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ABSTRACT

Infection with human immunodeficiency virus type 1 (HIV - 1) results in a wide

range of immunologic and hematopoietic abnormalities. The overall goal of this

dissertation was directed toward obtaining a better understanding of the interactions of

HIV- I and myeloid cells in relation to the pathogenesis of AIS. The human

myelomonocytic cell line, HL- , was used as a model system to determine ifHIV-

infects myeloid progenitor cells and subsequently, if infection affects their differentiation.

HL-60 cells and the human prototypic T cell line, H9 were infected with three different

HIV- I isolates (lIll , PM213 , and NL4-3) which are known to infect T cells. All three

isolates productively infected both H9 and HL-60 cells; however, HIV - 1 antigen

expression and cytopathicity was delayed by approximately 15 days in infected HL-

cells compared H9 cells. To examine the effect ofHIV- I infection on myeloid

differentiation, chronically infected HL-60 cells and clonal lines derived from them were

induced to differentiate into either granulocytes by treatment with dimethyl formamide

(DMF) or into monocytes by treatment with phorbolI2-myristate 13 acetate (PMA). By

both cellular morphology and function, approximately the same percentage of treated

HIV -infected HL-60 cells differentiated into either granulocytes or monocytes as treated

control HL-60 cells. Taken together, these results indicate that HIV - 1 infection does not

affect the morphological or functional differentiation ofHL-60 cells.

In an effort to understand the differences in the regulation ofHIV- I infection in

myeloid versus T cells, the life cycle ofNL4-3 was examined in HL-60 cells and H9 cells.

Initially, NL4-3 replication was restricted in HL-60 cells compared to H9 cells. This

restriction was overcome 15 days after infection by the generation of a viral isolate, NL4-

3 (M). NL4-3(M), harvested during the lytic phase ofNL4-3 infection ofHL-60 cells

caused cell death approximately 8 days after infection in both H9 and HL-60 cells.

Although measurements of viral entry kinetics demonstrated that the timing of entry of

NL4-3 and NL4-3(M) in HL-60 cells and NL4-3 in H9 cells was similar, a quantitative



polymerase chain reaction (PCR) analysis of newly reverse transcribed NL4-3 DNA in H9

and HL-60 cells revealed that NL4-3 infected H9 cells and NL4-3(M) infected HL-

cells contain consistently higher amounts of newly reverse transcribed DNA than NL4-

infected HL-60 cells. The delay in NL4-3 replication in HL-60 cells was further amplified

by ineffcient spread of the virus throughout the HL-60 culture as measured by RNA

production and DNA integration suggesting that another step in the viral life cycle after

reverse transcription was also restricted. These results suggest that the effciency ofNL4-

3 replication in HL-60 cells is restricted at several steps in the viral life cycle. Further

these restrictions are overcome by the generation of a viral variant, NL4-3(M, which

effciently replicates in myeloid cells.

The tropism ofNL4-3(M was further characterized by testing its growth in

monocyte-derived macrophages (MM). Unlike NL- , NL-3(M productively infected

MDM cultures. The ability ofNL-3(M to infect macrophages was conferred by the

envelope gene. This was demonstrated by the abilty of the recombinant virus, NL4-

3envA, which contains the envelope ofNL4-3(M in the context of the NL4-3 genome, to

infect and replicate in MDM cultures. The envelope gene ofNL4-3(M, however, did not

confer ability to rapidly kill HL-60 cells. Together, these findings demonstrate that viral

determnants controllng entry into MDM are different ftom the determnants controllng

the cytopathic phenotype in HL-60 cells.
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Introduction.

Human immunodeficiency virus tye 1 (HV -1) infection initiates a slowly

progressive degenerative disease of the immune system, termed acquired

imunodeficiency syndrome (AIS). Based on vion morphology, genome organation

and pathogenic features HI -1 has been classified as a member of the lentivirus subfamily

of retroviruses. Like other lentivirses HI -1 has been shown to be complex compared

to the oncoretroviruses (1). Since its discovery a remarkable amount of information about

the molecular biology ofHI- 1 has been determned which has provided insight into basic

mechanisms underlyig vial latency, gene regulation, and immune evasion. One aspect of

AIS is the generation of viral varants which is reflected in the characteristics of disease

progression. The subject of this dissertation concerns the generation of viral diversity and

its relationship to viral pathogenesis. To provide background information, these subjects

are reviewed in detail below.

Entry ofHIV- l into Cells and Synthesis of Viral DNA.

HI -1 infection of a cell is initiated when a virus paricle binds a CD4 molecule

(2). A second receptor or cofactor may be necessar to aid in viral entry (3-5). Entry

occurs following direct fusion of virus and cell membranes (6- 10), and is mediated by the

envelope glycoprotein of the vis (11 , 12). The envelope protein is composed of two

subunits, glycoprotein 120 (gp120) and glycoprotein 41 (gp41). The exterior portion of

the envelope protein, gp120, specifies binding to CD4 and is thought to play an important

role in cellular tropism (13-21). Together gp120 and gp41 mediate the fusion of the viral

and host cell membranes to allow viral entry (6).

Following internalization and partial uncoating of the virion to an enzmatically

active nucleoprotein complex (22), the viral genome is converted ftom single stranded

RNA to double stranded DNA by the viral-encoded enzme reverse transcriptase (RT).

RT is packaged with two full length viral RNAs and a cellular tRNAlys in the virus



paricle and is thus poised for initiation of vial DNA synthesis. In fact, recent evidence

indicates that parial reverse transcription can occur in the virus paricle prior to cell entry

(23). The prier for the minus strand DNA synthesis, tRNAlys, binds specifically to a

site near the 5' end of the RNA genome caled the primer binding site (PBS). DNA

synthesis initiates ftom the PBS and proceeds toward the 5 end of the viralRNA, the U5

and R regions. The ribonuclease H activity ofRT removes sequences near the 5' end of

the RNA template of the RNA-DNA hybrid which allows the single-strand RNA-DNA to

jump" and hybridize to R sequences at the 3' end of the viral genome. Once reprimed

the synthesis of minus strand DNA is then completed. Synthesis of the plus strand DNA is

initiated ftom the RNA primer following nucleolytic digestion of genomic RNA by the RT

RNase H (24). Using the minus strand DNA as a template, the plus strand is completed to

form a linear DNA duplex. This reaction is typically completed within 6-8 hours afer

infection (25-29), at which time viral DNA can be found in the cytoplasm within a

nucleocapsid protein structure termed the preintegration complex.

Integration of Viral DNA.

Afer active transport of the preintegration complex to the cell nucleus (30), the

viral integrase protein, also packaged within the virus paricle, mediates the insertion of

the viral DNA into the host genome (25 26). Although three forms of viral DNA (linear

one long termnal repeat (LTR) circles, and two LTR circles) can be found in the nucleus

evidence strongly suggests that only the linear form integrates into the genome of the host

cell (31 32). In most retroviral systems the circular DNA forms are short-lived, however

in HIV- 1 infection, a substantial amount ofmV DNA exists in an unintegrated form

potentially contributing to the pathogenesis observed in HIV infection (33). In vitro

studies ofHIV- 1 and MuLV integrase have revealed that it has three major activities: (1)

endonuclease cleavage of the ends of the viral linear DNA (usually two nucleotides) in

preparation for provirus formation, (2) cleavage of the host DNA, and (3) covalently



joining the cut ends of the viral and host DNA. Integration is thought to be an essential

step in establishing a productive infection (34-39).

Transcription and Translation ofHI-specific mRNAs.

Once the HIV- 1 proviral DNA is integrated, viral replication may enter either a

latent, restricted phase, or a productive phase depending on the state of activation of the

cell (40, 41). A number of in vitro experients have shown that latent or chronic

infections, where a low level of virus is produced, can be activated to produce increased

viral expression by using mitogens (42 43), heterologous viral infections (44-46), and

cytokies (47-50). In an activated cell, host cell factors such as NFKB , Sp1 , EBP 1 , and

UBP1 (51-55) which vary according to cell type, initiate viral transcription. This basal

level of transcription allows production of genomic and messenger RNA (mRA). The

full-length viral RNA transcript contains multiple splicing sites which are acted on by the

cellular mRA splicing machinery. The multiply spliced viral mRAs are exported ftom

the nucleus. to the cytoplasm where they are translated.

A key translation product of these multiply spliced RNAs is a viral encoded trans-

activator protein, Tat, an 86 amno acid protein encoded by two exons that is essential for

virus replication (56-59). mV-1 gene expression is then regulated by an autostimulatory

pathway involving interaction of Tat with the sequence contained within the L TR called

TAR for trans-activating responsive region (60 61). The Tat protein, made early in

infection, accelerates the rate of viral transcription throughout the course of infection.

Kao and coworkers (62) have also shown an accumulation of prematurely terminated

transcripts in the absence of Tat, implicating it as an anti-termnation factor. In addition 

increasing the level of viral mRA, Tat appears to increase the level of viral proteins

synthesized in a manner disproportionate to the level ofRNA increase, suggesting that Tat

also affects the effciency of message utilization (63). This could be accomplished by



stabilization, transport, or faciltating translation of the message. Thus the mechanism of

transactivation by Tat may be due to an increase in the translation of viral mRA (64 65),

and/or to an increase in the steady-state level of viral mRA (66-69). Cellular proteins

which bind to both Tat and TAR have been found; however, the role they play in Tat

function and viral replication is stil unclear (70-73).

Another multiply spliced RNA transcript encodes the Rev protein (74) which plays

an important role in determning the fate of primar RNA transcripts. Rev protein is

found in the nucleus and preferentially in the nucleolus of the infected cell (75 , 76). In the

absence of Rev, only multiply spliced viral RNA transcripts can be found in the cytoplasm

whie in the presence of Rev, singly spliced and unspliced viral mRAs can be found in the

cytoplasm (77-80). Rev binds to a complex stem-loop structure termed the Rev

responsive element (R) found within the envelope coding region of the viral RNA (81-

84). The binding of Rev to the RR is thought to overcome an inhbitory effect due to

cis-acting repressive sequences (CRS) present within the same mRAs (85 , 86). The

exact mechanism and specific host cell factors involved are stil unclear. However, the net

effect of Rev activity is to permt accumulation of singly spliced and un spliced messages in

the cytoplasm where they are translated to make the capsid and envelope proteins of the

VIruS.

Assembly of the Virus Capsid.

The capsid protein is synthesized as a polyprotein precursor ftom the gag gene (87).

The replicative enzme precursor, polymerase (pol), is expressed initially as a Gag-pol

fusion protein. In the gag-pol mRA the two genes overlap by 241 nucleotides with the

translational reading frame of the pol gene shifted by - 1 nucleotide with respect to gag. 

ribosomal ftameshift event, mediated by a short sequence located in the gag-pol overlap,

allows synthesis of the Pol polyprotein in a ratio of20: 1 (88 , 89, 310). The Gag and

Gag-pol polyproteins assemble at the inner surface of the cell membrane. A myristic acid



attached to the amno termus of the capsid precursor allows its insertion into the cell

membrane (90, 91). Two strands of genomic viral RNA bind to capsid precursor protein

via interaction of the packaging sequence, Psi, in the 5' end of RNA with the cysteine-

histidine box of the capsid proteins (92-95). The complex of genomic RNA, Gag and -

Gag-pol polyproteins assemble into a closed spherical paricle which buds ftom the cell

membrane containing the viral envelope glycoproteins. Late maturation events include

proteolytic cleavage of the capsid protein and the pol precursor (96) by the viral protease

protein. The virus particle is finally released ftom the cell surface by an unkown

membrane cleavage mechansm completing a round of vial replication.

Viral Regulatory Proteins.

There are at least two viral regulatory proteins that are thought to act late in the

virus life cycle to facilitate virus release and to increase viral infectivity. One of these

proteins is the Vif protein made ftom a singly spliced mRA that accumulates late in

infection (97, 98). Studies involving viruses containing a mutant vif gene, demonstrate

that Vi( viruses are defective for cell-ftee transmission (99- 103), but no structural

abnormalities of the virion have been reported. In addition, the growth ability of the Vif

mutants has been reported to vary depending on the CD4+ target cells (36, 101 , 104- 110).

Although the mechanism ,by which Vif acts is unclear, recent reports suggest that Vif

interacts with the envelope protein in virions, directly or indirectly, to enhance viral

infectivity in a cell-dependent manner (107, 111). Vifhas also been reported to have an

effect on viral DNA synthesis where ineffcient viral DNA synthesis correlated with

restricted replication ofVif- viruses (l08, 112).

. A second protein that assists in viral maturation is the integral membrane

phosphoprotein Vpu (113). Although Vpu is synthesized in amounts similar to those 

the envelope glycoprotein in infected cells, it has not been detected in virions (114, 115).

Comparison of the replication of infectious molecular clones ofVpu- and Vpu+ mutants



demonstrated that Vpu is involved late in viral replication. A decrease in extracellular

virus with increases in levels of cell-associated virus proteins was demonstrated in cells

infected by Vpu' vises (l16- 118). Furthermore, increased intracellular budding and

aberrant budding structures at the plasma membrane were observed (l16). Recent

evidence indicates that Vpu also induces rapid degradation ofCD4 (l19, 120) and

enhances processing of gp 160 (119, 121) suggesting that V pu may increase viral

production by disrupting CD4-gp 160 complexes formed in the endoplasmic reticulum of

the cell. Recently, Geraghty and coworkers (l22) have also found evidence that Vpu has

a function involving paricle release that is independent of CD4 or gp 160 expression.

Another small regulatory protein, the only one so far demonstrated to be

packaged within the virus paricle (approximately 100 copies/virion), is the Vpr protein

(l23- 127). Vpr is made ftom a singly spliced mRA that accumulates late in infection

(l28- 131). By a yet undefined mechanism, Vpr is thought to increase the rate of

replication ofHIV, perhaps by increasing gene expression ftom the HIV- 1 promoter (129-

131). Since the protein is present in virions and is subsequently found in the nucleus, Vpr

is suggested tQ have a role early in infection before new viral protein synthesis occurs.

The last known regulatory protein encoded by the HIV- 1 genome is Nef(87, 132).

NefmRA is detected early in infection along with mRA for Tat and Rev (l33).

However, unlike Tat and Rev, Nef is a cytoplasmic protein which appears to be partly

associated with the membrane (134, 135). The nef gene gives rise to two translation

products of25 and 27 kDa. The 27 kDa protein has a myristylation motif which probably

allows interaction with cell membranes. The 25 kDa protein, which is not always

detectable in HIV-infect cells (135), is produced ftom internal initiation and thus is not

myristylated. Because of earlier evidence of its inhbitory effect on the HIV - 1 L TR and

virus replication in cell culture, Nefwas considered to be a negative regulatory protein

involved in establishing viral latency (136, 137). Recent reports demonstrate, however

that Nefmay be involved in effcient viral replication (138 , 139) and in the development of



AIS in monkeys (140). Kestler and coworkers (140) found that a provirus with a stop

codon in Nefreplicated in vivo only afer selection for the removal of the stop signal. This

indicates that although Nefappears unnecessar for in vitro propagation ofHIV- , it is

likely to have a role in viral pathogenesis in vivo. Whle the mechanism by which Nef acts

is unkown, recent reports suggest that Nefmay be involved in signal transduction and

vial and/or cellular gene regulation. Although the evidence that Nefbinds purine'

nucleotides and is capable of auto phosphorylation in vitro (141- 143) has been met with

some controversy (144, 145), these data suggest a possible regulation ofNefactivity by

phosphorylation. In addition, being a myrstylated protein, Nefmay interact with cell

membranes and/or membrane proteins in a signal transduction cascade. Furthermore, gel

retardation analysis shows that Nefinteracts with nuclear factors associated with promoter

elements (146), is capable of inducing down regulation ofCD4 ftom the cell surface (146

147), and is capable of blocking induction ofinterleukin 2 mRA (148). These data

suggest that Nefmay also act at a transcriptional level.

Our understanding of the contribution of each of the virus ' structural and

regulatory genes to the complex life cycle of the virus in natural infections is incomplete.

It is clear that HIV - 1 is an extremely complex virus with genes that may facilitate latent

viral infection, restricted chronic viral replication, or high levels of virus production and

cell death. The interaction ofHIV - 1 regulatory proteins with each other and with cellular

factors can allow a switch ftom one pathway to another. The interactions of cellular

factors with the viral genome are thought to playa role in the maintenance of the variable

asymptomatic phase in infected individuals and the subsequent progressive immunological

deterioration.



Viral Diversity and Its Relationship to Disease.

One characteristic feature oflentivises, in paricular HIV- , is genetic varability.

Varation ofHIV- 1 isolates ftom one patient to another has been shown by restriction

endonuclease analyses of molecularly cloned provises (33 , 149, 150). Comparson of

nucleotide sequences of different HI- 1 isolates (21 , 151- 158) demonstrated that

varation exists throughout the viral genome, with the region of greatest variability

occurrng in the envelope gene (151 , 159). The envelope gene is composed of both

conserved and hypervarable regions. The third varable region (V3) of the envelope gene

and in paricular the V3 loop, is believed to be a major determnant of viral pathogenesis.

The V3 region has been demonstrated to be involved in macrophage versus T lymphocyte

tropism, viral entry, and syncytia formation (13- , 18-20). Recent evidence has also

implicated other regions of the envelope protein, as well as other viral genes, including vif

nef, vpu, and gag (103 , 138, 160-168), in infuencing tropism and cytopathicity.

