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ABSTRACT

Itk is a member of the Tec family of non-receptor tyrosine kinases. It is

expressed in T cells, NK cells, and mast cells. The purose of this study was to

determine the role of Itk in T cell development. Previous work from our lab and others

has demonstrated that Itk is involved in signaling downstream of the T cell receptor and

initial analysis of Itk-deficient mice revealed that these mice had some defects in T cell

development. There are two stages of T cell development, the pre- T cell stage and the

CD4+ CD8+ double positive stage, at which signals downstream of the T cell receptor are

important. At the CD4+ CD8+ double positive stage, these signals direct two concurent

but distinct processes known as repertoire selection and CD4/CD8 lineage

commitment/differentiation. I show that there are only slight defects in development at

the pre- T cell stage, presumably due to reduced TCR signaling. However these results

clearly demonstrate that Itk is not essential at this stage of development. In contrast

repertoire selection, in paricular positive selection, is signficantly affected by the

absence of Itk. Similarly, I show that Itk plays a role in lineage differentiation, although

commitment to the appropriate lineage occurs normally in the absence ofItk.



TABLE OF CONTENTS

ACKNOWLEDGMENTS 

............................................... ........... ......................................... ,

ABSTRACT

..........................................................................................................................

,vii

A TTRIB UTI 0 NS

,............................................ .................. ................................................... ,

LIS T OF FIGURES

,.................................. ........... .................................... ............................. ,

Chapter I: In trod u ction

...................... ................................................ ....................................

T cell development

...........

moommoooo ...oooo..oo.....oou..............oomoooo..........oo....moo.moo..
TCR signaling and T cell development .............m.oomoooom.mmoommmm...m......m..
T ec family kinases oooooooooooooo oooo ..............................................oo.oon.............""OOUOOOO'OO' 16
Tec kinases and T cell developmentoooommmmmmm .......m.m.......moomoooooooooommm,

Chapter II: The Role of Itk in Pre- TCR Signaling..........................................,

Introduction

,....................................................... ..........................................................

Materials and Methods

.....

.............................................oooo..........oooooomoooommm.
Results

..........................................................................................................................

Discussion

...................................................................................................................

.73

Chapter III: The Role of Itk in T Repertoire Selection

.........................................,

Introduction

................................................................................................................

.79
Materials and Methods........m.....m...........m..oooooomoooooooomoo.......oomoooo00.0000...............
Results

,........................................................................................................................

.91
Discussion

......

oooooooooooooo

....

oooooooo oooooooooo oooooooo

.........

oooooo 00............000000..00..................., 12 7

Chapter IV: The Role of Itk in CD4/CD8 Lineage Differentiation

...................

)33
Introduction

...............

oooooooooo oooo oooooooo ......................0000..............00.000000......................,134
Materials and Methods.........m.....................oom...m...................mmoo......................, 141
Results ,.........oo.oooo.oo.oooooooo.oo.oo.oooooooooo....oo...oo....oo...........00............0000.........................00,144
Discussion,... --""""....00. 0000000000000000. 00....00.........',,"""""""""""" .00.00. 00.................00. 00,1 76

Chapter V: Discussion

,....... ............. .................................................... ............................. ..,

182

Chapter VI: Literature Cited

................................................................................... ..... ...,

197



ATTRIBUTIONS

Chapter II

The expression of Tec family members in thymocyte subsets was done in
collaboration with Martin Felices.

Itk' rag

/' 

mice were provided by Michael Li and Zhong-bin Lai.

The bone marow chimeras were made with the assistance of Morgan Wallace. In
addition, both Joseph Maciaszek and Michael Brehm assisted with i.v. injections.

Chapter IV

The work in this chapter was done in collaboration with Luana Atherly.



LIST OF FIGURES

Chapter I

Figue 1.

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Chapter II

Figue 2.

Figure 2.2:

Figure 2.

Figure 2.4:

Figure 2.

Figure 2.

Figure 2.

Figue 2.

Figure 2.

Chapter III

Figure 3.

Figure 3.2:

Figure 3.

Figure 3.4:

Table 3.

Figure 3.

Cell migration during a~ T cell development

Overview of T cell development stages

T ec kinase domain strctue

Activation and recruitment ofTec kinases to the TCR signaling complex

TCR signaling downstream ofTec kinases 

Proposed model of pre- TCR signaling

Method for examining DN subsets

Expression ofthe Tec family members in thymocyte subsets

DN analysis of wild-type ilk. and ilk. rlk. thymocytes

Design of mixed bone marow chimera experiment

Contrbution of wild-type and Tec-family deficient thymocytes in mixed
bone marow chimeras to DP subset

Vll

The strength of the pre-TCR signal is decreased in the absence ofTec familykinases 
Proliferation ofthymocytes in mixed bone marow chimeras 
Fewer ilk. rag l. DN thymocytes transition to the DP stage compared to
itk+ + rag

l. DN thymocytes following injection with anti-CD3

Developmental processes that take place at the DP stage

The avidity model ofthymocyte selection

Altered T cell development in Itk-deficient mice

The development ofMHC class II specific T cells in the absence ofItk is
affected by the avidity of the TCR for its selecting ligand(s) in thymus

Thymocyte and LN cells from ilk +1. and ilk. TCR transgenic mice 
The density and avidity ofthe selecting ligands present in the thymus affect
the development ofItk-deficient AND TCR transgenic T cells 103



V11

Table 3.2: Thymocyte and LN cells from ilk and ilk. AN TCR transgenic
mIce 105

Figure 3.6: The survival protein, Bcl- , is up-regulated normally during the positive
selection of ile. thymocytes 109

Figure 3.7: Itk-deficient thymocytes take longer to undergo positive selection than wildtype thymocytes 113

The strength ofthe TCR signal is reduced in Itk-deficient thymocytes 117

Deletion ofTCR transgenic thymocytes in SAg+ Itk-deficient mice occurslater in development 121

Figue 3. 10: Deletion of 5C.C7 TCR transgenic thymocytes in HEL-cyt+ Itk-deficient
mice occurs later in development 125

Figure 3.

Figue 3.

Chapter IV

Models of lineage commitment and differentiation 137

CD4/CD8 lineage commitment is not altered in the absence of Itk 146

The CD8+ SP thymocytes in ilk. mice have a matue phenotype 150

Both thymic and peripheral CD8+ T cells in ilk. and ilk. r/e- mice resemble
previously activated T cells 154

Figure 4.4: Itk. CD8+ cells are not actively proliferating and do not preferentiallymigrate to the thymus 158

Figue 4.5: The altered phenotype of ilk- CD8+ thymocytes is detectable by two weeks
post-gestation 163

Figure 4.6: Altered CD8+ T cell differentiation in the absence ofTec family kinases is
intrnsic to bone marow derived chimeras 166

Figure 4.7: CD8+ CD44 hi cells develop in the thymus of ilk. IL-I5. mice 170

Figure 4.8: CD8+ OT- l TCR transgenic ilk. cells develop normally 174

Figue 4.

Table 4. 1 :

Figure 4.2:

Figure 4.3:

Chapter V

Figure 5. 1 Tec family kinases are involved in signaling downstream of surface receptorsother that antigen receptor 192



:For my parents, I couU not five aone any of this 'Wt/iut you.

I love you.



In memory of 'Dr. Cynthia Cfimbers



CHAPTER I

INTRODUCTION
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INTRODUCTION

The immune system is a complex well orchestrated group of cells and organs that

protect an organism from infection by bacteria, viruses, and parasites , generally referred

to as pathogens. In vertebrates, the immune system includes two ars, the innate and

adaptive immune systems. The innate ar of the immune system consists of cells that

nonspecifically recognze foreign pathogens , phagocytose (engulf) them, and eliminate

them prior to the onset of disease. The adaptive ar of the immune system is comprised

of more specialized cells, known as B and T cells that react specifically to a given

pathogen through a unque receptor. Whle innate immunity is present at birth and does

not improve upon exposure to a pathogen, the adaptive ar of the immune system does

change and will protect an organsm from futue exposure to the same pathogen. This is

known as acquired or active immunty.

The ability of B and T cells to specifically recognze a given pathogen through a

unque receptor is derived from a rare organization of the genes that encode these

receptors. Given the innumerable potential pathogens an organism may encounter, it

would be impossible to have unque genomic sequences for each receptor. Instead, the

genetic sequences for the B and T cell receptors are generated by a recombination of gene

segments in each individual cell during development, resulting in each cell encoding a

unque receptor. The T cell receptor (TCR) is comprised of both a and ~ chains, which

are encoded for in distinct loci within the genome. The sequence for the a chain results

from the recombination of genomic segments, known as the varable (V), joining (J), and

constant (C) regions, within the a chain locus. The sequence for the ~ chain results from



the recombination of similar genomic segments within the ~ locus, but there is an

additional segment, known as the diversity (D) segment between the V and J regions.

This process of recombining genomic segments is referred to as V(D)J recombination.

Besides the recombining of these encoded segments, diversity with the TCR repertoire is

generated due to imprecise joining of the varous gene segments and the addition of non-

templated nucleotides by the enzyme terminal deoxynucleotidyl transferase (TdT).

Inerent to the imprecision of this process is the likelihood that a number of

recombination events wil result in nonproductive rearangements due to the generation

of stop codons within the recombined sequence. To ensure the lymphoid organs are only

populated with fuctional B and T cells, both of these cell types go through a series of

developmental processes that require the rearangement and expression of fuctional

BCR and TCR genes. The locations where lymphocytes undergo this process are known

as primar lymphoid organs. The primary lymphoid organ for B cells is the bone marow

and for T cells is the thymus. Once these cells become mature, they exit the primar

lymphoid organs and circulate through the blood and lymph systems as well as populate

the spleen and lymph nodes, the main secondar lymphoid organs.

B and T cells become activated when they recognize the presence of foreign

pathogens, or antigens, through their receptors. B cells generally recognize pariculate

antigens that exist outside of the host cells. Once the B cells are activated through their

BCR, they begin producing a soluble form of this receptor otherwise known as an

antibody. These antibodies can circulate in the body and neutralize viruses or bacteria, as

well as aid in their elimination by cells of the innate immune system. T cells, on the
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other hand, recognize host cells that have become infected with a pathogen. This is done

by binding of the TCR to molecules known as major histocompatability (MHC)

molecules. There are two types of MHC molecules, class I MHC molecules are present

on the surface of all nucleated cells, and class II MHC molecules are present on

specialized immune cells known as antigen-presenting cells (APCs). Along with the

MHC molecule, the TCR recognizes a peptide that is bound to the MHC molecule. In

healthy cells, all the MHC molecules will have self-peptides bound to them, but infected

cells wil have both self-peptides and antigenic peptides that are derived from the

invading pathogen. Once a T cell recognzes an infected cell, it becomes activated and

through a varety of mechansms will aid in the elimination of the infected cell. Thus, the

T cells that develop must not only have properly rearanged TCR genes, but must also be

able to bind peptide-MHC molecules present in the host while being able to distinguish

those that have self-peptide and those that have foreign-peptide (1).

a~ T cell development

T cells develop from the precursor cells in distinct stages and areas of the thymus.

The three main regions of the thymus are the subcapsular region, the cortex and the

medulla (Figure 1.1). Prenatally, the precursors that give rise to T cells originate in the

liver; postnatally, they originate in the bone marow. Until recently, cells known as

connon lymphoid precursors (CLPs) were thought to be the cells that seed the thymus

from the blood (2, 3). Whle it has been shown that CLPs have the capacity to

differentiate into T cells, as well as B cells, natual killer (N) cells and dendrtic cells
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(DCs), a recent study has shown that they are unable to detect CLPs either in the blood or

the thymus. Instead it is thought that a precursor to CLPs, known as LSKs because they

are lineage marker negative and express high levels of stem cell antigen- 1 and c-kit (lin

Sca- l hi c-kit ), are the cells that migrate to the bone marrow through the blood and enter

the thymus at the cortico-medullary junction (4). LSKs are thought to give rise to the

earliest T cell precursors (ETPs), which are exclusively found in the thymus. LSKs and

ETPs differ based on their expression of cytokine receptors, LSKs express Flt3 and ETPs

express low, but detectable levels of IL-7Ra. LSKs are multipotent and ETPs, similar to

CLPs , have the capacity to differentiate into B , NK, and DC cells (3).

Once in the thymus, the blood progenitor cells migrate across the cortex to the

subcapsular region. These early progenitors and the first cells that commit to the T cell

lineage are more commonly known as double negative (DN) thymocytes because they

lack the expression of the coreceptors CD4 and CD8. DN thymocytes can be subdivided

into four distinct subsets and maturational stages (DNl-4) based on the expression of

CD44 and CD25 (5). The cells that enter the thymus are at the DNI (CD44 CD25) stage

of development, they have not yet begu to rearange their TCR genes , and are not fully

committed to the T cell lineage. In addition to becoming either a~ or y8 T cells, these

cells also stil have the potential to become natual killer (N) cells , dendrtic cells (DC),

or B cells. As these cells migrate across the cortex to the supcapsular region, they

continue to differentiate through DN2 (CD44 CD25 ) to the DN3 (CD44"CD25 ) stage.

The transition of cells from DN3 to DN4 (CD44"CD25-) occurs in the subcapsular region

at which point the cells reverse their direction of migration and begin to move into the



cortex. At the same time, these cells begin to up-regulate the coreceptors CD4 and CD8

to become double positive (DP) thymocytes (6). Since the CD8 coreceptor seems to be

up-regulated faster than CD4, an intermediate CD8 single positive (ISP) population exists

between the DN4 and DP stages of development (7). During the final stages of

matuation, DP cells become either CD4+ or CD8+ single positive (SP) and they are

allowed to migrate from the cortex into the medulla (Figue 1. 1 and Figue 1.



Figure 1.1 Cell migration during a~ T cell development (Figue adapted from (6))

T cell precursors originate in the bone marow, travel through the blood, and enter the

thymus through post-capilar venules at the cortico-medullary junction. The earliest

progenitors are DNI cells. As they migrate through the cortex, the cells differentiate

through the DN2 and DN3 stages. The DN3 to DN4 transition occurs in the subcapsular

region, at which point the polarty of the maturng thymocyte reverses. Differentiation

from DN4 through the ISP stage to the DP stage is accompaned by migration into the

cortex. Only DP thymocytes that successfully undergo positive selection can progress to

the SP stage and are allowed access into the medulla. Matuation of SP thymocytes

continues in the medulla and the matue CD4+ and CD8+ SP cells exit the thymus to

populate the periphery.
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Figure 1.2 Overview of T cell developmental stages

A schematic diagram of stages of T cell development based on the expression of cell

surface markers is depicted. The earliest T cell progenitors (ETPs) are double negative

(DN) for the coreceptors CD4 and CD8 and they have the potential to become a T cells

yo T cells , NK- T cells, B cells , NK cells, and dendrtic cells (DCs). DN thymocytes can

be fuher subdivided into four stages (DN1 - DN4) based on the expression ofCD44 and

CD25, and the ETPs are contained within the DN1 thymocyte comparent.

Commitment to the T lineage occurs as the cells transition between DNI and DN2. The

a~ and y8 lineages diverge at the DN2 to DN3 transition. The subsequent stages of a~ T

cell development are also depicted.

LSK: lineage marker negative, stem cell antigen high and c-kit high (lin" Sca- l hi c-kit

CLP: common lymphoid precursor; NK: natual killer cell
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While it is known that the expressIOn of varous adhesion molecules and

chemokine gradients within the thymus control this localization and migration of thymic

subsets, the precise molecules involved are stil poorly understood. In contrast, the

molecules involved in the survival and development of the various thymocyte subsets are

better defined. These transitions require signals from both cytokines and from the

developing TCR. The earliest T cell precursors, those at the DNI and DN2 stages of

development, express c-kit, the receptor for the cytokine stem cell factor (SCF). Both

SCF- and c-kit-deficient mice have a significant reduction in these early T cell

populations, but in spite of this reduction, the size of the thymus is only slightly reduced

and development appears to proceed normally (8). This seems to indicate that SCF is

primarly important for the surival or expansion of these T cell subsets instead of

promoting transition from one subset to the next.

The cytokine IL-7 is also an extremely important surival factor for early T cell

subsets. IL- 7 signals through a receptor that is comprised of the IL-7Ra chain and the

common Y chain (Ye). The Ye is part of the receptor for a number of other cytokines

including IL- , IL- , and IL- 15 and it signals via the kinase Jak3 , which activates gene

transcription via signal transduction and activator oftranscription-5 (STAT5). Mice that

are deficient in IL-7 (9), IL-7Ra (10, 11), Ye (12- 14), or Jak3 (15- 17) have a severe

reduction in thymic cellularty. In addition, although all the thymic subsets, based on

CD4 and CD8 expression, are present, development past the DN2 is severely impaired.

