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GENERAL ABSTRACT

INVOLVEMENT OF CDP/CUX IN THE REGULATION OF HISTONE H4 GENE

EXPRESSION , PROLIFERATION AND DIFFERENTIATION

Mai Xuan Luong

May 7 , 2003

Thesis Advisors: Drs. Janet and Gary Stein

Deparment: Cell Biology

Proliferation and differentiation are essential processes for the growth and

development of higher eukaryotic organisms. Regulation of gene expression is

essential for control of cell division and differentiation. Normal eukaryotic cells have

a limited proliferative capacity, and ultimately undergo cellular senescence and

apoptosis. Terminal differentiation of cells is associated with loss of proliferative

capacity and acquisition of specialized functions. Proliferation and differentiation are

processes required for the creation and maintenance of diverse tissues both during

embryonic development and postnatal life. The cell cycleis the process by which

cells reproduce , and requires duplication and segregation of hereditary material. Loss

of cell cycle control leads to genetic instability and cancer.
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Expression of replication-dependent histone genes is tightly coupled to DNA

synthesis , thus makng histone genes a good model for studying cell cycle regulation.

The HiNF-D complex interacts with all five classes (HI , H2A, H2B , H3 and H4) of

histone genes in a cell cycle-dependent manner. The CCAA T displacement protein

(CDP)/Cuxand the tumor suppressor pRB are key components of the HiNF-

complex. However, the molecular interactions that enable CDP/Cux and pRB to form

a complex and thus convey cell growth regulatory information onto histone gene

promoters are poorly understood. Transient transfection assays show that CDP/Cux

represses the histone H4 promoter and that the pRB large pocket domain functions

with CDP/Cux as a co-repressor. Direct interaction between CDP/Cux terminus

and the pRB pocket domain was observed in GST pull-down assays. Furthermore , co-

immunoprecipitation assays and immunofluorescence microscopy established that

CDP/Cux and pRB form complexes in vivo and associate in situ. pRB interaction and

co-repression with CDP/Cux is independent of pRB phosphosphorylation sites , as

revealed by GST pull-down assays and transient transfection assays using a series of

pRB mutant proteins. Thus , several converging lines of evidence indicate that

complexes between CDP/Cux and pRB repress cell cycle-regulated histone gene

promoters.

CDP/Cux is regulated by phosphorylation and acetylation at the C-terminus,

which contains two repressor domains and interacts with histone deacetylase

HDACl. In vivo function of the CDP/Cux terminus in development and gene

regulation was assessed in genetically targeted mice (Cutll tm2Ejn , referred to as
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Cutl1 C). The mice express a mutant CDP/Cux protein with a deletion of the C-

terminus including the homeodomain. Indirect immunofluorescence microscopy

showed that the mutant protein exhibited significantly reduced nuclear localization in

comparison to the wildtype protein. Consistent with these data, DNA binding aCtivity

of HiNF- D was lost in nuclear extracts derived from mouse embryonic fibroblasts

(MEFs) or adult tissues of homozygous mutant (Cutll mice , indicating the

functional loss of CDP/Cux in the nucleus. No significant difference in growth

characteristics or total histone H4 mRNA levels was observed between wildtype and

Cutl1 C -
J- MEFs in culture. However, the histone H4. 1 (murine FOI08) gene

containing CDP/Cux binding sites have reduced expression levels in homozygous'

mutant MEFs. Stringent control of growth and differentiation appears to be

compromised in vivo. Homozygous mutant mice exhibit stunted growth (20-50%

weight reduction), a high postnatal death rate of 60-70% , sparse abnormal coat hair

and severely reduced fertility. Hair follicle deformities and severely diminished

fertilty in Cutll 
J- 

mice suggest that CDP/Cux is required for normal development

of dermal tissues and reproductive functions. Together the data presented in this

dissertation provide new insight into the in vivo functions of CDP/Cux in the

regulation of histone gene expression, growth control and differentiation.



TABLE OF CONTENTS

DEDICATION ..........

,'...............................................................

ACKNOWLEDGEMENTS.................. .

,.......................................

ABSTRACT........................... 

:.............................................. 

... v

LIST OF TABLES...................................................... ...............

LIST OF FIGURES................................. 

...................................

CHAPTERS

CHAPTER 1: GENERAL INTRODUCTION

Cell Division and the Cell Cycle...................................................... 1

Histone proteins. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Histone genes: organization and variants............................................ 7

Regulation of replication-dependent histone gene expression.................... 12

Transcriptional Regulation of the Human Histone H4 Gene FO 1 08 

............

CDP/Cux 

. . ...............................................................................

V11

Page

X11

XIV



CHAPTER 2: MATERIALS AND METHODS

Plasmid construction. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

Bacterial transformations........................................................... 31

Small-scale DNA preparations 

....................................................

Large-scale DNA preparations... .... 

................ ................ .... . ........

Preparation of genomic DNA from mice 

........, ...................... .........

Tissue culture and cell transfection 

.......,.......................................

Preparation of mouse embryonic fibroblasts (MEFs) 

...................... 

.... 34

Flow cytometry analysis............... 

...,.........................................

Cell transfection ...........

;......................................................... 

' 36

Luciferase assay.. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extraction of protein from organs.................. ... 

... .....,... ... ............

Preparation of nuclear extract......................................................

Preparation of whole cell lysate 

................................................... 

Preparation of in vitro translated protein. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

GST pull down assays .... 

.......... ..........,..... ...... ................. .........

Co-immunoprecipitation assays.................................... ...............

SDS-P AGE and western blot analysis............................................ 

Antibodies. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Immunofluorescence microscopy........................................ ......... 

Electrophoretic mobility shift assay (EMS A) ......,............................

Generation of Cutll mutant mice............ 

.............................. .......



Isolation of total cellular RNA 

......,............................................ 

Northern blot analysis......... 

..............................,........ .....,....... 

Reverse transcriptase PCR (RT-PCR) 

.......,....... .......... ........ .........

Southern blot analysis... ...............

,........ ............,.. """"""'" 

.... 55

S 1 nuclease protection assay.

..................................................... 

Histology. . 

. . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Serum testosterone levels. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scanning electron microscopy... 

............ .............,................ ... ...

CHAPTER 3: THE TUMOR SUPPRESSOR pRB FUNCTIONS AS

A CO-REPRESSOR OF THE CCAAT DISPLACEMENT

PROTEIN (CDP)/CUX TO REGULATE CELL CYCLE

CONTROLLED HISTONE H4 TRANSCRIPTION

Abstract. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

Introduction. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 

Results

CDP/Cux interacts with pRB , Cyclin A , and CDK1 in vitro......

CDP/Cux (CR2-Cterm) interaction with the pRB large pocket is

phosphorylation-site independent...... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

Direct interaction between CDP/Cux and pRB is mediated by the

CDP/Cux C-terminus and the pRB pocket domain.................. 73

CDP/Cux and pRB interact in vivo.................................... 



, tei

A subset of pRB and CDP/Cux associates in situ...................

The N-termnus of CDP/Cux is required for full repression of

histone H4 transcription. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Co-repression of H4 promoter activity by pRB and CDP/Cux .... 80

The large pocket of pRB functionally interacts with CDP/Cux 

repress histone H4 transcription.......................................

Discussion................................. ......,........ ......,.. 

""""""" "" , ,

CHAPTER 4: GENETIC ABLATION OF THE CDP/CUX C-

TERMINUS RESULTS IN DECREASED HISTONE H4.1 (FOI08) 

EXPRESSION, HAIR FOLLICLE DEFORMITIES AND

REDUCED MALE FERTILITY

Abstract. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

Introduction. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 

.. 93

Results

Loss of CDP/Cux terminus results in high neonatal lethality

and severe growth retardation..................................

,.......

Expression of the mutant Cutll allele................................. 101

The CDP/Cux-containing HiNF-D complex is absent in Cutll

J- LJ mIce. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104



'!'

Levels of CDP/Cux ~C protein in the nucleus are significantly

reduced in Cutl1 ~C cells.............................................

" Embryonic fibroblasts homozygous for the Cutll~C mutation

exhibit normal cell growth.... . 

. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The CutllllC mice have reduced fertility..........................

The development of the gastrointestinal tract is unperturbed in

the Cutll ~C 
J- mice ......

...................".......................... 

115

Cutll ~C mutation results in abnormal dermis and hair loss. . 

. . . .

Discussion.............................................".......................... 

...

CHAPTER 5: GENERAL DISCUSSION

CDP/Cux as a tissue-specific mitogenic factor... 

..,................

Implications of CDP/Cux as a tumor suppressor... 

"""""""'"

CDP/Cux regulates differentiation................................. ...

REFERENCE LIST............................................................

Xll

107

110

113

117

119

125

127

133

136



, ,

LIST OF TABLES

Table 1- 1. Replication-dependent histone genes in humans and mice............ 8

Table 1-2. Variant histone genes............... ... 

... .................................

Table 1-3. Post-translational modifications of CDP/Cux 

................... j....... 

Table 1-4. Gene targets of CDP/Cut 

.......................................... .......... 

Table 3- 1. . A subset of pRB-interacting proteins 

...................................

Table 3-2. Knockout phenotypes of genes in the pRB family.. .

............ ... '

. 68

Xll

Page



.-- ...--.-.- . -.-.

Figure

Fig. 1-

Fig. 1-

Fig. 1-

Fig. 1-

Fig. 1-

Fig. 1-

Fig. 1-

Fig. 3-

Fig. 3-

Fig. 3-

Fig. 3-

Fig. 3-

Fig. 3-

XIV

LIST OF FIGURES

Page

The restriction point and the cell cycle................................... 2

. Cell cycle and restriction point control................................... 4

Cell cycle regulation of hlstone gene expression. Histone protein

biosynthesis is functionally coupled to DNA synthesis......... ... .... 

Chromatin organization of the histone H4 F0108 gene locus ......... 15

Cell cycle regulated element and cognate binding factors of the

histone H4 promoter 

.....,.............. ... ... ..........,........ ......, ....

Diagram of CDP/Cux , its isoforms and evolutionarily conserved

domains.. . 

. .. . .. .. . ... .. . .. . . .. . . . .. . .. .. . . .. . . .. . .. . .. . .. . .. . .. . .. .. . . . . .. ... 

Diagram of CDP/Cux its isoforms ans evolutionarily conserved

domains. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

CDP/Cuxand pRB mutant proteins....................................... 

The CDP/Cux terminus interacts with H4 Site II-associated

proteins in vitro.. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

The interaction between CDP/Cux and pRB is direct and

phosphorylation-site independent...... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

CDP/Cux interacts with pRB in vivo... 

..................................

Parial colocalization of CDP/Cux and pRB in HeLa cells............

A subset of CDP/Cux and pRB associates in situ....................... 



Fig. 3-

Fig. 3-

Fig. 3-

The C-terminus of CDP/Cux is required for repression of H4

promoter activity............... ............................................. 81

The pRB large pocket is sufficient for CDP/Cux dependent co-

repression of H4 transcription........................ ..................... ' 82

Overexpressed mutant pRB proteins retain nuclear localization and

moderate expression does not perturb cell cycle distribution. .

. . . . . . . 

Fig. 3-10 , Model for the mechanism of HiNF- D repression of histone gene

Fig. 4-

Fig. 4-

Fig. 4-

Fig. 4-

Fig. 4-

Fig. 4-

Fig. 4-

Fig. 4-

transcription. . 

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . ..

, 90

Targeted mutation of the mouse Cutll gene by homologous

recombination. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High post-natal lethality and stunted growth in Cutl1 

homozygous mutant mice. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Full- length Cutll mRA and protein are not expressed in ~C-

mice 

................................................................,..........

Absence of HiNF-D complex in homozygous mutant mice...........

CDP/Cux ~C protein does not retain DNA-binding activity.......... 106

Reduced levels ofCDP/Cux ~C mutant protein is detected in the

nucleus..................................................................... 

...

Significantly reduced levels of CDP/Cux ~C protein is observed in

the nucleus of homozygous mutant MEFs ......

.........................

Reduced histone H4. 1 mRNA levels in Cutll ~C mouse embryonic

fibroblasts (MEFs) that exhibit normal growth characteristics......

100

102

105

108

109

112



Fig. 4- Cutl1 ~C mutant males with normal testicular morphology have

reduced serum testosterone levels. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Fig. 4- 10 Normal histologic features of the small intestine from Cutll ~C-

ITce 

................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Fig. 4-11 Hair loss in homozygous mutant Cutll ~C mice. 

............... ... . ....

Fig. 5-

Fig. 5-

Fig. 5-

Model for CDP/Cux-pRB interaction in different cell cycle stages ...

Model for CD P ICux as a putative tumor suppressor protein. . 

. . . . . . . ..

CDP/Cux is involved in the regulation of proliferation, apoptosis

and differentiation. . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

XVI

114

116

118

130

132

134



CHAPTER 1:

GENERAL INTRODUCTION



General Background

Cell division and differentiation are essential processes for the growth and

development of higher eukaryotic organisms. Regulation of gene expression is vital

for control of cellular growth and differentiation. Normal eukaryotic cells have a

limited proliferative capacity, and ultimately undergo cellular senescence and die. In

contrast , transformed cells bypass the limit on proliferation and survive in an

immortalized state. Terminal differentiation of cells is usually linked with loss of

proliferative capacity and acquisition of specialized functions. Proliferation and

differentiation are required for the creation and maintenance of diverse tissues both

during embryonic development and postnatal life.

Cell Division and the Cell Cycle

Overview. The cell cycle is the process by which cells reproduce , and

requires duplication and segregation of hereditary material. The cell cycle is divided

into four consecutive phases beginning with Gap 1 (G)) phase , followed by Synthesis

(S) phase then Gap 2 (G ) phase and ending with Mitosis (M) phase (Fig. 1- 1). DNA

synthesis and duplication occur in S phase and chromosome segregation occurs

during mitosis or M phase. A normal cell in resting state is in Gap 0 (Go) phase and

upon growth stimulation enters G) phase. At the restriction point in G) phase (Pardee

1989), the influences of mitogenic artd anti-mitogenic signals culminate in an

irreversible decision either to commt to the mitotic cell cycle and enter S phase, or to

remain in a quiescent state with the option to differentiate or to re-enter the cell cycle



quiescent cell

FIG 1- 1. The restriction point and the cell cycle. The relative timing

of the four phases: Gap 1 (G ) phase, Synthesis (S) phase, Gap 2 (G
phase and mitosis (M) phase are indicated. The relative duration of
each phase is depicted. Based on the influences of mitogenic (Le.
cytokines and growth factors) and anti-mitogenic signals (Le. , cell

adhesion), the cell makes an irreversible decision at the restriction (R)
point in G phase either to commit to the mitotic cell cycle and enter S
phase, or to remain in a quiescent state (G ) with the option to

differentiate. Adapted from Stein et aI. , 1999.



when conditions are more favorable for growth. At checkpoints during the cell cycle,

controls operate to regulate the onset of these events and ensure that they occur in the

correct sequence, are coordinated with cellular growth , and are corrected for errors in

their execution (Nurse, 1994). Stringent control of how cell cycle events are executed

ensures the survival of living organisms , while deregulation of these events increases

genomic instability, an important factor in the initiation of cancer and non-malignant

disorders.

Cell cycle engines. Cyclin-dependent kinases (CDKs) act as a "cell cycle

engine" to drive cells through the cell cycle (Fig. 1-2). Each enzyme complex is

composed of a regulatory subunit, the cyclin , and a catalytic subunit, the CDK. With

the exception of cyclin D , which is expressed as a delayed early response (early/mid

) to mitogen stimulation (Matsushime et aI. , 1994), most cyclins are expressed in a

cell cycle-dependent manner. CDK activity is controlled by the availability of the

cyclin subunit (Sherr, 1993), by targeted degradation , by changes in their

phosphorylation status (Fisher and Morgan , 1994; Morgan , 1997) and by interaction

with CDK inhibitors p21 Cipl , p27Kipl , p57Kip2
, and INK4 family proteins p16 INK4a

p15 INK4b , p18 INK4c and p19 INK4d (Vidal and Koff, 2000).

The CDKs phosphorylate a wide range of structural proteins and transcription

factors that control progression through the cell cycle (Stein et aI. , 2001). The

sequential activity of cyclin D-CDK4/6 complexes (Matsushime et aI. , 1994; Ohtsubo

and Roberts , 1993; Quelle etal. , 1993), cyclin E-CDK2 complexes and cyclin A-

CDK2 complexes are necessary for progression through G and entry into S phase

(Beijersbergen and Bernards , 1996). Cyclin D and cyclin E-CDK complexes activate
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FIG 1-2. Cell cycle and restriction point control. Critical events and key regulators are
depicted in the diagram. pRB phosphorylation initiated by Cyclin D-dependent kinases
releases pRB-bound E2F. Active E2F transactivates the expression of genes required for S
phase progression, including dihydrofolate reductase (DHFR), thymidine kinase (TK) ,

thymidine synthase (TS), DNA polymerase-a (POL), CDK1 , cyclin E and E2F itself. This
establishes a positive feedback loop promoting pRB phosphorylation by cyclin- CDK2

contributing to the irreversibilty of the restriction point, and ultimately making pRB

phosphorylation by cyclin-dependent kinases (CDKs) mitogen- independent in Sand G phase.
In mitosis, pRB is dephosphorylated by PP1 phosphatase, which then allows it to bind E2F in



E2F-dependent transcription of genes required for S phase by phosphorylating pRB

retinoblastoma protein and thus blocking its repression of E2F activity. In S phase

phosphorylation of components of the DNA replication machinery by cyclin A/CDK2

complexes mediates the initiation of DNA replication and blocks re-initiation at the

same replication foci (Coverley et aI. , 2002). In mitosis, cyclin B/CDK1 complexes

regulate chromosome condensation by modifying chromatin structure. Cyclin B-

CDK1 complexes are also involved in nuclear envelope breakdown through its

phosphorylation of nuclear lamins. In addition, both cyclin A/CDK1 and cyclin

B/CDK1 complexes promote chromosome segregation by activating topoisomerase

II. Thus cyclinlCDK complexes are essential to the proper regulation of cell cycle.

progression.

Transcriptional control during the cell cycle. Transcriptional modulation of

genes that encode cyclins and proteins involved in cell cycle progression is essential

throughout interphase. Regulation of gene transcription is mediated by promoter

elements and the macromolecular complexes of transcription factors that interact with

these regulatory sites in a sequence specific manner. Formation of the

macromolecular complexes may be facilitated by specific localization of genes within

the nucleus and local concentration of co-regulators at specific subnuclear domains.

Histone proteins

Histone proteins are critical for structural organization of all eukaryotic

genomes by facilitating the compaction and condensation of their DNA. Expression

of replication-dependent histone genes is temporally and functionally coupled with



DNA synthesis in S phase. Histones are a family of small , basic proteins that bind and

package DNA into chromatin within each cell nucleus. There are five major classes of

histones: the linker histone H1 , and the core histones H2A , H2B , H3 and H4. The

core histones form nucleosomes that are the basic packaging unit of eukaryotic DNA.

Each nucleosome is composed of two each of the core histones , around which is

wrapped 146 base pairs of DNA in approximately two superhelical turns (Luger et al.

1997). The H1 histones faciltate the organization of linear arrays of nucleosomes into

30 nl1 chromatin fibers by interacting with the DNA.

Histones are essential for chromatin organization and transcriptional

regulation in eukaryotic cells (Jenuwein and Allis , 2001; Stein et aI. , 1991) The

linker histone H 1 has been shown to influence nucleosome positioning, which in turn

influences transcription (Archer et aI. , 1991). Changes in post-translational

modifications of histones , such as acetylation , may affect the ability of histones to

influence transcription (Bradbury, 1992; Jenuwein and Allis, 2001; Stein et aI. , 1991).

Histone acetylation is often associated with DNA replication and transcriptional

regulation (Eberharer and Becker, 2002; Magnaghi-Jaulin et aI. , 2000). Acetylation

of the amino terminal tail domains of core histones destabilizes their interaction with

the nucleosomes and thereby facilitates transcription (Pennisi , 1997). In addition to

acetylation , histone tails also undergo adenosine diphosphate- ribosylation

ubiquitination , methylation , and phosphorylation. The C-terminal tails of histones

H2A and H2B undergo cell cycle-dependent ubiquitination (Mueller et aI. , 1985).

Furthermore , ubiquitinated histones are associated with transcriptionally active DNA

sequences (Nickel et aI. , 1989). Phosphorylation of histones H3 and H 1 is also cell



cycle regulated. For example , histone H1 is hyperphosphorylated in late G2 phase

(Mueller et aI. , 1985). Because of the essential function of these histone modifications

in the tail domains , it appears that nucleosomes not only mediate the structural

organization of DNA but also cary epigenetic information that determines both how

genes are expressed and how their expression patterns are maintained from one cell

generation to the next (Spotswood and Turner, 2002).

Histone genes: organization and variants.

The genomes of various eukaryotic organisms exhibit significant differences

in the number and organization of histone genes (Old and Woodland , 1984). For

example , the majority of the histone genes in sea urchins (300 to 600 copies),

Drosophila (100 copies) and amphibians (40 to 1600 copies) are arranged as quintets.

Each quintet of genes contains one copy of each of the five histone classes. These

quintets are frequently arranged in tandemly repeated patterns in the genome. In

contrast, human and mouse have only 10-40 copies of the histone genes that are

clustered but not tandemly repeated (Heintz et aI. , 1981; Sittman et aI. , 1981).

In total there are at least 74 histone genes in the human genome (Heintz et aI.

1981; Lichtler et aI. , 1982; Tripputi et aI. , 1986; Volz et aI. , 1997) and a similar

number in the mouse genome (Marzluff et aI. , 2002; Sittman et aI. , 1981; Wang et

aI. , 1996b; Wang et aI. , 1996a). The majority of these genes are present in one large

cluster (HIST1) on human chromosome 6 (55 genes) and mouse chromosome 13

(51 genes) (Table 1- 1). There are 2 smaller clusters (HIST2 and HIST3) on human

chromosome 1 that together contain 10 histone genes. Orthologous Hist2 and Hist3



Table 1-1. Replication-dependent histone genes in humans and mice

Chromosome 6p21-p22 13A2. 1q21 1q42 1182 12p13. 6G1

(histone cluster) (HIST1) (Hist1) (HIST2) (Hist2) (HIST3) (Hist3) (HIST4) (Hist4)

H2A

H28

genes in each

cluster

* Adapted from Marzluff et aI. , 2002



clusters are located on mouse chromosomes 3 and 11 , respectively. The remaining

histone genes are distributed as single copies throughout the genome. Each of the

fourteen histone H4 genes encodes the same protein , and there are only three histone

H3 proteins encoded by the twelve histone H3 genes in both humans and mice. In

contrast, histones H2a and H2b are composed of at least ten non-allelic variants in

each species.

There are three groups of histoncs: replication-dependent histones are the

predominant group, containing 74% of histone genes which are organized into 2

clusters (RIST 1 and HIST2); the two remaining groups are comprised of replacement

variants and tissue-specific variants which are solitary genes outside any histone gene

cluster (Marzluff et aI. , 2002). Replacement variants , such as histone are mostly

synthesized in non-proliferating cells. Their gradual accumulation parallels a decrease

of the main type histones of the corresponding class (Table 1-2). Replacement

his tones are also often synthesized at low levels in proliferating cells (Marzluff et aI.,

2002). Expression of tissue-specific histones is restricted to certain tissues. Examples

include histone H100 in mouse oocytes (Tanaka et aI. , 2001) and testis-specific

histone Hlt in sperm cells (Wang et aI. , 1997). Unlike the mRNAs encoding main

type histones , replacement variant mRNAs are polyadenylated and splicing occurs in

several variants. Replication-dependent histones represent the majority of histone

proteins synthesized in dividing cells. Synthesis of these histones is restricted to S

phase of the cell cycle , when DNA is replicated (Fig. 1-3) (Stein and Borun , 1972).

Transcriptional and post-transcriptional mechanisms determine the levels of histone

mRNA during the cell cycle. Regulation of histone gene transcription results from the



Table 1-2. Variant histone genes

Histone Expression Introns Chromosome Chromosome

Variant Pattern (Human) (mouse)

liver, pancreas, brain , testis

----

H1t spermatocytes, spermatids

H100 oocytes (mouse) yes unknown

H2A. testis , thymus , spleen

uterus, ovaries , intestines

H2A. germ cells yes

most somatic tissues

H28 spermatid

H3. differentiated adult tissues yes

H3. differentiated adult tissues yes

H3.4 testicular cells

* Adapted from Marzluff et aI. , 2002
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histone gene transcription

histone mRNA

histone protein synthesis

DNA synthesis

FIG 3. Cell cycle regulation of histone gene expression. Histone protein biosynthesis is
functionally coupled to DNA synthesis. Cells entering S phase exhibit a concurrent
increase in the accumulation of histone mRNA, the level of histone biosynthesis , and the
rate of DNA synthesis. A three- to five fold enhancement of histone gene transcription in
early S phase precedes the accumulation of histone mRNA. Selective degradation of
histone mRNAs occurs in parallel with a decline in DNA synthesis. This figure is adapted
from Stein et aI. , 1996.



collective effects of cell signaling pathways, dynamic chromatin structure and

multiple transcription factor interactions. Thus replication-dependent histone genes

serve as excellent models for understanding molecular mechanisms involved in cell

cycle regulation of gene expression.