HIV -1 varants show distinct biological features including replication kinetics

serum neutralization, cell tropism, and cytopathic effect (21 , 112, 169- 175). Viruses

isolated ftom asymptomatic patients replicate slowly in peripheral blood mononuclear cells

(pBMC's) and very ineffciently, if at all , in transformed cell lines, while viruses isolated

ftom patients with severe immunodeficiency replicate rapidly and effciently in PBMC's

and in cell lines (l52). In the early stages of the disease, primarly non-syncytia inducing

(NSI), macrophage-tropic viruses can be isolated ftom infected individuals. As the disease

progresses, syncytia-inducing (SI), T lymphocyte-tropic viruses are primarily isolated

(152, 178, 180). The significance of macrophage tropic HIV- 1 variants during the early

stages of disease is further demonstrated by primary isolation studies on a donor-recipient

pair in which virus was accidentally transmitted (l76). In the donor, a termnal stage

HIV -infected patient, a low ftequency of macrophage tropic HIV isolates could be

detected, while in the recipient, a high ftequency of macrophage tropic isolates could be



demonstrated. These viruses may be adapted for survval in early HI -1 infection when

the immune response is thought to be most effective.

Recent evidence strongly suggests that the changes in the biological features of the

virus with time (l75 , 177, 178), as well as increased virus load (179) are signs of

increased virulence in the host. In addition, in about half of the individuals progressing to

AIS, a conversion ftom clones of the NSI to the SI phenotype can be observed (180).

These findigs together with the fiding that macrophage tropism is regained by some

late-stage SI clones (l78) further supports the notion of increased virulence during the

course ofHI- 1 inection. Taken together, these results underscore the importance of

defing the mechanisms involved in HI diversity.

Mechanisms of Viral Diversity.

Viral genomic changes are known to arise by several mechansms. One mechanism

involves changes due to the viral RNA polymerase which has a high error rate and lacks

proofteading function (181). Whle mutation rates for all retroviruses as a group are high

(182, 183), the error rate ofHI- 1 RT has been demonstrated to be approximately ten

times higher than that of other retroviruses (l82, 184, 185). Recent studies (186) suggest

that HIV- 1 RT is able to extend primers that contain a mismatched 3' termnus more

effciently than mamalian DNA polymerase. This function is required for processive

synthesis afer misincorporation. In addition, changes can arise during RNA synthesis by

RNA polymerase II (pol II) after integration. The fidelity ofRNA synthesis by Pol II is

unkown, but since there is no known editing function, it is likely to be similar to that of

viral RNA polymerases (309). Another mechansm of generating viral genomic changes

involves major substitutions in viruses that are introduced by viral recombination events

occurrng between two viral genomes or between viral and cellular sequences (l87, 188).

Recombination between retroviral genomes requires one round of viral replication in

which one of each parental RNA genome is packaged into the same virion resulting in a



heterozygous paricle (l, 189, 190). Afer infection ofa new cell, both RNAs are copied

at least in par, into DNA by RT, at which point, recombination can occur. A third

mechansm for generating retrovial diversity is rearangement. Duplications and large

and smal deletions are believed to arse by template slippage, misprimig at direct repeats

during reverse transcription, homologous recombination between direct repeats, or a

pathway independent of homologous recombination (191).

The Effect ofHIV-l Infection on Hematopoiesis.

The most promient feature of AIS is the progressive depletion of CD4+ T

lymphocytes, resulting in profound immunosuppression. ThisHIV -induced

imunosuppression renders the body highy susceptible to opportnistic infections and

neoplasms (40, 192- 199). HIV- 1 is not only capable of infecting and killng T

lymphocytes (192 200), but is also capable of replicating in other cell types such as cells

of the monocyte/macrophage lineages (201-208). In addition, abnormalities of the

peripheral blood and bone marow also have been described in AIS patients. In order to

investigate the direct involvement ofHIV- 1 infection in the pathogenesis of these

abnormalities, several investigators have studied infection of hematopoietic progenitor

cells. Impairment of the growth of hematopoietic cells which are precursors to the

myeloid and lymphoid lineage could have some effect on the pathogenesis of the

hematological alterations, as well as in the progressive reduction of CD4+ T lymphocytes

seen in AIS patients.

The altered regulation of hematopoietic cells may be due to a combination 

HIV - 1 induced mechanisms. Bone marrow cells ftom HIV -infected individuals, ftee of

autologous sera, exhbit reduced colony formation in vitro (209 210). In addition

proliferation of granulocyte-macrophage progenitor cells ftom HIV -infected patients is

reduced significantly as compared to controls (211). Direct HIV - 1 infection of monocytic

and megakaryocytic precursors and promonocytic cell lines in vitro has also been shown



(212-218). Furthermore, it has been demonstrated that the growth of the hematopoietic

progenitors (CD34+ cells) is inhbited by HIV- 1 infection in the absence of complete viral

replication (219), perhaps due to soluble viral factors such as gp120 (308). Consistent

with this, viral DNA could not be detected by polymerase chain reaction (PCR) analysis in

puried CD34+ cells ftom 13 HIV-infected individuals whose progenitor cells showed

impaired growth in vitro (220).

In addition to having a direct effect on the growth of hematopoietic progenitor

cells, HI -1 infection may also afect their growth by antibody-mediated killng of

progenitor cells (221) or production of inhbitory factors by infected bone marow

mononuclear cells (211). Conficting reports as to the role ofHIV - 1 in altered cytokine

production by infected bone marrow stromal cells or T lymphocytes makes the

contribution of cytokines to pathogenesis unclear. Whle some investigators have reported

that HIV - 1 infection stimulates cytokine production which, in turn, can stimulate HI-

gene expression (47-50), others failed to find high levels of cytokine expression induced

by either viral infection or addition of viral components to normal peripheral blood

mononuclear cells and purified monocytes (222-224). It is clear that HIV- 1 directly

afects the growth of hematopoietic progenitor cells, although further investigation is

needed to elucidate the mechanisms involved in their derangement during infection.

Moreover, HIV-1 could alter the hematopoietic compartment indirectly, through

autoimmune mechanisms, enhanced production of soluble factors, or decreased

production of growth factors by infected stromal cells.

Since T4-lymphocytes play an important role in the immune system and interact

with monocytes, macrophages, cytotoxic T cells, natural killer cells, and B cells, it is clear

that depletion ofT4-lymphocytes may result in several immunological deficits which could

ultimately lead to the opportunistic infections characteristic of AIS. Whle the T4-

lymphocyte is a reservoir for the virus in the bloodstream, the monocyte-macrophage

plays a major role in HIV- 1 persistence during early infection and dissemination of the



vis to compartments outside the peripheral blood. Researchers have shown that HIV-

can infect peripheral blood monocytes (202, 204, 206), alveolar macrophages (225) and

established monocytic cell lines (213 , 214). HIV- 1 has also been cultured ftom or

detected in monocyte-macrophages ftom the blood (204), lung (202), and brain (199 202

226) ofHIV-infected patients. Furthermore, HIV-1 infection of monocyte-de rived-

macrophages appears to be persistent and does not result in signficant cell death or

syncytia that occurs afer inection ofT cells (193 203 208 , 225). The apparent

resistance of these cells to HIV -1 induced cytopathicity makes them important intracellular

reservoirs for virus.

HL60 Cells as a Model System for HI- l Infection of Myeloid Cells.

The research presented in this dissertation was directed toward obtaining a better

understanding of the mechanisms involved in HI -1 pathogenesis by examining the effect

ofHIV- 1 infection in human myeloid cells and focused primarly on: (l) the effect of

HIV - 1 infection on progenitor cell differentiation, (2) a comparson of the replication of

HIV- 1 in T cells versus myeloid cells, and (3) the role of viral variants in tropism and

cytopathicity. The human promyelocytic leukemia cell line, HL-60 was used as a model

system to address these questions. HL-60 cells are a bipotential myeloid cell line which

can be chemically induced to differentiate into granulocytes or macrophages. This system

provided the opportunity to examine the effects ofHIV - 1 infection on myeloid precursor

cell differentiation, the results of which are described in Chapter II.

Despite the fact that HIV- 1 infection ofHL-60 cells does not affect granulocytic or

monocytic differentiation, infection does cause cytopathicity in HL-60 cells. Cell death

however, is delayed significantly in HL-60 cells as compared to the human T cell line, H9

(Chapter II). Although HIV- 1 replication has been reported to differ in monocytes and T

cells (193 208 225 227), the mechanisms which drive these differences have not yet been

defined. In order to determne what factors afect HIV - 1 replication in myeloid cells, the



life cycle of the lymphotropic HIV- 1 isolate, NL- , was compared in HL-60 and H9

cells. The results of these studies are presented in Chapter m.

Lastly, I undertook an analysis of the generation of a viral varant, NL4-3(M,

which was isolated during the lytic infection ofNL4-3 in HL-60 cells and the role ofNL4-

3(M in viral pathogenesis. The life cycle ofNL4-3(M was characterized during inection

of both H9 and HL-60 cells and the results ftom this study are described in Chapter m. In

addition to acquiring an increased cytopathic phenotye on the monocyte precursor cells

HL- , NL4-3(M acquired macrophage tropism. Experients describing this extended

tropism are presented in Chapter IV. Takentogether, the results in this dissertation

demonstrate that during HI -1 infection of myeloid precursor cells, a viral variant is

produced which is capable of effcient replication in these cells as well as in differentiated

macrophages. The change in biological phenotype ofNL4-3(M) which overcomes the

restrictions to replication ofNL4-3 in HL-60 cells is specifically selected by growth in HL-

60 cells and is inherited stably.



CHATER II

HU IMODEFICIENCY VIUS TYPE INCTED HL-60 CELLS 

CAPABLE OF BOTH MONOCYTIC AN GRAOCYTIC DIFFERENTIATION

(pise, C. A. , Newburger, P. E. , and Holland, C. A. 1992. Human Immunodeficiency Virus

Type 1 Infected HL-60 Cells are Capable of Both Monocytic and Granulocytic

Differentiation. J. Gen. Virol. 73:3257-3261)



INTRODUCTION

Several lines of evidence suggest that monocytes infected by HI -1 are important to

the pathogenesis of AIS (227, 228). HI-1 has been shown to infect established

monocytic and promonocytic cell lies and priar peripheral blood monocytes in vitro

(194 202 204 208 215 224 229-232). Viral RNA, proviruses, and viral antigens have

been demonstrated in brain macrophages, follcular dendritic cells in lymph nodes, and in

cells with macrophage markers of the skin and lungs of AIS patients (199 225 233

234). In addition, HIV- 1 can be isolated ftom peripheral blood monocytes and bone

marrow of AIS patients (218 235 236). Thus it has been suggested that

1" I

monocytes/macrophages serve as reservoirs ofHIV- 1. As mediators of viral

dissemination, they may be important to the progression of the disease,

HI- 1 infection affects monocyte/macrophage function in vivo. Functional alterations

of monocytes/macrophages ftom AIS patients include significantly reduced phagocytic

and chemotactic activities (237), monocyte-dependent T-cell proliferation (238), F 

receptor function (239), and accessory cell function (240 241).

HIV- 1 can also infect myeloid progenitor cells(212), and growth of hematopoietic

progenitor cells of AIS patients can be suppressed by anti-HIV antibodies (221). Bone

marow cells ftom HIV -infected individuals, ftee of autologous sera, have been shown to

have reduced colony formation in vitro (209 210). In addition, proliferation of

granulocyte-macrophage progenitor cells ftom HIV - 1 infected patients is significantly

reduced as compared to controls (211). The data ftom studies on bone marow

suppression and the dysfunction of infected monocytes suggest that both activation and

differentiation of monocytes may be altered by HIV -1 infection.



In this study, I have used HL-60 cells to examne the effect of three different HIV-

isolates on granulocytic and monocytic differentiation of a myelomonocytic precursor. 

have chosen three isolates ofHIV-1 (N4- , II, and PM213) that grow to high titer in

both H9 and HL-60 cells to compare the cytopathic effect of the virus isolates on both cell

types and to determne the effect ofHIV - 1 infection on granulocytic and monocytic

diferentiation ofHL-60 cells.



MATERIALS AND METHODS

Cell culture conditions. The human CD4+ lymphoblastoid cell line, H9 (provided by

Dr. R. Gallo, through the AIS Research and Reference Reagent Program, Division of

AIS, NI NI Bethesda, MD), the human myelomonocytic cell lie, HL-60 (242

243) (a gi ftom Dr. Robert Galo), and the human promyelocytic cell line, PLB985 (251)

were maintained at densities between 2 x 105 and 2 x 106 cells/ml in RPMI 1640

containing 10% heat-inactivated fetal bovine serum, supplemented with penicilin (100

units/ml)-streptomycin (100 micrograms/ml). Cell counts were performed using a

hemacytometer and viability was determned by tryan blue exclusion.

Viruses and infection. Cell-ftee virus stocks ofHIV NL4- (a gift ftom Dr. Carel

Mulder, 104), III , and PM213 (231) were prepared in the T lymphoblastoid cell line, H9.

The infectious titers of the virus stocks were determned by infecting C8166 cells, a

HTV-I immortalized cell line, (244). Twenty-four hours afer infection the number of

cells that react with a pooled patient serum and fluoresceinated IgG antibody (Sigma

Chemical Co, 81. Louis, MO) were analyzed.

Cells were split on the day before infection. Cultures ofH9 or HL-60 cells were

infected at a multiplicity of infection of 0.2 tissue culture infectious doses (TCID)/cell in

the presence of2f.glml polybrene. Twenty-four hours after infection, the cells were

pelleted, washed with PBS , and maintained in RPMI 1640 containing 10% fetal bovine

serum seeded at 1 x 106 cells/ml daily throughout the remainder of the experiment. For

virus stocks, cell-ftee supernatant was harested daily and stored at - C. Chronically

infected cultures (::30 days afer HIV- 1 infection) were used for differentiation analysis.

Productive infection was confrmed by reverse transcriptase (RT) activity.

Indirect immunofluorescence. The percentage of infected cells expressing HIV-

surface antigens was determned by indirect immunofluorescence (IF A) using an HIV-



positive pooled patient serum as the primar antibody. Briefly, 1 x 105 cells were applied

to a glass slide, air-dried, and fixed in methanol for 5 minutes. The fixed cells were

incubated with HIV- 1 positive pooled patient serum at 37 C in 5% C02 for 40 miutes

washed with PBS, incubated with fluorescein-conjugated goat anti-human IgG at 37 C in

5% C02 for 40 minutes, washed with PBS , and stored at 4 C in PBS:glycerol (1: 1). The

number of fluorescent cells per 1000 cells was determned using a fluorescence

microscope.

Cell surface CD4 expression was analyzed by fluorescence-activated cell sorting

(FACS). Cells (2x 106) were incubated with the primary antibody OKT4, an anti-CD4

antibody (OrthoDiagnostics Systems Inc. , Ratan, NJ), and then stained with fluorescein-

conjugated goat anti-mouse IgG (Sigma Chemical Co, St. Louis, MO).

Single cell cloning. Uninfected HL-60 cells and H9 and HL-60 cells chronically

infected with HIV ITI were cloned by plating the cells in a 96 well plate at a density 

5 cells/well. Cultures were then expanded and stained for HIV - 1 expression by IF A. 

second round of cloning was done on HIV - 1 R T positive cultures.

Differentiation. HL-60 cells were induced to differentiate into granulocytes or

monocytes. Granulocytic differentiation was induced in HL-60 cultures (cell density = 1 x

106 cells/rn) by addition of80mM dimethyl formamide, DMF (Sigma Chemical Co. , St.

Louis, MO). Cell differential counts were performed on Wright-Giemsa stained, induced

cells. Four stages of granulocytic differentiation were distinguished: promyelocytes

myelocytes, metamyelocytes, and polymorphonuclear cells (PMNs) (245) by their

morphology.

Superoxide production of granulocytes (246) was monitored spectrophotometrically

following the reduction of nitro blue tetrazolium (NT) (247). The ability ofDMF-treated

HL-60 cells to generate superoxide (02 ) was compared to that of normal human PMNs.

On day 6 after treatment, 1 x 106 cells ftom each culture were washed with PBS and

suspended in LOrn reaction buffer containing PBS , glucose, 0. 08% NBT in normal saline



1mM KCN, and 1mglml phorbol12-myristate 13 acetate (PMA). Background values

were obtained by suspending 1 x 106 cells in reaction buffer without PMA. Samples were

incubated at 37 C with shaking for 15 minutes. The reaction was stopped by addition of

10. 0ml ofO. 5N HCl. Cell were pelleted by centrifugation (800g for 15 minutes) and lysed

with 1.0ml of dioxane. Cellular debris was pelleted (300g for 15 minutes) and the

A515nm of each supernatant was determned.

Monocytic differentiation was induced in cultures by addition of 62nglml PMA with

cells at 1 x 106 cells/ml. Cultures were monitored ftom 1 to 3 days afer treatment.

Monocytic differentiation was indicated by cellular adherence and non-specific esterase

staining (248).

