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Abstract 

Nonsense-mediated mRNA decay (NMD) specifically targets mRNAs with 

premature translation termination codons for rapid degradation. NMD is a highly 

conserved translation-dependent mRNA decay pathway, and its core Upf factors 

are thought to be recruited to prematurely terminating mRNP complexes, 

possibly through the release factors that orchestrate translation termination. Upf1 

is the central regulator of NMD and recent studies have challenged the notion 

that this protein is specifically targeted to aberrant, nonsense-containing mRNAs. 

Rather, it has been proposed that Upf1 binds to most mRNAs in a translation-

independent manner. In this thesis, I investigated the nature of Upf1 association 

with its substrates in the yeast Saccharomyces cerevisiae. Using biochemical 

and genetic approaches, the basis for Upf1 interaction with ribosomes was 

evaluated to determine the specificity of Upf1 association with ribosomes, and 

the extent to which such binding is dependent on prior association of Upf1’s 

interacting partners. I discovered that Upf1 is specifically associated with Rps26 

of the 40S ribosomal subunit, and that this association requires the N-terminal 

Upf1 CH domain. In addition, using selective ribosome profiling, I investigated 

when during translation Upf1 associates with ribosomes and showed that Upf1 

binding was not limited to polyribosomes that were engaged in translating NMD 

substrate mRNAs. Rather, Upf1 associated with translating ribosomes on most 

mRNAs, binding preferentially as ribosomes approached the 3’ ends of open 

reading frames. Collectively, these studies provide new mechanistic insights into 

NMD and the dynamics of Upf1 during translation. 
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Introduction 

Nonsense-mediated mRNA decay is a translation-dependent post-

transcriptional regulator of gene expression 

Gene expression involves the transfer of information from DNA through 

messenger RNA (mRNA) to protein. It is a highly accurate and well-controlled 

process, allowing approximately one incorrect amino acid per 10,000 inserted 

(Kurland, 1992; Zaher and Green, 2009). Not surprisingly, the accuracy of gene 

expression is regulated by several quality control mechanisms operating at 

multiple steps of the process. Three translation-coupled mRNA surveillance 

pathways that check the fidelity of the translation process and degrade defective 

cytoplasmic mRNAs have been identified in eukaryotes. Non-stop decay (NSD) 

targets mRNAs lacking a termination codon; no-go decay (NGD) acts on mRNAs 

containing ribosome-stalling elements; and nonsense-mediated decay (NMD), 

the subject of this thesis, recognizes and degrades mRNAs harboring a 

premature translation termination codon (PTC) (Kervestin and Jacobson, 2012; 

Lykke-Andersen and Bennett, 2014; Shoemaker and Green, 2012).  

The accelerated degradation of mRNAs derived from genes harboring 

nonsense mutations was first recognized with URA3 transcripts of 

Saccharomyces cerevisiae (Losson and Lacroute, 1979). Related studies in 

human cells revealed that transcripts of β-globin nonsense alleles had reduced 

abundance (Chang and Kan, 1979; Maquat et al., 1981). Comparable 

phenomena were later observed in other eukaryotic organisms (Belgrader and 
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Maquat, 1994; Chang et al., 2007; Gatfield et al., 2003; Stalder and Muhlemann, 

2008; Wittkopp et al., 2009; Yoine et al., 2006).   

NMD is translation-dependent, with nonsense codon recognition by the 

translation apparatus required for triggering the degradation of substrate mRNAs 

(Kervestin and Jacobson, 2012). Consistent with this notion, interference with 

any step of translation abrogates NMD and causes stabilization of PTC-

containing transcripts. Such effectors include suppressor tRNAs that antagonize 

termination and antibiotics such as anisomycin, cycloheximide, and puromycin, 

which inhibit translation by distinct mechanisms (Belgrader et al., 1993; Gozalbo 

and Hohmann, 1990; Losson and Lacroute, 1979).  

Since approximately 15-20% of all known mutations causing inherited 

disorders result from nonsense mutations (Mort et al., 2008), NMD is of 

substantial clinical significance and general biological importance (Linde and 

Kerem, 2008). The synthesis of C-terminally truncated proteins encoded by PTC-

containing mRNAs is markedly reduced in cells because NMD reduces mRNA 

abundance, frequently resulting in haploinsufficiency phenotypes. Potential 

therapeutic approaches to diseases caused by nonsense mutations have been 

investigated in cells, animal models, and human clinical trials, with most efforts 

focused on restoring function for a variety of different nonsense-containing 

mRNAs by promoting nonsense codon readthrough (Keeling et al., 2014; Peltz et 

al., 2013). 

NMD has a post-transcriptional regulatory function in gene expression 

beyond mRNA surveillance. In addition to its role in degrading aberrant 
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transcripts, NMD also regulates many normal mRNAs encoding functional full-

length proteins. Accordingly, NMD function is linked to diverse biological 

processes, such as embryonic development and differentiation (Bruno et al., 

2011; Gong et al., 2009; Wittkopp et al., 2009), cell proliferation (Lou et al., 2014; 

Weischenfeldt et al., 2008), and cellular immunity (Balistreri et al., 2014; 

Gloggnitzer et al., 2014; Riehs-Kearnan et al., 2012). NMD components are not 

essential for viability in S. cerevisiae (Jacobson and Peltz, 1996), whereas 

deletion or mutation of NMD factors causes defects in larval development in D. 

melanogaster (Metzstein and Krasnow, 2006), brain development in D. rerio 

(Wittkopp et al., 2009), pleiotropic effects in A. thaliana (Yoine et al., 2006), and 

embryonic lethality in M. musculus (Medghalchi et al., 2001). 

 

Characterization of factors involved in controlling NMD 

Genes encoding factors that regulate NMD were identified in genetic 

screens in the yeast S. cerevisiae and the worm C. elegans. (Cui et al., 1996; 

Culbertson et al., 1980; He and Jacobson, 1995; Lee and Culbertson, 1995; 

Leeds et al., 1991; Peltz et al., 1993b). The worm genes SMG2, SMG3, and 

SMG4 (Smg=suppressor with morphognetic effect on genitalia) are orthologues 

of yeast UPF1, UPF2, and UPF3, respectively, and these genes encode the 

three core factors of the NMD pathway (Hodgkin et al., 1989; Pulak and 

Anderson, 1993). Inactivation of these highly conserved genes stabilizes 

nonsense-containing mRNAs while having no significant effects on the 
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abundance and stability of most wild-type transcripts (Leeds et al., 1991; Peltz et 

al., 1993b; Yun and Sherman, 1995) 

Among the Upf factors, Upf1 is the most conserved protein (amino acid 

sequence identities for Upf proteins between human and yeast are 48.5%, 

20.8%, and 16.8% for Upf1, Upf2, and Upf3, respectively) (Culbertson and 

Leeds, 2003). Upf1 belongs to helicase superfamily I (SF1) with two RecA-like 

domains in tandem at its C-terminus and a cysteine- and histidine-rich Zn2+-finger 

domain (CH domain) at N-terminus (Chakrabarti et al., 2011; Clerici et al., 2009; 

Leeds et al., 1992). Purified Upf1 has ATP- and RNA- binding activities, and 

possesses RNA-dependent ATPase and RNA helicase activities (Bhattacharya 

et al., 2000; Czaplinski et al., 1995). Upf1’s ATP-binding and hydrolysis activities 

are required for NMD activity, as mutations eliminating these activities inhibit 

NMD (Weng et al., 1996, 1998). Upf2 is an acidic protein with multiple MIF4G 

domains (structures comparable to the middle domain of eukaryotic initiation 

factor eIF4G) in its N-terminal two-thirds (Clerici et al., 2014; Kadlec et al., 2004; 

Ponting, 2000). Upf3, a basic protein with an RNP-type RNA binding domain 

(RBD), (Bhattacharay et al., 2000, He et al., 1996; He et al., 1997). Upf1 and 

Upf2 are predominantly cytoplasmic whereas Upf3 is a nucleo-cytoplasmic 

shuttling protein (Kim et al., 2001; Lykke-Andersen et al., 2000; Serin et al., 

2001). Upf factors were shown to interact with each other from biochemical and 

yeast two-hybrid studies (Clerici et al., 2009; He et al., 1996) (Figure 1.1). The 

CH domain of Upf1 interacts with a C-terminal domain of Upf2  
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Figure 1.1 – Upf proteins interact with each other.  

Amino acid numbering defines the interaction domains and the size of individual 

proteins in yeast.  

CH = cysteine- and histidine-rich zinc-finger domain 

1B, 1C = additional regulatory domains 

MIF4G = middle portion of eIF4G 

RNP = putative ribonucleoprotein domain 
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(Clerici et al., 2009; He et al., 1996). In turn, a MIF4G domain in the most C-

terminal of Upf2 binds to the RBD of Upf3 (Kadlec et al., 2004; Serin et al., 

2001). A recent crystal structure (Kadlec et al., 2004) of the complex between the 

human Upf2 and Upf3b proteins demonstrates that the complex, as well as 

hUpf2 alone, has RNA-binding activity, whereas the RBD domain of hUpf3b has 

no intrinsic RNA binding activity, but that domain is involved in binding to hUpf2. 

Overexpression of Upf1 can compensate for mutations in Upf2 and Upf3, but not 

vice versa (Maderazo et al., 2000), and the maximal in vitro activation of the Upf1 

ATPase and helicase activities requires both Upf2 and Upf3 (Chamieh et al., 

2008). These observations implied that Upf1 is the key effector of NMD, whereas 

Upf2 and Upf3 are likely to be regulators of Upf1 function. Structural studies 

showed that Upf1 exists in a closed conformation in which the CH domain 

interacts with its helicase domain, resulting in an increase in RNA binding and a 

decrease in ATPase and helicase activities. Upon Upf2 binding, the structure of 

Upf1 is rearranged to an open conformation, thereby alleviating the inhibitory 

effect of the CH domain on ATP hydrolysis and RNA unwinding capability 

(Chakrabarti et al., 2011; Chamieh et al., 2008). 

In addition to its core Upf proteins, NMD in higher eukaryotes involves 

additional Smg factors (Kervestin and Jacobson, 2012; Schweingruber et al., 

2013). Smg factors regulate phosphorylation/dephosphorylation cycles of 

multiple serine or threonine [S/TQ] residues in the N- and C-terminal regions of 

metazoan Upf1 (Grimson et al., 2004; Ohnishi et al., 2003a; Okada-Katsuhata et 

al., 2012; Yamashita et al., 2001). Upf1 is phosphorylated by Smg-1, a 
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phosphatidylinositol 3-kinase-related kinase (Yamashita et al., 2001). 

Phosphorylated-Upf1 creates two independent binding sites for Smg5, Smg6, 

and Smg7. Smg-6, a PIN (PilT N-Terminus) domain endonuclease, binds to the 

N-terminal region of phosphorylated Upf1 (Chakrabarti et al., 2014; Glavan et al., 

2006; Okada-Katsuhata et al., 2012). Smg5 and Smg7 bind phosphorylated 

residues in the C-terminus of Upf1 as a heterodimer (Chakrabarti et al., 2014; 

Okada-Katsuhata et al., 2012), and the resulting Smg5-Smg7 complex 

dephosphorylates Upf1 through Smg5 interaction with the structural and catalytic 

subunits of the PP2A phosphatase (Ohnishi et al., 2003b; Page et al., 1999; 

Yamashita, 2013). Regulation of the phosphorylation/dephosphorylation state of 

Upf1 is important for NMD function in metazoans. Deletion or mutation of the 

SMG5, 6, or 7 genes inhibits NMD and leads to accumulation of phosphorylated 

Upf1 (Kashima et al., 2006; Page et al., 1999; Paillusson et al., 2005; Pulak and 

Anderson, 1993). Upf1 phosphorylation is also observed in yeast cells (Lasalde 

et al., 2014; Wang et al., 2006). However, there are no apparent Smg1 and 

Smg5-Smg7 orthologs in S. cerevisiase, and no direct evidence that Upf1 

phosphorylation regulates NMD in yeast (Lasalde et al., 2014; Wang et al., 

2006).  

Other interacting partners of Upf proteins include the release factors eRF1 

and eRF3 and the exon-junction complex (EJC), a dynamic structure deposited 

by spliceosomes 20-24 nucleotides upstream of exon-exon junctions during 

splicing. The EJC core complex is formed by eIF4AIII, Y14, MAGOH, and MLN51 

(Bono and Gehring, 2011). The C-terminal domain of Upf3 binds to a composite 
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surface formed by eIF4AIII, Y14, and MAGOH (Buchwald et al., 2010; Gehring et 

al., 2003). Upf1 interacts with eRF1 and eRF3 (Czaplinski et al., 1998; Ivanov et 

al., 2008; Kashima et al., 2006) and in human cells this leads to assembly of the 

Smg1-Upf1-eRF1-eRF3 (SURF) complex on the ribosome (Kashima et al., 2006; 

Yamashita et al., 2009).  

 

Multiple classes of transcripts are endogenous substrates of NMD 

Gene expression studies employing microarray analysis or RNA-Seq with 

mRNAs of yeast, fly, or human cells showed that 3–10% of cellular transcripts 

(including both PTC-containing and apparently wild-type transcripts) are up-

regulated upon NMD inactivation (Guan et al., 2006; He et al., 2003; Lelivelt and 

Culbertson, 1999; Mendell et al., 2004; Ramani et al., 2009; Tani et al., 2012; 

Wittmann et al., 2006; Yepiskoposyan et al., 2011). These transcripts include: (i) 

PTC-containing mRNAs generated from genomic mutations (He et al., 2003), (ii) 

inefficiently spliced pre-mRNAs that enter the cytoplasm with intact introns (He et 

al., 1993), (iii) mRNAs that contain upstream open reading frames (uORFs) 

(Arribere and Gilbert, 2013; Gaba et al., 2005; He et al., 2003; Nyiko et al., 2009; 

Vilela et al., 1999), (iv) mRNAs in which the ribosome has bypassed the initiator 

AUG codon and commenced translation in an alternative reading frame (Welch 

and Jacobson, 1999), (v) transcripts of pseudogenes (He et al., 2003; McGlincy 

and Smith, 2008), (vi) transcripts with abnormally long 3ʹ-UTRs (Das et al., 2000; 

Kebaara and Atkin, 2009; Kertesz et al., 2006; Muhlrad and Parker, 1999a; Pulak 

and Anderson, 1993), (vii) mRNAs that are subject to frameshifting (He et al., 
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2003), (viii) unproductively spliced transcripts (Ge and Porse, 2014; Lykke-

Andersen et al., 2014; Weischenfeldt et al., 2012), and (ix) non-coding RNAs 

(ncRNAs) (Kurihara et al., 2009; Lykke-Andersen et al., 2014; Tani et al., 2013). 

Despite extensive identification of transcripts targeted by NMD, our 

understanding of the mechanism of NMD on substrate selection is very limited. A 

common feature in most of the endogenous transcripts susceptible to NMD is the 

occurrence of aberrant translation termination events, such as premature 

translation termination or a termination event that is not equivalent to normal 

termination (Kervestin and Jacobson, 2012; Schweingruber et al., 2013). To 

understand the mechanism of NMD, it is important to identify the unique 

molecular features or events that distinguish premature termination from normal 

termination. 

 

Mechanistic differences between premature and normal termination  

Translation termination entails binding of the release factors eRF1 and 

eRF3 to the ribosomal A-site upon in response to the presence of a stop codon 

(UAA, UAG, or UGA) (Alkalaeva et al., 2006; Jackson et al., 2012). eRF1 

recognizes stop codons and its conserved Gly-Gly-GLn motif activates the 

peptidyl transferase center of the ribosome to mediate peptide release (Cheng et 

al., 2009; Song et al., 2000). eRF3 is a GTPase whose activity is stimulated by 

ribosome-bound eRF1 and it links eRF1 recognition of stop codons to hydrolysis 

of the polypeptide chain (Frolova et al., 1996; Salas-Marco and Bedwell, 2004). 

After peptide release, eRF3 is dissociated from the ribosome and eRF1 recruits 
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the ribosome-recycling factor ABCE1 (the ATP-binding cassette protein) 

(Barthelme et al., 2011; Becker et al., 2012; Pisarev et al., 2010). Dissociation 

and recycling of ribosomal subunits is triggered by ABCE1 and the translation 

initiation factors eIF3, eIF1, eIF1A, and eIF3j (Becker et al., 2012; Khoshnevis et 

al., 2010; Pisarev et al., 2007a; Pisarev et al., 2010). Other factors, including 

poly(A)-binding protein (Pab1) have been shown to have possible roles in 

translation termination (Cosson et al., 2002; Hoshino et al., 1999; Ivanov et al., 

2008). Pab1 may promote the formation of an mRNP complex favorable to 

normal translation termination (Amrani et al., 2006b; Fatscher et al., 2014; 

Hilleren and Parker, 1999). 

Premature termination appears to be mechanistically different from normal 

termination. Toeprint analyses of the position of ribosomes on mRNA failed to 

detect any toeprinting signals from ribosomes at normal stop codons in S. 

cerevisiase cell extracts unless translation termination was compromised by 

inactivation of eRF1 function with a temperature-sensitive mutation. By contrast, 

ribosomes at premature termination codons (PTCs) yielded toeprinting signals 

consistent with A-site occupancy without eRF1 inactivation (Amrani et al., 2004). 

