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ABSTRACT 

 

  Virus infection is sensed by the innate immune system through 

germline encoded pattern recognition receptors (PRRs). Toll-like receptors 

(TLRs), retinoic acid-inducible gene-I-like receptors (RLRs) and nucleotide-

binding oligomerization domain-like receptors (NLRs) serve as PRRs that 

recognize different viral components.  Microbial nucleic acids such as 

Ribonucleic acid (RNA) are important virus-derived pathogen-associated 

molecular patterns (PAMPs) to be recognized by PRRs. Virus recognition may 

occur at multiple stages of the viral life cycle. Replication intermediates such as 

single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) are detected 

by the RNA-sensing PRRs that initiate innate and adaptive immune responses. 

Triggering of the innate immune system is a critical event that can shape the 

adaptive immune response to virus infection. Better vaccination strategies that 

lead to improved T-cell and antibody responses are needed for protection against 

pathogens. We sought to delineate the RNA-sensing PRR pathways that are 

activated during infection with an RNA virus, the signaling mediators involved 

and the influence on subsequent virus-specific adaptive immune responses. 

 To analyze the role of RNA-sensing PRRs in T-cell immune responses in 

vitro, we performed direct co-stimulation experiments on CD4+ T-cells of high 

purity.  We utilized synthetic RNA-like immune response modifiers (IRMs) R-848 

(MyD88-dependent) and poly I:C (MyD88-independent)  as RNA PAMPs to 
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determine the direct effects of RNA-sensing PRR activation on CD4+ T-cells. 

RNA PAMPs can act directly on CD4+ T-cells and modulate their function and 

phenotype. Maximal direct co-stimulatory effects were observed in CD4+ T-cells 

cultured with poly I:C compared to R-848. The cytoplasmic dsRNA-dependent 

protein kinase R (PKR) was also involved in poly I:C-mediated signaling in CD4+ 

T-cells.  

We found differences in the RNA-sensing PRRs activated by R-848 

between mouse and human CD4+ T-cells. We observed minimal direct co-

stimulatory effects by R-848 in mouse CD4+ T-cells. In contrast, augmentation of 

Th1 responses by R-848 was observed in human CD4+ T-cells. TLR8 activation 

in human CD4+ T-cells may explain the observed differences. 

  We next explored the signaling pathways activated by RNA PAMPs in 

conventional dendritic cells (cDCs) and CD4+ T-cells that drive Th1 CD4 T-cell 

responses in isolated cDC/CD4 T-cell interactions. Allogeneic cDCs and CD4+ T-

cells of high purity were cultured together with R-848 and poly I:C in MHC 

congenic mixed leukocyte reactions (MLRs). R-848 and poly I:C stimulation of 

type I IFN production and signaling was essential but not sufficient for driving 

CD4+ Th1 responses. The early production of IL-1α and IL-1β was equally 

critical. 

To analyze the role of RNA-sensing PRRs in T-cell immune responses in 

vivo, we utilized a mouse model of heterosubtypic influenza A virus (IAV) 

infections. Using MyD88-/- , TLR7-/- and IL-1-deficient mice, we explored the role 
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of MyD88-signaling in the generation of heterosubtypic memory CD4+ T-cell, 

CD8+ T-cell and antibody responses. We found that MyD88 signaling played an 

important role in anti-IAV spleen and lung CD4+ T-cell, spleen CD8+ T-cell and 

Th1 antibody immune responses. Anti-IAV lung heterosubtypic CD8+ T-cell 

responses were not dependent on MyD88 signaling.   

Our in vitro and in vivo results show the pivotal role of RNA-sensing PRR 

pathway activation in T-cell immune responses. Understanding the complexity of 

the PRR pathways involved during viral infections and defining the subsequent 

immune response would have important implications for the generation of more 

effective vaccine strategies. 
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CHAPTER I: 

INTRODUCTION 

 

 Over the past decade, there has been rapid advancement in our 

knowledge about the contributions of the innate immune system to the 

recognition of infection with RNA viruses. This initial host response is mediated 

by pattern recognition receptors (PRRs). These receptors are encoded by genes 

in the germline DNA and respond with the immediate activation of effectors. They 

do not require the gene rearrangements essential to recognition by the adaptive 

immune response (66). Sensing by PRRs of conserved molecular structures of 

pathogens, referred to as pathogen-associated molecular patterns (PAMPs), is 

the first crucial step in the development of virus-specific adaptive immune 

responses. To delineate the complexity of RNA-sensing PRR pathways that are 

activated during infection with an RNA virus, the signaling mediators involved 

and the subsequent adaptive immune responses is the focus of this dissertation. 

 

A. Pattern Recognition Receptors and Pathogen-Associated Molecular 

Patterns 

The recognition of evolutionarily conserved microbial structures, now 

known as PAMPs, was first proposed by Janeway in 1989 (64, 65). He proposed 

that the basis of pathogen non-self recognition lies in the ability of the host to 

recognize conserved microbial products or components that are unique to 

1



pathogens and are not produced by the host. This recognition, mediated by 

PRRs, allows for the innate immune system to discriminate between “infectious 

non-self” and “non-infectious self” (110). PRRs possess certain common 

characteristics: (i) PRRs recognize conserved molecular patterns that are 

essential to the virus or bacteria and are therefore difficult for the microbe to 

alter; (ii) PRRs are expressed constitutively in the host and detect the pathogen 

regardless of their life cycle; and (iii) PRRs are germline encoded, nonclonal and 

independent of immunologic memory (reviewed in (3)). Today, several 

structurally and functionally distinct classes of PRRs are known to recognize 

various PAMPs and induce various host defense pathways (reviewed in (83, 84)) 

(Table 1.1). The three major classes of PRRs are the Toll-like receptors (TLRs) 

that detect PAMPs either at the cell surface or in the lumen of intracellular 

vesicles; and the cytosolic PRRs retinoic acid-inducible gene-I (RIG-I)-like 

receptors (RLRs) and the nucleotide-binding oligomerization domain (NOD)-like 

receptors (NLRs) for the detection of intracellular PAMPs (82, 83, 113). 

 

i. Toll-like receptors (TLRs) 

TLRs are the most extensively studied class of PRRs. Discovered in the 

mid-1990’s to be structurally related to the Drosophila Toll (111, 135), TLRs are 

type I transmembrane proteins composed of three major domains – the 

ectodomain with leucine-rich repeats (LRRs) that mediate recognition of their 

respective PAMPs, the transmembrane domain and the intracellular domain that 
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is homologous to the interleukin-1 receptor’s (IL-1R) Toll/IL-1 receptor homology 

(TIR) domain, which is required for downstream signal transduction (Figure 1.1) 

(reviewed in (82)). To date, there are more than 12 members of the mammalian 

TLR family. 10 TLRs have been identified to be functional in humans and 12 are 

functional in mice with TLR1-TLR9 being conserved in both species (82, 83). 

TLR10 in mice is non-functional due to a retrovirus insertion (45) while TLR11, 

TLR12 and TLR13 are believed to have been lost in the human genome (82).  

TLRs are largely divided into two sub-populations with regard to their 

cellular localization and respective PAMP ligands. One group is composed of 

TLR1, TLR2, TLR4, TLR5 and TLR6 that are localized on the cell surface and 

largely recognize microbial membrane components such as lipid, lipoproteins 

and proteins; the other group is composed of TLR3, TLR7, TLR8 and TLR9, 

which are expressed within intracellular vesicles and recognize microbial nucleic 

acids (Table  1.1) (reviewed in (84)). TLR4 is an exception. It is expressed on the 

cell surface, initially transmits signals for early phase activation and is then 

endocytosed and delivered to intracellular vesicles for the sequential induction of 

late-phase signaling pathways (8, 56, 72). TLR11, a relative of surface-

expressed TLR5, was recently shown to be also expressed in intracellular 

compartments (128) but is known to recognize the protozoan profilin-like protein 

(173). TLR13 is localized intracellularly; although the cognate PAMP is yet to be 

identified, it has been implicated to have a role in the recognition of vesicular 

stomatitis virus (146). 
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Figure 1.1. Toll-like receptors.  The  mammalian homolog of the Drosophila Toll 
receptor. Toll-like receptors (TLRs) are type I transmembrane proteins with three major 
domains. The N-terminal pathogen-associated molecular pattern (PAMP)-binding 
ectodomain that contains multiple leucine-rich repeats (LRRs), the transmembrane 
domain and the intracellular domain of the interluekin-1 receptor (IL-1R) called Toll/IL-
1R homology (TIR) domain which mediates  signaling events upon receptor activation. 
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Species PAMPs/Activators PRRs involved in recognition 

Bacteria, 
Mycobacteria 

LPS TLR4 

Lipoproteins, lipoteichoic acid, 
peptidoglycan, lipoarabinomannan 

TLR2/1, TLR2/6 
NOD1, NOD2, NALP3, NALP1 

flagellin TLR5 
IPAF, NAIP5 

DNA TLR9 
AIM2 

RNA TLR7 
NALP3 

Viruses DNA TLR9 
AIM2, DAI, IFI16, DDX41 

RNA TLR3, TLR7, TLR8 
RIG-I, MDA5, NALP3 

Structural protein TLR2, TLR4 

Fungus Zymosan, β-glucan TLR2, TLR6 
Dectin-1, NALP3 

Mannan TLR2, TLR4 

DNA TLR9 

RNA TLR7 

Parasites tGPI-mucin (Trypanosoma) TLR2 

Glycoinositolphospholipids 
(Trypanosoma) 

TLR4 

DNA TLR9 

Hemozoin (Plasmodium) TLR9 

Profilin-like molecule TLR11 

Table 1.1.  PRRs and PAMPs 

* Adapted from Kawaii and Akira, 2011  
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There are four known signaling adaptors in TLR signaling: MyD88, 

MyD88-adaptor-like (MAL, also known as TIRAP), TIR-domain containing 

adaptor protein inducing IFN-β (TRIF, also known as TICAM1) and TRIF-related 

adaptor molecule (TRAM, also known as TICAM2) (reviewed in ((82, 121)). 

MyD88 is used by all TLRs except TLR3 which signals through the adaptor 

molecule TRIF. Thus, TLR signaling can be largely classified as either MyD88-

dependent pathways or MyD88-independent /TRIF-dependent pathways. TLR4 

is the only TLR that uses all four adaptors and thus activates both the MyD88-

dependent and MyD88-independent pathways (Figure 1.2).   

 

ii. Retinoic acid-inducible gene-I (RIG-I)-like receptors 

RLRs are a family of DExD/H box RNA helicases that function as 

cytoplasmic sensors of viral RNA PAMPs. The RLRs include RIG-I, melanoma 

differentiation-associated gene (MDA-5) and laboratory of genetics and 

physiology 2 (LGP2) (reviewed in (99, 141)). RLRs are interferon-inducible 

proteins that are expressed at low concentrations in the resting cell and are 

greatly increased upon stimulation or activation (75, 174). Key structural domains 

include: caspase activation and recruitment domain (CARD), ATPase containing 

DEAD box helicase (DEAD helicase) and C-terminal domain (CTD) (Figure 1.3). 

The CTD of RIG-I and MDA-5 also encodes a repressor domain (RD). LGP2 

lacks the N-terminal CARD domains and is therefore unable to signal via the 

adaptor interferon-β promoter stimulator 1 (IPS-1). Currently, LGP2 is known to 
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Figure 1.2. Adaptor molecules of TLR signaling. MyD88, MyD88-adaptor-like (MAL, 
also known as TIRAP), TIR-domain containing adaptor protein inducing IFN-β (TRIF, also 
known as TICAM1) and TRIF-related adaptor molecule (TRAM, also known as TICAM2) 
are the four known signaling adaptors of TLRs.  Recognition by TLRs of its cognate ligand 
induces homo- or heterodimer formation of TLRs and the activation of signaling cascades 
leading to the activation of key transcription factors -- interferon regulatory factors (IRFs) 
and  nuclear factor κB (NF-κB).  
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 CARD           CARD           DEAD Helicase           RD; CTD 

 CARD           CARD           DEAD Helicase           RD; CTD 

DEAD Helicase                CTD 

 CARD       Pro                        TM 

RIG-I 

MDA-5 

LGP2 

IPS-1 

Figure 1.3. Simple representation of RLRs and their adaptor IPS-1. Retinoic-acid-
inducible gene I (RIG-I)-like receptors (RLRs) -- RIG-I, melanoma differentiation-associated 
gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). RIG-I and MDA5 
consist of caspase activation and recruitment domain (CARD), ATPase containing DEAD 
box helicase (DEAD helicase) and C-terminal domain (CTD). LGP2 consists only of DEAD 
helicase, C-terminal domain (CTD) and no repressor domain (RD). RLRs signal 
downstream via the adaptor, interferon (IFN) β-promoter stimulator 1 (IPS-1) that consists 
of CARD, a proline-rich region (Pro), and a transmembrane domain (TM) on its C terminus. 
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function as a regulator of RIG-I and MDA-5 signaling in an inhibitory or 

synergistic way, respectively (129, 137, 138, 166, 174). 

Although very similar in structure, the exact molecular signatures 

recognized by RIG-I and MDA5 are still not fully understood (6). RIG-I 

preferentially recognizes RNA sequences with 5’ triphosphorylated (5’ppp) ends, 

which serve in part to distinguish a non-self RNA PAMP (52). RIG-I can also bind 

to ssRNA and shows a preference for shorter RNA fragments compared to 

MDA-5 which preferentially recognizes long dsRNAs (greater than 1 kb in length) 

such as the high-molecular-weight polyinosinic:polycytidylic acid (poly I:C) 

fragments (80). 

Both RIG-I and MDA-5 interact downstream with the adaptor IPS-1 

through CARD repeats. IPS-1 is thought to be not directly involved in the 

signaling process but serves to orchestrate the molecular interactions which 

subsequently lead to the production of proinflammatory cytokines and type I IFN 

(Figure 1.4) (69). 

 

iii. Nucleotide-binding oligomerization domain (NOD)-like receptors 

NLRs comprise a large number of family member proteins that is 

characterized by the presence of conserved NOD motif (reviewed in (77)). The 

domain structure of NLR protein resembles the pro-apoptotic APAF1 and a 

subset of plant disease-resistance (R) genes (161). NLRs are defined by three 

characteristics: an N-terminal effector domain, a central nucleotide binding 
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Figure 1.4. RIG-I, MDA-5 and NLRP3 signaling. The double-stranded RNA (dsRNA) 
receptors retinoic-acid-inducible gene I (RIG-I) and melanoma differentiation-associated  gene 
5 (MDA5) are cytosolic receptors expressed in most cells. RIG-I and MDA5 signal through a 
common adaptor molecule,  interferon (IFN) β-promoter stimulator 1 (IPS-I), which is 
mitochondria associated.  Downstream signaling  of IPS-I leads to activation of transcription 
factors interferon-regulatory factor 7 (IRF7), IRF3 and nuclear factor κB (NF-κB) that induces 
the production of proinflammatory cytokines and type I interferons (IFNs).  Inactive NACHT-
LRR-Pyrin (PYD)-containing protein 3 (NLPR3) oligomerizes upon stimulation of an unknown 
mechanism. NLRP3 forms an inflammasome complex with proteins,  apoptosis-associated 
speck-like protein (ASC), Cardinal  and pro-caspase 1, leading to the activation of caspase-1, 
which mediates the processing of pro-IL-1β and pro-IL-18 (induced by TLR signaling) to 
mature IL-1β and IL-18, respectively.  FIIND, domain with function to find; FADD, fas-
associated death domain; NACHT, neuronal apoptosis inhibitory protein (NAIP), CIITA, HET-E 
and TP-1; LRR, leucine-rich repeat;  CARD, caspase activation and recruitment domains.  
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domain (NBD) and C-terminal repeats. N-terminal effector domains consist of 

either a PYD, CARD, baculovirus inhibitor of apoptosis repeat (BIR) domains or a 

transactivation domain. The NACHT-LRR-PYD-containing protein 3 (NLRP3, 

also known as NALP3, cryopyrin) is one of the best characterized NLRs. Upon 

activation, NLRP3 interacts with apoptosis-associated speck-like protein 

containing a CARD (ASC) that is essential for the binding and recruitment of 

pro-caspase 1 to form an inflammasome complex. This activates caspase 1 that 

mediates the cleaving of pro-IL-1β and pro-IL-18 into active IL-1β and IL-18, 

respectively (Figure 1.4) (69).  It is not yet known if NLRP3 directly detects 

nucleic acids or if NLRP3 is indirectly activated following nucleic acid detection 

by an unknown sensor that may interact with NLRP3. However, based on the 

broad range of NLRP3 activators, it is likely that NLRP3 may respond to a less 

specific stimulus such as cellular stress or alterations of host metabolites 

downstream of pathogen infection (171). 

 

B. RNA-sensing PRRs and RNA PAMPs 

Nucleic acid motifs are the main virus-derived PAMPs recognized by the 

PRRs of the innate immune system (Table 1.1). The focus of this dissertation is 

on RNA-sensing PRRs and the viral PAMPs that are detected during RNA virus 

infection. This includes TLR3, TLR7, TLR8, RIG-I, MDA-5 and NLRP3. Viral 

ssRNA is sensed by TLR7 and TLR8 in the endosomes and by RIG-I in the 

cytosol of many cell types. Viral dsRNA is recognized by RIG-I and MDA5 in the 
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cytosol, by TLR3 in the endosome of innate immune cells and by NLR, NLRP3. 

(Figures 1.4 and 1.5) (reviewed in (69)).  

