART2.2 allele; ARTl , rabbit ARTl; CT, cholera toxin;

, pertssis toxin; VIP , Bacilus cereus toxin; C3 , Clotrdial C3 exotoxin; ADPRcy-

clase, ADP-ribosyl cyclase; SIR2 , silent information regulator 2 deacetylase.



Amino Acids as Substrates

Most ARTs catalyze the transfer ofthe ADP-ribose subunit ftom the NAD to

some amino acid either on an exogenous protein or on the ART itself. When the transfer

is to an exogenous protein the reaction is termed an ADP-ribosyltransferase reaction.

When the modification takes place on the ART itself, it is termed auto-ADP-ribosyl trans-

ferase activity. Most monoARTs have mono-ADP-ribosyl transferase activity. ART2

however, has only auto- DP-ribosyl transferase activity (143). PAR has both the

mono-ADP-ribosyltransferase activity to initiate polymer formation and the auto-ADP-

ribosyl transferase activity (144- 146). There are no reports in the literature to date that

demonstrate that the ADP-ribosyl cyclases have mono or auto-ADP-ribosyl transferase

activity. The Sir2-1ike enzymes appear to have a low level of transferase activity by in

vitro studies, although mono-ADP ribosylation does not appear to be their major function.

Specific amino acid residues have been demonstrated to be ADP-ribosylated by the

monoARTs depending on the enzyme, and they include arginine, dipthamide, cysteine

and asparagine. P ARPs tend to ADP-ribosylate at lysine and glutamate residues

(l47;148). Auto-ADP-ribosylation ofPARP tends to take place in a 22 kDa internal

fragment, designated as the automodification domain (l49;150).

Auto-ADP-ribosylation often occurs at the same amino acid that the enzyme uses

for exogenous ADP-ribosylation. ART2 , for example, belongs to the arginine-specific

class of ADP-ribosyl transferases by amino acid sequence similarity to molecules like

ARTl and CT. It has been suggested by chemical stability studies ofthe ADP-



ribosylated amino acid bond that AR T2 appears to modify arginine residues by auto-

ADP-ribosyl transferase activity (109). Auto-ADP-ribosyltransferase activity appears to

be an important regulator of ART function. In CT and P ARP , auto-ADP-

ribosyl transferase activity functions to shut-down further ADP-ribosylation of exogenous

proteins in a negative-feedback loop. ART5 , a mono ART, was primarly thought to be a

NAD glycohydrolase and an auto-ADP-ribosyltransferase, but recent studies have demon-

strated that the auto-ADP-ribosylation of ART5 turns on a latent transferase activity for

exogenous substrates (15l). Further auto-ADP-ribosylation of ART5 then serves to shut

down the exogenous activity. This suggests a very tight regulation of action for ART5

and its substrates in vivo.

Initial studies of ADP-ribosylation by CT of guanidino containing compounds

(like arginine) by NMR revealed that there was a chiral switch from the form ofNAD

used in the reaction to the ex form of ADPR on the guanidine acceptor molecule. This

kind of switch was indicative ofan S like mechanism where the Cl carbon of the N-

glycosidic bond between nitcotinamide and ribose would undergo a nucleophilic attack.

Later, studies of the crystal structure of both CT and DT suggested a role for a key, highly

conserved, catalytic-site glutamate residue in stabilizing an oxycarbonium intermediate

allowing nicotimamide to leave in an SN l-like mechanism (152; l53). Though SN l-like

mechanisms typically result in a chiral mix of ex and ADP-ribosyl-arginine bonds , the

rationale for generating only ex anomers is that there may be steric hindrance in the cata-

lytic site that allows the nucleophile to attack only from one side. At this point, both
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Figure 11. like vs. like Reactions. There are two hypothesized mechanisms

for the catalysis an ART reaction; SN like or SN like. Regardless of the mechanism

nucleophilic substitution appears to be the theme. A. ARTs may carr out the ADP-

ribosylation reaction by catalyzing a nucleophilic attack on the Cl carbon of nicotinamide

mononucleotide. The result is a characteristic SN 1ike switch from the anomer to the a

anomer. B. ARTsmay car out the ADP-ribosylation reaction by catalyzing the forma-

tion of an oxycarbonium intermediate that would be subjected to a nucleophilc attack.

Though this SN l-like reaction could theoretically result in the formation of both a and 

anomers, the hypothesis is that the enzyme sterically hinders the nucleophilic attack so

that only a anomers are produced.
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Figure 12. Nucleophiles. A summary of potential nuclephiles by ART subgroup. A.

The mono-ADP-ribosyl transferases appear to prefer the amino acids arginine, dip-

thamide, cysteine, or asparagine as nuc1eophile-like substrates. B. The P ARPs appear to

prefer the amino acids lysine or glutamate as well as ADP-ribose, itself, f r the initiation

of polymer elongation at the 2' C hydroxyl moiety of adenosine. Branching reactions can

also take plase at the 2' C hydroxyl moiety of nicotinamide mononucletide. C. ADP-

ribosyl cyclases appear to prefer NAD, utilizing the Nl nitrogen of adenine rather than

hydroxyl moieties. D. Most ARTs have some basal level ofNAD glycohydrolase activity

where water serves as the substrate. E. The Sir2 family of deacetylases appear to utilize

acetatylated lysine as a nucleophile-like substrate.

Note that arrows denote the hypothesized attacking nucleophiles. G-arrow and circle sig-

nify entire guanidino group. For poly(ADP-ribose) polymerase activity, E-arow signifies

polymer elongation site, B-arow signfies polymer branching site. A-arrow and circle

signify acetyl group.



scenarios remain possible; see Figue II for a summary of the two theoretical reactions.

Though Figure II ilustrates the reactions with arginine; any other amino acid can be sub-

stituted. In fact, as discussed below not just the amino acids, but all substrates are

thought to serve as nucleophiles. Figure l2 ilustrates many of the known molecules

thought to serve as nuc1eophiles , and any of these molecules could be substituted for ar-

ginine in the reactions shown in Figure ll.

ADP-ribose as a substrate

ADP-ribose itself can serve as an acceptor substrate for the ADP-ribosylation re-

actions with P ARP. P ARP catalyzes the transfer of ADP-ribose to amino acids as cata-

lyzed by monoARTs but differs in that ADP-ribose can return to the catalytic region to

serve as an acceptor for additional ADP-ribose moieties (154). In fact, P ARP is so eff-

cient at utilizing ADP-ribose side chain as a substrate that it can generate ADP-ribose

polymers lOO or more in length (l46). Also like the mono ARTs, a.aomeric products are

formed suggesting a nucleophilc conversion from pNAD. In fact, NMR studies have

demonstrated that polyADPR polymers appear to be connected by the same a(1-2) ri-

bose-ribose linkages (155; l56). Depending on whether the adenosine ribose or the ribose

from the nicotinamide mononucleotide returns to the active site, PAR can generate lin-

ear or branching chains (154). Figure l3 ilustrates the mechanism of elongation and

branching for P ARP. P ARP is unique in its ability to catalyze mono-ADP-ribosylation

synthesize polymers from the monomer, and form polymer branch points. P AR cata-

lyzes branch points at average intervals of 20 ADP-ribose units (145; l56).
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Figure 13. Elongation and Branching ofpoly(ADP-ribose) as catalyzed by PARP.

1. Elongation of the P ARP polymer proceeds in a longitudinal fashion by catalyzing bond

formation between C2 of the adenosine ribose on the acceptor chain and Cl of the nicoti-

namide mononucleotide (NMN) ribose from the donor NAD. 2. Branching occurs be-

tween the C2 of the nicotinamide mononucleotide ribose on the polymer chain and the Cl

of the nicotinamide mononucleotide ribose from the donor NAD.



NAD as a substrate

ADP-ribosyl cyclases appear to turn the ADP-ribose moiety ofNAD over on itself

forming a cyclic bond between Nl of the adenine ring and the Cl carbon of the ribose on

the NMN moiety. Studies suggest this reaction also results from a nucle philic-like sub-

stitution (132). Interestingly, ADPR cyclase can also form dimeric bonds between the

adenine of free ADPR and the Cl carbon ofthe NMN ribose from the NAD that is being

cleaved (157). It would appear that ADP-ribose from the NAD glycohydrolase activity of

ADPR cyclase can return to the catalytic site to serve as an acceptor for the next ADPR in

a similar fashion to the polymer elongation reaction P ARP; however, dimers represent a

small portion of the total product created by the enzyme and there is no evidence to date

that oligomers of ADPR can occur.

Water

Most ARTs have some level ofNAD glycohdrolase activity where water serves as

the nucleophile in the transferase reaction. Studies have demonstrated that free ADP-

ribose and its breakdown products can have marked effects on cellular metabolism by

signaling via certain purinergic receptors (61). P ARPs (l45) and ADP-ribosyl cyclases

(132) have also been demonstrated to have varous degrees ofNAD glycohydrolase activ-

ity.

Structural Studies

Despite the lack of overall identity of primary amino acid sequences, the ART su-

per-family possess thee regions of sequence similarty that appear to form the NAD-
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Fi 9 u 
re 14. Sequence Simlarity of Several ARTs. (Adapted from Okazaki and

Moss (159)). Based on primar sequence alignent, mutational analysis and crystallog-

raphy, there are three regions of sequence similarty shared by most mono-ARTs and

P ARP. Region I contains a critical arginine typically followed by glycine. Region II con-

tains either a YXIO Y or SXS motif. Region III contains the catalytic glutamate on a p-

strand. DT, diphtheria toxin; ETA, Pseudomonas aeruginosa exotoxin A; PARP

chicken poly(ADP-ribose) polymerase; ART2.2 , rat ART2.2 allele; mART2 , mouse

Ar2a; CT, cholera toxin; PT, pertssis toxin; VIP Bacillus cereus toxin; C3 , Clotridial

C3 exotoxin; ARTT R, ART Turn-Turn Motif for arginine specificity; ARTT ART Turn-

Turn Motif for asparagine specificity.



binding cleft (Fig l4) (158). Region I tyically contains a p-strand composed of a highly

conserved doublet, consisting or either histidine or arginine tyically followed by glycine

or a small nonpolar amino acid, that appears to playa crucial role in binding NAD. Re-

gion II is aU-shaped (p-strand downward and a-helix upward) pocket that binds the

NMN moiety for catalysis. Region II is largely nonpolar and hydrophobic, which is

thought to aid in the packing ofNMN, and it is marked by conserved Y-Xw-Y (often

called the "PARP-like" group) or SXS motifs. Region II is a p-strand that begins with a

crucial glutamate residue (previously mentioned) that is present in all ARTs without ex-

ception thus far. Photoaffinity labeling, site-directed mutagenesis and crystallography

have all confirmed the significance of the glutamate with respect to ART function.

Little is understood about the mechanisms that determine substrate specificity for

the ART super- family (ie. amino acids, ADPR, water, acetylated-lysine). However, re-

cent crystal structues, primar sequence alignents , and mutagene is work have shed

insight into how mono-ARTs target specific amino acids(160). Those studies identify a

Pre-region II AR TT motif (ADP-ribosylating turn-tu motif) that may distinguish aspar-

agine vs. arginine-specific ADP-ribosyltransferases. Turn 1 (Tl) includes a conserved

FN side chain and turn 2 (T2) contains a Q or E, two amino acids upstream of the highly

conserved catalytic glutamate. The T2 glutamine appears to specify asparagine as a sub-

strate whereas the T2 glutamate appears to specify arginine. Furhermore, mutational

studies with ART2 have also indicated that the T2 glutamate confers arginine-specific

transferase activity. ART2.1 , which has NADase activity but not transferase activity for



an exogenous substrate, has a tyrosine at Tl and a glutamine at T2. There is no evidence

to suggest that ART2. l has asparagine-specific mono-ADP-ribosyltransferase activity,

but mutational work has shown that conversion of the glutamine to glutamate does confer

arginine-specific transferase activity on ART2. l (16l). The data are further supported by

the fact that the mouse homologue of ART2. , Ar2 , does contain a glutamate in the same

position and has been shown to be arginine-specific transferase activity by in vitro stud-

ies. In the study, the glutamine in ART2. l was mutated to Glu, Asp, or Ala by site-

directed mutagenesis (l6l). The Q207E mutant exhibited ADP-ribosyltransferase activ-

ity for exogenous arginine, while the Q207D mutant exhibited transferase activity, but at

lower levels. The Q207 A mutant did not exhibit any transferase activity. The NAD gly-

cohydrolase activity was affected to a much lesser extent in all mutants. A reciprocal

mutant with glutamate replaced by glutamine was carred out in mouse Ar2a, and the

mutant did not exhibit measurable levels of arginine-specific ADP-ribosyl transferase

activity. These data are consistent with the hypothesis that a glutamate at the T2 position

of the ARTT motifis important for the transfer reaction of ADP-ribose to arginine.