Similarly, human β-globin mRNA with a nonsense mutation at codon 39 was 

found to yield a toeprint signal for prematurely terminating ribosomes, whereas 

the normal β-globin mRNA failed to manifest a toeprint at its normal termination 

codon (NTC) (Peixeiro et al., 2012). These data indicate that translation 

termination at NMD-inducing premature stop codons is less efficient than normal 

termination, and may cause pausing of ribosomes at PTCs. Additional evidence 
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for mechanistic differences between premature and normal termination has been 

drawn from experiments addressing nonsense suppression (or nonsense codon 

readthrough). Although nonsense suppression can occur at some NTCs (Dunn et 

al., 2013; Goodenough et al., 2014), it occurs more frequently at PTCs (Keeling 

et al., 2014; Peltz et al., 2013; Welch et al., 2007), with the basal level of 

readthrough occurring at a frequency of <0.1% at normal stop codons and <1% 

at premature stop codons (Keeling et al., 2014). Collectively, these results 

suggest that although both premature and normal translation termination begin 

when a stop codon occupies the ribosomal A-site, subsequent steps at the 

respective termination events appear to be mechanistically different.  

 

Activation of NMD and associated events 

Upf1 promotes the rapid decay of nonsense-containing mRNAs by 

interacting with components of general mRNA degradation pathways. In yeast 

cells, NMD-targeted mRNAs are degraded predominantly through accelerated 

decapping, followed by Xrn1-mediated 5’-3′ decay or by exosome-mediated 3’-5’ 

decay (He and Jacobson, 2001; Muhlrad et al., 1994).  In yeast and human cells, 

Upf1 interacts with the decapping enzyme Dcp2 (He and Jacobson, 1995; Loh et 

al., 2013; Unterholzner and Izaurralde, 2004). Such association probably takes 

place while the mRNAs are still associated with polyribosomes because Upf1 co-

sediments with polyribosomes in yeast (Atkin et al., 1995), and phosphorylated 

hUpf1 is mainly present in the polysome fraction in mammalian cells (Pal et al., 

2001). Moreover, in yeast, decapped nonsense-containing mRNAs are 
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associated with polyribosomes (Hu et al., 2010). In higher eukaryotes, rapid 

decay of nonsense-containing mRNA can be initiated by both endonucleolytic 

and exonucleolytic decay pathways by virtue of interactions between 

phosphorylated Upf1 with either Smg6 or the Smg5-Smg7 complex. The Smg6 

endonuclease activity cleaves NMD-targeted mRNAs in the vicinity of PTCs and 

the resulting 5’ and 3’ fragments are subsequent degraded by the exosome and 

Xrn1, respectively (Eberle et al., 2009; Huntzinger et al., 2008; Lykke-Andersen 

et al., 2014; Schmidt et al., 2014). The Smg5-Smg7 heterodimer also recruits the 

CCR4-NOT deadenylase to NMD substrates by interaction with Pop2, and decay 

intermediates are subjected to decapping and to 5’-3’ degradation by Xrn1 (Loh 

et al., 2013; Unterholzner and Izaurralde, 2004).  

Upf1 functions not only in activating rapid decay of NMD-targeted mRNAs, 

but also in other related processes that accompany recognition of a PTC. These 

events include degradation of the nascent polypeptide, translational repression of 

the mRNA, and disassembly of the prematurely terminating mRNP complex and 

recycling of the components of the translation apparatus (Kervestin and 

Jacobson, 2012). In yeast, Upf1 functions in the degradation of nascent 

polypeptides encoded by PTC-containing mRNAs by promoting the ubiquitin-

mediated proteasomal degradation of the C-terminally truncated polypeptides 

(Kuroha et al., 2009; Takahashi et al., 2008). Upf1 might play a role as an E3 

ubiquitin ligase because the Upf1 N-terminal CH domain is similar to E3 RING 

finger domains, and directly interacts with the E2 component Ubc3. Upf1 can 
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also self-ubiquitinate in vitro in a Upf3-dependent manner (Takahashi et al., 

2008). 

Nonsense-containing mRNAs are thought to be translationally repressed 

before their degradation. Upf1 association with a nonsense-containing mRNA 

leads to decreased translation efficiency (Isken et al., 2008; Muhlrad and Parker, 

1999b) and Upf1 appears to target nonsense-containing mRNAs to cytosolic P-

bodies, which are cytoplasmic foci that are enriched in decapping enzymes and 

the 5’- to 3’ degradation machinery (Durand et al., 2007; Fillman and Lykke-

Andersen, 2005; Sheth and Parker, 2006; Stalder and Muhlemann, 2009). In 

mammalian cells, phosphorylated Upf1 interacts with eIF3 of the 43S pre-

initiation complex at the initiation codon of an NMD target and interferes with 60S 

ribosomal subunit joining, thereby repressing translation (Isken et al., 2008) 

In addition to promoting accelerated mRNA decay, the Upf1 ATPase and 

helicase activities appear to have a role in disassembling an otherwise poorly 

dissociable ribosome and mRNP complex subsequent to peptide hydrolysis 

(Kervestin and Jacobson, 2012). For example, in human cells expressing 

ATPase-deficient Upf1, endonucleolytically cleaved and partially degraded 

nonsense-containing β-globin mRNA accumulates (Franks et al., 2010) and, in 

yeast: (i) translational reinitiation after premature termination is markedly 

reduced in vivo or in vitro when any one of the three yeast Upf proteins is absent 

(Amrani et al., 2004; Ghosh et al., 2010) and (ii) extracts from yeast lacking Upf1 

manifest a ribosome recycling defect that can be complemented by purified Upf1 

(Ghosh et al., 2010). 



15 
 

 

Current models for NMD activation by premature termination 

Three prevalent models have been proposed to explain the mechanism of 

NMD activation. All three models take into account Upf factor association in an 

abnormal mRNP environment ((Kervestin and Jacobson, 2012) ; Figure 1.2).  

The faux UTR model conceives that the 3’-UTR created by a PTC is 

deficient in termination regulatory factors that are normally present on an 

authentic 3’-UTR (Amrani et al., 2004; Amrani et al., 2006b; Kervestin and 

Jacobson, 2012). In this model, proper termination of translation is postulated to 

depend on effective interactions between termination release factors and 

proteins bound to the “normal” 3’-UTR. By contrast, the abnormal context of a 

faux UTR created by a PTC is thought to favor the recruitment of the Upf proteins 

to the prematurely terminating ribosome, most likely due to the absence of 

proximal interaction between eRF3 and Pab1 (Kervestin and Jacobson, 2012). 

Consistent with this model, bringing the normal 3’-UTR in close spatial proximity 

to the PTC by deleting the coding region downstream of a PTC or by folding the 

poly(A) tail back to the vicinity of the PTC suppresses NMD (Buhler et al., 2006; 

Eberle et al., 2008; Hagan et al., 1995; Peltz et al., 1993a). In addition, mimicking 

normal termination by artificial tethering of factors such as eRF3 or Pab1 rescues 

NMD substrates from rapid degradation (Amrani et al., 2004; Behm-Ansmant et 

al., 2007; Eberle et al., 2008; Fatscher et al., 2014; Joncourt et al., 2014). 

However, the faux UTR model is questioned by studies reporting that mRNAs 

that contain PTCs and lack poly(A) tails are still subject to NMD, and yeast cells  
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Figure 1.2 – Current models for NMD activation by premature termination.  

The faux UTR model takes into account the lack of proximity between the 

premature stop codon and the poly(A) tail, which in turn disrupts interaction 

between eRF3 and PABP and creates an abnormal translation termination 

context. 

The EJC-enhanced model requires EJC factors to bridge Upf1 bound by the 

termination factors and Upf2 and Upf3 associated with an EJC. 

The 3′ UTR model postulates that the extended length of the 3-′ UTR formed 

between the premature stop codon and the poly(A) tail creates a binding platform 

for Upf1. 

Shaded brown ovals = ribosomal subunits; Black line = mRNA; 1,2, and 3 

represent Upf1, Upf2, and Upf3 respectively. 
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lacking Pab1 can still elicit degradation of NMD-targeted mRNAs (Meaux et al., 

2008). 

The EJC-enhanced model proposes that NMD in metazoans depends on 

the presence of an exon-junction complex (EJC) 3’ to a PTC (Isken and Maquat, 

2007; Nagy and Maquat, 1998; Zhang et al., 1998). In this model, elongating 

ribosomes strip off the EJCs or any other RNA-binding proteins located within the 

open reading frame of transcripts during normal translation. However, if 

translation terminates prematurely, the EJC downstream of a terminating 

ribosome serves as an anchoring point for the assembly of an NMD complex, 

thereby enhancing NMD (Kervestin and Jacobson, 2012; Lejeune and Maquat, 

2005). In support of this model, tethering one of the EJC components to the 3′-

UTR of mRNAs triggers NMD (Gehring et al., 2005; Gehring et al., 2003; Lykke-

Andersen et al., 2001) and deletion of the ECJ core proteins (Y14, eIF4A3 or 

Barentsz/MLN51) selectively stabilizes the PTC-containing mRNAs (Ferraiuolo et 

al., 2004; Gehring et al., 2003; Palacios et al., 2004; Shibuya et al., 2004). 

However, the EJC-enhanced model fails to explain how NMD targets mRNAs 

derived from intron-less precursors or mRNAs that have not undergone proper 

splicing (Kertesz et al., 2006; LeBlanc and Beemon, 2004; Quek and Beemon, 

2014; Rajavel and Neufeld, 2001). This model is further complicated by recent 

reports demonstrating that approximately 20% of splicing events do not 

assemble EJCs on exon-exon junctions, and about 40-50% of the detected EJCs 

bind to non-canonical positions on mRNAs (Buchwald et al., 2010; Sauliere et al., 

2012; Singh et al., 2012). Further, data indicating that EJCs stimulate translation 
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(Chazal et al., 2013; Ma et al., 2008; Nott et al., 2004) imply that the effect of 

EJCs on NMD may be indirect. 

The 3′-UTR model, which is a variation of the faux UTR model, posits that 

3’-UTR length is a major determinant for NMD activation. In general, long 3′-

UTRs mimic the extended distance between the stop codon and Pab1 on poly(A) 

tails seen in premature translation termination. In this model, an abnormally long 

3′-UTR, resulting from the presence of a PTC, provides a binding platform for 

RNA binding proteins like Upf1, which in turn can recruit Upf2/Upf3, thereby 

activating NMD. This model is supported by identification of long 3’-UTRs as a 

conserved NMD-inducing feature in yeast, flies, worms, plants, and mammals 

(Kebaara and Atkin, 2009; Kertesz et al., 2006; Longman et al., 2007; Muhlrad 

and Parker, 1999a; Pulak and Anderson, 1993; Schwartz et al., 2006; 

Yepiskoposyan et al., 2011). Additional support for this model came from recent 

studies demonstrating Upf1 binding to mRNA 3’-UTRs (Gregersen et al., 2014; 

Hurt et al., 2013; Zund et al., 2013) in what appears to be a length-dependent 

relationship (Hogg and Goff, 2010). However, a recent study from the Jacquier 

lab reported that a large number of transcripts that have long 3′-UTRs are not 

subject to NMD in S. cerevisiae. They showed that only mRNAs with short ORFs 

are subjected to NMD, whereas mRNAs with long open reading frames escape 

NMD despite the presence of long 3’-UTRs (Decourty et al., 2014).  

NMD activation models suggest that PTC-mRNAs are distinguished from 

normal mRNAs by aberrant mRNP structures due to the presence of NMD-

enhancing factors or abnormal distance between the PTC and the 3’ end of 
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mRNA. However, each model has caveats and discrepancies with available data. 

In all three situations, the aberrant mRNP is thought to enhance Upf1 association 

with the eRFs and ribosomes, promoting subsequent binding of the Upf2-Upf3 

complex to Upf1 and the activation of mRNA decay.  

 

Upf1 recruitment to mRNP complexes 

In the past 20 years, studies in multiple experimental models have sought 

to elucidate the mechanism of Upf1 targeting to prematurely terminating mRNPs. 

RNA immunoprecipitation (RIP) experiments showed that Upf1 preferentially 

associates with bona fide NMD substrates in yeast, worms, and mammalian cells 

(Decourty et al., 2014; Johansson et al., 2007; Johns et al., 2007; Kurosaki et al., 

2014). Other studies in mammalian cells showed that Upf1 could bind to PTC-

containing reporter mRNAs in a translation-dependent manner (Kurosaki and 

Maquat, 2013).  

According to current NMD activation models, Upf1 is thought to be 

selectively recruited to NMD-targeted mRNAs during translation, most likely 

through interactions with the release factors eRF1 and eRF3 located on 

prematurely terminating ribosomes. Consistent with this notion, Upf1 interacts 

with the release factors and ribosomes (Czaplinski et al., 1998; Wang et al., 

2001). In human cells, Upf1 associates with eRF-bound ribosomes forming the 

SURF (Smg-1-Upf1-Release Factors) complex, and a downstream EJC bound 

by Upf2 and Upf3 activates Upf1 function (Kashima et al., 2006; Yamashita et al., 

2009). However, recent transcriptome-wide Upf1 binding studies suggested that 
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instead of binding directly to the ribosomes, Upf1 might occupy translationally 

active mRNAs, and then to be activated when a ribosome encounters a PTC. In 

mammalian cells, in vivo UV crosslinking and immunoprecipitation followed by 

high-throughput sequencing (CLIP-Seq) studies suggested promiscuous Upf1 

binding to 3’-UTRs, i.e., Upf1 targets both NMD-sensitive and NMD-insensitive 

transcripts. Upon translation inhibition with puromycin or cycloheximide, the 

relative distribution of Upf1 was seen to shift to mRNA coding sequences (CDS) 

(Gregersen et al., 2014; Hurt et al., 2013). This led to the notion that, during 

normal translation, elongating ribosomes would displace Upf1 from the CDS, 

thereby restricting detectable Upf1 binding to 3’-UTRs (Gregersen et al., 2014; 

Hurt et al., 2013; Kurosaki and Maquat, 2013; Shigeoka et al., 2012). However, 

translation-dependent recruitment of Upf1 to mRNAs contradicts another study 

demonstrating translation-independent binding of Upf1 to 3’-UTRs (Hogg and 

Goff, 2010). By purifying tagged reporter mRNAs, Hogg and Goff demonstrated 

that Upf1 binding to mRNAs occurred in a 3’-UTR length-dependent manner, 

even when translation was inhibited. Translation-independent association of Upf1 

with mRNA is difficult to reconcile with the requirement for ongoing translation as 

a trigger for NMD (Kervestin and Jacobson, 2012). 

In conclusion, there is some uncertainty about the timing and specificity of 

Upf1 interaction with mRNPs. Some results indicate that mechanistic distinctions 

between premature and normal termination lead to preferential association of 

Upf1 with prematurely terminating mRNPs. Other data suggest that Upf1 

associates with all translationally active mRNAs, possibly through ribosomes. 
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Clearly, we have yet to understand the step of translation during which Upf1 

associates with ribosomes, and whether such association is limited to PTC-

containing mRNAs or all translationally active mRNAs.   
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SPECIFIC AIMS FOR THIS THESIS: 

The main objective of this thesis is to elucidate when and where during 

translation Upf1 targets mRNP complexes in the yeast Saccharomyces 

cerevisiae. The experiments and data have been organized into two chapters. 

Data in Chapter II addresses whether Upf1 binds directly to ribosomes and, if so, 

where. To pursue biochemical analyses, I optimized a ribosome purification 

system yielding intact rRNAs and proteins and sought to determine whether Upf 

factors co-purified with specific ribosomal subunits. These studies were 

complemented by genetic analyses of Upf1 interactors. In Chapter III, I 

determined the timing of Upf1 binding to translating ribosomes and assessed 

whether Upf1 is selectively recruited at prematurely terminating ribosomes. 

Selective ribosome profiling was utilized to determine whether mRNA footprints 

protected by Upf1-bound ribosomes reflected preferential Upf1 association with a 

subset of such footprints. 
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CHAPTER II 

Upf1 CH domain interacts with Rps26 of  

the 40S ribosomal subunit 

 

 

 

 

This work presented in this chapter has been published as: 

 

Min E, Roy B, Amrani N, He F, and Jacobson A. (2013). Yeast Upf1 CH domain 

interacts with Rps26 of the 40s ribosomal subunit. RNA19:1005-15. 

 

My contribution to this chapter: Figures 2.2, 2.3, 2.4, 2.5, 2.6  

 

 

 

 

 

 

 

 

 



24 
 

Summary 

The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, 

selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, 

Upf1 preferentially associates with mRNAs that are NMD substrates, but the 

mechanism of its selective retention on these mRNAs has yet to be elucidated. 

Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. 

Here, we define more precisely the nature of this association using conventional 

and affinity-based purification of ribosomal subunits, and a two-hybrid screen to 

identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates 

specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association 

with high-salt washed or puromycin-released 40S subunits was found to occur 

without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid 

analyses and in vitro binding assays identified a specific interaction between 

Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its 

function, we found that Upf1:40S association is modulated by ATP, and 

Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The 

specific association of Upf1 with the 40S subunit is consistent with the notion that 

this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, 

but may also have an important role in dissociation of the premature termination 

complex. 
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Introduction 

Nonsense-mediated mRNA decay (NMD), a cytoplasmic mRNA 

surveillance pathway, targets transcripts harboring a premature translation 

termination codon (PTC) or a termination codon in a context characteristic of 

premature termination (Jacobson and Izaurralde, 2007; Kervestin and Jacobson, 

2012; Kervestin et al., 2012). In part, NMD ensures that the potentially toxic 

polypeptide products of its substrate mRNAs do not accumulate in the cell 

(Jacobson and Izaurralde, 2007; Kervestin and Jacobson, 2012; Kervestin et al., 

2012). Factors that regulate NMD include Upf1, Upf2, and Upf3, the principal 

regulators in all eukaryotes, as well as Smg-1 and Smg-5 through -9, proteins 

that play additional regulatory roles in metazoans (Kervestin and Jacobson, 

2012; Kervestin et al., 2012; Schoenberg and Maquat, 2012). The three Upf 

proteins form a complex with Upf2 acting as a bridge between Upf1 and Upf3 

(Chamieh et al.,  2008; He et al., 1997; Serin et al., 2001). Single or 

multiple deletions of the UPF genes have similar mRNA decay phenotypes, 

suggesting that these proteins function in a common pathway (He et al., 1997; 

He et al., 2003; Maderazo et al., 2000; Wang et al., 2001), albeit one that may be 

branched under some circumstances (Chan et al., 2007; Huang et al., 2011).  