 

C. dsRNA recognition: The Pre-TLR/PRR Era 

 Recognition of extracellular or cytoplasmic dsRNA is thought to occur 

primarily via two different classes of PRRs – through TLRs (TLR3) and RLRs 

(RIG-I and MDA-5), respectively. However, there is a third classic molecule, 

recently classified in reviews as also a PRR for cytoplasmic dsRNA -- protein 

kinase R (PKR) (65, 113). PKR is a 68-kDa cytoplasmic dsRNA-dependent 

serine/threonine kinase. Upon binding of dsRNA, PKR is activated and 

undergoes dimerization and autophosphorylation. PKR phosphorylates its 

physiological substrate, eukaryotic initiation factor 2α (eIF-2α), resulting in the 

block of translation of both viral and cellular RNAs (reviewed in (33)). Previous 

studies demonstrated that PKR is required for IFN production in bone marrow-

derived DCs, mouse embryonic fibroblasts and in the recognition of particular 

viruses (25, 35). PKR has also been implicated to enhance the induction of IFN-β 

mediated by cytoplasmic RNA PRRs (109). Though PKR is firmly established to 

play a central role in IFN-dependent antiviral actions, it is likely that PKR, as a 

PRR, plays a much broader function in the initiation and mounting of adaptive 

immune responses.  
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Figure 1.5. TLR7/TLR8 and TLR3 signaling. Endosomal Toll-like receptor 7 (TLR7), TLR8 
and TLR3 recognize RNA ligands. TLR7 and TLR8 recognize single-stranded RNA (ssRNA) 
while  double-stranded RNA (dsRNA) is recognized by TLR3. TLR7 and TLR8 signal through 
the adaptor protein, MyD88, which leads to the downstream activation of transcription factors 
interferon-regulatory factor 7 (IRF7) and nuclear factor κB (NF-κB). By contrast, TLR3 signals 
through the adaptor TRIF for the activation of IRF3 and NF-κB. TLR7, TLR8 and TLR3 signaling 
also activate the mitogen-activated protein kinases (MAPKs) pathway. Overall, these pathways 
potently induces the production of proinflammatory cytokines and type I interferons (IFNs). 
TRAF, tumor-necrosis factor (TNF)-receptor-associated factor; BTK, Bruton’s tyrosine kinase; 
IRAK, interleukin-1 receptor-associated kinase; IκB, inhibitor of NF-κB; TBK1, TANK-binding 
kinase 1; IKKε, inhibitor of NF-κB kinase ε. 
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D. Expression of RNA-sensing PRRs on different cell types 

PRRs have evolved to efficiently recognize PAMPs and this includes 

specific expression of PRRs in specific cell types (reviewed in (3, 82, 83)). RIG-I 

and MDA-5 are expressed in most cell types and are upregulated upon 

stimulation or activation. Most antigen presenting cells (APCs) express TLR3, 

TLR7 and TLR8. TLR3 is detected in conventional DCs, macrophages and also 

in non-immune cells such as fibroblasts and epithelial cells. TLR7 is highly 

expressed in plasmacytoid DCs (pDCs), a DC subset that can secrete vast 

amounts of type I IFN in response to viral infection. TLR8 is also expressed in 

various tissues with the highest expression in monocytes. CD4+ and CD8+ T-

cells also express these RNA-sensing TLRs (53, 175). NLRP3 is expressed in T-

cells (92). The expression of these different RNA-sensing PRRs in different cell 

types suggests sophisticated mechanisms for detecting RNA viruses. Previous 

studies have mainly focused on RNA-sensing PRR activation in APCs. 

Delineating the role of PRR activation within specific cell types, such as in T-

cells, would further advance our current knowledge in the contribution of RNA-

sensing PRRs in innate and adaptive immune responses. 

 

E. RNA PAMPs as adjuvants 

Adjuvants are important in eliciting robust protective immune responses 

from vaccines but many of their underlying mechanisms are yet to be fully 

elucidated (51). Vaccine adjuvants mainly target professional antigen-presenting 
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cells (APCs) such as dendritic cells and activate innate immunity through pattern 

recognition receptor (PRR) pathways (51, 108). For protection against most 

viruses and intracellular pathogens, adjuvants that stimulate CD4+ T helper type 

1 (Th1) responses are desirable (67). CD4+ T-cell help is known to be required 

for optimizing B-cell and CD8+ T-cell responses, and can also provide protection 

through direct cytotoxic effector functions (116, 178). Unfortunately, potent CD4+ 

T-cell adjuvant activity in humans has often been associated with unacceptable 

toxicity (e.g. complete Freund’s adjuvant (68)). Therefore, one of the major 

challenges in adjuvant research has been to gain CD4+ Th1 stimulatory activity 

while minimizing potential toxicity. 

RNA-like immune response modifiers (IRMs) can skew acquired immune 

responses towards a Th1 phenotype while suppressing Th2 responses (98, 149, 

163, 165). Among these RNA-like IRMs, resiquimod (R-848) and poly I:C are 

being evaluated as T-cell adjuvants for vaccine development (98, 130, 132, 176). 

R-848 is a synthetic imidazoquinoline-like molecule that triggers cellular 

responses via the endosomal TLR7 and TLR8 and MyD88-dependent signaling 

(24, 48). Poly I:C is a synthetic analog of viral dsRNA that activates 

MyD88-independent immune responses through TLR3/TRIF and the 

MDA5/IPS-1) signaling pathways (Figures 1.4 and 1.5) (106, 168).   

These RNA-sensing PRRs and signaling pathways are present in APCs 

and CD4+ T-cells (71, 83). RNA-like IRM activation of MyD88-dependent and 

MyD88-independent signaling pathways can induce a broad range of cell-specific 
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responses, including NF-ƙB activation, type I interferon (IFN) and 

pro-inflammatory cytokine production, and co-stimulatory molecule upregulation 

(83, 149, 163). The ability of RNA-like adjuvants to stimulate CD4+ Th1 

responses likely depends on a combination of key signaling pathways in APCs 

and CD4+ T-cells. A better understanding of the critical signaling pathways by 

which RNA-like IRMs stimulate CD4+ Th1 responses will help in the 

establishment of effective strategies in the generation of rationally designed 

vaccine adjuvants.  

 

F.  Influenza A virus recognition by RNA-sensing PRRs 

 Influenza A virus (IAV) is a negative-sense single-stranded segmented 

RNA virus of the orthomyxovirus family. IAV can be recognized predominantly by 

RNA-sensing PRRs TLR3,TLR7, RIG-I and NLRP3 (Figure 1.6) (reviewed in 

(57)). RIG-I recognizes the 5’ppp of IAV genomic RNA in IAV-infected fibroblasts 

(127). TLR7 recognizes the IAV genomic RNA in the endosome of pDCs and 

helped identify ssRNA as a ligand for TLR7 (24). TLR3 has also been involved in 

the immune responses of lung epithelial cells to IAV (42). The NLRP3 

inflammasome can also be activated during IAV infection (78, 124, 158). The 

NLRP3 inflammasome detects IAV infection by sensing disturbances in 

intracellular ionic concentrations induced by the IAV M2 protein (59). Further 

investigation is needed to elucidate the role of RNA-sensing PRRs in mediating 

host innate and adaptive immune responses to IAV.  
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Figure 1.6. Recognition of Influenza A virus (IAV) by RNA-sensing PRRs. The TLR, RLR 
and NLR pathways are able to target multiple steps in the viral life cycle. The viral genome and 
replicative intermediates of IAV are recognized intracellularly, either in the endosome or cytosol 
by RNA-sensing PRRs including  by TLR3, TLR7/8, RIG-I and NLRP3. 
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G.  Adaptive Immune Response to Influenza A virus 

 Both cellular (CD8+ and CD4+ T-cells) and humoral immunity contribute 

significantly to the clearance of influenza viruses and protection against IAV 

infection. 

 i. Role of CD8+ T-cells 

 CD8+ T-cells play a major role in the control of primary and secondary IAV 

infections. Three to four days after intranasal infection, activation and the 

expansion of naïve CD8+ T-cells occur in the draining mediastinal lymph nodes. 

Five to seven days after infection, the influenza-specific CD8+ T-cells migrate to 

the lungs and infected airway epithelium where they exert effector functions, 

lysing infected target cells and producing antiviral cytokines. Influenza-specific 

CD8+ T-cells recognize multiple viral epitopes on target cells and APCs. In 

C57BL/6J (B6) (H2Db) mice, the dominant CD8+ T-cell epitopes identified are on 

the nucleoprotein (NP)366-374 (162) and polymerase (PA)224-233 (10). A small 

proportion of influenza-specific CD8+ T-cells recognize other viral proteins 

(reviewed in (151)). Viral clearance is observed 10 days after primary IAV 

infection which coincides with the peak of CD8+ T-cell responses to NP366-374 and 

PA224-233 (86, 150). IAV-specific CD8+ T-cell responses to a subsequent infection 

are detected around 2 days faster than the primary response with more efficient 

clearance of IAV (reviewed in (91)). 
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 ii. Role of CD4+ T-cells 

 The elimination of the IAV from the respiratory tract is mediated by CD8+ 

T-cells and B-cells, however, optimal influenza-specific  Ab production by B cells 

is dependent on CD4+ T-cell help (155). Though IAV-specific Abs can be 

generated without CD4+ T-cells, Ab production is more effective and vigorous 

following interactions between B cells and CD4+ T-cells (96, 139). For CD8+ T-

cells, the priming of naïve CD8+ T-cells is dependent on CD4+ T helper cell 

activity (12) and is necessary for the maintenance of protective CD8+ memory T-

cell populations (73). 

Memory CD4+ T-cells also enhance the production of innate inflammatory 

cytokines and chemokines in the lung during influenza infection that leads to 

early control of IAV (154). Recently, a study on infected human subjects found 

that the number of pre-existing influenza-specific CD4+ T-cells were inversely 

related to the severity of illness after challenge and suggest that activation of 

long-lived cross-protective CD4+ T-cells should be one of the goals of influenza 

vaccine development (87, 172)  

iii. Role of humoral immunity 

Antibodies play a substantial role in terminating influenza virus infections. 

Protective antibodies are directed against hemagglutinin (HA) and neuraminidase 

(NA) which are found on the external surface of the influenza virus. The 

importance of humoral responses has been clearly demonstrated in severe 

combined immunodeficiency (SCID) mice that can be protected by passive 
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administration of HA-specific antibodies (123).  The main antibody isotypes in the 

influenza-specific humoral response are IgA, IgM and IgG. Mucosal or secretory 

IgA affords local protection from infection of airway epithelial cells. Complement-

mediated neutralization of influenza can be mediated by IgM Ab while serum IgG 

predominantly transudates into the respiratory tract and contributes to long-lived 

protection (117) (reviewed in (91)). 

 

H. Heterosubtypic Immunity to IAV 

Heterosubtypic immunity to IAV was first demonstrated in 1965 (144). 

Heterosubtypic immunity is defined as immunity generated by a given IAV 

subtype or its antigens that protects against challenge with other IAV subtypes 

(e.g. immunity to H1N1 protecting against infection with H3N2) (reviewed in (38)). 

Using two IAV subtypes with different HA and NA proteins allows examination of 

primary IAV-specific responses and facilitates the detailed dissection of 

secondary T-cell responses without the difficulties associated with cross-

neutralizing antibodies (151). Heterosubtypic immunity induced does not prevent 

infection like the neutralizing antibodies against the viral gylcoproteins HA and 

NA (14). However, heterosubtypic immunity does confer a certain degree of 

protection, reduces mortality otherwise caused by IAV infection and has been 

shown to be long lasting (38). Understanding the mechanism of hetrosubtypic 

immunity has been the focus of numerous studies. It has been demonstrated in 

mice that virus-specific CD4+ T-cells, CD8+ T-cells, virus-specific antibodies and 
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B-cells contribute to heterosubtypic immunity (38). CD8+ T-cells predominantly 

recognize cross-reactive epitopes found in conserved proteins such as the NP 

and matrix (M) protein of IAV. CD8+ T-cells are therefore able to recognize and 

kill virus-infected cells based on MHC class I restricted presentation of conserved 

IAV epitopes (159). 

The role of CD4+ T-cells in heterosubtypic immunity to IAV has been 

studied less extensively than CD8+ T-cells and remains controversial. CD4+ T-

cells are needed for antibody class switching and B cell somatic hypermutation 

and are therefore important in the development of effective anti-IAV antibody 

responses(159).  

Though other effector immune cells could potentially contribute to 

heterosubtypic immunity to IAV (i.e. NKT cells and γδ T-cells), it is evident that T 

cells can mediate protective immunity. Elucidation and a better understanding of 

the mechanisms involved in the heterosubtypic immunity to IAV would contribute 

towards the development of vaccines that confer protection against all IAV 

subtypes. 

 

I.  Thesis Objectives 

 The overall goal of this thesis is to delineate the role of RNA-sensing 

pattern recognition receptors in the shaping and modulation of T-cell immune 

responses to RNA viruses. We hypothesize that the activation of the RNA-

sensing pattern recognition receptor pathways in T-cells and in antigen 

21



presenting cells are crucial in the development of virus-specific T-cell 

immune responses.  

 

This thesis is presented in three parts: 

 

Chapter III: Direct co-stimulatory effects of RNA PAMPs on conventional 

CD4+ T-cells 

Aim: Delineate the signaling pathways activated by RNA PAMPs directly on 

conventional CD4 T-cells 

Hypothesis: RNA PAMPs can act directly on CD4 T-cells and modulate their 

function and phenotype 

 

Chapter IV: Critical RNA-sensing PRR pathways are activated by RNA 

PAMPs/adjuvants that drive Th1 CD4+ T-cell responses in cDC/CD4+ T-cell 

interactions 

Aim: Delineate the signaling pathways activated by RNA PAMPs that drive Th1 

CD4+ T-cell responses in cDC/CD4+ T-cell interactions 

Hypothesis: RNA PAMP activation of TLR7MyD88 signaling in cDC augments 

alloreactive CD4+ Th1 responses through type I IFN and early IL-1α & IL-1β 

production and signaling. 
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Chapter V: Contributions of RNA-sensing PRR pathways on  

Th1 responses to IAV infection 

Aim: Delineate the contributions of RNA-sensing PRR pathways on Th1 

responses to an RNA virus 

Hypothesis:  MyD88-signaling is essential in the RNA-sensing pathways 

activated in the development of heterosubtypic immunity to Influenza A. 
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CHAPTER II: 

MATERIALS AND METHODS 

 

A. Mice 

C57BL/6J (B6), BALB/cJ, B6.C-H2d/bByJ (B6.H2d), F1 and F2 of 

C57BL/6J x 129S1/SvlmJ mice were purchased from The Jackson Laboratory 

(Maine, USA).  MyD88-/-, TLR7-/-, TLR3-/- , IL-1R-/-, IL-18R-/-, MAVS-/-, MDA5-/- , 

NLRP3-/- , ASC-/-, TRIF-/- , MAVS/TRIF-/- and type I IFN receptor-/- (IFNAR-/-) mice 

were provided by Drs. R. Finberg, E. Kurt-Jones and K. Fitzgerald (University of 

Massachusetts Medical School, Worcester, MA). IL-1α-/-, IL-1β-/- and IL-1αβ-/- 

mice were provided by Drs. K. Rock and H. Kono (University of Massachusetts 

Medical School). The genetically modified knockout mice were backcrossed eight 

or more generations onto the B6 background and were then intercrossed to 

obtain the knockout genotypes.  For mice not fully backcrossed onto the B6 

background, F1 or F2 of C57BL/6J x 129S1/SvlmJ were used as wild type 

controls. The knockout genotypes were confirmed by PCR genotyping. All animal 

procedures were conducted in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. The protocol was approved by the University of Massachusetts Medical 

School Animal Care and Use Committee (Protocol A-1884).  
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B. Reagents /Antibodies 

 Resiquimod (R-848) was purchased from 3M Pharmaceuticals (St. Paul, 

MN), polyinosinic:polycytidylic acid (poly I:C) was purchased from Alexis 

Biochemicals (San Diego, CA). For the anti-CD3 stimulation experiments: poly 

(dT), CL075 and 2-aminopurine were purchased from Invivogen (San Diego, 

CA); RNA-dependent protein kinase inhibitor (PKR inhibitor) and RNA-dependent 

protein kinase inhibitor negative control were purchased from Calbiochem (San 

Diego, CA). 

Antibodies used in all experiments were purchased from BD Biosciences 

(San Jose, CA) and eBiosciences (San Diego, CA). The antibodies/markers used 

in experiments are listed in Table 2.1. For experiments where anti-CD3 and anti-

CD28 were used, functional grade purified anti-mouse CD3ε (clone 1 45-2C11) 

and functional grade purified anti-mouse CD28 (clone 37.51) were purchased 

from eBiosciences.  

For the add-in and blocking MLR experiments, the following reagents were 

used: universal Type I IFN (PBL Biomedical Laboratories, Piscataway, NJ), 

mouse rIL-1α, rIL-1β and soluble IL-1 receptor antagonist (sIL-1Ra) (R & D 

Systems, Minneapolis, MN), AnakinraTM (sIL-1R antagonist) (Amgen, Thousand 

Oaks, CA), anti-mouse IFN α/β receptor IgG1 (anti-IFNAR) (Leinco, St. Louis, 

MO), and purified mouse IgG1 isotype control (BD Biosciences). 
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Isolation of 
mouse CD4+ T-

cells 

Isolation of 
human CD4+ 

T-cells 
cDC sorting 

for MLR MLR ICS IAV ICS 
Tetramer 
analysis 

CD3-Pacific 
Blue/V450* CD4 - FITC CD11c - FITC 

CD3-Pacific 
Blue/V450 

CD3-Pacific 
Blue/V450 

CD3 - 
PerCPCy5.5 

CD4 - FITC 
CD8 - 
PerCPCy5.5 CD11b - PE 

CD4 - 
PerCPCy5.5 

CD4 - 
PerCPCy5.5 CD8 - Alexa 647 

CD8 - 
PerCPCy5.5 TCRγδ - PE 

CD45R - 
PerCP TCRβ - PE CD8 - PE CD44 - FITC 

TCRγδ - PE CD56 - APC   DX5 - PECy7 DX5 - PECy7 
CD8 tetramer - 
PE 

DX5 - APC     IFN-γ - APC IFN-γ - APC   

  
  

  
TNFα - Alexa 
700 

TNFα - Alexa 
700   

      IL-2 - FITC IL-2 - FITC   
      LDA LDA   

Table 2.1. List of antibodies used. 

* For anti-CD3 stimulation experiments, cells were not surface stained with anti-CD3 antibodies. 
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C. Isolation of CD4+ T-cells 

 Murine conventional CD4+ T-cells were isolated from splenocytes by 

magnetic bead enrichment for CD4+ T-cells (MACS, Miltenyi Biotec, Auburn, CA) 

followed by flow cytometry sorting for the CD3+CD4+CD8-DX5-TCRβ+ 

lymphocytes. Analysis of the CD4+ T-cells after FACS consistently demonstrated 

≥99% purity. The sorted CD4+ T-cells were at least 80% CD62Lhi indicating 

mostly naïve CD4+ T-cells. 