Reverse transcriptase activity. RT activity was measured as described by Kunsch

and Wigdah (249). Briefly, I.Oml ofcell-ftee supernatant ftom mock or HIV- 1 infected

cultures were centrifuged at 12 000g for 1 hour, the virus pellet was suspended in 50 1 of

reaction mixtre (50mM Tris-HCI, pH8.0; 5mM MgCI2; 150mM KCI; 0. 5mM EGTA;

5mM dithiothreitol; 0.3mM glutathione; 0.05% Triton-X; 50 glml poly(rA)oligo(dT)

(pharacia, Piscataway, NJ); and 50 Ci/ml (3H)thymdine triphosphate), and incubated at

C for 1 hour. Reactions were stopped by spotting them onto sodium pyrophosphate

soaked filters. The filters were air dried, washed with cold 5% TCA 3 times followed by

95% ethanol, and counted by liquid scintilation spectrometry. All determnations were

performed in duplicate.

CD4 DEPENDENT ENTRY. Cells (5 x 105) were incubated with 250nglml of

Leu3a (Becton-Dickinson, Mountain View, Ca), an anti-CD4 antibody or medium for 10

minutes prior to the addition of virus at an MOl of 0. 5 C8166 TCID/cell. The infection

was done in the presence of2 glml polybrene. Twenty-four hours afer infection the cells

were centrifuged (500g), washed with PBS, and suspended in RPMI 1640 containing 10%

FCS at a cell density of 1 X 10 cells/ml. The cultures were monitored daily for viability

by trypan blue exclusion and viral antigen expression by IF 



RESUL TS

HI-l is cytopathic to both H9 and HL60 cells. The cytopathic effect ofHIV-

1 infection on HL-60 cells was compared to the cytopathic effect on H9 cells. Each cell

line was infected at an MOl of 0.2 TCID/cell with each of the three HIV-1 isolates (IIID

PM213 , and NL4-3). The three viruses caused a rapid death ofH9 cells (Fig II- I).

Approxiately 90% of the infected H9 cultures died within 12 days afer infection. The

mean survval time (MS50), defied as the time at which the culture was 50% viable, was

approximately 7 days for H9 cell cultures and was independent of the virus isolate tested.

The percentage of infected H9 cells expressing HIV - 1 surface antigens was determned by

IFA. Fig 11-2A shows the results of infecting H9 cells with NL4-3. Similar results were

obtained with III and PM213 (data not shown). As the percentage of viable cells

decreased, the proportion ofHIV- 1 antigen expressing cells and the level of detectable 

increased (Fig 11-2A).

The effect ofHIV- 1 infection on HL-60 cells was very different. Afer infection

the cells continued to proliferate. Greater than 90% of the culture remained viable for the

first 10 days afer infection (Fig. II- I). During this time 2 to 5% of the cells were positive

for HIV - 1 antigen expression (Fig. 11-2B). Approximately 15 days afer infection, the

viability of the culture began to decrease (Fig. II- I). By 30 days the majority of the cells

were dead. The MS50 for infected HL-60 cells was approximately 22 days. Both HIV-

antigen expressing cells and R T activity present in the culture medium increased as the

viability of the culture decreased (Fig. 11-2B). Each of the three HIV- 1 isolates killed HL-

60 cells with similar kinetics (Fig. II- I) and results shown in Fig. 11-2B are typical of

infection with either NL4- , IIID , or PM213.

CD4 expression on HL-60 and H9 cells. Since it was not clear whether HIV-

infection ofHL-60 cells was mediated through CD4-HIV- 1 envelope interactions, HL-



cells were pre-incubated with Leu3a, an anti-CD4 antibody which blocks HIV infection of

H9 cells (Becton-Dickinson, Mountain View, CA). Leu3a completely blocked HL-

infection for 25 days post inoculation (Table II- I). Therefore infection ofH9 and HL-

cells most likely occurs via CD4-HIV - 1 envelope interactions.

The diference in the observed kinetics of cell death of HIV - 1 infected HL-60 and

H9 cells could be due to the differences in the percentage of cells that express CD4 on the

cell surface. This was analyzed by F ACS. The percentage of CD4 positive cells was

similar in H9 and HL-60 cultures ()o85% of each culture was CD4+; see Table II- I). In

addition, the fluorescence intensity ofHL-60 and H9 cells differed by 13% (based on

median chanel intensity), indicating that the number of receptors/cell differed by less than

10-fold. Others have shown that a 10-fold change in receptor number does not change the

rate of spread ofHIV- 1 (250). These data support the conclusion that the differences in

the observed kinetics of cell death ofHIV-1 infected HL-60 and H9 cells are due neither

to differences in the percentages of cells that express CD4 on their surface nor to the

number ofCD4 molecules/cell.

Differentiation of myeloid cells. HL-60 cells differentiate into granulocytes when

treated with DMF or into monocytes when treated with PMA. I have used this

characteristic to determne ifHIV- 1 infection afects the bipotential differentiation ofHL-

60 cells. HL-60 cell cultures were infected with HIV - 1 lIID , NL4-3 or PM213. On day

36 afer infection, when the cultures have a measurable level ofHIV- 1 antigen expression

granulocytic differentiation was induced by addition ofDMF. On day 6 after induction

cell differential counts were performed on Wright-Giemsa stained cells. The percentage 

cells at each stage of granulocytic differentiation was scored on the basis of morphology

as described in Materials and Methods. It was shown that the percentage of cells in each

stage of differentiation in uninfected and infected HL-60 cell cultures was approximately

the same (Table 11-2). Thus granulocytic differentiation of chronically infected HL-

cells is indistinguishable ftom uninfected HL-60 cells.



To study a more homogenous population of cells, a series of subclones of either HL-

cells or chronically infected HL-60 cells (II) were established. Infected clones were

isolated by performng two sequential limiting dilutions (0.5 cells/well). Clones were

isolated at a ftequency of approximately 5% in the first dilution experiment (5 of 96) and

9% (18 of 192) in the second serial dilution experiment. All clones examned formed

syncytia when co-cultivated with C8166 cells (15 lines). Of 10 clones that were tested for

RT activity, nine were RT positive. The cloning effciency and tests of viral expression

suggest that the lines are clones and represent a population of infected cells. The

percentage ofIFA+ cells (Table 11-2) suggests, in addition, that only a proportion of the

cells in the population express viral antigens. This is consistent with a previous report that

HIV - 1 DNA in HL-60 cells is extrachromosomal and therefore is not faithflly transmitted

durig clonal expansion (230).

One control uninfected HL-60 clone, HL-60 C1 (Table 11-2) and two HL-60 IIIB

clones, HL-60 II-1 and HL-60 III- , were chosen for further analysis. The two HIV

infected clones were determned to be HIV- 1 positive by FACS analysis and RT activity.

Like the parental uninfected HL-60 cell line, HL-60 IIIB- 1 and HL-60 IIIB-2 cells were

predominantly promyelocytic as determned by Wright-Giesma staining, and were used

with three chronically infected HL-60 populations to examne differentiation ofHIV-

infected myeloid cells. When HL-60 IIIB- 1 and HL-60 IIIB-2 were treated with DMF

their differentiation was similar to uninfected or chronically infected HL-60 cells (Table 11-

2).

To determne whether these results were unique to HL-60 cells, identical

experiments were performed with another human myelomonocytic cell line, PLB985

(251). These cells are slightly more primitive than HL-60 cells but are also bipotential and

differentiate in response to DMF and PMA (251). The MS50 for HIV- 1 infected PLB985

cells was approximately 20 days (Fig. II- I). Although there was a slight increase in the

rate of cell death of infected PLB985 cells in comparson to infected HL-60 cells, both the



kinetics ofHIV- 1 infection (Fig II- I) and differentiation (Table 11-2) were similar to those

of infected HL-60 cells.

To test the function of differentiated HL-60 cell cultures infected with HIV -

superoxide production was measured. Superoxide production was similar in uninfected

and infected HL-60 cells (Table II-2). Therefore HIV- 1 infection afects neither the

granulocytic differentiation potential nor the functional capability of differentiated HL-

cells.

HL-60 cultures persistently infected with HIV - , clonal lines of inected HL-

cells established ftom the persistently infected cultures, and HIV - 111m infected PLB985

cells were capable of differentiating into monocytes by addition ofPMA. Greater than

90% of both the infected and uninfected cultures became adherent afer differentiation.

An equally high proportion of cells (::89%) in each culture stained positive for the

monocyte specific enzme, non-specific esterase (248). The results indicate that HIV-

infection afects neither differentiation ofHL-60 cells into monocytes nor the production

of a monocyte specific enzme.



DISCUSSION

HL-60 cells can be induced to diferentiate into macrophages by PMA and into

granulocytes with DMF. I have shown that HI- 1 infection ofHL-60 cells does not

induce differentiation of these cells. Neither does HI- 1 infection abolish or inhbit the

response ofHL-60 cells to either PMA or DMF treatment. This is in contrast to recent

evidence that HIV- 1 infection of the promonocytic cell line, U937, (a more diferentiated

cell line than HL-60) induces differentiation of these cells and that the stage of cellular

diferentiation ofU937 cells may determne the pattern of virus replication (214) and

production (213). In addiiion, Roulston et al. (252) have reported that chronically

infected lines ofPLB-II cells are more monocytic than the parental PLB985 cells and

non-responsive to granulocytic differentiation induced by dibutyrl cAM. The difference

between these results and my results may be due to . a diference in the cells examined or

the agent used to induce differentiation. Both of the previous studies were performed

using cell lines established ftom populations of cells that survive an HI - 1 infection. I

induced differentiation in chronically infected HL-60 and PLB985 cells or chronically

infected cloned HL-60 cell lines by treatment with DMF. Alternatively, the stage of

myelocytic differentiation of hematopoietic cells may determne whether HIV - 1 infection

affects differentiation.

Granulocytopenias have been reported in up to two-thirds of patients with AIS/ARC
(236). One possible explanation for the reduction of granulocytes in HIV-infected

individuals is that granulocytic precursor cells are unable to differentiate properly. This

system is unique in that both granulocytic and monocytic differentiation ofHIV - 1 infected

precursor cells could be examined, Chronically infected HL-60 cells, when induced to

differentiate into granulocytes exhbit a pattern of maturation similar to that of uninfected

cells. In addition, these cells exhbit normal superoxide production. 
These in vitro



fidings suggest that HIV - 1 infection of granulocytic precursor cells may not contribute to

the granulocytopenia seen in vivo. Alternatively, the in vivo biology of

monocyte/macrophages and granulocytes may be complex and agents other than those

present in culture may effect the differentiation of infected cells.

Although a normal pattern of differentiation was observed for HIV - 1 infected myeloid

precursor cells (H-60) in vitro this does not rule out the possibility that in vivo the

differentiation of these cells may be altered. This system examines lineage-commtted

progenitor cells and not multi potent cells or the self-renewing hematopoietic stem cell.

HIV - 1 infection of either of these cell types may result in abnormal hematopoiesis. 

direct role for the virus in bone marrow suppression is suggested since HIV - 1 can infect

and replicate in myeloid (CD34+) progenitor cells (212). Recent reports indicate that the

number of hematopoietic progenitor cells is reduced in AIS/ARC patients (209 211

239), infection of human CD34+ cells causes a loss in the ability of the cells to give rise to

colonies of differentiated progeny (253), and that the reduction in CFU-GEMM, CFU-

Mk BFU- , and CFU-GM is related to the stage of the disease (254). A similar decrease

in hematopoietic progenitor colony formation is also observed during SIVmac (255) and

FIV (256) infections. Bone marow accessory cells (211), immune mediated suppression

(221), and production of inhbitory molecules and cytokines ftom infected accessory cells

may all playa role in the abnormal hematopoiesis observed in AIS patients.



FIGURES AND TABLES
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FIGUR II- I. Infection of human myeloid cells with HIV-l. Logarithmcally dividing

, HL- , and PLB985 cells were infected with HIV IIIB, HIV NL4- , or HIV PM213

at a multiplicity of infection of 0,2 TCID/cell in the presence of2 J.g/ml polybrene. The

mean of the data from three independent experiments is plotted in comparison to

uninfected HL-60 cells (X). Data ITom HL-60 and H9 cells are plotted using closed and

open symbols, respectively (- , NL4-3; - , PM213; - , IIIB). Data for PLB985 cells

infected with IIIB are plotted using the + symbol.
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FIGUR II-2. Viral antigen expression and reverse transcriptase activity. H9 (A) or

HL-60 (B) cells were infected with mv NL4-3 as described in the legend to Figure II-

The percentage of cells that reacted with a pooled patient serum (-0-), the viability of the

culture (-8-) and the R T activity in the culture medium (-8-) are plotted.



Table II- I. CD4 Expression and Blocking on HL-60 and H9 Cell Lines.

CELL LINE
CD4+ (%)a HNb

HL- 85.

IFA-positive

Day 3 Day 24Leu3 a C

Percentage of the culture which was CD4-positive as deternedby FACS analysis using the monoclonal antibody OKT4.b HN NL4- was used to infect cells at an Mal of 0.
5 TCID/cell. -Mock infected; + , HN-infected.

Cells were pre-incubated with Leu3a (240 ng/ml) 10 mi. prior toaddition of virus. -, No Leu3a added; + , Leu3a added. After 24 hrscultures were peleted, washed, and suspended in medium without
Leu3 a.

Percentage of IFA-positive cells detenned by IF A stainig using
an HN positive pooled patient serum as the priar antibody. Then represents -:1 cell per 1000 cells scored positive.



Table 11- Granuloc tic Differentiation of HIV Infected HL60 Cells
CEL DMpa PERCE PROMY MYOC PMN SUPEROXIE

IFA+b

HL-

PLB985

PERISTEY

INCT 

HL-60 mB

158
HL-60 NL4-

251
HL-60 PM2I3

141
PLB985 IIB

CLONAL LIg
HL-60 CI

HL-60 IIB-

9 1

HL-60 IIB-

106

Cells scored 6 days after treatment with dimethyl formamide (DMF); "
" = untreated cells

, "

= 80mMtreated.

The percentage of indirect immunofluorescence (IPA) positive cells using 
an HIV. l positive pooledpatient serum as the primary antibody,

Percentage of cells of each stage of differentiation identified by morphological 
observation afterWright-Giemsa staining as described in materials and methods. 

The numbers represent an average ofthree detenninations of ;:100 cells scored in two separate induction experients.
NBT reduction assay performed as described in materials and methods;
= superoxide produced of ;:0.08A5I5nm/15min/1 06 lls.

" = no superoxide produced

eCultures 36 days post infection.

ND = not detennined.

Expansion of single cell clones of either uninfected , HL-60 (C I) or persistently infected HL-60 IDB celllines as described in materials and methods.



CHAPTER III

REPLICATION OF TH HI - 1 T - YMHOTROPIC ISOLATE, NL-

IN HL-60 CELLS IS RESTRICTED AT SEVERA STEPS IN

THE VI LIF CYCLE



INTRODUCTION

A complex population of highly related but distinct HIV - 1 isolates is found in

HI-1 infected individuals (21 , 151- 158). These have been termed quasispecies (157

161). The many isolates that replicate in the patient simultaneously might have very

diferent biological phenotyes and the separate but coordinated effect of these multiple

quasispecies may contribute to a complex disease such as AIS. The abilty of the

quasispecies to mutate durig the course of disease could have important implications for

pathogenesis. Therefore, it is important to understand the cellular pressures that control

the changing composition of quasispecies.

Several mechanisms of generating viral diversity have been described (191). One

mechansm of generating changes involves misincorporation of nucleotides due to the viral

RNA polymerase, Reverse Transcriptase (RT), which has a high error rate and lacks

proofteading ability (181), and/or to the cellular RNA polymerase II which also has no

known proofteading ability (309). Another mechanism of generating viral genomic

changes involves major substitutions in viruses that are introduced by viral recombination

events that occur between two viral genomes or between viral and cellular sequences

(l87, 188). The cellular pressures that infuence these changes are poorly understood.

As a first step in defining these pressures, various stages of the viral life cycle of

HIV NL4-3 were examned in the human promyelocytic cell line, HL-60 compared to the

life cycle of the virus in the human T cell line, H9. I previously reported that although

HIV - 1 infection of HL-60 cells did not alter cellular differentiation, the virus did

productively infect and was cytopathic to HL-60 cells (Chapter II). The life cycle ofHIV-

1 NL4-3 was restricted in myeloid cells compared to T cells (Fig. 11-2). In the current

studies, I report that NL4-3 stably adapts when grown in HL-60 cells resulting in a virus

which is more rapidly cytopathic to HL-60 cells. This viral adaptation overcomes

restrictions in viral replication which occur at more than one step in the viral life cycle.



MATERIALS AND METHODS

Cell lines, viruses and infections. The human promyelocytic cell lines, HL-

(Chapter II), the human lymphoblastoid cell lie, H9 (Chapter II), the human

promyelocytic cell line PLB985 (Chapter II, 251), and an HTLV-I immortalized cell lie

(244), C8166, (a gift of Dr. H. Robinson, Univ. Mass. Med. Ctr.) were maitained at

densities between 2 x 10
5 and 2 x 106 cells/ml in RPMI 1640 supplemented with 10%

heat-inactivated fetal bovine serum (Hyclone). Cell counts and viabilities were performed

using a hemacytometer and trypan blue dye exclusion.

