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ABSTRACT 

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive 

neuroimaging technique that utilizes spontaneous low-frequency fluctuations of blood-

oxygenation-level dependent (BOLD) signals to examine resting-state functional 

connectivity in the brain. In the past two decades, this technique has been increasingly 

utilized to investigate properties of large-scale functional neural networks as well as their 

alterations in various cognitive and disease states. However, much less is known about 

large-scale functional neural networks of the rodent brain, particularly in the awake state. 

Therefore, we attempted to unveil local and global functional connectivity in awake rat 

through a combination of seed-based analysis, independent component analysis and 

graph-theory analysis. In the current studies, we revealed elementary local networks and 

their global organization in the awake rat brain. We further systematically compared the 

functional neural networks in awake and anesthetized states, revealing that the rat brain 

was locally reorganized while maintaining global topological properties from awake to 

anesthetized states. Furthermore, specific neural circuitries of the rat brain were 

examined using resting-state fMRI. First anticorrelated functional connectivity between 

infralimbic cortex and amygdala were found to be evident with different preprocessing 

methods (global signal regression, regression of ventricular and white matter signal and 

no signal regression). Secondly the thalamocortical connectivity was mapped for 

individual thalamic groups, revealing group-specific functional cortical connections that 

were generally consistent with known anatomical connections in rat. In conclusion, large-

scale neural networks can be robustly and reliably studied using rs-fMRI in awake rat, 
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and with this technique we established a baseline of local and global neural networks in 

the awake rat brain as well as their alterations in the anesthetized condition.          
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 Neural networks and brain mapping 

The curiosity to understand ourselves, particularly how our “mind” or “soul” 

works, is perhaps unique to human nature. From the beginning of human civilizations, 

philosophers questioned where the “soul” is located, and organs like heart and brain were 

among the candidates. Over the course of history, the brain became the more plausible 

candidate for that function. However, the “neural science” was virtually nonexistent until 

the late 1800s when Camillo Golgi and Santiago Ramón y Cajal observed the first 

detailed neurons in the brain and the neuron doctrine was established. 

 To understand the relationship between the brain and consciousness, perception 

and behaviors, it was debated in the early days of neuroscience that whether brain 

functions were localized in specialized brain regions (localism) or relied on integration of 

the whole brain (holism). With the advancement of neuroscience, it is apparent now that 

both extreme localism and holism are inaccurate and scientific facts are perhaps 

somewhere between. The brain is a formidably complex network of billions of neurons, 

and most brain functions are carried out by the interaction among several specialized 

regions, each region in turn comprising of millions or billions of interacting neurons. 

Therefore, in large brains (such as mammals’), there are neural networks at multiple 

spatial scales, from local inter-neuronal circuitries (~µm) to macroscopic inter-regional 

whole-brain networks (~cm). It is the challenge of neuroscience to reveal the properties 

and functions of these neural networks, and eventually to bridge the gap between the 

brain and behaviors.  
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 One approach of understanding neural networks is to examine how basic units 

(neurons, cortical columns or larger neural assemblies) are physically connected. For 

example, the anatomical neural network of nematode C. elegans, consisting of 302 

neurons and about 5000 synapses, was reconstructed by electron microscope more than 

two decades ago (White et al., 1986).Although the success of such mapping is currently 

limited to the complexity level of C. elegans, this approach is being actively pursued in 

rodent or even human brains with more advanced imaging, genetics and computational 

methods (Lichtman et al., 2008; Mikula et al., 2012).Together with techniques at larger 

spatial scales like tracing methods and diffusion tensor imaging (DTI), this type of 

research can be categorized as studying anatomical neural networks of different spatial 

scales.  

However, it is clear that only knowing the physical connections among neurons or 

brain regions is not sufficient to understand the brain, as neural networks are inherently 

dynamic. Therefore, it is crucial to examine the functional relationship among different 

spatial scales (neurons, neural assemblies or brain regions), or the functional neural 

networks. At the microscopic level, advancements in electrophysiology, optical imaging, 

genetics and molecular biology have made it possible to explore the collective dynamics 

and organizing principles of neuronal networks. For example, local neuronal network of 

layer 5 pyramidal neurons in rat visual cortex was shown to have highly nonrandom 

synaptic connectivity, characterized by more bidirectional connections and higher degree 

of clustering than random networks (Song et al., 2005). Combined with experimental data, 

theoretical neuroscience has also made significant progress in reconstructing and 

explaining the dynamics of neuronal networks (Vogels et al., 2005). 
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 However, the brain is massive, consisting of many billions of neurons. It is 

impossible to formulate or predict repertoires of dynamic behaviors of large-scale neural 

networks with only the properties of local neuronal network. The emergence of blood-

oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 

more than two decades ago (Ogawa et al., 1990b; Ogawa et al., 1990a; Bandettini et al., 

1992; Kwong et al., 1992; Ogawa et al., 1992), has greatly advanced the studies on 

macroscopic neural networks, with the latest variant of resting-state functional magnetic 

resonance imaging (rs-fMRI) shifting the paradigm of brain mapping. 

 The notion of mapping brain activity is not new in the history of neuroscience. 

More than a century ago in his The Principles of Psychology William James mentioned 

an experiment that measured cerebral blood flow changes when a subject lay on a 

carefully balanced table and underwent cognitive tasks (Buxton, 2002). This paradigm is 

unlikely to work based on our current knowledge, but the idea behind this experiment 

proposed the crucial relationship between local neural activity and blood flow, later 

extensively studied as part of neurovascular coupling. In the pre-fMRI era, the mainstay 

of functional neuroimaging was positron emission tomography (PET) which is still used 

today for its unique features. In neuroimaging with PET, biologically active molecules 

are labeled with radioactive isotopes and the distribution of those tracers can be mapped 

in three dimensions. However, due to its radioactive nature, relatively poor spatial and 

temporal resolution, the popularity of PET was soon bypassed by the relative newcomer, 

fMRI. The development that lead to fMRI is a truly amazing chain of scientific 

discoveries. Perhaps few would imagine the physical phenomenon of nuclear magnetic 

resonance (NMR) could one day lead to the imaging of brain activity when Purcell and 
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Bloch laid the ground work for NMR in 1946 (Bloch, 1946; Purcell et al., 1946). After 

being widely used in analytic chemistry, the principles of NMR soon were used to 

develop the imaging technique of MRI (Lauterbur, 1973).  

 However, structural or anatomical images of MRI can only reveal structural 

neural networks at the macroscopic level. Thus efforts were made to reveal the “working” 

brain, and lead to the first functional human brain mapping experiment using MRI in 

1991 which used gadolinium-DTPA as a contrast agent and reported increase of cerebral 

blood volume (CBV) in primary visual cortex during a visual task (Belliveau et al., 1991). 

However, a more significant breakthrough was the discovery of the BOLD contrast in the 

brain (Ogawa et al., 1990b; Ogawa et al., 1990a). It was long known that the magnetic 

property of hemoglobin depends on the oxygenation state of its heme groups. The weakly 

diamagnetic oxyhemoglobin turns to paramagnetic deoxyhemoglobin when it loses 

oxygen (Pauling and Coryell, 1936). The paramagnetic deoxyhemoglobin distorts the 

microscopic local field and creates phase dispersion of nearby proton spins, thus 

generated the observation that transverse relaxation time (T2) of blood water was 

oxygenation dependent (Thulborn et al., 1982). The key finding of Ogawa et al. was that 

the signal decrease due to lower oxygenation level (high deoxyhemoglobin concentration) 

could also be seen not only in intravascular space, but also in extravasular space, 

indicating that BOLD contrast could be used to detect the oxygenation level in the brain 

tissue beyond blood vessels. Soon several studies reported similar localized BOLD signal 

increases in the human brain within a very short period of time (Bandettini et al., 1992; 

Kwong et al., 1992; Ogawa et al., 1992).  
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However, as its name suggests, the BOLD effect is directly dependent on blood 

oxygenation (the amount of deoxyhemoglobin), not neural activity. Thus, besides the 

magnetic properties of (de)oxyhemoglobin, neurovascular coupling is another vital 

property of the brain that leads to the success of fMRI. Physiologically, the BOLD effect 

is known to depend on the three factors: cerebral blood volume (CBV), cerebral blood 

flow (CBF) and cerebral metabolic rate of oxygen (CMRO2). Therefore, how those three 

factors respond to neural activation determines the neural basis of BOLD effect. It is 

relatively well known that CBF increases substantially in activated brain regions 

(e.g.,(Fox and Raichle, 1986), which brings more oxygen and, in turn, less 

deoxyhemoglobin (higher BOLD signal). In the same time, increased CBV and CMRO2 

have the opposite effect, but the amplitudes of those increases of CBV and CMRO2 are 

far less than that of CBF. Therefore, the net effect of those three factors is increased 

BOLD signal in activated brain regions. The detailed mechanism that underlies the neural 

activity and those three physiological quantities is still under active research, and the 

quantitative relationship between those three physiological quantities and BOLD signal is 

still not well understood. However, as Ogawa recently wrote, “Nature has provided quite 

a few very fortunate situations for BOLD (or vascular)-based fMRI”(Ogawa, 2012). 

 

Resting-state fMRI: techniques 

 The great success of task-based fMRI has led to extensive mapping of localized 

brain activation in response to various stimuli or tasks, underscoring the specialization of 

the brain. However, as mentioned earlier, the brain is naturally a massive network and it 
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is essential to study neural networks of interacting brain regions. The advent of resting-

state fMRI provided a convenient tool for studying large-scale neural networks and thus 

revolutionized the paradigms of fMRI and neuroscience research. 

 Biswal et al. first reported spontaneous low frequency (<0.1Hz) fluctuation in 

BOLD time course during rest, and these low frequency fluctuations (LFF) gave rise to 

significant correlation between bilateral motor cortex (Biswal et al., 1995). This work 

stemmed from earlier efforts studying noise structure in the fMRI signal (Biswal et al., 

1992; Jezzard et al., 1992; Weisskoff et al., 1992; Biswal et al., 1994) as people realized 

that the BOLD fMRI signal was very noisy and the amplitude of BOLD increase due to 

neural activation was comparable to that of noise. Spectral analysis of BOLD time 

courses during rest revealed peaks at heart and respiratory frequencies as expected. 

However, the amplitude of BOLD signals at low frequencies (<0.1Hz) was also very 

prominent but it was at the time poorly understood. Biswal and colleagues found those 

low frequency fluctuations led to significant correlation between bilateral motor cortex, 

which was considered as “functional connectivity”. However, this finding was not well 

received, perhaps due to lack of evidence supporting the neural basis of this resting state 

functional connectivity as well as the difficulty of paradigm shifting from task based to 

resting state. 

 The first evidence of the neural origin of low frequency fluctuation, albeit indirect, 

came from the hypercapnia experiment when human subjects inhaled 5% CO2 during 

fMRI sessions (Biswal et al., 1997a). Hypercapnia was frequently used to disrupt the 

association between cerebral blood flow and brain metabolism as it increases blood flow 

significantly but not metabolism. It was found that hypercapnia reduced the amplitude of 
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low frequency fluctuations and the functional connectivity, indicating this resting state 

connectivity phenomenon was not entirely vascular in origin, but rather had a neural basis. 

If this phenomenon was entirely vascular origin, the disassociation between cerebral 

blood flow and brain metabolism by hypercapnia was less likely to significantly lower 

the functional connectivity. Many more studies followed and supported the hypothesis of 

neural origin of resting-state functional connectivity, utilizing different approaches. One 

major category of indirect evidence was to vary neurobiological relevant factors such as 

anesthetic depth (Lu et al., 2007), lesion of corpus callosum (Quigley et al., 2003), limb 

deafferentation (Pawela et al., 2010)) and corresponding changes of functional 

connectivity were observed. Another line of indirect evidence came from the 

observations of similar spatial patterns between activated networks during task and 

functional connectivity networks during rest, which was first reported in the very early 

days of resting state fMRI (Biswal et al., 1995; Biswal et al., 1997b). Those similarities 

indicated that functional clusters identified in resting-state functional connectivity might 

function as elementary units in both task and rest conditions. 

 The ultimate proof for a neural origin of resting state fluctuation and connectivity 

will require a thorough understanding of the relationship between neural activity and LFF 

of BOLD signal as well as how the large-scale neural oscillation arises from individual 

neurononal activity. Spontaneous fluctuations and oscillations are not unique to BOLD 

signals during rest, and those phenomenons are commonly observed in 

electrophysiological signals across various temporal and spatial scales e.g., (Leopold et 

al., 2003) (for a brief review, see Buzsaki and Draguhn, 2004). Therefore, it is natural to 

examine whether there is a relationship between BOLD fluctuation (and correlation 
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stemmed from those LFF) and electrophysiological measurements. Lu and colleagues 

first reported that functional connectivity between bilateral primary somatosensory cortex 

correlated with power coherence of epidural EEG in anesthetized rats, particularly in δ 

frequency band (Lu et al., 2007). It should be noted that in Lu et al., fMRI and EEG were 

conducted separately. A similarly designed study revealed close relation between EEG 

and BOLD signal even in burst suppression anesthesia state (Liu et al., 2011) in rat. 

Another rat study utilized simultaneous fMRI and local field potential (LFP) recording in 

similar regions of primary somatosensory cortex (Pan et al., 2011). That study indicated 

BOLD spontaneous fluctuation was correlated with LFP across a broad frequency range 

(1-100Hz) and the peak of correlation between BOLD and LFP signals occurred when 

BOLD signals were about 4s delayed compared to LFP signals. In a monkey study of 

simultaneous fMRI and intracortial recording, BOLD time courses were found to be 

correlated with γ band of local field potential and multi-unit activity, and this correlation 

was lagged for about 6s likely due to the hemodynamic response of BOLD signal 

(Shmuel and Leopold, 2008), although the validity of this study was later questioned 

(Logothetis et al., 2009). Another recent monkey study indicated that the coupling of 

low-frequency bands, rather than γ band, contributed more to functional connectivity 

(Wang et al., 2012). Human studies have also reported electrophysiological substrates of 

resting-state functional connectivity (Laufs et al., 2003; Mantini et al., 2007; Nir et al., 

2007; Scheeringa et al., 2008), although mostly only with surface EEG recording due to 

the limited availablity of conducting invasive recordings such as electrocorticography 

(ECoG) in human subjects.  
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 As we could learn from the discrepancies in the aforementioned studies, there are 

still vast unknowns about the neural mechanism of resting-state functional connectivity. 

Nevertheless, it is a growing consensus that resting-state functional connectivity has 

neural origin, if raw images are carefully processed (more on this topic later). 