Upf1, the key effector of NMD, has a cysteine- and histidine-rich zinc-

finger domain (CH domain) at its N-terminus and a helicase domain comprised 

of twelve conserved motifs common to the members of helicase superfamily 

I (SF1) (Fairman-Williams et al., 2010). Upf1 shows RNA-dependent ATPase 

and 5′-to-3′ RNA helicase activities, both of which while critical for NMD 
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(Czaplinski et al., 1998; Wang et al., 2001), have unresolved roles in the process. 

In yeast, ATPase-deficient Upf1 accumulates with NMD substrates in 

cytoplasmic processing bodies (Sheth and Parker, 2006) and, in human cells, 

ATPase- or helicase-deficient Upf1 leads to the accumulation of partially 

degraded 3′ decay intermediates ( Fr an ks  et  a l . ,  2 0 10) . These reports, and 

others (Ghosh et al., 2010), suggest a role for Upf1 in disassembling post-

termination mRNPs in a mechanism that requires its ATPase and helicase 

activities. Notably, the maximal activation of these activities is stimulated by a 

complex of Upf2 and Upf3 (Chakrabarti et al., 2011; Chamieh et al., 2008).  

Numerous studies have shown that NMD is inhibited by drugs, mutations, 

or mRNA structures that inhibit translation (Jacobson and Izaurralde, 2007), or by 

suppressor tRNAs (Belgrader et al., 1993; Gozalbo and Hohmann, 1990; Losson 

and Lacroute, 1979), indicating that a premature stop codon must be recognized 

by translating ribosomes for NMD to occur. This conclusion is reinforced by 

experiments demonstrating a direct correlation between the extent of ribosome 

occupancy at a PTC and the degree to which NMD is activated (Gaba et al., 

2005). Additional links between translation and NMD include the observations 

that decapping and degradation of nonsense-containing transcripts occur while 

the transcript is associated with polyribosomes (Hu et al., 2010; Mangus and 

Jacobson, 1999) and that the Upf factors colocalize with polyribosomes, 80S 

ribosomes, and ribosomal subunits (Atkin et al., 1995; Atkin et al., 1997; Ghosh 

et al., 2010; Mangus and Jacobson, 1999; Peltz et al., 1993a). Consistent with a 

dependence of NMD on translation termination, Upf1 interacts with the release 
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factors eRF1 and eRF3 in humans and yeast, possibly to function in termination 

events using its helicase and RNA binding activities (Czaplinski et al., 1998; 

Ghosh et al., 2010; Wang et al., 2001). In vertebrates, Upf1 and its regulator 

Smg-1 interact with the release factors forming the SURF (Smg-1-Upf1-Release 

factors) complex and this  SURF-associated Upf1 appears to be able to 

interact with Upf2-Upf3 bound to the exon junction complex (Kashima et al., 

2010; Yamashita et al., 2009).  

While nonsense codon recognition by the ribosome, and Upf1 interaction 

with the release factors, are steps that are incorporated into most models of NMD 

(Kervestin and Jacobson, 2012) there is some uncertainty about the timing and 

specificity of Upf1 interaction with terminating mRNPs. Some models and some 

experimental results indicate that mechanistic distinctions between premature 

and normal termination lead to preferential association of Upf1 with mRNPs 

undergoing premature termination (Amrani et al., 2006a; Amrani et al., 2004; 

Buhler et al., 2006; Johansson et al., 2007; Kervestin and Jacobson, 2012; 

Kervestin et al., 2012). Other models, and other data, suggest that Upf1 

associates with all terminating ribosomes and that specificity for premature 

termination events is achieved by subsequent Upf1 interactions with factors that 

could only remain mRNA-associated if termination had occurred upstream of its 

normal site (Le Hir et al., 2000; Peltz et al., 1993a; Sun and Maquat, 2000). 

Additional studies imply that specificity for hUpf1 is imparted by mRNA 3’-UTR 

length (Hogg and Goff, 2010).  Here, we address the Upf1 localization problem 

by providing biochemical and genetic evidence for the association of Upf1 with 
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ribosomal subunits in the budding yeast Saccharomyces cerevisiae. First, we 

utilized independent approaches to confirm our earlier observations of Upf1 

association with the 40S ribosomal subunit (Ghosh et al., 2010). Having 

confirmed such interactions, we then defined the domains of Upf1 on which they 

depend as well as a specific ribosomal protein with which Upf1 interacts.  
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Results 

Upf1 binds to affinity-purified 40S ribosomal subunits  

Our previous experiments demonstrated that yeast Upf1 associates with 

purified 40S ribosomal subunits (Ghosh et al., 2010). We have now explored this 

interaction further by testing whether Upf1 is retained by an alternative method of 

ribosome isolation, namely affinity purification. We constructed yeast strains 

harboring epitope-tagged Rps13 or Rpl25 (Table 2.1), which would be 

incorporated into 40S or 60S ribosomal subunits, respectively. These proteins 

were selected for modification based on their accessibility on the solvent side of 

the ribosome (Ben-Shem et al., 2011; Inada et al., 2002; Spahn et al., 2001). We 

inserted an HA tag at the C-terminus of Rps13 and a c-Myc tag at the C-terminus 

of Rpl25. The tags did not appear to disrupt the functions of the respective 

proteins since the tagged strains exhibited growth characteristics comparable to 

those of untagged strains in liquid YEPD culture at 25°C (Figure 2.1.A) or on 

multiple solid media at 25°C or 30°C (Figure 2.1.B).  

Immunoprecipitations with antibodies targeting the HA or c-Myc epitopes 

showed efficient capture of the corresponding ribosomal protein from cell extracts 

(Figures 2.2.A and 2.2.B, compare lane 5 in top panels). Importantly, we found 

Upf1 to be present in these immunoprecipitates, but absent in 

immunoprecipitates from untagged strains (Figures 2.2.A and 2.2.B, bottom 

panels, compare lane 5 to lane 2). These results demonstrate that Upf1 is also 

associated with a ribosomal complex using extraction conditions that differ from 

those used in our original experiments (Ghosh et al., 2010). Cell-free extracts  
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Figure 2.1 – Yeast strains harboring HA- or c-Myc-tagged RPS13 or RPL25 

genes grow at wild-type rates.  

(A) Growth curves for yeast strains in liquid YPD medium at 25°C. Symbols: wild-

type [WT] (♦), RPS13-HA (▲), and RPL25-c-Myc (■). (B) Liquid cultures of yeast 

strains WT, RPS13-HA and RPL25-c-Myc were serially diluted and incubated on 

YEPD plates, and plates containing G418, at the temperatures shown. 
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treated with puromycin to promote ribosome dissociation (Algire et al., 2002; 

Azzam and Algranati, 1973; Lawford, 1969) allowed for a test of the subunit-

specific association of Upf1 (Figures 2.2.A and 2.2.B). Under these conditions, 

we observed significant enrichment of Upf1 in the HA-specific 

immunoprecipitates (targeting Rps13-HA) (Figure 2.2.A, bottom panel, lane 8), 

but not in the c-Myc-specific immunoprecipitates (targeting Rpl25-c-Myc) (Figure 

2.2.B, bottom panel, lane 8). These results demonstrate that, in an independent 

assay, Upf1 still associates with 40S ribosomal subunits and not with 60S 

subunits.  

To determine whether this association was mediated indirectly by Upf1 

interaction with mRNA, cell lysates were treated with micrococcal nuclease prior 

to ribosome immunoprecipitation. These experiments showed significant 

retention of Upf1 in the immunoprecipitates (Figure 2.3, lane 6), implying that 

Upf1 is associated directly with ribosomes. The absence of poly(A)-binding 

protein (Pab1), a factor known to be associated with the mRNA 3' poly(A) tail 

(Sachs and Davis, 1989), in the immunoprecipitates further supported the idea 

that Upf1 is associated with ribosomes.  

 

Upf1 association with 40S ribosomal subunits requires its ATPase activity, 

but not its ATP-binding or RNA-binding activities, or the functions of the 

other NMD factors 

To further understand the basis of Upf1 association with 40S ribosomal 

subunits we employed domain-specific mutations to determine whether some of  
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Figure 2.2 – Treatment with puromycin diminishes co-immunoprecipitation 

of Upf1 with Rpl25-c-Myc, but not with Rps13-HA.  

Lysates from yeast WT, RPS13-HA-WT, and RPS13-HA-upf1∆ (A), and WT, 

RPL25-c-MYC-WT, and RPL25-c-MYC-upf1∆ (B) prepared with (+) or without (-) 

puromycin treatment were immunoprecipitated with anti-HA antibody or anti-c-

Myc antibody, respectively. Input (I), flowthrough (FT), and eluate (E) were 

analyzed by western blotting for the presence of Rps13-HA, Rpl25-c-Myc, or 

Upf1 with specific antibodies. One-tenth of input and flowthrough samples were 

loaded for SDS-PAGE analysis. 
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Figure 2.3 – Micrococcal nuclease treatment does not diminish co-

immunoprecipitation of Upf1 with c-Myc-Rpl25.  

Micrococcal nuclease-treated lysates from yeast WT, RPL25-c-Myc-WT, and 

RPL25-c-Myc-upf1∆ were immunoprecipitated with α-c-Myc antibodies. Input (I), 

flowthrough (FT), and eluate (E) were analyzed by western blotting for the 

presence of c-Myc-Rpl25, Upf1, or Pab1 with specific antibodies. One-tenth of 

input and flowthrough samples were loaded for SDS-PAGE analysis. 
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the biochemical activities known to be associated with those Upf1 domains might 

be required for this interaction. High-salt washed 40S and 60S ribosomal 

subunits were purified with or without prior puromycin release from cells 

harboring wild-type UPF1, or different upf1 alleles (Figure 2.4.A), and tested for 

Upf1:40S association by western blotting. The concurrent retention of Rps6 in the 

purified ribosomal subunits served as a control for 40S subunit integrity and 60S 

subunit purification. As shown in Figure 2.4.B, neither the C62Y or C84S 

mutations in the N-terminal CH domain, nor the K436E or RR973AA mutations in 

the C-terminal helicase domain (that respectively inactivate ATP binding or RNA 

binding) had any significant effect on the association of Upf1 with high-salt 

washed 40S subunits prepared with or without puromycin-mediated release. In 

contrast, Upf1 derived from the upf1 DE572AA ATP hydrolysis mutant failed to 

associate to any significant extent with 40S subunits even though Rps6 was 

amply recovered and Upf1 from the DE572AA mutant was expressed at levels 

comparable to wild-type Upf1 (Figure 2.4.C). Wild-type Upf1, analyzed in the 

same manner as the three mutant versions of the protein, retained its preference 

for 40S subunit association (Figure 2.4.B).  

Additional insight into the determinants of Upf1 association with 40S 

subunits was obtained by evaluating whether the other two UPF proteins were 

required for this association. High-salt washed 40S and 60S ribosomal subunits 

were purified with or without prior puromycin treatment from cells lacking Upf2, 

Upf3, or both proteins, and then assayed by western blotting for retention of Upf1 

(Figure 2.5). These experiments showed that Upf1 co-purified predominantly with  
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40S ribosomal subunits in upf2Δ, upf3Δ, and upf2Δupf3Δ strains, similar to the 

results observed in wild-type strains and consistent with earlier studies showing 

that polysome-association of Upf1 is independent of the other NMD factors (Atkin 

et al., 1997). In several of the strains analyzed, a modest amount of Upf1 

association with 60S subunits was observed; however, as monitored by Rps6 

recovery, this appeared to reflect 40S subunit contamination in the 60S subunit 

preparations (Figure 2.5). Collectively, these data indicate that the association of 

Upf1 with 40S ribosomal subunits is neither bridged by, nor dependent on Upf2 

or Upf3.  

Several reports of experiments done in yeast and mammalian cells have 

indicated that Upf1 association with a prematurely terminating ribosome may be 

attributable to direct interactions with the release factors, eRF1 and eRF3 

(Czaplinski et al., 1998; Ivanov et al., 2008; Kashima et al., 2006; Singh et al., 

2008). Since we observed Upf1 association with 40S subunits purified after 

puromycin release (Figures. 2.4.B and 2.5) it seemed unlikely that maintenance 

of Upf1:40S interaction depended on the eRFs. Nevertheless, we tested directly 

whether either of the release factors was present in the purified 40S ribosomal 

subunits. Western blotting analyses showed that the same subunit preparations 

that had substantial bound Upf1 were devoid of detectable levels of Sup45/eRF1 

or Sup35/eRF3 (Figure 2.6), indicating that Upf1 can maintain an association 

with 40S ribosomal subunits independent of the two release factors. However,  
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Figure 2.6 – Upf1:40S ribosomal subunit association is independent of the 

release factors eRF1/Sup45 and eRF3/Sup35. Ribosomal subunits were 

prepared under high salt conditions with or without prior puromycin treatment 

from wild-type cells. Increasing amounts (5 µg and 10 µg) of purified subunits 

were analyzed by SDS-PAGE and western blots were probed with specific 

antibodies. Lanes marked upf1Δ or wild-type are lysates from the respective 

cells. 
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whether Upf1’s initial association with the 40S subunits depended on these 

factors remains to be ascertained.   

 

Upf1 interacts with specific 40S ribosomal proteins 

Upf1 association with 40S ribosomal subunits suggests two possible types 

of interactions that may mediate this association: protein-protein and/or protein-

rRNA. Evidence for Upf1:ribosomal protein association has been obtained from 

co-immunoprecipitation experiments in higher eukaryotes (Yamashita et al., 

2009). This precedent, and our observation that Upf1’s RNA-binding activity was 

dispensable for 40S subunit association (Figure 2.4), led us to test for Upf1 

interaction with specific small subunit ribosomal proteins using a directed yeast 

two-hybrid screen. Using full-length Upf1 as bait (fused to the GAL4 DNA binding 

domain) and thirty-two 40S ribosomal proteins as prey (fused to the GAL4 

activation domain) (He et al., 1996; Valasek et al., 2003), bait and prey plasmids 

were co-transformed into a S. cerevisiae GGY1::171 strain that contains an 

integrated GAL1-lacZ reporter construct. In these strains the expression of the 

reporter is directly related to the extent of interaction of the bait and prey 

proteins. With a GAL4-UPF2 fusion serving as a positive control for two-hybrid 

interaction, five ribosomal proteins were found to manifest significant lacZ 

expression, indicating an interaction with Upf1 (Figure 2.7, left panel). In both 

qualitative plate-based and quantitative liquid β-galactosidase assays, the 

strongest interactions were observed with Rps26. Significantly, the Upf1:Rps26 

interaction was as strong qualitatively and quantitatively as the well characterized  
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Figure 2.7 – Upf1 interacts with 40S ribosomal proteins. Directed yeast two-

hybrid assays were performed using UPF1-GAL4 (DNA-binding domain) as 

bait and a library of RPS-GAL4 (activation domain) fusion proteins as prey. 

Individual transformants were assayed for β-galatosidase activity qualitatively on 

plates and quantitatively in liquid assays. Interactions were tested in GGY1::171 

wild-type (left panel) and GGY1::171 upf2∆ (right panel) strains. Values for β-

galatosidase assays represent mean + standard deviation for three independent 

experiments performed on cultures from independent transformants.  
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Upf1:Upf2 interaction (Figure 2.7, left panel) (He et al., 1996; He and Jacobson, 

1995). Weaker Upf1 interactions were observed with Rps6, Rps9, Rps10, and 

Rps13 (Figure 2.7, left panel).  

Although our experiments with purified subunits show that Upf1 

association with the 40S subunit is independent of Upf2 and Upf3, we tested if 

the two-hybrid interactions with the individual ribosomal proteins were mediated 

by either of these NMD factors, or by some aspect of Upf1 multimerization. We 

assayed the interactions between Upf1 and the candidate ribosomal proteins in 

two-hybrid yeast strains harboring deletions of UPF1, UPF2, or UPF3 and found 

no change in the interactions between Upf1 and the candidate ribosomal proteins 

in any of these strains (Figure 2.7, right panel, and data not shown). These 

results indicate that Upf1:40S ribosomal protein interactions are not bridged by 

other NMD factors and are likely to be direct.  

 

Point mutations in the CH domain of Upf1 alter its interaction with Rps26 

To gain further insight into the Upf1 domain that interacts with Rps26, its 

strongest 40S ribosomal protein interactor, we analyzed Upf1:Rps26 interaction 

using five full-length upf1 loss of function alleles (Figure 2.4.A). Figure 2.8.B 

shows that two-hybrid interaction between Upf1 and Rps26 was lost completely 

in strains harboring the C62Y or C84S mutations. The K436E mutation showed a 

modest decrease in lacZ expression, whereas the DE572AA and RR793AA 

mutants did not exhibit any change in two-hybrid interaction. The loss of 

interaction with Rps26 in the C62Y or C84S alleles suggests that Upf1’s N-
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terminus mediates interaction with Rps26. The domain encompassing the K436E 

mutation in hUpf1 has been demonstrated to form a rigid association with the CH 

domain (Clerici et al., 2009), which could explain the partial loss of interaction in 

the K436E mutation. Interestingly, neither the C62Y nor the C84S mutations 

affect the association of Upf1 with polysomes or 40S ribosomal subunits (Figure 

2.4.B) (Atkin et al., 1997), suggesting that Upf1:40S association may be a 

multivalent interaction involving multiple interacting epitopes.  