Regulation of repli ation-dependent histone gene expression

Synthesis of replication-dependent histones is tightly coupled to DNA

synthesis , occurring exclusively in S phase (Marashi et aI. , 1982). Because somatic

cells do not have storage pools for histone proteins or histone mRNA, coordination of

de novo synthesis of all five histone classes in S phase is required for the packaging

of newly replicated DNA. Histone biosynthesis occurs at an average rate of several

thousand proteins per second throughout S phase. This immense upregulation of

histone production is due to a 10-30 fold increase in histone mRNA in S phase , which

is a result of altered transcriptional (Baumbach et aI. , 1987; Heintz et aI. , 1983) and

post-transcriptional regulation (Cleveland and Yen, 1989; Morris et aI. , 1986).

Transcriptional regulation. Replication-dependent histone genes are

transcribed at basal levels throughout the cell cycle , but the resulting transcripts either

are not processed into mature mRNAs or are selectively degraded (Osley, 1991; Stein

et aI., 1994). Transcription of histone genes is coordinately upregulated 3-5 fold at the

beginning of S phase. Vertebrate histone genes are transcribed by RNA polymerase

and the sequences that regulate transcription occur 5' to the site of transcription

initiation. The histone gene promoters are modular in nature and contain discrete

independently functioning sequence elements that together contribute to the



transcription of each histone gene. Regulatory elements present in the promoters of

all 5 classes of histone genes include the histone family-specific hexamer (HEX) 

element, the TAT A box , the CAAT motif and Sp1-binding sites (Osley, 1991; tein

et aI. , 1994). In addition , there are elements that are specific to replication-dependent

histone gene , and elements that occur only in particular classes of histone genes.

Since the HEX element is specific to the histone gene family, it has been proposed

that a unique factor binding at this sequence may function to coordinately activate

histone gene transcription upon entry into S phase (Osley, 1991). However, no known

cell-cycle function has been attributed to the hexamer element, which acts primarily

, to maintain maximal levels of transcription. Instead, each kind of vertebrate histone

gene contains a different cell cycle regulatory element that binds a distinct regulatory

factor with specific activation functions (Artishevsky et aI. , 1987; La Bella et aI.

1988; La Bella et al. , 1989; Stein et aI. , 1994). Studies in our laboratory have focused

on elucidating the mechanisms involved in transcriptional regulation of the

replication-dependent histone H4 gene F0108.

Post-transcriptional regulation. All replication-dependent histone mRNAs

contain a stem-loop motif at their 3' termini. In the nucleus , histone mRNA

transcripts are processed by endonucleolytic cleavage just 3' to the stem- loop

structure to produce the mature cytoplasmic mRA species. Activation of histone

transcript processing is the primary post-transcriptional regulatory pathway utilized in

eukaryotic organisms upon entry into S phase. Upon completion of S phase, histone

mRNA is returned to basal levels. This downregulation is mainly due to rapid mRA

degradation in the cytoplasm, which is regulated by the presence of the stem-loop



motif (Pandey and Marzluff, 1987). The mRNA half-life is 120 minutes in early S

phase and decreases dramatically near the completion of DNA synthesis to 15-

minutes (Morris et aI., 1991).

Transcriptional Regulation of the Human Histone H4 Gene FOI08

Modifcations of chromatin structure. Control of basal and cell cycle

regulated histone H4 transcription is dependent on proper chromatin conformation

and coordinated binding, of transcription factors to gene regulatory elements. The

chromatin structure of the F0108 histone H4 gene was analyzed by examining the

levels of nuclease sensitivity throughout the gene (Chrysogelos et aI. , 1989). During

the cell cycle , the coding region , the 3' segment of the distal promoter

250 to -600 nt) and the proximal promoter (-70 to -20 nt) exhibit changes in

nuclease sensitivity (Fig. 1-4B), which are indicative of changes in chromatin

structure at these sites. Sensitivity to DN aseI and S 1 nuclease peaks in S phase , then

decreases in mitosis and G) phase. Micrococcal nuclease analysis of the histone H4

F0108 gene shows that the proximal promoter and the 5' segment of the coding

region (-70 to +90 nt) lack normal nucleosomal organization throughout the cell cycle

(Fig. 1-4C), which is reflected by a degeneration of the characteristicnucleosomal

ladder produced by nuclease digestion (Cho et aI. , 2002; Moreno et aI. , 1988). In

addition , there are significant changes in nucleosome structure associated with the 3'

segment of the coding region during the cell cycle. In summary, the histone H4

promoter is organized in an open chromatin structure and is accessible to nucleases

(and transcription factors) throughout the cell cycle. This is consistent with the



distal promoter proximal promoter mRNA coding sequence

nuclear matrix distal proximal cell cycle suppressor
element activation activation control elements

Nuclear Matrix

Site IV Site II Site I Site II Site V 

733 to -590) (-418 to -215) 130 to -90) 70 to -20) 10 to +204)

600 250 +100 +310

Decreased HS during M/G and increased HS in S70 +90

Disrupted nucleosome organization throughout cell cycle

+200 +275

Disrupted nucleosome organization only during eariase
130 -

Occupancy unchanged upon differentiation

70 -
Occupancy decreases upon differentiation

FIG 1-4. Chromatin organization of the histone H4 F0108 gene locus. (A) The diagram
depicts the five regulatory elements (Sites I to V), the nucleotides they encompass, and the

transcription factors that interact at these sites (Kroeger et aI. , 1987, Pauli et aI., 1989
Dworetzky et aI. , 1992 , Wright et aI. , 1990, Artyshevsky et aI. , 1987, Stein et aI. , 1994 , Guo
et aI., 1995 and 1997, Last et aI. , 1999). Also indicated are the MNase-sensitive sites and
DNase I-hypersensitive sites (HS, black triangles). (B) Regions of nuclease hypersensitivity

during the cell cycle (Chrysogelos et aI., 1989 , Hovhannisyan et aI., 2003). (C)
Nucleosome organization during the cell cycle (Moreno 1988, Hovhannisyan unpublished).
(D) In vivo occupancy of Sites I and II during differentiation , as observed by DNasel
footprinting using LM-PCR (Stein et aI., 1989 , Hovhannisyan et aI. , 2003).



observation that basal transcription of the histone gene is constitutive. Upon entry

into S phase , transcriptional upregulation is accompanied by modest increases in

nuclease sensitivity at several sites , including the coding region. Interestingly, 

occupancy of the proximal promoter (-70 to -20 nt) is decreased during

differentiation , when histone gene transcription is silenced (Fig. l-4D)

(Hovhannisyan,et aI. , 2003; Stein et aI. , 1989). T-akentogether, these observations

suggest that discrete regions of the histone H4 gene undergo chromatin modifications

that correlate with the observed transcriptional status of the gene.

Histone H4 Gene regulatory elements and cognate binding factors

Our laboratory has defined and characterized multiple regions involved ' in the

transcriptional regulation of the histone H4 FO 1 08 gene (Fig. l-4A). The distal

promoter region of the histone H4 gene supports maximal transcription. Two

elements have been defined in vitro Site ill and Site IV. Site IV (-733 to -590) is a

transcriptional activator element that binds preferentially to two proteins present in

nuclear matrix extracts (Dworetzky et aI. , 1992; Pauli et aI. , 1989), YYl and

ATF/CREB (Guo et aI. , 1995; Guo et aI. , 1997a). Site ill (-418 to -215) has been

shown to increase transcription of reporter genes by two fold (Kroeger et aI. , 1987).

Binding of YYl , AP-2 and NFl to Site III was observed by electrophoretic mobility

shift assay (EMSA) (Last, 1998; Last et aI. , 1999a).

In the proximal promoter of the histone H4 FO 1 08 gene , two sites of protein-

DNA interaction , Site I (- 130 to -90 nt) and Site II (-70 to -20 nt), have been

established both in vitro and in vivo (Pauli et aI. , 1987; van Wijnen et aI. , 1987; van



Wijnen et aI., 1991 d). Site I of the proximal promoter confers maximal levels of

histone H4 gene transcription in proliferating cells, and deletion of Site I reduces

transcription rates 4-6 fold in vitro (van Wijnen et aI. , 1989; van Wijnen et aI.

1991d). Several transcription factors that interact with Site I and activate transcription

include YY1 , Spl , CREB , ATF- l and an unidentified complex histone nuclear factor

A (Birnbaum et aI. , 1995;-Guoet al. 1997b; Last et aI. , 1999b;van Wijnen et aI.

1989; Wright et aI., 1995J,-Binding of these regulatory factors to Site I in vivo occurs

throughout the cell cycle (Pauli et aI. , 1987).

Site II of the histone H4 proximal promoter is essential for proper initiation of

transcription and cell cycle regulation (Ramsey-'Ewing et aI., 1994). Site II is

occupied by three factors (Fig. 1-5), which are designated histone nuclear factors M

P and D (HiNF- , HiNF- , and HiNF-D) (Kroeger et aI. , 1987; Ramsey-Ewing et

aI. , 1994; van Wijnen et aI. , 1991c). HiNF-M was identified as interferon regulatory

factor 2 (IRF-2) and interacts at the cell cycle control element on the distal side of

Site II (Ramsey-Ewing et aI. , 1994; Vaughan et aI. , 1995). Consistent with its role in

cell growth regulation , IRF-2 can activate histone H4 transcription (Vaughan et aI.

1995). In addition , IRF- , IRF- , and IRF-7 are also potent activators of the H4

promoter (Xie et aI., 2001) Binding of IRF-2 to Site II is cell cycle regulated, with

maximal levels in S phase (Shakoori et aI. , 1995; Vaughan et aI. , 1998). Recently

identified , HiNF-P is a 65-kDa zinc-finger protein that interacts with the histone H4

promoter in vivo (Mitra et aI. , 2002b). Like IRF- , HiNF-P can activate histone H4

transcription and binds Site II in a cell cycle-dependent manner (Mitra et aI. , 2002bJ,
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in vivo
II II III

GGCGCGCTTTCGGTTTTCAA TCTGGTCCGA TACT CTTGT A T A TCAGG

in vitro

GGCGCGCTTTCGGTTTTCAA TCTGGTCCGA T ACTCT TGT A T A TCAGG

. ,

8M'

- ."- - - ."- "---- "" --

GGCGCGCTTTCGGTTTTCAA TCTGGTCCGAT ACTCT TGT A T A TCAGG
o OOCO

GGCGCGCTTTCGGTTTTCAA TCTGGTCCGA TACT CT TGT A T A TCAGGII II III

FIG 1-5. Cell cycle regulated element and cognate binding factors of the histone H4
promoter. Site II is occupied by HiNF-D, HiNF-M, and HiNF-P. In vivo occupancy of Site II

was detected by DNase I footprinting (solid dark blue bar) and OMS finger-printing (dark

blue ovals)(Pauli et aI., 1987, Ramsey-Ewing et aI. , 1994). In vitro protein/DNA interactions
observed by EMSA (light blue, yellow and red bars) and methylation interference assays
(light blue, yellow and red ovals) using gel-purified HiNF-D complexes or fractionated

extracts enriched for HiNF-M or HiNF-P are depicted (van Wijnen et aI. , 1987).



The third factor that interacts with Site IT is HiNF- , a protein complex that

consists of growth regulatory factors cyclin A, CDK1, pRB , and the homeobox

protein CDP/Cux , which is the DNA binding subunit (van Wijnen et aI. , 1994; :van

Wijnen et aI. , 1996). HiNF-D binding activity is proliferation-specific and is not

observed in differentiated cells (Holthuis et aI. , 1990; van Wijnen et aI. , 1989; van

Wijnenet aI. , 1994). HiNF-D interaction with Site II (-70 to -20) is restricted toB

phase in normal cells but is constitutive in cancer cells (Holthuis et aI. , 1990; Owen et

aI. , 1990; van Wijnen et aI. , 1989). Based on the observed binding of HiNF-D to

wildtype (F0108) and mutant Site IT sequences (van Wijnen et aI. , 1992),

approximately half of the human histone H4 genes are predicted to bind HiNF"D 

(Fig. 1-6).

In addition to histone H4 , HiNF-D also interacts with the promoters of

histones H3 (- 139 to -67) and Hl (-213 to -92) (Owen et aI. , 1990; van den Ent et aI.

1994; van Wijnen et aI. , 1991c; van Wijnen et aI. , 1996). In contrast to histone H4

HiNF-D binding to the H3 and Hl promoters requires sequences of both the

analogous Site I and Site II. Occupation of the H 1 , H3 and H4 promoters by HiNF- D

was observed in vitro by DNaseI footprinting and dimethyl sulfate (DMS)

fingerprinting using electro-eluted HiNF-DIDNA complexes (van den Ent et aI.

1994; van Wijnen et aI. , 1991c; van Wijnen et aI. , 1991d). HiNF-D binding to the H3

and Hl genes occurs in proliferating but not differentiated cells , and is cell cycle-

regulated in normal diploid cells but not in tumor cells. Thus through its interaction

with the promoters of multiple histone gene classes , HiNF-D may be involved in the

coordinate regulation of these genes during the cell cycle.



Gene Aeeession#
H4/n M16707 egettte
H4/a X60481 gctttte
H4/b X60482 aaetgat
H4/c M60749 ecaatte
H4/d X60483 tctttca
H4/e X60484 tctttca
H4/f X60485 tgttttt
H4/g X60486 eteatgt
H4/h X60487 egettte
H4/i X67081 egettte
H4/j Z80787 egtttte
H4/k X83548 tgtggag
H4/1 Z80788 gtettte
H4/m AB000905 etettce

* ** ***

H4 coding
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FIG 1-6. Observed or predicted HiNF-D binding to different histone H4 genes.
Site II of the human histone H4/n (F0108) gene has high sequence similarity to other histone H4 genes in humans
and mice. The asterisks above the, sequence indicate methylation-protected protein/DNA contacts for the F0108

gene (173). Based on, mutagenesis studies of Site II sequences (van Wijnen et aI. , 1992), HiNF-D is predicted to

bind to nearly half of the histone H4 genes in humans. Observed (bold font) and predicted (regular font) HiNF-

binding activities are indicated in the right column. The relative binding strength of HiNF-D is reflected by the number

of plus signs. mH4 sequences represent murine histone H4 genes (vander Meijden et aI. , 1998).



Three observations implicate HiNF-D as a transcriptional activator. First

HiNF-D contributes to transcriptional activation of histone H4 when the HiNF-

binding site has been mutated or when HiNF-M is absent in the cell (Aziz et aI.

1998b). Second , HiNF-D activity is correlated with histone H4 mRNA levels in

several mouse tissues: high levels are present in adult spleen and thymus , and fetal

liver; and low levels are observed in adult liver (van Wijnen et aI. , 1991a). Lastly; in

HeLa cell lines containing stably integrated histone H4 promoter fused to a

chloramphenicol acetyl transferase (CAT) reporter gene, mutations that abrogate

HiNF-D interaction with Site IT cause a delay both in transcriptional upregulation and

downregulation of the histone H4 gene by two hours (Aziz et aI. , 1998a). Therefore

HiNF-D may also act as a suppressor of histone H4 gene transcription. Forced

expression of CDP/Cux, the DNA-binding subunit of HiNF- , results in

transcriptional repression (van Wijnen et aI. , 1996). Using EMSA , as well as

methylation interference and DNaseI footprinting analyses , CDP/Cux was identified

as the factor that interacts with three transcriptional suppressor elements at Site V (-

10 to +210) in the coding region of the histone H4 F0108 gene (Last et aI. , 1998). In

addition , maximal HiNF-D interaction with Site II and Site V occurs in mid to late S

phase , when histone gene transcription is downregulated (Last et aI. , 1998; Shakoori

et aI. , 1995; van Wijnen et aI. , 1997). Although many observations support a role for

CDP/Cux in the regulation of histone gene expression, the molecular mechanisms that

mediate this regulatory function is poorly understood.
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CDP/Cux

Human CCAA T Displacement Protein (CDP)/Cux is encoded by the 
Cutll

(Cut-like 1) gene , a candidate tumor suppressor gene located on chromosome 7, at

band 22 , a region that is often deleted in several cancers (Ishwad et aI. , 1997; Zeng et

aI., 1997; Zeng et aI. , 1999). Cutl1 spans at least 340 kb and consists of 33 exons. At

least six isoforms are generated as a result of alternative transcription initiation

splicing and polyadenylation (Fig. 1-7). Human CDP is a homolog of the Drosophila

homeodomain protein Cut, canine Clox, murineCux-1 and rat CDP2. CDP/Cux is

expressed in many cell lines and tissues (Nepveu , 2001; Neufeld et aI. , 1992).

, CDP/Cux contains five evolutionarily conserved domains: the coiled-coil domain

, ,

which is a motif that mediates protein-protein interaction , and four DNA binding

domains (Cut Repeat 1 (CR1), CR2 , CR3 and the homeodomain (HD)) (Fig. 1-7).

Individual Cut Repeats cannot bind to DNA as a monomer; however several

combinations of domains (CRl +CR2 , CR3+HD , CRl +HD , and CR2+HD) are able to

bind DNA with a high affnity (Moon et aI. , 2000). Acetylation by PCAF or

phosphorylation by protein kinase C , casein kinase II or cyclin AICDK complexes

results in decreased DNA binding activity ofCDP/Cux (Table 1-3) (Coqueret et aI.

1996; Coqueret et aI. , 1998c; Coqueret et aI. , 1998a; Li et aI. , 2000; Santaguida et aI.

2001).

Forced expression of CDP/Cux results in the repression of multiple genes

(Table 1-4) (Nepveu , 2001), including histone H4 F0108 (van Wijnen et aI. , 1996).

In addition to histone genes, CDP/Cuxhas been shown to regulate the expression of



CDP/Cux

Full-length

p75

CASP

CR2-Cterm

FIG 1-7. Diagram of CDP , its isoforms and evolutionarily conserved domains. Full-length

COP/Cux contains a coiled-coil domain (CC), three Cut repeats (CR1 , CR2, CR3), a
homeodomain (HO), and two repressor (R) domains. Isoforms 1 , 2, 3 , COP p75, and COP

alternatively spliced product (CASP) result from alternative transcription, splicing and
polyadenylation. COP/Cux (CR2-Cterm) is a product of S phase-specific protease cleavage
and COP p75 results from transcription initiation within intron 20. CASP contains the CC and a

terminus unique to this isoform. This figure was adapted from Zeng et aI. , 2000.



Table 1-3: Post-translational modifcations of CDP/Cux

Interactor Interacting *Interaction Enzyme CDP/Cux DNA

(Region) CDP Region substrate binding

HDAC- CR3-Cterminus in vitro

CBP In VlVO

terminus in vitro

(1-786)
PCAF in vitro Region between - decreased

CR3 and HD

CKII Ser lOO (CR1) decreased
Ser789 (CR2)
Ser972 (CR3)

..-

PKC Thr415(CR1) decreased
Thr804 (CR2)
Ser987 (CR3)

CyclinAlCDKl in vivo AICDKl ?TI Ser 1'1/U decreased
(CR3-HD)

CyclinAlCDKl HD plus in vitro
CyclinAlCDK2 cy motif in vitro
Cdc25A in vitro Cdc25A CR3HD increased

in vivo phosphatase
Large T In VlVO

antigen

* Interactions described as in vivo were detected by co-immunoprecipitation assays.
Casein kinase II (CKII); Protein kinase C(PKC); not determined (ND)
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Table 1-4. Target Genes of CDP/Cux

recursor cells

Rat tyrosine hydroxylase

* Adapted from Nepveu , 2001.

Function s

Cellular oxygenation

Cellular oxygenation

Neural cell adhesion molecule

Serotonin neurotransmitter
bios nthesis

Catecholamine
neurotransmitter bios nthesis

Bile acid biosynthesis

Bone develo ment

Ion trans ort e ithelial cells

Immune function

Immune function

Immune function

Immune function

Immune function

Immune function

Immune function

Immune function

Growth inhibition
E itheliallesions
Mamma carcinomas

CDP/Cut
Proliferation

Proliferation
Proliferation

Proliferation
Proliferation

Proliferation
Proliferation

Proliferation



genes involved in proliferation including p21 Cipl 
and c-myc (Coqueret et aI. , 1998a;

Dufort and Nepveu , 1994). Furthermore , promoter activity of genes involved in

differentiation such as osteocalcin and the phagocyte-specific gene gp91-phox have

also been shown to be regulated by CDP/Cux , in complex with cyclin A and pRB-

related p107 (van Gurp et aI. , 1999; van Wijnen et aI. , 1996). CDP/Cux represses the

promoter activity of many genes that have immune functions, and has been shown to

interact with the matrix attachment regions of several genes, including the 
CD8a

(Banan et aI. , 1997) . and T cell receptorfJ genes (Chattopadhyay et aI. , 1998). Many

of the identified target genes of CDP/Cux are repressed in proliferating precursor

cells and are turned on as cells undergo terminal differentiation. Consistent with its

proposed role as a transcriptional repressor, CDP/Cux binding to these genes is

maximal in proliferating cells and is significantly decreased in differentiated cells.

Transcriptional repression by CDP/Cux is mediated by two mechanisms:

displacement of activators through competition for occupancy of a binding site

(Barberis et aI. , 1987; Skalnik et aI. , 1991); and active repression by two repressor

domains in the C-terminus , perhaps through direct recruitment of HDAC- l (Li et aI.

2000, Maily et aI. , 1996).

In addition to gene repression, CDP/Cux has also been observed to activate

several genes: rat tyrosine hydroxylase gene (Yoon and Chikaraishi , 1994), and S

phase-specific genes DNA polymerase-a (pol- a), dihydrofolate reductase (DHFR),

carbamoyl-phosphate synthase-aspartate carbamoyltransferase-dihydroorotase

(CAD), and cyclin A gene (Goulet et aI., 2002; Moon et aI. , 2001; Truscott et aI.

2003). CDP/Cux activates the tyrosine hydroxylase 
gene by enhancing the binding of



ITF2 to the gene promoter and both transcription factors are required for gene

activation. CDP/Cux interacts with the pol- gene in vivo and forced expression of

CDP/Cux activates endogenous pol-a gene expression. Taken together these

observations suggest that CDP/Cux may be a bifunctional regulator of cell growth

and tissue-specific gene expression.

CDP/Cux has been implicated in the reguiation of histone gene expression.

Interaction between histone promoters and CDP!Cux was originally demonstrated

with histone H2B from sea urchin (Barberis et aI. , 1987). CDP/Cux has since been

found to interact with the promoters of all five classes of his tones genes (Table 1-4):

, human histones HI , H3 and H4 (van den Ent et aI. , 1994; vanWijnen et al: , 1996)'

and Hl , H2A , H2B , H3 and H4 genes in Xenopus (EI-Hodiri and Perry, 1995).

Purified CDP/Cux can interact with chromatin , as reflected by its ability to bind the

histone H4 promoter reconstituted into nucleosome cores (Last et aI. , 1999b).

The research described in this thesis was undertaken to determine how the

proliferation-specific factor, HiNF-D/CDP/Cux , may regulate growth control and

transcription of the replication-dependent histone H4 gene F0108. One objective was

to establish the molecular interactions that can account for the assembly of the HiNF-

D complex and the post-translational modifications that may govern these

interactions. The second goal was to investigate the mechanism(s) involved in

CPP/Cux-mediated repression of histone H4 transcription. The third objective was to

assess the in vivo function of CDP/Cux by characterizing a Cutll mutant mouse.



CHAPTER 2

MATERIALS AND METHODS



Plasmid construction

All oligonucleotides used in this study were synthesized using a Beckman 1000M

synthesizer and all constructs were subjected to automated sequencing (Applied

Biosytems ABI Model 377, Foster City, CA) to verify correct orientation of the

inserted DNA fragments and absence of chemical synthesis-related mutations.

Mammalian expression plasmids for rnyc-epitope tagged CDP proteins were prepared

as follows: DNA fragment (NotIlXhoI) encompassing full-length CDP was isolated

from MT2-CDP (Neufeld et aI. , 1992) and inserted into the NotIl XhoI sites of

pcDNA3. l (Invitrogen , Carh'sbad CA) containing a myc epitope tag (pcMyc). To

place the CDP coding sequence in frame with themyc tag, a l4-basepair

oligonucleotide (5' CGA GCA AGC TTG CT; eliminates the CIaI site upon insertion)

was inserted at a ClaI site near the 5' end of the CDP insert. To clone the myc- tagged

deletion mutant protein CDP (CR2-Cterm) (a 110 kD deletion mutant that

encompasses Cut repeat 2 (CR2) to the C-terminus of CDP), the CDP coding

sequences were isolated as an EcoRIIXhoI fragment from the GST/CDP (CR2-Cterm)

construct (kindly provided by Ells Neufeld , Children s Hospital , Boston), and

inserted into similarly digested pcMyc plasmid. Expression vectors for Xpress-tagged

wildtype and deletion mutant Cux proteins were cloned from pBSTRlICux plasmid

(kindly provided by Dr. Alain Nepveu , McGil University, Montreal , Canada) as

follows: full-length Cux cDNA was excised as a EcoRIIXbaI fragment and inserted

into pcDNA3. l; ~C Cux (aa 1- 1058) was generated by inserting an EcoRV/XhoI

fragment into pcDNA3. 1. Reporter gene assays were performed with the H4/Luc

construct which has been described previously (Xie et aI. , 2001).



