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Abstract 

During my thesis work I studied the expression and potential function of brain 

expressed microRNAs (miRNAs) in human prefrontal cortex (PFC). Initially, I 

used combinatorial computational analysis and microarray data to identify 

miRNAs that are predicted with high probability to target the human Brain 

Derived Neurotrophic Factor (BDNF) 3’ Untranslated Region (3’UTR) and are 

expressed in moderate to high levels in adult human prefrontal cortex. A 

subset of 10 miRNAs segregating into 5 different miRNA families (miR-30a-d, 

miR-103/107, miR-16/195, miR-191 and miR-495) met the above criteria. I 

then designed a protocol to detect these miRNAs with Locked Nucleic Acid 

(LNA)  in situ hybridization in human prefrontal cortex and determine their 

layer and cellular expression patterns. LNA in situ revealed differential lamina 

and cellular enrichment of BDNF-related miRNAs. As an example, miR-30a-

5p was found to be enriched in large pyramidal neurons of layer 3, which was 

verified using laser capture microdissection of layer 3 pyramidal neurons and 

quantitative Real Time Polymerase Chain Reaction (qRT-PCR) following 

dissection of upper and deeper layers of human PFC. Parallel to this, I used 
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miRNA qRT-PCR to determine the developmental expression of miRNAs 

using postmortem PFC tissues ranging from embryonic age to old adulthood 

and compared miRNA to BDNF protein levels. My results revealed a robust 

inverse correlation between BDNF-related miRNAs and BDNF protein during 

late maturation and aging of human prefrontal cortex. In vitro luciferase 

assays and/or lentivirus mediated neuronal miRNA overexpression 

experiments validated that at least two miRNAs, miR-30a-5p and miR-195,  

target human BDNF 3’UTR and mediate its translational repression.  

 In the second part of my thesis work I measured levels of miR-30a and 

miR-195 in the prefrontal cortex of patients with schizophrenia and compared 

them with levels of BDNF protein and BDNF-related GABAergic mRNAs. 

According to my results differences in miR-195 levels in a subset of subjects 

diagnosed with schizophrenia were found to be associated with disease 

related changes in BDNF protein levels and deficits in BDNF dependent 

GABAergic gene expression.  

 In the last part of my work I focused on miR-30b, another member of the 

miR-30 family, which I found to be  reduced in the prefrontal cortex of female 
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but not male subjects with schizophrenia. More importantly, disease related 

changes in miR-30b levels were strongly associated with the age of onset of 

the disease. Additional experiments in mouse cortex and hippocampus 

revealed a gender dimorphic expression pattern of this miRNA with higher 

expression in female brain. 

 Collectively, my results suggest that miRNAs could participate in novel 

molecular pathways that play an important role during cortical development 

and maturation and are potentially linked to the pathophysiology of 

neuropsychiatric disease. 
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CHAPTER I - INTRODUCTION 

      MicroRNAs 

The consensus of the scientific community a few decades ago was that the 

vast majority of non-protein coding genomic regions were either extraneous 

DNA sequences filling the gaps between protein coding genes or just 

evolutionary remnants of the integration of viral DNA, and that non-coding 

RNAs with the exception of the well characterized ribosomal, messenger and 

transcript RNAs, were of limited biological importance. The finding that small 

nuclear RNAs (snRNAs) participate in alternative splicing of protein coding 

transcripts, thus greatly increasing the number and diversity of potential 

protein products (Tarn and Steitz 1997), was the first indication that parts of 

the previously named ―junk DNA‖ are important regulators of biological 

complexity. In the years that followed the discovery of a plethora of small non 

coding RNAs demanded the modification of the central dogma of biology and 

revolutionized biomedical research. Surprisingly, the completion of genome 

projects for different species, including human, revealed that the number of 

protein coding genes is not necessarily higher in species that are higher in the 
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evolutionary ladder (Taft et al., 2007). On the other hand, the number of non-

coding RNAs was shown to reflect an evolutionary hierarchy (Taft et al., 

2007).   

MicroRNAs (miRNAs) are a subcategory of small non coding RNAs that 

are evolutionary conserved and are predicted to mediate the 

posttranscriptional regulation of at least 30% of protein coding genes (Bartel 

2004; Filipowicz et al., 2008). They are derived from longer precursor RNA 

molecules and their biogenesis pathway consists of two sequential cleavage 

events by nuclear and cytoplasmic RNase III enzymes (Lee et al., 2002; 

Gregory et al., 2004; Filipowicz et al., 2008). Specifically, miRNAs are initially 

transcribed from intergenic or intronic genomic regions to form the primary 

miRNA precursor molecules known as pri-miRNAs (Lee et al., 2002; Gregory 

et al., 2004). Pri-miRNAs contain a 5‘ methyl-guanosine cap and a 3‘ 

polyadenylated tail, vary greatly in length from approximately 0.1 to 100 kb 

and can contain a single or multiple miRNA sequences (Lee et al., 2002; 

Bartel, 2004). They are initially cleaved in the nucleus by the microprocessor 

complex, which in mammalian cells contains the RNase III enzyme Drosha 
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and the RNA-binding protein DGCR8 (Gregory et al., 2004; Zeng et al., 

2005). The cleaved precursor is a hairpin structured RNA molecule of 

approximately 60-80nts and is known as pre-miRNA. Pre-miRNAs are 

exported to the cytoplasm through the combined action of RAN-GTPase and 

Exportin 5 (Lee et al., 2002; Yi et al., 2003; Lund et al., 2004). Once in the 

cytoplasm another RNase III enzyme called Dicer cleaves them further and 

produces the mature miRNA duplex, which consists of two complementary 

RNA strands of 18-23 nts in length (Bartel, 2004; Filipowicz et al., 2008). The 

miRNA duplex is then unwound through the action of an elusive helicase and 

only one of the two strands is loaded to the miRNA RNA-Induced Silencing 

Complex (miRISC), which is the miRNA ribonucleoprotein effector complex 

and contains among others members of the Argonaute protein family (Bartel, 

2004; Filipowicz et al., 2008). The RISC complex scans mRNAs for regions of 

complementarity to the mature miRNA, and depending on the degree of 

complementarity and the type of Argonaute proteins, results in either 

translational inhibition or mRNA cleavage. In mammalian cells the target 
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regions are predominantly in the 3‘ Untranslated Region (3‘UTR) of the 

mRNA (Bartel et al., 2004; Filipowicz et al., 2008).  

Interestingly, recent evidence has suggested that miRNA-mediated 

posttranscriptional inhibition might be a dynamic process, which involves in 

some cases the transport of the repressed target mRNA to cytoplasmic loci 

called P-bodies, where the mRNA is either degraded or stored and released 

following specific stimuli (Chan and Slack 2006; Bhattacharyya et al., 2006), 

including synaptic activation in neuronal P-bodies (Cougot et al., 2008). In a 

similar note, in the nervous systems of flies neuronal activity results in the 

degradation of a component of miRISC (Ashraf et al., 2006), which is 

expected to reset the process of miRNA targeting.  As far as the translational 

repression effect, which is the predominant one in mammals, it is believed 

that miRNAs can inhibit translation of their targets at the initiation or 

elongation step (Liu 2008, Filipowicz et al., 2008). However, the details of the 

mechanism of action of miRNAs are still under debate, especially since other 

functions different from translational inhibition and mRNA cleavage have been 

proposed, ranging from transcriptional gene silencing through chromatin 



 5 

modifications (Kim et al., 2008) to miRNA-mediated translational activation 

(Vasoudevan et al., 2008).  

Numerous studies have suggested that miRNAs are important regulators 

of gene expression that participate in a variety of biological processes (Chang 

and Mendell, 2007). For example the first two discovered miRNAs lin-4 (Lee 

et al., 1993) and later let-7 (Reinhart et al., 2000) were shown to target genes 

crucial for developmental timing in C-elegans (lin-14 and lin-28 respectively) 

by interacting with their 3‘UTR. Subsequent discoveries of miRNAs in flies, 

mice and humans revealed that these well conserved small non coding RNAs 

participate in multiple biological pathways having to do with the control of 

cellular growth and apoptosis (Cimmino et al., 2005), fat metabolism (Xu et 

al., 2003) and  cellular and chemical differentiation (Chen et al., 2004; Chang 

et al., 2004). 

 In the vertebrate nervous system miRNAs have already been shown to 

regulate neuronal development, differentiation and synaptic plasticity 

(Giraldez et al., 2005; Schratt et al., 2006; Visvanathan et al., 2007; Makeyev 

et al., 2007).  Maternal-zygotic disruption of Dicer in zebrafish resulted in 
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aberrations in brain morphogenesis, which were partly rescued upon 

overexpression of miR-430 (Giraldez et al., 2005). Intriguingly, recent 

evidence has demonstrated that in mouse neuronal progenitors polarized 

proteins determine the levels of Ago1 and miRNA expression in daughter 

cells, with let-7 miRNA being not only required, but also sufficient for neuronal 

differentiation (Schwamborn et al., 2009). The brain enriched miR-124 was 

also shown to promote neuronal differentiation by inhibiting non-neuronal 

genes (Visvanathan et al., 2007; Makeyev et al., 2007). Furthermore, miR-

134 was found to be present in mouse hippocampal dendritic spines and to 

regulate synaptic plasticity by inhibiting LIM Kinase 1 (Schratt et al., 2006). 

More importantly, brain expressed miRNA miR-132 was proposed to be 

responsive to neuronal activity and to regulate axonal and dendritic length (Vo 

et al., 2005; Weyman et al., 2008).  

The number of human diseases where miRNAs are implicated keeps 

rising. These range from examples of miRNAs that can act as oncogenes 

(Gabriely et al., 2008) or onco-suppressors (Cimmino et al., 2005) to the 

impressive example of a single nucleotide change in sheep myostatin 3‘UTR 
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that creates an illegitimate target site for muscle enriched miR-1 and miR-206 

and results in a muscle hypertrophy phenotype (Clop et al., 2006).  The 

potential role of miRNAs for neuropsychiatric disease, though, has only 

recently become apparent in the light of the findings that disruption of miRNA 

processing genes such as Dicer and DGCR8 can promote neurological (Kim 

et al., 2007; Cuellar et al., 2008; Davis et al., 2008) or psychiatric phenotypes 

(Stark et al., 2008). Specifically, conditional deletion of Dicer in mouse 

forebrain neurons resulted in increased postnatal apoptosis, which lead to 

reduced brain size and enlarged lateral ventricles (Davis et al., 2008). In 

addition, abnormalities in both axonal pathfinding and dendritic arborization 

were observed in this study (Davis et al., 2008), suggesting that Dicer plays a 

critical role in the mammalian nervous system. Additional studies with cell-

specific ablation of Dicer verified its importance for the control of neuronal 

survival (Kim et al., 2007; Cuellar et al., 2008). Parallel to the above findings, 

mice that are heterozygotes for DGCR8 exhibited alterations in dendritic 

morphology, and a behavioral phenotype reminiscent of schizophrenia (Stark 

et al., 2008).The fact that the genomic region that harbors the human DGCR8 



 8 

gene is disrupted in the DiGeorge microdeletion syndrome (Velo-cardio-facial 

syndrome) (Gothelf et al., 2007), which conveys a close to thirty fold increase 

in susceptibility for schizophrenia and schizoaffective disorders (Murphy et al., 

1999), implies a link between miRNAs and psychiatric disease. Indeed, during 

the last 3 years multiple studies have provided evidence supporting the 

significance of miRNAs in the pathophysiology of brain disorders such as 

schizophrenia (Perkins et al., 2007; Beveridge et al., 2008), Alzheimer‘s 

disease (Wang et al., 2008b), Tourette‘s Syndrome (Abelson et al., 2005) and 

Parkinson‘s disease (Kim et al., 2007; Wang et al., 2008a).   

 

Schizophrenia 

Schizophrenia is a debilitating psychiatric disease that is known to affect 

approximately 1% of the population with an age of onset during late 

adolescence to young adulthood (Tsuang, 2000).  Due to its severity and 

prevalence in early age schizophrenia has a major socio-economical impact 

in our society (Kooyaman et al., 2007; McEvoy et al., 2007). Epidemiological 

research, including studies in monozygotic twins, has suggested a genetic 
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component for schizophrenia and a large number of genes have already been 

linked to the disease (Karayiorgou and Gogos, 1997; Tsuang, 2000). On the 

other hand, most schizophrenia susceptibility genes seem to have a minor if 

any contribution to the pathogenesis of the disease (Tandon et al., 2008). In 

addition, epigenetic mechanisms have recently been suggested to be an 

integral part of the pathophysiology of schizophrenia (Tremolizzo et al., 2003; 

Tamminga et al., 2005; Huang et al., 2007). Parallel to this, prenatal and 

perinatal environmental stressors, such as infections and hypoxia, have been 

shown to increase the possibility of developing schizophrenia (Kroll, 2007; 

Verdoux, 2004), suggesting a neurodevelopmental aspect for this 

complicated mental disorder.  

 The age of onset of schizophrenia is between 15 to 40 years old with very 

few cases diagnosed at earlier ages (childhood onset schizophrenia) 

(Lieberman et. al., 2001) and even fewer above the age of 40 (late onset 

schizophrenia) (Howard et al., 2000). The age of onset of the disease varies 

by gender, since in females there is usually a later age of onset (Hafner et al., 

1998). The symptomatology of the disease is categorized into positive 
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symptoms such as delusions, hallucinations and disorganized thoughts;   

negative symptoms such as social withdrawal, flat affect or even catatonia 

and anhedonia; and cognitive symptoms, such as working memory, attention 

allocation and executive functioning deficits (Lecrubier et al., 2007).  Based 

on which of the above symptoms are more predominant, schizophrenia is 

currently classified in 5 different categories/subtypes: paranoid, catatonic, 

undifferentiated, disorganized and residual according to the fourth edition of 

the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) 

(Andreasen et al., 1993).   

Before the discovery of the first antipsychotic medications, patients with 

schizophrenia were held under inhumane conditions in institutions and their 

uncontrolled symptoms often caused families and caregivers insurmountable 

psychological pressure. In the midst of this desperate situation, the first 

proposed treatment for the disease was, ironically, lobotomy. Despite the fact 

that it involved extreme risk for the patient‘s life and resulted in catastrophic 

effects in their cognitive status, frontal lobotomy was considered the practice 

of choice by some mental institutions (Kucharski, 1984). The discovery of the 
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first antipsychotic medications in 1952 brought a breakthrough in the way 

physicians treated patients with schizophrenia, but these drugs were not 

devoid of dangerous side-effects and were only effective against positive 

symptoms (Karpenter and Koenig, 2007). The second-generation 

antipsychotics, although devoid of a certain type of side effects characteristic 

of typical antipsychotics, were far from what one would consider as a cure, 

especially since negative and cognitive symptoms were still not effectively 

alleviated (Leucht et al., 2009). However, it provided the first clue that 

neurotransmitters and especially dopamine might be important for the 

pathophysiology of the disease, since dopamine receptors were the main 

targets of both typical and atypical antipsychotic drugs. This lead to multiple 

studies that verified the relevance of dopaminergic signaling in schizophrenia 

(Baumeister and Francis, 2002; Toda and Abi-Dargham, 2007). Subsequent 

studies however, added additional layers to the complexity of the disease, 

since glutaminergic, and GABAergic systems proved of comparable 

importance (Stone et al., 2007; Conn et al., 2008; Paz et al., 2008; Akbarian 

et al., 1995; Lewis, 2000). Notably, the findings that pharmacological 
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blockade of NMDA receptors in humans can lead to schizophrenia-like 

psychosis or can exacerbate an existing condition (Mechri et al., 2001), 

paired with animal studies outlining the interplay of NMDA receptors and 

dopaminergic pathways (de Bartolomeis et al., 2005) suggested that the 

pathways affected in schizophrenia are multiple and possibly interconnected.   

 Notably, multiple neuroimaging, postmortem and animal model studies 

have provided considerable evidence suggesting that abnormal circuits within 

the prefrontal cortex are related to the disease (Lewis et al., 2004; Wobrock et 

al., 2008; Woodward et al., 2009). Furthermore, processes such as excessive 

synaptic elimination (McGlashan and Hoffman, 2000) and abnormal neuronal 

migration (Roberts, 2007) have been proposed to be linked to its 

pathophysiology. However, none of the studies so far have provided enough 

evidence to explain the pathogenesis of schizophrenia or even elucidate the 

mechanisms that could lead to such diverse biochemical and physiological 

abnormalities.  

 

      Prefrontal Cortex 



 13 

The prefrontal cortex is part of the anterior frontal lobe, which is responsible 

for high order cognitive functions, is particularly developed in primates and 

especially humans (Smith and Jonides, 1999; Miller and Earl, 2000), and has 

been shown to be affected in  psychosis (Lewis et al., 2004; Woodward et al., 

2009). Subregions of the prefrontal cortex such as the dorsolateral, 

ventromedial and orbitofrontal prefrontal areas have been shown to contain 

the neuronal circuits that are responsible among others for working memory, 

attention allocation, goal directed behavior, social behavior and decision 

making (Smith and Jonides, 1999; Funahashi, 2001; Lewis and Lieberman, 

2000).  Not surprisingly, lesions in prefrontal areas can result to a various 

symptoms that reflect deficiencies in the pre-mentioned high order cognitive 

functions (Bogousslavsky, 1994; Haddon and Killcross, 2006; Tsuchida and 

Fellows, 2008). 

The gray matter of the prefrontal cortex consists of six layers/laminas 

which can be easily discriminated using Nissl staining. The main types of 

prefrontal neurons are the excitatory glutaminergic pyramidal neurons and the 

inhibitory GABAergic neurons. Among them, GABAergic neurons have been 
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shown to be very diverse and can be divided in multiple subtypes based on 

the expression of specific neuropeptides, such as neuropeptide Y (NPY), 

somatostatin (SST), parvalbumin (PV) and calbindin (CB) and 

neurotransmitter-related enzymes such as Glutamic Acid Decarboxylase 67 

(GAD67) (Tamminga et al., 2004).   The inhibitory and excitatory neurons in 

the prefrontal cortex form connections with neurons in the same or different 

cortical layer (Lewis et al., 2004; Tamminga et al., 2004). For example 

pyramidal neurons in layer III form synapses with SST, NPY or PV containing 

interneurons but also with GABAergic neurons of the upper cortical layers. 

The orchestrated action of layer III neuronal networks are actually of specific 

importance since they have already been linked to working memory and 

attention allocation and their balance has been proposed to be disrupted in 

schizophrenia (Lewis et al., 2004; Tamminga et al., 2004)). In addition, subtle 

alterations in the size of somata and in the density of dendritic spines of layer 

III pyramidal neurons have been identified in postmortem brains of patients 

with schizophrenia (Pierri et al., 2001; Glantz and Lewis, 2000).  However, the 

most reliable molecular deficits in the schizophrenic PFC have been detected 
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in transcripts expressed in GABA-expressing neurons (GABAergic 

transcripts) such as GAD67, NPY and SST (Akbarian et al., 1995; Lewis et 

al., 2004; Hashimoto et al., 2008).  

 Despite the fact that most human cortical areas reach their maturation 

before adolescence, human PFC is known for its very prolonged maturation, 

which does not complete until late adolescence and young adulthood, a 

period that coincides with the age of onset of schizophrenia and bipolar 

disorder (Lewis et al., 2004).  Experiments in non human primates have 

revealed that during adolescence there is extensive and selective pruning of 

synaptic connections which results in a thinning of cortical gray matter (Lewis 

et al., 2004). The same process has recently been demonstrated by 

neuroimaging studies in the human brain and the degree and speed of 

synaptic elimination seems to be an important predictor of human intelligence 

(Shaw et al., 2006). The fact the synaptic loss has been already been 

demonstrated in schizophrenia has prompted the hypothesis that the normal 

process of synaptic pruning that takes place during adolescence is either 

accelerated or not properly ―halted‖ in schizophrenia (McGlashan and 



 16 

Hoffman, 2000). However, the molecular determinants of human PFC 

maturation and their importance in schizophrenia are only beginning to be 

understood.  

 

BDNF  

Brain Derived Neurotrophic Factor (BDNF) is a prominent member of the 

neurotrophin family and the second one to be discovered following Nerve 

Growth Factor (NGF).  In the mammalian nervous system BDNF is known to 

influence a plethora of important processes ranging from neuronal growth, 

survival and maturation, to chemical differentiation and synaptic plasticity 

(Marty et al., 1997; Murer et al., 2001; Gorski et al., 2003; Binder et al., 2004; 

Chan et al., 2008). BDNF is transcribed through multiple promoter regions, 

which are utilized differentially depending on neuronal activity and brain 

region (Murer et al., 2001; Pruunsild et al., 2007). Due to the different 

transcription initiation sites, the subsequent alternative splicing   and the 

utilization of two different alternative polyadenylation sites there are more 

than twenty divergent BDNF mRNA isoforms (Pruunsild et al., 2007). 
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 BDNF protein is synthesized initially as a pro-neurotrophin (pro-BDNF) 

that varies in size between 24 and 30 kD,   which is then cleaved by 

proteases to generate the mature 13.5 kD BDNF protein (Mowla et al., 2001; 

Murer et al., 2001; Fayard et al., 2005). The biological role of the precursor 

form is not yet completely elucidated but recent studies indicate that it is 

expressed in high levels in perinatal brain (Jang et al., 2009) and might play 

an important role in regulation of neuronal survival (Lee et al., 2001). BDNF 

protein is packaged in secretory vehicles and is released to the synaptic cleft 

in response to neuronal activity (Murer et al., 2001). There are two types of 

receptors that BDNF can bind: The high affinity tropomyosin related kinase 

beta (trk-B) and the low affinity p75 neurotrophin receptor (p75NTR) (Fayard 

et al., 2005). Binding to trk-B can activate multiple intracellular pathways such 

as the Ras/ERK, MAPK, phospholipase C gamma (PLCγ) and 

phosphatidylinositol 3- kinase (PI3K)/Protein Kinase B (PKB or AKT1) 

signaling, which can culminate in the activation of transcription factors that 

can affect neuronal gene expression (Murer et al., 2001). In cerebral cortex 

BDNF has been known to affect the maturation of both GABAergic and 
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glutaminergic synapses (Kohara et al, 2007; Itami et al., 2000). The 

importance of BDNF for cortical neurons is further supported by its role in 

activity dependent synaptic modulation (Lu, 2003). Furthermore, BDNF has 

been shown to be developmentally regulated in human brain regions such as 

prefrontal cortex with a substantial increase in mRNA levels happening early 

postnatally (Webster et al., 2002), which results in BDNF being the highest 

expressed neurotrophin at adulthood.   

