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Abstract 
 

 Etv2 is an endothelial-specific ETS transcription factor that is essential 

for endothelial differentiation and vascular morphogenesis in vertebrates.  

However, etv2 expression dynamics during development and the 

mechanisms regulating it are poorly understood. I found that etv2 transcript 

and protein expression are highly transient during zebrafish vascular 

development, with both expressed early during development and then 

subsequently downregulated.  Inducible knockdown of Etv2 in zebrafish 

embryos prior to mid-somitogenesis, but not later, causes severe vascular 

defects, suggesting a role for Etv2 in specifying angioblasts from the lateral 

mesoderm.  I further demonstrate that the 3’UTR of etv2 is post-

transcriptionally regulated in part by the let-7 family of microRNAs. Ectopic 

expression of let-7a represses endogenous Etv2 transcript and protein 

expression with a concomitant reduction in endothelial cell gene expression. 

Additionally, overexpressed Etv2 in HEK293T cells is ubiquitinated and 

degraded by the proteasome. Accordingly, endogenous zebrafish Etv2 

protein is rapidly degraded in the presence of the translation inhibitor 

cycloheximide in vivo. Taken together, our results suggest that etv2 acts 

during early development to specify endothelial lineages and is subsequently 

downregulated through post-transcriptional and post-translational 

mechanisms, to allow normal vascular development to proceed.  
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Primer 
 
 Due to their large size and complexity vertebrate animals cannot 

receive oxygen to support metabolic activity by simple diffusion alone. As a 

result they have evolved a system of interconnected tubular structures called 

the circulatory system. The circulatory system is an essential conduit for the 

systemic distribution of oxygenated blood, nutrients, hormones, 

immunological factors and the removal of metabolic waste.  Cells therefore 

are located no more than100-200 µm from the vessels of the circulatory 

system, the diffusion limit of oxygen. The fundamental cellular unit that 

defines the circulatory system is the endothelial cell. The human circulatory 

system is a highly ramified network of blood vessels containing approximately  

~1 X 1013 endothelial cells [1].    

 The vascular system is one of the first organ systems to form during 

embryogenesis. Development of this system starts with the specification of 

angioblast, endothelial cell precursors from the lateral plate mesoderm.  

Angioblasts migrate and coalesce forming a vascular cord de novo through a 

process called vasculogenesis [2]. This initial vascular plexus is remodeled 

and extended upon through a process termed angiogenesis [3]. Finally, 

vascular cords formed by either the vasculogenic or angiogenic process are 

hollowed out though a process called tubulogenesis. 

 The development of the cardiovascular system involves the genetic 

regulation and coordination of multiple endothelial cellular behaviors including 
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migration, proliferation, and differentiation. Perturbation of the genetic 

regulatory mechanisms driving vascular development often result in vascular 

dysfunction and embryonic lethality.  Post-embryonic vascular dysfunction or 

deregulation can lead to arteriovenous malformations, arteriosclerosis, stroke, 

inflammation, cancer growth and metastasis [4, 5].  In fact, heart disease, 

cancer, and stroke are three of the top four leading causes of death in the 

United States (National Vital Statistics Report, 2010).  

 To date, many of the genetic regulatory and signaling mechanisms that 

drive vasculogenesis and angiogenesis have been identified.  However, little 

is known about the transcriptional regulation of angioblast specification and 

endothelial cell differentiation.  In this introduction I will: (1) describe the 

ontology of angioblast specification, (2) Explain vascular 

morphogenesis in the zebrafish and the processes driving vascular 

development, (3) Discuss the transcriptional regulation of endothelial 

cell differentiation with a particular emphasize on the ETS family of 

transcription factors, specifically etv2.  Etv2 is essential for vascular 

development and will be the main focus of the following data chapters [6-8].   
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Benefits of Zebrafish Vascular Development Model 

 Understanding how the vascular system develops is essential because 

perturbations in the morphogenetic mechanisms responsible lead to 

embryonic lethality or post-natal vascular dysfunction and death. However, 

morphogenetic studies of vascular development in many vertebrate species 

are difficult due to animal opacity or in utero development. Recently, the small 

Teleost (ray-finned fish), zebrafish (Danio rerio) has greatly improved our 

understanding of the mechanisms of vertebrate development and disease [9]. 

Given its size, the zebrafish allows the maintenance of thousands of 

individual fish both affordable and manageable on a large scale. Zebrafish 

produce large clutches of externally fertilized embryos that are optically clear 

allowing visualization of organogenesis using a simple light microscope.  

Importantly, the zebrafish undergoes rapid development forming most organs 

within 24 hours.  All these inherent characteristics make the zebrafish an 

exquisite organism to study vertebrate vascular development, including 

vasculogenesis, angiogenesis, endothelial cell differentiation and circulation 

[10, 11]. In addition to the above characteristics, the zebrafish is genetically 

tractable. Transgenic zebrafish are readily available and easily producible that 

express exogenous transgenes in an endothelial-specific manner, allowing 

morphogenetic studies in vivo [12].  Endothelial cell specific transgenic 

zebrafish embryos have been employed in large-scale mutagenesis screens, 

which have yielded numerous genes that are required for proper vascular 
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development [13-16].  Vascular studies in the zebrafish also benefit from the 

ability to perform targeted gene knockdown and over-expression experiments 

through the injection of morpholinos or mRNAs into single cell embryos, 

respectively [17]. This allows for the straightforward dissection of genetic 

pathways through epistasis experiments [18].  Until recently the zebrafish was 

limited by the inability to perform target gene mutations or knock-ins. This 

limitation has been overcome by the implementation of zinc finger nucleases 

(ZFN) and transcription activator-like effector nucleases (TALENs), which 

have been used to generate mutations and locus specific knock-ins [19, 20]. 

Lastly, the genetic manipulations and information obtained are relevant in the 

zebrafish because the cellular and molecular processes underlying the 

patterning of the vascular architecture is conserved throughout vertebrate 

species [21]. Therefore the use of zebrafish is highly advantageous in the 

study of cardiovascular development and endothelial cell differentiation. 
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 Vascular Morphogenesis in the Developing Zebrafish 

 

Vasculogenesis 

 The basic pattern of the vascular system is conserved among 

vertebrates, which makes it possible to identify homologous vessels and 

make direct comparisons in different species [22].  The metameric 

arrangement of intersegmental vessels (ISVs) and stereotypical formation of 

the dorsal aorta (DA) and posterior cardinal vein (PCV) makes the zebrafish 

an ideal model to describe the processes of vascular morphogenesis.  In this 

section I will introduce the relevant aspects of zebrafish vasculature 

development with an emphasis on the trunk vasculature, which will help 

define terms and processes that will be encountered throughout this 

manuscript.  

 Vascular development is a multistep process that starts with the 

specification of endothelial precursors early in development.  Angioblasts are 

specified from the lateral mesoderm at early somitogenesis stages. (Figure I-

1A; [23, 24]). Etv2, one of the earliest known markers of angioblasts, is 

detected by in situ hybridization at the 2 somite stage (ss) in zebrafish [6]. 

After initial emergence of angioblasts from the lateral plate mesoderm, they 

are positioned as two anterior posterior aligned stripes as early as 5 ss and 

are often described as resembling the stitched seams of a baseball (Figure I-

1B). At 14-18hpf the lateral stripes of angioblasts start to migrate towards the 
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midline following guidance cues that emanate from the midline endoderm 

positioning them ventral to the hypochord (Figure I-1C; [25]. Upon reaching 

the midline, angioblasts start to coalesce into a vascular chord and shortly 

thereafter begins to lumenize (Figure I-1D,E) into the axial vasculature 

composed of the DA and PCV. Specification of arterial angioblasts fated to 

form the DA is dependent on vascular endothelial growth factor (VEGF) and 

Notch.  The ligand VEGF-A activates its receptor Flk-1 (VEGFR2/Kdr; hereon 

referred to has Flk-1 (Fetal liver kinase -1)) inducing notch expression in 

angioblasts causing them to adopt an arterial identity [13].  Venous cell fate is 

independent of VEGF-A signaling and involves the activation of the nuclear 

hormone receptor COUP-TFII, which suppresses notch and arterial gene 

expression [26, 27].   The DA is lumenized by chord hollowing, a process that 

involves the cells within the primitive vascular chord obtaining apical-basal 

polarity, and forming the lumen through membrane separation and fluid influx 

[28]. The PCV vein is formed through a process called ventral sprouting, 

where starting at 20 hpf PCV precursors migrate ventrally from the primitive 

vascular cord coalescing around previously positioned red blood cells. (Figure 

I-1D; [29]. Upon the completion of a primitive vascular loop circulation begins 

(Figure I-1E).    

 Circulation in the zebrafish starts around 26 hpf concomitant with full 

lumenization of the DA and PCV. Initially, circulation is contained in a simple 

circulatory loop starting with blood being pumped from the two chambered 
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heart through to the paired anterior lateral dorsal aorta (LDA). The LDA then 

merge to form the DA of the trunk.  Blood then continues caudally, whereupon 

reaching the tip of the tail it makes a 180 degree turn into the cardinal vein 

(CV). The CV flows directly into the PCV with flow terminating at a pair of 

large venous sinuses called the ducts of Cuvier (DC).  Blood then flows 

ventrally down the yolk where it is returned to the heart (Figure I-1E).  

Vasculogenesis positions the major blood vessels and provides the core 

structures for angiogenesis to then elaborate on.  

 

The hemangioblast  

The intimate temporal and spatial association of hematopoietic and 

endothelial cell development has led to the idea that a single precursor, the 

“hemangioblast” gives rise to both cellular lineages. This hypothesis was put 

forward in some of the earliest studies in amniotes from the observation that 

mesodermal cells in the yolk sac proliferate and from mesodermal cell 

masses called “blood islands” [30]. The inner cells of the blood islands will 

start to express hemoglobin, and the outer cells flatten and form endothelial 

cells [31]. The hemangioblast hypothesis was further supported genetically by 

the fact the Flk-1 a receptor tyrosine kinase (RTK) is expressed in both 

hematopoietic and endothelial cell lineages, although its expression is 

maintained in endothelial cells only [32, 33].  Additionally, gene ablation of 

Flk-1 causes failure of both the hematopoietic and vascular systems to form 
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in mice [34]. The hemangioblast hypothesis has not been disproven but in 

vivo clonal analysis reveals that hemangioblast progenitor contribution to both 

the endothelial and hematopoietic lineages is an exceedingly rare event [35]. 

The literature probing the mechanisms of endothelial and hematopoietic 

differentiation often still refers to the hemangioblast as a tangible cellular 

progenitor. Therefore this discussion of vascular development and the 

molecular mechanisms controlling it will largely ignore hematopoiesis unless 

relevant.    
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Figure I - 1: Stages of zebrafish vascular development 

 



11

Figure I-1: Stages of zebrafish vascular development.  (A, C-F; Left side) 
Schematic cross sections of the trunk at indicated developmental time points. 
The following tissues are labeled: neural plate (np), neural tube (nt) 
mesoderm (m), notochord (n) yolk (y) endoderm (yellow), hypochord (h) and 
somites (s). (A, C-F; right side) Camera Lucida drawings overlaid with 
schematic representations of the zebrafish vasculature at indicated 
developmental time points, angioblasts (purple), arterial vessels/cell (red), 
venous vessels/cells (blue) and blood (maroon). (B) In situ hybridization for 
etv2 transcript in Wt embryos at 5 ss. Staining marks the bi-lateral stripes of 
angioblasts. (A) Angioblasts (purple) are specified from the lateral mesoderm 
at early-somitogenesis stages.  (C) Midline migration.  From 14 hpf onward, 
angioblasts migrate over the endoderm towards the midline just below the 
hypocord (h) where they coalesce to form a vascular cord (D). (D) Arterio-
venous segregation and ventral sprouting. At ~17 hpf, angioblasts start to 
express markers for differentiated artery (red) or vein (blue) endothelial cells. 
Arterial endothelial cells are located in the dorsal portion of the vascular cord 
and will give rise to the dorsal aorta (DA), where as venous endothelial cells 
are located more ventrally and will give rise to the posterior cardinal vein 
(PCV) and cardinal vein (CV). (E) The DA forms and lumenizes prior to the 
PCV and CV in the absence of blood cells (smaller bright red cells) by chord 
hollowing. The DA simultaneously starts sending sprouts dorsally to start the 
process of angiogenesis to make intersegmental vessels (ISVs). Venous 
angioblasts aggregate and coalesces around the blood cells to ultimately form 
a tube. After the DA and PCV are fully lumenized a basic circulatory loop is 
established starting at the heart (H) and ending at the ducts of Cuvier (DC) (F, 
E; right side, arrows). (F) Functional vasculature. At ~32hpf the ISVs have 
extended to their full height at the dorsal roof of the neural tube and have 
branch anteriorly and posteriorly to form the dorsal longitudinal anastomotic 
vessel (DLAV).  This figure was based on and modified from [22]. 
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Angiogenesis 
 

 The primary axial-vessels are elaborated on by the sprouting of 

secondary vessels, a process called angiogenesis. The sprouting of the 

intersegmental vessels (ISV) from the DA has become a classic model for 

studying the cellular and molecular mechanism driving angiogenesis in 

zebrafish [36-38].  ISV formation starts around 22 hpf with endothelial cells 

sprouting dorsally from the DA (Figure I-1D, E; Figure I-2A). Endothelial cells 

move dorsally between the somite boundaries and are prevented from 

crossing the boundary by antagonistic semaphorin-plexin signaling.  Zebrafish 

mutants in this pathway have non-sterotypical ISV morphogenesis with 

torturous and chaotic sprouts [39, 40]. The ISVs sprout until they reach the 

dorsal roof of the neural tube, where they branch anteriorly and posteriorly 

connecting to their neighbor forming the dorsal lateral anastomotic vessel 

(DLAV; Figure I-1F; Figure I-2C). Angiogenic sprouting of the ISVs is a highly 

dynamic process that involves extensive filopodial extensions, cellular 

migration and proliferation, which has been described in detail[41]. Sprouting 

requires the coordination of two endothelial cell types, called the tip and the 

stalk cells.  The tip cell becomes highly proliferative and migratory. 

Conversely, the stalk cells must inhibit these behaviors to remain connected 

to the DA. ISV formation starts with one or two cells migrating dorsally out of 

the DA (Figure I-2A), dorsal growth is continued by proliferation and migration 
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of the tip cell, which is the main coordinator of this process (Figure I-2B). Cell 

divisions can occur at various time points meaning the stalk can consist of a 

variable number of cells, generating a large degree of morphological 

heterogeneity. Further cell divisions and cellular rearrangements will lead to a 

paired configuration of cells in the ISV prior to lumen formation and after the 

DLAVs connect (Figure I-2C; [22, 41]. Studies in mice and zebrafish 

demonstrate tip and stalk cell coordination during angiogenesis is governed in 

large part by the VEGF and Notch signaling pathways [15, 38, 42-44]. 

Additionally, microRNAs (miRNA) have been shown to play a role in this 

process [37]. The complexity of the vascular system is increased throughout 

development by the continuation of the angiogenic process.  
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Figure I – 2: Angiogenesis 
 
 
 
 
 
 
 
 

 
 
 

Figure I-2: Angiogenesis. (A-C) A model for the morphogenetic events 
leading to the formation of intersegmental vessels (ISVs) and the dorsal 

longitudinal anastomotic vessel (DLAVs) in the zebrafish trunk. (A) At 22 hpf 
endothelial cells of the dorsal aorta (DA) form sprouts that go along the 

somite boundaries up to the dorsal roof of the neural tube (B). (B) During 
these stages the sprout consists of 2-4 cells. (C) Upon reaching the height of 

the dorsal roof of the neural tube each sprout branches anteriorly and 
posteriorly to connect to its neighboring sprout to form the DLAV. 
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Transcriptional Regulation of Endothelial Cell Differentiation 
 
  

 The development of the cardiovascular system is a complex multistep 

process involving the strict regulation of cellular behaviors that are genetically 

programmed. The signaling molecules that control the morphological 

processes of vasculogenesis and angiogenesis are known and well 

documented [45]. For example VEGF signaling is required for 

vasculogenesis, angiogenesis, tubulogenesis and endothelial survival. 

However angioblasts are still present in VEGF and VEGF receptor knockout 

mouse embryos, indicating that they are not strictly required for angioblast 

specification [34, 46-48]. Additionally, the signaling events that govern 

differentiation of the artery and vein have also been elucidated [13, 26]. 

However, little is known about the transcriptional regulation of angioblast 

specification including the factors required, their hierarchical arrangement or 

their potential combinatorial activation of endothelial gene programs. This 

section will discuss known transcription factors involved in endothelial cell 

differentiation, with a focus on the ETS family of transcription factors in 

particular etv2, which is essential.  
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The ETS Family of transcription factors in endothelial cell differentiation 

 Transcription factors determine gene expression by binding to specific 

DNA sequences within promoter or enhancer regions, activating transcription 

by recruitment of RNA polymerase or causing repression. Multiple 

transcription factor families have been implicated in the activation and 

maintenance of endothelial gene expression, including members of the Sox 

(Sry-related HMG box), Fox (Forkhead), GATA, KLF (Krüppel-like factor) and 

the bHLH (basic-Helix Loop Helix) families [49]. Yet, no transcription factor 

family seems to be as important, or regulate the endothelial cell 

transcriptional program as extensively as, the ETS family of transcription 

factors.  

 The first ETS factor, Ets1 (E26 transformation specific-1), was 

identified as the oncogenic progenitor of viral oncogene v-ets found in the 

genome of avian leukemia retrovirus E26 [50]. The majority of ETS factors 

are transcriptional activators, however some are repressive and still some can 

be both [51].  The ETS family of proteins is defined as having a conserved, 

approximately 85 amino acid (aa) DNA binding domain, called the ETS 

domain, consisting of a winged helix-turn-helix motif that binds a core DNA 

sequence of 5’-GGA(A/T)-3’[52]. The DNA binding domain consists of three 

alpha-helices and four anti-parallel beta-sheets, with the third helix primarily 

responsible for DNA-binding specificity [53]. All ETS factors contain a 

transactivation domain and a subset contains a domain called Pointed, 
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thought to be involved in protein-protein interactions. The ETS family is 

divided into four major classes based on DNA binding domain sequence 

conservation, overall conservation, domain presence and orientation (Figure 

I-3; [54]. The major classes not only share similar DNA binding domain 

sequences but also recognize and bind comparable DNA motifs [53]. ETS 

proteins play key cellular roles regulating growth, proliferation, apoptosis, 

migration and the differentiation of multiple cellular lineages [55].   Because of 

the critical role they play in basic cellular processes, ETS protein loss or 

enhancement is found in various types of cancers including breast, prostate 

and leukemias [56, 57]. Additionally the ETS factors play essential roles 

throughout development and in adult life, regulating a broad spectrum of 

processes particularly hematopoiesis and vascular development.   
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Figure I – 3: Phylogeny of the zebrafish ETS Family 

 
 
Figure I – 3: Phylogenetic analysis of zebrafish ETS genes. The tree was 
generated from the alignment of the amino acid sequence of the whole 
protein including ETS DNA binding domain and Pointed domain (PNT) using 
the CLUSTAL W method. Unmodified figure originally appeared in [58] 
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 The ETS factor family is essential for the development of the vascular 

system, functioning during angioblasts specification, vasculogenesis, 

angiogenesis and endothelial cell differentiation. The human and zebrafish 

genome encodes 27 and 31 ETS family members, of which 19 and 12 are 

expressed in the endothelium of each species, respectively (Figure I – 3; [58-

60]. Although no ETS factor is solely expressed in the endothelium, several 

are highly enriched including ETS1, ETS2, ETV2 (etsrp/ER71), ETV6 (TEL), 

FLI, ERG and ELK3 (NET/SAP2) [49, 51, 57]. Nearly every characterized 

endothelial gene promoter or enhancer contains essential ETS binding sites 

and ETS motifs are strongly associated with endothelial cell genes throughout 

the human genome [49, 61, 62]. As a result, it is thought that nearly every 

endothelial cell gene is regulated by ETS factors in some manner [57]. The 

following section will highlight a number of the endothelial cell enriched ETS 

transcription factors, which have significant roles in vascular development 

including Ets1, Ets2, Fli1 and Erg. The last segment will give an in depth 

review of the literature regarding Etv2 as it is the subject of the following three 

data chapters. Although, Etv2 is considered the most important of the 

endothelial ETS transcription factors, its role and regulation during vascular 

development is probably the least understood. 
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Ets1 (E26 transformation specific-1) 

  Ets1 has been shown to play a role in endothelial differentiation, 

migration, angiogenesis and survival and is the best studied. Ets1 is 

expressed early during development and can be detected in the DA, PCV and 

ISV of the zebrafish trunk vessels as well as in the quiescent endothelium of 

humans, albeit at low levels [58, 60, 63, 64].  Consistent with its role in 

various endothelial cell processes, disruption of Ets1 function results in 

vascular defects. Research studying angiogenesis in in vitro cell culture and 

the chicken choriallantoic membrane assay (CAM) were the first to discover a 

role for Ets1 in vascular biology. Inhibition of Ets1 by dominant negative Ets1 

expression or by anti-sense oligonucleotide directed against Ets1 abrogated 

the ability of endothelial cells to migrate, adopt invasive behavior and form 

tubes in response to angiogenic growth factors in culture [65, 66]. 

Additionally, genetic down-regulation of Ets1 in chick results in the reduction 

of both the number and diameter of vessels. In mice, introduction of a 

dominant negative form of Ets1 through intravitreal injection suppresses 

retinal angiogenesis [67, 68]. However, homozygous Ets1 mutant mice are 

viable with no obvious vascular phenotype but have a significant reduction of 

natural killer cells in the spleen. The lack of a vascular phenotype in Ets1 null 

mice is likely due to functional redundancy with Ets2 (see below) [69]. Genetic 

dowregulation of ets1 in the developing zebrafish causes a mild angiogenesis 

defect with minor semi penetrant disruption of the ISVs, and a complete loss 
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of circulation at high morpholino doses [7]. Taken together these loss of 

function studies demonstrate its important role for Ets1 in endothelial 

differentiation, angiogenesis and vascular function.  

 Ets1 loss of function phenotypes result from the inability of Ets1 to be 

up-regulated during vascular development and its subsequent lack of 

downstream gene activation. Expression of Ets1 can be induced by pro-

angiogenic signals and can activate transcription of endothelial genes. For 

example, hypoxic tissues up-regulate hypoxia inducible factor-1 (HIF-1) and 

induce Ets1, resulting in new vessel invasion into the tissue. [70].  Pro-

inflammatory and pro-angiogenic stimuli such as tumor necrosis factor-α 

(TNF-α), platelet derived growth factor and hepatocyte growth factor (HGF), 

can also up-regulate Ets1[71, 72]. Ets1 downstream targets are important 

regulators of vascular development, including receptors involved in VEGF 

signaling like Flk-1, Flt-1 (VEGFR1), and Nrp1[73, 74]. Furthermore, Ets1 

induces a number of adhesion molecules such as, Pecam1 and VE-cadherin 

[75, 76]. Additionally, Ets1 regulates angiogenesis and tumor invasion by 

inducing genes capable of degrading the extra cellular matrix including matrix 

metalloproteases MMP-1, MMP-3 and MMP-9[77].  Interestingly, Ets1 is also 

capable of directly activating Fli1, another ETS protein that plays important 

roles in the differentiation of endothelial cells (see below) [78]. Experimental 

evidence demonstrates an important role for Ets1 in vascular development 
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and especially angiogenesis. However Ets1 is not required for angioblast 

specification and likely shares overlapping functions with other ETS family 

members.  

 

Ets2 (E26 transformation specific-2) 

 Ets2 is expressed in endothelial cells and can activate endothelial 

gene expression similar to Ets1.  Ets2 and Ets1 are closely related and highly 

conserved sharing ~67% sequence identity (data not shown, Clustal W 

protein alignment of human sequences)[53];b Ets1 and Ets2 are both 

activated by Ras-mediated phosphorylation [79] and demonstrate weak 

binding to each other [80], suggesting they may work to together to drive 

transcription. Additionally, Ets2 can activate endothelial cell gene promoters 

of Flt-1, Flk-1, Anpep (aminopeptidase) and Angpt 2 (angiopoietin-2) as 

measured by luciferase activity in vitro [74, 81-83].  Interestingly, Ets1 is able 

to activate a number of the same genes. Ets2 is expressed in the posterior 

lateral mesoderm, the sight of angioblast specification and in endothelial cells 

throughout zebrafish development [58]. In addition to its expression in 

presumptive angioblasts, Ets2 is also expressed in the vasculature of the 

developing mouse [84] and in the differentiated endothelium of humans [84-

86]. Homozygous deletion of the conserved DNA binding domain of Ets2 is 

embryonic lethal in mice, caused by a defect in trophoblast function. 