 Human CD4+ T-cells were isolated from blood samples of healthy adult 

volunteers. PBMCs were purified by Histopaque ® (Sigma, St. Loius, MO) 

density gradient centrifugation. Blood was carefully layered onto Histopaque® 

and centrifuged for 30 min at 1,400 rpm with no brake. The interface with the 

PBMCs was collected and washed before magnetic bead enrichment for CD4+ 

T-cells (MACS). The cells were then surface stained with antibodies for flow 

cytometry sorting (CD4+CD8-TCRγδ-CD56-). 

 

D. Anti-CD3 stimulation of CD4+ T-cells 

Purified murine and human CD4+ T-cells (2 x 105 cells/ well) were cultured 

in anti-CD3 coated 96-well flat-bottom plates. Plates were coated with 0 to 

8 µg/ml concentrations of anti-CD3 in PBS overnight. The murine TLR7 agonist, 

R-848, and the TLR3 and MDA5 agonist, poly I:C, were added at final 

concentrations of 20 µM and 100 µg/ml, respectively. These agonist 

concentrations produced maximal T-cell responses in preliminary experiments. 
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Anti-CD28 (1.5 µg/ml) was also added as positive control. After 3 days, 

cell-free culture supernatants were collected for IFN-γ ELISA. 

In some of the anti-CD3 stimulation experiments the following were 

also added: 3µM and 6µM poly (dT) (TLR7/modulator), 50ng/ml and 

100ng/ml CL075 (TLR8/7 IRM), 2mM 2-aminopurine (PKR inhibitor), 10µM 

PKR inhibitor and 10µM PKR inhibitor negative control. The 

concentrations of these reagents were based on concentrations reported 

in literature. 

 

E. Enzyme-linked immunosorbent assay 

Cell culture supernatants were collected and analyzed for human 

IFN-γ, mouse IFN-γ, IL-1α and IL-1β by enzyme-linked immunosorbent 

assay (ELISA) according to the manufacturer’s protocol (BD Biosciences, 

San Jose, CA). The ELISA plates were developed using 3,3’,5,5’-

tetramethylbenzidine (TMB) (KPL, Gaithersburg, MD), and the reactions 

were stopped with 2N sulfuric acid. Optical densities were read at 450nm 

using a Spectra MAX microplate reader and analyzed with Softmax® Pro 

5 Software (Molecular Devices, Sunnyvale, CA). 

 

F. CFSE staining 

FACS-sorted CD4+ T-cells were washed and resuspended at 

107cells/ml in PBS with 2% FBS and 1mM EDTA. CFSE was added at 
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1µM final concentration and incubated for 15 min at 30oC. The staining reaction 

was stopped by washing twice with RPMI medium with 10% FBS. 

 

G. Generation and isolation of conventional DCs 

Bone-marrow derived conventional dendritic cells (cDCs) were prepared 

as described previously (167). In brief, bone marrow cells were cultured in RPMI 

supplemented with 10% FBS, 50 µM 2-mercaptoethanol and 20 ng/ml 

recombinant fms-related tyrosine kinase 3 ligand (rFlt3L,R&D Systems) for 7 

days. Bone-marrow derived dendritic cells were scraped off the culture dish, 

washed with PBS and then stained with fluorochrome-conjugated antibodies for 

fluorescence-activated cell sorting (FACS). cDCs (CD11c+CD11b+CD45R-/lo) 

were isolated by sorting on a BD FACSAria flow cytometer (BD Biosciences). 

 

H. Mixed Leukocyte Reactions 

FACS-sorted cDCs (2 x 104 cells) and CD4+ T cells (2 x 105 cells) were 

co-cultured for six days in allogeneic and MHC congenic mixed leukocyte 

reactions (MLRs). Initial experiments were performed using cells from wild-type 

B6 (H2b) and BALB/c (H2d) mice to induce an allogeneic response. We 

subsequently switched to using MHC congenic H2d mice on the B6 background, 

B6.C-H2d/bByJ (B6.H2d) in order to exclude B6 and BALB/c strain differences 

(97). No apparent differences between the allogeneic and MHC congenic 

systems were observed. The murine TLR7 agonist, R-848, and the TLR3 and 
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MDA5 agonist, poly I:C, were added to MLRs at final concentrations of 20 µM 

and 100 µg/ml, respectively. These agonist concentrations produced maximal T-

cell responses in preliminary experiments. After six days, cell-free culture 

supernatants were collected for ELISA and cells were collected for ICS analysis.  

 

I. Addition of type I IFN and IL-1 and blockade of type I IFN and IL-1α/β 

signaling 

With concentrations based on previously published literature, universal 

type I IFN (200U/ml) (39) and rIL-1α and rIL-1β (125 pg/ml each) (119) were 

added in some MHC congenic MLRs. To block endogenous type I IFN and IL-1 

signaling, anti-mouse IFN α/β receptor IgG1 (5 µg/ml) (148) and AnakinraTM (10 

µg/ml) (79) or recombinant mouse sIL-1Ra (1 µg/ml) (169) were added to R-848 

stimulated MHC congenic MLRs. Purified mouse IgG1 isotype antibody (5 µg/ml) 

was used as a control. The concentrations used in the addition and blocking 

experiments were based on concentrations reported in literature. After six days, 

cell-free culture supernatants were collected for ELISA and cells were collected 

for ICS. 

 

J. Intracellular cytokine staining 

i. ICS for MLRs 

IFN-γ and TNF-α-secreting CD4+ T-cells were quantified by intracellular 

cytokine staining (ICS) assay. After 6 days in culture, co-cultured cDCs and 

30



CD4+ T-cells in MLRs were collected, washed in RPMI media with 10% FBS and 

then cultured for 5 to 6 hours without restimulation in the presence of Brefeldin A 

(BD Biosciences, San Jose, CA). Cells were stained with surface antibodies, and 

permeabilized with Cytofix/Cytoperm (BD Biosciences, San Jose, CA) before 

intracellular staining with antibodies and fixation. CD4+ T-cells were analyzed 

using a BD FACSAria cytometer. LIVE/DEAD® Fixable Dead Cell Stain Kit 

(Invitrogen, Carlsbad, CA) was used to exclude nonviable cells from analysis. 

IFN-γ or TNFα secreting CD4+ and CD8+ T-cells were identified as 

LDA-/CD3+/CD4+ or CD8+/ IFN-γ+ or TNFα+ cells (Figure 2.1). Data was analyzed 

using FlowJo software (Treestar, Ashland, OR). 

ii. ICS for influenza A virus-specific CD4+ and CD8+ T-cells 

The spleen & lung cell suspensions were washed with media, and then 

stimulated for 6 hours with immunodominant influenza A virus (IAV) internal 

protein CD4+ or CD8+ T-cell peptides (CD4+ T-cell epitope -- nucleoprotein 

(NP)311-325, AnaSpec, Inc., San Diego, CA) (CD8+ T-cell epitopes -- NP366-374 and 

polymerase (PA)224-233, AnaSpec, Inc.) (9, 19, 162).  The peptide stimulations 

(10µg/ml each) were done in the presence of 1µl Brefeldin A (BD Biosciences).  

This was followed by staining as described in ICS for MLRs.  

 

K. Luminex analysis 
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Figure 2.1. Intracellular cytokine staining for influenza A virus (IAV)-specific T-
cells. Interferon-γ (IFN-γ) or tumor necrosis factor-α (TNFα)-secreting CD4+ and CD8+ 
T-cells were gated as live/dead aqua (LDA)-/CD3+/CD4+ or CD8+ lymphocytes. Spleen 
and lung cell suspensions were stimulated for 6 hours with MHC class I or II-restricted 
IAV peptides, as described in previous figures, in the presence of Brefeldin A. One 
representative example is shown. 

CD4+ 

CD8+ 

IFN-γ+ 

TNFα+ 

IFN-γ+ 

TNFα+ 

Representative CD4 & CD8 cytokine plots 

S
S

C
 

FSC 
FS

C
-H

 

Li
ve

 D
ea

d 
A

qu
a 

(L
D

A
) 

C
D

8 

FSC-A CD3 

CD4 

IF
N

-γ
 

TN
Fα

 

CD4 

CD8 

32



Cell culture supernatants collected from mouse and human anti-

CD3 stimulation experiments were sent for Luminex® multiplex cytokine 

analyses to the Luminex Core of the Baylor Institute for Immunology 

Research. 

 

L. Quantitative RT-PCR 

IL-1α, IL-1β and IFN-β mRNA expression were determined using RNeasy 

Plus Mini Kit for RNA extraction (Qiagen, Valencia, CA) and TaqMan RNA-to-CT 

1-step kit for RT-PCR (Applied Biosystems, Carlsbad, CA). All primers and 

probes used were TaqMan Pre-Developed Assay Reagents for Gene Expression 

(Applied Biosystems, Carlsbad, CA; IL-1α - Mm00439620_m1, IL-1β - 

Mm01336189_m1 and IFN-β - Mm00439546_s1). Levels of gene expression 

were normalized to β-actin for each sample. Fold increase in gene expression 

was determined using the ΔΔCT method. Samples were run in triplicates and the 

results are presented as linear-fold changes in gene expression. 

 

M. IL-1β cleavage assay 

cDCs (>90% purity) were cultured in serum-free medium. To promote 

maturation and release of IL-1β, adenosine-5'-triphosphate (ATP, 5mM, Sigma, 

St. Louis, MO) was added one hour prior to harvesting supernatants. As a 

positive control, cDCs were primed with lipopolysaccharide (200 ng/ml) for 3 

hours prior to stimulation with Nigericin (10µM, Sigma, St. Louis, MO).  Cell 
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culture supernatants were collected after six hours and stored at -20oC until used 

in Western blot assay. Proteins were precipitated from supernatants by adding 

an equal volume of methanol and 0.25 volume of chloroform, mixed, and 

centrifuged at 16,100xg at room temperature for 10 min. The upper phase was 

discarded without disrupting the intermediate phase before adding another equal 

volume of methanol. The resulting mixture was mixed and then centrifuged at 

16,100xg for 5 minutes. The liquid phase was decanted and the protein pellet 

was air dried for 3 to 5 min. Dried pellets were resuspended in Laemmli’s SDS 

sample buffer, heated at 100oC for 5 minutes, and then loaded into 4-20% 

precast polyacrylamide gels (Bio-RAD, Hercules, CA). Proteins were transferred 

to Hybond-P PVDF membranes (GE Healthcare, Pittsburgh, PA) and a goat 

anti-mouse IL-1β antibody (R&D Systems, Minneapolis, MN) was used to detect 

IL-1β.  

 

N. Influenza A Viruses 

Purified influenza A viruses (IAV) influenza A/Puerto Rico/8/34 H1N1 

(PR/8) and influenza A/HK/X31 H3N2 (HK/X31) stocks were purchased from 

Charles River (Wilmington, MA).  The HK/X31 virus is a laboratory reassortant 

that contains the same internal proteins as PR/8 (88). 
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O. Heterosubtypic  IAV infection model 

Primary IAV infections were carried out by intranasal infection of 

naïve mice with 10 plaque forming units (pfu) of the PR/8 virus (a 

sublethal dose). After 21 days, the mice were challenged with 104 pfu of 

the HK/X31 virus by intranasal infection (a sublethal dose).  7 days later, 

the mice were sacrificed and T-cell and Ab responses to immunodominant 

internal PR/8 proteins were examined. For homotypic IAV infections, 

primary IAV infections were carried out by intranasal infection of naïve 

mice with 10 pfu PR/8 virus and challenged 21 days later with 2x105 pfu 

PR/8. 

 

P. Spleen and lung sample preparation for ICS analysis 

IFN-γ and TNFα-secreting CD4+ and CD8+ T-cells in mouse 

spleens and lungs were identified by ICS.  Spleens were collected and 

homogenized by passing through 40 μm nylon strainers and lysing RBCs 

with ammonium chloride in Tris-HCl buffer (Sigma, St. Louis, MO).  Lungs 

were treated with liberase enzyme solution (0.14 U/ml, Roche, 

Indianapolis, IN) and DNAse I (2,000 U/ml, New England BioLabs Inc., 

Ipswich, MA) for 45 min at 37oC prior to homogenization. The spleen & 

lung cell suspensions were washed with media, stimulated with 10µg/ml 

CD4+ or CD8+ T-cell peptides (CD4+ T-cell epitope -- NP311-325; CD8+ T-

cell epitopes -- NP366-374 and  PA224-233) and then stained for ICS. 
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Q. MHC class I tetramer staining 

MHC Class I peptide tetramers (PR/8 IAV nucleoprotein (NP)366-374/Db) 

were generated by the NIH Tetramer Facility (Atlanta, GA). Tetramer staining 

was performed for 30 min, on ice, followed by staining for CD8+ T-cells. LDA was 

used to exclude nonviable cells from analysis. 

 

R. IAV NP protein-specific IgG2c, IgG1 and total IgG serum ELISA 

Sera from IAV infected mice were obtained 21 days after primary infection 

and 7 days after secondary infection.  Anti-NP specific antibodies were 

determined by ELISA.  Briefly, 1 µg/ml of purified recombinant IAV PR/8 NP 

(Imgenex, San Diego, CA) was used as antigen on 96-well flat-bottomed 

microtiter plates (Thermo Scientific, Rochester, NY) coated overnight at 4oC.  

Serum samples were serially diluted (4-fold, starting dilution 1:1,000) in 2% fetal 

bovine serum in PBS (Figure 2.2). Diluted sera were added to plates and 

incubated for 2 hours at room temperature. Then, horseradish peroxidase (HRP)-

conjugated anti-mouse total IgG, IgG2c and IgG1 (dilution 1:2,000) were used as 

detecting antibodies (Southern Biotech, Birmingham, AL). The ELISA plates were 

developed using TMB, and the reactions were stopped with 2N sulfuric acid.  

Relative antibody concentrations were determined using optical 

spectrophotometer readings at 450nm using a Spectra MAX microplate reader 

and analyzed with Softmax® Pro 5 Software (Molecular Devices, Sunnyvale, 
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Figure 2.2. Serial dilution of naïve and IAV immune sera  for NP-specific ELISA. 
Representative sample curve of serially diluted naïve and immune sera.  Samples 
were diluted 4-fold (1:4,000 to 1: 16,384,000) and detected for total IgG, IgG2c and 
IgG1. Titers for anti-NP antibodies were defined as the reciprocal of the serum dilution 
that gave 50% binding in the linear range of the assay. 
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CA). The titers for anti-NP total IgG, IgG2c and IgG1 antibodies were defined as 

the reciprocal of the serum dilution that gave 50% binding in the linear range of 

the assay. 

 

S. Statistical Analysis 

Statistical analysis was done using GraphPad Prism Software version 

5.04 (GraphPad, San Diego, CA).  Comparisons between two normally 

distributed variables were performed using the unpaired Student’s t-test. 

Comparisons between two non-normally distributed variables were performed 

using the nonparametric Mann Whitney U test.  A difference was considered 

significant if the p-value was < 0.05 
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CHAPTER III 

DIRECT CO-STIMULATORY EFFECTS OF RNA PAMPS  

ON CONVENTIONAL CD4+ T-CELLS 

 

A. Introduction 

PRRs are expressed in various cell types and at greatly varying 

expression levels. In addition to DC and monocytes, TLRs are expressed on 

B-cells, NK cells, and T-cells (53, 71). Recent studies suggested that different 

TLRs are expressed on different T-cell subsets (17, 53, 175). The expression of 

TLRs on T-cells could allow TLR ligands to directly influence T-cell function. 

Several studies have examined the direct influence of TLR signaling on T-cells 

(17, 53, 61, 134).  PAMPs can directly promote CD4+ T-cell activation, survival, 

proliferation, cytokine production and affect memory CD4+ T-cell phenotypes (17, 

34, 147).  In this chapter, we focused on RNA PAMPs and their direct co-

stimulatory effects on conventional CD4+ T-cells. CD4+ T-cells were isolated 

from mouse spleens and human PBMCs. The CD4+ T-cells were enriched by 

MACS and then purified by flow cytomtery in order to eliminate the potential 

effects of bystander cells (e.g. natural killer cells, γδ T-cells). We used gene-

deficient mice to delineate the RNA-sensing PRR pathways that are activated on 

CD4+ T-cells. FACS-sorted CD4+ T-cells were cultured on anti-CD3 coated 

plates in the presence of RNA-like IRMs R-848 and poly I:C for 3 days. We 

assessed IFN-γ levels in cell culture supernatants by ELISA and Th1 and Th2 
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cytokines by Luminex ® as measures of the direct co-stimulatory effects of the 

RNA-like IRMs. 

  

B. RNA PAMPs can act directly on CD4+ T-cells and modulate their 

functions and phenotype 

In initial experiments, different concentrations of anti-CD3 (0 to 8 µg/ml) 

were used to stimulate mouse CD4+ T- cells. The co-stimulatory effects of the 

TLR7-MyD88-dependent IRM R-848 and the MyD88-independent IRM poly I:C 

were assessed. We observed an increase in IFN-γ levels with poly I:C and 

minimal direct co-stimulatory effect with R-848 (Figure 3.1.) Succeeding 

experiments were done using 6 µg/ml and 8 µg/ml anti-CD3 where maximal 

direct co-stimulatory effects were observed. 

Higher concentrations of Th1 cytokines (IFN-γ, TNFα and IL-2) and Th2 

cytokines (IL-4, IL-13 and IL-10) were observed with poly I:C-stimulated mouse 

CD4+ T-cells compared to R-848-stimulated mouse CD4+ T-cells using 

Luminex® analyses (Figure 3.2.). CD4+ T-cells were also stained with CFSE to 

determine whether CD4+ T-cells proliferated during the 3-day culture. 