Restriction digestion of DNA

In general , restriction digestions were performed as described below with

enzymes and buffers obtained from New England Biotechnology (NEB, Beverly,

MA). In a total volume of 50 Ill , DNA (10 Ilg), lx digestion buffer, and 10-20 units

of restriction enzyme were incubated at 37 C for 3 hours. The enzyme was then heat

inactivated at 65 C for 20 minutes. Digested DNA was precipitated at - C for ten

minutes with 5 volumes of 100% ethanol (250 Ill) and 1110 volume of 3 M sodium

acetate pH 5.2 (5 Ill). The DNA pellet was obtainedby centrifugation at 14 000 rpm

for 30 minutes at 4 C, washed with 70% ethanol , air dried and resuspended in 20 III

ofTE buffer (10 mM Tris-HCl , pH 8.0; 0. 1 mM EDT A).

Digestion

Buffers Composition

Buffer 1 10 mM Bis Tris Propane- HCl, 10 mM MgCh, 1 mM DTT

(pH 7.0 at 25

Buffer 2 10 mM Tris-HCL, 10 mM MgCh, 1 mM DTT , 50 mM NaCI

(pH 7.9 at 25

Buffer 3 ' 50 mM Tris-HCl , 10 mM MgCh, 1 mM DTT , 100 mM NaCI

(pH 7.9 at 25

Buffer 4 20 mM Tris-acetate , 10 mM magnesium acetate , 50 mM potassium acetate

1 mM DTT (pH 7.9 at 25



Dephosphorylation of DNA

The digested pcMyc vector was treated with 20 units of calf intestine alkaline

phosphatase (NEB) for 30 minutes 37 C to prevent vector self-ligation. The

dephosphorylation reaction was performed in the NEB buffer used for digestion as

this enzymes is active all 4 buffer conditions. The enzyme was heat inactivated in the

presence of 3 mMEDTA at 65 Cfor15 minutes.

Gel purifcation of digested DNA fragments

Digested and dephosphorylated plasmid DNA fragments were separated by

agarose gel electrophoresis. The ppropriate bands wer excised and purified usi

the QIAquick gel extraction kit (Qiagen, Valencia, CA) according to the

manufacturer s instructions. In brief, the weight of the gel slice was determined and

three volumes of Buffer QG were added to 1 volume of the gel slice (100 mg is

approximately 100 l). The gel slice was dissolved at 50 C for 10 minutes and then

mixed with one volume of isopropanol. To bind the DNA to the matrix, the

solubilized gel was applied to the QIAquick gel extraction column and centrifuged for

1 minute at 4 000 rpm. The column was washed with 0.5 ml of Buffer QG, followed

by 0.75 m1 of Wash Buffer PE. Residual ethanol from the Buffer PE was removed by

additional centrifugation for 1 minute. The column was then placed in a clean

microfuge tube and DNA was eluted with 30- 50 l of Buffer EB (10 mM Tris-HCl

pH 8.5).



. DNA ligation reactions

The concentration of purified vector and insert DNA (1 III each) was visually

estimated by agarose gel electrophoresis. DNA ligation was performed by incubating

a mixture containing 50 ng of vector, 50 or 150 ng of insert, 2 III T4 DNA ligase

buffer (50 mM Tris-HCl (pH 7.5), 10 mM MgCh, 10 mM DTT , 1 mM ATP

25 mg/ml BSA (NEB)) and 400 Units T4 DNA ligase (NEB) at 22 C overnight.

Bacterial transformations
I ,

Ligated DNA (2 Ill) was mixed with competent HB10l bacterial cells (50 Ill)

and incubated on ice for 10 minutes. Cells were heat shocked at 42 C for 90 seconds

and placed on ice for 5 minutes. Luria-Bertani (LB) (10 glL bacto-tryptone

5 glL bacto-yeast extract, 10 glL NaCl) medium (500 Ill) was added to the cells and

incubated at 37 C for 1 hour with shaking. Cells were then collected by

centrifugation at 4000 rpm for 3 minutes , resuspended in LB (50 Ill), spread on LB

Ampicilin (100 Ilg/ml) (LB-Amp) plates and incubated overnight at 37

Small-scale DNA preparations

Using QIAprep spin miniprep kit (Qiagen), plasmid DNA was isolated from

an overnight LB-Amp culture (5 ml) inoculated with cells from a single colony. Cells

were collected by centrifugation at 2 000 rpm using a low-speed swing-rotor

centrifuge (IEC CRU-5000) (International Equipment Co. , Needham, MA) and

resuspended in 250 III of Buffer Pl (50 mM Tris- , pH 8.0; 10 mM EDTA;



10 g/ml RNase A). Cells were lysed for 5 minutes at room temperature upon

addition of Buffer P2 (250 l; 200 mM NaOH; 1 % SDS). Buffer N3 (350 

contains guanidine hydrochloride to bind the DNA to the silica in the column) was

then added to the cell lysate and the sample was centrifuged for 10 minutes. Using 

vacuum manifold , the plasmid DNA in the supernatant was bound to a QIAquick spin

column, washed with 0.5 ml of buffer PB (a wash buffer that contains guanidine

hydrochloride and isopropanol) and 0.75 ml of Buffer PE (a low salt buffer

containing 80% ethanol). The column was centrifuged for 1 minute at 14 000 rpm to

remove the residual ethanol. The 'DNA was then eluted in a new tube with 50 l of

Buffer EB (10 mM Tris-HCl , pH 8.5).

Large-scale DNA preparations

A small culture (5 ml) inoculated with cells from a single colony was grown

in LB-Amp for 5-8 hours at 37 C in a shakng incubator. This culture was then used

to inoculate 300 ml of LB-Amp and incubated overnight at 37 C in a shaking

incubator. The bacterial cells were centrifuged in a Beckman JA- lO rotor (Beckman

Instruments Inc. , Fullerton , CA) at 5 000 rpm for 10 minutes. Plasmid DNA was

extracted using the Qiagen QIAfilter Maxiprep kit. Cells were resuspended in 10 ml

of Buffer Pl , which contains RNase A, and lysed with Buffer P2 (10 ml) for 5

minutes at room temperature. The cell debris was precipitated with 10 ml of Buffer

P3 (3.0 M potassium acetate , pH 5.5) at room temperature for 30 minutes. Using the

QIAfilter, the supernatant was separated from the precipitate and loaded onto the tip-

500 column , which was equilibrated with 10 ml of Buffer QBT (750 mM NaCl;



50 mM MOPS , pH 7.0; 15% isopropanol; 0. 15% Triton X- 100). The column was

washed 3 times with Buffer QC (1.0 NaCl; 50 mM MOPS , pH 7.0; 15% isopropanol)

and DNA was eluted with 15 ml of Buffer QF (1.25 M NaCl; 50 mM Tris-Cl pJI 8.

15% isopropanol) in a 50 ml corex tube. The eluted DNA was precipitated with

isopropanol (10.5 ml) and centrifuged at 10 000 rpm for 45 minutes at 4 C. ,The

DNA pellet was washed with 5 ml of 70% ethanol and centrifuged at 10 000 rpm for

10 minutes. The DNA pellet was air dried and resuspended in 500 j.l of TE, pH 8.

Preparation of genomic DNA from mice

Genomic DNA was isolated from tail biopsies (0.4 em) using the Qiagen 

DNeasy Tissue Kit, according to the manufacturer s instructions. Each tail was

digested in a mixture containing Buffer ATL (180 j.l) and proteinase K (20 j.l)

overnight at 55 C in a hybridization oven. A Buffer AL-ethanol (1:1) mixture was

added and vortexed for 5 seconds. The mixture was then pi petted into the DNeasy

mini column and centrifuged at 8 000 rpm for 1 minute. The column was placed in a

new 2-ml collection tube and washed with Buffer AWl (500 j.l) followed by wash

Buffer A W2 (500 j.l). Residual ethanol present in the wash buffers was removed by

an additional 3-minute centrifugation at 12 000 rpm. DNA was then eluted with

Buffer AE (200 j.l) into a 1.5-ml microfuge tube and the DNA concentration was

calculated from the absorbance of the eluted DNA at 260 nm, which was measured

using the Beckman spectrophotometer.



Cell culture

All cell lines used in this study were propagated according to culture

conditions suggested by the American Type Culture Collection (Manassas , V A;

http://www.atcc.org). In brief, actively proliferating cultures of mouse embryonic

fibroblasts (MEFs), NIH/3T3 , HeLa, and COS 7 cells were maintained at

sub confluence in Dulbecco s modified Eagle s medium (DMEM), supplemented with

10% fetal calf serum, 100 units/ml penicilin, 100 Jlg/ml streptomycin , and

2 JlM L-glutamine , at 37 C in humidified air containing 5% C02.

HeLa cells are HPV - 18 transformed human cervical carcinoma epithelial cells

that express wild type pRB (Schiffner et aI. , 1991), but 'expression of the HPv-

derived E7 protein alters the cell growth regulatory functions of the pRB protein

(Chellappan et aI. , 1992). COS-7 cells are SV40 transformed monkey kidney

fibroblasts that express wild-type SV 40 T antigen , which is known to interact with

endogenous pRB and alter its function (Hamel et aI. , 1990). NIH3T3 cells are

derived from mouse embryo cultures , have relatively normal cell growth

characteristics and express endogenous pRB (Banks et aI. , 1990). Apar from

differences in pRB status, HeLa, COS-7 and NIH3T3 cells all contain CDP/Cux

binding activity as reflected by detection of the CDP/Cux-containing HiNF-

complex (van der Meijden et aI. , 1998; van Wijnen et aI., 1996).

Preparation of mouse embryonic fibroblasts (MEFs)

Embryos were harvested from pregnant mothers that were at day 12.5 of

gestation. A par of the embryo was removed for genotyping. The remainder of the
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embryo was passed through an l8-gauge needle with 1 ml of Trypsin-EDT A (Life

Technologies, Rockvile , MD) to break up the tissue and incubated for 5 to 10

minutes at 37 C in a C02 incubator. Primary fibroblasts were then plated with 20 ml

complete DMEM (10% FBS). The growth rates were determined by plating MEFs

derived from the same litter at a density of 4xl06 cells per plate (100 mm). On the

indicated days, MEFs were trypsinized and the number of cells per plate was

determined by sampling each plate 4 times. Cells were loaded onto a hemocytometer

and cells in each of the two center squares were counted.

, Flow cytometry analysis

Proliferating MEFs were 'harested for flow cytometry analysis with Trypsin-

EDT A , washed 3 times with PBS , and stained with a propidium iodide solution (2

mM MgCh, 20 glml propidium iodide, 50 g/ml RNase). Cell cycle phase estimates

were obtained with a FACS Scan Cytometer equipped with pulse processing

electronics (Becton Dickinson , San Diego , CA). For each sample, 15 000 doublet

discrimination events were collected and analyzed using MODFIT software (Verity

House Software , Topsham, Maine). Flow cytometry analysis was performed by the

Flow Cytometry Facility at the University of Massachusetts Medical Center. The data

were subsequently analyzed by Dr. Stephen Baker (Information Services at UMass)

using the Tukey HSD statistical test.



Cell transfection

To determine histone H4 promoter activity, NIH3T3 cells were plated in

6-well culture plates at a density of1.5 x 105 cells per well and were transiently

transfected 22 hr after plating. To measure H4 gene promoter activity, H4

promoterlLuciferase (Luc) reporter gene construct (1 !!g) and a promoterless

luciferase reporter construct (pGL2)(1 !!g) were cotransfected with different

amounts of expression vectors as indicated in the figure legends.

Transfection of COS- , NIH/3T3 and HeLa cells was performed as

follows: cells were washed twice with phosphate buffered saline (PBS) and

transfected with DNA using the lipid-based compound Superfect (Qiagen Inc

Valencia, CA) according to the manufacturer s instructions. Briefly, DNA was

diluted in 1 ml of serum free medium. Superfect (7 Ill) was then added to this

mixture. The mixture was incubated at room temperature for 15 minutes to allow

, the formation of lipid-DNA complexes. The lipid-DNA mixture was then diluted

with 5 ml of complete medium and 1 ml was added to each of the wells of a six

well plate, which were washed twice with PBS. Cells were incubated with

transfection mixture at 37 C in 5% C02 for 2 to 3 hours. The transfection mixture

was aspirated and cells were washed once with PBS and then incubated at 37 C in

DMEM medium supplemented with 10% fetal calf serum for 22-24 hours. For

immunoprecipitation and GST pull-down assays , cells were plated in 100 mm

plates at a density of 0.5X10 cells per plate. Cells were transfected with 10 Ilg 

different expression constructs essentially as described above.



Luciferase assays

Reporter gene activity was measured by luciferase assays. Cells were washed

twice with 1 x PBS buffer and lysed with 250 f!l of Reporter Lysis Buffer (PrOIpega

Corp. , Madison , WI) at room temperature for 10 minutes. Celllysates were collected

and used immediately for reporter gene assay or stored at - C. Luciferase activity

was determined using the luciferaseassay system (Promega Corp. , Madison , WI).

Cell lysate (10 f!l) was mixed with luciferase reagent (100 f!l) containing substrate for

firefly luciferase and luminescence was determined for 12 seconds using the Monolite

TM 2010 luminometer (Analytical Laboratory, San Diego, CA).

Extraction of protein from organs

Mice were anesthetized with isoflurane (Abbott Laboratories , North Chicago,

IL) and euthanized by cervical dislocation. Lung and brain tissues were harvested

from adult mice , rapidly frozen and reduced to powder in liquid nitrogen by a

Bessman tissue pulverizer (Fischer Scientific , Pittsburgh, P A). The tissue powder was

transferred to a 50 ml conical tube and thawed on ice with 30 rn ice-cold buffer R

(10 mM KCl , 10 mM HEPES/pH7. , 0.5% Triton , 300 mM sucrose , 3 mM MgCh).

The suspension was then passed through a Sweeny filter (Millpore , Bedford, MA) to

separate released cells from the extracellular matrix. Cells were centrifuged at 1 500

rpm using a low-speed swing-rotor centrifuge. To prepare whole cell extract, the cell

pellet was resuspended in 200 III RlPA buffer (1x PBS , 1 % Nonidet P-

5% sodium deoxycholate , and 0. 1 % SDS), and centrifuged at 15 000 rpm for 20

minutes at 4 C. The supernatant was rapidly frozen in liquid N in 25 III aliquots and



stored at - C as whole cell lysate. To prepare nuclear extract, the cell pellet was

resuspended in 1 ml Buffer A (10 mM HEPESI pH 7. , 10 mM KCl), transferred to a

5 ml tube and centrifuged at 6 000 rpm for 1 minute. The nuclear pellets were

extracted with 300-600 III Buffer C (400 mM KCl , 25 mM HEPES/pH 7. , 25 %

glycerol) for 30 minutes on ice and rapidly frozen in 50 III aliquots. All buffers used

were supplemented with Complete protease inhibitor cocktail (Roche Molecular

Biochemicals , Indianapolis, IN).

Preparation of nuclear extract. 

Nuclear extracts were prepared by a modified Dignam method (Dignam et'

, 1983). HeLa cells and mouse embryonic fibroblasts were plated in 100 mm

plates at a density of 0.5x10 . Cells were collected at 70% confluence by washing

twice with ice-cold PBS. The whole isolation procedure was carried out on ice.

Cells were scraped , transferred to an Eppendorf tube and microfuged at full speed

for 30 seconds at 4 C. Cells were gently resuspended in 400 III of NP-40 lysis

buffer (10 mM Tris (pH 7.4), 3 mM MgCI2 , 10 mM NaCl , 0.5% Nonidet P-

(NP-40)) supplemented with Complete protease inhibitor cocktail and incubated on

ice for 20 minutes. Cell lysate was microfuged at 7000 rpm for 5 minutes at 4

and the pellet was resuspended in 400 III of hypotonic buffer (10 mM N-

hydroxyethylpiperazine- 2-ethanesulfonic acid (HEPES) (pH 7.9), 1.5 mM

MgCI2 , 10 mM KCl). Nuclei were collected by centrifugation at 10 000 rpm for 2

minutes. Supernatant containing the cytosolic portion was discarded and the pellet

was extracted in 100 III of extraction buffer (20 mM HEPES (pH 7.9), 1.5 mM



MgCI2 , 420 mM KCl , 0.2 mM EDT A, 20% glycerol) for 1 hour with end-to-end

rotation. The extracted nuclei were microfuged at full speed for 5 minutes at 4 C. '

Aliquots (20 iii) of the supernatant (nuclear extracts) were immediately frozen in

liquid nitrogen and stored at - C until further use. Protein concentration of

nuclear extracts was determined by Bradford assay.

Nuclear extract (420 mM KCl) from proliferating HeLa cells was loaded onto

a phospho-cellulose column and eluted with a KCl 200-400 mM buffer as described

previously (van Wijnen et aI. , 1992; Vaughan et aI. , 1995). This KCl fraction

(3 l), enriched for HiNF-D activity, was diluted 1 fold with Buffer X (18.2 mM

, dibasic sodium phosphate, 3.4 mM monobasic sodium phosphate , 2% Nonidet P-

1 % sodium deoxycholate and 0.2% SDS) and used in GST pull-down assays to

examine the interactions between HiNF- D components.

Preparation of whole cell lysate

Transiently transfected HeLa cells expressing wild type pRB , large pocket

(LP) pRB and mutant large pocket (mLP) pRB were harvested 22 hpost transfection.

Cells were lysed with RIP A buffer (lx PBS, 1 % Nonidet P- , 0.5% sodium

deoxycholate , and 0. 1 % SDS) supplemented with Complete protease inhibitor

cocktail , quickly frozen in liquid nitrogen and rapidly thawed at 37 C. The lysate was

microfuged at 12 000 rpm for 15 minutes at 4 C and the supernatant was used for

GST pull-down assays.



Preparation of in vitro translated protein

In vitro translated proteins were prepared as follows: the expression constructs

pcDNA pRB AI and CMV cyclin A were subjected to coupled in vitro transcription

and translation with S) methionine in rabbit reticulocyte lysate according to the

manufacturer s instructions (Promega, Madison , WI). The reaction mixture contained

RNasin ribonuclease inhibitor (30 units) (Pro mega , Madison , WI), TnT reaction'-

buffer (2 Ill), TnT amino acid mixture minus methionine (1 Ili), expression plasmid

(1.2 Ilg), TnT rabbit reticulocyte lysate (25 Ill), TnT T7 RNA polymerase (1 Ill) and

labeled L-methionine (1 mM or 15 IlCi) (Sigma, St. Louis , MO). The appropriate

amount of nuc1ease-freedouble-ctistiled water (dd water) was added to bring the total

reaction volume to 60 Ill. The reaction mixture was briefly vortexed then microfuged

for 5 seconds at 12 000 rpm. Following a 2-hour incubation at 30 , glycerol (20 Ill)

and buffer X (80 Ill) were added to the lysate. In vitro translated cyclin A

(60 Ill/reaction) or pRB AI pocket (37 Ill/reaction) were then used in GST pull-

down assays.

GST pull down assays

Preparation and transformation of competent BL21 bacterial cells

An overnight culture (500 Ill) inoculated with cells from a single colony was

diluted in LB-Amp (10 ml) medium. The optical density of the culture at 600 nm was

measured intermittently using a spectrophotometer (Beckman Instruments , Fullerton,

CA). When the optical density of the culture reached 0. , the exponentially growing

cells were centrifuged for 5 minutes at 2000 rpm using a low-speed swing-rotor



centrifuge. The supernatant was poured off and the cell pellet was resuspended with

1 M ice cold CaCh (5 ml). The cells were incubated on ice for one hour

centrifuged 5 minutes at 2000 rpm, resuspended in 0. 1 M CaCh (1 ml) and again

incubated on ice for another 2 hours. Cells (200 ml) were then transformed with

plasmids (100 ng) that express the ampicilin resistance gene and the glutathione-

transferase.(GST) gene or GST fused toCDP/Cux (CR2-Cterm). Cells were

incubated on ice for 30 minutes , heat shocked at 42 C for 90 seconds and plated on

LB-Amp plates.

Purifcation of GST proteins

An overnight culture (1 ml) inoculated with a single transformed colony was

diluted with LB-Amp (100 ml) and incubated with vigorous shaking at 37 C until the

optical density (at 595 nm) of the culture reached 0.7. Cells were induced to express

GST proteins by incubation with isopropyl-beta- thiogalactoside (IPTG; 0. 1 mM)

for 5 hours, and centrifuged for 5 minutes at 2000 rpm. The supernatant was poured

off and the cell pellet was resuspended with ice cold Buffer A (5 ml) supplemented

with the Complete protease inhibitor cocktail and dithiothreitol (DTT; 1 mM). Using

the sonic dismembrator (Fisher Scientific , Pittsburgh, P A), cell lysis was achieved by

sonicating cells three times for 15 seconds. The sample was centrifuged at

000 rpm for 10 minutes at 4 C. The supernatant was incubated with glutathione-

Sepharose beads (500 J.l; Amersham Pharmacia Biotech; Uppsala, Sweden) pre-

washed with ice cold Buffer A (5 ml) on a stirring wheel at 4 C for 3 hours. Beads

were washed 3 times with Buffer A (5 ml) and 2 times with Buffer A' (10 mM



HEPES/ pH 7. , 0. 1 M NaCl). After the last wash, beads were resuspended in Buffer

A' (500 l). To determine the concentration of the GST proteins bound to the beads

samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) (see below) along with bovine serum albumin (BSA), which served as a

pre-calibrated protein concentration standard. Proteins were visualized with GelCode

Blue Stain Reagent (Pierce , Rockford, IL) and a gel documentation system (Alpha

Imager; Alpha Innotech Corp. , San Gabriel , CA) was used to measure the intensity of

the protein bands.

GST pull-down assay

GST pull-down assays were performed using a GST moiety fused to

CDP/Cux (CR2-Cterm) protein. The resins containing the bound GST or GST-

CDP/Cux (CR2 Cterm) fusion proteins were each incubated with endogenous

over-expressed or in vitro translated 1abeled proteins. Protein preparations

were precleared with glutathione- Sepharose beads prior to incubation with 2 Jlg 

GST or GST-CDP (CR2-Cterm) at 4 C for 16 hours. Beads were then centrifuged

and washed three times with wash buffer (10 mM Tris-HCl/ pH8 , 50 mM NaCl

2 mM EDT AI pH8 and 0.2% NP-40). Bound proteins were resuspended in 2X

Laemmli gel loading buffer (62.5 mM Tris-HCl/ pH 6. , 10% glycerol , 2% SDS

2% -mercaptoethanol , and bromophenol blue), separated by SDS-PAGE and

analyzed by western blot. Gels containing 1abeled samples were dried under

vacuum at 80 C for 1 hour and subjected to autoradiography.



Co- immunoprecipitation assays

COS-7 and HeLa cells were transfected with expression constructs for pRB

and/or Myc-tagged CDP proteins. Thirty hours after transfection , cells were wa,shed,

scraped and solubilized in RIP A buffer (lx PBS , 1 % Nonidet P- , 0.5% sodium

deoxycholate , and 0. 1 % SDS). After 20 minutes on ice , the celllysates were

centrifuged and supernatants were pre-cleared for 30 minutes at 4 C. The supernatant

was then incubated overnight with anti-pRB antibody or anti-Myc antibody (to

immunoprecipitate CDP) at 4 , followed by incubation with protein NG Plus-

Sepharose beads (40 jll)for 1 hour at 4 C. The beads were washed four times with

the wash buffer. The immune complexes were then eluted by boiling for 5 'minutes' in

Laemmli gel loading buffer, subjected to SDS-P AGE and analyzed by western 'blot.

SDS-PAGE and western blot analysis

Celllysates or immunoprecipitated complexes were subjected to SDS-P AGE

and western blotting as follows: to prepare two mini-gels for Mini-PROTEAN II

electrophoresis system (BIORAD Laboratories, Hercules , CA) the appropriate

amount of Proto Gel (29.5% acrylamide: 0.5% bis-acrylamide), Proto Gel buffer (1.5M

Tris-HCl pH 8. , 10% SDS) and deionized water were mixed and polymerized in the

presence of 0. 1 % ammonium persulphate (APS) and 

tetramethylethylenediamine (TEMED). This mixture of resolving gel was poured into

the pre-assembled Mini-PROTEAN II apparatus. After the resolving gel was

polymerized , stacking gel (for 5ml: 0.65 ml ProtoGel, 1.25 ml ProtoGel stacking

buffer (lM Tris-HCl pH 6. , 10% SDS), 3 ml of deionized water, 0. 1 % APS and



r .

TEMED) was prepared and a comb with desired number of wells was inserted

avoiding any bubbles. After the stacking gel was polymerized , the comb was

removed, wells were thoroughly washed with deionized water and the assembly was

placed in a Mini-PROTEAN II gel running chamber. The samples were loaded onto

gels and resolved in lX SDS-PAGE running buffer (200 mM glycine , 25 mM Tris-

HCl pH7.4 , 1 % SDS) under an electric field of 100 V for 1-2 hours. Gels were then

subjected to protein transfer onto an immobilized nylon membrane (1J1r.obilin-

(Millpore Corp. , Bedford , MA)J using a semi-dry transfer apparatus (Owl Separation

Systems , Portsmouth , NH). For transfer, gels were rinsed in western blotting transfer

buffer 1 (48 mM Tris-HCl pH 7.4 , 40 mM glycine, 3.75% SDS , 20% methanol) and

placed onto Whatmann 3MM filter paper pre-soaked in transfer buffer. Then the

membrane was placed onto the gel avoiding any bubble. Another 3MM Whatmann

filter paper, pre-soaked in the transfer buffer was placed onto the membrane and

proteins were transferred from gel to membrane under constant current of 10V for 30

minutes. For analysis of full-length CDP/Cux protein , blotting transfer buffer 2

(48 mM Tris-HCl pH 7.4 , 40 mM glycine , 0. 1 % SDS) was used.