Crystallographic and mutational studies of chicken P ARP have shed insight into

how ADPR is targeted as a substrate for PARPs in the elongation reaction ofpoly(ADP)-

ribose polymers (162). The crystal structure of P ARP complexed with the inhibitor, car-

bonyl-NAD , revealed a superfcial , secondary binding site adjacent to the primary NAD-

binding site. This was interpreted as an "acceptor" or substrate binding site. Interest-

ingly, most key amino acids for the acceptor site appeared to come from Regions II and

III: the crucial glutamate from Region II, E988; Y896 and Y907 (conserved Ys ofRe-



gion II); and K903 (Region II). K903 appears to be unique to the P ARP subgroup of

ARTs by primar sequence alignents. Because mutations ofK903 completelyabol-

ished polymerization activity, K903 is thought to be important for that activity. Muta-

tions ofY896 and Y907 appeared to affect binding more than polymerization. M890 , pre-

Region II, appeared to provide a hydrophobic pocket for the adenine of the acceptor site

and the mutation M890V reduced polymerization by a factor larger than 200.

Dissertation Hypothesis

Recently, the auto-ADP-ribosyltransferase activity of ART2.2 was demonstrated

to be multimeric, and the level of modification appeared to be dependent upon an argin-

ine, R185 , in the Tl position of the ARTT motif (56). The observation that ART2.2 has a

multimeric auto-ADP-ribosyl transferase activity was first made be Bonnie Dickinson in

some unpublished data during a fellowship with Joel Moss s laboratory at NIH in the

mid-nineties. The experiment was a simple one; when recombinant..ART2.2 was incu-

bated with various concentrations ofNAD, multiple small band shifts indicating increas-

ing mass occurred in a Western blot for ART2. If a 32 labeled form ofNAD was used

autoradiography showed the same multimeric, band-shift pattern as by immunoblot, indi-

cating auto-ADP-ribosylation. As mentioned previously, ART2.2 and ART2. l are two

known alleles in the rat that differ by ten amino acids; they also differ in that ART2.2 has

the multimeric auto-ADP-ribosyl transferase activity but ART2. l does not. The two al-

leles differ in position Tl of the ARTT motif described above; ART2. l has a Tl tyrosine

consistent with many related ARTs, but ART2.2 has a Tl arginine. Ths led to the suspi-



cion that the Tl R may participate in the multimeric band shift patterns. The mutational

studies have now demonstrated that loss of the Tl arginine obliterates any sign of auto-

ADP-ribosylation, suggesting that it is crucial to the level of auto-modification (56).

There are three possible scenarios to account for multimeric ADP-ribosylation (Fig l5).

First, there is auto-mono-ADP-ribosylation at multiple sites on the ART2 mole-

cule, and that arginine I 85 is a crucial for allowing this to occur. Second, there maybe

intrnsic PARP activity in ART2 that allows polymers to form, perhaps on Rl85 itself.

Lastly, there could be some combination of the two. It should be noted that there is

precedent in the literature for mono-ADP-ribosylation at multiple sites with the toxins;

however, there is no evidence in the literature at this time that a mono ART can have

poly(ADP-ribose) polymerase activity. Sequence alignents at this point would also

support mono-ADP-ribosylation at multiple sites, since ART2 resembles the monoARTs

more than the "P ARP-like" ARTs.

The hypothesis of this dissertation is that ART2.2 has auto-poly(ADP-ribose) po-

lymerase activity. There arefour specific aims for this work. The first specific aim is to

design a recombinant construct of ART2 that would allow high yields of relatively pure

protein. The second aim is to design experiments that address whether or not the auto-

modification of ART2 is in part a polymer. The third aim is to determine the structure of

the polymer. The fourth aim is to identify the site of auto-poly(ADPribose) linkage.
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Figure 15. Models That Account for Multimeric Auto-ADP-ribosylation. A.

Mono-ADP-ribosylation at multiple sites. The polymer may be linear as depicted here, or

have various branch points that give it a tree-like or bush-like appearance. B. Poly-ADP-

ribosylation at a single site. C. Multiple sites of mono and short oligomers.



Chapter Conclusions

ARTs can be found to influence a wide range of biological systems. Aside from

the toxins, several lines of evidence appear to link the mamalian monoARTs, ARTI

and ART2 , to modulation of the immune system. ARTs appear to carr out their biologi-

cal roles as enzymes that catalyze the cleavage ofthe nicotinamide-ribose bond ofNAD

and the transfer of the ADP-ribose moiety to specific nucleophiles. Though water ap-

pears to be a universal nucleophile, each subgroup of ARTs tends to have their own spe-

cHic nucleophile. The different proteins within the monoART group appear to prefer one

of the amino acids , arginine, histidine, asparagine, or cysteine, as part of their acceptor

proteins. P ARPs tend to ADP-ribosylate the amino acids, lysine and glutamate, and, in

addition, P ARPs ADP-ribosylate the 2C-hydroxyls of the ribose moieties of ADPR, creat-

ing the long polymers that are specific to the P ARP group. ADP-ribosyl cyclases use the

Nl of the adenine ring as a nucleophile in the catalysis ofthe cyclic;'ond that generates

cyclicADPR as a product. Lastly, the SIR2-like enzymes appear to utilize the acetyl moi-

ety of acetylated lysine as a nucleophile in the deacetylation reaction specific to that sub-

group. Though no hybrids between each of the subgroups appear to exist, several lines of

data lead to the hypothesis that ART2 may have auto-poly(ADP-ribose) polymerase activ-

ity. This hypothesis sets the focus and specific aims for the dissertation research that fol-

lows.



Chapter 4 Materials and Methods

Chapter Introduction

The development, optimization, and/or utilization of several technologies from

different fields , including molecular biology, cellular immunology, and biochemistry,

were critical both to the development of the dissertation hypothesis and to the design of

the experimental work. In many ways , the rate-limiting factor in all the work was the

generation of a recombinant ART2 system that would allow a relatively high degree of

purty and quantity. Subcloning of ART2 required several molecular techniques such as

PCR sub-cloning, ligation, bacterial transformation, and plasmid purification. The re-

combinant constrct was designed for affinity purification with a 6(His)-tag and a maltose

binding protein fusion parner, both of which were readily removed from the ART core

sequence by insertion of a Factor Xa protease recognition site. For purification of the re-

combinant protein, techniques like guanidine-hydrochloride resolubilization of inclusion

bodies , Ni + affinity chromatography, ion exchange chromatography and amylose affnity

chromatography were developed and optimized. The recombinant protein was character-

ized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), West-

ern blots, and mass spectrometry. Enzymatic assays were performed to determine the lev-

els ofNAD glycohydrolase and auto-ADP-ribosyl transferase activity. Auto-ADP-

ribosylation was followed both by band shift assay in western blots alongside autoradio-

graphy by 32 labe1ed NAD , and by mass spectrometry. Polymer isolation included

hydroxylamine cleavage and purification, with boronate chromatography. Analysis of



reaction products required the development and optimization of anon exchange high per-

formance liquid chromatography (HPLC) followed by electro spray ionization mass spec-

trometry (ESI-MS). Identification of the modified site utilized a combination of protein

digestion and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)

mass spectrometry. Sequence information from modified peptides required peptide isola-

tion and nanoscale HPLC-electrospray MS/MS.

Materials

Unless otherwise specified most chemical reagents including cell media, buffers

salts, and reaction substrates like NAD, AMP , ADP , adenosine, adenine were obtained

from Sigma. PCR primers were obtained from BioSynthesis, Inc; Oibco BRL; or CF AR.

The pMAL-c2x vector was obtained from New England Biolabs (NEB). PCR and liga-

tion were optimized from kits supplied by Roche. PCR production purfication and

plasmid purification followed protocols set by kits available from QrGEN. Radio-

labeled NAD was obtained from either NEN 

p) 

or Amersham ( C). Scintilation

fluid was obtained from Amersham. Scinti-1ation counting was done on a Beckman

Model LS5000TD scintilation counter. Spectrophotometr was carred out on a Phar-

macia Ultraspec II UVNIS spectrophotometer. Centrifugations were carred out on a

Beckman model L-70 ultracentrifuge with rotor type SW 4l; a Sorvall Model RC-5B with

rotor types SS-34 and OS3; and an Eppendorf model 5415C microcentrfuge. A BioRad

BioLogic LP peristaltic chromatography apparatus was used for protein chromatography.



Methods

Unless otherwise specified, all data are presented as one representative of at least

3 independent experiments.

ART2.2 Construct

All DNA was quantified by spectrophotometric methods for absorption at 260 nm.

Recombinant AR T2.2 was subc10ned from the pCR2. l vector described previously (l 09)

into the 6-His modified pMAL-c2x for expression. The PCR product (forward primer 5'

GTCAGCCGCGGATCCATGCTAGACACGGCTCCC- ; reverse primer 5'

GGCGTGCCGTCGACTCACTT A TT AGCTGT A T AAGCAA TTGT AGTTG- ) was

ligated into a 6-His modified pMAL-c2x (see below) that was digested with BamHI and

Sail. The PCR reaction was carred out in a lOO /. volume with lX PCR Buffer (Roche),

5 JlM of each primer, 100 ng template DNA (pCR2. l containing ART2B), 0.2 mM

4dNTP , and 2.5 U Taq polymerase (Roche). The reaction cycle wag- cared out as 2 min

at 94 , 30 sec at 55 , and 60 sec at 72 C; was followed by 30 cycles of 30 sec at 94

, 30 sec at 55 , and 60 sec at 72 C; and was completed with a final extension of7

min at 72 C. lO Jll of the reaction were run on a 2 % agarose gel in Tris' acetate'EDTA

(T AE) buffer. The reaction product was purfied using the Qiaquick PCR purification kit

(QIAGEN). The purified product was digested with SalI and BamHI (NEB) by manufac-

turer s recommended protocols; the digested fragment was purified by the Qiaquick PCR

purfication kit, and the purified product was used in the ligation reaction.



To aid in purification of the protein product, the pMAL-c2x vector (NEB) was

modified to express a 6-His tag at the N-terminus of maltose-binding protein by ligating

the PCR product from the pMAL-c2x vector (forward primer 5'

GTCAGCCGCCA T A TGCA TCA TCA TCA TCA TCA T AAAA TCGAAGAAGGTAAC

TGG- ; reverse primer 5' -GGCGTGCCGCTCAGCACGCCAACGAAC-3' ;GibcoBRL)

into NdeI and BlpI digested pMAL-c2x.

The vector was sequenced in forward and reverse directions to confirm the pres-

ence of the 6-His modification and to confirm the sequence of the PCR product (Fig 16).

Sequencing of the vector with insert was cared out by CFAR nucleic acids facility, a

core facilty at UMASS Medical School.

Purification of Recombinant rat ART2B

The BL2l (DE3) strain was transformed with the vector and colonies were se-

lected for by ampicilin (100Jlg/ml) resistance. Cultues were grOWR at 37 C to OD6oo

1.0 , and expression was induced by lmM IPTG for 60 minutes at 37 C. Cells were

harvested and stored at - C until lysis and purification. Cell pellets were thawed from

C to 4 C in lysis buffer (5OmM Tris.Cl; 500mM NaCl , pH 7.5). Cells were lysed by

sonication (W-385 Ultrasonics Inc.) with the following settings: output control 9, 50%

duty cycle, and 1 sec pulses. Lysates were spun at 32 000 x g, 40 minutes , 4 C. Because

most of the ART2.2 expressed was in the form of inclusion bodies , the pellets were col-

lected for guanidine resolubilization (25 mM Tris. , pH 7.5; 6 M guanidine hydrochlo-

ride; 1 mM reduced glutathione). Resolubilization took place on a rotator at 4



Figure 1

ATG CTA GAC ACG GCT CCC AAT GCA TTT GAT GAC CAG TAT GAG GGC

TGT GTC AAC AA ATG GAG GAA AAG GCA CCC CTG CTT TTA CAG GAA

GAC TTT AAT ATG AAT GCG AA TTA AA GTT GCG TGG GAA GAG GCA 135

136 AAG CGA TGG AAC AAC ATA AA CCT AGT AGG AGT TAT CCC 180

181 GGT TTC AAT GAT TTC CAT GGA ACG GCT TTA GTT GCC TAC ACT GGG 225

NUC 226 AGT ATC GCT GTA GAT TTT AAC AGA GCT GTT AGG GGA TTC AAG GAA 270

105
NUC 271 AAT CCT GGT CAA TTC CAC TAC AAG GCC TTC CAT TAC TAC TTA ACA 315

106 120
NUC 316 AGA GCT CTT CAG CTT TTG AGT AAC GGG GAT TGT CAT TCA GTC TAC 360

121 135
NUC 361 CGA GGC ACT AAG ACC AGG TTT CAC TAT ACT GGA GCT GGC TCC GTG 405

136 150
NUC 406 CGA TTC GGG CAG TTC ACG TCT TCA TCT TTA TCT AAG AA GTA GCT 450

151 165
N'C 451 CAA TCT CAA GAG TTT TTC AGT GAT CAT GGG ACG CTG TTC ATC ATC 495

166 180
NUC 496 AA ACC TGC TTG GGG GTT TAT ATC AA GAA TTC TCT TTC CGT CCT 540

181 195
N'C 541 GAC CAA GAG GAG GTG TTA ATT CCA GGC TAT GAG GTA TAT CAG 585

196 210
NUC 586 GTC AGG ACA CAA GGC TAC AAC GAA ATT TTC CTG GAC TCC CCG AAG 630

211 222
NUC 631 AGG AAG AAG AGC AAC TAC AAT TGC TTA TAC AGC 663



Figure 16. Sequence data on the ART2.2 recombinant construct. ART2.2 was

sub cloned into a modified pMALc2x vector and the nucleotide sequence of the clone was

confirmed by the CF AR nucleic acid facility at UMASS Medical Center. The nucleotide

sequence and deduced amino acid sequence of the clone are ilustrated and aligned by

codon.



overnight, and then the sample was centrifuged at lOO OOO x gat 4 C for 60 minutes.