Proliferation was observed in poly I:C-stimulated mouse CD4+ T-cells while 

proliferation observed in R-848-stimulated CD4+ T-cells was comparable to 

unstimulated mouse CD4+ T-cells (Figure 3.3).  
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Figure 3.1. R-848 treatment has minimal direct co-stimulatory effect compared to 
poly I:C in mouse CD4+ T-cells. FACS-sorted mouse CD4+ T-cells were cultured  for 
3 days in anti-CD3 coated plates in the presence of R-848 or poly I:C. Anti-CD28 was 
added as positive control. IFN-γ production in anti-CD3 stimulated (0 to 8µg/ml) CD4+ 
T-cells in the presence of R-848 and poly I:C. One representative experiment of at 
least three independent experiments is shown. 
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Figure 3.2. Luminex analysis of effector cytokines in anti-CD3 stimulated mouse 
CD4+ T-cells in response to R-848 or poly I:C. Cell culture supernatants were 
collected 3 days post stimulation of mouse CD4+ T-cells with anti-CD3 (8 µg/ml) 
Supernatants were analyzed by Luminex®. Replicates were pooled into one sample 
for analysis. One representative experiment of at least two independent experiments is 
shown. 
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Figure 3.3. Poly I:C treatment induces CD4+ T-cells to proliferate. FACS-sorted 
mouse CD4+ T-cells were stained with CFSE and cultured  for 3 days in 6 µg/ml anti-
CD3 coated plates in the presence of R-848 (20 µM) or poly I:C (100 µg/ml). Anti-
CD28 (1.5 µg/ml) was added as positive control (n=1). Cell proliferation was assayed 
by flow cytometry as shown by the shifting of CFSE peaks to the left. 
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C. Differences on RNA PAMPs direct co-stimulation in mouse and 

human CD4+ T-cells  

PRRs, in particular TLRs, are differentially expressed in mouse and 

human CD4+ T-cells (71). Recognition is also species-specific (48). To 

investigate whether there are differences in the direct responsiveness of human 

and mouse CD4+ T-cells to RNA-like IRMs (R-848 and poly I:C), CD4+ T-cells 

were isolated from human PBMCs. Similar to mouse CD4+ T-cells, human CD4+ 

T-cells were initially cultured at different anti-CD3 concentrations. In contrast to 

anti-CD3 stimulated mouse CD4+ T-cells, we detected IFN-γ production by 

human CD4+ T-cells in response to R-848 at anti-CD3 stimulation concentrations 

as low as 2 µg/ml (Figure 3.4). At 6 µg/ml, higher IFN-γ production was observed 

on R-848 stimulated human CD4+ T-cells compared to poly I:C stimulated 

human CD4+ T-cells (Figure 3.4). On the other hand, comparable Th1 and Th2 

effector cytokines levels were detected in R-848 and poly I:C stimulated human 

CD4+ T-cells, though predominantly slightly higher for poly I:C at 8 µg/ml anti-

CD3 concentration (Figure 3.5). 

 The imidazoquinoline-like molecule R-848 also activates TLR8 signaling in 

addition to TLR7 (48). Previous studies on TLR8 signaling suggested TLR8 to be 

non-functional in mice (70) but it was later demonstrated to be functional with the 

addition of poly (dT) in combination with TLR8 IRM in transfected HEK293 cells 

with murine TLR8 and in primary mouse cells (37). To investigate whether TLR8 

activation would explain the observed differences between mouse and human 
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Figure 3.4. R-848 and poly I:C have comparable direct co-stimulatory effects in 
anti-CD3 stimulated human CD4+ T-cells. FACS-sorted human CD4+ T-cells were 
cultured  for 3 days in anti-CD3 coated plates in the presence of R-848 or poly I:C. 
Anti-CD28 was also added as positive control. IFN-γ production of anti-CD3 stimulated 
(0 to 8µg/ml) CD4+ T-cells in the presence of R-848 and poly I:C. One representative 
experiment of three independent experiments is shown. 
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Figure 3.5. Luminex analysis of effector cytokines in anti-CD3 stimulated human 
CD4+ T-cells. Cell culture supernatants were collected at day 3 post stimulation of 
human CD4+ T-cells with anti-CD3 (8 µg/ml) + R-848 (20 µM), poly I:C (100 µg/ml) or 
anti CD28 (1.5 µg/ml). Supernatants were analyzed by Luminex® system for multiple 
cytokines. Replicates were pooled into one sample for analysis.  
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CD4+ T-cell responses to R-848 and poly I:C, we performed two preliminary 

TLR8 stimulation experiments. These experiments were done only once and we 

did not pursue these experiments. First, mouse CD4+ T-cells were cultured with 

the combination of R-848 and poly (dT) (3µM and 6µM) based on previous 

literature that functional murine TLR8 response needs poly (dT) enhancement 

(37). A slight, not statistically significant increase in IFN-γ production was 

observed in R-848/poly (dT)-stimulated mouse CD4+ T-cells (Figure 3.6a). We 

also explored the direct co-stimulation of TLR8 in human CD4+ T-cells in which 

we utilized CL075, a thiazoloquinolone derivative that stimulates TLR8 in human 

PBMCs (36). IFN-γ was produced by anti-CD3 stimulated human CD4+ T-cells 

with the addition of 50 ng/ml and 100 ng/ml of CL075 (Figure 3.6b). However, 

IFN-γ production was also observed in unstimulated human CD4+ T-cells (media 

only). These two preliminary experiments did not directly show R-848-mediated 

TLR8 signaling as the difference between mouse and human CD4+ T-cells. More 

definitive experiments such as TLR8 signaling blockade in human CD4+ T-cells 

and the use of TLR8-deficient mice would address and investigate TLR8 direct 

co-stimulation on CD4+ T-cells.  

 

D. Delineating poly I:C signaling in mouse CD4+ T-cells 

With the robust response that we observed in poly I:C direct co-stimulation 

of CD4+ T-cells, we focused on poly I:C signaling on CD4+ T-cells. MyD88-

independent poly I:C signals though TLR3/TRIF and the MDA5/IPS-1 signaling 
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Figure 3.6. Direct co-stimulatory activity by stimulation of TLR8 in mouse and 
human CD4+ T-cells. FACS-sorted mouse and human CD4+ T-cells were cultured  
for 3 days in anti-CD3 coated plates (8µg/ml) in the presence of R-848, poly I:C, 
poly(dT) (previously shown to activate murine TLR8 in combination with TLR8 IRMs) 
and CL075 (TLR8/7 IRM that stimulates TLR8 in human PBMCs). Anti-CD28 was 
added as positive control.  (A)  Mouse  CD4+ T-cells  (B) human CD4+ T-cells. Bars 
represent mean ± SEM (n=1). 
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pathways (106, 168).  Poly I:C also activates the NOD-like receptor (NLR) 

NLRP3 that oligomerizes upon activation and recruits ASC and procaspase-1 to 

form an inflammasome complex that activates caspase 1 (69). To delineate the 

RNA-sensing PRR pathways activated by poly I:C in anti-CD3 stimulated CD4+ 

T-cells, we utilized mice deficient in TLR3, TRIF, IPS-1, MDA-5, NLRP3, ASC, 

TRIF/MDA-5 and MyD88. Some of the knockout mice used were not fully 

backcrossed to the B6 background. F1 and F2 mice of C57BL/6J x 129S1/SvlmJ 

mice were used as wild type controls. 

Unexpectedly, poly I:C-induced IFN-γ production by mouse CD4+ T-cells 

was not abrogated in TLR3 deficient mice though a partial decrease was 

observed in IPS-1 deficient mice in one out of two experiments performed (Figure 

3.7a). Statistical analysis showed no significant differences between the TLR3 

and IPS-1 deficient mice.  TRIF-/-, MDA5-/- and TRIF-/-/MDA5-/- double-deficient 

CD4+ T-cells also gave similar results (Figure 3.7b&c). Poly I:C-induced IFN-γ 

production by mouse CD4+ T-cells was also not abrogated in NLRP3-/- and ASC-

/- mice (Figure 3.7d). On the other hand, poly I:C signaling in CD4+ T-cells was 

not affected in MyD88-/- CD4+T-cells, as expected (Figure 3.7d). Taken together, 

our data suggest that poly I:C signals through MyD88-independent signaling 

pathways other than TLR3/TRIF and RLR pathways.  

 The RNA-activated protein kinase (PKR) also recognizes poly I:C (109). 

To investigate PKR involvement in poly I:C signaling in CD4+ T-cells, mouse 

CD4+ T-cells were cultured in the presence of PKR inhibitors, 2-aminopurine and 
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Figure 3.7. Signaling pathways induced following poly I:C treatment. FACS-
sorted mouse CD4+ T-cells  from mice deficient in specific pattern recognition 
receptors and signaling mediators were stimulated with anti-CD3 (6µg/ml) to delineate 
poly I:C signaling in CD4+ T cells. FACS-sorted mouse CD4+ T-cells were cultured  for 
3 days in the presence of R-848, poly I:C and anti-CD28. Cell culture supernatants 
were measured for the presence of IFN-γ by ELISA. Some of the knockout mice used 
were not yet fully backcrossed to B6 background. F1 and F2 (C57BL/6J x 
129S1/SvlmJ) were used as wild type controls. (A) Anti-CD3 stimulation of F1, TLR3-/- 
and IPS-1-/- CD4+ T-cells (n=2, differences not significant)… 
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Figure 3.7. Signaling pathways induced following poly I:C treatment. (continued)  
…(B) F1, TRIF-/- and MDA5-/-  (n=1); (C) B6 and TRIF-/-/MDA5-/- (n=1) double knockout 
and… 
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RNA-dependent protein kinase inhibitor. The presence of these inhibitors 

abrogated IFN-γ production induced by poly I:C in mouse CD4+ T-cells. 

However, the inhibitors also abrogated the anti-CD28 positive control stimulation. 

The PKR inhibitors may be general serine/threonine kinase inhibitors or that 

these inhibitors induced cell death.  More definitive experiments must be 

performed such as the use of PKR-deficient mice to firmly establish PKR 

involvement in poly I:C induced IFN-γ production by mouse CD4+ T-cells and 

viability assays such as MTT or LDH assays to address cell death.   

 

E. Chapter Discussion  

Sensing of RNA PAMPs by RNA-sensing PRRs is essential to recognize 

RNA viruses. In this chapter, we focused on the RNA-sensing PRRs expressed 

in CD4+ T-cells and their role in modulating CD4+ responses. 

We focused on isolating ultrapure CD4+ T-cells to eliminate the secretion 

of cytokines by other cell types. In initial experiments, we utilized magnetically 

enriched (MACS) CD4+ T-cells and observed high IFN-γ production by R-848 

stimulated CD4+ T-cells. However, minimal IFN-γ production was observed with 

R-848 when CD4+ T-cells were sorted by FACS (>99.5% purity). The difference 

observed between MACS-enriched and FACS-sorted T-cells suggests that IFN-γ 

may have been produced by other non-CD4+ T-cells such as NK cells and γδ T-

cells. Poly I:C was previously shown to have direct co-stimulatory effect on 

human γδ T cells (170). Hence, CD4+ T-cells of high purity are required in the 
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anti-CD3 stimulation experiments to ensure that the IFN-γ measured is produced 

by CD4+ T-cells.   

RNA-like IRMs were previously shown to exert extrinsic activity on T-cells 

by activating and maturing APCs (2, 4, 94). Induction of cytokine production and 

proliferation in ultrapure CD4+ T-cells in our hands (where APCs were 

eliminated) suggest that there are differential intrinsic effects of RNA PAMPs and 

RNA-sensing PRR recognition in CD4+ T-cells. The minimal responses observed 

in the R-848-stimulated CD4+ T cell only (APC-free) system suggests the 

importance of R-848 signaling and RNA-sensing PRR recognition in APCs and 

non-CD4+ T-cells. On the other hand, the direct poly I:C signaling and RNA-PRR 

recognition in CD4+ T-cells may be sufficient to drive, not only Th1, but Th2 

responses. 

The observed higher R-848 induced Th1 responses in human CD4+ T-

cells compared to R-848 stimulated mouse CD4+ T-cells suggest that R-848 

activates TLR8 in human CD4+ T-cells. Although TLR7 and TLR8 are close 

phylogenetic relatives, mouse TLR8 was previously thought to be nonfunctional 

(37). The activation of murine TLR8 by RNA-like IRM requires poly (dT). The 

combination of R-848 and poly(dT) in anti-CD3 stimulation experiments slightly 

enhanced the IFN-γ production by mouse CD4+ T-cells. The observed increase 

suggests TLR8 signaling or the enhancement of TLR8 signaling by poly (dT), 

however, an increase in IFN-γ production in the presence of poly(dT) alone was 

also observed. This experiment was only done once and therefore more 
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definitive experiments should be performed. The use of other IRMs such as 3M-

001 (TLR7-selective) and 3M-002 (TLR8-selective) in anti-CD3 stimulated mouse 

CD4+ T-cells will allow us to delineate the contributions of each of these TLRs. 

These IRMs were used to demonstrate TLR8 to be functional in primary mouse 

PBMCs (37). The use of TLR8-deficient mice would provide more definitive 

results in the direct TLR8 co-stimulation of R-848 in CD4+ T-cells.  

Though we observed minimal direct co-stimulation effect with R-848, the 

multiple cytokine analyses with Luminex® showed the increase of Th1 and Th2 

cytokine production with both poly I:C and R-848. The up regulation of Th1 

responses for direct lysis and Th2 responses for stimulating antibodies are 

desirable for viral vaccines. With our results we showed MyD88-dependent (R-

848) and MyD88-independent (poly I:C) pathways can be directly stimulated in 

CD4+ T-cells to induce Th1 or Th2 responses. These results show the potential 

of R-848 or poly I:C as adjuvants in vaccines.     

The robust response that we observed in poly I:C stimulated CD4+ T-cells 

made it a more likely candidate than R-848 for delineating the RNA-sensing 

PRRs pathways activated intrinsically in CD4+ T-cells. Since poly I:C is 

recognized by TLR3, MDA5 and NLRP3, we utilized mice deficient in these RNA-

sensing PRRs and their signaling mediators. Interestingly, IFN-γ production by 

CD4+ T-cells was not abrogated in these gene-deficient CD4+ T-cells. These 

results led us to explore the involvement of PKR. Work from as early as the 

1980’s indicates that PKR is activated by cytoplasmic dsRNA. In some reviews, 
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PKR is described as a PRR for dsRNA (66, 113).  Researchers demonstrated 

that PKR was required for IFN production in bone marrow-derived DCs (25) and 

mouse embryonic fibroblasts (35) following poly I:C stimulation. PKR has also 

been shown to contribute to West Nile virus like particle-induced interferon 

production and could serve as a PRR for recognition of WNV infection (35). 

We observed complete abrogation of IFN-γ production by CD4+ T-cells 

with the use of PKR inhibitors, however, more definitive experiments should be 

performed, such as the use of PKR-deficient mice or the knockdown of PKR in 

CD4+ T-cells, to further address PKR involvement on the poly I:C direct co-

stimulation of CD4+ T-cells. 

We observed distinguishable differences between R-848 and poly I:C 

mediated co-stimulation of CD4+ T-cells but to fully discern the differences, more 

experiments should be performed. These include: the activation of transcription 

factors (IRFs, NF-κB, MAPKs), stimulation at different time points, determining 

cell death and viability after stimulation and to look at the cytotoxic activity of the 

RNA-like IRM treated CD4+ T-cells (by determining production of proteases 

involved in cell killing such as granzyme B). To further delineate poly I:C co-

stimulation signaling, treatment with Con A (an inhibitor of the V-type ATPase 

would abolish acidification of endosomes and thereby, poly I:C binding to TLR3) 

and Lyo-Vec-complexed poly I:C (which is recognized by MDA5 but not by TLR3) 

can be used to differentiate between TLR3 and MDA5 signaling in CD4+ T-cells 

(112).  

56



F. Chapter Summary  

This chapter focused on the RNA-sensing PRRs expressed in mouse and 

human CD4+ T-cells. In these series of experiments, we have shown RNA-like 

IRMs to directly act on mouse and human CD4+ T-cells and enhance IFN-γ 

production. With the use of ultrapure CD4+ T-cells (without the confounding 

effects of non-CD4+ T-cell cytokine-producing lymphocytes) and mice deficient in 

specific PRRs and signaling mediators, we show variability in the responses 

elicited by RNA PAMPs and the direct co-stimulatory effects of RNA-like IRMs in 

mouse and human CD4+ T-cells. The results presented in this chapter suggest 

that recognition of RNA PAMPs and activation of the PRR pathways directly on 

CD4+ T-cells (intrinsic effect) induced cytokine production and proliferation in 

CD4+ T-cells.  
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CHAPTER IV 

CRITICAL RNA-SENSING PRR PATHWAYS ARE ACTIVATED BY RNA 

PAMPS/ADJUVANTS THAT DRIVE Th1 CD4+ T-CELL RESPONSES  

IN cDC/CD4+ T-CELL INTERACTIONS 

 

A. Introduction 

In this chapter, we set out to delineate the essential signaling pathways by 

which the RNA-like IRMs, R-848 and poly I:C, augment CD4+ Th1 responses. 