A role for IL-7 in promoting V(D)J recombination has been proposed, however the

~~~



clearest functions of IL- 7 in T cell development are in promoting the surival and cell-

cycle progression of early thymic subsets (18).

Whereas cytokines are clearly crucial during the DN1-DN3 stages of thymocyte

development, the transition from DN3 all the way through to the DP stage of

development is critically dependent on the proper rearrangement of one of the TCR

~ chain loci. Successful rearangement and expression of a TCR ~ chain allows the

formation of receptor complex known as the pre- TCR. The pre- TCR is formed by a TCR

~ chain, with a monomorphic a chain, pre- Ta, and non-covalently associated CD3

subunts that connect the a~ TCR chains with the signaling machinery in both the pre-

and matue- TCR complexes. The formation of this signaling complex is absolutely

essential since mice deficient in TCR~ (19), pre-Ta (20), and certain CD3 subunts (21

22), as well as mice deficient in the recombination activating gene (RAG) enzymes that

are essential for V(D)J recombination (23 , 24), are blocked at the DN3 stage of T cell

development. This checkpoint in T cell development is commonly referred to as 

selection.

Intiation of pre- TCR signaling appears to be ligand independent since the extracellular

par of pTa (25) and the TCR V -~ (26) region are not required for the DN to DP

transition. In addition, an a~ TCR trans gene has recently been shown to be able to

provide a pre- TCR signal in the absence of pTa and RAG even when its MHC ligand is

not present (27). Besides signaling the DN to DP transition, pre- TCR signaling results in

cell-cycle entr, expansion, and allelic exclusion at the TCR ~ locus (28-30). Allelic

exclusion ensures that once there is a productive ~ chain rearrangement, rearangement



ceases in order to prevent the expression of second ~ chain. Without this, the specificity

of T cells would be compromised since more than one receptor could be expressed. 

least par of the mechanism behind allelic exclusion is the down-regulation of RAG

expression following pre- TCR signaling (29).

RAG expression is re-induced at the DP stage of thymocyte development in order

to rearange the TCR a chain (31). Unlike rearrangement at the ~ locus, productive

rearangement of the a locus is not suffcient to induce progression to the next stage of

development. Instead, only an a and chain pair that can interact with self-MHC

molecules terminate recombination and continue to matue. The unque strctue of the

a gene locus allows multiple V -J recombination events to occur on the same allele (32

33), which increases the likelihood that a self-restrcted a~ pair wil be produced

although this is stil a relatively rare event (34). The binding of a mature TCR complex

on the surface of a DP thymocyte to self-peptide/self-MHC complexes in the cortex of

the thymus results in down-regulation of RAG gene expression, up-regulation of surival

factors, and migration to the medulla. This process is known as positive selection and it

requires continuous sustained signaling for several days (35). A requirement for ligand

binding at this stage of development ensures that the T cells that mature will be

fuctional since they have to capable of recognzing antigenic peptides in the context of

self-MHC molecules. Those cells that fail to interact with self-peptide/self-MHC through

theirTCR, do not receive the surival and differentiation signals of positive selection

eventually die, this is often referred to as "death by neglect."



Although recogntion of self-MHC molecules is essential for antigen recognition

by T cells, it is also important the self-peptide/self-MHC molecules are not stimulatory

for mature T cells. If the mature T cells were stimulated by self-peptide/self-MHC

molecules, it would lead to destruction of host cells and tissues by its own T cells, which

would lead to widespread autoimmunty. The prevention of this is known as self-

tolerance. One of the main mechanisms for maintaining self-tolerance is a developmental

process known as negative selection. For the most par, negative selection occurs

concurent with positive selection, although it is possible for negative selection to occur

as soon as TCR/CD3 can be detected on the surface of CD4int/CD8 int pre-DP thymocytes

all the way through to the matue SP stage (36). Like positive selection, negative

selection requires ligand binding and is the consequence of a strong interaction with self-

peptide/self-MHC molecules present on thymic stromal and dendrtic cells. Since this

strong interaction would jeopardize self-tolerance, it results in a signal that leads to

apoptosis and elimination of these potentially self-reactive cells. The combined

processes of positive and negative selection are known as TCR repertoire selection.

Besides TCR repertoire selection, an additional process occurs at the DP to SP

transition. This process is known as lineage commitment. Lineage commitment refers to

the process by which DPs that express TCRs that bind to MHC class II molecules

differentiate in CD4+ SP cells and those DPs that express TCRs that bind to MHC class I

molecules differentiate into CD8+ SPs. In addition to retaining expression of the proper

coreceptor, each SP population differentiates into a specialized subset of T cells. CD4

SP cells differentiate into T helper cells. They recognize antigen in the context of MHC



class II molecules on APCs and they primarly exert their effects through the production

of cytokines. CD8+ T cells differentiate into cytotoxic T cells and because these cells

recognze MHC class I molecules, which are present on almost all cells, they can

potentially kill any cell infected with a foreign pathogen. Just like repertoire selection

lineage commitment is known to be mediated in par by signals through the TCR on the

DP thymocyte; and to some extent, the strength of this signal is thought to contrbute to

outcome of lineage commitment/differentiation (37). However, recent models suggest

that cytokines may also contribute to this process (38).

TCR signaling and T cell development

As described above there are two main stages of a~ T cell development that

require signals through the TCR. The first stage is at the DN3 to DN4 transition when a

signal via the pre- TCR is absolutely required from fuher differentiation. The second

stage is the DP to SP transition, where TCR signaling is critical for positive selection and

the complete matuation ofT cells. Just as the formation and specific components of the

pre- TCR and mature a TCR are absolutely required for these processes , several TCR

signaling molecules have also been shown to be crucial for proper T cell development.

Among these molecules are tyrosine kinases, adaptor proteins, GTPases, exchange

factors and transcription factors. Deletion of a number of these molecules results in a

block at the pre- TCR stage. Deletion of others has a greater effect during selection

and/or lineage differentiation. Prior to my PhD studies, a new tyrosine kinase from the

Tec family, known as Itk, had been cloned by our lab and others (39-41). Its B cell

I:"'.



homolog, Btk, had been shown to be crucial for proper B cell development. In fact

mutations in Btk have been shown to be responsible for the human genetic disorder X-

linked agamaglobulinemia (XLA) and the murne mutant X-linked immunodeficiency

(xid) (42-45). Initial characterization of Itk-deficient mice suggested that Itk may playa

role in T cell development (39). The goal of my thesis has been to identify the role ofItk

throughout T cell development in order to better understand how the varous TCR-

mediated developmental processes are regulated.

Tec Family Kinases

Six members of the Tec family of non-receptor protein tyrosine kinases have been

identified. Five of the family members are expressed in hematopoietic cells, with three

Itk, Rl and Tec , expressed in thymocytes and matue T cells. All three of these kinases

are involved in signaling downstream of the T cell receptor (TCR). The domain structue

of each Tec kinase family member is very similar, consisting of an N-terminal pleckstrn

homology (PH) domain followed by the protein binding Tec homology (TH), Src

homology 3 (SH3) and SH2 domains, and a C-terminal kinase domain. Unique to this

family of protein tyrosine kinases, the inclusion of a PH domain allows recruitment of

Tec kinases to the cell membrane through their binding of phosphatidylinositol (3,4,5)-

triphosphate (PIP ). Both Tec and Itk adhere precisely to this structual organzation.

, on the other hand, differs from Tec and Itk in two ways. First, Rl lacks the N-

terminal PH domain and instead contains a strng of cysteines that can be palmitoylated.

Second, a shortened form of Rlk can be generated through an alternative translational



star site, and this form of the protein can be translocated to the nucleus of T cells

following activation (reviewed in (46-50).



Figure 1.3 Tec kinase s domain structures (as seen in (50))

schematic representation of the Tec family kinases protein domain structure is

depicted. There is a pleckstrin homology (PH) the N-terminus of five of the six Tec

family kinases that allows recruitment of these kinases to the cell membrane via their

binding to phosphor-inositide ligands in the membrane. The sixth family member

Rlk/Txk, has a strng of cysteines at the N-terminus that can be palmitoylated and direct

it to the plasma membrane. Each of the Tec kinases has a Tec homology (TH) domain

that is made up of some combination of a Btk homology (BH) domain and/or one or two

proline rich regions (PRR). The PRRs as well as the Src homology (SH)3 and SH2

domains mediate both inter- and intra-molecular protein-protein interactions. At the C-

terminus of all the family members is the catalytic kinase domain. Also depicted is a

schematic representation of the prototypic Src family kinase domain strcture.
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The precise course of events leading to the activation of Itk, Rl, and Tec

following engagement of the TCR has not been completely elucidated; however

localization of these kinases to the plasma membrane, as well as tyrosine phosphorylation

within the kinase domain, appears to be necessary. Prior to signaling, all three kinases

are predominantly cytoplasmic. Imediately following TCR stimulation, all three of

these kinases are found to be associated with the plasma membrane in cultued T cell

lines. This membrane association, for Itk and Tec , occurs via the PH domain (51 52) and

is dependent on the activation of phosphoinositide 3-kinase (PI3K), which converts

phosphatidylinositol into (3,4,5)-phosphatidylinositol( 4 5)-biphosphate (pIP

triphosphate (PIP ), thereby generating the ligand for the Itk and Tec PH domains. In T

cells, this process is negatively regulated by the phosphotase, PTEN, which converts PIP

back into PIP (53 54). Because of the absence of a PH domain, association ofRl with

the membrane is independent of PI3K activity, and instead it is due to palmitoylation of

its cysteine strng motif (55). Localization of the Itk and Tec to the membrane via their

PH domains is crucial for their activation by tyrosine phosphorylation (51 , 52, 54, 56).

Similarly, the short isoform of Rl, which lacks the cysteine string motif that is required

for palmitoylation is less efficiently phosphorylated and has lower kinase activity than the

long isoform, which is primarly found associated with the plasma membrane following

TCR stimulation (57).

Following membrane localization, the activation of Tec family kinases in T cells

requires phosphorylation by a Src kinase, possibly Lck for Itk (58) and Fyn for Rlk (55)

of a conserved tyrosine within the activation loop of the kinase domain. For Itk, this



activating phosphorylation event is also dependent on the activity of zeta-associated

protein of 70 kDa (ZAP-70) and linker for activation of T cells (LAT) (59). This

dependence suggests that the association of Itk with the membrane is not enough to lead

to its activation and, in addition, recruitment to the TCR signaling complex is required.

Consistent with this notion, both Itk and Tec colocalize with the TCR following TCR

stimulation (51 , 59). Although the association of Itk with the TCR signaling complex

requires ZAP-70 and LAT, Itk is not a substrate of ZAP-70 and does not directly bind

LAT. However, Itk has been found to bind SH2 domain-containing phosphoprotein of

76 kDa (SLP-76) (54 , 60), which does bind LAT via its interaction with Gads (61-64) in

a ZAP-70-dependent maner (65).



Figure 1.4 Activation and recruitment of Tec kinases to the TCR signaling complex

(adapted from (50))

The activation of Tec-family tyrosine kinases downstream of T cell surface receptors

requires at least three independent steps. (1) The localization of the kinase to the plasma

membrane at the site ofthe activated receptor. For Itk and Tec , this localization requires

the PH domain and is dependent on receptor-mediated activation of PI3K and the

generation ofPIP . For Rl, membrane localization is mediated by palmitoylation of the

cysteine-strng motif and is independent ofPI3K activity. (2) The phosphorylation of the

kinase by a Src-family kinase, such as Lck. (3) The association of the kinase with

adapter proteins, such as SLP- , Gads, and LAT that form a complex in response to

receptor stimulation. The precise order of these steps in the activation process has not

been established.





Once the Tec family members have been activated and are bound to LAT via

SLP- , they are capable of phosphorylating phospholipase C-yl (PLC-y1) (54). This

phosphorylation leads to the activation of PLC- , which then hydrolyzes PIP2 into the

second messengers inositol (3,4,5)-triphosphate (IP ) and diacylglycerol (DAG). The

production of IP3 causes calcium mobilization in the T cells, while DAG activates protein

kinase C (PKC) and Ras-GRP, thereby leading to the activation of Ras/Raf/mitogen-

activated protein kinase (MAK) pathways. Subsequent to Ca
2+ mobilization

, the

nuclear factor for activated T cells (NAT) transcription factors are dephosphorylated

translocate to the nucleus, and activate a number of genes, including those encoding

cytokines. The activation of PKC and the Ras/MK pathways affect a number of

serine/threonine kinases including Erk1/2, p38, and c-jun N-terminal kinase (JN).

These pathways culminate in the activation of additional transcription factors, such as

NF-KB and Elk- , which regulate genes involved in cytokine signaling, surival and

differentiation. Thus, following the activation of PLC-y1 by the Tec kinases, multiple

processes important for T cell development, activation, effector function and homeostasis

are affected.



Figure 1.5 TCR signaling downstream ofTec kinases (adapted from (50))

Engagement of the TCR leads to rapid activation of Lck and ZAP- , which

phosphorylate numerous downstream targets, including the adaptor molecules LA T and

SLP-76 that together form a platform for the accumulation of molecules into a signaling

complex including: PLCy, Grb- , Tec kinases as well as other molecules. Itk and

probably other Tec-kinases physically interact with SLP-76 and possibly LAT bringing

them into this complex where they can phosphorylate PLC-

y. 

Phosphorylation and

activation of PLC-y is important for transducing signals that regulate Ca2+ mobilization

(IP3), PKC and MAK activation (via DAG), culminating in the activation of

transcription factors including NFAT, Elk- , and NF-Kb.
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Single knockouts of the genes encoding Itk, Rlk and Tec have all been generated

in mice and characterized (39 , 66-68). Of these single knockouts , the loss of Itk has the

most substantial effect on T cell development and function, while the loss of Rlk has a

mild effect and the loss of Tec appears to have no effect. Interestingly, these phenotypes

correlate with the mRA expression levels for these genes in T cells, as recently

determined by real-time polymerase chain reaction (PCR) studies in our laboratory. We

find that Itk mRA is present at the highest level , Rlk mRA levels are two- to threefold

lower and Tec mRA is present at a level close to 100-fold lower than that ofItk (Miller

Felices and Berg, unpublished data). As none of the single knockout phenotypes leads to

an absolute block in T cell signaling, it has been suggested that the activities of the

remaining Tec kinases may compensate for the loss of one. The analysis of itl/- mice

has supported this hypothesis by demonstrating that the absence of these two Tec kinases

results in defects in T cell development and activation that are more severe than either

single knockout and, fuhermore, that this double deficiency leads to a more substantial

decrease in PLC-yl phosphorylation/activation following stimulation of the TCR (67-69).

Tec kinases and T cell development

As mentioned previously, many proteins that are important for T cell receptor signaling

have been shown to play critical roles in T cell development. For instance, disruption of

the gene encoding the protein tyrosine kinase Lck (70) or ZAP-70 (71 , 72) results in

severe defects in T cell development. Furhermore, mutation of the gene encoding Btk, a

Tec family member expressed in B cells leads to an immunodeficiency



disease due to blocks in B cell development (44, 45 , 73). Based on these findings, it was

predicted that disruption of the Itk gene would lead to a block in T cell development.

However, the generation and analysis of ilk- mice revealed that T cell development was

largely intact in the absence of this kinase (39 , 66, 67, 69, 74). Despite the seemingly

ormal T cell development in these mice, Liao et al found that when the Itk-deficient mice

were crossed onto a TCR transgenic background, the development of thymocytes was

blocked at the DP to SP transition due to the lack of matue SP thymocytes or peripheral

T cells.

In order to better understand this observation and the role of Itk at the DP to SP

transition, I began my project by crossing the Itk-deficient mice onto other TCR

transgenic backgrounds. These mice allowed us to investigate the role of Itk in both

repertoire selection and CD4/CD8 lineage commitment. We hypothesized that the loss of

SP development in the TCR transgenics used in the study by Liao et al may be due to the

fact that the transgenic TCR may have low avidity for its selecting ligand(s) in the

thymus. Thus, we proposed that in the absence of Itk positive selection may be impaired

but if the developing thymocytes expressed a TCR with high avidity for its selecting

ligand(s) in the thymus then selection may take place even without Itk. In all , we crossed

the Itk-deficient mice onto five class II restrcted TCR transgenic backgrounds and one

class I restrcted TCR transgenic background.

In most cases, we found that matue T cells developed in the absence of Itk, but

less efficiently. In the beginnng, we chose to focus our attention on class II restricted T

cells since Itk-deficient mice seem to have a specific loss of CD4+ T cells. This work has



been published (74) and is the main focus of Chapter 3 along with results relevant to

negative selection using the same TCR transgenic mice.

Although we initially focused on the role of Itk in repertoire selection, we also

examined CD4/CD8 lineage commitment and differentiation. Itk-deficient mice have a

decreased CD4:CD8 ratio and this along with an emerging model of lineage commitment

that suggested that the strength of the TCR/coreceptor signal determined CD4/CD8

lineage fate, led us and others to hypothesize that class II restrcted T cells were

developing into CD8 cells in the absence ofItk. The comprehensive analysis of five class

II restrcted TCR transgenic/Itk-deficient mice suggest that this is the case; however, we

came to realize that the CD8+ T cells in ilk- mice have a "previously-activated" or

memory" phenotype and accumulate in the thymus. The precise cause of this still

unown, but we have determined that it is the result of altered T cell development in the

thymus and discuss possible mechansms in Chapter 4.

Whle most work in this thesis focuses on the role of Itk durng the DP to SP

transition of T cell development, we also examined the role of Itk in pre- TCR signaling

durng the DN to DP transition. We did not observe any obvious defects in ile- mice at

this stage; however, we reasoned that any mild defects may not be detectable in mice that

only have Itk-deficient T cells. Therefore, we made mixed bone marrow chimeras, which

allowed us to examine the development of ilk- cells in the presence of competing wild-

type cells. Interestingly, the initiation of proliferation and progression from the DN3 to

the DN4 stage of development seems to occur normally without Itk, but the generation or
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surival of DP cells is less efficient in the absence of Itk. These results suggest that Itk

plays a minor, but distinct role in pre- TCR signaling and is discussed in Chapter 2.
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CHAPTER II

THE ROLE OF ITK IN PRE-TCR SIGNALING



INTRODUCTION

As described earlier, the most immature T cell precursors in the thymus lack the

expression of the T cell co-receptors CD4 and CD8 and thus are referred to as double

negative (DN) thymocytes. These precursor cells can be further subdivided into four

stages of development, DNI through DN4, based on the expression of CD44 and CD25.

Cells at the DN3 (CD44'CD25 ) stage of development are undergoing rearrangement of

their T cell receptor beta chain genes. Cells progressing down the TCR a~ lineage are

dependent on signals transduced through the pre- TCR, a receptor comprised of a

fuctionally rearanged TCR beta chain paired with an invarant pre- TCR alpha chain.

These pre- TCR signals induce the transition from the DN3 stage to the DN4 (CD44"

CD25") stage, and subsequently to the double positive (DP , CD4 CD8 ) stage.

Durng this developmental stage, which as stated earlier, is referred to as 

selection, four concurent, but distinctive types of signals must occur. These selection

events include the induction of surival, proliferation, and differentiation, as well as

allelic exclusion and all result from signals downstream of the pre- TCR (Figue 2. 1).

Whle this process is thought to be ligand-independent (25-27), there is evidence that the

pre- TCR complex needs to be transported to the surface. This evidence comes from

transgenic mice that expressed a TCR~ chain with a strong endoplasmic-reticulum

retreval signal (TCR~ER) on a TCR~ null background. In these mice some of the

TCR~ER protein is found in the cytoplasm, but none of it reaches the cell surface. While

the expression of a TCR~ chain in TCRp-/" mice can relieve the block at the DN stage of

development (19), the TCRBER protein canot (75). It is likely that the requirement for



membrane localization of the pre- TCR is to bring it in proximity to crucial signaling

components.

As shown in Figure 2. , there are two families of tyrosine kinases that are critical

for signaling all the selection events mediated by the pre- TCR. Establishing these

molecules as crucial, as well as the role of signaling molecules 
downstream, was

primarly the result of analyzing genetically mutated mice. Mice that are deficient in the

Src kinase, Lck, or express a dominant negative form of Lck have almost a complete

block in development at the DN3 to DN4 transition when pre- TCR signaling is required

(70, 76, 77). In mice that are deficient in a second Src kinase, Fyn, T cell development

appears to be normal (78), but mice deficient in both Lck and Fyn have a complete block

at this stage (79, 80). Similarly, redundancy is observed between the Syk kinases, ZAP-

70 and Syk. Like Fyn-deficient mice, mice deficient in Syk have no abnormalities in T

cell development (81 , 82), but Syk and ZAP-70 doubly deficient mice are completely

blocked at the pre- TCR stage (83). While there is redundancy in these kinase families

based on the single knockout phenotypes, Lck and ZAP- , are thought to be the primary

kinases of each family in pre- 
TCRITCR signaling. Lck phosphorylates and activates a

number of substrates, two of these are the TCRs chain and ZAP-70. Phosphorylation of

the TCRs chain provides docking sites for ZAP- , which brings ZAP-70 in proximity

with two of its substrates, the adaptor proteins , SLP-76 and LAT.

Very similar thymocyte phenotypes are observed in mice in which the adaptor

proteins, SLP-76 (84, 85) and LAT(86), have been deleted. Thus, the fuctions of these

adaptor proteins are required for pre- TCR signaling as indicated in Figue 2. 1. LA T and



SLP-76 serve as scaffolding proteins that contain multiple binding sites for downstream

TCR signaling molecules and thus, help bring these molecules together and presumably

allows them to associate with the components of the TCR signaling complex. LAT is 

transmembrane protein, but SLP-76 requires another adaptor protein, Gads, to bring it to

the membrane and/or to bind LAT (62). Gad-deficient mice have a severe block at the

DN to DP transition, but unlike SLP-76 and LAT knockout mice, these mice have DP

and SP thymocytes, albeit at reduced levels compared to wild-type mice (87) suggesting

that membrane localization and association with LA T is very important for the fuction

of SLP-76 durng pre- TCR signaling, but it is not essential.

LAT and SLP-76 facilitate the activation of a number of downstream pathways.

Two of these, the Ras-MAPK and PLC-y pathways are depicted in Figue 2. 1. Whle

induction of the Ras-MAPK pathway is sufficient for the induction of surival

proliferation and differentiation of DN thymocytes as shown by the enforced expression

of an active Ras trans gene in RAG-deficient thymocytes (88), it has been demonstrated to

have no role in allelic exclusion (89). On the contrary, activation of PLC-y may playa

role in all the ~ selection events. The importance of PLC-y in the DN to the DP has been

clearly demonstrated by LAT knock-in mice that replace wild-type LAT with a LAT

mutant in which the phosphorylation site that is necessar for PLC-y binding have a

profound block at the DN stage ofT cell development (90 91)

PLC-y hydrolyzes PIP2 into the second messengers, IP3 and DAG. IP3 stimulates

calcium mobilization by binding to calcium chanels in the endoplamic reticulum and

DAG is necessary for the activation of PKC. Studies by Aifantis et aI, indicate that the



mobilization of calcium leads to the activation of the transcription factors, NF-KB and

NFAT, the combined effects of which should lead to the induction of survival

proliferation, and differentiation (92). The production of DAG leads to the activation of

PKC by binding to a domain in PKC which increases the affnity of PKC for

phospholipids in the membrane. Thus PKC is localized to the membrane, but in addition

binding of PKC induces a conformational change that enables PKC to phophorylate its

substrates (93).

There are numerous isoforms of PKC and so far, the study of both novel and

conventional PKCs has only indicated a role for one of them in T cell development.

PKC- , a novel PKC, has been shown to be important for signaling in mature T cells, but

dispensable for T cell development (94). Likewise, T cell development was normal in