 Resting-state neural networks can be studied at different spatial levels using a 

wide range of analysis techniques. However, it is important to first examine the 

properties of LFF as LFF is the basis for all types of resting-state neural networks. By 

definition, LFF only concerns signals in the low-frequency range (usually defined as <0.1 

or 0.08 Hz) and several methods have been developed to assess the spatial-temporal 

dynamics of LFF. First, it was long discovered that spontaneous LFF has a characteristic 

scale-free property, which is expressed as P∝1/fβ (P is power, f is frequency, β is the 

power-law exponent) (Bullmore et al., 2001). The 1/f shape was noted in the early days 

of resting-state fMRI according to Biswal’s personal recollection (Biswal, 2012) but was 

not seen in his original paper (Biswal et al., 1995). This scaling property varies in 

different brain regions and correlates with brain glucose metabolism (He, 2011), and was 

recently confirmed using improved analysis methods (Ciuciu et al., 2013). Similar scale-

free structure was also found in rat (Herman et al., 2011).  

Secondly, the amplitude of LFF also contains information of resting-state 

networks, thus an index of amplitude of LFF (termed ALFF, (Zang et al., 2007)) and its 

closed related variation of fractional ALFF (fALFF, (Zou et al., 2008)) were developed to 

detect the intensity of BOLD signal fluctuations in voxels or regions of interest (ROIs). 

ALFF is simply the integrated sum of the square root of power in the low frequency 

range, while fALFF is the ratio of ALFF to that of the entire frequency range. By 
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calculating the ratio, fALFF was believed to improve sensitivity and specificity (Zou et 

al., 2008).  

ALFF and fALFF reflect a local property, the (relative) amplitude of LFF, of 

resting-state neural networks and they do not concern any relationship with other voxels 

or ROIs. There are a number of available methods to extract different types of 

relationship information. One index, regional homogeneity (ReHo), was introduced to 

evaluate the homogeneity of LFF in a group of neighboring voxels (Zang et al., 2004). 

Mathematically, ReHo is the Kendall’s coefficient of concordance, calculated from time 

courses of neighboring voxels. It indicates how homogenous the fluctuations of BOLD 

signals are in small regions, and thus can be viewed as a measure of local functional 

connectivity. Similarly, homogeneity can also be calculated based on coherence instead 

of Kendall’s coefficient of concordance (Liu et al., 2010). 

Although ReHo does provide information about the relation (or similarity) of a 

neighboring group of voxels, it is still largely a local measurement. A complementary 

method, seed-based functional connectivity, is able to estimate the “functional 

connectivity” of one particular seed region with other voxels or regions in the brain (Fox 

and Raichle, 2007). The common procedure is to calculate the Pearson correlation 

coefficients between the mean time course of the seed region and time courses of all 

voxels. The resulting spatial map of correlation coefficients provides the information of 

how strongly the seed region is “functionally connected” with other brain regions. The 

seed-based method was used in the first resting-state paper (Biswal et al., 1995), and it is 

computationally simple yet robust, making it arguably the most popular resting-state 

method. The major pitfalls of this method are that it requires prior knowledge to choose a 
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seed region, and it can only provide information regarding one particular seed region 

each time the analysis is run. 

Another commonly used method, independent component analysis (ICA), is more 

data-driven and does not require defining seed regions (for a technical review, see 

(Hyvarinen and Oja, 2000)).The basic idea of ICA is to explore nongaussianity of 

original data and transform the original data into a linear combination of statistically 

independent (or as independent as possible) components. It was first introduced to fMRI 

data in the context of task-based fMRI (McKeown et al., 1998), and later was applied in 

many resting-state fMRI studies with various specific algorithms (e.g., (Allen et al., 

2011)). In particular, the availability of group ICA methods (Calhoun et al., 2001; 

Beckmann and Smith, 2005; Erhardt et al., 2010) has lead to the popularity of ICA, as the 

original ICA method could only be applied to single subject/data, rendering it much less 

useful in neuroimaging studies. Because it does not require definitions of seed regions, 

the ICA method is not restrained by anatomical definition, which is often the case in 

seed-based analysis. With the ICA method, each component is a spatial map associated 

with coherent fluctuations within part of the brain, and some components may represent 

various noises and some may represent resting-state neural networks. This data-driven 

approach leads to a somewhat arbitrarily defined boundary between noise and “true” 

neural network components, although this issue could be alleviated by inspection of 

spatial maps and power spectrum characteristics of time courses associated with each 

component (Allen et al., 2011). Another potential issue is that the ICA method requires 

the input of the model order (the number of total components), and naturally, the spatial 

maps of components vary with different model orders. There are some algorithms such as 
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Akaike’s information criterion and minimum description length criterion (Calhoun et al., 

2001) with the potential ability of estimating the model order, but those algorithms are 

not very reliable on fMRI data. Therefore, it is still largely arbitrary to determine the 

model order. Depending on the model order, each individual ICA map can have small 

spatial coverage and be considered a local functioning unit when the model order is large, 

and the ICA map can have large spatial coverage and be considered a large-scale network 

when the model order is small. A similarly model-free, but less popular method is voxel-

wise clustering based methods (e.g., (van den Heuvel et al., 2008).  

The analysis methods discussed above are not able to analyze the organization 

and dynamics of whole-brain networks. Fortunately, graph theory has provided a 

theoretical framework for doing so in resting-state fMRI data (for review, see (Bullmore 

and Bassett, 2010). To utilize tools of graph-theory analysis, the brain needs to be 

parcellated into nodes (or vertices), and nodes are connected with edges (or connections). 

Ideally, nodes should be both coherent and independent with each other, which can be 

difficult to achieve in fMRI studies. In practice, nodes of functional brain images are 

usually defined as anatomical ROIs, functional ROIs or voxels, each with its own 

advantages and disadvantages. Voxel is the basic unit of images, and thus could serve as 

a definition of nodes. But the smoothness in the images (from the data themselves and 

from image processing) leads to weaker independence of each voxel with its neighboring 

voxels. In addition, the voxel number of a whole-brain image is fairly large (in the order 

of 104), making the subsequent analysis computationally expensive and statistical testing 

very difficult due to the massive multiple comparison problem for local graph metrics. If 

anatomical ROIs are used as nodes, the computational load can be dramatically reduced. 
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For example, in Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et 

al., 2002), the numbers of anatomical ROIs are reduced to the order of 102. The 

drawbacks are two-fold: first, anatomical ROIs are not necessarily the basic functioning 

units of the brain and homogeneity within anatomical ROIs might be low; secondly, the 

sizes of those anatomical nodes usually vary significantly, thus larger nodes have much 

more voxels than small nodes. The difference of voxel numbers in anatomical nodes 

could lead to different signal-to-noise ratio, which could be problematic in statistical 

analysis.  Nevertheless, anatomical parcellation is still perhaps the most frequently used 

method for its simplicity. Similarly, the brain can be parcellated based on functional 

information. This type of brain templates are generated using data-driven methods such 

as group ICA (Allen et al., 2011) and voxel-wise clustering (Craddock et al., 2012). 

Those functional templates are not constrained by anatomical information and could 

overcome some of the caveats of anatomical parcellation. However, as those templates 

are data-dependent, the applicability to other datasets might be problematic. Overall, it is 

not a trivial question to choose the appropriate node definition as nodes are the 

elementary units of a graph. Not surprisingly, empirical studies have shown that 

properties of networks are dependent on the brain parcellation schemes (Wang et al., 

2009; Zalesky et al., 2010b). Therefore, it is critical to choose an appropriate node 

definition based on study purpose/hypothesis and data characteristics. 

The next crucial step of graph-theoretical analysis is to determine edges of a 

graph. Just as there are different types of node definition, there are different ways to 

estimate the edges (Smith et al., 2010). The most simple and popular estimation method 

in resting-state fMRI is the Pearson correlation based on time courses associated with 
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nodes. A related method is partial correlation, which is the correlation coefficient 

between two time courses after controlling the impact of other time courses. Other 

methods of estimation include non-linear statistics such as coherence, mutual information 

and lag-based methods such as Granger causality. It is difficult to assess various 

estimation methods because the “ground truth” of functional connectivity, i.e., the 

existence of functional connectivity, is usually unknown. However, in a recent 

comprehensive simulation study, correlation-based methods were found to better detect 

actual connections compared to other methods in simulated data (Smith et al., 2010). 

To finally establish a graph, it is often essential to remove spurious connections 

by thresholding graphs. One commonly used thresholding method is density thresholding. 

In this process, a network density is specified and all connections are ranked from 

strongest to weakest. Connections ranked below the percentile of the previously specified 

network density are eliminated (value set to zero) and all connections above that 

threshold are retained (value set to one). To alleviate the problem of setting a single 

(rather arbitrary) density value, a range of network densities can be specified according to 

graph properties and network metrics are summarized in that range (e.g., (Liang et al., 

2012b). Another type of thresholding methods is local thresholding, as opposed to global 

thresholding such as density thresholding. One example of local thresholding is to 

combine the concepts of minimal spanning tree and k-nearest neighbor graph (k-NNG) to 

generate a graph with all nodes connected with highest possible connectivity (Alexander-

Bloch et al., 2010). This type of local thresholding avoids the problem of 

disconnectedness of graphs in global thresholding, which can be problematic for 

calculating certain graph metrics. Naturally the other way to completely eliminate the 
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above problems (choice of network density and disconnectedness) is to use unthresholded 

weighted networks, which would require more sophisticated algorithms to compute 

network metrics (Rubinov and Sporns, 2011). 

Finally after the graph (network) is constructed, its graph-theoretical properties 

can be analyzed through a wide range of network metrics (for a recent review with 

detailed mathematical definitions as well as interpretations, see (Rubinov and Sporns, 

2010). Conceptually there are two major categories of those network metrics: global and 

local metrics. Global metrics concern properties of the entire network, including the 

global clustering coefficient, shortest path length, global efficiency and modularity.  

At the global scale, the global clustering coefficient measures network 

segregation, while shortest path length and global efficiency measures network 

integration. In the context of resting-state connectivity, network segregation indicates the 

extent of local or specialized processing of the whole-brain network, and network 

integration indicates how well the whole-brain network integrate information from 

distributed brain regions. To achieve optimal response to internal and external stimuli, the 

brain has to be well balanced between segregation and integration, which leads to an 

important concept of small-world networks (Watts and Strogatz, 1998). A small-world 

network is a network with higher clustering coefficient than random networks, but still 

has similar shortest path length of random networks. The index of small-worldness is the 

ratio of normalized global clustering coefficient and shortest path length (normalized to 

those two metrics of random networks). Thus, by definition, a small-world network has 

an index of small-worldness larger than 1. Small-worldness is important as it represents 
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whole-brain networks balance between two opposing directions: segregation and 

integration. 

Another important global metric is modularity (Newman, 2006). As Newman 

defined, “the modularity is, up to a multiplicative constant, the number of edges falling 

within groups minus the expected number in a equivalent network with edges placed at 

random” (Newman, 2006). Therefore, it measures the extent to which a network can be 

divided into more densely connected sub-networks (modules), compared to random 

networks. Functional whole-brain networks are usually modular, indicating that the brain 

has sub-networks that communicate more within themselves than across different sub-

networks. 

Another major category of network metrics, local metrics, concerns properties of 

individual nodes, including degree, local clustering coefficient and various types of node 

centrality. Degree is the number of connections a node has, and it is the most 

straightforward and fundamental property of a node. It reflects how well “connected” a 

node is. The local clustering coefficient measures how well connected a node’s neighbors 

are, indicating the local segregation or specialization. Centrality is one type of metrics 

that estimate one node’s importance in the whole network, including betweenness 

centrality, closeness centrality and eigenvector centrality (Newman, 2010). Therefore, 

there are many local network metrics reflecting different aspects of node properties. 

Notably, some network metrics are only meaningful when compared to those of 

random networks. Thus it is critical to choose appropriate random networks for 

comparison. Usually, theoretical random networks are not comparable to empirical 
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networks generated from resting-state data due to differences in degree distribution. 

Instead, a common approach is to randomly rewire the empirical networks to generate 

random networks, while maintaining degree distributions of empirical networks (Rubinov 

and Sporns, 2010). One recent study revealed that networks constructed with correlation 

are inherently more clustered than corresponding random networks with same degree 

distribution, thus requiring a more sophisticated way to construct appropriate random 

networks (Zalesky et al., 2012a).  

Overall, the graph theory approach is one of the most popular analysis methods 

for resting-state fMRI data. Utilization of graph theory allows one to examine the global 

and local topological properties of functional whole-brain networks, and also reveals 

differences of those properties under different cognitive or pathological conditions.  

Besides the above popular analysis methods, there are many other methods 

available for resting-state fMRI data, including novel statistical approaches to address 

multiple comparison problems in resting-state analysis (Zalesky et al., 2010a; Zalesky et 

al., 2012b), and various machine learning techniques (O'Toole et al., 2007). Every 

technique has its advantages and disadvantages, thus careful consideration must be given 

to select one or several of techniques that are best suited for the purpose of a study. 

 One of the biggest obstacles in the early days of resting-state functional 

connectivity was to convince people that it has neural origin and is not an artifact of noise. 

It is a particularly difficult task as resting-state functional connectivity stems from low 

frequency spontaneous fluctuations of BOLD signals, and the BOLD fluctuations 

naturally have components of various noises. Therefore, it is crucial to examine the true 
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noise components of spontaneous fluctuation of BOLD signals, and preprocess raw data 

properly to remove impacts of noises as much as possible. One major category of noises 

is physiological noise, and it was recognized in the very first resting-state study (Biswal 

et al., 1995) and reviewed recently (Birn, 2012). Peaks of cardiac and respiratory 

frequency were apparent in frequency domain of raw resting-state BOLD time course in 

human studies. Those peaks were also observed in the rat (Majeed et al., 2009), although 

at higher frequency than human (cardiac~5 Hz, respiratory~1 Hz). The most 

straightforward way to reduce those physiological noises is to apply a low-pass filter 

(cutoff frequency 0.1 or 0.08Hz). However, with the sampling rate of most fMRI studies 

(~0.5Hz) and human noise peaks (cardiac~1Hz and respiratory~0.3Hz), simple low-pass 

filter would not work very well due to the aliasing of cardiac and respiratory signals into 

the lower frequency range. This aliasing problem might be less severe in rodent studies as 

cardiac and respiratory frequencies are much higher, although more studies are needed to 

verify that. Increasing sampling rate of fMRI without compromising spatial coverage and 

resolution would alleviate the above aliasing problem. However, major improvements of 

hardware and software for higher sampling rates are not generally available. Another 

approach of further reducing confounding cardiac and respiratory effect is to record heart 

beat and respiration and then to regress out those nuisance variables. This is an approach 

originally developed for task-based fMRI and later extended to resting-state fMRI (Hu et 

al., 1995; Glover et al., 2000). The apparent disadvantage of this approach is it requires 

additional measurements of physiological parameters. 