Supernatants were applied to aNi ++ column (Iminodiacetic acid agarose, Sigma) equil-

brated with resolubilization buffer. A linear gradient was applied to the column to equili-

brate it in lysis buffer, and the 6HISMBPART2.2 fusion protein was eluted with an imi-

dazole (Sigma) gradient. The peak was collected and purified over a Q sepharose (Amer-

sham) column. Samples that contained NAD glycohydrolase activity were pooled, and

the 6HISMBP fusion parner was removed by a digestion with factor Xa (NEB) and a

wash through amylose resin (NEB).

Protein Assay

Protein was quantified by an assay based on the Bradford Method (163) using

Protein Dye Reagent Concentrate (BioRad) and BSA (BioRad) as a standard.

SOS-PAGE, Westerns , and Sequencing Gels

.. 

Proteins were solubilized in Laemmli sample buffer and separated by SDS-P AGE

chromatography. Gels were l.O mm thickness and 20 cm in length. Briefly, stacking gels

were made up from 4X stacking gel buffer (0.5M Tris'Cl , 0.4% SDS , pH 6.8) and 30%

(37.5:l , Biorad) acrylamide mixture to a 5% final concentration ofacrylamide. Resolv-

ing gels were made up of a 4X resolving gel buffer (1.5 M Tris'Cl , 0.4% SDS , pH 8.9) to

a final acrylamide concentration of l2%. Gels were run in 25 mM Tris, 192 mM Glycine

l % SDS , pH 8.3 , at l50 volts for 45 minutes through the stack and 300 volts for l80

minutes through the resolving gel until the bromophenol blue dye front was approxi-

mately 2 cm. from the bottom of the gel. Protein gels were fixed and stained in a



Coomassie blue solution (50% methanol, 10% acetic acid and 0.2% R250 dye) at room

temperature for 45 minutes. Destaining was cared out in a 50% methanoll1 0% acetic

acid solution overnight.

Western blots were carred out by the SDS-PAGE protocol above, but the gels

were not fixed and stained after completion of the run. Instead, proteins were transferred

using a Biorad Transblot apparatus onto nitrocellulose membranes (0.45Ilm Biorad) in a

transfer buffer (25 mM Tris, 192 mM Glycine, pH 8.3 , 20% methanol). The transfer was

cared out at lOO volts for 90 minutes. Transfer was confirmed with 1 minute ofPon-

seau S staining (Sigma). The stain was completely removed by several washes ofTBS

(50 mM Tris'Cl , l50 mM NaCl , pH 7.5). The membrane was then submerged in block-

ing buffer (7% nonfat dry milk (Biorad) in TBS) overnight at 4 C. After blocking, the

membrane was washed twice for lO minutes at room temperature in TBS- T (TBS with

05% Tween detergent (Biorad). The remaining steps were cared out at room tempera-

ture with rigorous shaking. The membrane was then submerged in primary antibody so-

lution (l 0 diluted into blocking buff r) for 60 minutes. For ART2 blots, sera containing

the rabbit polyc1onal antibody ll26 developed at the Diabetes Division ofUMASS

Medical school to the ART2 peptide, TGPLMLDT APNAFD , was used at l: lOOO dilu-

tions in blocking buffer. For polyADPR, the anti-polyADPR (BIOMOL) rabbit poly-

clonal antibody, which recognizes polymers of 8 or more in length, was used at concen-

trations of l: 1 000. Following the incubation with primary antibody, the membrane was

again washed twice with TBS- T for lO minutes each wash. Secondar antibody (goat-



anti-rabbit conjugated to horseradish peroxidase from Santa Cruz) at a dilution of 1 :5000

in blocking buffer was applied to the membrane and incubated for 30 minutes. The mem-

brane was then washed twice with TBS- T for 10 minutes and once with TBS for 5

minutes. The blot was developed with ECL chemiluminescence reagent from Amersham

on Kodak X-OMAT AR2 fim. If the blots contained 32 labeled samples , then after

chemiluminescent development, the blots were washed vigorously with TBS 3 times for

30 minutes each. The blots were exposed to film for up to 30 minutes to confirm the loss

of the chemiluminescence signal , and then were exposed to film with the aid of an inten-

sifyng screen and placed in the - C freezer for autoradiography development.

Sequencing gels were based on the method developed by the Alvarez-Gonzalez

and Jacobson (l44). Briefly, samples were solubilized in sample buffers containing 25

mM NaCl; 4mM EDTA, pH 7. 5; 0.02% xylene cyanol; 0.02% bromophenol blue; and

40% urea. Gels were poured at a 20% final concentration containing acrylamide and

bis(acrylamide) in a ratio of 19:1; 89 mM Tris Borate, pH 8.3; 2 mM EDT A; 4.4 mM

ammonium persulphate; and 3.4 mM TEMED. The gel dimensions were 20 x 20 x 0.

cm. The electrode buffer was 45 mM Tris-borate, pH 8. , and electrophoresis was car-

ried out at 400 V until the bromophenol blue dye front had migrated 2/3 of the way from

the origin to the end of the gel. At this point, electrophoresis was stopped and the gels

were exposed to film at - C overnight with the aid of an intensifyng screen.



DHBB Chromatography

Because of its affinity for cis-hydroxyl groups, dihydroxylboronyl Bio-Rex

(DHBB) affinity resin was utilized to purify reaction products ADP-ribose and poly-

ADP-ribose. DHBB affinity was prepared according to the protocols set up by Shah et al.

(145). Briefly, 25 g of Bio-Rex resin (200-400 mesh, sodium form, BioRad) was soaked

for 30 minutes in 0.25 M ammonium acetate (pH 5.0), washed with 1 liter of water, and

suspended in lOa ml of water. All reactions were then carred out maintaining a pH of

0 with hydrochloric acid and stirrng at room temperature. First, 2.5 g of l-ethyl-3-(3-

dimethylaminopropyl)carbodiimide was added to the resin and stirred for 15 minutes.

Then 2.5 g ofm-aminophenylboric acid was dissolved in l5 ml of water and added to

slurr and incubated in the dark overnight at room temperature. Following the overnight

incubation, the resin was washed with 1 liter of water; lliter of O. l M amonium acetate

pH 4.5; lliter ofO. lM ammonium bicarbonate and lM amonium chloride, pH 9.0; and

lastly with 500 ml of water. The resin was then suspended in 50 ml of storage buffer, 6

M guanidine hydrochloride, 50 mM 3-(N-morpholino)propanesulfonic acid, 10 mM

EDTA, pH 6. , for storage at 4 C in the dark. Resin capacity is confied with NAD

before use in experiments.

Enzyme Assays

NADase

NADase assays were carred out as previously described (164). Briefly assays (to-

tal volume of 0.3 ml), containing 50 mM potassium phosphate (pH 7.5); 
1 00 M p-NAD;



and 55 000 cpm carbonyl- C NAD , were incubated for 5 min at 30 C. Samples (0.

rol) of reaction mix were passed through BioRad AGl-X2(chloride form) mini-columns

(l.5ml each and equilibrated in miliQ water), and the wash-through, containing nicoti-

namide, was quantified in a scintilation counter.

Auto-ADP-ribosyl transferase

NAD concentration curve assays for studying auto-ADP-ribosylation of ART2

were cared out in a total volume of 0. l5 ml , containing l.25 Jlg purified AR T2. , lOO

mM potassium phosphate (pH 7.5); a range of nine different NAD concentrations from

l to lO mM NAD and a ratio of l.5 JlCi 32 labeled NAD to O. l mM NAD, were in-

cubated for 6 min at 30 C and were analyzed by Western blot and autoradiography.

Time-course assays (total volume of 0. 8 ml), containing lOO mM potassium phosphate

(pH 7.5); 20 mM NAD; 1 mCi 32 labeled NAD , were incubated for several time-

points at 30 C and were analyzed by Western blot and autoradiography.

To analyze whether ADP-ribose polymers were forming, ART2 and P AR were

incubated in lO ml samples containing lOO Jlg enzyme, lOO mM potassium phosphate

(pH 7.7), 25 mM NAD , and 0.5 mCi 32 labeled NAD for lO hours at C. The sam-

pies were precipitated in 25% TCA and incubated at C for 30 minutes. The samples

were thawed to 4 oC and centrifuged in the micro centrifuge for 30 miutes. Supernatants

were removed and pellets were washed twice with cold 25% TCA and then twice with

cold ethanol-acetone (50:50 v/v). After the final wash, the pellets were dried for 3 min-

utes in the speed vacuum to remove any trace ethanol-acetone. Pellets were then resolu-



bilzed with the aid of sonication in a solution of 2 M hydroxylamine (pH 7.0 with am-

monium hydroxide). Hydroxylamine cleaves the ADPR-protein bond of ART2(56). The

- freed ADP-ribose was then purified using DHBB chromatography, and after elution

samples were dried down in the speed vacuum and brought up in sequencing gel sample

buffer for analysis.

Enzymatic Digestion

To discover the site of auto-ADP-ribosyl transferase activity on ART2 , ART2 was

subjected to a limited modification with NAD. Modification reactions (lO ml) were car-

ried out with 200 J.g purified ART2 protein, O. l M potassiuIT phosphate pH 7. , and 

mM NAD , and were incubated for 30 min at 30 C. To detect polymers , the level of

modification was increased by preparng the samples with 20 mM NAD and incubating

for 60 minutes. Protein was precipitated with 25% TCA as described above. After the

pellets were washed with ethanol-acetone, they were dried and dige ted with protease

(chymotrysin, trsin, glu-c). Digestions were cared out in O. l M amonium bicar-

bonate buffer, pH 7. , containing 0.1 % (w/v) RapiGest SF detergent (Waters). Samples

were digested for 1 hour at 37 C and dried down by speed vacuum for analysis by mass

spectrometry.

HPLC

High Performance Liquid Chromatography (HPLC) was run using a Waters 600

pump and Waters dual absorbency (2487) detector with a Waters 600 controller. The

product ID column was a SynChropak Q (Eichrom) 250 x 4.6 mm ID with a 50mm guard



column. Samples ofDHBB-purified polyADPR were digested with snake venom phos-

phodiesterase I (Worthington) according to manufacturer s recommended protocols and

Shah et a . (145). The digest was carred out in 0.2 ml of digestion buffer (25 mM

Tris'CI , pH 7. , lOO mM NaCl , and 5 mM MgCl). The reaction mixture was injected into

the HPLC and applied to the column in Buffer A (20 mM Tris'Cl , pH 4.6). The flow rate

over the column was 0.5 ml/min with an average pressure of 300 psi. The column proto-

col was lOO% Buffer A for 20 minutes, a linear gradient from Buffer A to Buffer B (20

mM Tris'Cl , pH 4. , 1 M NaCl), and 100% Buffer B for 30 minutes. Elutions were fol-

lowed by monitoring ultraviolet absorption at 260 nm.

Mass Spectrometry

Samples for electrospray-ionization-mass spectrometry (ESI-MS) were desalted

using DEAE sepharose (Amersham) in amonium formate buffer (pH 5.0). Briefly,

samples were applied in lO mM ammonium formate, pH 5. , and after several washes

were eluted in 1 M amonium formate. After dryng down the samples by speed vac-

uuming, they were brought up in 50% methanol at a final concentration of lOO Jlglml and

infused at a rate of 5 Jlllmin into the ESI ion source. Negative ion ESI-mass spectra were

acquired using a ThermoFinnigan LCQ quadropole ion trap mass spectrometer. Full

spectra were acquired from m/z l50- l500 and the major ions were subsequently trapped

and MS was performed to obtain structural information.

MALDI-TOF (matrx-assisted laser desorption ionization time-of-flght) and Q-

TOP (quadropole-time-of-flight) mass spectrometry were cared out by the Evans ' Mass



Spectrometry Core Facilty at UMASS Medical Center. MALDI- TOF analysis of di-

. gested peptides were carred out on a Waters M(fLDI-L/R mass spectrometer. Sinnap-

inic acid was used as the matrix. Peptides were identified from MALDI- TOF spectra by

comparson to theoretical digests of ART2. QTOF nanoscale HPLC-MS (MS/MS) analy-

sis was carred out on a Waters Model QTOF API-US mass spectrometer. Peptides were

separated on a PorousR2 (Applied Biosciences), 10cm x 75 m internal diameter, Cl8

reverse phase HPLC column and directly introduced into the nanoelectrospray ion source

of the QTOF. Peptide sequence determination was carred out by collsional activation

decomposition analysis in the QTOF of pep tides previously identified in the MALDI-

TOF spectra.