 

Upf1 N-terminus is required for its interaction with Rps26 

Mutations in the Upf1 N-terminus completely disrupted its interaction with 

Rps26 (Figure 2.8.B). However, the ability of two different Upf1 proteins with C-

terminal amino acid substitutions (DE572AA or RR793AA) to retain interaction 

with Rps26 does not rule out the possibility that the Upf1 C-terminus also 

interacts with Rps26. To define more precisely the domain(s) of Upf1 that 

mediate interaction with Rps26, we further tested the interactions of a series of 

previously characterized N- and C-terminal Upf1 truncations (Figure 2.8.A) (He et 

al., 1997). We first tested Upf1(1-289), which harbors only the first 289 amino 

acid residues of Upf1, and Upf1(290-971), which lacks the first 289 amino acids 

of Upf1. Upf1(1-289), which includes the CH domain but lacks the helicase 

domains of Upf1, still showed interaction with Rps26 (Figure 2.8.C). Upf1(290-

971), on the other hand, failed to show any interaction with Rps26 (Figure 2.8.C), 

confirming that the C-terminal domains of Upf1 are not important for binding to 

Rps26. To further narrow down the minimal interaction domain on Upf1, we  
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 Figure 2.8 – The CH domain of Upf1 mediates interaction with Rps26.  

(A) Schematic representation of Upf1 fragments tested for interaction with 

Rps26. (B, C) Two-hybrid assays were performed in the GGY1::171 upf1∆ strain 

to prevent any effects of possible oligomerization with endogenous Upf1 protein. 

Interaction of Rps26 with either full-length Upf1 mutant alleles (B) or indicated 

truncations of Upf1 (C) are shown. Values for β-galatosidase assays represent 

mean + standard deviation for three independent experiments performed on 

cultures from independent transformants. 
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tested N- and C-terminal truncations of the Upf1(1-289) fragment. Since residues 

62 and 84 were found to be important for Rps26 interaction (Figure 2.8.B), 

fragments tested spanned residues 1-181, 1-207, 62-181, 62-207, and 62-289 

(Figure 2.8.A). The shortest Upf1 fragment that still retained the ability to interact 

with Rps26 was comprised of residues 62-207 (Figure 2.8.C). Interestingly, the 

interaction of Upf1(1-289) with Rps26 was weaker than that observed with either 

full-length Upf1, or the shortest Upf1(62-207) fragment.  

 

Rps26 interacts with Upf1 in vitro 

Two-hybrid interactions can be bridged (Bartel et al., 1993; Bartel and Fields, 

1995; He et al., 1997), so we sought to determine whether Upf1:Rps26 

interaction could be confirmed biochemically, using an in vitro binding assay. 

Purified yeast FLAG-Upf1 (Figure 2.9.A) and lysates from E. coli expressing 

recombinant His-tagged Rps26 (Figure 2.9.B) were incubated and subjected to 

immunoprecipitation using anti-FLAG beads. An E. coli strain not expressing any 

His-tagged protein was used as a control for background binding. Analysis of the 

immunoprecipitates showed co-immunoprecipitation of His-Rps26 with FLAG-

Upf1 and not with FLAG beads alone (Figure 2.9.C, compare lanes 8 and 12). 

This in vitro data, in addition to the two-hybrid analyses, demonstrates that Upf1 

association with the 40S subunit is mediated at least in part by a direct 

interaction with 40S ribosomal protein Rps26 and does not involve any 

endogenous yeast protein bridging the interaction. 
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Figure 2.9 – Upf1 interacts with Rps26 in vitro. In vitro binding assays were 

performed with E. coli BL21(DE3) cells expressing His-Rps26.  

(A) Coomassie-stained SDS-PAGE gel showing purity of yeast FLAG-Upf1. (B) 

Time course of His-Rps26 expression after IPTG induction in E. coli BL21(DE3) 

cells. (C) Western blot analyses of anti-FLAG immunoprecipitation assays 

utilized anti-His and anti-Upf1 antibodies on input (I), flowthrough (FT), wash (W), 

and eluate (E) fractions.  
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Discussion 

Upf1 plays a central role in triggering NMD as well as in promoting several 

processes ancillary to this quality control pathway, including translational 

repression, dissociation of the translating mRNP, degradation of the nascent 

polypeptide, and inhibition of pre-mRNA splicing (Kervestin and Jacobson, 2012). 

Accordingly, the platform from which Upf1 launches these diverse activities is of 

considerable interest. Notwithstanding disagreement about the involvement of all 

termination events or just those which are premature, several models suggest 

that an early event in NMD is the interaction of Upf1 with the release factors 

localized at the A site of a terminating ribosome (Kervestin and Jacobson, 2012). 

The implication of such models is that Upf1, and perhaps the other Upfs, should 

be associated with ribosomes during at least one phase of their functional 

lifetimes. This notion was supported by early experiments demonstrating 

polysomal localization of the Upfs (Atkin et al., 1995; Atkin et al., 1997; Peltz et 

al., 1993a), as well as by more recent studies which have localized Upf1 to the 

SURF complex (Yamashita et al., 2009) or to purified 40S ribosomal subunits 

(Ghosh et al., 2010). To understand the mechanistic basis for Upf1’s association 

with the termination complex, we have pursued details of its mode of interaction 

with yeast ribosomes.  

 Using affinity purification of tagged ribosomal subunits, we demonstrate 

here that Upf1 is specifically immunoprecipitated with tagged 40S ribosomal 

subunits and not 60S subunits (Figure 2.2), consistent with our previous results 

(Ghosh et al., 2010). The significant enrichment of Upf1 in ribosomal pulldowns 
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of micrococcal nuclease-treated lysates, as well as the failure to detect poly(A)-

binding protein (Pab1) in these pulldowns indicates that ribosome association of 

Upf1 is likely mediated by a direct interaction with the 40S subunit and not 

through residual ribosome-associated mRNA. Importantly, this conclusion is 

reinforced by the observation that the association of Upf1 with the 40S ribosome 

is sufficiently stable to resist either high salt-induced or puromycin-triggered 

ribosomal dissociation (Figure 2.4). Stable association of Upf1 with the 40S 

subunit appears to be modulated by ATP, and independent of the simultaneous 

presence of Upf2 or Upf3, or translation termination factors eRF1 and eRF3 

(Figures 2.5 and 2.6). 

The demonstration of specific Upf1 association with the 40S subunit led us 

to screen for Upf1:40S ribosomal protein interactions, an experimental approach 

that identified Rps26 as a strong interacting partner of Upf1 (Figures 2.7 and 

2.9). The interaction between Upf1 and Rps26 was observed to be specific, 

direct, and independent of the other Upf factors (Figures 2.7 and 2.9). Consistent 

with the latter result, the association of Upf1 with purified subunits was also found 

to be independent of Upf2 and/or Upf3 (Figure 2.5). Two-hybrid analyses that 

exploited different upf1 alleles showed that the RR793AA RNA-binding mutant 

had no effect on Upf1:Rps26 interaction, whereas single point mutations in the 

CH-domain abrogated the ability of Upf1 to interact with Rps26 completely 

(Figure 2.8.B). The requirement for a functional Upf1 N-terminal CH-domain in 

Upf1:Rps26 interaction was further evident from deletion analyses which showed 

that only those Upf1 fragments containing the CH-domain could interact with 
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Rps26 (Figure 2.8.C). Interestingly, although the C62Y and C84S mutation in the 

CH-domain of Upf1 abolished the Upf1:Rps26 interaction, these mutations did 

not significantly affect Upf1’s association with the 40S ribosomal subunit. This 

observation suggests that Upf1 ribosomal association is likely mediated through 

multiple interaction epitopes. In support of this idea, we found Upf1 also interacts 

with Rps6, Rps9, Rps10, and Rps13 (Fig. 2.7). 

 The K436E mutation in the UPF1 ATP-binding domain also manifested 

impaired Upf1:Rps26 interaction, although not to the extent seen with the CH 

domain mutants (Figure 2.8.C). X-ray crystallographic analysis of hUpf1 has 

demonstrated a strong association between the CH-domain (encompassing 

residues C62 and C84) and domain 1A (encompassing residues K436 and 

DE572), suggesting that Upf1 may adopt a folded conformation that allows these 

domains to not only interact with each other, but with Rps26 as well. 

Interestingly, we noted that the interaction between the DE752AA ATP hydrolysis 

mutant of Upf1 with Rps26 was not affected in the two-hybrid assay, whereas 

association of this mutant protein with the purified 40S subunits was lost (Figure 

2.4). The lack of complete correspondence between the mutations that affect 

two-hybrid interaction and co-purification with 40S subunits must take into 

account the differences between the two assays. Whereas co-purification 

demands stable association with the subunit subsequent to treatment with high 

salt or puromycin, the two-hybrid assay is capable of registering a transient 

binding event that may be a precursor, for example, to the post-puromycin state. 

The former may have a readily detectable two-hybrid interaction (e.g., Rps26) 
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whereas the latter may not. The possibility that Upf1 association with a 

translating mRNP involves complex mechanisms has been highlighted in recent 

studies. Cryo-EM structures of the EJC-UPF complex have positioned Upf1 on 

the 3’ side of the EJC (Melero et al., 2012), contradictory to the current notion of 

Upf1 localization at the 5’ side that is closer to the premature termination codon. 

It has also been reported that hUPF1 binds directly to mRNA, with binding 

varying as a function of mRNA 3’-UTR length (Hogg and Goff, 2010; Kurosaki 

and Maquat, 2013).  

 Rps26 is positioned on the solvent side of the 40S platform and is a crucial 

component of the 40S ribosome-binding site for mRNA (Sharifulin et al., 2012). 

Available structural data show that the binding site of eIF3 on the 40S subunit 

overlaps with Rps26 as well as the other Upf1-interacting ribosomal proteins 

(Figure 2.10). This observation is of interest because temperature-sensitive 

lesions in the Prt1 subunit of eIF3 (eIF3b) antagonize NMD in yeast (Welch and 

Jacobson, 1999), and phosphorylated Upf1 interacts with eIF3 and inhibits 

translation initiation in mammalian NMD (Isken and Maquat, 2008). eIF3 has 

been implicated in efficient ribosome recycling after translation termination 

(Pisarev et al., 2007b) and upf1∆ extracts have been shown to be defective in 

efficient ribosome recycling from a nonsense-containing mRNA (Ghosh et al., 

2010). Collectively, these observations suggest a possible role for Upf1:eIF3 

interaction in promoting ribosome dissociation and/or recycling from premature 

termination events.  
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Figure 2.10 – Map of Upf1-interacting ribosomal proteins and eIF3 binding 

site on the solvent-side view of S. cerevisiae 40S subunit.  

The image created using PyMol (www.pymol.org) is based on a Protein Data 

Bank entry (accession number 3U5C) (Ben-Shem et al., 2011) showing 

ribosomal proteins. Ribosomal proteins interacting with Upf1 are highlighted 

using different shades of blue (dark blue denoting strong interaction and light 

blue representing weak interaction in the two-hybrid assay). The eIF3 binding site 

is highlighted in wheat (Kouba et al., 2012). The asterisk denotes the mRNA 

entry channel and the mRNA is represented using a dotted line.  
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Chapter III 

Yeast Upf1 associates with ribosomes translating mRNA 

coding sequences upstream of 

 normal termination codons 
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Summary 

Although NMD has been extensively studied in multiple eukaryotes, many 

unresolved questions about this quality control process remain to be addressed. 

In particular, we have yet to understand the mechanism by which Upf1, the 

central NMD regulator, selectively targets PTC-containing messenger 

ribonucleoproteins (mRNPs). Here, we determined the timing of Upf1 binding to 

ribosomes during translation. Employing a selective ribosome profiling approach, 

we identified mRNA sequences protected by Upf1-bound ribosomes. While 

recent studies in metazoans suggested translation-independent interactions of 

Upf1 with mRNA 3’-UTRs, we find that Upf1 engages with actively translating 

ribosomes, specifically with ribosomes in the coding regions upstream of normal 

termination codons. Such association is not limited to NMD substrates. Together, 

our results suggest that Upf1 not only triggers rapid decay of nonsense-

containing mRNAs, that initiation of this process may well depend on the 

selective recruitment of factors downstream of Upf1 function during premature 

translation termination. 
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Introduction 

Nonsense-mediated mRNA decay (NMD) is a cytoplasmic surveillance 

mechanism that degrades mRNA transcripts that contain premature termination 

codons (PTCs) (Kervestin and Jacobson, 2012). Transcriptome-wide studies 

using microarray or RNA-Seq analysis of yeast, fly, and human cells have 

revealed that NMD regulates 5-20% of cellular transcripts. These include 

aberrant transcripts as well as many apparently wild-type mRNAs, suggesting 

that NMD has a regulatory function beyond mRNA surveillance (He et al., 2003; 

Mendell et al., 2004; Ramani et al., 2009; Tani et al., 2012). The destabilization 

of nonsense-containing mRNAs requires ongoing translation as well as the 

conserved Upf1, -2, and -3 proteins in all eukaryotes and the Smg1 to Smg9 

proteins in metazoans (Kervestin and Jacobson, 2012; Schoenberg and Maquat, 

2012).  

Upf1, the key regulator of NMD, has been extensively characterized. Upf1 

belongs to helicase superfamily I (SF1), with two RecA-like domains in tandem at 

its C-terminus. Upf1 possesses ATP-dependent RNA binding, as well as RNA-

dependent ATPase and 5’ to 3’ RNA helicase activities, all of which are essential 

for triggering NMD (Clerici et al., 2009; Czaplinski et al., 1998; Wang et al., 

2001). An N-terminal cysteine- and histidine-rich Zn2+-finger domain (CH 

domain) of Upf1 interacts with a C-terminal region of Upf2, which in turn binds to 

Upf3, to form an NMD-activating complex (He et al., 1997). Overexpression of 

Upf1 can compensate for mutations in Upf2 and Upf3, but not vice versa 

(Maderazo et al., 2000) and the maximal in vitro activation of the Upf1 ATPase 
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and helicase activities requires both Upf2 and Upf3 (Chamieh et al., 2008). 

These observations imply that Upf1 is the key effector of NMD, whereas Upf2 

and Upf3 are likely to be regulators of Upf1 function. Upf1 lacking its ATPase 

activity is defective in association with the 40S ribosomal subunit in yeast (Min et 

al., 2013). Upf1 ATPase mutants also fail to promote the disassembly of the 

poorly dissociable premature termination complex subsequent to peptide 

hydrolysis, as well as translocation along the mRNA in a 5′-to-3′ direction (Franks 

et al., 2010; Melero et al., 2012; Shigeoka et al., 2012).  

The mechanism by which nonsense-containing mRNAs are recognized 

and selectively targeted by NMD remains to be determined. Some current 

models of NMD activation by premature termination postulate that an 

inappropriate mRNP structure neighboring the PTC allows the recruitment of 

Upf1 to mRNA substrates (Kervestin and Jacobson, 2012). However, the basis 

for the specific targeting of Upf1 to NMD substrates and many aspects of the 

mechanism of action of Upf1 are unknown. For example, it is not clear whether 

Upf1 interacts with all mRNAs or only a specific subset, such as prematurely 

terminating mRNAs. RNA-immunoprecipitation approaches have been used to 

address this problem, namely the co-purification of reporter mRNAs with Upf1 

(Hogg and Goff, 2010; Kurosaki and Maquat, 2013) or the identification of 

mRNAs using either microarray analysis or deep sequencing after Upf1-

immunoprecipitation (Decourty et al., 2014; Johansson et al., 2007; Kurosaki et 

al., 2014). These studies indicate that Upf1 preferentially associates with NMD-

targeted mRNAs, and long 3′-UTRs make transcripts sensitive to NMD. In 
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addition, Upf1 is thought to preferentially target mRNA 3’-UTRs and such 

association may be independent of mRNA translation (Hogg and Goff, 2010). 

However, recent studies suggest that the nature of Upf1-mRNA interaction is 

much more complex than previously thought. In contrast to the proposed 

selective recruitment of Upf1 to NMD substrates, there is evidence that Upf1 

binds to numerous mRNAs, regardless of their PTC-status (Gregersen et al., 

2014; Hurt et al., 2013; Zund et al., 2013). Upf1 was reported to bind to mRNA 

3’-UTRs, including those of PTC-free mRNAs, and also to long noncoding RNAs 

(Gregersen et al., 2014; Hurt et al., 2013) . Strikingly, upon translation inhibition, 

the distribution of Upf1 was seen to shift toward coding sequences (CDS), 

implying that the recruitment of Upf1 to coding regions of transcripts is 

translation-dependent. Although non-discriminatory binding of Upf1 to numerous 

mRNAs is controversial, these results strongly suggest that Upf1 binds to 

ribosome-associated mRNAs.  

However, it is unknown whether Upf1 binds directly to mRNAs or 

ribosomes. Upf1 co-localizes with polyribosomes, 80S ribosomes, and 40S 

ribosomal subunits (Atkin et al., 1995; Ghosh et al., 2010; Mangus and 

Jacobson, 1999; Min et al., 2013) and interacts with the release factors eRF1 

and eRF3 (Czaplinski et al., 1998; Kashima et al., 2006; Singh et al., 2008) and 

with a specific ribosomal protein, Rps26 (Min et al., 2013). The fact that 

translation controls NMD activation highlights the need for studying mRNA 

sequences protected by Upf1-bound ribosomes, instead of mRNAs bound by 

Upf1. 
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However, the timing and open reading frame (ORF) location of Upf1 

association with translating ribosomes remain obscure. To map the transcriptome 

positions of ribosomes when they associate with Upf1, we employed the 

selective ribosome profiling approach (Becker et al., 2013) to identify mRNA 

sequences associated with Upf1-bound ribosomes in the budding yeast 

Saccharomyces cerevisiae. Ribosome profiling is a powerful technique to monitor 

when proteins of interest are engaged with ribosomes on translated mRNAs at a 

genome-wide level (Ingolia, 2014). We combined this method with an affinity 

purification strategy in which epitope-tagged Upf1 was used to selectively purify 

Upf1-bound ribosomes from total ribosomes. Next, we isolated mRNA fragments 

bound by Upf1-enriched ribosomes and subjected those fragments to analysis by 

deep sequencing. Our results reveal a novel specificity of Upf1 binding in the 

coding regions upstream of the normal termination codons of most mRNAs. 
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Results 

Affinity purification of Upf1-associated 80S ribosomes 

Using selective ribosomal profiling, we analyzed the mRNA fragments 

protected by translating ribosomes harboring bound Upf1, thus determining the 

extent and open reading frame (ORF) position of Upf1:80S association. A 

schematic for the procedure for affinity purification of Upf1-bound ribosomes from 

the total translatome is shown in Figure 3.1. Given the lower intracellular 

abundance of Upf1 (~6900 molecules/cell) compared to that of ribosomes 

(~200,000 molecules/cell), we generated a yeast strain expressing high-copy 

6XHis-tagged Upf1 for purifying 80S ribosomes with bound Upf1.   