mice deficient in the conventional PKC -~ (95) or -y (96). However, a role for another

conventional PKC, PKC-a, which is the most highly expressed isoform, is indicated in

pre- TCR signaling. This was shown by experiments in which fetal thymi were

transduced with retroviruses that expressed either a constitutively-active (CA) or 

dominant-negative (DN) form of PKC-a. RAG-deficient thymocytes that expressed a

CA-PKC-a were able to bypass the requirement for pre-TCR signals. In addition

expression of CA-PKCa was sufficient to suspend the rearangement of the ~ chain in

fetal thymic organ culture (FTOC) (97). On the other hand, expression of DN-PKCa

suppressed the development ofDP thymocytes in FTOC. Analysis ofT cell development

in PKC-a-deficient mice, which have been generated (98), wil help determine if PKC-a

specifically is absolutely required each of the ~ selection events.



The activation of PLCy was first shown to be reduced in mature CD4+ T cells

from Itk-deficient and Itk/lk-doubly deficient mice (66, 67). Similar results have also

been seen in thymocytes from ilk- rlk. mice. As a consequence of this reduced PLC-

cI - activation, it has been shown that IP3 levels are reduced (66) and it is presumed that DAG

levels are reduced as well. In fact, pathways downstream of both of these signaling

mediators are affected by the absence of Itk or both Itk and Rlk. The reduced production

of IP3 has been shown to affect calcium flux in both matue CD4+ T cells and DP

thymocytes. The reduced production of DAG could affect the Ras-MAK pathway in

two ways. First, there is a DAG binding site in RasGRP , an activator of Ras, which has

been shown to be important in T cell differentiation and activation (99). Second, as

mentioned, DAG is required for PKC activation and PKC is thought to contrbute to the

full activation ofthe Ras-MAK pathway (100).

A role for Tec family kinases in pre- TCR signaling would seem likely in light of

evidence that PLC-y activity is important for this signal (90 , 91) (Figue 2. 1). Consistent

with the notion that Tec kinases might playa role in pre- TCR signaling, analysis of Tec

kinase gene expression indicates that these genes are expressed in early thymic progenitor

cells. For instance, early studies performed by Northern blot analysis demonstrated that

both Itk (40) and R1 (101) mRA can be detected by day 14 of fetal development, a

time at which the thymus is comprised solely of DN1 and DN2 precursor cells.

However, preliminar analysis of thymic development, as assessed by CD4 and CD8

expression, reveals that ilk. , r/k. and ilk. r/e. mice all have relatively normal numbers

of both DN and DP thymocytes, suggesting that progression to the DP stage of
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development is not significantly affected by the absence of these Tec family proteins (39

69). In spite of this observation, we thought it was likely that Tec kinases did play some

role downstream of the pre- TCR given the importance of PLC-y, thus we decided to

analyze the DN to DP transition in ilk- and ile-rle- more closely.
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Figure 2.1 Proposed model of pre-TCR signaling (adapted from (102))

Some of the most important and well understood pathways of pre- TCR signaling are

depicted, with emphasis on the pathways that are affected by Tec kinases. Activation of

the Src kinases, Lck and Fyn, as well as the Syk kinases, ZAP-70 and Syk, and the

presence and full fuction of the adaptors SLP-76 and LAT is absolutely required for all

pre-TCR-drven selection events (highlighted in light green). Downstream of SLP-

and LA T, pre- TCR signaling branches into different pathways. Two of the most

important are shown, the Ras-MAK and PLCy pathways, are shown. Both of these

pathways have to shown to be affected by the absence of Tec kinase signaling. The

proteins or molecules that have been shown to be altered in ilk- and/or ilk- rlk-

cells/thymocytes are in boxes.
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MATERIALS AND METHODS

Mice

Itk-deficient mice were generated in our laboratory previously (66). Itk- rlk- mice were a

kind gift from Dr. Pamela Schwarzberg (NIH). Itk- mice have been backcrossed onto

the C57BL/10 (B10) at least nine times ilk- rlk- mice have been backcrossed onto the

C57BL/6 (B6) background at least five times. Wild-type mice are sometimes ilk +1-

littermates of ilk- mice or pure BI0 mice purchased from Jackson Laboratories (Bar

Harbor, ME). CD45. 1 (B6) congenic mice were purchased from Charles River

Laboratories at NCI-Fredrick Animal Production Area (Fredrick, MD). Wild- type rag-

mice were purchased from Jackson Laboratories. Itk- deficient rag I- mice were generated

by crossing fully backcrossed ile- mice to 5C.C7 rag I- mice (Jackson labs) and were

determined to be 5C.C7 negative by PCR. All mice used were between 6 - 12 weeks of

age and were maintained at the University of Massachusetts Medical School anmal

facility under specific pathogen free (SPF) conditions.

Antibodies and DN staining

The following antibodies (Abs) and secondary reagents were purchased from Pharingen

(San Diego, CA): CD4- , CD8-Cy, CD8-APC, CD44-FITC, CD44-Cy, CD25-

CD5-Cy, CD3-bio, CD4-bio, CD8-bio , B220-bio , IgM-bio , Ter119-bio , Pan-NK(DX5)-

bio, Grl(Ly6G)-bio , Mac1(CD11b)-bio , CD11c-bio, strepavidin-allophycocyanin (strep-

APC). BrdU-FITC was purchased from BD Biosciences (San Jose, CA). In order to

characterize the DN thymocyte subsets, all lineage specific cells were stained with

biotinylated Abs, followed by staining with anti-CD25 , anti-CD44, and strep-APC. All



strep-APC+ events were gated out and the CD25 vs. CD44 profies of the remaining cells

was analyzed (Figue 2.2).

Cell preparation, staining, and flow cytometry

Lymphocyte cell suspensions were made from thymi by dissociation between two frosted

slides in RPMI and 10% FCS. RBCs were lysed by incubation in Tris-amonium

chloride for 5 min at room temperatue. Cells were washed, resuspended in F ACS buffer

(1x HBSS, 2% FCS , and 0.01 % NaN3), and plated in microwell staining plates at 5 x 10

to 2 x 10 cells/well. Biotinylated Abs were added and cells were incubated at 4 C for 15

- 30 min. The cells were washed and incubated with a mixture of directly conjugated Abs

and strep-APC at 4 C for 30 min. After washing, cells were analyzed immediately or

were fixed by the addition of 50 ILl 2 - 4% Para formaldehyde and analyzed 12 - 36 h

later. Cells were collected on a FACSCalibur (BD Biosciences, Mountain View, CA)

flow cytometer. For the most par, 100 000 - 500 000 events were collected. Data was

analyzed using both Cell Quest (BD Biosciences) and Flojo (Treestar, Ashland, OR)



Figure 2.2 Method for examining DN subsets

(A) Due to the fact that the majority of the thymus consists ofDP 80 - 85%) and SP

10 - 15%) thymocytes, the number in one thymus is very smalL Because of this, cells

present in the thymus that are not of the T cell lineage , which not express CD4 and/or

CD8 become a larger component of the DN subset. Thus, in order to examine the true

DN comparent, we begin by staining the cells with a cocktail of biotinylated Abs to

varous lineage markers present on mature T cells (CD3 , CD4 , & CD8), B cells (B220 &

IgM), NK cells (Pan-NKX5), macrophages (Mac- l/CDllb), granulocytes (Gr-

l/Ly6G), erythrocytes (TERI19), and dendrtic cells (CD11b & CD11c). Subsequently,

the cells are stained with anti-CD44 and anti-CD25 along with strepavidin-

allophycocyann.

(B) Analysis of the DN subset by CD44 and CD25 expression on the allophycocyanin-

negative population is done as shown. The up-regulation of CD5, which occurs

following signaling through the pre- TCR, is also assessed on the DN3 vs. DN4 subsets by

including anti-CD44 into the biotin cocktaiL Proliferation durng the transition between

the DN and DPstages of development will be assessed by injection with BrdU and

subsequent staining of thymocytes extracellularly with anti-CD4, anti-CD8, and

intracellularly with anti-BrdD.
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Sorting of thymic subsets, mRNA isolation, and cDNA production

.I.

For subsets based on CD4 and CD8 expression, two B 1 0 thymi suspensions were made

and stained with anti-CD4-PE and anti-CD8-Cy and sorted into DN, DP , CD4+ SP , and

CD8+ populations. For DN1-DN4 subsets , 25 thymi from B6 mice were pooled and DP

CD4+ SP and CD8+ SP cells were depleted by incubating with complement-fixing anti-

CD4 and anti-CD8, followed by incubation with rabbit complement (Cedarlane

Laboratories, Inc. Hornby, Ontaro , Canada). Live cells were isolated by Lympholyte(I-

M (Cedarlane Labs) gradient, stained for CD25 and CD44 expression and sorted into all

four DN subsets on a high-speed MoFlo cell sorter (Cytomation, Fort Collins, CO). Once

the cells were sorted, the cell pellets were resuspended in 1 ml Trizol (Invitrogen

Carlsbad, CA) and stored at - C until mRA isolation and cDNA amplification were

performed. RNA was isolated by thawing the cells and lysing them by continuous

pipetting and/or vortexing. Cells were incubated at room temperatue (RT) for 5 min and

0.2 ml of chloroform was added and mixed by shaking vigorously for 15 sec. Cells were

again incubated at RT for 2-3 min followed by centrfugation (12 000g) for 15 min. The

aqueous layer was transferred to new tubes, 5 Ilg of glycogen and 0.5 ml of isoproponal

were added, the tubes were incubated at RT for 10 min, and finally centrifuged as above.

The supernatant was discarded and the RNA pellet was washed once with 1 ml of 75%

ethanol followed by centrifugation (7500g) for 5 min. Residual DNA was removed by

treatment with DNase (Promega, Madison, WI). After DNase treatment, 1 Jlg of total

RNA was reverse transcribed into cDNA using Superscript II and Random Hexamers

(Invitrogen) according to the manufacturer s protocol.

: , - .-.---- --.., . . .
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Real-time PCR

Real-time quantitative PCR was performed as described previously (103). All samples

and standards were ru in triplicate for any given experiment. The values of Itk, Rlk, and

Tec were normalized to ~-actin by dividing the average copy number of the respective

transcript by the average copy number of ~-actin. The PCR were as follows: templates

were intially denatured at 95 C for 10 min followed by 40 cycles of 95 C for 30 s

(62 C-~-actin), (60 Itk), (61.7 Rlk) for 25 s, or (54 Tec), and 72 C for 25 s.

Primers Itk CTCCGCT ATCCAGTTTGCTCC- Itkwere:

GTCCTTGTTGAGCCAGTAGCC- ; Rl U 5' TCAATCCAACAGAGGCGGG- ; Rl

L 5' CCGCTCTCTTCAGTGCCAA- ; Tec U 5' GGTTGGAGTGGTGAGGCTT- ; Tec

L 5' GGTAACGATGTAGATGGGC- ; ~actin U 5' CGAGGCCCAGAGCAAGAGAG-

; ~actin L 5' CGGTTGGCCTTAGGGTTCAG- For the generation of standard

cures, plasmids containing cDNA clones of Itk (H. Wilcox), Rl (gift from P.

Schwartzberg, NI, Bethesda, Maryland), Tec (W.C. Wang), and ~-actin (gift from R.

Gerstein, University of Massachusetts Medical School, Worcester, MA) were used.

Bone Marrow Chimeras

Bone marow (BM) was isolated from femurs of CD45. + and CD45.2+ wild-type

CD45. ile- and CD45.2 ile-rlk- mice and depleted for T cells using complement

fixing anti-Thy1.2 Ab and rabbit complement. For non-mixed BM chimeras, 1 x 10

CD45.2 BM cells of each genotype were injected into separate lethally irradiated

congenic (CD45. 1) mice. For mixed chimeras , 5 x 10 CD45. + wild-type BM cells were



mixed with 5 x 10 CD45. ilk- or CD45. ilk- r/e- BM cells. Mice were analyzed 

- 12 weeks after reconstitution.

BrdU incorporation

Mice were injected i.p. with 2 mg of bromodeoxyudine (BrdU) (Sigma Aldrch, St.

Louis, MO) in PBS 1 - 2 hours before harest. Cells were plated at 6 x 10 /well and then

stained for surface antigens. Following extracellular staining the cells were washed in

PBS and then fixed and permeabilized with Cytofix/Cytoperm for 20 min at 4 C. The

cells were then washed with PBS and fixed again in 1 %/0. 1 % paraformaldehyde/Tween-

20. To stain for BrdU, cells were spun down and washed twice in PBS at room

temperatue, and subsequently resuspended in 200"- of DNase solution (750"- 5M NaCl

105"- 1M MgClz, 250 lmM HCl, 24mg DNase (Roche Applied Sciences, Indianapolis

IN), 23.9 ml dH 0) and incubated at RT for 10 - 30 min. The cells were then washed

and incubated in 50"- of a 1:10 dilution ofanti-BrdU-FITC for 30 min. At the end ofthe

incubation period, the cells were washed twice and analyzed by flow cytometry.

Injection of rag I- mice wilh anti-CD3

Wild-type and Itk-deficient mice were injected i.p. with 50 j.g of purfied anti-CD3!:

(2Cll) from ebioscience (San Diego, CA). Mice were analyzed at day 3 and day 4

following injection for CD4 and CD8 expression, as well as CD25 and CD44 expression.



RESULTS

Analvsis ofthvmocvte subsets in wild-ll(/Je. itk- , and itk- rlk- - mice

Based on CD4 vs. CD8 profies of wild-type itk- , ite-r/k- mice thymocyte

development appears to be relatively normal, with the exception of an altered CD4:CD8

ratio, which wil be discussed in futue chapters (69, 74). However, in an analysis done

by Schaeffer et al of the absolute numbers of each thymic subset revealed that there is a

small, but seemingly significant reduction in total DP cells. Compared to wild-type mice

Itk-deficient mice have 65-70% Itk/k-doubly deficient mice have 75-80% the normal

numbers ofDP thymocytes (69). In spite of this decrease, there does not seem to be any

difference in DN cell numbers. With the exception of the small reduction in DP

thymocyte numbers, there was nothing to indicate any defect in the DN to DP transition.

However, in light of the predicted role of Tec family members in pre- TCR signaling,

based on their role in positive selection ((69), discussed in Chapter 3) and in mature T

cell activation (54, 66, 67, 103), we decided to begin by looking more closely at the

individual DN subsets based on CD44 and CD25 expression, using the method described

in Figure 2.

Intial inspection ofthe DN subsets in ite- and ite-rlk- mice is in agreement with

the general CD4/CD8 profies, as the distrbution ofDN1-DN4 subsets is similar to that

seen in wild-type C57BL/6 mice (Figue 2.3). We had first examined Itk-deficient mice

and thought that one possibility for the apparent disposability ofItk in pre- TCR signaling

may be due to compensation by other Tec kinase members. However, surrisingly,



subsequent analysis of itk- rle- mice revealed that the DN to DP transition was also

unaffected in the absence of both Tec kinases.
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Figure 2. DN thymocyte subsets in single wild-type, itk. and itk. rlk.

chimeras

Staining of DN thymocytes using the method described in Figue 2.2 is shown. The

lower-right quadrant contains DNI cells, the upper-right quadrant contains DN2 cells , the

upper-left quadrant contains DN3 cells, and the lower-left quadrant contains DN4 cells.

These plots are representative of 3 experiments. There is a lot of varation in the exact

numbers in each quadrant, so the plot that seems to represent the best average of each

genotype is depicted.
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ression o and Tee in adult DN subsets

Due to the fact that we did not observe any impairment in the DN to DP transition

in Itk-deficient or Itk/lk-doubly-deficient mice we were interested in determining if

these kinases, as well as Tec, were expressed throughout T cell development and their

relative levels. As mentioned, early studies performed by Northern blot analysis

demonstrated that both Itk (40) and Rlk (101) mRA can be detected by day 14 of fetal

development, a time at which the thymus is comprised solely of DN1 and DN2 precursor

cells. Therefore, we thought it was likely that these two kinases would be expressed

throughout T cell development, but the expression in specific T cell subsets had not yet

been done in adult mice.

Using real-time PCR analysis, we first demonstrated that all three Tec family

members are present in the DN, DP, and both SP subsets (Figue 2.4A). Itk and Rlk

expression is almost equivalent, although Itk expression may be slightly higher. In

contrast, Tec mRA levels are considerably lower, at least 40-fold less than Itk and 

levels. The levels of Tec kinases seem to be equivalent in DP and SP subsets, and

slightly lower in the DN subset. However, because of the way the cells were stained and

sorted the DN cells are not solely comprised of T lineage cells. Therefore, the non- T

lineage cells may contrbute to the levels of ~-actin, thus the levels of the Tec kinases

may appear to be arificially lower than they actually are.

Next, we decided to sort the DN cells into individual subsets. In order to be able

to get adequate cell numbers to isolate RNA following sorting, we needed to pool many

thymi and deplete the DP and SP cells with complement fixation of cells expressing CD4



and CD8. Once the CD4+ and CD8 positive cells were eliminated, the cells were stained

as in Figue 2.2 and sorted into the four DN subsets. The purty of each subset was at

least 92%, but most approached 98 - 99% The results of the real-time PCR analysis

show that all three Tec family members are expressed in each DN subset and, as

predicted, their ratios to ~-actin increased with the elimination on non- T lineage cells

although to different degrees (Figure 2.4B). The ratio of Itk to ~-actin, on average

increased almost 5-fold, whereas the ratios ofRlk and Tec increased 2- to 2. fold. The

measurement of mRA levels in the more purfied DN subsets indicate that Itk is the

most highly expressed, the expression of Rlk is now clearly less than Itk, and the

expression of Tec is signficantly lower than both Itk and Rlk. However, even though

Tec has the lowest expression, its ratio with Itk and Rl is higher than in the more matue

T cell subsets shown in Figure 2.4A. Since real-time PCR measures the steady-state

levels of mRA and not the levels of protein activity in a specific subset, it might not

make sense to compare the mRA levels of one gene to another. However, these results

clearly indicate that Itk, Rl, and Tec transcripts are expressed in all thymic subsets and

therefore, all three of these kinases may be playing a role in all stages of T cell

development.



Figure 2.4 Expression of Tec family members in thymocyte subsets

(A) DN, DP, and SP subsets by sorting wild-type thymocytes based on expression of

CD4 and CD8. Levels of mRA of Tec family members were determined by real-time

PCR as described above.

(B) A pooled cell suspension from the thymi of 25 wild-type mice was enrched for DN

thymocytes by complement depletion of CD4+ and CD8+ cells, which eliminates all DP

and SP thymocytes. Cells were then stained with the protocol described in Figure 2.2 and

sorted based on CD25 and CD44 expression of the allophycocyanin negative cells, into

the DN1 , DN2, DN3 and DN4 subsets. The levels ofmRA ofItk, Rl and Tec in each

subset was determined by isolating RNA from each subset, conversion into cDNA, and

real-time PCR for Itk, Rlk, and Tec. To control for varation in the effciency of mRA

isolation, levels of each kinase were normalized by calculating the ratio of each Tec

kinase to ~-actin in each sample.
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Usin mixed bone marrow chimeras to determine i com etition with wild-tvpe cells

reveals a defect in the DN to DP transition

Although phenotypic analysis of thymic subsets in knockout anmals is useful 

an initial tool for examining the role of certain proteins in lymphocyte development, it

may often fail to reveal all the stages at which the protein may playa role. In order to

determine more conclusively whether Tec family-deficient thymocyte precursors

progress normally to the DP stage of development, we generated mixed BM chimeras

with a 50:50 mix of wild-type and itk- bone marow, or wild-type and itk- rlk- bone

marow. The experimental design is shown in Figue 2.5. In addition to the mixed BM

chimeras, we also made BM chimeras with unixed BM of each genotype (wild-type

itk- and itk- rlk-

). 

We reasoned that since TCR, and most likely pre-TCR signaling,

was merely reduced in itk- and itk- rlk- thymocytes that a block may not be evident by

mere steady-state analysis ofthe thymic subsets, even if the transition from the DN to DP

stage was less effcient. However, we thought that if the knockout cells were forced to

develop in the presence of cells that have fully intact pre- TCR signaling, we might see

the preferential development of these cells over the knockout cells. Thus, in this system

the Tec family deficient cells may accumulate at the stage or stages in which they playa

role in T cell development. Single BM chimeras were made to ensure that BM from each

genotype was capable of complete and normal (for that genotype) reconstitution.
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Figure 2.5 Design of mixed bone marrow chimera experiment

Bone marrow was isolated from wild-type (B6) CD45. ite- (BIO) CD45.2 ite-r/k-

(B6) CD45.2 mice. For mixed chimeras , wild-type CD45. 1 BM was mixed 1:1 with ite-

or itk- r/k- CD45.2 bone marow. CD45. 1 (B6) host mice were lethally irradiated (1000

rads) and 1 x 10 of the mixed BM cells were i.v. injected. Mice were analyzed as early

as 4 weeks and as late as 12 weeks, but the majority were analyzed at 8-10 weeks. DN

analysis was done using the previously described protocol, except in the last step CD45.

or CD45.2 was used to distinguish between wt and ko/dko cells. Cells were also stained

with Abs for CD45. 1/CD45.2, CD4, CD8 , and TCR. Additional analyses looking at

proliferation with BrdU, and the up-regulation of CD5 at the DN4 stage, which will be

described later.
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Analvsis o DN subsets in mixed bone marrow chimeras

) -

Intially, it appeared that the BM from Itk-deficient mice was parially blocked at

the DN3 to DN4 transition in the presence of wild-type bone marow. However

subsequent experiments did not repeat this observation with any certainty and the CD25

vs. CD44 profies had a fair degree of varation among experiments and individual mice

(total # of wild-type/Itk- (wt/ko) mixed BM chimeras = 21). In all experiments done

with wild-type and itl/-rlk- (wt/dko) BM chimeras (total # = 17), we never observed any

blocks in T cell development in the DN to DP transition (data not shown). In addition, in

the analysis of the single BM chimeras, the distrbution of the DN subsets was very

similar to the distrbution seen in the mixed BM chimeras for a given BM genotype (data

not shown). Thus, the competition between ite- or itk- rlk- BM with wild-type BM did

not result in any blocks in development durng the DN stages in the absence of Tec

family kinases.

Although itk- or itl/-r/e- thymocytes did not appear to be blocked at the DN3 to

DN4 transition, it stil appeared that the development of itk- or itk- rlk- DP thymocytes

was less effcient in mixed bone marow chimeras. As shown in Figue 2. , we found

that while the representation of ite- or ite-rlk- thymocytes compared to wild-type

thymocytes in the DN comparent was comparable to the representation of each

genotype in B cells, which should not be affected by the absence of Itk or Rlk, Tec

family-deficient thymocytes were consistently underrepresented in the DP compartent

compared to wild-type cells (Figue 4.6). In the wt/dko mixed bone marow chimeras

the contribution of the itk- rlk- cells to both the Band T subsets was significantly higher



than the contrbution of the wild-type cells. This was tre of all chimeras made over two

experiments. We believe this is most likely due to errors in counting and thus, the BM

mix was disproportionate, with more of the BM higher proportion of the cells being of

ite- rlkl- origin.



Figure 2.6 Contribution of wild-type and Tec-family deficient thymocytes in mixed

bone marrow chimeras to the DP subset

The contribution ofCD45. + (wild-type) and CD45.1 (ko or dko) cells to either the DN

(gated on CD4- CD8-) or the DP (gated on CD4+ CD8 ) subset is depicted in the

histograms. To the right ofthe histograms is the ratio ofko/dko to wild-type cells within

the B cell comparent, which should represent the percentage of the progenitors present

in the mice that was used to reconstitute the lethally irradiated mice. Two mice of each

BM mix are shown. In all the BM chimeras made, the percentage of itk (21 mice in

three experiments) or itk- rlk- (17 mice in two experiments) DP thymocytes was always

signficantly lower than their percentage of DN thymocytes or splenic B cells, although

the amplitude of the decrease vared among experiments. Two representative mice of

each BM mixtue from the experiment with intermediate results are depicted.



wt/ko mix

wt/ko mix

wt/dko mix

wt/dko mix

.'-L

ko: 51.

wt: 49'.

wt: 73.-

ko: 51.

dko: 75.

WI: 23.

dko: 79.

WI: 20.

CD45.

ko: 19.

dko: 45.

L.: 54,4

r/. I I
.I .

dko: 59.5 .

, WI: 40.

/\ 

L-'

./ \

.1 \.

...- -- -.. 

B cell ratio

wt: 5.f.
ko: 49,

WI: 5J.
ko: 4J.

WI: 28,4
dko: 71,4

WI: 27.

dko: 72.



The stren th o the re-TCR si al in the absence o Tec kinases is reduced

The results obtained in the previous section were the first to indicate that the DN

to DP transition is affected by the absence of Tec family kinases. As a first attempt to

determine if this was due to altered pre- TCR signaling, as we presumed, we examined the

up-regulation of CD5 as cells transition from DN3 to DP. CD5 is a cell-surface

transmembrane protein that negatively regulates TCR signaling. It is expressed on all T

cells and its expression levels are tightly regulated durng T cell development. The first

stage of up-regulation follows signaling through the pre- TCR. Levels are fuher up-

regulated following selection, and the final level of CD5 has been shown to be

proportionate to the avidity of the TCR expressed on the dev;eloping DP thymocyte for its

selecting ligand(s) in the thymus (104). Work that was done prior to the examination of

the DN subsets revealed an overall reduction of CD5 on DP thymocytes (see Chapter 3)

(69, 74). Thus , we decided to examine the levels ofCD5 on the DN3 and DN4 subsets in

the mixed BM chimeras. In both the DN3 and DN4 subsets, the percentage of itk-

itk- rlk- cells that have up-regulated CD5 is considerably lower than the percentage of

wild-type cells that have up-regulated CD5 (Figue 2.7) indicating that at least some par

of the pre- TCR signal is reduced in the absence of Tec kinases.
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Figure 2.7 The strength of the pre- TCR signal is decreased in the absence of Tec

family kinases.

In order to look at CD5 levels on DN3 and DN4 subsets, we stained the thymocytes from

the mixed BM chimeras as described in Figure 2.2 except that anti-CD44-bio was added

to the mixtue of biotin-Abs. Thus, in addition to lineage specific cells, the DN1 and

DN2 subsets were also excluded by gating out the APC+ population. The cells were then

stained with anti-CD45. FITC, anti-CD25- , and anti-CD5-Cy. The wt and ko/dko

subsets were gated on CD45. 1 expression and fuher subdivided into DN3 and DN4

subsets based on CD25 expression. Histograms of CD5 expression on DN3 and DN4

cells ofwt (blue line) or ko/dko (pink line) origin from mixed bone marow chimeras are

depicted. The percentages of cells that have up-regulated CD5 are also shown.
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I3selection events are impaired followinf! TCR signalinf! in the absence of Tec family