The HIV - 1 strains' used were the cloned viral isolate NL4-3 (104) and NL-3(M

harested ftom infected HL-60 cells. The infectious molecular clone pNL4-3 is a

recombinant proviral clone that contains DNA ftom the HIV- 1 isolates NY5 and LA V

(104). NL-3 virus was prepared by transfecting pNL4-3 DNA into H9 cells. Briefly, H9

cells (5 x 10 ) were incubated in 0.025% trypsin-EDTA/MI 1640 buffered with O.

Tris-HCI (pH7. 5) at room temperature for 4 minutes. The trypsinized cells were

incubated with 5- lOJlg ofpNL4-3 in RPMI 1640 buffered with Tris-HCl (pH 7. 5) and 200

Jlg/ml ofDEAE-dextran for twenty minutes at room temperature. The transfected cells

were diluted in culture medium, washed, and grown in RPMI 1640 supplemented with

15% fetal bovine serum. ' When greater than 10% of the transfected cultures expressed

viral antigens, cell-ftee supernatants were collected at forty-eight hour intervals.

Infectious viral titers were determned by infecting C8166 cells with serial dilutions of

virus stocks. Twenty-four hours afer infection the number of infected cells, or cells that

react with an HIV - 1 positive pooled patient serum, was determned by an indirect

immunofluorescence assay (IF A) as previously described (Chapter II). All titers are

expressed as C8166 tissue culture infectious dose per cell (TCID/cell), Virus used in PCR



experiments was DNase treated in RPMI 1640 containing 10mM MgCh and 
201lg/ml RQ

DNase I (pro mega) at 37 C for thirty minutes (23). All virus was stored at -

H9 and HL-60 cells were subcultured and inected the next day in the presence of

21lg/ml polybrene at the multiplicity of infection (MOl) specified in the Figure legends.

Twenty-four hours later, the cells were pelleted, washed with PBS , and maintained at 1 x

6 cells/ml in RPMI 1640 supplemented with 10% fetal bovine serum. The viabilities of

the cultures were monitored by tryan blue dye exclusion as indicated. Cell-free virus was

obtained ftom chronically infected H9 or HL-60 cells 30 days after the original infection.

Virs collected ftom HL-60 cells is designated NL4-3(M.

Northern hybridization analysis. Total cellular RNA ftom uninfected and NL4-

3 or NL4-3(M infected ceIl lines was extracted by the guanidinium hydrochloride

procedure (257). Ten Ilg of each RNA sample and 10llg of an RNA ladder (BRL), used

as a size standard, were denatured with formaldehyde-formamide and separated by

electrophoresis in 1.0% agarose gels in the presence of6.7% formaldehyde. The RNA

was transferred overnght in 20X SSC (3M sodium chloride, 0.3M sodium citrate) onto

nylon membrane (Zetabind, CUNO). The membranes were baked for 30 minutes at 80

pre-hybridized at 42 C overnight in 50% formamide, 5X SSPE (0.75M NaCl, 40mM

NaH2P04, 4mM EDT A), 5X Denhardt's (0. 1 % Ficoll 400 , 0. 1 % polyvinylpyrrolidone

1 % bovine serum albumin), 0. 1 % sodium dodecyl sulfate (SDS), and 1001lg/ml salmon

sperm DNA, and hybridized at 42 C overnght by adding 10
7 cpm of ( P)-labeled DNA

ftom an 8.0kb Ava I fragment of pNL4-3 DNA in 50% formamide, 5X SSPE, 0. 1 % SDS

2X Denhardt' , 0.6% sodium dextran sulphate. Afer hybridization, membranes were

washed at room temperature for fifteen minutes in 2X SSC/0. 1 % SDS , then three times

(15 minutes each) at 42 C in O, lX SSC/O. l % SDS and subjected to autoradiography.

Kinetics of entry. The kinetics of entry ofNL4-3 into H9 or HL-60 cells and

NL4-3(M) into HL-60 cells was determned using the procedure described by Srivastava

and co-workers (250). Briefly, H9 and HL-60 cells (5 x 10
5 cells per well) were



incubated with NL4-3 or NL4-3(M (MOl of::O.4 TCID/cell) and 2Jlg/ml polybrene. At

timed intervals afer inection, Leu3a was added to the culture to a final concentration of

240ng/ml. Virus was pre-incubated with 240ng/ml ofLeu3a prior to addition to H9 or

. HL.:Ocelis for the zero time point. Twenty-four hours afer infection, the. cultures :wer

, .

washed withPBS and suspended at Ix 10
6 cells/ml in RPMl1640/l0% fetal bovine

serum supplemented with 240ng/ml Leu3a and 2JlM ddC to ensure single cycle infection.

Slides were prepared for IF A 60 and 72 hours afer infection.

Polymerase chain reaction (PCR) analysis. H9 and HL-60 cultures were

infected with NL4-3 at an MOl of::0.20 TCID/cell. At timed intervals afer infection 2 x

6 cells were pelleted by centrifugation, washed in PBS, and suspended at 6 x 10

cells/ml in PCR lysis buffer (50mM KCl, 10mM Tris-HCl pH 8. , 2. 5mM MgCh,

lmg/ml gelatin, 0.45% Nonidet P40, 0.45% Tween 20, and 6ng/ml Proteinase K).

Samples were incubated at 56 C for one to two hours, heated to 100 C for ten minutes

and stored at - C. The pNL4-3 specifc primer pair used: R1 , 5'

GGTAACTAGGAACCCACTGCTTAA- (nt 496 to nt 518) and NC1 , 5

CCGAGTCCTGCGTCGAGAGATC.3' (nt 680 to nt 701). This primer pair is predicted

to amplif a 206 bp ftagment. Similar primers have been used by other investigators to

measure newly synthesized DNA (23). Beta-globin primers B1 , 5'

CAACTTCATCCACGTTCACC-3' (nt -73 to nt -54) and B2, 5'

GAAGAGCCAAGGACAGGTAC-3' (nt - 195 to nt - 176) which are predicted to amplify a

268 bp ftagment were used as internal amplification standards. PCR reactions were

performed using 1.0JlM concentration of each primer in a 50 JlI reaction containing 200Jl

M concentration of each of the four deoxynucleoside triphosphates, 10mM Tris-HCI (pH

3), 50mM KCl, 1. 5mM MgCh. 0. 001% gelatin, 1. 25 Units of A mpli Taq DNA

Polymerase (perkin Elmer Cetus), and cell lysate of 6 x 10
4 cells. The reactions were

overlaid with a drop of mineral oil and subjected to 35 cycles (denaturation for 45 seconds



at 95 , annealing for two minutes at 55 , extension for three minutes at 72 , and a

fial ten minute extension at the 35th cycle) in a Thermolyne thermo cycler.

8E5 cells which contain one provirus per cells (258) were used to quantitate the

amount of newly reverse transcribed DNA in celllysates ftom NL4-3(M infected HL-

cells and NL4-3 inected H9 or HL-60 cells collected 6 hours afer infection. All cell

lysates were serially diluted with cell lysate from uniected HL-60 cells, such that the cell

number remained 6 x 10
6 cells/ml. Ten JlI (6 x 104 cells) of each cell lysate were

subjected to PCR amplification as described above using primer pair R1/NCI. PCR

products were separated by electrophoresis through 2.0% agarose gels prior to Southern

blot analysis described below. In separate experients the HI -1 specific primer pai pol

1/pol2 is used for amplification and quantitation of reverse transcribed NL4-3 DNA

(Chapter IV).

High molecular weight DNA. Genomic DNA was prepared by standard

technques (259) for the isolation of high molecular weight DNA ftee ofunintegrated

episomal DNA. Briefly, HIV-infected H9 and HL-60 cultures or mock infected cultures

were pelleted by centrifugation (500g for 5 minutes), washed twice with PBS , and

suspended at 1 X 10
7 cells/ml in digestion buffer (lOOmMNaCI, 10mM Tris-HCI pH 8.

25mM EDTA, 0. 5% sodium dodecyl sulfate, O. lmg/ml proteinase K). The samples were

incubated at 55 C for 12 to 18 hours and then thoroughly extracted with an equal volume

of phenol/chloroformisoamyl alcohol. The aqueous layer was transferred to a new tube

and 1/2 the volume of7. 5M ammonium acetate and 2 volumes of 100% ethanol was

added. The DNA was recovered by centrifugation at 3000g for 30 minutes. The DNA

was rinsed twice with 70% ethanol, air dried, and suspended in 10mM Tris-HCl pH 8.

1mM EDTA. Each sample (20 Jlg) was digested with Xho I which cuts once in the viral

genome (nt 8887) and electrophoresed in 0.7% agarose gels for Southern blot analysis

described below,



Southern hybridization analysis. Afer electrophoresis, all gels were treated for

10 minutes with 0.25N HCl and the DNA was transferred to nylon membranes (Zetabind

CUNO) in OAN NaOH for 5 to 18 hours. Following pre-hybridization for 2 hours at 65

in 4X SSCP (0. 5M sodium chloride, 60mM sodium citrate, 60mM sodium phosphate), 

X Denhardt' s (0. 1 % Ficoll 400, 0. 1% polyvnylprrolidone, 0. 1 % bovine serum albumin),

0.5% sodium dodecyl sulfate, and 250ug/ml salon sperm DNA, the membranes were

hybridized overnght at 65 C in buffer containing 4X SSCP , IX Denhardt' , I.O% sodium

dodecyl sulfate, 10% sodium dextran sulphate, and 10
7 cpm of 32

Iabeled probe. The

probe was prepared by random prime labeling (Random Primers labeling kit, Bethesda

Research Laboratories) an 8.0Kb Ava I DNA ftagment ofpNL4-3. Following

hybridization, membranes were washed in 3X SSCP, 4X Denhardt' , 0. 1 % SDS briefly at

room temperature, in 3X SSCP/0. 1 % SDS for fifteen minutes at 65 , in IX SSCP/0. 1 %

SDS for fifteen minutes at 65 , and in O. lX SSCP/0. 1 % SDS for 15 minutes at 65 C and

then subjected to autoradiography. Densitometric analysis was performed on

autoradiographs using a CS-9000 Dual-wavelength Flying-spot Scaner (Shimadzu Co.

Kyoto, Japan).



RESUL TS

Viral adaptation. As previously reported, mV- I infection ofHL-60 cells initially

results in expression of viral proteins on only a small percentage of cells and in a low level

of cell-free reverse transcriptase activity. Fifteen or more days after mv - 1 infection of

HL-60 cells, a decrease in viability of the culture with a concomitant increase in the

percentage of cells expressing viral proteins to levels equivalent to mv - 1 infected H9

cells was observed (Chapter II, Fig. II-2).

I hypothesized that during the restricted replication ofNL4-3 in HL-60 cells, a

viral variant was produced by random mutation that has adapted to effcient replication in

HL-60 cells and was highly cytopathic for HL-60 cells. To test this hypothesis, virus was

collected 30 days after infection from NL4-3 infected HL-60 cells and used to infect both

H9 and HL-60 cells. In parallel, NL4-3 harvested 7 days after infection ofH9 cells was

used to infect both H9 and HL-60 cells. The viabilities of the cultures were monitored for

30 days by vital dye exclusion (Fig. III- I). NL4-3 harvested from H9 cells and NL4-3(M)

harvested from HL-60 cells had similar cytopathic effects on H9 cells. Surprisingly, these

viruses had strikingly different cytopathic effects on HL-60 cells. NL4-3 showed delayed

cell death on HL-60 cells (Fig. Ill- IB) with a mean survival time (MS of22 days, while

NL4-3(M) rapidly killed HL-60 cells (MS =8 days). These data suggest that a viral

variant is produced in HL-60 cells and this variant is cytopathic to HL-60 cells.

To test whether this observation was specific for NL4- , the experiment was

repeated using another cloned mV- I isolate, PM213 (Chapter II). The results were

indistinguishable from those shown in Figure III- I (data not shown). In addition, I

previously demonstrated that the cytopathic phenotype of the mv - 1 isolate IIIB is

identical to that ofPM213 and NL4-3 in H9 and HL-60 cells (Chapter II, Fig. II- I).

Therefore, the viral adaptation was not unique to NL4-3 and probably reflects a biological

process of viral adaptation or selection of a cytopathic mv - 1 variant in HL-60 cells.



To determne if a virus with this cytopathic phenotype could be generated by

multiple rounds of viral replication in another cell line, H9 cells were infected with NL4-

and vis was harested ftom the survivor cell population 30 days after infection. This

virus was used to infect both H9 and HL-60 cells. The results were compared to the

results obtained in a similar experiment using virus harested ftom H9 cells 7 days after

infection. Figure il-2 shows that the kietics of cell death in HL-60 cells was simiar for

NL-3 harested ftom H9 cells 7 or 30 days afer infection. These results demonstrate

that NL4-3 has a delayed cytopathic effect on HL-60 cells regardless of the number of

rounds of replication it undergoes in H9 cells. In addition, these results are consistent

with the suggestion that there is a selection for viral adaptation that is specific to HL-

cells rather than a selection based on the number of rounds of viral replication.

To determne if the cytopathic phenotype of the HL-60 adapted variant, NL4-

3(M, was stable, the virus was propagated through two sequential rounds of infection of

H9 cells. Virus harvested after the second passage in H9 cells was used to infect both H9

and HL-60 cells and the viability of the cultures monitored. As shown in Figure 111-

passage ofNL4-3(M) through H9 cells did not alter the virus' biological phenotype.

These results indicate that the change in the biological phenotype is stable and that it is not

selected against by growth in H9 cells. In addition, these results rule out the possibility

that the increased cytopathic effect ofNL4-3(M was due to cytokines or other factors

produced by and carred over from HL-60 cells.

To determne if the increased cytopathic phenotype ofNL4-3(M) was specific only

for HL-60 cells, another myeloid leukemia cell line, PLB985 , was infected with NL4-3(M)

and NL4-3. The results indicate that NL4-3(M had a more rapid cytopathic effect on

PLB985 cells than NL4-3 (Figure 111-4). Therefore the cytopathic phenotype ofNL4-

3(M is not specific for HL-60 cells but also affects another myeloid cell line.



To determne if the phenotye ofNL4-3(M was representative of the majority of

the virus in the population, virus was harvested four days afer infection ofHL-60 cells

with NL4-3(M), titered, and used to infect HL-60 cells at an MOl of I.O to 0.

TCID/cell. The cells were monitored for the rapid cytopathic phenotype ofNL4-3(M.

The resultsftom these experiments demonstrate that even at an MOIofO.Ol TCID/cell

NL-3(M rapidly killed HL-60 cells (Fig. II-5A). At the same MOl of 0.01 TCID/cell

NL4-3 kills HL-60 cells more slowly (Fig. III-5B). However, at an MOl of 0.

TCID/cell, NL4-3 stil kils H9 cells rapidly (Fig. III-5B). This indicates that the

cytopathic phenotype ofNL4-3(M is the predominant phenotype of the viruses in the

population.

Kinetics of viral entry. To determne if the delayed cytopathic effect ofNL4-

on HL-60 cells was due to a delay in the timing of entry of the virus into HL-60 cells

NL4-3 was used to infect both H9 and HL-60 cells and compared to NL4-3(M) infected

HL-60 cells. Leu3a, a monoclonal antibody to CD4, was added at timed intervals after

infection to block viral entry. This method has been used by other investigators to

determne the entry rates ofHIV- 1 into various cell lines (250). As previously reported

addition ofLeu3a prior to the addition of virus completely blocked HIV- 1 infection of

both cell lines (Chapter II, Table II- I). In addition to Leu3a, ddC (211M) was added to the

culture to prevent reverse transcription and viral spread. In the presence of these two

inhbitors, only virus that enters the cell and is reverse transcribed before the addition 

Leu3a and ddC score positively for viral surface antigen expression by IFA. To determne

the maxmum number of virus expressing cells, two time points, 60 hours and 72 hours

post infection, were scored and an average of the two time points were plotted.

The kinetics ofNL4-3(M entry into HL-60 cells and NL4-3 entry into HL-60 and

H9 cells is shown in Figure III-6. The maxmum percentage of virus expressing cells in

NL4-3 infected H9 cultures (l4%) was 3. 5 or 2.3 fold higher than in NL4-3 infected HL-

60 cultures (4%) or NL4-3(M) infected HL-60 cultures (6%), respectively. Nevertheless



the entry time, defined as the time point ofLeu3a addition at which 50% of the maxmum

IFA positive cells are observed, was determned to be between 4 and 4. 5 hours for NL4-

in H9 and HL-60 cells and 4 hours for NL4-3(M into HL-60 cells. This time for viral

entry into H9 cells is consistent with that previously reported by Srivastava and co-

workers (250). Therefore diferences in the timing of entry canot explainthe J 0 to 15

day delay in the life cycle of the virus in HL-60 cells.