After transfer, membrane was blocked with 5% skim milk in PBS at room

temperature for 30 minutes. The membrane was incubated overnight with appropriate

dilution of primary antibody in PBS containing 1 % skim milk (Bio-Rad, Hercules

CA) and 0.05% Triton-X 100 (Sigma-Aldrich , St. Louis , MO) at 4 C with shaking.

Membrane was extensively washed with PBST (PBS containing 0.05% Triton-X 100)

and incubated with 1 :5000 dilution of appropriate secondary antibody conjugated

with horseradish peroxidase enzyme at room temperature for one hour with shaking.



After extensively washing the membrane with PBST, proteins were detected by

incubating membranes for 1 minute with substrate for peroxidase enzyme (ECL

western blotting detection reagent; Amersham-Pharmacia Biotech Inc. , Piscataway,

NJ). Membrane was then exposed to an autoradiographic film for varying time points

and film was developed in an X-ray developer.

Antibodies

Antibodies were purchased from Santa Cruz (Santa Cruz Biotechnology Inc.

Santa Cruz , CA) unless otherwise mentioned. Diffe:rent antibodies and their dilutions

, used for various applications throughout this study are as follows (IF:

immunofluorescence; WB: western blot analysis; IP: immunoprecipitation; EMSA):

Primary antibody Application (dilution) Company

mouse monoclonal anti- IF (1:3000) Santa Cruz

mouse monoclonal anti- Xpress IF (1 :500) Invitrogen Corp.

Carlsbad , CA

mouse monoclonal anti-Myc IF (1 :2000) Zymed Laboratories

(clone 9ElO) WB (1:5000) San Francisco , CA

IP (6 Jlg)

rat monoclonal anti-BrUTP IF (1 :20) Harlan Sera Laboratories

Leicestershire England

mouse monoclonal anti-coilin IF (1: 100) Smith et ai. , 1995

mouse monoclonal anti-PML IF (1:1000) Santa Cruz



anti-HiNF- IF (1:100) Santa Cruz

rabbit polyclonal anti-Spl IF (1:100) Santa Cruz

WB (1:1000)

guinea pig polyclonal anti-CDP IF (1:100) Dr. Ells Neufeld

(epitope = full-length CDP) WB (1:1000) Children s Hospital

EMSA (0. jlg) Boston , MA

goat polyclonal anti-CDP WB (1:1000) Santa Cruz

(epitope =C-terminus)

rabbit polyclonal anti-CASP IF (1: 100) Dr. Ellis Neufeld

mouse monclonal anti-pRB IF (1:100) Santa Cruz

(epitope = full-length pRB) WB (1 :200)

pRB IF8" IP (6 /lg)

mouse monclonaJ anti-pRB IF (1: 100) BD Biosciences Pharmingen

(epitope = aa 300-380) San Diego , CA

pRB C36"

mouse monclonal anti-pRB WB (1:100) BD Biosciences Pharmingen

(epitope = aa 393-572) San Diego , CA

pRB XZ104"

rabbit polyclonal anti-pl07 WB (1:1000) Santa Cruz

rabbit polyclonal anti-Cdk2 WB (1:5000) Santa Cruz

mouse monoclonal anti-CDKl WB (1:1000) Santa Cruz

IF (1:100)



mouse monoclonal anti-cyclinA WB (1:1000) Santa Cruz

IF (1:100)

rabbit polyclonal anti-cyclin E EMSA (0. jlg) Santa Cruz

H0rseradish peroxidase conjugated secondary antibodies for western blot

analysis were used at a dilution of :5000. For immunofluorescence, either Alexa 488

or Alexa 568 secondary antibodies (Molecular Probes, Eugene , OR) were used ata

di)ution of 1 :200 or 1 :400 , respectively To detect rat monoclonal antibody raised

, , against BrUTP , a donkey anti rat secondary antibody conjugated with Texas-Red

fluorochrome was used at a dilution of 1: 100 (Molecular Probes , Eugene , OR).

Immunofluorescence microscopy

Cells were grown on gelatin-coated cover slips (Fisher Scientific , Springfield

NJ) at a density of 0.08X10 cells per well (35 mm). For whole cell preparations , cells

were rinsed twice with ice-cold PBS and fixed in 3.7% formaldehyde in PBS for 10

minutes on ice. After rinsing twice with PBS , the cells were permeabilized in 0. 1 %

Triton X- 100 in PBS , and rinsed twice with PBSA (0.5% bovine serum albumin

(BSA) in PBS) followed by antibody staining. Antibody staining was performed by

incubating whole cell preparations with appropriate dilutions of antibodies against the

proteins of interest for 1 hr at 37 C. Covers lips were rinsed 4 times with PBSA before

incubation with secondary antibodies for 1 hr at 37 C. Cells were rinsed 4 times with

PBSA and then stained with 4' , 6-diamidino- phenylindo1e (DAPI) in PBSA
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containing 0. 1 % Triton X- 100 (PBSAT) for 5 minutes. Coverslips were washed once

with PBSA T and twice with PBS. Coverslips were then mounted onto glass slides

with Vecta Shield (Vector Laboratories , Burlingame , CA) or ProLong Antifade Kit

(Molecular Probes Inc. , Eugene , OR). Imunofluorescent signals were detected using

an epifluorescence microscope attached to a charged-coupled device (CCD)-camera

or the Leica True Confocal Scanning Spectrophotometer. The images were-captured

and analyzed with theMetamorph and Adobe Photoshop software programs.

Statistical image analysis was performed using the MA TLAB image processing

toolbox (Mathworks Inc. , Natick MA). Cross-correlation , which measures the. degree

of signal overlap between two images , was calculated essentially as described (van

Steensel et aI. , 1996). Here the correlation is expressed as the average percent

colocalization of several image pairs. To determine that the observed correlation is

not due to random signal overlap, one image from each image pair was rotated ten

degrees and the cross-correlation was calculated. If the observed colocalization were

random, rotation of the image would not change the degree of signal overlap.

Differences between rotated and unrotated cross-correlation values were assessed by

two-tailed paired student's t-test.



Electrophoretic mobilty shift assay (EMSA)

EMSA was performed to test for HiNF-D DNA binding activity (van Wijnen

et aI. , 1991b). The histone H4/Site II and gp9l-phox probes were EcoRI-HindIII

inserts from plasmids pFP202 and pFp-Puc , respectively. The Spl probe synthesized

using a Beckman 1000M synthesizer is the consensus binding sequence

(5' A TTCGA TCGGGGCGGGGCGAGC-3J,

. End-labeling of the H4 and gp91-phox probesI I I ,
Plasmids (100 J.g) pFP202 and pFp-Puc were digested with EcoRI (200

units) for 2 hours at 37 C, and dephosphorylated by calf intestinal phosphatase as

described above. Phenol/chloroform extraction was performed by combining the

DNA mixture with 200 J.l of a solution containing phenol , chloroform and isoamyl

alcohol (25:24: 1). Following a 3-minute centrifugation at 12 000 rpm, DNA in the

supernatant fraction was precipitated with ethanol and sodium acetate as described

above and resuspended in TE (50 J.l). For labeling reaction, linearized DNA

(20 J.g), T4 polynucleotide kinase buffer (70 mM Tris-Cl (pH 7.6), 10 mM MgCI2

10 mM DTT), (y p) dATP (100 J.Ci), and T4 polynucleotide kinase (10 units)

were mixed together in an Eppendorf tube and the final volume was adjusted to 30

J.l with distiled water. The labeling was performed at 37 C for 1 hour and the

enzyme was heat inactivated at 65 C for 1 hour. The labeled DNA was precipitated

and digested with Hind III restriction enzyme for 4 hours at 37 C. To isolate the

labeled probe insert, the DNA fragments mixed with bromophenol blue (BPB) dye



were separated by electrophoresis in a polyacrylamide gel (4%) in 0.5X TBE (Tris

boratelEDT A) at 200V for 1.5 hour. The probe insert , which co-migrates with the

BPB dye , was excised and purified using the QIAquick gel extraction kit as

described. The labeled probe (2 f.l) was mixed with 4 ml of Ecoscint
TM H solution

(National Diagnostic , Atlanta, GA) and counts per minute were measured in,

scintilation counter.

. End-labeling of the Spl oligonucleotide

The top strand of the Sp 1 (100 ng) oligonucleotide was labeled at the

, 5' end as described above. To generate a double-stranded DNA fragment

containing the binding site , complementary bottom oligo (400 ng) was added to

tubes together with labeled top strand and boiled for 5 minutes. Tubes were slow

cooled to room temperature in the same beaker to facilitate annealing. The

unincorporated nucleotides were removed by QIAquick Nucleotide Removal Kit

(QIAGEN Inc. , Valencia , CA) according to the manufacturer s instructions.

Labeling effciency was determined using a scintilation counter.

ProteinlNA binding reactions

Protein/NA binding reactions with H4/SiteII and gp9l-phox probes were

performed by combining labeled probe DNA (10 fmole), non-specific competitor

DNA (1 /lg poly(dG.dC) and 100 ng poly(dI.dC), and nuclear extract (1- 10 /lg).

Protein/DNA binding reactions with the Spl probe were performed with 1 /lg

poly(dG.dC) as non-specific competitor DNA. Oligo competition assays were
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performed in the presence of 100-fold molar excess (1 pmole) of the unlabeled TM-

oligo (self-competition with wildtype H4/SiteII) (Aziz et aI. , 1998a), the gp9lphox

oligo (Skalnik et aI. , 1991) or the Spl oligo. Non-specific competition was performed

with the SUB- ll oligonucleotide containing a mutated H4/Site II (Aziz et al., 1998a).

Immuno-reactivity EMSAs were performed by pre-incubating antibodies (0.

with proteins on ice for 15 minutes prior to the addition of probe DNA. Antibody

against cyclin E (Santa Cruz Biotechnology, Santa Cruz , CA) was used as a

nonspecific antibody control. Electrophoresis of protein/DNAcomplexes was

performed in a 4% non-denaturing acrylamide:bisacrylamide (80: 1) gel with 0.

TBE buffer. Electrophoresis was performed for 2 to 3 hours at 200 V. Gels were dried

under vacuum at 80 C for 2 hours and subjected to autoradiography.

Generation of Cutll mutant mice

Cutll mutant mice were generated by Dr. DongXia Xing in the laboratory of

Dr. Ellis Neufeld (Children s Hospital , Division of Hematology, Boston , MA).

Targeting construct for Cutll mutant mice

A targeting vector was constructed which contains an SV40 early promoter-

neomycin (neo) resistance cassette (Invitrogen, Carlsbad, CA) for positive selection

and a phosphoglycerate kinase (HSV-TK) cassette (Tybulewicz 1991) for negative

selection. From the CDP/Cux locus, a 696 bp HindIII (intron 19) and XhoI (exon 20-

12 bp into the homeodomain) fragment was used as 5' homology and a 6kb BamHI

fragment was used as 3' homology.



Homologous recombination into ES cells

CJ7 ES cells were electroporated with 50 g of linearized targeting vector

followed by a week of selection with G4l8 (200 g/ml) and gancyclovir (2 M).

G4l8/gancyclovir resistant clones were screened by Southern blot analysis Qf BamHI

digested genomic DNA, probed with a radiolabeled fragment located 5' to the

targeted sequence. One correctly targeted heterozygous ES clone had a normal

diploid karyotype and was subsequently used to inject blastocysts.

Generation of chimeric mice carrying the mutant allele

C57Bl/6J blastocysts were injected with the embryonic stem (ES) clone 'and

transferred to the uteri of 2. day pseudopregnant female mice. Chimeras identified

by agouti coat color were mated with C57Bl/6J females to generate Fl progeny. The

genotypes of Fl mice were analyzed by Southern blot analysis with Bam HI digested

genomic DNA from tail biopsies, as described above. PCR analysis was also

performed to determine mice genotypes , using CDP/Cux intron 19 forward primer

HD-F (5' CAGGGTTTTAT TTGGGGGC TTT TT- ) with exon 20 reverse primer

HD-Rl (5' AAGTTCCTCGATGGTTT TT- ) from the wildtype allele which

produced a 596 bp product, or a 1.06 kb product with neo reverse primer HD-

(5' GCATCGCCTTCTATCCGCCTTCTTG- ) from the mutant allele. PCR

reactions were performed by adding genomic DNA to a mixture containing 10 mM

Tris-HCl , 150 mM KCl , 2.5 mM MgCh, 0.25 mM each dNTP , 25 pmol of each

primer and 5 U ofTaq polymerase (Promega Corp. , Madison , WI). Following a 2-



minute denaturation at 95 , PCR reactions were amplified for 30 cycles (94 , 30 s;

C, 30 s; 72 , 1 minute). Fl mice were crossed to generate F21itters , and the

genomic PCR analysis described above was performed to detect the wildtype (0.6 kb)

or mutant allele (1.0 kb).

Isolation of total cellular RNA

Total cellular RNA was isolated from proliferating MEFs with the TRizol

Reagent(Life Technologies , Rockvile, MD) according to the manufacturer

instructions. In brief, cells from one 100mm plate were washed twice with ice cold

lX PBS , scraped in lml PBS and transferred to an Eppendorf tube. Cell pellets were

obtained by centrifugation at 14000 rpm for 30 sec. Cell pellets were then thoroughly

re-suspended in 1 ml TRizol reagent and incubated at room temperature for 5

minutes. Then 0.2 mlchloroform was mixed with the cell lysate. The two phases

were allowed to separate at room temperature for 10 minutes , followed by

centrifugation at 14000 rpm for 15 minutes. The upper clear phase containing total

cellular RNA was transferred to a new Eppendorf tube and 0.5 ml isoproponal was

added to precipitate RNA. Following a lO-minute incubation at room temperature

RNA was pelleted by centrifugation at 14000 rpm for 15 minutes. The RNA pellet

was washed with 75% ethanol and re-suspended in 50 1 RNase free deionized water.

Northern blot analysis

Total cellular RNA (20 g) was resolved in a 1 % denaturing agarose gel

(3.7% formaldehyde , lX MOPS buffer (40 mM 3-(N-Morpholino)propanesulfonic



acid (MOPS) pH 7. , 10 mM sodium acetate, 1 mM EDT A), 1 % agarose) for 2-

hours and transferred overnight onto Hybond N+ membrane in lOX SSC buffer

(1.5 M sodium chloride , 0. 15 M sodium citrate pH 7.4). The RNA was cross-linked to

the membrane after transfer and pre-hybridized at 65 C with Hybridization Buffer

(0.7% SDS, 5X Denhardt's Solution (0.2% Ficoll , 0.2% polyvinylpyrrolidone , 0.

BSA), 5XSSPE (0.9 M NaCl , 50 mM NaP0 pH 7.4, 5mMEDTA)) for 1 hour. To

label the probe for northern blotting, 25 ng of the histone H4 cDNA (lkb fragment

including the entire coding region) was boiled in 45 Jll TE buffer for 5 minutes and

transferred to a RediPrime labeling tube (Amersham-Pharmacia Biotech Inc.

, Piscataway, NJ). Upon addition of 50JlCi of e p) a dCTP , the reaction mixture was

incubated at 37 C for 10 minutes and the reaction was stopped by adding 10 

EDT A. Unincorporated radioactive nucleotides were removed by passing the reaction

mixture through a ProbeQuantTM G-50 Micro columns (Amersham-Pharmacia

Biotech Inc. , Piscataway, NJ). Counts per minutes (cpm) in the flow through were

measured using a scintilation counter. The blot was incubated with lx10 cpm of

labeled probe per ml of hybridization buffer at 65 C overnight. The blot was

extensively washed with low (O. lX SSC, 0. 1 % SDS) and high (2X SSC , 0. 1 % SDS)

stringency buffers and the signal was visualized by autoradiography.

Reverse transcriptase PCR (RT -PCR)

To perform reverse transcription polymerase chain reaction (RT-PCR), a

mixture of2 /lg total cellular RNA, 2. /lM oligo dT, 1 mM dNTP and 10 U Moloney

Murine Leukemia Virus Reverse Transcriptase (Promega Corp., Madison , WI) was



incubated for 1 hr at 37 C followed by a I5-minute heat inactivation at 95 C. The

resulting cDNA mixture (2 l) was used in PCR reaction containing 1 mM dNTP

1 mM MgCh, 10 U Taq polymerase (Promega Corp. ) and primers (20 M) that

spanned the C-terminus of CDP. Following a 5-minute denaturation at 95 , PCR

reactions were amplified for 30 cycles (94 , 30 s; 60 , 30 s; 72 , 30 s) and

terminated with a final elongation step aL72 C for 10 minutes. Primers for murine

CDP/Cux included: primer 22F (5' - TCTCCGACCTCCTTGCCCG- ); primer 23F

(5' - GCCCCCAGCCACAACACCA- ); primer 23R (5' TGGTGTTGTGGCTGGG

GGC- ); primer 24F (5' GGAGAGGACGCCGCTACC- ); primer 24R(5' - GGCT

TCCAGCTTGAATCTCC- ); primer NeoRI (5' - CCA:TCAGAAGCTGACTC-

and primer NeoR2 (5' - GAAGAACGAGATCAGCAGCC- ). RT-PCR products

were visualized in a 1 % agarose/ethidium bromide gel and transferred to Hybond-

membrane (Amersham Pharmacia Biotech, Arlington Heights , IL) for the subsequent

Southern blot analysis.

Southern blot analysis

Blots were hybridized with a random-primed (Prime-It kit; Stratagene , La

Jolla, CA), labeled cDNA probe for CDP/Cux (1.7 kb EcoRIIraII fragment

spanning Cut Repeat 3 to C-terminus) at 65 C overnight. The blot was washed and

subjected to autoradiography as described for northern blot analysis.



SI nuclease protection assay

S 1 nuclease protection (S 1) assays were performed according to the

manufacturer s protocol (Ambion , Austin , TX) with minor modifications.

Oligonucleotides complementary to the mRNA cap site of the mouse genes encoding

histone H4. l (mouse homologue of the human histone H4 F0108 gene) were used as

probes (vander Meijden et aI. , 1998). A cytoplasmic -actin probe served. as an

internal control. The probes were labeled with 32 A TP and T4 Polynucleotide

kinase and approximately 100 fmolof each probe was used per reaction. The probes

were first denatured at 94 , then hybridized to total RNA (10 /lg) overnight at l6

, The samples were subsequently digested for 40 minutes at 37 C by S 1 nuclease

(Ambion , Austin , TX). The reaction was stopped by addition of Stop Solution and

digested fragments were purified by ethanol precipitation. The pellets were dissolved

in loading buffer and separated in a 6% denaturing polyacrylamide gel (SequaGel

Hessle Hull , England) alongside undigested probes. Gels were exposed and analyzed

by Phosphor imaging (Phosphor Imager Storm 840 , Molecular Dynamics , Inc.

Sunnyvale CA).

Histology

Tissues were fixed for 24 hours at 4 C on a shaking platform in Bouin ' s

fixative (5% acetic acid , 24% formaldehyde , 71 % picric acid) or in 10% buffered

neutral formalin (VWR Scientific Products, West Chester, PA). Samples were

washed 5 times with PBS , passed through a series of graded ethanol solutions and

then embedded in paraffin. Sections (5 /lm) were stained with hematoxylin and eosin



examined, and photographed. Histology slides were prepared by the diabetes

endocrinology research center morphology core at UMass.

Serum testosterone levels

Blood was collected from wildtype , heterozygous and homozygous mutant

Cutll ~C mice by cardiac puncture immediately after the mice i/ere sacrificed by

cervical dislocation. Blood samples were kept on ice for 10 minutes and subsequently

subjected to centrifugation 'at 4 C for 10 minutes at 6 000 rpm. The supernatant was

aliquoted and stored at - C until assayed. Serum samples were measured using a

Coat- Count total testosterone kit as directed by the manufacturer (Diagnostic

' ,

Products Corp. , Los Angeles , CA). Control samples were obtained from littermates,

age-matched males.

Scanning electron microscopy

Multiple dorsal hairs were manually removed from a homozygous mutant and

a control mouse (both 5-month old females). These hairs , representing the four major

hair types (zigzag, guard , auchene , and awl), were prepared for scanning electron

microscopy (SEM) as previously described (Sundberg et aI. , 1994; Yamanaka et aI.

1997) and screened for abnormalities.
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Co-immunoprecipitation assays in COS-7 cells and gene reporter assays with CDP/Cux

CR2-Cterm were performed by Dr. Sunita Gupta. Immunofluorescence using expression

vectors for pRB proteins was performed by Michael Luong. Colocalization of pRB and

CDP/Cux was calculated with the assistance of Daniel Young.



ABSTRACT:

The CCAAT displacement protein (CDP)/Cux performs a key proliferarion-

related function as the DNA binding subunit of the cell cycle controlled HiNF-

complex. HiNF-D interacts with all five classes (Hl , H2A , H2B , H3 and H4) of cell-

cycle dependent histone genes , which are transcriptionally and coordinately activated

at the Gj /S phase transition independent of E2F transcription factor. In addition to

CDP/Cux, cell cycle regulators pRB, CDKI and cyclin A are also present in the 

HiNF-D complex. However, the molecular interactions that enable these components

, to form a complex and thus convey cell growth regulatory information onto histone

gene promoters are not fully understood. Results from GST pull-down assays showed

that the CDP/Cux C-terminus (CR2-Cterm) was sufficient for interaction with pRB

CDKl and cyclin A.

HiNF-D complex formation on histone gene promoters in vitro is upregulated

in S phase , which is subsequent to hyperphosphorylation of pRB (van Wijnen et aI.

1997). Thus it was postulated that CDP/Cux interacts with the hyperphosphorylated

form of pRB. To test this hypothesis , GST pull-down assays were performed with

pRB mutant proteins. CDP/Cux (CR2-Cterm) interaction was observed with full-

length pRB , wildtype large pocket domain (LP) and mutant LP which is

hypophosphorylated. Thus pRB-CDP/Cux interaction in vitro does not require

hyperphosphorylation of pRB. Direct interaction between CDP/Cux (CR2-Cterm) and

the pRB pocket domain was observed in GST pull-down assays using in vitro

translated pRB protein. Furthermore , co-immunoprecipitation assays and in situ



immunofluorescence microscopy established that CDP/Cux and pRB form complexes

in vivo and associate in situ. To assess the functional consequences of CDP/Cux-pRB

interactions, gene reporter assays were performed. Both CDP/Cux and pRB repressed

the H4 gene promoter and when co-expressed, these proteins cooperate as repressors.

The pRE.pocket domain was sufficient for co-repression with CDP/Cux. Thus

several converging lincsof evidence indicate that a CDP/Cux- pRB complex

represses cell cycle-regulated histone gene transcription.



INTRODUCTION:

Cell proliferation is regulated by a complex and interdependent series of

biochemical events involving cell cycle specific modifications in gene expression.

The S-phase specific expression of histone genes represents one of the earliest

characterized examples of cell cycle dependent gene regulation and provides a

paradigm for understanding gene regulatory signaling mechanisms operati- re at the

/S transition (Prescott, 1966; Stein et aI., 1996). Histone gene expression in

mammalian cells is both temporally and functionally coupled with DNA replication

(Dominski and Marzluff, 1999; Osley, 1991; Stein eta!: , 1984; Stein eta!. , 1996).

Cell cycle dependent modulations of histone gene transcription provide the initial

rate-limiting step in the induction of histone gene expression at the G( /S phase

transition.

Cell cycle control of histone H4 gene transcription requires a critical

multipartite promoter element , Site II, that interacts with three distinct histone nuclear

factors (HiNFs) (Aziz et aI. , 1998b; Ramsey-Ewing et aI. , 1994; van der Meijden et

aI., 1998; van Wijnen et aI., 1989; van Wijnen et aI. , 1992; Vaughan et aI. , 1998; Xie

et aI., 2001). Several other promoter elements, transcription factors and/or co-factors

also contribute to the regulation of histone H4 gene transcription in the context of a

dynamic and transcriptionally active chromatin organization (Hovhannisyan et aI.