Structural Comparisons

Structural comparsons were cared out by downloading varous ART structures

from the Protein Data Bank (PDB). PDB files that were used in the "Comparsons include:

lA26.pdb , P ARP complexed with carba-NAD; 4P AX.pdb, P ARP complexed with 8-

hydroxy-2-methyl- hydro-quinazolin-4-one; 3P AXpdb , P ARP complexed with 3-

methoxybenzamide; 2P AX.pdb , P AR complexed with 4-amino- l ,8-naphthalimide;

2PA W.pdb, PARP; lPAX.pdb, PARP complexed with 3 dihydro-5-methyl-

isoquinolinone; lAER.pdb , Domain II of Pseudomonas Aeruginosa exotoxin A com-

plexed with TAD; lHE9.pdb Pseudo. a. exotoxin S; lBPC.pdb, pertssis toxin and ATP;

lPRT.pdb, pertssis toxin; lGXY.pdb , ART2.2 crystal form A; lGXZ.pdb , ART2.2 crys-

tal form B; lGYO.pdb , ART2.2 crystal form C; lLTS.pdb, heat-labile enterotoxin



(E. coli); 1 SGK.pdb, diphtheria toxin; 1 TOX.pdb , diphtheria toxin with NAD; lXTC.pdb

cholera toxin; lGZF.pdb , C3 Toxin; lQS2.pdb , VIP Toxin; lLBE.pdb Aplysia ADPR

cyclase. Various ART structures were aligned using the program O. Figures were gener-

ated from the aligned structures with PyMol , an open source molecular modeling pro-

gram.



. Chapter 5 Results

Chapter Introduction

Chapter 5 will serve to ilustrate the experimental results of the dissertation work.

To address the major hypothesis, several approaches were taken. Strctural modeling

analyzed the similarties of the various ART groups and, in paricular, compared the simi-

larties and differences ofPARP and ART2. Several studies of the recombinant construct

were cared out to introduce it as a system for the study of ART2 auto-ADP-ribosylation.

A combination of electrophoresis , HPLC , and mass spectrometr were used to specifi-

cally address whether the recombinant constrct had P AR-like activity and to gather any

strctural information on the polymer. Lastly, a combination of enzatic digestion

HPLC, and mass spectrometry were used to identify any sites of auto-ADP-ribosylation

of ART2.

Structural Alignments and Similarities

Recent resolution of the crystal strcture of ART2.2 provided the data with which

to perform a multiple structural alignent of ART2. , several mono-ART toxins , P ARP

and ADP-ribosyl cyclase to compare their catalytic regions (l65). Figure l7 ilustrates

the aligned peptide backbones of the regions of strctural similarty of several crystallized

ARTs. The regions center on the NAD-binding cleft. NAD from the NAD-bound diph-

thera toxin structure (lXTC.pdb) is ilustrated to show how NAD sits in the cleft.
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Figu re 17. Structural insights to the ART family of proteins. A. Structural

Alignent. The peptide backbones of the crystal structure models of several ARTs were

aligned to analyze secondary and tertiary structural similarities on which to base a pri-

mar sequence alignent. The catalytic sites of several ARTs aligned w ll with three

regions of similarity. Region I contained a j3-sheet composed of three short j3-strands.

Region II contained an a-helix down to j3-strand up, U-shaped, pocket that appears to

hold the nicotinamide moiety. Region II contained a coil to j3-strand loop. DT is used to

model the ribbon caroon and NAD from the DT strcture is positioned in the catalytic

cleft. DT, blue; PARP , red; ETA, cyan; PT, green; ART2 , yellow; CT, orange; C3

salmon; VIP , violet; NAD, gray. B. Aplysia ADP-ribosyl cyclase. ADP-ribosyl cyclase

does not appear to contain a Region I, but does contain a Region II and a varant version

of Region II as an a-helix. C. SIR2 with NAD. Though SIR2 does not contain any re-

gions of similarity with the catalytic clefts of the other ARTs, SIR2 does appear to hold

NAD in a similar conformation as indicated by the arrow.



Alignent revealed that all ARTs contained some level of structural similarty except the

SIR2, which had no appreciable similarity to the strctures ofthe other ARTs. SIR2

however, did share share similarity with the way NAD was positioned in its cleft, which

wil be discussed later. As previously determined by primary sequence analysis, the cata-

lytic site can be broken down .into three regions; however, some additional data about

each region were generated by this strctural approach.

Region I was made up ofthree, largely nonpolar, anti-parallel p-strands forming a

small p-sheet. This p-sheet was present in all the ARTs crystallzed thus far with the ex-

ception ofthe Aplysia ADP-ribosyl cyclase, which was the most divergent ART super-

family member by secondary and tertiary structure. The first two p-strands of Region I

bound adenosine and were each 6-7 amino acids in length. The third p-strand of Region I

contained the highly conserved arginine or histidine that is typically followed by a glycine

and appears to be crucial for NAD binding. This innermost p-strand was adjacent to Re-

gion II. Interestingly, the p-strands do not form from hairpin turns of primar sequence

typically associated with p-sheets but come from three different stretches of primary se-

quence: the outer most p-strand is a stretch of amino acids that is C-terminal of Region

II according to primar sequence; the second p-strand contains a stretch of amino acids

that is N-terminal to Region II but C terminal to Region II; and the third and inner most

p-strand that is adjacent to Region II by tertiar structure is 20-30 amino acids N-terminal

of Region II by primary sequence.



Region II appears to be present in all ARTs, including the ADP-ribosyl cyclase

and was the most highly conserved by secondary structure. Region II could be general-

ized as having a Y/SXS-XIO-Y/F motif regardless of the ART subgroup. The first Y/S

and/or final Y of the Region II motif appeared to form a hydrogen-bond with the catalytic

glutamate in many of the structures. Region by its U-shaped natue, appears to a criti-

cal pocket for the nicotinamide mononucleotide. The nicotinamide appears to be held in

a very rigid conformation.

Region III which was known as a -sheet, was also present in all ARTs , but was

expanded to include a conserved coil upstream of the catalytic glutamate which has been

referred to as the AR TT motif. Though the coil had some flexibility of strcture depend-

ing on the ART, it appeared to be an important and conserved par of the catalytic region.

The Region III of ADP-ribosyl cyclase diverged from the other family members by sec-

ondary strcture, containing a large a-helix instead of a coil to -sheet motif, but Region

II stil contained the crucial catalytic glutamate.

Primar sequence alignents and a generalized model of the three regions (Fig

l8) were derived from the structural alignents. This is the first structurally derived pri-

mar sequence alignent to contain representatives from all three ART subgroups; the

monoARTs , PARPs, and ADP-ribosyl cyclases. Of interest, K903 and M890, which are

important to the polymerase activity of P ARP, appear unique to P AR , according to the

strcturally derived primary sequence alignents.
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Figure 18. Primary Sequence Alignment Based on Structures. The three regions

of structural similarty reveal novel insights into the primary sequence alignent of the

ARTs. All ARTs but the cyclase have a three f3-strand Region I with the last strand con-

taining the conserved arginine or histidine. Region II now aligns the "P ARP -like" ARTs

with the rest by the generalized motifY/SXS-Xg/IO-Y/F motif. Region II contains a cata-

lytic glutamate in the same position in all ARTs. The insert presents a generalized car-

to on model of the tyical ART catalytic cleft.



To analyze the similarities and differences between ART2.2 and P ARP more

closely, a structural alignent between ART2.2 and PAR was perormed. Figure 19

ilustrates the structures and sequence alignents of ART2 and PARP. Carba-NAD was

situated in the ADPR acceptor site according to the P ARP crystal model (lA26.pbd) and

NAD (from the diphtheria toxin model) was situated in the primary NAD-binding site.

Both proteins had the three regions of structure and sequence similarity shared by most

ARTs and demonstrated by the peptide backbone alignent. In Region I, however

ART2 contained a parallel outer B-strand whereas P AR contained the tyical anti-

parallel B-strand. Region II of P ARP was composed of the Y -Xl 0- Y motif, but Region II

of ART2 was composed of the SXS-XlO-F motif.

K903 , which appears to be important to polymerization activity of P ARP , can be

found on the a-helix of Region II with the amide group of the lysine extending down to-

ward the catalytic glutamate. Instead of a lysine at the equivalent location on ART2

there is a valine (V155) that appears up and away from the catalytic glutamate; however

the T2 (ARTT motif) glutamine (Ql88) of ART2 does provide an amide to the same spa-

tial region as K903 ofP ARP. M890 provides a hydrophobic cushion for the acceptor site

adenine in the P ARP model. Though there is no equivalent of M890 near the potential

acceptor site of ART2 , Fl84 , with a hydrophobic side chain, appears in a similar spatial

region as M890.

Despite the similarties of tertiar structure and the substitution of similar side

chains to spatial locations important to the P ARP activity, there is a major difference be-
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Figure 19. PARP and ART2 alignment. A. Backbone alignent ofP ARP and

ART2 depicted as a ribbon diagram. NAD from the DT strcture is aligned to the cata-

lytic cleft and signified by the label "donor." Carba-NAD from the P ARP structure is

aligned to the "acceptor" site of polymer elongation. There appears to be room for an

acceptor" site in ART2 , but access to it appears to be blocked by a salt bridge between

Rl85 , El60, and DI8? B. Primary sequence alignent based on strctural data. Both

molecules share the three regions of similarity, but have very different primar amino

acid sequences associated with each region. Key conserved amino acids appear in bold.



lOl

tween AR T2.2 and P ARP in the ADPR acceptor site that sterically hinders ADPR from

entering. In P ARP , AR TT coil of Region II was pulled outward allowing for more space

for the ADP-ribose moiety of carba-NAD to enter into the site. ART2. , however, has a

constricted ARTT coil due to the formation of a salt bridge between El60, Rl85 , and

Dl87 that encloses the ADPR acceptor site (Fig 19). Rl85 is unique to ART2 and is the

same Tl arginine of the ARTT motif thought to be significant to determine the mul-

timeric natue of ART2 auto-ADP-ribosylation.

Recombinant ART2 Purification

To analyze accurately the reaction products ofthe auto-ADP-ribosylation of ART2.2

and identify any modified sites, a recombinant construct was designed to purify AR T2.2

to a level that had no detectable background levels of auto-ADP-ribosyl transferase

poly(ADP-ribose) polymerase, or NAD glycohydrolase activities. The construct was de-

signed as a fusion protein with maltose-binding protein (MBP) to aid in refolding and pu-

rifyng the recombinant ART2. The linker region between MBP and ART2 has a factor

Xa protease signal sequence to cleave and remove the MBP-fusion parner. Because

ART2 contains an N-terminal endoplasmic reticulum signal sequence and a C-terminal

GPI-anchor signal sequence (59), the sub clone was designed to exclude the initial 25

amino acids and the last 29 amino acids of the ART2 propeptide that would be posttrans-

lationally processed. The final purified construct contains most of what would be the

core ofthe soluble ART2 molecule, with a short linker sequence (ISEFGS) from the fac-

tor Xa cleavage site (Fig 20).



Figure 20

1 MPSNICKFFL TWWLIQQVTG LTGPLMLDTA PNAFDDQYEG 40
I SEFGSMLDTA PNAFDDQYEG 21

41 CVNKMEEKAP LLLQEDFNM AKLKVAWEEA KKRWNIKPS 
22 CVNKMEEKAP LLLQEDFNM AKLKVAWEEA KKRWNIKPS 

81 RSYPKGFNDF HGTALVAYTG SIAVDFNRAV RGFKENPGQF 120
62 RSYPKGFNDF HGTALVAYTG SIAVDFNRAV RGFKENPGQF 101

121 HYKAFHYYLT RALQLLSNGD CHSVYRGTKT RFHYTGAGSV 160
102 HYKAFHYYLT RALQLLSNGD CHSVYRGTKT RFHYTGAGSV 141

161 RFGQFTSSSL SKKVAQSQEF FSDHGTLFII KTCLGVYIKE 200
142 RFGQFTSSSL SKKVAQSQEF FSDHGTLFII KTCLGVYIKE 181

201 FSFRPDQEEV LIPGYEVYQK VRTQGYNEIF LDSPKRKKSN 240
182 FSFRPDQEEV LIPGYEVYQK VRTQGYNEIF LDSPKRKKSN 221

241 YNCLYSSAGA RESCVSLFLV VLPSLLVQLL CLAEP 275
222 YNCLYS 227
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Figure 20. Amino acid alignment of the deduced amio acid sequence of the

ART2 construct with that of the full length ART2 propeptide. The construct was de-

signed to contain a core region ofthe ART2 molecule that would reflect a soluble non-

GPI-linked version of the molecule. The six amino acids from the linker sequence of the

fusion partner are in red. WT, wild-type ART2.2 of the WF strain of rat; Construct, re-

combinant construct of ART2.2 subcloned from the wild-tye.
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Guanidine resolubilization of inclusion bodies and refolding on a nickel column

appeared to provide a good yield of enzymatically active and relatively pure material.

After the subsequent chromatographic steps , the specific activity was increased another

20 fold. Data from a typical purification are summarized in Fig 21 , and the final specific

activity of the purified ART2.2 was 2.3 J.mol/min.mg. Assays contained 50 mM potas-

sium phosphate (pH 7.5), lOOJ.M I3-NAD , and 55 000 cpm carbonyl- C NAD (total vol-

ume = 0.3 ml), and were incubated for 5min at 30 C. No detectable background levels

ofNADase activity were found as measured by the vector minus insert control. Interest-

ingly, the fusion protein did not appear to interfere with the ability of ART2 to catalyze

the NAD glycohydrolase activity.

Upon refolding and elution from the nickel column, the recombinant protein was de-

tected as a major band by Coomassie blue staining after SDS-P AGE. After several steps

of purification nd proteolytic processing, the final recombinant form of ART2.2 ran as a

28 kD band by SDS-P AGE and was the major band detected by Coomassie blue staining

(Fig 22).