 Importantly, a SNP in human BDNF gene resulting in a substitution of the 

amino acid valine to methionine (Val/Met) has been linked to altered cognitive 

performance (Egan et al., 2003), which suggests that the multiple roles of 

BDNF on neuronal development and maturation exert a considerable effect 

on brain function. On a similar note, BDNF has been implicated in the 

pathophysiology of multiple neuropsychiatric diseases such as depression, 

schizophrenia, Alzheimer‘s, Huntington‘s and Parkinson‘s diseases 

(Angelucci, 2005; Hu and Russek, 2008). In the case of schizophrenia, 

prefrontal BDNF expression has been shown to be reduced at the level of 

BDNF mRNA, yet BDNF protein levels have been shown to be either 
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increased, or decreased, or even unaltered (Durany et al., 2001; Weickert et 

al., 2003; Takahashi et al., 2000; Hashimoto et al., 2005). Despite the fact 

that cohort demographic factors such as the age of subjects or the 

experimental techniques used for BDNF protein detection (western blotting vs 

ELISA) might have contributed to this variability in schizophrenia-related 

changes in BDNF protein, no study has ever explained the above 

discrepancy. In addition, polymorphisms in BDNF have been shown to 

influence frontal lobe thickness in subjects with schizophrenia (Varnäs et al., 

2008) and to be associated with age of onset of schizophrenia and response 

to antipsychotic medication (Krebs et al., 2000), suggesting a link between 

BDNF and disease progression. Furthermore, BDNF receptor trk-B was found 

to be reduced in the PFC of subjects with schizophrenia (Hashimoto et al., 

2005).  Notably, disease-related changes in trK-B but not BDNF mRNA, were 

associated with PV and GAD67 mRNA expression deficits (Hashimoto et al., 

2005), suggesting that different components of the BDNF pathway might be 

participating in the pathophysiology of schizophrenia.  
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     Goals and rationale 

Despite the emerging important role of miRNAs in mammalian brain 

development and cortical plasticity very little is known about the expression 

and potential function of microRNAs in human cerebral cortex. The goal of my 

thesis work was originally to elucidate the spatiotemporal expression of 

miRNAs in human prefrontal cortex, a brain region which is responsible for 

high order cognitive functions and is linked to psychiatric disease. I later 

hypothesized that changes in cerebral cortex expressed miRNAs might play a 

role during PFC development and maturation by controlling important 

molecular regulators such as BDNF, which might have implications for 

psychiatric disease.  Our results provide the first evidence suggesting that 

differentially expressed miRNAs regulate BDNF expression in human PFC, 

influence the variability of schizophrenia-related changes in BDNF and BDNF-

dependent GABAergic gene expression and might be regulated in a gender 

specific way.  
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CHAPTER II – A SET OF DIFFERENTIALLY EXPRESSED MICRORNAS, 

INCLUDING MIR-30A-5P, ACT AS POST-TRANSCRIPTIONAL 

INHIBITORS OF BDNF IN PREFRONTAL CORTEX 

 The work presented in this chapter is reproduced from a study by Nikolaos 

Mellios, Hsien-Sung Huang, Anastasia Grigorenko, Evgeny Rogaev, and 

Schahram Akbarian published in Hum Mol Genet (Mellios et al., 2008a). This 

work was conducted under the direction of Dr. Schahram Akbarian, and it is 

with gratitude to him and the other authors that I reproduce these data for the 

purposes of this dissertation. My contribution in this work was to design and 

execute the majority of the experiments and write together with Dr. Schahram 

Akbarian the manuscript. Specifically, I carried out in silico analysis of miRNA 

target sites, microRNA in situ hybridization in human and mouse brain, small 

RNA isolation, qRT-PCR for miRNA analysis, laser capture microdissection, 

immunostaining in human postmortem brain, construction of multiple miRNA 

or reporter expressing vectors including self-inactivating lentiviral vectors, 

luciferase reporter assays, BDNF ELISA, solution hybridization for miRNA 

detection in human brain and analysis of data. Drs. Evgeny Rogev and 

Anastasia Grigorenko conducted the microarray experiment, Hsien-Sung 

Huang conducted the chromatin immunoprecipitation experiment, with the 

help of Anouch Matevossian, and Dr. Stephen Baker assisted in statistical 

analysis. Catheryne Whittle contributed to this work by generating and 
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maintaining rat neuronal cultures. Yin Guo contributed by conducting 

postmortem brain dissection and David Burns by assisting in live imaging. 

Mathieu Guillaume, Katerina Ikonomu, Regina Bergmeier and Simone Jäger 

contributed by assisting in running qRT-PCR, extracting RNA and 

construction of plasmids. Gulnaz Faskhutdinova contributed by assisting in 

reagent preparation for in situ hybridization.  

 

 

Abstract 

Expression of brain-derived neurotrophic factor (BDNF) is developmentally 

regulated in prefrontal cortex (PFC). The underlying molecular mechanisms, 

however, remain unclear. Here, we explore the role of microRNAs (miRNAs) 

as post-transcriptional inhibitors of BDNF. A sequential approach involving in 

silico, miRNA microarray, in situ hybridization and qRT–PCR studies 

identified a group of 10 candidate miRNAs, segregating into five miRNA 

families (miR-30a-5p/b/c/d, miR-103/107, miR-191, miR-16/195, miR-495), 

which exhibited distinct developmental and lamina-specific expression in 

human PFC. Luciferase assays confirmed that at least two of these miRNAs, 

miR-30a-5p and miR-195, target specific sequences surrounding the proximal 
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polyadenylation site within BDNF 3‘-untranslated region. Furthermore, 

neuronal overexpression of miR-30a-5p, a miRNA enriched in layer III 

pyramidal neurons, resulted in down-regulation of BDNF protein. Notably, a 

subset of seven miRNAs, including miR-30a-5p, exhibited an inverse 

correlation with BDNF protein levels in PFC of subjects age 15–84 years. In 

contrast, the role of transcriptional mechanisms was more apparent during 

the transition from fetal to childhood and/or young adult stages, when BDNF 

mRNA up-regulation was accompanied by similar changes in (open 

chromatin-associated) histone H3-lysine 4 methylation at BDNF gene 

promoters I and IV. Collectively, our data highlight the multiple layers of 

regulation governing the developmental expression of BDNF in human PFC 

and suggest that miRNAs are involved in the fine-tuning of this neurotrophin 

particularly in adulthood. 

 

Introduction 

MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNAs that 

are known to post-transcriptionally inhibit protein coding genes, by affecting 
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their translation and/or mRNA stability (Fillipowicz et al., 2008). They are 

derived from longer precursor molecules, are incorporated to the RNA-

induced silencing complex (RISC) and interact with complementary regions 

mainly within the 3‘ untranslated region (3‘-UTR) of their target mRNAs 

(Bartel, 2004). Evidence from the early days of miRNA research, and up to 

the present day, has suggested that the expression of some miRNAs is highly 

regulated in a temporal and region-specific manner and that they participate 

in divergent biological processes (Chang and Mendell, 2007). 

In the vertebrate nervous system, miRNAs have been shown to play 

an important role during development (Giraldez et al., 2005) and in regulation 

of synaptic plasticity (Schratt et al., 2006). A subset of miRNAs are 

abundantly expressed in the mammalian brain (Miska et al., 2004; Bak et al., 

2008) and have been implicated in numerous brain diseases (Abelson et al., 

2005; Perkins et al., 2007; Kim et al., 2007; Beveridge et al., 2008; Wang et 

al., 2008a; Wang et al., 2008b). However, very little is known about their 

expression and function in the human prefrontal cortex (PFC), a brain area 

responsible for high order cognitive functions, which displays delayed 
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maturation and is disrupted in patients with psychiatric disease (Bertolino et 

al., 1998; Hashimoto et al., 2005). 

Brain-derived neurotrophic factor (BDNF) plays a prominent role during 

cortical development and maturation (Gorski et al., 2003), and alterations in 

BDNF expression have been reported in a plethora of neuropsychiatric 

diseases (Angelucci et al., 2005). Interestingly, pyramidal neurons - the 

primary source of BDNF in cerebral cortex - express high levels of DICER, an 

RNAse III endoribonuclease and key molecule for miRNA biogenesis, as well 

as components of RISC, such as eIF2c (Lugli et al., 2005). Furthermore, the 

3‘-UTR of human BDNF is predicted according to computational analysis to 

include numerous miRNA target sites that show a high degree of 

conservation between different mammalian species (Lewis et al., 2003). 

These findings taken together, point to a potential role for miRNAs in the 

control of cortical BDNF expression. However, to date, this hypothesis has 

not yet been tested.  

Here, we present evidence that multiple miRNAs, including a subset of 

the miR-30 family, are involved in fine-tuning of BDNF expression specifically 
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during late maturation and aging of human PFC. Our findings suggest that 

BDNF expression in human cerebral cortex is regulated by a complex system 

of small RNAs, which in turn display lamina-specific enrichment and are 

differentially regulated during development. These findings provide the first 

evidence for the miRNA pathway acting as a key regulator of BDNF 

expression during maturation and aging of human PFC. 

 

Results 

 

In silico analysis of putative miRNA target sites within BDNF 3’-UTR 

Potential miRNA target sites within the 3 kb of BDNF 3‘-UTR were identified 

by combining three in silico tools: TargetScan 3.1 (Lewis et al., 2003), Pictar 

(Krek et al., 2005; Lall et al., 2006) and RNAhybrid (Rehmsmeier et al., 2004). 

Altogether, 17 distinct target sites - all of which appear to be highly conserved 

in various mammalian species (human, chimp, dog, mouse, rat) - were found, 

which potentially could interact with 26 different miRNAs (Fig. 1-1 and 

Supplemental Table S1-3). 
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Next, we used an array-based approach to measure the expression of 

these 26 candidate miRNAs and identified 10 miRNA species that were 

present at moderate or high levels in the adult human parietal cortex; for the 

remaining miRNAs, levels were very low or indistinguishable from background 

(Supplemental Fig. S1-1A). We then compared our array results with 

published microarray data on adult human PFC (Perkins et al., 2007). 

Remarkably, all but one (miR-495) showed a similar order of expression in 

prefrontal and parietal cortex (Supplemental Fig. S1-1B).  

Notably, the target site(s) for each of the 10 expressed miRNAs - 

which segregate into five different miRNA families (miR-103/107, miR-191, 

miR-16/195, miR-30a-5p/b/c/d, miR-495) - were in close vicinity to the two 

proximal (out of four total) BDNF 3‘-UTR polyadenylation sites (Fig. 1-1); in 

adult cerebral cortex, the bulk of BDNF transcript extends beyond these two 

proximal polyA sites (Weickert et al., 2003; Liu et al., 2005). This would 

suggest that a large fraction of BDNF transcript could be targeted by the 

miRNAs listed above. 
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Laminar and cellular specificity of miRNAs expressed in PFC 

We wanted to examine the laminar and cellular expression pattern of the 

predicted miRNAs in adult human PFC; BDNF transcript is found in putative 

pyramidal neurons positioned within layers II– VI (Huntley et al., 1992; 

Webster et al., 2002). Cellular labeling was weak or not discernible from 

background in sections processed by in situ hybridization with locked nucleic 

acid (LNA-ISH) for miR-1 and miR-10a (Fig. 1-2A and H and Supplemental 

Fig. S1-2), two miRNAs expressed at very low or non-detectable levels, 

respectively, according to our microarray data (Supplemental Fig. S1-1A). In 

contrast, miR-128a, a reportedly pan-neuronal miRNA marker (Smirnova et 

al., 2005), also detected at high levels in our microarray analysis (data not 

shown), was robustly expressed throughout the full thickness of PFC (Fig. 1-

2A). Therefore, we conclude that LNA-ISH is applicable to human 

postmortem brain tissue, which is in accordance with previous reports 

(Nelson et al., 2005). Next, we studied prefrontal expression patterns of the 

10 predicted miRNAs with 8 probes (due to one-base-differences, a single 

probe was applied for miR-103/107 and for miR-30a/d; see also 
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Supplemental Table S1-2). Each of the 8 probes revealed a distinct laminar 

expression (Fig. 1-2A and H and Supplemental Fig. S1-2). For example, miR-

30a showed robust labeling in the upper cortical layers, including a subset of 

large, putative pyramidal neurons primarily residing in layer III (Fig. 1-2A and 

B). In contrast, labeling in PFC layers V and VI was very weak or non-

detectable (Fig. 1-2A and E). To further confirm these lamina-specific 

differences, we assayed miR-30a levels by qRT–PCR separately for the 

upper (including layers II and III) and lower (mainly V and VI) layers of the 

cortex. Indeed, levels of miR-30a were ~ 2.5-fold higher in the upper when 

compared with the deeper layers (Fig. 1-2J). In contrast, neither BDNF mRNA 

(Fig. 1-2J) nor protein levels (data not shown) showed significant differences 

between the upper and lower layers; the latter finding may not be too 

surprising, however, given that BDNF protein produced in pyramidal neuron 

somata could potentially be distributed via their processes to other cortical 

layers and neuronal populations further removed from the site of synthesis 

(Angelucci et al., 2005). 
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 In addition, expression of miR-30a in pyramidal neurons was further 

confirmed in sections processed by LNA-ISH followed by immunolabeling for 

a neurofilament epitope selectively expressed by a subset of pyramidal 

neurons (Cambell et al., 1989) (Fig. 1-2I) and by RT–PCR from laser-capture 

dissected pyramidal neurons (Supplemental Fig. S1-2). Expression of miR-

495 was highly restricted and limited to a subpopulation of cells positioned in 

and around layer II (Fig. 1-2H and Supplemental Fig. S1-2). Cellular labeling 

for miR-16 in tissue sections was weak and mostly confined to deeper 

portions of cortical gray matter (Supplemental Fig. S1-2). It is possible that 

the high levels of miR-16 in mature erythrocytes (Rathjen et al., 2006) could 

have contributed to the comparatively high but variable levels of expression in 

whole tissue homogenates assayed by array (Supplemental Fig. S1-1).  

Among all miRNAs tested, only miR-103/107 was enriched in upper 

cortical layers and was also expressed in white matter. This particular finding 

is in good agreement with a recent report showing the same laminar 

enrichment in superior and middle temporal gyrus (Wang et al., 2008b). 

Intriguingly, however, none of the miRNAs included in our study showed 
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discernable layer specificity in mouse cerebral cortex (Supplemental Fig. 1-2 

and data not shown), suggesting that miRNA expression in cerebral cortex 

shows important differences between human and rodent. In conclusion, miR-

30a and other members of the miR-30 family, and several additional miRNAs 

predicted to interact with the 3‘-UTR of BDNF are abundantly expressed in 

adult human PFC, with distinct laminar specificity.  

 

Validation of human BDNF 3’-UTR miRNA target sites 

To determine whether the candidate miRNAs described above target the 3‘-

UTR of human BDNF mRNA, we constructed a luciferase reporter plasmid 

with a 551 bp fragment of human BDNF 3‘-UTR containing all the highly 

predicted miRNA target sites fused to the 3‘ end of the luciferase gene (Fig. 

1-3A). We utilized CMV-driven vectors that encode for each of the following 

miRNA precursors—miR-30a, miR-30b, miR-30c, miR-107, miR-191 and 

miR-195 (Supplemental Fig. S1-3). Since the endogenous levels of these 

miRNAs varied, transfection of these plasmids in HEK293 cells resulted in 

various degrees of overexpression of the mature miRNAs (Fig. 1-3D). It 
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should be noted that, in these assays, miR-16 and miR-495 were not included 

because of uncertain (miR-16), or highly restricted (miR-495) expression in 

the cortex. Furthermore, because of high sequence similarity (one single 

nucleotide difference), miR-30d and miR-103 are predicted to have very 

similar effects on BDNF 3‘-UTR with miR-30a and miR-107 respectively; 

hence these miRNAs were not tested separately.  

Due to the fact that miR-30a was enriched in layer III pyramidal 

neurons (Fig. 1-2), which are a critical component of prefrontal cortical 

neuronal networks (Lewis et al., 2004), and one of the major sites of BDNF 

synthesis (Huntley et al., 1992), we anticipated that this miRNA might be 

particularly important for the post-transcriptional inhibition of BDNF. 

Additionally, in silico analysis of the interaction between miR-30 miRNAs and 

BDNF 3‘-UTR indicated a more favorable thermodynamic interaction of miR-

30a compared with miR-30b and miR-30c, resulting from a higher 3‘ end 

complementarity of miR-30a with the 3‘-UTR (Supplemental Fig. S1-3). 

Indeed, results from the luciferase assay showed that overexpression of miR-

30a, but not miR-30b and miR-30c, lead to a significant decrease in activity of 
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the reporter (Fig. 1-3B). Among the remaining miRNAs tested, only miR-195 

induced a significant reduction in luciferase activity (Fig. 1-3B). Importantly, 

no changes in reporter activity were observed after transfection of a miR-30a-

based non-silencing control (‗NSC30‘, Fig. 1-3B), in which the seed sequence 

(nt 2–7, see Fig. 1-4D for details) was mutated in order to disrupt 

complementarity with BDNF 3‘-UTR target sites. Furthermore, the NSC30 

mature sequence was not predicted to target the 551 bp of BDNF 3‘-UTR, 

according to RNA hybrid software (data not shown).  

Notably, processing of the miR-30a precursor can lead to two miRNAs, 

miR-30a-5p and miR-30a-3p (Griffiths-Jones, 2004; Griffiths-Jones et al., 

2008). Interestingly, both our microarray (Supplemental Fig. S1-1A) and ISH 

experiments (Fig. 1-2A and data not shown) indicate that expression of miR-

30a-5p is much higher than miR-30a-3p in the human cerebral cortex. 

Therefore, we modified the miR-30a precursor sequence by replacing one or 

two Watson–Crick base pairings with G-U wobbles at the 5‘ end and vice 

versa for the 3‘ end (marked by arrows in Fig. 1-3C). The rationale was to 

destabilize the 5‘ end relative to the 3‘ end of the precursor, which is expected 
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to shift relative levels of mature miRNA towards the 5‘ end product (Schwarz 

et al., 2003). Indeed, transfection with this modified miR-30a precursor 

(m30a-5p, see Fig. 1-3B–D) resulted in a 3-fold increase in levels of mature 

miR-30a-5p, compared with transfection with the wild-type form of the 

precursor (Fig. 1-3D). There was a ~ 36% reduction in reporter activity in cells 

transfected with m30a-5p, compared with ~ 24% in cells transfected with wild-

type miR-30a precursor (Fig. 1-3B). Finally, it is worth mentioning that there 

are two potential miR-30 interaction sites within the BDNF 3‘-UTR, although 

the second site (Figs 1-1 and 1-3A) is likely to be less functional due to the 

presence of a G-U wobble in the seed sequence (first site, nts 397–402; 

second site, nts 680-685 from the beginning of BDNF 3‘-UTR, see 

Supplemental Table S1-3) (Doench and Sharp, 2004). Therefore, we wanted 

to demonstrate that the first canonical site is sufficient to mediate the 

inhibitory effect of miR-30a. To this end, we transfected HeLa cells with a 

luciferase vector containing a 70 bp BDNF 3‘-UTR sequence, which included 

the first target site (nucleotides 1653–1722, Genbank ID NM_170735). There 

was a consistent, ~35% decrease in reporter activity in cells transfected with 
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miR-30a precursor relative to a scrambled precursor control (n = 3 

independent experiments, data not shown).                                     

Furthermore, we co-transfected both miR-30a and miR-195, which 

independently reduced luciferase activity, with half the amount needed to 

exert the observed significant inhibitory effect (375 ng of each per well), a 

concentration that for miR-30a was unable to induce significant repression 

(data not shown). The combination of these two miRNAs even in such lower 

concentrations resulted in a significant (~31%) reduction in luciferase activity 

(Fig. 1-3B). This level of inhibition was not, however, significantly higher than 

the independent inhibitory effects of miR-30a (~24%) and miR-195 (~28%), 

so that the possibility of a synergistic effect remains to be clarified. These 

results indicate that a subset of miRNAs expressed in PFC, including miR-

30a, can exert an inhibitory interaction with BDNF 3‘-UTR sequences.  

 

MiR-30a negatively regulates BDNF protein in neurons 

The validation of miR-30a:BDNF 3‘-UTR interaction with luciferase reporter 

assays in two different cell lines, and its higher relative expression in neurons 
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that are able to synthesize BDNF compared with some of the other candidate 

miRNAs, including miR-195, suggest that miR-30a is more likely to be a 

potential regulator of neuronal BDNF expression. To pursue this further, we 

used a lentivirus-based system to overexpress miR-30a precursor in cultured 

neurons (derived from E14.5 rat forebrain progenitor cells, see Materials and 

Methods) (Fig. 1-4A) and then assayed BDNF protein by ELISA. A lentivirus 

expressing miR-NSC30 (Fig. 1-4D) was also included in these experiments. 

Transduction efficiencies were verified with GFP expression and included a 

majority of cells (on average 60%) (Fig. 1-4A). Cultures transduced with miR-

30a showed a 2–4-fold increase in mature miR-30a levels, as measured by 

qRT–PCR (Supplemental Fig. S1-4). There was a significant, ~30% decrease 

in BDNF protein levels in neuronal cultures overexpressing miR-30a (Fig. 1-

4B). In contrast, the control - which was identical to miR-30a except for three 

mutations in the seed sequence (Fig. 1-4C and D) - did not alter neuronal 

BDNF levels. Notably, miRNAs exhibiting partial complementarity to their 

mRNA target (such as miR-30a: BDNF 3‘-UTR, Fig. 1-4C), predominantly 

block translation, but additional mechanisms involving mRNA decay have 
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also been reported (Filipowicz et al., 2008). Therefore, we assayed BDNF 

mRNA in our cultures, and no changes were observed (Supplemental Fig. 

S1-4). We conclude that miR-30a exerts an inhibitory effect on BDNF 

translation in neurons. 

 

Expression of selected miRNAs in PFC shows inverse correlation with 

BDNF protein during late adolescence and adulthood 

Our experiments ex vivo described above strongly suggest that miR-30a-5p 

regulates BDNF protein levels, via interaction with a conserved sequence 

located in the proximal portion of BDNF 3‘-UTR. Based on this observation, it 

could be possible that there is an inverse relationship between BDNF and 

miR-30a levels in (human) PFC tissue. Furthermore, it has been shown that 

when multiple miRNAs target a specific transcript, synergistic effects could 

lead to more robust target regulation when compared with each miRNA 

separately (Greco and Rameshwar, 2007). Given this potential cooperativity 

in miRNA targeting and the limitations of our luciferase assay to address this 
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issue, we wanted to investigate if their combined effects on BDNF levels 

during various stages of PFC development could be physiologically relevant.  

 Towards this end, we first used qRT–PCR to assay expression levels of 

the following miRNAs using seven sets of primers (with confirmed sequence 

specificity, see Materials and Methods) for qRT–PCR (miR-30a,b,c,d, miR-

103/107, miR-191 and miR-195) in 37 PFC specimens (BA 10) across a wide 

age range, from the second trimester of pregnancy to 84 years. Tissue levels 

for these miRNAs were variable across the lifespan, although 5/7 miRNAs 

were defined by a significant increase in specimens from individuals older 

than 41 years, in comparison to either specimens younger than 15 years 

(miR-30c, miR-30d, miR-191, miR-195) (Fig. 1-5A and Supplemental Fig. S1-

5), or - in the case of miR-30a - in late adolescent to young adult specimens 

(ages 15-41) (Fig. 1-5A and B). Importantly, PMI, brain pH, gender and other 

postmortem confounds (See also Materials and Methods and Supplemental 

Table S1-1) had no significant effect on miRNA expression (data not shown). 

Furthermore, miR-128a, a pan-neuronal miRNA not predicted to interact with 

BDNF, showed a progressive decrease during the course of PFC 
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development (Fig. 1-5A and Supplemental Fig. S1-5), which contrasts the 

observed increases in BDNF-related miRNAs (Fig. 1-5A and B and 

Supplemental Fig. S1-5). Given these highly dynamic differences in miRNA 

levels during the course of PFC development, and especially in the mature 

PFC, we asked whether these changes relate to BDNF protein content. 

 To address this question, we measured BDNF protein by ELISA in the 

same postmortem specimens. Our data showed that both BDNF protein and 

mRNA are up-regulated during the early stages of postnatal PFC 

development, yet appear to be discordant during late adolescence and 

adulthood (Fig. 1-5A, C and D). In addition, there was, as expected, a positive 

correlation between BDNF mRNA and protein, in the entire developmental 

cohort (r = +0.379, p = 0.025) and, independently, in samples less than 15 

years of age (r = +0.525, p = 0.021). However, there was no significant 

correlation in samples more than 15 years of age (data not shown).  

 Strikingly, in mature (15–84 years old) PFC a highly robust, inverse 

correlation between the expression of the 7 miRNAs as a group and BDNF 

protein levels (Fig. 1-6A and B) was observed. Furthermore, there was an 
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inverse correlation between PFC BDNF levels for the same age group (15-84 

years old), and for three miRNAs independently (miR-30a, miR-30d and miR-

191) (Fig. 1-6C). These statistical associations were highly specific, because 

the (neuronal enriched) miR-128a - which is not predicted to target BDNF - 

had no correlation to BDNF protein levels in any age group (Fig. 6C and data 

not shown). In addition, no correlation was detected between BDNF mRNA 

and miRNA expression levels (data not shown). Taken together, these 

findings suggest that the orchestrated developmental expression of a group of 

miRNAs including miR-30a might exert an inhibitory effect on BDNF 

translation especially in the mature PFC.  

 

Transcriptional mechanisms regulating BDNF expression in immature 

PFC 

 In contrast to the significant findings in adults, there were no significant 

correlations between BDNF protein and the 7 miRNAs as a group, or 

individually, in subjects less than 15 years old (Fig. 1-6D and data not 

shown). However, we noticed that levels of BDNF mRNA were increased up 
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to 3-fold after birth, consistent with an earlier report (Webster et al., 2002), but 

did not change significantly thereafter (Fig. 1-5D). These findings raise the 

possibility that BDNF levels at these earlier stages of PFC development are 

less dependent on miRNA-mediated post-transcriptional regulation and 

instead are regulated on the level of gene expression.  