2002; Last et aI. , 1998; Last et aI. , 1999a; Mitra et aI. , 2001; Staal et aI. , 2000; Stein

et aI., 1996). Overlapping recognition sequences within Site II for HiNF- , HiNF-

and HiNF-D together modulate H4 gene transcription levels by at least an order of



magnitude. This composite organization of Site II supports responsiveness to

multiple signaling pathways that modulate activities of the H4 gene transcription

factors during the cell cycle. HiNF-M has been identified as the oncoprotein IRF-

(Vaughan et aI. , 1995) and HiNF-P is a 65 kDa Zinc finger protein that links the

growth factor dependent NPAT/Cyclin E/CDK2 pathway to cell cycle control ofH4

gene transcription (Mitra et aI. , 2002b). The HiNF Dcomplex is composedofthe .

homeodomain protein CDP/Cux and the cell cycle regulators pRB , CDKl and cyclin

A (Shakoori et at , 1995; van Wijnen et aI. , 1989; van Wijnen et aI. , 1994; van Wijnen

et aI. , 1996; van Wijnen et aI. , 1997). Although comp ments of the HiNF-D cCYmplex

have been identified, it is not clear how they interact lNith one another. , Studies using

gene replacement strategies and forced expression of CDP/Cux have revealed a role

for CDP/Cux in the regulation of cell growth and differentiation (Ellis et aI. , 2001;

Ledford et al. , 2002; Luong et aI. , 2002; Mitra et aI. , 2002b; Quaggin et aI. , 1997;

Vaughan et aI., 1998; Xie et aI. , 2002)

The functional interactions of CDP/Cux (and/or HiNF-D) with the promoters

of histone (Barberis et aI. , 1987; van den Ent et aI. , 1994; van Wijnen et aI. , 1996; Wu

and Lee , 2002), c-Myc (Dufort and Nepveu , 1994), p21 (Coqueret et aI. , 1998a), c-

Mos (Higgy et aI. , 1997), transforming growth factor type II receptor (Jackson et

aI. , 1999), and thymidine kinase (Kim et al. , 1997) genes indicate that this factor is a

major component of a gene regulatory mechanism that controls cell growth (Nepveu

2001). CDP/Cux contains four independent DNA binding domains (Aufiero et aI.,

1994; Harada et aI. , 1995; Maily et al. , 1996; Moon et aI. , 2000) (Fig. 3- 1A) and as a

result may exhibit multiple conformational modes to support promoter recognition.
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FIG 3.1. CDP/Cux and pRB mutant proteins. (A) Structure of the two CDP/Cux proteins
tested in our studies. The full-length protein spans a coiled-coil (CC) domain , three Cut Repeats
(CR) and a homeodomain (HD). (B) Structure of pRB proteins. In contrast to the spacer (S)
region , domains A and B within the pRB protein are conserved across species. pRB contains 16

potential SerlThr-Pro motifs (ovals) and seven of these sites have been shown to be
phosphorylated in vivo (yellow ovals). All seven potential phosphorylation sites (ovals) within

domain C are mutated (red stars) in phosphorylation-deficient mutant large pocket (mLP)

protein.



In addition, the DNA binding and/or transcriptional activities of CDP/Cux may be

regulated by interactions with different members ofthe pRB family (i. , p105 and

p107)(van Gurp etal. , 1999; van Wijnen et al. , 1996; van Wijnen et aI. , 1997) and

cyclin/CDK proteins (Shakoori et aI. , 1995; van Wijnen et aI. , 1994) (Santaguida et

aI. , 2001). Post-translational modifications that regulate CDP/Cux activity include

phosphorylatio (Coqueret et at , 1996; Coqueret et aI. , 1998c;Santaguida et aI.

2001), dephosphorylation (Santaguida et aI. , 2001; van Wijnenet aI. , 1991d), and

proteolytic processing (Moonet ai., 2001-; Moon et aI., 2002). Furthermore, the ability

ofCDP/Cux to bind nucleosomal DNA (Last et aI., 1999b) and to recruit histone

modifying proteins (e. , the histone Hl kinase cyclinA/CDK1 , histonedeacetylase

HDAC- , and the histone acetyl transferases PCAF and CBP) (Li et aI. , 2000; van

Wijnen et aI. , 1994) (Li et aI. , 2000) suggests that the protein may contribute to

modifications in the chromatin architecture of its target genes.

CDP/Cux interacts with the promoters of all five classes (i. , Hl , H2A, H2B

H3 and H4) of histone genes and consequently may coordinately regulate their

transcriptional activation at the G) /S phase transition or their repression in mid- to

late S phase (Barberis et aI. , 1987; van den Ent et aI., 1994; van Wijnen et al., 1996;

Wu and Lee , 2002). It has been well documented that the interaction of the CDP/Cux

containing HiNF-D complex with histone gene regulatory elements is proliferation-

specific and cell cycle regulated with respect to S phase (Holthuis et aI. , 1990; Last et

al. , 1998; Shakoori et aI., 1995; van Wijnen et aI., 1992; van Wijnen et aI. , 1997;

Wright et aI. , 1992). Our laboratory has shown that this interaction is important for

the timing of maximal histone H4 gene transcription during the cell cycle (Aziz et aI.



1998a). When cell growth is stimulated by growth factors, HiNF-D complex

formation on histone gene promoters in vitro is upregulated and occurs subsequent to

hyperphosphorylation of pRB (van Wijnen et aI. , 1997). Thus it was postulated, that

CDP/Cux interacts with the hyperphosphorylated form of pRB. To test this

hypothesis , a detailed analysis of pRB-CDP/Cux interaction was performed in this

chapter.

pRB protein is encoded by the retinoblastoma gene which was the first tumor

suppressorgene to be identified (Friendet aI. , 1986). Mutations in the retinoblastoma

gene have been detected in retinoblastoma tumors and other cancers such as

, osteosarcoma, small cell lung cancer, prostate cancer, and breast cancer (Harbour and

Dean , 2000). The tumor suppressor activity of pRB was demonstrated by its ability to

inhibit the malignant phenotype when reintroduced into pRB-deficient tumor cells

(Huang et aI. , 1988). The retinoblastoma gene encodes a 928-amino acid

phosphoprotein , pRB , which is synthesized throughout the cell cycle and contains

several functional domains (Fig. 3- 1A). Interaction of domain A with domain B forms

the pRB minimal pocket, and the pRB large pocket consists of domains A, Band C.

pRB arests cells in the G) phase of the cell cycle (Weinberg, 1995) by repressing

genes required for the G)-to- phase transition. A major target of pRB is the E2F

family of transcription factors. The E2F transcription factors regulate the transcription

of many genes that are important in cell-cycle progression and that are repressed by

pRB. Tumor suppression by pRB requires an intact pocket domain (Fig. 3- 1A), which

is disrupted by most naturally occurring tumor-promoting mutations. Viral

oncoproteins that disrupt pRB function also target the pocket domain (Kaelin, Jr et



aI. , 1990; Larose et aI. , 1991). Sequences in the pRB pocket domain are required for

interaction with E2F and several other cellular proteins. pRB can repress transcription

by at least two mechanisms. pRB large pocket binds the transactivation domain of

E2F, thereby blocking the ability of E2F to activate transcription (Table 3- 1).

In addition , the pRBpocket can actively repress transcription when it is tethered to

promoters. Active repression by pRB is mediated by its recruitment of histone

deacetylases (HDACs), BRG and BRM (the two ATPase components of the human

S\VI/SNFchromatin remodeling complex), and DNA methylase DNMTI (Table3- l).

Progression of the cell cycle normally occurs when pRB is inactivated by

phosphorylation catalyzed by cyclin-CDK complexes. pRB has 16 potential sites for

CDK phosphorylation , and it oscilates between hypophosphorylated and

hyperphosphorylated forms during the cell cycle. pRB is in an unphosphorylated state

in Go, hypophosphorylated in early G) and hyperphosphorylated in late G) until M

phase , when it is dephosphorylated (Ezhevsky et aI. , 1997). It is thought that

phosphorylation ofpRB is mediated by cyclin D-CDK4/6 complexes in early G),

cyclinE-CDK2 complexes in late G), and cyclin A-CDK2 may maintain pRB in the

hyperphosphorylated state during S phase (Sherr, 1996). Phosphorylation of the C-

terminal region of pRB by CDK4/6 displaces HDAC from the pocket domain

thereby relieving transcriptional repression by pRE. This facilitates an intramolecular

interaction that leads to phosphorylation of the pocket by CDK2 and disruption of

pocket structure.

Studies of pRB-deficient mice and embryonic fibroblasts have yielded

additional insight into the function(s) of this protein. pRB is required for normal
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Table 3-1: A subset of pRB-interacting proteins

pRB-bindin proteins that are cell-cycle re ulators
Interactor ion of pRB *In vivo

Cyclin A not mapped yes

Cyclin A 1 lar2e pocket yes

Cyclin D 1 AI pocket yes

Cyclin D2 AI pocket

Cyclin D3 AI pocket.

Cvclin E ot ma

CDKl not mapped yes

CDK2 C domain

--..---- ----

p2l Af pocket yes

p57K1PL not ma
pRB-bindiri proteins which function tore te transcriptio
E2F- arge pocke yes

E2F- lar2e pocket yes

, E2F- ar2e poc yes

E2F- not mapped yes

E2F- large pocket yes

DP- not mapped . yes

DP- not mapped yes

HDAC- AI pocket yes

HDAC- AI pocket yes

HDAC- AI pocket yes

BRGl AI pocket yes

hBrml AI pocket yes

DNMTl AI pocket yes

AP- lar2e pocket yes

Pax- AI pocket

Pax- large pocket

Pax- homeodomain proteins not mapped yes

Phox not mapped
Chx 10 AI pocket

* In vivo interaction that has been detected between endogenous pRB and its respective
binding protein in mammalian cell extracts. This table was adapted from Morris and
Dyson 2001.



mouse development as nullizygous mice die in utero at embryonic day 16.5 (Table 3-

2) (Clarke et aI. , 1992; Jacks et aI. , 1992; Lee et aI. , 1992). The most prominent

abnormalities in these embryos are defective hematopoiesis , ectopic mitosis and

apoptosis in the central nervous system (CNS). pRB heterozygous mice are normal

but have a high predisposition to pituitary tumors. Primary fibroblasts derived from

pRB-deficient embryos exhibit a shortened Grphase , elevated and accelerated

expression of cyclins , actjvation of E2F-responsive genes and apoptosis (Almas an et

aI. , 1995; Herreraet aI. , 1996). Loss ofpRB function activates the p53 apoptotic

pathway, which may serve as an intrinsic protective mechanism for eliminating cells

in which the pRB pathway is deregulated (Morgenbesser et at, 1994). A possible 'lnk

between pRB and p53 is the free E2F, which is released when pRB function is lost.

Transgenic mice in which pRB was inactivated by SV40- T antigen developed slowly

growing tumors' with high apoptotic rates, whereas an additional inactivation of p53

or E2F resulted in rapidly growing tumors due to decreased apoptosis (Pan et aI.

1998; Symonds et aI. , 1994). Taken together, these observations suggest that release

of the free E2Fl resulting from loss of pRB function is responsible for triggering

much of the p53-dependent apoptosis.

Two other proteins , pl07 and p130, show high homology with pRB within

domains A and B , and they also bind viral oncoproteins and E2F (Ewen et aI. , 1991;

Hannon et aI. , 1993). All three proteins can inhibit E2F-responsive promoters

(Zamanian and La Thangue, 1993), recruit HDAC via the pocket domain (Ferreira et

aI. , 1998), actively repress transcription (Bremner et aI. , 1995; Starostik et al. , 1996),

and arest cellular growth when overexpressed (Claudio et aI. , 1994; Harbour and
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Table 3-2: Knockout phenotypes of genes in the pRB family

Genotvpe Phenotype Major abnormalities
Embryonic lethality Defective neurogenesis & hematopoiesis
(E13. l6.

RB +/- Tumor Complete penetrance of pituitary tumors
predisposition

pl07 Normal None

p130 
Normal None

RB +/- ;p 107 - Grow h retardation Pituitary tumors

---'

increased mortality retinal dysplasia

;pl07 Embryonic lethality Accelerated apoptosisin liver & CNS
(E 11.5)

/- -

Neonatal lethality Defective endochondral bone & limbpl07 ;p130
development

, *Adapted from Lin et aI. , 1996.



Dean, 2000; Starostik et aI. , 1996). Although pRB , pl07 and p130 are closely related

they have several distinct biochemical properties. For example, in pl07 and p130, the

spacer region between domains A and B mediates jnhibition of cyclin A-CDK2

complexes, which results in growth suppression by pl07 (Zhu et aI. , 1995). In

contrast, the spacer region in pRB has no known function. In addition, pRB and p 1 07

int6i'ct with E2F proteins- inG1and S phase of cycling cells but p130 binds E2F4

in quiescent cells and differentiating muscle cells (Corbeil et aI. , 1995). Analysis of

mice in which these pRB-related genes have been inactivated suggests that these

genes have a partial overlap in function (Table 3-2). Deletion of pRB leads to

embryonic lethality in midgestation, whereas the additional loss of p 1 07 results in an

earlier lethality (Lee et al. , 1996). p107 and p130 knockout mice develop normally

but the double knockout mice have defective bone development, shortened limbs and

neonatal lethality (Cobrinik et aI. , 1996). Heterozygous mice (pRB+ develop

normally but the additional loss of p 1 07 function (pRB+
P 1 

results in growth

retardation and early mortality (Lee et aI. , 1996).

To understand the molecular basis of the interactions between pRB and CDP/Cux

as components of the multi-subunit HiNF-D complex that controls histone gene

expression , GST pull down assays , co-immunoprecipitations, and transient

transcriptional assays were performed. Studies presented in this chapter indicate that

CDP/Cux forms protein/protein complexes with pRB in the absence of DNA and that

pRB cooperates with CDP/Cux in the repression of H4 gene transcription. These data

support the concept that complexes between CDP/Cux and pRB are important cell

cycle regulators of transcription during S phase.



RESULTS:

CDP/Cux interacts with pRB , Cyclin A, and CDKI in vitro

The HiNF D complex represents an electrophoretically stable proteinlNA

complex that is immuno-reactive with antibodies against CDP/Cux , as well as the cell

cycle regulatory factors pRB , cyclin Aand CDKl (van Wijnenet aI. , 1994)-: HiNF-

can be chromatographically fractionated over multiple ion exchange resins Indicating

that this factormayform a distinct biochemical entity in the absence of DNA (van

Wijnen et at , 1992). However, it has not been possible yet to purify the HiNF-

, complex to homogeneity, and the size of the complex is not known. To determine the

molecular weight of HiNF- , electromobilityshift assays (EMSAs) were performed

using HeLa nuclear extract and a labeled probe spanning histone H4 Site II.

Protein markers were electrophoresed in the same gel and detected by Coomassie dye

(Fig. 3-2A). Specific HiNF-D activity was verified by oligonucleotide competition

assays. Based on the migration of HiNF-D and the marker proteins , the observed

molecular weight of HiNF-D is greater than 340 kDa (Fig. 3-2A), consistent with the

estimated sum (400 kDa) of the molecular weights of the HiNF-D components (i.e.

CDP/Cux (190 kDa), pRB (110 kDa), cyclin A (60 kDa) and CDKl (34 kDa)). Thus

the previously identified components of HiNF-D can account for the observed

molecular weight.

To test whether CDP/Cux can form stable protein/protein complexes with

non-DNA binding partner proteins in the HiNF-D complex , pull-down assays were

performed using glutathione- transferase (GST)-CDP/Cux fusion protein. To date
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FIG 3-2. The CDP/Cux C-terminus interacts with H4 Site II-associated proteins 
vitro. (A) HiNF-D is greater than 340 kDa. (left) Electromobility Shift Assay (EMSA) was

performed with 32P-labeled oligos spanning Site II of the histone H4. 1 promoter and
nuclear extract (1. g) prepared from proliferating HeLa cells. (Right). In the same

polyacrylamide gel (4.4%) used in EMSA , urease (4f.g) and a-macroglobulin (1 f.g)

protein markers were subjected to electrophoresis and were detected with Coomassie

dye. (B) GST and GST-CDP/Cux (CR2-Cterm, amino acid 853-1505) proteins

conjugated to glutathione Sepharose beads were subjected to SDS-PAGE and
visualized by Coomassie dye to confirm protein integrity. (C) CDP/Cux specifically and
selectively binds pRB , cyclin A and CDK1. HeLa nuclear proteins (690 f.g) were used in

pull;down assays with 2 f.g of either GST or the GST-CDP/Cux (CR2-Cterm) fusion

protein. Bound proteins were separated by SDS-PAGE and subjected to western blot

analysis with antibodies to pRB , p107 , cyclin A , CDK1 , CDK2 and Sp1.
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expression of full-length CDP/Cux as a recombinant GST fusion protein has not been

possible. Therefore a truncated CDP/Cux fusion protein was generated using a C-

terminus region , CR2-Cterm, which is an S phase-specific isoform of CDP/Cux (Fig.

1A). In vitro interactions of endogenous pRB, cyclinA, and CDKl present in HeLa

nuclear extract with recombinant GST -CDP/Cux (CR2-Cterm) were investigated.

Interacting proteins were eluted and subjected, to westem blot analysis using a panel

of antibodies againstthe known HiNF-D subunits" Results show that pRB , cyclin A .

and CDKlare capable of binding to GST -CDP/Cux (CR2-Cterm), but these proteins

do not nteract with GST alone (Fig. 3-2C). For comparison , Spl does not bind to

GST -CDP/Cux (CR2:.Cterm), thus demonstrating that the interactions detected in 

these experiments are selective and specific. Furthermore p107 and CDK2 show

limited binding to GST-CDP/Cux (CR2-Cterm) as compared to pRB and CDK1

respectively. Hence, the GST pull-down assays establish that the S phase-specific

cleavage product of CDP/Cux , CR2-Cterm, supports interactions with pRB , cyclin A

, ,

and CDKl.

CDP/Cux (CR2-Cterm) interaction with the pRB large pocket is

phosphorylation-site independent

The large pocket (referred to as LP in this dissertation , amino acids 379-928)

is the minimal growth-suppressing domain of pRB , and nearly all of the germline

tumor-derived mutations of pRB occur within this region. In addition , most of the

known pRB interactions with other proteins require an intact pocket domain (Morris

and Dyson , 2001) (Table 3- 1). To test whether CDP/Cux interacts with the large



pocket of pRB , pull-down assays were performed with GST -CDP/Cux (CR2-Cterm)

and HeLa lysates containing exogenously expressed full-length or mutant pRB

proteins (Fig. 3- 1B). Results indicate that the CDP/Cux C-terminus interacts with

full-length pRB and large pocket to a similar extent (Fig. 3-3A). Thus the pRB large

pocket alone is sufficient to mediate interaction between CDP-/Cux and pRB

When hyperphosphorylated' by cyclin/Cdk complexes, during G phase , pRB

can no longer sequester E2F or exert its growth suppressing activity through E2F. To

determine whether phosphorylation of the large pocket is required for interaction with

CDP/Cux , GST-CDP/Cux pull-down assays were performed using overexpressed

i mutant large pocket (mLP). This mutant pRB protein has mutations in seven of the

nine phosphorylation sites. Results show CDP/Cux (CR2-Cterm) interacts with mLP

(Fig. 3-3A), suggesting that the CDP/Cux-pRB interaction is independent of

phosphorylation sites in the large pocket domain.

Direct interaction between CDP/Cux and pRB is mediated by the CDP/Cux C-

terminus and the pRB pocket domain

The data described above show that CDP/Cux (CR2-Cterm) can interact with

pRB large pocket in the absence of cell signaling-dependent post-translational

modifications. However, it is unclear whether the observed GST -CDP/Cux

interaction with pRB large pocket is direct or mediated by bridging proteins present

in the HeLa nuclear extract. To test these possibilities , pull-down assays were

performed with GST -CDP/Cux (CR2-Cterm) and in vitro translated 1abeled 

pocket or 1abeled cyclin A. Results show that GST -CDP/Cux (CR2-Cterm)
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FIG 3-3. The interaction between CDP/Cux and pRB is direct and
phosphorylation-site independent. (A) Wild type pRB , a truncated pRB

protein spanning the large pocket (LP, amino acids 379-928) and a
phosphorylation deficient large pocket protein (mLP) interacts specifically
with GST-COP/Cux (CR2-Cterm). HeLa cell Iysates (1 mg) containing

over-expressed pRB proteins were used in pull-down assays with 2 f.g of

GST or GST-COP/Cux (CR2-Cterm) proteins. (B) COP/Cux (CR2-Cterm)

interacts directly with the minimal pRB A/B pocket (amino acids 379-772).

GST pull down assays were performed by mixing GST or GST-fusion

proteins with in vitro translated labeled proteins. Proteins from the
input (Inp), bound and unbound fractions were separated by SOS-PAGE

and detected by autoradiography.
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specifically binds the pRB minimal AI pocket domain but not cyclin A (Fig. 3-3B).

Thus the CDP/Cux (CR2-Cterm)/ cyclin A interaction observed with HeLa nuclear

proteins (Fig. 3-2C) may be mediated through an accessory factor (e. , pRB).

More importantly, CDP/Cux (CR2-Cterm) and the pRB AI pocket are suffcient for

direct interaction between CDP/Cux and pRB

CDP/Cuxand pRB interact, in vivo-

To assess whether CDPLCux and pRB formed stable complexes within intact

cells , co-immuiloprecipitation assays were performed. Interactions of both

endogenous and co-expressed pRB with CDP/Cux were' assessed in COS- 7 cellS' 

transiently expressing myc-tagged CDP/Cux protein. Immunoprecipitated proteins

were detected by western blot using antibodies against the myc tag or the pRB

protein. The results show that pRB co-immunoprecipitates with full length CDP/Cux

(Fig. 3- , panels A and B) and to a lesser extent with CDP/Cux (CR2-Cterm)

(Fig. 3- , panels C and D). Specific immunoprecipitation was not observed with

normal mouse IgG that was used as a negative control. In addition , CDP/Cux also

forms complexes with pRB in HeLa cells (Fig. 3-4E). Thus optimal CDP/Cux-pRB

interaction requires the CDP/Cux N-terminus , which includes a coiled-coil domain, a

protein-protein interaction motif. Taken together, these data establish that CDP/Cux

and pRB form specific protein/protein complexes in mammalian cells.
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FIG 3.4. CDP/Cux interacts with pRB in vivo. Cos-7 cells were cotransfected with myc-
tagged full length CDP/Cux or CR2-Cterm to detect interaction with endogenous (panels A
and B) or co-expressed (panel C and D) pRB by co- immunoprecipitation assays. Cells were

harvested 32 h after transfection and co- immunoprecipitation was performed using myc
antibody (panels A and C) or the pRB antibody (panel B and D). Bound proteins were
detected by western blot with the respective antibodies. Input represents 3% of bound
sample (panel A and B), 10% of the bound sample (panel C). Exogenously expressed pRB
()nd Myc-CDP/Cux form complexes in HeLa cells (panel E). Untransfected lysate (untrans
was used as a negative control. Western blot analysis of proteins that were not
immunoprecipitated (unbound fraction) was performed to assess protein integrity following

overnight incubation at 4



A subset of pRB and CDP/Cux co- localize in situ.

Because pRB and CDP/Cux exist in a complex in vivo their association in situ

within the nucleus was assessed. Expression of endogenous CDP/Cux and pRB

proteins were detected by in situ immunofluorescence and analyzed by confocal

microscopy. Colocalization of two proteins was assessed by using a cross-correlation

function that establishes the degree of signal overlap between two images (see

Materials and Methods). On average, colocalization of pRB with CDP/Cux was 35%

in HeLa cells (Fig. 3-5) and 47% in T98G glioblastoma cells (Fig. 3-6A). Specificity

of colocalization was demonstrated by determining that the observed correlatioh is -

not due to random signal overlap: One image from each' image pair was rotated ten

degrees and the cross-correlation was measured (Fig. 3-6B). If the observed

colocalization were random, rotation of the image would not change the degree of

signal overlap. Differences between rotated and unrotated cross-correlation values

were assessed by paired student' s t-test. Our analysis shows that the majority of the

observed colocalization of CDP/Cux and pRB is not due to random signal overlap

(p-c0.001) in both T98G glioblastoma and HeLa cells.

The N-terminus of CDP/Cux is required for full repression of histone H4

transcription

CDP/Cux has been shown to repress H4 promoter activity (van Wijnen et aI.,

1996), and the C-terminal region ofCDP/Cux that encompasses its DNA binding

domains is involved in transcriptional inhibition of CDP/Cux responsive promoters

(Maily et aI. , 1996; Moon et aI. , 2000). CDP/Cux has been shown to undergo
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Figure 3.5. Partial colocalization of COP/Cux and pRB in HeLa cells. Cells

grown on gelatin-coated covers lips were fixed, permeabilzed and incubated with

antibodies against full-length CDP/Cux and pRB, then analyzed by confocal

microscopy. The bar represents 101lm. (a pRB fI) mouse monoclonal antibody

raised against full-length pRB (Santa Cruz); (a pRB C36) mouse monoclonal

antibody raised against amino acids 300-380 of pRB; (no ab) no primary

antibodies were added to these covers lips; (DIC) differential interference contrast

image. Merged inset is percent colocalization calculated as described in Materials

and Methods. Four cells were analyzed with each pRB antibody.
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FIG 3-6. A subset of CDP/Cux and pRB associates in situ. T98G

glioblastoma cells grown on gelatin-coated coverslips were fixed
permeabilized and incubated with antibodies against full-length CDP/Cux or
pRB as indicated , then were analyzed by confocal microscopy. (A) Merged
inset is percent colocalization calculated as described in Materials and
Methods. Seven cells were analyzed with pRB (fI) and four cells were
analyzed with pRB C36 , a mouse monoclonal antibody raised against amino

acids 300-380 of pRB. Bar represents 10f.m. (DIC) differential interference
contrast image. (B) Colocalization of CDP/Cux and pRB is not due to random
signal overlap. One image is rotated 10 degrees and the colocalization of
signal in the remaining area of overlap (white dots) is calculated. Rotation by
10 degrees results in a significant change in colocalization (from 49% to 10%).



proteolytic cleavage in S phase (Moon et aI. , 2001). The cleavage product, CDP/Cux

(CR2-Cterm) protein , lacks the N-terminus of CDP/Cux and spans Cut repeat 2

(CR2) to the C-terminus (Cterm) (Fig. 3- 1A). To assess whether CDP/Cux

(CR2-Cterm) represses histone H4 gene transcription, reporter gene assays were

performed with constructs expressing myc-tagged full-length or CR2-Cterm

CDP/Cux proteins in NIH3T3 cells (Fig. 3-71\.). The data show that CDP/Cux (CR2'-

Cterm) mediates repression but to a lesser extent than the full-length protein (Fig. 3-

7A). Both CDP/Cux proteins are expressed in a dose-dependent manner and are

localized to the nucleus (Fig. 3- , panels Band C). Thus , the N-terminal sequences

contribute to the repressive potential of CDP/Cux on histone H4 gene transcription.