Although often used in ribosome profiling experiments, cycloheximide 

(CHX) treatment of cells inhibits the recovery of ribosomes at termination codons 

(Amrani et al., 2004; Ingolia et al., 2011). In order to capture all populations of 

ribosomes engaged in translation, cycloheximide was omitted during our sample 

preparation. RNase-treated extracts were subjected to sucrose gradient 

sedimentation to minimize the contamination of free mRNPs and the fractions 

corresponding to the 80S ribosome peak resulting from the disruption of 

polyribosomes were collected for affinity purification (Figure 3.2). Upf1 has been 

shown to co-sediment with polysomes and 80S ribosomes (Atkin et al., 1995; 

Mangus and Jacobson, 1999). Nonetheless, we checked for the co-

sedimentation pattern of Upf1 with 80S ribosomes, and found that Upf1 was 

abundant in samples comprising the 80S ribosome peak (Figure 3.3). Next, Upf1-

associated ribosomes were enriched from the total ribosome population in this  
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Figure 3.1 – Schematic of the procedures used for selective ribosome 

profiling of Upf1-bound ribosomes. 

Cells expressing epitope-tagged Upf1 are harvested at mid-log phase and 

cryogenically lysed. Polysomes are then digested with RNase I to yield footprint-

containing monosomes. Digested monosomes are separated from other debris 

by sucrose gradient centrifugation and Upf1-bound 80S complexes are then 

affinity-purified on Talon (cobalt) resin. mRNA footprint fragments derived from all 

monosomes and those enriched through affinity purification are then cloned for 

deep sequencing analysis.  
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Figure 3.2 – Enrichment of 80S ribosomes after RNase I treatment. 

Cytoplasmic extracts without (A) or with (B) RNase I treatment were fractionated 

on 7-47% sucrose gradients. The A254 traces of the ribosome profiles are shown, 

with the 80S peak indicated by an arrow. 
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Figure 3.3 – Upf1 co-sediments with 80S ribosomes.  

Cytoplasmic extracts treated with RNase I were fractionated on 7-47% sucrose 

gradients. The A254 traces of the ribosome profiles are shown, with the 80S peak 

indicated by an arrow. Fractions were precipitated with TCA, and subjected to 

SDS-PAGE, followed by western blot analysis for Upf1 and Rps6. 
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peak using cobalt-based affinity chromatography.  

Western blotting revealed that the affinity-purification protocol enriched 

substantially for ribosomes bound by Upf1 (Figure 3.4.A; compare Lane 1 and 5). 

Mass spectrometric analyses indicated that, pre-purification, 80S ribosomes from 

cells overexpressing Upf1 contain approximately 1 Upf1 molecule per 42.8 

ribosomal protein molecules. After purification, the ratio is 1 Upf1 per 2.0 

ribosomal protein molecules (22.8-fold increase) (Table 3.1; compare Column 2 

and 3), suggesting that approximately half of the affinity-purified 80S ribosomes 

contained bound Upf1. Further, negative-stain electron microscopy (EM) 

detected ample amounts of 80S ribosomes in affinity-purified samples (Figure 

3.4.B). Collectively, these results indicate the efficient recovery of Upf1-

associated ribosomes. 

 

Deep sequencing of ribosome-protected fragments derived from Upf1-

associated 80S ribosomes 

Deep sequencing libraries were prepared from ribosome-protected mRNA 

fragments (RPFs) from total or Upf1-bound ribosomes. mRNA fragments derived 

from total RNA of the same cells was also subjected to deep sequencing 

analysis. Additional Ribo-Seq and mRNA-Seq libraries were also generated in 

three very similar but non-identical experiments (Table B.1). All libraries were 

sequenced on an Illumina-HiSeq 2000 and the sequence data was analyzed 

through a workflow of bioinformatics tools shown in Figure 3.5. Basic statistical 

analyses for sequencing libraries and supplementary data are in Appendix B.  
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Protein 
                                 

Total Upf1-bound 
Fold  

change 

UPF1_YEAST 1.0  1.0  - 

RL10_YEAST  35.1 1.8  19.5 

RL15A_YEAST  41.2 1.6   25.7 

RL19A_YEAST  42.3 1.1  38.5 

RL6B_YEAST  40.8  2.2  18.5 

RS18A_YEAST  62.1 2.8  22.2 

RS24A_YEAST  36.0 1.6  22.5 

RS7B_YEAST  26.2  1.6  16.4 

RS26A_YEAST  25.3  1.2  21.1 
Average (All ribosomal 
proteins) 42.8 2.0 21.4 

 

Table 3.1 – Affinity-purified 80S ribosomes are highly enriched for Upf1. 

Mass spectrometry analysis of Upf1 and ribosomal proteins before (Total 

ribosomes) and after (Upf1-bound ribosomes) affinity purification. The 

quantitation report was generated in Mascot Distiller by averaging intensities of 

spectra, where Upf1 content in each column was normalized to 1. Selected 

individual ribosomal proteins and the average of all ribosomal proteins are 

shown. 
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Figure 3.4 – Upf1-bound 80S ribosomes are purified efficiently by using 

6xHis-tagged Upf1.  

(A) RNase I-digested ribosomes from yeast cells overexpressing His-Upf1 were 

affinity-purified on cobalt resin. Input (I), supernatant (S), eluate (E), and 

concentrated eluate (Ec) fractions were subjected to western blotting with anti-

Upf1 antibodies. Different amounts of each sample were loaded for SDS-PAGE 

analysis as indicated. (B) Negative-stain EM image of affinity-purified 80S 

ribosomes. Scale bar: 200 nm.  
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Figure 3.5 – Pipeline for analysis of RNA-Seq reads.  

The pipeline shows the steps from input to output of each of the tools used within 

the data analysis pipeline: FastQC to check the quality control for high 

throughput read sequence, Cutadapt and FastX to remove adapters, Bowtie2 for 

alignment and generation a compact format for storing large nucleotide sequence 

alignments. 
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More than 4,900 yeast genes were sufficiently represented in our Ribo-

Seq libraries to provide reliable measurements of their translational status (Table 

B.3). The reproducibility of our data was assessed by comparing wild-type 

libraries with or without rRNA depletion (r = 0.94 for Total-Ribo-Seq libraries and 

r = 0.89 Upf1-Ribo-Seq libraries) (Figure 3.6). Given the minimal differences 

observed between experiments done, downstream analyses were presented 

here with the rRNA-depleted wild-type library, due to its greater read depth.  

The reliability of our ribosome profiling approach was tested by analyzing 

ribosome occupancy on individual transcripts by visualizing specific transcripts 

with the Integrated Genome Viewer (IGV). As shown in Figure 3.7, individual 

normal mRNAs, such as those encoded by the PGK1 and ACT1 genes, 

manifested ribosome-protected fragments throughout the respective ORFs. Our 

yeast strains contain multiple nonsense alleles with known PTC positions, and 

ribosome-protected fragments were present near the beginnings of 

representative mRNAs analyzed in the Total-Ribo-Seq library, suggesting that 

the presence of premature stop codons halted ribosomal progression (Figure 

3.7). These results are consistent with the notion that nonsense mutations cause 

premature translation termination. 
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Figure 3.6 – Datasets from two independent experiments manifest good 

correlation.  

Scatter plots showing the relative differences between wild-type libraries with or 

without rRNA depletion. Spearman correlations were computed using log2 RPKM 

values (RPKM = reads per kilobase per million total reads). (A) Total-Ribo-Seq 

libraries (Spearman r = 0.94), and (B) Upf1-Ribo-Seq libraries (Spearman r = 

0.89) 
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Increased Upf1 occupancy of ribosomes positioned near the 3’- ends of 

open reading frames 

To determine whether Upf1 has preferred binding sites on translating 

ribosomes, we performed a metagene analysis by measuring the median read 

coverage across each mRNA with an ORF length of greater than 250 nt. 

Ribosome-protected fragments from the total translatome were evenly distributed 

across the open reading frames of all mRNAs, except for peaks at the ORF 

beginnings and ends that correspond to translational start and stop sites, 

respectively. These results were consistently obtained in all four data sets 

(Figure 3.8) and thus likely represent the intrinsic ribosome distribution in the 

absence of any drug treatment. Peaks of ribosome footprints on transcripts at 

initiation and termination sites imply that translation is rate-limiting at these steps, 

compared to elongation. These findings are consistent with previous studies, 

which showed enhanced footprints at initiation codons and at termination sites 

(Ingolia et al., 2011). 

Next, we compared the read coverage in total ribosomes with that for 

Upf1-bound ribosomes and identified windows where read coverage was 

different between Total-Ribo-Seq and Upf1-Ribo-Seq libraries (Figure 3.9; 

compare red lines and blue lines). Based on current models of NMD activation, 

we hypothesized that the majority of Upf1 binding events would take place near 

PTCs. However, we observed a completely different pattern, i.e., the relative 

absence of Upf1 association with ribosomes located in the 5’ regions of ORFs 

(Figure 3.9.A), followed by a continuous increase of Upf1:ribosome association  
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Figure 3.8 – Total ribosomes are evenly distributed throughout the ORFs.   
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Figure 3.8 – Total ribosomes are evenly distributed throughout the ORFs.  

Metagene analyses of ribosome density were derived for mRNAs (with ORF 

length of greater than 250 nt) aligned from their start (A) or stop codon (B) and 

averaged across them. RPF counts from four independent experiments are 

shown in indicated colors.  

a.u. = arbitrary units 

Numbers of mRNAs analyzed are shown in Table B.3. 

Detailed descriptions for WT-25C (Ribo-Zero Treated), WT-25C, WT-37C, and 

sup45-2-25C are shown in Table B.2. 
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Figure 3.9 – Upf1-bound 80S ribosomes are enriched at the 3’-ends of ORFs 

(and depleted at the 5’ends).  
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Figure 3.9 – Upf1-bound 80S ribosomes are enriched at the 3’-ends of ORFs 

(and depleted at the 5’ends).  

Metagene analyses of ribosome density were derived for mRNAs (with ORF 

length greater than 250 nt) aligned from their start (A) or stop codon (B) and 

averaged across them. Upf1-footprint counts are shown in red and total footprint 

counts in blue.  

a.u. = arbitrary units 

Number of mRNAs analyzed shown in Table B.3. 
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toward the 3′ ends of ORFs (Figure 3.9.B). These results indicate that: (i) Upf1 

binds to ribosomes associated with most mRNAs, not just a subset of mRNAs, 

and (ii) this association is not restricted to ribosomes poised at termination 

codons. Both observations suggest that the region encompassed by several 

hundred nucleotides upstream of termination codons may be a “window” in which 

factors associated with termination begin to assemble a termination-competent 

mRNP, and that pre-associated Upf1 is most likely activated for NMD function at 

a PTC. Further support for these conclusions came from observing the same 

result in all four data sets (Figure B.2). 

To further define the relative ribosome position in a given mRNA, we 

implemented a new metric, namely the relative ribosome position (RRP). RRP is 

defined as the distance from the initiation codon, expressed as a fraction of ORF 

length, at which a given percentage of reads (ribosome-protected fragments) 

occur, e.g., rr50 is the location where 50% of the total reads mapped to that gene 

have been counted (starting from the initiation codon).  A low RRP value would 

indicate that ribosomes are located disproportionately early on the 

mRNA because the majority of reads to skew toward the first-half of an ORF 

(Figure 3.10). Using these definitions, we performed genome wide RRP analysis 

and showed that rr-values of Upf1-bound ribosomes were higher than those of 

total ribosomes, indicating Upf1’s bias towards the 3’-ends of ORFs (Figure 

3.11). For example, the rr50 of Upf1-Ribo-Seq samples is 0.75, compared to 0.5 

for that of Total-Ribo-Seq (Figure 3.11; compare solid blue line and dashed blue 

line). These results from RRP analyses  
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Figure 3.10 – A new analytical tool: RRP (Relative Ribosome Position).  

Ribosome-protected fragments (RPFs) are uniformly distributed in a “normal” 

mRNA (A), or largely localized near the 3’end of a mRNA (B), or mainly present 

near the 5’ end of a mRNA (C). Hypothetical rr50 values are indicated. 
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also suggest that Upf1 binding appeared to favor ORF 3′-ends. Again, these 

observations were consistent in all Upf1-Ribo-Seq libraries (Figure B.3). 

These conclusions were tested further by analyzing Upf1 occupancy of 

ribosomes associated with specific transcripts. As shown in Figure 3.12, 

individual normal mRNAs, such as those encoded by the PGK1, ACT1, RSA4, 

and GLR1 genes, manifested enrichment for Upf1-associated ribosomes near 

the 3’-ends of coding regions, consistent with results from both computational 

analyses. In addition, previous studies show that NMD targets have shorter ORF 

lengths, but long 3’-UTR lengths (Decourty et al., 2014). We found that these 

NMD-inducing features did not change the binding pattern of Upf1 binding to 

translating ribosomes (Figure 3.13 and 3.14). Collectively, all these results 

suggested that the distribution of Upf1-associated ribosomes is skewed towards 

3’-ends of most mRNA ORFs, possibly reflecting the stable interaction of Upf1 

with ribosomes near the 3’ ends of ORFs in any given mRNA. 

 

Upf1-enriched mRNAs show lower ribosome occupancy  

To determine whether Upf1 has a bias for a specific subset of 

translationally active transcripts, we compared reads from Upf1-associated 

ribosomes to those obtained from total ribosomes. Transcripts were considered 

enriched in Upf1-associated ribosomes if RPF densities showed at least a 2-fold 

difference between Total-Ribo-Seq and Upf1-Ribo-Seq libraries. These analyses 

revealed that 1630 transcripts were enriched with Upf1-bound ribosomes. Since 

NMD is a translation-dependent pathway, we next examined the relationship  
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Figure 3.12 – Upf1-bound ribosomes are distributed toward the 3’-ends of 

normal mRNAs.  

Coverage density maps were generated on the IGV browser for selected 

mRNAs. Read counts in Upf1-bound ribosomes are shown in red and compared 

to total ribosomes in blue.  
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Figure 3.13 – Upf1-bias towards 3’ ends of ORFs is not ORF-length 

dependent. 

Metagene analyses of ribosome density were derived for mRNAs with ORF 

length between 400-600 nt (total 693 mRNAs) and 1300-1600 nt (total 744 

mRNAs) aligned from their start (A,C) or stop codon (B,D) and averaged across 

them. Upf1-footprint counts are shown in orange and total footprint counts in 

green. 
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Figure 3.14 – Upf1-bias towards 3’ ends of ORFs is not governed by the 3’-

UTR length. 

Metagene analyses of ribosome density were derived for mRNAs with short 

UTRs (A) and long UTRs (B) aligned from their stop codon and averaged across 

them. Upf1-footprint counts are shown in orange and total footprint counts in 

green. 

The Long-UTR group is defined as mRNAs with 3’-UTR lengths greater than 250 

nt (406 mRNAs). 

The Short-UTR group is defined as mRNAs with 3’-UTR lengths of less than 50 

nt (638 mRNAs). 

 

A B 



82 
 

between the enrichment of Upf1 binding and translation efficiency (TE), which is 

the extent of footprint recovery normalized to underlying mRNA abundance. We 

calculated TE (which is also referred to as ribosomal occupancy) by dividing the 

ribosome footprint density of the ORF by the mRNA-Seq read density of the 

same region (Ingolia et al., 2009). Of the 1630 putative targets that were 

enriched more than 2-fold in the Upf1-Ribo-Seq dataset, about half of the 

mRNAs have low ribosomal occupancy (852 out of 1630), indicating that Upf1-

enriched transcripts have fewer associated ribosomes than non-enriched targets. 

Several earlier studies suggest that Upf1 specifically associates with bona 

fide NMD substrates (He et al., 2003; Johansson et al., 2007; Johns et al., 2007; 

Kurosaki and Maquat, 2013). To determine whether the transcripts enriched in 

the Upf1-Ribo-Seq approach represent direct substrates of the NMD pathway, 

we compared the transcripts which showed >2-fold increases in our Upf1-Ribo-

Seq dataset with two datasets of previously characterized putative NMD targets, 

which were identified as co-purified mRNAs following Upf1-TAP pull-down 

(Johansson et al., 2007) or mRNAs of significantly increased abundance in upf1Δ 

cells (He et al., 2003). These comparisons revealed poor overlaps, with at best 

only about 15% of the Upf1-Ribo-Seq enriched transcripts detected in both Upf1-

TAP pull-downs and upf1Δ cells (Figure 3.15). We suspect that this discrepancy 

may be due to technical differences in sample preparation. While Upf1-RiboSeq 

experiments enriched for the translationally active population of transcripts, the 

Upf1-TAP experiments could recover mRNPs at all stages of NMD, including 

final stages in which Upf1 may no longer be ribosome-associated. Interestingly, 
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of 589 NMD-regulated transcripts that were identified from Upf1-TAP pull-downs 

(Johansson et al., 2007) and 680 from upf1Δ cells (He et al., 2003), 219 (46%) 

and 296 (62%) respectively had low ribosome occupancy in our profiling 

experiments, providing further evidence that translation of NMD-sensitive 

transcripts may be significantly reduced. 
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Figure 3.15 – Upf1-enriched transcripts from Ribo-Seq experiments 

compared to NMD substrates identified in previous studies.  