 In order to address this issue, we measured levels of H3-trimethyl-lysine 

4, an open chromatin mark related to transcriptional activity (Eissenberg and 

Shilatifard, 2006) that can be measured in postmortem brain (Huang et al, 

2007) -  at defined BDNF promoter sequences in PFC of fetal, child and adult 

samples. We assessed BDNF gene promoters I and IV (P1 and P4, Fig. 1-

7A), as these are known to be epigenetically regulated in rodent cerebral 

cortex (Chen et al., 2003; Martinowicz et al., 2003; Tsankova et al., 2006; 

Nelson et al., 2008). As a control we also checked for changes of the same 

chromatin marker within the newly recognized promoter IX (P9, Fig. 1-7A), 

which reportedly shows only very low levels of activity in brain (Pruunsild et 

al., 2007). Indeed, our results showed a significant increase in histone 

methylation at BDNF P1 occurring after birth (Fig. 1-7B), and at BDNF P4 
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after childhood (Fig. 1-7C). In contrast, histone methylation at BDNF P9 was 

very low and indistinguishable from background in all samples (data not 

shown). These results suggest that while miRNAs exert a robust effect on 

BDNF levels in mature and aging PFC, chromatin remodeling and 

transcriptional mechanisms might play a more prominent role at the earlier 

developmental stages. 

 

Discussion 

Using multiple approaches, including microarray, LNA-ISH and qRT–PCR we 

identified a group of miRNAs that were abundantly expressed in different 

layers of human PFC and predicted to target a specific region within human 

BDNF 3‘-UTR. Notably, albeit the sequence of these miRNAs is completely 

preserved in multiple mammalian species, there was lamina-specific 

expression in human but not in mouse neocortex. A subset of these miRNAs 

(miR-30a,b,c,d, miR-103/107, miR-191, miR-195) showed an inverse 

correlation with BDNF protein levels in the adult, but not in the immature 

human PFC. Among these miRNAs, miR-30a exerted a significant inhibitory 
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interaction with BDNF 3‘-UTR in functional assays and decreased BDNF 

protein levels in neuronal culture. 

 The significant inverse correlation between the group of the selected 

miRNAs and BDNF protein levels from late adolescence to old age suggests 

that these miRNAs could participate in post-transcriptional fine-tuning of 

BDNF expression in adult PFC, including the periods of late maturation and 

aging. Interestingly, BDNF mRNA levels in human PFC have been shown to 

increase from infancy to young adult age but subsequently are maintained at 

roughly the same levels during adulthood and old age (Webster et al., 2002). 

In contrast, BDNF protein levels are reportedly reduced during the aging of 

human PFC (Durany et al., 2001). Therefore, our studies could potentially 

explain these discrepancies in age-dependent changes of BDNF mRNA and 

protein, by showing that BDNF protein levels in mature and aging PFC could 

be driven in part by the post-transcriptional regulation mediated by BDNF-

related miRNAs (Fig. 1-5 and Supplemental Fig. S1-5). 

 In contrast, the absence of significant correlations between BDNF protein 

and the selected miRNAs in the younger PFC samples could be partly 
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attributed to a more prominent transcriptional control of the BDNF gene in the 

immature PFC (defined here as the fetal and 0-15 years old samples). This 

hypothesis is further supported by dynamic increases in open chromatin-

associated histone methylation at a subset of BDNF gene promoters during 

postnatal PFC development (Fig. 1-7). It has to be noted, though, that due to 

technical limitations we did not explore the expression levels of all BDNF 

alternative mRNA transcripts and the chromatin status of all BDNF gene 

promoters. In addition to the two layers of regulation outlined in the present 

study - miRNA-mediated inhibition and chromatin remodeling - additional 

mechanisms that could affect expression and function of BDNF regulation 

may involve antisense non-coding transcripts originating from the BDNF locus 

(Pruunsild et al., 2007). 

 The presence of miR-30a in large layer III pyramidal neurons of human 

PFC, as observed in the present study by qRT–PCR, LNA-ISH and laser 

capture (Fig. 1-2 and Supplemental Fig. S1-2), is of particular interest given 

the fact that this neuronal population displays alterations in dendritic spine 

density (Glantz and Lewis, 2000) and soma size (Pierri et al., 2001) in 
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schizophrenia, a disease where deficits in BDNF levels have been reported in 

some postmortem cohorts (Weickert et al., 2003; Hashimoto et al., 2005). In 

this context it is intriguing that the developmental dynamics of miR-30a 

expression in human PFC include a pronounced decline in miR-30a levels 

during the late phase of PFC maturation (ages 15–41 years old), which 

coincides with the age of onset of the clinical symptomatology of psychiatric 

disease (Lewis et al., 2004).  

 According to our present study, at least seven different miRNAs could 

contribute to the regulation of BDNF expression in human PFC (miR-30a-5p, 

miR-30b,c,d, miR-103/107, miR-191, miR-195). Interestingly, miR-107 was 

very recently shown to be significantly down-regulated in Alzheimer‘s disease 

(Wang et al., 2008b). Furthermore, in a previous study, miR-30b and miR-195 

were shown to be reduced in schizophrenia PFC (Perkins et al., 2007). Of 

note, miR-30a-3p was shown, by qRT-PCR, to be increased in cases of the 

same study; this miRNA is derived from the same precursor as miR-30a-5p, 

although its interactions with BDNF remain unclear. The potential role of 
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these miRNAs for BDNF regulation and signaling in diseased brain remains to 

be clarified. 

 It is noteworthy that the BDNF-related miRNAs that were the focus of our 

study are also predicted to target numerous genes related to synaptogenesis, 

neuronal migration, neuronal growth and differentiation, according to multiple 

computational analysis tools (Lewis et al., 2005; Krek et al., 2005; Lall et al., 

2008). In this context, the miR-30 family of miRNAs is predicted to target 

multiples genes (Lewis et al., 2003; Grimson et al., 2007) implicated in the 

genetics or pathophysiology of schizophrenia other than BDNF; these include 

MAP6 (Shimizu et al., 2006), NR4A2 (Rojas et al., 2007), GRM3 (Egan et al., 

2004), GRM5 (Devon et al., 2001), CNR1 (Ujike et al., 2002), NCAM1 

(Barbeau et al., 1995; Sullivan et al., 2007) and NEUROG1 (Fanous et al., 

2007). Given their potential interaction with multiple schizophrenia risk genes 

and the reported interaction between BDNF and other miRNAs important for 

neuronal plasticity, additional studies are needed to elucidate the potential 

significance of this family of miRNAs in the context of psychiatric disease. 
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 According to the present study, there is laminar specificity for several 

miRNAs expressed in human PFC, including miR-30a, miR-103/107, miR-495 

(Fig. 1-2 and Supplemental Fig. S1-2); for miR-103/107, this was also 

observed in (human) temporal neocortex (Wang et al., 2008b). In striking 

contrast, the same miRNAs appeared to be either expressed evenly 

throughout layers II–VI of mouse neocortex (including frontal areas), or in the 

case of miR-495, below the detection limit (Supplemental Fig. S1-2 and data 

not shown). It is possible that these species-related differences in cortical 

miRNA patterns could result in a more sophisticated lamina-specific 

regulation of BDNF expression in the human cortex. 

 Interestingly, a previous study has demonstrated that miR-134, a brain 

enriched miRNA that can inhibit the translation of the neurotrophin-related 

gene Lim-domain-containing protein kinase 1 (LIMK1) and regulate dendritic 

spine density, increases postnatally in mouse hippocampus, reaching its 

maximum levels at the age when synaptic maturation occurs (Schratt et al., 

2006). Therefore, one could hypothesize that maturation processes in the 

mammalian brain related to neurotrophin signaling could be influenced by the 
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miRNA pathway. The findings presented here further support this scenario by 

showing that developmentally regulated miRNAs including members of the 

miR-30 family could modulate BDNF expression in human PFC. 

 Lastly, in addition to the miRNA-mediated inhibitory effects on BDNF levels as 

reported here, this neurotrophin might itself regulate the expression of neuronal miRNAs 

(Vo et al., 2005; Klein et al., 2007). Furthermore, BDNF could antagonize miRNA-

mediated translational inhibition (Schratt et al., 2006), possibly by activating the 

tropomyosin-related protein kinase B (TrK-B)/mammalian target of rapamycin (mTOR) 

signaling pathway, which in turn interacts with subunits of the translation initiation 

complex (Filipowicz et al., 2008; Gingras et al., 1998). Interestingly, deficiency of protein 

kinase B (PKB or Akt1), a kinase that can activate the mTOR pathway alters neuronal 

morphology and leads to impaired PFC functions (Lai et al., 2006). It is therefore 

intriguing to speculate that miRNAs, including the ones discussed here, might 

participate in a molecular network involving multiple reciprocal nodes, which together 

orchestrate and fine-tune prefrontal BDNF expression and signaling in a developmental 

stage- and lamina-specific manner. 
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Materials and Methods 

    Postmortem studies 

Postmortem samples from 37 subjects, obtained from the dorso-rostral pole 

of the frontal lobe (Brodmann‘s area 10), were included in this study. All 

procedures were approved by the review boards of the participating 

institutions. All brains were fresh-frozen and stored at -80ºC. The fetal, child 

and adolescent samples were obtained through the Brain and Tissue Banks 

for Development Disorders, University of Maryland (NICHD contract no. NO1-

HD-8-3284). Adult samples were obtained from a brain bank located at the 

University of California at Davis, as described (Huang et al., 2007; Akbarian 

et al., 1995). Demographics, medication status and postmortem confounds, 

including tissue pH and RNA integrity number (RIN) are provided in 

Supplemental Table S1. For the cases where the age of onset was recorded 

as approximately twenties (20S) or thirties (30S) the age used for calculation 

was 20 and 30 years, respectively. For all experimental procedures, each 

assay included samples from all age groups. Adult brains were subjected to 

neuropathological examination to rule out neurodegenerative disease. 
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     RNA isolation 

Small RNAs (<200 nt) were isolated by using the mirVANA PARIS kit 

(Ambion), according to the manufacturer‘s instructions and treated with 

DNase I for 30 min at 37ºC. Then, samples were incubated at RT (room 

temperature) for 2 min in DNase I inactivating buffer (Ambion—RNAqueous 

kit), followed by centrifugation (13,000g) for 1.5 min and supernatant was 

stored at -80ºC. The mirVANA PARIS kit was also used for the extraction of 

large (>200nt) RNA that was used for measurement of BDNF mRNA. The 

mirVANA PARIS kit (Ambion) was used for total or small RNA isolation from 

rat neuronal cultures and the RNAqueous Micro kit (Ambion) was used for 

total RNA extraction in HEK-293 cells. All samples were treated with DNase I 

to avoid DNA contamination. For determination of RNA quality, RNA RIN 

were calculated using the Agilent 2100 bioanalyzer and according to 

manufacturer‘s instructions. RNA quantification amplicons were generated for 

5S rRNA and the following miRNAs (see also Supplemental Table S2): (i) 

miR-30a-5p, (ii) miR-128, (iii) miR-103, (iv) miR-30b (v) miR-30c, (vi) miR-



 51 

30d, (vii) miR-191, (viii) miR-195, using mirVana qRT–PCR miRNA detection 

kit (Ambion). Applications were performed with an 7500 Applied Biosystems 

Real-Time PCR System and SDS software: Step 1, 95ºC x 3 min; Step 2, 

95ºC x 15 s; Step 3, 60ºC x 34 s, 40 cycles (Step 2, Step 3), followed by 

dissociation step to obtain SYBR Green I-based melting curves. Specificity of 

the reactions was confirmed by melting curve analysis in conjunction with gel 

electrophoresis and, if necessary, subcloning and sequencing. For example, 

amplicons derived from miR-30a and miR-30d-specific PCR reactions (two 

miRNAs that differ in a single nucleotide in the middle portion of their mature 

sequence) yielded the correct sequence in >95% of clones (n= 37). For each 

sample and amplicon, cycle thresholds were averaged from triplicate 

reactions and normalized to 5S rRNA according to the following formula, E-

^CtmiRNA/E-^Ct5srRNA, where E = (1+ln2/primer slope). TaqMan One-Step RT–

PCR (Applied Biosystems) was used according to manufacturer‘s instructions 

for the human BDNF, and 18S rRNA and rat BDNF and 18S rRNA with 

primers shown in Supplemental Table S1-2.  
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miRNAs microarray 

MiRNA expression profile was analyzed in pooled RNA samples isolated from 

parietal cortex of right hemisphere from 7 normal individuals (4 males with 

ages 41, 42, 52, 59 years and 3 females with ages 35, 44 and 57 years). 

Mixed RNA probes were labeled with Cy5 fluorescent dye and applied onto a 

mParaFloTM Human miRNA chip (LcSciences). The chip contains seven 

redundant regions with miRNA probes corresponding to miRNA transcripts 

from miRNA Registry list (Human_V4E_050630 - Based on Sanger miRNA 

Registry Release 7.0), non-verified miRNA probes and multiple control 

probes. 5S rRNA was used as a housekeeping gene for normalization control. 

 The data were processed with background subtraction (regression-based 

background mapping method), Cy5 channel normalization (Locally-weighted 

regression method on the background-subtracted data) and detection 

determination (LcSciences data analysis). Transcripts were determined as 

detectable if their signal intensity was higher than 3x background standard 

deviation, spot coefficient of variation (standard deviation/signal intensity) was 
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<0.5 and transcripts had at least 50% of replicate probe signals registering 

above the detection level. 

 

Solution hybridization  

32P-UTP-labeled probes (mirVana miRNA Probe Construction Kit, Ambion) 

reverse antisense to the mature miRNAs and 5S rRNA were used in 

conjunction with the solution hybridization assay according to manufacturer‘s 

instructions (mirVana miRNA detection kit). Briefly, the small RNA sample 

was mixed with the probe and after hybridization in solution, samples were 

subjected to RNase digestion. The radiolabeled protected fragments of the 

probe after RNase inactivation and precipitation were separated in a 

denaturing polyacrylamide gel. DNA oligonucleotides used to generate the 

probes were as follows (without linker sequence): 5‘-

CTTCCAGTCGAGGATGTTTACA-3‘ (probe generated is the reverse 

complement of mature mir-30a-5p); 5‘-ACTAGAGCCTTCGATT-3‘ (probe 

generated is the reverse complement of a conserved region within the 5S 

rRNA).  
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ISH with LNA-modified oligonucleotides  

For LNA-ISH, 20 μm thick sections of immersion-fixed (human) or perfusion-

fixed (mouse) cerebral cortex were mounted on SuperFrost-Plus slides 

(VWR), air-dried, then subjected to the following procedure with sterile 

solutions (DEPC-treated water): Washed with 1x PBS 3 x 5 min each, fixed 

with 4% paraformaldehyde in 0.1 M phosphate buffer for 15 min at RT, then 

washed again in 1x PBS 3 x 5 min each, then protein was denatured using 

0.2 M HCL/ 1xPBS for 10 min at RT, then washed with 1xPBS 3 x 5 min, then 

treated with 0.25% acetic anhydride /0.1 M triethanolamine/ 1xPBS for 10 min 

at RT, washed again at 1x PBS 3 x 5 min, then prehybridized in 50–100 μl 

hybridization buffer per section for 2 h at a specific temperature depending on 

probe based on the formula Tm probe -21ºC, with Tm provided by probe 

vendor (Exiqon) and shown in Supplemental Table S2. Each probe is a 5‘-

digoxigenin-labeled, 2‘-O, 4‘-C methylene bicyclonucleoside monomer-

containing oligonucleotide (LNA, phosphoramidite). Sequences are reverse 

complement to the mature miRNAs (Supplemental Table S2). The 20 ml of 



 55 

hybridization buffer was made of 50% deionized formamide/ 2x SSC/10% 

dextran sulfate/ 500 mg/ml sperm DNA/ 0.25 mg/ml yeast t-RNA/ 0.2 mg/ml 

BSA/ 50 mg/ml heparin/ 2.5 mM EDTA/ 0.1% Tween-20 in 2.3 ml DEPC-H20. 

After absorbing the prehybridization buffer with a kimwipe, 50–100 μl of 

hybridization buffer containing 0.17–0.25 mM of probe were added to each 

section and slides were covered with RNAse-free coverslips (HybriSlip, 

Molecular Probes) and incubated overnight at the specific temperatures (see 

above) in a humidified chamber. The following day, sections were washed 

twice in 2xSSC at RT for 15 min on a shaker, then washed in 1xSSC at 37ºC 

for 15 min, then washed twice with 2xSSC/formamide, then with 0.1xSSC for 

30 min at the probe-specific temperature (see above), then washed with 

0.1xSSC for 15 min at RT, then incubated with buffer I (0.1% Tween-20/0.1 M 

Tris–HCL, pH 7.5/150 mM NaCl) for 10 min at RT, then with blocking solution 

[10% normal goat serum/1% blocking reagent (Roche) in buffer I] for 30 min 

at RT, then incubated with anti-digoxigenin-alkaline phosphate-conjugated 

antibody (goat, Roche) diluted 1:1000 in blocking solution (150 μl/slide) and 

parafilm-covered slides were incubated in a humidified chamber on shaker for 
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3 hours at RT. Sections were then washed in buffer I 3 x 15 min each, then 

incubated in buffer III (0.1 M Tris–HCL, pH 9.5/0.1 M NaCl) at RT for 10 min, 

then 500 ml of color substrate solution (CSS) were added to each slide (CSS 

= nitroblue tetrazolium/BCIP stock solution (Roche) diluted 1:50 in buffer III) 

at RT under light-protected conditions overnight. Slides were then washed in 

TE buffer at RT for 10 min, then washed with 1xPBS at RT for 10 min, then 

with ddH20 at RT for 10 min. Finally the slides were coverslipped with 100 μl 

of VectaMount mounting medium (Vector Labs) for each slide, and were 

stored under light-protected conditions at RT for microscopic studies. 

Additional sections were first processed by LNA-ISH as described above, and 

then subjected to immunohistochemical labeling with the mouse monoclonal 

anti-neurofilament H (anti-SMI-32 antibody, Covance) and FITC-conjugated 

goat-anti mouse antibody, followed by diaminobenzidine (DAB)-based 

peroxidase detection with Vectastain ABC (Vector Labs). 

 

BDNF immunoassay 
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Protein was extracted with the mirVANA PARIS kit according to 

manufacturer‘s instructions and after centrifugation the supernatants were 

used for estimation of total protein with BCA micro-kit (Pierce). BDNF levels 

were essayed with enzyme-linked immunosorbent assay (ELISA) and with the 

use of BDNF ELISA kit (Chemicon) according to manufacturer‘s instructions.  

 

Immunohistochemistry, tissue dissection and laser capture 

microdissection procedures 

Sections, 8–10 μm thick, were cut from frozen unfixed postmortem human 

tissue blocks (adult PFC—BA10) on a cryostat (Leica) on plain non-coated 

glass slides, stored at -80°C, than before staining they were dried for 2 min, 

fixed in 100% acetone for 2 min, air dried for 30 s, then washed in PBS and 

processed for immunohistochemistry with the mouse monoclonal anti 

neurofilament H (NF-H; SMI-32 antibody, Covance) and FITC-conjugated 

goat-anti mouse antibody, with intermittent washing steps. This staining 

procedure was limited to altogether less than 100 min, and then sections 

were transferred to a Arcturus Veritas microdissection instrument (Molecular 
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Devices) in order to collect somata of layer III NF-H immunoreactive 

pyramidal neurons, as defined by triangular shape and prominent, vertically 

oriented apical dendrite. As a control, tissue from deeper white matter was 

collected. Cells were collected in pools of 500–1000, using the CapSure 

MacroLCM Caps (Arcturus) collection caps and then transferred to RNase-

free Eppendorf tubes and stored at -80ºC until further processed. RNA was 

extracted with the mirVana miRNA isolation kit (Ambion). In particular, the 

plastic membrane containing harvested cells was removed from the CapSure 

cap and immersed into 300–400 μl of the kit‘s lysis-binding buffer, then 

incubated in the same solution at 42ºC for 30 min with intermittent vortexing, 

in order to remove the laser-captured tissue from the membrane. The yield 

was ~5 ng/μl small RNA/pool. For dissection of upper and deeper cortical 

layers, superficial cortical gray matter (approximately upper one-fifth of gray 

matter) and white matter from frozen unfixed postmortem tissue (n = 5, ages 

30, 38, 56, 61, 68 years of age) was removed and the upper (roughly 

corresponding to parts of layers II and III) and lower one-third (roughly 
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corresponding to parts of layers V and VI) of the remaining gray matter tissue 

was used for protein and RNA extraction. 

 

Chromatin immunoprecipitation in postmortem tissue 

Chromatin immunoprecipitation in postmortem tissue from human PFC of 

different age was done as described previously (Huang et al., 2007) by using 

70–100 mg of tissue and with the primers shown in Supplemental Table S1-2. 

 

Luciferase assays 

Ambion‘s pMIR-REPORT luciferase reporter plasmid was engineered to 

include a 551 bp fragment of human BDNF 3‘-UTR (1500–2051 nt, Genbank 

ID NM_170735) at the 3‘ end of the luciferase gene. Lipofectamine 2000 

(Invitrogen) was used for transfection of HEK293 cells in 24-well plates. CMV-

driven vectors containing chicken beta-actin promoter (named CAG-R-miR 

plasmids, see also Supplemental Fig. S1-3) and expressing miRNA 

precursors (750 ng per well) were cotransfected with the luciferase reporter 

plasmid (150 ng per well) containing the 551 nt fragment of BDNF 3‘-UTR and 
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with Ambion‘s pMIR-REPORT β-galactosidase plasmid (100 ng per well) to 

control for transfection efficiency. Luciferase and β-galactosidase assays 

(Promega) were used to calculate the normalized luciferase expression. As 

controls 750 ng of vector expressing miR-NSC30 precursor with 3 bases 

difference in the seed sequence (see also below) or 750 ng of an EGFP 

expressing vector (control reference) were used. The overexpression of the 

mature miRNAs was measured with qRT–PCR and from at least two 

replicates. 

 

Neuronal transduction 

The pGIPZ self-inactivating lentiviral empty vector was purchased by Open 

Biosystems. Two sets of 111 bp oligos that encode the human miR-30a 

precursor or the miR-30a precursor with 3 bases difference in the seed 

sequence of the 5p mature miRNA (NSC30) and that contain XhoI and EcoRI 

restriction enzyme overhangs (purchased by Integrated DNA Technologies) 

were annealed and initially ligated into a double digested (XhoI, EcoRI) self-

inactivating retroviral vector pSM2c by Open Biosystems (Purchased by the 
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shRNA Library Core Facility of UMass Medical School). After PCR and 

subsequent digestion this product was then ligated to the pGIPZ self-

inactivating lentiviral empty vector. The final products (called pmiR30 and 

NSC30) are designed to drive expression of tGFP (turbo Green Fluorescent 

Protein) and the miRNA precursor molecule, through the same CMV RNA 

polymerase II promoter. The expected mature miRNA of the miR-NSC30 

precursor molecule is not predicted to target BDNF mRNA at any region 

(RNA hybrid software). Standard methodologies were used for preparation of 

rat forebrain neuronal cultures from precursor cells (Huang et al., 2007), for 

viral production and infection (Wang et al., 2005). The production of the 

mature miR-30a was assayed with qRT–PCR. In addition, transduction 

efficiency was estimated by measuring GFP expression 4 days post-infection 

with epifluorescence microscopy (Nikon Eclipse E600). An average of 60% 

transfection efficiency was observed. 