Reverse transcription. Once the virus has entered the cell, its RNA genome is

reverse transcribed into DNA. A PCR analysis using primers R1 and NC 1 to assay for the

presence of newly reverse transcribed DNA in NL4-3 infected H9 and HL-60 cells was

performed. The R1/NC1 primer pair amplifies a 206 bp ftagment at the R/5' non-coding

sequence junction. The non-coding region is 5' to the primer binding site and thus the

products of this amplification represent newly reverse transcribed DNA. Beta-globin

specific primers Bland B2 which amplifY a 268 bp ftagment were used to detect cellular

DNA. It has been shown that DNase treatment of viral paricles eliminates nonspecific

DNA sequences cared on the surface of virions (23 260). Therefore, NL4-3 virions

were treated with DNase as described in Materials and Methods. Figure il-7 shows a

PCR analysis of untreated and DNase treated stocks. DNase treatment completely

eliminated the beta-globin DNA ftom the virus stock and greatly decreased the amount of

viral DNA (lanes 2, Fig. III-7A and B) compared to untreated stocks (lanes 3 , III-7A and

7B). The presence of viral DNA in DNase treated stocks is consistent with the

observation that partial reverse transcription occurs in the virion prior to entry into a cell

(23 , 260).

Celllysates were prepared at timed intervals after infection. To be sure I was

measuring newly reverse transcribed DNA, HL-60 cells were pre-treated for 15 minutes

with 2J.M ddC before addition of DNase treated NL4-3. Celllysates were prepared 2

hours after ddC treatment. These lysates were then subjected to PCR amplification using

beta-globin specific primer pair, B1/B2 to control for the amount of DNA analyzed (Fig.



il-8B). These same lysates were PCR amplified and the products analyzed for the

presence of viral DNA using primer pair R1/NC1. Two hours afer infection viral DNA

was detected in both infected H9 and HL-60 cells but not in ddC treated HL-60 cells (Fig.

III-8A). In infected H9 cells, a high level of newly reverse transcribed DNA was detected

continuously over five days, consistent with a spreading infection in H9 cells (Fig. III-SA). .

The results are different in HL-60 cells where newly reverse transcribed DNA decreased

with time. These data support the observation of Butera and co-workers (230) that HIV-

1 exists as extrachromosomal viral DNA in inected HL-60 cells and is not faithflly

transmitted during cell division. These data are also consistent with a restriction in the

spread of the virus in the HL-60 culture.

To determne ifthere was a quantitative difference in the amount of newly reverse

transcribed DNA in infected H9 and HL-60 cells, lysates ftom cells 6 hours afer NL4-3 or

NL4-3(M infection.were diluted serially and amplified using an HIV- 1 specific primer

pair (Fig. III-SC). For quantitation, amplification of celllysates ftom serially diluted 8E5

cells, which contain a single provirus, was used to generate a standard curve by

densitometric analysis of the data ftom Fig. il-8D. The samples shown in lanes 3 , and

9 of Figure III-SC gave densitometric readings that fell in the linear portion of the curve

and were used to calculate the number of reverse transcribed DNA copies per sample (Fig.

III-SE). There is a 3.6 fold higher amount of reverse transcribed product in NL4-3(M)

infected HL-60 cells and NL4-3 infected H9 cells (23.7 copies/1 x 10 cells) compared to

NL4-3 infected HL-60 cells (6. 5 copies/1 x 10 cells). These data are consistent with the

5 fold difference in the NL4-3 viral antigen expression on the cell surface ofH9 and HL-

60 cells seen in the entry experiment (14% vs, 4%) shown in Figure 111-6. The results of

this and three separate experiments using HIV- 1 specific primer pairs, R1/NC1 and

poll/poI2, varied by no more than 20% (3. , 3. 64X, 17. , 3. 56X) and consistently

showed a higher amount of reverse transcribed product in NL4-3 infected H9 cells than

HL-60 cells. These results, in conjunction with the result that the timing of entry ofNL4-



3 into H9 and HL-60 cells was similar, suggest one restriction in replication ofNL4-3 in

HL-60 cells occurs at a step before reverse transcription.

If the decrease in the percent of infected cells accounts for the delay ofNL4-

replication in HL-60 cells, I would predict that a reduction in the number of infected, fully

permssive H9 cells would give a simiar delay in cytopathicity as seen in HL-60 cells.

This was tested by comparng the viability ofNL4-3 infected H9 cells at an MOl of 0.

TCID/cell versus an MOl of 0.01 TCID/cell (Fig. il-5B). A 50 fold decrease in the MOl

does not significantly change the kinetics of replication ofNL4-3 in the fully permssive

H9 cells. However, reducing the MOl ofNL-3 to 0.01 TCID!cell caused a further delay

in the replication of the virus in HL-60 cells (Fig. III-5B). Thus, the restriction in NL4-

entry into HL-60 cells alone is not suffcient to explain the delay seen in the spread of the

virs in the HL-60 cultures.

NL4-3 recruitment ofHL60 cells. To assay the effciency of viral spread in

HL-60 cells, high molecular weight DNA was isolated ftom H9 and HL-60 cells 5 days

after infection with either NL4-3 or NL4-3(M. The DNA was digested with the

restriction endonuclease Xho I which cuts once in the NL4-3 provirus (nt 8887) and was

analyzed by Southern blotting (Fig. 111-9). Proviral sequences were detected as a smear of

HIV specific DNA which migrated as :;9.7 kb in both NL4-3 and NL4-3(M infected H9

cells as well as in NL4-3(M infected HL-60 cells. In addition, viral specific bands

possibly derived ftom circular DNA, were detected at approximately 9.7 kb and 0.9 kb. In

contrast, no proviral or circular DNA sequences were detected in HL-60 cells infected

with NL4-

Total RNA was isolated ftom NL4-3(M and NL4-3 infected cultures at various

times after infection. As expected, three forms ofHIV RNA (full length: 9.7 kb, singly

spliced: 4.4 kb, and multiply spliced: 2.2 kb) were detected in NL4-3 infected H9 cells and

NL4-3(M infected HL-60 cells 5 days after infection (Fig. III- lOA, C). NL4-3 RNA was

not detected by Northern blot analysis in infected HL-60 cultures until day 15 after



infection (Fig. III-lOB). These data are consistent with restricted replication ofNL4-3 in

HL-60 cells that results in a low effciency of viral recruitment of the culture.

Furthermore, the variant virus, NL4-3(M has overcome this restriction and is capable of

effcient viral recruitment ofHL-60 cells.
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DISCUSSION

I have studied the early events in the lie cycle ofNL4-3 in the human

myelomonocytic cell line, HL- , as a model system for understanding viral adaptation to

diferent cell tyes. My data as well as that of others show that HIV - 1 can infect HL-

cells (Chapter II, 215 , 230, 261 , 262). However, in these studies I find that in NL4-

inected HL-60 cells, a low level of viral protein expression and virus release occurs

durig the first 15 days afer infection (Chapter II). Fifteen days afer infection there is a

strikig increase in viral protein expression, release, and cytopathicity. In this study, I

demonstrate that a varant virus, NL4-3(M, can be consistently isolated during the lytic

phase of inection ofHL-60 cells. NL4-3(M is more cytopathic to myeloid cells than the

parental virus, NL4-3. The phenotype ofNL4-3(M is stable and not due to cytokines or

other factors produced by HL-60 cells. Based on the calculation using a viral life cycle of

24 hours and a conservative burst size of 10 particles per infected cell, a highly cytopathic

virus in the original population would require only 10 generations to infect the entire HL-

60 culture. However, NL4-3(M) takes at least 15 generations to emerge ftom infected

HL-60 cultures. Thus, the phenotype observed is not likely due to the outgrowth of an

existing variant in the original viral population but rather to the emergence of a new

adapted viral varant afer growth in HL-60 cells.

Restricted growth ofHI- 1 in different cell types can be the result of multiple

additive steps in the viral life cycle including the kinetics and effciency of entry,

intracellular steps in viral replication, and the magnitude of the viral burst. To analyze the

first of these steps, the kinetics ofNL4-3 entry and reverse transcription into HL-60 cells

and H9 cells were examned. The data demonstrate that NL4-3 enters HL-60 and H9 cells

with identical kinetics; however, the number of completed reverse transcribed molecules is

consistently higher in H9 than in HL-60 cells as determned by densitometric analysis of

Southern blots. This suggests that there is a difference in the effciency of entry ofNL4-



into these two cells lines. These results are similar to those of Kim et al. (263). Their

data demonstrate that the quantity of linear viral DNA was 5 to 10 fold higher in H9 cells

than in the human promonocytic cell line, U93 7. An alternative method for quantitating

the amount of viral DNA detected in the PCR reactions is competitive PCR (311). This

method uses a known amount of an HI -1 control plasmid added to each sample. The

control plasmid contains the same viral DNA region as that being amplified in the samples;

however, an internal portion has been deleted such that a smaller product is amplified.

This method provides an internal control for amplification variability and primer use and is

thus more sensitive than the method used in these studies. A larger difference in the

amount of newly reverse transcribed DNA in H9 verses HL-60 cells may have been

observed using competitive PCR.

In addition to this restriction, the ten to fifteen day delay observed in the spread of

NL4-3 in HL-60 cells compared to H9 cells suggests that there is another restriction in the

life cycle ofNL4-3 in HL-60 cells that affects a step afer viral entry, uncoating, and

reverse transcription. This restriction may be specific to the stage of differentiation of HL-

60 cells since it has been demonstrated that the stage of differentiation infuences viral

replication (213 214). A similar restriction ofHIV-1 replication in macrophages has

been demonstrated to occur at post entry events. Huang and coworkers (264) have

demonstrated that lymphotropic HIV - 1 (HV - III) effciently enters and synthesizes

viral DNA during infection of macro phages. They further demonstrate that 2-LTR

circular viral DNA is present only in macrophages infected with a macrophage tropic virus

(HV- 1 ADA), indicating a restriction at later stages of virus replication and implicating

DNA migration to the nucleus as a determnant ofHIV- 1 tropism.

One characteristic feature of HIV - 1 is its high degree of genetic variability. HIV-

variants show distinct biological features including replication kinetics, serum

neutralization, and cytopathic effect (21 , 112, 169- 175). The development of a highly

cytopathic variant virus seen in this system mimics some of the events observed 
in vivo.



Recent studies by Mori et al. (265) demonstrate that when SIVmac239 is injected into

rhesus monkeys a variant, SIVmac316, arises which replicates more effciently in

macrophages than SIVmac239. I note that the phenotype of this virus is very similar to

NL4-3(M). Specifically, the investigators have quantitated the amount of newly

synthesized viral DNA 14-16 hours after infection of alveolar macrophages and found that

cells infected with a SIVmac239 recombinant containing the envelope gene of

SIVmac316, SIVmac239/316ENV, have a three fold higher amount of newly synthesized

viral DNA than cells infected with SIVmac239. In addition, since viral DNA increased

dramatically between 14 and 66 hours afer infection of alveolar macrophages only with

SIVmac239/316ENV and not with SIVmac239, they conclude that the restricted

replication of SIVmac239 in macrophages is due to a step in the viral life cycle after entry.

My results indicate that the restriction ofNL4-3 in HL-60 cells is due not only to a

reduction in the effciency of viral entry into HL-60 cells, but also a restriction at one or

more steps in the viral life cycle afer reverse transcription. Thus, I suggest that the

restricted phenotype ofNL4-3 in myeloid cells is controlled by more than one viral gene.

I also note that the viral varant, NL4-3(M, produced during HL-60 cell infection

overcomes all restrictions to viral replication in HL-60 cells.

Consistent with these findings are recent reports which suggest that multiple

additional viral genes including vif nef, vpu and gag infuence tropism and cytopathicity

(103 , 107, 110, 138, 160, 162- 166, 168, 181 266). Two candidate genes involved in the

restricted growth ofNL4-3 in HL-60 cells are vif and vpr. It has been suggested that Vif

protein which is produced at a late step of the viral life cycle increases the infectivity of

progeny virus during its production (107, 110), perhaps as much as 100 to 1000-fold

(100). Vifis also involved in cell-to-cell transmission (l03) and has been implicated in

effcient viral DNA synthesis (l08 , 160). Vpr may also playa role in the replication

phenotype observed, Vpr protein is virion associated and is predicted to act either early in

the viral life cycle or late in particle assembly and maturation (123). These regulatory



proteins either alone or in combination with other viral and cellular proteins are possible

candidates for the restriction in viral spread observed in NL4-3 infection ofHL-60 cells.
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Figure il-I: Viral adaptation. Cell-tree virus was harvested ITom NL4-3 infected

HL-60 cells to determne if the virus produced during the lytic phase of infection had a

different biological phenotype than NL4-3 harvested trom H9 cells. H9 (A) and HL-

(B) cells were infected as described in Materials and Methods with either NL4-3 harvested
trom infected H9 cells

, (-

8-) or NL4-3(M) harvested from infected HL-60 cells (-0-) at an
MOl of 0.2 TCID/cell. The open triangle represents mock infected cultures,
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Figure il-2: Cytopathic effect of NL4-3 on H9 and HL-60 cells, Cell-free virus was
harvested from NL4-3 infected H9 cells at day seven (---0---) and day thirty (-0-) after
infection. These viruses were used to infect H9 (-open symbols-) and HL-

60 (-filled

symbols-) cells at a multiplicity of infection of 0.25 TCID/cell. The viabilities of the

cultures were monitored by vital dye exclusion, The means and standard deviations (error

bars) from three independent experiments are plotted in comparison to mock infected HL-

60 cells L1-).
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Figure ID-3: Stable phenotypic change ofHL-60 produced HIV-l. Cell-free NL4-

3(M) was harvested from infected HL-60 cells and used to infect H9 cells, Cell-free virus

was harvested from NL4-3(M infected H9 cells and used to infect a new culture ofH9
cells. Cell-free virus harvested from the second infection ofH9 cells was used to infect

logarithmcally dividing cultures ofH9 (-0-) and HL-60 cells (- 8-) at an MOl of 0,

TCID/cell. The viabilities of the culture were monitored over 30 days by trypan blue dye

exclusion and compared to infection ofHL-60 cells with NL4-3 (---B---) and control

mock infected cultures (-

-).
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Figure ID-4: Virus produced by HL-60 cells is cytopathic to other myeloid cells.

Logarithmcally dividing HL-60 (-8-), H9 (- 8-), and PLB985 L1-) cells were infected at

an MOl of 0.2 TCID/cell with NL4-3(M), The viabilities of the culture were compared to

infection ofPLB985 with NL4-3 (- + -) and control, mock infected cultures(-L1-),
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Figure il-5: Representation of adapted virus in NL4-3(M) population. (A)

Logarthmcally dividing HL- 60 cells were either mock infected 
L1-) or infected with

varing MOl's ofNL4-3(M) (MOI=l TCID/cell - , MOI=0. 5 TCID/cell- , MOI=O.

TCID/cell- , and MOI=O.Ol TCID/cell-O-). In addition, logarithmcally dividing H9

cells L1-) were infected with NL4-3(M at a MOl of 0, 01 TCID/cell. The viabilities of

the cultures were monitored over 30 days by trypan blue dye exclusion. (B) In a parallel
experiment, NL4-3 was used to infect H9 cells at an MOI=O. 5 TCID/cell (-0-) or H9 cells

0-) and HL-60 cells (-8-) at an MOI=O. Ol TCID/cell. The viabilities of these cultures

were monitored over thirty days and 
compared to mock infected 

L1-) H9 cells,
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Figure il- 6: HI- l Entry. To determne ifNL4-3 enters H9 and HL-60 cells at a

similar rate, a time course of escape fTom Leu3a block was performed. H9 (-0-) or HL-

8-) cells were infected with NL4-3 at time zero and compared to HL-60 cells infected

with NL4-3(M) (-8-) at time zero. At various time points after infection 240nglml of

Leu3a was added. Twenty-four hours after infection cultures were washed with PBS and

suspended in media plus 240nglml Leu3a and 2JlM ddC to ensure single cycle infection.

IF A was performed on each culture at 60 and 72 hours after infection to ensure that all

cells were given suffcient time to express viral surface antigen. The results are plotted 

percent positive cells versus time (hours) ofLeu3a addition, The entry time was

detennned as the time at which half of the virus entered the total number of positive cells,



622-
527- 
404-
.309-
238-

622-
527-
404-
309-
238-

Figure i1-7: Detection of proviral DNA in cell-free viral stocks. Cell-free virus was

treated with 20 /-g/ml DNase for 30 minutes at 37 C. Both DNase treated (lane 2) and

untreated NL4-3 virus (lane 3) were PCR amplified using either (A) the primer pairs

R1/NC1 or (B) primer pair B1/B2 specific for the beta-globin gene as described in

Materials and Methods. The Southern blot in A was exposed to fim for 48 hours for

detection of viral DNA in the DNase treated virus, The Southern blot in B was exposed

to fim for 2 hours. Included as controls are a PCR reaction with no template (lane 1) and

a lysate ofuninfected H9 cells (lane 4).
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Figure il-8A-8D: Detection of newly reverse transcribed DNA in infected H9 and

HL-60 cells. (continued on next page)
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Figure il-8E: Detection of newly reverse transcribed DNA in infected H9 and HL-

60 cells. (continued on next page)



Figure ID-8: Detection of newly reverse transcribed DNA in infected H9 and HL-60

cells. H9 or HL-60 cells were infected with DNase treated NL4-3 at an MOl of 0.