Although CR2-Cterm lacks one of the DNA-binding Cut repeats , this mutant protein

retains the ability to bind to the histone H4 promoter and CDP/Cux consensus binding

sites (Last et al. , 1999b; Moon et aI. , 2001; van der Meijden et al. , 1998). Decreased

repression of the H4 promoter by CR2-Cterm may be due to reduced protein-protein

interactions , since absence of the N-terminus resulted in decreased CDP/Cux-pRB

interactions (Fig. 3-4).

Co-repression of H4 promoter activity by pRB and CDP/Cux

CDP/Cux and pRB form complexes in vivo and associate in situ. To assess

functional consequences of these interactions on transcriptional regulation of histone

genes , pRB was co-expressed with CDP/Cux and H4 promoter activity was measured

in NIH3T3 cells. The data show that expression of pRB or CDP/Cux alone reduces

H4 promoter activity by 4 and 18 fold, respectively (Figure 3-8). When pRB is co-
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FIG 3-7. The C-terminus of CDP/Cux is required for repression of H4 promoter
activity. (A) NIH/3T3 cells were cotransfected with the H4/Luc reporter construct (1 Jlg)

and increasing amounts (0. 1 to 1 Jlg) of the CMV driven myc-tagged full length COP/Cux
or mutant COP/Cux (CR2-Cterm) expression plasmid. Luciferase assays were performed
24 h after transfection. Inset: Schematic diagram of H4 promoter-Iuciferase reporter
construct encompassing Sites I and II used in this study. (B) The same samples used in

the luciferase assays were analyzed by western blotting of a 6% SOS polyacrylamide gel.
COP/Cux was detected with the c-myc antibody and COK2 was detected as an internal
control for protein loading. (C) Nuclear localization of Myc-tagged wild type COP/Cux and
COP/Cux (CR2-Cterm) proteins was assessed by immunofluorescence microscopy in
HeLa cells using a monoclonal antibody against c-myc. Chromatin is visualized by OAPI

staining. The bar represents 10 Jlm.
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FIG 3-8. The pRB large pocket is sufficient for CDP/Cux dependent co-
repression of H4 transcription. NIH/3T3 cells were transfected with an 
promoter-driven luciferase reporter construct (H4/Luc) or a promoterless luciferase
construct (ev/Luc) or and cotransfected with expression vectors for CDP/Cux and/or
pRB proteins. Cells were harvested 22 h after transfection and total cell lysate was

assayed for luciferase activity or subjected to SDS-PAGE and western blot analysis.

Luciferase values (A) and fold repression (B) are shown. Inset: Overexpressed
wildtype pRB (lane 1), wild type large pocket domain (LP, lane 2), and mutant large
pocket domain (mLP, lane 3) proteins were detected using the pRB (XZ104)

antibody which is directed against the pRB pocket. Endogenous pRB was also
detected in lanes 2 and 3. The amount of DNA in each well was maintained at a

, constant level by supplementing the transfection mixture with the empty expression
vector. Co-transfection experiments with CDP/Cux and pRB proteins were
performed with 1 Jl of each vector with the exception of vectors for pRB large
pocket (500 ng). Error bars represent standard error of the mean where n=12. (e.

empty vector backbone for CDP/Cux and pRB expression constructs.
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expressed with CDP/Cux, additive repression (25 fold) of reporter gene expression

was observed. Thus pRB and CDP/Cux interact and independently repress histone H4

transcription in NIH 3T3 cells. Co-repression by pRB with CDP/Cux was also

observed in HeLa, Cos-7 and Panc- l cells (Gupta et aI. , 2003).

The large pocket ofpRBrepresses-histoneH4transcription with CDP/Cux

CDP/Cux C-,terminus interacts with the wild type (LP) and phosphorylation

mutant large pocket (mLP) of pRBin vitro (Fig. 3-3B). To test whether the large'

pocket of pRB is sufficient for co.,repression of histone gene transcription

H4/Luciferase reporter construct ' CDP/Cux and pRBconstructs were cotransfected

into NIH3T3 cells (Fig. 3-8). Results show that H4 promoter activity is strongly

repressed by forced expression of CDP/Cux (- 17 fold), whereas forced expression of

the large pocket (LP) or mutant large pocket (mLP) alone causes a moderate

repression of H4 gene transcription (-6 and -4 fold , respectively) similar to wildtype

pRB (-4 fold) (Fig. 3- 8B). Co-expression of CDP/Cux with pRB or wild type pRB

large pocket results in increased repression of the H4-driven luciferase reporter

26 and -35 fold , respectively). Taken together, these data suggest that pRB large

pocket is sufficient for co-repression with CDP/Cux.

To determine whether CDK phosphorylation sites in the large pocket are

required for this interaction , CDP/Cux was co-expressed with the phosphorylation

site-deficient mutant PSM7 large pocket. We find that the phosphorylation mutant

largepocket and CDP/Cux function together as strong repressors of H4 gene

transcription (-67 fold) (Fig. 3-8B). Increased co-repression by large pocket proteins,



as compared with wildtype pRB , may be due to the difference in expression levels of

large pocket proteins and wildtype full-length pRB (Fig. 3-8B; inset). Increased co-

repression by mutant large pocket (mLP) may be due to the recruitment of additional

proteins , because many pRB co-repressors including mSin3A , NcoR and HDAC

proteins have been shown to bind the hypophosphorylated , but not the

hyperphosphorylated JormufpRB (Morris and Dyson, 200l). Thus the CDP/Cux'-

functional interaction with pRB large pocket does not require large pocket

phosphorylation sites. Immunofluorescence microscopy was used to confirm that the

overexpressed pRB mutant proteins were localized to the nucleus (Fig. 3-9A).

, Because prolonged overexpression of pRB proteins may result in a G I cell 'cycle

block (Angus et aI. , 2002), flow cytometric analysis was performed in parallel with

these experiments. No significant effect on the cell cycle distribution resulted from

expression of pRB proteins for 22 hours (Fig. 3-9B). Altogether, results from gene

reporter assays using pRB mutant proteins indicate that pRB large pocket is sufficient

for co-repression with CDP/Cux and that this co-repression is independent of pRB

large pocket phosphorylation sites.



:\1

apRB

DAPI

Phase E.V. WT pRB mLP

CDP/Cux CDP/Cux CDP/Cux

GO-

G2-

FIG 3-9. Overexpressed mutant pRB proteins retain nuclear
localization and moderate expression does not perturb cell cycle
distribution. (A) Mutant pRB proteins retain nuclear localization. HeLa cells

transfected for 22h with SOOng of expression vectors were subjected to
immunofluorescence microscopy using mouse monoclonal antibody against
full-length pRB. The bar represents 10J.m. (B) NIH/3T3 cells overexpressing

CDP/Cux and pRB proteins were harvested 22 h after transfection and cell
cycle distribution was determined by flow cytometric analysis. (WT pRB) wild
!ype pRB; (LP) pRB large pocket; (mLP) phosphorylation mutant pRB LP.



DISCUSSION:

The experiments in this chapter present multiple lines of evidence indicating

that CDP/Cux and pRB independently repress histone H4 transcription and directly

interact as a protein/protein complex. These findings provide a molecular mechanism

for the integration ofthe activities of CDP/Cux and pRB in the HiNF-D prote:inINA

complex that interacts with the Site II element of histone H4 genes. Converging-data

obtained by the combined. application of GST pull-down assays

immunoprecipitations, yeast and mammalian two-hybrid analyses (Gupta et ai.

2003), as well as immunofluorescence microscopy, all indicate that CDP/Cux and

pRB form a complex both in vitro and in intact cells. Previous data from our

laboratory have indicated that CDP/Cux forms promoter-selective protein/DNA

complexes in vitro with pRB on the cell cycle controlled histone H4 , H3 and Hl

promoters or with the pRB-related protein pl07 on the tissue-specific osteoca1cin and

gp9lphox promoters (van Gurp et aI. , 1999; van Wijnen et aI., 1996). Based on these

results , we propose that complexes between CDP/Cux and pRB are biologically

significant and perform important cell cycle related gene-regulatory functions.

The pRB tumor suppressor modulates cell cycle progression through

transcriptional regulation of genes required for the G to S transition (Morris and

Dyson , 2001). It can directly bind to and inactivate certain promoter bound

transcription factors, the most notable of which is E2F. Data presented in this study

indicate that CDP/Cux provides an E2F-independent mechanism for a cell growth

regulatory function of pRB in mammalian cells. Although it is well documented that



E2F is deregulated as a result of viral or cellular modifications in pRB , previous

findings from our laboratory show that the level of the HiNF-D complex (i.e., the

protein/NA complex that is observed with probes spanning the Site II cell cy

element) is elevated in HeLa and COS-7 cells , as well as in other transformed (or

tumor-derived) cell lines (Holthuis et aI. , 1990; van Wijnen et aI. , 1992). Thus it

appears that formation of CDP/Cux-pRBcomplexes is not adversely affected by viral

modifications of pRB. Consistent with this concept, pRB repression of histone H4 '

promoter activity was observed in tumor-derived and/or virally transformed cell

types. It has previously been shown that paired-like homeodomain proteins (e. , Pax-

, 3 , MHox, ChxlO) can interact with pRB through their conserved homeodomains 

(Wiggan et aI. , 1998) (Cvekl etal. , 1999; Eberhard and Busslinger, 1999). Consistent

with these observations, results from immunoprecipitation experiments indicate that

CDP (CR2-Cterm) encompassing the homeodomain was suffcient for CDP/Cux

interaction with pRB.

The temporal correlation in S phase between maximal HiNF-D interaction

with the H4 Site II element (Last et al. , 1998; Shakoori et aI., 1995; Stein et aI. , 1998)

and the presence of the CR2-Cterm cleavage product of CDP/Cux (Santaguida et al.

2001) suggests that CR2-Cterm may be a component of HiNF-D. Data from GST

pull-down experiments show that the CDP/Cux (CR2-Cterm) moiety is sufficient for

interaction with HiNF-D subunits cyclin A, CDKl and pRB , and for direct interaction

with the pRB minimal pocket. However, reporter transcriptional assays and co-

immunoprecipitation experiments indicate that the N-terminus of CDP/Cux , which

contains a coiled-coil protein interaction motif and the DNA-binding domain Cut



repeat 1 , is required for full repression of histone H4 transcription and optimal levels

of complex formation with pRB in vivo. Thus it is likely that full-length CDP/Cux

rather than the CR2-Cterm isoform, is involved in the regulation of histone gene

transcription.

The CDP/Cux-dependent transcriptional repressor function of pRB on histone

genes operates independently of E2F, because H4 gene promoters do not contain E2F

binding sites (van Wjjnen et aI. , 1996). Results from GSTpull-down studies show

that the structural determinantsofpRB that support the CDP-pRB interaction are

similar to those required for E2F. Specifically; both CDP/Cux and E2F interact with

the pRB large pocket, and neither protein depends strictjy on contacts with CDK 

phosphorylation sites in the pRB large pocket (Knudsen and Wang, 1997). Because of

similarities in the binding characteristics of E2F and CDP/Cux with pRB , these

proteins may compete for binding to pRB under biological conditions where they are

expressed simultaneously. However, during cell growth stimulation (e. , IL-

dependent cell cycle entry of FDC- hematopoietic progenitor cells) when cells

progress into S phase , HiNF-D proteinlNA complex are dramatically elevated

following hyperphosphorylationof pRB in late G) (Shakoori et aI. , 1995; van Wijnen

et aI. , 1997). Since maximal HiNF-D complex formation occurs when pRB is in the

hyperphosphorylated state, this finding suggests that the disruption of E2F/pRB

complexes by pRB phosphorylation may increase the availability of pRB for

interaction with CDP/Cux.

The CDP/Cux-pRB interaction may be of broader significance in regulating

transcription during the cell cycle. Apar from regulating human histone H4 gene



transcription , CDP/Cux represses the hamster thymidine kinase (TK) promoter

(Wiggan et aI. , 1998) and complexes containing pRB:'related proteins interact with

the TK promoter (Kim et aI. , 1996). Recent data by Lee and colleagues have provided

evidence suggesting that the combined actions of CDP/Cux and pRB at the histone

H3.2 and TK promoters may contribute toc ll cycle control of transcription JKim et

aI. , 1996; Kim, t al. , 1997; Wu and-Lee, 1998; Wu and Lee, 2002). These

investigators showed that Ap.-2 interacted with both pRB and CDP/Cux , and

postulated that CDP/Cuxrepression of the histone H3.2 promoter was mediated by

recruitment of the AP-2/pRB complex (Wu and Lee , 2002). The H4 , H3.2 and TK

, genes are transiently activated at the Gj /S phase transition, while the levels ofthe '

DNA binding complex between CDP/Cux and pRB (i. , HiNF-D complex) are

maximal in mid to late S phase (Last et aI. , 1998; van Wijnen et aI. , 1997). Therefore

it is possible that CDP/Cux-pRB co-repression attenuates transcription of the H4

H3.2 and TK genes during later stages of S phase when DNA synthesis rates are

decreased and the demand for histones and nucleotides is diminished (Fig. 3- 10).
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FIG 3-10. Model for the mechanism of HiNF-D repression of histone gene
transcription. The red curve represents levels of HiNF-M, HiNF-P and histone gene
transcription during the cell cycle. HiNF-D is observed only in S phase of normal cells
(blue curve). Consistent with a role in gene repression, maximal levels of HiNF-
occur after the peak of histone gene transcription. CDP/Cux has minimal DNA binding

activity outside of S phase. Phosphorylation and acetylation of COP reduces its DNA
binding activity. Thus CDP/Cux interaction with cdc25A, which is activated in early G

may lead to occupation of histone H4 Site II by CDP/Cux. Direct interaction with

HDAC1 enhances binding of CDP/Cux to DNA , which may result in the displacement
of activators HiNF-M and HiNF-P from Site II. Recruitment of pRB-cyclin A-CDK1

complexes, results in the phosphorylation of CDP/Cux which would lead to loss of Site
II binding at the end of S phase. Acetylation by PCAF may further disrupt the HiNF-
complex.
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The Cutll ~C mutant mice were generated and genotyped by Southern blot analysis by

Dr. DongXia Xing in the Jaboratory of Dr. Ellis Neufeld (Children s Hospital , Division of

Hematology, Boston MA). Electron ' micrographs were obtained from Dr. J. P. Sundberg

(Milennium Pharmaceuticals , Inc , Cambridge , MA). S I nuclease protection assays were

performed by Caroline van der Meijden (University of Massachusetts Medical Center

Department of Cell Biology, Worcester, MA).



ABSTRACT

1 . Murine CDP/Cux , a homologue of the Drosophila cut homeodomain protein

modulates the promoter activity of cell cycle-related and cell type-specific genes.

CDP/Cux interacts with histone gene promoters as the DNA-binding subunit of a

large nuclear c,gmplex (HiNF-D). CDP/Cux is a ubiquitous protein containing four

conserved DNA binding domains: three cut repeats (CR) and a homeodomain. In this

dy, we a alyz dgenetically targeted mice (Cutll tm2Ejn , referred to as Cutll ~C)

that express a mutant CDP/Cux protein with a deletion of the C-terminus including

the homeodomain. In comparison to the wildtypeprotein, indirect

immunofluorescence showed that the mutant protein exhibited significantly reduced

nuclear localization Consistent with these data, DNA binding activity of HiNF-

was lost in nuclear extracts derived from mouse embryonic fibroblasts (MEFs) or

adult tissues of homozygous mutant (Cutl1 ~C mice , indicating the functional loss

of CDP/Cux in the nucleus. No significant difference in growth characteristics or total

histone H4 mRNA levels was observed between wildtype and Cutll ~C '/- MEFs in

culture. However, the histone H4. l (murine homologue of human FO 108) gene

containing CDP/Cux binding sites have reduced expression levels in homozygous

mutant MEFs. Stringent control of growth and differentiation appears to be

compromised in vivo. Homozygous mutant mice exhibit stunted growth (20-50%

weight reduction), a high postnatal death rate of 60-70% , sparse abnormal coat hair

and severely reduced fertility. The deregulated hair cycle and severely diminished



fertility in Cutll ~C 
J- mice suggest that CDP/Cux is required for the developmental

control of dermal and reproductive functions.



INTRODUCTION

CDP (CCAAT Displacement Protein)/Cux is a transcription factor involved in

the regulation of cell growth and differentiation related genes (Table 1-4) (Nepveu

2001). Human CDP, its canine (Clox), murine (Cux- l) and rat (CDP2) homologs , and

the Drosophila Cut protein have four DNA binding domains in common (Fig. 1-

(Andres et aI. , 1992; Nepveu , 2001; Neufeld et aI. , 1992; Valarche et aI. , 1993; Yoon

and Chikaraishi , 1994): a unique homeodomain and three Cut repeats, which are

similar regions of 70 amino acids (Fig. 1-7). The role Of Drosophila Cut in cell-fate

determination has been well defined by the phenotypes of various mutant flies

Mutations within the cut locus that disrupt the coding region cause embryonic'

lethality, whereas some mutations in the enhancer regions result in viable mutant flies

with malformations in the leg and wing where cut fails to express (Jack et aI., 1991;

Jack, 1985; Johnson and Judd , 1979). CDP/Cux is expressed in most adult and fetal

tissues (Vanden Heuvel et aI. , 1996b) and its DNA binding activity is ubiquitous

among various mammalian cell lines (Lievens et aI. , 1995). Phosphorylation by

protein kinase C and casein kinase II or PCAF-mediated acetylation of the CDP/Cux

homeodomain inhibits DNA binding activity (Table 1-3) (Coqueret et aI. , 1996;

Coqueret et aI. , 1998b; Li et aI. , 2000). Stable CDP/Cux-DNA complexes are

detected in proliferating cells but are undetectable upon cellular differentiation of

HL60 promyelocytic leukemia cells and fetal rat calvarial cells (Lievens et aI. , 1995;

Owen et aI. , 1990; Skalnik et aI. , 1991). CDP/Cux has been shown to bind to a variety

of promoters or enhancer sequences of genes involved in differentiation, including



myeloid cytochrome gp9l-phox (Skalnik et al., 1991), dog hear myosin heavy chain

(Andres et aI. , 1992), rat tyrosine hydroxylase (Yoon and Chikaraishi , 1994), human

globin (Superti-Furga et aI. , 1988), Xenopus globin , and mouse N-CAM

(Valarche et aI. , 1993). Transfection experiments suggest that CDP/Cux functions as

a repressor of these target genes in proliferating precursor cells. Upon terminal

differ Jtiation , these target genes are induced when CDP/Cux DNA binding activity

is downregulated. Two mechanisms of repression by CDP/Cux have been proposed:

passive repression by competition with activators for occupancy of binding sites

(Barberis et aI., 1987; Neufeld et aI. , 1992; Skalnik et aI. , 1991), and "active

repression ' possibly through the interaction of CDP/Cux with HDACl (Maily et ' aI.

, ,

1996) .

The role of CDP/Cux in mammalian cell growth control is reflected by its

functional interaction with the promoters of the five major classes of histone genes

(Hl , H2A , H2B , H3 and H4), as well as genes encoding modulators of proliferation

including c-myc and p2l (Coqueret et aI. , 1998a; Dufort and Nepveu , 1994; van

Wijnen et aI. , 1991c; van Wijnen et al. , 1996). CDP/Cux DNA binding activity is

highest during S-phase (Holthuis et aI. , 1990; Last et aI. , 1998; van Wijnen et aI.

1997; Wright et aI. , 1992), when p21 expression is downregulated (Wright et aI.

1992) and histone H4 expression is maximal (Coqueret et aI., 1998a; van Wijnen et

aI. , 1996). The interaction of CDP/Cux with the promoters of all major histone

classes during Xenopus development implicates CDP/Cux in the coordinate control of

histOne gene expression during the cell cycle and early development (EI-Hodiri and

Perry, 1995). Moreover, eliminating CDP/Cux binding to the human histone H4



promoter alters the timing of maximal transcription during S phase (Aziz et aI.

1998a). Although CDP/Cux may have a bifunctional role, it is generally considered as

a repressor, possibly exerting its regulatory activity in conjunction with other n,uclear

proteins (Coqueret et aI., 1998a; Li et aI. , 2000; Maily et aI. , 1996; van Wijnen et aI.

1994), For example , transcriptional regulation of human histone H4 is mediated in

par by the promoter complex HiNF-D, which is composed of CDP/Cux , pRb, cyclin '

A, and CDKl (van Wijnen-et al. , 1994).

The developmental expression pattern of CDP/Cux has been monitored in'

mice that have alacZ gene expressed from the Cutll gene locus (Ells et aI. , 2001).

Cutll expression is detected in most tissues at embryonic day 8.5 (E8.5) and , starting

with E12. , becomes gradually limited to a subset of organs. Cutll is expressed in the

epithelial compartment of the developing whisker, tooth , choroids plexus , pituitary,

thyroid , salivary gland , pancreas , kidney and lung. In addition, expression of Cutll 

also observed in striated and smooth muscles of various organs and in hypertrophic

chondrocytes of developing bones (Ellis et aI. , 2001) Cutl1 is most highly expressed

in the testis (Vanden Heuvel et al. , 1996b), specifically in postmeiotic round and

elongating spermatids , but not in mature sperm (Ellis et aI. 2001).

There is limited insight into the functions of mamalian Cutll in vivo. The

human Cutll gene located at 7q22 has been implicated as a tumor suppressor gene in

several studies (Ishwad et aI. , 1997; Zeng et at, 1997; Zeng et aI. , 1999). Loss of

heterozygosity (LOH) was detected in a subset of uterine leiomyomas and breast

tumors. In all instances , the smallest deleted region included polymorphic markers

that are located within or close to the Cutll gene. Cutl1 mRNA levels were reduced in
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eight out of 13 mammary tumors (Zeng et aI. , 1999). Furthermore , CDP/Cux has been

shown to repress transcription from the promoters of the mouse mammary tumor

virus and the human papillomavirus (Ai et aI., 1999; O'Connor et aI. , 2000; Zhu et aI.

2000). Interestingly, immunocomplexes of CDP/Cux and Polyomavirus Large T

(PyV LT) antigen were detected in leiomyoma and breast tumors induced in

transgenic mice expressing the PyV LT amigen(Webstei t aI. , 1998). Theex-istence .

of such complexes suggests that induction of these tumors may involve the

sequestrationcof CDP/Cux by PyV L T antigen. However, it is also possible that

CD P /Cux may be associated with the process of tumorigenes is since CDP /Cux levels

were elevated during tumor progression in the PyV LT mice as well as in several 

breast tumor cell lines (Zhu et aI. , 2000).

Studies involving Cutll mutant mice have provided further insight into the 

vivo function of CDP/Cux. Forced expression of CDP/Cux in mice resulted in

multi organ hyperplasia and organomegaly (Ledford et aI. , 2002). Cutll tm1Ejn mice

with a deletion of Cut Repeat 1 exhibit a mild phenotype including curly vibrissae

wavy hair and high postnatal lethality in litters born to homozygous mutant mothers

due to the mothers ' impaired lactation (Tufarelli et aI. , 1998). In this study,

insertional mutagenesis to inactivate CDP/Cux was used by targeting its

homeodomain DNA binding region. The results presented in this chapter show that

this mutation (Cutll tm2Ejn) prevents CDP/Cux from accumulating in the nucleus as a

functional DNA binding complex (i. , HiNF-D). Homozygous mutant mice

(Cutll tm2Ejnltm2Ejn), hereafter referred to as Cutll ~C- mice , display high postnatal

lethality, growth retardation , hair loss and severely reduced male fertility. Despite the



ubiquitous expression of CDP/Cux , these data indicate that its absence from the

nucleus results in limited disturbance of normal tissue development. In addition

overall expression of histone H4 genes was unaltered in homozygous mutant

embryonic fibroblasts.



RESULTS

Loss of CDP/Cux C-terminus results in high neonatal lethality and severe

growth retardation

A targeting construct was generated to functionally inactivate CDP/Cux by

introducing a premature translational termination codon in ex on 20 that encodes the

beginning of the homeodomain, a DNA binding region ofCDP/Cux (~C; Fig. 4- 1A).

The genotypes of heterozygous mice generated from ES clones with the correctly

targeted allele were determined by Southern blot analysis (Fig. 4- 1B). Heterozygous

mice were interbred and PCR analysis

(Fig. 4- 1 C) demonstrates that the mutation is transmitted to heterozygous and

homozygous offspring at the expected frequency (Fig. 4-2A).