 

Statistical analysis 
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For the analysis of the Luciferase data, and after proper normalization of 

Luciferase activity to β-galactosidase activity and logarithmic transformation, 

data were evaluated using analysis of variance (ANOVA) for a mixed model 

by REML (restricted estimation by maximal likelihood). In the presence of 

significant main or interaction effects, pairwise comparisons were evaluated 

using Tukey Kramer adjustment for multiple comparisons. In the cases where 

no pairing was required, then ANOVA with post hoc Tukey was applied after 

ensuring normalized distribution of data. For presentation of data from age 

groups with different age representation and sample size and for allowing the 

comparison or combination of ‗relative‘ changes in the values measured, 

weighted means were selected for data shown on Figs 1-5 and 1-6. 
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Figure 1-1. BDNF 3’-UTR contains numerous predicted target sites for 

miRNAs expressed in human cerebral cortex. Map of BDNF 3‘-UTR (human) 

showing potential miRNA target sites conserved across mammalian species (see 

also Supplemental Table S1-3); target sites for miRNAs expressed in moderate 

to high levels in human cerebral cortex (Supplemental Fig. S1-1) are shown in 

black whereas the remaining predicted sites are shown in gray. Notice that 

miRNAs expressed in moderate to high levels are located in the vicinity of the 

two proximal poly-A sites in the BDNF 3‘-UTR. 
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Figure 1-2. Lamina and cellular expression pattern of selected miRNAs in 

human PFC. (A) Representative images (from 2–6 replicates) of six-layered PFC 

(adult) sections processed by LNA-ISH with miRNA-specific probes, and β-actin 

as control. Notice lamina-specific expression patterns, including enrichment of 

miR-30a in layers II and III. (B–G) Additional images of upper (B–D) and deeper 

(E–G) cortical layers for miR-30a LNA-ISH (B and E) together with β-actin (C and 

F) and no probe negative control (D and G). (H) Table summarizing relative 

expression of 10 miRNAs across PFC layers I–VI, and underlying white matter 

(WM) (+++ = high, ++ = moderate, + = weak, or indistinguishable from 

background). Note that miR-103/107 probe detects both miRNAs due to a single 

nucleotide difference at their 3‘ end. (I) Double labeled layer III pyramidal neuron 

from section processed for Neurofilament-H immunohistochemistry (brown) after 

miR-30a LNA in situ (purple). (J) Bar graphs show qRT–PCR data for miR-30a 

and BDNF mRNA from dissected tissue corresponding to upper (layer II and III) 

and lower (layer V and VI) cortical layers from five adult samples (see Materials 

and Methods) shown as relative ratios (upper to lower). Notice the significant 

approximately 2.5-fold enrichment of miR-30a in upper layers. Bar in (A) = 200 

μm, in (B–G) = 100μm. Image (I) taken at 63 x 10 magnification. 
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Figure 1-3. A region of human BDNF 3’-UTR is targeted by a subset of 

miRNAs. (A) Map of the luciferase reporter vector containing the 551 bp portion 

of human BDNF 3‘-UTR (nts 195 to 746 from beginning of 3‘-UTR, nucleotides 

1500–2051, Genbank ID NM_170735), which includes target sites for the 

miRNAs assayed in (B). Bar graph in (B) shows results from reporter assay, 

expressed as luciferase units normalized to β-galactosidase units and relative to 

a reference control (EGFP expressing vector not containing any miRNA 

sequence). Last column shows relative luciferase activity following transfection of 

both miR-30a and miR-195 vectors – see methods for more). Bars represent the 

calculated means by ANOVA REML model plus standard error. Asterisks depict 

statistically significant differences (after post-hoc Tukey correction) compared 

with the (miR-30a based) non-silencing seed sequence mutant (NSC30); p = 

0.010 (miR-30a); 0.0005 (m30a-5p); 0.0136 (miR-195); 0.0207 (miR-30a + miR-

195). n = 2–6 independent replicates. Notice the significant reduction in reporter 

activity after transfection with miR-30a, m30a-5p and miR-195 expressing 

vectors. (C) Predicted secondary structure of the (top) wild-type pre-miRNA 30a 

and (bottom) modified precursor designed to preferentially express miR-30a-5p 

(m30a-5p in (B)). Sequence underlined represents mature miR-30a-5p miRNA, 

which remains unaltered in the modified precursor. Arrows demarcate 

nucleotides modified from wild-type. See text for further details. (D) Table 

summarizing expression changes of mature miRNAs after transfection of 
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HEK293 cells with appropriate vectors (averaged from two independent 

experiments); (+) labels transfected cells, (-) non-transfected controls. 
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Figure 1-4. MiR-30a mediates translational inhibition of BDNF in neurons. 

Neuronal cultures from rat forebrain were infected with lentiviruses that contained 

constructs co-expressing GFP and precursor miRNAs. (A) Top: Map of the 

lentiviral vector used; Bottom: Representative image of neuronal culture infected 

with the GFP-expressing lentiviral vector shown above. (B) Bar graphs showing 

BDNF protein levels (mean ± SEM) for cultures infected with miR-30a (n = 3), or 

miR-NSC30 (n = 3) (see text for details), and non-infected (‗no virus‘, n = 2) 

cultures. Notice the significant decrease in BDNF protein in miR-30a 

overexpressing cultures. P-values after post-hoc Tukey/ANOVA. (C and D) Top: 

Secondary structures of (C) miR-30a precursor and (D) miR-NSC30 which 

contains a 3 base substitution in the seed sequence of miR-30a-5p. Mature miR-

30a-5p is depicted in red, miR-30a-3p in blue and the nucleotide changes in the 

non-silencing control, NSC30, are shown in black and underlined. Bottom: 

Predicted interactions between the first target site in BDNF 3‘-UTR (see text for 

details) and either (C) wild-type miR-30a-5p or (D) non-silencing precursor 

(‗NSC30‘). 
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Figure 1-5. Expression patterns of selected miRNAs and BDNF in PFC 

across the lifespan. (A) Heatmap showing relative expression levels presented 

as quartiles (from higher to lower: red, yellow, green, blue) of (i) control miR-128a 

not predicted to target BDNF, (ii) 7 microRNAs each predicted to target BDNF 

and expressed in human PFC (data from qRT–PCR and normalized to 5S rRNA), 

(iii) average of weighted means of all 7 miRNAs shown in (ii), (iv) BDNF protein 

as measured by ELISA and (v) BDNF mRNA as measured by qRT–PCR and 

normalized to 18S rRNA. All samples from human PFC (gray matter, BA10) 

ranging in age from 21 estimated weeks of gestation (ewg) to 84 years (y). Brain 

Hemisphere (H), gender (G) and tissue pH (pH) are also shown for each sample. 

Notice the age-related expression changes of the BDNF-related miRNAs, 

including the decline in miR-30a levels in late adolescent—young adult group 

(15–41 years of age), which are distinct from the control miR-128a. (B–D) Bar 

graph summarizing the developmental expression data shown in (A) for miR-30a 

(B), BDNF protein (C), and BDNF mRNA levels (D). Graphs represent weighted 

means ± SEM. (n = 7–15 per age group) normalized to 5S rRNA for miRNAs and 

to 18S rRNA for BDNF mRNA, for (x-axis) four different age groups ranging from 

fetal to adult ages (n = 7–15/age group). Notice again the robust decline in miR-

30a levels in the group of samples 15–41 years old and the significant increases 

in BDNF mRNA after birth (0–15 year) and in BDNF protein both after birth and 

between 15 and 41 years of age (B). *p < 0.05, (ANOVA post hoc Tukey). 
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Figure 1-6. Inverse correlation between BDNF protein and BDNF-related 

miRNAs in late adolescent and adult PFC. (A) Plot showing case-by-case the 

relative changes in BDNF protein (white circles) when compared with weighted 

average of all seven miRNA probes (black) across the life span (n = 35). Notice 

the consistent inverse relationship between BDNF and miRNA average from late 

adolescence until old age (15–84 years, box in graph). (B) Inverse correlation 

between BDNF protein and average from weighted means of the seven miRNAs 

for 15–84-year-old samples (y, year, 15–41 shown in gray, rest shown in black); 

r, Pearson coefficient. Notice, also, declining BDNF, and increased miRNA levels 

in six out of the seven oldest samples. (C) Table showing correlations between 

miRNAs and BDNF protein in late adolescent and adult (15–84 years old) PFC. 

Notice independent significant inverse correlations between miR-30a, miR-30d 

and miR-191 with BDNF protein (all shown in bold), and lack of inverse 

relationship between BDNF and a control miRNA (miR-128a, shown in italics) not 

predicted to target BDNF. (D) No correlation between BDNF protein and average 

from weighted means of the seven miRNA probes for fetal to 15-year-old 

samples. 
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Figure 1-7. Chromatin remodeling at BDNF promoters during PFC 

development. (A) Illustration showing human BDNF gene, including its multiple 

exons and the three promoters (P1, P4 and P9, arrows) selected for chromatin 

immunoprecipitation studies (see text). (B and C) Developmental changes in tri-

methylated histone H3-lysine 4 at BDNF P1 (B) and P4 (C). Bar graphs represent 

mean ± SEM of chip-to-input ratios (n = 3–6/age group). Notice significant 

increases in P1- and P4-associated histone methylation after birth or childhood 

[last two age groups merged in (C) due to limited number of samples], 

respectively. *p< 0.05, ANOVA post hoc Tukey. 
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Supplemental Figure 1-1: Expression of BDNF-related miRNAs in adult 

cerebral cortex. (A) Relative expression of the predicted miRNAs in adult 

human parietal cortex (pooled RNA from 7 samples) by microarray. Data shown 

as mean ± SD (spot to spot SD), with the variance referring to the array‘s 

replicate measures all after normalization to 5S rRNA (4-5 replicates). (B) 

Comparison between relative abundance of the BDNF-related miRNAs in adult 

parietal cortex and in adult prefrontal cortex from previous microarray study. The 

10 most highly expressed predicted miRNAs are shown from higher (up) to lower 

expression (down). Notice that 9/10 of the highly expressed in parietal cortex 

miRNAs are also within the top ten expressed in human prefrontal cortex (shown 

in bold). 
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Supplemental Figure 1-2: Lamina and cell specificity in miRNA expression 

in human PFC and mouse cerebral cortex. (A-E) Representative images from 

LNA in situ hybridization in postmortem fixed tissue from adult human prefrontal 

cortex for miRNAs 30c (A), 195 (B) 16 (C), 495 (D) and 1 (E).Layers of gray 

matter (I-VI) are shown. Notice the layer 2 specific enrichment for miR-495 (box) 

and the very low to negative signal for heart and muscle enriched miR-1. (F) 

Layer 2 miR-495 expressing neurons in higher magnification. (G-K) LNA in situ 

hybridization in mouse cerebral cortex for miR-30a, miR-30b, miR-495 and miR-

191. Notice the lack of lamina specificity of mouse miR-30a. (L-N) 

Immunofluorescence for NF-H in acetone fixed sections from human postmortem 

PFC as visualized in the laser capture microdissection apparatus. (L) Before 

laser capturing of SMI-32 positive pyramidal neurons in layer III and (M) after 

laser capture of selected pyramidal neurons. (N) qRT-PCR from RNA<200nts 

isolated from 500-1000 laser captured pyramidal neurons of layer III and tissue 

fragments from white matter shows that miR-30a can be detected in the laser 

captured SMI-32 positive pyramidal neurons of layer III of human PFC (red 

dotted circle) but is undetectable in laser captured tissue fragments from the 

white matter (light blue dotted circle) of the same section. Note also the detection 

of 5S rRNA with qRT-PCR in both small RNA samples indicating that the RNA 

isolation procedure was successful (orange and purple dotted circle). Arrows 

represent the lowest Cycle Threshold (Ct) values from negative controls (no 

sample) for 5S rRNA (left) and miR-30a (right). Images taken at magnification: 

(A-E, G-K at 10X5, F at 10X63 and L,M at 10X10). 
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Supplemental Figure 1-3: MiRNA expressing vector map and computational 

analysis of miR-30a,b and c targeting of BDNF 3’UTR. (A) Map of the pCAG-

R-miR miRNA expression vector used to drive the expression of the studied 

miRNAs in HEK-293 cells. The position of the CMV enhancer and chicken β-actin 

promoter are shown. The miRNA precursors were expressed from an intronic 

region following DsRED2 gene. The latter was also used to verify expression of 

vector (data not shown). (B) Table showing in silico predictions based on 

TargetScan 4.0 of targeting of human BDNF 3‘UTR and 3 members of the miR-

30 family. Notice the stronger complementarity between miR-30a and BDNF 

3‘UTR in the 3‘ region of the miRNA. 
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Supplemental Figure 1-4: MiR-30a and BDNF mRNA levels in rat neuronal 

cultures. (A) Representative results from qRT-PCR showing the lentivirus - 

mediated overexpression of miR-30a (dotted red circle) in neuronal cultures. 

Notice that the cultures infected with non silencing control (NSC30) do not exhibit 

higher miR-30a levels than the controls (no virus) cultures (both marked with 

dotted blue circle). Arrows represent qRT-PCR negative controls for (red) miR-

30a and (black) 5S rRNA. (B) Bar graphs (Mean ± S.E.M.) showing BDNF mRNA 

levels (normalized to 18S rRNA) in neuronal cultures expressing miR-30a and 

NSC30 (N=3 per group), relative to no virus control. 
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Supplemental Figure 1-5: Levels of selected miRNAs in PFC across the 

lifespan. (A-H) Developmental expression of selected BDNF related miRNAs (B-

G), not predicted to target BDNF miR-128a (A) and the average of all 7 BDNF-

related miRNAs (H) in human PFC. Graphs showing weighted means ± S.E.M of 

miRNA expression normalized to 5S rRNA, for (x-axis) 4 different age groups 

ranging from fetal to adult ages (N = 7 -15/age group). Notice that miR-30c, miR-

30d, miR-191 and miR-195 and the 7 miRNAs average show a significant 

increase in the older group ages 41-84. (* p< 0.05 , ANOVA post-hoc Tukey). (I) 

Solution hybridization results from younger brains for miR-30a. Notice expression 

at 18th and 25th week of gestation (e18 and e25 respectively) and until 8 years 

of age (y=years). Undigested full length probe positive control (P‘) and no sample 

negative control (N‘) are also shown together with ethidium bromide staining for 

5S rRNA (below). (J) Solution hybridization results with miR-30a and 5S rRNA 

probes with positive (P1,P2) and negative controls (N1) for samples from 2 to 31 

years old (S1-S8). 
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EWG, estimated weeks of gestation 
PMI ,  postmortem interval 
H,  brain hemisphere 
 
Tissues obtained from Brain and Tissue Bank for Developmental Disorders, University of 
Maryland (fetal, child and adolescent) and Center for Neuroscience, University of California 
Davis brain bank (adult). 
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Supplemental Table 1-2 – LNA probes and qRT-PCR primers 
 
 
i) LNA probes (Exiqon) 
 
      miRNA                       probe sequence (5’-3’)           Tm   
 
hsa-miR-30a-5p                 cttccagtcgaggatgtttaca              73      
 
hsa-miR-1                           tacatacttctttacattcca                 64        
 
hsa-miR-128a                    aaaagagaccggttcactgtga           77      
 
hsa-miR-16                       cgccaatatttacgtgctgcta              74      
  
hsa-miR-10a                      cacaaattcggatctacagggta          74       
  
hsa-miR-103                     tcatagccctgtacaatgctgct            80       
 
hsa-miR-191                     agctgcttttgggattccgttg               74       
 
hsa-miR-495                     aaagaagtgcaccatgtttgttt            71       
 
hsa-miR-30b                     agctgagtgtaggatgtttaca             71       
 
hsa-miR-30c                     gctgagagtgtaggatgtttaca           73       
 
hsa-miR-195                     gccaatatttctgtgctgcta                 73             
 
 
ii) mirVANA qRT-PCR probes 
 
 Catalog No (Ambion)           miRNA 
         AM30142                      miR-30a-5p 
         AM30143                      miR-30b 
         AM30144                      miR-30c 
         AM30145                      miR-30d 
         AM30011                      miR-103 
         AM30026                      miR-128 
         AM30079                      miR-191 
         AM30083                      miR-195 
 
 



 90 

iii) other primers 
 
 
 

Genomic sequences for chromatin immunoprecipitation studies
Product Length Gene transcritption

location [bp] Forward Reverse start site

BDNF 11p13 (-573:-675) 103 AGCCCAACAACTTTCCCTTT GAGAGCTCGGCTTACACAGG NT_009237.17 26530564

BDNF 11p13 (-399:-469) 71 AGCCTTTCGGGTTCTCATTT TCCTCTGGACCCTAGCCATA NT_009237.17 26510394

BDNF 11p13 (-1902:-2001) 100 CGTCCATGGGGGTTTCTATT GCCCCTTGGGTTGTTTTTAT NT_009237.17 26467373

Human
mRNA

Product Length of Transcript

location [bp] Forward Reverse length [bp]

BDNF E1-E2 N/A 116 N/A N/A Applied Biosystems N/A

18S rRNA N/A (1345:1464) 150 GTTGGTGGAGCGATTTGTCT GAACGCCACTTGTCCCTCTA X03205.1 1869

mRNA
Product Length Transcript

location [bp] Forward Reverse length [bp]

Rat BDNF E4 (715:832) 118  GCGCCCATGAAAGAAGCAAA TCGTCAGACCTCTCGAACCT NM_012513.3 4252

18S rRNA N/A (1335:1469) 135 CATGGCCGTTCTTAGTTGGT GAACGCCACTTGTCCCTCTA X01117.1 1874

Exon
Primer sequence

Source

Source

Source

Primer sequence
Gene (HUGO)

Gene
Primer sequence

Chromosome

Exon

Gene
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Supplemental Table 1-3. In silico analysis of BDNF 3’UTR miRNA target 
sites using a combination of 4 different tools. 

                            

 

 

This table describes first the position of predicted miRNA target sites in the 
3‘UTR (5‘ to 3‘) of human BDNF mRNA (NM_170735)and the evolutionary 
conservation of the target sites in human (Hs), mouse (Mm), rat (Rn) and dog 
(Cf). Information for BDNF 3‘UTR sequences across the 4 mammalian species, 
obtained from TargetScan 3.1 website (http:www.targetscan.org/mamm_31/)are 
shown, followed by the miRNA registry (miRBAse) accession id 
(http://microrna.sanger.ac.uk/). In red the part of the target site that interacts with 
2nd-7th nt 5‘ of the miRNA. Secondary structure of the predicted 3‘UTR – miRNA 
duplexes were determined with RNAhybrid software (http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/). In blue the seed sequence of each miRNA. MiRNA 
target sites within human BDNF 3‘UTR were also determined by PicTar software 
[(http://pictar.bio.nyu.edu/), based on conservation in mammals and chicken (Lall 
et al., 2006). Those that were predicted by Pictar software are specified.  
 

 

 

1. Position in BDNF 3’UTR = 50-55  
   hsa-miR-381 conserved miRNA 

 

          TargetScan 3.1                          miRBase Accession No             
 

               BDNF 3’ UTR                                     miR-381                      
Hs:  …UAUUUGUAUAUA…                            (MI0000789) 

Mm:…UAUUUGUAUAUA…                            (MI0000798) 

Rn: …UAUUUGUAUAUA…                            (MI0003546) 
Cf:  …UAUUUGUAUAUA…                                  (N/A) 
 

                   RNAhybrid  
 

  BDNF   5’   U    CAAAAA  A   AU       U 3’ 

               GAGA      UU UCU  UUGUAUA         

               CUCU      AA GGG  AACAUAU        

miR-381  3’ UGU    CG      C              5’ 

                                          

                             
                                Pictar: Not  predicted 
 

 
 
 

 

http://www.ncbi.nlm.nih.gov.ezproxy.umassmed.edu/entrez/viewer.fcgi?db=nuccore&id=60218885
http://microrna.sanger.ac.uk/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://pictar.bio.nyu.edu/
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 2. Position in BDNF 3’UTR = 65-70  
       hsa-miR-10a,b  conserved miRNAs  
 

                  TargetScan 3.1                     miRBAse Accession No 
 

              BDNF 3’ UTR                                       miR-10a,10b 

   Hs: …UAACAGGGUAAA…                     (MI0000266),(MI0000267) 
   Mm:…UAACAGGGUAAA…                    (MI0000685),(MI0000221) 

   Rn: …UAACAGGGUAAA…                    (MI0000841),(MI0000842) 
   Cf: …UAACAGGGUAAA…                                     (N/A) 

 

             RNAhybrid 
 

  BDNF   5’ G    AAAUUAUCU     U  AUAUACAUA        A 3’ 

             ACAA         AUUUG AU         ACAGGGUA     

             UGUU         UAAGC UA         UGUCCCAU     

miR-10a  3’ G                  C  GA                 5’ 

 
  Pictar: Predicted site 

 

   
 

        
3. Position in BDNF 3’UTR = 145-150  

 hsa-miR-508 *non conserved miRNA 
 

          TargetScan 3.1                   miRBAse Accession No 
 

         BDNF 3’ UTR                                           miR-508 
   Hs: …UUCUACAAUCUA…                             (MI00003195) 

   Mm…UUCUACAAUCUA…                                    (N/A) 
   Rn:…UUCUACAAUCUA…                                    (N/A) 

   Cf: …UUCUACAAUCUA…                                    (N/A) 
 

                                              RNAhybrid 
 

  BDNF  5’  A   AGUA   U    UC       U 3’ 

             UAC    CAG  GGU  UACAAUC     

             AUG    GUU  CCG  AUGUUAG     

miR-508 3’ AG   AG     UU            U 5’ 

  
                                 Pictar: Not predicted  
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4. Position in BDNF 3’UTR = 196-201  

 hsa-miR-210 conserved miRNA 
  

                   TargetScan 3.1                     miRBAse Accession No 

                

                  BDNF 3’ UTR                                   miR-210 

   Hs: …U-GCGCACAACU…                              (MI0000286) 

   Mm:…U-GCGCACAACU…                             (MI0000695) 
   Rn: …U-GCGCACAACU…                             (MI0000950) 

   Cf: …UUGCGCACAACU…                                   (N/A) 
 

RNAhybrid 
 

BDNF 3’UTR 5' C   AA GGAAACA     UU       A 3' 

               CAG  G       GUCAU  GCGCACA     

               GUC  C       CAGUG  UGCGUGU     

   miRNA   3' A   GG GA                   C 5' 

  

    Pictar: Not predicted  
 

                        

 
5. Position in BDNF 3’UTR = 220-225  
 hsa-miR-1(1-2),  hsa-miR-206   conserved miRNAs 

 
          TargetScan 3.1                     miRBAse Accession No 
 

         BDNF 3’ UTR                                      miR1-1,1-2,206 

   Hs: …AUUACAUUCCUU…            (MI0000651),(MI0000437),(MI0000490)     

   Mm …AUUACAUUCCUC…            (MI0000139),(MI0000652),(MI0000249) 
   Rn: …AUUACAUUCCUC…                (MI0003489), (N/A) , (MI0000948) 

   Cf: …AUUACAUUCCUC…                                     (N/A) 
 

                                       RNAhybrid 
 

BDNF   5’ C       UAAAAAG   GCA         U 3’ 

 

           ACA ACU       UCU   UUACAUUCC     

           UGU UGA       AGA   AAUGUAAGG     

miR-1  3’ A   A                         U 5’ 

 
Pictar: Predicted site 
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6. Position in BDNF 3’UTR = 252-257  

 hsa-miR-182 conserved miRNA 
 

          TargetScan 3.1                  miRBAse Accession No 
 

                    BDNF 3’ UTR                                   miR-182 

   Hs: …CCGUUGCCAAGA…                             (MI0000272) 
   Mm …CCGUUGCCAAGA…                             (MI0000224) 

   Rn: …CCGUUGCCAAGA…                                  (N/A) 
   Cf:  …CCGUUGCCAAGA…                                  (N/A) 
 

                        RNAhybrid 
 

5' BDNF 5’ U         GU             A 3’ 

            UGUG GUUU  UGCCGUUGCCAAG     

            ACAC CAAG  AUGGUAACGGUUU     

miR-182 3’      U                     5’ 

 
 Pictar: Predicted site 

 

 

 
7. Position in BDNF 3’UTR = 299-304  

 hsa-miR-103 (1-2), hsa-miR-107 conserved miRNAs 

                 

                     TargetScan 3.1                    miRBAse Accession No 

 

           BDNF 3’ UTR                                  miR-103-1,103-2,107 
   Hs: …GCAUGCUGCUUU…              (MI0000109),(MI0000108),(MI0000114) 

   Mm …GCAUGCUGCUUU…              (MI0000587),(MI0000588),(MI0000684) 
   Rn: …GCAUGCUGCUUU…              (MI0000888),(MI0000887),(MI0000890) 

   Cf:  …GCAUGCUGCUUU…                                       (N/A) 

 
                                              RNAhybrid 

 

 BDNF   5’  AAAUAAUAAAU            U 3’ 

                       UGC AUGCUGCU     

                       AUG UACGACGA       

miR-103 3’  AGUAUCGGGAC   U          5’ 

 
Pictar: Predicted site 
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8. Position in BDNF 3’UTR = 300-305  

 hsa-miR-15a,b, hsa-miR-16(1-2), hsa-miR-195, hsa-miR-497 conserved miRNAs 
 

          TargetScan 3.1                             miRBAse Accession No 
 

                                 miR-15a,b,16-1, 
           BDNF 3’ UTR                                        16-2,195,497 

Hs: …CAUGCUGCUUUA…            (MI0000069),(MI0000438),(MI0000070) 

                                                 (MI0000115),(MI0000489),(MI0003138) 
Mm: …CAUGCUGCUUUA…          (MI0000564),(MI0000140),(MI0000565) 

                                                (MI0000566),(MI0000237),(MI0004636) 
Rn: …CAUGCUGCUUUA…               (N/A)       (MI0000843),(MI0000844)      

                                                     (N/A)       (MI0000939),(MI0003724) 
Cf: …CAUGCUGCUUUA…                (N/A) 
 

          RNAhybrid 
 

  BDNF   5’  A     AA    CA       U 3’ 

              UAAUA   UUG  UGCUGCU     

              GUUAU   GAC  ACGACGA        

miR-195  3’ CG     AAA            U 5’ 