TCID/cell. Celllysates were prepared at various time points after inection. In addition

HL-60 cells were pre-treated with 2J. ddC (+ ddC) for 15 minutes prior to addition of

DNase treated NL4-3 and celllysates prepared 2 hours afer inection. The - ddC lanes

represent celllysates prepared 20 days after infection ofHL-60 cells with NL4-3. (A)

PCR analysis using primer pair R1/NC1 was performed on celllysates (6 x 104 cells) to

determne ifviral DNA was present in HIV- 1 infected cells. (B) To control for the

amount of cellular DNA examined, lysates ftom H9 and HL-60 cells were amplified using

beta-globin primer pair B 1/B2. (C) Celllysates ftom NL4-3 infected H9 and HL-60 cells

and NL4-3(M infected HL-60 cells (6 hours after inection) were serially diluted with

uninfected HL-60 cell lysate. Lanes 2 , and S represent PCR products ftom undiluted

celllysates; lanes 3 , 6, and 9 represent PCR products from a 1: 10 dilution of cell lysate;

and lanes 4, 7, and 10 represent PCR products ftom a 1: 100 dilution of cell lysate. Lane 

represents PCR products ftom undiluted cell lysate of mock infected cells. (D) Dilutions

of8E5 cells with uninfected HL-60 cells were used as a DNA standard (lanes 1 through 5

contain 60 000 SE5 cells, 6 000 8E5 cells, 600 8E5 cells, 60 8E5 cells, and 6 SE5 cells

respectively). (E) The densitometric values ftom (D) were plotted against the log of the

number of8E5 cells and the amount of viral DNA copies per infected H9 and HL-60 cells

6 hours afer infection were extrapolated from this standard curve. Shown are the results

ftom one of four identically performed experiments.
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Figure il-9: Southern blot analysis of integrated proviruses. Genomic DNA' s (20

ftom mock, NL4- , or NL4-3(M infected cultures harvested 5 days after infection were

completely digested with Xho I, electrophoresed through a 0.7% agarose gel, and probed

with a 32 labeled, HIV- 1 specific DNA probe,
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Figure il-lO: Northern blot analysis of viral RNA. Total cellular RNA was prepared

ftom NL4-3 infected H9 (A) and HL-60 (B) cultures and NL4-3(M) infected HL-60 (C)

cultures at various days after infection as described in Materials and Methods. The

numbers above the lanes designate the number of days afer infection the RNA was

prepared and the " " designates RNA from mock infected cells. The arrows indicate the

positions of the full length, singly, and multiply spliced RNA.



CHAPTER IV

ADAPTATION OF ANHIV- 1 ISOLATE TO A HU MYLOID CELL LIN
EXTENDS TH TROPISM TO PRIY MACROPHAGES



INTRODUCTION

HIV - 1 isolates exhbit distinct biological features including replication rate, cytopathic

effect, serum neutralization, and cell tropism (21 , 112, 169- 175). Virses isolated ftom

asymptomatic patients replicate slowly in peripheral blood mononuclear cells (PBMC'

and very ineffciently, if at all, in transformed cell lines. Viruses with these characteristics

have been called slow/low viruses. Viruses isolated from patients with severe

immunodeficiency replicate rapidly in PBMC's and cell lines and produce high levels of

reverse transcriptase. These viruses have been called rapid/gh viruses (171). In the

early stages of the disease priarly non-syncytia inducing, macrophage-tropic, slow/low

viruses can be isolated ftom infected individuals. As the severity of the disease progresses

syncytia-inducing, T lymphocyte-tropic, rapid/high viruses are primarily isolated (171

177). In addition, evidence strongly suggests that the changes in the biological features of

the virus with time are signs of increased virulence in the host (l77, 178 , 180, 265). Thus

elucidation of the viral genes which control phenotypes associated with slow/low and

rapid/hgh viruses may be important in understanding HIV - 1 pathogenesis.

NL4-3 is a molecularly cloned HIV- 1 recombinant isolate (104) that contains the 5'

region of the HIV- 1 isolate NY5 (nt 1 to nt 5740) and the 3' region of the HIV- 1 isolate

LA V (nt 5740 to nt 9709). NL4-3 productively infects both primary T lymphocytes and

transformed T cell lines (104), I recently characterized NL4-3(M), a variant virus

isolated ftom HL-60 cells during the lytic phase of infection with NL4-3 (Chapter III).

NL4-3(M), like NL4- , has the capacity to rapidly kill H9 cells and has acquired the

capacity to rapidly kill the human bipotential, myeloid cell lines, HL-60 and PLB985.



Cells of the myeloid lineage give rise to macrophages and thus viral isolates which can

effciently replicate in HL-60 cells may also be capable of replicating in macrophages. 

further characterize the tropism ofNL4-3(M, the ability ofNL4-3(M), NL4- , and Ba-

a macrophage tropic HIV - 1 isolate (202), to infect monocyte-derived macrophages

(MM) and peripheral blood lymphocytes (PBL) cultures was examned.



MATERIALS AND METHODS

Cells, viruses and infections. Human peripheral blood mononuclear cells were

obtained by leukopheresis ftom normal, seronegative volunteers, layered onto lymphocyte

separation medium (LSM, Organon Teknka), and centrifuged for 30 minutes at 1500g.

Cells were separated into lymphocyte and monocyte ftactions by counterfow centrifugal

elutriation (267). Characteriation by flow cytometry demonstrated the lymphocyte

ftactions to be 95-97% positive for CD2 or CD3; the monocyte ftactions were :;89%

positive for CD14. Lymphocytes (PBL) were stimulated with 5 Jlg/ml Con A for 48

hours, and maintained in RPMI 1640 containing 10% fetal bovine serum, and 20 units/ml

ofinterleukin 2 (Genzme, Cambridge, MA). Monocytes were differentiated to

macrophages by culture in DMEM containing 10% human AB serum and penicilln (l00

units/ml)/streptomycin (100 Jlg/ml) on plastic plates for 21 days with non adherent cells

removed every third day.

MDM and PBL cultures were infected with DNase treated stocks (Chapter III) 

NL4- , NL4-3(M, or NL4-3envA at a multiplicity of infection (MOl) of 0.2 to 0.5 C8166

tissue culture infectious dose (TCID)/cell. HIV Ba-L (202), an HIV- 1 isolate from a

primar culture of plastic-adherent, non-specific esterase positive cells of human infant

lung tissue (ABI, Columbia, Marland), was inoculated at 10 67 TCID
units. All

cultures were maintained by changing the medium every 72 hours for a total of 21 days

and cell-ftee supernatants were collected. Cell-free supernatants collected at 14 and 21

days after infection were assayed for p24 using an antigen capture Elisa method (Coulter

HIV- 1 p24 Antigen Assay, Hilaleah, FL),

Co-culture assay. Cultures ofNL4- , NL4-3(M, or Ba- , infected PBL and

MDM, or I.Oml of cell-ftee supernatants from these cultures were co-cultured with 2. 5 x

5 C8166 cells 21 days after infection to examine expression of viral envelope proteins



on the surface of infected cells and to examne release of virus into the medium of infected

cultures. C8166 cells are an HTL V-I infected indicator cell line (244) which readily forms

syncytia with HIV - 1 infected cells. The cultures were scored for syncytia formation 48

hours after co-cultivation.

Polymerase chain reaction (PCR) analysis. Celllysates were prepared from

MDM and PBL cultures 21 days afer inection by washing the cells twice with cold

phosphate buffered saline (PBS) and suspending the cells at a density of6 x 106 cells/ml in

PCR lysis buffer (50mM KCI, 10mM Tris-HCI (pH8. 3), 2.5mM MgCh, O. lmg/ml gelatin

0.45% Nonidet P40, 0.45% Tween 20, and 6ng/ml Proteinase K). Samples were

incubated at 56 C for one to two hours, heated at 100 C for ten minutes, and stored at-

C. The HIV- 1 specific primer pair used was: poll , 5'

GATACAGGAGCAGATGATACAG-3' (nt 2325 to nt 2347) and pol2 , 5'

CTGGAGTATTGTATGGATTTTCA-3' (nt 2705 to nt 2682). This primer pair is

predicted to amplify a 380 base pair ftagment of the viral polymerase gene, Beta-globin

primers Bland B2 (Chapter III) which are predicted to amplify a 268 base pair ftagment

of the single copy beta-globin gene were used as internal amplification standards. PCR

reactions were performed using OJlM of each primer in a 50JlI reaction volume

containing each of the four deoxynucleoside triphosphates at 200JlM 10mM Tris-HCI

(pH8. 3), 50mM KCl. 1. 5mM MgCh, 0. 001 % gelatin, 1. 25 units of AmpliTaq DNA

Polymerase (perkin Elmer Cetus), and cell lysate of6 X 104 cells. The reactions were

overlaid with a drop of mineral oil and subjected to 35 cycles (denatured for 45 seconds at

, annealing for 2 minutes at 57 , extension for 3 minutes at 72 , and a final 10

minute extension at the 35th cycle) in a Thermolyne thermo cycler.



Southern hybridization analysis. Amplified products were electrophoresed

through 3.0% agarose gels (see Chapter III, Materials and Methods). The gels were

treated for 10 minutes with 0.25N HCl and the DNA was transferred to nylon membranes

(Zetabind, CUNO) in O.4N NaOH for 2 to 18 hours. Following 3 hours of pre-

hybridization at 65 C in 4X SSCP, IX Denhardt' , 0. 5% SDS , and 250 g/ml sheared

salon sperm DNA, the membranes were hybridized overnght at 65 C in buffer

containing 4X SSCP, IX Denhardt' , 1.0% SDS , 10% sodium dextran sulphate, and 10

cpm of 32 labeled (Random Priers labeling kit, Bethesda Research Laboratories) DNA

ftom a 4314bp Hind III ftagment ofpNL4-3 (nt 1712 to nt 6026). Following

hybridization, membranes were washed in 3X SSCP, 4X Denhardt' , 0. 1 % SDS briefly at

room temperature, in 3X SSCP/0. 1 % SDS for fifteen minutes at 65 , in IX SSCP/0. 1 %

SDS for fifteen minutes at 65 , and in O. lX SSCP/0. 1 % SDS for 15 minutes at 65 C and

then subjected to autoradiography (see Chapter Ill).

Recombinant virus construction. Episomal DNA was collected from NL4-3(M)

infected HL-60 cells (or mock infected cells) 48 hours after infection using the method

outlined by Hirt (268). Briefly, 2 x 107 to 1 x 108 cells were pelleted, washed with PBS

and suspended in 1 ml of buffer (10mM Tris-HCl (pH7. 5), 10mM EDTA, 5mM EGTA).

One ml of buffer containing 2% SDS was added, the samples incubated for one hour at

C and afer adding 0. 5ml of5MNaCI, incubated overnght at 4 C. The celllysates

were centrifuged at 17 000g, 4 C for 30 minutes. The supernatants were extracted with

phenol and then chloroform:isoamyl alcohol (24:1). Episomal DNA was precipitated with

two volumes of 100% ethanol on ice for 30 minutes. The DNA samples were pelleted by

centrifugation at 25 000g, for 30 minutes at 4 , washed with 70% ethanol and suspended

in 200 1 of 10mM Tris-HCI (pH7. 5), 5mM EDT A.

Approximately 1 g of episomal DNA was used for PCR amplification. The pNL4-

specific primer pair, env 1 , 5' TATGGTACCTGTGTGGAAGG-3' (nt 6338 to nt

6359) and env 2 , 5 ' TTCTAGGTCTCGAGATACTGCTC-3 , (nt 8878 to nt 8900) was



used to amplify a 2544 bp product containing the majority of the envelope (env) gene of

the virus. The product was gel purified and cloned using the T A cloning system

(Invitrogen). Four of the 120 envelope containing clones were chosen for further analysis.

The Kpn I-Xho I ftagments were excised ITom the plasmids and placed back into the

corresponding position (nt 6343 to nt 8887) in pNL4-3. The recombinant viral constructs

were transfected into H9 cells by the method ofDEAE-dextran (Chapter III). Virus

harvested ftom transfected H9 cells was used to infect H9 and HL-60 cells. The viabilities

of the cultures were monitored by vital dye exclusion.

Electron Microscopy. HIV-infected or uninfected MDM cultures were harvested

21 days afer infection. HIV -infected and uninfected HL-60 and H9 cell cultures were

harested 7 days after infection. All cell cultures were washed with PBS and immediately

fixed in 2. 5% glutaraldehyde in PBS overnght at 4 C. Attached cells, suspended by

gentle scraping, and unattached H9 and HL-60 cells were processed into Spurrs ' epoxy

afer solidifying into agar. Thin sections were stained with uranyl actetate and lead citrate

and examned with a Zeiss EM 10A at 60 kV.

Sequencing of regions of the envelope gene ofNL4-3envA. Sequencing of

pNL4-3envA was performed using reagents provided by the U. S. Biochemical Sequenase

Kit and sequenced according to the manufacturers instructions. Briefly, plasmid DNA (5/l

g) was alkaline denatured (0.2N NaOH) for 5 minutes at room temperature and then

ethanol precipitated. The dried pellet was suspended in water and the primer (0. 5pmoV/lI)

anealed, the DNA labeled, and the reactions termnated. The samples were separated by

electrophoresis on a 6% polyacrylamide gel.



RESUL TS

Infection of MDM and PBL cultures. MDM and PBL cultures were infected

with DNase treated NL4-3 and NL4-3(M), and untreated Ba-L to determne the host

range ofNL4-3(M. The viral isolate Ba-L was used as a control for productive infection

ofMDM cultures. No cytopathic effects were observed in any of the infected or control

MDM cultures 21 days after infection. Conversely, all infected PBL cultures showed

varying degrees of syncytia and cell death 21 days afer infection with either NL4- , NL4-

3(M, or Ba-L. NL4-3(M infection ofPBL' s induced larger, multinucleated syncytia

compared to the syncytia induced by NL4-3 (data not shown).

To determne ifviral DNA was present 21 days afer inection ofPBL and MDM

cultures, polymerase chain reaction (PCR) amplifications of celllysates ftom PBL and

MDM cultures infected with either NL4- , NL4-3(M, or Ba-L were assayed. When an

HIV- 1 specific primer pair (poll/poI2) was used for amplification, a 380 bp region of the

viral polymerase gene was detected in DNA ftom all infected PBL cultures (Fig. IV- 1A).

Viral DNA was detected in ceillysates ftom NL4-3(M) and Ba-L infected MDM but not

in celllysates ftom NL4-3 infected MDM (Fig. IV- 1A). As a control for the amount of

cellular DNA present in the amplification reactions, the single copy cellular gene for beta-

globin (primer pair: B1/B2) was amplified (Fig. IV- 1B). These results indicate that unlike

NL4- , NL4-3(M and Ba-L were able to enter and be completely reverse transcribed in

macrophages. In addition, the viral DNA persisted for 21 days after infection.

Virus expression and release. To determne if the viral envelope gene was being

expressed on the surface of infected cells, PBL and MDM cultures infected with NL4-

NL4-3(M, or Ba-L were co-cultured with C8166 cells. The cultures were scored for

syncytia formation 48 hours afer co-cultivation. Syncytia formation was observed in the

NL4-3 and NL4-3(M) infected PBL co-cultures and in the NL4-3(M) infected MDM co-

cultures but not in the NL4-3 infected MDM co-cultures (Table IV- I). To determne if



virus was being released from the NL4- , NL4-3(M, or Ba-L infected PBL or MDM

cultures, 1. Om! of cell ftee supernatant was used to infect C8166 cells and scored for

syncytia formation. Supernatant ftom NL4-3 and NL4-3(M infected PBL cultures and

NL4-3(M infected MDM cultures caused syncytia formation, while supernatant ftom

NL4-3 infected MDM did not cause syncytia. As previously demonstrated, many

macrophage tropic isolates do not productively infect T cell lines (13 , 16, 170). It was not

surprising that syncytia formation was not observed in Ba-L infected cultures. Therefore

NL4-3(M productively infected both PBL and MDM while NL4-3 productively infected

only PBL cultures.

Electron microscopic analysis of infected cultures. To examne the virion

structure ofNL4-3(M in macrophages compared to HL-60 and H9 cells, electron

microscopy was performed. The results are shown in Figure IV-2. The number of virions

per cell appears to be lower in NL4-3(M infected macrophages (Fig. IV-2D) and HL-

cells (Fig. IV-2B) as compared to NL4-3(M infected H9 cells (Fig. IV-2C) or Ba-

infected macrophages (Fig. IV -2A). Typical ofMDM, in addition to viral production at

the plasma membrane, virus was also being formed and collecting within cytoplasmic

vacuoles (Fig IV -2A). The overall morphogenesis and morphology was typical for HIV in

all infected cultures.

Recombinant virus containing the envelope of the NL4-3(M). To determne if

the envelope gene ofNL4-3(M conferred the ability ofNL4-3(M to replicate in MDM

cultures, I have generated a recombinant virus that contains the env gene ofNL4-3(M.

The envelope gene ofNL4-3(M was amplified ftom Hirt DNA preparations ofNL4-3(M)

infected HL-60 cells. The primers used for amplification of the env gene are shown in

Figure IV-3A. A 2544 nucleotide ftagment was amplified, isolated, cleaved with Kpn I

and Xho I, and inserted into the corresponding restriction sites in a molecular clone of

NL4-3. Four independent recombinants produced infectious virus when transfected into

H9 cells (N4-3envA, NL4-3envB , NL4-3envC, and NL4-3envD). These viruses were



used to infect both H9 and HL-60 cells. The viabilties ofH9 and HL-60 cultures afer

infection with recombinant NL4-3envA were determned and are shown in Figure IV-3B.