Mice heterozygous for the Cutll ~C mutation (!xC +J- are normal in

appearance and are fertile. Homozygous mutant (~c- pups are indistinguishable

from their littermates at birth. The Cutll ~C pups failed to thrive but they nursed

normally evident by the milk evident present in their stomachs during the first 2 to 3

days after birth. By the end of the first week after birth, many Cutl1 ~C- pups appear

considerably smaller than their littermates and most die at this stage (Fig. 4-2B).

More than 70% of Cutll ~C- pups failed to survive to weaning age (Fig. 4-2C),

which may be related to the fact that these pups suffer from purulent rhinitis

characterized by mucosal and submucosal purulent infiltrates within the nasal

turbinates (Dr. EJ. Neufeld, unpublished data). The homozygous mutant mice that do

survive to adulthood have a normal life span but are severely growth retarded and
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FIG 4. 1. Targeted mutation of the mouse Cut/ gene by homologous recombination.
(A) Top: A schematic diagram of the wildtype Cut/ allele with the positions of exons 19-
indicated. Arrows denote the positions of the primers used in PCR-based genotyping.
Middle: Targeting construct with the neo gene in an antisense orientation. Bottom:
Predicted mutant allele resulting from homologous recombination between the wildtype
allele and the targeting construct. Ten amino acids encoded by 30 nucleotides of the poly-
linker sequence in the targeting construct are added to the open reading frame of the mutant

Cux transcript before reaching the stop codon. A BamHI site introduced in the construct
gives a diagnostic fragment of 4.5 kb. (B) Southern blot analysis of 3 heterozygous
embryonic stem cell clones displaying both the 8.5- and the 4.5 kb BamHI fragments
corresponding to the wild type and mutant allele , respectively. (C) Genotyping of pups from
F2 generation with primers in intron 19 (HD-F), exon 20 (HD-R1), and the neomycin
cassette of the targeting vector (HD-R2). HD-R1 sequence is in the region of exon 20 that is

deleted from the mutant allele.
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FIG 4-2. High post-natal lethality and stunted growth in Cut/ C homozygous mutant
mice. (A) Genotype distribution of progeny from heterozygous matings. Data for postnatal day

1 litters are based on those litters in which the genotype of all born pups were determined. (B)

A litter with a moribund Cut/1 6.C- pup was photographed within the first week after birth. (C)

Of 60 mice screened, more than 70% of homozygous mutant mice die by postnatal day 10.
Wildtype and nullizygous mice (n=13), heterozygous mice (n=34). (D) Cut/ 6.C- mice exhibit

stunted growth and weigh significantly less than their littermates. Graph represents the growth
curve of 7 males from two litters.
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weigh 30-50% less than their normallittermates (Fig. 4-2D). Thus the Cutll 

mutation has an effect on viability, general growth , and susceptibility to bacterial

infections.

Expression of the mutant Cutll allele

To assess the effect of the mutation on Cutll expression Cutll transcripts

were analyzed by using RT-PCR with primers spanning ex on 19-21 (Fig. 3A).

Total RNA was isolated from proliferating mouse embryonic fibroblasts (MEFs)

derived from Cutii homozygous (~C

), 

heterozygous (~C+ and wildtyp (~C+

, embryos. The expected RT-PCR product (258 bp) with primers 19F and 20R in exons

19 and 20 was detected in all RNA samples , indicating that Cutl1 transcripts were

made in all three types of MEFs. A 44l-bp product was detected using primer pair

19F and 21R spanning exons 19 to 21 in Cutl1 ~C+ and ~C 
+J- samples. However

this product was absent in Cutll ~C- samples , establishing that insertional

mutagenesis created the designed truncation in the 3' end of the mutant Cutll

transcripts (Fig. 4- , top panel). Southern blot analysis showed that a probe

spanning exons 19 to 21 hybridized with the RT-PCR products from Cutl1 primers

but not with products from GAPDH primers (Fig. 4- , bottom panel). Furthermore

two chimeric RT-PCR products (307 bp with primers 19F and NeoRl , and 377 bp

with primers 20F and NeoR2) were detected with primers spanning exon 19 and the

neomycin cassette in heterozygous and homozygous mutant but not in wildtype

embryos as expected (Fig. 4-3C). Taken together the RT-PCR data indicate that the
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FIG 4-3. Full- length Cut/ mRNA and protein are not expressed in Cut/ ~C. mice. (A) A

schematic diagram of wildtype and mutant Cut/1 mRNA and protein. Arrows indicate , the
positions of the primers used in RT-PCR analysis. Dark gray rectangle represents 30
nucleotides that are added to the mutant transcript from the poly- linker sequence of the
targeting construct. (B C) Total lung RNA (2 Ilg) was used in RT-PCR assays with various

primers spanning exons 19 to 21 of the Cut/1 gene. (B) Bottom: Southern blot of RT-PCR

products using a radio labeled probe spanning exons 20 to 21. (D) Top: Western blot analysis
of lung extracts (30 Ilg) with a polyclonal antibody against CDPfCux C-terminus. Bottom:

Coomassie stain of the SDS-PAGE gel after transfer to the PVDF membrane used in the

above Western blot. Control lane (C): whole cell extract of HeLacelis transfected with pcDNA-
CDPfCux (fl). (E) Top: Western blot analysis of lung extracts with a polyclonal antibody against

full- length CDPfCux. Bottom: Coomassie stain of the SDS-PAGE gel. Control lane (C): whole

cell extract of HeLa cells transfected with pcDNA-CDPfCux(fl) and pcDNA-CDPfCux(~C). Full-

length CDPfCux (FI), nonspecific bands (NS), C-terminal truncated CDPfCux (~C).
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targeted allele expresses a chimeric truncated transcript in which the homeodomain

encoding sequences were replaced with sequences from the neo cassette.

To characterize the expression from the mutant Cutll transcript, whole cell

lysates derived from lungs of wildtype , heterozygous and homozygous mice were

analyzed using antibodies against the C-terminus of CDP/Cux (Fig. 4-3D) or the full-

length protein (Fig. 4-3E); A major band at -200 kDa;which coo-migrates with-the

overexpressed full-length CDP/Cux protein in the control lanes , is detected with both

antibodies in extracts from wildtype and heterozygous but not homozygous mutant

mice. Coomass-ie-staining of the SDS-P AGE gels shows that commp::able amounts

of protein were blotted (bottom panels of Fig. 4,.3D and' 4- 3E). These data indicate

that Cutll ~C 
J- mice express a truncated CDP/Cux protein that lacks the C-terminus.

The CDP/Cux ~C protein that is expected to be produced in homozygous mutant

mice is approximately 150 kDa. However in lung extracts derived from Cutll ~C 

mice, we note that the antibody against full-length CDP/Cux detects diffuse and faint

bands at - 170 kDa (Fig. 4-3E). These bands do not co-migrate with the

overexpressed CDP/Cux protein carying the identical ~C mutation. Similar bands

are observed when using an antibody against a C-terminal epitope that is not present

in the CDP/Cux ~C protein (Fig. 4-3D), indicating that these faint bands are not

specific for the CDP/Cux protein. Although the truncated protein is produced at a

level below detection by our Western blot analysis in lung extracts,

immunofluorescence microscopy data indicate that it is expressed at low levels in

mouse embryonic fibroblasts (MEFs) and in other cell types (Sinclair et aI. , 2001)
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The CDP/Cux-containing HiNF -D complex is absent in Cutll LiC 
J. mice

To investigate whether the CDP/Cux~C protein retains the ability to form

protein-DNA complexes, electrophoretic mobility shift assays (EMS As) were

performed with nuclear extracts from MEFs , as well as from lung and brain of

wildtype , heterozygous and homozygous mutant mice (Fig. 4-4). CDP/Cux is highly

expressed in -lung and brain tissues. V/ildtype GDP/Cux protein has been shown

previously to interact with Site II of the cell-cycle regulated histone H4 gene as a

multi-component protein-DNA complex (HiNF-D) containing cyclinA;CDKI and

pRB (van Wijnen et aI. , 1994; van Wijnen et aI.; 1996). EMSAs show a low mobility

complex (HiNF-D) in wildtype and heterozygous extracts but not in homozygous'

mutant extracts (Fig. 4-4A), suggesting that the CDP/Cux~C protein has lost the

ability to form protein-DNA complexes. The identity of the HiNF-D complex was

established by competition with wildtype and mutant oligonucleotides (Fig. 4-4A)

and by immuno-reactivity in EMSAs with a CDP/Cux antibody (Fig. 4-4B). Cyclin E

antibody was used as a negative control (Fig. 4-4B).

Since CDP/Cux has previously been shown to bind the myeloid-specific gp9l-

phox promoter in complex with the pRb-related p107, the binding of the CDP/Cux

~C protein to this promoter was also tested. The data show that the probe forms a

CDP/Cux-containing complex with nuclear proteins from Cutll ~C+ and ~C+ but

not ~C- mice (Fig. 4- , panels A and B). EMSAs were also performed with an Spl

probe using nuclear extract from MEFs , as well as lung and brain tissues from mice

of all genotypes. The results show a similar Spl binding activity in all protein

preparations (Fig. 4-5C), suggesting that the quality of the nuclear extract is
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FIG 4-4. Absence of HiNF-D complex in homozygous mutant mice. Electro

Mobility Shift Assay (EMSA) was performed with labeled ds-oligos spanning
Site II of histone H4. 1 promoter, and nuclear extract (3 g) prepared from adult
lung, adult brain and proliferating embryonic fibroblasts (as indicated). (A)
Competition with unlabeled wildtype oligonucleotides and mutant oligonucleotides

(SUB 11) which has no significant HiNF-D binding activity. (B) Immuno mobility

shift assay with antibodies against full- length CDPfCux and cyclin E (aE) as 
control. Arrows indicate the HiNF- complex. Arrowhead indicate unbound
labeled probe. Control lane (C): HeLa nuclear extract was used as a positive

control for the presence of HiNF-D complex.
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FIG 4-5. CDP/Cux AC mutant protein does not retain DNA-binding activity. EMSA with

lung and brain nuclear extracts (3 g) was performed with 32P-labeled double-stranded

oligonucleotides containing gp91-phox promoter sequences (A, B) or Sp1 consensus

binding site (C). (A) Competition with unlabeled wildtype and nonspecific (SUB 11)

oligonucleotides. (B) Immuno mobility shift assay with antibody against full-lengthCDP/Cux

and cyclin E (aE, 2 g) as control. Arrows indicate CDP/Cux-containing complexes. (C) Left

panel: Competition with unlabeled wildtype Sp1 and nonspecific competitor (SUB 11)

oligonucleotides. Right panel: EMSA with lung extracts (3 g). Lane (C): HeLa nuclear

extract was used as a positive control for the presence of HiNF-D complex (38). Arrows

indicate protein/DNA complexes containing COP.
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comparable for all genotypes. Deletion of the CDP/Cux C-terminus results in the

absence of CDP/Cux-containing proteinlNA complexes, indicating that the C-

terminus is required for complex formation.

Levels of CDP/CuxAC protein in the nucleus are signifcantly reduced in Cutll

CfJls

... .- ,- --

To address the possibility that the absence of CDP/Cux-containing

proteinlDNA complexes is due to its exclusion from the nucleus,

immunofluorescence microscopy was performed with apolyclonal antibody against

full-length CDP/Cux. Strong nuclear immunofluorescence was observed for

CDP/Cux in wildtype and heterozygous MEFs but the nuclear signal is significantly

reduced in homozygous mutant MEFs (Fig. 4-6). To ensure that overall protein

antigenicity is preserved during cellular extraction , MEFs were also incubated with

antibody against Spl. Strong Spl nuclear staining is observed in Cutll ~C- MEFs , as

well as ~C+ and ~C+ MEFs (Fig. 4-6). To verify that the CDP/Cux ~C protein is

localized inside the nucleus, rather than on its surface, confocal microscopy was

performed with antibody against full-length CDP/Cux. A nuclear signal is detected in

Cutll ~C- MEFs , albeit at a greatly reduced intensity as compared with the wildtype

signal , indicating that the CDP/Cux ~C protein produced in mutant mice retains the

ability to localize to the nucleus (Fig. 4-7 A). A faint and diffuse cytoplasmic signal is

present in Cutll ~C+ MEFs, but a pronounced reticular pattern is observed in Cutll

MEFs with antibody against full length CDP/Cux (Fig. 4-6 and 4-7). Consistent

with the reticular staining pattern , the N-terminus coding sequences remaining in the
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FIG 4-6. Reduced levels of CDP/Cux AC mutant protein is detected 
the nucleus. Embryonic fibroblasts grown on gelatin-coated coverslips were
fixed as whole cells, permeabilzed and were incubated with an antibody
against full-length CDP/Cux (aCDPfI) or an antibody against Sp1 (aSp1) at a
1: 1 00 dilution. Cell nuclei were visualized chromatin staining with DAPI.
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FIG 4-7. Significantly reduced levels of CDP/Cux l1C protein is observed in the nucleus of
homozygous mutant MEFs. (A) Cultured embryonic fibroblasts grown on gelatin-coated
coverslips were fixed, permeabilized, incubated with guinea pig antibody against full-length

CDP/Cux (aCDP fI) or rabbit anti-CASP (aCASP) antibody, and analyzed by confocal
microscopy. (DIC) differential interference contrast (B) MEFs (+1-) were subjected to digital

microscopy in the absence of primary antibody. Cells were incubated with fluorescein-tagged
anti-guinea pig antibody. (C and D) HeLa cells were transfected with vectors expressing Xpress-
tagged CDP/Cux full-length (Cux fI) and C-terminally truncated (8C Cux) proteins. CDP/Cux

proteins were analyzed by immunofluore microscopy using an antibody against full-length

CDP/Cux (a CDP) and an anti-Xpress antibody (aX).
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mutant allele encode an extensive coiled-coil domain that has the potential to form

fiamentous structures. This coiled-coil domain is also present in an alternatively

spliced CDP/Cux variant called CASP. It is likely that the polyclonal antibody against

full-length CDP/Cux recognizes CASP as well. To determine which protein is

responsible for the perinuclear signal , we performed confocal microscopy with a

CASP-specific antibody. A perinuclear signal is detected by theCASP specific

antibody and colocalizes with the cytoplasmic staining observed with the antibody

against full-length CDP/Cux (Fig. 4-7 A). No specific signal is detected in MEF& 

when the primary antibody against CDP/Cux was omitted (Fig. 4-7B). In addition

HeLa cells were transfected with 'vectors expressing an epitope (Xpress)-taggedfuli-

length or CDP/Cux ~C protein. The expressed full-length and truncated proteins are

localized to the nucleus, as determined by immunofluorescence microscopy using

antibodies against the Xpress epitope (Fig. 4-7C) and CDP/Cux (Fig. 4-7D). The,

difference in localization of endogenous and exogenously expressed CDP/Cux~C

proteins may be due to differential transcriptional regulation. Taken together, these

findings establish that deletion of the 3' end of the Cutll gene results in a significant

loss of nuclear functions of the gene product.

Embryonic fibroblasts homozygous for the CutII C mutation exhibit normal cell

growth

CDP/Cux has been shown to regulate the promoters of genes involved in cell

growth regulation including histone H4, c-myc and p2l (Coqueret et aI. , 1998a;

Dufort and Nepveu , 1994; van Wijnen et aI. , 1991c; van Wijnen et aI., 1996). We
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examined whether the functional loss of CDP/Cux in the nucleus affects cell growth

control using flow cytometric analysis to assess the DNA content of the cells and .the

relative number of cells present in specific cell-cycle stages. The results did not reveal

a significant difference in growth characteristics between non-synchronized

proliferating homozygous and wildtype MEFs (p::0.05) (Fig. 4-8A). Furthermore

the growth rates of Cutll ~C , ~C+ and ~C:tJ+ 1\IlEF were determined and found- to

be comparable (Fig. 4-8B). Expression of histone H4 genes , which is tightly coupled

to DNA replication and is a specific marker for cells in S-phase , was -assessed by

northern blot analysis. As a probe, a DNA segment was used that encompasseS the

entire coding sequence , which cross-hybridizes with mRNA transcribed from the 12

known histone H4 gene copies in mice. Consistent with the flow cytometry results

Northern blot analysis reveals overall histone H4 mRNA levels from wildtype

heterozygous and homozygous mutant MEFs to be comparable (Fig. 4-8C), indicating

that a similar proportion of the cells in each population is in S-phase.

Previous studies from our group have focused on one specific histone H4 gene

in human and mouse (referred to as F0108 and H4. , respectively) to understand the

regulatory role of CDP/Cux in cell cycle-controlled transcription (van der Meijden et

aI. , 1998; van Wijnen et aI. , 1996). To selectively detect expression of the mouse

H4. l gene , S 1 nuclease protection assays were performed. Similar to its human

counterpar, the murine H4. l gene is cell cycle regulated and interacts with CDP/Cux

(van der Meijden et aI. , 1998). S 1 nuclease protection analysis was performed with

the RNA described above using a 50-bp probe encompassing the divergent 5'

flanking region of H4. l. The results suggest that expression of the H4. l gene is
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FIG 4.8. Reduced histone H4. 1 mRNA levels in Cut/ AC mouse embryonic fibroblasts
(MEFs) that exhibit normal growth characteristics. (A) Cell-cycle distribution of
proliferating homozygous mutant MEFs and wild-type MEFs was comparable. Cell-cycle
estimates were obtained by FACS analysis for proliferating MEFs stained with a propidium
iodide solution. (B) Cut/ I1C- MEFs exhibit normal growth rates. MEFs were plated in
triplicate at 4x10 cells per plate on day zero and the number of cells per plate was
determined on days 1, 3 and 5. (C) Total histone H4 mRNA is expressed at comparable
levels in proliferating wild-type and Cut/I1C- MEFs. Top: Northern blot of total RNA (20 I1g)

was performed using a probe spanning the entire coding region of the human histone H4
gene. Bottom: ribosomal RNA (28S and 18S indicated) visualized by ethidium bromide. (D)
S1 nuclease protection assays show a two-fold decrease in histone H4. 1 mRNA expression
in homozygous mutant MEFs. Labeled oligonucleotides complementary to the cap site of
H4. 1 were hybridized to total RNA (10 I1g) from proliferating MEFs , and digested with the S1
nuclease. A -actin probe served as an internal control. (Left) The histogram represents a
composite of the ratios of the histone levels in 5 experiments. (Right) Autoradiograph of a
representative S1 nuclease protection experiment.
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moderately reduced in MEFs as compared to wildtype MEFs (Fig. 4-8D). The

reduction in the expression of H4. l gene is consistent with the role of CDP/Cux in

regulating histone gene transcription , but the moderate nature of the decrease suggests

that there are compensatory mechanisms. It has been well established that histone

gene expression is regulated by both transcriptional and post-transcriptional

mechanisms , and that mRNAstabilizaHGll mayeffset transcriptional changes (Stein

et aI., 1996).

The Cutll mice have reduced fertilty

One of the most striking features of the Cutl1 C mouse is that the

reproductive fitness is greatly compromised in the homozygous mutant males. 

general Cutll ~C- males rarely produce offspring, even when mated with wildtype

females. For example , only one of 25 Cutll ~C- males sired two litters of pups. To

assess whether Cutll ~C- mice have defects in testicular development or function

gross anatomical and histological studies were performed. The weights of the tesies

dissected from Cutll ~C+ , ~C+ and adult mice were comparable (Fig. 4-9A).

Serum testosterone levels in Cutl1 ~C+ and ~C- males were significantly lower than

those in Cutll ~C+ male littermates (Fig. 4-9B). Heterozygous males are fertile and

yet display the same reduced levels of testosterone as the homozygous mutant males.

Abundant maturing germ cells were observed in the seminiferous tubules and

epidydimis of wildtype , heterozygous and homozygous mutant male littermates at

seven months (Fig. 4-9, panels C and D). Although germ cell numbers were

unaffected by the Cutll ~C mutation, it is possible that reduced fertility in Cutll ~C-
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FIG 4-9. Cut/1 l1C mutant males with normal testicular morphology have reduced
serum testosterone levels. (A) Testes were weighed from mice at age 3 week (4 mice),

10-11 months (9 mice) and 14 months (4 mice). (B) Total serum testosterone levels from
mice at age 2-3 weeks (6 mice), 6 months (3 mice), 10-11 months (11 mice) and 14
months (4 mice) were measured by radioimmunoassay. (C) Micrograph (25x) of
hematoxylin and eosin stained sections of testis and (D) epididymis from male littermates

at 7 months. (S) Sperm, (I) Interstitial Cells.
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males is due to defects in sperm motility or other functions that remain to be

investigated.

The deveJopment of the gastrointestinaJ tract is unperturbed in the Cutll AC 

mice

Although observed to feed normally, Cutll ~c- mice are severely growth

retarded. This runted phenotype may be a result of defective nutrient absorption.

Therefore a thorough histological examination of the gastrointestinal (GI) tract in

these mice was performed. One potential cause of malabsorption is structural defects

in the small intestine, where the majority of nutrient absorption occurs. Careful

, ,

examnation of histological sections stained with H&E revealed no structural

abnormalities in the small intestine of mutant mice (Fig. 4- 10). The height of the vili

(Fig. 4- l0A) in Cutll ~c- mice appears normal. In addition , a comparable number of

nalTow stem cells (Fig. 4- 10B), undergoing mitotic activity to reconstitute the cell

population of the crypt and vilus , are observed in the crypts of Lieberkuhn. Also

present are the major cell types with protective and absorptive functions in the small

intestine, namely the mucus-secreting goblet cells (Fig. 4- l0B) and the surface

absorptive cells (Fig. 4- l0C). The structure of the brush border (Fig. 4- lOC), where

many of the enzymatic activities of digestion occur, appears intact in the Cutll ~C 

mutant mice. Thus the Cutll ~C mutation does not appear to disturb the development

of the small intestines.
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FIG 4-10. Normal histologic features of the small intestine from CutI1lJC.

/' 

mice.
Photomicrographs of H&E Sections (7 jJm) of the small intestine. (A) Vili (V) and crypts
of Lieberkuhn (CL). (B) Enlarged view of the boxed area in (A) depicting stem cell
mitotic figures (MF), Paneth cells (PC) and goblet cells (GC). (C) High power
micrograph of the vill. Surface absorptive cells (SA), a columnar type of epithelium with
a brush border (BB).
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Cutll AC mutation results in abnormal dermis and hair loss

Homozygous mutant pups begin to shed hair two to three weeks after birth.

By one month, the mice are completely bald except for very thin hair covering parts

of the ventral region and head (Fig. 4- llA). Re-growth of the coat hair occurs

gradually over a period of several months and is more evident in female than in male

""c- mice. Then gfOwn coat hair on Cutl1 ~C- mice has a distinctive light gray

color and appears longer than hair of wildtype animals. In contrast to wildtype control

in which there was a thick mat of normal hair,-the mutant skin is covered by hairs but'

they are scant and distorted, appearing to be very thin in diameter.Wildtype mice had

normal awl and guard hairs, which are straight and are of uniform diameter along'

their length with distinct cuticular scales (Fig. 4-11B , panels 1, 2 and 3). Regardless

of where they are found on the body, the hair fibers from Cutll ~C- mice are

essentially uniform in size , with a variety of deformities including kinky, twisted, and

flattened characteristics (Fig. 4- llB). No vibrissae are evident in the muzzle skin of

nullizygous mice , only irregularly wavy hairs that are short and similar to the coat

hair (Fig. 4- 11A). In summary, these findings suggest that hair fiber types produced

in Cutll ~c-\- mice are all of one type with loss of other types or that all hairs

produced are so deformed they cannot be separated into the various anatomical fiber

types. Thus , the genetic mutation we introduced into the Cutll gene locus apparently

causes abnormal formation of the coat and vibrissae hair fibers.
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FIG 4-11. Hair Loss in homozygous mutant Cut/ AC mice. (A) Cutll:C-
mice with extensive hair loss as compared to its wildtype sibling at 1 month

(left) and partial re-growth of abnormal hair at 4 months (right). (B) Scanning

electron micrographs of plucked hair from five month old mice. The wildtype
mouse had normal awl (panel 1) and guard hairs (panels 2 and 3). 
contrast, its homozygous mutant littermate had severely deformed hair fibers
that could not be typed (panels 4, 5 and 6). Deformed hairs were corkscrew-

like in appearance with no evidence of cuticular scales. Bar = 10 

: '
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DISCUSSION

To investigate the in vivo role of the CDP/Cux C-terminus , mice carrying a

genetic deletion of the homeodomain and C-terminus of the protein (Cutl1 ~C mice)

were characterized. Nuclear signal originating from the truncated CDP/Cux protein is

dramatically decreased in homozygous mutant mice; suggesting a significant

reduction of its nuclear activity. Consistent with the proposed role of CDP/Cux in the

regulation of histone genes (EI-Hodiri and Perry, 1995;van'Wijnen et aI. , 1996),

altered expression of the histone H4. 1 (murine FO 1 08) gene was observed in

embryonic fibroblasts homozygous for the ~C mutation. The genetic mutation in the

Cutl1 gene resulted in abnormal f.ormation of the hair f bers and reduced fertility.