 

                  Pictar: Predicted site 
 

 

 

9. Position in BDNF 3’UTR = 393-398  

hsa-miR-191 conserved miRNA 

                

     TargetScan 3.1                           miRBAse Accession No 

 

        BDNF 3’ UTR                                             miR-191 

Hs: …CAUUCCGUUUAC…                                   (MI0000465) 
Mm:…CAUUCCGUUUAC…                                  (MI0000233) 

Rn: …CAUUCCGUUUAC…                                  (MI0000934) 

Cf: …CAUUCCGUUUAC…                                         (N/A)  
  RNAhybrid 

 

  BDNF   5’  U   AACCAAAAC        U 3’ 

             UUG         AUUCCGUU     

             GAC         UAAGGCAA     

miR-191  3’UC   GAAAACCC         C 5’ 

 

Pictar: Not predicted 
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10. Position in BDNF 3’UTR = 397-402  

hsa-miR-30a(5p),b,c(1-2),d,e(5p) conserved miRNAs   
 

       TargetScan 3.1                          miRBAse Accession No  
      

                                                                          miR-30a,b,c1, 
                BDNF 3’ UTR                                          c2,d,e 

 Hs: …UCCGUUUACAUU…             (MI0000088),(MI0000441),(MI0000736) 

                                                   (MI0000254),(MI0000255),(MI0000749) 
 Mm: …UCCGUUUACAUU…            (MI0000144),(MI0000145),(MI0000547)     

                                                      (MI0000548),(MI0000549),(MI0000259) 
 Rn: …UCCGUUUACAUU…             (MI0000870),(MI0000868),(MI0000866) 

                                                       (MI0000871),(MI0000869),(MI0000867) 
 Cf: …UCCGUUUACAUU…                                      (N/A) 

 

  RNAhybrid 
 

  BDNF     5’  A    AAACAUUCC       U 3’ 

                 CCA         GUUUACA     

                 GGU         CAAAUGU     

miR-30a5p  3’ GAA   CAGCUCCUA         5’ 

 

Pictar: Predicted site 
 

 

 

 

 11. Position in BDNF 3’UTR = 552-557  
 hsa-miR-495 conserved miRNA 
 

              TargetScan 3.1                      miRBAse Accession No 
 

              BDNF 3’ UTR                                     miR-495 
  Hs:  …U-GUUUGUUUUG…                           (MI0003135) 

  Mm:…U-GUUUGUUUUG…                           (MI0004639) 
  Rn: …U-GUUUGUUUUG…                                  (N/A) 

  Cf: …UUGUUUGUUUUG…                                  (N/A) 
 

       RNAhybrid 
 

 BDNF    5’  U  GG      AUUUU         U 3’ 

              GG  G GUAU     UGUUUGUUU     

              UC  C CGUG     ACAAACAAA     

miR-495  3’ UU  UU A    GU              5’ 

 

Pictar: Not Predicted 
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12. Position in BDNF 3’UTR = 680-685  

 hsa-miR-30a(5p),b,c(1-2),d,e(5p) conserved miRNAs 
 

            TargetScan 3.1                                miRBAse Accession No 
     

                                                                               miR-30a,b,c1, 
              BDNF 3’ UTR                                                 c2,d,e 

Hs: …A- UGUUUGCAAU…                  (MI0000088),(MI0000441),(MI0000736) 

                                                       (MI0000254),(MI0000255),(MI0000749) 
Mm: …A- UGUUUGCAAA…                 (MI0000144),(MI0000145),(MI0000547)     

                                                          (MI0000548),(MI0000549),(MI0000259) 
Rn: …AAUGUUUGCAAA…                  (MI0000870),(MI0000868),(MI0000866) 

                                                       (MI0000871),(MI0000869),(MI0000867) 
Cf: …A- UGUUUGCAGU…                                            (N/A) 

 

 RNAhybrid 
 

  BDNF     5’ U  G  U    UGAA          A 3’ 

               UU UA GUUG    GAUGUUUGCA     

               AA GU CAGC    CUACAAAUGU     

miR-30a5p  3’ G  G       UC              5’ 

 
                                      Pictar: Predicted site 

 

 

13. Position in 3’UTR = 1321-1326  
 hsa-miR-1(1-2), hsa-miR-206 conserved miRNA 

 
               TargetScan 3.1                               miRBAse Accession No 
 

           BDNF 3’ UTR                                        miR1-1,1-2,206 

     Hs:  …AGACAUUCCAAA…               (MI0000651),(MI0000437),(MI0000490)           

     Mm: …AGACAUUCCUAA…              (MI0000139),(MI0000652),(MI0000249)       
     Rn: …AGACAUUCCUAA…               (MI0003489),     (N/A)      ,(MI0000948)       

     Cf:   …---CAUUCCGGA…                                         (N/A) 
 

RNAhybrid 
 

BDNF   5’ G     G A   GAG        A 3' 

           GCAUG U UUU   ACAUUCCA     

           UGUAU A GAA   UGUAAGGU     

miR1   3' A     G A   A            5' 

 

    Pictar: Predicted site 
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14. Position in BDNF 3’UTR = 2704-2709  

 hsa-miR-368 not conserved miRNA 
 

                TargetScan 3.1                       miRBAse Accession No 
 

                  BDNF 3’ UTR                                    miR-368 

      Hs: …UCUCUCUAUGGU…                         (MI0000776) 
    Mm: …UCUCUCUAUGGU…                                (N/A) 

     Rn: …UCUCUCUAUGGU…                                (N/A) 
      Cf: …UCUCUCUAUGGU…                                (N/A) 

 

                                            RNAhybrid    

 

                                                  N/A    

 
Pictar: Predicted site 
 

 

 

 

 

 

 

 

 15. Position in BDNF 3’UTR = 2728-2733  
 hsa-miR-496 conserved miRNA 
 

             TargetScan 3.1                           miRBAse Accession No 
 

               BDNF 3’ UTR                                        miR-496 

     Hs: …ACCAUGUAAAA-…                             (MI0003136) 

   Mm: …ACCAUGUAAAA-…                              (MI0004589) 
    Rn: …ACCAUGUAAAA-…                                    (N/A) 

     Cf: …ACCAUGUAAAAA…                                   (N/A) 
 

    RNAhybrid 
 

 BDNF   5’ A    AUUAUUCA        A 3’ 

            AGAU        CCAUGUAA     

            UCUA        GGUACAUU     

miR496  3’ C    ACC             A 5’ 

 

Pictar: Not Predicted 
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16. Position in BDNF 3’UTR = 2796-2801  

 hsa-miR-365 (1-2) conserved miRNA 
 

                TargetScan 3.1                           miRBAse Accession No 
 

                BDNF 3’ UTR                                   miR-365-1,365-2 
    Hs: …-UUGGCAUUAAA…                       (MI0000767),(MI0000769) 

   Mm: …-UUGGCAUUAAA…                      (MI0000768),(MI0001645) 
    Rn: …-UUGGCAUUAAA…                      (MI0001656),    (N/A)  

    Cf: …AUUGGCAUUAAA…                       (MI0001657),(MI0001647) 
 

RNAhybrid 
 

 BDNF   5'               U       A 3' 

                          GGCAUUA     

                          CCGUAAU     

miR-365 3' UAUUCCUAAAAAUCC         5' 

 

 
                                    Pictar : Not Predicted 

 
 

17. Position in BDNF 3’UTR = 2797-2802  

 hsa-miR-155 conserved miRNA  
 

             TargetScan 3.1                            miRBAse Accession No 
 

      BDNF 3’ UTR                                           miR-155 

 Hs: …UUGGCAUUAAAA…                                 (MI0000681) 

Mm: …UUGGCAUUAAAA…                                (MI0000177) 
 Rn: …UUGGCAUUAAAA…                                      (N/A) 

 Cf: …UUGGCAUUAAAA…                                       (N/A) 

 

 RNAhybrid 
 

 BDNF   5'     A      UUAUUGAAAAAA           A 3' 

                AUUAUG            AUUGGCAUUAA     

                UAGUGC            UAAUCGUAAUU     

miR-155 3' GGGGA                             5' 

                                          
Pictar: Predicted site 
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CHAPTER III – MOLECULAR DETERMINANTS OF DYSREGULATED 

GABAERGIC GENE EXPRESSION IN THE PREFRONTAL CORTEX OF 

SUBJECTS WITH SCHIZOPHRENIA 

 

The work presented in this chapter is reproduced from a study by Nikolaos 

Mellios, Hsien-Sung Huang, Anastasia Grigorenko, Stephen Baker, Marzena 

Galdzicka, Edward Ginns, and Schahram Akbarian published in Biol 

Psychiatry (Mellios et al., 2008b). This work was conducted under the 

direction of Dr. Schahram Akbarian, and it is with gratitude to him and the 

other authors that I reproduce these data for the purposes of this dissertation. 

My contribution in this work was to design and execute the miRNA-related 

experiments and write together with Dr. Schahram Akbarian the manuscript. 

Specifically, I carried out small RNA isolation, including PAGE purification of 

small RNAs, qRT-PCR for miRNA analysis, BDNF ELISA, part of the mouse 

chronic antipsychotic treatment and analysis of data. Hsien-Sung Huang, who 

is a first co-author conducted the GABAergic gene qRT-PCRs in mouse and 

human brain, chromatin immunoprecipitation experiments, and part of the 
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mouse chronic antipsychotic treatment. Drs. Edward Ginns and Marzena 

Galdzicka conducted the NPY genotyping experiment and Dr. Stephen Baker 

assisted in statistical analysis. Anouch Matevossian assisted in chromatin 

immunoprecipitation experiments. Yin Guo contributed by conducting 

postmortem brain dissection. Simone Jäger contributed by assisting in 

running qRT-PCR.  

 

 

Abstract 

Background: Prefrontal deficits in gamma-aminobutyric acid (GABA)ergic 

gene expression, including neuropeptide Y (NPY), somatostatin (SST), and 

parvalbumin (PV) messenger RNAs (mRNAs), have been reported for 

multiple schizophrenia cohorts. Preclinical models suggest that a subset of 

these GABAergic markers (NPY/SST) is regulated by brain-derived 

neurotrophic factor (BDNF), which in turn is under the inhibitory influence of 

small noncoding RNAs. However, it remains unclear if these mechanisms are 
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important determinants for dysregulated NPY and SST expression in 

prefrontal cortex (PFC) of subjects with schizophrenia. 

Methods: Using a postmortem case-control design, the association between 

BDNF protein, NPY/SST/PV mRNAs, and two BDNF-regulating microRNAs 

(miR-195 and miR-30a-5p) was determined in samples from the PFC of 20 

schizophrenia and 20 control subjects. Complementary studies were 

conducted in cerebral cortex of mice subjected to antipsychotic treatment or a 

brain-specific ablation of the Bdnf gene. 

Results: Subjects with schizophrenia showed deficits in NPY and PV mRNAs. 

Within-pair differences in BDNF protein levels showed strong positive 

correlations with NPY and SST and a robust inverse association with miR-195 

levels, which in turn were not affected by antipsychotic treatment or genetic 

ablation of Bdnf. 

Conclusions: Taken together, these results suggest that prefrontal deficits in a 

subset of GABAergic mRNAs, including NPY, are dependent on the regional 

supply of BDNF, which in turn is fine-tuned through a microRNA (miRNA)-

mediated mechanism. 
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Introduction 

Schizophrenia is a complex psychiatric disorder with genetic (Porteous et al., 

2008; Allen et al., 2008) and epigenetic (Huang et al., 2007; Tsankova et al., 

2007) factors potentially contributing to its pathophysiology, which has been 

linked among others to aberrant inhibitory synaptic function in the prefrontal 

cortex (PFC) (Lewis et al., 2004; Gonzalez-Burgos et al., 2008). Interestingly, 

multiple studies have revealed deficits in the expression of gamma-

aminobutyric acid (GABA)ergic transcripts such as neuropeptide Y (NPY), 

somatostatin (SST), parvalbumin (PV), and glutamic acid decarboxylase 67 

(GAD67) in the prefrontal cortex of patients with schizophrenia (Akbarian et 

al., 1995; Guidotti et al., 2000; Fatemi et al., 2005; Hashimoto et al., 2008). 

Two interneuron subtypes, including PV-positive fast-spiking neurons forming 

synapses with perisomatic domains of pyramidal neurons and non fast-

spiking NPY-positive and SST-positive neurons targeting pyramidal neuron 

distal dendrites (Lewis et al., 2004; Gonzalez-Burgos et al., 2008), are pivotal 

for the synchronization of prefrontal neuronal networks, which are disrupted in 

schizophrenia (Spencer et al., 2003; Cho et al., 2006; Uhlhaas et al., 2006). 
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Furthermore, brain-derived neurotrophic factor (BDNF), a potential 

schizophrenia susceptibility gene (Durany et al., 2001; Egan et al., 2003; 

Angelucci et al., 2005), and its receptor tropomyosin related kinase B (TRK-B) 

could be important regulators of the GABAergic transcriptome in mammalian 

cerebral cortex (Gorski et al., 2003; Hashimoto et al., 2005; Glorioso et al., 

2006). Based on studies in Bdnf mutant mice (Glorioso et al., 2006), NPY and 

SST messenger RNA (mRNA) expression is dependent on BDNF, but this 

link has not yet been explored in schizophrenia postmortem studies.  

 MicroRNAs (miRNAs) are small noncoding RNAs that are evolutionarily 

conserved and are predicted to target at least one third of protein coding 

genes (Bartel et al., 2004; Filipowicz et al., 2008). They are derived from 

longer precursor molecules through a combined action of the nuclear 

microprocessor complex and the cytoplasmic RNAase III enzyme Dicer 

(Bartel et al., 2004; Filipowicz et al., 2008). The mature product of 

approximately 20 nucleotides (nts) in length is loaded to the RNA-induced 

silencing complex (RISC) and targets areas predominantly in the 3‘ 

untranslated region (UTR), mediating translational repression or mRNA 
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degradation, depending on the degree of complementarity (Bartel et al., 2004; 

Filipowicz et al., 2008). The emerging important role of miRNAs in various 

cellular processes and their implication in a plethora of human diseases 

(Chang et al., 2007) has made them a new promising field of molecular 

epigenomics (Chuang and Jones, 2007). Furthermore, miRNAs have been 

proposed to account for part of the variability in gene expression in human 

cerebral cortex (Zhang and Su, 2008); to display remarkable resistance to the 

effects of temperature, pH, and prolonged storage (Chen et al., 2008); and to 

be stable and consistent biomarkers in postmortem studies (Szafranska et al., 

2008). We have previously shown that the expression of BDNF in adult 

human PFC is inversely correlated to a subset of miRNAs predicted to target 

conserved regions within human BDNF 3‘ UTR, with two species in particular, 

miR-30a-5p and miR-195, having the most pronounced inhibitory effect on 

BDNF translation (Mellios et al., 2008a). 

 In this case-control study, we determined the expression and potential 

interactions of NPY, SST, and PV mRNAs with BDNF protein levels in 20 

subjects with schizophrenia, including the putative influence of miR-30a-5p 
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and miR-195 microRNAs. Our results show for the first time that alterations in 

NPY and SST, but not PV, mRNA in PFC of schizophrenia subjects are 

modulated by BDNF protein, which in turn is negatively regulated by miR-195. 

Furthermore, we show that the cerebral cortex of mice with a central nervous 

system (CNS)-specific conditional ablation of BDNF exhibits deficits in NPY 

and SST mRNAs without concomitant changes in miR-195 levels. Therefore, 

a small noncoding RNA, miR-195, could be an important modifier of BDNF-

related GABAergic deficits in schizophrenia. 

 

 

Results 

 

Altered expression of GABAergic transcripts in PFC of subjects with 

schizophrenia 

To determine if the reported deficits in a subset of GABAergic transcripts in 

PFC of patients with schizophrenia (Gabriel et al., 1996; Hashimoto et al., 

2008) could be recapitulated in our cohort of 20 matched pairs (Table 2-1), 
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we measured with qRT-PCR mRNA levels for NPY, SST, and PV. Our results 

revealed significant deficits (NPY, PV) or a trend for decrease (SST) in mRNA 

levels of the schizophrenia subjects (Fig. 2-1A–C). To rule out that these 

alterations were due to differences in the level of the normalization gene, 

B2M, we reanalyzed NPY transcript changes for eight randomly selected 

matched pairs using two additional reference genes (18S rRNA and GUSB) 

(Peltier et al., 2008). The within-pair differences in NPY levels based on each 

of these two additional reference genes were highly correlated with the B2M-

based values (18S rRNA: r = +0.87, p= 0.005; GUSB: r= +0.85, p = 0.008, 

with r = Pearson correlation coefficient). 

 

Disease-specific changes in prefrontal NPY and SST mRNAs are related 

to within-pair differences in BDNF protein 

Next, we wanted to explore the molecular mechanisms that could underlie the 

observed deficits in NPY, SST, and PV expression in the schizophrenia 

cohort of this study. Based on studies in genetically engineered mice, 

expression of NPY and SST in cerebral cortex is dependent on BDNF 
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(Glorioso et al., 2006), but it is not known whether a similar mechanism plays 

a role in schizophrenia. To address this issue, we measured BDNF protein by 

ELISA in our cohort and determined BDNF protein and NPY, SST, and PV 

mRNA levels in schizophrenia subjects relative to their matched control 

subjects (S/C). Although no significant changes in BDNF protein in this cohort 

were observed (data not shown), there were significant positive correlations 

between within-pair differences in BDNF and NPY or SST mRNA levels (Fig. 

2-1D and 2-1E). However, there was no correlation between BDNF and PV 

S/C ratios (Fig. 2-1F). Therefore, changes in BDNF protein levels in 

schizophrenia preferentially affect prefrontal NPY and SST but not PV gene 

expression. 

 

MiR-195, a BDNF-targeting microRNA, is an upstream effector of BDNF 

and BDNF-Regulated GABAergic gene transcripts in schizophrenia 

From the above findings, one could draw two conclusions. First, prefrontal 

BDNF levels had a significant effect on a subset of GABAergic gene 

transcripts. Second, within-pair differences in BDNF proteins levels showed 
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considerable variability (Fig. 2-1D–F). However, based on our previous study, 

BDNF levels in adult human PFC are regulated by a distinct set of microRNAs 

targeting multiple conserved miRNA sites in the BDNF 3‘ UTR (Mellios et al., 

2008a). Each BDNF-related miRNA displays developmental and/or layer-

specific expression in the PFC (Mellios et al., 2008a). Notably, among these 

differentially expressed miRNAs, two in particular, miR-30a-5p and miR-195, 

exert a more pronounced posttranscriptional inhibition on BDNF (Mellios et 

al., 2008a). Therefore, we hypothesized that aberrant expression of one or 

both of these two miRNAs in schizophrenia subjects might contribute to the 

disease-related changes in BDNF protein and BDNF-regulated NPY and SST 

gene expression. 

 To examine this, we first extracted small RNAs (<200 nts) from the 42 

brains included in this study and measured miR-195, miR-30a-5p, and for 

normalization 5S rRNA by qRT-PCR. Overall, miR-195 levels in the PFC of 

subjects with schizophrenia did not differ significantly to those of their 

matched controls (Fig. 2-2A). However, the <200 nts RNA pool used for the 

above analyses includes, in addition to the mature microRNAs (which range 
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between 18 nts and 23 nts in size), the precursor microRNAs molecules such 

as the pre-miRNAs (60–70 nts) and a subset of primary microRNAs 

transcripts (>100 nts) (Bartel et al., 2004; Filipowicz et al., 2008), which might 

in some cases be detected by qRT-PCR. Importantly, only the mature 

microRNAs are capable of posttranscriptional inhibition of target genes (Bartel 

et al., 2004; Filipowicz et al., 2008). Therefore, we wanted to measure 

specifically mature miR-195 levels in our schizophrenia cohort. To address 

this issue, additional tissue samples were obtained from a subset of 18 brains 

or 9 matched pairs (selected beforehand from the same cohort and based on 

availability of tissue), and <40 nts RNA was purified by polyacrylamide gel 

electrophoresis (see Methods and Materials). Of note, 5S rRNA, used for 

normalization in qRT-PCRs utilizing the <200 nts RNA (see above), was not 

present in the <40 nts RNA fraction. Therefore, miR-195 levels in the <40 nts 

RNA pool were assayed by qRT-PCR and normalized to miR-191, previously 

determined as an ideal normalizer for miRNA qRT-PCR analysis in human 

tissues (Peltier et al., 2008). In addition, miR-191 is highly expressed across 

neuronal layers II to VI human PFC (Mellios et al., 2008a) and not affected in 
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schizophrenia (Perkins et al., 2007). Our results showed a significant 

decrease in mature miR-195 in the <40 nts RNA pool of these nine 

schizophrenia subjects (Fig. 2-2B), which suggests that the disease-related 

decrease in miR-195 expression, at least in a subset of schizophrenia 

subjects, occurs at the level of mature miRNA. We next compared the case-

control ratios for miR-195 with that of BDNF protein to examine if any 

disease-related variability in BDNF protein could be attributed to this BDNF 

targeting microRNA. Notably, there was a robust inverse correlation between 

miR-195 and BDNF protein ratios (schizophrenia/control subjects) after 

controlling for the presence of significant outliers (r= -0.710, p < 0.001) (Fig.  

2-2C – see also methods for statistical analysis). Interestingly, within-pair 

changes in miR-195 also showed a modest inverse correlation with NPY (r = -

0.230) and SST mRNA changes (r = -0.253).  

 Due to the fact that RNA integrity number (RIN) measurements were done 

after match pairing, we wanted to ensure that RNA quality parameters were 

not a major confounding factor of our results. Toward this end, we excluded 

all subjects with RIN < 6 and reanalyzed data for the remaining 13 matched 
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pairs (26 samples total). There was a significant positive correlation between 

within-pair differences in BDNF protein and both NPY (r = +0.489, p= 0.045) 

and SST (r = +0.560, p = 0.023) mRNA and a significant inverse correlation 

between BDNF protein and miR-195 (r = -0.523, p = 0.033) (Fig. 2-3A–C). In 

addition, there was again no significant correlation between within-pair 

differences of BDNF protein and PV mRNA and miR-30a (data not shown). 

Notably, in the subset of 13 matched pairs, the inverse correlation between 

miR-195 and NPY/SST mRNAs was more robust than in the 20 pairs (NPY: r 

= -0.542, p = 0.028; SST: r = -0.3824, p = 0.099). Therefore, the variability in 

NPY and SST mRNA changes in schizophrenia could be partly attributed to a 

negative regulatory effect of miR-195 on prefrontal BDNF protein levels (Fig. 

2-3D). In addition, paired t test revealed a significant reduction in NPY (t = -

2.492, df = 12, p = 0.028) and trends for reduction for SST (t = -1.897, df = 

12, p = 0.082) and PV (t = -1.885, df = 12, p = 0.084) in schizophrenia; 

groupwise analysis using Wilcoxon signed rank test showed significant 

decrease only for NPY (p = 0.024). In summary, these results are comparable 

with the initial analysis on the 20 matched pairs.  
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 Furthermore, the within-pair changes in BDNF protein levels were not 

correlated to those of miR-30a-5p (Fig. 2-2D). Of note, our qRT-PCR, utilizing 

the <200 nts RNA pools, was suggestive for an approximately 20% increase 

in miR-30a-5p in schizophrenia, but subsequent analyses of the mature miR-

30a-5p in the <40 nts RNA pools, as described above for miR-195, revealed 

no consistent changes (data not shown). Therefore, the disease-related 

changes in prefrontal miRNA expression in a subset of schizophrenia 

subjects do not appear to be accompanied by a consistent change in mature 

miR-30a-5p levels.       

 To address the potential effect of demographics in our data, we performed 

statistical analysis (Spearman correlation) to determine whether within-pair 

differences in BDNF protein, NPY, SST, PV mRNA, and miR-195 and miR-

30a-5p were correlated to tissue pH, autolysis time, or age. No significant 

correlations were observed. However, additional analysis was applied (Mann- 

Whitney test) to determine potential effects of gender and brain hemisphere. 

Surprisingly, a significant effect of brain hemisphere was observed for BDNF 

(S/C lower in left, p = 0.028) and opposite trends for an effect of gender on 
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SST (lower in male subjects, p = 0.078) and PV S/C ratios (lower in female 

subjects, p = 0.078) were identified. Of note, a left hemisphere specific 

increase in miR-30a-5p was found in <250 nts RNA samples, but subsequent 

analysis of mature miR-30a-5p levels did not verify this effect (see above). 