kinases

We next wanted to determine which aspects of the ~ selection events are affected.

As described in the introduction, one of the consequences of pre- TCR signaling is

proliferation. This proliferation begins at the DN3/DN4 transition and continues until the

cells become DP, at which point the cells become quiescent. Tec kinases could

potentially affect this process since all the signals downstream of PLC-y are believed to

affect proliferation. Activation ofPKC, Ca2+ mobilization, and the Ras-MAK pathway

all contrbute to proliferation, and in the absence of Tec family kinases in T cells both

2+ 
mobilization (66 69, 103) and the activation Ras-MAK pathway (measured by

phospho-Erk levels) (67 , 69, 103, 105) have been shown to be affected. Since PKC

requires the production of DAG, one of the products of PLC-y activation, it is presumed

that this pathway should be affected as well (Figue 2. 1).

In order to measure proliferation, we injected the BM chimeras with BrdU, a

nucleotide analog that can be used by cells in the place of thymidine when synthesizing

DNA. BrdU can be detected by inter-nuclear FACS staining with an anti-BrdU antibody,

and since only cells that are in S-phase of the cell cycle will be synthesizing DNA, this

method detects any cells that are undergoing proliferation. We injected mice 1 - 2 hours

before harest. During this short pulse, the BrdU+ cells represent the steady-state level of

cell proliferation. As mentioned, proliferation begins at the pre- TCR stage and ends once

the cells become DP. Thus, the DN4, ISP, and very earliest DP cells wil be the ones

proliferating and incorporating BrdU. Besides staining with anti-BrdU, the cells were



also stained with anti-CD45. , anti-CD4, and anti-CD8. Proliferating cells were

identified and gated as Brdlf cells and these cells were fuher sub-divided into wild-

type and knockout origin based on CD45. 1 expression. CD4 vs. CD8 plots of these gated

sub-populations are depicted. Thus, these plots show the distribution of proliferating

cells of each genotype into the following thymic subsets: DN3/DN4 (CD4-CD8"), ISP

(CD8 ), and DP cells (Figue 2.8).



Figure 2.8 Proliferation of thymocytes in mixed bone marrow chimeras

(A) Wt/ko mixed BM chimeras and (B) wtdko mixed BM chimeras were injected with 2

mg of BrdD. After harest of thymocytes, cells were stained extracellularly with anti-

CD45. , anti-CD4-Cy, and anti-CD8-APC. Cells were fixed/permeabilized and

treated with DNase to fragment the DNA and expose the BrdU to Ab binding. Cells were

then stained with anti-BrdU and analyzed immediately. Cells from each BM chimera are

gated on Brdlf cells and then divided into wt (CD45. 1 +) and ko/dko (CD45. 1). CD4 vs.

CD8 profiles are then shown for the Brdlf wt and Brdlf ko/dko thymocytes.
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In the mixed chimeras, the percentages of Brdlf cells of the wild-type and itk-

origin were equivalent; however, when the CD4/CD8 distrbution of the Brdlf CD45.

(wild-type) amd CD45. 1" (itk- or itk- rlk- cells were compared, the wild-type cells had

a higher proportion of BrdU /proliferating DP cells and fewer immature (DN + ISP) cells

proliferating than the Tec family-deficient counterpars. Averaging the percentages of

, ISP , and DP thymocytes from 12 wt/ko and 12 wt/dko BM chimeras yielded very

comparable results. The ratio of immatue (DN + ISP) to matue (DP) cells of the

proliferating population for each BM genotype are also remarkably comparable (see

below).

BrdU+ thymocytes BrdU thymocytes 

wt/ko mixed BM chimeras wt/dko mixed BM chimeras

ISP (DN + ISP)/DP ISP (DN + ISP)/DP

13. 17. 65. 0.49 13. 17. 64.(CD45.1 +)

Itk-
18. 29. 50. 1.04 Itk 22. 23. 50. 1.06(CD45.

The wild-type distrbution and immatue:matue ratio, is virtally identical for both the

wto and wtdko chimeras. The same is tre when comparng the distrbution and ratio

from ko and dko BM; although there may be a slight difference in the DN and ISP

distrbution. Conversion of these proportions into absolute numbers reveals that there are

comparable numbers of cells of the wild-typ and Tec family-deficient origin in the

immatue (DN/ISP) subsets, but there are fewer Brdlf DP cells of the Tec family-

deficient origin suggesting that fewer DP cells are proliferating at any given time in the

absence ofItk and/or Rlk.



The DN to DP transition in the absence o Itk is im aired llowinf! vre- TCR stimulation

Although, analysis of the thymocyte subsets, proliferation, and up-regulation of

CD5 suggested that pre- TCR signaling was reduced in Itk-deficient and Itk/-double

deficient mice, all these experiments are based on the interpretation of steady-state

phenotypes. Thus, we felt that these were passive ways of looking at pre- TCR signaling

and it was stil possible that the defect was due to something besides pre- TCR signaling,

such as altered cytokine signaling. To look at pre- TCR signaling actively, we made use

of a well-established observation that Rag-deficient DN thymocytes can be induced to

become DP cells by CD3 stimulation. It was demonstrated that even in the absence of a

rearanged ~ chain, low levels of CD3 components are found on the surface of rag I- 

thymocytes and following injection with anti-CD3 , DP thymocytes accumulated and the

total thymic cellularty increased 100-fold (106).

Itk- rag I- 
were available from crosses of itk- mice to TCR transgenic (5C.C7)

rag I- mice and wild- type rag I- 
mice were purchased from Jackson Laboratories. Four of

five mice of each genotype were injected with anti-CD3-8 and two of each were analyzed

at both 3 and 4 days following injection (Figure 2.9). Whle this is a preliminar

experiment, the pattern of these results closely mimics the proliferation data. The Itk-

deficient mice, at each time-point have fewer cells at the DP stage and more cells at the

DN and ISP stage of development. I plan to repeat this experiment in the near future and

will also cross the rag I- 
mice to itk- rlk- mice so that we can more directly determine

whether pre-TCR signaling is more impaired in doubly deficient mice or if the phenotype

is the same as Itk-deficient mice.



Figure 2.9 Fewer itk. rag l- DN thymocytes transition to the DP stage compared to

itk+l+rag l- DN thymocytes following injection with anti-CD3

The CD4 vs. CD8 profiles of wild-type- and Itk-deficient-rag I- 
mice injected with 50 

anti-CD3 (2C1l) at 3 and 4 days post-injection are shown. CD4- CD8- DN thymocytes

are primarly at the DN3 and DN4 stage of development (data not shown). CD8+ cells

are cells at the ISP stage of development since SP cells do not develop in this system.
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DISCUSSION

In light of the clear importance of PLC-y in pre- TCR signaling and its apparent

role in all four P selection events: survival, proliferation, differentiation, and allelic

exclusion (Figure 2. 1), we were interested in determining if the Tec family kinases, Itk

and Rl, whose only known substrate in T cells is PLC-y, were also important at this

stage of development. Intial characterization of the DN, DP , and SP subsets of both itk-

and itk- rlk- mice did not suggest that there was any defect in T cell development prior to

selection or lineage commitment (39, 66, 67, 69). Besides the fact that Tec kinases

activate PLC-y, Lck, LAT, and SLP-76 are all upstream of Tec kinase activation and

mice deficient in these proteins have a block at the DN3 to DN4 transition. Since Tec

family deficient mice have signficant numbers of DP thymocytes , we knew that there

was not a absolute block at the stage. However, other TCR signaling proteins, like Vav

have been shown to be important durng the DN to DP transition even though vav I- mice

do not have a complete block at the DN3 stage. Instead, a 2-fold decrease of the DP

subset was observed, which resulted in an 2- fold reduction in thymic cellularty when

compared to wild-type mice (107, 108). There was no increase in the absolute number of

DN cells, but upon analysis of the DN subsets it was revealed that the Vav-deficient mice

had a higher DN3:DN4 ratio (107). As mentioned ealier, data from Schaeffer et al

demonstrated that Itk-deficient mice also had a reduction in the total number of DP

thymocytes, although it was much smaller than that seen in vav I- 
mice (69). Thus, we

decided to look more closely at this stage of development in Itk-deficient mice by



analyzing the DN subsets. However, unlike vav I- mice itk- mice had a DN distrbution

that was indistinguishable from that seen in wild-type mice (Figure 2.3).

We were surrised based on the role of Tec kinases in TCR signaling that we did

not observe any change in the DN subsets in the absence of Itk. One possible explanation

was that the other two Tec kinases, Rlk and Tec , that are expressed in T cells may be

compensating for Itk. Before pursuing this fuher, we wanted to determine if all three

Tec kinases were expressed in DN thymocytes. Using real-time PCR, we determined that

indeed, Itk Rl and Tec, were all expressed in DN thymocytes, and also showed that they

were expressed throughout development beginnng at the DNI stage (Figue 2.4). Since

real-time PCR is quantitative, we were able to determine the hierarchy of mRA

expression, which is Itk Rlk Tec, which is identical to the hierarchy observed in

peripheral CD4+ T cells (109).

Having demonstrated that all the Tec kinases were present, we decided to look at

the DN subsets in Itk/lk-doubly-deficient mice, which had been shown previously to

have greater defects in later stages of thymocyte differentiation than Itk-singly-deficient

mice. Once again, we did not observe any alterations in the distrbution of the DN

subsets (Figure 2.3). At this point, it did not appear that pre- TCR signaling was defective

in the absence of Tec kinases based on knockout phenotypes. We then decided to try

another approach by using mixed bone marow chimeras. Lethally irradiated mice were

reconstituted with a 1:1 mixtue of wild-type and itk- or itk- rlk- BM cells. In this

approach, it was possible that a minor defect in pre- TCR signaling in the absence of Tec

family kinases would be revealed when the cells were in competition with wild-type



cells. Preliminar analysis of the contrbution of each BM type to the DN and DP subsets

revealed that significantly fewer cells ofthe Tec kinase deficient origin contrbuted to the

DP comparent suggesting that the DN to DP transition was less effcient in the Tec

kinase deficient progenitors compared to wild-type progenitors (Figure 2.6); however, we

stil did not observe any dissimilarty in the DN subsets when comparng the two types of

progenitors present in each BM mix. Thus, the defect seemed to take effect after the

DN4 stage of development.

Yet, analysis of CD5 up-regulation at the DN3 and DN4 stages of development

indicated that the ite- and itk- - rlk- cells were receiving weaker pre- TCR signals at the

earliest stages of ~ selection (Figue 2.7). Prior to analysis of the mixed BM chimeras

they were injected with BrdU to measure proliferation of cells during the DN to DP

transition. The majority of proliferation in the thymus is initiated upon pre- TCR

signaling and ends as the cells become DP. Thus, cells at the DN4, ISP , and early DP

stage wil incorporate BrdU in a short pulse (1 - 2 hrs). When comparng the distrbution

of proliferating thymocytes between the two BM types in each mixed chimera
, we found

that the distrbution of proliferating wild-type thymocytes in the DN , ISP , and DP subsets

was equivalent whether these cells were developing in the presence of 

ite- or ite-r/k-

cells. Similarly, the distrbution of 
itk- and itk- r/e- thymocytes was also comparable

with more of the proliferating cells being at an earlier stage of development when

compared to control cells (Figue 2.8). Thus , it appears that the DN to DP transition of

Itk-deficient thymocytes is not more affected by the additional absence ofRlk.



From these experiments, it appears that the initiation of proliferation is normal

following pre- TCR signaling in the absence of Tec family kinases, but there are defects at

later stages. In this type of analysis , it is impossible to determine if the alterations in the

subsets represented by the Brdlf cells is due to altered proliferation, surival or

differentiation. One possibility is that on average the Tec family deficient thymocytes

undergo fewer rounds of division and thus, fewer DPs are proliferating. A second

possibility is that the DP cells generated from BM lacking Itk do not survive as well as

wild-type DP cells, and thus proliferation of this subset is underrepresented. A third

possibility is that differentiation as measured by up-regulation of CD4 to the DP stage is

less effcient in the absence of Itk and thus, a normal amount of proliferation is occurng,

but the cells have not fully differentiated. There are other potential possibilities, perhaps

a combination of those already mentioned, but it does appear that the defect is not

revealed until the later in the DN to DP transition. It is possible that similar to CD4

positive selection and lineage commitment (see later chapters) the DN to DP transition

requires sustained signaling in order to complete ~ selection. In fact, it has been shown

that this process takes 24 hours and it is possible that a sustained signal is required

throughout (110). Tec family deficient thymocytes have an inability to maintain a

sustained Ca2+ flux (69), and it has been hypothesized that the sustained signaling

required to complete differentiation does not occur in as many developing cells in the

absence ofTec family kinases.

Finally, in order to measure the effects of Itk on pre- TCR signaling in a more

direct maner, we injected control rag I- and Itk-deficient rag I- mice with anti-CD3
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which is known to overcome the block at the DN3 stage in rag I- mice and allow

differentiation to the DP stage. The results of this preliminar experiment, which suggest

that a smaller proportion of cells are at the fully mature DP stage following injection with

anti-CD3 , are in complete agreement with the analysis of proliferating (Brdlf) cells in

the mixed bone marow chimeras (Figue 2.9). As this assay is a more straightforward

way of evaluating pre-TCR signaling it may be useful to generate ite-rle-rag I- mice to

confirm whether or not this stage of development is independent of Rl activity. In

addition, none of the experiments done in this section looked at allelic exclusion, so it

might be interesting to examine the V~ usage in Itk- deficient mice in order to ascertain

whether or not Tec kinases playa role in this important aspect of ~ selection. Ultimately,

the generation of itk- rlk- tec I- mice will aid in resolving whether or not the Tec family

kinases are essential at this early stage of development or if they just aid in the effciency

ofthis process. At present, it seems more likely to be the latter.



CHAPTER III

THE ROLE OF ITK IN T REPERTOIRE

SELECTION



INTRODUCTION

In the previous section, the process of ~ selection following pre- TCR signaling

was discussed. The next developmental checkpoint that requires signaling from the TCR

takes place at the DP stage following a chain gene rearangement. Although some

rearangement of the alpha chain can be detected by the DN4 stage of development, the

majority of rearangement takes place once thymocytes become quiescent DP cells (111).

The lifespan of an unselected DP thymocyte is approximately 3 - 4 days. During this

time, a chain rearangement continues until a fuctional a~ pair is formed and a TCR

signal is generated. If no signal is received durng this time, which is the outcome for the

majority of DP thymocytes (34), the DP cell will die and this is known as "death by

neglect."

At this stage in development, thymocytes must undergo two concurrent, but

distinct, developmental processes to become fuctional and tolerant matue T cells. One

of these processes is known as repertoire selection, which ensures that matue T cells can

recognze foreign peptides presented by self-MHC molecules, but wil not become

activated when they encounter self-peptide/self-MHC complexes. The second process

lineage commitment, is the process by which thymocytes that recognize peptide in the

context of MHC class I become CD8+ cytotoxic T cell precursors, and thymocytes that

recognze peptide in the context of MHC class II molecules become CD4+ T helper cell

precursors (Figure 3. 1). Both of these processes are known to be dependent on TCR

signaling; however, it has often been debated how the same initial signals can give rise to

these different and opposing developmental outcomes. This chapter will focus on the

",-



role of Itk in signaling during repertoire selection and its role in lineage commitment and

differentiation wil be discussed in Chapter 4.



Figure 3.1 Developmental processes that take place at the DP stage

DP thymocytes undergo three distinct processes. Cells that have weak or no binding

avidity for self-peptide/self-MHC complexes on thymic epithelial cells do not undergo

selection. However those that bind to self-peptide/self-MHC wil undergo either positive

or negative selection depending on the strength of that interaction (see B). Cells that

undergo positive selection will also undergo lineage determination to become either a

CD8+ killer T cell or a CD4+ helper T cell.
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Current theories propose that the strength of the signal received by a 

thymocyte through its TCR and/or coreceptor can determine the developmental fate ofthe

thymocyte with respect to both selection and lineage commitment. In the case of

selection, it is believed that the avidity of the TCR for self-peptide/self-MHC complexes

in the thymus wil influence the intensity of the TCR signal. Thus, thymocytes that bind

self-peptide/self-MHC complexes with intermediate avidity will receive intermediate

signals that induce positive selection and the generation of T cells that would be useful to

the individual. In contrast, if the thymocytes bind strongly to self-peptide/self-MHC

complexes, a strong signal would be transduced, leading to negative selection and the

elimination of potentially autoreactive cells. Consistent with this idea, there is extensive

evidence that both TCR avidity for self-peptide/self-MHC and TCR signal strength

influence the repertoire selection process (112). Furher, it has recently been

demonstrated that there is a clear link between TCR-MHC/peptide avidity and the

ensuing strength of the TCR signal (113 , 114). The studies presented in these references

and probably hundreds more, looking at avidity, strength of signal, and selection has led

to or supported the most commonly accepted model of repertoire selection, known as the

avidity model ofthymocyte selection (Figue 3.2).

The signaling pathways shown to be important for pre- TCR signaling (see Figure

1) are also important for both positive and negative selection. Thus, for all the reasons

discussed in Chapter 2 , we would expect Tec family kinases to playa role in selection.

Other signaling molecules have been shown to be at least partially dispensable durng ~

selection, and yet, playa critical role in selection. Two examples are ZAP- 70- mice (71



115), which only have a block at the DN3 stage when Syk is absent as well, and vav

mice (107, 108). In fact, the overall vav I- thymic phenotype is the most similar to Tec

family-deficient mice.

Previously, the analysis of ite- mice crossed to either a class 1- or a class II-

restrcted TCR transgenic line revealed that virtally no TCR transgenic T cells

developed in the absence of Itk (39). Based on this original observation and more recent

studies with these same TCR transgenics crossed to both 
itk- and itk- r/k- mice, it has

been proposed that Tec family kinases playa role in setting thresholds for thymocyte

development (69). Therefore we hypothesize that the avidity ' 'window '' in which cells

that are positively selected has shifted in the absence of Itk. As a result, cells that are at

the low end of the avidity window in wild-type mice, do not receive a proper selection

signal in the absence of Itk. It also proposes that cells that would normally receive

enough signal to undergo negative selection now fall into the upper end of the positive

selection window. Thus, the cells that are positively selected in the absence of Itk have

an overall increase in avidity when compared to wild-type cells (Figue 3.2)



Figure 3.2 The avidity model of thymocyte selection

A graph of thymocyte cell number and TCR avidity is depicted. The cure represents a

Gaussian distrbution of cell number and avidity, however this is completely hypothetical

distrbution. At the low end of the curve, cells receive little or no TCR signal as a result

of low TCR avidity and therefore undergo apoptosis due to neglect. At the high end of

the cure are the cells that receive a strong TCR signal due to a high avidity interaction

with self-peptide/self-ligands, and thus also undergo apoptosis, but due to negative

selection. In the middle are cells expressing TCRs with an intermediate avidity for self-

peptide/self-MHC that receive a low but sustained level of TCR signaling and therefore

are positive selected. The "window" of positive selection for wild-type cells is depicted

by the two solid pink rectangles. We hypothesize that the "window" of positive selection

for Itk-deficient cells parially overlaps with the wild-type window (solid dark pink

rectangle), but also may include cells that would normally be negatively selected

(rectangle with pink strpes).
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This chapter presents work we did to determine the role ofItk in TCR repertoire

selection. To better understand the role of Tec family members in thymocyte

development, we crossed ite- mice to a varety of TCR transgenic lines that express

TCRs with different avidities for their selecting ligands in the thymus. These mice would

allow us to determine whether the requirement for Tec family signals is influenced by the

avidity of the TCR on the developing thymocyte. In addition, we also examined the role

of Itk in deletion of three TCR transgenic lines by superantigen and deletion in a double

transgenic system in which TCR transgenic mice express a second trans gene that contains

the cognate antigen of the TCR expressed by these mice.



MATERIALS AND METHODS

Mice

Itk-deficient mice were crossed to 2B4 (116), 5C.C7 (117), and AN (118) TCR

transgenic mice, all of which were on the BIO.BR (H- ) genetic background. The itk-

mice crossed to the TCR transgenic mice had a mixed 129/B10 genetic background (H-

2\ Since the 129 strain cares two superantigens (SAgs) that delete V~3-expressing T

cells , a PCR screen was designed to distinguish mice that cared at least one SAg from

those that were SAg negative; SAg-negative mice were used for all experiments. The

non- transgenic itk +1- and itk- mice in all figures were backcrossed to B 1 0 mice at least

eight times. Mice were analyzed between 6 and 12 wk of age, and all TCR transgenic

control mice are itk+l-
littermates. When examined, there were no signficant phenotypic

differences in the lymphocyte profiles of TCR transgenic itk +1- and itel+ mice (data not

shown). Mice were bred and maintained in a SPF facility at the University of

Massachusetts Medical School.

Antibodies

The following mAbs, purchased from BD Pharmingen, were used for staining cells: anti-

CD4- , anti-CD4-CyChrome (anti-CD4-Cy), anti-CD8a-FITC (53- 7), anti-CD8a-Cy,

anti-CD8a-allophycocyanin, anti-TCR~-Cy, anti-V~3- , anti-Vall.l , l1.2 FITC

anti-CD5-Cy, anti-CD69-bio, anti-CD24 (heat-stable Ag (HSA))-bio , purified hamster

anti-mouse-Bcl- , and purfied hamster anti-trnitrophenol (107.3). Hamster Abs were

detected by goat F(ab')2 anti-hamster IgG (H+L)-FITC (Caltag Laboratories, Burlingame



CA). In most cases the 2B4 TCR transgenic was detected by staining with the A2B4-

Ab (119), which was purified and conjugated to FITC in our laboratory. Biotinylated

Abs were detected using strep-APC(BD Pharmingen).

Cell preparation, staining, and flow cytometry

Lymphocyte cell suspensions were made from thymus, spleen, and lymph nodes (LNs:

pooled inguinal, axilar, brachial, and cervical) by dissociation between two frosted

slides in RPMI and 10% FCS. Further cell preparation and staining was cared out 

described in Chapter 2. In general, 10 000-50 000 live (based on forward vs. side scatter

profies) events/sample were collected for the analysis of CD4, CD8 , and TCR staining in

, spleen, and thymus preparations. For marker analysis on thymic subsets 100-

200 000 events/sample were collected. Data were analyzed using CellQuest softare

(BD Biosciences).

Intracellular Bcl-2 staining

Cells were prepared and stained with Abs to cell surface molecules as described above.

After extracellular staining, the cells were washed and fixed/permeabilized by incubation

in 100 JLl Cytofix/Cytoperm (BD Pharmingen) on ice for 20 min. The samples were then

washed with PermWash buffer (BD Pharingen), and a hamster mAb to Bcl-2 was

added. Duplicate cell samples were also stained with an irrelevant hamster Ab (anti-

trinitrophenol). Cells were incubated on ice for 30 min. After washing, the hamster Abs

were detected by incubation with a goat anti-hamster Ab conjugated to FITC on ice for 30



mIl. Cells were again washed and analyzed immediately. For samples stained with anti-

Bcl- , 200 000 events/sample were collected; 50 000 events/sample were collected for

samples stained with the control hamster Ab.



RESULTS

T cell develovment is altered in Itk-deficient mice

The examination of itk"
l- mice generated in our laboratory (66) suggested that Itk

plays a role in T cell development. As previously reported (39, 69) , we observed altered

CD4+ and CD8+ T cell populations in the thymus, spleen, and LN of itk- mice (Figure

3). Although we did not observe significant differences in lymphocyte cellularty in

these organs , the proportions of CD4+ and CD8+ T cells differ from those in control mice

(itk or itk

"). 

In the thymus ite- mice have a slight reduction in the percentage of

CD4+ SP cells and at least a 2-fold increase in the percentage of CD8+ SP cells.

However, in the periphery the percentage of CD4+ cells is , on the average, half that in

control mice, while the percentage of CD8+ T cells is essentially normal. Interestingly,

with respect to absolute numbers, there is no signficant reduction in the total CD4+ SP

cells in the thymus, but there is approximately half the normal number of CD4

peripheral T cells in itk- mice (39 , 69). And while there is a significant increase in the

absolute number of CD8+ SP thymocytes (wild-type: 5.6::0. ite- 14.0::0.2

0019) in ite- mice, the number of peripheral CD8+ T cells is comparable to that of

wild-type mice. Thus, in both cases cells that are present in the thymus do not appear to

persist in the periphery in the absence ofItk (39). Potential reasons for this or alternative

explanations wil be discussed later.



Figure 3.3 Altered T cell development in Itk-deficient mice

(A) Thymocytes and (B) lymph node cells from 8-week-old itk , itk and itk-

littermates were stained with anti-CD4-PE and anti-CD8-Cy. CD4 vs. CD8 profies are