To confirm that the purified band was ART2. , the band was excised from the gel and

sent to the DERC proteomics core facility at UMASS Medical Center. There it was di-

gested with either Lys-C or Trysin and subjected to MALDI- TOF mass spectral analysis

in a matrx of a-cyano- hydroxycinnaminic acid. The mass spectrum yielded a peptide

map that confirmed the identity of the Coomassie stained band as ART2. Figure 23



Figure 21
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Figure 21. Purification Table. Assays containing 50 mM potassium phosphate (pH

7.5), 100 M p-NAD , and 55 000 cpm carbonyl- C (total volume = 0.3 ml) were incu-

bated for 5 min at 30 C. Details of purification are given in the chapter on Materials and

Methods. Samples include: I. guanidine-nickel eluate vector minus insert (negative con-

trol); 2. guanidine-nickel eluate vector plus ART2.2 insert; 3. Q eluate; 4. Xa digest; 5.

amylose wash. Data are from one experiment representative of 6.
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Figure 22. Coomasie blue stained Purification Gel. At each point in the purifica-

tion, aliquots were set aside for SDS-PAGE analysis of purity. Samples include: l. gua-

nidine-nickel eluate vector minus insert (negative control); 2. guanidine-nickel eluate vec-

tor plus ART2.2 insert; 3. Q eluate; 4. Xa digest; 5. amylose wash.
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Pept ide Sequence

VAWEEAKK

ENPGQFHYK
APLLLQEDFNMAK
APLLLQEDFNMAK

VRTQGYNIFLDSPK
TRFHYTGAGSVRFGQFTSSSLSK
EFSFRPDQEEEVLIPGYEVYQK

Peptide Sequence

WNIKPSR
AFHYYLTR

FHYTGAGSVR
FGQFTSSSLSK

TQGYNEIFLDSPK
APLLLQEDFNMAK
APLLLQEDFNMAK
TQGYNEIFLDSPKR

VRTQGYNIFLDSPK
VRTQGYNIFLDSPKR

VAQSQEFFSDHGTLFIIK
MEEKAPLLLQEDFNMAK

GFNDFHGTALVA YTGSIA VDFNR
EFSFRPDQEEVLIPGYEVYQK

Modif ica tion

Met-ox

Modification

Met-ox
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Figure 23. Table of Peptides from In Gel Digest. The observed m/z values and

their deduced amino acid sequences are presented to confirm that the purfied band in

lane 5 of figure 22 is ART2. A. Peptides from Lys-C digestion. B. Peptides from trysin

digestion.
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summarizes the data as a table of observed mass peaks and their corresponding theoretical

amino acid sequences. Post source decay was used to confirm sequences of identified

peptides.

Recombinant ART2 Auto-ADP-ribosyl transferase activity

To confirm that the recombinant construct had auto-ADP-ribosyl transferse activity,

the purified sample was incubated with eZpJ NAD and analyzed by SDS-P AGE. The gel

samples were transferred to a nitrocellulose membrane and exposed to fim (Fig 24).

ART2.2 had auto-ADP-ribosyl transferase activity at all stages of the purification as de-

tected by SDS-P AGE in conjunction with autoradiography. In the vector minus insert

control, there was no detectable background 3z labeling to suggest contamination of an-

other ART or P ARP. A single band occurred in the fusion protein, ilustrating that the

fusion parner did not appear to interfere with auto-ADP-ribosylation. The radio-label

followed the AR T2 recombinant protein through the purfication and processing steps

where it remained the only labeled band.

To understand the kinetics ofthe auto-ADP-ribosyl transferase activity of the recom-

binant ART2 , it was incubated with a range of nine different NAD concentrations for 6

min at 30 oC. To analyze the data, the samples were run by SDS-P AGE and transferred

to nitrocellulose membrane for Western blot analysis using the ART2-specific antibody,

ll26 (Fig 25). The blot revealed an increasing level of modification at each concentra-

tion with a leveling off at the maximum of six band shifts by 7.5 mM and lOmM NAD.

The samples also contained 3z labeled NAD for autoradiography. The autoradiography



Figure 24
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Figure 24. Autoradiogram of Auto-ADP-ribosylated Recombinant ART2. The

autoradiogram depicts labeling in only ART2 samples and only where ART runs in each

sample indicating no background levels of ADP-ribosyltranferase activity from E. coli

contaminants. Samples include: I. guanidine nickel eluate vector minus insert (negative

control); 2. guanidine, nickel eluate vector plus ART2.2 insert; 3. Q eluate; 4. Xa digest;

5. amylose wash.
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Figure 25. Auto-ADP-ribosylation Concentration Curve. ART2 was incubated

with various concentrations ofNAD for 6 minutes at 30 oC to ilustrate the kinetics of

ADP-ribosylation. The upper plate is an immunoblot for ART2 with the ll26 antibody.

The lower plate is an autoradiogram. Arows depicted each band shift in molecular mass.
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confirmed the Western results of at least six band shifts, and being more sensitive the

autoradiogram demonstrated traces of a seventh band shift.

To confirm that each band shift corresponded to the molecular weight of ADP-

ribose , a imited modification with 250 J.M and 500 J.M NAD was carred out. Samples

were then desalted and purified by C4 HPLC reverse phase chromatography before being

analyzed by MALDI-TOF mass spectrometr in a matrix ofsinnapinic acid. Analysis of

unmodified AR T2 revealed a single major band of m/z = 26l 08 (Fig 26). This corre-

sponds to the theortical molecular mass, 26l 00 kDa, of the deduced amino acid sequence

ofthe recombinant construct. When ART2 was incubated with 250 J.M NAD , a second

major peak of m/z = 26647 appeared in the spectra. The difference of 539 corresponds to

the theoretical molecular mass of covalently bonded ADP-ribose which is 54l Da. When

incubated with 500 J.M NAD , fractions that eluted a minute later on the HPLC contained

the singly modified ART2 at m/z = 26645 and two more major peaks at m/z 27182 and

2773l. The differences , 537 and 549 respectively, also correspond to the molecular mass

of covalently bonded ADP-ribose (54l Da).

To determine the temporal kinetics of auto-ADP-ribosylation , ART2.2 was incubated

with 20 mM NAD over a range of nine time points that covered a 10 hour period. Sam-

pies were analyzed by Western blot and auto-radiography (Fig 27). The data revealed a

sharp rise in bandshifts to a maximum of nine in the first hour that tapered to a gradual

rise to 1 0-16 band shifts by the end of the lO hours period. At all time points, the level of

modification presented itself as a heterogeneous population.
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Figure 26. Mass spectra of Auto-ADP-ribosyaltion. A. Mass spectrum of purified

ART2 protein depicting a single ion at m/z 26107.88. B. Mass spectrum ofpurifed ART2

incubated with 250 JlM NAD for 5 minutes reveals two major ion species m/z 26107 and

m/z 26647. C. Mass spectrum of ART2 incubated with 500 JlM NAD for5 minutes re-

veals three major ion species; m/z 26645 m/z 27l82 , and m/z 2773l.
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Figure 27. Time course of Auto-ADP-ribosylation. ART2 incubated with 20 mM

NAD over a time course from 5 to 600 minutes. Samples were analyzed by Western blot

(upper plate) and autoradiography (lower plate). Arows indicate each detected band shift

in molecular mass.
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Multimeric ADP-ribosylation consists of polymers

To determine if the level of auto-ADP-ribosylation reached in the ten hour time-

course consisted of any polymers, recombinant ART2.2 and purified P ARP (BIOMOL)

were incubated with 32 labeled NAD at a concentration of 20 mM NAD for ten hours at

C. The ADPR moieties were cleaved with 2 M hydroxylamine, pH 7. , run on a

modified sequencing gel, and analyzed by autoradiography (Fig 28). As established in

the literature (144;l45), free 32 labeled ADPR was used as a marker for the monomers

bromophenol blue was used as a marker for 8-mers, and xylene cyanol was used as a

marker for 20-mers. The modified sequencing gel revealed that both the P ARP and

AR T2 samples contained a heterogeneous population of polymers. The P ARP sample

contained populations far greater than 20 in length, but the ART2 sample contained

populations that barely reached 20 in length.

Digestion of the ADP-ribose polymers (PADPR) generated by PARP with snake

venom phosphodiesterase results in a polymer specific product, 2' 0-a-

ribosyladenosine 5' , 5" bisphosphate (PR-AMP) that can be resolved by analytical , ion-

exchange HPLC and often has retention times similar to that of ADP. To confirm

whether the ADPR polymers generated by AR T2.2 had a similar structural composition

to those of P AR , the hydroxylamine cleaved polymers were digested with snake venom

phosphodiesterase and subjected to HPLC analysis. The reaction products were followed

by absorption at 260 nm for adenine (Fig 29). HPLC spectra showed a snake venom
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Figure 28. Modified Sequencing Gel. ADP-ribose moieties isolated from hydroxyl-

amine cleavage ofauto-ADP-ribosylated PARP (Lane l) and ART2 (Lane 2) were run on

a modified sequencing gel and analyzed by autoradiography. ADPR from the NADase

activity of ART2 was isolated by HPLC and used as a control for monomer. Bromophe-

nol blue is a marker for 8 mers and xylene cyanol is marker for 20-mers.
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Figure 29. HPLC analysis of reaction products generated from phosphodi-

esterase treated polymers. PARP and ART2 were incubated with NAD for 600 minutes

along with ADP-ribose as a negative control. The proteins were precipitated and their

auto-modification polymers were cleaved with hydroxylamine. After isolation with DH-

BB chromatography, the polymers were either treated with (+SV) snake venom phos-

phodiesterase or left untreated. The products were analyzed on the HPLC using anion

exchange chromatography. Standards elute as indicated and include: 1. NAD , 2. AMP , 3.

ADP-ribose, and 4. ADP.
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phosphodiesterase-specific peak with a retention time later than the control sample, ADP

both in the PARP and ART2 samples. The ratios of the snake venom phosphodiesterase-

specific peak to AMP were different between the P ARP and ART2 samples. Also , to

control for any non-enzymatic product formation due to highly reactive free ADP-ribose

(a product of ART2' s NAD glycohydrolase activity), free ADPR, at the same concentra-

tions ofNAD in the the enze assay, was subjected to the same incubations and analysis

and did not produce any detectable levels of AMP or the phosphodiesterase-specific peak.

To confirm the phosphodiesterase-specific peaks from both PAR and ART2

were PR-AMP , fractions corresponding to the peaks were collected and analyzed by

negative ion ESI- (Fig 30). A single major ion species occurred at m/z 558 , which

corresponds to the (M Hr ofPR-AMP , M 559. Since ADPR and PR-AMP are isomers

they have the same mass , but differ structurally, and though ADPR has a different reten-

tion time on the HPLC column, it is a major component of the in vitro reaction mix.

Therefore, the phosphodiesterase-specific peaks and ADPR, as a negative control, were

subjected to MS using the mass spectrometer to determine structural composition. MS2

on m/z 558 (M-Hr from ADPR revealed a major product ion species at m/z 346

corresponding to AMP (M 347), a fragment of ADPR. MS2 on the phosphodiesterase-

specific peaks from P ARP and ART2 revealed a major product ion at 
m/z 460, which

corresponded to the loss of phosphoric acid (M 98). Because 1\DPR does no contain a lO

phosphate, it canot lose a phosphoric acid in a single cleavage event without some sort

of molecular re-arrangement; however PR-AMP can lose a phosphate in a single cleavage

resulting in ribosyl-AMP , M 46l.
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Figure 30. Negative mode ESI-MS of ADP-ribose versus phosphodiesterase spe-

cific product. A. Full spectrum of ADP-ribose. B. Full spectrum of ART2 generated

phosphodiesterase-specific product. C. CAD of isolated m/z 558.0 from A. D. CAD of

isolated m/z 558.0 from B. E. CAD of isolated 346. 0 from C. F. CAD of isolated m/z

460. 0 from D. G. CAD of isolated m/z 211.2 from E. H. CAD of isolated 325.2 from F.

Inserts represent deduced strctures of major product ions. CAD; collsional activation

decomposition analysis.
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MS3 of AMP revealed a major product ion at m/z 2ll , corresponding to 5'phospho-

ribose, M 2l2. MS3 ofthe m/z 460 produced a major product ion at m/z 325 that corre-

sponds to ribosyl-(5' phospho-ribose), M 326. CAD MS4 of the m/z 2ll species of ADP-

ribose revealed a major product ion at m/z , which corresponds to phosphoric acid, M

98. Lastly, CAD MS4 of the m/z 325 ion revealed a major product ion at m/z 21l , which

corresponds to 5' phospho-ribose, M 2l2.

Poly(ADP-ribose) structural data

Previous work on P ARP has determined that the average polymer length and the av-

erage branching frequency ofpADPR can be calculated by the ratios PR-AMP to

AMP(145). Compared to the PARP generated pADPR, ART2 generated pADPR had

lower ratios ofPR-AMP to AMP when digested with phosphodiesterase. This suggests a

different structure to the polymer molecule. To better understand the structure of ART2

generated pADPR, the polymer was purified by DHBB chromatography, digested with

snake venom phosphodiesterase, and the reaction mix was subsequently analyzed by

MALDI-TOF mass spectrometry using sinnapinic acid as a matrix. The spectrum re-

vealed the presence of an ion species ladder with repeating intervals of m/z 21l (Fig 3l).