The Venn diagram depicts the overlap of (A) transcripts ≥2-fold enriched for Upf1 

in the Upf1-Ribo-Seq library, (B) transcripts with ≥2-fold enrichment in Upf1-TAP 

pulldowns (Johansson et al., 2007), and (C) transcripts that increase ≥2-fold in 

upf1Δ cells (He et al., 2003). 
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Discussion 

To address the timing and ORF location of Upf1 association with 

translating ribosomes, we undertook a genome-wide assessment of 

Upf1:ribosome interaction and obtained results supporting a novel stochastic 

model of Upf1 dynamics during translation. By mapping the ORF positions 

associated with Upf1 binding sites on translating ribosomes, we found that most 

translationally active transcripts are targeted by Upf1 (Table B.3). The stable 

binding of Upf1 to most translating mRNAs is consistent with published studies in 

mammalian cells (Gregersen et al., 2014; Hurt et al., 2013; Kurosaki and Maquat, 

2013) which showed that Upf1 binds promiscuously to mRNA coding regions and 

3′-UTRs in a translation-dependent manner.  

Our results indicate that the binding of Upf1 to mRNA-associated 

ribosomes is biased towards ribosomes translating the 3’-ends of ORFs. Upf1-

associated ribosomes were relatively absent in ORF 5’ regions, and their 

enrichment in the 3’-ends of ORFs extended to hundreds of nucleotides 

upstream of the normal termination codon (Figure 3.9.B). These results suggest 

that: (i) Upf1 transiently binds to ribosomes translating most mRNAs, including 

non-NMD targets, and (ii) ribosomes in transit across a large region upstream of 

termination codons accommodate more stable Upf1 binding, possibly because of 

concurrent ribosome association or interaction with additional factors. 

Interestingly, this pre-termination region is reminiscent of the position-

dependence of NMD activation (Figure 3.16). In S. cerevisiae, PTCs in 

approximately the 5’ half to two-thirds of ORFs promote mRNA destabilization, 
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while PTCs near the 3’-ends of ORFs have little or no effect on mRNA stability 

(Peltz and Jacobson, 1993; Yun and Sherman, 1995). These observations lead 

us to speculate that termination is not actually commenced spontaneously at a 

stop codon, but occurs as a series of events in which an early phase is the 

assembly of a termination-competent mRNP near the end of the process of 

elongation. It should be noted, however, that our data might be biased by the 

utilization of an overexpressed UPF1 allele for affinity-purification of Upf1-bound 

ribosomes.  

We observed that about half of Upf1-enriched transcripts have low 

ribosome occupancy, suggesting that Upf1-targeted mRNAs have low translation 

initiation rates or higher rates of ribosome stalling or spontaneous dissociation. 

These findings are consistent with previous studies showing that Upf1 

association with a nonsense-containing mRNA leads to decreased translation 

efficiency (Isken et al., 2008; Muhlrad and Parker, 1999b) and to the targeting of 

nonsense-containing mRNAs to cytosolic P-bodies (Durand et al., 2007; Fillman 

and Lykke-Andersen, 2005; Sheth and Parker, 2006; Stalder and Muhlemann, 

2009). 

Our results lead us to propose a stochastic binding model for Upf1 

interaction with the 40S subunits of translating ribosomes. This binding may be 

inefficient or otherwise impaired for ribosomes elongating in the 5’ halves of 

ORFs, but is somehow enhanced or stabilized as ribosomes progress closer to 

normal termination codons.  Since normal termination codons do not stimulate 

NMD there must be a feature of premature translation termination that 
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distinguishes NMD targets from normal transcripts. For example, the selective 

activation of NMD at PTCs may require the functional activation of ribosome-

bound Upf1 by the recruitment of other NMD-activating factors such as Upf2 and 

Upf3, i.e., it may be the latter factors whose ribosome association is really PTC 

specific. Evidence supporting this model includes: (i) the distribution of Upf1 

across polysomal fractions with or without Upf2 and/or Upf3 depletion (Atkin et 

al., 1997; Min et al., 2013), i.e., Upf2 and Upf3 are not involved in the initial 

recruitment of Upf1 to translating ribosomes, and (ii) Upf2 and Upf3 have been 

shown to activate the ATP-dependent RNA helicase activity or RNA-dependent 

ATPase activity of Upf1 in vitro.  
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Figure 3.16 – Position effect of nonsense codons on mRNA stability on 

nonsense-containing mRNAs in yeast.  

Locations of termination codons in the PGK1 mRNA versus mRNA half-life 

measured in wild-type cells. This observation has been confirmed in the PGK1, 

CYC1, HIS4, and Matα1 mRNAs (Peltz et al., 1993a; Yun and Sherman, 1995).  

From Peltz and Jacobson, 1993b.  



89 
 

CHAPTER IV 

General Discussion 

  

Studies in multiple model organisms over the past 20 years have led to 

the identification and characterization of the major regulatory factors in the NMD 

pathway and have provided considerable insights into the nature of NMD 

substrates and the initiation of their decay. But our understanding of the 

underlying molecular mechanism of NMD is not complete. We have yet to 

understand the recruitment of these factors to NMD substrates or the different 

steps involved in NMD activation. My thesis work presents results that advance 

our understanding of how the central NMD regulator Upf1 associates with its 

target mRNAs. In particular, I have focused on understanding the target of Upf1 

binding to ribosomes, and the timing of that interaction on actively translating 

ribosomes. My experiments provide insight into the mechanisms involved in 

discriminating NMD substrates from non-substrates, and point out limitations of 

current models, and lead to a new model for NMD activation. 

 

Direct interaction of Upf1 with ribosomes 

Work done in Chapter II of my thesis attempted to answer the question of 

how Upf1 is targeted to translating mRNPs. We localized Upf1 to the 40S 

subunit, identified a specific Upf1-interacting ribosomal protein, and obtained 

evidence for additional Upf1:40S interactions. Upf1 is specifically 

immunoprecipitated with tagged 40S ribosomal subunits and not 60S subunits 
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(Figure 2.2). Such association is likely mediated by a direct interaction between 

Upf1 and the 40S subunit, but not through mRNA (Figure 2.3). Upf1:40S 

association is sufficiently stable to resist either high salt-induced or puromycin-

triggered ribosomal dissociation (Figure 2.4). Further we determined that the ATP 

hydrolysis activity of Upf1 is required for the association of Upf1 with 40S 

subunits (Figure 2.4). Importantly, stable association of Upf1 with the 40S subunit 

is independent of Upf2 or Upf3, or translation termination factors eRF1 and eRF3 

(Figures 2.5 and 2.6).  

 According to some current NMD activation models (cited in Chapter I), 

Upf1 is thought to be selectively recruited to NMD-targeted mRNAs during 

translation, most likely through interactions with the release factors eRF1 and 

eRF3 located on prematurely terminating ribosomes. Experiments done in 

yeast and mammalian cells have indicated that Upf1 association with a 

prematurely terminating ribosome may be attributable to direct interactions with 

the release factors, eRF1 and eRF3 (Czaplinski et al., 1998; Ivanov et al., 2008; 

Kashima et al., 2006; Singh et al., 2008). However, our data indicate that stable 

Upf1:40S association can occur independently of concurrent release factor 

binding to the ribosome (Figure 2.6) although our results do not rule out the 

possibility that Upf1’s initial association with the 40S subunits depends on the 

presence of the release factors.   

Our findings for direct binding of Upf1 to ribosomes are consistent with 

previous studies showing that NMD requires ongoing translation and that the 

majority of yeast and human Upf1 is associated with polyribosomes, 80S 
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ribosomes, and 40S ribosomal subunits (Atkin et al., 1995; Ghosh et al., 2010; 

Min et al., 2013; Pal et al., 2001). Additional links between NMD and translation 

came from studies demonstrating that drugs or mutations that inhibit translation 

also inhibit mRNA decay (Beelman and Parker, 1994; Jacobson and Peltz, 1996; 

Parker and Jacobson, 1990) and that initiation of the decay of nonsense-

containing mRNAs occurs while those transcripts are associated with 

polyribosomes (Hu et al., 2010; Zhang et al., 1997). Taken together, our current 

results and those in the literature lead me to propose that Upf1 is most likely 

associated with translationally active mRNAs via direct interaction with 

ribosomes.  

Two recent reports raise challenges to the notion of translation-dependent 

recruitment of Upf1 to mRNPs (Hogg and Goff, 2010; Zünd et al., 2013). Hogg 

and Goff demonstrated that Upf1 binding to mRNAs occurred in a 3’-UTR length-

dependent manner, even when translation was inhibited, and a CLIP study from 

the Muhlemann lab reported that Upf1 targets the 3’-UTRs of both NMD-

sensitive and NMD-insensitive transcripts. Upon translation inhibition with 

puromycin or cycloheximide, the relative distribution of Upf1 in the latter study 

was seen to shift to mRNA coding sequences (CDS) (Zund et al., 2013). Based 

on these results, the authors suggested that Upf1 may target most mRNAs 

preceding their translation, only to be displaced from the CDS by elongating 

ribosomes. The discrepancies between these results and my own might be due 

to technical limitations in the Zund et al. studies, such as underestimating Upf1 

association with ribosomes by size selection against large ribosomal complexes 
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during sample preparation, or by discarding rRNA reads during data analysis. 

Another possible cause for the discrepancies between these results and my own 

might be that two distinct populations of Upf1 were being analyzed. Upf1 co-

sediments with both polysomal mRNPs and free mRNPs (Mangus and Jacobson 

1999). These results raise the possibility that Upf1 appears to exist in two distinct 

populations, one of which is associated with translating ribosomes and another 

with free cytoplasmic mRNP particles.  

 

Upf1 associates with elongating and terminating ribosomes  

 Work done in Chapter III of this thesis attempted to determine when during 

translation Upf1 associates with ribosomes, and whether such association is 

unique to NMD substrates. We demonstrated that Upf1 binds to ribosomes that 

are translating mRNAs, including non-NMD targets, and identified an ORF region 

where stable Upf1:ribosome association occurs. We detected a relative dearth of 

Upf1 association with ribosomes located in the 5’ regions of ORFs (Figure 3.9.A), 

and a continuous increase of Upf1:ribosome association toward the 3′ ends of 

ORFs (Figure 3.9.B). Importantly, Upf1:ribosome association favored a 3’-ORF 

region that encompassed hundreds of nucleotides upstream of the normal 

termination codon (Figure 3.9.B). Such association was not dependent on NMD-

inducing features such as long 3’-UTRs or ORF lengths (Figures 3.13 and 3.14).  

Our findings are in disagreement with models implying that Upf1 is 

selectively recruited to NMD substrates undergoing premature termination 

(Kervestin and Jacobson, 2012). Our findings also contradict results from RNA-
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immunoprecipitation experiments demonstrating that Upf1 preferentially 

associates with NMD-targeted mRNAs in yeast, worms and mammals 

(Johansson et al., 2007; Johns et al., 2007; Kurosaki and Maquat, 2013). It 

should be noted, however, that our data might be biased by the utilization of an 

overexpressed UPF1 allele for affinity-purification of Upf1-bound ribosomes.  

Nonetheless, I speculate that this discrepancy could be reconciled by two 

explanations. First, while our ribosome profiling experiments enriched for the 

translationally active population of transcripts, RIP experiments could recover 

mRNPs at all stages of NMD, including final stages in which Upf1 may no longer 

be ribosome-associated.  Second, binding of Upf1 to mRNAs does not 

necessarily indicate that such mRNAs would be targeted by NMD. For example, 

the selective activation of NMD at PTCs may require the functional activation of 

ribosome-bound Upf1 by the recruitment of other NMD-activating factors such as 

Upf2 and Upf3.  

 

A stochastic binding model for Upf1 interaction with the 40S subunits of 

translating ribosomes 

Collectively, our results lead us to propose a stochastic binding model in 

which Upf1 routinely associates with ribosomes of all translationally active 

mRNAs and a ribosomal encounter with a PTC stabilizes this association, 

activates Upf1, and triggers the onset of NMD. As shown in Figure 4.1, I propose 

that during normal translation termination, Upf1 associates transiently with 

elongating ribosomes on all translating mRNAs via 40S subunit interaction. Such 
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association becomes stable or enhanced near the end of the ORF (or a pre-

termination region, which couples elongation and termination steps). This region 

might comprise signals or stabilizing factors that accommodate more stable Upf1 

binding. Another possibility is that ribosome dynamics in this region might be 

slow due to the local context of mRNP nature, allowing the stable binding of 

Upf1. During premature translation termination, Upf1 association with translating 

ribosomes becomes stable near PTCs, most likely due to an atypical 

conformation for a prematurely terminating ribosome (Figure 4.2). Ribosome-

bound Upf1 could then recruit Upf2 and Upf3 to prematurely terminating 

ribosomes, subsequently activating the Upf1’s ATPase activity to promote the 

dissociation and recycling of the terminating ribosome. After the release of the 

60S subunit and the deacylated tRNA from the terminating mRNP, Upf1 could 

remain bound with the 40S subunit to the mRNA, and promote translation 

reinitiation and ribosome recycling or/and recruit the mRNA degradation 

machinery for rapid mRNA decay. 
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Figure 4.1: Stochastic binding of Upf1 during normal translation 

termination. Upf1 may associate routinely with elongating ribosomes on all 

translating mRNAs. In this model, Upf1:ribosome association becomes stable 

near pre-termination region. 

Shaded brown ovals= ribosomal subunits; Black line= mRNA; 1 represents Upf1. 
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Figure 4.2: Binding of Upf1 is stabilized during premature translation 

termination. In this model, Upf1:ribosome association becomes stable near 

PTCs and the recruitment of Upf2 and Upf3 at prematurely terminating 

ribosomes triggers NMD. 

Shaded brown ovals=ribosomal subunits; Black line=mRNA; 1,2, and 3 represent 

Upf1,Upf2, and Upf3,  respectively. 
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Future directions 

NMD requires the functions of the core Upf factors, yet the timing and the 

location of the association of these factors with terminating ribosomes are only 

beginning to be understood. To gain a better understanding of how Upfs are 

targeted to mRNPs and how Upf1 functional activation governs NMD, several 

key questions need to be addressed. 

 

1. Do Upf2 and/or Upf3 manifest the same patterns and timing of ribosomal 

association as Upf1 or is their binding specificity suggestive of a role in 

targeting PTC-containing mRNAs?  

2. Does functional activation of ribosome-bound Upf1 at a PTC depend on 

the presence of Upf2 and/or Upf3?  

3. What parameters, e.g., sequence features or distance from a particular 

site, dictate Upf1 distribution near termination codons?  

4. Do the eRFs and/or Pab1 manifest the same termination region 

association as Upf1? If so, is there other evidence for the formation of a 

“pre-termination complex”?  
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APPENDIX A 

Cryo-EM structures of 40S ribosomal subunits and 80S 

ribosomes harboring bound Upf1 

 

 

 

 

 

 

Contributions to this appendix 

Robin Ganesan performed the affinity purifications of Upf1-bound 80S ribosomes 

and 40S subunits from total ribosome samples that I provided. Cryo-EM and data 

analysis was done in collaboration with the Spahn lab (Dr. Christian Spahn, Dr. 

Tatyana Budkevich, and Dr. Elmar Behrmann) from the Institute of Medical 

Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany. 
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Introduction 

Nonsense-mediated mRNA decay (NMD) is a cytoplasmic surveillance 

mechanism that degrades mRNA transcripts that contain PTCs (Kervestin and 

Jacobson 2012). Factors that regulate NMD in the yeast Saccharomyces 

cerevisiae include the highly conserved but non-essential proteins, Upf1, Upf2, 

and Upf3. Upf1, the key regulator of NMD, belongs to helicase superfamily I 

(SF1), with two RecA-like domains in tandem at its C-terminus (Kervestin and 

Jacobson 2012). Purified Upf1 has RNA-binding, as well as RNA-dependent 

ATPase and RNA helicase activities, both of which are required for NMD activity 

(Czaplinski et aI., 1998; Clerici et al., 2009). An N-terminal Zn2+-finger-like 

domain in Upf1 interacts with a C-terminal domain of Upf2, an acidic protein with 

multiple MIF4G (middle portion of eIF4G) domains. In turn, a MIF4G domain in 

the C-terminal half of Upf2 interacts with Upf3, a basic protein with an RNA 

binding domain (RBD) (Bhattacharay 2000; He et al., 1996; 1997). In vitro 

binding assays indicated that both human and yeast Upf1 interact with Upf3 via 

Upf2 (Chamieh et al., 2008; He et al., 1997). Overexpression of Upf1 can 

compensate for mutations in Upf2 and Upf3, but not vice versa (Maderazo et al., 

2000) and the maximal in vitro activation of the Upf1 ATPase and helicase 

activities requires both Upf2 and Upf3 (Chamieh et al., 2008). These 

observations imply that Upf1 is the key effector of NMD, whereas Upf2 and Upf3 

are likely to be regulators of Upf1 function. 

In addition to the presence of NMD factors, ongoing translation has been 

found to be a prerequisite for nonsense-mediated decay. Consistent with this 
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requirement, Upf proteins and mRNA decay intermediates are associated with 

polysomes (Atkins et al., 1995; 1997; Mangus and Jacobson 1999; Zhang et al., 

1997; Hu et al., 2010). Upf1 interacts with the release factors, eRF1 and eRF3  

(Czaplinski et al., 1998; Ivanov et al., 2008; Kashima et al., 2006). In human 

cells, Upf1 associates with eRF-bound ribosomes forming the SURF (Smg-1-

Upf1-Release Factors) complex (Kashima et al., 2006; Yamshita et al., 2009). 