The results with the remaing three recombinants were similar (data not shown). All of

the recombinant viruses produced cytopathic effects in HL-60 cells that were similar to

that ofNL4-3 and unlike that of the highly cytopathic virus NL4-3(M. The mean survival

time (MSSO) ofNL4-3 infected HL-60 cells was 15 days which vared ftom the 22 days

observed previously (Chapters II and il). Nevertheless, the MSSO ofNL4-3 and NL4-

3envA infected HL-60 cells was significantly delayed as compared to the MSSO (5 days) of

NL4-3(M infected HL-60 cells (Fig. IV-3B). These data indicate that the envelope gene

ofNL-3(M) is not the sole determnant of the rapid cytopathic effect 6fNL4-3(M in

HL-60 cells.

Infection ofMDM cultures with NL4-3envA. To determne if the envelope

recombinant, NL4-3envA, could replicate in MDM cultures, cell-ftee supernatants were

collected ftom transfected H9 cells and used to infect MDM cells. In addition, cell-ftee

supernatants ofNL4- , NL4-3(M, and Ba-L were used to inect new MDM cultures.

Celllysates were made ftom these cultures 21 days after infection and PCR amplification

was performed using primers specific for the HIV- 1 polymerase gene (Fig. IV-4A) and

control primers specific for beta-globin (Fig. IV-4B). As shown in Figure IV- , HIV-

DNA amplification products could be detected in NL4-3(M), and Ba-L infected cultures

but not in NL4-3 or mock infected cultures (Fig. IV-4A). Surprisingly, HIV- 1 DNA

amplification products were also detected in NL4-3envA infected MDM cells. These data

demonstrate that although the env gene ofNL4-3(M is not the sole determnant of the

cytopathic effect of the virus in HL-60 cells, it is capable of conferrng viral replication in

MDM cells. DNA sequencing of the V3 region of the envelope gene ofNL4-3envA

revealed that the V3 loop was identical to that ofNL4-3 (Fig. IV-5A) but that there were

differences in sequences outside the V3 loop which resulted in an in-ftame deletion of the

NL4-3 sequence that effectively converted two glycine residues (nt 7310-7315) to a



glutamne residue (Fig. IV-SB). These data suggest regions outside the V3 loop of the

env gene are responsible for the macrophage tropism ofNL4-3(M.

To determne if extracellular virus was being produced, culture supernatants were

collected 14 and 21 days afer infection and cell-ftee p24 values determned using an

antigen capture ELISA assay. The p24 values (Table IV-2) indicate that virus is released

uom NL4-3(M, NL4-3envA, and Ba-L infected macrophages. However, the amount of

extracellular p24 released ftom NL4-3envA infected MDM cells was much lower and

decreased with time (41 pg/ml on day 21) compared to the p24 values observed for NL4-

3(M and Ba-L infected MDM cells (8886pg/ml and 10246pg/ml on day 21 , respectively).

These results indicate that although the envelope gene ofNL4-3(M allowed viral entry

into macrophages, another viral determnant was involved in effcient viral replication.

This is further supported by the data demonstrating that unlike NL4-3(M), NL4-3envA

did not cause rapid cell death in HL-60 cells (Fig. IV-3B).



DISCUSSION

I have determned that the viral varant, NL4-3(M), unlike NL4- , is capable of

productively infecting macrophages. Furthermore, this change in cell tropism can be

attributed to the envelope gene ofNL-3(M, since the envelope recombinant virus, NL4-

3envA, is capable of replicating in macrophages. Although several investigators have

demonstrated that macrophage tropism is determned primarily by portions of the V3 loop

of the envelope gene (13 , 16, 17 174 269), the sequence of the V3 loop ofNL4-

3envA and NL4-3 were identical (Fig. IV-5A). This suggests that the ability ofNL4-3(M

and NL4-3envA to infect macro phages is due to changes in the envelope gene of the

parental NL4-3 which lie outside the V3 loop. An alteration spanng nucleotides 7310-

73 15 in the envelope gene resulted in the replacement of 2 glycine residues by a glutamine

residue in NL4-3envA. This change, downstream of the V3 loop, could alter the

conformation of the gp120 protein and thus affect viral infectivity. These results are

consistent with recent reports that sequences throughout the env gene are important in

determning the biological properties of the virus and can infuence both the conformation

of gp 120 and viral infectivity (20, 270-272).

The ability ofNL4-3envA to replicate in MDM cultures is unexpected since its

biological phenotype in HL-60 cells is similar to that ofNL4-3, This suggests that

envelope determnants that control viral entry into MDM are different from the

determnants that control the cytopathic phenotype in HL-60 cells. In addition, the

production of progeny virus from NL4-3envA infected MDM cultures is much lower than

ftom NL4-3(M) or Ba-L infected MDM cultures. This further indicates that there are

additional changes in the NL4-3(M) genome which infuence virus production in

macrophages. These data are consistent with recent reports that macrophage tropism may

be restricted in more than one stage of virus replication and is thus controlled by other

factors (264, 273) in addition to the envelope gene. In addition to the envelope gene



NL4-3envA also contains exon 2 of the rev gene. Since this exon encodes the Rev

functional domain (312), differences between the Rev protein ofNL4-3(M and NL4-3 are

not likely to be involved in the differences in cytopathicity of the viruses in HL-60 cells

and in the differences in viral production in macrophages.

Viral cell tropism is thus determned by two processes: virus entry and effciency of

progeny production. The virus must bind to its receptor on the cell surface and penetrate

the target cell. Afer entry, intracellular events then determne the levels of virus

production. As shown in these studies, each of these processes can afect the kietics of

replication in aninfected cell. The viral varant described here is unique in that it is

capable of replicating in primary macrophages and myeloid cell lines. Since the myeloid

cell lineage gives rise to both macrophages and granulocytes, inection of this cell type

could have a profound affect on disease progression, Furthermore, the identification of

cellular and viral determnants which control myeloid and macrophage cell tropism may

provide important insight into HIV - 1 pathogenesis.
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Figure IV- I: Detection of viral DNA. MDM and PBL cultures were infected with either

NL4-3 (lanes 2 and 6), NL4-3(M) (lanes 3 and 7), Ba-L (lanes 4 and 8), or mock infected

(lanes 1 and 5) and celllysates were prepared 21 days after infection. (A) To determne

the presence of viral DNA, PCR analysis was done using the HIV- 1 specific primer pair

poll: 5'AGATACAGGAGCAGATGATACAG 3' (nt 2325 to nt 2358) and pol 2:

ATTTTTCCTTCCTTTTCCATTTC 3' (nt 2667 to nt 2690). (B) The same celllysates

were amplified using a primer pair specific for beta-globin as a control.
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Figure IV-2: Electron microscopy. (A) Electron microscopy was performed on a Ba-

infected MDM culture. Typical mature and budding HIV - 1 particles are located within

deep invaginations of the cell surface (50 000X). (B) In an NL4-3(M) infected HL-

culture a rare cluster of mature paricles is present near the cell surface (53 000X).

(continued on next page)
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Figure IV-2: Electron microscopy. (continued ftom previous page) (C) Electron

microscopy was performed on an NL4-3(M) infected H9 culture. Shown are two cells

with many virions either on the surface or within cytoplasmic vacuoles located near the

cell surface (40 000X). (D) NL4-3(M) infection of an MDM culture shows several

mature particles and a budding paricle covered by cell surface folds present in the infected

cell. A subplasmalemmal density typical of mononuclear phagocytes is adjacent to the

budding particle (60 000X).
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Figure IV-3: Envelope gene. (A) The primer pair represented in the diagram was used to

amplify a 2544 base pair ftagment of the env gene derived ftom NL4-3(M) infected HL-

cells. The Kpn I to Xho I env ftagment was isolated and used to replace the env ftagment

of the parental NL4-3. Recombinant virus, NL4-3envA, was harvested ftom DEAE-

dextran transfected H9 cells. (B) HL-60 cells were infected with NL4-3envA Ll- ), NL4-

3 (---), or NL4-3(M) (-0-) at a MOI=0.2 TCID/cell in the presence of2Jlg/ml polybrene,

The open triangle represents mock infected HL-60 cells. The viabilities of the cultures

were monitored by trypan blue dye exclusion.



- HIV-pol
(380 bp)

-. .' 

globin
(268 bp)

Figure IV-4: Infection ofMDM cultures. Cell-ftee supernatants were harested from

either NL4-3envA transfected or mock infected H9 cells or NL4- , NL4-3(M), or Ba-L to

determne if the envelope gene ofNL4-3(M controlled macrophage tropism. MDM

cultures were then infected with DNase treated supernatants at a MOl of 0.25 TCID/cell

in the presence of2 g/ml polybrene. Celllysates were prepared 21 days after infection

ftoni NL4-3 (lane 2), NL4-3(M) (lane 3), NL4-3envA (lane 4), Ba-L (lane 5) or mock

(lane 1) infected MDMs. PCR analysis was performed on the lysates using the HIV

specific primer pair poll/pol2 (A) and the beta-globin primer pair B 1/B2 (B).
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7085
TCT GTAGAATIAAT(TGTACAAGACCCAACAACAATACAAGAAGTA T
TCTGTAGAATIAAT (TGTACAAGAC CCAACAACAATACAAGAAGTAT

7136
CCGTATCCAGAGGACCAGGAGAGCATIGTIACAATAGGAATA
CCGTATCCAGAGGACCAGGAGAGCATIGTIACAATAGGAATA

7187
GGAATATGAGACAAGCACATIGT)AACATIAGTAGAGCAATGGAAT
GGAATATGAGACAAGCACATIGTjAACATIAGTAGAGCAATGGAAT

7161
CATIGTIACAATAGGAATAGGAATATGAGACAAGCACATIGTAAC
CATIGTIACAATAGGAATAGGAATATGAGACAAGCACATIGTAAC

7212
ATIAGTAGAGCAATGGAATGCCACTIAACAGATAGCTAGCAATIA
ATIAGTAGAGCAATGGAATGCCACTIAACAGAT AGCTAGCAAITA

7264
AGAGAACAATIGGAATAATAACAATCTIAAGCAATCCTCAGGAGG
AGAGAACAATIGGAATAA T AACAA TCTI AAGCAA TCCTCA--GAG----

7316
GACCCCGAATICTAACGCACAGITAATIGTGGAGGAATTTTTCTAC
GACCCCGAATICTAACGCACAGIT AATIGTGGAGGAA IT 111 CTAC

7368
TGTAAIT
TGTAATI

Figure IV -5: Nucleotide sequence of portions of the envelope gene of NL4-3env A.

(A) The V3 loop sequence ofNL4-3 (top line) is compared to that ofNL4-3envA (bottom

line). The V3 loop is designated using brackets, (B) The C5 (constant region 5) through

the C8 (constant region 8) sequences ofNL4-3 (top line) are c mpared to NL4-3envA

(bottom line). Numbers to the left indicate nucleotide positions in NL4-3. Sequence

diferences are indicated in bold. Deletion of three guanne nucleotides are designated by

dashed lines.



Table IV- I. Infection ofMDM and PBL Cultures.

Syncytia Formation with
C8166 Cells

PCR cell-free

Cell Type ANALYSIS co-culture supernatant

21 da
MOMs
Uninfected
NL4-

NL4-3(M)

Ba-

PBLs

Uninfected
NL4-

NL4-3(M)

Ba-

MDM and PBL cultures (10 cells/ml) were infected with NL4- , NL4-3(M, Ba- , or

mock infected on day 0 and cultured for 21 days. MDM cells were maintained in DMEM

supplemented with 10% human AB sera and PBL cells were maintained in RPMI

supplemented with 10% fetal bovine sera and 20 units/ml IL-2. Culture medium was

changed every third day.

Celllysates were prepared from duplicate cultures and assayed by PCR amplification for

the presence of viral DNA ( + = viral DNA detected; - = no viral DNA detected).
c C8166 cells were co-cultures with cells or cell-ftee supernatants ftom MOM and PBL

cultures (+ represents :;5 multinucleated cells/well; - represents 0:2 multinucleated

cells/well).



Table IV-2. Detection of Extracellular p24 Core Antigen ftom Infected Macrophages.

Infected
MDMs

Mock
NL4- 3

NL4-3envA
NL4-3(M)
Ba-

24 anti en /ml)b

DAY 14

197
2691
2137

DAY 21

8886
10246

MDMs (2 X 106) were inected with DNase treated viral stocks on
day O. Twenty-four hours after infection cultures were washed
twce with PBS and maitaied in DMEM supplemented with 10%
human AB sera. Culture medium was changed every thd day.
, b Cultures were washed with PBS the day before sample collection.
Cell-free supernatants were taken 14 and 21 days after inection.
Enzyme-lied immunosorbant assay for extracellular p24 core
antigen , using the Coulter HN- antigen kit, was performed.

C n = none detected, below or equal to background values
(,7pg/ml) detected in medium.
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Of.

Introduction.

A varety of hematologic abnormalties have been described during the course of

HIV- 1 infection including neutropenia, thrombocytopenia, and anemia (236 237). These

abnormalities increase in severity as the disease progresses (236, 237). Bearng in mind

that the hematopoietic stem cells are common progenitors to the myeloid and lymphoid

lineages, a cytotoxic effect ofHIV - Ion the ancestral hempatopoietic progenitors could

account not only for these hematological abnormalities, but also for the incapacity to

compensate the constant and progressive decrease in CD4 T lymphocytes. In addition

HIV - 1 induced impairment of differentiation or cellular function could also contribute to

disease progression. This final Chapter will review the major fidings of this dissertation

in light of the current literature.

Effects of HIY on Myeloid Differentiation.

It is suggested that HIV - 1 infection has a direct role in causing the hematological

abnormalities observed in infected individuals since a reduced number of hematopoietic

progenitor cells are found in AIS/ARC patients (212 236). In addition, infection of

human CD34 cells isolated ftom inected individuals causes a loss in the ability of these

cells to form colonies of differentiated progeny. Infected bone marrow stromal cells

(211), immune mediated suppression (221), and production of inhbitory molecules and

cytokines ftom infected accessory cells (211 , 222-224), may all playa role in the abnormal

hematopoiesis observed in AIS patients. I have demonstrated that in vitro HIV-

infection of myeloid cells does not affect the morphological or functional differentiation of

these cells (Chapter II). These results are supported by data ftom several investigators

examining the effects ofHIV- 1 infection on monocytic differentiation (215 , 230, 262).

Although a normal pattern of differentiation was observed for HIV -infected myeloid cells

in vitro this does not rule out the possibility that the differentiation of these cells may be

altered in vivo. In vivo cellular differentiation is infuenced by the microenvironment

. . _--- --_



accessory cells, as well as stimulatory signals and cytokines. It is possible that the stage of

cellular differentiation at which inection occurs may also determne the outcome of

cellular differentiation and function. The system I have studied is lineage commtted and

HIV - 1 infection may not afect further differentiation of this cell type. Differentiation and

function of multipotent cells or the self-renewing stem cell, however, may be inhbited by

HI - 1 infection.

Effects on the Immunological Function ofHIV-l Infected Cells.

Recently, it has been shown that mV-infected monocytes isolated ftom infected

individuals have normal (1) microbicidal activity against several unrelated pathogens

(Candida albicans, Aspergillus fumigatus, Toxoplasma gondii, Chlamydia psittaci) (274-

276), (2) phagocytositic activity oflatex beads or infectious microbes (274 277), and (3)

release of toxic monocyte secretory products that serve as effector molecules in

antimicrobial reactions such as H , interleukin- , or tumor necrosis factor alpha (274

278-281). In agreement with these findings, the results in Chapter II of this dissertation

demonstrate that HIV -infected myeloid cells retain the ability to produce superoxide and

monocyte-specific enzmes. However, a varety of changes in monocytes ftom HIV-

infected individuals have been reported including phenotypic marker expression

chemotaxs, and antigen-presenting function. Whle several flow cytometric analyses

document normal phenotypic expression of plasma membrane antigens (MHC- , CD4

CD 11 , CD14, CR3 , Fc receptor I and II, or transferrn receptor) (278 , 282 , 283), others

using similar methodologies report significant changes in the expression of these monocyte

membrane antigens (284-286). Furthermore, several investigators report that AIS
patients have impaired Fc-dependent killng and others have shown that, although

phagocytosis is normal, intracellular killng was deficient (287, 288), Monocyte

chemotactic responses to several different chemoattractants are also depressed in HIV -

infected individuals below that ofuninfected individuals (277 289-291). This observation

.. - ---- - -



can be mimicked with monocytes ftom seronegative donors afer exposure of the cells to

purified gp41 or gp120 proteins, suggesting that defective chemotaxs is due to inhbiting

factors present in the serum ofHIV-infected patients analogous to the gp41 or gp120

proteins ofHI- I. In summar, derangement of hematopoietic cells and changes in

mononuclear phagocytes ofHIV-infected individuals are ambiguously defined and require

further investigation.

The Role of Myeloid Cells in Production of Viral Variants.