However, tetraploid complementation experiments demonstrate that Ets2 is 
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dispensable for the development of the embryo proper [87].  This is likely due 

to the functional redundancy of Ets1 and Ets2, because double knockouts of 

both genes in mice are embryonic lethal. Ets1/Ets2 null mice mice develop 

vascular abnormalities at E10.5, including marked reduction in vascular 

complexity, defective branching, and dilated vessels. Additionally, RT-PCR on 

the endothelial cells of these double knock out embryos reveal a significant 

up-regulation of apoptotic genes indicating that Ets1 and Ets2 play a role in 

endothelial cell survival [84]. Furthermore, both Ets1 and Ets2 are able to 

activate mir-126, which plays a crucial role during angiogenesis and is the 

most abundantly enriched endothelial miRNA [88].  As a whole, these data 

suggest that Ets2 is functionally redundant to Ets1 during vascular 

development and likely compensates for the loss of Ets1 by turning on the 

similar transcriptional programs.  

 

Fli1 (Friend leukemia integration site-1) 

 Fli1 like Ets1 was first found as an oncogene and a common site for 

viral integration in Friend Virus-induced erythroleukemias [89]. Fli1 shares 

80% homology with the ETS protein Erg, and they share overlapping 

expression domains, suggesting they may have overlapping functions [90].  

Fli1 is expressed at E7.5 in the murine mesoderm thought to give rise to both 

the hematopoitic and endothelial cells, then subsequently in the blood islands 

and the developing vasculature [91]. In the zebrafish Fli1 is encoded by two 
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genes, fl1a and fl1b due to a genome duplication event in Teleosts [92]. 

Zebrafish fli1a and fl1b have nearly identical overlapping expression patterns, 

starting in early angioblasts then throughout the endothelium and these 

proteins are functionally redundant [7, 58].  In humans Fli1 is constitutively 

expressed in the endothelium of arteries, veins, lymphatics as well as tumor 

vasculature [93].  Zebrafish transgenics harboring a Fli:egfp transgene have 

been used extensively in the vascular biology community to study the 

processes of vasculogenesis, angiogenesis and as a way to isolate 

endothelial cells for in  vivo gene expression analysis [12, 94].  

 The expression pattern of Fli1 would seem to imply that it could be a 

major effecter of endothelial cell differentiation.  However, loss of Fli1 causes 

only minor vascular defects.  Although Fli1 shares 80% homology with Erg, 

and share overlapping expression domains, they do not seem to be 

functionally redundant because Fli1 knockout mice are not viable [90].  Fli1 

homozygous mice die at E11.5 due to cranial hemorrhaging and/or a failure in 

hematopoiesis. However, specification of the endothelial lineage and early 

vascular patterning are normal in these mice [95].  Likewise, knockdown of 

the zebrafish fli1a and fl1b genes alone or together only causes minor 

vascular patterning defects with a semi-penetrant loss of circulation 

phenotype [7].  Simultaneous knockdown Fli1 and Erg in zebrafish have an 

additive angiogenesis phenotype compared to the phenotype of either one 

alone, therefore both are required and do not have overlapping functions [58].  
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Despite mild vascular defects in the absence of Fli1, overexpression of a 

constitutively active form of fli1a in the zebrafish can up-regulate early 

vascular markers such has flk-1, scl and lmo2  [96]. Interestingly, in the 

zebrafish cloche mutant, fli1a is still expressed despite lack of all 

hematopoietic and endothelial cell linage [97].  This continued expression is 

paradoxical and has yet to be explained. Although studies interpret this to 

mean Fli1 is positioned atop of the hemangioblast transcriptional hierarchy, its 

limited mutant phenotypes suggest otherwise [96]. However, Fli1 is able to 

activate endothelial cell gene expression and remains expressed within the 

differentiated endothelium to reinforce vascular stability, demonstrating an 

essential function during vascular development. 

 
   
Erg (Ets-related gene) 

 Erg is expressed in the vasculature throughout embryonic 

development and post-nataly. It is expressed as early as E9.5 in Flk-1 

positive blood islands of the mouse extra-embryonic yolk sack and in the 

trabeculated endocardial surface of the heart and is continually expressed in 

close association with VE-cadherin-positive endothelial cells [98]. Consistent 

with its expression, Erg plays a role in endothelial survival, differentiation, 

migration and angiogenesis. shRNA knock down of Erg in embryoid bodies 

causes reduction of several endothelial genes including Hey1 and Hey2 [98], 

which have known roles in arterial differentiation [98-100]. Mice lacking Erg 
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die at E11.5, failing to initiate definitive hematopoiesis. However, blood 

islands and intra-embryonic vasculature are present in these mice, although 

severely dilated [101]. These results suggest that Erg is not required for the 

specification of early endothelial precursors and is consistent with loss of 

function studies in the zebrafish. In Erg morphant zebrafish embryos, the axial 

vasculature forms normally although subsequent angiogenesis and 

maintenance is impaired [58], suggesting Erg plays a role in later stages of 

endothelial differentiation maintaining vessel integrity.  

 Erg activates a number of endothelial cell genes in vitro including VE-

cadherin, endgolin, and Von Willebrand factor (vWF) [102] and can 

ectopically induce Flk-1 expression in vivo [103]. Erg is the most expressed 

ETS protein in adult endothelial cells and has a role in the maintaince of 

endothelial cell quiescence and homeostasis by repressing NF-κB mediated 

activation of proinflammatory genes [86, 104]. This newly found repressive 

activity is of note because most ETS transcription factors are activators [51]. 

In addition to its role in endothelial cell maintenance, Erg expression inhibits 

vascular permeability by activating the tight junction protein Claudin 5 

(CLDN5)[105]. In Human umbilical cord venous endothelial cells (HUVECs), 

shRNA knock down of ERG causes an increase in permeability with 

significant changes in cytoskeletal architecture [105].  Thus, Erg is not 

essential for vasculogenesis but instead plays a role during angiogenesis 
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perhaps by regulating cell-cell junctions and later to maintain fully 

differentiated endothelial cell homeostasis.  

 

ETS Factor redundancy 

 Mutation or deletion of several ETS proteins gives a vascular 

phenotype and their overexpression leads to the induction of endothelial cell 

gene expression but these phenotypes are mild  because of functional 

redundancy within the family.   For example, homozygous null Fli1 mice die at 

E12.5, due to poor blood vessel integrity and hemorrhaging.  Overexpression 

of a constitutive active from of Fli1 in zebrafish embryos causes the induction 

of the zebrafish homolouge of vegf-receptor-2 (kdrl) in non-endothelial cells. 

Another ETS protein highly expressed the developing vasculature, which 

directly targets a number of endothelial cells genes is Ets1.  In zebrafish Ets1 

knockdown results in a loss of circulation phenotype with mild intersegment 

vessel defects, yet the majority of Ets1 homozygous mouse mutants are 

viable, and have no vessel defects [7, 69].  The minor phenotypic effects of 

Fli1 and Ets1 knockouts in the mouse is likely due to the functional 

redundancy between ETS factors.  Several ETS transcription factors are 

highly expressed in the developing endothelium [49, 51, 57].  Additionally, 

studies have shown that different ETS factors can bind to and transactivate 

the same consensus sequences in promoters [59, 60]. Interestingly the major 

ETS proteins that effect vascular development are also evolutionarily 
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conserved meaning they also share similar DNA binding site affinities (Figure 

I-3). This ETS factor redundancy is typified by the double knockouts of the 

Ets1 and Ets2 genes in mice.  Neither knockout alone gives a vascular 

phenotype but the combined mouse knockouts have are embryonic lethal 

between E11.5 and E15.5 and display a vascular phenotype consisting 

improper vessel remodeling and diminished angiogenic branching [84]. 

Similarly, zebrafish knockdown of four distinct ETS genes causes a much 

more severe vascular phenotype than knock down of any one individual ETS 

genes [7]. However, of all the ETS factors expressed in endothelial cells, only 

Etv2 is essential for the specification of angioblasts and is not redundant.   
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Etv2 (Ets variant 2) 
 
 Unlike the other ETS proteins involved in vascular biology, Etv2 has 

been the least studied.  Currently if one searches Pubmed for Ets1, Fli1 or 

Erg and similar derivations thereof, the results return 1579, 1104 and 1743 

articles for each gene, respectively. Similarly, if you search for Etv2, a total of 

50 articles are referenced and only about half investigate its biological role, 

rather than simply use it as an early angioblast marker.  This is in part 

because a role of Etv2 in vascular biology was only suggested in 2005.  

Additionally, Etv2 has not been found to be an oncogene or implicated in any 

pathological disease. Therefore, few researchers except for vascular 

biologists have focused on it.   

 Etv2 (er71 or etsrp) was first identified using degenerate 

oligonucleotides designed against two conserved regions within the DNA 

biding domain of ETS proteins, which were then hybridized against cDNA 

from an E8.5 mouse.  This report from 1992 named the gene Er71 (ets-

related 71) and described it as expressed only within the testes [106].  It took 

another ten years for a study to be published on Etv2.  This report is the only 

published biochemical analysis of Etv2 and highlights several important 

features of the murine protein[107]. Etv2 is constitutively localized to the 

nucleus, mediated by a bipartite nuclear localization sequence within the C-

terminal ETS DNA binding domain. The ETS DNA binding domain is able to 

bind to and activate transcription of the E74 and MMP-1 promoters.  Both 
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promoters have been shown to bind other ETS proteins [108], highlighting the 

highly conserved nature of ETS protein DNA binding site recognition.  They 

also found an N-terminal activation domain between residues 1-157; this 

domain can be fused to the GAL4 DNA binding domain and activate 

heterologous promoters. Three years later the same group identified and 

cloned the murine Etv2 promoter and after initial characterization found that it 

is a TATA-box-devoid promoter that is syntenic with human ETV2 and is 

bound by the ETS protein Sp1(PU.1) [109]. Interestingly, Sp1 is expressed 

mainly in hematopoietic cells but also in the germinal compartment of the 

testes after E12.5 [110], along with Etv2, indicating that Sp1 may activate 

Etv2 within these cells in a context dependent, manner but not in the 

vasculature.  

 Etv2’s role in vascular development was first proposed after a 

microarray screen analyzing the zebrafish cloche mutant [111].  The cloche 

mutation affects a very early step in hematopoiesis and vasculogenesis; 

mutant embryos are devoid of blood cells and endothelial cells [23]. The 

cloche mutant is believed to be a loss of function mutation in the 

lysocardiolipin acyltransferase (lycat) gene but its mechanism of action is still 

unknown [112]. In a microarray study the cloche mutant was crossed with a 

transgenic zebrafish that expressed EGFP in hematopoietic cells. The 

expression of the transgene allowed the authors to identify homozygous 

mutants during early somitogenesis before they were morphologically 
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distinguishable, which allowed early genetic comparisons.  Gene expression 

microarrays were performed comparing cloche homozygous mutants to their 

WT siblings. Etv2 (called etsrp at the time, for ETS related protein) was 

identified as a novel transcript that was significantly downregulated and 

expressed in the endothelium but not in cloche mutants [111]. 

 Sumanas and Lin, who identified Etv2 in the microarray screen were 

the first to perform its characterization and functional analysis during vascular 

development [6].  The zebrafish Etv2 encodes a novel ETS transcription 

factor that shares 37% similarity to the human Ets1 protein, with 87% 

similarity within the DNA binding domain.  Syntenic analysis revealed that 

Etv2 is located next to the fli1b gene in the zebrafish genome in opposite 

transcriptional orientation. The human and mouse Ets1 and Fli1 genes are in 

the same syntenic arrangement. Therefore, it is likely that Etv2 and Ets1 are 

evolutionarily related and arose through gene duplication but then functionally 

diverged [113]. Etv2 expression starts at the earliest somitogenesis stages in 

two distinct anterior and posterior populations that give rise to the 

hematopoietic and endothelial cell lineages. Etv2 is constitutively expressed 

in the endothelium until ~36hpf then becoming mostly absent except in the 

pronephric duct and the hematopoietic stem cell niche.  We present data in 

Chapter II, that demonstrates Etv2 is not expressed past 24 hpf in any 

appreciable amount in the endothelium. 
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 The early and endothelial cell specific expression of Etv2 suggests it 

may be required for vascular development. Accordingly, morpholino 

knockdown of Etv2 causes a defect in blood vessels morphology with a 

subsequent failure in circulation. This defect is caused by failure of the 

angioblasts to differentiate from the lateral mesoderm and migrate to the 

midline to form a vascular cord.  Subsequently, embryos develop pericardial 

edema and eventually become necrotic and die.  Prior to this, Etv2 morphants 

are morphologically normal except for the lack of a vascular system. The 

vascular phenotype of Etv2 morphants seems to be caused by a failure of 

endothelial gene expression.  Expression of Flk-1, VE-Cadherin, and Flt4 

(VEGFR3) is completely absent in Etv2 morphants.  However, there was a 

minimal effect on hematopoietic cell gene expression, indicating Etv2 plays a 

more prominent role during endothelial differentiation in the zebrafish (Etv2’s 

role in hematopoiesis will be discussed in more detail below).  Importantly, 

global Etv2 overexpression is able to precociously and ectopically induce 

endothelial gene expression, even in non-mesodermal tissue; indicating Etv2 

alone is sufficient to initiate vasculogenesis. By contrast, overexpression of 

other regulators of vasculogenesis such as VEGF and Scl can only induce 

expression of vascular markers within the lateral or somitic mesoderm [114, 

115]. Since this study was published [6], a number of studies have been 

published corroborating and extending these initial findings. In the following 
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section I will discuss several important and relevant aspects of Etv2 biology 

found in the literature.   

 The expression of Etv2 is in the developing vascular and 

hematopoietic system is conserved in fish mammals and amphibians. In the 

developing mouse, Etv2 is expressed in the primitive streak, embryonic 

mesoderm, amnion, allantois, and yolk sac blood islands at E7.5 [8]. By E8.5, 

Etv2 is expressed in the endothelium of all major blood vessels including the 

dorsal aorta, segmental vessels, branchial arches and the endocardium [8, 

116]. Etv2 expression is transient and undetectable in the mouse by E11.5.  

In murine embryonic stem cells, Etv2 is similarly expressed prior to 

expression of Flk-1 and is then downregulated upon differentiation into 

endothelial lineages [8].  Consistent with the mouse studies, ETV2 is not 

expressed in the differentiated endothelium of humans [60]. A transgenic 

mouse driving yellow fluorescent protein (YFP) using a 3.8 kb (kilo base) 

upstream proximal Etv2 promoter, faithfully recapitulates the Etv2 expression 

described above [117].  However, it is unclear whether transgene expression 

is also extinguished at later developmental stages.  The authors do not 

present any experiments that use the line after E9.5 suggesting Etv2 may 

recapitulate endogenous regulation.  In the developing zebrafish, Etv2 

expression is detectable by in situ hybridization at the 2 ss, as two bilateral 

stripes in the lateral mesoderm, while at mid-somitogenesis Etv2 is expressed 

in hematopoietic and endothelial precursors. Etv2 expression is maintained in 
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angioblasts as they migrate to the midline, the nascent vascular cord during 

late somitogenesis and then in the endothelium of the trunk vessels. Similar 

to mice, zebrafish Etv2 expression is down-regulated in differentiated axial 

vessels, but is still visible in vessels that are newly developing (Chapter II; [6, 

58].  Transgenic lines using regulatory sequences from the zebrafish Etv2 to 

drive expression of a florescent reporter gene mostly recapitulates 

endogenous Etv2 expression within the endothelium, however inappropriate 

expression is visible in the trunk and tail region of the neural tube and 

expression persists in the endothelium until adulthood [118]. Continued 

expression indicates the transgene promoter escapes inhibitory 

transcriptional mechanisms normally exerted on the endogenous gene. This 

is distinct from a second Etv2 transgenic [tg(-2.3etsrp:gfp)], where 2.3 kb of 

the upstream Etv2 promoter is fused to GFP [119].  In this reporter line, GFP 

is specifically expressed in the hemato-vascular tissue until 48hpf, suggesting 

transcriptional regulation of the transgene may reflect endogenous Etv2 

expression. Lastly, expression of Etv2 has also been reported in Xenopus 

[120, 121], where its expressed shortly after gastrulation in the developing 

blood islands, angioblasts and throughout all the structures of the primitive 

vascular network. Consistent with reports in mouse and zebrafish, Etv2 

expression in Xenopus is transient and mRNA levels become undetectable by 

tadpole stage.  The transient nature of Etv2 expression during vascular 

development compared to other endothelial expressed ETS transcription 
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factors suggest that down-regulation of Etv2 is caused by an active inhibitory 

mechanism (see chapters III and IV).  In fact, down regulation of Etv2 

expression is required, because persistent expression in the mouse is 

deleterious to vascular development and endothelial maturation [122].  

 Loss of Etv2 function prevents the formation of the cardiovascular 

system. A large scale mutagenesis screen looking for vascular phenotypes 

using zebrafish Tg(fli1:egfp)y1 transgenics recovered an Etv2 mutant, 

tg(fli1:egfp)y11, where a premature stop codon eliminates 3/4 of the 

endogenous protein including the essential c-terminal ETS DNA binding 

domain and essentially recapitulates genetic downregulation of Etv2 [6, 7]. 

Zebrafish Etv2 morphants and mutants do not express endothelial genetic 

markers including Flk-1 and as result fail to form a vascular system. To date, 

mice with targeted deletion of Etv2 display the most severe vascular 

phenotypes reported for any vascular gene, including Flk-1 and other ETS 

factors, demonstrating its essential position in the genetic hierarchy 

controlling the endothelial cell lineage [8]. Etv2 homozygous mutant mice fail 

to express Flk-1, which the authors demonstrate can be directly activated by 

Etv2. These mice also fail to express genes associated with endothelial cell 

identity and consequently die at ~E9.5 due to the complete loss of embryonic 

and extraembryonic blood and vascular structures, including the endocardium 

of the heart [116]. Consistent with the mouse and zebrafish studies, Xenopus 

Etv2 morphants also fail to form vascular structures and to initiate endothelial 
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marker gene expression.  The role of Etv2 during vascular differentiation is 

conserved between species but its role in hematopoiesis is not.  

 Vertebrate hematopoiesis proceeds in two waves. Primitive 

hematopoiesis serves as a transient early source of limited blood cell types, 

while definitive hematopoiesis contributes to all adult blood cell lineages 

[123]. In the mouse Etv2 is required for primitive hematopoiesis and 

specification of all blood cell lineages. As a result, blood cells are absent in 

both embryonic and extraembryonic structures of Etv2 mutant null mice after 

benzidine staining at E9.0. Additionally, no erythroid colonies formed when 

E8.5 yolk sacks were analyzed by hematopoietic replating, demonstrating the 

absence of hematopoietic progenitors [8]. Furthermore, Etv2-devoid 

embryonic stem cells fail to differentiate any hematopoietic cell types. The 

lack of hematopoietic and endothelial gene expression in Flk1-negative, Etv2-

devoid, hematopoietic progenitors can be partially rescued by the expression 

of exogenous Etv2 [124]. This ability of Etv2 to de novo initiate hematopoiesis 

is caused in part by the direct activation of Flk-1 and Scl, which are critically 

required for blood cell formation [34, 61, 124-126]. Unlike in the mouse, 

zebrafish Etv2 is only required for the myeloid but not the erythroid cell 

lineages during hematopoiesis [127]. Etv2 works upstream of Scl during 

hematopoiesis and Etv2 morphants fail to initiate expression of genes 

required of definitive hematopoiesis [127, 128].  Interestingly, loss of Etv2 in 

Xenopus, has no effect on hematopoiesis with all blood cell lineages 
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developing normally although over expression of Etv2 is able to induce 

myeloid but not erythroid cell lineages [120].  In conclusion, these data 

suggest that unlike vascular development, Etv2 function is only partially 

conserved during vertebrate hematopoiesis.   

 Consistent with its role in cardiovascular system development and its 

ability to induce hemato-vascular gene expression, ubiquitous Etv2 mRNA 

expression causes ectopic induction of endothelial marker genes [6]. 

Specifically, zebrafish or mouse Etv2 mRNA is able to induce the expression 

of Flk-1 and Scl in WT and cloche mutant zebrafish embryos [6, 127]. 

Similarly, forced expression of Etv2 in Xenopus embryos or in mouse 

embryonic stem cells injected with Etv2 mRNA result in ectopic induction of 

endothelial cell gene expression[8, 120, 124].  However, continued 

expression of the usually transient expressed Etv2 in mice using the Tek 

promoter disrupts vascular development by preventing vascular maturation, 

where endothelial cells retain an immature gene expression profile. In this 

study mice are severely anemic, because constitutive Etv2 expression 

induces an endothelial program on hematopoietic cells [122]. Microarray and 

deep sequencing analysis of Etv2 overexpressing zebrafish embryos results 

in transcriptional up-regulation of hundreds of endothelial cell genes [129-

131].  Some of the genes in these studies were previously unidentified 

endothelial genes, suggesting global induction of the endothelial gene 

program.  We performed a similar microarray study and our results are 



38

consistent with these published reports (Chapter II). Overall, these studies 

across species indicate that Etv2 has a conserved function as a potent 

activator of endothelial gene transcriptional programs.  

 The literature referenced thus far clearly demonstrates a role for Etv2 

in endothelial cell transcriptional program activation. But what turns on Etv2?  

There is no definitive answer and only a limited amount of research has been 

dedicated to answering this question. In embryonic stem cells, addition of 

chemical inhibitors for the bone morphogenetic protein (BMP), Notch and 

Wnt, but not the Hedgehog families result in the reduction of Flk-1 positive 

hemato-endothelial cells [8]. The combined addition of these inhibitory 

chemicals had a more dramatic affect on cell number than any one chemical 

alone. The chemical inhibition of Flk-1 positive mesodermal cells was 

concomitant with the downregulation of normalized expression of Etv2, 

suggesting these signaling pathways directly or indirectly regulate Etv2 gene 

expression. Considering the regulatory breadth of these three signaling 

pathways, it is not surprising that a transcriptional activator acting on the Etv2 

gene was not identified in this study.  Recently, the homeobox transcription 

factor Nkx2-5 was found to directly bind and activate Etv2 transcription and 

Nkx2-5 mutant mice do not express Etv2 in the heart [116]. Nkx2-5 is the 

earliest expressed genes in the cardiac lineage and its deletion in mice 

perturbs heart morphogenesis and prevents the formation of the endothelial 

derived endocardial cushion, resulting in embryonic lethality at E9.5 [132, 
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133].  Although Nkx2-5 is likely a bona fide Etv2 transcriptional activator, it is 

specifically expressed within the developing heart field and therefore not likely 

to be responsible for Etv2 activation in the entire endothelium during 

embryogenesis. Another possible candidate for Etv2 expression in the 

endothelium are the members of Forkhead (Fox) transcription factor family, 

specifically murine Foxc1 and Foxc2 and their zebrafish homologs foxc1a and 

foxc1b (foxC1a/b). The murine and zebrafish Foxc genes are expressed in 

the developing vasculature although not exclusively [134, 135]. Foxc1a/b 

genes bind to a conserved endothelial enhancer in the Etv2 locus by EMSA 

and ChIP in the zebrafish and deletion of this enhancer region significantly 

reduces transgene expression [119]. Additionally, mice composite ETS:FOX 

DNA binding motifs strongly predict endothelial target genes from the genome 

and Foxc1/Etv2  synergistically and directly activate endothelial gene 

expression, suggesting Etv2 and Foxc cooperatively activate transcription 

during vascular development [61]. It is possible that Foxc1 maintains or 

enhances Etv2 transcriptional activation instead of being its sole initiator, 

because double Foxc1/Foxc2 homozygous mice have a much less severe 

vascular phenotype than Etv2 mutants [134]. Hematopoiesis and vascular 

development proceeds normally in Foxc1/Foxc2 homozygous mutant mice, 

unlike Etv2 mutants, which fail to form cell types associated with 

cardiovascular development [8, 134]. Not surprisingly, considering their 

seemingly ubiquitous role in endothelial gene expression, ETS proteins can 
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directly activate Etv2 transcription.  For instance, Etv2 is directly activated by 

the ETS factor Spi1 (Pu.1), a gene essential for the development of the 

myeloid lineage [109, 136, 137]. However, Spi1 is only expressed in 

hematopoietic cells and therefore its activation would not  explain the initial 

expression of Etv2 within the endothelium.  Interestingly, Etv2 has been 

shown to activate its own expression when overexpressed in Zebrafish [129]. 