Besides the direct contribution of cardiac and respiratory rhythms, these two also 

have indirect but still significant contributions. Arterial CO2 level fluctuations are, in part, 



20 
 

dependent on breathing depth and rate, and those fluctuations are sensed by 

chemoreceptors in the brain and in turn regulate breathing depth and rate. This feed-back 

loop leads to low frequency (~0.03 Hz) fluctuations of BOLD signals (Van den Aardweg 

and Karemaker, 2002; Birn et al., 2006). Therefore, it would not remove all contributions 

of pulse and respiration if only high frequency (>0.1 or 0.08 Hz) signals are filtered. One 

study suggested adding end-tidal CO2 as an additional nuisance variable could explain 

more variance (Chang and Glover, 2009b). End-tidal CO2 is the maximum concentration 

of CO2 at the end of an exhaled breath. 

Another different route of removing physiological noise is regression of signals of 

“nuisance” brain regions, as those signals are believed to reflect more physiological 

rather than neural fluctuations. Global signal regression was initially widely used for this 

purpose (Fox et al., 2005). However, later it was found that global signal regression 

mathematically mandates the existence of negative correlation, leading to artifactual 

negative functional connectivity (Murphy et al., 2009). Furthermore, one study in 

monkeys indicated that local field potential (LFP) correlated with global BOLD signals, 

suggesting global signals also have neural origin (Scholvinck et al., 2010).Thus global 

signal regression seems to be inappropriate for the purpose of removing non-neural noise. 

Signals of white matter and ventricles seem to be safer nuisance regressors as BOLD 

fluctuations in these regions is less likely to have neural origin. In practice, signals of 

white matter and ventricles have been shown to increase spatial specificity of functional 

connectivity. One recent study used additional signals from soft tissues outside the brain 

as nuisance regressors (Anderson et al., 2011). 
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In addition to physiological factors, head motion is also known for its 

confounding effects in resting-state fMRI. However, its importance was only recently 

recognized after three independent studies reported significant and systematic effects of 

head motion even when motion is relatively small (Power et al., 2012; Satterthwaite et al., 

2012; Van Dijk et al., 2012). For seed-based analysis, higher motion level was associated 

with increased short-distance connectivity and decreased long-range connectivity (Power 

et al., 2012; Van Dijk et al., 2012). Motion level was also found to be negatively 

correlated with modularity and impact ICA and ALFF results (Satterthwaite et al., 2012). 

Therefore, head motion could affect almost all aspects of resting-state functional 

connectivity and requires careful considerations, especially in studies where motion level 

might be related to other variables of interest. To attenuate the effect of head motion, one 

common approach is to regress out motion parameters. Motion parameters can be 6 

translation and rotation parameters from the preprocessing step of realignment as well as 

their 1st and 2nd order time derivatives. In some cases, motion spikes are also used. One 

recent study indicated that this traditional approach generated heterogeneous results in a 

large adolescent dataset (Satterthwaite et al., 2013) depending on the motion levels of 

individual subjects. Other approaches include “clipping” motion spikes (Carp, 2011; 

Power et al., 2011; Power et al., 2012). Naturally no techniques are able to completely 

remove motion artifacts and it is best to always examine results with caution to see if they 

are motion related. 

With all confounding factors in mind, the next question before resting-state fMRI 

can be safely applied in neuroscience research is whether functional connectivity 

measured with resting-state fMRI is reliable under the same conditions and in the same 
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subjects. Fortunately, this assumption has been explicitly examined by test-retest 

reliability in several studies (Shehzad et al., 2009; Zuo et al., 2010; Braun et al., 2012). 

These studies indicate that resting-state functional connectivity was consistent in different 

time points for the same subjects using seed-based analysis (Shehzad et al., 2009), ICA 

(Zuo et al., 2010) and graph-theory analysis (Braun et al., 2012), respectively. Together 

with numerous other studies reporting similar resting-state neural networks, it is widely 

accepted that resting-state fMRI is a reliable tool to investigate large-scale neural 

networks. 

 Conventional resting-state functional connectivity can be considered the averaged 

connectivity across a time period (e.g., 10-15 minutes scan time), because analysis 

methods like Pearson’s correlation estimate one measurement of functional connectivity 

for the entire time period. However, it is increasingly recognized that functional 

connectivity is dynamic rather than static as it is well known that neural process occurs at 

much faster time scales (~ms). One straightforward adaptation of existing methods is to 

use sliding windows of relatively shorter time periods (~60s) to estimate functional 

connectivity. Several studies have utilized this approach in conjunction with Pearson’s 

correlation or ICA to reveal the non-stationary property of resting-state functional 

connectivity (Allen et al., 2012; Hutchison et al., 2012a; Keilholz et al., 2012). Using the 

combinations of sliding window, ICA and clustering, Allen and colleagues showed 

functional connectivity of human brains across ICA time courses was time-varying and 

could be clustered into several distinct states (Allen et al., 2012). The seed-based 

correlation method revealed similar findings in both rats (Keilholz et al., 2012) and 

monkeys (Hutchison et al., 2012a). One disadvantage of the sliding window approach is 
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that noise can lead to more profound effects with much less data points. Therefore, 

statistical significance should be carefully determined to examine if the dynamic 

connectivity arises from noise or by chance (Handwerker et al., 2012). 

 More sophisticated methods include wavelet transform coherence. Wavelet 

transform coherence is based on continuous wavelet transform and can provide coherence 

and phase lag information of time series in both time and frequency domains (Torrence 

and Compo, 1998). Therefore it can be used to track the time-frequency dynamics of 

resting-state BOLD time courses (Chang and Glover, 2010; Liang et al., 2012a). 

However, the information (coherence and phase lag in time and frequency domain) 

extracted by this method is quite complex and therefore difficult to combine individual 

results. Due to the slow hemodynamic nature of BOLD signal, resting-state fMRI is 

unlikely to provide precise information of temporal dynamics. However, compared to the 

current popular analysis methods, much more improvements are expected to further 

investigate network dynamics on the order of seconds. 

 Overall, resting-state fMRI is a powerful, robust and reliable non-invasive 

imaging method that can be used to investigate large-scale neural networks with various 

analysis techniques focusing on different aspects of neural networks, when original data 

are carefully processed regarding confounding noises and artifacts. 

 

Resting-state neural networks: from human to rodent 

 Resting-state fMRI has greatly advanced our knowledge of large-scale functional 

networks across several species like human, non-human primates and rodents. The 
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paradigm shift from mapping specific brain regions with task-based fMRI to mapping 

interacting brain regions with resting-state fMRI has led to more appreciation for the 

notion that the brain is inherently a network. 

  Resting-state fMRI was first developed in human, and much more studies have 

been conducted in humans than all other species combined. At the local network level, 

converging evidence from different studies and with different analysis methods (seed 

based, ICA and clustering) have indicated that the human brain has several robust 

functional systems, including default mode network (DMN), visual networks, 

sensorimotor networks, frontal networks, salience networks and parietal-frontal networks 

(van den Heuvel 2010). Among those networks, DMN is perhaps the most well 

characterized network. Important anatomical structures of DMN include medial 

prefrontal cortex, posterior cingulated cortex and precuneus. Unlike other resting-state 

networks, DMN has been shown to have higher neural activity during rest, characterized 

by higher blood flow and oxygen consumption as measured by PET during rest and 

increased BOLD signal during rest (compared to task) measured by fMRI (Raichle et al., 

2001). Therefore, DMN is a unique network with elevated and synchronized neural 

activity during rest, while other resting-state networks are only synchronized. Functions 

of this unique network is indicated in consciousness and internal states (Raichle and 

Snyder, 2007) and is related to a large number of cognitive and pathological conditions, 

such as development and ageing, disorders of consciousness and psychiatric diseases 

(Buckner et al., 2008). 

 At the global level, the organization principles of the human brain have 

also been extensively studied using graph-theory analysis. Global functional network has 
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been found to be a small-world network in several studies (Salvador et al., 2005; Achard 

et al., 2006; Wang et al., 2009). As mentioned in the previous section, small-worldness is 

a crucial property for networks like the brain to achieve two conflicting goals: local 

specialization and global integration. A related network organization principle, 

modularity, is also evident in human whole-brain functional network (Meunier et al., 

2010). Having a modular community structure indicates the human brain can be 

parcellated into functional modules which connect more densely within than cross 

modules. Those modules are largely similar to functional systems described above. Not 

surprisingly, these properties are found to be disrupted in many disease states (Bassett 

and Bullmore, 2009). 

 It is very interesting to examine whether the above characteristics of human 

resting-state neural networks are uniquely human or (in part) conserved in other species, 

especially in our close relatives, non-human primates, as to study the evolutionary aspect 

of functional neural networks. Several early studies focused in DMN in non-human 

primates for its assumed unique roles in internal tasks and consciousness in humans 

(Rilling et al., 2007; Vincent et al., 2007; Kojima et al., 2009; Mantini et al., 2011). The 

converging evidence from both resting-state fMRI and PET indicate non-human primates 

do have at least a structurally similar network of human DMN, with its function still not 

fully elucidated yet. Other studies indicated complex networks in monkeys across various 

cognitive states (Moeller et al., 2009) as well as specific networks in cingulate cortex 

(Hutchison et al., 2012c) and frontal eye fields (Hutchison et al., 2012b). One recent 

study systematically compared resting-state networks of humans and monkeys, and their 

results suggest that the most prominent difference between two species is frontal-parietal 
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networks, with no apparent topological or functional corresponding networks in monkeys 

(Mantini et al., 2013). 

Rodents are the most widely used model animals in biomedical research. 

However, resting-state networks are much less explored in rodents compared to human 

studies, leaving a huge gap between our understandings of functional neural networks in 

the macroscopic and microscopic level. This is in part because anesthesia used in 

majority of rodent studies may affect results and interpretation of resting-state networks. 

Rodent resting-state fMRI studies have revealed various intrinsic properties of resting-

state networks and influences of cognitive states (e.g., anesthetic depth and types). 

Several studies characterized spatial-temporal characteristics of low frequency 

fluctuations in anesthetized rat brains (Kannurpatti et al., 2008; Majeed et al., 2009). 

Anesthetized rat brains showed significant low frequency fluctuations in cortex and some 

subcortical regions, and also exhibited similar noise peaks (cardiac and respiratory) in 

unfiltered spectrum. These low frequency fluctuations serve as the basis for investigating 

resting-state connectivity in rodents. In addition, several major resting-state functional 

networks were identified. The most robust networks across different cognitive states are 

sensory and motor related networks, such as the somatosensory network, motor network 

and visual network under anesthetized conditions as well as some subcortical networks 

(Pawela et al., 2008; Hutchison et al., 2010; Becerra et al., 2011). Additional networks 

were found in the awake rat brain, such as anterior cingulated/prefrontal  networks 

(Zhang et al., 2010b; Liang et al., 2011). Two studies suggested the possible anatomical 

analog of default mode network (DMN) in rat, consisting of anterior cingulate cortex, 

retrosplenial cortex, hippocampus and other cortical regions (Upadhyay et al., 2011; Lu 
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et al., 2012). However, due to vast anatomical differences between human and rodent 

brains, it is difficult to evaluate the extent of spatial similarities. Furthermore, future PET 

studies will be needed to examine if this “DMN” like network in rodent has higher 

metabolic rate than the rest of the brain, which is the key characteristic of DMN in 

humans. 

Because the majority of rodent resting-state fMRI research utilized various types 

of anesthesia or sedation, it is critical to examine the effects of anesthesia. Most 

anesthetic agents have vastly different and fairly complex pharmacological profiles in the 

central nervous system, acting as antagonists or agonists on many receptors (Alkire et al., 

2008). In addition to neural effects, some anesthetic agents have vascular effects, e.g., 

isoflurane is a strong vasodilator. Therefore, it is expected that different anesthetic agents 

might differentially influence resting-state neural networks. One study compared rat 

resting-state networks with three anesthetic agents (α-chloralose, medetomidine and 

isoflurane), and found both spontaneous fluctuation of BOLD signals and resulting 

correlation based maps were dependent on anesthetic type (Williams et al., 2010). 

Another recent study indicated medetomidine was better than isoflurane regarding 

reliability and specificity of resting-state networks (Kalthoff et al., 2013). In addition, 

anesthetic depth has been shown to affect functional connectivity strength, generally with 

higher depth leading to weaker connectivity (Lu et al., 2007; Williams et al., 2010; Liu et 

al., 2011), although those studies most focused on somatosensory cortex and less is 

known about other networks.  

However, those studies examined effects of anesthesia within various types and 

depths of anesthesia, missing the vital comparison with resting-state networks in the 
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conscious state. Thus efforts have been made to establish a resting-state fMRI paradigm 

in awake rat (Zhang et al., 2010b; Liang et al., 2011), and resting-state networks in 

isoflurance anesthetized and awake conditions have been comprehensively compared 

(Liang et al., 2012b). Interestingly, the organizing principles of the rat brain such as 

small-worldness and modularity were found to be similar between the two conditions. 

However, the global functional network was reorganized into different modules. 

Connectional strengths were also found to be differentially affected. 

Rodent resting-state fMRI research also has contributed significantly to our 

understanding of the neural mechanism of resting-state connectivity, which is discussed 

in the earlier section (Lu et al., 2007; Liu et al., 2011). Other rodent studies addressed 

issues of physiological noise sources (Kalthoff et al., 2011), dynamic properties (Keilholz 

et al., 2012) and scale-free structure of low frequency fluctuations (Herman et al., 2011). 

 The last fifteen years or so has witnessed the huge success of resting-state fMRI 

from its then little recognized beginning in 1995 (Biswal et al., 1995). Tremendous 

advancements have been made in both method developments and applications in basic 

and clinical research. Through this technique, we have gained knowledge about how the 

brain is functionally organized in local and global networks, and how these networks are 

altered under various cognitive and pathological conditions. Particularly, rodent resting-

state fMRI has great potential to bridge the gap between basic biomedical research and 

clinical imaging studies, when combined with other invasive methods (such as 

optogenetics) to manipulate neural activity.   
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Abstract 

Intrinsic connectional architecture of the brain is a crucial element in 

understanding the governing principle of brain organization. To date, enormous effort has 

been focused on addressing this issue in humans by combining resting-state functional 

magnetic resonance imaging (rsfMRI) with other techniques. However, this research area 

is significantly underexplored in animals, perhaps due to confounding effects of 

anesthetic agents used in most animal experiments on functional connectivity. To bridge 

this gap, we have systematically investigated the intrinsic connectional architecture in the 

rodent brain by using a previously established awake animal imaging model. First, group 

independent component analysis was applied to the rsfMRI data to extract elementary 

functional clusters of the brain. The connectional relationships between these clusters 

evaluated by partial correlation analysis were then used to construct a graph of whole-

brain neural network. This network exhibited typical features of small-worldness and 

strong community structures as shown in the human brain. Finally, the whole-brain 

network was segregated into community structures using a graph-based analysis. The 

results of this work provided a functional ‘atlas’ of intrinsic connectional architecture of 

the rat brain at both intra- and inter-region levels. More importantly, the current work 

revealed that functional networks in rats are organized in a non-trivial manner and 

conserved fundamental topological properties as the human brain. Given the high 

psychopathological relevance of network organization of the brain, this study 

demonstrated the feasibility to study mechanisms and therapies of multiple neurological 

and psychiatric diseases through translational research.    
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Introduction 

The effort to understand the connectional architecture of the brain has benefited 

tremendously from the advent of resting-state functional magnetic resonance imaging 

(rsfMRI). rsfMRI is a technique that non-invasively measures functional connectivity 

without external stimulation based on spontaneous low-frequency fluctuations of the 

fMRI signal (Biswal et al., 1995; Fox and Raichle, 2007). Using this technique, resting-

state functional connectivity (RSFC) was consistently revealed in multiple networks of 

the human brain (Biswal et al., 1995; Fox et al., 2005; Greicius et al., 2007), and was 

altered by effects of sleep, anesthesia and ageing (Stevens et al., 2008; Horovitz et al., 

2009). Recent studies have also delineated significant influences of various pathological 

conditions on RSFC (Greicius et al., 2007), indicating vital neurobiological and 

psychopathological relevance (Kennedy et al., 2006; Albert et al., 2009). 