shown.
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Develo ment o T cells ex ressin 2B4 SC.C7 or AND TCR in H- mice is affected b

the absence of Itk

Based on the phenotype of the ite- mice, we hypothesized that the development

of CD4+ T cells is more affected by the absence of Itk. Therefore , to further address the

role of Itk in CD4+ T cell development, we crossed itk- mice to three different lines of

TCR transgenics, specifically, 2B4 (116), 5C.C7 (117), and AN transgenic mice. Each

of these transgenics expresses a TCR that uses Vall and V~3 gene segments and is

specific for a moth cytochrome cpeptide (88-103) bound to the MHC class II molecule 1-

. However, each TCR is thought to have a different avidity for selecting ligand(s) in

the thymus based on differences in the effciency of positive selection (2B4 c( 5C.C7 c(

AN) (120). Thus, the use of these TCR transgenic lines would allow us to determine

whether the absence of Itk would differentially affect the development of cells bearng

TCRs presumed to have varying avidities for selecting ligands.

Analysis of the 2B4, 5C.C7 , and AN H- itk- mice revealed that the ability of

the different TCR transgenic thymocytes to develop and populate the periphery in the

absence of Itk varies in a maner consistent with the proposed avidity of each TCR for its

selecting ligand(s) in the thymus. In the 2B4 and 5C.C7 transgenic ite- mice, the

percentages and absolute numbers of CD4+ SP cells in the thymus are dramatically

reduced compared with the corresponding itk TCR transgenic (Figue 3.4A and Table

1). In the AN ite- mice, the average percentage of CD4+ SP cells in the thymus is

reduced. However, as a reflection ofthe slight increase in thymic cellularty in AN itk-



mice, the absolute numbers of CD4+ SP cells are comparable to that seen in AN itk +1-

mice (Table 3. 1).

The hierarchy of developmental defects seen in the thymus is also reflected in the

peripheral T cell populations in all three TCR transgenic lines (Figure 3.4B), and

correlates with the presumed avidity of each TCR for selecting ligands. In ite- mice that

express the 2B4 TCR, which is thought to be a low avidity TCR, there are very few CD4

cells that express the transgenic TCR. In contrast, there are many more TCR transgenic

CD4+ T cells in the itk- mice that express a high avidity TCR, such as 5C.C7 or AN. 

fact, in the AN itk- mice, the percentage and absolute number of these cells are

comparable to those in wild-type AND mice.

It is important to note that the mice represented in Figure 3.4 are all ..8 wk of age.

In mice that are younger (-4 wk), the differences in the percentage of peripheral CD4

transgenic T cells between ite- mice and wild-type controls are more substantial in all

three transgenic lines. This is indicative of the lower percentages of CD4+ SP being

generated in the thymus of these mice. As these mice age, the numbers of peripheral

CD4+ transgenic T cells in AN ite- mice increase to numbers equivalent to those found

in itk mice; however, this is not the case for the 2B4 and 5C.C7 itk- mice. These

observations suggest that age is not the only factor that allows the AN ite- mice to

accumulate as many CD4+ transgenic T cells as wild-type AN mice (see below).



Figure 3.4 The development of MHC class-II specific T cells in the absence of Itk is

affected by the avidity of the TCR for its selecting ligand(s) in the thymus. Itk-

deficient mice were crossed to the 2B4, 5C.C7 , and AN TCR transgenics (all on an H-

background). CD4 vs. CD8 profies of (A) thymocytes and (B) lymph node cells are

shown for live gated cells (left) and live TCR gated cells (right). Each set of itk and

ite- are 8-week old littermates. Cells from non-transgenic mice were stained with CD4-

, CD8-Cy, and CD3-APC. Cells from transgenic mice were stained with a FITC

conjugated Ab that detected the transgenic TCR (anti-ValLI b,d or A2B4-2) along with

anti-CD4-PE and anti-CD8-Cy.
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Table 3. 1 Thymocytes and LN cells from itk 
+1- 

and itk. TCR transgenic mice

The average total cell number for the thymus and lymph nodes are given. For the

thymus, the percentage of DP and CD4+ SP cells, as well as the calculated absolute

number of CD4+ cells are also given. For the lymph nodes, the percentage and absolute

number of tg TCR (as determined by staining with anti-A2B4-2 or anti-Vall) CD4

cells are given. The values are the mean of 3 - 10 anmals for each genotype with SEMs.

Absolute numbers are given in milions and numbers in bold var signficantly (p value.c

05) between the presence and absence of Itk. Similar analyses were performed on

splenocytes with comparable results (data not shown).



r -

thymus LNs

total # %DP %CD4 #CD4 Total #
%CD4 #CD4

tg TCR tg TCR

2B4k1k 
Itk 

+1. 66:! 18 72 :t 5, 13:t 2. 6:14. 14 :t 4. 28 :t 3 9:1 1.

2B4k1k Itk. 24:: 5. 62:t 2. 0 :t 0.4 2:1 0. 18 :t 2. 8 :t 1. 1:1 0.

Sc.C7k1k 
Itk 

+1. 136 :t 19 29 :t 2. 61 :t 3. 83:1 12 29:: 5. 55 :t 5. 16:12.

Sc.C7k1k Itk- 155:t 34 66 :t 2.4 19 :t 2.4 28:15. 12:: 1. 32 :t 3. 0:10.

ANDklk Itk 65 :t 9. 30 :t 4. 55 :t 4. 36:17. 23 :t 5. 52 :t 3. 12:t 4.

ANDklk Itk. 89 :t 13 42 :t 4, 42 :t 3. 42:14. 24 :t 1, 40 :t 3. 0 :t 6.4
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Development of ANDitk- - T cells is affected hv the strenf!th and densitv of selectinf!

lif!ands exvressed hv APC in the thvmus

Based on the analysis of 2B4 , 5C.C7 , and AND ilk- mice, it appears that the

presumed avidity of the TCR for its selecting ligand(s) in the thymus plays an important

role in the development of T cells in the absence of Itk. However, it is known that the

development of T cells in each TCR transgenic line can be somewhat idiosyncratic, due

in part to the fact that untimely trans gene expression can affect development before

thymocytes reach the DP stage (121). Therefore, it is possible that the developmental

effciency of thymocytes in each of the transgenics is not solely based on their given

avidities for the selecting ligands. To address this concern, we chose to analyze itk- mice

that express one of the transgenic TCRs on different MHC backgrounds in which varying

levels of two different selecting ligands are expressed.

The AND TCR can be positively selected on both I- and I- molecules (122).

However, the generation of mature CD4+ Vcr 11 hi T cells is greatly reduced in mice that

only express the I- molecule. These observations strongly suggest that the AND TCR

has a higher avidity for I- vs. I- MHC molecules plus the self peptide(s) that

mediates its selection. Therefore, we decided to compare the selection of AND itk-

cells on the H-2\ H- , and H- k/b MHC 
backgrounds. Analysis of lymphocytes from

wild-type AND mice on all these backgrounds confirms the selection hierarchy: ANDblb

ANDk/ .c ANDkI (Figure 3.5). The percentage and perhaps the absolute number of CD4

cells in the thymus of wild-type ANDklk mice are slightly lower than those in wild-type

ANDk/ mice (Figure 3.5A and Table 3. 2), but the ANDklk mice have more peripheral
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CD4+ Vall hi cells (Figue 3.5B and Table 3.2). A probable explanation for this

phenotype is that, as previously suggested (122), the interaction between 

thymocytes and their selecting ligand(s) in the thymus of AN
kI mice is of such high

avidity that some of the cells are actually deleted in these mice. This is supported by the

fact that ANkI mice generally have lower total thymocyte numbers and fewer DPs

compared with AND
ki or blb mice (Table 3.2).

The phenotype of 
blb

ite- mice has been reported previously (39, 69), and

our analysis is in agreement with these reports. Specifically, the development of

transgenic T cells in these mice is dramatically reduced compared with that in 
blb

itk

+/' 

mice. Despite the signficant numbers of CD4+ SP cells in both the thymus and LNs

of the blb
ite- mice (Figure 3.5), very few of the CD4+ cells in the periphery express

high levels of the transgenic TCR, as demonstrated by staining for Vall (Figue 3.5B).

In contrast AN itk- mice that express I- molecules have signficant numbers of CD4

Vall + T cells in both the thymus and periphery. As shown in the previous section, the

generation of transgenic T cells in the thymus of AN
kI 

ite- mice appears to be slightly

less efficient than in AN
kI 

itk +1- mice, but the percentage and number of peripheral

transgenic T cells are not significantly reduced, as determined statistically, which is

unlike the other Itk-deficient TCR transgenics. Although time may lead to the

accumulation of transgenic T cells in the 
ite- mice, it is also likely that the AN

kI itk-

mice develop as many peripheral cells as wild-type AN mice, because the deletion of

some of the AN thymocytes that takes place in wild-type ANDkI mice does not occur

or occurs to a lesser extent, in the absence of Itk.
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Wild-type ANki mice have the highest number of CD4+ SP T cells in the

thymus of all three backgrounds examined, presumably because they express the strongly

selecting I- molecules on thymic stromal cells, but due to the lower density of this

selecting molecule, the parial deletion that occurs in ANkI mice is absent. The

percentage of CD4 Vall hi T cells in both the thymus and lymph nodes of ANki ite-

mice is one-half to one-third the number of these cells found in AN
ki 

itk +1- mice (Figue

5 and Table 3.2). This phenotype is, as expected, intermediate between that of AN
b/b

ite- mice, which have almost no matue transgenic T cells, and that of ANkI 
ite- mice

which have normal numbers of transgenic T cells. Thus, the strength and density of

selecting ligands or the avidity of the interactions between the T cell and thymic stromal

cells influence the outcome of positive selection in the absence ofItk.
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Figure 3.5 The density and avidity of the selecting ligands present in the thymus

affect the development of Itk-deficient AND transgenic T cells.

Itk-deficient AN TCR transgenic mice were bred onto H-2\ H- and H-

backgrounds. (A) Thymocytes and (B) lymph node cells from 8-week old itk and ite-

AN transgenic mice were stained with anti-Val1.1 FITC, anti-CD4- , and anti-

CD8-Cy. CD4 vs. CD8 profiles are shown for live gated (left) and live Vall hi gated

(right) cells.
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Table 3.2 Thymocytes and LN cells from itk 
+1. 

and itk. AND TCR transgenic mice

on different selecting backgrounds

The percentage of DP and CD4+ SP cells and absolute numbers of CD4+ SP cells in the

thymus are given. The percentage and absolute number of AN+ (as determined by

staining with anti-Vall) CD4+ lymph node cells are also given. The values are the mean

of 3 - 7 anmals for each genotype with SEMs. Absolute numbers are given in millons

and numbers in bold var significantly (p value.: 0.05) between the presence and

absence of Itk. Similar analyses were performed on splenocytes with comparable results

(data not shown).
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thymus LNs

total # %DP %CD4 #CD4 total #
%CD4 #CD4
Va11 Va11 hi

AN Dklk Itk 
+1- 65 :t 9, 30 :t 4. 55 :t 4.2 36:t7. 23:t5. 52 :t 3. 12 :t 4,

AND klk Itk- 89 :t 13 42 :t 4. 42 :t 3. 42:t 4. 24:t 13 40 :t 3. 0 :t 6.4

AN Dklb Itk 
+1- 94 :t 48 25:t 1. 62:t1. 56 :t 27 38 :!0. 36 :t 4. 14:t 3.

AN Dklb Itk- 45 :t 16 45 :t 4. 33 :t 4. 1 :t 2. 15:!2. 17 :t 4. 7:t 0.

ANDb/b Itk+ 89:! 16 35 :t 1. 50 :t 2. 45:t 8. 11 :t 2.4 15:t1. 5:t 0.

AN 
b/b Itk- 34:! 14 60 :! 3.4 13:! 1. 2:! 2, 18:t 2. 8:! 1. 6:t 0.
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Analvses of various develovmental markers SUf!f!est that the early staf!es of vositive

selection are imvaired in itkJ- thvmocvtes. but that the SP thvmocvtes f!enerated are

normal

The analysis of each of the TCR transgenic itk"
l- mIce revealed that the

accumulation of matue CD4+ TCR transgenic cells in both the thymus and periphery of

these mice is impaired by the absence of Itk. We hypothesized that this lack of

accumulation is due to a defect in the generation or positive selection of these 
cells.

However, it remained possible that matue CD4+ cells were being generated normally, but

their surival was impaired in the absence of Itk. Therefore, we were interested in

determining whether the surival factor, Bcl- is properly up-regulated in itk-

thymocytes.

It has been shown that Bcl-2 is up-regulated in a subset of TCR DP thymocytes

and remains high in SP cells (123). This expression pattern correlates with cells that have

received or are receiving positive selection signals. Figue 3.6 depicts intracellular

staining for Bcl-2 in ite- thymocytes compared with their wild-type littermates. In non-

TCR transgenic itk- cells, the levels of Bcl-2 are up-regulated in both the DP TCR and

CD4+ SP populations to the same extent as in thymocytes from a wild-type littermate

(Figue 3.6A). The same is true in the analogous populations of TCR transgenic

thymocytes on all the selecting backgrounds (Figure 3.6B and data not shown). These

data indicate that itk- cells in which the early stages of positive selection are properly

initiated, as determined by up-regulation of TCR, also properly up-regulate the surival

factor Bcl-2. However, within the entire DP population from ANk/ 
ite- thymi, a
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greater proportion of DP cells have background (very low) levels of Bcl-2. This is

probably due to fewer cells in these mice receiving the initial signals for selection.
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Figure 3.6 The survival protein, Bcl-2, is up-regulated normally during positive

selection of ilk. thymocytes

(A) Thymocytes from non- transgenic itk and itk- were stained with CD4-PE and CD8-

Cy. The cells were then fixed and permeabilized and incubated with a hamster mAb to

Bcl-2 or an irrelevant hamster Ab (anti-TNP). Histograms of Bcl-2 expression on live

, live CD4+ SP , and live CD8+ SP thymocytes from itk (solid line) and itk- (dashed

line) are shown. Non-specific staining with the irrelevant hamster Ab is also shown (gray

filled histogram).

(B) Thymocytes from itk and itk- TCR transgenic mice were analyzed similarly with

the addition ofanti-Va11.1 bio followed by strepavidin-APC staining prior to fixation

and permeabilization. Bcl-2 expression is shown on live DP , live Vall hi DP , and CD4

SP from AN itk+ (solid line) and AN itk- (dashed line) cells from both the H- and

k! backgrounds. Non-specific staining with the irrelevant hamster Ab is also shown

(gray filled histogram).
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Analysis of the Bcl-2 levels in cells undergoing selection and in cells that have

completed selection suggested that itk- thymocytes properly up-regulated this important

surival factor and thus would have comparable viability as their wild-type counterpars.

Therefore, we were interested in determining whether the regulation of additional

markers is normal in itk- thymocytes undergoing selection; this analysis would allow us

to identify the stage(s) of selection in which 
itk- thymocytes are defective. Figue 3.

depicts the stages of positive selection based on the expression of the TCR, CD69, HSA

and the coreceptors, CD4 and CD8.

This analysis revealed that a smaller percentage of DPs have up-regulated TCR in

the absence of Itk in all TCR transgenic lines (data not shown), suggesting that fewer 
ite-

DP cells are receiving a strong enough signal to initiate selection. Next we wanted 

determine whether Itk-deficient thymocytes would also be impaired at later stages of

positive selection. Thus, we examined the pattern of CD69 expression on TCR DP and

SP thymocytes (Figue 3.7B). Thymocytes that have up-regulated CD69 are in either

stage C (TCRhi DP) or stage D (SP) (124). Comparng the percentage of cells in these

intermediate stages of selection from wild-type AN mice on each selecting background

revealed that there are fewer CD69 cells in the presence of the strongly selecting IE

ligand. One interpretation of these data is that thymocytes receiving stronger signals up-

regulate CD69 and then progress through stages C and D more effciently than cells

receiving weaker signals. If this interpretation is correct, we would expect that a higher

percentage of TCR DP and SP thymocytes in AN ite- mice would have high levels of

CD69 compared with their wild-type littermates. As shown in Figue 3. , this is, in fact
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the case, suggesting that in the absence of Itk, thymocytes do not progress through these

stages as efficiently as cells that express Itk. Finally, we examined HSA levels on the

CD4+ SP cells from these mice (Figure 3.7C). HSA is down-regulated in the final stage

of thymocyte selection and differentiation, such that the most mature cells are HSA-

(125). Although more of the CD4+ SP thymocytes in AN itk- mice are still CD69

compared with those in control mice, it appears that the same proportion of the CD4+ SPs

have begu to down-regulate HSA in both itk+ and itk- mice. This suggests that the

down-regulation of HSA can take place while TCR signaling is still occurng and that

this happens normally even in the absence of Itk.



113

Figure 3.7 Itk deficient thymocytes take longer to undergo positive selection than

wild-type thymocytes

(A) Thymocytes undergo the processes of positive and negative selection after they have

become DP cells (stage A). DP cells that begin the selection process first up-regulate

their TCR (stage B) and then the activation marker CD69 (stage C). Cells then commit to

either the CD4 or CD8 lineage and down-regulate one ofthe coreceptors (stage D). Cells

that fully matue and complete the positive selection process then down-regulate HSA as

well as CD69 (stage E).

(B) Thymocytes from itk+ and itk- AN transgenic mice on all three MHC

backgrounds were stained with anti-ValLI b, FITC, anti-CD4- , anti-CD8-Cy, and

either anti-CD69-bio (B) or anti-HSA-bio (C). The biotinylated Abs were detected with

strepavidin-APC. Histograms of CD69 expression on thymocytes undergoing selection

(Va 11 hi DP: stage B to stage C) and ofCD69 and HSA expression on Vall hi CD4 SP

(stage D to stage E) from AN itk (solid line) and AN itk- (dotted line) are shown.

The percentage of thymocytes in each histogram that are CD69 or HSA (based on the

levels found on peripheral Vall + CD4 cells) for AN itk+ (bold) and AN itk- (plain)

are also given.
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The ex ression o CDS a marker r TCR sifmal stren is lower on th moc tes 

ite- mice

CD5 surface expression is regulated throughout T cell development and correlates

with the strength of the TCR signal received by the developing thymocyte (104). The

studies of peripheral itk- T cells (66) and thymocytes (126) indicated that T cells get a

weaker signal through their TCR in the absence of Itk; thus, we would expect that CD5

levels would be lower on thymocytes from 
ite- mice. This prediction was first verified

by staining thymocytes from non- TCR transgenic ite- mice, which revealed that DP

thymocytes have significantly lower levels of CD5 compared with DPs from 
itk mice

(Figue 3.8A). It is unclear at this point whether or not this dramatic reduction of CD5

expression on DP thymocytes is due to reduced pre- TCR signaling, more cells not

receiving an appropriate positive selection signal, or a combination of both of these.

We also examined CD5 levels on DP and CD4+ SP cells from all the TCR

transgenic mice to compare T cells that all express the same TCR (Figure 3.8B). Similar

to the non- TCR transgenic mice, all the transgenic mice lacking Itk had lower surface

levels of CD5 on their DP thymocytes with the exception of ANk/ 
ite- mice.

Comparson of AN , AN , and blb mice shows that as the strength of the

selecting background increases, the differences in CD5 surface expression between DPs

that express Itk and those that do not is diminished. Interestingly, the CD5 surface levels

do not seem to var signficantly among the wild-type AND mice with different selecting

backgrounds. Unlike the non- TCR transgenic ite- mice, all the TCR transgenic itk-

mice have lower levels ofCD5 on their CD4+ SP thymocytes, further indicating that the
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strength of the signal through the same TCR is lower in cells that lack Itk. Staining with

the anti-Vall Ab confirms that the differences in CD5 expression are not due to lower

TCR levels on ite- thymocytes (Figure 3. 8B).
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Figure 3.8 The strength of the TCR signal is reduced in Itk-deficient thymocytes

(A) Thymocytes were stained with CD4- , CD5-Cy, and CD8-APC. Histograms of

CD5 expression on live -

, -

CD4+ SP , and -CD8+ SP cells from itk (solid line) and

itk- (dotted line) are shown.

(B) Thymocytes from all TCR transgenic mice were stained with transgenic TCR specific

Ab conjugated to FITC, anti-CD4-PE and anti-CD5-Cy and CD8-APC. Histograms of

CD5 expression on live DP and live CD4+ transgenic TCR+ cells from itk (solid line)

it/(I- (dotted line) TCR transgenic mice are shown. The levels of the transgenic TCR on

live CD4+ transgenic TCR+ cells, as detected by staining with anti-Vall for AN and

5C.C7 mice and anti-A2B4-2 for 2B4 mice, are also shown.



ANJ

AND"

SC.C711

2B411

CD4+ Cns CD4+

I . "('.'J I ,.t'.'1

CD+ cnr CD4+ tg TCI

; \, '

. "1".' . "111111 . "1 118 'II/II" . 111""

,j", " . .' ....

, I . .'

..._

.. ..... . T

':;

I . "1"'81 ""/,.,

. I

:, 

t \

" "

' I

CDS

118

Cns

CD+ tg Tam

t \
I: '

.i 
/ I I""'" 11'1"8' "'/'''' . "1111'

tg TCR



119

ative selection o moc tes with class II restricted TCRs ha ens later in

develo ment but does not lead to an increase in "sel reactive " cells

We used two systems to look at the role of Itk in the negative selection of MHC

class II-specific TCRs. In the first approach we examined mice that coexpress a TCR

trans gene (2B4, 5C.C7 or AN; all V~3 ) along with an endogenous superantigen (SAg)

that specifically deletes thymocytes whose TCRs use VI33. For these studies, we

compared the fates of TCR transgenic cells in SAg+ mice (of 129 origin) in the presence

and absence of Itk. Although each of the TCRs in this study makes use of the same V~

region, the effciency of SAg-mediated deletion in the different lines vared, even among

Itk-suffcient mice (Figure 3.8). For instance, deletion in the 2B4 transgenic line was the

most effcient, resulting in a 15-fold reduction in the totalthymic cellularty in 2B4 SAg

itk +1- mice. In addition, the DP thymocytes were reduced 800-900 times and almost all of

the cells that remained in these thymi were at the DN stage of development, suggesting

that deletion of the transgenic cells occurs at some point between the transition from the

DN to the DP stage or very soon after the cells become DP. In the absence of Itk, the

2B4 SAg + mice had a similar reduction in the proportions of DP and SP thymocytes, but

because of a smaller decrease in thymic cellularty the total number of DP thymocytes

was only reduced 80 times. In contrast, SAg-mediated deletion in the Itk-suffcient

5C.C7 and AN TCR transgenic lines seemed to occur later in development, as these

mice stil retained a signficant proportion ofDP thymocytes (Figue 3.8) and had smaller

decreases in total thymic cellularty. When Itk was absent from either the 5C.C7 or and

SAg+ mice, the proportion and number ofDP thymocytes were increased relative to their
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wild-type counterpars; moreover, the DP cells that remained expressed higher levels of

the transgenic TCR (data not shown). Interestingly, in AN SAg+ mice the reduction in

the number of DP thymocytes compared to their SAg- counterpars was similar with or

without Itk. A probable explanation for this finding is that in wild-type and mice without

SAg, there is some level of deletion of the transgenic cells , presumably due to the high

avidity of this TCR for its selecting ligands in the thymus (122), which does not seem to

happen in AN itk- mice (74). Thus, the effect of the SAg on DP thymocyte numbers

in the wild-type AN mice, is masked by the self-deletion that is already occurrng.

From the analyses of these mice, it appears that the absence of Itk impairs the deletion of

self-reactive thymocytes, and when the signal is weak, Itk-deficient thymocytes progress

to a later stage of development before succumbing to negative selection signals.
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Figure 3.9 Deletion of TCR transgenic thymocytes in SAg + Itk-deficient mice occurs

later in development

The average number of DP thymocytes in 2B4, 5C.C7 and AN (H2 itk+ and ite-

mice with or without SAg were calculated from total thymocyte numbers and percentages

of DP cells determined by flow cytometr. A minimum of three mice for each genotype

were analyzed. Numbers above each pair of columns represent fold decrease from SAg

to SAg+ mice. Note that the Y-axis is a log scale.
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The second approach we used to examine negative selection in 
itk- mice made

use of a line of transgenic mice that express a fusion protein of hen egg lysozyme and

cytochrome c (HEL-cyt) under the control of the metallothionein promoter (127). These

mice have low basal levels of expression of the fusion protein in the thymus, which can

be increased when the mice are given Zn
2+ to induce the metallothionein promoter.

When the HEL-cyt mice are crossed to the 5C.C7 TCR transgenic line, the majority of

5C.C7+ T cells are deleted; however, due to the low basal expression of the antigen, this

deletion is somewhat leaky and a small number of 5C.C7+ T cells are found in the

periphery (128). Increasing the levels of the fusion protein in Zn treated mice enhances

the extent of deletion of the 5C.C7 TCR transgenic cells. This system seemed ideal for

our studies , as it provided an opportunity to test the notion that signaling through Itk is

more critical when signals through the TCR are weak. Thus, we hypothesized that the

leaky deletion in 5C.C7/HEL-cyt mice would be even less effcient in the absence of Itk.

This prediction was borne out, as we observed increased numbers of DP thymocytes in

5C.C7/HEL-cyt mice lacking Itk when compared to its wild-type counterpar (Figure

9). The reduced deletion of DP thymocytes in the absence of Itk could be negated by

up-regulation of antigen expression by Zn
2+ treatment of the 

5C.C7/HEL-cyt ite- mice

(data not shown).

Despite the reduced deletion in 5C.C7/HEL-cyt 
itl/- mice (before Zn2+ treatment),

we observed fewer 5C.C7+ cells in the periphery of these mice compared to those

expressing Itk, a finding that may relate to the reduced effciency of positive selection

accompanying the Itk deficiency. Overall, these data are consistent with all of our
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findings on thymic selection in itcl- mice, where the absence of Itk leads to a greater

impairment of both positive and negative selection in response to weaker forms of

stimulation. In contrast, these results conflct with those seen in the H- ilk- and H-

itk- rlk- male mice, in which the decrease in deletion efficiency led to an increase in the

numbers of H-Y+ T cells in the periphery (69). A potential explanation for this