This opens up the possibility that alternative ETS members could activate 

Etv2, considering the substantial gene activation overlap of the family. Etv2 

activation is downstream of at least three major signaling pathways and is 

directly activated by three separate families of transcription factors.  The 

complexity of Etv2 activation mirrors the complexity of its down-regulation 

(discussed in chapters III and IV).  It will be interesting to see how many more 

players are found and how they may cooperatively interact to activate Etv2 

transcription and thus, vascular development.    
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Project Goals 
  
 The non-autonomous molecular signaling mechanisms that drive the 

process of vasculogenesis and angiogenesis have largely been elucidated. 

However, the transcription factors that drive angioblast specification are not 

well understood. Research surrounding the ETS transcription factor etv2, has 

led to the idea that it is the master regulator of endothelial cell lineage 

commitment. That is because loss of etv2 causes severe cardiovascular 

defects, with a failure to specify angioblasts consistently; overexpression 

precociously and ectopically induces endothelial gene expression. However, 

the expression dynamics of etv2 and its regulation have not been fully 

investigated.  In order to increase our understanding of etv2 function during 

vascular development, I conducted detailed expression studies in embryonic 

zebrafish. Additionally, I used a conditional loss of function approach to 

determine the developmental time window for Etv2 function to more clearly 

defining the requirement for etv2 during vascular development.  I also 

investigated how etv2 expression is regulated by examining both post-

transcriptional and post-translational mechanisms.  

 
Questions addressed in the thesis: 

 
-‐ When is etv2 expressed during development of the zebrafish?  
-‐ When is etv2 functionaly required during development? 
-‐ What is the role of Etv2 during vascular differentiation and what are 

its transcriptional targets? 
-‐ Is etv2 post-transcriptionally or post-translationaly regulated? If 

so,what are the mechanisms? 
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CHAPTER II: ETV2 IS THE MASTER REGULATOR OF ENDOTHELIAL 
CELL FATE.  
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Introduction 
 

 The morphological events defining vasculogenesis and angiogenesis 

are well defined but the transcriptional regulation of angioblast specification 

and their eventual differentiation into endothelial cells is poorly understood. 

Multiple transcription factor families have been implicated in the activation 

and maintenance of endothelial gene expression, including members of the 

Sox, Fox, GATA, and KLF families [49].  To date, no single transcription factor 

family seems to regulate the endothelial cell transcriptional program as 

extensively as the ETS family of transcription factors. Several ETS 

transcription factors are highly expressed in the developing endothelium 

including Ets1, Ets2, Etv2(etsrp/er71), Etv6(Tel), Fli1, Erg and Elk3(Net/Sap2) 

[49, 51, 57].  Among these, only Etv2 has no redundant function and is 

essential for the specification of angioblasts (detailed in Chapter I).   

 Etv2 is required for vascular morphogenesis and its expression is 

detectable at the onset of vasculogenesis.  In mice Etv2 is expressed in the 

blood islands, extra-embryonic vessels and in primitive vessels of the embryo 

early during development [8, 116]. Similarly, Etv2 expression in the zebrafish 

is detectable at the 2 somite stage (ss) at the initiation of angioblast 

specification in the lateral plate mesoderm [6]. Etv2 knockout mice fail to 

specify hemangioblast cells from the mesoderm manifesting in a complete 

lack of hematopoietic and endothelial cell lineages and die at E9.5 [8, 116].  

Zebrafish Etv2 mutants and morphants have complementary phenotypes that 
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mirror that of the mouse, in that they fail to properly form the vascular system 

[6, 7, 111]. However, in the zebrafish Etv2 seems to play a more important 

role in vasculogenesis than hematopoiesis, compared to the mouse [127]. 

Loss of Etv2 expression coincides with a complete absences of endothelial 

cell gene expression including, kdrl, flt4, cdh5, and plxnd1 [6-8, 116].  Global 

overexpression of mouse and zebrafish Etv2 in zebrafish embryos leads to 

the expansion of both hematopoietic and endothelial cell lineages [127]. 

Additionally, Etv2 overexpression leads to the induction of hundreds of 

vascular and myeloid genes, some of which are activated by direct promoter 

or enhancer binding [61, 116, 124, 129-131, 138].  The role of Etv2 as 

transcriptional initiator and as endothelial cell lineage determinant is 

exemplified by research demonstrating that Etv2 in combination with Fli1 and 

Erg can transdifferentiate amniotic fluid cells into reprogrammed vascular 

endothelium cells [139].      

 Etv2 is expressed only early during mouse development up to E9.5 

and expression in the zebrafish axial vasculature is downregulated by 36hpf 

[6, 8, 116].  This suggests that Etv2 has only an early role in development and 

is then dispensable.  Interestingly, mouse embryos are viable following 

conditional endothelial ablation of Etv2 using a Flk1:Cre driver[124]. Flk-1 is 

required for angioblast specification but is induced by Etv2, suggesting that 

Etv2 function is restricted to very early stages of vascular development [124, 

140]. Although previous studies have suggested dynamic control of etv2 
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expression during embryogenesis [8, 116, 124, 125, 140], little is known 

about its expression dynamics throughout development.  We sought to 

perform carefully quantified, staged studies to define Etv2 expression during 

zebrafish vascular development while further investigating its role in 

endothelial differentiation by defining transcriptional targets.  

 Here we describe the expression of Etv2 transcript and protein during 

zebrafish vascular development.  Both mRNA analysis and 

immunohistochemistry reveal that Etv2 is expressed in the primitive 

vasculature of developing zebrafish at 18 hpf and is strongly downregulated in 

differentiated endothelial cells by 24hpf. Conditional knockdown of Etv2 using 

a caged morpholino defined a functional window of Etv2 during vascular 

development that is shorter than it’s expression window and suggests Etv2 

functions to specify angioblasts from the lateral plate mesoderm.  

Accordingly, mosaic transplant analysis reveal that Etv2 overexpressing cells 

are much more likely to contribute to the vasculature than cells injected with a 

control mRNA.  We then present microarray analysis as evidence that Etv2 

sits atop a transcriptional hierarchy controlling endothelial cell lineage 

determination.  
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Materials and Methods 
 
 

Zebrafish Handling and Maintenance 

Zebrafish and their embryos were handled according to standard protocols 

[141] and in accordance with the University of Massachusetts Medical School 

IACUC guidelines. Tg(fli1a:egfp)y1, Tg(fli1a:negfp)y7, 

Tg(fli1a.ep:DsRedEx)um13 and Tg(kdr:grcfp)ZN1 lines have been described 

previously [12, 16, 142, 143].  

 

Plasmid Construction.  

The etv2 open reading frame was amplified from 24 hpf whole embryo cDNA 

and used in a BP recombination reaction with plasmid pDONR221 

(Invitrogen) to make pME-etv2 (primer sequences are in Appendix II). pME-

etv2, or pME-mcherry [144] were used in LR reactions with pCSDest or 

pCSMTDest [145] to generate pCS-etv2, pCSMT-etv2,  and pCS-mCherry.  

pCS-EGFP has been described [146]. 

 

Antibody production 

The Fli1b antibody has been previously described [15]. A fragment encoding 

the N-terminal 218 amino acids of zebrafish Etv2 was amplified from 24 hpf 

zebrafish cDNA (primer sequences are in Appendix II), cloned into pCR2.1 by 

TOPO cloning (Invitrogen), and sequence verified. The etv2 fragment was 
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subcloned into pGEX-6P-1 using BamHI and XhoI sites. pGEX-etv2 was 

transformed into BL21(DE3) e. coli and glutathione S-transferase (GST) 

fusion protein expression was induced with IPTG.  Expressing bacteria were 

lysed using Bug Buster (Novagen), and proteins were purified using 

Glutathione Sepharose 4B (GE Healthcare), followed by release of the Etv2 

fragment and removal of the GST using PreScission Protease (GE 

Healthcare).  Purified Etv2 protein was used for rabbit polyclonal antibody 

production (Caprologics, Gilbertville, MA).  Etv2 antiserum was validated 

using Western analysis of lysates from HEK293T over-expressing myc-

tagged zebrafish Etv2 and EGFP. The myc epitope was detected using a 

1:10,000 dilution of anti-myc monoclonal antibody (Sigma, 9E10) and Etv2 

protein was detected using a 1:5,000 dilution of anti-Etv2 polyclonal antibody 

serum.  The EGFP protein was detected using a 1:10,000 dilution of GFP 

polyclonal antibody (Invitrogen, A11122)    

 

Whole mount immunohistochemistry 

Staged zebrafish embryos were fixed overnight at 4°C in 2% 

paraformaldehyde (w/v) dissolved in phosphate buffered saline containing 

0.1% Tween-20 (PBSTw). Embryos were washed 4 times for 5 minutes at 

room temperature in PBSTw and in PBS containing 0.5% TritonX-100 

(PBSTw) for 30 minutes. Embryos were blocked for a minimum of 2 hrs in 

blocking solution (PBSTw, 0.1% TritonX-100, 10% normal goat serum, 1% 
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BSA, 0.01% sodium azide) at room temperature. Fli1b and Etv2 rabbit 

polyclonal serum was diluted 1:1000 and 1:500, respectively, in blocking 

solution and embryos incubated over night at 4°C. Embryos were washed 6 

times in PBSTw for at least 4 hrs at room temperature and then incubated 

overnight with Alexa Fluor 488 or Alexa Fluor 568 (Invitrogen) anti-rabbit 

secondary antibody diluted 1:1000 in blocking solution. Immunostained 

embryos were imaged on a LSM7 MP microscope 

(Zeiss; Objective: 20x/1.0 DIC(UV) VIS-IR 421452-9800) equipped with a 

Chameleon Ti:Sapphire pulsed laser (Coherent, Inc.). Alexa Fluor 488 and 

Alexa Flour 568 were alternatively excited at 904 nm and 1057 nm, 

respectively, on each section during image acquisition. 

 

Morpholino injections 

The Etv2 caged morpholino (cMO) used in this study has been previously 

reported [147]. 230 fmol (~2 ng) of Etv2 cMO was injected into 

Tg(fli1a.ep:DsRedEx)um13 embryos at the 1-cell stage. Embryos were 

subjected to UV illumination for 10 seconds at indicated stages using a Zeiss 

Axioskop2 Plus compound microscope with a DAPI filter and an Achroplan 

(Zeiss) 20x water immersion objective. Following photoactivation, embryos 

were grown in egg water at 28.5°C. Control embryos were left in the dark.  5 

ng of scrambled control or 5ng Etv2 MO [6] were injected as negative and 

positive controls, respectively. Vascular morphology was assessed at 30 hpf. 
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The standard Etv2  MO and scrambled control MO were used to test the 

specificity of the Etv2 polyclonal antibody in Tg(fli1a:negfp)Y7 embryos at 

18hpf after Etv2 whole mount immunohistochemistry at the same 

concentractions. Embryos were imaged using an MZFLIII fluorescent 

dissection microscope or using a using a Leica DMIRE2 confocal microscope 

(Objective: HC PL APO 20x/0.70CS).  Circulatory defects were observed 

using a MZ12 stereomicroscope (Leica) and captured with a DMK21F04 

camera (Imagesource) using Quicktime Pro or iMovie.  

 

Quantification of endothelial gene expression 

mRNA was quantified using the NanoString nCounter gene expression 

system (Nanostring Technologies, Seattle, WA) [148]. Total RNA was isolated 

from embryos at indiciated time points using a Qiagen RNAeasy kit.  For each 

experiment, 100ng of total RNA was hybridized for 12 to 20 hrs with the 

Nanostring probeset (Appendix III) at 650C in a thermocycler.  Samples were 

then loaded into the nCounter prep station and fluorescence signal was 

quantified using the nCounter Digital Analyzer. Gene normalization and fold 

change calculations were done using Nsolver Analysis Software (Nanostring 

Technologies). In all cases, biological triplicates were performed and gene 

counts were normalized to eukaryotic translation elongation factor 1 alpha 1 

like 1 (eef1a1l1) and actin, beta 2 (actb2). The average normalized gene 
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count was plotted and error bars represent the Standard Error of the Mean 

(SEM).  

mRNA synthesis and injections 

Capped mRNA was synthesized from pCS plasmids that had been linearized 

with NotI using the SP6 mMessage mMachine kit (Ambion).  mRNAs were 

injected into 1-cell stage embryos according to standard protocols [141]. For 

the Etv2 overexpression microarray 50pg of Etv2 or mCherry mRNA was 

injected into Tg(fli1a:egfp)y1 embryos and RNA isolated at shield stage. 

 

In situ hybridization 

An antisense DIG-labeled etv2 riboprobe was synthesized by linearizing 

pCS2-etv2 with EcoRI followed by in vitro transcription using T7 polymerase.  

Whole mount in situ hybridization was performed according to standard 

protocols [149]. 

 

Mosaic analysis 

Tg(fli1a:egfp)y1 embryos were used as donors in all cases and 0.35% 

miniRuby (dextran, tetramethylrhodamine and biotin 10,000MW) (Invitrogen 

D-3312) was co-injected as a lineage tracer.  To assess the effect of Etv2 

overexpression, we injected 100pg of myc-etv2 or mCherry mRNA into 1-cell 

stage donor embryo. At sphere stage, approximately 20 cells were 

transplanted from the ventral blastoderm margin of donors into wild type 
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hosts, which were subsequently screened at 30 hpf for the appearance of red 

and green fluorescence.  Embryos were imaged using an MZFLIII fluorescent 

dissection microscope or using a using a Leica DMIRE2 confocal microscope 

(Objective: HC PL APO 20x/0.70CS).  The proportion of successfully 

transplanted embryos (i.e. exhibiting miniRuby-positive cells in any trunk 

tissue) with contribution to blood vessels was determined in three separate 

experiments and significance was calculated by Fisher’s Exact test. p < 0.05 

was deemed significant.  

 

Embryo dissociation and Fluorescence Activated Cell Sorting (FACS) 

Wild type Tg(kdr:grcfp)ZN1 embryos were grown to 24 hours post 

fertilization(hpf) in Egg water and dechorinated by Pronase .  Embryos were 

washed several times in calcium free Ringers (116mM NaCl, 2.9mM KCl, 

5mM HEPES, pH 7.2) and passed through a 200uL pipette tip to remove the 

yolk sack and rewashed in calcium free ringers.  Embryos were transferred 

into a 35mm culture dish containing 2mL of Protease solution(Phosphate 

Buffered saline[PBS], 1mM EDTA, 0.25% Trypsin, pH 8) and incubated for 

30-60 minutes at 28.50C with occasional trituration. Upon visualization of a 

single cell suspension, dissociated embryos were washed three times in 

15mls of suspension medium (Colorless L-15 media[Gibco], 0.8mM CaCl2, 50 

U/mL penicillin, 0.0 5 mg/mL, 1% fetal calf serum).  Cells were centrifuged for 

3 min. at 3000rpm, in between washes.  After the final wash, cells were 
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suspended in resuspension media at approximately 107 
 cells/mL. FACS of 

single cell suspensions was performed at room temperature under sterile 

conditions using a FACSVantage SE /DIVA (BectonDickinson) with a 

Coherent Innova 70 laser at 488nm and 200mW power. GFP+ and GFP− 

cells were separately collected in collection media(L15, 0.8mM CaCl2,50 

U/mL penicillin, 0.0 5 mg/mL, 10% fetal calf serum) Equal numbers of GFP+ 

and GFP- cells were centrifuged and resuspended in 250µL of Trizol Reagent 

(Invitrogen) and stored at -800C until all samples were collected.  

 

RNA Isolation and microarray hybridization 

RNA was isolated using Trizol Reagent according to manufacturer’s 

instructions. RNA pellets were DNAse treated, phenol chloform extracted and 

resuspeneded in 20µL of RNase free water (Ambion). For GFP+ and GFP- 

cell sorted RNA samples 825ng/sample of RNA was amplified using Ambions 

MessageAmp II aRNA Kit (Cat#: AM1751). Etv2 overexpression and control 

RNA samples were handled in the same manner except RNA was not 

amplified. All GFP+ and GFP- aRNA (amplified RNA) generated and 5µg Etv2 

overexpressing whole and control RNA was given to the UMass Medical 

School Genomics Core for sample  hybridization to Affymetrix (Santa Clara, 

CA) Zebrafish GeneChips as per manufacturer's instructions. GFP+ cell 

population’s gene expression levels were compared to GFP- populations and 
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Etv2 overexpressing gene expression was compared to mCherry control. All 

comparisons where performed in triplicate. Gene expression as analyzed 

using the RMA method [150] in the Affy package from Bioconductor was used 

in R to summarize the probe level data and normalize the dataset to remove 

across array variation. Log transformed data was used in the subsequent 

analysis. Limma package from Bioconductor [151] with randomized block 

design (n=3) was used to determine whether a gene¹s expression level differs 

between treatments. Genes with adjusted p-value using B-H method 

(Benjamini & Hochberg 1995) < 0.05 and fold change >= 2 were considered 

significant. 

 

 

 
 



54

Results 
 

Etv2 transcript is transiently expressed  

 Based on previous studies that suggested dynamic control of etv2 

expression during embryogenesis, we carefully investigated its expression 

during zebrafish vascular development [8, 116, 124, 125, 140].  To examine, 

the dynamics of etv2 expression, we first applied the NanoString nCounter 

gene expression system assay to quantitatively measure etv2 transcript levels 

during embryogenesis.  Using this approach, we observed that etv2 

expression increases between tail bud and 10 somite stage (ss). Etv2 RNA 

levels peak at 18ss and it is expressed nearly 2 fold greater than endothelial 

transcripts encoding fli1a, fli1b, and the zebrafish Vegf receptor-2 ortholog, 

kdrl.  Etv2 expression drastically decreases by 24 hpf and is expressed five 

fold below kdrl transcripts at 48hpf (Fig. II-1A).  By contrast, fli1a, fli1b, and 

kdrl transcripts continued to modestly increase from 10 hpf until 48 hpf (Fig. 

II-1A).  Thus, the etv2 transcript displays an initial burst of expression during 

the time in which endothelial specification and vasculogenesis are taking 

place [12] , but is subsequently downregulated towards the onset of 

angiogenesis.   

 We next wanted to determine if Etv2 protein had a similarly dynamic 

expression pattern as its transcript.  We therefore raised a rabbit polyclonal 

antibody that specifically recognized the divergent N-terminal domain of Etv2, 

because the C-terminal located DNA binding domain of many ETS 
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transcription factors share strong sequence homology [106].  The Etv2 

polyclonal serum recognizes a single band in HEK293T lysates 

overexpressing a myc-tagged version of zebrafish Etv2. The same sized band 

is also detected following immunodetection for the myc-epitope using an anti-

c-myc monoclonal antibody (Fig. II-1B). Additionally, Etv2 antibody staining is 

clearly visible in angioblasts marked by the fli1a:egfp transgene in embryos 

injected with control MO, but absent in embryos injected with 5ng of an Etv2 

translation blocking morpholino (Fig. II-1C). Therefore the Etv2 polyclonal 

serum specifically recognizes zebrafish Etv2.  
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Figure II - 1 
 
 

 
 
 
Figure II – 1: Etv2 transcript is downregulated during vascular 
development and a polyclonal antibody to zebrafish Etv2 is specific. (A) 
nCounter quantification for etv2, fli1a, fli1b, and kdrl at the indicated 
developmental stages. Values are normalized to actb2 (beta-actin) and 
eef1a1l1(ef1alpha). (B) SDS-PAGE gel of HEK293T lysates transfected with 
mammalian expression vectors for EGFP (pCS-EGFP), myc-tagged zebrafish 
Etv2 (pCS-5xmycEtv2), or left untransfected (mock). Lysates from each 
sample were run on triplicate immunoblots, which were individually probed 
with Etv2 polyclonal antiserum, a monoclonal against the myc-epitope (9E10), 
or a polyclonal against GFP. (C) Tg(fli1a:negfp)y7 embryos at 18 hpf injected 
with 5 ng of control or Etv2 MO followed by immunostaining using Etv2 
polyclonal serum and Alexa-568 secondary. View, dorsal is up, facing 
posterior end of tail.     
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Etv2 protein is transiently expressed 

 We used the anti-Etv2 serum to perform whole mount immunostaining on 

zebrafish embryos during early embryonic stages.  Similar to etv2 transcript, 

we observed Etv2 protein in the anterior and posterior lateral mesoderm 

within nuclei of presumptive endothelial progenitors at the 5ss (Figs. II-2 A, B) 

and during initial formation of the vascular cord in the trunk at 18ss (Fig. II-2C, 

D).  However, Etv2 protein levels were drastically decreased by 24 hpf and 

were undetectable in endothelial cells lining blood vessels by 48 hpf (Fig. II-

2E, F; red channel), while an endothelial-expressed nuclear localized EGFP 

(Tg(fli1a:negfp)y7) was easily detectable at both stages in the same embryos 

(Fig. II-2E, F; green channel). Furthermore, we observed robust expression of 

Fli1b protein in endothelial nuclei of Tg(fli1a:negfp)y7 embryos at the same 

time points (Figs. II-2G, H).   Although vascular expression of Etv2 is mostly 

diminished by 24hpf (Fig. II-2E), Etv2 protein staining is detectable in a 

subset of cells posterior to the caudal vein plexus composing the 

hematopoietic niche (Fig. II-2I), consistent with Etv2s role in maintaining 

hematopoietic stem cells [152]. Taken together, these observations 

demonstrate that etv2 transcript and protein are expressed during early 

endothelial specification and vasculogenesis, but are subsequently 

downregulated as development proceeds.  

  



58

Figure II - 2 
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Figure II – 2: Etv2 protein is downregulated during vascular 
development. (A, C) Whole mount in situ hybridization using an antisense 
etv2 riboprobe at 5ss and 18ss. (B, D) Embryos at 5ss and 18ss 
immunostained with Etv2 antibody and anti-rabbit Alexa-488.  (A, B) Dorsal 
views of flat mounted embryos, anterior to the left.  (C, D) Lateral views, 
anterior to the left.  (E-H) Two-photon micrographs of trunk vessels in fixed 
Tg(fli1a:negfp)y7 embryos immunostained with antibodies against Etv2 (E, F) 
or Fli1b (G, H).  Left panels, immunostained protein detected with Alexa-568 
secondary antibody.  Middle panels, transgenic expression of nuclear 
localized EGFP.  Right panels, overlay of Alexa-568 and EGFP signals. 
Embryos at 25 hpf (E, G) or  48 hpf (F, H), arrows indicate double positive 
cells.  (I) Left, Camera Lucida drawings of embryo at approximately 24 hpf, 
blue boxed area demarcates area imaged in (E-H), red box area in (I, right).  
(I) Bottom, immunostaining of an Tg(fli1a:egfp)y1 embryo with Etv2 polyclonal 
serum and alexa-568 secondary at 24hpf.  Faint Etv2 expression can be 
observed in many EGFP-positive cells within the caudal vein plexus, while 
strong Etv2 expression is apparent in a separate EGFP-negative population 
of cells (indicated by a white bracket). Etv2 expression is not detectable in the 
dorsal aorta at this time point (red arrows).   
 



60

Etv2 is required early for endothelial lineage commitment but is dispensable 

for later vascular development 

 The dynamic expression of etv2 suggested that its function might only 

be required during early stages of vascular development. To investigate this 

possibility, we utilized a caged Morpholino (cMO) that is activated by 

exposure to UV light to conditionally block Etv2 translation at different 

developmental stages [147, 153].  We injected etv2 cMO into 1-cell stage 

Tg(flia:DsRedex)um13 zebrafish embryos, exposed them to UV light at distinct 

developmental stages, and subsequently assessed vascular morphology and 

function. In control Tg(flia:DsRedex)um13 embryos injected with scrambled 

control morpholino (MO) we observed normal vascular morphology at 30 hpf 

and normal circulation at 48 hpf (Data not shown and Fig.  II-3E – 1st Bar, 

Supp. Movie 1). By contrast, embryos injected with a standard Morpholino 

targeting etv2 exhibited loss of intersegmental vessels and a poorly formed 

dorsal aorta at 30 hpf and no circulation at 48hpf (Fig. II-3A, E – 2nd Bar, 

Supp. Movie 2).  Tg(flia:DsRedex)um13  embryos injected with Etv2 cMO that 

were not exposed to UV light, or those that were uninjected and exposed to 

UV at the indicated stages, were phenotypically normal (Fig. II-3B, E – 3rd bar, 

data not shown, Supp Movie 3). However, embryos injected with Etv2 cMO 

and exposed to UV light at 11 hpf or earlier exhibited defects in vascular 

morphology and loss of circulation (Fig. II-3C-E-4th-6th bar, Supp. Movie 4), 

similar to embryos injected with an uncaged Etv2 MO (Fig. II-3B) or etv2y11 
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mutant embryos [7].  In all cases, we did not observe any overt effects on 

general morphology (data not shown).  Many fewer Etv2 cMO-injected 

embryos exposed to UV light at 12 hpf displayed defects in circulation and UV 

activation at later time points did not cause any defects (Fig. 3E-7th—10th bar, 

Supp. Movie 5).  Thus, the requirement of Etv2 for embryonic blood vessel 

formation is restricted to a defined early window during vascular development 

and suggests that Etv2 is required for initial angioblast specification. 