Well-documented properties of intra- and inter-regional connectivity make it 

extremely intriguing to extend the RSFC research at local brain regions to global brain 

networks. Using graph-based analysis separately identified brain networks sub-serving 

different functions in humans were found to topologically organize in a non-trivial 

manner to support efficient information processing (Wang et al., 2010). Graph theoretical 

approaches in rsfMRI uses anatomically or functionally defined regions of interest (ROIs) 

as ‘vertices’, and connectivity between ROIs as ‘edges’. These approaches have revealed 

that the human brain’s networks are characterized by properties of small-world topology, 

highly connected hub and high modularity (Bassett and Bullmore, 2009). These findings 

are crucial because: (i) they identified the governing principle of the network 

organization of the human brain; and (ii) the same methods can be used to examine 
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alterations of topological configuration of the brain in response to external stimulation or 

in different pathological conditions (Liu et al., 2008; Bassett and Bullmore, 2009). 

Therefore, these methods may serve as a potential biomarker of various mental disorders. 

To date, the majority of studies on intrinsic connectional organization of the brain 

are conducted in humans. Systematic investigations of this issue in different animal 

models have been significantly underexplored (Vincent et al., 2007; Pawela et al., 2008; 

Schwarz et al., 2009), partially attributed to confounding effects of anesthetic agent used 

in animal studies on RSFC (Massimini et al., 2005; Lu et al., 2007; Liu et al., 2011). 

Consequently, it is very important to explore RSFC in awake animals because it can not 

only provide invaluable information regarding intrinsic connectional architecture of the 

animal brain and its reconfiguration in response to cognitive and emotional stimuli, but 

also may provide a unique window to explore comparative functional anatomy between 

species. Moreover, understanding connectional architecture in animals will allow us to 

investigate multiple psychiatric and neurological diseases using translational models. 

Recently, we have successfully demonstrated the feasibility of mapping RSFC in awake 

rats (Zhang et al., 2010b)  based on an awake animal imaging model that has been well 

established in our laboratory (King et al., 2005; Ferris et al., 2006). Using the same 

animal model here we have characterized the intrinsic network architecture in the awake 

rat.  

 

Materials and Methods 

Animals 
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Sixteen adult male Long-Evans (LE) rats (350 – 450 g for adult rats) were 

obtained from Charles River Laboratories. Animals were housed in Plexiglas cages (two 

per cage) and maintained in ambient temperature (22-24  C) on a 12-h light:12-h dark 

schedule. Food and water were provided ad libitum. All studies were approved by 

IACUC Committee of the University of Massachusetts Medical School. 

Acclimation procedure 

All rats were acclimated to MRI restraint and noise as previously described (King 

et al., 2005; Ferris et al., 2006). Briefly, rats were anesthetized with isoflurane and 

secured in Plexiglas stereotaxic head holder using plastic ear-bars. EMLA cream was 

applied tropically to minimize pain of mechanical restraint.  Animals were then placed 

into black opaque tube ‘mock scanner’ with tape-recorded scanner noises. Animals were 

acclimated for eight days, one session per day. The time for exposure was increased from 

15 minutes on the first day to 90 minutes on days 6, 7 and 8 with an increment of 15 

minutes per day (King et al., 2005). 

Animal preparation 

Under short-acting isoflurane gas the animal was fitted into a head restrainer with 

a built-in coil. The head was placed into the cylindrical head-holder with the canines 

secured over a bite bar, the nose secured with a nose clamp, and ears positioned inside the 

head-holder with adjustable screws fitted into lateral sleeves. The body of the animal was 

placed into a body restrainer that allowed unrestricted respiration. After the animal was 

set up, the isoflurane gas was removed and the restraining system was positioned in the 

magnet. Animals were fully conscious within 10-15 min. 
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MR experiments 

All experiments were carried out on a Bruker 4.7T/40cm horizontal magnet 

(Oxford, UK) interfaced with a Biospec Bruker console. A dual 1H radiofrequency (RF) 

coil configuration (Insight NeuroImaging Systems, Worcester, MA) consisting of a 

volume coil for exciting MRI signal and a surface coil for receiving MRI signal was used. 

The volume and surface coils were actively tuned and detuned to prevent mutual coil 

coupling.  

For each session, anatomical images were acquired with a fast spin-echo sequence 

(RARE) with the following parameters: TR = 2125ms, RARE factor = 8, TE = 50ms, 

matrix size = 256×256, FOV = 3.2cm×3.2cm, slice number = 18, slice thickness = 1mm. 

T2
*-weighted gradient-echo images coving the whole brain were then acquired using the 

echo-planar imaging (EPI) sequence with following parameters: TR = 1s, TE = 30ms, flip 

angle = 60°, matrix size = 64×64, FOV = 3.2cm×3.2cm, slice number=18, slice thickness 

= 1mm. Two hundred EPI volumes were acquired for each run, and six runs were 

obtained for each session. Rats were in resting state during all imaging sessions.  

Pre-processing of imaging data 

Imaging data was preprocessed using Medical Image Visualization and Analysis 

(MIVA, http://ccni.wpi.edu/), Statistical Parametric Mapping (SPM8) software 

(Wellcome Department of Cognitive Neurology, London, UK) and MATLAB 

(Mathworks, Inc., Sherborn, MA). All images were first aligned and co-registered with 

MIVA as previously described (Zhang et al., 2010a). After registration, all functional 

images were pre-processed with steps of motion correction, spatial smoothing (FWHM = 
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1mm), and voxel-wise linear detrending and 0.002-0.1Hz band-pass filtering. Data sets 

with excessive motion (>0.25 mm, 8 runs in total) were discarded, resulting in a total 

number of 88 runs for subsequent analysis. 

Independent component analysis 

Group ICA (Calhoun et al., 2001) was performed using GIFT toolbox 

(http://www.nitrc.org/projects/gift/). The number of components was set at 40 (Hutchison 

et al., 2010). The infomax algorithm was used to perform spatial ICA and independent 

components were scaled to z-scores. Time courses of individual components for 

individual scans were extracted. Among the spatial maps of all 40 components, two were 

located at cerebrospinal fluid (CSF) areas and were identified as artifactual components. 

Direct connectivity and graph theory analysis 

Time courses of 40 components were used in direct connectivity analysis. For 

each individual RSFC run, the partial correlation coefficient between time courses of 

each pair of components was calculated, conditioning on time courses of the other 38 

components. This step yielded a 40×40 partial correlation matrix for each run. Partial 

correlation coefficients (r values) were transformed to z scores and then averaged across 

all runs and across all animals. The final partial correlation matrix was generated by 

transforming the averaged z scores back to the r values. Each element of this matrix 

represented the strength of direct connectivity between two components. We only 

focused on positive partial correlation coefficients although negative coefficients were 

also detected. The significance of direct connectivity was calculated by using one sample 

t-test and thresholded at p-value < 0.01 (n = 88, uncorrected) based on all 88 partial 
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correlation matrices. The two artifactual components did not show significant 

connections with other components, and thus were eliminated in further graph-theory 

analysis. As a result, a 38×38 adjacency matrix A was generated with each element aij 

describing the significant direct connection between each two components based on the 

p-value: 

     
                                               
                                                                                           

  

Based on this adjacency matrix, the community structure of the rat brain was 

obtained by using the spectral partitioning method (Newman, 2006). Modularity Q is 

defined as follows: 

  
 

  
      

    

  
              [1] 

where m is the total number of edges in the network, and ki and kj are the degree of each 

vertex; ci is the group to which vertex i belongs and δ(ci,cj) is the Kronecker delta symbol.  

The partitioning analysis followed the procedure in a previous work (Newman, 

2006) and consisted of two steps. In the first step, we obtained a single solution of 

partitioning by using the spectral approach based on the leading eigenvector of the 

modularity matrix (Newman, 2006). This step, as pointed out by Newman, gave an 

excellent guide to the general form that the communities should take. In the second step, 

we combined the spectral method and the fine-tuning method described in Newman’s 

study to further optimize modularity (Newman, 2006). Considering the fact that the 

modularity function Q generated by combining the spectral method and the fine-tuning 

method is degenerate (Good et al., 2010), in the second step we computed a distribution 
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of Q values and a distribution of partitions by permuting the order of nodes in the 

adjacency matrix before feeding it into the optimization algorithm. Only the solution 

consistent over this distribution was reported. The degeneracy of Q goes approximately 

as 2k where k is the number of modules (Good et al., 2010). Since k=3 modules were 

found in the first step, >2k (20) repetitions were made to form the distribution of Q values 

and partitions. All analyses in the second step were performed using Brain Connectivity 

Toolbox (BCT) (Rubinov and Sporns, 2010). After partitioning, components belonging to 

the same module were displayed in the same colors in the figures.  

Clustering coefficient and shortest path length 

The averaged local clustering coefficient was calculated as 

  
 

 
 

   

        

 
       [2] 

where Ej is the number of edges connecting neighbors of vertex j, and Vj is the number of 

neighbors of vertex j. Pure random networks with same numbers of nodes and edges were 

constructed based on Erdős–Rényi model with 100 repetitions. Random networks with 

the same distribution of degrees as the current rat-brain network were constructed using 

BCT with 100 repetitions. The averaged minimum path length was calculated as 

  
 

       
                

     
   
     [3] 

where min_path is the shortest path length between vertices j and k.  

Reproducibility of inter-component direct connectivity  
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To estimate the reliability of inter-component connectivity across animals, we 

randomly divided data from all animals into two subgroups. The strength of inter-

component connectivity (defined as the amplitude of partial correlation coefficient 

between two components) between the two subgroups was quantitatively compared using 

the correlation of inter-component connectional strength between the two subgroups. 

This procedure was repeated 100 times and the correlation value averaged across 100 

repetitions was reported. 

 

Results 

Elementary clusters of RSFC revealed by group ICA 

Group ICA results were obtained from 16 conscious rats. Most components 

identified were located in specific anatomical regions as displayed in Figure 1.1. Fig. 1.1a 

showed a component located at anatomically well defined bilateral caudate putamen 

(CPu). Fig1.1b-e represented functional structures of bilateral hypothalamus, thalamus, 

hippocampus and somatosensory (SS) cortex, respectively. In addition, functionally 

related regions also tended to cluster into single components. Fig1.1f showed a 

component including bilateral prefrontal cortex (PFC) and anterior olfactory nucleus 

(AON), showing well-known reciprocal functional connections of the olfactory bulbs and 

other olfactory related areas with the prefrontal cortex in conscious rats (Cinelli et al., 

1987). Another olfactory-related component was located at olfactory tubercle (OT) (Fig 

1.1g). Fig 1.1h showed a complex component composed of anterior cingulate cortex 

(ACC), 
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Figure 1.1. Spatial maps of individual components identified by ICA. (a-h): Examples of 

ICA components. Left columns are atlas images. Anatomic regions corresponding to 

individual ICA components are annotated. Middle columns are individual ICA 

components overlaid on anatomical images in the coronal view. Distances to Bregma 

(mm) are labeled at the bottom of each image. Right columns are individual ICA 

components overlaid on anatomical images in the transversal view.   
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prelimbic (PL) and infralimbic (ILA) cortices, together being considered as extended 

areas of PFC in the rat.  

Figure 1.2 showed 38 ICA components (excluding two artifactual components) 

overlaid on anatomical images, revealing the global clustering pattern of RSFC in the rat 

brain. Bilateral components were dominant of all ICA components identified (24 out of 

38). In cortical regions, bilateral components (13 in total) were also dominant. The 

numbers of left and right cortical components were approximately equal (5 for left lateral 

components and 6 for right components). 

 

Direct connectivity between RSFC clusters calculated by partial correlation 

To evaluate inter-component connectional relationships, we calculated the direct 

connectivity between individual components by using partial correlation analysis. The 

partial correlation coefficient matrix of 40 components averaged across all animals was 

displayed in Figure 1.3a. Statistical comparison at the group level revealed the pattern of 

direct connections between different RSFC clusters (one sample t-test, p < 0.01). To 

estimate the reliability of inter-component connectivity across animals, we randomly 

divided data from all animals into two subgroups. Fig. 1.3b showed a high correlation of 

inter-component connectional strength between the two subgroups (r=0.71, p<10-6), 

suggesting great reproducibility in direct connectivity between RSFC clusters. This result 

did not change when we repeated the same process for 100 times (averaged correlation 

coefficient of 100 repetitions ravg = 0.68).  
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Figure 1.2. The spatial pattern of 38 group ICA components (excluding two artifactual 

components). Individual components are displayed with distinct colors. Distance to 

Bregma (mm) for each imaging slice is labeled at the bottom of each image. 
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Figure 1.3. Inter-component connectional relationships. (a) The partial correlation 

coefficient matrix averaged across all rats. Partial correlation coefficients (r values) were 

first transformed to z scores and then averaged across all runs and across all animals. The 

final partial correlation matrix was generated by transforming the averaged z scores back 

to the r values. All diagonal values were set to zero. (b) Correlation of direct connectional 

strength (r values) between two randomly divided subgroups. The high correlation 

coefficient (0.71) suggests that inter-component connections across animals are highly 

reproducible.  
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Graph-theory based analysis of the rat brain networks 

The graph demonstration of significant direct connections between ICA 

components was shown in Fig. 1.4a. The total edge number was 78, yielding the 

connection density of 5.55%.The spectral partitioning algorithm based on the leading 

eigenvector (Newman, 2006) was applied to this graph (the first step of partitioning, see 

Methods) and revealed that the rat whole-brain network was segregated into three 

modules to achieve maximum modularity (Q = 0.414, Fig. 1.4). This modularity value 

was significantly higher than both random networks with same nodes and edges and 

random networks with same degree distribution (p<0.01 for both types of random 

networks), suggesting a prominent modular structure of intrinsic connectional 

architecture of the rat brain. Of the three modules, module 1 was dominated by cortical 

regions including the dorsal olfactory bulb, motor cortex, somatosensory cortex, insular 

cortex and visual cortex as shown in Fig 1.4b, indicating strong ‘direct’ communications 

across the cortical ribbon in the rat (Zhang et al., 2010a). Module 2 included the olfactory 

system, PFC, ACC, CPu, posterior somatosensory cortex, thalamus, hypothalamus, 

hippocampus and auditory cortex. This module highlighted the integration of sensory 

input, cognitive processing and output (Paxinos, 2004). Module 3 consisted of the PFC, 

insular cortex, amygdala, hypothalamus and auditory cortex. This module might be 

related to emotion and autonomic regulation in the conscious rat (Paxinos, 2004).  