Highly purified conventional dendritic cells (cDCs) and conventional CD4+ T-cells 

were co-cultured in mixed leukocyte reactions (MLRs) in order to evaluate 

specific RNA-like adjuvant effects on these central mediators of primary immune 

responses. We found that R-848 was a more effective CD4+ Th1 adjuvant than 

poly I:C in isolated cDC/CD4+ T-cell interactions. Type I IFN production and Type 

I IFN receptor signaling in cDCs were necessary but not sufficient for the CD4+ 

T-cell adjuvant activity of R-848. Early and rapid IL-1α production and IL-1β 

secretion from cDCs were also necessary for CD4+ Th1 adjuvant properties of 

R-848.  Moreover, addition and blocking of these essential cytokines affect RNA-

like IRM stimulated CD4+ Th1 responses. Our results provide important insights 

into the key signaling pathways responsible for RNA-like IRM CD4+ T-cell 

activation, and will help in the rational design of improved vaccine adjuvants.  
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B. R-848>poly I:C augmented alloreactive CD4+ Th1 responses in a 

cDC/CD4+ T-cell MLR 

We utilized a MHC congenic MLR to investigate the essential signaling 

pathways by which RNA-like IRMs stimulate CD4+ Th1 responses.  Highly 

purified murine cDCs and highly purified MHC congenic conventional CD4+ 

T-cells were co-cultured for six days in the presence or absence of RNA-like 

IRMs. The cDCs and CD4+ T-cells were sorted by flow cytometry to high purity in 

order to eliminate the potential effects of bystander cells (e.g. natural killer cells, 

γδ T-cells).  Alloreactive CD4+ T-cell cytokine production was measured in cell 

culture supernatants and by ICS. At maximal doses, the murine TLR7 agonist R-

848 was a strong stimulator of alloreactive IFN-γ-producing CD4+ T-cells, 

whereas, the TLR3 and MDA5 agonist poly I:C was less potent in this system 

(Figures 4.1a&b). Nearly all R-848 or poly I:C stimulated IFN-γ+ CD4+ T-cells  

also produced TNF-α (Figure 4.1b). We used IFN-γ expression and production as 

a measure of RNA-like IRM augmentation of CD4+ Th1 responses. Our data 

indicate that RNA-like IRM activation of MyD88-dependent signaling pathways 

(R-848) stimulated CD4+ Th1 responses better than MyD88-independent 

signaling pathways (poly I:C) in isolated cDC/CD4+ T-cell interactions.   
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Figure 4.1. R-848 > poly I:C induces IFN-γ+ and TNF-α+ alloreactive CD4+ T-cells 
in a congenic MLR. Highly purified bone marrow-derived conventional dendritic cells 
(cDCs)(CD11c+CD11b+CD45R-/lo) and conventional CD4+ T-cells (CD3+ CD4+CD8-

TCRb+DX5-) were co-cultured for 6 d in the presence or absence of RNA-like IRMs.  (A) 
Cell culture supernatant IFN-γ levels measured by ELISA. Values are mean ± SEM 
(n=3), **R-848 p<0.0001 compared to media control; *poly I:C p=0.0343 compared to 
media control (representative of at least three independent experiments shown).  (B) 
ICS staining for IFN-γ and TNF-α producing conventional CD4+ T-cells. Values  shown 
are the % of CD3+CD4+ T-cells producing IFN-γ (left column) and % IFN-γ+TNF-α-, IFN-
γ-TNF-α+, or IFN-γ+TNF-α+ (right column) (representative of three independent 
experiments shown, left column and right column were from different experiments). 
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C. Type I IFN signaling in cDCs was necessary to stimulate CD4+ Th1 

responses in a cDC/CD4+ T-cell MLR 

RNA-like IRMs and RNA-sensing PRRs induce Type I IFN production and 

signaling in cDCs (98, 130). Type I IFN can drive DC maturation and activation 

(140). IFN-γ responses were abolished when cDCs from IFNAR-/- mice were used 

in MLRs compared to cDCs from wild-type B6 mice (Figures 4.2 a&b). The small 

increase in alloreactive CD4+ T-cell IFN-γ responses induced by poly I:C was 

also abrogated when cDCs from IFNAR-/- mice were used. Type I IFN signaling in 

cDCs was essential for the ability of R-848 and poly I:C to augment alloreactive 

CD4+ T-cell IFN-γ production in isolated cDC/CD4+ T-cell interactions. However, 

R-848 induced much lower IFN-β mRNA levels in cDCs compared to poly I:C 

(Figure 4.2c), and yet stimulated much higher CD4+ T-cell IFN-γ responses 

compared to poly I:C. This suggested that Type I IFN production and signaling in 

cDCs was essential but not sufficient for optimal RNA-like IRM stimulation of 

CD4+ Th1 responses.    

 

D. R-848 stimulation of CD4+ Th1 responses was dependent on MyD88-

mediated signaling in cDC and conventional CD4+ T-cells 

R-848 activates murine TLR7/MyD88-dependent signaling (49). R-848 has 

been reported to have direct effects on cDCs and CD4+ T-cells (17, 71, 134). We 

therefore examined the role of MyD88-dependent signaling pathways in cDCs 

and CD4+ T-cells during R-848 stimulation of alloreactive CD4+ Th1 responses. 
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Figure 4.2. Type I IFN is essential for RNA-like IRMs to stimulate CD4+ Th1 
responses in a cDC/CD4+ T-cell MLR.  (A) IFN-γ levels in cell culture supernatants 
measured by ELISA in MHC congenic MLRs utilizing B6 or IFNAR-/- cDCs and B6.H2d 
CD4+ T-cells. Values are mean ± SEM (n=3). ** p=0.0008 compared to R-848 
stimulated B6 cDC MLR, * p=0.0037 compared to poly I:C stimulated B6 cDC MLR.  (B) 
ICS staining for IFN-γ producing conventional CD3+CD4+ T-cells in MHC congenic 
MLRs utilizing B6 or IFNAR-/- cDCs and B6.H2d CD4+ T-cells (representative of three 
independent experiments shown). Values shown are the % of IFN-γ+ conventional 
CD3+CD4+ T-cells.  (C) cDCs were stimulated with R-848, poly I:C, or media 
(unstimulated control), and cellular RNA was collected at the indicated time points. IFN-
β mRNA levels were measured by qRT-PCR, as described in the Methods section. Bars 
represent fold-change in IFN-β mRNA relative to unstimulated control at the 6 h time 
point (mean ± SEM, n=3).  
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Not surprisingly, IFN-γ production was entirely abrogated when MyD88-/- or 

TLR7-/- cDCs and B6.H2d CD4+ T-cells were used in MHC congenic MLRs 

(Figure 4.3a). IFN-γ production was also decreased when B6.H2d cDCs and 

MyD88-/- conventional CD4+ T-cells were used in MLRs (Figure 4.3b). This 

MyD88-dependence in conventional CD4+ T-cells was not mediated through 

TLR7 or IL-18 receptor signaling (Figure 4.3b and Figure 4.4 a&b). The data 

indicate that R-848 activation of TLR7/MyD88-dependent signaling in cDCs was 

critical for augmenting alloreactive CD4+ Th1 responses, and that TLR7-

independent/MyD88-dependent signaling in CD4+ T-cells was also essential.  

 

E. cDC IL-1α and IL-1β production and IL-1R-mediated signaling in 

cDCs and conventional CD4+ T-cells, were essential for R-848 stimulation 

of CD4+ Th1 responses 

We next explored the role of IL-1R/MyD88 signaling in R-848 stimulation of 

CD4+ Th1 responses. When IL-1R-/- cDCs and B6.H2d CD4+ T-cells were used 

in the MHC congenic MLRs, IFN-γ production was 45 ± 9% lower compared to 

responses when wild-type cDCs were used (mean±SEM, n=3, p=0.03) (Figures 

4.5 a&b). Similarly, when B6.H2d cDCs and IL-1R-/- CD4+ T-cells were used in 

MHC congenic MLRs, IFN-γ production was 55 ± 5% lower compared to 

responses when wild-type CD4+ T-cells were used (mean±SEM, n=3, 

p=0.01)(Figures 4.5 c&d). The observed effect of eliminating IL-1R-mediated 

signaling on R-848 stimulation of CD4+ Th1 responses in both cDC and CD4+ T-
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Figure 4.3. TLR7 signaling in cDCs, and TLR7-independent/MyD88-mediated 
signaling in CD4+ T-cells, are essential for R-848 induced CD4+ Th1 responses. 
(A) ICS staining for  IFN-γ producing CD4+ T-cells in MHC congenic MLRs utilizing B6, 
MyD88-/-, or TLR7-/- cDCs and B6.H2d CD4+ T-cells (representative of two independent 
experiment shown) (B) ICS staining for  IFN-γ producing CD4+ T-cells in MHC congenic 
MLRs utilizing  B6.H2d cDCs and B6, MyD88-/-, or TLR7-/- CD4+ T-cells (representative 
of two independent experiments shown). Values shown are the frequencies of IFN-γ+ 
conventional CD3+CD4+ T-cells. 
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Figure 4.4. MyD88-dependence in conventional CD4+ T-cells was not mediated 
through IL-18 receptor signaling. (A) Cell culture supernatant IFN-γ levels (day 6) in 
MHC congenic MLRs utilizing B6.H2d cDCs and B6 or IL-18R-/- CD4+ T-cells. Values 
are mean ± SEM. (B) ICS staining for IFN-γ producing CD4+ T-cells in MHC congenic 
MLRs utilizing B6.H2d cDCs and B6 or IL-18R-/- CD4+ T-cells. Values shown are the 
frequencies of IFN-γ+ CD3+CD4+ T-cells (n=3). 
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Figure 4.5. IL-1R-mediated signaling in cDCs and conventional CD4+ T-cells are 
essential for R-848 stimulation of CD4+ Th1 responses. (A) IFN-γ levels in cell 
culture supernatants in MHC congenic MLRs utilizing B6 or IL-1R-/- cDCs and B6.H2d 
CD4+ T-cells. Values are mean ± SEM (n=3). (B) ICS staining for IFN-γ producing 
conventional CD3+CD4+ T-cells in MHC congenic MLRs utilizing B6 or IL-1R-/- cDCs 
(allogeneic MLR, representative of two experiments, n=3). Values shown are the % of 
IFN-γ+ conventional CD3+CD4+ T-cells…   
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Figure 4.5. IL-1R-mediated signaling in cDCs and conventional CD4+ T-cells are 
essential for R-848 stimulation of CD4+ Th1 responses. (continued)… (C) IFN-γ 
levels in cell culture supernatants in MHC congenic MLRs utilizing B6.H2d cDCs and B6 
or IL-1R-/- CD4+ T-cells. Values are mean ± SEM (n=3). (D) ICS staining for IFN-γ 
producing conventional CD3+CD4+ T-cells in MHC congenic MLRs utilizing B6.H2d cDCs 
and B6 or IL-1R-/- CD4+ T-cells (congenic MLR, only one experiment done, n=3). Values 
shown are the % of IFN-γ+ conventional CD3+CD4+ T-cells. 

67



cells prompted us to examine IL-1α and IL-1β production by cDCs.  

R-848-induced alloreactive CD4+ T-cell IFN-γ production was decreased when 

IL-1α-/-, IL-1β-/-, or IL-1αβ-/- cDCs and B6.H2d CD4+ T-cells were used in the 

MLRs (Figures 4.6 a&b).  IL-1α and IL-1β had largely non-redundant roles in 

driving the alloreactive CD4+ Th1 responses to R-848 in this system. 

Collectively, our data suggest that the Type I IFN, IL-1α, and IL-1β are all 

necessary for the optimal stimulation of CD4+ Th1 responses by RNA-like IRMs. 

 

F. R-848 rapidly increases cDC production of pro-IL-1α and pro-IL-1β 

mRNA and protein 

We next explored the differences in the kinetics of IL-1α and IL-1β 

production by R-848- and poly I:C-stimulated cDCs. R-848 stimulation of cDCs 

produced a rapid upregulation of pro-IL-1α and pro-IL-1β mRNA (Figures 4.7 

a&b), whereas, poly I:C stimulation of cDCs produced a slower and more gradual 

increase in pro-IL-1α and pro-IL-1β mRNA expression (Figures 4.7 c&d). 

Biologically active IL-1α (precursor and mature IL-1α) is primarily intracellular 

and membrane-associated, while biologically active IL-1β (mature IL-1β) is 

primarily secreted (27). Comparable levels of IL-1α protein (precursor and 

mature forms) were measured in the cell lysates from R-848 and poly I:C-

stimulated cDCs at early time points (Figure 4.8). R-848 and extracellular ATP 

stimulation of cDCs rapidly induced higher levels of secreted mature IL-1β 

68



A 

Figure 4.6. IL- 1α and IL-1β are essential for R-848 stimulation of CD4+ Th1 
responses. (A) IFN-γ levels in cell culture supernatants (day 6) in MHC congenic 
MLRs utilizing B6, IL-1α-/- , IL-1β-/- or IL-1α-/-β-/- cDCs and B6.H2d CD4+ T-cells. 
Values are mean ± SEM (n=6). *p<0.05 compared to R-848 stimulated B6 cDC 
MLR.  (B) ICS staining for IFN-γ producing CD4+ T-cells in MHC congenic MLRs 
utilizing B6, IL-1α-/- , IL-1β-/- or IL-1 α-/-β-/- cDCs and B6.H2d CD4+ T-cells 
(representative of two independent experiments shown). Values shown are the % 
of IFN-γ+ conventional CD3+CD4+ T-cells. 
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Figure 4.7. R-848 induces a rapid increase in pro-IL- 1α and pro-IL-1β mRNA 

expression and protein production in cDCs. cDCs were stimulated with R-848, 
poly I:C, or media (unstimulated control), and cellular RNA and cell culture 
supernatants were collected at the indicated time points. Pro-IL- 1α (A&B) and 
pro-IL-1β (C&D) mRNA levels were measured by qRT-PCR, as described in the 
Methods section. Bars represent fold-change in pro-IL- 1α or pro-IL-1β mRNA 
relative to unstimulated control at the 6 h time point (mean ± SEM, n=3). (E&F) IL-
1β protein levels (precursor and mature forms) were measured in cell culture 
supernatants by ELISA (mean ± SEM, n=3).  
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Figure 4.8. Comparable levels of IL-1α protein (precursor and mature forms) were 
measured in R-848 and poly I:C-stimulated cDCs. cDCs were stimulated with R-848, 
poly I:C, or media (unstimulated control), and the cell lysates were collected at the 
indicated time points. Pro-IL- 1α protein levels were measured by ELISA (representative 
of one out of two independent experiments shown). 
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protein in cell-free culture supernatants compared to poly I:C and extracellular 

ATP (Figures 4.7 e&f and Figure 4.9).  

To further show the essential roles of type I IFN, IL-1α and IL-1β in driving 

CD4+ Th1 responses, we added recombinant type I IFN, IL-1α and IL-1β to the 

MLR to determine whether these cytokines could increase IFN-γ levels in CD4+ 

T-cells. We found that type I IFN (200 U/ml), rIL-1α (125 pg/ml) and rIL-1β (125 

pg/ml) were sufficient to induce a three-fold increase in IFN-γ production. IFN-γ 

levels following treatment with recombinant cytokines were comparable to 

responses when poly I:C was used in MLR (Figure 4.10).  

In MHC congenic MLRs, poly I:C treatment induced rapid and sustained 

Type I IFN production (Figure 4.2c). Pro-IL-1α and pro-IL-1β were induced by 

poly I:C at later time points compared to R-848 (Figure 4.7). To further examine 

the early roles of IL-1α and IL-1β, we added mouse rIL-1α and rIL-1β at the same 

time as poly I:C in MHC congenic MLRs. Addition of rIL-1α and rIL-1β increased 

poly I:C induced cytokine-producing (IFN-γ, TNF-α and IL-2) CD4+ T-cells 

(Figure 4.11). The data indicate that early IL-1α and IL-1β production and 

signaling are essential for the robust RNA-like IRM stimulation of CD4+ Th1 

responses. 

 

G. Inhibition of IL-1 and Type I IFN signaling abrogated R-848 

stimulation of CD4+ Th1 responses 
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Fig. 4.9. R-848 and extracellular ATP stimulates early mature IL-1β secretion 
from cDCs.  Non-primed DCs were stimulated for 6 h with R-848 or poly I:C with 
extracellular ATP (5 mM). As a positive control, cDCs were primed with 
lipopolysaccharide (200 ng/ml) for 3 hours prior to stimulation with nigericin (10 
µM). Mature IL-1β protein was detected by Western blot in cell culture 
supernatants. Data shown is representative of three independent experiments. 
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Figure 4.10. Addition of type I IFN, rIL-1α and rIL-1β  increased IFN-γ production in 
CD4+ T-cells. IFN-γ levels (day 6) in cell culture supernatants in MHC congenic MLRs. 
200 U/ml type I IFN and 125 pg/ml of rIL-1α and rIL-1β were added to MHC congenic 
cDC/CD4+ MLRs. Values shown are mean IFN-γ levels (ng/ml) ± SEM (n=2).  
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A 

Figure 4.11.  The addition of rIL- 1α and rIL-1β increased poly I:C-induced 
CD4+ Th1 responses in a cDC/CD4+ T-cell MLR. (A) IFN-γ levels in cell culture 
supernatants in poly I:C stimulated MHC congenic MLR with mouse rIL- 1α and 
rIL-1β. ICS staining for IFN-γ (B), TNF-α (C) and IL-2 (D) producing conventional 
CD4+ T-cells. Values are mean ± SEM (n=3) (representative of two independent 
experiments shown). *p<0.05 compared to media control.  
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To further assess the role of IL-1 in R-848-induced CD4+ Th1 responses, a 

natural inhibitor of IL-1 signaling, sIL-1Ra, and its synthetic form, AnakinraTM, 

were added to R-848 stimulated MHC congenic MLRs. To inhibit Type I IFN 

signaling, antibodies against the IFN α/β receptor were also added. Inhibition of 

both IL-1 and Type I IFN signaling diminished the robust R-848 induced CD4+ 

Th1 responses (Figure 4.12). Inhibition of either IL-1 or Type I IFN signaling also 

reduced R-848 induced CD4+ Th1 responses but to a lesser degree (Figure 

4.12).  Taken together, Type I IFN production and signaling by itself was not 

sufficient to drive RNA-like IRM stimulated CD4+ Th1 responses. The combined 

actions of Type I IFN, IL-1α, and IL-1β were essential for the optimal activation of 

alloreactive CD4+ Th1 responses in cDC/conventional CD4+ T-cell interactions.  

 

H. Chapter Discussion 

There is a growing need for novel vaccine adjuvants with potent T-cell 

immune stimulatory effects. In this chapter, we investigated the critical cellular 

signaling pathways used by RNA-like IRMs (R-848 and poly I:C) to stimulate 

CD4+ Th1 responses during alloreactive cDC/CD4+ T-cell interactions. RNA-like 

IRM stimulation of Type I IFN production and signaling was essential but not 

sufficient for driving CD4+ Th1 responses. The rapid and early production of 

IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ 

T-cells. In cDCs, R-848 activation of TLR7/MyD88-dependent signaling led to a 

rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C 
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Figure 4.12. Inhibition of Type I IFN, IL- 1α and IL-1β signaling decreases R-848-
induced CD4+ Th1 responses. Type I IFN and IL-1 signaling was blocked with anti-
mouse IFN α/β receptor, AnakinraTM and sIL-1Ra. IFN-γ levels (day 6) in cell culture 
supernatants were measured in MHC congenic MLRs with treated and mock treated 
cells. Blocking of either Type I IFN or IL-1α/β signaling decreased IFN-γ levels in cell 
culture supernatants. Values are mean ± SEM (n=6). *p<0.05 compared to R-848 
stimulated MLR (black bar). 
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activation of MyD88-independent signaling pathways.  R-848 stimulated the early 

production and secretion of mature IL-1β from cDCs and augmented alloreactive 

CD4+ Th1 responses to a greater degree than poly I:C. Our data suggests that 

the CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical 

combination of rapid Type I IFN, IL-1α and mature IL-1β production.  