The spectru was consistent with a hetergeneous population of phosphor-ribose poly-

mers that began with a dimer and ended with a lO-mer. This polymer of phospho-ribose

is consistent with ADP-ribosylation ofthe initial ADP-ribose moiety at the 2C ofthe ri-

bose from the NMN. The ribose is the same ribose that has a 1 C linkage to an amino acid

onART2.
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Figure 31. Mass spectra of phosphoribose polymers. Products from the snake

venom phosphodiesterase-treated ART2 generated polymer were analyzed by MALDI-

TOF mass spectrometry. lions in multiples of m/z 2ll were generated. The Y-axis above

m/z l200 was magnified by a factor of20.
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Identification of Site of Polymer

In order to identify the site of polymer linkage on the recombinant form of ART2

an initial study of limited modification was carred out to identify a site of mono-ADP-

ribosylation. Identification of any mono-ADP-ribosylated peptides would be a foundation

for looking for any poly-ADP-ribosylated peptides that exist. ART2 was incubated with

1 mM NAD for 30 minutes at 30 o , and after TCA precipitation, the sample was di-

gested with chymotrsin. The chymotrysin digests were analyzed by MALDI- TOF

mass spectrometr using sinnapinic acid as a matrx (Fig 32). The unmodified ART2

contained a major ion species at m/z 204l in the region of the spectra between m/z OOO

to 5 000. In addition to the corresponding peak ofm/z 204l in the modified ART2 sam-

pie, there was a peak at m/z 2582 that was not detectable in the unmodified sample. The

difference corresponded to the the molecular mass of ADP-ribose, 54l Da. The observed

ion species m/z 204l and 204l corresponded to a theoretical chymotrysin-generated

AR T2 fragment whose m/z is 204l. This fragment has the deduced amino acid sequence

SFRPDQEEVLIPGYEVY, and corresponds to amino acids, l83- l99 , located in Region

II of the catalytic cleft (Fig l8-20). A closer inspection ofthe mass spectrum between

m/z 2500 and 3250 revealed a weaker ion species at m/z 3l23. This ion species repre-

sented a mass difference of 54l from the ion species mlz 2582 , and corresponds to a sec-

ond ADP-ribose moiety attached to the identified peptide.



Figure 32
M

orrison, U
, c

h
y
m
o
t
r
y
s
i
n
 
R
a
p
i
G
e
s
t
 digest after H

C
I , S

A
5K

 2 (0. 351) 8m
 (8G

. 3x5. 00); 8b (3,20. 00); 8m
 (8G

, 2x3.00); C
m

 (1:6)
00000000

1C
5

T
O
F
 
L
D
+

41e4

2040.

SFR
PD

Q
E

E
V

L
IPG

Y
E

V
Y

.
 
%

3063.

3039. 0
 
1
3
0
9
9
.

3605.

0, 

. .. .

5k 5 (0. 689) 8m
 (8G

, 3x500); 8b (3. 20. 00); 8m
 (8G

. 2x3.00); C
m

 (1:6)

100 
1C

5

T
O
F
 
L
D
+

1.41e4

SFR
PD

Q
E

E
V

L
IPG

Y
E

V
Y

+
541

2562.
3064.

2452.
,m

.,

541x2
3909.

1712.

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

3800
m

/z
4000



134

Figure 32. Mass Spectra of unmodifed versus modified ART2. ART2 was modi-

fied with limiting amounts ofNAD, digested with chymotrysin, and analyzed by

MALDI-TOF mass spectrometry. A major peak at m/z 204l occurred in both samples.

Two additional peaks were observed in the modified sample but not the unmodified at

m/z 2582 and m/z 3123 (+541 and + 2x54l , respectively).
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Figure 33. Isolation of unmodifed and modifed peaks using CI8 reverse phase

HPLC-MS. A. A base peak mass spectral chromatogram indicating the major ion spe-

cies that eluted over the course of the reverse phase gradient. B. Ion plot for m/z l02l.4.

C. Ion plot for m/z l292.
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To confirm the identity of the peptide, SFRPDQEEVLIPGYEVY, the chymotry-

tic digest of modified AR T2 was analyzed by nanoscale HPLC-MS using a C l8 column

(lOcm x 75Jlm id) with a gradient of2-70% acetonitrile in O. l % formic acid (2- l7% in l5

min, l7-40% in 35 min, and 40-70% in l5 min). The elution profile was subject to real-

time QTOF mass spectrometry. Collsion induced decomposition spectra were carred

out in realtime to gather strctural information about the peptides as they eluted from the

column. Figure 33A shows a base peak chromatogram of the ions that eluted from the

colum over the period ofthe gradient. The peak m/z 1021.46 eluted from 53-54.5 min-

utes and corresponded to a doubly charged ion ofM 2042. 8. Another major peak (m/z

l291.5l) eluted from 50-52 minutes and corresponds to a doubly charged species of a M

2582. l. Figure 34 shows the full mass spectra for the unodified and modified peptides.

Relative isotope profiles obtained corresponded to theoretical amounts calculated for ele-

mental composition of both the proposed unodified and modified peptides (Fig 35).

The observed monoisotopic mass of the unmodified peptide was 1020.9445 Da, and the

theoretical based on elemental composition was l02l.0000 Da yielding a difference of

056 mass units. The observed monoisotopic mass ofthe modified peptide was

l29l.5083 Da, and the theoretical based on elemental composition was '129l. 539l Da

yielding a difference of 0. 031 mass units. The observed mass difference of m/z 270.564

(541.l38 Da) for ADP-ribose, whose theoretical mass calculated from its elemental com-

position is 54l.078. The difference beween observed and the theoretical mass for ADP-

ribose is 0.06 Da. The precision ofthe QTOF is 50 mDa in the mode used for the above

analysis.
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Figure 34. Full mass spectra of elution regions containing the modifed and un-

modifed peptides. A. Full spectrum for the compound eluting at 53.5 min. m/z l02l.4

is a doubly charged ion. B. Full spectrum for the compund eluting at 51. 0 min. m/z

l291.5 is a doubly charge ion. m/z 861.7, another major peak in the spectrum is the triply

charged version of the same peptide as m/z l291.5.
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Figure 35. Elemental Composition spectra. A. Theoretical vs. observed isotope

profies for m/z l020.9445 , a doubly charged ion. It closely matches the theoretical pro-

file ofthe peptide SFRPDQEEVLIPGYEVY and is 0.056 Da lower than the theoretical

monoisotopic mass value of m/z l02l.0000. B. Theoretical vs. observed isotope profies

for m/z l29l.5083 , a doubly charged species. The experimental closely matches the theo-

retical profile ofthe peptide SFRPDQEEVLIPGYEVY plus the modification of ADP-

ribose and is 0.03l Da lower than the theoretical monoisotopic value of m/z l29l.539l.
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Both these doubly charged ions were subjected to collsion activation decomposi-

tion (CAD) analysis to obtain a complete MS product ion spectra containing peptide se-

quence information (Fig 36 37). Fragmentation of the unmodified peptide resulted in y,

, and b fragment ion series as well as several internal fragments that confirmed the de-

duced sequence of the peptide as SFRPDQEEVLIPGYEVY. Though much of the y se-

ries could be found in the modified peptide fragmentation spectra, the a and b series were

not as prominant as in the unmodified peptide. In addition, there are several prominant

internal fragment ions in both modified and unmodified peptides. Several fragment ions

were identified in the modified sample spectrum but were not seen in that from the un-

modified spectrum. When the molecular mass of ADP-ribose (54l Da) was subtracted

from these ions , the resulting ion m/z ratio matched those of theoretical internal fragment

ions. Deduced modified fragmentation sequences included; RPDQEEVL, RPDQEEV

SFRPDQ, RPDQ, SFR, and R. The amino acid that all of the modified fragments had in

common is arginine. Ths corresponds to R l85 of Region III.

To confirm the location of modification by an alternative digestion protocol and to

identify whether the site identified for mono-ADP-ribosylation can be a site ofpoly-ADP-

ribosylation, ART2 was modified by 20 mM NAD for 60 minutes at 30 C in addition to

the monomer ADP-ribosylation of 1 mM NAD for 30 minutes. The modified protein was

subjected to digestion with Glu-c endopeptidase and analyzed byMALDI-TOF mass

spectrometry (Fig 38). In the unmodified digest, the spectra between m/z lOOO to m/z

5000 revealed a major ion species at m/z 1926 which corresponded to the theoretical

monoisotopic ion m/z 1925. , which has the deduced amino acid sequence
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Figure 36

Figure 36: Product Ion Table 
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Figure 36. Product Ion Table I. The data generated from collsional activation de-

composition MS analysis of isolated peptide m/z l02l,46 by quadrapole time of flght

(QTOF) mass spectrometry. Eighty-five percent of the ions that appeared in the spectra

are identified and presented in the above table. The spectra were calculated to have a dy-

namic range of about 5000; and the lowest percent base ion intensity used was 0.2%,

which was lO fold over baseline. The largest 11 m/z was 0.07 with an average of 0.02.
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Figure 37

Figure 37: Product Ion Table 
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Figure 37. Product Ion Table II. The data generated from collsional activation de-

composition MS analysis of isolated peptide m/z l29l.5l by quadrapole time of flight

(QTOF) mass spectrometry. Seventy-five percent ofthe ions that appeared in the spectra

are identified and presented in the above table. The spectra were calculated to have a dy-

namic range of 5000; and the lowest percent base ion intensity used was 0. , which was

10 fold over baseline. The largest L1 m/z was 0.07 with an average of 0.02. Ions that were

unique to these spectra compared with Fig 37 and did not match theoretical fragmentation

data were subjected to subtraction of 54l. , the average mass of ADP-ribose. If the re-

suiting m/z matched theoretical data, they were placed in the table. Modified peptide

data are highlighted.
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Figure 38. MALDI-TOF mass spectra of a multiply modifed peptide from a

Glu-C digestion of ART2. AR T2 was incubated with a two different concentrations of

NAD and subjected to digestion with the glu-c endopeptidase. A. Unmodified ART2 glu-

c digest sample with major ions at m/z 1926. B. Modified ART2 glu-c digest sample with

ions at m/z 1927 m/z 2468 (+54l), and m/z 3009 (+2x54l). C. Slightly more modified

ART2 with ions at m/z 1927 m/z 2469 (+542), m/z 3009 (+2x54l), and m/z 355l (+3x

54l). Regions from m/z 2800 to end of the spectra were magnified 5 fold. A theoretical

digest of glu-c yields a m/z 1927 of sequence FSFRPDQEEVLIPGYE.
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FSFRPDQEEVLIPGYE. The limited modification revealed a new ion at m/z 2468

which corresponds to the addition of ADP-ribose. The sample which was modified fur-

ther with 20 mM NAD spectra show three ions m/z 2469 m/z 3009 , and m/z 355l which

correspond to the addition of one, two , and three ADP-riboses.

Chapter Conclusions

All ARTs share some common secondar and tertiary strctures within the NAD-

binding catalytic cleft. MonoARTs and P ARPs share three regions of structural homol-

ogy with each other. ADP-ribosyl cyclases share two regions of homology with the

monoARTs and P ARPs. SIR2 does not appear to share any obvious strctural similarities

with the rest of the ARTs, but it does appear to hold NAD in the same configuration as

the other ARTs indicating a possible shared nucleophilic substitution mechanism for the

cleaving of the N-glycosidic bond ofNAD. A closer inspection of ART2 and PARP sug-

gest structual similarities in the catalytic cleft that may indicate the potential for ART2 to

contain an ADP-ribose acceptor site for polymer elongation; however, Rl85 appears to

block this site by forming a salt bridge with E l60 and D 187 (Fig 19 , 4l).

A recombinant constrct of ART2 was designed to generate relatively high yields

of relatively pure AR T2 enzyme. The purified recombinant protein had NAD glycohy-

drolase and auto-ADP-ribosyl transferase activity and was confirmed to be ART2 by se-

quence analysis. The kinetics of auto-ADP-ribosylation revealed multimeric heterogene-

ous forms of product. When isolated from the protein and purified, the product ran as

polymers on a modified sequencing gel. When the polymer was digested with snake
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venom phosphodiesterase, a poly(ADP-ribose) specific product, PR-AMP , was generated

and the strcture ofPR-AMP was confirmed by ESI-MS. Another product

poly(phospho-ribose) appeared to be generated by the phosphodiesterase treatment.

A site of ADP-ribosylation was identified to be Rl85. This was confirmed by se-

quence data generated by CAD MS/MS of a mono-ADP-ribosylated ART2 peptide gen-

erated by chymotrsin digestion. Further modification of the peptide revealed a second

and third modification on the same peptide region. Rl85 is the same arginine that ap-

pears to sit over the potential ADP-ribose acceptor site by crystallography modeling.
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Chapter 6 Discussion

Structural Insights

Structural alignent revealed novel insights into the similarities among the vari-

ous ART family members. It is clear that mono-ADP-ribosyltransferases and poly(ADP-

ribose) polymerases (P ARPs) share three regions of structural similarty within the cata-

lytic cleft. Region I has been expanded from previous reports to include a -sheet com-

posed of three hydrophobic -strands. By primar sequence the new outer -strand con-

tains an amino acid string that is downstream of the Region II catalytic glutamate. The

middle new -strand is also a highly hydrophobic string that contains a string of amino

acids found in between Region II and II by primar sequence. It appears that these two

strands aid in the formation of a hydrophobic pocket for the adenine ring ofNAD. The

inner most -strand is composed of the conserved histidine or arginine and is the original

Region I previously reported (59). Interestingly the Aplysia ADP-ribosyl cyclase did not

contain a Region I that was like the monoARTs and P ARPs , but that would make sense in

that ADP-ribosyl cyclases would not need a pocket to hold the adenine ring since it takes

part in the formation of the cyclic bond. In theory, the way cyclases would hold adenine

should be different.