To further maximize the final value of modularity, fine-tuning stages described in 

Newman’s spectral partitioning analysis (Newman, 2006) were included in the 2nd step of 

the partitioning procedure. Considering that the modularity function Q is degenerate and 

leads to multiple solutions of graph partitioning (Good et al., 2010), we computed the 
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Figure 1.4. Segregation of the whole-brain network of the awake rat brain. (a). The 

global functional network constructed based on significant inter-component connections. 

Each node represents an ICA component labeled with its corresponding anatomy and the 

ICA number. Each edge represents a significant connection between two components.  

Nodes within the same module are displayed in the same color (red, green and yellow). 

Three modules were obtained by the spectral partitioning algorithm. Abbreviations: B, 

bilateral; L, left; R, right. ACC, anterior cingulate cortex; AMG, amygdala; AON, 

anterior olfactory nucleus; CPu, caudate-putamen; INS, insula; NAcc, nucleus accumbens; 

MO, motor cortex; HC, hippocampus; HY, hypothalamus; OB, olfactory bulb; PFC, 

prefrontal cortex; Pir, piriform cortex; PTL, parietal cortex; S, septum; SS, 

somatosensory cortex; TE, temporal cortex; TH, thalamus; VIS, visual cortex. (b-d). 

Community structures of the whole-brain network revealed by spectral partitioning. (b). 

The first module is dominated by cortical ribbon. (c) The second module is highlighted 

by the olfactory pathway and its interaction with PFC, and the integration of other 

sensory input, cognitive processing and output in cortical and subcortical regions like 

thalamus and hippocampus. (d) The third module includes regions important for 

emotional and autonomic functions such as amygdala, insular cortex, PFC and 

hypothalamus. The same colors are used in (b), (c) and (d) as those in (a). Distance to 

Bregma (mm) is labeled at the bottom of each image. 
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distribution of Q values and partitions. The distribution of Q values ranged from 0.392 to 

0.429 with the mean value of 0.416, which only slightly improved the Q value of 0.414 

obtained in the first step. In all repetitions, the majority yielded 4 modules (12 of 20 

repetitions). The major pattern of partitioning showed very high stability. Consistent with 

the partitioning result from the first step, two modules identical to the ‘green’ and ‘yellow’ 

modules as shown in Fig 1.4 were highly consistent in all 20 partitions with minimal 

variation. The ‘yellow’ module was found in all repetitions and the ‘green’ module was 

found in 19 of 20 repetitions. However, the ‘red’ module was less stable and tended to be 

further divided into two submodules as shown in Figure 1.5. The first submodule was 

found in 14 of 20 repetitions and the second submodule was found in 13 or 20 repetitions. 

This reduced stability of the cortical module might indicate higher complexity of cortical 

network organization.  

 Furthermore, the connectional architecture of the rat brain showed typical 

features of small-worldness characterized by high clustering coefficient and short 

minimum path length. When comparing to pure random networks with the same numbers 

of nodes and edges, the ratio of clustering coefficient (C/Crandom) was 1.7 and the ratio of 

minimum path length (L/L random) is 1.08, indicating a higher level of clustering and a 

similar minimum path length than pure randomized networks. The ratios of these two 

metrics compared to a random network with the same distribution of degrees showed 

similar results, C/Crandom=1.5, and L/Lrandom=1.02. These comparisons collectively 

suggest that the rat brain is a small-world network (Watts and Strogatz, 1998).  
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Figure 1.5. Community structures dominant in 20 repetitions of the spectral partitioning 

method combined with the fine-tuning method. Distance to Bregma (mm) is labeled at 

the bottom of each image. The yellow and green modules are almost identical to those 

shown in Fig. 1.4, whereas the module of cortical regions is further divided into two sub-

modules. 
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Discussion 

In this study, RSFC in awake rats was decomposed into 40 spatial components 

using group ICA. The direct connectional relationships between these components were 

evaluated using partial correlation, revealing a complex network linking different regions 

across the whole brain. This brain network was characterized by the features of small 

worldness with a large modularity, a large clustering coefficient and a small shortest path 

length. Furthermore, using a graph-theory approach, the whole-brain network was 

segregated into community structures.   

To our knowledge, this is the first study utilizing group ICA to study RSFC in 

awake rats. ICA is well established in rsfMRI for decomposing functional clusters in the 

human brain. However, its application in the rat was rather limited. There is currently 

only one study that utilized ICA to analyze RSFC of individual anesthetized rat without 

group analysis (Hutchison et al., 2010). Lack of such effort has significantly limited the 

applicability of rsfMRI particularly in animal models. In the present study, images of all 

individual rats were aligned to a standard rat atlas, and thus allowed the group results to 

be obtained using group ICA. In addition, the awake condition avoided confounding 

effects of anesthesia. We found that the majority of components identified were located 

in anatomically well-defined regions, indicating a convergence between anatomical 

parcellation and functional systems. Some components such as bilateral somatosensory, 

motor, visual and auditory cortices are in excellent consistency with the literature (Peltier 

et al., 2005; Lu et al., 2007; Liu et al., 2011). Spatial maps of subcortical regions 

including CPu, thalamus, hypothalamus and hippocampus also well agree with ICA 

results in individual anesthetized rats (Hutchison et al., 2010), suggesting highly 
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reproducible patterns of cortical and subcortical clustering across individuals. However, 

we also observed several less reported yet important clusters. For instance, there were 

components related to olfactory and executive functions. Olfaction is considered one of 

the most important sensory inputs in the rodent. Prominent components of olfactory bulb, 

AON and OT indicated functional significance of olfaction in awake rats. Moreover, PFC 

and AON were clustered into a single component, suggesting a close association between 

olfactory and executive functions (Cinelli et al., 1987).  

To further evaluate inter-component connectional relationships, we applied partial 

correlation analysis on time courses of individual ICA components. Partial correlation 

analysis is an approach for estimating ‘direct’ statistical association by controlling out 

correlation mediated by other components. This analysis method essentially eliminated a 

large portion of connections that were mediated by other nodes with only ‘direct’ 

connections left. A recent study that evaluated various network modeling methods 

indicated that partial correlation performed very well in revealing network connections 

(Smith et al., 2010). In addition, this analysis could reveal possible long-distance 

functional integration. Significant amount of direct connection identified in the present 

study is consistent with anatomical connections in the rat. For instance, direct connection 

between thalamus and hippocampus observed in the present study has been well 

documented in the literature using various techniques (Wouterlood et al., 1990; 

Dolleman-Van Der Weel and Witter, 1996). These two regions and their bi-directional 

connections are critical components of the anatomical system sub-serving spatial memory 

(Henry et al., 2004). In addition, connections from the PFC to cingulate cortex and NAcc 

as shown in our data have been implicated in emotional processing (Hajos et al., 1998). 
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We also observed that thalamus bridges hippocampus and ACC. In accordance with this 

result, it was found that nucleus reuniens of the midline thalamus might serve as the link 

sending projection to the hippocampus from the medial PFC such as ACC (Vertes et al., 

2007).  

 With the global functional network constructed based on inter-component 

connections (Fig.1.4a), the first question to consider is whether the rat brain exhibits the 

same network characteristics reported in humans such as small-worldness. Human studies 

have indicated robust ‘small-world’ characteristics in both structural and functional 

connectivity networks. A small-world network is described by a high clustering 

coefficient and low minimum path length compared to random networks. Small-world 

networks allow high efficiency of information flow at a low wiring cost for both local 

(with a high clustering coefficient) and long distance (with a low minimum path length). 

Although small-worldness represents a crucial feature of brain organization in the human, 

there is a paucity of information regarding small-world networks in non-human subjects. 

Previous studies reported similar small-worldness of anatomical networks in the macaque 

visual cortex and cat whole cortex (Hilgetag et al., 2000). However, no study yet 

specifically addressed this question using functional connectivity in conscious rats. Our 

network metrics showed that in the rat brain, the whole-brain network is considerably 

more cliquish than random networks, while retaining approximately the same minimum 

path length. These results are quantitatively comparable to the human brain and suggest 

that small-worldness is conserved in the rat functional networks.  

In addition to the small-world features, high modularity is also thought to be an 

important governing principle in brain networks. Several studies consistently reported 
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that the resting-state brain network in humans exhibited robust community structure 

(Meunier et al., 2009; Wang et al., 2009). High modularity values of the rat whole-brain 

network obtained in our study indicated a robust community structure of the global 

network in the awake rat brain at the resting state. This result indicated that the rat brain 

shares basic topological characteristics with the human brain.  

By utilizing Newman’s spectral partitioning method, the rat whole-brain network 

was segregated into three modules. The first module predominantly extended across the 

cortical ribbon, indicating a strong inter-cortical communication across the cortex (Zhang 

et al., 2010a). The second module highlighted the olfactory pathway and its interaction 

with PFC, and the integration of other sensory input, cognitive processing and output in 

cortical and subcortical regions. Regions in the third module including PFC, insular 

cortex, hypothalamus and amygdala are all key components sub-serving emotional and 

autonomic regulations (Paxinos, 2004). Interestingly, using phMRI Schwarz and others 

reported very similar results with a module dominated by cortical regions and a second 

module primarily with subcortical regions (Schwarz et al., 2009). Consistent with the 

intrinsic modular structure observed in the resting-state human brain, our rat results also 

showed long-distance interaction within modules.  

To address the issue of degeneracy of the modularity function, distributions of Q 

values and community structures were obtained. The result showed that two of the three 

modules previously identified (yellow and green modules) were highly consistent across 

all repetitions with little variation, whereas the community structure of cortical regions 

was further divided into two sub-modules. We speculate that the relatively lower stability 

of this module might reflect higher complexity of the organization of cortical networks.  
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The ‘vertices’ in our graph are ICA components as oppose to individual voxels or 

anatomically defined ROIs in most other studies. The strategy of using ICA components 

to construct global networks is based on functionally segregated elements of the brain. 

Thus, we avoided anatomical restraint of ROI definitions. Recent evidence suggests that 

different anatomical parcellation schemes had significant influences on network 

topological properties (Wang et al., 2009) and functionally inaccurate ROIs could 

severely damage the network estimation (Smith et al., 2010). Therefore, our approach 

might have significant advantages in constructing the whole brain network compared to 

anatomical ROI-based approaches. Relative to voxel-by-voxel approaches, our approach 

is more computationally efficient. 

There are several methodological limitations of the present study. First, an 

unweighted network was used in graph-theory analysis. Exploration on weighted 

networks should be interesting. Second, although rats were fully awake during RSFC 

scans, they were briefly anesthetized during setup. The effects of brief anesthesia on later 

RSFC need further investigation. Third, the ICA components number was arbitrary and 

other numbers can be used. In addition, negative inter-component partial correlation 

coefficients (approximately half of all correlation coefficients) were not analyzed but can 

potentially contain important information regarding neural networks. This information 

should be taken into consideration in future studies. Furthermore, although inter-

component connectivity showed high consistency in the present study, individual 

variability particularly in topographical properties needs future examination.  

Our understanding of the brain function has substantially benefited from 

preclinical neurobiological investigation in animal models, primarily in rodents. The 
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present study systematically investigated resting-state functional networks in the awake 

rat brain. It provided a functional atlas of the intrinsic connectional architecture of the rat 

brain at both intra- and inter-region levels. More investigations are still needed to further 

characterize connectional architecture in the rat brain. For example, it is unknown 

whether functional networks in rats are organized differently at different spatial scales, or 

whether significant community structure exists within each module. It is also unknown 

whether the rat brain has the default mode network found in humans and primates 

(Raichle et al., 2001; Vincent et al., 2007). Nevertheless, the current work revealed that 

the conscious rat brain conserved topological properties like small-worldness as observed 

in human. Combined with various invasive procedures, pharmacological interventions 

and genetic manipulations, it will serve as a prelude to future applications of RSFC in 

animal models.  
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Abstract 

The neural mechanism of unconsciousness has been a major unsolved question in 

neuroscience despite its vital role in brain states like coma and anesthesia. The existing 

literature suggests that neural connections, information integration and conscious states 

are closely related. Indeed, alterations in several important neural circuitries and 

networks during unconscious conditions have been reported. However, how the whole-

brain network is topologically reorganized to support different patterns of information 

transfer at unconscious states remains unknown. Here we directly compared whole-brain 

neural networks in an awake and an anesthetized state in rodents. Consistent with our 

previous report, the awake rat brain was organized in a non-trivial manner and conserved 

fundamental topological properties as the human brain. Strikingly, these topological 

features were well maintained in the anesthetized brain. Meanwhile, local neural 

networks were reorganized with altered local network properties. The connectional 

strength between brain regions was also considerably different between the awake and 

anesthetized conditions. Interestingly, we found that long-distance connections were not 

preferentially reduced in the anesthetized condition, arguing against the hypothesis that 

loss of long-distance connections is characteristic to unconsciousness. These findings 

collectively show that the integrity of the whole-brain network can be conserved between 

widely dissimilar physiologic states while local neural networks can flexibly adapt to new 

conditions. They also illustrate that the governing principles of intrinsic brain 

organization might represent fundamental characteristics of the healthy brain. With the 

unique spatial and temporal scales of rsfMRI, this study has opened a new avenue for 

understanding the neural mechanism of (un)consciousness. 



63 
 

 

Introduction 

Loss of consciousness is not unusual in life. Anesthetic-induced unconsciousness 

is particularly interesting given its essential role in modern medicine. Although the 

molecular mechanisms of various anesthetic agents have been fairly well understood 

(Alkire et al., 2008; Brown et al., 2011), the system-level neural basis underlying 

anesthetic-induced unconsciousness is still obscure. In particular, how the whole-brain 

network is reorganized to support new patterns of information exchange at the 

anesthetized state remains largely unknown. Given the tight linkage among neural 

connectivity, information integration and conscious states (Tononi, 2008), investigating 

this issue is essential for understanding consciousness. 

The emerging technique of resting-state functional magnetic resonance imaging 

(rsfMRI) has been utilized to understand the alterations in neural circuitries and networks 

at unconscious conditions. Unlike conventional task-based fMRI, rsfMRI does not 

involve active stimuli but relies on low-frequency intrinsic fluctuations of the fMRI 

signal to examine functional connectivity (FC). Therefore, rsfMRI is particularly suitable 

for studies of unconsciousness. With this technique, it has been reported that FC might be 

correlated with the degree of consciousness from locked-in syndrome, minimally 

conscious state, vegetative state to brain death (Boly et al., 2009; Cauda et al., 2009; 

Vanhaudenhuyse et al., 2010). In addition, changes in thalamocortical connectivity and 

frontoparietal connectivity under anesthetic-induced unconsciousness have been reported 

in humans (Boveroux et al., 2010; Deshpande et al., 2010; Martuzzi et al., 2010). 