In addition , homozygous mutant mice have increased susceptibility to

bacterial infections and suffer from purulent rhinitis characterized by mucosal and

submucosal purulent infiltrates within the nasal turbinates (Dr. E.J. Neufeid

unpublished data). Due to enhanced apoptosis Cutl1 ~C mice have fewerT cells in

the thymus and fewer B cells in the bone marow (Sinclair et aI. , 2001). These

lymphoid defects are not due to defective antigen receptor rearrangement.

Histopathological examnation of bone marow and sternebrae reveals a relative

hyperplasia of myeloid cell types in Cutll ~C- mice (Sinclair et aI. , 2001). These

data suggest that CDP/Cux is required for normal dermal tissue development

reproduction and the ability to resist microbial infections. A previous study

characterizing genetically targeted mice that lack only Cut repeat 1 (due to ex 

skipping) described a mild phenotype consisting of curly vibrissae, wavy hair and

119



T -

high pup loss due to impaired lactation in homozygous mutant mothers (Tufarell 

aI. , 1998). The mice characterized in the present study lack the entire C-terminus of

CDP/Cux and have a more severe phenotype.

Heterozygous mice are fertile and appear indistinguishable from wildtype

animals. This finding suggests that haploinsufficiency of the wildtype allele has no

phenotypic effect-and that the-mutant allele,does' not act in a dominant negative

manner. Homozygous mutant (Cutll ~C- mice are viable at birth and are born at the

expected frequency but have a high level of neonatal lethality. Althoughthecause of

the neonatal lethality remains unclear, it does not appear to be a result of impaired 

feeding because milk is clearly visible in the abdominal cavity of moribund pups. The

small proportion of surviving Cutll ~C- mice has a normal life span but these

animals are severely growth retarded. The cause of this failure to thrive is currently

unknown. However, growth retardation is not due to general defects in cell

proliferation because the cell growth characteristics of homozygous mutant

embryonic fibroblasts appear to be normal. Furthermore, there do not appear to be

any anatomical or histological abnormalities in the gastrointestinal tract of the Cutll

~c 
J- mice that may lead to defective absorption of nutrients. Interestingly, increased

expression of the brush-border enzyme sucrase-isomaltase (IS), which acts in the final

step of small intestinal digestion of dietary starch to glucose, was observed in Cutll

mice (Boudreau et aI. , 2002). It is unclear how increased IS expression may

affect nutrient absorption. However, it is possible that the expression or activity of

other brush border enzymes is deregulated, which may lead to malabsorption in Cutll

~C- mice.
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Aberrant coat hair, hair loss and a high level of male infertilty were the most

obvious tissue-specific defects in Cutll ~c- mice. Consistent with these data, mice

lacking CR3 to the C-terminus (~CR3-Cterm) exhibit an abnormal pelage due to

disrupted hair follcle development (Ells et aI. , 2001). The Cutll ~CR3-Cterm

mutation results in impaired'iifferentiation of the inner root sheath (IRS) that

surrounds the hair shaft; and deregulation of Sonic hedgehog and IRS-specific gene

expression. Cell proliferation , however, was unaffected in the Cutl1 ~CR3-Cterm hair

bulb. These data suggesnhat CDP/Cuxfurlctions in cen liIieage specification during

hair follicle morphogenesis. ' Interestingly, homozygous deletion of the mouse ovol

gene , which encodes a zinc finge ' transcription factor , has a similar phenotype

including growth retardation, aberrant coat hair and a reduced ability to reproduce

(Dai et aI. , 1998). In addition Cutll ~c- mice have similarities to the lanceolate hair

(lah) mutant mice that are runted , alopecic and lacking vibrissae. The lah mutant

mice also have follicular dystrophy and lance-shaped broken ends of hair fibers in the

muzzle skin (Sundberg et aI. , 2000). Several homeobox-containing genes have been

shown to be differentially expressed in the dermis and epidermis of fetal and adult

skin (Detmer et aI. , 1993; Stelnicki et al. , 1997). For example , when the

homeodomain protein Msx-2 is overexpressed under the control of a keratin promoter

in transgenic mice, the animals have a thickened epidermis , shorter coat hair and a

reduced matrix region (Wang et aI. , 1999). Thus our data contributes to the list of

regulatory factors involved in general growth control and dermal tissue development.

A considerable reduction in the fertility was observed in Cutl1 ~C 
J- 
mice and

many factors may potentially contribute to this reduced fertilty. However, it is
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unlikely serum testosterone is directly related to the reduced fertility of Cutl1 ~C

males because fertile heterozygous males display the same low testosterone levels as

observed in the homozygous males. Adult homozygous mutant males are smaller than

wildtype and heterozygous females; this difference in size may affect the mating

interactions and thus lower the mating frequency. Furthermore Cutll ~C mice have

lymphoid abnormalities and suffer from purulent rhinitis, (Sinc1air et al. , 2001) which

could disrupt their sense of smell. Interestingly, the Cutl1 ~C mice hcwe many

phenotypes in common with the p73."deficient mice , such as runted appearance , high

rates of mortality, severe rhinitis and reduced fertility. As has been shown for the.

, p73-deficient mice , it is possible that lack of interest of Cutll fjC male mice in 

sexually mature females is due to defects in the sensory pathways , such as the.

absence of expression of pheromone receptors VIR and V2R (Yang et aI. , 2000). A

previous study suggested that a truncated CDP/Cux protein uniquely expressed in the

testis may be involved in testis development and the regulation of gene expression

during spermatogenesis (Vanden Heuvel et aI. , 1996b). However, the histological

sections of the adult testis and epididymis of nullizygous Cutll ~C mice reveal

maturing sperm cells in both organs. Hence, perturbation of the sensory pathways

rather than the absence of germ cells, may contribute to the reduced fertility in the

Cutll ~C male mice.

In the absence of HiNF-D complex formation , homozygous mutant MEFs

exhibit a moderate reduction of H4. l gene expression, which may be due to decreased

transcription of the H4. l gene. These results are consistent with the postulated role of

HiNF-D as a transcriptional regulator of histone genes and suggest possible
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mechanisms for HiNF-D function in vivo. HiNF-D may suppress the activity of a

transcriptional repressor, so that in its absence repression of H4 transcription is

increased. The DNA-binding subunit of HiNF-D, CDP/Cux , has been shown to

repress transcription of the p21 gene, which can block cell-cycle progression in G)

phase by inhibiting the activities of cyclin-dependent kinases and the proliferating

cell nuclear antigen whose role is to confer processivityto DNA polymerase 8

o (Coqueret et aI. , 1998a). Thus the absence ofCDP/Cux function would predict an

increase in p21activity, whiCh may lead to a cell-cycle block and decreased histone

gene expression. Although decreased histone H4. 1 mRNA levels were observed in

Cutl1 ~C- MEFs , no changes in growth characteristics 'were detected in these cd1s.

Hence , the observed decrease in histone expression was not due to a cell-cycle block

mediated by increased p2l activity. HiNF-D may act as a transcriptional activator of

the histone H4. 1 gene , since the expression of this gene is downregulated in its

absence. Several observations implicate HiNF-D as a transcriptional activator of

histone gene transcription: HiNF-D contributes to transcriptional activation of histone

H4 when the HiNF-M binding site has been mutated or when HiNF-M is absent in the

cell (Aziz et aI. , 1998a); HiNF-D activity is correlated with histone H4 mRA levels

in several mouse tissues (van Wijnen et aI. , 1991a); and mutations that abrogate

HiNF-D interaction with Site n cause a delay in H4 transcriptional upregulation. In

addition , CDP/Cux has been shown to transactivate the rat tyrosine hydroxylase gene

(Yoon and Chikaraishi , 1994) and the DNA polymerase a gene (Moon et aI. , 2001;

Truscott et aI. , 2003). Downregulation of histone H4. l expression did not change the

overall histone H4 mRA levels, which is consistent with studies in which genetic
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deletion of two somatic histone Hl genes results in unaltered Hl expression due to

compensation by the remaining Hl genes (Fan et aI. , 2001). Furthermore, the DT4Q

chicken B cell line in which half the histone genes were deleted exhibited unalt red

growth rates , and steady-state levels of histone mRNA were maintained by increased

expression of the remaining histone genes (Takami et al. , 1997).

Additional lines of evidence support the role of CDP/Cux in the regulation of

growth and differentiation. Deletion of Cut Repeat 3 and the C-terminus of CDP/Cux

results in a truncated protein that is retained in the cytoplasm and fails to repress gene

transcription (Ellis et aI. , 2001). Mice homozygous for this null mutation ( CR3-

Cterm) die shortly after birth due to retarded differentiation of the lung epithelia. A

less severe delay in lung development allows Cutll ~CR3-Cterm J- 
mice on an 

outbred background to survive beyond birth. Like Cutll ~C mice ~CR3-Cterm

mice also exhibit growth retardation. Growth retardation was not due to dysfunction

of the thyroid or pituitary glands since levels of growth hormone and thyroid-

stimulating hormone are comparable in wildtype and homozygous mutant mice.

Interestingly, transgenic mice overexpressing CDP/Cux exhibit multiorgan

hyperplasia and downregulation of p27 during nephrogenesis (Ledford et aI. , 2002).

Transient transfection experiments showed that CDP/Cux is a repressor of p27

promoter activity. Thus these data suggest that CDP/Cux regulates cell proliferation

during nephrogenesis by inhibiting expression of p27. This is consistent with the

finding that CDP/Cux , as a component of the HiNF-D complex , is a marker for

proliferation that is restricted to S phase in normal cells but is constitutive in cancer

cells (Holthuis et aI. , 1990; Owen et al. , 1990; van Wijnen et aI., 1989).
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CHAPTER 5

GENERAL DISCUSSION



. . "" , .., .

The experiments described in this dissertation were initiated: 1) to establish

the molecular interactions that enable components of HiNF- D to form a complex and

the post-translational modifications that may govern these interactions; 2) to

investigate the mechanism(s) involved in CDP/Cux-mediated repression of histone

H4 transcription; and 3) to assess the biologicaJrole of CDP/Cux in the regulation of

proliferation and hist-one gene-expre&sion-using a mouse model. Molecular biology

and histological techniques were used to characterize a Cutll mutant mouse and to

elucidate regulatory mechanisms that govern expression of replication"'dependent

histone genes during proliferation. Together the data presented here strongly

implicate the involvement of CDP/Cux in the regulation of growth control, histone

gene expression and differentiation.

CDP/Cux as a tissue-specific mitogenic factor

Several observations suggest that CDP/Cux functions as a mitogenic factor.

Cellular division involves DNA replication , a process that requires several enzymes

including DNA polymerases. The S phase-specific isoform (CR2-Cterm) of CDP/Cux

binds the DNA polymerase a (pol a) gene in vivo during S phase and forced

expression of CDP/Cux stimulates endogenous pol a gene expression (Truscott et aI.

2003). CDP/Cux also activates transcription of other S phase-specific genes

including dihydrofolate reductase (DHFR) and cyclin A (Truscott et aI. , 2003).

Furthermore , forced expression of CDP/Cux represses expression of the CDK

inhibitor p2l 
Cipl (Coqueret et aI. , 1998a). Thus CDP/Cux may facilitate cell cycle
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progression by activating genes required for S phase and repressing genes that inhibit

cell cycle progression.

In this study, mice with minimal nuclear CDP/Cux function (Cutll ~C mice)

have decreased body weight, which maybe due to a proliferation defect. However

fibroblasts derived from homozygous mutant embryos exhibit normal growth rates

, (Fig. 4 , and Luog et aI. , 2002), indicating that CDP/Cux is not involved'in

- ,- 

growth regulation in these cells. Proliferation defects in other tissues remain to be

investigated. SeveTal studies have implicated CDP/Cux as an oncogene. Increased

expression of a specific CDP/Cux isoform, consisting of Cut repeat 3 to the C-

terminus (CR3-Cterm), was observed in breast tumors (Goulet et aI. , 2002). bf

invasive tumors , a significant association was established between higher expression

levels of CDP/Cux CR3-Cterm and a diffuse infiltrative growth pattern (Goulet et aI.

2002). In polycystic kidneys, CDP/Cux is expressed in cyst epithelium, but is

minimally expressed in normal kidney tissue (Vanden Heuvel et aI. , 1996a).

Consistent with these data, forced expression of CDP/Cux in transgenic mice resulted

in enlargement of several organs including the heart , liver, kidneys , testes and

seminiferous tubules , but the average body weight was not increased (Ledford et aI.

2002). Organomegaly observed in the kidneys was a result of hyperplasia in renal

tubules and glomeruli, which was accompanied by downregulation of p27kipl

expression. Interestingly, Cutll ~C mice that have minimal nuclear CDP/Cux

function also exhibit myeloid hyperplasia (Sinclair et aI., 2001). Thus both increased,

and decreased CDP/Cux expression resulted in hyperplasia, albeit in different tissues.
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It is possible that CDP has mitogenic functions in certain tissues and anti-mitogenic

activities in other tissues.

Implications of CDP/Cux as a tumor suppressor

HiNF-D is a large multi-subunit complex that is composed of CDP/Cux and

the cell cycle regulators pRB , CDKl and cyclin A (van Wijnen et aI. , I 94; vim

Wijnen et aI. , 1996). Because the C-terminus (CR2-Cterm) of CDP/CuXJS an S

phase-specificisoform that has greater DNA binding activity than ihe full-length '

protein (Moon et aI. , 2001), it was not surprising that the CDP/Cux C-tcrminus was

observed to interact with the HiNF-D components cyclin A , CDKl and pRB

(Fig. 3-2). pRB has been reported to interact with more than 110 cellular proteins and

many of these interactions are mediated by the pRB pocket domain (Morris and

Dyson , 2001). GST pull-down assays revealed that the pocket domain was sufficient

for interaction with GST -tagged CDP/Cux (CR2-Cterm). Because

hyperphosphorylation of pRB is concurrent with maximal levels of HiNF-D complex

formation in S phase (van Wijnen et aI. , 1997), it was hypothesized that CDP/Cux

interacts with hyperphosphorylated rather than hypophosphorylated pRB. However

results described in Chapter 3 show that CDP/Cux (CR2-Cterm) can interact with the

hypophosphorylated pRB (Fig. 3-3A). Though it remains to be determined whether

this interaction occurs under physiological conditions with endogenous

concentrations of CDP/Cux and pRB proteins, these data suggest that the interaction

of CDP/Cux with pRB is regulated in part by E2F-pRB complexes. It is very well

possible that the sequestration of E2F by pRB in G phase prevents pRB binding to
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CDP/Cux until S phase. Since it is not known whether E2F binds to the entire cellular

pool of pRB , some pRB may be free in G , though below threshold levels for

interaction with CDP/Cux under physiological conditions (Fig. 3- 10). CDP/Cu:( and

pRB form complexes in vivo and at the single cell level , endogenous CDP/Cux and

pRB exhibit significant colocalization (Figs. 3-5 and 3-6). These findings suggest that

in vivo interaction between CDP/Cux and pRB are facilitated by close proxiffty of

these two proteins within the nucleus.

Results presented in Chapter 3 show that CDP/Cux and pRB cooperate to

repress histone gene transcription. It is known that the DNA binding activity of

HiNF-D complex is maximal in mid to late S phase (van Wijnen et aI. , 1997). The'

physical and functional interactions described in Chapter 3 suggest that CDP/Cux

represses histone gene transcription by recruiting pRB to the promoter. Furthermore

transcriptional repression by HiNF-D may also be mediated by CDP/Cux recruitment

ofHDAC- l and/or DNMT1 , a DNA methyltransferase which functions to repress

gene transcription (Robertson et aI. , 2000). It will be interesting to determine whether

in vivo complex formation and in situ association of CDP/Cux and pRB are cell

cycle-dependent. CDP/Cux-pRB complex formation and colocalization at subnuclear

domains in mid to late S phase would support the hypothesis that CDP/Cux interacts

with the hyperphosphorylated form of pRB to repress histone gene transcription in

mid to late S phase.

In addition to HiNF- , HiNF-M (IRF-2) and HiNF-P interact with the histone

Site n element and mediate transcriptional activation (Mitra et aI. , 2002b; Vaughan et

aI. , 1995). Two recent studies showed that NPAT is an additional link between the
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cell cycle and histone gene transcription (Ma et aI. , 2000; Zhao et aI. , 2000). NPAT is

a substrate of cyclin E-CDK2 complexes and colocalizes with Cajal bodies , which are

associated with histone gene clusters (Frey and Matera, 1995; Shopland et aI. , 2001)

NP A T activates transcription of histone H2B , H4 and H3 and this activation is

dependent on promoter elements that confer cell cycle-regulation. Cyclin E-CDK2

enhances the NPA+-mediatedactivation of histone gene transcription. HiNF-P and

HiNF-M (IRF 2) activate histonc H4 transcription and co-expression of NP AT with

HiNF-P resulted in cooperative activation (Mitra et aI. , 2002a). Together these data

support a model for the regulation of histone gene transcription during the cell cycle

(Fig. 5- 1). The growth factor dependent activation of cyclin E/CDK2 complexes

releases pRB from E2F at the restriction (R) point and concurrent activation of NP A T

bycyclin E-CDK2 supports HiNF-P induction of the histone H4 gene at the G/S

phase transition' (Mitra et aI. , 2002aJ, The "free" pRB then interacts with CDP/Cux

and recruitment of cyclin A and CDKl to the histone gene promoter results in the

formation of the HiNF-D complex , which functions to repress histone gene

transcription in later stages of S phase when the need for histone biosynthesis is

decreased.

In the absence of HiNF-D complex , histone H4 F0108 mRA levels are

moderately reduced on Cutll ~C mice , however this reduction does not change the

overall levels of histone H4 mRNA (Fig. 4-8). Increased expression by histone H4

genes that do not contain HiNF-D binding sites as well as increased histone mRNA

stability may account for the unaltered H4 mRNA levels. These results are consistent

with studies in which genetic deletion of histone genes did not cause changes in
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FIG 5.1. Model for CDP/Cux.pRB interaction in different cell cycle stages. HiNF-P and
CDP/Cux (as part of the HiNF-D complex) interactions with the Site II cell cycle regulatory
sequences of the H4 gene integrate temporally distinct cell cycle regulatory signals. The
growth factor dependent activation of cyclin E/CDK2 kinase complexes releases E2F from
pRB at the restriction (R) point. Concomitant activation of NPAT by cyclin E/CDK2 supports
the HiNF-P dependent induction of the histone H4 gene at the G/S phase transition (Mitra et
aI. , 2002). The pRB protein interacts with CDP/Cux, cyclin A and CDK1 to form the HiNF-
complex when cells progress through later stages of S phase.
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histone mRNA levels due to compensation by the remaining histone genes (Fan et aI.

2001; Takami et aI. , 1997).

By repressing expression of histone proteins that are essential for cell djvision

HiNF-D and CDP/Cux act in an anti-mitogenic manner similar to pRB. Indeed

several studies suggest that the Cutll gene , which encodes the CDP/Cux protein , is a

candidate tumor suppressor gene. Loss of heterozygosity in the Cutll gene occurs at a -, 

high frequency in uterine leiomyomas (Zeng et aI. , 1997), breast cancer (Zeng et aI.

1999) and myeloid disorders (Tosi etal. , 1999). In addition , CDP/Cux has been

shown to :repress the expression of mouse mammary tumor virus (Zhu et aI. , 2000)

, and human papilomavirus Type 6 E6 , E7 , and El promoters (Ai et aI. , 1999),'

Inducible expression of E7 increases protein levels of cdc25A, a tyrosine phosphatase

that is involved in the regulation of the G) /S phase transition by activating cyclin

E/Cdk2 and cyclin AICdk2 complexes (Katich et aI. , 2001). Dephosphorylation by

cdc25A increases CDP/Cux DNA binding activity (Coqueret et aI. , 1998a) and may

lead to repression of E7 expression (Fig. 5-2A). Furthermore, induction of mammary

tumors and leiomyomas in transgenic mice expressing Polyomavirus large T antigen

is associated with the ability of large T antigen to form specific complexes with pRB

and CDP/Cux (Webster et aI. , 1998). Altogether, these data suggest that CDP/Cux

like pRB , functions as a tumor suppressor protein and is a target for inactivation by

viral oncoproteins (Fig. 5-2B).

Loss of pRB function has been shown to result in apoptosis due to activation

of the p53 pathway (Morgenbesser et aI. , 1994). Increased apoptosis is also observed

in Cutll ~C mice , which have minimal CDP/Cux nuclear function. Levels of tumor
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FIG 5-2. Model for CDP/Cux as a putative tumor suppressor protein. (A) CDP/Cux acts
as a sensor for papillomavirus protein E7 and inhibits E7 gene expression. Induced
expression of cdc25A by E7 (Katich et aI. , 2001) not only activates cyclin/CDK2 complexes
but also increases CDP/Cux DNA binding activity (Coqueret et aI., 1998). A negative
feedback loop is formed when CDP/Cux in turn represses E7 gene expression. (B) Viral
disruption of CDP/Cux-pRB and E2F/pRB repressor complexes during cellular
transformation. pRB and CDP/Cux interact and cooperate to repress expression of histone
genes which are required for cellular division. pRB interaction with E2F inhibits E2F
transactivation of genes required for the G /S transition. Both CDP/Cux and E2F interact
with pRB through the pocket domain. During viral transformation viral proteins such as
large T antigen and E1A sequester pRB by binding the pocket domain (Kaelin et aI. , 1990
Larose et aI., 1991). As a result CDP/Cux-pRB and E2F/pRB repressor complexes are
disrupted, which leads to de-repression of histone gene expression and activation of genes

required for proliferation.
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necrosis factor were increased in these mice (Sinclair et al. , 2001) but the status of the

p53 pathway was not determned. In addition to lymphoid apoptosis
Cutll ~C mice

also exhibit myeloid hyperplasia (Sinclair et aI. , 2001) Since CDP/Cux has been

shown to repress c-myc expression , hyperplasia in these mice may be due to

increased expression of this oncogene. Taken together, these data suggest a role for

CDP/Cux in cellular growth suppression.

CDP/Cux regulates differentiation

Absence or severe reduction of nuclear CDP/Cux function in mice results in

, hair follicle deformities (Ellis et aI. , 2001; Luong et aI., 2002), reduced fertility

(Luong et aI. , 2002) and delayed lung development (Ellis et aI. , 2001) (Fig. 5- . Hair'

follicles from both Cutll ~C and ~CR3-Cterm mice have many abnormalities

including kinky and twisted characteristics, which may result from the observed

impaired differentiation of the inner root sheath that guides the hair shaft as it

emerges from the immature cortex cells (Ells et aI. , 2001; Fuchs and Byrne , 1994;

Luong et aI. , 2002). Cutll ~C mice have reduced fertility and although normal

numbers of spermatids were observed in the testes and seminiferous tubules of Cutll

~C mice, it is possible that these mice have abnormal spermiogenesis that may result

in defects in sperm motility and development of the acrosome, which is involved in

sperm-egg fusion (Yoshinaga and Toshimori , 2003). Cutll ~CR3-Cterm mice lack

nuclear CDP/Cux function and die from respiratory failure due to delayed initiation

and/or incomplete execution of the alveolar differentiation pathway (Ells et aI.

2001). These findings indicate that CDP/Cux is involved in execution and regulation
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FIG 5.3. CDP/Cux is involved in the regulation of proliferation, apoptosis and

differentiation. (A) Three Cut/ mouse models have been generated and characterized. In

one model, wildtype CDP/Cux was expressed from a CMV promoter. In the other models
the mice express from the Cut/ locus truncated CDP/Cux proteins that lack either the
homeodomain to the C-terminus (~C) or Cut repeat 3 to the C-terminus (~CR3-Cterm). (B)

Forced expression of CDP/Cux in mice results in the enlargement of several organs such
as the heart, liver, kidneys and reproductive organs (Ledford et aI. , 2002). Cut/ ~C protein

has minimal nuclear function and ~C mice exhibit myeloid hyperplasia and lymphoid
apoptosis (Luong et aI., 2002 , Sinclair et aI. , 2002). Together these results indicate that
normal expression and function of CDP/Cux are essential for the regulation of cell growth
and programmed cell death in specific tissues. Both the Cut/ ~C and ~CR3-Cterm mice

exhibit hair follcle deformities (Ells et aI., 2001 , Luong et aI. , 2002). In addition , deletion of

CR3 to the C-terminus leads to exclusive cytoplasmic localization and delayed

differentiation of the lung epithelia (Ellis et aI. , 2001). Thus CDP/Cux nuclear function is

required for differentiation processes in dermal tissues and lung epithelia.
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of tissue-specific differentiation programs. Cessation of proliferation is required for

the onset of differentiation. CDP/Cux may playa role in the critical balance between

proliferation and differentiation by repressing the proliferation marker, histone H4

thereby triggering the cessation of proliferation.

Thus the studies described in this thesis provide new insight into the

involvement of CDP/Cux in theregulatiof'iof differentiation and proliferation in vivo.

Furthermore , the results presented in this dissertation add new insight into the

transcriptional regulation of the histone H4 F0108 grJJe. Mechanisms. that mediate

the regulation of histone gene expression include protein-protein interactions , protein--

DNA interactions , and subnuclear localization. These mechanisms are facilitated by a

large number of transcription factors that interact with the histone genes. In addition

the function of these transcription factors is influenced by the cell cycle, cell signaling

pathways , post-translational modifications and biochemical alterations of DNA.

Therefore , the coordinate control of histone gene transcription during the cell cycle

results from the integration of many regulatory pathways.
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