Furthermore, inappropriate expression of Etv2 can ectopically induce 

endothelial gene programs [6]. Consistent with this possibility, mosaic 

transplant analysis of Etv2 overexpressing cells significantly enhanced the 

ability of donor Tg(fli:egfp)Y1 cells to contribute to endothelial and 

hematpoietic lineages when compared to donor cells from embryos injected 

with mcherry mRNA (Fig. II-3F).  Cells from either mCherry or Etv2 mRNA 

injected hosts are able to contribute equally to any cell type (Fig. II-3G). 
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Figure II - 3 
 

 
 

Figure II – 3: Etv2 is required only during early stages of vascular 
development.  (A-D) Confocal images of trunk blood vessels in 
Tg(fli1a.ep:DsRedex)um13  embryos at 30hpf.  Lateral views, dorsal is up, 
anterior to the left. Embryos injected with (A) 5 ng standard Etv2 Morpholino 
(MO) or (B) 2 ng caged Etv2 MO, but not illuminated with UV light.  ISVs 
(arrows), dorsal aorta (DA; bracket) and posterior cardinal vein (PCV; 
bracket) are indicated. (C, D) Embryos injected with Etv2 cMO exposed to UV 
light at (C) 3hpf or (D) 11hpf.  (E) Penetrance of indicated circulatory defects 
in embryos at 48hpf following injection with MO and UV exposure as 
indicated. (F) Proportion of mosaic miniRuby-positive host embryos showing 
successful transplantation of Tg(fli1:EGFP)y1 donor cells.  Donor embryos 
were injected with 100 pg of mcherry or etv2 mRNA. *p < 0.05. (G) 
Representative confocal images of wild type hosts with contribution to both 
vascular (green) and non-vascular (red) tissue.  
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Etv2 induces endothelial transcription factors  

Etv2 is required early for angioblast specification and is a strong 

transcriptional activator, so to better understand the transcriptional targets of 

Etv2 we performed two comparative gene expression analyses. The first 

study was to define genes enriched in the endothelial cells and the second 

sought to identify genes induced by Etv2 overexpression. The 

Tg(kdr:grcfp)ZN1 transgenic lines expresses GFP in the endothelial cells lining 

the blood vessels (Fig. II-4A; [143]).  This line can be dissociated into a single 

cell suspension using trypsin and cells fluorescent activated cell sorted 

(FACS) to yield a 90-95% pure population of GFP-positive cells (Fig. II-4B, C; 

data not shown). RNA was isolated from GFP-positive cell populations and 

GFP-negative populations and then hybridized to Affymetrix zebrafish 

GeneChips.  The gene expression profiles from the two cell populations 

where compared and 448 genes where enriched (Log2 ≥ 1) in the GFP-

positive endothelium compared to the rest of the embryo (Fig. II-4E).   To find 

genes induced by Etv2, we injected etv2 mRNA or mCherry mRNA as a 

control into embryos, allowed them to develop until shield stage and then 

isolated RNA from each sample to compare gene expression profiles by 

microarray (Fig II-4D). We chose to isolate RNA from shield stage embryos in 

an attempt to find direct targets of Etv2 activation.  Our analysis revealed that 

74 genes are induced upon Etv2 overexpression and 27 of them are also 

enriched (Log2 ≥ 1)  in the endothelium (Fig. II-4E). Interestingly, if you take 
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the top ten genes that are induced by Etv2 that are also enriched in the 

endothelium, five of them are transcription factors (Table II-1).  Additionally, 

Etv2 induced transcription factors scl, lmo2 and hey2 have all been shown to 

play a role in endothelial cell differentiation [154-156]. Our microarray results 

are consistent with similar studies that demonstrate Etv2 induces a number of 

transcription factors known to be important for endothelial or hematopoietic 

cell differentiation [130, 131, 157].  Accumulatively, the data suggest that Etv2 

initiates a transcriptional program that specifies angioblasts and after the 

initial requirement of Etv2 its function is dispensable. 
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Figure II - 4 
 
 

 
 

Figure II – 4: Endothelial enriched and Etv2 induced microarray 
strategies and results. (A) Epi-fluorescent image of 24hpf Tg(kdr;grcfep)ZN1 
embryo. (B) Bright field and epi-fluorescent overlayed images of  
Tg(kdr;grcfep)ZN1 cells after dissociation with trypsin. Single GFP positive 
endothelial cells can be seen (arrows). (C) Diagnostic fluorescence activated 
cell sorting of dissociated Tg(kdr;grcfep)ZN1 embryos. P3 and P4 demarcate 
cells sorted as GFP− and GFP+, respectively. (D) Experimental workflow for 
Etv2 overexpression microarrays. Embryos injected with Etv2 mRNA or 
control mRNA developed to shield stage and then RNA was isolated.  The 
RNA from the two separate conditions where hybridized to Affymetrix 
microarrays and compared. (E) Venn diagram indicating that 448 genes are 
enriched after gene expression profiling of GFP+ vs. GFP- cell populations 
and 74 genes are induced when Etv2 is overexpressed, only 27 gene over lap 
from the two data sets.  (F) Hypothetical transcriptional pathway controlling 
endothelial cell differentiation. 
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Table II - 1 
 
 

 
 
 

Table II – 1: Top ten endothelial enriched, Etv2 induced genes. The table 
comprises the top ten genes induced by Etv2 after etv2 mRNA 
overexpression in zebrafish with RNA isolated at shield stage, that are also 
enriched in the GFP+ cell population from FACS sorted Tg(flk1:grcfp)ZN1 

24hpf embryos. Enrichment and induction was determined by gene 
expression analysis on Affymetrix zebrafish microarrays. Genes with adjusted 
p-value < 0.05 and fold change >= 2 are considered significant. Genes in blue 
boxes are transcription factors.  
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Discussion 
 
 

 The ETS transcription factor Etv2 is essential for vascular 

development, but little is known about its expression dynamics or 

transcriptional targets. Using the zebrafish as a model system, we find that 

both etv2 transcript and protein are expressed during angioblast specification 

and vasculogenesis but are subsequently downregulated at later stages. This 

expression pattern is mirrored by its functional requirement, which we find is 

restricted to early stages corresponding to angioblast emergence from the 

lateral mesoderm. We further provide evidence that Etv2 in a cell autonomous 

fashion enhances endothelial lineage commitment.  We go on to demonstrate 

Etv2 induces transcription of several endothelial transcription factors and we 

hypothesize that etv2 sits atop a transcriptional hierarchy. 

 The phenotypes of etv2-deficient zebrafish and mouse embryos 

suggest that it should be considered as a master regulator of endothelial cell 

fate.  In both species etv2 is essential, with genetic ablation leading to severe 

vascular morphogenesis defects, an absence of circulation and global loss of 

endothelial gene expression [6-8].  Conversely, exogenous etv2 expression 

can precociously and ectopically induce endothelial gene programs [129-131].  

Appropriately, our mosaic transplant analysis shows enhanced endothelial 

cell lineage commitment of cells overexpressing Etv2. Similar studies 

overexpressing Etv2 in mouse embryoid bodies also show an increase in 
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commitment to hematopoietic and endothelial cell lineages [138].  Although 

these results suggest that Etv2 is required for early specification of 

angioblasts from the lateral plate mesoderm, Etv2 function seems to only be 

required during a short developmental time window.  Conditional knockdown 

of Etv2 during or prior to angioblast specification, but not later, causes severe 

vascular defects.  This demonstrates that Etv2 is functionally required only for 

the specification of angioblasts from the lateral mesoderm and is then 

dispensable for continued differentiation of the endothelial cell lineage.  This 

functional requirement reflects the highly dynamic expression pattern of Etv2.  

Etv2 transcript and protein expression is initiated at early-somitogenesis and 

is gone by late-somitogenesis, the developmental window in which 

angioblasts are specified. Etv2 expression is absent in differentiated 

endothelial cells of the zebrafish, consistent with the loss of Etv2 expression 

in mice at E11.5 suggesting Etv2 downregulation is evolutionarily conserved 

[116].  Furthermore, our results are consistent with recent studies in mouse 

embryonic stem cells where etv2 expression can be detected in Brachyury-

positive mesodermal cells that have not yet initiated expression of endothelial 

cell marker genes, such as vegf receptor-2 (vegfr2) [124]. Finally, conditional 

loss of Etv2 in endothelial cells using a Flk1:Cre driver does not appear to 

effect embryonic vascular development or viability, demonstrating that etv2 is 

not required for later steps of vascular development in mammals as well 

[124].  Taken together with our studies, these results suggest that etv2 plays 
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an essential role in specifying early lateral mesoderm progenitors to an 

endothelial cell lineage, yet is not required for later steps in vascular 

development.  

 Few studies have tried to understand how etv2 specifies angioblasts 

from the lateral plate mesoderm.  It is well understood that etv2 is a 

transcriptional activator [129-131] but what sort of gene programs does it 

initiate? We sought to define endothelial enriched transcriptional targets of 

etv2.  Our endothelial enriched gene list is smaller than similar studies due to 

our analysis of the Tg(kdr:grcfp)ZN1 zebrafish transgenic lines opposed to the 

Tg(fli1:egfp)Y1 line [94]. The Tg(fli1:egfp)Y1 has expression in the pharyngeal 

arches and blood cells whereas the Tg(kdr:grcfp)ZN1 is much more vascular 

restricted [12, 143].  Therefore our endothelial-enriched data set is more 

representative of the actual endothelial transcript profile at 24 hpf than 

previously published reports.  Comparison of the endothelial enriched data 

set with the expression profile of early stage embryos overexpressing Etv2 

lead us to an interesting conclusion.  The most highly induced endothelial 

genes by Etv2 are transcription factors scl, lmo2, hey2, fli1a, and fli1b . Not 

only are they transcription factors but they have all been implicated in playing 

a role in endothelial cell differentiation [7, 95, 155, 158, 159]. Scl and lmo2 

are both expressed in early endothelial progenitors, they interact to form an 

active transcriptional unit, and both are required for the proper formation of 

the dorsal aorta [154, 155, 160, 161]. Additionally, scl and lmo2 can induce 
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the formation of bi-potential hemangioblast cells in non-axial mesoderm of 

zebrafish that differentiate into endothelial cells. Hey2 (grl) mutant embryos 

have no trunk circulation because of an improperly formed dorsal aorta [159].  

Additionally, Hey1 and Hey2 are redundant during mouse development and 

double knockout mice are embryonic lethal with a global lack of vascular 

remodeling and massive hemorrhaging, although initial vasculogenesis 

appears unaffected [99]. Furthermore, Fli1 homozygous mutant mice exhibit a 

loss of blood vessel integrity and die after embryonic day 11 [162]. However, 

zebrafish fli1a/b morphants have a weakly penetrant circulation defect and 

normal ISV sprouts [7].   Although our data demonstrating Etv2 strongly 

induces the preceding transcription factors is consistent with other published 

Etv2 overexpression gene profiles [129-131], little is known about how these 

transcription factors drive vascular differentiation.   

 Understanding the molecular targets of Etv2 is likely to provide new 

insights into the transcriptional control of endothelial development. We 

hypothesize that Etv2 sits atop a transcriptional hierarchy by inducing scl, 

lmo2, hey2, fli1a and fli1b to continue endothelial cell differentiation (Fig II-

4F).  Although Etv2 likely directly activates the transcription of the 

aforementioned genes in part because how early we analyzed the 

transcriptional profile after Etv2 overexpression, it cannot truly be determined 

until chromatin immunoprecipitation for those genes can be carried out using 

an Etv2 antibody or similar method. Except for lmo2, which has been shown 
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to be a direct target of etv2 by ChIP, EMSA and promoter transactivation 

assays in mice [138].  Additional studies are needed to better understand if 

these genes work in a linear fashion to induce each other or if they work 

separately after Etv2 induction to initiate their own transcriptional targets or in 

some combination. How these Etv2 induced transcription factors work to drive 

endothelial cell differentiation is likely going to be complicated. For example, 

Fli1 and Scl form a recursive transcriptional regulatory loop during mouse 

hematopoiesis and Scl’s obligate transcriptional partner Lmo2, is directly 

activated by Fli1 in endothelial cells [163, 164].   Etv2 is a master regulator of 

endothelial cell lineage commitment that functions within a short 

developmental time frame to initiate a transcriptional program that specifies 

angioblasts from the lateral mesoderm.  Thus, a better understanding of 

Etv2’s transcriptional targets interactions and their role and regulation during 

angioblast specification will help better elucidate the mechanisms driving 

vascular development. 
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Introduction 
 

 Etv2 is an endothelial cell specific ETS transcription factor that can be 

called a master regulator of endothelial cell lineage determination and is 

essential for the proper formation of the vascular system. Etv2 autonomously 

enhances endothelial cell lineage commitment by inducing an endothelial 

transcriptional program (Chapter II). Conversely loss of etv2 causes severe 

defects in vascular morphogenesis and a concomitant loss of endothelial 

gene expression [7, 8, 116, 127]. Interestingly, unlike the ETS transcription 

factor Spi1 (Pu.1), which has reiterative roles during myelopoiesis [136, 137], 

etv2 is only required for the initial formation of the vascular lineage and is not 

required for its maintenance.  We have found that in zebrafish, etv2 transcript 

and protein are expressed only during early-somitogenesis when angioblasts 

emerge from the lateral mesoderm until late-somitogenesis (Chapter II). Etv2 

is not expressed in differentiated endothelial cells of the zebrafish or mouse 

[116].  Furthermore, conditional knock down using caged morpholinos defines 

a short developmental time window etv2 functions within, that mirrors its 

temporal expression (Chapter II).  Altogether, etv2 is a transient activator of 

endothelial cell differentiation.  

 No negative regulatory mechanism has been described for etv2 but 

several recent studies emphasize the deleterious effects of continued etv2 

expression.  Conditional Tek driven Etv2 expression in mouse leads to an 

abnormal yolk sac vasculature morphology and altered endothelial cell gene 
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expression.  Endothelial cells retain an immature identity and as consequence 

fail to express genes responsible for sheer stress response, extracellular-

matrix attachment and metalloproteinase activity [122]. ETV2 together with 

the ETS transcription factors ERG and FLI1 can transdifferentiate human 

amniotic fluid cells into functional endothelial cells.  However, in order to 

culture fully differentiated endothelial cells past an endothelial cell progenitor 

state, ETV2 is required to be turned off after initial reprogramming [139]. The 

lack of etv2 expression in differentiated endothelial cells and the negative 

consequences of its persistent expression suggest an active negative 

regulatory mechanism represses etv2 expression later during development. A 

recently identified zebrafish Etv2 enhancer recapitulates endogenous etv2 

expression [119].  Transgene expression is extinguished by 48 hpf in the 

vasculature suggesting transcriptional repression or inactivation as one 

possible negative regulatory mechanism.   However, multiple developmental 

mechanism may exist to downregulate etv2 considering  the negative 

consequences of misexpression on vascular development.  

 In this work we investigate the mechanisms down-regulating etv2 

expression in the endothelium during vascular development.  We present 

evidence that the 3’UTR of etv2 is alternatively polyadenylated and expresses 

multiple isoforms during development. We use an endothelial cell 

autonomous 3’UTR sensor construct to show that the 3’UTR of etv2 is post-

transcriptionally regulated. Persistent Etv2 protein expression in maternal 
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zygotic dicer1 mutant zebrafish suggests etv2 is regulated by miRNAs. 

Accordingly, the 3’UTR of etv2 contains binding sites for the let-7 family of 

miRNAs and mutation of let-7 binding sites inhibit post-transcriptional 

regulation of the sensor.  Furthermore, the let-7 family of miRNAs can repress 

the 3’UTR of etv2.  Moreover, endogenous etv2 transcript and protein are 

repressed upon let-7a overexpression, with subsequent reduction of 

endothelial cells and endothelial marker gene expression, due to a reduction 

of etv2 expression and a failure to specify angioblast from the lateral 

mesoderm. Additionally, Let-7a overexpressing endothelial cells are less 

likely to commit to the endothelial cell lineage after mosaic transplantation. 

Overexpression of the let-7 inhibitor lin28a causes a significant down-

regulation in let-7 expression but does not cause a concomitant increase in 

etv2 transcript or protein levels.  Together our results indicate that etv2 is 

post-transcriptionally regulated in part by the let-7 family of miRNAs, to allow 

for proper vascular development to occur. 
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Materials and Methods 
 

Zebrafish handling and maintenance 

Zebrafish and their embryos were handled according to standard protocols 

[141] and in accordance with the University of Massachusetts Medical School 

IACUC guidelines. The Tg(fli1a:egfp)y1 line has been described[12]. Maternal 

zygotic (MZ) dicer1 embryos were made using the germline replacement 

technique as previously described [165, 166] using dicer1hu715 donors [167].   

 

Plasmid construction 

The pCS-etv2 and pCS-mCherry vectors were described (Chapter II).The 

etv2 open reading frame minus the DNA binding domain (-DBD) was 

amplified from plasmid pME-etv2 (described in chapter II) and used in a BP 

recombination reaction with plasmid pDONR221 (Invitrogen) to make pME-

etv2(-DBD). The zebrafish lin28a open reading frame was amplified from a 

full-length Zebrafish Gene Collection (ZGC) clone (Clone ID: 2643384; 

Thermo Scientific; see appendix II for primers), then subjected to BP 

recombination with plasmid pDONR221 to generate pME-lin28a. pME-lin28a 

and pME-etv2(-DBD) were used in an LR reaction with pCSDest [145] to 

generate pCS-lin28a and pCS-etv2(-DBD).  Alternative etv2 3’ UTRs were 

cloned through PCR amplification using attB2 and attB3 primers (appendix II) 

followed by BP recombination into pDONRP2r-P3 (Invitrogen) to give p3E-

EST etv2 3’UTR, p3E-short etv2 3’UTR and p3E-long etv2 3’UTR. let-7 
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binding sites were identified by miRANDA, RNAhybrid, and a perl script. 

Bases 1, 3, 4, 5, 6 were mutated to adenines within 5 identified let-7 binding 

site seed sequences identified by all three methods [168]. The mutant let-7 

etv2 3’ UTR fragment was synthesized by Genewiz (pUC57-kan-

etv2_3putr_mut_let7) followed by subcloning into p3E-mcs1 with AscI and 

XhoI to give p3E-mutlet-7 etv2 3’ UTR.   To generate mRNA sensors 

constructs, p3E-ESTetv2 3’UTR or p3E-shortetv2 3’UTR were recombined 

with pCSDEST2 and pENTR-EGFP2 [145] to yield pCS2-egfp-ESTetv2 

3’UTR and pCS2-egfp-shortetv2 3’UTR. Endothelial 3’ UTR sensor constructs 

were generated by performing an LR Gateway recombination reaction 

between pTolBasPegfpfliEPmcherryR2-R3 and one of the following 3’ entry 

clones:  p3E-mcs1, p3E-shortEtv2-3’UTR, p3E-ESTEtv2-3’UTR, p3E-

longEtv2-3’UTR, p3E-mut-let7-Etv2-3’UTR. 

 

mRNA synthesis and injections 

Capped mRNA was synthesized from pCS plasmids that had been linearized 

with NotI using the SP6 mMessage mMachine kit (Ambion).  mRNAs were 

injected into 1-cell stage embryos according to standard protocols [141].  
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3’UTR Sensor assays 

For whole embryo sensor assay, 50 pg of mCherry mRNA and 50 pg of 

indicated gfp etv2 3’ UTR mRNA was co-injected along with 50µM of 

indicated miRNA duplexes into 1-cell stage zebrafish embryos.  Embryos 

were visualized at 24 hpf using an MZFLIII dissection microscope equipped 

with epifluorescence and digital images were captured using an AxioCam 

mRC (Zeiss).  Alternatively, equal numbers of dechorinated embryos were 

lysed by boiling in 2x Laemmli buffer. Lysates were run on an SDS-PAGE gel 

and transferred to Western blots, which were probed with antibodies against 

EGFP (Invitrogen, A11122) and mCherry (Clontech, 632496).  Blots were 

stripped in between each antibody detection.  Expression levels were 

quantified by measuring the optical density of bands using ImageJ following 

incubation with a horseradish peroxidase conjugated secondary antibody and 

chemiluminscence detection.  For endothelial autonomous sensor assays, 25 

pg of indicated pTol sensor construct was co-injected with 25 pg transposase 

mRNA into one-cell stage wild type embryos.  Individual 3’UTR constructs 

were always injected with control sensor in parallel.  At 24 hpf, embryos were 

transferred to egg water containing 0.2mM 1-phenyl-2-thiourea (PTU) to 

inhibit pigment formation. At 48-50hpf, approximately five embryos from each 

group per experiment displaying robust transgenesis were imaged by 

confocal microscopy. Gain settings were set using embryos injected with the 

control sensor and remained constant throughout the experiment. 
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Quantification of fluorescence levels was performed using Imaris by creating 

a surface based on GFP fluorescence and examining the average values 

intensity sum of green and red channels. The red/green ratio of an 

experimental embryo was normalized against the red/green ratio of a control 

embryo imaged on the same day. All sensor experiments were done and 

quantified in quadruplicate, except the EST-3’UTR which was done in 

triplicate.  Significance was calculated by a Welsh test and significance 

determined by a p value < 0.03.  

 

Antibody production and whole mount immunohistochemistry 

The methods are the same as described in Chapter II. 

 

miRNA Duplexes 

RNA oligonucleotides (Integrated DNA technologies) corresponding to the 

mature and star sequences of zebrafish let-7a, let-7c, let-7f, and, let-7g (see 

appendix II) were diluted to 250 mM in nuclease-free water. Equal volumes of 

mature and start oligonucleotides were combined, heated to 95°C and 

annealed at 37°C for 30 minutes. miRNA duplexes were aliquotted and stored 

at -80°C. 2 nl of miRNA duplexes were injected into embryos at a 

concentration of 50 µM .  A mis-match duplex in which 4 out of 8 bases in the 
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seed sequenced were changed (see appendix II) was used as a negative 

control (referred to as “control duplex”). 

 

Quantification of endothelial gene expression 

mRNA was quantified using the NanoString nCounter gene expression 

system (Nanostring Technologies, Seattle, WA) [148]. Total RNA was isolated 

from embryos using a Qiagen RNAeasy kit.  For embryos injected with 50µM 

let-7a or mm-let7a duplex, RNA was isolated at 15 ss.  To assess over-

expression of etv2 and let-7a, embryos were co-injected with let-7a duplex as 

above along with 50 pg of mRNA encoding etv2 or etv2 minus its DNA 

binding domain [etv2(-DBD)] and RNA was isolated at shield stage.  For each 

experiment, 100 ng of total RNA was hybridized for 12 to 20 hrs with the 

Nanostring probeset (appendix III) at 650C in a thermocycler.  Samples were 

loaded into the nCounter prep station and fluorescence signal was quantified 

using the nCounter Digital Analyzer. Gene normalization and fold change 

calculations were done using Nsolver Analysis Software (Nanostring 

Technologies). In all cases, biological triplicates were performed and gene 

counts were normalized to eukaryotic translation elongation factor 1 alpha 1 

like 1 (eef1a1l1) and actin, beta 2 (actb2). Either the average normalized 

gene count or the average fold change of triplicate biological replicates   was 

plotted and error bars represent the Standard Error of the Mean (SEM).  
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In situ hybridization 

An antisense DIG-labeled lin28a riboprobe was synthesized by linearizing 

pCS2-lin28 with SacI followed by in vitro transcription using T7 polymerase.  

A gata1a riboprobe was synthesized as described elsewhere [169]. Whole 

mount in situ hybridization was performed according to standard protocols  

[149] 

 

Mosaic analysis 

Tg(fli1a:egfp)y1 embryos were used as donors in all cases and 0.35% 

miniRuby (dextran, tetramethylrhodamine and biotin 10,000MW) (Invitrogen 

D-3312) was co-injected as a lineage tracer.  To assess let-7a 

overexpression we injected 2 nl of either 50µm control or let-7a duplex. At 

sphere stage, approximately 20 cells were transplanted from the ventral 

blastoderm margin of donors into wild type hosts, which were subsequently 

screened at 30 hpf for the appearance of red and green fluorescence.  

Embryos were imaged using an MZFLIII fluorescent dissection microscope or 

using a using a Leica DMIRE2 confocal microscope (Objective: HC PL APO 

20x/0.70CS).  The proportion of successfully transplanted embryos (i.e. 

exhibiting miniRuby-positive cells in any trunk tissue) with contribution to 

blood vessels (i.e. exhibiting EGFP-positive cells) was determined in three 
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separate experiments and significance was calculated by Fisher’s Exact test. 