Region II has the most highly conserved secondary structure among all the ARTs.

Region II is composed ofU-shaped -strand downward and a-helix upward, pocket that

holds the nicotinamide mononucleotide in a unique conformation. The motif that can be
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used to generalize Region II is Y/SXS-XIo-Y/F. It has been postulated that this confor-

mation may provide the steric strain necessary to catalyze the breaking of the nicotina-

mide bond and the formation of a carbo cation that would be stabilized by the oxygen of

ribose forming a oxycarbonium ion (153). The conserved glutamate, by its positioning

relative to the oxycarbonium ion, is hypothesized to stabilize the oxycarbonium ion for

nucleophilic-like attack. This strctural alignent of Region II allowed for the first re-

ported primary sequence alignent of members from all three ART subgroups;

monoARTs, P ARs, and ADP-ribosyl cyclases, providing further evidence of how

closely they are related.

Region III of all ARTs contained the highly conserved glutamate that has been

published in prior reports but was expanded to include the pre-p-strand coil that appears

to be conserved as a strcture throughout the monoARTs and P ARPs. The signficance

of this coil is supported by data suggesting its amino acid composition might influence

amino acid specificity by the ARTT motif (l60). The Tl and T2 positions ofthe ARTT

motif can be found in the pre-p-strand coil that has been included as part of Region III.

Also , evidence that this coil is significant to the polymerization activity of P ARP has re-

centlybeen generated through crystal structure analysis of the ADP-ribose acceptor site

which appears to be encompassed by the coil (l54). Though the ADP-ribosyl cyclases

contained a different secondar structure, a-helix, to Region II than P ARP and the

monoARTs, it stil contained the catalytic glutamate along with some other similarities

such as a Tl phenylalanine (Tl amino acids are often Y or F).
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Though Sir2 contained no obvious similarity to the catalytic clefts of the other

ARTs, it did appear to hold NAD in a similar conformation suggesting it might cleave

NAD by a mechanism similar to the other ARTs. In fact, Sir2 has been reported to act via

nucleophilic-like mechanisms generating a-anomers from pNAD (166). It is possible

that Sir2 is distantly related to the ARTs.

A closer look at an alignent of ART2 and P ARP revealed structural similarties

and differences. Both ART2 and PARP contain Region I of the catalytic cleft, but PARP

contains a histidine in the conserved position whereas ART2 contains an arginine. In Re-

gion II, they again share similarties of strcture, but differ markedly by amino acid se-

quence; PARP contains the Y-XIO-Y motif and ART2 contains the SXS-XIO-F motif. In

Region II, P AR contains K903 , which has been demonstrated to be crucial to the poly-

mer elongation reaction by previous mutational work (l54), but AR T2 contains a valine

at position l55 which aligns with K903. However, in the strctural model , Ql88 (T2 of

AR TT) appears to provide an amine to the same spatial location as K903 in P ARP.

Could this be a form of semi-conservative substitution? In Region II, both P ARP and

ART2 appear to have room to position ADP-ribose as an acceptor, but the ART2 acceptor

site appears blocked by a salt bridge between Rl85 , El60, and Dl87. Interestingly, Rl85

is the same arginine that was determined by mutational work to be important for

multimerization of auto-ADP-ribosylation. The potential role that Rl85 may play wil be

discussed later.
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Recombinant Protein Insights

The ART2 construct contained the soluble core of the ART2 molecule. Its spe-

cific activity after purification averages 2.5 /-mollmin'mg which is 5 to lO fold higher

than previously reported for AR T2 constructs (56; 1 09; 16l; l65). The average yield of

purified ART2 was 2-3mg. The generation of a construct with this combination of high

specific activity and relatively high protein yield was the rate-limiting step of this project

and was crucial to characterizing the auto-P ARP activity of ART2.

There were no detectable levels of background NAD glycohydrolase activity or

ADP-ribosyltransferase as determined by the vector-minus-insert E. coli controls. This

supports the notion that essentially all the catalytic activity detected was generated by the

ART2 construct. The construct had auto-ADP-ribosyltransferase activity as previous

studies have demonstrated (56;l09). More importantly the constrct presented increasing

levels of heterogeneous, multiple ADP-ribosylated forms when incubated with NAD for 5

minutes. The rate appeared to level off to a maximum of five to six band shifts by lO

mM NAD. Mass spectrometry confirmed the band shift molecular mass difference to be

close to 54l Da, the molecular mass of covalently bonded ADP-ribose. This also con-

firms that there is ADP-ribosylation taking place and not an unusual artifact like NAD-

binding complexes in the gels. When ART2 was incubated with 20 mM NAD for a time-

course of up to ten hours , the band shifting occurred rapidly in the first hour and then ta-

pered to a slow climb over the course of the next several hours. The band shift assays are

all consistent with previous data published on P ARP (l45). P ARP auto-ADP-ribosylates
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in a multiple, heterogeneous band shift pattern by immunoblot and autoradiograhy,

though to a much greater extent than ART2 with polymers? 1 00. Also , P ARP' s auto-

ADP-ribosylation does slow down further auto-ADP-ribosylation.

Polymer Data

To determine whether the multimers were indeed polymers, the hydroxylamine

cleaved and DHBB purified ADP-ribose moieties from both auto-ADP-ribosylated ART

and auto-ADP-ribosylated P ARP were run and compared on a modified sequencing gel.

Both samples produced a heterogeneous mixture of polymers on the gel. Though ART2

did not generate polymer lengths as large as those of P ARP , it was evident that polymers

up to twenty in length were being generated.

The gold standard method for determining ifthe ADP-ribose structure is poly-

meric is to treat the polymer with snake venom phosphodiesterase. The phosphodi-

esterase cleaves the polymer at the pyrophosphate bond generating a series ofPR-AMP

monomers that are isomers of ADP-ribose. If the multimers were only monomers at mul-

tiple sites, the only reaction product from phosphodiesterase treatment would be 5' AMP.

Upon digestion of the isolated ADP-ribosyl moieties of ART2 and PARP and product

analysis by anion exchange HPLC , there appeared a phosphodiesterase-specific peak that

did not appear in the controls. The peak eluted at a retention time close to the ADP stan-

dard consistent with previously published reports ofPR-AMP (l46). To confirm that the

product was PR-AMP , it was subjected to ESI-MS. The product peak consisted of one

major ion m/z 588.0. This was consistent with PR-AMP as it is an isomer of ADP-
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ribose. To further confirm that the ion represented PR-AMP , the ion species and ADP-

ribose, as a negative control, were subjected to CAD MS . The major product ion pro-

duced by MS of m/z 558 was m/z 460. , reflecting a neutral loss of 98 Da, indicative of a

terminal phosphate. ADP-ribose cannot lose a phosphate via a single cleavage event

without an unlikely molecular rearangement taking place. The loss of a single phosphate

, however, consistent with the structure ofPR-AMP. To further support the evidence

of m/z 460. 0 produced as the major product ion m/z 325.2 which reflects the neutral

loss of adenine (135 Da). This suggested that the resulting fragment ion was composed

of two riboses and a phosphate. MS4 of the m/z 325 ion confirmed this producing only

phospho-ribose (m/z 2ll) and ionized phosphoric acid (m/z 97) as product ions.

Ratios ofPR-AMP to AMP are indicative oftherelative length and branching fre-

quencies ofPARP generated ADP-ribose polymer. PARP tends to have large ratios of

around 20:l PR-AMP to AMP because the average branchpoint frequency of the PARP-

generated polymer averages about 20 ADP-riboses and the average chain length tends to

be over lOO. ART2 had a PR-AMP to AMP ratio of just over l:l. This suggests two

possibilities. First, that in addition to any polymer, there stil may be a few mono-ADP-

ribosylated sites and/or multiple short chains at multiple sites. The second possibility is

that the polymer may have a different branching pattern than the polymer of P ARP, mak-

ing the ART2 polymer-structures fudamentally different, and possibly unique to ART2.
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Phospho-ribose polymers and polymer modeling

A common product of the branching in the PARP polymers is the phosphodi-

esterase-specific product PRz-AMP , which occurs as a result of cleavage of branch

points. HPLC analysis did not appear to have suffcient dynamic range to pick up the

small amounts ofPRz-AMP generated in either the PARP or ART2 sample. To analyze

for the presence of a low occurence product, the phosphodiesterase digested polymers of

ART2 were subjected to MALDI-TOF analysis. The mass spectra revealed the presence

of a hetergeneous group of ions with a consistent mass difference of 2ll Da. These in-

crements are consistent with a polymer whose structue consists of the monomer phos-

pho-ribose. Figure 39 depicts the polymer chain structure tyically thought to be gener-

ated by P ARP. Cutting at the pyrophosphate bonds of this structure does not appear to

produce ribose phosphate polymers. Figure 40 depicts a proposed structure of ART2

generated polymers. Because ART2 polymers produce PR-AMP as a product, there is

some degree of longitudinal branching that occurs like PARP. However, because the ra-

tio ofPR-AMP to AMP is low, the size of the polymer is small, and there appear to be

phospho-ribose polymers, an alternative branching may occur which has not been demon-

strated to occur with P ARPs. The branching appears to take place at the base ADP-ribose

which is covalentaly linked to an amino acid. The C2 of the NMN ribose could act as an

acceptor to branch out laterally from the base. This would allow for the formation of a

bush-like" structure rather than the classical "tree-like" pattern associated with P ARPs.

This structure would also explain the low ratios ofPR-AMP to AMP as well as the
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Figure 39. Tree-lie Structural Model ofPARP poly(ADP-ribose). This figure

ilustrates the strcture ofP ARP polymers. Elongation bonds (E) occur at an average of

20 before the formation of branch bonds (B).
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Figure 40. Bush-lie Structural Model of ART2 poly(ADP-ribose). Unlike the

tree-like" PARP polymers , ART2 polymers appear to be forming a broad

, "

bush-like

structure. Phosphodiesterase digestion produces phospho-ribose polymers, indicating that

branching bonds (B) occur at the base ribose that is attached to ART2. The presence 

PR-AMP in phosphodiesterase-treated samples is consistent with a similar elongation

bond (E) as PARP. The low ratios ofPR:AMP to AMP suggest multiple short chains at-

tached to the branch points.
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presence of ribose phosphate polymers. One concern of the phospho-ribose polymers

might be that they are monomers that are oligomerizing in the mass spectometer. Un-

bonded clusters of monomers, however, would produce MALDI- TOF ion series with

multiples of 230 Da not 21l Da, indicating phospho-ribose monomer cluster ions are

unlikely.

R185

The sequencing data present both an answer to the location of the polymer as well

as a role for Rl85 in the process of auto-poly(ADP-ribose) polymerase activity. Two

modified peptides have been generated from digests with two different enzymes; chymo-

typsin and glu-c. Their MH+ ions were detected at m/z 204l and 1926 , respectively, and

based on theoretical digests, they matched peptides whose sequences were

SFRPDQEEVLIPGYEVY and FSFRPDQEEVLIPGYE. Both peptides were found to be

modified with the addition of 54l Da (bonded ADP-ribose) specific to the modified frac-

tions. The chymotrysin peptide s sequence was confirmed by nanoscale HPLC-

MS(MS ) analysis on the mass spectrometer. Ofthe several modified peptide-fragment

ions that were generated by CAD MS analysis, there was one amino acid shared by all

the fragment ions, Rl85. Rl85 is the same amino acid that sits over the catalytic site in a

salt bridge with El60 and Dl87. Rl85 is also the same amino acid thought to be crucial

to the multimeric band shift pattern by mutational analysis (56). The mass spectra of the

two peptides that were identified to contain the modification also demonstrated evidence
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of a attachment of a second ADP-ribose. The glu-c peptide contained evidence of a third

ADP-ribose. It is likely that Rl85 is the site of polymerization. Though the data are

highly suggestive at this point, CAD MS analysis must be performed on the multiply

modified peptides to absolutely confirm that R 185 is the site of polymerization.

Interestingly, ifRl85 is the site of polymerization, crystallographic models sug-

gest a mechanism for how modification at Rl85 can take place. Figure 4l ilustrates a

mechanism whereby Rl85 receives the intial ADP-ribosylation and opens up the catalytic

site for auto-P ARP activity to take place. Like P ARP , the auto-P ARP activity of ART2

can elongate in a longitudinal fashion, but unique to AR T2 this dissertation proposes that

in an intra-molecular ADP-ribosylation event, the base ADP-ribose attached to Rl85 can

fold back into the catalytic site to branch out laterally forming the bush-like structure pro-

posed in Figure 40.