Previous studies from our lab indicate that Upf1 associates preferentially with 

40S subunits, but not with 60S subunits (Ghosh et al., 2010; Min et al., 2013).  

We also identified a specific Upf1-interacting ribosomal protein, Rps26 of the 40S 

subunit, and such interaction depends on the Upf1 CH domain (Chapter II).  

In light of the known ribosome structure and the size of Upf1, interaction 

with Rps26 was not consistent with models of concurrent stable Upf1 interaction 

with the release factors (Min et al., 2013; Kervestin and Jacobson 2012). Given 

the fact that Upf1 interacts with factors involved in translation such as eIF3 

subunits, release factors, and other 40S subunit proteins (Min et al., 2013; Isken 

et al., 2008), as well as the dynamic alterations of ribosome structure during the 

elongation cycle (Scheres 2010), there may be multiple Upf1 binding sites on the 

ribosome as a consequence of distinct steps in Upf1 function (Fu and Frank 

2007). To gain structural insights into the topography and heterogeneity of Upf1 

association with the 40S subunit or 80S ribosome, we employed multiparticle 

cryoelectron microscopy (cryo-EM), to localize the 40S and 80S binding sites for 

Upf1. 
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Results and Discussion 

For purification of 40S subunits and 80S ribosomes, we employed the 

ribosomal purification protocols used in CHAPTER II and CHAPTER III, 

respectively. High-salt washed 40S ribosomal subunits were purified without prior 

puromycin release from cells harboring wild-type UPF1 and RNase I-digested 

80S ribosomes were purified by sucrose gradient sedimentation from cells 

harboring a upf1 C62Y allele (mutation in the N-terminal CH domain) that 

precluded Upf1:Upf2 interaction to reduce sample heterogeneity (See 

APPENDIX C for methods). To obtain ribosome preparations highly enriched for 

Upf1, we utilized the same affinity-based purification procedure described in 

CHAPTER III (using a strain over-expressing His-tagged Upf1 and Co2+-based 

affinity chromatography). Upf1-enriched samples, along with unpurified 

ribosomes and 80S ribosomes and 40S subunits ribosomes from a upf1Δ control 

strain, were frozen and sent to the Spahn lab for Cryo-EM analysis (Loerke and 

Spahn 2010). 

Cryo-EM was used to reconstruct 40S subunits associated with wild-type 

Upf1 and 80S ribosomes associated with mutant Upf1 C62Y. We used 

computational sorting (see APPENDIX C for methods) to obtain electron density 

maps for these ribosomal complexes associated with Upf1 (Figure A.1) at a 

magnification of ~42,000. The analysis of subunits associated with WT Upf1 led 

to the localization of Upf1 to a density proximal to the mRNA entry site (Figure 

A.1.A). Analyses of mutant Upf1 associated with 80S ribosomes identified two 

striking features when compared to control structures of 80S ribosomes (Figure 
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A.1.B): (i) an extra density on the head of the small 40S subunit that is close to 

the same location seen in our WT Upf1-associated 40S samples, and (ii) a 

pronounced P-protein stalk. The latter is usually very flexible and generally 

observed only upon ligand binding (Scheres 2010; Leschziner and Nogales 

2007), and presumably seen here as a consequence of Upf1 binding. The novel 

density observed on the head of the 40S subunit is smaller than that expected for 

the known size of Upf1, indicating that it likely represents the most stable region 

of interaction, or a primary binding site for Upf1 on the 80S ribosome. Both the 

40S and 80S Upf1-associated structures await further high resolution structures 

(that will be obtained when the Spahn lab commences use of its own direct 

electron detector) and analyses of the consequences of additional upf mutations. 

In summary, to gain insight into possible Upf1 functions other than the 

stimulation of mRNA decay we initiated high resolution analyses of Upf1 

positioning on the ribosome by cryo-EM. We localized a Upf1-binding position on 

ribosomes near the mRNA entry channel (Figure A.1). Upf1 positioned near the 

mRNA entry channel may somehow influence subunit interaction, and a 

conformation shift upon Upf1 ATPase activation may promote dissociation of 

post-terminating mRNPs of PTC-containing mRNAs.  
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Figure A.1. Reconstructions of WT and mutant Upf1 bound to yeast 40S 

ribosomal subunits and 80S ribosomes. Upf1-associated 40S subunits (A) 

and Upf1 C62Y-associated 80S ribosomes (B) were purified and subjected to 

cryo-EM and image reconstruction. Densities shown in orange on the head of the 

40S (yellow) and the P-stalk region of the 60S (blue) are not detected in 

conventional 40S or 80S samples. The shaded red line schematically 

approximates the mRNA track and the pink density inside of the 80S is the A-site 

tRNA. Sh=shoulder, a landmark for 40S topography. Magnification = 42,000x. 
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APPENDIX B 

SUPPLEMENTARY DATA FOR CHAPTER III 
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Table B.1 – Description of sequencing libraries 

Sample Strain 
background 

Growth  
condition 

Library 
Description 

Ribo-Zero 
Treatment 

(RZ) 
WT 25°C (+RZ) 

Total Ribo-Seq 

Wild-type 25°C Total ribosomes Ribo-Zero-
treated 

WT 25°C (+RZ) 

Upf1 Ribo-Seq 

Wild-type 25°C Upf1-enriched 
ribosomes 

Ribo-Zero-
treated 

WT 25°C (+RZ) 

mRNA-Seq 

Wild-type) 25°C mRNA-seq Ribo-Zero-
treated 

WT 25°C 

Total Ribo-Seq 

Wild-type 25°C Total ribosomes no treatment 

WT 25°C 

Upf1 Ribo-Seq 

Wild-type 25°C Upf1-enriched 
ribosomes 

no treatment 

WT 25°C 

mRNA-Seq 

Wild-type 25°C mRNA-seq no treatment 

WT 37°C 

Total Ribo-Seq 

Wild-type Temperature 
shift for 30 min 

at 37°C 

Total ribosomes no treatment 

WT 37°C 

Upf1 Ribo-Seq 

Wild-type Temperature 
shift for 30 min 

at 37°C 

Upf1-enriched 
ribosomes 

no treatment 

WT 37°C 

mRNA-Seq 

Wild-type Temperature 
shift for 30 min 

at 37°C 

mRNA-seq no treatment 

sup45-2  25°C 

Total Ribo-Seq 

sup45-2  25°C Total ribosomes no treatment 

sup45-2  25°C 

Upf1 Ribo-Seq 

sup45-2  25°C Upf1-enriched 
ribosomes 

no treatment 

sup45-2  25°C 

mRNA-Seq 

sup45-2  25°C mRNA-seq no treatment 

 



106 
 

Table B.2 – High-throughput sequencing statistics 

Sample # of reads rRNA reads Uniquely-

mapped reads 

Multi-mapped 

reads 

WT 25°C (+RZ) 

Total Ribo-Seq 

38,651,726 
 

1,990,332 
(5.1%) 

25,788,665 
(67%) 

9,880,453 
(25.6%) 

WT 25°C (+RZ) 

Upf1 Ribo-Seq 

38,189,844 
 

 

2,236,064 
(5.9%) 

21,629,480 
(57%) 

5,752,224 
(15.1%) 

WT 25°C (+RZ) 

mRNA-Seq 

38,372,050 
 

7,349,319 
(19.2%) 

7,345,863 
(19%) 

19,003,276 
(49.5%) 

WT 25°C 

Total Ribo-Seq 

32380744 27,971,204 
(86.4%) 

2,784,172 
(9%) 

1,287,171 
(4%) 

WT 25°C 

Upf1 Ribo-Seq 

32454417 27,176,422 
(83.7%) 

1,902,839 
(6%) 

527,284 
(2%) 

WT 25°C 

mRNA-Seq 

32264272 29,535,314 
(91.5%) 

1,190,774 
(4%) 

750,255 
(4%) 

WT 37°C 

Total Ribo-Seq 

32,406,539 
 

26,741,498 
(82.5%) 

3,993,082 
(12%) 

1,323,506 
(1%) 

WT 37°C 

Upf1 Ribo-Seq 

32,466,636 
 

28,494,922 
(87.8%) 

1,358,107 
(4%) 

357,653 
(2%) 

WT 37°C 

mRNA-Seq 

31,828,603 
 

30,127,321 
(94.7%) 

938,129 
(3%) 

428,721 
(1%) 

sup45-2  25°C 

Total Ribo-Seq 

47,151,534 
 

34,140,166 
(72.4%) 

8,950,331 
(19%) 

    3,808,964  
(8.1%) 

sup45-2  25°C 

Upf1 Ribo-Seq 

58,374,039 
 

37,470,026 
(64.2%) 

9,296,973 
(16%) 

    1,657,163  
(2.8%) 

sup45-2  25°C 

mRNA-Seq 

55,365,468 
 

49,355,990 
(89.1%) 

2,071,670 
(4%) 

    1,551,896  
(2.8%) 
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Table B.3 – Number of genes detected in each data set (RPKM ≥10) 

Sample # of genes # of genes (≥ 250nt) 

WT 25°C 

Ribo-Zero treatment 

 

5237 

 

 

4967 

WT 25°C  

 

4925 

 

 

4761 

WT 37°C  

 

5019 

 

4781 

 

sup45-2 25°C 

 

5122 4775 
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Figure B.1 – Assessment of the quality of sequence reads by FastQC 

analysis of wild-type 25°C libraries. The graphs for the libraries for (A) Total-

Ribo-Seq (B) Upf1-Ribo-Seq, and (C) mRNA-Seq are illustrated by Box-Whisker 

plots. The y-axis represents the quality scores; bases of good quality in green, 

bases of average quality in orange, and bases of poor quality in red. The quality 

scores of reads from this data set were high with most of the reads distributed in 

the green area. 

Similar results were observed in all four data sets (data not shown). 
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Figure B.2 – Upf1-bound 80S ribosomes are enriched at the 3’-ends of 

ORFs (and depleted at the 5’ends).  

Metagene analyses of ribosome density were derived for mRNAs (with ORF 

length greater than 250 nt) aligned from their start (A) or stop codon (B) and 

averaged across them. RPF counts fromthree independent experiments are 

shown in indicated colors.  

a.u. = arbitrary units 

Number of mRNAs analyzed shown in Table B.3. 
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Figure B.3 – Upf1 is preferentially associated with ribosomes near the 3’-

ends of ORFs.  

Calculated values of rrp50, rrp75, rrp90, rrp95, and rrp100 were plotted into 

frequency distribution curves to show the relative distributions of relative 

ribosome positions (RRP) for mRNAs in (A) wild-type 25°C, (B) wild-type 37°C, 

and (C) sup45-2 25°C. 

Solid lines and dashed lines represent total and Upf1-bound ribosomes 

respectively. 
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APPENDIX C 

MATERIALS AND METHODS 

 

CHAPTER II 

Construction of yeast strains with epitope-tagged ribosomal proteins 

The chromosomal RPL25 and RPS13 genes were tagged with HA and c-Myc 

tags by homologous recombination at their 3’ ends using a single step PCR-

mediated technique (Longtine et al., 1998). The oligonucleotide primers NA193 

and NA194 were used for tagging RPL25 and oligonucleotide primers NA191 

and NA192 were used for tagging RPS13 (Table C.1). 

 

Plasmid construction 

His-tagged ribosomal fusion proteins were constructed by PCR amplification 

using oligonucleotides listed in Table C.2 and yeast genomic DNA as template. 

The PCR products were digested with NdeI/BamHI and sub-cloned into the 

pET15b vector (Novagen).  

 

Affinity purification of ribosomes and western blot analysis 

Cell-free extracts were prepared as described previously (He et al., 2008). 

Extracts (15 A260) from cells expressing c-Myc tagged RPL25 or HA-tagged 

RPS13 were mixed with an equal volume of Buffer A (100 mM Tris-HCl, pH 7.5, 

24 mM Mg(OAc)2, 1 mM DTT, 1 mM PMSF, 50U/mL RNasin (Roche)) and with 
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30ul of anti-HA or anti-c-MYC agarose slurry (Pierce).These mixtures were 

applied to spin columns, which were then incubated at 4°C for 2 h, with gentle 

rocking. The columns were subjected to pulse centrifugation and the respective 

flowthrough fractions were collected. The columns containing epitope-tagged 

ribosomal proteins were then washed three times with 0.8 mL of Buffer W (100 

mM Tris-HCl, pH 7.5, 24 mM Mg(OAc)2, 1 mM DTT, 100 mM PMSF, 50U/mL 

RNAsin (Roche), protease inhibitor cocktail (Roche), 0.1% NP40), and were 

eluted with 2X non-reducing sample buffer (Pierce) at 100°C on a heat block for 

5 min. The eluted proteins were collected by pulse centrifugation, and 2 µl of β-

mercaptoethanol was added for SDS-PAGE analysis. For micrococcal nuclease 

treatment, 50 units of micrococcal nuclease (S7 nuclease, Roche) was 

preincubated with extract for 10 min at 25°C and digestion was then terminated 

by adding 100 mM of EGTA. Puromycin (1 mM, Sigma) pre-treatment of extracts 

was performed for 15 min at 4°C and 10 min at 37°C.  Aliquots of the initial 

extract as well as the supernatant and eluate of immunoprecipitations were 

subjected to SDS-PAGE analysis followed by western blotting using anti-Upf1 

(1:5000, (Belk et al., 1999), anti-c-Myc (1:5000, Sigma), or anti-HA (1:5000, 

Sigma) antibody.  

 

Purification of ribosomal subunits  

Cytoplasmic extracts were prepared as described previously with the omission of 

cycloheximide and inclusion of high salt (0.5 M KCl) (Mangus and Jacobson, 

1999). Extracts (20 A260) were centrifuged at 120,000 g for 10 h at 4°C on 34 mL 
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15%–40% sucrose gradients containing 10mM Tris-HCl, pH 7.4, 10 mM MgCl2, 

30 mM NH4Cl, and 1mM DTT. The gradients were scanned at A254 and the 

resulting absorbance profiles were used to determine the positions of the 

ribosomal fractions. Fractions corresponding to the 40S and 60S peaks were 

concentrated separately in Amicon Ultra-15 100K NMWL filters (EMD Millipore). 

The concentrated samples were diluted with Buffer E (10 mM Tris-HCl, pH 7.4, 

10 mM KCl, 1 mM MgCl2) and reconcentrated as before. The subunits were 

aliquotted and stored at −80°C. Concentrations of 40S and 60S subunits were 

determined by spectrophotometry, using 1 A260 = 50 nM for 40S and 1 A260 = 25 

nM for 60S subunits (Matasova et al., 1991).  The integrity and the quality of 

purified 40S and 60S subunits were determined by SDS-PAGE analysis followed 

by western blotting using anti-Rps6 (1:5000, Cell Signaling) and analysis of rRNA 

on denaturing agarose gels. 

 

Yeast two-hybrid screening 

Full-length yeast UPF1 and mutant derivatives of the gene, all fused to the DNA 

binding domain of transcriptional activator GAL4 (He et al., 1996; He and 

Jacobson, 1995), were used as bait against a two-hybrid library of ribosomal 

proteins fused to the GAL4 activation domain (Valasek et al., 2003). The UPF1-

GAL4 (DNA-binding domain) and RPS-GAL4 (activation domain) constructs were 

co-transformed into the two-hybrid tester strain GGY1::171 (Table 1). 

Transformants were incubated for 3-5 days at 30oC and qualitative and 

quantitative β-galactosidase activity was assayed as described previously (He et 

al., 1996).   
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In vitro binding assay 

E. coli BL21 (DE3) cells (New England BioLabs Inc.) were transformed with pET-

His-Rps26 and protein expression was induced by addition of isopropyl-b-D-

thiogalactopyranoside (IPTG) to a final concentration of 0.4 mM. Cells expressing 

the His-Rps26 fusion protein were lysed in Talon Xtractor Buffer (Clontech 

Laboratories Inc.). The lysate was centrifuged to remove cell debris, and the 

supernatant was incubated with purified yeast FLAG-Upf1 (a kind gift from S. 

Kervestin) for 1 h at 4oC. Binding was followed by incubation with FLAG beads 

(Sigma) for 4 h at 4oC. After extensive washing in Talon Wash Buffer (Clontech 

Laboratories Inc.), FLAG-Upf1 was eluted with 3XFLAG peptide and samples 

were analyzed on SDS-PAGE followed by western blotting using anti-His 

(1:7000; Maine Biotechnology) or anti-Upf1 (1:5000) antibody (Belk et al., 1999).  
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Table C.1 – Yeast strains used in this study 
 

Strains Genotype Source 

MBS MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 [rho+] L-o, 

M-o 

Amrani et al, 

2004 

NAY101 MATa ade2-1 his3-11,15  leu2-3,112  trp1-1 ura3-1 can1-100 [rho+] L-

o, M-o, upf1 :: HIS3 

Amrani et al, 
2004 

NAY215 MATa ade2-1 his3-11,15  leu2-3,112  trp1-1 ura3-1 can1-100 [rho+] L-

o, M-o, RPL25-MYC 

This study 

NAY217 MATa ade2-1 his3-11,15  leu2-3,112  trp1-1 ura3-1 can1-100 [rho+] L-

o, M-o, upf1 :: HIS3, RPL25-MYC 

This study 

NAY223 MATa ade2-1 his3-11,15  leu2-3,112  trp1-1 ura3-1 can1-100 [rho+] L-

o, M-o, RPS13-HA 

This study 

NAY225 MATa ade2-1 his3-11,15  leu2-3,112  trp1-1 ura3-1 can1-100 [rho+] L-

o, M-o, upf1 :: HIS3, RPS13-HA 

This study 
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Table C.2 – Oligonucleotides used in this study 
 

NA191 CTACGATGCTTTGGACATTGCTAACAGAATCGGTTACATTCGGATCCCCGGGTTAATTAA 

NA192 GAAAAATTTAAAAATAATATTAAATTTATTAATTAAACCAATTAGAGAATTCGAGCTCGTTTAAAC 

NA193 CCAAACTGGAAGTACGAATCCGCCACTGCCTCCGCTTTGGTCAACCGGATCCCCGGGTTAATTAA 

NA194 CAAAATATACATATAAAATAATGAAATAAATGATTTAAACACTGAATTCGAGCTCGTTTAAAC 
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CHAPTER III 

Plasmid construction  

Plasmids harboring 6xHis-Upf1 were generated by PCR and standard 

molecular cloning techniques (from 5′ to 3′: the TPI1 promoter, followed by an N-

terminal 6× Histidine tag fused in-frame with the UPF1 gene). Oligonucleotides 

containing restriction sites were used for PCR amplification, and the resulting 

fragments were inserted into yEplac112 after digestion of the respective 

restriction sites.  