Monocyte/macrophages and their precursor cells serve as intracellular reservoirs

for virus and may contribute to the spread ofHIV - 1 to the peripheral tissues such as the

skin, lungs, brain, and lymph nodes (199 202 226 233 234 292-297). This is

accomplished through a "Trojan horse mechanism , in which cells of monocytoid lineage

conceal the viral genome by restricting virus replication. Initially, HIV - 1 expression of

infected HL-60 cells is low (Chapter II), similar to that seen in vivo for HIV- 1 and other

lentivirus systems (276 298). In vivo latently infected myeloid cells can multiply in the

bone marow and are subsequently released into the circulation where they undergo

differentiation and maturation. Studies have shown the maturation of monocytes into

macrophages relieves the restrictions of viral replication and promotes viral dissemination

within target tissue or cells and blood monocytes oflentivirus infected animals (203 , 275).

Recent reports have shown that HIV - 1 gene expression can be modulated by cytokines

(47- 222-224). Therefore, the initial low level of viral expression seen in vitro 

infected HL-60 cells, may be extended further in vivo by cytokines or other accessory

cells. Although differentiation is not induced by HIV- 1 infection ofHL-60 cells, the low

level of viral expression is overcome 15 days after infection and reaches levels seen in

infected H9 cells (Chapter II). My studies suggest that during the course ofHIV-

infection of myeloid cells, selection for a specific genetic alteration occurs which allows

the virus to effciently replicate and spread in a cell in which it is normally dormant. This



varant, NL4-3(M), which is consistently isolated ftom infected HL-60 cells during the

lytic phase of infection, allows effcient viral replication in HL-60 cells at an effciency

similar to what is seen in H9 cells (Chapter III). In vivo this cytopathic variant could

cause elimination of the pool of myeloid precursors reflected in the overall cytopenia

observed in AIS patients. Viral variants are known to arse throughout the course of

HIV- 1 infection (21 , 112, 169- 175) and recent evidence suggests that changes in the

biological features of the virus with time (175 , 177, 178) correlate with disease

progressiOn.

HI -1 Replication in Myeloid Cells.

The genomic diversity ofHIV -1 isolates is reflected in the biological properties 

the virus including host range and cytopathicity. The host range of a virus is determned

by three features: infectivity, rate of replication, and magnitude of infectious progeny.

Infectivity relates to the ability of a virus to gain entry into target cells. Afer entry,

infection is further characterized by the replication kinetics and magnitude or levels of

virus production. Thus HI - 1 replication could be regulated both at the level of virus

entry into a cell and during subsequent events. Defining the functional gene( s) of mV-

that controls these biologic properties in a given cell type could therefore help in the

understanding ofHI- 1 pathogenesis and in designing antiviral strategies, Recent

evidence has implicated env, vif vpu, vpr and nef genes as contributing to HIV-

replication and cytopathicity (13- , 18- , 103 , 138 , 160, 161 , 163 , 165- 168).

HIV Genes Potentially Involved in the Restricted Growth of NL4-3 in Myeloid Cells.

The data presented in Chapter III and that of others (108) suggest that T cell

tropic viruses are capable of infecting myeloid cells and macrophages; however, their

replication in these cell types is restricted. The restricted growth ofNL4-3 in HL-60 cells

occurs prior to reverse transcription ofthe viral genome, as well as at a step after reverse

J,,
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transcription. The envelope gene ofNL4-3(M, the variant virus which is cytopathic to

myeloid cells, differs in nucleotide sequence (Chapter IV) from the envelope gene ofNL4-

3. The importance of the envelope gene to HIV infection was demonstrated by replacing

the envelope gene ofNL4-3 with that ofNL4-3(M to generate a recombinant virus, NL4- 

3envA. NL4-3envA acquired the ability to productively infect monocyte-derived-

macrophages. Although the change in host range is likely due to sequence alterations in

the envelope gene ofNL4- , these differences lie outside the V3 loop (Chapter IV). This

is contrary to early reports that macrophage versus T cell tropism was determned by

sequences in the V3 loop (16, 18 269). This data provides further evidence in support of

the hypothesis that regions outside V3 loop contribute to viral tropism by infuencing the

conformation of envelope protein (l74, 271). However, the altered envelope gene is not

solely responsible for the biological phenotype observed for NL4-3(M), since NL4-3envA

does not produce as much progeny virus ftom infected macrophages and does not cause

the rapid cytopathic effect in HL-60 cells as seen with NL4-3(M) (Chapter IV). In

addition to the env gene, the second exon of the rev gene is contain in the NL4-3envA.

Since this encodes the majority of the Rev protein, it is unlikely that differences in the Rev

protein account for differences in NL4-3(M) verses NL4-3 in HL-60 cells and

macrophages.

The additional restriction(s) to growth ofNL4-3 in HL-60 cells could be occurring

at any of several regulatory steps in the viral life cycle. NL4-3 replication in HL-60 cells

could be controlled by a mechanism similar to that of murine leukemia viruses in mice.

Fv- is a normal mouse gene and alleles of this gene encode the ability to inhbit the

replication of certain classes of murine leukemia viruses (MuL V' s) in mice (313 , 314).

The two common alleles of Fv- , Fv-
n and 

Fv-
b are so called because of their presence

in the prototypical mouse strains NI and BALB , respectively. Fv-
n inhibits replication

ofB-tropic MuLV' , and Fv-
b inhbits replication ofN-

tropic MuL V' s, The

determnants of viral tropism lie within the gag-encoded capsid (CA) protein and a swap



of two adjacent amno acids in CA between Nand B sequences can completely reverse

viral tropism (315 , 316). Restriction is not absolute; usually between 10- and 1 000 fold

fewer cells are productively infected in a restrictive host than in a permssive host (314).

Studies of Fv- restriction in cell culture demonstrated that the restriction operates afer

entry of virus into cells but before or during integration of the viral DNA into the host cell

genome (317-323). In some cases, restriction can be accounted for by an inhbition 

viral DNA synthesis (323). In most cases, however, normal or nearly normal levels of

linear viral DNA are synthesized in restricted cells, yet the level of integrated proviruses is

severely decreased ( 317, 320, 321 , 323). Likewise, viral DNA is detected in NL4-

infected HL-60 cells with kinetics similar to that seen in NL4-3(M) infected HL-60 cells or

NL4-3 infected H9 cells (Chapter III). However, with time there is a decrease in the level

ofNL4-3 DNA in the HL-60 culture suggesting that the viral infection is not spreading.

The HIV - 1 preintegration complex, isolated ftom nuclear and cytoplasmic extracts of

CD4 + cells after acute HIV- 1 infection, contains viral RNA and DNA associated with viral

integrase (IN, matrix (M), and reverse transcriptase (RT) (324). A functional role for

MA is suggested by the presence of several putative nuclear localization sequences which

could infuence nuclear import characteristics of the viral preintegration complex (324). 

host cell factors present in HL-60 cells prevent the preintegration complex ftom being

effciently imported into the nucleus then integration of the viral DNA into the host

genome cannot effciently take place, Although integration may not be necessary for

expression ofHIV- 1 protein products (230 325-327), integration has been shown to be

necessary for effcient gene expression and production of infectious virus (38 , 326). Thus

host factors present in HL-60 cells could restrict import of the preintegration complex

and/or integration ofthe viral DNA into the host genome. Since this restriction is not

complete, it allows production of a varant virus, NL4-3(M, which overcomes the

restrictions to replication ofNL4-3 in HL-60 cells,



Another possible point of restriction to replication ofNL4-3 in HL-60 cells is at

the level of viral gene expression. Expression ofHIV- 1 genes exhbits complex

regulation, involving both viral and cellular control elements (63 , 328). One of the viral

gene products which plays a central role in viral replication is the Tat protein. Tat, which

binds to a stem-loop structure at the 5' end of the RNA termed the trans-activation

response element (TAR), is a powerfl trans-activator of gene expression at one or more

control levels (60, 63 , 328) and is required for effcient virus replication (58, 59). Tat

directly interacts with nascent TAR RNA stem- loop in vivo most probably binding to

TAR in the form of a complex containing cellular cofactor(s) (329). Several investigators

have demonstrated that formation of this RNA-protein complex can induce a significant

increase in the level ofmRA synthesis ffom the adjacent long termnal repeat (LTR)

promoter element ofHIV- , thus suggesting that TAR might be the RNA equivalent of a

DNA enhancer element (330). Recently, it has been demonstrated that changes in basal

promoter activity (331) and mutations in Tat (332) playa role in viral tropism, Since the

activity of Tat relies on basal promoter activity and cellular cofactors (52 , 53 , 54 , 333),

changes in either Tat, TAR and/or the LTR in NL4-3(M compared to NL4-3 could

account for the differences observed in the viral replication cycle in HL-60 cells.

An additional gene which could contribute to the restricted growth ofNL4-3 in

HL-60 cells is the viral gene nef The NefmRA like Tat mRA is detected early in

infection (133). Once thought to have an inhbitory effect on the HIV- 1 LTR and viral

replication in cell culture (136, 137), recent evidence demonstrates that Nefhas a positive

role in effcient viral replication (138 , 139) and in the development of AIS in monkeys

(l40). Although the mechanism by which Nefacts is unkown, evidence suggests that

Nefmay be involved in signal transduction and viral and/or cellular gene regulation. Nef

is a myristylated protein and possibly interacts with cell membranes and/or membrane

associated proteins in a signal transduction cascade (135). In addition, Nef may act at a

transcriptional level since it has been shown to interact with nuclear factors associated



with promoter elements, is capable of inducing down regulation of CD4 ftom the cell

surface, and is capable of blocking induction ofinterleukin 2 mRA (146- 148). An

alteration in the activity ofNef produced by NL4-3(M) may contribute to the increase in

cytopathicity in HL-60 cells. Alternatively, changes in the interaction ofNefwith the

repertoire of cellular proteins available in HL-60 cells could account for the difference in

the replication cycle ofNL4-3(M compared to NL4-3 in these myeloid cells.

One final point of regulation of viral replication is at the level of the viral particle

assembly and release. The accessory genes vpu, vif and vpr are thought to be involved in

these final stages of the viral life cycle. The mv - 1 protein V pu is an 81-amno acid

amphipathic integral membrane protein with at least two known biological functions: (1)

enhancement of virus paricle release ftom the plasma membrane of infected cells and (2)

degradation ofCD4 in the endoplasmic reticulum (ER). In the absence ofVpu, an

accumulation of intracellular viral proteins and cell-associated HIV - 1 particles

accompanied by increased cytopathicity were observed (115 , 116, 117). In addition, it has

been demonstrated that V pu causes degradation of CD4 in the endoplasmic reticulum

which results in enhanced intracellular transport and processing of the viral gp 160 protein

(119, 120, 121). More recently, investigators demonstrated that Vpu is phosphorylated in

infected cells at two seryl residues by the ubiquitous casein kinase 2 (334). Although

mutant Vpu lacking both phosphorylation sites was unable to degrade the HIV-1 receptor

CD4, in infected cells, and Vpu-mediated enhancement of virus secretion was only

partially affected (335). This suggests that the two biological functions ofVpu are

independent and exhbit a different sensitivity to phosphorylation.

Protein phosphorylation is known to be an important modification which is used to

regulate cellular processes. Phosphorylation can either activate or inactivate the biological

function of a protein, often in a reversible manner, such as cell cycle kinase cdc2 (336),

Protein phosphorylation can also regulate such processes as : the initiation of protein

synthesis as seen for eIF-2a (337), signal transduction as in the activation ofNF-KB by



phosphorylation of its inhbitor IKB (338), the expression of cell surface receptors such as

the phosphorylation dependent down regulation ofCD4 (339), or the regulation of

neurotransmitter function (340). During infection, the phosphorylation of the NL4-3 Vpu

protein could be altered in HL-60 cells. The HIV - I envelope polyprotein precursor

gp 160, proceeds through the ER and Golgi complex and is proteolytically cleaved into the

mature gp120 and gp41 components. Intracellular gp160-CD4 complexes can form in the

Golgi complex preventing processing of the gp160 protein into gp120 and gp41 (119)

which are elevated by phosphorylated Vpu protein (334). Thus, ifVpu is not properly

phosphorylated in HL-60 cells then degradation of CD4 in the ER would not occur

impairing gp120 and gp41 production. This ultimately affects the assembly and release of

virus paricles and may contribute to the delay in the life cycle ofNL4-3 in HL-60 cells.

The inactivation ofVpu could be accomplished by the interaction ofHL-60 specific host

cell factors with Vpu preventing its phosphorylation, or alternatively, a lack of

phosphorylation ofVpu in HL-60 cells. The variant virus NL4-3(M) may be capable of

overcoming such a restriction and effciently replicate in HL-60 cells. If so, Vpu

phosphorylation in NL4-3(M infected HL-60 cells could occur due to alterations in the

phosphorylation sites ofVpu or to alterations in the Vpu protein which prevent interaction

with an inhbitory factor in HL-60 cells.

The growth and host range ofHIV- 1 have also been shown to be infuenced by

Vpu in the context of the transmembrane glycoprotein, gp41 (165), Investigators have

demonstrated that cloned HIV- 1 isolates which contained a functional Vpu replicated

poorly in the monocytic cell line THP- 1 compared to the same isolate with a nonfnctional
Vpu protein. However, in the T celliineH9 both viruses grew well. Thus, Vpu may

affect the interaction of a cellular constituent with the viral envelope. Differential

expression of a host cell factor could account for the effect observed in the different cell

types and for the difference of replication ofNL4-3 and NL4-3(M) in HL-60 cells.

, . . - ---



Two other genes potentially involved in the restricted growth ofNL4-3 in HL-

cells are vif and vpr. By an unkown mechansm, Vif protein has been reported to

increase the infectivity of progeny virus (l07, 110) by as much as 100- to 1000-fold

(100). Recent evidence suggests that Vifmay also enhance cell to cell transmission of

HIV- 1 (101 , 103 , 107). Studies using Vif and Vif viruses demonstrate that Vifprotein

was required at the time of virus production (110). Together with the findings that vif

mRA is expressed late in infection (49 299) and is present in infected cells but not

virions (97 , 101 300 301), these results indicate that the Vifprotein acts late in the viral

life cycle d ring the processing of virion proteins, vion assembly, or virion maturation.

More recently, Vifhas also been implicated as acting early in the viral life cycle. In T cell

lines in which Vif function is indispensable for virion production, Vif was found to be

necessary for effcient viral DNA synthesis (108, 160). In NL4-3 infected HL-60 cells, the

activity of Vif could be hindered through interaction with myeloid specific cellular

proteins. This lack of Vif function may account for the decrease in the levels of newly

reverse transcribed DNA observed early afer infection ofHL-60 cells (Chapter III).

Alternatively, the infectivity of the progeny virus produced within the first 15 days after

NL4-3 infection ofHL-60 cells could be low due to the inhbition ofViffunction. This

hypothesis is supported by the finding that virions released 11 days after infection of

HL-60 cells with a T lymphotropic virus appeared either empty, containing several cores

or containing less envelope protein on their surface than the input virus or virions released

30 days after infection ofHL-60 cells (262).

Vpr may also playa role in the replication phenotypes ofNL4-3 and NL4-3(M) in

HL-60 cells. Vpr protein is found in the cell nucleus, as well as in virions, suggesting that

Vpr can act either early in the viral infection or late during particle assembly and

maturation, and that Vpr may interact with cellular regulatory mechanisms important in

the establishment of infection (123 , 127, 129 302). Studies have shown that Vpr might

have a role in the upregulation ofHIV- 1 expression (129). The inability to identify



specific sequences in the HIV -L TR, which mediate the observed increase in virus

expression, raises the possibility that Vpr may function in a manner similar to the herpes

simplex virus VP16 protein (303 304). VP16 is known to work in concert with a cellular

factor to upregulate the expression of immediate early HSV genes (305). Previous studies

have shown that Vpr is not required for HIV-1 infection or replication in CD4

lymphocytic cell lines in vitro although inactivation of the protein leads to slower

replication kinetics and delayed cytopathicity in these cells (105 , 123 , 130). On the other

hand, Vpr has been shown to playa role in the regulation of virus replication in primary

monocytes, and together with Vpu, mediate the expression of silent versus productive

infection (306). In addition, Vpr has been shown to infuence cellular differentiation

(307). Through interaction with myeloid specific proteins, Vpr activity could be restricted

in NL4-3 infected HL-60 cells. Thus alterations in Vpr, Vif, and/or Vpu may be involved

in the generation ofNL4-3(M and consequently in overcoming the restrictions in the life

cycle ofNL4-3 in HL-60 cells.

Conclusion.

In conclusion, I have presented evidence in this dissertation that HIV - 1 infection of

myeloid cells has a distinct role in HIV -induced pathogenesis. I have shown that T

lymphotropic viruses can infect myeloid cells resulting in delayed viral replication. The

existence of poorly replicative HIV -1 isolates may be essential for establishing persistent

myeloid cell/macrophage infection during the early, asymptomatic stage of disease.

However, with time, viral variants emerge which can replicate effciently in myeloid

cells/macrophages. In my system, the variant NL4-3(M) was consistently isolated during

the lytic phase of infection of myeloid cells. The stable genomic change(s) in NL4-3(M)

allows effcient viral replication and increased cytopathicity in HL-60 cells, and extends

the cell tropism to monocyte-derived-macrophages. It is likely that the envelope gene is

involved in this altered phenotype but at least one additional alteration is required to



confer all of the biological properties ofNL4-3(M). The onset of increased virus

replication has been correlated with the onset of clinical disease. Thus the generation of

varants like NL4-3(M in vivo could have profound effects on the hematopoietic and

immune systems, leading to the cytopenia and decreased immune function observed in

AIS patients.
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