Furthermore, effort has been made to explore the alteration of FC in several animal 
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models at anesthetized conditions, though mainly by comparing between different 

anesthetic depths without the reference of the awake condition (Vincent et al., 2007; 

Moeller et al., 2009; Wang et al., 2010; Williams et al., 2010; Liu et al., 2011).  

Despite these important contributions, it is unclear whether and how the 

organization of global functional networks is altered during unconsciousness. This issue 

is critical because it directly addresses the impact of unconsciousness on the governing 

principles of brain network organization. The organizational principles of human brain 

networks have been extensively studied by neuroimaging techniques in combination with 

graph-theory analysis. In such analysis, the brain network is modeled as a graph with 

nodes being individual brain regions and edges being connections between nodes. 

Various topological properties like clustering coefficient can be evaluated for brain 

graphs (Rubinov and Sporns, 2010). Accumulating evidence has suggested that the 

topological architecture of the human brain network is governed by several fundamental 

principles such like small-worldness and modularity (Bullmore and Bassett, 2010). 

Importantly, it has been found that topological properties of functional networks are 

susceptible to various pathological disruptions (Bassett and Bullmore, 2009) such as 

Alzheimer’s disease (Supekar et al., 2008) and schizophrenia (Liu et al., 2008).  

We previously reported that the awake rat brain conserved fundamental 

topological properties as the human brain (King et al., 2005; Zhang et al., 2010b; Liang et 

al., 2011, 2012a). To further explore the intrinsic organization of the unconscious rat 

brain, here we have directly compared resting-state neural networks between the awake 

and anesthetized states. The changes of topology and FC strength of the anesthetized 

brain networks have been examined.  
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Materials and Methods: 

Animal preparation and MR experiment 

Imaging data were acquired in a previous study (Liang et al., 2012a) and re-

processed for the purpose of this study. All studies were approved by the IACUC 

Committee of the University of Massachusetts Medical School. Briefly, 24 adult male 

Long-Evans (LE) rats (300-400g) were housed in Plexiglas cages (two to a cage) and 

maintained in ambient temperature (22-24   C) on a 12-h light : 12-h dark schedule. Food 

and water were provided ad libitum. Rats were acclimated to MRI restraint and noise for 

seven days before imaging (detailed acclimation procedures were described in our 

previous publications (King et al., 2005; Zhang et al., 2010b; Liang et al., 2011, 2012a)). 

On the imaging day, the animal was first briefly anesthetized with isoflurane when it was 

fit to a head restrainer with a built-in saddle coil. Isoflurane was then discontinued and 

the restrainer was placed in the scanner. Imaging sessions started approximately 15-20 

mins after animals were placed in the magnet. All rats were fully awake during imaging. 

Among all 24 rats, 16 rats underwent the imaging session at the anesthetized condition at 

minimum 7 days after they were imaged at the awake condition. In this experiment, the 

animal preparation procedure was the same as that in the awake imaging experiment. 

Isoflurane gas (2%) was then delivered to the animal through a nose cone in the magnet 

to maintain the anesthetized state. The body temperature of the animal was monitored and 

maintained at 37°C ± 0.5°C by using a feedback controlling heating pad.  
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All experiments were carried out on a Bruker 4.7T/40cm horizontal magnet 

(Oxford, UK) interfaced with a Biospec Bruker console. A dual 1H radiofrequency (RF) 

coil configuration (Insight NeuroImaging Systems, Worcester, MA) consisting of a 

volume coil for exciting the water proton spins and a surface coil for receiving the MRI 

signal was used. The volume and surface coils were actively tuned and detuned to 

prevent mutual coil coupling. For each session, anatomical images were acquired by 

using a fast spin-echo sequence (RARE) with the following parameters: TR = 2125ms, 

RARE factor = 8, TE = 50ms, matrix size = 256×256, FOV = 3.2cm×3.2cm, slice 

number = 18, slice thickness = 1mm. Gradient-echo images covering the whole brain 

were then acquired using the echo-planar imaging (EPI) sequence with the following 

parameters: TR = 1s, TE = 30ms, flip angle = 60°, matrix size = 64×64, FOV = 

3.2cm×3.2cm, slice number = 18, slice thickness = 1mm. Two hundred volumes were 

acquired for each run, and six runs were obtained for each session. 

Data preprocessing 

All images were co-registered to a fully segmented rat atlas, and were then subject 

to motion correction with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), spatial smoothing 

(FWHM = 1mm), regression of motion parameters and the signals of white matter and 

ventricles, and 0.002-0.1Hz band-pass filtering. Scans with excessive motion (>0.25 mm) 

were discarded.  

Construction of whole-brain resting-state functional network 

The rat brain was parcellated into 114 anatomical ROIs (57 regions for each 

hemisphere) using MIVA (http://ccni.wpi.edu/, Figure 2.1). Anatomical definitions were 



67 
 

based on the Swanson atlas (Swanson, 2004).The complete list of all anatomical ROIs 

was included in Table 2.1. Based on this parcellation scheme, a regionally averaged time 

course for each ROI was generated by averaging the time courses of all voxels within the 

ROI. FC was evaluated by Pearson correlation between the time courses of each pair of 

ROIs. Correlation coefficients (i.e. r values) were transformed to z scores by using 

Fisher’s z transformation and averaged across all runs for each subject. Averaged z scores 

were then transformed back to r values. As a result, a 114×114 matrix of correlation 

coefficients was generated for each subject and each element of this matrix represented 

the strength of FC between two ROIs. To examine the reliability of FC, matrices of the 

awake and anesthetized conditions were randomly split into two subgroups, respectively, 

and averaged within each subgroup. The correlation between the FC strength of all 

functional connections between the two subgroups (i.e. the correlation between the 

corresponding elements of the two matrices) was then calculated for each condition. This 

process was repeated 1000 times to generate a measure of reliability. The result revealed 

high reliability in both awake (mean+SD = 0.93+0.01) and anesthetized (mean+SD = 

0.90+0.02) conditions.  

Graph theory analysis of the whole-brain network 

In a brain graph, a node represented an anatomical ROI and an edge represented 

the connectional strength between two ROIs. All brain graphs were visualized by Pajek 

(http://pajek.imfm.si/doku.php). Matrices of Individual subjects generated in the previous  
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Figure 2.1. Parcellation scheme of the rat brain. Colored regions represent anatomically 

parcellated ROIs overlaid on anatomical images. Distance to Bregma (mm) is labeled at 

the bottom of each slice. 
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Table 2.1. List of ROIs. From left: the first column lists the number of the anatomical-

functional system to which each ROI is affiliated (see Table 2.3); the second column lists 

the number of each ROI (the same number used in Figure 2.5); the third column lists the 

abbreviation of each ROI; the fourth column lists the full name of each ROI. 
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Anatomical-

functional 

system 

ROI(left, right) abbreviation full name 

1 1, 58 AON anterior olfactory nucleus 

1 2, 59 MOB main olfactory bulb 

1 3, 60 PIR piriform area 

1 4, 61 ILA infralimbic area 

1 5, 62 TR postpiriform transition area 

1 6, 63 MOp primary somatomotor area 

1 7, 64 MOs secondary somatomotor areas 

1 8, 65 GU gustatory area 

1 9, 66 VISC visceral area 

1 10, 67 TT tenia tecta 

1 11, 68 SSp primary somatosensory area 

1 12, 69 SSs 
supplemental somatosensory 

area 

1 13, 70 AUD auditory areas 

1 14, 71 VIS visual areas 

2 15, 72 PTL parietal region 

2 16, 73 TeV 
ventral temporal association 

areas 

2 17, 74 PL prelimbic area 

2 18, 75 ORB orbital area 

2 19, 76 ACA anterior cingulate area 

2 20, 77 AI agranular insular area 

2 21, 78 ECT ectorhinal area 
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2 22, 79 RSP retrosplenial area 

3 23, 80 ENT entorhinal area 

3 24, 81 PAR parasubiculum 

3 25, 82 POST postsubiculum 

3 26, 83 PRE presubiculum 

3 27, 84 SUB subiculum 

4 28, 85 CA1 field CA1 

4 29, 86 DG dentate gyrus 

4 30, 87 CA3 field CA3 

5 31, 88 COA cortical amygdalar nucleus 

5 32, 89 AMG amygdala 

6 33, 90 ACB nucleus accumbens 

6 34, 91 CP caudoputamen 

6 35, 92 OT olfactory tubercle 

6 36, 93 FS striatal fundus 

6 37, 94 LSX lateral septal complex 

7 38, 95 BST bed nuclei stria terminalis 

7 39, 96 MSC medial septal complex 

7 40, 97 GP globus pallidus 

7 41, 98 SI substantia innominata 

8 42, 99 MG medial geniculate complex 

8 43, 100 ATN 
anterior nuclei, dorsal 

thalamus 

8 44, 101 VENT ventral nuclei, dorsal thalamus 

8 45, 102 LAT lateral nuclei, dorsal thalamus 
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8 46, 103 MED medial nuclei, dorsal thalamus 

8 47, 104 MTN 
midline group, dorsal 

thalamus 

8 48, 105 LG lateral geniculate complex 

8 49, 106 RT reticular nucleus thalamus 

8 50, 107 ZI zona incerta 

9 51, 108 MEZ medial zone of hypothalamus 

9 52, 109 LZ lateral zone of hypothalamus 

9 53, 110 PVZ 
periventricular zone of 

hypothalamus 

0 54, 111 SNr substantia nigra 

0 55, 112 VTA ventral tegmental area 

0 56, 113 TRN 
tegmental reticular nucleus, 

pontine gray 

0 57, 114 CLA claustrum 
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step were subject to density-based thresholding, similar to the procedure used by Zhang 

et. al. (Zhang et al., 2011). Network density was defined by the ratio of existing edges to 

the maximal number of all possible edges in the network.  A range of network densities 

were selected based on the following criteria: 1) The lower boundary was selected to 

ensure the averaged degree was not smaller than 2×log(N), where N was the total number 

of nodes (i.e. N=114). This lower boundary guaranteed that the resulting networks were 

estimable networks (Watts and Strogatz, 1998).  The upper boundary was selected to 

ensure that mean small-worldness (see the definition of small-worldness below) of the 

awake brain was not smaller than 1.5. This upper boundary ensured that thresholded 

networks were biologically plausible in the sense of being small-world networks and had 

as few spurious edges as possible. As a result, the network density of each brain graph 

was thresholded in the range from 9% to 26% with a step size of 1%. At each threshold in 

this range, correlation coefficients of each matrix were first sorted from high numbers to 

low numbers. A binary matrix was then obtained by retaining the highest correlation 

coefficients and setting their values to 1, and the correlation coefficients of the rest of the 

matrix were set to 0. The portion of the correlation coefficients retained was equal to the 

threshold chosen (e.g. 9%). The averaged size of the largest connected networks ranged 

from 99.3 (at 9% density) to 112.5 (at 26% density) nodes for the awake condition, and 

from 101.2 (at 9% density) to 113.5 (at 26% density) nodes for the anesthetized condition.       

The local clustering coefficient c was defined as follows: 

  
   

        
, 
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where Ej is the number of edges connecting the neighbors of node j, and Vj is the number 

of neighbors of node  j. The global clustering coefficient C is the average of local 

clustering coefficients of all nodes within the network: 

  
 

 
   

   , 

where m is the total number of nodes of the network. Mean shortest path length was 

defined as the harmonic mean of the shortest path length between all possible pairs of 

nodes: 

  
 

       

 

   
               

 
     

   
   

, 

where min_path is the shortest path length between nodes i and j. The harmonic mean 

was used to address the issue of infinite path length between disconnected nodes. Global 

clustering coefficient and mean shortest path length was normalized to the corresponding 

metrics of random networks (see below for details about random networks). Small-

worldness was defined as the ratio of normalized global clustering coefficient to 

normalized mean shortest path length.  

Betweeness centrality of a node υ was defined as follows: 

     
 

           
            , 

where        = 1 if the shortest path between node s and t passes through node υ, 

otherwise it was 0.                                                                                                                                                                                                                                                                                                         

Modularity was defined as follows: 
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           , 

where ki and kj were the degree of nodes i and j, respectively; ci was the group to which 

node i belongs, and δ(ci,cj) was the Kronecker delta symbol. For each network, 

Newman’s algorithm (Newman, 2006) implemented in the Brain connectivity toolbox 

(https://sites.google.com/a/brain-connectivity-toolbox.net/bct/) was repeated 100 times 

and the modularity (Q) calculated for each repetition was then averaged. Modularity 

values were normalized to the corresponding values of random networks. 

It has been reported that modularity-based network partition algorithms are 

complicated by the issue of degeneracy (Good et al., 2010). To avoid this problem and 

identify consistent community structures of the whole-brain functional network, the 

within-module connectivity likelihood method was adopted in the present study (Rubinov 

and Sporns, 2011). In the connectivity likelihood matrix, the value of each matrix entry 

measured how likely both nodes (i.e. the column and row of this entry) were within the 

same module in all network partitions. Specifically, a matrix entry was assigned to 1 for 

each network partition if both nodes belonged to the same module and 0 otherwise. These 

matrices were then averaged across all partition repetitions, all network densities and then 

all subjects to generate the final connectivity likelihood matrix. This approach has been 

utilized to reconstruct consistent community structures across a large number of network 

partitions (Rubinov and Sporns, 2011). In the current study the likelihood matrix is based 

on the total partition numbers of 100 repetitions for each network × 18 network densities 

for each subject × the total number of subjects in each condition. The final community 

structure was created by thresholding the averaged within-module connectivity likelihood 
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matrix at 0.75 for both conditions, meaning that if the likelihood for two nodes belonging 

to the same module was above 0.75, they were considered in the same module.    

To normalize network metrics of the awake and anesthetized conditions, each 

empirical network was randomized to generate 100 random networks with the same 

degree distribution. Network metrics (global clustering coefficient, mean shortest path 

length and modularity) of random networks were then calculated. Finally, all empirical 

metrics were normalized to the corresponding metrics of random networks. 

The area-under-the-curve (AUC) method was utilized to summarize the results of 

aforementioned network metrics across the range of network density. 

Statistics 

The statistical analysis of network metrics was performed with nonparametric 

permutation test (Nichols and Holmes, 2002). First, the difference between the means of 

the two conditions was calculated as the actual group difference. Second, the combined 

pool of the two conditions was resampled into two new groups. The mean of these two 

re-sampled groups was then calculated. This process was repeated for 50000 times to 

generate a null distribution of the difference of the group mean. The p-value of the actual 

group difference was calculated as the percentile in the null distribution. For local 

network metrics (i.e. local clustering coefficient and betweeness centrality), false 

discovery rate (FDR) correction was additionally performed to correct for multiple 

comparisons. P values < 0.05 after FDR correction was considered statistically significant.       