Significance of this Dissertation

The major find of this work is the observation that ART2.2 has auto-poly(ADP-

ribose)polymerase activity. This observation is the first demonstration of the potential for

hybrids between monoARTs and PARs. ART2 is the first identified PARP-like enzyme

to exist outside the nucleus, although evidence ofP ARP activity outside the nucleus has

recently emerged in the literature. The P ARP knockout mice stil generate ADP-ribose

polymers (167) sparking the search and identification of other nuclear P ARPs like P ARP-

2 and the Tankyrase, previously mentioned. Recent studies have identified poly-ADP-

ribosylated proteins in the mitochondria of mice, though the enzyme responsible for this
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Figure 41. R185 ADP-ribosylation Model. A. A lateral view ofthe NAD-

binding cleft of ART2. The "acceptor" site for polymer elongation is blocked by a salt

bridge between Rl85 , El60, and Dl87. B. NAD bound to the catalytic cleft may induce

a conformational shift that breaks the salt bridge and allows Rl85 to enter the "acceptor

site for ADP-ribosylation. C. After ADP-ribosylation ofRl85 , the bridge remains open

for polymer elongation or branching to occur. In this ilustration, ADP-ribosylated Rl85

returns to the "acceptor" site for the "bush-like" branching bond formation to occur. This

bush-like" branching is unique to ART2 polymers. NAD bound to the "donor" site is

colored orange; NAD bound to the "acceptor" site is colored red.



l69

activity has not beem identified (168). Because the polymer appears to differ structurally

with the classical P ARP polymer model, questions about alternative modes of signalling

and altenative receptors that might recognize the differences in structure arise. A major

question remains with respect to ART2; does it generate the polymers outside the cell or

is it internalized to make use of intracellular NAD stores?

The finding that Rl85 serves as the acceptor arginine for at least one ADP-ribose

and possibly the entire polymer is also significant. The model ofRl85 serving as a draw-

bridge opening up ART2 to P ARP-like activity upon its modification is a novel form of

enzymatic regulation. Since Rl85 is the Tl position of Region II in the catalytic cleft, it

further lends support to the notion that the AR TT motif is important in modulating sub-

strate specificity. One caveat remains, however; though the peptides that contain Rl85

have been modified with multiple ADP-riboses, this does not rule out multiple sites of

modification ofthe peptides. It could be that there is no polymer on Rl85 , but merely a

monomer. To confirm that Rl85 is the site of polymer chain, it must be identified

through the previous sequencing methods to have a polymer on it. This wil be part of the

future directions of this work.

Future Directions

Polymer site

There are several future directions this work wil take. The caveat regarding

Rl85 has already been discussed above. Whether or not a single polymer takes place at

that residue needs to be determined. Samples of ART2 should be modified to a higher
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extent, and after digestion, the modified peptides can be subjected to the same QTOF

analysis that revealed the sequence of the mono-ADP-ribosylated peptide. Now that

a specific modified peptide has been identified, it can be tracked in the mass spectra al-

lowing for any polymer identification.

Polymer Structure

Though the ratios ofPR-AMP to AMP in the ART2 phosphodiesterase treated

samples are low, suggesting an alternative branching pattern for the ART2 polymer, an

alternative explanation for this is that there are multiple monomer or short oligomer sites

as par ofthe multimeric auto-ADP-ribosylation. The presence of phosphoribose poly-

mers supports the hypothesis that there is alternative branching, but there are caveats to

the data as well. At this point, it has been difficult to analyze the nature of the phosphori-

bose polymers by fragmentation work, such as CAD MS , which would lend structural

support to their identification. Though other monomer or short oligomer sites may not be

ruled out, the best way to characterize the strcture of the ADP-ribose polymer is to iso-

late a homogeneous population and analyze the sample by NMR (nuclear magnetic reso-

nance). An alternative way to characterize the polymer structue would be to map the hy-

droxyl groups. As demonstrated by figures 39 and 40, there would be a different pattern

of ribose cis-hydroxyl groups depending on whether the polymer was a "tree-like" or

bush-like" structure.

Though the mass spectrometry data concerning the snake venom posphodiesterase

products confirms the presence ofPR-AMP , follow-up studies that confirm the structure
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ofthe bonds between the riboses should be conducted to confirm their a anomeric link-

ages. This can be done by using the present AR T2 system to generate larger amounts of

PR-AMP for NMR analysis. A thorough desalting would be necessary for NMR analysis

and could be carred out by ion exchange with a volatile buffering system.

NAD analogues

The location ofRl85 in relation to the NAD-binding site is highly suggestive of

mechanism for the "bush-like" polymer formation; figure 4l hypothesizes that Rl85

could move into the catalytic site to accept the first ADP-ribose. This would open up the

catalytic site to further P ARP-like activity. The polymer could grow in the longitudinal

pattern that produces the classical "tree-like" configuration ofPARP polymers. The ki-

netics of traditional P AR-longitudinal polymer growth suggest a P ARP concentration-

dependent inter-molecular ADP-ribosylation; one P ARP molecule extends the chain on

another PARP molecule. Because ofthe generation ofPR-AMP , ART2 may act in a

similar fashion to P ARP. However, the suggestion of a "bush-like" configuration has in-

dicated there may be branching at the ADP-ribosylarginine base. Figure 4l suggests that

an intra-molecular (ART2 concentration-independent) mechanism may be taking place

where the ADP-ribosylated arginine could return to the site with the nicotinamide mono-

nucleotide ribose serving as an acceptor in a lateral-branching pattern. To better get at the

mechanisms of branching and the kinetics ofthese reactions, experiments with NAD ana-

logues with riboses that lack the 2C-hydroxyl moieties would be ideal. Methylated, de-

oxy- , or flourinated riboses are just three examples. In these situations , ifthe analogue
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was a good substrate for auto-ADP-ribosylation, the polymer could be shunted into one

direction or another. This would allow researchers to dissect the components oflongitu-

dinal elongation versus lateral branching.

Mutants

To better understand the role ofRl85 and auto-poly(ADP-ribose) polymerase ac-

tivity, several mutants could be generated and analyzed for auto-ADP-ribosylation, mono-

ADP-ribosylation, and poly(ADP-ribose) polymerization. A mutation ofRl85 to lysine

has already been generated and exhibited no auto-poly(ADP-ribose) polymerase activity

(56). Another mutant from the same study was Rl85W, which did exhibit a low level of

auto-poly(ADP-ribose) polymerase activity. Using the system generated by this disserta-

tion, the polymer site could be identified. Based on the present study, the data are sugges-

tive that the modification is taking place on the trytophan residue. This would reveal the

ADP-ribosylation of a novel amino acid side chain. Because there is some similarity in

the structure of adenine and the side chain of trytophan, the ADP-ribosylation mecha-

nism may be similar to the nucleophilic mechanism of the cyclic bond that is the product

of the ADP-ribosyl cyclase activity. This would provide further evidence of the relation-

ship between monoARTs and cyc1ases.

According to the ART2 crystallography model, Rl85 appears held over the cata-

lytic site by hydrogen bonds with El60 and Dl87 (Figs 19 and 4l). To determine the

significance ofEl60 and Dl87 to auto-poly(ADP-ribose) polymerase activity, alanine
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mutants of each and both should be generated. In addition to assaying for auto-P ARP

activity, kinetic studies of these mutants may provide interesting clues to their relevance.

In order to determine ifpoly(ADP-ribose) polymerase and arginine-specific

mono-ADP-ribosyltransferase activity could coexist, a mutant like Ql88E , which has al-

ready been shown to introduce arginine-specific mono-ADP-ribosyltransferase activity to

ART2 (l6l) should be generated. To do this , however, an alanine null mutant ofQl88

should also be generated as a control for the signficance of Q l88 to the P ARP activity.

Because Q l88 provides an amide to the same spatial region as the P ARP amino acid

K903 , which is crucial to polymerization activity, any mutant of Ql88 may exhibit a loss

ofauto-PARP acitivity. It is important to characterize whether introduction of mono ART

activity via the Ql88E mutant is responsible for any loss ofP ARP activity or whether it is

merely the loss of the glutamine.

Biology

ART2 as a PARP from Human Perspective

One concern of significance of the work with AR T2 is the level of relevance that

extracellular P ARP activity may have to humans and the application to human diseases

like diabetes. As mentioned earlier, ART2 is a pseudo gene in humans and there is no in-

dication that it is expressed. However, because there are at least four other known

monoARTs in the human, there is the opportnity for redundancies to exist. ARTl ex-

hibits monoART activity and ART5 exhibits NAD glycohydrolase activity with a latent

level of mono ART activity. Little has been studied about ARTs 3 and 4. It is very possi-
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0/" ble that anyone of these monoARTs could be a sufficient substitute for ART2 in the hu-

man, providing similar reaction products with which to generate immune signals. ART 4

for example, has a lysine in the position ofQl88 or ART2 and a serine in place of the

Rl85 of ART2. A lysine could serve as a semi-conservative substitution for Ql88. It is

also possible that the hydroxyl group of the serine serves as a nucleophile replacement for

the guanidino group of arginine, especially since hydroxyl groups on the polymer riboses

serve the same function. The Rl85W mutant mentioned above also provides support for

the arguent that all that is needed is the right nuc1eophile in the Rl85 position.

Diabetes

How the significance of this dissertation applies to diabetes is a diffcult question

to answer at this time. There are, however, some indications that it could be answered in

the near future. Ifthe ART2 ADP-ribose polymer is viewed as a novel product generated

on the surface ofT lymphocytes, then there are likely to be receptors for this product. 

fact, it has already been established that myeloid leukemia cells can be induced to differ-

entiate into macrophages and granulocytes with PARP poly(ADP-ribose) (169). Chick

cartilage cells and mouse eryhroid leukemia cells have also been induced to differentiate

with poly( ADP -ribose) (l70; l7l). This suggests that there are receptors for poly(AD P-

ribose) that exist on the surface of cells, and ART2 poly(ADP-ribose) could be used to

search for such receptors.

In the differentiation studies, poly(ADP-ribose) shared its biological effects with

molecules like lipopolysaccharide (LPS) and polyI:C, which are known to be Toll-like
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receptor (TLRs) ligands (172). Mamalian TLRs are a phylogenetically conserved fam-

J=-
ily of transmembrane proteins that recognize a number of microbialligands incuding:

LPS , peptidoglycan, lipopeptides, double-stranded RNA, bacterial flagellin, and bacterial

DNA (172- l76). It is possible that TLRs may serve as a receptor for poly(ADP-ribose),

and in fact, purinergic analogues were recently demonstrated to have immunostimulatory

activity through TLR7 (172).

Figure 42 provides a speculative model that provides a link between ART2 and

diabetes. In situations of inflamation or cell lysis andin situations where fibroblasts

may regulate the immune system, NAD can be released into the extracellular matrix.

This NAD is available as a substrate for ART2 auto-P ARP activity. The polymer chains

can then signal through purinergic receptors or receptors like TLRs, setting off signaling

cascades that can influence the immune response. In a situation where the immune stimu-

Ius is large and there is a paucity of ART2 , the signalling cascades set offby ADP-ribose

polymer may be nonexistent or not strong enough to overrde the immune stimulation. In

those cases, activation of effector cells can lead to the autoimmune state that culminates

in diabetes expression. A model like figure 42 provides a working hypothesis from which

can be designed a number of experimental approaches that wil help provide an answer to

the role of ART2 in the immune system.

Chapter Conclusions

AR T2 shares strctural homology with a number of ARTs including P ARP. A

closer characterization ofthe multimeric auto-ADP-ribosyltransferase activity of ART2
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Figure 42. Proposed Biological Impact of ART2 auto-PAR activity. A. In situa-

tions of inflammation and cell lysis or when Connexin 43 hemichannels of fibroblasts are

activated, local extracellular concentrations ofNAD can increase. B. ART2+ lympho-

cytes make use of the NAD to polymerize ADP-ribose. C. ART2 poly(ADP-ribose) is

recognized by immune cell receptors (i. e. purinergic receptors or possibly TLRs). This

recognition causes signalling cascades that may modulate the immune system. In the case

of diabetes in the BB rat, genetic and environmental influences may lead to a situation

where ART2+ lymphocyte populations are reduced or depleted. The lack of ART2 would

lead to a loss of poly(ADP-ribose) and its immunomodulatory signal.
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demonstrated that ART2 had auto-poly(ADP-ribose) polymerase activity. The strcture

of the polymer, however, appears to be different from the strcture ofPAR polymers;

bush-like and not tree-like. A site of auto-ADP-ribosylation is Rl85 , a site previously

determined to be important to the levels of auto-ADP-ribosylation. This site also appears

to be the site of polymer elongation as multiple ADP-ribose moieties have been found on

fragment peptides containing Rl85. ART2 is the first hybrid between monoARTs and

P ARPs and is the first extracellular protein discovered to have P ARP-like activity.

The data, however, are a work in process and a number of follow-up studies are

taking place: sequencing of polymer containing fragment peptides to confirm Rl85 is the

site of polymer elongation and structual mapping of the ribose hydroxyl groups to con-

firm the bush-like nature of the polymer. Futue directions include work with mutants

and analogues ofNAD to further characterize the mechanism of polymer elongation on

ART2. Previous biological data provide indications that there may be receptors like

TLRs that may respond to the novel ART2 ADP-ribose polymer product. These data

provide insights on how to test the relevance of ADP-ribose polymers to cellular systems

and may ultimately provide the clues that link ART2 to diabetes. In any event, the data

provide a rationale to move on two fronts; first, a continued characterization of the poly-

mer phenomenon by biochemical studies, and second, a screening for biological effects

and receptors that may signal in response to this novel extracellular product.
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