discrepancy is discussed later.
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Figure 3.10 Deletion of SC.C7 TCR transgenic thymocytes in HEL-cyt Itk-deficient

mice occurs later in development

CD4 vs. CD8 profies of thymocytes from 5C.C7 itk and ite- mice with and without

HEL-cyt trans gene. Thymocytes were stained with Abs to CD4 and CD8 and analyzed by

flow cytometry.
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DISCUSSION

The analysis of mice that are deficient in varous TCR signaling molecules has

provided signficant insight into the role of these molecules in T cell development. In

this work, we utilize Itk-deficient mice crossed to several TCR transgenic lines to

determine how altering the level of TCR signaling affects the processes of positive

selection. We crossed itk- mice to three lines ofMHC class II-specific TCR transgenics

on three different MHC backgrounds. Previous studies have addressed the role of Tec

kinases in repertoire selection using a one MHC class II- and one MHC class 1- TCR

transgenic system both of which are thought to have low avidities for their selecting

ligands in the thymus (39, 69). Here we address the role of Itk in positive selection over

a range of TCR avidities. In addition, TCR signaling is merely reduced in Itk-deficient

thymocytes and not completely abolished, possibly due to weak compensation by other

Tec family kinases, such as Rl (19). Thus itk- mice provide an ideal opportty 

determine how decreased activation of the PLC-y pathway affects thymocyte selection.

Our results, based on analyses of thymocytes, show that the effciency of positive

selection is reduced in all cases in the absence of Itk as we did not observe any

TCRlC combinations in which positive selection was completely unaffected by the

absence of Itk.

These studies extend previous reports of thymic selection in Itk-deficient mice by

substantiating the conclusion that reduced CD4+ T cell numbers result from defective

positive selection, as opposed to reduced CD4+ cell surival. First, we demonstrated that

the surival factor, Bcl- , is up-regulated to an equivalent degree in DP thymocytes, SP

",:.
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thymocytes, and peripheral T cells from itk- mice compared to control mice. In addition

the expression of other surface markers that define the final stage of thymocyte

matuation, such as HSA, CD69, CD44, and CD62L, is similar on cells generated in

wild-type vs. itk"
l- TCR transgenic mice. In the course of this analysis , we also observed

that wild-type AND TCR transgenic mice expressing the highly selecting ligand, IE\ had

fewer thymocytes with high levels of CD69. Thus, in an environment where thymocytes

are receiving strong selection signals, there are fewer cells in the CD69 transition stage

and an increase in the more matue CD69- CD4+ SP subset. In the Itk-deficient 

mice there is a decrease in the overall number of TCR thymocytes; however, among

those cells, there is a dramatic increase in the proportion of CD69 transition cells. This

observation suggests that thymocytes receiving weaker signals durng positive selection

may require longer to complete the selection process. Together, these findings support

the conclusion that, in the absence of Itk, fewer thymocytes undergo positive selection

and those that do take longer to become fully matue CD4+ SP cells.

Overall, these data reinforce the view of positive selection as an inherently

stochastic process, where only a fraction of thymocytes with appropriate TCRs receive

suffcient signals to undergo selection before they succumb to programmed cell death

(death by neglect). Positive selection is thought to take 1.5 - 2 days of continuous low

level signaling through the TCR (129), and it has been proposed that there are a limiting

number of "niches" that are present in the thymus that wil support selection (130). This

concept has been used to explain why, in TCR transgenic mice in which all the

developing thymocytes express an appropriate TCR, the majority of cells do not actually
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get selected. Thus, one explanation for the less efficient development of 
itl/- thymocytes

is that these cells take longer to receive suffcient signals, and due to the limiting niches

fewer cells are successfully selected before undergoing cell death. This probabilistic

model of positive selection is also consistent with the outcomes we observed in 
itk mice

having a range of avidities of TCR-MHC interactions (e. , ANblb versus ANki or

), where the higher the TCR avidity, the higher the probability that even cells

lacking Itk wil achieve suffcient signals to promote matuation and surival.

Consistent with the reduced degree of positive selection that has been observed

the ability of DP thymocytes to signal in the absence of Itk or both Itk and Rl is altered.

Biochemical studies verify that at least some aspects of TCR signaling are reduced in the

Tec kinase-deficient thymocytes. As PLC-y1 has been proposed to be a major substrate

of Tec family kinases in T cells , Schaefer and colleagues (69) stimulated thymocytes

from wild-type and ite-r/k- mice with anti-CD3 Abs and found that phosphorylation of

PLC-yl was more severely impaired in the itk- r/e- thymocytes. This change in PLC-

phosphorylation affects downstream pathways, namely Ca
2+ mobilization and the

Ras/MK pathway. For instance, in both itk- and itk- rlk- thymocytes, defects in

sustained Ca2+ elevation, but not in the initial Ca2+ spike, were observed upon TCR

stimulation (69). To test the role of Tec kinase signaling on the Ras/MK pathway in

thymocyte TCR signaling, changes in the phosphorylation of the MAKs, ERK and p38

were examined in itk- rle- thymocytes. These studies showed that there was no change in

p38 activation, but reduced ERK activation was found in these cells (69).
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These biochemical studies, along with the in vivo studies examining TCR

repertoire selection, have led to the hypothesis that thresholds for positive and negative

selection are shifted when TCR signaling is reduced in Tec kinase-deficient mice (69). As

described earlier, it is thought that signaling through the TCR on DP thymocytes can lead

to either positive or negative selection depending on the strength of the signal or the

avidity of TCR for its selecting ligands in the thymus. Consequently, cells with high-

avidity interactions receive strong signals and are deleted, cells with very low or no

interactions do not receive any signal and die, and the cells that receive low to

intermediate signals undergo positive selection. Therefore, reduced TCR signals in ite-

and itk- rle- thymocytes would necessitate that the strength of the interaction necessar

to achieve positive or negative selection be stronger than that required for wild-type

thymocytes. This hypothesis predicts that wild-type thymocytes that would normally be

positively selected may die by neglect in Tec family kinase-deficient mice, and

fuhermore, cells that would normally be deleted would instead be positively selected in

ite- and itk- r/k- mice. Overall, these changes would result in an altered TCR repertoire

in Tec family kinase-deficient mice. Although there is no direct evidence, some of the

in vivo studies suggest that this altered selection may be at least parially the case. The

virtal loss of development in Tec family kinase-deficient AN (H2 ), 2B4 and H-

TCR transgenic mice suggests that there is a loss of development of thymocytes with

low-avidity TCR. Thus, the threshold for positive selection is clearly shifted.

The case of negative selection is less clear. In H - Y male mice that lack Itk or both

Itk and Rlk, the number of CD8+ H- cells in the periphery is increased (69). On the
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contrar, in both the systems we used to look at negative selection in the absence of Itk

the mice had reduced numbers of peripheral CD4+ 5C.C7+ cells (data not shown). Thus

in one system, the absence of Tec family kinases results in a shift from negative selection

to positive selection, but in the other systems less effcient negative selection did not

increase the positive selection of 'autoreactive ' cells. One possible explanation for this

discrepancy is that lowering PLC-y1 activity has a greater effect on positive than on

negative selection. Thus, changes in the outcome of negative selection when PLC-

activity is lowered may only be apparent when negative selection signals are very weak.

In agreement with this idea, the absence of Tec family kinases affects the activity of the

MAPKs, ERK1 and ERK (69), which have been shown to be crucial for positive

selection, while there is no effect on the activity ofthe p38 MAK (69), which has been

shown to affect negative selection.

An alternative explanation is that the disparity in the two systems is due to

differences in the development of MHC class 1- and class II-specific thymocytes. For

instance, it has been shown that the maturation of CD4+ T cells requires more sustained

signaling than the development of CD8+ T cells (38). Furthermore, maintenance of at

least some TCR signals is dependent on sustained Ca
2+ elevation, which is impaired in

cells deficient in Tec family kinases due to reduced PLC-y1 activity. Thus, Tec family

kinases and PLCy- 1 activity may have a greater effect on CD4+ T cell selection. In

agreement with this idea, the total number of CD4+ cells in itk- and ite-r/k- mice is

reduced by 50%, while there are almost normal numbers of CD8+ cells. Therefore, the
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changes in negative selection in the class II systems that we used might be masked due to

a more substantial defect in CD4+ T cell matuation or survival.



CHAPTER IV

THE ROLE OF ITK IN CD4/CD8 LINEAGE

DIFFERENTIATION

133



134

INTRODUCTION

Concurent with repertoire selection, signaling through the TCR is also thought to

influence the commitment of thymocytes to either the CD8 or CD4 lineage, depending on

the MHC class I versus class II specificity of their TCR. The events or signals that direct

thymocytes into a specific lineage at the DP to SP transition have been more diffcult to

dissect than those leading to positive or negative selection. Intial studies focused on the

CD4 and CD8 coreceptors including efforts to identify unque signaling

molecules/events downstream of each of these coreceptors, with the idea that the signals

downstream of the coreceptor MHC interaction somehow "instruct" the cells to

differentiate into the right lineage. Others proposed coreceptor down-regulation is

stochastic , and thus half ofthe cells of each type ofMHC restrction would tu off the

wrong coreceptor and would not continue to develop, however, if they tued offthe right

coreceptor than they would be "selected" and complete selection and differentiation. To

differentiate between the instrctive and selective models of lineage commitment, early

work focused on enforced expression of one or the other coreceptor, the transgenic

expression of chimeric coreceptor molecules that switched intra- and extra-cellular

domains, analysis of varous MHC deficient mice, and the "identification" of

intermediate populations between the DP and SP transition. Little progress was made

from these approaches, since so much of the evidence was contradictory (131).

More recent data indicate that alterations in the activities of certain signaling

molecules downstream of the coreceptor/TCR may influence lineage commitment. It has

been shown that both the activity ofLck (132, 133) and the Erk/K signaling pathway

It,
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(134- 136) affects lineage commitment, with high levels of both of these signals leading to

CD4 commitment and low levels of these signals leading to CD8 commitment. These

studies are consistent with early data indicating that the cytoplasmic tail of CD4 binds

more effciently to Lck that that of CD8 (137- 140). Putting these observations together

one popular model of lineage cormitment suggests that when thymocytes recognize class

II MHC/peptide complexes , engaging both the TCR and CD4, stronger Lck signals would

be induced compared with engagement of TCR and CD8 durng recogntion of MHC

class I/peptide complexes. In addition, it has been shown that agonist signals through the

TCR induce CD4 development, whereas antagonist signals induce CD8 development

(141 , 142). Thus, similar to repertoire selection, lineage commitment may also be

dependent on the strength of TCR plus coreceptor signaling (Figure 4. 1A).

Recently, a model of CD4/CD8 lineage commitment, the "kinetic model" has

been proposed based on work from an in vitro system of T cell selection and

differentiation. In this model, CD4+ lineage commitment requires persistent TCR signals

while CD8+ SP development results from shorter TCR signals followed by subsequent

gama chain cytokine "rescue" signals that are required to complete CD8+ SP matuation

(38 , 143 , 144). The need for a CD8+ T cell rescue signal is due to the fact that this model

proposes that the initial TCR signals received by a DP thymocyte result in the down-

regulation of CD8 , regardless of MHC restrction. This will not affect development of

class II restricted DP thymocytes because the continued expression of CD4 will allow

TCR signals to persist. Conversely, it is proposed that due to the down-regulation of
I;.

.'.

CD8 on class I restrcted DP thymocytes, that TCR signaling will be brief (Figue 4. 1B).
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Whle the quantitative model does not propose any specific intermediate between the DP

and SP transition, the major difference in the models is the concept that the strength of

signal determines lineage outcome, whereas the kinetic model proposes that signal

duration is the factor that determines lineage differentiation. However it is likely that

strong signals persist and last longer, while weaker signals may not be sustained and thus

would be shorter.
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Figure 4.1 Models of lineage commitment and differentiation

(A) The quantitative model of lineage commitment proposes that the strength of the

TCR/coreceptor signal durng selection/lineage commitment determines which lineage

wil develop. Strong signals lead to CD4 SP cell development and weak TCR signals

lead to CD8 SP cell development.

(B) The kinetic model of lineage differentiation is somewhat a varation of the

quantitative model of lineage commitment. In this model, intial signaling by the TCR on

a DP thymocyte, irrespective of MHC restrction, results in the downegulation of the

CD8 coreceptor. As a consequence, TCR signaling is interrpted in class I restricted

thymocytes and their subsequent differentiation is mediated by gama-chain cytokines

such as IL-7 and/or IL- 15. For class II restrcted thymocytes, the loss of CD8 will not

affect TCR signaling and thus, the signal wil persist and this leads to CD4 lineage

differentiation.
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Regardless of which model, if either, most clearly represents the signals leading to

T lineage differentiation, it is clear that signaling proteins both upstream and downstream

of Itk, such as Lck and Erkll2, respectively, are important in the CD4/CD8 lineage

decision (145). These data, along with the observation that itk- and ite-r/k- mice have

altered CD4:CD8 ratios in the thymus and periphery (39 , 69), raised the question

of whether or not Tec-kinases would be involved in this developmental process.

Therefore, we initially wanted to determine if CD4/CD8 lineage commitment was

altered in any of the five class II TCR transgenic models used in Chapter 3. Since signals

should be weaker in the absence of Itk, we thought we may see some switching to the

CD8 lineage due to reduced TCR signaling.

Whether or not lineage commitment, defined as the downegulation of the proper

coreceptor based on MHC restrction, is altered in the absence of Itk, there are aspects of

SP thymocyte differentiation that are different in itk- and ite-rl/(I- 
mice. For instance

itk- mice have roughly one-half the normal numbers of CD4+ T cells (39). In light of

recent evidence that CD4+ T cell differentiation is not only dependent on the strength of

the TCR signal, but also on the consistency and duration of that signal (38), the

disruption of this process in the absence of Itk seems reasonable. Unexpectedly,

however itk- rlk- mice have no reductions in the percentage and or numbers of CD4+ T

cells compared to wild tye mice (67, 69). This latter observation may reflect the fact

that defects in negative selection balance out the defects in CD4+ T cell selection and

differentiation in itk- rlk- mice, resulting in an overall similar frequency of selectable

'i'

TCRs in these mice compared to wild type controls. In contrast itk- mice have near

'Y.
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normal numbers of CD8+ peripheral T cells , together with an increase in the percentage

and total numbers of CD8 SP cells in the thymus. Even more strikingly, itk- rlk- mice

have increased numbers of CD8+ thymocytes and peripheral T cells (146). These

findings indicate that Itk and/or Rlk playas yet an undefined role in CD8+ T cell

differentiation and/or homeostasis. Therefore we decided to investigate the phenotype

and origin of the CD8+ cells in itk- and itk- r/e- mice, as well as, potential mechanisms

for the altered differentiation/omeostasis.
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MATERIALS AND METHODS

Mice

Itk- and ite-rle- mice are the same as those described in Chapter 1. Wild-type

littermates and non-littermate B10 mice were used as controls. Itk and itk- 2B4

5C.C7 , and AN TCR transgenic mice are the same described in Chapter 3. Ite- mice

were crossed to IL- 15- - (B6) mice obtained from Dr. Joonsoo Kang with permission from

The Imunex Corporation. OT -1 TCR (B6) transgenic mice were obtained from Dr.

Kenneth Rock with permission from Dr. Fran Carbone. CD45. 1 (B6) congenic mice

were purchased from Charles River Laboratories at NCI-Fredrck Animal Production

Area (Fredrick, Marland). All mice used were between 6 - 12 weeks of age and were

maintained at the University of Massachusetts Medical School animal facility under

specific pathogen free (SPF) conditions.

Antibodies and flow cytometry

Thymocytes and peripheral lymphocytes were obtained and stained as described

previously (74). The following Abs and secondary reagents were purchased from BD

Pharingen (San Diego , CA): CD8a-FITC , CD4- , CD44-Cy-Chrome , CD62L-

TCR~-FITC, CDI22- , HSA-biotin, CD3-biotin, TCR~-FITC CD8-Cy-Chrome

CD8-allophycocyanin, IFNy- , Va2- , V~5-FITC strepavidin-allophycocyann.

Anti-Bcl-xL-PE was purchased from Southern Biotechnology Associates (Birmingham,

AL). Anti-BrdU-FITC was purchased from BD Biosciences (Mountain View, CA). Ab

staining was analyzed using a FACSCalibur (BD Biosciences) and data analyzed using

Ii:
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both Cell Quest (BD Pharingen, San Jose, CA) and Flowjo softare (Treestar, Ashland

OR).

Ex vivo stimulation and intracellular stainingfor IFNy and Bel-xL

Thymocytes were stimulated with PMA (5 ng/ml) and ionomycin (50 ng/ml) in media

containing golgi-plug and golgi-stop (BD Pharingen) for 5 h or with IL-15 (40 ng/ml

R&D Systems, Minneapolis, MN for 36 h at 37 . Following stimulation, the cells were

stained for surface antigens and then intracellular for 
IFNy or Bel-xL using the

intracellular stain Cytofix/Cytoperm kit protocol (BD Pharmingen).

BrdU incorporation

Mice were injected i.p. with 2 mg of BrdU (Sigma Aldrch, St. Louis, MO) in PBS 12 h

before harvest. Cells were plated at 6 x 10
/well and then stained for surface antigens.

Following extracellular staining the cells were washed in PBS and then fixed and

permeabilized with Cytofix/Cytoperm for 20 min at 4 C. The cells were then washed

with PBS and fixed again in 1%/0.1 % paraformaldehyde/Tween 20. To stain for BrdU,

cells were spun down and washed twice in PBS at room temperature, and subsequently

resuspended in 200", of DNase solution (750", 5M NaCl, 105", 1M MgCh, 250 lmM

HCl, 24mg DNase (Roche Applied Sciences, Indianapolis, IN, 23.9 ml dH 0) and

incubated at RT for 10 - 30 min. The cells were then washed and incubated in 50", of a

1:10 dilution ofanti-BrdU-FITC for 30 min. At the end of the incubation period, the cells

were washed twice and analyzed by flow cytometr.

.."".
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Adoptive Transfer of CD8+ thymocytes

Single cell suspensions were generated from thymi isolated from wild-type and itk-

mice. CD4+ and DP thymocytes were depleted by incubating with a complement-fixing

anti-CD4 Ab followed by incubation with rabbit complement (Cedarlane). Live cells

were isolated by LympholyteCI-: (Cedarlane) gradient, stained for CD8 and CD44

expression and sorted into CD8 CD44 and CD8 CD44 subsets. These sorted

populations were then adoptively transferred (2 x 10 wild-type and ite- CD8+ CD44

thymocytes and 4 x 10 CD8 ite- CD44 thymocytes) into separate wild-type CD45.

congenic mice. The presence of transferred CD45.2 donor cells in spleen, lymph node

and thymus of host mice was examined from day 1.5 post-transfer to approximately 16

days post-transfer.

FTOC

Timed pregnancies were set up by mating 
itk+ mice to ite- mice. The day of plugging

was counted as embryonic day O. Fetal embryos were typed by PCR analysis on fetal

liver DNA. Thymi isolated from day 15 - day 17 fetal mice were cultued in RPMI-

on round nitrocellulose membranes (Milipore Corp. Bedford, MA) placed on inserts

made of stainless steel mesh (Small Pars Inc. Miami, FL). Thymi were cultured for 7 -

14 days at 37 , and then analyzed by flow cytometry for CD4, CD8 , and CD44

expressIOn.

Bone marrow chimeras

(see Chapter 2 materials and methods)
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RESULTS

LineaJ!e commitment is not affected bv reduced TCR sifmalinJ! in the absence of Itk

In light of increasing evidence that the strength of the TCR signal influences

CD4/CD8 lineage commitment, and the suggestion that Tec family kinases are important

for regulating TCR signaling thresholds (69), we were interested in determining whether

lineage commitment would be affected in 
itk- mice. This model of lineage commitment

proposes that strong signals downstream of the TCR induce DPs to differentiate into

CD4+ T cells, while weak signals downstream of the TCR cause DPs to differentiate into

CD8+ T cells (37). The TCR transgenic ite- mice that we generated to examine the role

of Itk in positive selection (Chapter 3) also provided us with an ideal system to examine

how lineage commitment would be affected in the absence of Itk, as these mice represent

a range of TCR avidities for selecting ligands. Specifically, we anticipated that lineage

switching might occur in some of the TCR transgenics, paricularly those with low

selection effciencies. In such an instance, the loss of transgenic CD4+ SP cells would be

compensated for by an increase in transgenic CD8+ SP cells. This expectation would 

consistent with the increased percentage of CD8+ SP cells seen in non- TCR transgenic

ite- mice.

As shown in Figures 3. 1 and 3.2 there were a small number of CD8+ SP cells in

the thymus and LN of all TCR transgenic mice. The percentage and absolute number of

these cells that express high levels of the transgenic TCR are shown in Table 4.

virtally all cases there was no signficant increase in the absolute number of transgenic

TCR CD8+ SPs in the absence of Itk as determined by Student's 
test 

(p 

.c 0.05). The
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only exception was in the LN of ANb/b mice, in which the number of CD8+ cells was

slightly increased. Therefore, the data from the TCR transgenic mice suggest that

although the selection of CD4+ T cells is reduced, lineage commitment occurs normally.
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Table 4.1 CD4/CD8 lineage commitment is not altered in the absence of Itk

The percentage and absolute numbers of CD8+ T cell subsets in the thymus and lymph

nodes are given. The values are the mean of 3 - 7 anmals for each genotype with SEMs.

Absolute numbers are given in millions. Similar analyses were performed on

splenocytes with comparable results (data not shown).
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thymus lymph nodes

total # %CD8 #CD8 total #
%CD8 #CD8

tg TCR tg TCR

2B4k1k +/- 66 :t 18 3:t 0. 6 :t 0. 14 :t 4. 9 :t 0. 1 :t 0.

2B4k1k - 24 :t 5. 0 :t 0, 9 :t 0. 18:t 2. 0 :t 0. 3:t 0.

5C.C7k1k +/- 136:t 19 9 :t 0.2 3 :t 0. 29 :t 5, 6 :t 0. 2 :t 0.

5C. k1k -
155:t 34 1 :t 0. 3 :t 0. 12:t1. 1 :to. 1 :t 0.

ANDklk +/-
65:t 9. 3 :t 0. 9:t 0. 23 :t 5. 0 :t 0. 3:t 0.

ANDklk - 89 :t 13 8 :t 1.4 6 :t 1.4 24 :t 13 9 :t 0. 1 :t 0.

AN Dklb +/- 94 :t 48 1 :t 0. 8:tO, 38 :t 0. 6 :t 0.4 5:t 0,

ANDklb - 45 :t 16 5:t1. 2.4 :t 0. 15:t2.4 1 :t 1. 0.4:t 0.

ANDb/b

+/-

89 :t 16 0 :t 1. 1 :t 0. 11 :t 2.4 1.4 :t 0. 2:t 0.

ANDb/b 38 :t 14 3 :t 0.4 3:t 0, 18:t 2. 1 :t 0. 6 :t 0.
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The CD8+ SP thvmocvtes in ite- mice have a vreviouslv activated vhenotvve

If this is indeed the case, the issue of why non- TCR transgenic itk- mice have

such a large number of CD8+ SP cells in the thymus and an altered CD4:CD8 ratio in the

periphery remained unesolved. To address this question we analyzed the expression of

multiple thymocyte and T cell markers on the CD8+ SP cells in itk- mice (Figue 4.2).

The phenotype that we observe is that the majority of the CD8+ cells in the thymus of itk-

mice appeared to be matue CD8+ T cells rather than newly developed CD8+ SP cells.

For instance, the vast majority of CD8+ SP thymocytes in ite- mice are HSA , and thus

resemble peripheral T cells rather than matung thymocytes. Likewise, the analysis of

Bcl-2 and CD5 expression on the CD8+ SPs of itk- mice demonstrates that the majority of

these cells have high levels of both of these proteins, similar to the levels found on the

most matue thymocytes or peripheral T cells.

Although the analysis of these markers suggests that a signficant numberofCD8

SPs in the thymus of ite- mice have a matue phenotype, we are unable to determine

whether these cells are peripheral cells that have retued to the thymus or cells that have

fully matured, but are not exported from the thymus normally. It has been shown that

activated peripheral T cells can re-enter the thymus (147), so we decided to analyze the

expression of activation markers on these CD8+ SPs. The analysis of CD69, which is

expressed on activated T cells, revealed that there was no difference in the proportion of

CD8+ SPs that were CD69+ between wild-type and itk- mice (data not shown). We also

examined the activation/memory marker CD44. The expression of CD44 is up-regulated

on cells as they become activated, but, unlike CD69, it remains high, and thus is often
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used as a marker for memory T cells (148). As shown in Figue 4.2 , the majority of CD8

SP thymocytes in itk- mice are CD44 , while in wild-type mice the majority of these

cells are CD44 . Based on these results it appears that the CD8+ SP thymocytes in itk-