(p < 0.05).  

 

Northern 

Northern blot analysis for microRNA expression was performed as previously 

described [170]. Zebrafish RNA was isolated using a miRNeasy Micro kit 

(Qiagen) and 5 µg of total RNA was loaded per lane.  Blots were hybridized 

with a DIG labeled let-7a locked-nucleic acid probe (Exiqon), stripped using 

boiling water, and hybridized with a DIG-labeled 5s rRNA DNA probe (see 

appendix II).  Chemilumenscence detection was performed following 

incubation with a horseradish peroxidase-conjugated antibody against DIG.  

Northern blots were performed using RNAs from three separate experiments 

and quantified by measuring the optical density of bands using ImageJ to 

compare levels in uninjected versus let-7a injected embryos.  Average fold 

difference from three independent experiments was plotted and error bars 

represent SEM.  Significance was measured using a student t-test.  

 

3’ RACE and Etv2 3’ UTR cloning 

3’ RACE was performed using the SMART RACE kit (Clontech). etv2-specific 

primers for primary and nested PCR are listed in appexdix II. Amplified 

fragments were gel purified, cloned into pGEM-t (Promega) and sequence 

verified.  
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Quantitative PCR of miRNAs 

RNA was purified from uninjected zebrafish embryos injected at 24 hpf or 

those injected with 1 ng lin28a mRNA using a miRNeasy micro kit (Qiagen).   

qRT-PCR to detect mature miRNAs was performed using the miScript 

System (Qiagen). Two µg of whole RNA was used to synthesize cDNA.  

qPCR was performed from 100 ng of cDNA template with a commercially 

available primers for indicated miRNA (Qiagen) and the miScript universal 

primer using the miScript SYBR green PCR Kit (Qiagen). snord61.2 

expression was assessed in parallel and used to normalize microRNA 

expression levels.  PCR quantification was performed on a StepOnePlus real 

time PCR system (Applied Biosystems).  Each reaction was run in triplicate 

and performed on at least two experimental replicates and 2-log fold change 

calculated by comparing uninjected to Lin28a injected. 

 

RT-PCR  

RNA was isolated from Wt or MZ dicer1 embryos at the indicated 

developmental stages using Qiagens RNaeasy Kit.  cDNA was made using 

1µg of whole RNA, reverse transcriptase III (Invitrogen) and oligo (dT).  

Primers were designed to amplify the three distinct etv2 3’UTR isoforms from 

the cDNA and run on agarose gels (see Supplementary Table 1 for primers).  
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Results 

 
The etv2 transcript has multiple length 3’UTRs and post-transcriptionally 

regulated 

Etv2 is not functionally required for later steps in vascular development, 

and persistent expression in endothelial cells leads to abnormal vascular 

morphology in the mouse, suggesting mechanisms are in place to actively 

down-regulate etv2 expression (Chapter II; [122]). To determine if etv2 is 

regulated by post-transcriptional mechanisms, we first tested the ability of the 

etv2 3’ UTR to negatively regulate expression.  For this purpose, we 

employed a previously described bi-cistronic endothelial cell autonomous 

reporter assay in which a 3’ UTR of interest is placed downstream of a red 

fluorescent protein (mCherry) reporter [37].   EGFP and the mCherry-3’UTR 

fusion gene are driven in opposing directions by a zebrafish fli1a gene 

enhancer.  In the process of cloning the appropriate regulatory sequences for 

this assay, we observed evidence suggesting the existence of alternative etv2 

3’UTRs (Fig. III-1A).  In ENSEMBL (version 69, Zv9), the annotated etv2 

3’UTR spans only 298 nucleotides, while two separate expressed sequence 

tags (ESTs) extend past this sequence by an additional 315 nucleotides (Fig. 

III-1A). The presence of an A-rich sequence immediately downstream of this 

sequence suggested that this longer form may arise from spurious binding by 

oligo(dT) primers during cDNA reverse transcription [171].  Therefore, we 
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performed 3’ rapid amplification of cDNA ends (RACE) from 24hpf zebrafish 

embryos to further characterize expressed etv2 3’ UTR sequences. We 

confirmed the in vivo transcription of the annotated 3’UTR (Short etv2 3’ UTR) 

and the EST indicated 3’UTR (EST etv2 3’ UTR; Fig III-1B).  Additionally a 

third isoform (Long etv2 3’ UTR) encoding a 3’ UTR of approximately 1030 

nucleotides was discovered and can be detected up until 48 hpf ( Fig. III-1C). 

To determine the possible regulatory potential of these UTRs, we cloned each 

downstream of mCherry and quantified their effect on reporter expression in 

endothelial cells in vivo compared to an internal EGFP cassette. (Fig. III-1D).  

The endothelial cell autonomous sensor assays revealed that compared to 

control, the short etv2 3’ UTR did not significantly contribute to repression, 

while the EST and long etv2 3’ UTRs were capable of reducing transgene 

expression significantly to similar levels (Fig. 3E-G, data not shown).  These 

results suggest that post-transcriptional regulation of alternative etv2 3’UTRs 

may contribute to its regulation during vascular development. 

 MicroRNAs (miRNA) are short non coding RNAs with a well described 

role in the post-transcriptional regulation of target mRNA during development 

[172].  miRNAs repress target transcripts by binding 3’UTR sequences. Thus 

we analyzed the 3’UTR of etv2 for candidate microRNA binding sites.  We 

found 5 putative binding sites for members of the let-7 family of microRNAs in 

the longest defined etv2 3’UTR [173, 174]; see methods). Consistent with 

isoform length, the short, EST and long etv2 3’UTRs have two, three and five 
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binding sites, respectively (Fig. III-1A). Additionally, let-7 binding site analysis 

on the mouse and human etv2 transcripts, reveal the presence of let-7 

binding sites in the 3’UTR is a conserved feature (data not shown). 

Endothelial cells isolated from Tg(kdrl:egfp)s893 embryos at 24 hpf express 

several members of the let-7 family of microRNAs [37]. Additionally, high 

levels of let-7 microRNAs are also expressed in primary human endothelial 

cells [175-177]. The let-7 family of microRNAs are known to promote 

differentiation in a variety of cell types, in part, through the repression of 

transcripts encoding regulators of pluripotency and proliferation [178].  

Regulation of etv2 by Let-7 would be consistent with let-7’s known role in 

promoting differentiation as continued Etv2 expression leads to the 

maintenance of an endothelial progenitor identity [122, 139].   
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Figure III - 1 
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Figure III – 1: Evidence for alternative 3’UTRs encoded by the zebrafish 
etv2 locus and etv2 3’UTR can negatively regulate a heterologous 
reporter.  (A) Schematic depicting etv2 intron/exon structure and alternative 
3’UTR lengths.  Evidence for the existence of each isoform derived from 
annotation, 3’RACE, and RT-PCR is indicated. (B) 3’RACE products amplified 
from 24 hpf embryos.  (C) RT-PCR from 24, 30, or 48 hpf wild type or 
MZDicer embryos was performed using primers specific to the short, EST, or 
long etv2 3’UTR. Genomic (g) DNA was used as a positive control. “+” 
denotes reverse transcribed cDNA template; “-“ indicates template without 
reverse transcription to rule out genomic DNA contamination. (D) Diagram of 
endothelial cell autonomous 3’ UTR sensor construct and experimental 
procedure for measuring post-transcriptional regulation of 3’ UTRs. (E, F)  
Representative confocal micrographs of 48 hpf wild type embryos co-injected 
with 25 pg of a Tol2 bi-cistronic endothelial cell autonomous sensor construct 
encoding mCherry fused to a (E) control 3’UTR or the (F) EST etv2 3’UTR 
sensor and 25 pg of transposase mRNA. Top, endothelial expression of the 
control EGFP transgene.  Middle, endothelial expression of the mCherry 
sensor transgene.  Bottom, merge of green and red channels. Lateral views, 
dorsal is up, anterior to the left.  (G) Quantification of relative mCherry 
fluorescence levels compared to EGFP following indicated 3’ UTR sensor 
injection. *p< 0.05, N. S. = Not significant.  
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Let-7 can negatively regulate exogenous etv2 3’UTRs  

 To test the possibility that Iet-7 regulates the 3’UTR of etv2, we fused 

the short and EST etv2 3’UTRs to egfp and injected mRNA into embryos in 

combination with let-7a duplex or a mis-match control duplex (mm-duplex) 

RNA and analyzed egfp repression. mCherry mRNA was simultaneously 

injected to act as an internal control. The coinjection of egfp fused to the EST-

etv2 3’UTR with let-7 duplex lead to a dramatic decrease in Egfp expression 

compared to control duplex (Fig. III-2 compare green channel A to B). 

Consistent with the number of binding sites in each etv2 3’ UTR isoform, 

fusion of the Short etv2 3’ UTR to egfp led to repression when coinjected with 

let-7a (Fig.  III-2 compare green channel C to D) but to a lesser extent than 

the EST form (Fig. III-2 compare green channel  A to B).  No change of 

expression was seen in the mCherry control in any of the injections (Fig. III-2 

compare red channel in A to B, and C to D). To better quantify the degree of 

repression mediated by the etv2 3’ UTR, we performed Western blot analysis 

for Egfp and mCherry expression in lysates from embryos injected with the 

mRNA sensors (Fig. III-2E).  Band intensity quantification of embryo lysate 

Westerns demonstrates that the EST etv2  3’UTR is negatively regulated five 

fold compared to an uninjected control and the Short etv2 3’ UTR  is only two 

fold repressed, but still significantly (Fig. III-2F). Let-7 binding site number 

dependent regulation is consistent with our endothelial cell autonomous 

3’UTR sensor assay findings (Fig. III-1G).   Furthermore, we found that 
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several highly related members of the let-7 family, all of which are expressed 

in endothelial cells [37], were all capable of repressing the EST etv2 3’ UTR 

(Fig. III-3).  In accordance with the ability of let-7 to regulate the 3’UTR of 

etv2, deletion of all five of the putative let-7 family member binding sites in the 

etv2 Long 3’ UTR (Long Mut let7 BS) causes a significant increase in 

mCherry reporter expression in endothelial cells compared to the wild type 

Long 3’UTR (Fig. III-1G, data not shown).  Overall, these data suggest that 

that let-7 family of miRNAs can contribute to the repression of etv2 

expression in endothelial cells.   
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Figure III - 2 
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Figure III - 2.  let-7a negatively regulates the etv2 3’UTR. (A-D) 
Transmitted light (left column), green fluorescence (middle column) and red 
fluorescence (right column) images of embryos injected with sensor mRNAs. 
(A, B) Embryos co-injected with 25 pg gfp-est-etv2-3’ UTR and 25 pg mcherry 
mRNAs and 50 µM (A) mismatch or (B) let-7a duplex. (C, D)  Embryos co-
injected with 25 pg gfp-short-etv2-3’ UTR and 25 pg mcherry mRNAs and 50 
µM (C) mis-match control or (D) let-7a duplex.  (E) Western analysis for GFP 
and mCherry protein on embryo lysates at 24 hpf following injection with EST- 
or short-etv2 3’ UTR sensor mRNA, mcherry mRNA, and indicated duplex. (F) 
Quantification of Western analysis from three independent experiments.  Bars 
represent the average ratio of GFP band intensities from embryos injected 
with control duplex compared to let-7a duplex from either the EST or Short 
GFP-etv2 3’ UTR sensor. Significance was calculated using the student t-test. 
*p < 0.05 
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Figure III - 3 
 

 
 

 
Figure III – 3: Multiple let-7 family members can repress the etv2 3’ UTR.  
Embryos were co-injected with gfp-est-etv2 3’ UTR sensor (25 pg) and 
mcherry mRNAs (25 pg), along with indicated RNA duplexes (2 nl of 50µM).  
Bright field (left column), green fluorescent (middle column) and red 
fluorescent (right column) images of injected embryos were captured at 24 
hpf.   
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Let-7 negatively regulates endogenous etv2 

To determine if let-7 could repress endogenous etv2, we injected let-7a 

duplex into zebrafish embryos and assessed both etv2 transcript and protein 

levels.  Exogenous let-7a overexpression reduced endogenous Etv2 protein 

levels in Tg(fli1a:negfp)y7 embryos at 15ss (Fig III-4A left) while those injected 

with control mis-match duplex exhibited robust Etv2 expression (Fig III-4A 

right).  We also noted reduced nuclear EGFP in let-7a duplex injected 

embryos (Fig III-4A compare middle panels), which is likely due to endothelial 

differentiation defects associated with reduced Etv2 expression. Endogenous 

etv2 transcript was significantly down-regulated at 15 ss following injection of 

the let-7a duplex compared to embryos injected with control mismatch duplex 

(Fig. III-4B).   Furthermore, we noted concomitant reduction in fli1a, fli1b, 

hey2, lmo2, tal1, kdrl, and flt4 in let-7a duplex-injected embryos (Fig. III-4B), 

consistent with the observation that Etv2 can induce expression of these 

genes [129-131, 179].  Accordingly, co-injection of etv2 mRNA containing a 

heterologous 3’UTR along with let-7a duplex rescues the expression of these 

etv2 responsive genes, ruling out the possibility that they may also be 

targeted by let-7a (Fig. III-4C). While we observed repression of several 

endothelial genes, there was no change in the early hematopoietic markers 

such as gata1a and gata2a, following injection of let-7a duplex ( Fig. III-4B).  

Whole mount in situ hybridization of etv2 expression in let-7a injected 

embryos revealed both a down-regulation of expression, along with 
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decreased number of cells expressing etv2, while gata1a expression was 

normal (Fig. III-4D), consistent with the gene expression data (Fig. III-4B).  To 

investigate the cell autonomy of these effects, we transplanted cells from 

Tg(fli1a:egfp)y1 embryos injected with let-7a into wild type embryos and 

assessed the frequency of successfully transplanted host embryos with 

EGFP-positive donor cells. Consistent with our observation that let-7a can 

repress endogenous etv2, significantly fewer host embryos transplanted with 

let-7a overexpressing donor cells displayed contribution to vascular tissue 

compared to mis-match control injected embryos (Fig. III-4F). This is likely 

caused by let-7a negatively regulating etv2 and preventing the specification of 

endothelial cell lineages [6]. Despite the negative effect of let-7a over-

expression on endothelial cell contribution, both Let-7a or mis-match Let-7a 

injected donor cells were otherwise able to contribute to other cell types (Fig. 

III-4F).  Taken together these data suggest that let-7 family members can act 

to limit the ability of etv2 to induce endothelial specification during 

development.  
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Figure III – 4 
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Figure III – 4 Endogenous Etv2 is repressed by let-7a. (A) Two photon 
images of Tg(fli1a:egfp)y1 embryos injected with 2 nl of 50µM solution of 
either control or let-7a duplex and immunostained with Etv2 polyclonal serum 
and Alexa-568 secondary antibody. Lateral view, dorsal is up, anterior to the 
left.  Arrows denote Etv2/GFP-positive cells (left panels) or Etv2-
negative/GFP-positive cells in the forming dorsal aorta (right panels). (B) 
Histogram showing fold change in expression of indicated genes at 15ss in 
embryos injected with 50 µM let-7a compared to those injected with control 
duplex measured by the nCounter system. Genes normalized to actb2 (beta-
actin) and eef1a1l1 (ef1alpha). *p<0.05.  (C) Histogram of relative nCounter 
expression counts normalized as in (B) for indicated genes following injection 
with mRNA encoding Etv2 (+Etv2) or Etv2 lacking the DNA binding domain 
(no Etv2) and mismatch (no let-7) or let-7a duplex (+ let-7). (D) Whole mount 
in situ hybridization using riboprobes against etv2 (left) or gata1a (right) at 15 
ss in embryos injected with 2 nl of a 50 µM solution of mis-match let7a 
(control) or let-7a duplex RNA.  Angioblasts that have migrated to the midline, 
or lack thereof, are indicated by arrows.  Dorsal view of flat mounted embryo, 
anterior is up. (E) Histogram showing percentage of successfully transplanted 
wild type host embryos (miniRuby-positive) that display contribution to 
vascular tissue, as indicated by presence of Tg(fli1a:egfp)y1-positive cells.  
Donors were injected with control or let-7a duplex as above. Data are from 
three independent experiments and significance was calculated using the 
Fisher’s exact test; *p < 0.05. (F) Confocal micrographs showing contribution 
of Tg(fli1a:egfp)y1 positive cells (green channel) from donors that were 
injected with control or let-7 RNA duplex.  miniRuby-positive cells (red 
channel) indicate overall contribution of donor cells in the trunk.  
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Lin28a overexpression reduces let-7 expression with no effect on Etv2 

expression 

We next wanted to investigate Etv2 expression in the context of let-7 loss 

of function. The zebrafish expresses 18 Let-7 family precursor RNAs and 10 

mature miRNAs forms, all of which have identical seed sequences (mirBASE, 

release 19), making loss of function studies difficult. However, the lin28 gene 

binds to and inhibits let-7s biogenesis and negatively regulates mature forms 

by terminal uridylation [180-183]. We hypothesized that lin28a overexpression 

would cause a decrease in let-7 expression manifesting in a measurable 

affect on etv2 expression.  Therefore we overexpressed zebrafish lin28a 

mRNA and assessed let-7 and Etv2 expression. Lin28a is highly expressed in 

the developing nervous system at 24hpf (Fig. III-5A).  Lin28a staining in the 

pronephric duct is clearly visible in the trunk at 24hpf but no expression is 

detected in the vasculature at earlier or later stages (Fig III-5A, J.M. 

unpublished observation). The lack of lin28a expression in the axial 

vasculature is consistent with the evidence of multiple Let-7 family members 

being enriched in the vasculature at this time point [37]. Northern analysis on 

24hpf zebrafish RNA after global lin28a mRNA over expression results in a 

significant decrease in let-7a expression (Fig. III-5B).  Let-7a expression was 

down-regulated approximately 80% of control when assessed by Northern 

(unpublished quantification of Northern by densitometry).  Furthermore, qPCR 

revealed significant down-regulation of multiple let-7 family members by 
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lin28a overexpression (Fig. III-5C), while mir-126, an unrelated miRNA 

expressed specifically in endothelial cells, was not significantly reduced [184]. 

Interestingly etv2 transcript levels as well as several of its induced genes 

remained relatively unaffected by lin28a overexpression (Fig. III-5D), in 

contrast to when let-7a is overexpressed (Fig. III-4B).  The same is observed 

when analyzing Etv2 protein expression at the same time point (Fig. III-5E). 

 Our results suggest that there is negative regulation of etv2 through 

the 3’UTR and that this is mediated through let-7 family members (Fig. III1-4), 

although our lin28 results do not support this (Fig. 5B-F).  It is possible that 

we are unable to overexpress lin28a at high enough levels to sufficiently 

deplete the let-7 family to observe a corresponding increase in etv2 transcript 

levels or that let-7 mainly represses translation inhibition and not transcript 

degradation.  Alternatively, other miRNAs could possibly contribute to etv2 

down-regulation.  We looked at Etv2 expression in MZ dicer1 embryos. 

Dicer1 encodes an essential nuclease required for microRNA maturation, 

therefore MZ dicer1 embryos are devoid of mature miRNAs [166, 167]. Wild 

type embryos at 48 hpf did not exhibit Etv2 expression in endothelial cells 

(Fig. III-5F).  By contrast, Etv2 protein expression was apparent at this stage 

in MZ dicer1 embryos (Fig. III-5F) that had been injected with miR-430 to 

rescue some developmental defects associated with a lack of dicer1 function 

[185].  
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Figure III – 5 
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Figure III – 5: Contribution of let-7a and other microRNAs to Etv2 
repression. (A) Bright field image of 24hpf embryo in situ hybridized for 
lin28a transcript, lateral (lower panel) and dorsal view (upper panel) anterior 
to the left.  Lin28a is expressed in the midbrain hindbrain boundary (mhb), 
hindbrain (hb), spinal cord (sc) and in the pronephric duct (pd, insert). (B) 
Northern analysis of RNA isolated from 24 hpf embryos left uninjected or 
injected with 1 ng lin28a mRNA.  Blots were hybridized with DIG labeled 
probes against let-7a and 5s RNA.  (C) Histogram showing log2 fold change 
comparison of let-7 family members at 15ss assessed by miScript qPCR 
quantification between embryos injected with 1 ng lin28a mRNA and those 
left uninjected, quantification from triplicate experiments . (D) Histogram 
showing fold change comparison of indicated genes assessed by nCounter 
quantification between embryos injected with 1 ng lin28a and 1 ng 
bgalactosidase mRNA. Genes normalized to actb2 (beta-actin) and 
eef1a1l1(ef1alpha). Significance was calculated using the student t-test, 
quantification from triplicate experiments (E) Two-photon micrographs of trunk 
blood vessels in Tg(fli1a:egfp)y1 embryos immunostained with Etv2 polyclonal 
antiserum and Alexa-568 secondary antibody at 24 hpf following injection with 
1ng of β-galactosidase (left panels) or lin28a mRNA (right panels).  (F) Wild 
type (top) and mzdicer1hu715 mutant embryos injected with 2nl of 10µM-
amount  of mir-430 duplex RNA (bottom) immnuostained with Etv2 polyclonal 
antiserum and Alexa-568 secondary antibody at 48hpf.  Etv2-positive nuclei in 
the endothelial cells of trunk blood vessels are denoted by arrows (bottom).  
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Discussion 
 

 Etv2 is expressed and functions during early vertebrate development 

to specify the angioblast from the lateral plate mesoderm and is down-

regulated for proper endothelial differentiation and vasculature maturity. 

To date no negative regulatory mechanism has been described that causes 

the down-regulation of Etv2 expression.  Here we present a novel post-

transcriptional negative regulatory mechanism mediated in part by the let-7 

family of miRNAs using the zebrafish as a model organism. The 3’UTR of 

etv2 is post-transcriptionally regulated in a let-7 binding site dependent 

manner. Additionally, endogenous etv2 transcript and protein are inhibited 

upon let-7a overexpression with a concomitant reduction in endothelial cell 

number and gene expression. Furthermore, Etv2 protein expression persists 

in MZ dicer1 mutant zebrafish that lack all miRNAs. Therefore, the let-7 family 

of miRNAs post-transcriptionally regulates Etv2 for proper vascular 

development.  

 We found that etv2 transcript is expressed with three varying length 

3’UTRs due to alternative polyadenylation. The two longer 3’UTR isoforms 

are post-transcriptionally-regulated in vivo and can be inhibited by the 

addition of let-7. Although, the shortest etv2 3’UTR did not repress reporter 

expression in our endothelial autonomous sensor assay, it contains two let-7 

binding sites and can be repressed upon the overexpression of let-7a. 

Importantly, zebrafish etv2 post-transcriptional regulation is let-7 binding site 
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number dependent and let-7 overexpression causes a significant reduction of 

endogenous etv2 transcript and protein. Additionally, Etv2 protein expression 

persists in MZ dicer1 embryos emphasizing the role of miRNA repression in 

the regulation of etv2 expression.  However, the role of alternative 

polyadenylation and how it modulates etv2 expression is unknown at this 

time.  Interestingly, studies have shown that 3’UTRs are shortened in 

proliferating or transformed cells to escape miRNA regulation [186, 187]. 

Conversely, 3’UTRs are lengthened during zebrafish development as 

differentiation proceeds [188]. These findings suggest that etv2 may use 

alternative polyadenylation of its 3’UTR to modulate its expression during 

vascular development. Following this logic, etv2 may be expressed with the 

short 3’UTR during angioblast emergence and proliferation from the lateral 

mesoderm. Subsequently when etv2 function is no required the longer 

3’UTRs are expressed to allow greater negative regulation by let-7. However, 

more careful quantification of each 3’UTR isoforms during distinct 

developmental time points would need to be conducted to verify this 

hypothesis.  

 Human and mouse Etv2 3’UTRs also contain let-7 binding sites (data 

not shown). Moreover, zebrafish and human endothelial cells highly express 

several let-7 family members and the differentiated endothelium of adult 

mammals do not express ETV2 [37, 175-177, 189]. Combined, this data 

suggests that let-7 regulation of etv2 is a conserved developmental 
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mechanism. However, let-7 mediated transcript degradation alone does not 

explain the loss of etv2 expression in our studies, as etv2 transcript is not 

downregulated in MZ dicer1 embryos. Gene expression analysis after global 

etv2 overexpression in the zebrafish suggests the existence of an etv2 

positive auto-regulatory loop [129]. Consequently, loss of etv2 transcript after 

let-7 overexpression is likely caused by a combination of mechanisms. Let-7 

mediated degradation of etv2 expression likely starts with translational 

repression [190], reducing protein numbers to ultimately result in a 

concomitant reduction in etv2 transcription. This multi-tiered regulatory 

mechanism may also explain why etv2 translation blocking morpholino and 

let-7 overexpression give similar phenotypes.  Both inhibitory methods reduce 

the number of Etv2 expressing angioblasts at mid-somitogenesis by in situ 

hybridization, indicating a shared common mechanism is at work. Consistent 

with this theory is the identification of an enhancer element in the zebrafish 

etv2 locus that recapitulates endogenous etv2 expression.  The transgene is 

expressed during early stages of development in the vasculature but not later 

[119], indicating transcriptional regulation of Etv2 also plays an important role 

in its expression dynamics.  