The RNA-like IRMs, R-848 and poly I:C, are well-known inducers of Type I 

IFN in many cell types and have been shown to be potent CD4+ T-cell adjuvants 

(2, 130, 132, 165). Longhi et al. (98) primed and boosted mice with a dendritic 

cell targeted HIV gag protein vaccine and TLR agonists. They found poly I:C to 

be the most effective inducer of Type I IFN and the superior adjuvant to elicit 

CD4+ T cell immunity. Antibody blocking or deletion of Type I IFN receptor 

markedly reduced DC maturation, T-cell proliferation, and the development of 

adaptive Th1 immunity in response to the HIV gag protein.  Ichinohe et al. (60) 

also investigated the mucosal adjuvant effect of poly I:C by intranasal co-

administration with inactivated influenza virus HA vaccines and observed cross-

protection against heterologous infection. The authors observed upregulated 

expression of Type I IFN, and Th1/Th2 cytokines following the administration of 

HA vaccine with poly I:C. Vasilakos et al. (165) demonstrated that mice 

immunized with chicken ovalbumin and R-848 induced high levels of Type I IFN, 

and neutralizing antibodies to Type I IFN inhibited ovalbumin-specific CD4+ Th1 

responses. Similarly, in isolated cDC/CD4+ T-cell interactions, we found that 

Type I IFN production and signaling was necessary for the activation of Th1 
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alloreactive CD4+ T-cells by RNA-like IRMs. However, poly I:C was a more 

potent inducer of Type I IFN in highly purified cDCs compared to R-848, yet it 

was less potent at stimulating alloreactive CD4+ Th1 responses. This suggested 

that Type I IFN production and signaling in cDCs was essential but not sufficient 

for RNA-like IRMs to augment CD4+ Th1 responses in isolated alloreactive 

cDC/CD4+ T-cell interactions. 

We found that the ability of R-848 to augment alloreactive CD4+ Th1 

responses in a cDC/CD4+ T-cell MLR was also dependent on the early and rapid 

production of functional IL-1α and IL-1β from cDCs. MyD88-dependent IL-1R 

mediated signaling in both cDCs and CD4+ T-cells was important in mediating 

the CD4+ Th1 stimulatory effect of R-848.  IL-1 stimulates cDC maturation and 

activation (43, 101) and can act directly on CD4+ T-cells to enhance their 

differentiation and cytokine production (11). T-cells can also produce IL-1 and 

appears to serve an autocrine role in T-cell activation (156, 164). 

The Th1 adjuvant effects of IL-1 have been previously reported in in vivo 

studies. Ben-Sasson et al. (11), used recipient mice that were immunized with 

pigeon cytochrome C peptide together with different proinflammatory cytokines 

(administered through a miniosmotic pump). Only IL-1 augmented primary 

immune responses among a series of cytokines tested, including TNFα, IL-1, 

IL-6, IL-18 and IL-33. IL-1α and IL-1β displayed similar potency (11). The timing 

and the concentration of IL-1 are critical for an optimal effect. Staruch et al. (152) 

have shown that the optimal adjuvant effect of IL-1 was 2 hours after the priming 
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dose of bovine serum albumin (BSA) protein antigen. These authors have also 

observed dose-dependent enhancement of CD4+ T-cell responses to BSA. 

Similarly, in our MHC congenic MLR system, we found that the early addition of 

IL-1 was necessary for increased adjuvant effects of poly I:C. 

The observed comparable decreases in the frequencies of IFN-γ producing 

CD4+ T cells when utilizing IL-1α-/-, IL-1β-/- and IL-1αβ-/- cDCs in the MLRs 

suggested that IL-1α and IL-1β have largely non-redundant roles in stimulating 

alloreactive CD4+ Th1 responses. Though IL-1α and IL-1β both bind and activate 

IL-1R (26), differences in their localization might explain their apparent 

non-redundant effects (27, 29, 103). Biologically active IL-1α (precursor and 

mature forms) is predominantly cell- and membrane-associated (93), and likely 

acts in an autocrine or even intracrine manner in antigen-presenting cells (27). 

The pro-IL-1α is processed by calpain (7, 102) and heat shock, calcium 

ionophores and ATP have all been shown to stimulate the release of mature IL-

1α in vitro (102). In contrast, pro-IL-1β is biologically inactive and has different 

posttranslational processing requirements than pro-IL-1α. Caspase-1-containing 

inflammasomes (e.g. NLRP3 inflammasome) cleave pro-IL-1β into the 

biologically active mature form which is secreted into the extracellular 

environment in a non-classical manner (29, 104). Thus, mature IL-1β likely acts 

predominantly in a paracrine or endocrine manner, activating IL-1R signaling in 

effector cells such as CD4+ T-cells. The preferential cell association of IL-1α, in 
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contrast to the existence of IL-1β primarily as a soluble protein; difference in 

processing and release may all be important in explaining the non-redundant 

effects for these two types of IL-1.     

Other studies conducted on IL-1α and IL-1β-deficient mice have also shown 

non-redundant roles for these cytokines in immune responses and disease 

pathogenesis. IL-1β, but not IL-1α, was required for antigen-specific T-cell 

activation in delayed-type hypersensitivity responses (120) and in T-cell 

dependent antibody production against sheep red blood cells (55, 118). IL-1α, 

but not IL-1β, modulated the antiviral and immunoregulatory activities of IFN-γ 

(55), and was necessary for cell- and tissue-injury induced sterile inflammatory 

responses (18). Further studies are needed to discriminate the potential 

non-redundant roles of IL-1α and IL-1β in the RNA-like adjuvant augmentation of 

CD4+ Th1 responses. 

IL-1α is secreted to a much lesser extent than IL-1β. It is not commonly 

detected in body fluids except during severe inflammation in which, pro-IL-1α is 

possibly released from necrotizing cells (18, 102, 115). It is therefore possible 

that RNA-like IRMs trigger cell death that consequently releases IL-1. We 

performed some cell death assays (MTT assay, data not shown) but we did not 

see any significant differences. In our ICS analyses, we used LIVE/DEAD cell 

stain kit to exclude nonviable cells. No notable increase in dead lymphocytes was 

observed in the presence of RNA-like IRMs (data not shown). Hence, our 
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observations suggest that the concentrations of RNA-like IRMs that we used in 

MLRs did not cause cell death. 

In cDCs, R-848 induced less Type I IFN but early and more robust IL-1α and 

IL-1β production than poly I:C. R-848 was also a more potent CD4+ T-cell 

adjuvant compared to poly I:C in the cDC/CD4+ T-cell MHC congenic MLR 

system. However, poly I:C has also been shown to be a potent CD4+ T-cell 

adjuvant in vivo (60, 98, 163). When administered as an adjuvant in mice, the 

main source of poly I:C-induced Type I IFN has been reported to be non-

hematopoietic cells (98). In addition, poly I:C has been shown to induce mRNA 

expression (105) and protein production of IL-1 both in vitro (5, 131) and in vivo 

(5, 30, 133).  In our isolated cDC/CD4+ T-cell MHC congenic MLR, poly I:C 

stimulation did not induce sufficient Type I IFN and IL-1.  The increase in CD4+ 

Th1 responses with exogenous rIL-1 in poly I:C stimulated MHC congenic MLRs 

supports this hypothesis. Furthermore, increased Type I IFN production has been 

shown to inhibit IL-1 production (40). In the said paper, the investigators found 

that type I IFN strongly suppressed IL-1 production through two distinct 

mechanisms – STAT1 dependent inhibition of NLRP3 and NLRP1 inflammasome 

activity and the enhanced production of IL-10 of bone marrow-derive 

macrophages that decreased the levels of pro-1L-1α and pro-IL-1β. The delayed 

IL-1 production observed in poly I:C stimulated MHC congenic MLRs may be an 

effect of the robust poly I:C-induced type I IFN in the isolated cDC/CD4+ T-cell 

MLR system that consequently inhibited IL-1 production.  
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The essential roles of these cytokines were also evident in the abrogation of 

CD4+ Th1 responses upon Type I IFN and IL-1 signaling blockade in R-848 

stimulated MHC congenic MLRs.  The observed differences in the cDC 

production of type I IFN, IL-1α and IL-1β between R-848 and poly I:C in MHC 

congenic MLRs indicate that there are complex signaling cascades for the 

initiation of CD4+ Th1 responses. Complete elucidation and a better 

understanding of these mechanisms would offer further possibilities for the use of 

these RNA-like IRMs as adjuvants. 

We observed that the ability of R-848 to augment alloreactive CD4+ Th1 

responses was also dependent on MyD88-mediated signaling in the CD4+ T-

cells but not fully MyD88-dependent as observed in cDCs. This suggests that 

MyD88-dependent signaling is important in R-848 stimulated cDC cytokine 

production and is also intrinsically essential in CD4+ T-cells. IL-1R mediated 

signaling could only explain part of this profound CD4+ T-cell MyD88 signaling 

dependence. The isolated removal of CD4+ T-cell TLR7 or IL-18 receptor 

signaling did not affect R-848 induced alloreactive CD4+ Th1 responses. It is 

possible that there is overlap and a partial redundancy of the signaling effects in 

CD4+ T-cells among IL-1R, IL-18R, and TLR7/MyD88 dependent pathways. It is 

also be possible that other MyD88-dependent signaling pathways in CD4+ T-

cells, yet to be identified, are involved in priming and activation (177).  

In summary, RNA-like IRMs are effective CD4+ Th1 adjuvants and their ability 

to induce Type I IFN is critical for their T-cell stimulatory activity. In MLRs utilizing 
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two specific cell types, cDCs and conventional CD4+ T-cells, we have shown that 

early and rapid IL-1α and mature IL-1β production are equally critical with Type I 

IFN production. Upon RNA-like IRM stimulation, Type I IFN, IL-1α and IL-1β 

mainly produced by cDCs drive the activation of CD4+ Th1 responses. R-848-

mediated CD4+ Th1 responses are mainly TLR7/MyD88-dependent in cDCs. 

MyD88 signaling is also important in CD4+ T-cells but not mediated by TLR7 

signaling. Together, these results show that the CD4+ T-cell adjuvant activity of 

RNA-like IRMs involves a complex interplay of critical PRR and innate immune 

signaling pathways in different cells. 

 

I. Chapter Summary 

There is a growing need for novel vaccine adjuvants that can provide safe 

and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers 

(IRMs) are candidate T-cell adjuvants that skew acquired immune responses 

towards a Th1 phenotype. In this chapter, we set out to delineate the essential 

signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and 

polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) 

responses. Highly purified murine conventional dendritic cells (cDCs) and 

conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic 

mixed leukocyte reactions.  The activation of CD4+ Th1 cells was examined 

utilizing cells from mice deficient in specific RNA-sensing pattern recognition 

receptors and signaling mediators. R-848 and poly I:C stimulation of Type I 
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interferon production and signaling in cDCs was essential but not sufficient for 

driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β 

was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 

activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a 

rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C 

activation of MyD88-independent signaling pathways. The in vitro data show that 

CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical 

combination of early and rapid Type I interferon, IL-1α and IL-1β production. 

These results provide important insights into the key signaling pathways 

responsible for RNA-like IRM CD4+ Th1 activation.  A better understanding of the 

critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 

responses is relevant to the rational design of improved vaccine adjuvants. 
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CHAPTER V: 

CONTRIBUTIONS OF RNA-SENSING PRR PATHWAYS ON Th1 

RESPONSES TO INFLUENZA A VIRUS INFECTION 

 

A.  Introduction 

To explore further the contributions of RNA-sensing PRRs in the 

modulation of immune responses, we utilized an influenza A virus (IAV) mouse 

infection model and mice deficient in specific RNA-sensing PRRs and signaling 

mediators.  

 RNA-sensing PRRs, mediate the initial recognition of IAV and shape the 

adaptive immune response (69). This includes the MyD88 signaling dependent 

TLR7 (24) and the MyD88 signaling independent receptors TLR3 (42), RIG-I (81) 

and NLRP3 (78). MyD88 signaling has been found to be essential for the optimal 

protection against various pathogens including homologous challenge with IAV 

(145).  However, the role of MyD88 signaling in heterosubtypic IAV infections is 

not well characterized.  

In this chapter, we utilized a murine model of heterosubtypic IAV infections 

(9, 22) in which we examined the role of MyD88 signaling in heterosubtypic 

adaptive immune responses (T-cell and Ab responses) to the internal proteins of 

IAV.   

 

B.  Heterosubtypic immunity to influenza A viruses 
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Mice were infected intranasally with a sublethal dose of A/Puerto 

Rico/8/34 (PR/8) (H1N1). Mice were then challenged intranasally 21 days later 

with a sublethal dose of A/HK/X31 (HK/X31) (H3N2), a strain that contains all the 

internal proteins of PR/8 (6 out of 8 of the total genome) (88). We examined 

memory T-cell and Ab responses to influenza A PR/8 internal proteins 7 days 

after the second IAV infection (Figure 5.1).  This allowed us to examine 

heterosubtypic immune responses to IAVs without the confounding effects of 

anti-hemagglutinin protective Abs.     

 

C.  A MyD88-mediated signaling pathway is required for the induction of 

heterosubtypic CD4+ T-cell immune responses to IAV.   

In a murine homologous IAV challenge model, splenic CD4+ T-cell 

immune responses have been previously reported to be dependent on 

TLR7/MyD88 signaling (90).  We infected B6 mice with10 pfu PR/8 and later 

challenged these mice with 104 pfu HK/31. We found that anti-IAV NP311-325 

CD4+ T-cell IFN-γ and TNFα production in the lung and spleen were dependent 

on MyD88 signaling (Figures 5.2 & 5.3).  Some of these NP311-325 specific CD4+ 

T-cells produced both cytokines (Figure 5.4).  Anti-IAV NP311-325 CD4+ Th1 

cytokine production in the lung and spleen was MyD88 dependent, but the 

frequencies of CD3+CD4+ T-cells at these two sites were not (Figure 5.2c & 

5.3c).  We further found that lung anti-IAV NP311-325 CD4+ Th1 cytokine 

production was partially dependent (but not statistically significant) on TLR7 
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21 days 7 days 
Collect: 
1. Spleen CD4+ & CD8+ T-cells  
    (IFN-γ & TNFα ICS) 
2. Lung CD4+ & CD8+ T-cells  
    (IFN-γ & TNFα ICS) 
3. Serum IgG2c & total IgG 
    (PR8 NP protein-specific ELISA) 

-  H3 

-  H1 

Legend: 

-  N1 

-  N2 

Figure 5.1. Heterosubtypic immunity to influenza A virus (IAV) internal proteins. B6 
mice were infected intranasally (i.n.) with 10 plaque forming units (pfu) of PR/8 and 
challenged 21 days later with 10,000 pfu of HK/X31. 7 days after HK/X31 infection, 
spleen and lungs were collected for intracellular cytokine staining (ICS) and the serum 
was used to measure NP-specific IgG levels by ELISA. PR/8 and HK/X31 IAVs have 
different hemagglutinin (HA) and neuraminidase (NA) surface proteins and are not 
recognized by any cross-reactive neutralizing antibodies. These IAV strains share 6 
internal genes derived from PR/8 – NP, the polymerase complex heterotrimer (PB2, PB1 
and PA), matrix protein (M) and nonstructural protein (NS). 

PR8 HKx31 
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Figure 5.2. IFN-γ or TNFα production by IAV-specific CD4+ T-cells in the spleen. 
Splenocytes from mice infected with PR/8 and HK/X31 IAVs, as described in Figure  
5.1, were stimulated for 6 hrs with nucleoprotein (NP)311-325 peptide, a MHC Class II 
restricted PR/8 IAV epitope. NP311-325-specific cytokine-producing CD4+ T-cells were 
identified as CD3+CD4+CD8-IFN-γ+ (A) or TNFα+ T cells (B). NP311-325-specific 
cytokine-producing CD4+ T-cells were analyzed in B6, MyD88-/- and TLR7-/- mice. The 
frequencies of spleen CD3+CD4+ T-cells in these mouse strains were also 
determined (C). Values shown (A & B) are the % of IFN-γ+ or TNFα+ NP311-325-specific 
splenic CD4+ T-cells minus unstimulated background. Bars are median values. 
*p<0.05 compared to NP311-325-specific B6 splenic CD4+ T-cells. (B6 n=31; MyD88-/- 
n=12; TLR7-/- n=15).  
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Figure 5.3. IFN-γ or TNFα production by IAV-specific CD4+ T-cells in the 
lung. Lungs from mice infected with PR/8 and HK/X31 IAVs, were homogenized 
and cell suspensions were stimulated for 6 hrs with nucleoprotein (NP)311-325 
peptide. The frequency of NP311-325-specific IFN-γ+ (A) or TNFα+ (B) producing 
CD4+ T-cells and the frequencies of CD3+CD4+ T-cells in the lung (C) were 
determined in B6, MyD88-/- and TLR7-/- mice. Values shown (A & B) are the 
frequency of IFN-γ+ or TNFα+ NP311-325-specific CD4+ T-cells minus the 
frequency of cells obtained when stimulated with media. Bars are median 
values. *p<0.05 compared to NP311-325-specific B6 lung CD4+ T-cells. (B6 n=31; 
MyD88-/- n=12; TLR7-/- n=15)  
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A 

B 

IFN-γ 

TNFα 
media                  + CD4 peptide                           media                  + CD8 peptides 

spleen CD4+ T-cell                     spleen CD8+ T-cell                    

IFN-γ 

TNFα 

media                  + CD4 peptide                           media                  + CD8 peptides 

lung CD4+ T-cell                     spleen CD8+ T-cell                    

Figure 5. 4. IAV-specific CD4+ & CD8+ T-cells in the spleen and lungs produce 
both IFN-γ and TNFα. Mice were infected with 10 PFU PR8 followed by infection, 21 
days later, with 10,000 PFU HK/X31. Seven days after the second infection, lung and 
spleen cells were stimulated for 5 to 6 hrs with  NP311-325 or NP366-374 and PA224-233 
peptide mix. The frequency of IAV-specific  IFN-γ and TNFα producing CD4+ and CD8+ 
T-cells in spleen (A)  and in the lungs (B) were determined.  Representative plots are 
shown above. 
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signaling, but anti-IAV NP311-325 CD4+ Th1 cytokine production in the spleen was 

TLR7 independent (Figures 5.2 & 5.3).  The MyD88 dependent IL-1α/β signaling 

has been reported to influence antibody responses and CD4+ T-cells (142). To 

further investigate the MyD88 dependence on CD4+ T-cells, we infected IL-1-

deficient mice with IAV. Anti-IAV NP311-325 CD4+ Th1 cytokine production in the 

lung and spleen was also unchanged in IL-1α-/-, IL-1β-/-, IL-1αβ-/-, or IL-1R-/- mice 

compared to production by CD4+ T-cells in wild type mice (Figure 5.5). 

    

D.  Anti-IAV NP Th1 antibody responses are partially dependent on TLR7 

and MyD88 signaling in a heterosubtypic infection model.   