However, due to the relatively small number of left hemisphere (n=9) and 

female pairs (n =7) and the lack of tissue from both hemispheres of each 

sample, additional studies are needed to address the issue of potential 

hemisphere or gender effects in BDNF, miRNA, or GABAergic gene 

expression changes in the PFC of subjects with schizophrenia.  

Lastly and despite the fact that there was no correlation between age 

of onset in the 20 schizophrenia subjects and any of the genes examined 

(data not shown), there was a strong positive correlation between miR-195 

levels and age of onset specifically for subjects diagnosed with the chronic 

paranoid subtype of the disease (n = 7, r = +0 .927, p = 0.003, Pearson‘s 

correlation). 
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Alterations in GABAergic mRNAs and BDNF-Related microRNAs in 

Cerebral Cortex of Adult BDNF-Deficient Mice 

Previous studies had suggested that BDNF could regulate NPY and SST 

transcription, but its effects on other GABAergic transcripts might not be as 

direct (Hashimoto et al., 2005; Glorioso et al., 2006). To validate these 

effects, we measured levels of NPY, SST, PV, and GAD67 mRNAs in 

embryonic and adult cerebral cortex of mice with a CNS specific ablation of 

BDNF (see Methods and Materials). There was a decrease in NPY and SST, 

but not PV and GAD67, mRNAs, specifically in adult mutant mice (Fig. 2-4A). 

Furthermore, to examine if miR-195 could itself be regulated by BDNF as part 

of a feedback loop, which has been previously reported for other brain-

expressed miRNAs and their target genes (Klein et al., 2007), we measured 

levels of miR-195 and miR-30a-5p in adult Bdnf-deficient mice. No changes in 

miR-195 were observed, but there was a significant increase in miR-30a-5p 

(Fig. 2-4B). These data suggest that BDNF could be involved in feedback 

regulatory loops with members of the miR-30 family but not with miR-195. 
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Analysis of Potential Genetic and Epigenetic Determinants of Disease-

Related Changes in GABAergic Transcriptome 

Furthermore, we examined the potential influence of genetic polymorphism in 

NPY mRNA expression in our cohort by genotyping three SNPs in the 

proximity of the NPY promoter, two of which were previously shown to 

regulate mRNA expression and response of normal subjects to stress (Zhou 

et al., 2008). There was no significant effect of any of these SNPs on NPY 

mRNA expression (Supplemental Fig.  S2-1) and they were equally 

represented in cases and control subjects (data not shown). Lastly, we used 

chromatin immunoprecipitation to determine case-control differences in (open 

chromatin-associated) trimethylated histone H3-lysine 4 (trimethyl-H3K4) in 

the promoter regions of NPY, SST, and PV and used previously published 

data (Huang et al., 2007) on GAD67 for the same samples. We found a 

significant positive correlation between disease-specific changes in GAD67 

transcript and trimethyl-H3K4 levels at its promoter but no significant 

correlations for NPY, SST, and PV (Supplemental Fig. S2-2). We conclude 

that the deficits in NPY, SST, and PV expression in PFC of schizophrenia 
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subjects are not related to histone methylation changes at the corresponding 

promoters, while this type of epigenetic modification could contribute to the 

decrease in GAD67 expression that has been reported in multiple studies 

(Akbarian et al., 1995; Guidotti et al., 2000; Fatemi et al., 2005; Hashimoto et 

al., 2008).  

 

Chronic Antipsychotic Treatment Does Not Affect Expression of BDNF-

Related miRNAs in Mouse Cerebral Cortex 

Previous studies on the effect of chronic haloperidol treatment in rat cortex 

had not shown any significant effects on the BDNF-related miRNAs miR-195 

and miR-30a-5p (Perkins et al., 2007). We repeated the experiment in adult 

mice and included a treatment group for the atypical antipsychotic clozapine. 

Chronic treatment of adult mice with typical and atypical antipsychotics had 

no significant effect on miR-195 and miR-30a-5p expression in mouse 

cerebral cortex (Supplemental Fig. S2-3 and data not shown). However, due 

to the lack of detailed information on pharmacological treatment and the fact 

that our cohort consisted mainly from subjects treated with typical 
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antipsychotics, these preclinical studies do not exclude the possibility that in 

human PFC miR-195 levels are indeed influenced by antipsychotic treatment. 

 

 

Discussion 

Using multiple approaches, we uncovered a regulatory cascade that is 

involved in dysregulated GABAergic gene expression in the prefrontal cortex 

of subjects with schizophrenia. Importantly, we showed that miR-195, a small 

RNA interacting with the 3‘ UTR of BDNF transcript (Mellios et al., 2008a), 

contributes to the regulation and variability of BDNF protein levels, which in 

turn may influence the disease-related deficits in NPY and SST mRNAs. 

Interestingly, open chromatin-associated histone (H3-lysine 4) methylation 

was maintained at the NPY and SST loci in the affected subjects, and in the 

case of NPY, no association with genetic polymorphisms within or around its 

promoter were observed. These findings imply that the miR-195/BDNF 

pathway affects NPY and SST mRNA levels through mechanisms 

independent of chromatin remodeling. This contrasts with the coordinated 
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regulation of mRNA expression and H3-lysine 4 methylation at the GAD67 

GABA synthesis gene promoter in the same subjects. Interestingly, histone 

methylation at the NPY, SST, and GAD67 loci is highly regulated during an 

extended period of prefrontal development (Huang et al., 2007). Therefore, at 

least two independent mechanisms emerge as regulators of the GABAergic 

transcriptome in schizophrenia: one that involves microRNAs targeting BDNF 

that operate primarily in the mature PFC and impact levels of NPY and SST 

and a second linked to alterations in promoter-associated histone 

methylation, which are indicative of compromised PFC development and 

specifically affect GAD67 levels.  

Notably, miR-195 changes in diseased PFC were inversely associated 

with those of BDNF protein, while miR-195 levels remained unaltered in Bdnf-

deficient mice, which suggests that miR-195 operates upstream and fine-

tunes BDNF protein levels in the cortex. On the other hand, NPY and SST 

mRNAs are reduced in mice lacking Bdnf and also in our clinical samples, 

which further supports the notion that BDNF signaling is essential for orderly 

expression of these two GABAergic peptides. In contrast to the robust deficits 
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in NPY and SST in adult Bdnf mutant cortex (Glorioso et al., 2006), according 

to the present study, Bdnf deficiency did not impact expression of these RNAs 

in perinatal brain. This finding adds to the notion that dysregulation of at least 

a subset of GABAergic markers is primarily related to BDNF levels in the 

adult cortex and less affected by developmental mechanisms. 

The positive correlation between miR-195 levels in the PFC of subjects 

diagnosed with chronic paranoid schizophrenia and the age of disease onset 

is of interest in the light that miR-195 expression is increased during normal 

aging of human PFC (Mellios et al., 2008a). However, additional studies in 

larger cohorts are needed to explore the possibility that mechanisms involved 

in altered developmental regulation of miR-195 might be linked to the 

emergence of psychosis. In addition, it is noteworthy that according to 

computational analysis (Lewis et al., 2003), miR-195 interacts with multiple 

gene products that are reportedly dysregulated in schizophrenia or affective 

disorder, such as glutamate receptor, ionotropic, N-methyl-D-aspartate 1 

(GRIN1) (Begni et al., 2003; Beneyto et al., 2008), gamma-aminobutyric acid 

receptor, alpha 1 (GABRA1) (Petryshen et al., 2005), serotonin receptor 2C 
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(HTR2C) (Castensson et al., 2003), and fibroblast growth factor-2 (FGF-2) 

(Gaughran et al., 2006) or are important components of glutaminergic, 

dopaminergic, and serotoninergic signaling such as glutamate receptor, 

metabotropic 7 (GRM7) (Ohtsuki et al., 2008), dopamine receptor D1 (DRD1) 

(Allen et al., 2008), and serotonin receptor 4 (HTR4) (Suzuki et al., 2003). 

Therefore, miR-195- mediated posttranscriptional fine-tuning could be of 

relevance for the disease-related alterations in multiple nodes of prefrontal 

molecular networks and either directly linked to the underlying 

pathophysiology of schizophrenia or as part of compensatory regulatory 

mechanisms. Furthermore, the changes in miR-195 in a subset of 

schizophrenia subjects of the present study affected the mature form. This 

finding is in good agreement with a previous report describing a trend for 

decreased levels for several miRNAs in schizophrenic PFC, including miR-

195, which also affected the mature but not precursor forms (Perkins et al., 

2007). These findings may hint to a potential defect in miRNA processing in 

schizophrenia. In support of this scenario, a recent study showed that 

conditional deletion of the microprocessor complex component, DiGeorge 
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syndrome critical region gene 8 (Dgcr8), which is part of the microRNA 

biogenesis pathway, results in behavioral abnormalities and perturbed 

dendritic spine morphology and complexity reminiscent of schizophrenia 

(Stark et al., 2008). Notably, the human DGCR8 gene is located within the 

region of microdeletion responsible for DiGeorge syndrome (also known as 

22qDS or velocardiofacial syndrome) (Murphy et al., 1999; Gothelf et al., 

2007; Stark et al., 2008), which confers a thirtyfold increase in the risk of 

developing schizophrenia and schizoaffective disorders (Murphy et al., 1999; 

Gothelf et al., 2007).  

One limitation of our study is that we did not measure the expression of 

the multiple BDNF RNA transcripts. It would be of interest to determine which 

BDNF mRNA transcripts contribute the most to the variability in BDNF protein 

expression in human PFC and whether mechanisms, such as alternative 

polyadenylation, could influence the effect that miRNAs have on BDNF 

translation. In addition, we had previously shown using locked nucleic acid 

(LNA) in situ hybridization that miR-195 is differentially expressed in different 

cortical layers in adult human PFC (Mellios et al., 2008a). While miR-195 
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appears to be enriched in a subset of pyramidal neurons of human PFC (data 

not shown), additional studies will be necessary to explore the interrelation 

between BDNF protein and miR-195 on the cellular level. Furthermore, it has 

to be noted that BDNF protein and SST mRNA, whose disease-related 

changes were strongly associated, were not significantly altered in our cohort. 

Of note, in previous studies measuring BDNF protein and/or mRNA in the 

cerebral cortex of subjects with schizophrenia, both increases and decreases 

relative to control subjects have been reported (Durany et al., 2001; Weickert 

et al., 2003; Takahashi et al., 2000). Taken together these findings suggest 

that alterations in BDNF levels per se might not be a consistent marker of the 

disease, or that differences in the demographics of separate cohorts, such as 

the percentage of subjects diagnosed with each schizophrenia subtype, might 

be important confounding factors. However, based on our findings we 

propose that changes in BDNF protein levels in subjects diagnosed with 

schizophrenia are at least in some degree influenced by miR-195 expression. 

Importantly, our findings suggest that up to half of the disease-related 

variability in BDNF levels and a part of the variability in disease-related 
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changes in NPY and SST levels are attributable to miR-195 (Fig. 2-3D). 

However, the identification of additional miRNA-mediated effects, including 

potential synergistic interactions between individual microRNAs (Mellios et al., 

2008a) and other regulatory mechanisms controlling BDNF and NPY and 

SST expression, warrants further investigation. 

In conclusion, our findings support the hypothesis that disease-related 

changes in NPY and SST, but not PV, mRNA expression are influenced by 

BDNF protein levels. More importantly, the current study introduces miR-195 

as a novel regulator of prefrontal BDNF expression in schizophrenia. More 

broadly, the findings presented here indicate that the molecular pathology of 

psychosis could be related to a complex interplay of protein coding and 

noncoding transcripts that eventually culminate in a finite set of final common 

pathways, including gene expression in inhibitory interneurons. 

 

Materials and Methods 

 

Postmortem Brains 
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A total of 40 postmortem brain samples from 20 subjects diagnosed with 

schizophrenia and 20 controls were used in this study. All procedures were 

approved by the Institutional Review Board of the University of 

Massachusetts Medical School. Each sample from a disease case was 

matched to a control according to gender, age, postmortem interval (PMI), 

and hemisphere. Demographics, medication status and postmortem 

confounds, including RNA Integrity Number (RIN) are provided in Table 2-1. 

All samples included in this study had a RIN ≥ 4.0, which has been proposed 

as a minimum standard for postmortem RNA quality (Lipska et al., 2006). 

Each sample was from the pole of the frontal cortex (rostral portion of BA10 

cut through the full vertical thickness of the cortex) and collected from a brain 

bank at the University of California at Davis (Dr. Edward G. Jones, Center for 

Neuroscience, University of California at Davis). The matching process had 

been completed prior to the experiments. Diagnosis of schizophrenia was 

based on DSM-IVR, and control brains had no history of psychiatric or 

neurological disease, as previously described (Akbarian et al., 1995). For the 

cases where the age of onset was recorded as twenties (20S) or thirties (30S) 
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the age used for calculation was 20 and 30 years, respectively.  For all 

experimental procedures tissue from a case was processed in parallel 

together with its matched control, using aliquots of the same solutions, 

buffers, probes, etc. 

 

BDNF Immunoassay 

Protein was extracted with the mirVANA PARIS Kit (Ambion) according to 

manufacturer‘s instructions, and after centrifugation, the supernatants were 

used for estimation of total protein with BCA Micro-kit (Pierce). Brain-derived 

neurotrophic factor levels were essayed with enzyme-linked immunosorbent 

assay (ELISA) and with the use of BDNF ELISA Kit (Chemicon) according to 

manufacturer‘s instructions. 

 

RNA Isolation 

Total RNA was isolated by using RNeasy Lipid Tissue Mini Kit (Qiagen) and 

then treated with DNase I (Ambion). Small RNAs (<200 nts) were isolated by 

using the mirVANA PARIS Kit (Ambion), according to the manufacturer‘s 
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instructions and as described before (Mellios et al., 2008a). For isolation of 

<40 nts RNA, the flashPAGE Fractionator System (Ambion) was used 

according to manufacturer‘s instructions. Briefly, 5 μg of total RNA was run for 

12 minutes at 75 mV and RNA from the lower running buffer was purified 

using flashPAGE Reaction Clean-Up Kit (Ambion). 

 

RNA Quantification 

The mirVana qRT-PCR miRNA Detection Kit (Ambion) was used for 

measuring human miR-195 in samples of <200 nts and <40 nts RNA. For 

each sample and amplicon, cycle thresholds were averaged from triplicate 

reactions and normalized to either 5S ribosomal RNA (rRNA) (<200 nts RNA) 

or miR-191 (<40 nts RNA). The miRCURY LNA microRNA PCR System 

(Exiqon) was used for quantification of miRNA expression in mouse RNA 

samples. In this case, duplicate reactions were used and data were 

normalized again to 5S rRNA. TaqMan One-Step RT-PCR (Applied 

Biosystems) was used according to manufacturer‘s instructions for human 

and mouse NPY, SST, PV, β-2 microglobulin (B2M), BDNF, and 18S rRNA 
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with primers shown in Supplemental Table 2-1. Custom primers (Applied 

Biosystems) were used for human β-glucuronidase (GUSB) RT-PCR (primer 

set hs99999908_m1 of Applied Biosystems Taqman gene assays). 

 

Genotyping 

Neuropeptide Y single nucleotide polymorphism (SNP) genotyping was 

performed using direct sequencing and also matrixassisted laser 

desorption/ionization mass spectrometry (Sequenom), in conjunction with 

SpecroDesign software (Sequenom) for polymerase chain reaction (PCR) 

and MassEXTEND primers (Sequenom). 

 

Chromatin Immunoprecipitation in Postmortem Tissue 

Postmortem tissue (70 mg to 100 mg) was subjected to chromatin 

immunoprecipitation as described before (Huang et al., 2007) and histone 

methylation levels at specific promoter sequences measured by qRT-PCR, 

using the primers shown in Supplemental Table 2-1. Anti-H3-trimethyl-lysine 

4 (anti-H3K4me3) antibodies (Upstate) were used. 
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Animal Studies 

For antipsychotic drug studies, adult male C57BL/6 mice, 10 to 15 weeks of 

age, were treated for 21 days with once daily intraperitoneal injections of 

saline or haloperidol (0.5 mg/kg) or clozapine (5 mg/kg) (Sigma) and then 

killed 1 hour after the last treatment. The Nestin-Cre transgenic line was used 

for a CNS-specific conditional ablation of Bdnf before E14.5 (Rios et al., 

2001). The mutant genotype was Nestin-Cre+, BDNF2lox/2lox, and the 

control animals from the same outbred colony had the genotype Nestin-Cre+, 

BDNF+/+. Brains were harvested at E19.5 and postnatal weeks 14 to 15. 

 

Statistical Analyses 

The Shapiro Wilks goodness of fit test for normality was used to assess 

compliance with the bivariate normality assumption. In the case of S/C ratio 

correlations for the 20 matched pairs, where normality parameters were met, 

Pearson‘s correlation was used. Differences in gene expression between the 

20 subjects diagnosed with schizophrenia and their matched controls were 
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analyzed with Wilcoxon Signed Rank test, due to lack of normality that was 

not corrected following logarithmic transformation. Likewise, Spearman‘s 

correlation was applied for the analysis of association between within-pair 

differences (S/C ratios) of BDNF, NPY, SST and miR-195 in the selected 13 

matched pairs with RIN>6. In addition, the Hadi outlier identification and 

estimation procedure of the statistical software package SYSTAT11, which 

uses an algorithm that identifies outliers and corrects correlations after 

eliminating outlier values, was applied, in order to achieve better estimates of 

the correlational parameters between BDNF protein and miRNA S/C ratios. It 

has to be noted, also, that Grubb‘s test also identified two outliers, whose 

exclusion from our data resulted in comparable correlations between BDNF 

protein and miRNA S/C ratios, however the Hadi outlier elimination output 

does not allows us to recognize the exact outliers that it recognized and used 

for correcting correlations. 
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Age at Brain RIN Lateral Age at Duration of Cause of Age at Brain RIN Lateral Cause of 

Death, y pH Onset ,y illness, y Death Death, y pH Death

1 1605 M 70 24.3 7.9 8.2 R 19 51 P N Cardiac 1919 M 61 25.5 7.4 7.1 R Cardiac

2 1986 M 32 26.5 6.5 8.3 R 16 16 U* N Peritonitis 2066 M 39 27.8 6.5 4.3 R Traumatic arrest

3 2042 F 69 7.3 6.1 6.7 R 35 34 U N Cardiac 1796 F 69 7.3 6.0 7.9 R Cardiac

4 2043 M 55 21.2 6.3 6.3 L 20 35 U N Cancer 1901 M 51 21.5 6.2 6.8 L Cardiac

5 1620 F 70 11.2 7.3 5.4 R 25 45 U U** Cardiac 1713 F 68 7.0 6.1 4.6 R Respiratory failure

6 1541 M 72 9.0 6.0 7.4 L 24 48 U N Cardiac 1604 M 75 7.5 6.6 7.2 L Cardiac

7 1679 M 79 5.5 6.3 5.4 L 30 49 P N Cardiac 1644 M 81 8.0 6.6 7.6 L Cardiac

8 2291 M 60 26.0 6.5 7.8 R 22 38 U N Cardiac 1591 M 63 23.5 6.3 8.3 R Cardiac

9 2045 M 23 11.0 6.2 5.0 L 17 6 P N Suicide 2168 M 21 17.0 6.1 4.3 L Auto accident

10 2033 M 87 8.5 6.2 7.6 L 38 49 U N Cardiac 1786 M 90 8.5 6.0 8.1 L Cardiac

11 2232 F 61 15.0 6.3 5.0 L 32 29 P N Unknown 1756 F 57 16.5 6.7 6.5 L Cardiac

12 2191 F 58 7.5 6.2 7.6 L 25 33 U N Cardiac 1609 F 56 8.0 6.5 6.3 L Cardiac

13 2326 M 40 13.5 6.4 6.9 L 33 7 U N Cardiac 2338 M 41 18.0 6.1 6.7 L Cardiac

14 2506 F 47 32.0 7.2 4.0 R 20S 27 U U** ST 2694 F 48 27.0 7.1 6.9 R LT

15 1964 M 48 19.5 6.2 7.3 R 18 30 D N ST 2619 M 48 20.2 6.8 7.3 R ST

16 2941 M 48 27.0 6.9 8.4 R 18 30 S A Unknown 2664 M 43 26.0 7.1 8.4 R ST

17 2384 M 50 6.3 6.8 8.2 R 36 14 P N ST 1856 M 54 11.0 7.0 8.3 R LT

18 2789 F 59 14.8 6.6 7.4 R 30S 29 P N LT 2248 F 64 19.3 6.8 7.9 R ST

19 3274 F 59 13.3 6.4 6.4 R 30S 29 P N Suicide 3253 F 57 16.0 6.6 7.2 R LT

20 2545 M 64 8.5 6.2 6.6 R 18 46 S A ST 1858 M 59 13.5 6.4 5.4 R ST

Abbreviations

S: Schizophrenia

P: Chronic paranoid schizophrenia

U: Chronic undifferentiated schizophrenia

D: Chronic disorganized schizophrenia

U*: Chronic undifferentiated schizophrenia with childhood onset

N: Neuroleptics

U**: Unmedicated

A: atypical antipychotics

LT: Long-term medical condition  

ST: Sudden medical condition

Table 1 - Demographics of human postmortem brains 

Gender PMI, hPair 

Schizophrenics Controls

No. Gender PMI, h Diagnosis Medication No.

 

 

 

 

Table 2-1 – Demographics of human postmortem brains 
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Figure 2-1. Alterations in GABAergic transcripts in schizophrenia correlate 

with changes in BDNF protein. (A–C) Graphs showing case and control values 

based on qRT-PCR after logarithmic (natural log) transformation (each case 

connected to its matched control by dotted line); NPY (A), SST (B), and PV (C) 

mRNAs normalized to B2M in 20 PFC samples (BA 10) of patients with 

schizophrenia and 20 matched control subjects (S and C respectively). Notice 

the significant decrease in NPY and PV in patients with schizophrenia. *p < 0.05 

as indicated, Wilcoxon signed-rank test (D–F) Correlations between within-pair 

changes (schizophrenia/control subject, S/C) of (y axis, natural log scale) NPY, 

SST, and PV mRNAs normalized to B2M and (x axis, natural log scale) prefrontal 

BDNF protein levels as determined by ELISA. Notice strong positive correlations 

for the within-pair changes in BDNF protein and (D) NPY and (E) SST but not (F) 

PV mRNA. r = Pearson correlation coefficient. 
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Figure 2-2. Inverse correlation between BDNF protein and miR-195. (A) 

Graph showing case and control data (see also Fig. 1) of miR-195 levels as 

measured by qRT-PCR and after normalization to 5S rRNA in PFC of 20 patients 

with schizophrenia (S) and their matched control subjects (C). (B) Graph showing 

case and control levels of mature miR-195 levels as measured by qRT-PCR from 

PAGE purified RNA <40 nts in length and after normalization to miR-191 in PFC 

of nine patients with schizophrenia (S) and their matched control subjects (C). p 

values shown in (A) and (B) are according to Wilcoxon signed-rank test. (C–D) 

Correlation between within-pair changes (S/C) of miR-195 (C) and miR-30a in 

(D) with BDNF protein ratios in the same postmortem cohort. Notice the 

significant inverse correlation between miR-195 and BDNF S/C (outlier values 

shown with arrow). r = Pearson correlation coefficient. 
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Figure 2-3. Molecular determinants of dysregulated NPY and SST 

expression in schizophrenia. (A–C) Correlations between within-pair changes 

(schizophrenia/control subject, S/C) of BDNF protein and NPY (A) or SST (B) 

mRNA (both in natural log scale) and of miR-195 and BDNF protein (C) in 13 

selected matched pairs with RIN > 6 (see text). (D) Schematic illustration of 

disease-related interrelations between miR-195, BDNF, NPY, and SST in human 

PFC. The percentages of variability attributed to each gene expression change 

(r2x100) for both the 13 and 20 matched pairs are shown (r2x100 for 13 pairs - 

r2x100 for 20 pairs). Notice also the absence of outliers seen in Figure 2-2C,D in 

the selected matched pairs of optimum RNA quality. See statistical analysis for 

method of choice for transforming data.  
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Figure 2-4. Expression of GABAergic transcripts and BDNF-related miRNAs 

in the cortex of BDNF deficient mice. (A) Graph showing the ratio of Bdnf 

knockout mice (mutant) to wildtype control mice (wildtype) shown as mean SD 

for BDNF, NPY, SST, PV, and GAD1 mRNA based on qRT-PCR data and after 

normalization to 18S rRNA (n = 5–7). Notice the expected robust reduction in 

BDNF mRNA in mutant mouse cortex and the decrease in NPY and SST mRNA 

in adult mutant mice only. Asterisk depicts statistically significant difference (one 

way t test, p < 0.05). (B) Expression of BDNF-related miRNAs in the cortex of 

Bdnf deficient mice. Graph showing the ratio of adult BDNF knockout mice 

(mutant) to control mice (wildtype) shown as mean ± SD for miR-30a (n=7) and 

miR-195 (n=9) based on qRT-PCR data and after normalization to 5S rRNA. 