 Overexpression of lin28a causes a striking reduction in the expression 

of let-7 family members enriched in endothelial cells. However, we do not 

detect a change in etv2 transcript or protein expression and vascular 

development is unperturbed. This could be for several reasons. Considering 
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the number and diversity of let-7 miRNAs expressed in the zebrafish 

endothelium [37], lin28a overexpression may not reduce let-7 below a 

functional threshold required to elicit upregulation of its target genes and 

consequently disrupt development. This is consistent with Lin28a 

overexpressing mice being viable and fertile, all thought slightly larger [191].  

Alternatively, Etv2 may be negatively regulated by other miRNAs in the 

absense of let-7, considering Etv2 protein persists in dicer1 null zebrafish 

embryos. However, we are currently unable to distinguish between these 

possibilities. The combined mechanisms of alternative polyadenylation and 

let-7 regulation could explain why etv2 expression is rapidly degraded during 

development. Despite our lin28a overexpression results, we demonstrate let-

7 negatively regulates etv2 by binding its 3’ UTR and this mechanism is likely 

responsible for the down-regulation of etv2 during vascular development.  

 Our results demonstrate that etv2 is negatively regulated by the let-7 

family of miRNAs through its 3’UTR to allow for proper vascular development. 

Etv2 has the functional characteristics of an early acting pluripotency 

determinant. Etv2 is required for and can induce the specification of the 

hemangioblast, a bi-potential cell type that gives rise to hematopoietic and 

endothelial cells [128, 192].  Furthermore Etv2 is required to be down-

regulated for endothelial differentiation to proceed. Etv2 plays an early 

functional role in the expansion and maintenance of endothelial progenitors, 

as suggested by analysis of Etv2 overexpressing murine hematopoietic cells 
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[122]. Etv2 up regulates the pluripotent-specific reprogramming factor zfp296 

in this context. Zfp296 enhances iPSC reprogramming by inducing expression 

of pluripotency determinants Oct4 and Nanog, indicating Etv2 expression may 

functions to ensure endothelial progenitor self-renewal during early 

development [193]. This potential role is further supported by studies 

demonstrating that Etv2 is required for the maintenance of hematopoietic 

stem cells in mice [152]. Although a similar role for endothelial cell progenitors 

can only be speculated. Therefore our findings that the let-7 gene family post-

transcriptionally regulates Etv2 are consistent with its conserved role in 

promoting differentiated cell fates or blocking transformation by negatively 

regulating genes necessary for growth and proliferation [194-196]. 

Considering Etv2 is a strong transcriptional activator and its proper 

expression during development essential for life, miRNA mediated repression 

is likely not the only negative regulatory mechanisms acting on etv2 during 

development. Additional studies are required to understand the full range of 

mechanisms controlling etv2 expression during vascular development. 



107

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER IV: POST-TRANSLATIONAL REGULATON OF ETV2 BY 
UBIQUITIN-DEPENDENT PROTEOLYSIS 
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Introduction 
 

 Formation of a fully functional, patent vascular system requires the 

proper spatial and temporal expression of endothelial lineage determinants.  

Etv2 is considered the master regulator of the vascular system because in its 

absence angioblasts fail to be specified from the lateral mesoderm, resulting 

in severe vascular morphogenesis defects and a loss of circulation [7, 8, 111, 

116]. Conversely, Etv2 overexpression can precociously and ectopically 

activate endothelial cell gene programs, and autonomously enhances the 

commitment to endothelial lineages (Chapter II; [6]).  Etv2 is only expressed 

in a short developmental window to specify the angioblasts through the 

initiation of a transcriptional network (Chapter II). Interestingly, Etv2 

expression must decrease in order for endothelial differentiation to proceed, 

as persistent expression of Etv2 is deleterious to vascular development [122]. 

An identified enhancer element located within the zebrafish etv2 locus is 

capable of driving transgene expression in a manner that recapitulates 

endogenous etv2 expression.  Transgene expression occurs early during 

vasculogenesis but not at later stages, indicating that transcriptional 

regulation accounts at least in part for the loss of etv2 expression [119]. 

Additionally, we’ve identified a post-transcriptional mechanism capable of 

inhibiting etv2 expression in the zebrafish.  Etv2 transcript is negatively 

regulated by miRNA-mediated repression through its 3’UTR by the let-7 

family (Chapter III). Considering Etv2 is such a strong transcriptional 
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activator, and proper expression is essential for normal development, we 

sought to identify additional negative regulatory mechanisms contributing to 

Etv2 downregulation.  

 The proper differentiation of cellular lineages requires the precise 

control of transcription factor protein levels and localization. Ubiquitin-

mediated proteolysis mechanisms control the stability of various proteins that 

are essential for cellular function and transcriptional activation.  For example, 

canonical Wnt signal activation inhibits the glycogen synthase kinase-3 (GSK-

3) dependent phosphorylation of β-catenin, thereby preventing its 

ubiquitination and proteasomal degradation.  Subsequently, β-catenin 

accumulates in the cytoplasm, translocates to the nucleus and interacts with 

the TCF/LEF family to activate transcription of target genes [197].  

Degradation of a protein by the ubiquitin-mediated proteolysis pathway 

involves two distinct and consecutive steps: (1) covalent attachment of 

multiple ubiquitin molecules to the target protein; and (2) degradation of the 

tagged protein by the 26S Proteasome complex [198]. Ubiquitin is a protein of 

76 amino acids, and is covalently bound to lysines in target proteins, forming 

poly-ubiquitinated chains on proteins destined for proteasomal degradation. 

Ubiquitination is mediated by a multi-step process catalyzed by three 

enzymes working successively: E1 (Ubiquitin-Activating Enzyme), E2 

(Ubiquitin-Conjugating Enzymes), and E3 (Ubiquitin-Ligating Enzymes).  The 

E3 enzyme confers substrate specificity to the ubiquitin-mediated proteolysis 
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pathway and recognizes degrons (amino acid sequences that mark proteins 

for degradation) in target protein sequences.  Often proteins with a short 

intracellular half-life have degrons with a PEST motif, a peptide sequence rich 

in proline (P), glutamic acid (E), serine (S), and threonine (T) [199].   

 The ETS family of transcription factors plays a major role in the proper 

differentiation of endothelial cells and the formation of the vasculature system 

[200]. Transcriptional activity and proteasomal degradation are intrinsically 

linked, often the more transcriptionally active a protein is, the more quickly it 

is turned over [201].  Ets1 is the most closely related ETS transcription factor 

to Etv2 and is expressed in the developing and differentiated endothelium [7, 

60]. Ets1 phosphorylation controls transcriptional activity and K47-linked poly 

ubiquitination controls its proteasomal degradation [79, 202]. Furthermore, the 

ETS transcription factors ETV1, ETV4 and ETV5 are all targets for the E3 

ubiquitin-ligase COP1, which causes proteasomal degradation by 

ubiquitination [203]. Therefore proteasomal degradation of the ETS family of 

transcription factors is a common mechanism of negative regulation.  Thus, 

we sought to determine if Etv2 is post-translationally regulated in a similar 

manner.  

 In this work we find that Etv2 is post-translationally regulated, highly 

unstable and degraded by the proteasome. Bioinformatic analysis of the 

zebrafish Etv2 protein revealed the presence of several putative PEST motifs 

encoded in the primary sequence.  In HEK293T cells, overexpressed 
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zebrafish and mouse Etv2 are highly unstable in the presence of the 

translational inhibitor cycloheximide.  The cycloheximide-induced instability of 

Etv2 is rescued by the addition of the proteasome inhibitor MG132, indicating 

Etv2 is degraded by the proteasome.  We establish that Etv2 is co-

immunoprecipitated with ubiquitin. A non-polymerizable form of ubiquitin is 

unable to illicit proteasomal degradation and stabilizes Etv2 when they are co-

expressed. Finally, we demonstrate that endogenous zebrafish Etv2 is highly 

unstable in vivo and quickly degraded.  Together our work shows that Etv2 is 

post-translationally ubiquitinated and degraded by the proteasome, revealing 

another mechanism that endothelial cells use to downregulate Etv2 during 

vascular development.  
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Materials and Methods 
 

 

Zebrafish Handling and Maintenance 

Zebrafish and their embryos were handled according to standard protocols 

[141] and in accordance with the University of Massachusetts Medical School 

IACUC guidelines. The Tg(fli1a:egfp)y1 transgenic has been described [12, 

142, 143].  

 

Plasmid Construction 

All primers used for the amplification of open reading frames are listed in 

Appendix II. Plasmids pCS-etv2 and pCSMT-etv2 have been described in 

Chapter II. The zebrafish ets1a open reading frame was amplified from 24 hpf 

whole embryo cDNA and used in a BP recombination reaction with plasmid 

pDONR221 (Invitrogen) to make pME-ets1a.  The mouse etv2 open reading 

frame was amplified from a full-length mouse ORFeome collection (Clone ID: 

100015809; Thermo Scientific) and used in a BP recombination reaction with 

plasmid pDONR221 (Invitrogen) to make pME-Mm etv2. The zebrafish 

bozozok and lnx1 open reading frames were amplified from a full-length 

Zebrafish Gene Collection (ZGC) clone (Clone ID: 8158462 and Clone ID: 

8001145, respectively; Thermo Scientific) and used in a BP recombination 

reaction with plasmid pDONR221 (Invitrogen) to make pME-bozozok and 

pME-lnx1. pME-ets1a, pME-Mm etv2, pME-bozozok or pME-lnx1 were used 
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in LR reactions with pCSMTDest [145] to generate pCSMT-ets1a, pCSMT-

Mm etv2, pCSMT-bozozok and pCSMT-lnx1. 

 

Cell culture  

HEK293T cells were cultured in Dulbecco’s Modified Eagles Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) at 37oC in an environment 

of 5% CO2 .  Cultures were split into 6-well plates and transfected overnight 

with 2µg of mammalian expression vectors at 50-60% confluence using 

Lipofectamine 2000 per manufactures recommendation (Invitrogen), before 

harvesting or chemical treatment.  Cells were lysed using 500 - 1,000µL RIPA 

buffer (150mM NaCl, 50mM Tris-HCl pH8.0, 1% NP-40, 0.1% SDS) 

containing cOmplete Mini EDTA-Free Protease Inhibitors (Roche). Lysates 

were spun down at 10,000 x G to remove insoluble material and mixed in 

Laemmli buffer to run on SDS-PAGE gels for immunoblot detection or 

immunoprecipitation with subsequent immunoblot detection.  Cycloheximide 

(Sigma) was used at a final concentration of 50µg/mL and MG132 

(Calbiochem) at a final concentration of 40µM. Immunoprecipitations were 

performed by incubating 1mL of cell lysates suspended in RIPA buffer with 

30µL of monoclonal anti-c-myc antibodies conjugated to protein A agarose 

beads (Clonetech) and spun end over end overnight. Beads were washed 

four times in fresh RIPA buffer, boiled in Laemmli buffer and then run on 

SDS-PAGE gels. Ubiquitin co-immunoprecipitation was detected using a 
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polyclonal anti-FLAG antibody (Sigma-Aldrich; Cat#: F7425). Vectors used for 

Co-immunoprecipitation studies are pCSMT-Bozozok, pCSMT-lnxI, pCSMT-

Etv2, pCSMT-Ets1a, pcDNA-Flag-UBB (Gift from Dr. Fumi Urano).  Vectors 

used for proteasomal degradation and stability studies are, pCS-Etv2, 

pCSMT-Mm-Etv2, pCSMT-RNF6(Gift from Dr. Ingolf Bach) and pRK5-HA-

Ubiquitin-KO (Addgene plasmid 17603).  C-Myc-tagged proteins were 

detected using a 1:10,000 dilution of monoclonal anti-c-myc(9E10) antibody 

(Sigma).  Exogenously expressed zebrafish Etv2 protein was detected in 

Westerns using a 1:5,000 dilution of anti-Etv2 polyclonal antibody serum 

(same as Chapter II).  The α-tubulin and nucleolin monoclonal antibodies 

where used at a dilution of 1:10,000 and were a kind gift from the lab of Dr. 

Michael Green of the University of  Massachusetts Medical School.  

 

Zebrafish cycloheximide treatment  

Tg(Fli1:egfp)y1 embryos at 15 ss with chorions intact were incubated in an 

egg-water cycloheximide (50µg/mL) solution at 28.50C for three hours.  

DMSO was used as a control. Embryos were fixed at ~18ss and then 

subjected to Etv2 polyclonal antibody staining. The experiment was done in 

triplicate and 5 embryos from each experimental treatment were imaged.  Z-

Stacks where assembled in Image-J and average red pixel intensity 

measured in the trunk vasculature.  The average of red pixel intensity for all 
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samples where plotted and significance determined by student T-test.  p < 

0.05 was deemed significant.  

 

PEST domain identification 

The full Etv2 ORF protein sequence (accession: NM 001037375) was entered 

into the ePESTfind analysis tool at SWAMI: The next generation biology 

workbench (www.ngbw.org). Default parameters were maintained for all 

settings.  PEST domain identification was accomplished using published 

methods [204].  

 

Antibody production and whole mount immunohistochemistry 

The methods and antibodies are the same as described in Chapter II. 
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Results 
 
 

Etv2 is unstable and degraded by the proteasome 

  Etv2 downregulation is required for proper vascular development and 

we have identified post-transcriptional regulation by the Let-7 family of 

miRNAs as one negative regulatory mechanism (Chapter III).  However, Let-7 

overexpression cannot completely repress Etv2 expression (Fig. III-4) and 

Lin28, a Let-7 family inhibitor, has no effect on Etv2 expression (Fig. III-5), 

revealing that an additional negative regulatory mechanism(s) must exist.  

Ets1 is the most closely related ETS factor to Etv2, and Ets1 is degraded by 

the proteasome after ubiquitination, indicating that Etv2 could be regulated in 

a similar manner [53, 202].  

Analysis of the Etv2 protein sequence revealed several putative 

proteasomal degradation signals and an intrinsically unstructured region (Fig. 

IV-1).  Accordingly, we found that zebrafish Etv2 proteins are rapidly 

degraded when exogenously expressed in HEK293T cells treated with 

cycloheximide, compared to DMSO control (Fig. IV-2 upper panels, compare 

lanes 1-4 with 5-7).  Etv2 was stabilized in the presence of the proteasome 

inhibitor, MG132 (Fig. IV-2 upper panels, compare lanes 1-4 with 8-10). 

Additionally, the rapid degradation of Etv2 in the presence of cycloheximide 

can be blocked by the addition of the proteasome inhibitor MG132 (Fig. IV-2 

upper panels, compare lanes 5-7 with 11-13). The mouse ortholog of Etv2 
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exhibits the same behavior under the same cell culture conditions as 

zebrafish Etv2 (Fig IV-2 lower panels), suggesting a conserved negative 

regulatory mechanism.  
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Figure IV - 1 

 
 

 
 
 

Figure IV – 1: The Etv2 protein contains putative proteolytic cleavage 
sequences.  Full-length zebrafish Etv2 protein sequence highlighting 
sequences that have a high (red) or weak (blue) probability of being a PEST 
proteolytic cleavage domain. Lysines in bold are sites of possible 
ubiquitination. Underlined amino acids are intrinsically unstructured sequence 
segments as determined by IUPred. PEST domain analysis performed using 
ePESTfind.
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Figure IV - 2 
 
 
 
 
 
 
 
 
 

 
 

Figure IV – 2: Etv2 is degraded by the proteasome. HEK293T cells were 
transfected with mammalian expression vectors for zebrafish Etv2 (pCS-etv2, 
top) or myc-tagged mouse Etv2 (pCSMT-Mm etv2, bottom) and then treated 
with DMSO, cyclohexmide (50µg/mL), the proteasome inibitor MG132 (40µM) 
or a combination of both for the indicated times. Immunoblots were probed 
with Etv2 polyclonal antiserum or a monoclonal against the myc epitope 
(9E10). Blots were stripped and reprobed with monoclonals for nucleolin or α-
tubulin. 
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Proteasomal degradation is often mediated by poly-ubiquitination of 

the target protein. Appropriately, we found that myc-tagged zebrafish Etv2 

can be co-immunoprecipitated with flag-tagged ubiquitin when co-transfected 

into HEK293T cells (Fig. IV-3 lane 5). As positive controls we did pull-downs 

in HEK293T cells cotransfected with flag-ubiquitin, bozozok (a zebrafish 

protein known to be ubiquitinated), and the E3 ubiquitin ligase for bozozok, 

lnx1 (Fig. IV-3 lane 4) [205].  The zebrafish ets1a gene is also ubiquitinated, 

in agreement with published data on the mammalian Ets1 homolog (Fig.  IV-

3, lane 6) [202]. Additionally, Etv2 is stabilized in HEK293T cells when 

cotransfected with a non-polymerizable form of ubiquitin (all lysines mutated 

to arginines) that prevents proteasomal degradation (Fig. IV-4 upper panels, 

compare lanes 1-3 to 4-6) [206]. The non polymerizable from of ubiquitin also 

prevents the rapid degradation of Etv2 in cycloheximide-treated cells (Fig. IV-

4 upper panels, compare lanes 7-9 to 10-12).  When performed in parallel as 

a positive control, we obtained similar results with the E3 ubiquitin-protein 

ligase RNF6, which was previously demonstrated to ubiquitinate itself (Fig. 

IV-4 lower panels) [207]. In agreement with the cell culture data, we observed 

that 15 ss zebrafish embryos treated for 3 hours with cycloheximide exhibit 

rapid downregulation of Etv2 protein, losing more than half of the signal 

intensity after Etv2 antibody staining (Fig. IV-5). Levels of an endothelial cell 

specific nuclear localized form of EGFP (Tg(fli1a:negfp)y7) were only mildly 
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affected in the same time frame (Fig. IV-5).  These results demonstrate that 

Etv2 protein is regulated by ubiquitin-dependent proteasomal degradation, 

and that the Etv2 protein is rapidly turned over in vivo during vascular 

development
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Figure IV – 3 
 
 
 
 
 
 
 
 
 

 
 

Figure IV – 3: Etv2 is ubiquitinated. HEK293T cells were transfected with 
indicated combinations of mammalian expression vectors for zebrafish myc-
tagged bozozok, lnx1, etv2, and ets1a (pCSMT-bozozok, pCSMT-lnx1, 
pCSMT-etv2, and pCSMT-ets1a, respectively) and FLAG-tagged ubiquitin 
(pcDNA-Flag-UBB).  Lysates were immunoprecipitated with c-myc 
monocolonal antibody (9E10) and ubiquitinated proteins were detected by 
immunoblotting with polyclonal Flag antibody.
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Figure IV - 4 
 
 
 
 
 
 
 
 

 
 

Figure IV – 4: Etv2 is stabilized in the presence of a non-polymerizable 
form of ubiquitin. HEK293T cells were transfected with mammalian 
expression vectors for zebrafish Etv2 (pCS-etv2, top) or myc-tagged mouse 
rnf6 (pCSMT-rnf6, bottom) with and without co-transfection of a vector 
expressing a non-polymerizable form of ubiquitin (pRK5-HA-Ubiquitin-KO). 
Transfected cells were treated for the indicated times with cycloheximide 
(50µg/mL) or DMSO as a control.  Immunoblots of cell lysates were probed 
with Etv2 polyclonal antiserum or a monoclonal against the myc epitope 
(9E10). Blots were stripped and reprobed with a monoclonal antibody for α-
tubulin.
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Figure IV – 5 
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Figure IV – 5: Etv2 is rapidly turned over in vivo. (A) Camera lucida 
drawings depicting the developmental stage and area (red box) of embryos 
that were imaged in B-D. (B,C) Representative Two-photon micrographs of 
Etv2 immunostaining in 18ss Tg(fli1a:negfp)y7 treated wth DMSO or 
Cycloheximide (50µg/mL) for three hours at 15ss. Top panels, overlay of 
Alexa-568 and EGFP signals.  Middle panels, immunostained Etv2 protein 
was detected with Alexa-568 secondary antibody. Bottom panels, transgenic 
expression of nuclear-localized EGFP. (D) Quantification of average Etv2 
fluorescence pixel intensity from DMSO and cycloheximide-treated embryos. 



126

Discussion 
 

 Etv2 down-regulation is required for the proper formation of the 

vasculature system. We have previously described a mechanism whereby post-

transcriptional miRNA mediated repression by the let-7 family regulates etv2 

expression.  In this work we have added post-translational ubiquitin-dependent 

proteolysis as a new mechanism controlling Etv2 expression. We demonstrated 

that zebrafish Etv2 is ubiquitinated and degraded by the proteasome in HEK293T 

cells. Additionally, Etv2 is stabilized in the presence of a non-polymerizable form 

of ubiquitin. Our in vitro cell culture results led us to look at protein stability in 

vivo.  Etv2 is highly unstable during zebrafish mid-somitogenesis, as 

demonstrated by rapid degradation in the presence of cycloheximide. Altogether, 

our results demonstrate that both post-transcriptional and post-translational 

mechanisms ensure correct temporal etv2 expression leading to the proper 

formation of the vasculature.   

 Etv2 is highly unstable and is degraded by the proteasome in an ubiquitin-

dependent manner. Etv2 protein sequence analysis revealed the presence of a 

potential PEST domain immediately upstream of the DNA binding domain. PEST 

domains have only been found in less than 10% of mammalian proteins in 

SWISS-Prot, and the majority of PEST-sequence containing proteins are rapidly 

degraded [204]. The presence of an unstructured region as an initiating site of 

proteolysis is another requirement for proteasomal degradation [208, 209]. The 

potential strong PEST domain overlaps with an unstructured region making this 

protein segment the mostly likely degron signal for Etv2.  
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Consistent with PEST domains conferring instability, we found that in the 

presence of the translation inhibitor cycloheximide, both zebrafish and mouse 

Etv2 are rapidly degraded.  Etv2 degradation is proteasome dependent because 

the proteasome inhibitor MG132 both stabilizes exogenous Etv2 and rescues its 

cycloheximide-induced instability. Proteasomal degradation is likely initiated by 

ubiquitination because Etv2 is coimmunoprecipitated with ubiquitin, and Etv2 is 

stabilized when co-expressed with a non-polymerizable form of ubiquitin [206]. 

All these effects are likely mediated by the internal degron we identified but more 

biochemical analysis is needed to confirm this.  However, loss of the majority of 

the N-terminal domain of Etv2 including the potential degron stabilized the C-

terminal DNA binding domain in HEK293T cells even in the presence of 

cycloheximide.  Similarly, fusing mCherry to the N-terminal region of the Etv2 

protein (minus the DNA binding domain) destabilized the chimeric fusion protein 

leading to a reduction in red fluorescence (unpublished observations).  

Sequential segmental deletion of the Etv2 protein and further analysis is needed 

to definitively identify the degradation signal encoded in the Etv2 protein.  

 Consistent with our cell culture results, we found that endogenous 

zebrafish Etv2 protein is highly unstable and quickly degraded in the presence of 

cycloheximide.  This result adds support to our previous analysis of the post-

transcriptional regulation of etv2 by the let-7 family and the developmental timing 

of etv2’s functional requirement. We previously speculated that the phenotypic 

similarity of let-7 repression and translation inhibition by morpholino was caused 

first by translational inhibition and then a concomitant reduction in etv2 
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transcription due to the disruption of a positive auto-regulatory mechanism. Our 

finding that Etv2 is rapidly turned over supports this model, because even minor 

decreases in Etv2 translation would reduce the overall amount of Etv2 protein, 

which is rapidly degraded.  This would then lead to exacerbated decreases in the 

transcriptional activity of the etv2 promoter. Furthermore, the instability of Etv2 

helps alleviate concerns etv2 is actually required significantly later than 

suggested from our conditional knockdown experiments in Chapter II, because 

the knockdown from uncaging may be too slow and/or partially effective.  After 

uncaging, the morpholino blocks translation of Etv2, which is rapidly cleared from 

endothelial cell progenitors. The morpholino works because we get the reported 

phenotype when the etv2 cMO is uncaged at early time points. Therefore, it is not 

likely slow or partially effective and the auto regulatory mechanism described 

above would likely compensate for any inefficiency.  Therefore Etv2’s 

developmental functional window and auto-regulation mechanism is 

strengthened by the revelation of Etv2 instability.  