 

Cells and treatments 

 Yeast strains were grown on -trp minimal medium overnight at 25°C, with 

shaking, and inoculated into large cultures with fresh -trp medium at an initial 

OD600 = 0.025 and then incubated at 30°C with shaking until the OD600 

reached 0.6-0.8. Cells were harvested by vacuum filtration on 80 um filters 

(Millipore). Cells were scraped off the filter with a chilled spatula, resuspended in 

lysis buffer (10 mM Tris, pH 7.4, 100 mM NaCl, 30 mM MgCl2, 1 mM  DTT, 1 

mM PMSF, 200 ug/ml Heparin), and dripped into liquid N2. Frozen cell pellets 

were cryogenically ground at 10Hz for 15min in a mixer mill (Retsch). Frozen cell 

powder was thawed on ice and centrifuged for 10 min at 5000 rpm.  The 

supernatant was centrifuged at 13,000 RPM for 10 min at 4°C. Absorbance at 

260 nm was measured and 1 OD260 unit was treated with 0.15 ul of RNase I 

(100 Units/ul of Ambion) for 1 hr at room temperature with rotating. 5 ul of 
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Superase-In (20 U/ul; Ambion AM2694) was added to the RNase I-treated 

samples and subjected to sucrose gradient centrifugation (see below). 

 

Ribosome isolation 

 Lysates prepared as above were loaded on 34 ml 10-50% sucrose 

gradients, prepared in low-salt polysome buffer (0.5 M Tris acetate pH 7.4, 0.5 

M NH4Cl, 0.12 M MgCl2, 10 mM DTT), and centrifuged at 28,000 rpm in an SW-

28 Ti rotor for 3.15 hr at 4°C. Sucrose gradient fractions containing 80S 

ribosomes (monosomes) were collected and concentrated with 100 kDa Amicon 

filter units (Millipore) to a volume of about 500-1000 ml. The retentate was 

exchanged with ribosome storage buffer (10 mM Tris, pH 7.4, 50 mM KCl, 50 

mM NaCl, 10 mM MgCl2, 1 mM DTT, 10 mg/ml Heparin), and saved in aliquots 

at -80°C. 

 

Affinity purification of Upf1-bound ribosomes 

 Ribosomes (0.05 pmol) were incubated with 50 µl of magnetic Dynabeads 

(Invitrogen, 10103D) pre-equilibrated with Buffer A (50mM Tris 7.4, 1M NaCl, 1% 

NP40, 0.1% SDS, 0.5% NaDOC, and 50x protease inhibitor cocktail [Roche]) for 

10 min at 4°C. The magnetic beads were washed five times in Buffer A. His-

Upf1-associated mRNP complexes were eluted with Buffer A supplemented with 

100 mM imidazole (pH 7.0) by incubating for 10 min at 4°C. The eluted His-Upf1-

80S samples were combined and concentrated by centrifugation through 100 µl 

sucrose cushions (50 mM Tris, pH 7.0, 500 mM KOA, 25 mM Mg[OAc]2, 5 mM β-
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mercaptoethanol, 1 M sucrose, protease inhibitor, RNase inhibitor) at 50,000 rpm 

for 180 min in a TLS 55 rotor at 4°C. The resulting pellet was dissolved in 30 ul of 

Buffer B (20 mM HEPES, pH 7.0, 100 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 0.5 

mM spermidine, 0.05% Nikkol, 0.5% protease inhibitor, and 0.1 U/ml RNAsin) for 

1 hr on a rotating shaker at 4°C. Aliquots of concentrated Upf1-associated 

ribosomes were flash frozen in liquid nitrogen and stored at −80°C. 
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Mass spectrometry 

After affinity purification, Upf1-eniriched ribosomes were subjected to 8% 

SDS-PAGE analysis. Gels were silver stained using ProteoSilver Silver Stain Kit 

(Sigma, PROTSIL1-1KT) and processed for mass spectrometry (MS) analysis. 

Destained gel bands were denatured, reduced with dithiothreitol, and alkylated 

with iodoacetamide, and subjected to in-gel trypsin digestion. The resulting 

peptides were subjected to Liquid Chromatography/Tandem MS Analysis (LC-

MS) on a Thermo LTQ. Protein identification was performed with the Mascot 

Server (version 2.4; Matrix Sciences, Ltd.) using the UniProt index of 

Saccharomyces cerevisiae. Quantitation was performed using Mascot Distiller 

(version 2.4; Matrix Science, Inc.). 

 

RNA isolation and sequencing library preparation 

RNA was purified by hot acid phenol extraction, precipitated by ethanol 

with glycogen (Ambion) as a coprecipitant, and resuspended in 10 μL of 10 mM 

Tris, pH 8, and analyzed on 15% TBE-Urea polyacrylamide gels (Invitrogen). The 

bands around 25–34 nt were excised, and RNA was eluted in 300 μL of an 

elution buffer (20 mM Tris, pH 7.0, 2 mM EDTA, 0.5 M ammonium acetate) 

overnight at room temperature. Gel particles were eliminated using a spin-X 0.22 

mm column (Corning Costar), followed by precipitation and resuspension in 10 

μL of 10 mM Tris, pH 8. For rRNA-depleted samples, gel-purified small RNA 

fragments were depleted of rRNA using Ribo-Zero Magnetic Gold Kit (Epicenter, 

MRZY1306). Both ends of small mRNA fragments were modified as follows: The 
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3’ ends of mRNA fragments were dephosphorylated by addition of 10 U of T4 

Polynucleotide Kinase (PNK) in 1x PNK buffer (New England Biolabs, MS2018) 

for 60 min at 37°C, and the reaction mixture was inactivated for 5 min at 80°C. 

The 5’ends of mRNA fragments were phosphorylated by addition of 10 U of T4 

PNK in 1x PNK buffer with 2mM ATP (New England Biolabs, MS2018) for 60 min 

at at 37°C. End-cured small mRNA fragments were used as starting material in 

Illumina Tru-Seq Small RNA Sample Preparation Kit (Illumina, RS-200-0012). 

After reverse transcription, sequencing adapters were ligated onto both ends of a 

DNA molecule. Ligated cDNA fragments were size-selected for 250-bp by gel 

electrophoresis. Libraries were subjected to amplification using 14-16 PCR 

cycles, and sequenced on an Illumina HiSeq 2000. 

 

mRNA sequencing library construction 

 mRNA-Seq libraries were prepared in two ways; (i) total RNA was 

prepared with SDS/hot acid phenol and chloroform. mRNA was purified from total 

RNA using oligo-dT-coated magnetic beads (Dynabeads mRNA purification kit) 

(Invitrogen, 610-06). mRNA was fragmented in alkaline solution [2 mM EDTA, 

100 mM Na2CO3 (pH 9.2)], the fragments were loaded onto a 15% TBE urea gel, 

and the 25- to 34-nt region was cut from the gel. Further steps in library 

preparation were identical to those used for ribosomal footprints. (ii) total RNA 

was prepared with SDS/hot acid phenol and chloroform and fragmented in 

alkaline solution [2 mM EDTA, 100 mM Na2CO3 (pH 9.2)]. The total RNA 

fragments were loaded onto a 15% TBE urea gel, and the 25- to 34-nt region 
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was cut from the gel. Gel-purified small RNA fragments were depleted of rRNA 

using Ribo-Zero Magnetic Gold Kit (Epicenter, MRZY1306). Further steps in 

library preparation were identical to those used for ribosomal footprints. 

 

Bioinformatics analysis 

Data analyses, including calculation of read density, RPKM (reads per 

kilobase per million total reads) for mRNAs, metagene analysis, and RRP 

(relative ribosome position), were performed using custom Perl or Python scripts 

(see below for computational methods). Read densities were visualized using the 

Integrative Genomics Viewer (IGV). 

 

Footprint alignment 

 Sequencing was performed by BGI, and “cleaned” sequences between 15 

and 45 nt in length were provided in fasta and/or fastq format.  Low-quality read 

filtering and adaptor trimming was performed as part of the standard BGI data 

processing pipeline.  The yeast S288C reference sequence (release R64-1-1) 

and the corresponding rna_genomic.fasta files were downloaded from SGD 

(yeastgenome.org). Sequence libraries were filtered to rRNA by aligning to 

rna_genomic.fasta using bowtie2. Unaligned sequences were then aligned to the 

genome using Bowtie (version 1), allowing two mismatches. Only uniquely 

aligned reads were included in further downstream analysis. However, when we 

used multi-mapped alignments (i.e., sequences that matched to multiple places 

in the genome), there was no apparent difference in downstream analysis. 
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Translation efficiency (or Ribosome occupancy) 

Translation efficiency is defined as log2[(Footprints RPKM/mRNA RPKM) If a 

gene had a log2 (TE change) above 1.0 it was considered up-regulated and, if 

below 1.0, as down-regulated. 

 

Comparison with previously published data 

 Ribo-Seq and RNA-Seq data for yeast cells in the absence of drug 

treatment or with cycloheximide were downloaded from the Gene Expression 

Omnibus (Accession number: GSE52968, Guydosh et al., 2013; GSE33671, 

Smith et al., 2014). All sequencing data were processed as above for data 

generated in this study. For NMD substrate lists, we used mRNAs identified in 

microarray studies of upf1Δ cells (Feng et al., 2003) or Upf1-TAP IP (Johannsson 

et al., 2007), focusing on those mRNAs manifesting twofold or larger increases 

relative to controls. 

 

Computational Methods 

 Data processing followed the scheme of Becker et al. [Selective ribosome 

profiling as a tool for studying the interaction of chaperones and targeting factors 

with nascent polypeptide chains and ribosomes (2013) Nat. Protocols 8, 2212–

2239] and utilized the Python scripts included as Supplementary Materials in 

their publication.  The scripts were downloaded and modified to run as 

standalone Python code.  Custom Perl programs (“wrappers”) were written to call 

the respective Python scripts for each yeast chromosome and aggregate the 
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output.  The Python scripts, their general description, and the Perl wrappers are 

given in Table C.3.  Additional Perl programs were written for cases specific to 

our needs. 

 Steps in the data processing were as follows: 

1) Sequence data preprocessing.  Sequencing was performed by BGI, and 

“cleaned” sequences between 15 and 45 nt in length were provided in fasta 

and/or fastq format.  Low-quality read filtering and adaptor trimming were 

performed as part of the standard BGI data processing pipeline. 

 

2) Alignment.  The yeast S288C reference sequence (release R64-1-1; 

sacCer3) and the corresponding rna_genomic.fasta file were downloaded from 

SGD (yeastgenome.org). Sequence libraries were filtered to remove sequences 

corresponding to RNA genes (primarily rRNA) by aligning to rna_genomic.fasta 

using bowtie2 version 2.1.0 with default parameters.  Unaligned sequences were 

then aligned to the genome using Bowtie version 0.0.19, allowing two 

mismatches and retaining only unique alignments (-v2 -m1). Alignments were 

output in default bowtie format.  Both alignment runs were performed on the 

UMass Green High Performance Computing Cluster (GHPCC). 

 

3) Center-weighted read density files. The center_weighting_v1.0.pl Perl 

program was run to call supp_note_2.py and generate a directory of center-

weighted read density files, one for each chromosome and strand.  All read 

lengths were included in the analysis.  Additionally, total read counts for each 
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chromosome were calculated (supp_note_3.py) and written to a file included in 

the output directory for use in downstream analyses.  [Note: By including all read 

lengths, some as short as 15 bases, the offset for center-weighting is 7 bases.  

For long reads, this results in dividing the density over many bases, thus 

increasing the “fuzziness” of the mapping, e.g., for a 28-base read, the density 

would be allocated to bases 8-21 (1/14 for each base).  If analysis were restricted 

to reads ≥ 27 bases (offset of 13), the density for a 28-base read would be 

allocated only to bases 14-15 (0.5 to each).] 

 

4) Normalized read density.  The normalize_reads_v1.0.pl Perl program was 

run to call supp_note_6.py and generate a directory of center-weighted read 

density files with values normalized to reads per million total mapped reads 

(RPM).  For visualization in the Integrated Genomics Viewer (IGV), the 

normalized read density files were converted to a single file in WIG format using 

the Perl program make_genomic_wig.pl.  For faster loading, WIG files were 

subsequently converted to tdf format using IGV Tools.  [Note: Since the input 

read density files are already normalized to RPM, the “Normalize Coverage Data” 

option should be left unchecked in the IGV Preferences (“Tracks” tab).] 

 

5) Genomic feature directories.  The parse_features_v1.1.pl Perl program 

was used to obtain a directory of genomic feature files, one for each 

chromosome and strand.  Input to the program is a tab-delimited file of genomic 

features (e.g., genes, UTRs) with feature ID, start, end, strand (+/-) on each line. 
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Coordinates are 1-based relative to the top strand (i.e., start < end). Data for 

sacCer3 genes are downloaded from the UCSC Table Browser. [Note: 

Coordinates downloaded from UCSC are 0-based half open (0-based start, 1-

based end) and must be converted to 1-based fully closed (1-based start, 1-

based end) for input to parse_features_v1.1.pl.] 

 

6) Read density per gene (or other feature).  The read_density_per_gene.pl 

Perl program was run to call supp_note_4.py and calculate read density per gene 

or other feature.  Inputs are a directory of center-weighted read densities (step 3) 

and a directory of feature files (step 5).  Output is a directory of read densities per 

feature files, one for each chromosome/strand. 

 

7) Feature RPKM.  The compare_gene_expression.pl Perl program was 

used to call supp_note_5.py and summarize read density per feature data.  Input 

is a pair of read density per gene/feature directories (step 6).  Output is a single 

file aggregating the results, expressed as reads per kilobase per million reads 

(RPKM), for each of the two input directories.   

 

8)  Metagene analysis.  The Perl programs genomic_meta_init.pl and 

genomic_meta.pl were used to call supp_note_12.py and supp_note_13.py to 

calculate meta-gene values (relative ribosome occupancy averaged over all 

genes) measured from the initiator or terminator codons, respectively. The 

following filtering criteria were used for meta-gene calculations; genes with 
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greater than 10 RPKM and an ORF length of at least 250 nt. Programs output the 

results as tab-delimited text (coordinate, value), which can be plotted using R or 

other statistical software (Excel, Prism).  

 

9) Relative ribosome position.  Relative ribosome position (RRP) is a metric 

we devised to identify prematurely terminating mRNA’s.  RRP is defined as the 

distance from the initiation codon, expressed as fraction of gene length, at which 

a given percentage of ribosome protected fragments (reads) occur, e.g., rrp50 is 

the location where 50% of the total reads mapped to that gene have been 

counted (starting from the initiator ATG).  A low RRP value would indicate that 

ribosomes are located disproportionately early on the mRNA because premature 

termination results in the majority of reads skewing towards the 5’ end of the 

mRNA. 

 The Perl program find_PTC_v1.1.pl takes as input a directory of center-

weighted read densities and a genomic feature directory (e.g., ORF’s) and 

calculates values of rrp50, rrp75, rrp90, rrp95, and rrp100 for each feature.  The 

initial implementation of the program excluded genes <500 bp in length, although 

this is easily changed. 
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Table C.3 – Computer programs used for data processing 

Python script Function Wrapper program 

supp_note_2.py Center Weighting center_weighting_v1.0.pl 

supp_note_3.py Total reads center_weighting_v1.0.pl 

supp_note_4.py Read density per gene read_density_per_gene.pl 

supp_note_5.py Compare gene expression levels compare_gene_expression.pl 

supp_note_6.py RPM-normalized read densities normalize_reads_v1.0.pl 

supp_note_12.py Meta-gene analysis from start codon genomic_meta_init.pl 

supp_note_13.py Meta-gene analysis from stop codon genomic_meta.pl 

Additional data processing 

 Separates genomic feature file by 

chromosome/strand 

parse_features_v1.1.pl 

 Generates single WIG file from 

directory of center-weighted read 

density files 

make_genomic_wig.pl 

 Calculates relative ribosome position 

(RRP) 

find_PTC_v1.1.pl 
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Appendix A 

Cryo-electron microscopy and image processing 

          A drop of a solution (~30 pmol/ml) of the ribosomal complexes is applied to 

a copper cryo-EM grid coated with a holey carbon film, blotted, immediately 

plunged into liquid ethane, and then super-cooled with liquid nitrogen. (Shock 

freezing prevents the formation of ice crystals, leading to a thin layer of vitreous 

ice that surrounds the macromolecular complexes.) Preparation of grids is 

facilitated by use of a semi-automated plunge-freezer (Vitrobot®, FEI). Small 

data sets (500 to 1,500 micrographs) were collected for initial structure 

determination using a Tecnai Spirit microscope, providing an assessment of 

sample quality (homogeneity, presence of the ligands). Digital image processing 

using the SPIDER/WEB software packages (Frank et al., 1996) was employed to 

determine macromolecular structures.  
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