In C57BL/6 mice, CD4+ Th1 cells play a role in antibody isotype switching 

to IgG2c (47).  In a murine homologous IAV challenge model, anti-IAV HA 

IgG2a/c levels were reported to be TLR7 and MyD88 dependent (90).  In our 

murine heterosubtypic IAV challenge model, we also found that IgG2c directed 

against the IAV NP protein was MyD88 dependent. We observed a decrease (but 

not statistically significant) in TLR7-/- mice antibody responses.  The partial TLR7 

and MyD88 dependence for anti-NP IgG2c Ab was seen only after the secondary 

heterosubtypic IAV infection (Figure 5.6).  Th2 dependent IgG1 levels directed 

against IAV NP protein were also dependent on MyD88 signaling after the 

secondary heterosubtypic IAV infection (Figure 5.6). 
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Figure 5.5. IFN-γ or TNFα production by IAV-specific CD4+ T-cells in IL-1-
deficient mice. Frequencies of IFN-γ or TNFα-secreting nucleoprotein (NP)311-325-
specific CD4+ T-cells were assessed in IAV infected B6 and IL-1-deficient mice (IL-
1α-/-, IL-1β-/-, IL-1αβ-/-, or IL-1R-/-) in the spleen (A&B) and lungs (C&D). Mice were 
infected with PR/8 and HK/X31 IAVs, as described in Figure  5.1. Values shown  are 
the frequency of IFN-γ+ or TNFα+ NP311-325-specific CD4+ T-cells minus the 
frequency of cells obtained when stimulated with media. Bars are median values. (B6 
n=31, IL-1α-/- n=3, IL-1β-/- n=3, IL-1αβ-/- n=6, or IL-1R-/- n=6) 
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A B 

Figure 5.6. Antibody titers of nucleoprotein (NP)-specific IgG2c, IgG1 and 
total IgG in the sera of immunized mice. B6, MyD88-/- and TLR7-/- mice were 
infected with PR/8 and HK/X31 IAVs, as described in Figure 5.1. Mouse sera were 
collected 20 days after primary PR/8 IAV infection (A) and 7 days after secondary 
heterosubtypic HK/X31 IAV infection (B). *p<0.05 compared to B6 sera. (in A: B6 
n=5; MyD88-/- n=3; TLR7-/- n=3; in B: B6 n=4; MyD88-/- n=4; TLR7-/- n=4 )  
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E.  A MyD88-mediated signaling pathway is required for the induction of 

some heterosubtypic CD8+ T-cell immune responses to IAV.   

We examined CD8+ T-cell immune responses to peptides NP366-374 or 

PA224-233, two MHC Class I-restricted immunodominant epitopes in C57BL/6 mice 

(10, 21).  Anti-NP or PA CD8+ T-cell type 1 cytokine production in the spleen was 

dependent on MyD88 signaling, but largely independent of TLR7 signaling 

(Figures 5.7a&b).  There were no differences in anti-NP or PA lung CD8+ T-cell 

cytokine production (IFN-γ or TNFα) and cell frequencies between wild type, 

MyD88-/-, or TLR7-/- mice (Figures 5.8a-c). There was also no difference in anti-

NP or PA spleen CD8+ T-cell type 1 cytokine production between wild type and 

IL-1α-/-, IL-1β-/-, IL-1αβ-/-, or IL-1R-/- mice (Figure 5.9).  We found that the 

frequency of CD3+CD8+ T-cells in the spleen was MyD88 dependent unlike the 

frequencies of CD3+CD4+ T-cells in the spleen which were MyD88 independent 

(Figures 5.2c & 5.7c).  This finding was confirmed by MHC Class I tetramer 

staining of NP366-374 CD8+ T-cells in the spleen (Figure 5.10).  

 

F.  Similarities and diferences between homotypic (1o PR/8 and 2o PR/8) 

and heterosubtypic (1o PR/8 and 2o HK/X31) IAV infection  

 Similar to a previous study (90), we also performed homotypic IAV 

rechallenge experiments and compared their results with our heterosubtypic IAV 

challenge model. We observed that production of IFN-γ and TNFα by CD4+ 

(Figure 5.11) and CD8+ (Figure 5.12) T-cells was dependent on MyD88 signaling 
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Figure 5.7. IFN-γ or TNFα production by IAV-specific CD8+ T-cells in the spleen. 
Splenocytes from mice infected with PR/8 and HK/X31 IAVs, were stimulated for 6 hrs 
with a mixture of nucleoprotein (NP)366-374 and polymerase (PA)224-233 peptides. NP366-374 
or PA224-233-specific cytokine-producing CD8+ T-cells were identified as CD3+CD8+CD4-

IFN-γ+ (A) or TNFα+ (B). NP366-374 or PA224-233-specific cytokine-producing CD8+ T-cells 
were analyzed in B6, MyD88-/- and TLR7-/- mice. The frequencies of spleen CD3+CD8+ 
T-cells in these mouse strains were also determined (C). Values shown (A & B) are the 
frequencies of IFN-γ+ or TNFα+ NP366-374 or PA224-233-specific splenic CD8+ T-cells 
minus frequencies of cells obtained with media stimulation. Bars are median values. 
*p<0.05 compared to NP366-374 or PA224-233-specific B6 splenic CD8+ T-cells.  (B6 n=31; 
MyD88-/- n=12; TLR7-/- n=15)  
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Figure 5.8. IFN-γ or TNFα production by IAV-specific CD8+ T-cells in the lung. 
Lungs from mice infected with PR/8 and HK/X31 IAVs,  were homogenized and 
stimulated for 6 hrs with a mixture of nucleoprotein (NP)366-374 and polymerase (PA)224-

233 peptides. MHC Class I restricted PR/8 IAV epitopes. NP366-374 or PA224-233-specific 
cytokine-producing CD8+ T-cells were identified as CD3+CD8+CD4-IFN-γ+ (A) or 
TNFα+ (B). The frequencies of lung CD3+CD8+ T-cells (C) were also determined in 
B6, MyD88-/- and TLR7-/- mice. Values shown (A & B) are the frequencies of IFN-γ+ or 
TNFα+ NP366-374 or PA224-233-specific CD8+ T-cells minus frequencies of cells obtained 
with media stimulation. Bars are median values. *p<0.05 compared to NP366-374 or 
PA224-233-specific B6 lung CD8+ T-cells. (B6 n=22; MyD88 n=12; TLR7 n=15)        
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Figure 5.9. IFN-γ or TNFα production by IAV-specific CD8+ T-cells in IL-1-deficient 
mice. IFN-γ or TNFα-secreting nucleoprotein (NP)366-374 or polymerase (PA)224-233 -
specific CD8+ T-cells in heterosubtypic IAV infected IL-1-deficient mice (IL-1α-/-, IL-1β-/-, 
IL-1αβ-/-, or IL-1R-/-) in the spleen (A&B). Mice were infected with PR/8 and HK/X31 IAVs, 
as described in Figure  5.1. Values shown are the frequencies of IFN-γ+ or TNFα+ NP366-

374 or PA224-233-specific CD8+ T-cells minus frequencies of cells obtained with media 
stimulation. Bars are median values.(B6 n=31, IL-1α-/- n=3, IL-1β-/- n=3, IL-1αβ-/- n=6, or IL-1R-/- 

n=6) 
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Figure 5.10. MHC class I influenza A virus (IAV)-specific CD8+ T-cell tetramer 
staining. MHC Class I peptide tetramers (PR/8 IAV nucleoprotein (NP)366-374/Db) were 
generated by the NIH Tetramer Facility (Atlanta, GA). Tetramer staining was 
performed for 30 min, on ice, followed by staining for CD8+ T-cells. Live/Dead Aqua 
(LDA) was used to exclude nonviable cells from analysis. At least 200,000 events were 
collected for analysis. Data was analyzed using FlowJo software (Treestar, Ashland, 
OR). The % of MHC class I NP366/Db CD8+ T-cells in two experiments were shown 
(A). For statistical analysis, the relative frequencies of MHC class I tetramer positive 
CD8+ T-cells in the spleen normalized to B6 mice (using one B6 IAV-infected mice as 
basis per experiment) following heterosubtypic IAV infection were determined (B). (B6 
n=7; MyD88 n=9; TLR7 n=7)  
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Figure 5.11. IFN-γ and TNFα production by CD4+ T-cells in the spleen and lung in 
mice infected sequentially with PR8 IAV (PR8+PR8). Splenic and lung CD4+ T-cells 
from mice infected primarily with 10 PFU PR8 followed by infection, 21 days later, with 2 
x 105 PFU PR8. Seven days after second PR8 infection, lung and spleen cells were 
stimulated for 5 to 6 hrs with NP311-325 peptide . The frequencies of IAV-specific  IFN-γ 
and TNFα producing CD4+ T-cells in spleen (A&B) and in the lungs (C&D) in B6, 
MyD88-/- and TLR7-/- infected mice were determined. Values shown are the frequencies 
of IFN-γ+ or TNFα+ CD4+ T-cells when stimulated with NP311-325 minus frequencies 
obtained when CD4+ T-cells were stimulated with media. Bars represent median values. 
*p<0.05 compared to NP311-325 stimulated B6 spleen or lung CD4+ T-cells. (B6 n=9; 
MyD88-/- n= 7; TLR7-/- n=9). 
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Figure 5.12. IFN-γ and TNFα production by spleen and lung CD8+ T-cells infected 
sequentially with PR8 IAV (PR8+PR8). Splenic and lung CD8+ T-cells from mice 
infected primarily with 10 PFU PR8 followed by infection, 21 days later, with 2 x 105 PFU 
PR8. Seven days after the second PR8 infection, lung and spleen cells were stimulated 
for 5 to 6 hrs with a NP366-374 and PA224-233 peptide mixture. The frequencies of IAV-
specific  IFN-γ and TNFα producing CD8+ T-cells in spleen (A&B) and in the lungs 
(C&D) in B6, MyD88-/- and TLR7-/- infected mice were determined. Values shown are the  
frequencies of IFN-γ+ or TNFα+ NP311-325 stimulated CD8+ T-cells minus frequencies of 
cells obtained with media stimulation. Bars represent median values. *p<0.05 compared 
to NP366-374 and PA224-233 peptide mix stimulated B6 spleen or lung CD8+ T-cells. (B6 
n=9; MyD88-/- n= 7; TLR7-/- n=9). 
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as has been previously reported (90). In contrast, frequencies of MHC class I 

IAV-specific CD8+ tetramer staining cells in homotypic IAV infection were not 

dependent on MyD88 signaling (Figure 5.10 and 5.13). 

 

G.  Chapter Discussion 

The murine model used in this study provided an experimental system for 

analyzing heterosubtypic cell-mediated immunity. We found that MyD88 

signaling, but not TLR7 signaling, was essential in heterosubtypic CD4+ and 

CD8+ T-cell responses with the exception of anti-influenza CD8+ T-cells in the 

lung where responses were MyD88 independent  

The initial induction of influenza specific immune responses is mediated 

by PRR signaling pathways.  PRR signaling pathways can be broadly 

categorized into MyD88 dependent and MyD88 independent pathways (57).  We 

examined immune responses elicited during serial sublethal heterosubtypic IAV 

infections in a murine model. This model most closely reflects serial natural IAV 

infections in humans.  Our findings point to an important role for MyD88 

dependent signaling in anti-IAV heterosubtypic memory T-cell immune 

responses.  MyD88 dependent signaling was important for Th1 cytokine 

production by anti-IAV heterosubtypic memory CD4+ T-cells while no notable 

differences in the frequencies were observed in MyD88-deficient IAV infected 

mice.  MyD88 dependent signaling was also important for NP-specific serum 

IgG2c and IgG1 antibody responses.   
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Figure 5.13. MHC class I IAV-specific CD8+ T-cell tetramer staining (homotypic, 
PR8+PR8). B6, MyD88-/- and TLR7-/- mice were infected with 10 PFU PR8 followed by 
infection, 21 days later, with  2 x 105 PFU PR8. Spleens were collected 7 days after 
homologous PR8 challenge and stained with MHC Class I peptide tetramers NP366-

374/Db. The % of MHC class I NP366/Db CD8+ T-cells in two experiments were shown 
(A). For statistical analysis, the relative frequencies of MHC class I tetramer positive 
CD8+ T-cells in the spleen normalized to B6 mice (using one B6 IAV-infected mice as 
basis per experiment) following homotypic IAV infection were determined (B). (B6 n=8; 
MyD88 n=7; TLR7 n=9)  
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 For anti-IAV heterosubtypic memory lung and spleen CD4+ T-cells, 

MyD88 signaling was not required to achieve the cell frequencies but was 

needed for Th1 cytokine production. In our murine model, there was minimal 

proliferation of anti-IAV heterosubtypic memory CD4+ T-cells by in vivo EdU 

incorporation (data not shown).  This implies that the majority of anti-IAV NP311-

325 memory lung and spleen CD4+ T-cells were recruited to the sites, likely from 

regional lymph nodes.  A similar finding has been reported for anti-IAV 

heterosubtypic memory CD8+ T-cells in a murine model (62, 89).   

MyD88 signaling is essential in the regulation of murine CD4+ T-cell 

responses in several models (31, 34, 177).  In the LCMV infection model, MyD88 

deficient mice failed to develop LCMV-specific CD4+ T-cells that can produce 

Th1 cytokines and the reconstitution of MyD88 expression in CD4+ T-cells 

rescued the LCMV-specific response (177).  In the murine model of inflammatory 

bowel disease (31), MyD88-/- CD4+ T-cells showed decreased proliferation and 

defective T-cell function both in vitro and in vivo. In an OVA-expressing 

recombinant Salmonella vaccine (63) that elicits Th1-biased cell-mediated and 

serum Ab responses in B6 mice, MyD88-/- mice exhibited greatly reduced Th1-

dependent Ab responses. The CD4+ T-cells from vaccinated MyD88 deficient 

mice also failed to produce IFN-γ (63).  

There are several ways in which MyD88 signaling could be involved in 

anti-IAV heterosubtypic memory CD4+ Th1 cytokine responses (87, 172). In 

addition to cytokine production and providing T-helper function to CD8+ T-cells, 
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IAV infection can induce cytolytic CD4+ effectors that reside in the lung (15, 16). 

Memory CD4+ T-cells can also direct enhanced protection from IAV infection 

through mobilization of immune effectors in the lung, independent of their helper 

functions (157). The MyD88-dependent IL-1 and TLR7 signaling pathways were 

reported to be important in eliciting IAV immune responses (20, 85). TLR7-

deficient mice have a Th2 bias in response to IAV and reduced levels of IAV-

specific Th1 responses (47, 90). Administration of IL-1 as mucosal adjuvant can 

confer significant protection against lethal IAV infection (85) and increased 

mortality  during IAV virus infection was observed in the absence of IL-1R1 (142). 

However, our heterosubtypic IAV data showed that dependence on TLR7 or IL-1 

signaling exclusively was minimal suggesting a much broader role of MyD88 

signaling in eliciting IAV-specific immune responses other than TLR7 and IL-1. 

Virus-induced activation of T-cells involves the dynamic interaction of 

APCs and T-cells through virus antigen presentation by APCs to T-cells, 

upregulation of co-stimulatory molecules and the production of cytokines that 

influence the activation and the generation of effector and memory-T cells. These 

crucial events and other immune cells (such as B-cells and pDCs) were 

previously reported in literature to be affected by MyD88 signaling. MyD88 

signaling is required for the DC activation/production of early inflammatory 

cytokines and the production of Th1 cytokines by T-cells against IAV infection 

(145). MyD88 signaling pathways in B-cells are essential for effective generation 

of long term humoral immunity (generation of long-lived antibody secreting 
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plasma cells) against virus infections and after influenza virus-like particle (VLP) 

vaccination (41, 76). MyD88 signaling is also critical for regulating anti-IAV B-cell 

Ab isotype switching (47). MyD88-dependent signaling is also important in 

plasmacytoid DC (pDC)-mediated protection in the lungs against IAV infection 

(74).   

MyD88 might also play an intrinsic role in Th1 cytokine production within 

CD4+ T-cells.  Such a role has been reported in a LCMV murine infection model 

in which MyD88 signaling within the CD4+ T-cells is essential for normal CD4+ T-

cell function (177). In a Toxoplasma gondii murine resistance model (95), T-cell 

expression of MyD88 is also necessary for the Th1 response and the prolonged 

resistance to Toxoplasma gondii.  

 The involvement of MyD88 (mostly via TLR7) has been examined in 

several independent IAV studies (47, 90, 100, 145) with a range of results that 

are difficult to generalize, except that all report that CD8+ T-cell responses were 

not affected by the absence of MyD88 signaling. For anti-IAV heterosubtypic 

memory CD8+ T-cells, we also observed the pulmonary Th1 cytokine response 

and cell frequency to be MyD88 independent. This finding was consistent with 

other reports that anti-IAV memory CD8+ T-cells in the lung were largely 

recruited from regional draining lymph nodes (62, 89).  

 The heterosubtypic anti-NP IgG2c antibody response was dependent on 

MyD88 signaling but not through TLR7.  This is in contrast to previously reported 

TLR7/MyD88 dependence in anti-hemagglutinin Th1 antibody responses in a 
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homologous IAV challenge model (90). In addition, we observed reduced anti-NP 

total IgG and IgG1 antibody responses. This is in contrast to previously reported 

striking Th2 bias observed in IAV-infected TLR7-/- and MyD88-/- mice (142). 

Differences in experimental conditions (such as virus strain or stock, infection 

volume, route of immunization/infection, homotypic vs heterosubtypic challenge) 

may explain these contrasting results. The MyD88-dependence observed in IAV-

specific antibody (total IgG, IgG2c and IgG1) responses suggests an important 

role not only in T-cells but other immune cells such as B-cells and pDCs (1, 41, 

47, 74, 76). The antibody response to IAV infection is largely dependent on CD4+ 

T-cell help for B cells (155). CD4+ T-cells provide cognate signals and secrete 

factors that drive B-cell activation and regulate Ab isotype switching. The MyD88-

dependence observed in heterosubtypic anti-NP antibody response may be a 

consequence of MyD88-/- CD4+ T-cell functional defect. 