mice are not activated, but may have been previously. These data leave open the

possibility that activated CD8+ cells recirculate from the periphery to the thymus in 
ite-

mice, but in a steady-state analysis show up largely as previously activated cells.

Alternatively, it is possible that the CD8+ SP cells acquire this phenotype in the thymus

due to irregular development.
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Figure 4.2 The majority of CD8 SP thymocytes in Itk-deficient mice have a mature

phenotype

Thymocytes were stained with Abs to CD4 and CD8 along with either an Ab to CD5

Bcl- , HSA, or CD44. The expression level of each of these thymocyte markers on live

CD4+ and CD8+ SP thymocytes from 8-wk-old non-transgenic itk (solid line) and itk-

(dotted line) mice are shown. For Bcl-2 staining, nonspecific staining with the irrelevant

hamster Ab is also shown (filled histograms).
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CD8+ T Cells in both the thvmus and veripherv of ite- and itk- rle- mice have a

previous Iv activated vhenotvve and are functionallv mature

As shown in Chapter 3 , mice lacking Itk show an obvious reduction in the

numbers of thymic and peripheral CD4+ T cells. Previous studies have suggested that

this loss ofCD4+ T cells is due to a defect in positive selection (74, 149), and fuher, that

this defect is exacerbated in mice lacking both Itk and Rl (7). In contrast to the deficit

in CD4+ T cell numbers , the proportions and total numbers of CD8+ SP thymocytes and

peripheral T cells in ite- and ite-rle- mice are not reduced compared to that of wild-type

mice (Figue 4.3). Specifically, the fractions of CD8+ T cells in the peripheries of ite-

and itk- rlk- mice are comparable to those seen in wild-type mice, and in the thymus itk-

1- 
and itk- r/e- have significantly increased percentages and total numbers of CD8+ SP

cells (Figue 4.3 and (150); % CD8+ SP thymocytes: wild-type, 3.5 :f 0. itk- 11.3 :f

, p-c0.0001; absolute numbers CD8+ SP thymocytes: wild-type, 5.6 :f 0.8x10 ite-

14.0:f 0.2x 10 , p-c0.0019).

In addition to the increased numbers of CD8+ thymocytes in itk- and itk- rlk-

mice, analysis of activation marker profiles reveals that the majority of these cells have a

matue and previously-activated phenotype (Figure 4.2A and (74)). These thymocytes

are CD44 and HSA , but are also CD69 and CD25 (Figue 4.2A and data not shown),

indicating their similarty to previously activated/memory cells that usually reside in the

periphery. Like the CD8+ SP thymocytes, approximately 85% of the CD8+ T cells in the

periphery of ite- and itk- rlk- mice are also CD44 and have increased expression of

other memory markers such as CD122, while still expressing high levels of CD62L
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(Figue 4.3B). However, these peripheral CD44
i CD8+ T cells do not express other

markers of acute activation, such as CD25 or CD69 (data not shown).

Previously-activated peripheral CD8+ CD44 T cells are characterized by their

ability to secrete effector cytokines immediately 

ex vivo in response to stimulation. To

determine whether the CD8+ CD44 SP cells in the thymi of 
ite- and ite- rlJ/- mice are

fuctionally, as well as phenotypically, similar 
to previously-activated peripheral cells

we examined their ability to secrete the effector cytokine, 
IFNy. In response to 

ex vivo

stimulation with PMA and ionomycin, a large proportion of 
ite- and ite- rlk -1- CD8

CD44hi SP thymocytes produce the effector cytokine, IFNy (Figue 4.3C). As these cells

are absent from wild-type thymi, there was no corresponding effector cytokine

production by wild-type CD8+ SP thymocytes. Another fuctional characteristic of CDS

memory T cells is their ability to up-regulate Bel-xL in response to IL-15 (151 , 152).

Therefore, we incubated thymocytes from wild-tye and ite- mice in media containing

IL- 15 for 36 h. As shown in Figure 4. , the CD8 SP thymocytes from 
itk- and ite-rlk-

mice exhibit a dramatic up-regulation of Bel-xL in response to IL-
15. Therefore, both of

these assays indicate that the CD8+ CD44 cells in the thymus of 
ite- and ite-r/k- mice

are fuctionally as well as phenotypically similar to previously-activated/memory

peripheral CD8+ T cells.

:: ;



154

Figure 4. Both thymic and peripheral CDS+ T cells in itk. and itk- rlk. mice

resemble previously-activated T cells

, B) Dot-plots show CD4 vs. CD8 profiles of wild-type itk- and itk- (A)

thymocytes or (B) lymph node cells. Numbers in each quadrant indicate percentages of

each subpopulation. The histograms below show (A) CD44, CD122 and HSA expression

on gated CD8+ TCR SP thymocytes or (B) CD44, CD122 and CD62L expression on

gated CD8+ TCR lymph node cells. Numbers indicate percentage of CD44 CD122

HSA , or CD62L hi cells , respectively.

(C) Thymocytes (top panel) and splenocytes (lower panel) from wild-type ite- and ite-

rlk. mice were stimulated with PMA and ionomycin for 5 h and IFNy production was

assessed by intracellular staining. Dot-plots show IFy vs. CD44 staining on gated CD8

cells. Numbers in each quadrant indicate percentages of each subpopulation.

(D) Thymocytes from wild-type, ite. and itk- rlk. mice were stimulated with IL-15 for

48 h and the levels of Bel-xL were determined by intracellular staining. Histograms

show Bcl-xL expression on gated CD8+ thymocytes. Wild-type sample is depicted by the

thick black line ite- by the thin red line and itk- rlk- by the dashed blue line. Data are

representative of two independent experiments.
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Itk deficient CD44 CD8+ T Cells arenot actively proliferatinf! and do not home to the

thymus

CD44 expression on peripheral CD8+ T cells is up-regulated following a response

to a foreign pathogen, or alternatively, after cells have undergone lymphopenia-induced

proliferation (153 , 154). To determine whether ite- CD8+ SP thymocytes and peripheral

cells were actively proliferating in response to lymphopenia-induced or infection-

mediated stimuli, we analyzed BrdU incorporation of CD8+ CD44 cells in the thymus

and spleen of ite- mice. Mice were injected with BrdU and analyzed 12 h later. As the

majority of thymocyte proliferation occurs following pre- TCR stimulation, BrdU is

primarly incorporated by TN thymocytes and cells in transition to the DP stage;

following this transition, the majority of DP thymocytes are not in cycle (110). It has

also been reported that a small proportion of SP thymocytes proliferate following positive

selection (155). Similarly, in the periphery of ununzed non-lymphopenic mice

there is normally very little proliferation ofnaYve T cells.

Following BrdU injection, a clear population of Brdlf DP thymocytes is apparent

in both wild-type and ite- mice, demonstrating that comparable levels of BrdU were

present in both mice (Figue 4.4A). When CD8+ SP thymocytes were examined, we

detected little proliferation in the mature HSA CD8+ SP fraction, and interestingly, the

fraction of Brdlf HSA CD8+ SP cells inthe ite- thymus was even smaller than in the

wild-type thymus. Analysis of the peripheral splenic CD8+ T cells also revealed no

increased proliferation ofthe ite- cells compared to the wild-type controls (Figue 4.4A).
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These data indicate that ite- CD8+ thymocytes and peripheral T cells are not

accumulating due to increased proliferation either in the thymus or the spleen.

Although CD44 cells do not typically develop in the thymus, they can gain

access to the thymus as a result of recirculation from the periphery (156, 157). To

examine the possibility that peripheral 
ite- and CD8+ CD44 cells were preferentially

homing to thymus from the periphery, we assessed the trafficking patterns of 
ite- cells

following adoptive transfer into wild-type congenic recipients. For these experiments

purfied itk- CD8+ thymocytes (CD45. ) were injected into CD45. 1 + congenic wild-type

mice, and the ability of these transferred cells to migrate back to the thymus of the

recipients was assessed. As shown in Figure 4.4B , even though the transferred itk- CD8

CD44 cells were easily detectable in the spleen and lymph nodes of the recipient mice

no transferred cells could be found in the thymus of the host mice. This was also the case

for CD8+ CD44 thymocytes purfied from either ite- or wild-type mice. These data

indicate that the accumulation of CD8+ CD44 cells in the thymi of itk- mice is not due

to preferential migration of peripheral 
ite- CD8+ CD44 cells to the thymus.

,..iI.i"
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Figure 4.4 Itk. CD8+ cells are not actively proliferating and do not preferentially

migrate to the thymus.

(A) Mice were injected with BrdU and incorporation was assessed 12 h later to determine

the percentage of cells actively proliferating in wild-type (solid blue line) and itk- (solid

pink line) mice. The dashed line shows cells from unnjected mice stained with the anti-

BrdU Ab.

(B) Wild-type CD8+ CD44 itk- CD8+ CD44 , and itk- CD8+ CD44 cells (all

CD45.2 ) were adoptively transferred into CD45. + wild-type congenic mice and the

presence of the transferred cells in varous organs was analyzed 7 days later.
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The CD8+ CD44 cells ofitll and itllrlll mice are not present at birth and do not develop

in fetal thymic onwn culture

As shown above, the CD8+ CD44+ cells in itk- mice are not proliferating or able

to recirculate to the thymus. These findings suggest that these cells arise first in the

thymus and are maintained following immigration to the periphery. To examine this

possibility more closely, we assessed CD44 expression on thymocytes from neonatal

mice immediately after birth and additionally, looked at the ability of CD8+ CD44

thymocytes to develop in fetal thymic organ cultue. As shown in Figure 4.5A, CD8

CD44 thymocytes are not present immediately after birth in itk- mice. Similarly, CD8

CD44 thymocytes did not develop from fetal day 16 ite- thymi following seven days of

fetal thymic organ culture (Figure 4.5A). Extension of the cultue period for an

additional seven days resulted in the generation of ite- CD8+ CD44 cells, but CD8

CD44 cells also developed in the wild-type cultures at this time point, and we detected

no appreciable differences in this population between wild-type and itk- thymic organ

cultues (data not shown).
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CD8+ CD44 cells are first detectable in day post-natal thymi and svleens of itk- - mice.

Although no CD8+ CD44 cells were observed in newborn itl/- thymi or in fetal

itk- thymi cultued for seven days, in both cases very few fully mature CD8+ SP TCR

thymocytes are present at these time points, even in wild-type thymi. Therefore, to

examine the timing of CD8+ SP matuation, the population of the peripheral CD8+ T cell

comparent, and the emergence of the CD8+ CD44 cell phenotype in itk: mice, we

performed a longitudinal study of CD8+ SP thymocyte and peripheral T cell development

over the first seven weeks after birth of wild-type and itk- mice.

This analysis revealed that CD8+ SP thymocytes accumulate, both in percentage

and absolute numbers, in the thymus of ite- mice as compared to wild-type mice (Figure

4.5B). This accumulation was visible from the age of two weeks onward, and was

accompanied by a relative deficit in the numbers of peripheral CD8+ T cells in ite- mice.

These data indicate that, following the first wave of CD8+ T cell development (at

approximately three weeks after birth), fewer ite- CD8+ SP thymocytes either migrated

, or surived in, the periphery of ite- mice. Our analysis also showed that ite- CD8

thymocytes expressed higher levels of CD44 by four days after birth as compared to

wild-type CD8+ SP thymocytes, and that this increase was exacerbated over time (Figue

5C).

In contrast to the accumulation ofCD8+ CD44 cells in the thymi of the itk- mice

as compared to wild-type mice, the CD8+ cells emerging into the periphery of both wild-

type and ite- mice at day 4 have distinctly similar CD44 profiles (Figue 4.5C). This is

likely due to the fact that the first migrants into the periphery of young mice undergo
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lymphopenia-induced proliferatio in response to the "space" in the peripheral lymphoid

organs (158). These CD44 cells remain to constitute the fraction ofpreviously"activated

cells typical of peripheral lymphoid organs (159). However
, the frequency of these cells

gradually diminishes in wild-
type spleens, as cells continually migrate from the thymus

into the periphery, fillng up 
space and preventing fuher proliferati of the newly

emigrated cells from the thymus. The preferential accumulation of CD8
+ SP thymocytes

in the thymi of ite- mice as compared to wild-type mice, as well as the persistence of this

population over time in the periphery of 
ite- mice, strongly suggests that the CD8

phenotype typical of 
ite- mice develops first in the thymus.
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Figure 4.5 The altered phenotype of itk. CD8 thymocytes is detectable by two

weeks post-gestation

(A) Wild-type and itk- neonatal day 1.5 thymocytes (left two panels), and cells from fetal

day15- 16 thymi cultued in vitro for 7 days (right two panels), were stained with Abs to

CD4 and CD8. The numbers in each quadrant indicate the percentage of cells in each

subpopulation. Histograms of CD44 expression on gated CD8+ SP thymocytes are

depicted below. Numbers indicate the percentage of CD8+ SP thymocytes expressing

high levels of CD44.

(B) The percentages and total numbers of CD8+ SP thymocytes and peripheral T cells

developing in wild-type it/( and itk- rlk-

/- 

mice were assessed at the indicated time

points from birth to adulthood. Data were generated in a blind maner, and genotypes

were determined afterwards. Data are compiled from a minimum of two experiments per

time point with a minimum of two mice of each genotype per time point.

(C) CD44 expression on CD8+ CD44 gated thymocytes and splenocytes from 4 day-, 1

week-, 2 week-, and 3-week old mice. Numbers indicate the percentage of CD44 cells

among the gated population. Data are representative of a minimum of two experiments

each performed with a minimum of 3 mice per group.
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The altered vhenotype of CD8+ thvmocvtes and verivheral T cells in itk- - and itk- rlk-

mice is hematovoietic eel/-intrinsic.

In addition to homeostatic proliferation, CD8+ T cells have been shown to up-

regulate CD44 expression and to become phenotypically and functionally mature in

response to cytokines. In paricular, the CD8+ populations found in both IL-7 (160) and

IL- 15 (161) transgenic mice are remarkably similar to the CD8+ cells present in itk- and

itk- rlk- mice. Therefore, we chose to examine whether the altered development of itk-

and itk- rlk- CD8+ T cells was due to defects intrinsic to the developing T cells, or

alternatively, due to an altered cytokine environment in itk- and itk- rlk- mice. To

address this question, we generated BM chimeric mice in which wild-type itk- or itk-

rlk- BM was injected into lethally-irradiated wild-type congenic mice. Following

reconstitution, the emergence of CD44 hi cells in the CD8 SP comparent of the thymus

was readily apparent in mice reconstituted with itk- or itk- rlk- bone marow, but not in

thymi of mice reconstituted with wild-type BM (Figue 4.6). These findings indicate that

the altered CD8+ T cell development in the absence of Itk, or Itk and Rl, is not due to

abnormalities of itk- or itk- r/k- non-hematopoietic stromal cells.

"",
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Figure 4. 6 Altered CD8+ T cell differentiation in the absence of Tec family kinases is

intrinsic to bone marrow-derived cells

Wild-type itk- and itk- rlk- BM chimeric mice were analyzed 12 weeks following

reconstitution. Dot plots show CD4 versus CD8 staining in donor-derived cells

(CD45. ) within the thymi of indicated BM chimera. The numbers in each quadrant

indicate the percentage of cells in each subpopulation. The histograms below show

CD44 expression CD45. + CD8+ SP thymocytes. Numbers indicate the percentage of

CD44hi cells among the gated population. Data are representative of four wild-type and

itk- chimeras and eight itk- - r/k'
l- chimeras analyzed.
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CD8+ CD44 cells develov in the thvmus but not the veripherv of it/(
I- IL-15- - mice

Recently, several reports have described CD8+ T cells with a previously-

activated/memory CD44 phenotype, similar to that of ite- and itk- rl/(I- CD8+ CD44

cells, in mice with hyperactive cytokine signaling. For example, CD8+ T cells from

Suppressor of Cytokine Signaling- 1 (SOCS- 1 rf- (162) and SOCS-
- IFNy 

f- 
mice (151

152, 163, 164), as well as mice that express a constitutively-active STAT5b (CA-

STAT5b) trans gene (165), are all intrnsically hyperresponsive to cytokine stimulation.

These findings correlated nicely with evidence demonstrating that IL-7 and IL- 15 are

important in the generation and/or maintenance of "memory" CD8+ T cells in the

periphery (166-168). In addition, (SOCS- , SOCS- - IFNy , and CA-STAT5b

transgenic mice all have increased percentages of CD8+ T cells in the thymus and spleen

a majority of which express high levels of CD44, CD122, and Ly6C; fuhermore, the

CD8+ SP thymocytes in these mice are all hyperresponsive to stimulation with the

common y chain (Ye) cytokines, IL-7 and IL- 15.

To determine whether IL-15 is required for the development and/or maintenance

of CD44 CD8+ SP thymocytes and peripheral T cells in itk- mice, we crossed it/(I- mice

to IL-I5- mice. We reasoned that if IL- 15 was indeed important for the generation of the

CD8+ CD44 SP thymocyte population in ite- mice, then removal of IL- 15 should

prevent the accumulation of these cells. Additionally, since IL-15 is necessar for the

maintenance of CD8+ CD44 cells in peripheral lymphoid organs, a selective loss of itk-

IL-I5- CD8+ peripheral T cells compared to CD8+ SP thymocytes would provide fuher

support for the conclusion that this population of T cells arses durng development in the



169

thymus. As shown in Figure 4. itk- - IL-I5- mice are nearly devoid of CD8+ T cells in

the periphery, but stil retain a substantial population of CD8+ SP cells in the thymus. 

the CD8+ SP thymocytes in itk- - IL- I5- mice, a larger percentage of these cells are

CD44 , compared to those in wild-type mice (Figure 4.7). In fact, there are twice as

many CD8+ CD44 cells in the itk- - IL-I5- mice compared to wild-type mice as

calculated by absolute numbers (data not shown). However, although these cells ' are still

present as a clear population, the percentage of CD8+ SP thymocytes in the thymus of

itk- - IL-I5- mice, as well as the proportion of these cells that are CD44 hi , are reduced

compared to that seen in itk- mice. In absolute numbers, the number of CD8+ SP

thymocytes in itk- - IL-I5- mice is about one third of that seen in itk- mice, and is

compare to the number seen in wild-type and IL-I5- mice (data not shown). Thus, the

itk"l- CD8+ SP cells do not accumulate in the absence of IL-15. Together, these data

strongly suggest that the CD44 CD8+ SP phenotye observed in itk- mice develops first

in the thymus, but also indicate that IL-15 signaling contributes to the accumulation of

CD8+ SP thymocytes normally observed in the thymus of itk- mice.
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Figure 4.7 CD8+ CD44 cells develop in the thymus of itk. . IL-15 .1. mice

Thymocytes and lymph node cells isolated from wild-type ite-, IL-I5- and ite- IL-I5-

mice were stained for expression of CD4, CD8 and CD44. The CD4 versus CD8 profie

of wild-type ite-, IL-15 -1- 
and itk- - IL-I5 -1- (A) thymocytes and (B) lymph nodes is

shown, with the numbers in each quadrant indicating the percentage of cells in each

subpopulation. The histograms below show CD44 expression on gated CD8

populations, with the numbers indicating the percentage of CD44 cells among the gated

population. Data are representative of four independent experiments.
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Altered CD8 T cell differentiation in the absence of Itk is devendent on TCR svecificity

Based on the similarties between CD8+ T cells lacking Itk and Rlk and those with

hyperresponsiveness to common Yc cytokines , we postulated that itk- and itk- r/k- CD8

T cells may have altered responses to cytokine signals received durng the late stages 

CD8+ SP thymocyte differentiation. For instance, it is possible that Tec-family kinases

directly regulate Yc cytokine receptor signaling pathways. A more likely possibility is

that Itk and/or Rlk activation by TCR signaling durng positive selection and CD4/CD8

lineage differentiation regulates the expression of a gene involved in IL-7 and IL-

signaling. In this latter case, one might expect that the accumulation of CD44 CD8+ SP

thymocytes would not occur in itk- mice crossed to an MHC class I-specific TCR

transgenic line, if the TCR chosen falls in the high avidity range of the positive selection

window. In this case, very strong TCR signaling durng thymic selection would likely

overcome the deficiency resulting from the absence of Itk and/or Rlk, and lead to

adequate induction of these putative regulatory genes.

To test this possibility, we crossed itk- mice to the TCR transgenic OT - 1 + line.

Previous data have indicated that the OT -1 TCR has a relatively high avidity for

positively-selecting ligands in the thymus (169). In support of this notion, we found that

the matuation of CD8+ T cells with high levels of the OT -1 TCR was only slightly

reduced in the absence of Itk (Figue 4.8). In fact, the total cell number, as well as the

total number of OT - 1 CD8+ T cells, in the thymus and the spleen, were comparable

between OT - itk +1- and OT - itk- mice and there was only a slight reduction in the

lymph node OT -1 CD8+ T cells in the absence of Itk. This is in contrast to previous data
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showing that the CD8+ T cells expressing the H - Y TCR fail to be selected in the absence

of Itk (149, 150). In addition, the CD44 expression profies of wild-type versus itk-

CD8+ SP thymocytes and peripheral CD8+ T cells were identical (Figure 4. 8). These data

indicate that when positive selection signals are only marginally dependent on the

presence of Itk, CD8+ differentiation proceeds normally and there is no accumulation 

CD44 CD8+ SP thymocytes or peripheral T cells.
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Figure 4. CD8 OT-I TCR transgenic itk. cells develop normally

(A) Thymocytes and (B) lymph node cells from eight-week old OT- itk+ and OT- itk-

mice were analyzed for expression of CD4 and CD8. In the dot-plots below, the CD8

populations were examined for the expression of the transgenic TCR by staining with

anti-Va2 and anti-V~5. The numbers in each quadrant indicate the percentage of cells in

each subpopulation. Histograms show HSA expression on CD8+ SP thymocytes and

CD44 expression on the CD8+ lymph nodes cells. Data are representative of four mice of

each genotype analyzed.
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DISCUSSION

An interesting characteristic of thymocyte development in the itk,l. 
and ite-rlk-

thymus, is that, in contrast to the deficit in matuation of CD4+ SP cells, CD8+ SP cells

arse in increased numbers and acquire a CD44 hi phenotype. This phenotype is also

observed on peripheral CD8+ Tcells in itk- and itk. rlk- mice, which in addition to

being CD44 and CD62L \ also express increased levels of the activation/memory

marker, CD122 (Figue 4.3B). We have shown that this increase in CD8+ SP thymocytes

is not due to switching ofMHC class II-specific cells from the CD4 into the CD8 lineage

(74). Subsequently, we went on to explore the origin of the CD8+ CD44 SP cells that

develop in the thymus of ite- and ite' r/k- mice and these studies suggest a potential role

for Itk and/or Rl in CD8 lineage differentiation processes.

In agreement with the kinetic signalling model of CD4/CD8 lineage

differentiation, a role for cytokines in CD8+ development has been confirmed in studies

using SOCS- . or SOCS- - IFN/- mouse models. Interestingly, the CD8+ SP

thymocytes and peripheral CD8+ T cells in these mice are CD44 and appear

phenotypically similar to those in itk- and itk- rlk- mice. In addition, the CD8+ cells

lacking SOCS- l are hyperresponsive to stimulation with IL-7 and IL- , and thymi of

SOCS- . and SOCS- IFNi mice cultued in the presence of these cytokines generate

more CD8+ SP cells than wild-type thymi. CD8+ thymocytes from SOCS- - mice also

maintain an elevated level of STAT-5 phosphorylation over a longer time period than

CD8+ SP thymocytes from wild-type mice (152, 162). In concordance with these results

the CD8+ T cells from CA-STAT-5b transgenic mice, in which there is constitutive
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activation of the signaling pathways downstream of the yc-cytokine receptors, are

phenotypically identical to those in SOCS- /- mice (165). These experiments

demonstrate a potential role for IL-7 and IL-15 in the regulation of the CD8+ lineage

differentiation, and indicate that the inability to regulate the signaling of these cytokines

can accelerate the matuation ofCD8+ SP thymocytes and induce up-regulation ofCD44.

These data on the role of yc cytokines in CD8+ T cell matuation prompted us to

consider whether yc cytokines might be involved in the accumulation of CD8+ CD44

cells in the thymus and periphery of itk- and ite-rlk- mice. We initiated our

investigation by generating ite. IL-I5- mice. Analyses of the CD8+ T cell populations

in the thymus and the periphery of these mice led us to conclude that the CD8+ CD44

cells in itk- mice most likely arose durng thymocyte development, specifically durng

CD8+ lineage maturation. This conclusion was based on the data showing that a smaller

fraction ofCD8+ CD44 SP thymocytes were generated in the thymus of the itk. - IL-I5-

mice, as compared to itk. mice, and that virtally no CD8+ CD44 cells remained in the

periphery of the itk. ' IL- I5- mice (Figue 4.7).

Although the similarties in CD8+ phenotype suggest that the response to cytokine

signaling durng CD8+ T cell differentiation may be altered in the absence of Itk and Rlk

the mechansm by which this might be occurng is stil under investigation. Analysis of

BM chimeras suggests that the defect in CD8+ T cell differentiation of itk- and itk- rlk-

thymocytes is intrnsic to the developing thymocytes and is not due to altered cytokine

production by non-hematopoietic cells (Figue 4.6). Our experiments also showed that

CD8+ SP thymocytes begin accumulating in the thymus of itk- mice at 2 - 3 weeks post
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birth (Figue 4.5). One possibility is that these cells have a defect in migration in

response to signals, such as chemokines, that normally induce thymocyte emigration.

This possibility is consistent with recent data demonstrating defects in chemokine-

induced migration by itk- and itk- rlk- T cells (170, 171). As the accumulated itk-

CD8+ SP cells most likely reside in the medulla of the thymus, it is possible that these

cells would then be subjected to matuational stimuli for a longer period of time than