 Our results demonstrate for the first time that Etv2 is ubiquitinated and 

degraded by the proteasome, which leads to additional questions [202]. Is there 

a specific E3 ubiquitin ligase that mediates Etv2 ubiquitination specifically in 

endothelial cells, or is a more general mechanism used?  Both mouse and 

zebrafish Etv2 display robust down-regulation when overexpressed in HEK293T 

cells, which are not an endothelial cell line, suggesting a more general 

mechanism is utilized. Additionally, are other post-translational modifications, 

such as acetylation, sumoylation or phosphorylation acting on Etv2, and do these 
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additional modifications affect protein stability? Ets1 sumoylation represses its 

transcriptional activation, whereas phosphorylation can either activate or repress 

Ets1 transcriptional activity [71, 79, 202, 210]. Phosphorylation of the ETS 

transcription factor ESE-1 prevents its ubiquitin-dependent proteasomal 

degradation [211]. In contrast, the ETS transcription factor MEF (ELF4), is 

regulated by phosphorylation-dependent proteolysis via the general class of 

Skp2-Cul1/Cdc53-F-box (SCF) poly-ubiquitinating protein complex [212]. The 

post-translational regulation of ETS transcription factors is a complex and 

multidimensional process, and Etv2 is likely to be regulated by additional 

mechanisms beyond ubiquitination.   
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CHAPTER V: PERSPECTIVES AND FUTURE DIRECTIONS 
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Figure V-1 
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Figure V-1: Etv2 expression and regulation summary.  Etv2 is expressed 
early during somitogenesis, with expression peaking around 18 ss and then it is 
rapidly down-regulated (orange line); Etv2 down-regulation is required for normal 
vascular development. Etv2 function is required early but not as long as Etv2 is 
expressed (blue box).  Etv2 is transcribed at the start of its expression and is 
eventually turned off sometime before 48 hpf (purple box; [119]). The Let-7 family 
of miRNAs (gray box) and ubiquitin-dependent proteasomal degradation (green 
box) starts negatively regulating Etv2 expression sometime after its function is no 
longer required. If Etv2 expression persists (red line) then the vasculature is 
unable to form properly [122, 139]. The camera lucida drawings below the x-axis 
represent the stage of vascular development at each time point depicted.  
Endothelial precursors (purple), arterial (red) and venous (blue) endothelial cells 
or vessels are illustrated.  
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 The preceding work makes a significant contribution in understanding the 

role and regulation of etv2 during vascular development in the zebrafish. The 

expression, function and regulation of etv2 during zebrafish vascular 

development are summarized in (figure V-1). In combination with previous 

published studies in other animals, our results in the zebrafish demonstrate the 

Etv2 mode of action and mechanisms of regulation are conserved across 

species.  

 

Expression and function of Etv2 

 Etv2 is a transiently expressed autonomous master regulator of 

endothelial cell lineage fate and is down regulated by multiple mechanisms to 

insure vascular development occurs normally. Through carefully staged and 

quantified expression studies we found that etv2 transcripts are expressed early 

during zebrafish development in angioblasts concomitant with their emergence 

from the lateral mesoderm. However, etv2 transcript expression is transient and 

is nearly undetectable in the differentiated endothelium by 24 hpf, consistent with 

previous reports in mice, Xenopus and differentiating embryonic stem cells 

(Figure V-1, orange line; [8, 116, 120]). Visualization of Etv2 protein expression  

demonstrates Etv2 protein mirrors its RNA expression profile. Our results tighten 

the window of expression previously reported for Etv2 in the zebrafish [6], and 

presents the first known antibody raised to Etv2. Furthermore our conditional 

expression experiments show that Etv2 expression is transient, as well as its 

functional requirement. Etv2 functions in a short developmental time window 
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beginning with the start of angioblasts specification during early segmentation 

stages and prior to the completion of the primitive vascular cord (Figure V-1; blue 

box).  Etv2 is expressed in endothelial progenitors and its early conditional 

ablation prevents the formation of the vascular system, highlighting its 

requirement for endothelial lineage commitment.  We demonstrate this 

requirment is cell autonomous through mosaic transplants analysis.  Etv2 

specifies endothelial cells autonomously by activating endothelial gene 

programs.  We identify through a combination of gene expression studies using 

microarrays that etv2 induces a multitude of endothelial cell enriched genes 

consistent with previously published studies [129-131]. Our microarrays revealed 

that some of the most highly induced transcriptional targets of etv2 are 

transcription factors essential for normal vascular development.  We hypothesize 

that etv2 initiates angioblast specification by inducing a transcription factor 

cascade that is subsequently responsible for the continued differentiation of 

endothelial cell lineages. We know from overexpression studies in mice and in 

endothelial cell transdifferentiation studies that Etv2 downregulation is a 

requirement for terminal endothelial cell differentiation or endothelial cells retain a 

progenitor like state (Figure V-1, red line; [122, 139]), but what caused etv2 

down-regulation was previously unknown. 

 

Negative regulation of Etv2 

 Etv2 is negatively regulated by multiple mechanisms to allow the proper 

formation of the vasculature.  Identification of post-transcriptional and post-
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translational Etv2 negative regulatory mechanisms is the most novel contribution 

our work brings to the field of developmental vascular biology and illuminates 

why etv2 is transiently expressed.  Transcriptional regulation is another 

mechanism that can be gleaned from the literature as regulating etv2 expression 

[119, 129]. Analysis of the etv2 promoter in zebrafish has identified an enhancer 

that recapitulates the transient expression of etv2 during development. The 

transgene is expressed in the developing zebrafish endothelium until 2 days at 

which time expression is lost suggesting etv2 is transcriptionally repressed 

(Figure V-1, purple box; [119]).  Interestingly, etv2 also activates its own 

transcription [129]. Thus far we are unsure if etv2 transcriptional repression is 

caused by active repression complex recruitment, passive loss of activation or a 

combination of both.  The self-activating positive feed back mechanism used by 

etv2 suggests that it acts a bi-modal switch for its own expression, suggesting a 

more passive loss of transcriptional activators controls etv2 transcriptional 

regulation. When Etv2 protein is negatively regulated, transcription can be turned 

off quickly by depleting the available pool of factors activating transcription at the 

promoter. However, the initial etv2 transcriptional activator has yet to be 

identified.  We have identified two mechanisms that work to limit the Etv2 protein 

pool during development and hence turn off etv2 expression.  We found that the 

3’UTR of etv2 is able to post-transcriptionally repress exogenous transcripts and 

the let-7 family of miRNAs mediates this repression.  Over-expression of let-7 

duplex RNAs represses exogenously expressed etv2 3’UTRs and endogenous 

transcripts with a concomitant reduction in Etv2 protein expression.  Additionally, 
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mutation of Let-7 binding sites in the etv2 3’UTR suppresses its post-

transcriptional repression indicating there sufficiency in mediating repression. 

Therefore, the let-7 family is able to block translation from the etv2 transcript 

inhibiting Etv2 protein accumulation (Figure V-1, gray box).  Importantly, let-7 

overexpressing cells are prevented from committing to endothelial cell lineages 

when transplanted into Wt zebrafish because etv2 is repressed disrupting 

angioblast specification.  Let-7 mediates post transcriptional repression by 

binding 3’UTRs and deadenylating transcripts disrupting translation [213].  The 

second mechanism, post-translational degradation, which insures Etv2 protein 

down-regulation in endothelial cells, has a more direct effect.  Exogenously 

expressed Etv2 protein is ubiquitinated and degraded by the proteasome in 

HEK293T cells. We demonstrate the instability of Etv2 protein in culture was also 

happening in vivo.  Therefore, Etv2 is post-translationally down-regulated by 

ubiquitin-dependent proteasomal degradation (Figure V-1, green box). 

Unfortunately our work was unable to identify the negative actor in Etv2 post-

translational degradation un-like our ability to identify Let-7 as a post-

transcriptional regulator.  We have thus far been unable to single out a particular 

E3 ubiquitin ligase that recognizes Etv2 marking it for destruction. However, Etv2 

degradation is probably caused by a general mechanism as it happens in non-

endothelial cells and is likely mediated through its overlapping strong PEST motif 

and inherently unstructured region, which make up its most likely degron. 

Altogether, this work has demonstrated that Etv2 is required early to 

autonomously specify angioblast from the mesoderm and does not function later 
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during endothelial cell differentiation.  Furthermore, the transient nature of Etv2 

expression is caused by a combination of post-transcriptional and post-

translational mechanism that ultimately act to reduced the transcription of etv2. 

However, a number of important biological and mechanistic questions remain 

surrounding the function and regulation of Etv2 during vascular development.  
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Figure V-2 
 
 
 
 
 

 
 
 
 
 
 
 

Figure V-2: Mechanistic Roles of Pioneer Transcription Factors. In an active 

role, pioneer factors can directly facilitate other factors binding to regulatory 

regions by opening up the local chromatin.  In the passive role, prior binding of 

pioneer factors to regulatory sequences, such as an enhancer or promoter, 

reduces the number of additional factors that are needed to bind at a later time 

point to create an active enhancer.  Modified from [214]. 
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Etv2 as a pioneer transcription factor 

 How does Etv2, a single transcription factor, execute an entire program of 

endothelial cell differentiation?  It is interesting to speculate that Etv2 is a 

“pioneer transcription factor” because it is one of the earliest known genes 

expressed in endothelial cell progenitors and is required for endothelial gene 

expression [6-8, 116, 120]. Additionally, it is sufficient to activate endothelial gene 

expression on its own and in non-mesodermal tissues [6, 127, 129-131]. A 

pioneer transcription factor must perform a genetic function early in the activation 

of transcription in a particular lineage but they must also physically bind to the 

genome prior to activation and prior to other factors binding and therefore 

imparting competence for activation. One of the first established pioneer 

transcription factors to be identified was the bHLH transcription factor family 

member MyoD1, which is required for skeletal muscle differentiation from the 

mesoderm.  Expression of MyoD1 on its own can induce skeletal muscle 

differentiation in multiple cell types [215].  Another example of a pioneer 

transcription factor is the forkhead transcription factor family member Foxa1, 

which is required for the induction of the liver from the endoderm [216].  Both 

MyoD1 and Foxa1 impart competence for transcriptional activation by binding to 

the genome and opening compacted chromatin, thereby opening binding sites for 

other trans-acting factors. Myod can initiate access of genes in repressive 

chromatin by initiating chromatin remodeling through the recruitment of histone 

acetyltransferases (HATs) and the Swi/Snf chromatin-remodeling complex [217-

219]. Alternatively, Foxa1 has an inherent ability to disrupt local internucleosomal 
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interactions that are known to stabilize chromatin higher order structures [220, 

221].  Nearly nothing is known about how Etv2 activates gene transcription 

except that it contains an N-terminal activation domain [107], which bears no 

motif homology to any other known proteins. Etv2 is required early to initiate a 

transcriptional cascade leading to endothelial cell differentiation but we don’t 

know if it does so by opening up compacted chromatin (Chapter II).  However, 

chromatin-remodeling is essential for the proper formation of the vascular 

system.  Endothelial specific knockout of brahma-related gene 1 (BRG1), one of 

the catalytic ATPases of the Swi/Snf complex is required for endothelial cell 

differentiation. The extraembryonic yolk sac vasculature in these conditional 

mutants is dilated and fails to remodel [222]. Although chromatin remodeling 

plays a role in endothelial cell differentiation we do not know if Etv2 is able to 

recruit factors able to open chromatin. However, there is evidence that 

endothelial expressed ETS proteins can.  Ets1 and Ets2 are capable of recruiting 

p300, which acts as both a bridge between DNA bound transcription factors and 

the basal transcriptional machinery and as a HAT, therefore linking chromatin 

remodeling with transcriptional activation [223-225]. This example indicates ETS 

transcription factors can have an active role in the opening and organization of 

the local chromatin structure around a gene (Figure V-2).  However, Etv2 may 

play a more passive role as transcriptional activator. Pioneer factor binding may 

not alter chromatin structure and/or allow other factors to bind but instead the 

mere presence at gene regulatory sequences can reduce the number of 

subsequent factor-binding events needed for transcriptional activation after an 
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inductive signal (Figure V-2, [214]).  This passive model of activation is supported 

by the finding that that the majority of promoters require binding by a combination 

of transcription factors [226-228].  Etv2 has been shown to synergistically 

activate endothelial cell genes in combination with the foxc1/2 genes in mouse 

and ETS/Fox composite binding sites are strong computational predictors of 

endothelial gene expression [49, 61].  Therefore it is possible that Etv2 binding to 

gene regulatory regions primes these genes for activation but it is not until the 

Foxc1/2 binds, that transcription is activated. Furthermore, it is possible that the 

BMP, Wnt, and Notch pathways responsible for angioblast induction from the 

mesoderm provide the signal necessary for additional co-activators to bind with 

Etv2 initiating endothelial gene expression [8]. Currently, we cannot distinguish 

between the active and passive activation of endothelial cell gene expression by 

Etv2 and the reality is it likely uses a combination of both.  Etv2 is a master 

endothelial lineage determinant and is expressed and functions like a pioneer 

transcription factor.  Studies analyzing the capacity of Etv2 to modulate 

chromatin structure will be of great interest and will define the mechanistic nature 

of its transcriptional activity.  

 
Etv2 in disease 

What if any role does Etv2 play in the pathogenesis of vascular dysfunction and 

human disease? Excessive blood vessel growth is a significant cause of age 

related macular degeneration and underlies proliferative diabetic retinopathy 

[229, 230]. Additionally, vascularization of sold tumors is essential for their 

growth and eventual metastasis [4]. However, blood vessel growth in all these 
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cases forms through angiogenic processes; Etv2 is not expressed in the 

differentiated endothelium and is down-regulated even before the start of 

developmental angiogenesis, therefore making Etv2 a poor etiological agent for 

these diseases (Chapter II, [60]).  However, hemangiomas and angiosarcomas 

are benign and malignant neoplasms, respectively, of endothelial cells 

characterized by uncontrolled vascular growth [231, 232]. Is it possible that 

continued Etv2 overexpression in endothelial cells causes them to retain a 

progenitor like state causing continued proliferation and a failure to differentiate?   

Several endothelial enriched ETS transcription factors are causative agents of 

cellular transformation, metastasis and poor clinical prognosis [55]. 

Overexpresion of Ets1 and Fli leads to leukemia, and Erg overexpression can 

cause prostate cancer. Thus far we do not know if Etv2 functions in the formation 

of hemangiomas. However, hemangioma-derived endothelial cells are clonal and 

exhibit abnormal properties [233]. A hemangioma derived multi-potent stem cell 

that can recapitulate hemangiomad in immune-deficient mice has been identified 

[234], suggesting that hemangiomas are initiated from a single abnormal 

progenitor cell.  It is intriguing to think that continual Etv2 activation could cause 

the abnormal retention of endothelial cell progenitor characteristics.  Etv2 

activation coul result from diminished let-7 expression levels, because Etv2 

expression and Let-7 expression are inversely correlated (Chapter III). Etv2 

activation could also occur by mutation or loss of its degron preventing its 

ubiquitin-dependent proteasomal degradation.  This is all highly speculative and 
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a great deal more work is needed to define the role of Etv2 in disease if there is 

one.  
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APPENDIX I: ZEBRAFISH TRANSGENIC ALLOWS FOR TEMPORAL AND 

SPATIAL ANALYSIS OF DEVELOPMENTAL NOTCH ACTIVATION. 
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Introduction 
 

 The Notch gene was discovered and named due to the identification of 

a Drosphila melanogaster mutant with a serrated wing phenotype in the early 

20th century [235]. However, the gene responsible for this phenotype was not 

cloned until 1985, making it one of the oldest studied signaling pathways 

[236]. The Notch pathway is an evolutionarily conserved signaling mechanism 

that regulates cell fate decisions in early embryonic development in a wide 

variety of tissues in metazoans [237]. Notch receptors are large 

transmembrane receptors that interact with cell surface ligands of the Delta 

and Serrate/Jagged gene family [236, 238].  Upon ligand binding the Notch 

receptor is proteolytically cleaved, freeing the Notch intracellular domain 

(NICD) from the plasma membrane [239]. NICD translocates to the nucleus 

where it participates in a core transcriptional complexes with the DNA-binding 

domain protein CSL (CBF-1/RBP-Jk/KBF2 in mammals, Suppressor of 

Hairless [Su(H)] in Drosophila and Danio rerio, and Lag-2 in Caenorhabditis 

elegans), the nuclear effector Mastermind (Mam) and other transcriptional 

activators (Fig. AI-1 Top; [240, 241]). The NICD/CSL complex acts as a 

transcription factor to turn on Notch target genes[237]. CSL is known to bind 

the consensus site “YGTGRGAAM” and this cis element is sufficient to 

bestow Notch responsiveness to a transgene [242, 243].  Thus, the Notch 

signaling pathway affects cellular function mainly through the direct induction 

of Notch target genes.  
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 In the vascular systezm, Notch plays a significant role in endothelial 

cell differentiation during blood vessel development. In zebrafish, expression 

of Notch components, including the receptors notch1b, notch5, and the Notch 

ligands delta-like 4 (dli4) and deltac (dlc) are all restricted to arterial 

endothelial cells and excluded from venous endothelial cells [146, 244]. 

Disruption of Notch signaling within the zebrafish causes loss of artery marker 

gene expression and expansion of venous endothelial cell marker into 

arteries [94, 146, 245]. Conversely, over-expression of a constitutively active 

form of the intracellular domain of notch1 represses vein gene expression and 

causes ectopic expansion of the artery marker efnb2a into the posterior 

cardinal vein [146]. Similar to the zebrafish, arterial endothelial cells of mice 

express multiple Notch receptors as well as several Notch ligands [246]. 

Notch1 and Dll4 knockout mice are also embryonic lethal due to defects in 

endothelial cell differentiation and angiogenesis [247, 248]. In addition, mouse 

embryos with targeted deletion of the CSL locus specifically in endothelial 

cells display abnormal vascular development including arteriovenous 

malformations and loss of artery marker gene expression[249].  Zebrafish 

global CSL knockdown also causes arteriovenous malformations and an 

absence of trunk circulation phenotype [244]. Taken together these results 

reveal a conserved role for Notch signaling in establishing arterial endothelial 

cell fate during embryonic vascular development. 
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 In addition to its role in arterial endothelial cell differentiation, Notch 

also plays an important role in specifying different cell types and coordinating 

cell behaviors during angiogenic sprouting. Notch deficient mouse and 

zebrafish embryos exhibit a “non-productive angiogenesis” phenotype, 

characterized by excessive branching and blood vessel density and failure of 

these excess vessels to carry blood flow [12, 244, 248]. Conversely, Notch 

activation blocks angiogenic sprouting [44, 244, 250]. Interestingly, the Notch 

ligand dll4 is most highly expressed in the tip-cell of a sprouting vessel, and is 

induced by vascular endothelial growth factor (VEGF) [251]. It is thought that 

dll4 activates notch1 in the trailing cell behind the Dll4 expressing tip-cell [44].  

Subsequent Notch activation reduces the angiogenic behavior in the trailing 

cell enabling it to maintain its connection to the patent vasculature, in part 

through the down regulation of vegf receptor-3 (flt4) expression [44].  

Consistent with this model, tip cell marker gene expression is up-regulated in 

Notch or Dll4 deficient zebrafish or mouse embryos and this is associated 

with excessive endothelial cell proliferation and migration [44, 244].  Despite 

the significant amount of work concerning the role of Notch in blood vessel 

development, little is known about the temporal dynamics of Notch activation, 

the vascular cell types that activate notch and the ligands responsible for 

Notch activation.  

 To date there has been few mechanisms to visualize Notch activation 

in the vascular system in real time in the zebrafish.  Antibodies have been 
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designed to the �-secretase-cleaved form of Notch and hence the activated 

form of Notch, but it is only useful in fixed tissues or lysates [252, 253].  In-situ 

hybridization for a Notch target genes will tell you that Notch was activated in 

a particular cell type but suffers from the same limitations, in that it cannot be 

followed in real time [146]. A transgenic zebrafish line that drives red 

fluorescent protein driven by the Notch target gene promoter her4 has been 

developed and allows for in vivo analysis of Notch activation.  However, 

transgene expression is restricted to the nervous system.  

 In an effort to view global Notch activation during development in the 

zebrafish embryo and to help inform its role during vascular development we 

generated transgenic Notch indicator lines (NIL).  These NILs allow the 

temporal and spatial visualization of notch activity in multiple tissue types, but 

most interestingly for our studies the developing vasculature.  A murine Notch 

Activity Sensor (NAS) transgenic line as previously been generated [242] and 

we have adapted their approach to generate a similar zebrafish transgenic. 

To visualize Notch activation we utilized the well-characterized TP1 promoter, 

which consists of 12 multimerized CSL binding motifs upstream of a rabbit β-

globin minimal promoter [254, 255]. The CSL binding motifs are derived from 

the Epstein-Barr Virus terminal protein (TP1) gene promoter [256, 257].   The 

TP1 promoter was cloned upstream of enhanced green fluorescent protein 

(EGFP) or a destabilized version containing a C-terminal PEST domain from 

the mouse Oaz gene (D2EGFP; [258]), and flanked by Tol2 transposable 
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elements for efficient transgenesis. [259].  The constructs were injected into 

wild type zebrafish and stable transgenic raised, generating NILs 

Tg(tp1bglob:egfp)UM14  and Tg(tp1bglob:d2egfp)UM42  (Fig. AI-1 lower panel). 
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Figure AI - 1 
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Figure AI-1: Notch activation and intracellular domain nuclear 
translocation activates Notch indicator transgene expression.  CSL, the 
Notch receptors cognate nuclear binding partner binds its conserved DNA 
binding sequence and represses gene expression in the absence of Notch 
signaling.  Notch receptor binding to either the Jagged or Delta family of 
ligands causes two proteolytic processing events; as a result the Notch 
intracellular domain (NICD) is freed from the membrane and translocates to 
the nucleus. NICD binds to CSL displacing co-repressors  and recruits co-
activators to initiate transcription of Notch target genes (upper panel).  
Diagram of injection constructs used to make Notch indicator lines (lower 
panel).  Twelve CSL binding sites were concatemerized upstream of a rabbit 
β-globin minimal promoter driving expression of enhanced green fluorescent 
protein [EGFP; Tg(tp1blgob:egfp)UM14] or a destabilized version of EGFP 
[D2EGFP; Tg(TP1:d2egfp)UM42] in a Notch dependant manner flanked by Tol2 
transposable elements for efficient genomic integration. 
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Materials and Methods 
 

Zebrafish Handling and Maintenance 
 
Zebrafish and their embryos were handled according to standard protocols 

[141] and in accordance with the University of Massachusetts Medical School 

IACUC guidelines. The Tg(flia.ep:DsRedex)UM13  transgenic has been 

described previously [16]. The Tg(tp1bglob:egfp)UM14 and 

Tg(tp1blob:d2egpf)UM82 line where made by injecting 25pg of purified 

pToltp1blglob:egfp or pToltp1bglob:d2egfp plasmid, respectively with 25pg of 

Tol2 transposase mRNA [259] into one-cell wildtypeCF  embryos to make 

mosaic F0 fish. Founders where identified and stable transgenic F1 fish were 

screened for transgene expression in the expected tissues and raised.  

 
Plasmids and Riboprobes 

 
The Notch Indicator promoter element (12 CSL binding sites and β-globin 

minimal promoter) was PCR amplified off of plasmid pGA981-6 [254] using 

primers containing gateway attB4 and attB1r linkers (primers are in appendix 

II).  The size-selected amplicon was BP cloned into pdonrP4P1r (Invitrogen) 

to yield p5E-TP1. The p5E-TP1 plasmid was used in a multisite gateway LR 

reaction with pME-egfp and pDestTOL2pA [145]  to yield pToltp1blglob:egfp. 

The pToltp1bglob:d2egfp was made in a similar manner by substituting pME-

egfp with pME-d2egfp. pME-d2egfp was made by PCR amplifying the 

destabilized version of EGFP (d2egfp) coding sequence from pGFP–PEST 
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[258] using primers containing gateway attB1 and attB2 linkers (Invitrogen; 

appendix II), and was BP cloned into pdonr221.  

 

Morpholino Injections 
 

 Morpholinos have all been previously described and were injected into 

one cell Tg(flia.ep:DsRedex)UM13; Tg(tp1bglob:egfp)UM14 double transgenic 

embryos at the following concentrations: dll4(15ng) [244], dlc(8ng) [260], 

vegfA(10ng) [261], and 15ng control MO(standard scrambled control).  

Morphant phenotypes were imaged at 30 hpf. 