Further studies that would better address the importance of the MyD88 

pathway in heterosubtypic IAV infections include adoptive transfer experiments to 

address whether MyD88 signaling is involved in the activation of APCs (Is the 

impaired CD4+ T-cell response in MyD88KO mice due to the failure of the APC 

system?) or if MyD88 is intrinsically involved in CD4+ T-cell functional maturation 

in response to heterosubtypic IAV infections. The latter could be addressed by 

the adoptive transfer of naïve MyD88-/- CD4+ T-cells into T-cell deficient mice, 

infect heterosubtypically with IAV, restimulate CD4+ T-cells with IAV-specific 

peptides and determine IFN-γ and TNFα production in response to IAV. 
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Reconstitution of MyD88 expression in MyD88-/- CD4+ T-cells by MyD88-

expressing lentivirus, as previously done in murine LCMV model (177), could 

also show the importance of intrinsic MyD88 signaling in CD4+ T-cells.  

 In IAV-specific CD8+ T-cells, we observed an interesting difference in 

MyD88 dependence between CD8+ T-cells in the spleen and in the lung. Upon 

restimulation, IFN-γ and TNFα production by MyD88-/- CD8+ T-cells in spleen 

was impaired in contrast to MyD88-/- CD8+ T-cells in the lung. This difference 

was not addressed in this study but possible explanations include (i) antigen 

persistence and the control of local T-cell memory by respiratory DCs (89) and 

the MyD88-/- effect reduction of T-cell activation in the spleen (145); (ii) MyD88-

dependent proliferation and intracellular expression of antiviral cytokines by 

CD8+T-cells may be needed in the spleen but not in the lung (due to the 

preferential localization of memory IAV T cells to the draining lymph nodes (89));  

(iii)  compromised IAV-specific CD8+ T-cell effector recall/memory as a result of 

defective CD4+ T-cell function in MyD88-/- CD4+ mice (9, 12, 47, 96); (iv) MyD88 

may be crucial for the optimal local recruitment of immune cells to the site of 

infection (46); and (v) non-MyD88 dependent signaling pathways such as 

inflammasome activation may play a role at the site of IAV infection (lung) that 

can compensate or redundant for MyD88 in inducing protective anti-IAV immunity 

(57, 58).  

In conclusion, MyD88 dependent signaling, not all of it through TLR7, 

played important roles in T-cell and antibody memory immune responses in 
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heterosubtypic IAV infections.  Homosubtypic (PR8+PR8) IAV infections further 

supported the importance of MyD88 signaling. Though not directly addressed, 

differences observed between heterosubtypic and homotypic IAV infections may 

be attributed to the protective neutralizing Abs generated during homosubtypic 

infections.  

 

H.  Chapter Summary 

We used a mouse model of heterosubtypic influenza A virus infections to 

determine the role of MyD88 signaling in CD4+ T-cell, CD8+ T-cell, and antibody 

responses. We found that MyD88 signaling played an important role in anti-IAV 

CD4+ T-cell responses in the lung and spleen and in CD8+ T-cell responses in 

the spleen following heterosubtypic and homotypic challenge with IAV. Following 

heterosubtypic IAV challenge, MyD88 dependent signaling was important for T-

helper 1 cytokine production of memory CD4+ T-cells.  TLR7 dependent 

signaling played a role only in anti-IAV heterosubtypic memory lung CD4+ Th1 

responses. Our results have important implications for the generation of effective 

universal influenza vaccines. 
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CHAPTER VI: 

FINAL SUMMARY AND IMPLICATIONS 

 

The immune response to viral infections is determined by a complex 

interplay of interactions between the pathogen and the host. Viruses not only 

need the host for replication, but the virus itself is assembled using the 

machinery of the host cell and the virion can contain material derived from the 

host cell.  Discrimination of ‘self’ from the viral ‘non-self’ is mediated by PRRs. 

RNA replicative intermediates such as ssRNA and dsRNA generated during the 

virus life cycle are detected by RNA-sensing PRRs.   

In this thesis, we focused on delineating the effects of key RNA-sensing 

PRR pathways in the innate immune response on eliciting adaptive immune T 

cell responses. With the use of RNA-like IRMs R-848 and poly I:C, we first 

looked at direct co-stimulation by RNA PAMPs and the role of RNA-sensing 

signaling pathways in CD4+ T-cells. In preliminary experiments using MACS-

enriched (not FACS sorted) CD4+ T-cells, we observed R-848 augmentation of 

IFN-γ production by CD4+ T-cells. However, R-848 augmentation was not 

observed in FACS-sorted CD4+ T-cells. This suggested production of cytokines 

by non-CD4+ T-cells in response to R-848. The use of CD4+ T-cells of high 

purity (>99.5% purity) eliminated the potential of bystander cells (e.g. NKT cells 

and γδ T-cells) to secrete cytokiness. Using FACS-sorted CD4+ T-cells from 
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specific knockout mice, we explored the RNA-sensing PRR signaling involved or 

activated by RNA-like IRMs in CD4+ T-cells. 

We found that different RNA-like IRMs can directly co-stimulate CD4+ T-

cells . The RNA-like IRM poly I:C augmented CD4+ T-cell responses better than 

R-848. The differences that we observed between R-848 and poly I:C are 

indicative of the complex interactions between the numerous PRR signaling 

pathways activated during infection by a RNA virus. The generation of virus-

specific immune responses involves the interplay of several PRRs and the 

delineation of all of these signaling events is yet to be achieved.  

On the other hand, we observed the robust proliferation and production of 

effector cytokines by CD4+ T-cells in response to poly I:C. In addition to direct 

TLR3 and RLR signaling in CD4+ T-cells, T-cells express NLRP3 and thereby 

may be activated by poly I:C (92). We have also shown that direct co-stimulation 

of CD4+ T cells by poly I:C involves the activation of PKR signaling. Though 

more definite experiments such as the use of PKR-deficient mice could further 

address this, it is suggested from the anti-CD3 stimulation experiments with 

TLR3-/-, TRIF-/-, IPS-1-/-, MDA-5-/-, NLRP3-/-, ASC-/-, TRIF-/-/MDA-5-/- and even 

MyD88-/- CD4+ T-cells that PKR or other signaling pathways were activated and 

involved in the poly I:C direct co-stimulation of CD4+ T-cells. 

We also noted a difference in the ability of R848 to induce cytokine 

production between human and mouse CD4+ T cells. Human CD4+ T-cells were 

easily stimulated to secrete IFN-γ with R-848 while there was minimal secretion 

111



of IFN-γ by mouse CD4+ T cells. We explored the possibility that TLR8 signaling 

in human CD4+ T-cells may account for these differences since TLR8 signaling 

in the mouse requires poly(dT) signaling to function (37). Addition of poly(dT) to 

R-848 slightly increased IFN-γ production by mouse CD4+ T-cells. Anti-CD3 

stimulation of human CD4+ T-cells with the CL075 (TLR8/7 IRM previously 

shown to stimulate human PBMCs) resulted in the slight augmentation of IFN-γ 

production. Further definitive experiments should be performed to address TLR8 

direct co-stimulation in mouse and human CD4+ T-cells. 

We focused mainly on RNA-sensing PRR pathways on CD4+ T-cells since 

CD4+ T-cells play a pivotal role in virus clearance, primarily through the 

augmentation of the B cell and CD8+ T-cell responses (28). We next explored 

RNA-sensing PRR activation in either CD4+ T-cell or in cDCs in isolated 

cDC/CD4+ T-cell interactions (MLRs). In contrast to anti-CD3 stimulation 

experiments, we observed augmentation of Th1 cytokine production in MHC 

congenic MLRs by R-848 > poly I:C. This difference between R-848-mediated 

CD4+ Th1 responses between CD4+ T-cells alone and isolated cDC/CD4+ T-

cells interactions suggests a pivotal role for APCs in triggering cytokine 

responses in CD4+ T-cells.   

RNA-like IRMs and RNA-sensing PRRs induce Type I IFN production and 

signaling in cDCs (98, 130). With the use of IFNAR-/- cDC in MHC congenic 

MLRs, we observed abrogated CD4+ Th1 responses in both R-848 and poly I:C 

stimulated MLRs. However, we observed much lower IFN-β mRNA expression in 
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R-848 stimulated cDCs than poly I:C stimulated cDCs. This suggested type I IFN 

to be essential but not sufficient for the optimal stimulation of CD4+ Th1 

responses by RNA-like IRMs. 

R-848-mediated TLR7/MyD88 signaling has been reported to have direct 

effects on cDC and CD4+ T-cells(17, 71, 134). Using MyD88-/- and TLR7-/- mice 

to look into R-848 signaling in either cDC or CD4+ T-cells in isolated cDC/CD4+ 

interactions, we have shown that TLR7/MyD88 signaling in cDCs and TLR7-

independent but MyD88-mediated signaling in CD4+ T-cells are essential for 

R-848 induced CD4+ Th1 responses. 

The MyD88-dependence observed in both cDC and CD4+ T-cells led us to 

explore the role of IL-1R/MyD88 signaling in R-848 stimulation of CD4+ Th1 

responses. The observed partial abrogation in R-848 MHC MLRs in the absence 

of IL-1R signaling in either cDC or CD4+ T-cells led us to discover the role of 

early and rapid IL-1α and IL-1β production in RNA-like IRM driven CD4+ Th1 

responses. Taken together, the data indicated that combined actions of type I 

IFN and the early IL-1α and IL-1β production and signaling are essential for the 

robust RNA-like IRM stimulation of CD4+ Th1 responses. The essential roles of 

these cytokines were evident in the experiments involving addition and inhibition 

of IL-1 and type I IFN. 

To explore the contributions of RNA-sensing PRRs in the modulation of 

immune responses in vivo, we utilized a murine model of heterosubtypic IAV 

infections, in which, mice were infected and challenged with sublethal doses of 
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IAV PR/8 and HK/X31, respectively.  In a mouse homosubtypic IAV challenge 

model, splenic CD4+ T-cell immune responses have been previously reported to 

be dependent on TLR7/MyD88 signaling (90). In our model, we found that 

MyD88 signaling played an important role in anti-IAV heterosubtypic recall lung 

and spleen CD4+ T-cell and spleen CD4+ T-cell immune responses. However, 

these MyD88-dependent immune responses were not solely dependent on TLR7 

signaling.  TLR7 signaling played a role only in anti-IAV heterosubtypic lung 

CD4+ T-cell responses.  For anti-IAV heterosubtypic memory lung CD8+ T-cells, 

the Th1 cytokine response was MyD88-independent. 

 Our results showing differential responses in CD4+ T-cells and CD8+ T-

cells in the spleen and lung, indicate the complexities of innate recognition and 

PRR signaling. In this thesis, we did not address the roles for RLR signaling and 

NLRP3 inflammasome activation during heterosubtypic IAV infection in vivo. 

Several studies have reported that IAV is recognized by RLRs but the delineation 

of the RNA-sensing pathways and their cooperative interactions with other 

signaling pathways remains incomplete (reviewed in (141)). Several recent 

studies have established a role for the NLRP3 inflammasome during IAV 

infection but contradictory results have been obtained (reviewed in (77)). 

Elucidation and a clearer understanding of these effector pathways would be 

needed to develop improved vaccine and adjuvant strategies against seasonal 

and pandemic influenza. 
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A.  Vaccine design 

Since T-cells can mediate cross-protective (heterosubtypic) immunity 

against influenza viruses by recognition of conserved viral proteins, targeting of 

long-lived protective T-cells should be one of the goals of future vaccine 

development. Recent studies in human and mouse influenza models have 

identified CD4+ T-cells to have more prominent protective roles other than 

promoting antibody responses. In a human influenza infection model using 

volunteers seronegative to the challenge influenza virus, investigators found pre-

existing influenza-specific CD4+ T-cells, rather than CD8+ T-cells to correlate 

with disease protection (172). Their results suggested that CD4+ T-cells might 

exert direct cytotoxic activity against virus-infected cells. In mice, lethal PR/8 

infection induced a population of IFN-γ expressing cytotoxic CD4+ T-cells (16). 

These findings support the concept that perforin mediated cytotoxicity may play a 

role in protection conferred by CD4+ T-cells. In this thesis, we have shown RNA-

like IRMs to influence CD4+ Th1 responses. Although we have not studied 

whether RNA-like IRMs induced cytolytic activity in CD4+ T-cells, these 

observations strengthen the concept that CD4+ T-cells may be targeted to induce 

effective and long-lasting protection against influenza. 

With the recent progress in PRR pathways and vaccine immunology, it is 

becoming apparent that the triggering of the innate immune mechanism is the 

initial event that crucially determines the outcome of the adaptive immune 

response (23). In vaccination, vaccines are thought to contain two types of  
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immune triggers: PAMPs and damage-associated molecular patterns (DAMPs) 

(114) that can stimulate the immune system through PRR activation in APCs 

such DCs and indirectly by PRR activation in bystander cells (Figure 6.1). 

Depending on the cytokine milieu generated, CD4+ T-cells develop into various 

Th subtypes that activate cognate B-cells, induce antibody production and 

isotype switching. CD4+ T-cell help is also essential in the generation of effector 

CD8+ T-cells and long lasting memory CD8+ T-cells. In this thesis, we looked at 

an isolated cDC-CD4+ T-cell interaction that provides a snapshot on how PRRs 

can activate directly or indirectly cDCs and CD4+ T-cells (Figure 6.1). 

Another novel approach is to counteract viral subversion of innate immune 

responses by targeting an alternative PRR pathway to help elicit an adaptive 

immune response. Viruses possess different immune evasion strategies. 

Influenza NS1 is the most well-characterized of the proteins that subvert RIG-I 

mediated type I IFN responses at multiple steps and interestingly, no direct viral 

mechanism against TLR signaling has been described (6, 143). It is therefore 

possible to stimulate TLR signaling to counteract NS1 inhibition of RIG-I 

signaling. 

Currently PRRs (TLRs) are being explored as immune adjuvants 

(reviewed in (153)). In Chapter IV, we have explored the role of RNA-like IRMs 

as adjuvants. Our results provide important insights into the key signaling 

pathways responsible for RNA-like IRM CD4+ Th1 activation. TLR7 (e.g. 

imiquimod) and TLR7/8 (resiquimod) agonists were shown to contribute to the 
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Figure 6.1. Induction of adaptive immune responses to vaccines through PRR-
mediated DC activation. Vaccines may contain pathogen-associated molecular patterns 
(PAMPs) or may induce the local release of damage-associated molecular patterns 
(DAMPs). These PAMPs and DAMPs are detected directly by pattern-recognition receptors 
(PRRs) expressed by dendritic cells (DCs), leading to DC activation, maturation and 
migration to the lymph nodes. Alternatively, PRR-mediated recognition of PAMPs and 
DAMPs by bystander cells may induce the release of tissue-derived factors, such as 
cytokines, that may cooperate in the activation and orientation of the DC response. In the 
lymph nodes, the activated DCs may present antigens to T cells, provide them with co-
stimulatory signals and stimulate their differentiation by providing a favorable cytokine milieu. 
Some cytokines — such as interleukin 4 (IL 4) and type I interferons (IFNs) — may be 
provided by bystander cells. Depending on the cytokine milieu, CD4+ T cells may 
differentiate into various T helper (TH) cell subtypes that help in the activation of cognate B 
cells, antibody production and isotype switching. Depending on the balance between 
activating cytokines (and most often with the help of TH1 cell-derived IL 2), activated CD8+ T 
cells differentiate into effector and memory CD8+ T cells. In this thesis, we looked at isolated 
DC and CD4+ T-cell interactions and showed that PRRs can be activated by PAMPs in both 
DC and CD4+ T-cells. (Adapted from Desmet and Ishii, Nature Reviews Immunology July 
2012  Vol. 12 p. 479-491) 
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immunogenicity of a variety of vaccine adjuvants (107). In addition to stimulating 

T cells to proliferate and produce effector cytokines, memory T cells also respond 

to TLR-mediated activation (17). TLR7/8 stimulation promotes maturation of DCs, 

stimulates B-cells to secrete antibodies and cytokines (13) and trigger NK cells to 

produce IFN-γ (44). With a better understanding of the RNA-sensing PRR 

pathways, incorporation of RNA PAMPs or RNA-like IRMs in vaccine 

formulations as means to improve vaccine efficacy could be developed in the 

future. 

 

B.  The therapeutic applications of manipulation of PRR signaling 
pathways 

Our current understanding of the RNA-sensing PRRs pathways has led to 

numerous applications with promising potential. One therapeutic application is 

the possible use of PRRs in the management of chronic viral infections (160). In 

chronic viral hepatitis, ANA275 or isatoribine (a TLR7 agonist) has been used in 

clinical trials (54). Manipulation of the NS3/4a-inhibited dsRNA RIG-I/TRIF/IRF3 

signaling in Hepatitis C virus (HCV) infections is also in progress. The use of 

several drugs (SCH6 (Schering-Plough), BILN 2061(Boehringer-Engelheim), VX-

950 (Vertex/Mitsubishi) and SCH 503034(Schering-Plough)) that restore HCV-

inhibited cellular interferon pathways has been observed to confer antiviral 

immune response (160). 

In this thesis, we have shown RNA-like IRMs to induce Th1 responses 

and this could be useful for targeting tumors. TLR7 and TLR8 activation can 
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reverse the suppressive function of regulatory T-cells (122). When combined with 

the ability of TLR7 and TLR8 to activate DCs into producing multiple cytokines, 

this results in a strong anti-tumor response (50). New TLR7 agonists that target 

γδ T-cells are also being studied for treating carcinoma (136). The double 

stranded RNA mimic IPH-3102 is being developed for the treatment of breast 

cancer and as vaccine adjuvant (125). Hence, the activation of RNA-sensing 

PRRs is a promising approach in anti-tumor/anti-cancer strategies. 

TLR7 and TLR8 agonists have also been studied as treatment for allergies 

and asthma. Since the primary feature of an allergic response is usually a Th2 

response, this is counterbalanced by the induction of TLR7/TLR8-induced Th1 

response. This has been a focus for novel therapeutics in these disease areas 

(32, 50).   

In addition to development of PRR/TLR agonists, significant research has 

also been done on antagonists. These compounds could be used to treat sepsis, 

systemic lupus erythematosus (SLE) and rheumatoid arthritis (50). For example, 

the quinazoline derivative CDP-52364 inhibits TLR7, TLR8 and TLR9 signaling 

that also inhibits disease progression of SLE and other autoimmune diseases in 

animal models (50, 126). Delineating the critical PRR pathways and having a 

clearer understanding of the interplay of different PRR signaling pathways would 

contribute towards more effective approaches in antagonizing PRR signaling in 

certain diseases. 
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Details of PRR signaling pathways continue to be uncovered and this 

offers new opportunities in targeting innate immune signaling. The ability to 

specifically target key processes such as development of long lasting memory 

T-cells, might prevent uncontrolled infection and treatment of multiple diseases. 
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