wild-type CD8+ SP cells, causing them to completely down-regulate HSA and

abnormally up-regulate CD44, all before exit to periphery. An alternative, but not

mutually-exclusive hypothesis is that itk- and itk- rlk- CD8+ SP thymocytes are

intrnsically altered in their responsiveness to cytokines. This could come about due to

weaker TCR signals durng CD8+ SP positive selection and lineage commitment that

might lead to reduced levels of genes, such as SOCS- , that negatively-regulate cytokine

signaling.

Whether or not Tec family kinases in T cells are directly involved in cytokine

signaling, or indirectly affect the responsiveness of developing thymocytes to cytokine

signals, remains to be determined. Interestingly, Tec family kinases have been

implicated in cytokine signaling in non- T cell types (172, 173). However, our data

examining itk- OT transgenic mice, which are thought to express a TCR with high

avidity for its selecting ligand(s), indicate that the abnormal CD8+ SP thymocytes

development we observe is secondary to defects in TCR signaling durng selection and

differentiation, as the phenotype is resolved when the developing thymocytes express this

specific TCR. This data is consistent with unpublished data from the Schwarzberg lab in
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which Itk-deficient mice that express a transgene for a hyper-reponsive form of ERK

durng T cell development also seem to develop normal CD8+ T cells (personal

communcation). Therefore, we hypothesize that itk- and itk- r/e. CD8+ SP thymocytes

undergo lineage differentiation in response to reduced TCR-mediated signals, and that

this, in tu, leads to altered cytokine responsiveness by indirectly affecting the gene

expression, protein stability, or protein activity of molecules directly involved in cytokine

signaling.

Due to the extremely similar phenotypes observed between SOCS- l deficient and

Tec family deficient CD8+ T cells, we initially hypothesized that this reduction in the

strength of TCR signaling may directly affect SOCS- l expression or activity in CD8+ SP

thymocytes, leading to a hypersensitive response to IL-7 or IL- 15 during the lineage

differentiation process. Indeed, there has been data suggesting that the proper

transduction of signals downstream from the TCR is necessar for maintaining the level

of SOCS-1 protein expression. In cells lacking the negative regulatory transcription

factor Jun, there is a decrease in SOCS- 1 at the RNA level. As such, we thought it was

possible that in the absence of Itk and Rl which regulate the expression of the jun and

fos family members, expression of Jun is decreased, thereby affecting SOCS-

expression (174). However, preliminar quantitative real-time PCR data (not shown)

examining SOCS- l mRA levels in DN, DP, CD4+ SP, and CD8+ SP thymocytes from

itk- and itk- rlk- mice indicate that SOCS- 1 expression is comparable between wild-type

and Tec kinase-deficient cells.
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Alternatively, SOCS- 1 expression in ite. and itk- rlk- CD8+ SP thymocytes may

be regulated post-translationally by a protein such as Pim-1. Pim-1 is a serine/threonine

kinase and is expressed primarly in cells of the hematopoietic lineage. Expression of

Pim- mRA is markedly induced following TCR cross-linking. Pim- l is also induced

in response to cytokine signaling and is involved in the regulation of SOCS- l protein

stability. Pim-1 has a role in thymocyte development as it is expressed during the late

TN stage of thymocyte development where it paricipates in the transition from the TN4

to DP stage of thymocyte development (175-177). Diminished production of Pim- 1 in

the absence of Itk and Rlk would potentially lead to the impaired stability and fuction of

SOCS- , lowering SOCS- l protein expression in CD8+ SP thymocytes and resulting in

hyperresponsiveness to cytokine stimuli. Furher studies wil be required to investigate

this possibility, as well as other potential mechanisms by which Tec family kinases may

be affecting proteins involved in cytokine signaling.

In addition to the altered CD8+ phenotype we observe in Itk-deficient mice, we

have also observed that there is a signficant increase in the absolute number of CD8+ T

cells in the thymus of these mice when compared to wild-type mice; however, there is no

significant difference in peripheral CD8+ T cell numbers. We initially hypothesized that

this may be due to reduced surivability of peripheral CD8+ T cells in the absence of Itk.

However, adoptive transfer experiments, in which we compared the persistence of CD8

T cells from wild-type versus itk- or OT - 1 versus OT - itk- mice after transfer into

congenic hosts, did not indicate any difference in the ability of cells to surive when Itk

was missing. In the non- TCR transgenic experiments , the itk- cells were also sorted into
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CD8+ CD44 and CD8+ CD44 populations and the levels of CD44 on the cells also did

not seem to affect the ability of itk- CD8+ cells to populate and/or persist following

transfer (data not shown).

Alternatively, as mentioned above, CD8+ SP cells may be getting "stuck" in the

thymus of itk- and itk- rlk- mice. Tec family-deficient thymocytes have been reported

to have impaired responses to both SDF- l (171) and TECK (170); however, the precise

chemokines that mediate thymic emigration are unkown. Still another possibility is that

the CD8+ T cells that develop in the absence of Tec family kinases may populate

alternative or additional peripheral organs. Therefore, the increase of CD8+ SP cells in

the thymi of Tec family-deficient mice may not be represented completely by the CD8
+ T

cells found merely in the spleen and lymph nodes. More about these possibilities and

futue experiments planed to test them is discussed in Chapter 5. Clearly, a number 

questions remain with regard to the mechanisms that guide CD8+ T cell development in

the absence ofItk and/or Itklk.
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CHAPTER V

DISCUSSION
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DISCUSSION

The work in this thesis addresses the role of the Tec family kinase, Itk, in T cell

development. Tec family kinases are primarly expressed in hematopoetic cells.

Generally, cells express more than one family member, but the levels of expression as

well as the precise combination of Tec family kinases expressed vares in different cell

types. The reason for the expression of multiple family members in one cell type remains

to be determined. Btk, Tec, Rl, and Itk have all been shown to be able to affect PLC-

activation downstream of antigen receptors in both B and T lymphocytes; as well as in

mast cells; and Tec members appear to be exchangeable with respect to Ag receptor

signaling since transgenic expression of another family member can often restore defects

by the absence of another (178-180). Whle it is possible that Tec family kinases are

performing redundant fuctions, the differences in regulation, expression patterns

cellular localization, and binding parters vary among Tec family members suggests that

these kinases may. play distinct roles as well. In order to determine if one of the other

Tec family members expressed in T cells compensated for the absence of Itk, we

incorporated itk- rlk- mice into the pre- T cell and lineage differentiation experiments

wherever possible.

When Itk was first cloned from T cells, it was thought that deletion of the gene for

this protein would cause defects similar to those observed in B cells when Btk was

mutated. The generation and analysis of Itk-deficient mice revealed that its role in T cells

was either less important than the role of Btk in B cells, or there was more compensation

by the other Tec family members in T cells. Whle both Tec- and Rl-singly deficient
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mice have no apparent abnormalities in immune cell generation or fuction, the double

deficiency of Btk and Tec causes even more severe defects than Btk alone (68) just as

there are greater T cell defects in ItklRlk double-deficient mice. Despite this similarity

BtklTec double-deficient mice show blocks in B cell development not observed in Itk/lk

double-deficient mice. One possible explanation is that T cells express three Tec kinases

while B cells only express Btk and Tec. The other possibility is that activation of PLC-

, at least in par, mediated by non- Tec family signaling molecules. The generation of

Itk/lkTec trple-deficient mice would aid in distinguishing between these possibilities

however this approach has been hampered by the fact that Rl and Tec are closely linked

on chromosome 5 in mice (181 , 182) and therefore, the generation of the triple

knockouts can not be achieved by simple intercrossing of the three single knockouts.

Recently, the GTP exchange factor, Vav, has been shown to be important for the

activation of PLC-y in DP thymocyte via both PI3K-dependent and PI3K-independent

pathways (183). The precise mechansm by which this occurs remains to be determined

but it was also shown that the phosphorylation of both Itk and Tec was reduced in the

absence of Vav. Thus, one possibility is that the reduced phosphorylation of PLC-y is

secondary to the reduced activation of PI3K seen in these cells, which is required for the

full activation of these Tec family members by recruiting these kinases to the cell

membrane via their PH domain. Alternatively, Vav has been shown to bind both Itk and

Tec, and since the activation of Tec kinases is inhbited by inter- and intra-molecular

interactions that keep the Tec kinases in an inactive state (50), it is possible that the

binding of Vav disrupts these interactions, thus aiding in the activation of the Tec
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kinases. The PI3K-independent pathway may involve the activation of Rl, which is

independent of PI3K activation, however citing insensitive reagents, the authors were

unable to determine ifRlk phosphorylation was affected by the absence ofVav.

Besides the effect Vav plays on the activation of Tec kinases, Vav may also

directly influence PLC-y activity. Like the Tec kinases , PLC-y has a PH domain and

thus, the reduced PI3K activity in the absence of Vav, might interfere with the

recruitment of PLC-y to the membrane. In addition, the authors demonstrated that in a

PI3K-independent maner, the association of PLC-y with SLP-76 and Gads is disrupted

in the absence of Vav (183) and the inability of PLC-y to be recruited to the

SLP-76/LAT complex may affect its ability to become activated. To fuher compound

the issue, it has also recently been shown that disruption of Itk activity in Jurkat cells by

the overexpression of dominant negative form of this kinase leads to reduced

phosphorylation of LA T and as a consequence the association of Vav with this complex

is reduced (184). Thus, it is clear that the relationship between Vav and Tec kinases is

both extensive and complex. In the futue, it should be interesting to determine whether

or not the role for Vav in activating PLC-y is completely Tec kinase dependent or

whether Vav may directly contrbute to PLC-y activation through non- Tec family kinase

mechansms. If this is the case, it might explain why Tec family kinases are not

absolutely critical for the development and activation of T cells.

Despite the fact that gross analysis of the thymus and secondary lymphoid organs

based on total cellularty and T cells subsets, suggested that T cell development in the

absence of Itk was relatively normal, the observation that T cell selection in two Itk-
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deficient TCR transgenic models was virtally absent inspired us to look more closely at

development in Itk-deficient mice (39). Rationally, we began our studies by looking at

the ability of other TCRs to be selected in the absence of Itk. It was believed that the

TCR transgenes used in the earlier studies had low avidity for their selecting ligands in

the thymus due to the low effciency of positive selection in these transgenic models.

Therefore, we began by crossing the Itk-deficient mice to TCR transgenic mice that had

been shown previously in our lab to var in their positive selection effciencies and

therefore were believed to have varng avidities for their selecting ligands (120). These

led to the studies in Chapter 2, which demonstrated that selection in the absence of Itk

was affected by the avidity of the TCR present on the DP thymocyte. Thus the

development ofT cells in the absence ofItk required a higher avidity TCR.

Logically, we reasoned that ifhigher avidity interactions were needed for positive

selection in the absence of Itk, that some of the high avidity interactions that normally

lead to negative selection might instead result in positive selection. We did not find this

to be the case in any of the class II negative selection models we tested, although deletion

seemed to happen at a later stage in development, presumably due to a requirement for

higher TCR levels to induce deletion in the absence of Itk. Thus, appears that the

selection "window" proposed by the avidity model of thymocyte selection is reduced in

the absence of Itk, rather than shifted. This suggests that although the strength of signal

does influence the outcome of both processes, the type of TCR signal required for each

process may differ in a way that can be affected by the activity of Itk. For instance

positive selection requires low sustained signals, especially for the development of CD4
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cells. Thus, in the absence of Itk, which is required for sustained Ca2+ signals (66) the

overall ability of these signals to be maintained throughout the selection/differentiation

process may be impaired. On the other hand, it appears that negative selection just

requires a signal to reach a certain threshold to induce programed cell death, and since

the signal may be received throughout development, it may be more likely to occur prior

to the completion of development even in the absence ofTec kinases.

Some positive selection of a class I restricted TCR transgenic in a system where it

is normally deleted, may occur in Itk-deficient mice, but definitely occurs in Itk/
double-deficient mice. One possibility for this discrepancy is that the negative selection

models we used were too effcient to detect any positive selection in the absence of Itk. I

believe this is unlikely since in the 5C.C7/HEL-cyt transgenic model, the development of

self-reactive" cells in the periphery occurs to a small extent in wild-type mice in the

absence of the metallothionein promoter activation. In the Itk-deficient 5C.C7/HEL-cyt

mice, we anticipated that the development of the "self-reactive" peripheral cells would be

increased due to less effcient negative selection. However, we actually observed reduced

development of these cells (data not shown). I think the most likely explanation is that

any defect in negative selection of class II restrcted cells in the absence of Itk is masked

by the impaired differentiation of CD4 lineage cells in itk- mice. Thus , the selection

window" is differentially affected in the CD4 versus CD8 lineage. As stated above, the

selection window is reduced for class II restrcted DP thymocytes, but for class I

restrcted DP thymocytes it might actually be shifted as was originally predicted.
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As these studies were ongoing, the quantitative model of lineage commitment

was beginning to take shape. We were extremely intrgued by this model since 
proteins

both upstream and downstream of Itk were implicated in CD4/CD8 lineage choice. In

addition, the itk- mice had increased numbers of CD8+ T cells in the thymus, as would be

predicted since lower TCR signals had been shown to support the switching of class II

restrcted cells into the CD8+ T cell lineage. However, in five class II TCR transgenic

models we never observed an increase in the development of TCR transgenic CD8+ T

cells (Chapter 4). Since these TCR transgenics covered a larger range of TCR avidities

we believed that we could reasonably conclude that lineage choice/commitment was not

altered in the absence of Itk. However, in the course of this work, we discovered that the

CD8+ T cells that were accumulating had a distinctive 
phenotype. These phenotype of

these cells was similar "previously-activated", or as we would later find out

homeostatically expanded cells. We determined that these cells were not only

phenotypically, but were also fuctionally similar to "previously-activated" T cells

indicating that these cells had undergone the differentiation process that occurs when

cells are activated, induced to homeostatically expand, or are exposed to Yc cytokines.

However, the origin of these cells and the mechansm by which they underwent this

differentiation remained elusive for a long time.

There was one experimental result and two main developments being reported in

the literatue that began to shape our curent view of CD8 lineage differentiation and

allowed us to make sense of all the rest of the data we were accumulating. The

experimental result was the discovery that Itk/IL-15 double deficient mice lacked
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peripheral CD8+ T cells, but still had CD8+ SP thymocytes with the previously activated

phenotype (Figure 4.7). This suggested to us, that the development of these cells was

occurng in the thymus durng T cell selection and lineage differentiation. Next

evidence for the kinetic model of lineage commitment was accumulating due to the

increasingly substantial evidence implicating a role for cytokines in CD8+ T cell

differentiation, along with evidence that the duration of the TCR signal definitely

influenced the outcome of CD4/CD8 lineage differentiation (38). The second thing that

emerged in the literature was descriptions of mice that had a similar CD8+ phenotype as

that seen in the thymus of itk- mice. These mice all had mutations that made them

hyperresponsive to cytokine signaling (152, 162 , 165). Taken together, these pieces of

evidence have led us to hypothesize in the absence of Itk, cytokine signaling is somehow

altered. Whle the evidence for this hypothesis remains circumstantial, work is ongoing

to tr and determine if this hypothesis is correct and the specific role of Itk in cytokine

signaling at the DP to SP transition.

The ability to determine if cytokine responses are hyperactive in the absence of

Itk have been difficult since the majority of the CD8+ cells in these mice have already

differentiated into the phenotype that exposure to cytokines would induce. However, we

are in the process of regenerating OT -1 Itk deficient mice, since the phenotype of the

OT - 1 CD8+ cells is comparable in the presence and absence of Itk. These experiment

should resolve whether or not Itk is directly involved in cytokine signaling and if it is

fuher work will be done to determine what aspects of the cytokine signaling pathway is

altered in an attempt to uncover the function of Itk. However, if Itk affects cytokine
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responsiveness by regulating a gene durng positive selection, we may not observe any

differences in response to cytokine stimulation since the development of OT - itk- CD8

T cells appears to be normal. To fuher investigate this possibility it might be possible to

examine the gene expression patterns between wild-type and Itk deficient OT-1 TCR

transgenic thymocytes that develop in mice that do not express the selecting ligand for

OT - 1. These DP cells will not have received any selection signals, and therefore we can

make use of altered peptide ligands to send different signals into the OT - 1 thymocytes.

Using the approach we may be able to identify cytokine signaling genes with altered

expression due to the weaker positive selection signals in the absence ofItk.

An alternative version of our hypothesis is that Itk does not playa role in cytokine

signaling or does not affect the expression of cytokine signaling molecules, but instead

become differentiated by cytokines in the thymus because the itk- CD8+ thymocytes are

exposed to them longer than wild-type cells due to impaired emigration from the thymus.

Indeed, Itk has recently been shown to affect responses to chemokines (170, 171). As an

attempt to determne if this hypothesis is likely we are crossing Itk deficient mice to Rag-

GFP transgenic mice. These transgenic mice express GFP under the control of the Rag

promoter and due to the stability of the GFP protein, recent thymic emigrants can be

identified in the periphery by residual GFP present in these cells (185). We have

reasoned if CD8+ SP emigration is delayed then we may see a reduction or loss of GFP

cells in the periphery of Itk-deficient mice compared to wild-type mice. Depending on

the outcome of the experiments described, investigation the role of Itk in chemokine or

cytokine signaling in thymocytes wil offer exciting new direction to the role of Tec
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kinases in thymocyte development downstream of receptors besides the TCR. Figue 5.

depicts known and proposed roles for Tec family kinases downstream of multiple cell

surface receptors in T cells.
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Figure 5.1 Tec family kinases are involved in signaling downstream of multiple cell

surface receptors (slightly adapted from (50))

In B and T cells, Tec-kinases are activated downstream of antigen receptors (TCR and

surface immunoglobulin) and G protein-coupled chemokine receptors through the actions

of PI3K and Src family kinases. In other cell tyes Tec-kinases are also activated by

integrns and growth factor/cytokine receptors. Following stimulation of these

rececptors, Tec kinases regulate multiple cellular fuctions including activation ofPLC-

and actin cytoskeleton reorganzation, which in tu help regulate Ca2+ mobilization

activation ofPKC , the MAPK pathway, and transcription factors, as well as cell adhesion

and migration.
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Nonetheless, there are some remaining questions with the respect to the role of

Tec family kinases downstream of the TCR in the DP to SP transition. At this point, it

has not been determined if a DP thymocyte expressing any existing TCR transgene can

be selected in the absence of both Tec and Rlk. Indeed, results from the two TCR

transgenic systems used suggest that positive selection is worse in the absence of both. 

may be useful to cross these mice to additional transgenics to get a sense of how

defective positive selection is in these mice, especially in light of the fact that they have

relatively normal numbers of T cells. It would also be interesting to look at negative

selection in the Itkl double deficient mice in a class II system to 
tr and determine if

there are any differences in negative selection (or the final outcome of differentiation) of

class II versus class I restricted DP thymocytes especially, since it has been proposed that

reduced negative selection may be the reason that there is not a reduction in CD4
+ T cell

numbers in itk- rlk- mice as there is in itk- mice. Additionally, as already suggested it

would be extremely interesting to study trple Itk/Rlk/Tec knockout mice to determine the

effect of complete Tec kinase deletion on the activation ofPLC-y and the development of

T cells. Similarly, it might be worthwhile to intercross Tec family deficient mice with

Vav deficient mice to determine if there are any additional thymocyte/T cell knockouts

than in Tec family-deficient mice. This may help to determine if the role of Vav in

activating PLC-y is all upstream of Tec kinases, or if it contrbutes to PLC-y activation

via other mechansms/pathways.

Despite the anticipated importance of Tec family kinases in pre- TCR signaling

and the DN to DP transition, no defects were detected in itk- mice, and only minor
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defects were observed when itk- progenitors had to develop in competition with wild-

type progenitors. No fuher disruption in the ~ selection process was observed when

both Itk and Rlk were absent from the developing thymocyte. This is in direct contrast to

repertoire selection, which is signficantly more defective when both Itk and Rlk are

absent from developing thymoc)res, but similar to CD8+ T cell differentiation. Futue

work in this area, should tr and attempt to determine, which specific ~ selection events

are affected durng the DN to DP transition in the absence of Itk. Preliminar

investigation of a role for Itk in allelic exclusion could be done either by a PCR or F ACS

based approach in mice expressing an already rearanged ~ chain; to do this, the itk-

mice should be crossed to 2B4 ~ chain mice. The role of Itk in surival following pre-

TCR signaling could be initially explored by examining the expression patterns of Bcl-

family members. We have shown that Bel-2 levels are regulated normally at the DP to

SP transition; however, DP thymocytes should have low expression of Bcl-2 and high

levels of Bel-xL. Bcl-2 is induced by cytokine signaling at early stages of DN

differentiation, but following pre- TCR signaling Bcl-2 levels decrease and Bcl-xL levels

increase. Enforced expression of Bel-2 or the loss of Bcl-xL both negatively impact the

DN to DP transition. Proliferation can also be examined in more detail by more complex

BrdU experiments than the ones presented here. Finally, as stated above for the DP to SP

transition, analysis of the DN to DP transition should also be examined in Tec family-

triple knockout mice or Vav deficient/Tec family deficient mice.

In conclusion, I believe the work in this thesis contributes to general knowledge

by providing a better understanding of the role of Itk in T cell development, but more
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importantly aids in the discernent of how distinct developmental processes are

regulated in the thymus. The biggest effect of Itk deletion on T cell development occurs

durng positive selection and differentiation of CD4+ T cells , which is the process that

requires the longest most sustained signals, thus Itk seems most important for TCR

signaling at this level. This is also in agreement with the minor defects at the DN to DP

transition, which are also believed to require sustained signaling, but for a shorter period

of time. In contrast, lineage choice seems to be unaffected, so perhaps this process

occurs quickly at the stage in which DP cells first downegulate CD8 , and this signal

happens normally in the absence of Itk. Also further study of CD8+ T cell differentiation

in the absence of Itk may lend fuher support to the kinetic model of lineage

differentiation and perhaps contrbute to the knowledge of how cytokine signaling is

regulated at the stage of development. Clinically, inhbitors of Itk are being developed as

therapeutic agents for allergies and asthma, since Th2 responses are extremely defective

in the absence of Itk. Thus, better understanding the role of Itk in T cell development and

fuction is important in order to anticipate what other effects these inhbitors may have.
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