Notice the increase in miR-30a levels in BDNF knockout mice but no change in 

miR-195. Asterisk depicts statistically significant difference (one way t test, p < 

0.05).  

 

 

 

 

 

 

 

 



 139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 140 

 

 

Supplemental Figure 2-1 No significant effect of NPY SNPs in PFC NPY 

mRNA expression. (A-C) Genotyping results shown as mean ± SD for each of 

three SNPs in the proximity of human NPY promoter region shown on x-axis and 

NPY mRNA levels (normalized to B2M) in human PFC in 40 samples of our 

cohort (21 control and 19 cases) are shown. Number of samples per genotype 

are also shown.  
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(N=21) (N=21) (N=11) (N=11) (N=8) (N=8) 

(N=12) (N=26) (N=2) 
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Supplemental Figure 2-2. Association between open chromatin marker 

H3K4 and mRNA changes of GABAergic genes in PFC of subjects with 

schizophrenia. (A-D) Correlation between S/C ratios of mRNA and H3K4 levels 

for (A) GAD67, (B) NPY, (C) PV and (D) SST. Notice the significant positive 

correlation between GAD67 mRNA and H3K4 S/C ratios. r = Pearson correlation 

coefficient. GAD67 mRNA and H3K4 data are based on (Huang et al., 2007). 
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Supplemental Figure 2-3. Levels of miR-195 in mouse cortex are not 

affected by antipsychotic treatment. Graph represents mean ± SD based on 

qRT-PCR results from total RNA samples for miR-195 (normalized to 5S rRNA) 

after chronic treatment (see methods) with Haloperidol and Clozapine. 
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Species Genomic sequences for chromatin immunoprecipitation studies
Product Length Gene transcritption

location [bp] Forward Reverse start site

NPY 7P15.1 (567:633) 67 GCAATTCTCTTTCCCCTTCC GATCAACGCTGACAGCAGAG NT_007819.15; GI:51475902; CON 20-AUG-2004 23619482

SST 3q28 (226:307) 82 AAGAGCTTCGGGAGCTGAG CCATTGGTTTGGACGTAAGG NT_005612.14; GI:37550867; CON 23-AUG-2004 93883264

PV 22q13.1 (-117:-4) 114 CTGGTCCTCTCCAATCCAAA GAAGATGGACCCCCTGAAAT NC_000022.8; GI:51511751; CON 24-AUG-2004 35540023

B2M 15q21-q22.2 (-318:-220) 99 GGGCACCATTAGCAAGTCAC GGCGCTCATTCTAGGACTTC NT_010194.16; GI:37540936; CON 20-AUG-2004  1579241

mRNA
Product Length of Transcript

location [bp] Forward Reverse length [bp]

NPY E4 (373:474) 102 TGTGGTGATGGGAAATGAGA CTGCATGCATTGGTAGGATG NM_000905.2; GI: 31542152; PRI: 06-NOV-2005 551

SST E2 (286:411) 126 AGCTGCTGTCTGAACCCAAC CCATAGCCGGGTTTGAGTTA NM_001048.3; GI: 71979669; PRI: 06-NOV-2005 632

PV E3-E4 (152:270) 119 CGGCCTGAAGAAAAAGAGTG CTGGGGAGAAGCCTTTTAGG NM_002854.2; Gi: 55925656; PRI 22-Nov-2004 572

B2M E1-E2 (123:272) 150 CCAGCGTACTCCAAAGATTCATGCTCCACTTTTTCAATTCTCTC NM_004048.2; GI: 37704380; PRI 27-OCT-2004  987

mRNA
Product Length Transcript

location [bp] Forward Reverse length [bp]

Npy E3-E4 (341:436) 96 GATGAGGGTGGAAACTTGGA GATGAGGGTGGAAACTTGGA NM_023456.2; GI: 27754168; ROD 06-NOV-2005 561

Sst E1-E2 (185:302) 118 CCCAGACTCCGTCAGTTTCT GGGCATCATTCTCTGTCTGG NM_009215.1; GI: 6678034; ROD 16-OCT-2005 599

Pv E3-E4 (134:242) 109 AAAAAGAACCCGGATGAGGT CTGAGGAGAAGCCCTTCAGA NM_013645.3; GI: 118130845; ROD 09-DEC-2007 904

Bdnf E2 (716:833) 118 GCGCCCATGAAAGAAGTAAA TCGTCAGACCTCTCGAACCT NM_007540.3; GI: 34328441; ROD: 23-MAY-2005 4261
18S rRNA (1331:1464) 134 CATGGCCGTTCTTAGTTGGT GAACGCCACTTGTCCCTCTA X00686.1; GI: 53990; ROD 10-APR-1991 1869

Supplemental Table 2-1: Primer sequences

Source

Source

Primer sequence
Gene (HUGO)

Gene
Primer sequence

Chromosome

Exon
Primer sequence

Mouse

Gene

Human

Source

Exon

Human
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CHAPTER IV: MICRORNA-30B IS REDUCED IN THE PREFRONTAL 

CORTEX OF FEMALE SUBJECTS WITH SCHIZOPHRENIA AND 

DISPLAYS GENDER DIMORPHIC EXPRESSION IN MOUSE BRAIN 

 

This work is still in preparation, with provisional authors being Nikolaos 

Mellios, Jun Xu and Schahram Akbarian. My contribution to this work was to 

conceive the hypothesis, design the project together with Dr. Schahram 

Akbarian and execute all miRNA-related experiments. Specifically I isolated 

RNA from human and mouse samples, including PAGE purified small RNA, 

performed miRNA qRT-PCR, analyzed data and prepared figures and 

manuscript with the help of Dr. Schahram Akbarian. Dr. Jun Xu provided brain 

samples from mouse frontal cortex and dorsal hippocampus and determined 

estrous stage of female mice. Yin Guo contributed by conducting human 

postmortem brain dissection.  
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Abstract 

Epidemiological, clinical and biological studies have provided evidence of an 

important role of gender and female hormones in schizophrenia. However, 

very little is known at the molecular level about pathways that might be 

disrupted in the disease in a gender-specific manner. In this study we show 

by using a case-control approach, that miR-30b, a miRNA abundantly 

expressed in human prefrontal cortex (PFC), is reduced in female but not 

male subjects diagnosed with schizophrenia. Notably, we demonstrate that 

disease-related deficits in miR-30b expression   in human PFC are strongly 

associated to the age of onset of the disease. Intriguingly, levels of miR-30b 

in mouse cortex display a gender-dimorphic expression, which is even more 

pronounced in mouse dorsal hippocampus. Collectively our data provide the 

first evidence of a miRNA been differentially expressed in female verses male 

mouse brain, and suggest that a deficit in miR-30b expression in human PFC 

is limited to female subjects with schizophrenia.  
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Introduction 

It is known that the age of onset of schizophrenia, its progression and 

patient‘s response to antipsychotic medication are different between males 

and females (Angermeyer and Kuhn, 1988; Hafner et al., 1998; Seeman, 

1997). Specifically women develop schizophrenia approximately 5 years later 

than men with better premorbid functionality and slower course of illness 

(Angermeyer and Kuhn, 1988; Hafner et al., 1998).  In addition, numerous 

studies have provided a link between estrogen and psychiatric disease. For 

example during phases of reduced estrogen activity such as in menopause 

and postpartum periods women are more likely to suffer a relapse of 

psychosis or present with the first psychotic episode respectively (Kendell et 

al., 1987; Seeman, 1997). Notably, the stages of menstrual cycle that are 

characterized by low estrogen levels are also linked to higher incidence of 

relapses in women diagnosed with psychiatric diseases including 

schizophrenia (Bergemann et al., 2007). On the other hand, an improvement 

on chronic psychiatric symptomatology and a reduction in relapse rates has 

been suggested to be more likely during high estrogen menstrual cycle 
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stages (Riecher-Rössler et al., 1994) and during pregnancy (Chang et al., 

1986), where estrogen levels also rise. More importantly, estrogen 

supplementation has been proved to be an affective adjunctive therapeutic 

option for schizophrenia (Kulkarni et al., 2008).  

 MicroRNAs are evolutionary conserved small non-coding RNAs that have 

been shown to mediate the posttranscriptional regulation of a plethora of 

protein coding genes (Bartel, 2004; Filipowicz et al., 2008). They are derived 

from longer precursor molecules (pri and subsequently pre miRNAs) which 

are cleaved to generate the mature miRNA forms of approximately 20nt in 

length (Bartel, 2004; Filipowicz et al., 2008). They are abundantly expressed 

in the mammalian nervous system (Miska et al., 2004; Bak et al., 2008) and 

have been shown to be important for neuronal development and synaptic 

plasticity (Giraldez et al., 2005; Schratt et al., 2006). Although gender 

dimorphic expressions of miRNAs has been recently reported in mouse 

spleen (Koturbash et al., 2008), rat liver (Cheung et al., 2009) and in human 

serum (Chen et al., 2008) the effect of gender on brain miRNA levels has not 
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been examined and its relevance to psychiatric disease has not been 

addressed.  

 We have previously shown that differentially expressed miRNAs, including 

miR-30 family member miR-30a-5p, act as inhibitors of BDNF in human 

prefrontal cortex (Mellios et al., 2008a) and that one BDNF-targeting miRNA, 

miR-195, is an important molecular determinant of schizophrenia-related 

changes in BDNF and BDNF-regulated GABAergic genes (Mellios et al., 

2008b). However, in the later study we failed to identify any consistent 

disease-related changes in miR-30a-5p in the PFC of subjects with 

schizophrenia, despite the fact that miR-30a-5p was shown in our first study 

to inhibit BDNF translation in vitro and to be inversely correlated with BDNF 

protein levels during the maturation and aging of human PFC (Mellios et al., 

2008a). We conducted analyses to determine if any other members of the 

miR-30 family analyzed in our first study displayed disease-related changes in 

the PFC of subjects with schizophrenia. Surprisingly, we found an unexpected 

pattern of results for the randomly selected as control miR-30b, a miRNA that 

was shown to be expressed in higher levels in human prefrontal cortex and 



 152 

with a different laminar enrichment compared to miR-30a-5p (Mellios et al., 

2008a).   

 Intriguingly, using a case-control design we report that miR-30b is reduced 

in the prefrontal cortex of female but not male subjects with schizophrenia. 

Spurred by this serendipitous finding, we demonstrate that miR-30b displays 

a gender dimorphic expression in mouse frontal cortex and dorsal 

hippocampus. Interestingly, we show that the disease-related gender-specific 

deficit in prefrontal miR-30b expression is at the level of mature miRNA and 

that it is associated with the age of onset of the schizophrenia.  Our results 

show that a brain expressed miRNA is differentially regulated in male and 

female brains and that it is altered in a gender-specific manner in 

schizophrenia.  

 

Results 

 

Gender-specific deficits in miR-30b expression in the prefrontal cortex 

of subjects with schizophrenia 
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We had previously shown that miR-30b is abundantly expressed in human 

prefrontal cortex (Mellios et al., 2008a). In addition a previous study had 

reported a trend for decreased miR-30b levels in the prefrontal cortex of 

subjects with schizophrenia based on microarray data in a non-matched pair 

cohort and qRT-PCR data in 4 cases and 4 controls (Perkins et al., 2007). We 

examined the expression of miR-30b in the prefrontal cortex of 30 subjects 

diagnosed with schizophrenia and 30 matched controls derived from two 

independent cohorts (20 matched pairs from first and 10 matched pairs from 

second cohort) (Table 3-1) using qRT-PCR from small (<200nts) RNA 

enriched samples. Intriguingly, our results demonstrated that the reduction in 

miR-30b levels in the PFC of subjects with schizophrenia was gender 

specific, with a significant reduction in miR-30b levels in female but not male 

subjects with schizophrenia (Fig. 3-1A, B). Specifically, in 9 out of 12 female 

matched pairs there was a reduction of more than 20% in miR-30b levels 

(expressed as schizophrenic case to control miR-30b ratios - S/C miR-30b 

ratio) (Fig. 3-1A). Demographic or RNA quality factors (see also Table 3.1) 

such as age, postmortem interval (PMI), RNA Integrity Number (RIN) and 
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brain pH were not correlated to miR-30b levels (data not shown).   Our results 

suggest that the disease-related deficit in miR-30b expression is limited to 

female subjects.  

 

Mature but not precursor prefrontal miR-30b levels are reduced in 

female subjects with schizophrenia 

In order to confirm that the changes in miR-30b levels in the PFC of female 

subjects of schizophrenia are at the level of mature miRNA, we re-dissected 

tissue from 12 cases and controls (7 female and 5 male matched pairs) 

selected based on their availability, and used polyacrylamide gel 

electrophoresis (PAGE) to enrich for RNAs smaller than 40nts. Due to the fact 

that 5S rRNA, which was used as a normalizer in our initial qRT-PCR analysis 

is excluded because of its size from the <40nts RNA pool, we used miR-191, 

which has been shown to be an ideal normalizer for miRNA quantification in 

human postmortem tissues (Peltier et al., 2008). Our results from these 

independent RNA extractions and with a different normalization gene were 

comparable to our initial data (Fig. 3-2A) and there was a significant 



 155 

correlation between S/C miR-30b ratios as determined by the two methods 

(Figure 3-2B). Due to the fact that precursor miRNA molecules are much 

larger than 40nts, the miR-30b levels measured with this method represent 

the mature miRNA. Interestingly, 6 out of 7 female subjects with 

schizophrenia, were once again shown to have reduced levels of miR-30b 

relative to their matched controls, but no differences were seen in male (Fig. 

3-2A).  

 Previous studies have suggested that alterations of mature miRNA levels 

in schizophrenia are not accompanied by analogous changes in the levels of 

their precursors (Perkins et al., 2007; Beveridge et al., 2008). We used qRT-

PCR to determine the levels of pri-miR-30b and pre-miR-30b in a subset of 

cases and controls (N=17 and N=15 matched pairs respectively). Due to the 

fact that pri-miR-30b includes the sequence of pre-miR-30b our primers for 

pre-miR-30b measure both molecules so are referred to as pre/pri-miR-30b. 

Our results showed that with the exception of a trend for an increase in pri-

miR-30b levels in male cases, there was no difference in miR-30b precursor 

expression (Fig. 3-2C). Of note mature miR-30b levels were still significantly 
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reduced in this subset of samples (Figure 3-2D). We conclude that the deficit 

in miR-30b levels in the PFC of female subjects with schizophrenia is limited 

to  mature miRNA.  

 

Associations between age of onset of schizophrenia and changes in 

prefrontal miR-30b levels 

The age of onset of schizophrenia in our two cohorts ranged between 16 and 

38 years old, with the majority of data being from the first cohort due to 

unavailability of age of onset information for a subset of cases of the second 

cohort (Table 3.1). We plotted the S/C miR-30b ratios from both the initial 

(<200nts RNA samples) and secondary measurement (<40nts RNA samples) 

to the age of onset of schizophrenia. Our results revealed an inverted U 

shape association between miR-30b levels and age of onset in the 23 out of 

30 matched pairs, for which age of onset information was available (Fig. 3-

3A). We arbitrarily separated our data into two groups: one group of less and 

one of more than 25 years of age, since this was the approximate age of 

onset after which the shape of the curve changes direction (Figure 3-3A). 
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Separate analysis of the two groups showed that the first 10 earlier onset 

cases exhibited a weak inverse correlation to disease-related changes in 

miR-30b (r  = - 0.477, p = 0.163 – Fig. 3-3B) and the last 13 later onset cases 

exhibited a significant positive correlation to S/C miR-30b ratios (r = + 0.606, 

p = 0.028 – Fig. 3-3C). Notably, a robust positive correlation was found 

between age of onset and S/C mature miR-30b levels in female samples as 

measured in the <40nts samples (r = 0.863, p = 0.012, 7 matched pairs – Fig. 

3-3D), although a weak trend (r = + 0.437, p = 0.279, 8 matched pairs) was 

found between age of onset and S/C miR-30b ratios as determined in the 

<200nt RNA samples. No correlation between age of onset and miR-30b was 

found for male samples (data not shown). In addition, duration of illness was 

not associated with any of the S/C miR-30b ratios (data not shown). Our data 

suggest that in adult onset subjects with schizophrenia, reduced levels of 

miR-30b are linked to an earlier age of onset, whereas in adolescent and 

young adult onset cases increased levels of miR-30b could be associated 

with earlier age of onset. The presence, though, of a positive correlation 

between the changes in miR-30b levels and age of onset only in female 
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cases, which display a later average age of onset in our cohorts (see Table 3-

1) might have contributed to the associations observed in our study.  

 

Gender-dimorphic expression of miR-30b in mouse prefrontal cortex 

and dorsal hippocampus.  

Although in our human PFC control samples the differences between miR-

30b levels in male and female were not consistent (approximately 20% less 

miR-30b in male control PFC for the first cohort, but no difference for second 

cohort – data not shown), we wanted to determine if there is any gender 

effect on miR-30b levels in mouse frontal cortex and if this effect was 

pronounced in other brain areas, such as hippocampus. Towards this end, we 

first measured with qRT-PCR the levels of miR-30b, together with the 

neuronal enriched miR-100 and X-chromosome encoded miR-222 in samples 

from mouse frontal cortex. Our results revealed a modest yet significant 

higher expression of miR-30b in mouse female frontal cortex. On the other 

hand, there were no changes in miR-100 levels, whereas a trend for higher 

miR-222 levels was observed in female frontal cortex. We then measured 
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miR-30b levels with qRT-PCR in samples from dorsal hippocampus. 

Intriguingly, there was an approximately 2 fold significantly higher expression 

of hippocampal miR-30b in female mice. We then determined through vaginal 

smears the estrous cycle of the mice used and compared miR-30b levels in 

female cortex and dorsal hippocampus during diestrus, proestrus, estrus and 

metestrus (Supplemental Fig. 3-1). There was no significant effect of estrous 

cycle stage on female miR-30b levels (ANOVA p>0.05), although the highest 

mean of miR-30b levels was observed during estrus in both cortex and dorsal 

hippocampus (Supplemental Fig. 3.1). Our results suggest the presence of 

gender dimorphism in miR-30b expression in mouse brain.  

 

Potential effects of chronic antipsychotic treatment on miR-30b 

expression 

In order to determine if chronic antipsychotic treatment might influence 

cortical miR-30b levels we measured miR-30b expression in the cerebral 

cortex of mice treated with typical antipsychotic haloperidol or atypical 

antipsychotic clozapine.  Our results showed no significant reduction in 
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cortical miR-30b levels (Supplemental Fig. 3.2) following chronic antipsychotic 

treatment. It has to be noted, also, that in our human cohorts the majority of 

cases (N=23 out of 30) were treated with typical antipsychotics, with a few 

cases being unmedicated (N=5 out of 30) and only 2 having received atypical 

antipsychotics (Table 3.1), so that the differences on mean miR-30b levels 

between these 3 groups cannot be properly evaluated. However, due to the 

fact that in both our mouse pharmacological study and in our human cohorts 

the mean levels of miR-30b were actual lower in antipsychotic naïve cortical 

samples (Supplemental Fig. 3.2), our data suggest that it is unlikely that the 

observed deficits in miR-30b expression are a result of antipsychotic 

treatment.  

 

Conclusion 

Using a case control design our study provides the first evidence of a miRNA 

displaying a gender specific deficit in the prefrontal cortex of subjects with 

schizophrenia. We show that miR-30b is reduced in PFC of female subjects 

with schizophrenia and that his deficit is at the level of mature miRNA. 
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Notably, we provide evidence of an association between age of onset of 

schizophrenia and disease-related changes in miR-30b. Furthermore, we 

show that miR-30b displays a pronounced gender dimorphic expression 

pattern in dorsal hippocampus as well as a modest gender dimorphic 

expression in mouse frontal cortex.  

 The consistency of the deficit in miR-30b expression in female subjects 

with schizophrenia as measured with two independent RNA extraction and 

qRT-PCR normalization protocols, and the intriguing association of miR-30b 

disease-related levels to the age of onset of the disease warrants in our 

opinion further studies to determine if this miRNA is a reliable molecular 

marker of schizophrenia. A previous study that had reported alterations in a 

subset of miRNAs in the PFC of schizophrenia cases included miR-30b in the 

list of miRNAs that were found to be reduced by microarray (Perkins et al., 

2007). Intriguingly, despite the fact that no effect of gender was reported, our 

re-analysis of supplemental material from this study reveals a more robust 

reduction in female subjects with schizophrenia (Perkins et al., 2007 and data 

not shown).  
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 Furthermore, our finding that the levels of precursor miR-30b molecules 

were not significantly altered is in accordance with two previous studies, 

where changes in miRNA expression in the parietal and prefrontal cortex of 

subjects with schizophrenia were at the level of mature miRNA (Perkins et al., 

2007; Beveridge et al., 2008). It has been suggested that a defect in the 

processing of pri-miRNAs can greatly increase the possibility of developing 

schizophrenia as evident but the approximately 30-fold greater risk for the 

disease in patients with a microdeletion which includes the miRNA processing 

gene DGCR8 (Murphy et al., 1999; Gothelf et al., 2007) and by the behavioral 

and neuroanatomical changes observed in forebrain specific DGCR8 deficient 

mice, which are reminiscent of psychosis (Stark et al., 2008). However, an 

increase in pri-miR-30b levels predominantly in male cases with 

schizophrenia, which would be expected if pri-miR-30b was not effectively 

cleaved yet normally transcribed, implies that for female cases there are 

either compensatory mechanisms that alter miR-30b transcription masking 

any pri-miRNA processing defect, or that the potential cause of miR-30b 

changes has to do with subsequent steps in miRNA biogenesis that affect the 
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stability of mature miRNA molecules. Further studies are needed to pinpoint 

the exact mechanisms behind miR-30b alterations in the PFC of female 

subjects with schizophrenia.  

 Interestingly, a recent study estimated that miR-30b is transcribed as an 

initial approximately 40kb precursor sequence which also includes miR-30d 

miRNA (Saini et al., 2008). The expression of these two miR-30 family 

miRNAs seems to be positively correlated (Mellios et al., 2008a and data not 

shown), although in schizophrenia no changes in miR-30d expression have 

been reported (Perkins et al., 2007).  It has to be noted also that the genomic 

region which encodes miR-30b/miR-30d precursor is at the subtelomeric 

region of the long arm of chromosome 8 (8q24.22), which is known to be 

characterized by instability and frequent changes in copy number variation 

(Blenkiron et al., 2007). 

 Interestingly, in our previous study we found that miR-30a expression is 

developmentally regulated and it can act as an inhibitor of BDNF expression 

in human prefrontal cortex (Mellios et al., 2008a). However, our analysis 

(Mellios et al., 2008b) and a previous study (Perkins et al., 2007) found 
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inconsistent changes in miR-30a expression in schizophrenia both for miR-

30a-5p (increased in our <250nts RNA sample analysis but not changed in 

<40nt mature miRNA analysis and no significant changes in microarray 

measurements by Perkins et al., 2007). Moreover, miR-30a-3p, which is 

derived from the same precursor as miR-30a-5p but is expressed in lower 

levels in human PFC (Mellios et al., 2008a), was reported to be reduced by 

qRT-PCR but not microarray (Perkins et al., 2007). In addition, a recent study 

identified miR-30c, another member of miR-30 family, as one of the strongest 

responsive miRNAs to lithium treatment in mice (Zhou et al., 2008). Given the 

fact that miRNAs of the same family share high sequence similarities it is of 

particular interest that several different members of the miR-30 family are 

been linked to human brain function and psychiatric disease.   

  Despite the fact that miR-30b levels exhibit a gender dimorphic 

expression in mouse brain with a more pronounced difference between 

female and male levels in dorsal hippocampus compared to frontal cortex, 

there was no significant effect of estrous cycle stage on miR-30b expression. 

On the other hand, in silico analysis predicts multiple estrogen responsive 
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elements in human, mouse and rat predicted miR-30b/miR-30d precursor 

(data not shown). In addition, a recent study has shown that miR-30b is the 

highest expressed miRNA in maturing oocytes (Murchison et al., 2007), which 

are under clear influence of female hormones. Future experiments are under 

preparation to determine if these estrogen responsive sequences are 

functional and if in mammalian brain miR-30b expression is directly influenced 

by estrogen levels or by hormonal-independent mechanisms that can lead to 

gender dimorphism (Xu and Disteche, 2006; Arnold, 2004).  