 
Chemical Notch inhibition 
 
 Tg(tp1bglob:egfp)UM14 were crossed and progeny collected.  Embryos 

where raised at 28.5oC until shield stage where embryos where manually 

dechorinated and placed in 1% agar-egg water coated 6 well plates. Half 

where  were incubated in 50µM DAPT (N-[N-(3,5-Difluorophenace- tyl)-L-

alanyl]-S-phenylglycine t-butyl ester; Sigma-Aldrich) (stock solution of 100 

mM in DMSO) and the other with equal volumes of DMSO.  EGFP expression 

was analyzed at 30hpf. 

 
In situ hybridization 
 

Fluorescein-labeled anti-EGFP and biotin-labeled anti-etv2 riboprobes 

where made off of pCS-EGFP [146] and pCS-Etv2 (described in Chapter II) 

respectively, using T7 polymerase, appropriately labeled nucleotides and 
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purified by mini Quick Spin RNA columns (Roche). Whole mount in situ 

hybridization was performed according to standard protocols [149]. 

 
Double in situ hybridization 
 
 Fluorescein�labeled antisense EGFP probe and biotin�labeled 

antisense Etv2 probe were generated for double fluorescent color whole 

mount in situ hybridization staining and described above. 

Tg(tp1bglob:egfp)UM14 embryos were fixed at 12ss with 4% - 

paraformaldehyde (PFA) in PBS overnight at 4oC. Embryos were then placed 

in 100% MetOH, and bleached with 3% - H2O2 in 100% MetOH for 1hr and 

washed with 100% MetOH. Embryos were then stored at -20oC until 

hybridized. The double fluorescent hybridization was performed as 

described[262].  

 
Microscopy 
 
 Tg(tp1:blgob:egfp)UM14 embryos were imaged using an MZFLIII 

fluorescent dissection microscope under transmitted light or epi-fluorescence. 

Tg(flia.ep:DsRedex)UM13; Tg(tp1bglob:egfp)UM14  double transgenics were 

imaged using a using a Leica DMIRE2 confocal microscope (Objective: HC 

PL APO 20x/0.70CS).
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Results 
 

Visualization of Notch activation in zebrafish transgenic   

Characterization of the Tg(tp1bglob:egfp)UM14  line EGFP expression by in situ 

hybridization or transgene visualization by epi-fluorescence microscopy 

demonstrates EGFP expression is dynamically expressed throughout 

development (Fig. A1-2A,B).  Importantly, EGFP is expressed in tissues know to 

utilize Notch signaling including the developing somites (Fig. AI-2A, arrow heads) 

[260], central nervous system [263] and fin fold (Fig. A1-2B; [264]).  Consistent 

with studies demonstrating a requirement for Notch in arterial endothelial cell 

differentiation, Tg(tp1bglob:egfp)UM14  embryos express EGFP in the dorsal aorta 

(DA) but not in endothelial cells of the posterior cardinal vein (PCV; Fig. AI-2A, 

24hpf insert; [146]). EGFP expression is Notch dependant as 

Tg(tp1bglob:egfp)UM14 embryos treated with DAPT, a γ-secretase inhibitor that 

prevents Notch receptor cleavage and activation [265], eliminates EGFP 

expression (Fig. AI-2C). Together these data demonstrate that the NILs faithfully 

recapitulate Notch expression during development and transgene expression 

requires Notch activation. 

 

Notch activation in Endothelial cells  

Studies suggest that Notch signaling is dynamic and acts at multiple stages 

during vascular development, and the visualization of Notch is now possible 

thanks to the NILs we established [146, 244].  Although the NIL can inform the 

Notch activity in multiple tissue types [266-272], we have focused on the 
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endothelium because of our interest in better understanding endothelial 

differentiation and the availability of endothelial specific transgenic lines in which 

to do co-expression studies.  Double in situ hybridization in Tg(tp1bglob:egfp)UM14  

transgenics for EGFP and etv2, an early marker of endothelial cells (Chapter I), 

indicate Notch is first expressed in endothelial cells around 12ss (Fig. AI-3A, 

arrows). Due to the dynamic nature of Notch activation in the endothelium we 

switched to using the Tg(tp1bglob:d2egfp)UM42  line, because the D2EGFP 

transgene has a relatively short half-life compared to EGFP [258] and allows 

Notch visualization in vivo without having to fix or process embryos.  Standard 

EGFP is highly stable and long lasting; therefore some visualized EGFP positive 

cells in the Tg(tp1bglob:egfp)UM14  line may have activated Notch early in 

development but no longer require it. To co-visualize Notch activation at later 

time points more easily in the endothelium we crossed the the 

Tg(tp1bglob:d2egfp)UM42 line to the Tg(fli1a.ep:DsRedex)UM13 line, in which the 

fli1a gene promoter drives red fluorescent protein expression specifically in the 

endothelial cells[16].   The Tg(tp1bglob:d2egfp)UM42  transgenic demonstrates 

dynamic Notch expression during angiogenesis.  Notch is barely detectable in 

the primitive vascular cord of Tg(tp1bglob:d2egfp)UM42; Tg(fli1a.ep:DsRedex)UM13 

embryos at 18ss (Fig AI-3B).   We have previously demonstrated Notch positive 

endothelial cells as 12ss (Fig. AI-3A), therefore the lack of D2EGFP expression 

in endothelium may indicate notch was required earlier.  However, it is more 

likely that the D2EGFP is expression at low levels and it is rapidly turned over 

making fluorescence hard to detect in the endothelium at this time point.  
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Figure AI - 2 
 

 
 
 
Figure AI-2: The TP1 promoter recapitulates notch expression during 
development.  (A-C) Tg(tp1bglob:egfp)UM14  transgenic zebrafish embryos at 
indicated developmental stages, lateral view, anterior to the left (A, B) . (A) 
Transmitted light images of in situ hybridizations for egfp transcript in transgenic 
embryos. Egfp is detectable in the somites (arrow heads), the intersegmental 
vessels (ISV) and in the dorsal aorta (DA) but not the posterior cardinal vein 
(PCV). (B, C) Epi-fluorescent images of transgenic embryos. (B) Transgene 
expression can be observed in the olfactory bulb (OB), spinal chord (SC), 
telencephalon (TL), pineal gland (PG), fin fold (FF) and DA. (C) Grouped 
transgenic embryos demonstrate strong transgene expression when treated with 
DMSO control (upper panel) compared to low or absent expression of egfp in 
embryos treated with 50µM DAPT at shield stage (lower panel).
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Figure AI - 3 
 

 
 
 
Figure AI-3: Notch is dynamically expressed in the developing zebrafish 
vasculature.  (A) Epi-fluorescent images of flat mounted 12ss Tg(tp1:egfp)UM14 

embryos in situ hybridized for egfp (green) and etv2 (red) transcripts, anterior is 
up.  Three right panels are magnified views of boxed area on left, arrows indicate 
cells with co-expression. (B) Confocal micrographs of developing trunk 
vasculature at indicated time points in double transgenic 
Tg(tp1blgob:d2egfp)UM42; Tg(fli1a.ep:DsRedex)UM13 zebrafish embryos, lateral 
view anterior to the left.  Arrow heads indicate Notch expressing endothelial cells. 
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 Accordingly, Notch positive endothelial cells are present at 24hpf and 

30hpf, specifically in the DA and intersegmental vessels (ISV) consistent with 

Notch’s role in artery development (Fig. AI-3B).  Interestingly, D2EGFP 

expression is no longer expressed in the vasculature by 48hpf, indicating Notch 

is no longer activated in the endothelium at this stage. Therefore the NILs allow 

for temporal dissection of Notch activation in a tissue type specific manner 

through out development.  Additionally, the NILs demonstrates that Notch is 

activated early but is subsequently inactivated in the endothelium of the DA as 

vascular development proceeds.  

 

Notch modulation by genetic manipulation  

 To further validate Notch responsiveness in NILs, and to inform the use of 

particular Notch ligands in the vasculature we knocked down the function of 

several endothelial expressed Notch ligands and an endothelial inducer of Notch 

using morpholino anti-sense oligonucleotides and analyzed EGFP expression by 

epi-fluorescence microscopy at 30hpf in Tg(tp1bglob:d2egfp)UM42; 

Tg(fli1a.ep:DsRedex)UM13 embryos. Double transgenic embryos injected with 

scrambled control morpholino display positive endothelial cells located in the DA 

(Fig. AI-4B, arrow heads) and the ISVs (Fig. AI-4B, arrow).  Dlc and dll4 are two 

Notch ligands expressed specifically in arterial endothelial cells within the 

vasculature [244, 273].   Knockdown of dll4 causes the loss of EGFP expression 

in the ISVs but not in the DA, consistent with the known role of  dll4  in ISV 

morphogenesis (Fig. AI-4C; [244]).  dlc morpholino injection causes the loss of 
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EGFP expression in endothelial cells of both the DA and the ISVs, indicating dlc 

may work earlier than dll4 to specify arterial endothelial cells (Fig. AI-4D).  

Accordingly, the injection of both the dlc and the dll4 morpholinos completely 

eliminates EGFP expression in the vasculature. (Fig. AI-4E).  The VEGF 

signaling pathway works up stream of Notch in a common genetic pathway to 

specify arterial endothelial cells and is required for ISV sprouting from the DA 

[18, 274]. Consequently, the knockdown of the vascular endothelial growth factor 

receptor-2 (VEGFR2/Kdrl) ligand, vascular endothelial growth factor-A (vegfa) 

causes a complete loss of EGFP expression in endothelial cells (Fig. AI-4F). In 

addition the ISVs fail to sprout as previously reported [274].  Our results 

demonstrate that the NIL is responsive to loss of Notch and can serve as a 

system to observe Notch expression upon genetic perturbation of Notch ligands 

or upstream activators.  
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Figure AI - 4 

 
Figure AI-4: Differential Notch indicator line expression in the vascular in 
response to Notch pathway disruption.  (A) Camera Lucida drawing of 30hpf 
zebrafish with box indicating views in (B-).  (B-F) Confocal micrographs of trunk 
vasculature in 30hpf Tg(tp1blgob:d2egfp)UM42; Tg(fli1a.ep:DsRedex)UM13 embryos 
injected with 15ng of control MO (B), 15ng of dll4 MO (C), 8ng dlc MO (D), 15ng 
dll4 plus 8ng dlc MO (E) and 10ng of vegfA MO (F), lateral view anterior to the 
left. Red brackets demarcate the dorsal aorta, blue brackets demarcate the 
posteior cardinal vien and white brackets indicate an abnormal larger single 
vessel.
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Discussion 
 

 The NILs allow the in vivo visualization of notch activation in multiple 

tissue types throughout development.  Importantly we know that the NIL 

transgene is a bona fide indicator of Notch activation because it is expressed 

in cell types at developmental time points known to require Notch activation, 

for example in the somites, nervous system and dorsal aorta.  Further 

substantiating the NILs faithful recapitulation of Notch activation, treatment 

with the �-secretase (DAPT) inhibitor which prevents notch receptor cleavage 

and translocation to the nucleus abolishes transgene expression. Additionally, 

the NIL has been out-crossed to a sable transgenic line expressing an 

inducible NICD overexpression cassette driven by the heat-shock promoter 

[267].  Upon heat shock ectopic upregulation of the Notch indicator line is 

observed further demonstrating the NILs ability to respond to Notch signaling.   

 The method of multimerizing transcription factor binding sites joined to 

a minimal promoter has proven effective to study other pathways including 

the Wnt/b-catenin/LEF pathway [275, 276] or signaling through NF-kB [277].  

The CSL binding sites used in the NIL constructs are derived from the 

Epstein-Barr virus terminal protein (TP1) promoter and have successfully 

been used to visualize Notch activation in mammalian systems.  Interestingly, 

the same promoter elements work in the zebrafish and are a testament to the 

conservancy of the Notch pathway and the DNA binding sequence of the CSL 

gene. The artificial nature of the TP1 promoter would make mis-expression of 
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the transgene highly likely.  However, transgene expression is seen in Notch 

required tissues and we are unaware of any ectopic transgene expression not 

related to Notch expression.  

 Our main interest in the Notch pathway way stems from its role in 

endothelial cell differentiation and the NILs have been useful in helping inform 

our understanding of the role of Notch during vascular development.  Notch 

activation is detected in the early angioblasts at a time where notch is actively 

involved in the segmentation of the somites.  This dual utilization of Notch in 

separate cell types at the same developmental time points highlights the 

context dependant function of the pathway.  This can further be appreciated 

by our findings of dynamic Notch activation in endothelial cells. The 

Tg(tp1bglob:d2egfp)UM42 NIL has a fluorophore that is much less stable and 

therefore allows for the visualization of fast acting Notch utilization. Analysis 

of Tg(tp1bglob:d2egfp)UM42 line demonstrates that even during the relatively 

short developmental process of angiogenesis the Notch pathway is activated 

and then no necessarily maintained. Notch expression can be visualized in 

the dorsal aorta at the start of angiogenesis at 24hpf but by 48hpf most of the 

notch activation is absent in the fully formed patent vasculature.  

 Notch ligand Knockdown by morpholino further validated the Notch 

responsiveness of the transgenic line while also informing our understanding 

of Notch ligand usage during vascular development.  Differential cellular 

activation of the Notch transgene upon notch ligand and upstream effecter 
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knock down indicates the NIL is responsive to genetic perturbation of Notch 

signaling.  In addition we found that knock down of dlc has a much greater 

effect on vascular morphology and Notch activation then does knockdown of 

dll4 alone.   Dlc  knockdown prevented Notch activation in all endothelial cells 

of the trunk indicating it is used much earlier in the vascular differentiation 

process. Dll4 knockdown only affected Notch activation in the ISV’s, 

consistent with it’s known role in modulating “tip-cell” behavior [244]. Loss of 

Notch activation in the vascular system after vegfa knockdown acts as 

another example that the ablation of up-stream Notch activators can be 

visualized using this transgene further validating its usefulness as a genetic 

tool.  

 Recognizing the benefit of the NILs and the Notch response promoter 

to the zebrafish community we freely shared the line with several 

collaborators by either shipping them NIL embryos or the gateway cloneable 

promoter plasmid. Several of these collaborators have published papers 

using these lines adding to our understanding of Notch regulation in several 

other tissues and developmental processes. The NIL has been used to 

identify progenitor endocrine cells responsible for the secondary transition in 

zebrafish pancreas development[267]. Additionally it has been used to track 

the development of canaliculi and intrahepatic billiary networks by time-lapse 

confocal microscopy [268]  Not only has it been used as a marker to track 

notch positive cells but it has also been used as a genetic marker for notch 
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activation in adult neural stem cells, lymphatic progenitors, the pineal gland 

and hematopoietic stem cells [266, 269, 270, 272]  More extensive analysis of 

NIL expression might reveal other sites of Notch activity and enhance the 

discovery of Notch function in novel developmental processes.  There are 

currently two additional notch reporter lines that have been developed.  One 

uses the photo-convertible kaede fluorophore, which aids in tracking notch 

activation in a temporal manner.  The other has a nuclear localized red 

(mCherry) fluorophore. Having the ability to chose between a red or green 

fluorophore for Notch activation studies will allow researchers multitude of 

combinations for crossing with cell type specific transgenic lines for co-

visualization studies.  Generation and characterization of other Notch re- 

porter transgenic lines carrying various reporter genes configurations shall 

also prove to be useful for extensive visualization of Notch activity in vivo.  

The NIL have proven a powerful tool to analyze Notch activation in a myriad 

of tissue types however it has limitations. The current TP1 promoter based 

NILs do not allow the differentiation between individual Notch receptor 

activation. All the Notch receptors complex with CSL making individual 

receptor signaling impossible to determine.  Designing a transgenic line 

similar to those used in Drosophila [278] to determine that Notch is a 

membrane bound transcription factor will allow individual receptor activation 

analysis.  These hypothetical lines will further enhance the study of the Notch 

signaling pathway and should be developed for the zebrafish in the future.  
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PCR Primers 
Primer # Primer Name Primer Sequence (5'-3') 

906 for GST-Etv2 F gatcggatccgaaatgtaccaatctggatt 
907 for GST-Etv2 R gatcctcgagcgctgcgtcttttgacca 
964 attB1 etv2 F ggggacaagtttgtacaaaaaagcaggcttaaccatggaaatgtaccaatctg 
824 attB2 etv2 R ggggaccactttgtacaagaaagctgggtctaatgtgtccaggactctgt 

1974 attB2 etv2(-dbd) R ggggaccactttgtacaagaaagctgggtcctaagatcc 
587 attB1 ets1a F ggggacaagtttgtacaaaaaagcaggctgcgtgaccatgacggcagct 
953 attB2 ets1a R ggggaccactttgtacaagaaagctgggtcagactttactcgtccgtgtc 

2085 attB1 lnx1 F ggggacaagtttgtacaaaaaagcaggctcaaccatgacggagtctaagacg 
2086 attB2 lnx1 R ggggaccactttgtacaagaaagctgggtattaaaccagactgccaggcc 
3026 attB1 bozozok F ggggacaagtttgtacaaaaaagcaggctcaaccatggcaactcagaagttttcaaac 
3027 attB2 bozozok R ggggaccactttgtacaagaaagctgggtgctaatctgattcctgatgatcctcc 
3332 attB1 mm Etv2 F ggggacaagtttgtacaaaaaagcaggcttaaccatggacctgtggaactgggatgagg 
3333 attB2 mm Etv2 R ggggaccactttgtacaagaaagctgggtcttattggccttctgcacctggcagatgcc 
4173 etv2 3'RACE F catcattcacaaaacggcgggaaagcgctacg 
4174 etv2 3'RACE nested F ccgctttgtctgtgacgtgcagggcatgcttg 
4053 attB1 lin28 F ggggacaagtttgtacaaaaaagcaggctgcgccaccatgcccccggcaaatccgc 
4054 attB2 lin28 R ggggaccactttgtacaagaaagctgggtcctaatcagtgctctctggc 
1751 etsrp 3'UTR short F attB2 ggggacagctttcttgtacaaagtggcctggacacattagaggagga 
1752 etsrp 3'UTR short R attB3 ggggacaactttgtataataaagttgtgtaatcgtccgtcttcaaca 
1753 etsrp 3'UTR long F attB2 ggggacagctttcttgtacaaagtggtgttgaagacggacgattaca 
1754 etsrp 3'UTR long R attB3 ggggacaactttgtataataaagttgtctgttgaagcttttggagag 
4219 attB2-etv2 3'utrF ggggacagctttcttgtacaaagtggaggaggaattctcgaaggat 
4278 attB3 etv2 peak3 3'utr R gggacaactttgtataataaagttgatgccacaacaacagttttattgtaaataa 
1793 F attB2 miR sensor control ggggacagctttcttgtacaaagtggggcgcgcctacgtaactagt 
1794 R attB3 miR sensor control ggggacaactttgtataataaagttgctcgagactagttacgtagg 
1029 TP1 attB4 F ggggacaactttgtatagaaaagttgtgcaggtcgactctagag 
1194 TP1 attB1R R ggggactgcttttttgtacaaacttgtgatccttgaattcgaatcg 
1025 D2EGFP attB1 F ggggacaagtttgtacaaaaaagcaggctggtcgccaccatggtgagcaa 
1026 D2EGFP attB2 R ggggaccactttgtacaagaaagctgggttctacacattgatcctagc 
1763 Etsrp 3’UTR short RT-F cctggacacattagaggagga 
1764 Etsrp 3’UTR short RT-R tcactatctgatgtcaaaccatc 
4126 Etsrp 3’UTR EST RT-F catgttagctacctcttttcac 
4127 Etsrp 3’UTR EST RT-R acaccattctttactagagaaaat 
4130 Etsrp 3’UTR Long RT-F caacaacagatctgaagtca 
4131 Etsrp 3’UTR Long RT-R acgtgtgtttgtgtgtgcttgtct 

miRNA Duplexes 
 dre-Let-7a mature rUrGrArGrGrUrArGrUrArGrGrUrUrGrUgArUrArGrUrU 
 dre-Let-7a anti-sense rArArCrUrArUrArCrArArCrCrUrArCrCrUrCrA 
 dre-Let-7c mature rUrGrArGrGrUrArGrUrArGrGrUrUrGrUrArUrGrGrUrU 
 dre-Let-7c anti-sense rArArCrCrArUrArCrArArCrCrUrArCrUrArCrA 
 dre-Let-7f mature rUrGrArGrGrUrArGrUrArGrArUrUrGrUgArUrArGrUrU 
 dre-Let-7f anti-sense rArArCrUrArUrArCrArArUrCrUrArCrUrArCrCrUrCrA 
 dre-Let-7g mature rUrGrArGrGrUrArGrUrArGrUrUrUrGrUrArUrArGrUrU 
 dre-Let-7g anti-sense rArArCrUrArUrArCrArArArCrUrArCrUrArCrCrUrCrA 
 mutant-Let7-sense rUrCrArCrCrUrUrGrUrArGrGrArUrGrUrArUrArGrUrU 
 mutant-Let-7 anti-sense rArArCrUrArUrArCrArUrCrCrUrArCrArArGrGrUrGrA 

Northern Probes 
 let-7a LNA dig-AACTATACAACCTACTACCTCA-dig 
 5S DIG-oligo probe N(dig)ATCGGACGAGATCGGGCGTA  
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Gene Accession 
 Targeted 

Region Target Sequence 
PN(CP;

RP) 

etv2 NM_0010
37375.1 790-890 

CTTTGGCAGTTTCTGCTAGAACTCCTGCTGG
ATTCTGCTTGCCACACTTTTATAAGTTGGACT
GGTGATGGCTGGGAGTTTAAAATGTCAGATC
CCGCTG 

340352;
240352 

kdrl NM_1314
72.1 455-555 

AACATACCCAAACCAAAACGTTATCCTTGAGA
CGCAGATGAATCCTATGGCAGATGATGTTAA
AAGAGGGGTACAGTGGGATCCAAAAAAAGGT
TTCACG 

340356;
240356 

flt4 NM_1309
45.1 620-720 

TCCTGACCTAAAAGTCACTCTCTTCTCGTTAG
TGCCGTATCCAGAGCCTGTGGATGGCAGTGT
GGTCACCTGGAATAATAAAAAGGGTTGGTCG
ATTCCC 

340353;
240353 

fli1a NM_1313
48.2 620-720 

ACTTCCTGAGACTCACCAGCGTTTATAACAC
CGAGGTCCTTCTCTCACATCTCAATTACCTCA
GGGAAAGTAGCTCATCGATATCATACAACAC
GCCATC 

340355;
240355 

fli1b NM_0010
08780.1 

1365-
1465 

GTAATTTCTTCACGCCTCAATCCACCTACTGG
AACTCCGCAACCAGTGTGGTTTATCCCAGTT
CACCGATGCCACGACATCCCAGCACTCACAC
TCACTT 

340350;
240350 

hey2 NM_1316
22.2 990-1090 

CGCTGGATTCCCACTCTTCAGCCCCAGCGTT
ACAGCATCTTCAGTGGCTTCTTCCACCGTGA
GCTCTTCCGTTTCCACATCCACCACATCCCA
ACAGAGC 

346488;
246488 

actb2 NM_1816
01.3 

1647-
1747 

CCTGGGCATATTGTAAAAGCTGTGTGGAACG
TGGCGGTGCCAGACATTTGGTGGGGCCAAC
CTGTACACTGACTAATTCAATTCCAATAAAAG
TGCACAT 

328374;
228374 

eef1a1
l1 

NM_1312
63.1 

1455-
1555 

CCAAGTGAATTTCCCTCAATCACACCGTTCCA
AAGGTTGCGGCGTGTTCTTCCCAACCTCTTG
GAATTTCTCTAAACCTGGGCACTCTACTTAAG
GACTG 

328447;
228447 

gata2a NM_1312
33.1 

2030-
2130 

ATTTACTGAGTCACTTTGGTACTGAAAGAGC
GGACGCAGAATCACTGTGTGGTAGTCAAAAC
GGCCACCTCAAAACTCTCATAAAGGACTCGC
TTTGAGC 

328441;
228441 

tal1 NM_2132
37.1 635-735 

TAGCAATCGAGTCAAGCGCAGACCTGCACCT
TATGAGGTTGAAATCAACGATGGTTCGCAGC
CCAAAATTGTGCGACGGATTTTCACGAACAG
TCGCGAG 

340349;
240349 

lmo2 NM_1311
11.1 215-315 

GCGTACACAATGTGTGCTGGATGTTTCTGAC
CTTTGATACACTTGCTAAGACAGCAGAACAG
GTGCATCTCTGAAGCGTTTTGTGCGGCAGAT
GGTCTTT 

340354;
240354 

gata1a NM_1312
34.1 175-275 

ACAGACTCTGGTTTACTGCCACCCGTTGATG
TAGATGAACCTTTCTACTCAAGCTCTGAGACT
GACCTACTGCCATCGTATTATTCCACCAGCG
TCCAGA 

328442;
228442 
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