Connectional strength 
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The connectional strength was compared between the corresponding connections 

at the awake and anesthetized conditions with the same permutation test. P value < 0.05 

after FDR correction was deemed statistically significant. 

Physical distance 

The physical distance between two anatomical ROIs was defined as the Euclidean 

distance between the two ROIs’ centers of mass. Coordinates of ROIs were obtained 

from the parcellated anatomical template. Mean connectivity strength was plotted against 

the physical distance, binned at 1mm, for both conditions.  

 

Results 

The brain network was reorganized under the same governing principles at the 

anesthetized state.        

Although anesthesia can dramatically impact numerous brain functions, it is 

unknown whether the global functional neural network remained organized under similar 

principles. Here we compared four global network topological metrics (global clustering 

coefficient, mean shortest path length, small-worldness and modularity) between the 

awake and anesthetized conditions. Strikingly, all four metrics showed no statistically 

significant difference between the two conditions (Figure 2.2). Similar global clustering 

coefficients (p=0.18) indicated a close level of “cliquishness” between brain regions; and 

similar mean shortest path length (p=0.34) implied indistinguishable communication 

efficiency. Small-worldness, measured by the ratio of the first two metrics, was also not 
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Figure 2.2. Consistent global topological features including a) global clustering 

coefficients (p = 0.18), b) mean shortest path lengths (p = 0.34), c) small-worldness 

(p=0.25), and d) modularity (p=0.32) during the awake and anesthetized states. Error bars 

indicated S.E.M. The difference between the awake and anesthetized states was evaluated 

by using nonparametric permutation test. Statistical significance was thresholded at 

p<0.05. 
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significantly different between the two conditions (p=0.25). Lastly, comparing 

modularity between the awake and anesthetized conditions revealed a similar level of 

modular organization (p value=0.32). These results collectively demonstrated that the 

global neural network at the anesthetized state was topologically organized under the 

same governing principles as the awake state.  

 

In spite of similar global topological properties, local topological metrics such as  

local clustering coefficient and betweeness centrality demonstrated pronounced changes 

in specific brain areas (Table 2.2, p<0.05, FDR corrected). In particular, regions of the 

basal ganglia including nucleus accumbens and septal nuclei showed significantly 

reduced local clustering coefficients in the anesthetized condition. Also, several thalamic 

nuclei showed decreased betweeness centrality (Table 2.2), indicating impaired 

information relay in the thalamus in the anesthetized rat brain.  

Additional changes in local connectivity were examined through the measure of 

community structure. By utilizing the within-module connectivity likelihood method (see 

Methods), it is possible to reveal consistent modules across different network densities 

and subjects in the awake and anesthetized conditions, respectively (Rubinov and Sporns, 

2011). Figure 2.3a showed that the awake rat brain was primarily comprised of a "frontal 

module" (red), a "sensory-motor module" (light blue), a "thalamo-hypothalamo module" 

(green), a “thalamo-hippocampal-posterior cortices” module (dark blue), a “bilateral 

retrosplenial cortex” module and an “amygdala complex" module. By contrast, the 

anesthetized rat brain was considerably re-organized in community structure. The cortex  
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Table 2.2. Altered local network metrics in the awake and anesthetized rat brain. Crosses 

indicate significantly decreased local network metrics in the anesthetized rat brain. L: left, 

R: right. 
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 ROI  L  R  

local clustering coefficient  ACB ×  × 
 AON  ×  

 MSC  × × 
 LSX  × × 
 TT  × × 
betweeness centrality  LAT  ×  
 MTN  ×  
 LG  ×  
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Figure 2.3. Community structures in the (a) awake and (b) anesthetized conditions. ROIs 

with the same color are within the same module. ROIs without the annotation of L or R 

suggest the modules include bilateral sides. L: left, R: right, A: anterior, P: posterior, V: 

ventral, D: dorsal. 
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was mainly divided into an anterior module and a posterior module, and subcortical areas 

were reorganized into a hypothalamo-thalamo-hippocampal module and a basal ganglia 

module. Notably, unlike the awake brain in which cortical or subcortical regions 

frequently mingled together into a single community structure, cortex and subcortex 

tended to be isolated in separate communities at the anesthetized state. For example, all 

thalamic nuclei, the hypothalamus and the hippocampus were clustered in one module 

without much involvement of cortex in the anesthetized condition (Fig 2.3b, dark blue), 

whereas part of thalamus and the whole hippocampus were in the same community with 

posterior cortical regions at the awake condition (Fig 2.3a, dark blue). The same scenario 

also occurred in the “frontal” module of the awake brain which included the frontal 

cortex and basal ganglia, whereas they were separated into different modules in the 

anesthetized brain (Fig 2.3b, light blue). These results collectively indicated that the 

cortical-subcortical communication was significantly compromised in the anesthetized 

condition. 

  

Alterations in FC strength at specific anatomical locations 

The distributions of connectivity strength of all functional connections across the 

whole brain in both awake and anesthetized conditions were shown in Figure 2.4. 

Consistent with previous studies (Peltier et al., 2005; Boveroux et al., 2010; Martuzzi et 

al., 2010), the connectivity strength on average was significantly lower in the 

anesthetized condition (two sample t -test, p value<1e-10). Specific anatomical  
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Figure 2.4. Histograms of functional connectivity strength in (a) awake and (b) 

anesthetized conditions. The connectivity strength was on average significantly weaker in 

the anesthetized condition (two-sample t-test, p<10-10). 
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information of significantly changed FC was further revealed by individually comparing 

the corresponding connections between the two conditions (p value<0.05, FDR corrected, 

Figure 2.5). To better conceptualize the complex pattern of altered FC, ROIs of the whole 

brain were divided into nine major functional-anatomical groups based on the Swanson 

Atlas (Swanson, 2004) (Table 2.3), and altered FC within and between these groups was 

displayed in brain graphs (Figure 2.6). To preserve the quantitative information, the 

weight of the edge between two groups was proportional to the percentage of the total 

number of significantly changed connections between the two groups (p value < 0.05 

with FDR correction) relative to the total number of all possible connections between the 

two groups. The node size was proportional to the percentage of the total number of 

significantly changed connections within the group relative to the total number of all 

possible connections within the group. The results showed that FC was profoundly 

weakened in striatum, pallidum, thalamus and cortices, albeit considerably strengthened 

in hippocampus, amygdala and hypothalamus in the anesthetized condition.  

Recently, Boveroux et. al. has reported a selective decrease of thalamo-cortical 

connectivity in high-order associative networks compared to low-level sensory-motor 

networks at the anesthetized condition (Boveroux et al., 2010). In the present study, we 

specifically compared the thalamo-cortical connectivity strength in associative networks 

(i.e. between associative cortices and thalamic nuclei related to associative cortices) and 

sensory-motor networks (i.e. between sensory-motor cortices and thalamic nuclei related 

to sensory-motor cortices) between the awake and anesthetized conditions. As expected, 

thalamo-cortical connectivity strength in both types of networks were reduced under 
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Figure 2.5. (a) Significantly changed functional connectivity (p<0.05, FDR corrected) 

displayed in the dorsal view of the rat brain. Each node represents an anatomical region 

listed in Table 2.1. Red (blue) lines indicate connections with significantly stronger 

(weaker) connectivity in the awake condition. The size of each node is proportional to the 

number of altered connections for this node. (b) Matrix representation of (a). Red (blue) 

elements are connections with significantly stronger (weaker) connectivity strength in the 

awake condition. The numbers of columns and rows are the ROI numbers listed in the 

second column of Table 2.1. 
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Table 2.3. List of nine major anatomical-functional systems. From left: the first column 

lists the number of each system (the same number indicated in the leftmost column of 

Table 2.1); the second column lists the abbreviation of each system used in Figure 2.6; 

and the third column lists the full name of each system. 
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  Group 

number 

Abbreviation in 

Figure 2.3 

Anatomical-

functional system 

1 sensorymotor sensory-motor 

2 polymodal 
polymodal 

association 

3 RH 
retrohippocampal 

regions 

4 HP hippocampus 

5 AMG amygdala complex 

6 striatum striatum 

7 pallidum pallidum 

8 thalamus thalamus 

9 hypothalamus hypothalamus 

0 
 

not included 
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Figure 2.6. Significantly (a) decreased and (b) increased functional connectivity during 

the anesthetized state. ROIs of the whole brain were divided into nine major functional-

anatomical groups (Table 2.3) based on the Swanson Atlas (Swanson, 2004). The weight 

of edges in both graphs was proportional to the percentage of the total number of 

significantly changed connections relative to the total number of all possible connections 

between the two groups. The node size was proportional to the percentage of the total 

number of significantly changed connections within the group divided by the total 

number of all possible connections within the group. A, anterior, P, posterior, V, ventral, 

D, dorsal. 
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anesthesia (Figure 2.7, p value<0.0001). More importantly, there was a significant 

interaction effect (p value=0.022) between the category of thalamic nuclei (i.e. related to 

associative or sensory-motor cortices) and awake/anesthetized conditions. Thus, this 

result clear indicates that thalamo-cortical connectivity in associative networks was more 

affected than that in low-level sensory-motor networks under anesthesia.        

 

The relationship between the strength and physical distance of functional connections 

It has been long hypothesized that anesthesia affects the information integration 

of neural networks by reducing long-distance functional connections (Alkire et al., 2008). 

To elucidate this issue, we examined the relationship between the physical distance and 

connectivity strength across all functional connections. Figure 2.8 demonstrated that FC 

strength nonlinearly decreased as the physical distance between two ROIs increased for 

both awake and anesthetized conditions (Figure 2.8, insert). However, in the long-

distance range (>10mm), the connectivity strength appeared to “rebound”, and this trend 

was even more pronounced in the anesthetized condition. In contrast, the strength of 

short-distance connections was decreased at the anesthetized condition. Taken together, 

our results suggest that long-distance connections were not preferentially reduced at the 

anesthetized condition.  

Discussion 

In the present study we have examined changes in whole-brain neural networks in 

anesthetized rats. Our results suggested that functional neural networks were reorganized  
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Figure 2.7. Connectivity strength changes in thalamo-cortical connections between the 

awake and anesthetized conditions. The thalamus was segregated into seven nuclei. 

Among these nuclei, MG, LG and VENT are related to low-level sensory-motor cortices. 

ATN, LAT, MED and MTN are related to high-level associative cortices (Swanson, 

2004). Sensory-motor: FC between sensory-motor cortices and thalamic nuclei related to 

sensory-motor cortices. Associative: FC between associative cortices and thalamic nuclei 

related to associative cortices. ANOVA analysis: Factors: thalamic nuclei (sensory-

motor/associative), condition (awake/anesthetized). P_nuclei = 0.2, p_condition <0.0001, 

p_interaction = 0.022. 
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Figure 2.8. Connectivity strength as a function of physical distance. Anesthesia does not 

preferentially reduce long-distance functional connections. Bars are S.E.M. Insert, scatter 

plots of functional connectivity strength versus physical distance. Left panel: awake state, 

right panel: anesthetized state. X axis, physical distance of the functional connection 

(mm); Y axis, connectivity strength.   
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from the awake to anesthetized state, and this reorganization was governed by the same 

topological principles. One remarkable finding was that although the connectivity 

strength was on average decreased in the anesthetized condition, long-distance 

connections were not preferentially reduced. To our knowledge, this is the first study to 

examine the reconfiguration of the architecture of large-scale resting-state neural 

networks in the anesthetized state by directly comparing topological features and 

connectivity strength between the awake and anesthetized brains in animals. 

     

Perhaps the most important finding of the present study is the preservation of 

global topological characteristics of the whole-brain neural network in the anesthetized 

state. Among all global network metrics calculated, only global clustering coefficients 

showed a marginal but statistically insignificant decrease (p=0.18). Mean shortest path 

length was even slightly shorter in the anesthetized condition, suggesting the overall 

information integration capacity was not impaired in the anesthetized rat brain. Likewise, 

small-worldness and modularity did not show any changes between the two states, again 

indicating a similar level of modular organization. Numerous human rsfMRI studies have 

showed altered topological features of the global network (e.g. global clustering 

coefficient) in various neurological and psychiatric diseases (Bassett and Bullmore, 2009), 

implying that the architecture of the brain network might be sensitive to pathological 

disruptions. Given the profound impact of anesthesia on brain functions, it is striking that 

the anesthetized brain was able to maintain intact global organization. However, this 

result was indeed consistent with a previous human EEG study, in which global scale-

free organization was found to be preserved across consciousness, anesthesia and 
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recovery states (Lee et al., 2010). Therefore, this conclusion is very likely not limited to 

the specific spatial and temporal scales of the rsfMRI technique. An important 

implication of this finding is that, unlike disrupted global networks in pathological 

conditions, the brain is able to maintain intact topological structures under 

pharmacologically induced unconsciousness. This property might be related to the ability 

of the brain to quickly recover from the unconscious state to the conscious state once the 

anesthetic is discontinued. It may also suggest that the governing principles of intrinsic 

brain organization might be fundamental characteristics of the healthy brain.       

 

Despite similar global network topology, local neural networks were considerably 

re-organized in the anesthetized rat brain. For instance, local clustering coefficients of the 

nucleus accumbens and septal nuclei were significantly reduced by anesthesia, suggesting 

those regions were less connected to their neighboring regions in the anesthetized 

condition. Interestingly, these two regions were reported to enhance anesthetic effects 

when they were pharmacologically inactivated (Ma et al., 2002; Ma and Leung, 2006). In 

addition, a rat study reported reduced glutamate and aspartate levels in the nucleus 

accumbens during sleep (Lena et al., 2005). These results and the findings in the present 

study collectively underscore the importance of the nucleus accumbens and septal nuclei 

in anesthetic-induced unconsciousness. Furthermore, several thalamic nuclei showed a 

significant reduction in betweeness centrality, indicating reduced information relay in the 

thalamus in the anesthetized rat brain.  Consistent with the report by Boveroux et. al. 

(Boveroux et al., 2010), we also observed a preferential reduction in high-level thalamo-

cortical connectivity relative to low-level thalamo-cortical connectivity under anesthesia 
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(Figure 2.7). Taken together, these findings well agree with the extensive literature 

regarding the role of thalamus in anesthesia and (un)consciousness (Nallasamy and Tsao, 

2011). Moreover, detailed community structure considerably differed even at a similar 

global modularity (Q) value. Consistent with our previous study (Liang et al., 2011), 

modules in the awake brain were more likely to contain both cortical and sub-cortical 

regions, whereas modules in the anesthetized brain tend to include only cortical or only 

subcortical regions, implying compromised communications between the cortex and 

subcortex. Taken together, these results clearly suggested that although the global 

organizational principles were not changed at the anesthetized state, the brain networks 

are locally reorganized to support new patterns of information integration among 

neuronal groups.   