 To sum up, our data so far provide evidence that miR-30b is a gender 

dimorphic miRNA in mouse brain and that it is selectively reduced in the PFC 

of female subjects diagnosed with schizophrenia. More importantly we show 

that the deficit in miR-30b expression in female cases is strongly associated 

to the age of onset of the disease and that it is at the level of mature miR-30b. 

Collectively our results suggest that miRNAs might play an important role in 

gender-related variability in gene expression which could potentially be partly 

contributing to differences between female and male subjects diagnosed with 

schizophrenia.  
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Materials and Methods 

 

Postmortem Brains 

A total of 60 postmortem brain samples from 30 subjects diagnosed with 

schizophrenia and 30 controls were used in this study. All procedures were 

approved by the Institutional Review Board of the University of 

Massachusetts Medical School. Each sample from a disease case was 

matched to a control according to gender, age, postmortem interval (PMI), 

and hemisphere. Demographics, medication status and postmortem 

confounds, including RNA Integrity Number (RIN) are provided in Table 3-1. 

All samples included in this study had a RIN ≥ 4.0, which has been proposed 

as a minimum standard for postmortem RNA quality (Lipska et al., 2006). 

Each sample was from the pole of the frontal cortex (rostral portion of BA10 

cut through the full vertical thickness of the cortex) and collected from a brain 

bank at the University of California at Davis for the first cohort (Dr. Edward G. 

Jones, Center for Neuroscience, University of California at Davis) and from 

the brain bank at Maryland Psychiatric Research Center (Baltimore, 
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Maryland) for the second cohort (Matched pairs 1-7 and 13-25 from first 

cohort and 8-12 and 26-30 for second –Table 3-1). The matching process had 

been completed prior to the experiments. Diagnosis of schizophrenia was 

based on DSM-IVR, and control brains had no history of psychiatric or 

neurological disease, as previously described (Akbarian et al., 1995). For all 

experimental procedures, tissue from a case was processed in parallel 

together with its matched control, using aliquots of the same solutions, 

buffers, probes, etc. 

 

Animal Studies 

C57BL/6 mice were used for all animal experiments. For antipsychotic drug 

studies, adult male mice, 10 to 15 weeks of age, were treated for 21 days with 

once daily intraperitoneal injections of saline or haloperidol (0.5 mg/kg) or 

clozapine (5 mg/kg) (Sigma, St. Louis, Missouri) and then killed 1 hour after 

the last treatment. To dissect mouse frontal cortex, the brain was positioned 

in a coronal brain matrix and a block between 4mm and 2mm 

(anterior/posterior, all coordinates relative to Bregma; Paxinos and Franklin, 
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2001) was removed.  The block was then placed on a flat surface on ice, 

posterior side up.  The dorsal portion (~1mm wide), containing both frontal 

association cortex and prelimbic cortex, was collected. The rest of the brain 

was transferred from the matrix into a beaker containing dry ice in isobutane.  

Once frozen, cortical samples were stored at -80ºC until processing.  Tissue 

from dorsal hippocampus was isolated on a cryostat with a 0.5mm micro-

puncher based on the following coordinates: (-1.2 anterior/posterior, ±1.0 

medial/lateral, 1.2 dorsal/ventral. Estrus cycle was determined after 

microscopic examination of vaginal smear.  

 

RNA Isolation 

Total and small RNAs (<200 nts) were isolated by using the mirVANA PARIS 

Kit (Ambion), according to the manufacturer‘s instructions and as described 

before (Mellios et al., 2008a). For isolation of <40 nts RNA, the flashPAGE 

Fractionator System (Ambion) was used according to manufacturer‘s 

instructions. Briefly, 5 μg of total RNA was run for 12 minutes at 75 mV and 

RNA from the lower running buffer was purified using flashPAGE Reaction 
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Clean-Up Kit (Ambion). In this case total RNA was isolated by using RNeasy 

Lipid Tissue Mini Kit (Qiagen, Valencia, California) and then treated with 

DNase I (Ambion).  

 

RNA Quantification 

The mirVana qRT-PCR miRNA Detection Kit (Ambion) was used for 

measuring human miR-30b in samples of <200 nts and <40 nts RNA. For 

each sample and amplicon, cycle thresholds were averaged from triplicate 

reactions and normalized to either 5S ribosomal RNA (rRNA) (<200 nts RNA) 

or miR-191 (<40 nts RNA).  TaqMan miRNA assays (Applied Biosystems) 

were used according to manufacturer‘s instructions for determining miR-30b, 

miR-100 and miR-222 levels in mouse frontal cortex and dorsal hippocampus 

(normalized to snoRNA202). TaqMan One-Step RT-PCR (Applied 

Biosystems) was used according to manufacturer‘s instructions for 

quantification of human pri-miR-30b and pre/pri-miR-30b and 18S rRNA with 

the following primers: GTGAATGCTGTGCCTGTTC and 

GCCTCTGTATACTATTCTTGCCA for pri-miR-30b and 
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CATGTAAACATCCTACACTCAGCT, ATCCACCTCCCAGCCAAT for pre/pri- 

miR-30b and primers shown on Supplemental Table 2.1 for 18S rRNA. 
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Table 3.1. Demographics of human postmortem brains and miR-30b case to control ratios. 
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Figure 3-1. Deficits in miR-30b expression in the prefrontal cortex of female 

but not male subjects with schizophrenia. (A) Graph showing the ratio of miR-

30b levels of subjects diagnosed with schizophrenia to their matched controls 

(referred to as S/C ratio) for 30 matched pairs taken from 2 independent cohorts 

(see table 3-1 for each matched pair number demographics, including brain 

hemisphere) and presented according to their gender (white bars for female and 

gray bars for male matched pairs). Notice the disease-related reduction in miR-

30b levels (evident by <1 S/C ratios) in the majority of female but only in a subset 

of male matched pairs. (B) Graph showing mean ± SEM for S/C miR-30b ratios 

of female and male matched pairs. Notice the significant reduction in miR-30b 

levels in female subjects with schizophrenia (S/C ratio significantly less than 1). 

Asterisk depicts p value based on one tailed t-test.  
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Figure 3-2. Disease related alterations in miR-30b expression are 

consistent and at the level of mature miRNA.  (A) Comparison between case 

to control S/C miR-30b ratios determined using <200nts enriched RNA samples 

normalized to 5S rRNA (shown as black bars) and PAGE purified <40nts 

enriched RNA samples derived from independent dissection of the same tissues 

(all from cohort 1) and normalized to miR-191 (shown as grey bars - seven 

female and five male matched pairs were selected based on availability of 

tissue).  Notice the consistency in miR-30b deficits in female subjects with 

schizophrenia.  (B) Association between S/C miR-30b ratios between <200nts 

and <40nts RNA samples (black circles show female, and gray show male pairs). 

Notice significant positive correlation. (C) Disease-related changes in precursor 

miR-30b levels (based on primers specific for pri-miR-30b and for both pre and 

pri-miR-30b and normalized to 18S rRNA) in female and male matched pairs 

(N=7 matched pairs for female, and N=8-10 matched pairs for male). (D) 

Disease-related changes in miR-30b levels in <200nts samples normalized to 5S 

rRNA (N=7 matched pairs for female and 13 matched pairs for male) and <40nts 

PAGE purified samples normalized to miR-191 (N=7 matched pairs for female 

and 5 matched pairs for male). All samples in (D) were from the same cohort as 

in (C). Notice significant or close to significant reduction in miR-30b only in 

female subjects in <250nts and <40nts samples, respectively, in this subset of 

samples. Asterisk denotes statistically significant difference based on t-test 

(p<0.05 – significant and close to significant p values also indicated).  
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Figure 3-3. Association between age of onset of schizophrenia and PFC 

deficits in miR-30b levels. Graphs showing associations between age of onset 

of disease (x-axis) and S/C miR-30b ratio (y-axis), based on qRT-PCR using 

either <200nts enriched RNA samples (A-C) or <40nts enriched RNA samples 

(D). Female samples are represented with black circles and male samples with 

gray circles. (A) Association between age of onset and S/C miR-30b ratio for the 

30 matched pairs. Notice inverted U shape. (B) Association between age of 

onset and S/C miR-30b ratio for subjects with age of onset less than 25 years. 

(C) Association between age of onset and S/C miR-30b ratio for subjects with 

age of onset more than 25 years. Notice significant positive correlation. (D) 

Association between age of onset and S/C miR-30b ratio measured in PAGE 

purified <40nts RNA samples for female matched pairs only. Notice the strong 

positive correlation. r = Pearson‘s correlation coefficient. 
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Figure 3-4. Gender - dimorphic expression of miR-30b in mouse frontal 

cortex. Graph showing mean ± SEM of miR-30b levels (based on qRT-PCR and 

normalized to mouse snoRNA202). Notice the higher levels of miR-30b in female 

(F, white bars – N=16) compared to male (M, gray bars – N=6) frontal cortex. 

Another brain enriched miRNA (miR-100) is shown as a control, whereas a trend 

for higher expression in female mouse frontal cortex for X-chromosome encoded 

miR-222 is also seen. P values shown are calculated based on one tailed t-test; 

asterisk denotes statistical significance.  
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Figure 3-5. Pronounced gender dimorphism in miR-30b expression in 

mouse dorsal hippocampus. Graph showing mean ± SEM of miR-30b levels 

(based on qRT-PCR and normalized to mouse snoRNA202). Notice an 

approximately 2 fold higher expression of miR-30b in female (F, white bars – 

N=14) compared to male (M, gray bars – N=6) dorsal hippocampus. P values 

shown are calculated based on Wilcoxon Signed Rank Test; asterisk denotes 

statistical significance.  
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Supplemental Figure 3-1. Changes in miR-30b expression in frontal cortex 

and dorsal hippocampus during different stages of estrus cycle. Graph 

showing mean ± SEM of miR-30b levels (based on qRT-PCR and normalized to 

mouse snoRNA202) during the four different estrus cycle stages (diestrus, 

proestrus, estrus, metestrus as determined by vaginal smear and shown on 

graph as black, red, green and yellow bars respectively) in frontal cortex and 

dorsal hippocampus. Numbers of samples per group (N) are indicated. 

Expression of miR-30b in males and females are also shown for comparison 

(blue bar and pink bar respectively). Asterisk denotes statistical significant 

difference between male and female miR-30b expression in frontal cortex and 

dorsal hippocampus based on one-tailed t-test and Wilcoxon Signed Rank test, 

respectively (data reproduced from Figures 3.4 and 3.5).   
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Supplemental Figure 3-2. Potential effects of chronic antipsychotic 

treatment on miR-30b expression in mouse cortex and human prefrontal 

cortex. (A) Graph represents mean ± SE based on qRT-PCR results for miR-30b 

(normalized to 5S rRNA) after chronic treatment (N=8 for each group - see also 

methods) with Haloperidol and Clozapine. ANOVA revealed no significant 

differences (p>0.05). (B) Table showing mean ± SE and number (N) of S/C miR-

30b ratios for unmedicated cases (N=5), cases treated with typical antipsychotics 

(N=23) and cases treated with atypical antipsychotics (N=2).  
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CHAPTER V – GENERAL DISCUSSION 

 

The findings discussed in this dissertation provide the first evidence that miRNAs 

act as inhibitors of BDNF during the maturation and aging of human prefrontal 

cortex and can contribute to the variability of the changes in BDNF protein levels 

and BDNF-dependent GABAergic gene expression in schizophrenia. 

Furthermore, we show that a subset of BDNF-related miRNAs display a distinct 

laminar and cellular specificity in their expression in human prefrontal cortex, 

which is not observed in mouse cortex. In addition, we show for the first time that 

one of these miRNAs, miR-30b, is expressed in higher levels in female mouse 

brain and is reduced in female subjects with schizophrenia. Furthermore, our 

results suggest that BDNF-related miRNAs inhibit BDNF at a posttranscriptional 

level. Our functional assays revealed that most of the BDNF-related miRNAs 

have a modest contribution to the inhibition of BDNF translation, with miR-30a-5p 

and miR-195 having a significant effect. However, the robust inverse correlation 

of the group of BDNF-related miRNAs to BDNF protein levels after late 
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adolescence raises the possibility of a synergistic effect of multiple miRNAs for 

the control of this important neurotrophin.  

 The intriguing cellular, laminar and developmental specific pattern for miR-

30a that was described in our first project, suggests that miRNAs involved in the 

regulation of important neuronal genes, such as BDNF, might participate in a 

more complex spatio-temporal control of gene expression in human brain. In the 

case of BDNF for example, this might ensure that different cellular populations or 

cortical layers express different levels of BDNF protein, despite having 

comparable BDNF mRNA expression. This provides an additional 

posttranscriptional control in the spatial resolution of BDNF, which might have 

important implications due to BDNF‘s multiple effects on neuronal growth, 

survival, differentiation and neuronal plasticity (Marty et al., 1997; Murer et al., 

2001; Gorski et al., 2003; Binder et al., 2004; Chan et al., 2008). In a similar note, 

a differential miRNA-mediated posttranscriptional regulation of BDNF during 

development, maturation and aging of human PFC, adds a new layer of temporal 

control of BDNF expression, which might be a critical parameter for ensuring the 
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smoothness and accuracy of the plethora of neurotrophin-related molecular 

changes that take place at specific time-points in human PFC.    

 The findings described in chapter 3 (Mellios et al., 2008b) suggest that 

prefrontal changes in miR-195 levels are inversely correlated to disease-related 

changes in BDNF protein levels, which in turn are associated with NPY and SST 

mRNA changes. This appears initially to be counter-intuitive since previous 

postmortem studies suggest a reduction in BDNF, NPY and SST expression and 

a trend for decrease in miR-195 levels (Weickert et al., 2003; Hashimoto et al., 

2008; Perkins et al., 2007). In addition, our study also found a reduction in miR-

195 but only in a subset of subjects with schizophrenia and no significant 

changes in BDNF protein levels. However, the only consistent findings of a 

reduction in BDNF expression are at the level of mRNA (Weickert et al., 2003; 

Hashimoto et al., 2005), and protein levels have been shown to be either 

increased, or decreased or not changed (Durany et al., 2001; Weickert et al., 

2003; Takahashi et al., 2000). Furthermore, the study that showed a reduction in 

BDNF protein levels in schizophrenia (Weickert et al., 2003) used western 

blotting and analyzed only mature BDNF protein levels, whereas the study that 
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showed an increase in BDNF protein levels used ELISA (Durany et al., 2001), 

which is expected to detect both precursor and mature BDNF protein. It is known 

that BDNF precursor (pro-BDNF) is cleaved to generate the mature protein 

(Mowla et al., 2001; Murer et al., 2001; Fayard et al., 2005). Because the 

immediate product of BDNF translation is BDNF precursor protein, we chose to 

detect BDNF protein in our study through ELISA, so as to have a better estimate 

of total translation, and by comparison miRNA-mediated translational inhibition. 

Therefore, apart from any potential demographic and technical confounds that 

are common to different postmortem cohorts, it is possible that although BDNF 

mRNA is reduced in the PFC of subjects with schizophrenia, miR-195 deficits in 

a subset of subjects could alleviate miR-195 mediated translational inhibition of 

BDNF mRNA, so that precursor BDNF protein levels are not overall significantly 

altered. Subsequently, miRNA-independent posttranscriptional mechanisms 

related to the cleavage of BDNF precursor protein (Mowla et al., 2001; Murer et 

al., 2001; Fayard et al., 2005) might potentially further influence the disease-

related mature BDNF levels in a subset of cases. The latter in conjunction with 

BDNF-independent mechanisms could then allow for the bigger percentage of 
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subjects with schizophrenia that display reduced NPY and SST mRNA levels. 

Furthermore, due to the moderate effect of miR-195 mediated inhibition of BDNF 

translation the cases that do have reduced miR-195 levels (a subset only), might 

not display a significant increase in BDNF protein levels, but just a shift in BDNF 

protein expression from a reduced to a similar to normal expression. It is, 

therefore, possible that miR-195 changes are a compensatory regulatory 

mechanism aiming at normalizing BDNF protein levels, which potentially takes 

place in some subjects diagnosed with schizophrenia, creating thus an increased 

variability in the disease-related changes in BDNF protein levels.  In partial 

agreement with this hypothesis that changes in miR-195 levels in human PFC of 

subjects with schizophrenia might explain part of the discrepancy and variability 

in disease-related changes in BDNF protein levels reported in previous studies is 

the finding that miRNAs in general are important determinants of the variability in 

human cortical gene expression (Zhang and Su, 2008).  

 Combining the results presented in Chapters 2-4, we could conclude that 

the biological roles of the three miRNAs that were the main focus of the three 

studies (miR-30a, miR-195 and miR-30b) are quite distinct. Based on our data, 
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the most important function for miR-30a seems to be the fine-tuning of BDNF 

protein levels during maturation and aging of normal human PFC, with no 

significant impact on BDNF protein changes that occur in subjects with 

schizophrenia. On the other hand, miR-195 appears to have a pronounced effect 

on regulating the disease-related variability in BDNF protein levels and to have a 

limited impact on BDNF protein levels during development. Last but not least, 

miR-30b, which did not show any significant inhibitory effect on BDNF translation, 

is of unique importance since it is the first miRNA found to display a gender 

dimorphic expression in the mammalian brain and to be specifically reduced in 

female subjects with schizophrenia. Interestingly, according to computational 

analysis (Lewis et al., 2003; Grimson et al., 2007), miR-30b is predicted to target 

multiples genes linked to the pathophysiology of schizophrenia other than BDNF, 

such as NCAM1 (Barbeau et al., 1995; Sullivan et al., 2007), NR4A2 (Rojas et 

al., 2007), GRM3 (Egan et al., 2004) and GRM5 (Devon et al., 2001). 

          One limitation of our study presented at chapter 2 (Mellios et al., 2008a) 

was that measurements for all BDNF-related miRNAs were not repeated in 

PAGE-purified <40nts RNA samples due to limited availability of samples from 
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embryonic and young brains. However, in our last two studies we found that for 

some miRNAs, such as miR-30b, there is a very good correlation between the 

levels measured using <200nts and <40nts samples (Mellios et al., 2008b), 

whereas for others such as miR-195 this correlation is weaker (data not shown). 

Furthermore, because the inverse correlation between BDNF protein and miR-

195 during late maturation and aging of human PFC was not significant as was 

for miR-30a-5p, and because miR-30a was expressed in pyramidal neurons that 

synthesize BDNF (Mellios et al., 2008a), we decided to test only miR-30a in 

neuronal cultures. However, given the inverse correlation between the disease-

related changes in BDNF protein and miR-195 in subjects diagnosed with 

schizophrenia (Mellios et al., 2008b), future studies might be needed to address 

the effect of miR-195 - mediated translational inhibition on BDNF in neuronal 

cultures.  In that case, it would be of interest to measure potential changes in 

cellular morphology or synaptic plasticity as a result of neuronal overexpression 

of miR-195 and mir-30a, so as to address the physiological importance of these 

BDNF-related miRNAs.   
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Furthermore, it has to be noted that schizophrenia is a very 

heterogeneous disorder and the different disease subtypes that are put in one 

cohort and examined together might not necessarily be a result of the same 

pathogenic mechanism. In addition, the progressive character of the disease and 

the different age of onset in males and females create an additional confounding 

factor, which even when controlled partially with match pairing, might lead to 

significantly different results in the concentrations of molecules studied. It is, 

therefore, of great importance that future studies using postmortem cohorts take 

into account gender, disease subtype, brain hemisphere, anatomical subregions 

within PFC examined and tissue quality parameters when attempting to uncover 

molecular alterations in schizophrenia.  

Despite the fact that our studies presented in chapters 2 and 3 focused 

only on miRNAs that could target BDNF, it is possible that other neurotrophins or 

neurotrophin receptors are under the control of miRNAs. Indeed one study has 

already shown that miRNAs regulate the levels of the neurotrophin receptor 

tropomyosin-related kinase C in human neuroblastoma cells (Laneve, et al., 

2007). However, computational analysis of the 3‘UTR of neurotrophins 3 and 4 
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reveals only a limited number of conserved miRNA target sites (Lewis et al., 

2003), which reduces the possibility of these two neurotrophins being targeted by 

the miRNA machinery.   

 At this point I would like to discuss the future perspectives of miRNA 

research on elucidating important molecular mechanisms of mammalian and 

especially human brain, which might prove to be instrumental for understanding 

the pathophysiology of neuropsychiatric disease. As mentioned in the 

introduction of this dissertation a plethora of studies including those described 

here have provided links between miRNAs and schizophrenia (Perkins et al., 

2007; Beveridge et al., 2008, Mellios et al, 2008b), Alzheimer‘s disease (Wang et 

al., 2008b), Tourette‘s Syndrome (Abelson et al., 2005) and Parkinson‘s disease 

(Kim et al., 2007; Wang et al., 2008a).  The fact that many neuropsychiatric 

disorders such as schizophrenia have tens or even hundreds of protein coding 

genes being indirectly linked to their pathophysiology, but with each one having a 

very small contribution overall, opens a window for potential novel regulatory 

elements that might regulate multiple genes and potentially multiple pathways. 

One candidate for such a ―molecular multitasking‖ function is the family of miRNA 
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molecules, each of which is estimated to target multiple protein coding genes and 

biological pathways.  It is therefore not accidental that disruption of miRNA 

processing in mouse models results to phenotypes that are reminiscent of 

neurological and psychiatric diseases (Kim et al., 2007; Cuellar et al., 2008; Stark 

et al., 2008, Davis et al., 2008). However, it has to be noted that disruption of pri-

miRNA processing in mice heterozygotic for DGCR8 influences the levels of a 

subset only of mature miRNAs (Stark et al., 2008), which contradicts the initially 

hypothesized role of DGCR8 as a RNA binding protein that participates in the 

processing of all miRNAs. This is of importance in the light of the link between 

DGCR8 locus and schizophrenia in subjects with DiGeorge microdeletion 

syndrome (Murphy et al., 1999; Gothelf et al., 2007). Future studies are needed 

aiming at elucidating this link by determining which miRNAs are responsive to 

DGCR8 deficiency and by examining the potential effect of antipsychotics on 

miRNA processing.    

 On the other hand, it has to be noted that any alteration in miRNA 

expression in any given disorder, even if verified in multiple disease cohorts, 

should not be translated as a proof of this miRNA participating in the 
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pathogenesis of the disease. Given the refined spatio-temporal regulation of 

miRNA expression in human brain as described in our study (Mellios et al., 

2008a), it is possible that aberrant brain developmental or maturational deficits 

that occur as part of the pathogenesis of the disease, could disrupt normal 

miRNA expression. In addition, it is possible that disease-related changes in 

gene expression including miRNAs could be a result of compensatory 

mechanisms aiming at ameliorating the disrupted biological pathways. However, 

even in the case that a miRNA ―signature‖ characteristic of a disease is just an 

epiphenomenon, there is potential for such a molecular marker to be used for 

diagnosis and even prognosis of the disease, an application which has already 

been reported for other diseases and especially cancer (Mitchell et al., 2008; 

Wang et al., 2009; Jackson, 2009). In the case of miR-30 family miRNA, there is 

evidence that they are among the miRNAs that are found in detectable levels in 

the blood (Fan et al., 2008; Mitchell et al., 2008), which warrants further studies 

aiming at determining if blood or serum levels of miR-30 family miRNAs reflect 

their expression in the brain. Furthermore, endogenous miRNAs seem to be very 

resistant to blood RNases, and they are not significantly influenced by storage, 
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temperature and pH changes of tissue material (Chen et al., 2008; Szafranska et 

al., 2008), which would make them ideal as biomarkers.   

 Another intriguing potential that needs to be further investigated is the 

possibility that the cellular, laminar and developmental specific expression of 

certain miRNAs in the human brain might be a key aspect of human brain 

evolution. It has been suggested that non-coding RNA sequences differ more 

that coding ones between humans and other primates (Prabhakar et al., 2006; 

Beniaminov et al., 2008). It is therefore, very tempting to speculate that the 

regional and temporal specific fine-tuning of multiple genes needed to start, 

maintain or terminate specific events during brain development and maturation, 

could be one of the parameters contributing to the more sophisticated functions 

of the human brain.   

 Concluding, in our attempts to shed light to new molecular regulators of 

brain function and disease, we uncovered that miRNAs are not only expressed in 

an orchestrated manner in the human brain, but also regulate important 

molecular components for brain development and maturation that have 

implications for psychiatric disease.  Although the studies presented in this 
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dissertation have added only a very small piece to the puzzle of small RNA 

function and brain disease, we are optimistic that subsequent work using in vivo 

animal experimental approaches and  new technologies such us sequencing of 

small RNA, will uncover exciting aspects of miRNA function pertaining to brain 

function and disease.  
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