 

It has been repeatedly reported that anesthesia can change FC strength between 

brain regions (Peltier et al., 2005; Boveroux et al., 2010; Martuzzi et al., 2010; 

Stamatakis et al., 2010). For instance, our previous study reported decreased 

anticorrelated FC between the infralimbic cortex and amygdala in anesthetized rodents 

(Liang et al., 2012a). Additionally, Liu and colleagues found that FC decreased as the 

anesthetic depth increased (Liu et al., 2011). Consistent with these results, in the present 

study we found that the connectivity strength was on average weaker in the anesthetized 

condition. When individually comparing the corresponding functional connections 

between the awake and anesthetized states, most significantly changed connections were 

weaker in connectivity strength at the anesthetized condition, and these connections were 

spatially distributed throughout cortical and subcortical areas (Figure 2.5). Therefore, our 



104 
 

data indicated that the effect of anesthesia was widespread across the whole brain. 

However, it has to be noted that anesthesia did not uniformly affect all brain regions and 

functional connections. In fact, the basal ganglia area including the striatum and pallidum 

showed the largest decrease in FC strength. By contrast, a number of functional 

connections showed increased connectivity strength in the anesthetized state particularly 

in hippocampus, hypothalamus and amygdala. These brain regions and connections are 

relatively less studied regarding their roles in anesthesia. Interestingly, all these regions 

are part of the limbic system which generally subserves the functions of emotion, 

memory and homeostatic regulation. Therefore, it can be hypothesized that anesthesia, or 

perhaps unconsciousness in a more general case, can lead to hyper-synchrony in this part 

of the limbic system.    

 

Another interesting aspect of connectional strength is its relation with the physical 

distance of the functional connection. It has been suggested that the disruption of long-

distance functional connections, in particular fronto-parietal connections, contributes to 

unconsciousness (Laureys and Schiff, 2011). However, in the present study we observed 

that long-distance functional connections were not particularly diminished at the 

anesthetic-induced unconscious state, rather, the short-distance connections showed 

obvious reductions (Figure 2.8). This result suggests that the disruption of long-distance 

connectivity is not necessarily a general mechanism of unconsciousness. However, it 

does not exclude the possibility that certain long-distance connections might play a key 

role in maintaining consciousness. Further studies are necessary to identify these 

potentially vital long-distance connections.  
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There are several methodological limitations in the present study. First, different 

levels of motion can affect network metrics as well as the connectional strength (Power et 

al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). This issue was particularly 

troublesome when the awake condition had higher motion level than the anesthetized 

condition. However, a stringent motion control was applied in our study to address this 

problem. Scans with head displacement more than 0.25mm (i.e. half voxel size) were 

discarded, and all scans were motion corrected and motion parameters were regressed out. 

It should be noted that even with the rigorous control of motion, the influence of motion 

on FC may still persist (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 

2012). To further examine this issue, global network metrics were recalculated from a 

subset of data with the smallest motion at the awake condition (movement<0.125mm). 

The motion level in this sub-dataset did not significantly differ from the anesthetized 

condition (p values >0.1). Results were in excellent agreement with those calculated from 

the whole dataset. Also, a very similar relationship between connectional strength and 

physical distance was obtained in this subset of data. Therefore, it is unlikely that 

different levels of motion can account for the changes between the two conditions 

observed in the present study. Second, the anesthetic agent used (i.e. isoflurane) is a 

vasodilator. The vasodilatory effect might have significant effects on the fMRI signal. 

However, Liu and colleagues (Liu et al., 2011) reported a strong neurovascular coupling 

in isoflurane-anesthetized rats, suggesting resting-state FC measured by rsfMRI in 

isoflurane anesthetized rats was mostly of neural origin. Third, only one type of 
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anesthetic agent was used at one dosage in the present study. Whether these results can be 

generalized to other anesthetic agents and/or different dosages needs to be confirmed. 

 

The explicit neural mechanism underlying anesthetic-induced unconsciousness is 

likely to be extremely complex and manifests at various spatial and temporal scales. Here 

our results show that the integrity of the whole-brain network can be conserved in a wide 

physiologic range from awake to anesthetized states while local neural networks can 

flexibly adapt in new conditions. They also illustrate that the governing principles of 

intrinsic brain organization might represent fundamental characteristics of the healthy 

brain. With the unique spatial and temporal scale provided by rsfMRI, this study has 

opened a new avenue for investigating the neural mechanism underlying anesthetic-

induced unconsciousness. Considering that all unconscious states share many the same 

endpoints in brain functions such as amnesia, analgesia, immobility and attenuation of 

autonomic responses to noxious stimulation (Paul G. Barash, 2009), our results may help 

to decipher other unconscious states such as coma. 
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Abstract 

Resting-state functional connectivity (RSFC) measured by functional magnetic resonance 

imaging has played an essential role in understanding neural circuitry and brain diseases. 

The vast majority of RSFC studies have been focused on positive RSFC, whereas our 

understanding about its conceptual counterpart—negative RSFC (i.e. anticorrelation)—

remains elusive. To date, anticorrelated RSFC has yet been observed without the 

commonly used preprocessing step of global signal correction. However, this step can 

induce artifactual anticorrelation (Murphy et al., 2009), making it difficult to determine 

whether the observed anticorrelation in humans is a processing artifact (Fox et al., 2005). 

In this report we demonstrated robust anticorrelated RSFC in a well characterized 

frontolimbic circuit between the infralimbic cortex (IL) and amygdala in the awake rat. 

This anticorrelation was anatomically specific, highly reproducible and independent of 

preprocessing methods. Interestingly, this anticorrelated relationship was absent in 

anesthetized rats even with global signal regression, further supporting its functional 

significance. Establishing negative RSFC independent of data preprocessing methods will 

significantly enhance the applicability of RSFC in better understanding neural circuitries 

and brain networks. In addition, combining the neurobiological data of the IL-amygdala 

circuit in rodents, the finding of the present study will enable further investigation of the 

neurobiological basis underlying anticorrelation. 
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Introduction 

Resting-state functional connectivity (RSFC) has been intensively and extensively 

studied using functional magnetic resonance imaging (fMRI) (Biswal et al., 1995). 

Resting-state fMRI (rsfMRI) measures spatial patterns of functional connectivity across 

the brain by detecting temporal correlations of low-frequency spontaneous fluctuations of 

the blood-oxygenation-level dependent (BOLD) signal. Using this technique, RSFC was 

consistently revealed in multiple networks in humans (Biswal et al., 1995; Lowe et al., 

1998; Hampson et al., 2002; Greicius et al., 2003) and animals (Vincent et al., 2007; 

Zhang et al., 2010b; Liang et al., 2011), and was sensitive to effects like sleep, anesthesia 

and aging (Stevens et al., 2008; Horovitz et al., 2009). Additionally, altered RSFC was 

found in multiple pathological conditions (Greicius et al., 2007), indicating its vital 

neurobiological and psychopathological relevance (Kennedy et al., 2006; Albert et al., 

2009). Taken together, it has been strongly suggested that RSFC plays a very important 

role in brain function. 

Conceptually, temporal correlations of spontaneous BOLD fluctuations between 

functionally connected brain regions should include both positive and negative values. 

More importantly, positive and negative correlations in RSFC are most likely related to 

distinct neurophysiologic substrates underlying functional connections. To date, 

predominant efforts have been spent investigating positive RSFC, whereas negative 

correlation (i.e. anticorrelation) has been much less studied.  

Anticorrelation was first reported between the default mode network (DMN) and 

task-positive network (TPN) in the human (Fox et al., 2005). This temporally inverse 
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correlation in spontaneous BOLD fluctuations was initially interpreted as competition or 

functional segregation for opposite goals between neural networks. Further, the strength 

of this anticorrelation was associated with response time in cognitive functions (Kelly et 

al., 2008) and performance in working memory tasks (Hampson et al., 2010). However, 

these interpretations were complicated by one commonly used fMRI preprocessing 

procedure–global signal regression (Murphy et al., 2009). This procedure was used to 

remove global physiological noise in resting-state functional images, and thus improved 

the spatial specificity of RSFC (Fox et al., 2009; Scholvinck et al., 2010). However, 

Murphy et. al. in their recent study pointed out that global signal removal can induce 

artifactual anticorrelation. This is because removal of the global signal ensures that the 

sum of correlation coefficients across all voxels within the whole brain must approach 

zero, and thus this procedure mandated anticorrelation (Murphy et al., 2009). Although 

several preprocessing methods were proposed subsequently in hope to overcome the 

limitation of global signal regression, contradicting results were obtained (Chang and 

Glover, 2009a; Anderson et al., 2011). For instance, it was reported that anticorrelation 

between DMN and TPN was present with or without model-based physiological noise 

correction (Chang and Glover, 2009a) and this anticorrelation was not static (Chang and 

Glover, 2010). Anderson and colleagues, however, reported the absence of anticorrelation 

between DMN and TPN using phase-shifted soft tissue regression (Anderson et al., 2011).  

The ambiguity of anticorrelated RSFC has become a major obstacle to further 

understanding its neurophysiologic mechanism and has significantly limited its 

applicability. Therefore, validating the existence of anticorrelation that is independent of 

preprocessing methods is of critical importance particularly considering the possibility 



113 
 

that negative RSFC might represent a group of functional connections with a distinct 

neurophysiologic mechanism and thus could be crucial for better understanding of neural 

circuitries and brain diseases. In order to achieve this goal, identifying a neural circuit 

with robust negative RSFC is a crucial step.  

Well-documented reports of the neural circuit between infralimbic cortex (IL) and 

amygdala in the rat (Pape and Pare, 2010) have shed light on the aforementioned issue. 

This frontolimbic circuit has been extensively studied in several aspects: Anatomically, 

IL and amygdala share dense reciprocal interconnections (Russchen, 1982b, a; Sesack et 

al., 1989; McDonald, 1998). Functionally, neurobiological evidence indicates that IL 

plays a role of inhibitory regulation of the amygdala (Rosenkranz and Grace, 2001). 

Specifically, IL sends glutamatergic projections to intercalated cells of the amygdala 

(Berretta et al., 2005; Amano et al., 2010). Intercalated interneurons in turn send 

GABAergic projections to central amygdala nucleus, thus enabling IL to exert inhibitory 

modulation on amygdala. Additionally, electrophysiological studies indicate that the 

stimulation of IL area suppresses the basolateral amygdala activity (Rosenkranz and 

Grace, 2001; Likhtik et al., 2005), and decreases the responsiveness of central amygdala 

(Quirk and Gehlert, 2003; Quirk et al., 2003). Based on these findings, we hypothesize 

that anticorrelated RSFC should be present within the IL-amygdala circuit. To test this 

hypothesis, in the current study we have systematically examined the temporal 

relationship of spontaneous BOLD fluctuations between IL and amygdala using rsfMRI 

in awake and isoflurane-anesthetized rats (Zhang et al., 2010b; Liang et al., 2011). We 

reported robust anticorrelated RSFC within the IL-amygdala circuit regardless of global 

signal regression in awake rats. This anticorrelation, however, disappeared in 
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anesthetized rats even with global signal regression. Time-frequency dynamics of this 

negative functional connectivity were also examined using wavelet analysis.  

 

Materials and Methods 

Animals 

Twenty four adult male Long-Evans (LE) rats (300 – 400 g) were obtained from 

Charles River Laboratories. Animals were housed in Plexiglas cages and maintained in 

ambient temperature (22-24 °C) on a reversed 12-h light:12-h dark cycle. Food and water 

were provided ad libitum. All studies were approved by IACUC Committee of the 

University of Massachusetts Medical School. 

Acclimation procedure 

Rats were acclimated to MRI restraint and noise as described in our previous 

studies (King et al., 2005). Briefly, rats were anesthetized with isoflurane and secured in 

Plexiglas stereotaxic head holders using plastic ear-bars. EMLA cream was applied 

topically to minimize pain of mechanical restraint.  Animals were then placed into a 

black opaque tube ‘mock scanner’ with tape-recorded scanner noises. Animals were 

acclimated for eight days, one session per day. The time of exposure was increased from 

15 minutes on the first day to 90 minutes on days 6, 7 and 8, with an increment of 15 

minutes per day. 

Animal preparation  
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Animal was briefly anesthetized using isoflurane and fitted into a head restrainer 

with a built-in coil. The head was placed into the cylindrical head-holder with the canines 

secured over a bite bar, the nose secured with a nose clamp, and ear bars positioned 

inside the head-holder with adjustable screws fitted into lateral sleeves. The body of the 

animal was then placed into a body restrainer. After this setup procedure was completed, 

the isoflurane was removed and the restraining system was positioned in the magnet for 

imaging under awake condition.  

Rats (16 of the 24) underwent the imaging session in the anesthetized condition at 

minimal 7 days after being imaged at the awake condition. The animal preparation 

procedure was the same as in the awake condition. Isoflurane gas (2%) was then 

delivered to the animal through a nose cone in the magnet to maintain the anesthetized 

state. The body temperature of the animal was monitored and maintained at 37°C ± 0.5°C 

using a feedback controlled heating pad. Imaging sessions started at least 15-20 mins 

after animals were placed in the magnet.  

MR experiments 

All experiments were carried out on a Bruker 4.7T/40cm horizontal magnet 

(Oxford, UK) interfaced with a Biospec Bruker console. A dual 1H radiofrequency (RF) 

coil configuration (Insight NeuroImaging Systems, Worcester, MA) consisting of a 

volume coil for exciting the water proton spins and a surface coil for receiving MRI 

signal was used. The volume and surface coils were actively tuned and detuned to 

prevent mutual coil coupling. 
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For each session, anatomical images were acquired using a fast spin-echo 

sequence (RARE) with the following parameters: TR = 2125ms, RARE factor = 8, TE = 

50ms, matrix size = 256×256, FOV = 3.2cm×3.2cm, slice number = 18, slice thickness = 

1mm. Gradient-echo images covering the whole brain were then acquired using the echo-

planar imaging (EPI) sequence with the following parameters: TR = 1s, TE = 30ms, flip 

angle = 60°, matrix size = 64×64, FOV = 3.2cm×3.2cm, slice number=18, slice thickness 

= 1mm. Two hundred volumes were acquired for each run, and six runs were obtained for 

each session.  

Pre-processing of imaging data 

Part of the raw rsfMRI data (16 out of 24 rats) were from a previous study (Liang 

et al., 2011) and reprocessed for the purpose of the present study. Data from the other 8 

(out of 24) rats were acquired for the present study.  

Imaging data was preprocessed using Medical Image Visualization and Analysis 

(MIVA, http://ccni.wpi.edu/), Statistical Parametric Mapping (SPM8) software 

(Wellcome Department of Cognitive Neurology, London, UK) and MATLAB 

(Mathworks, Inc., Sherborn, MA). All images were first aligned and co-registered to a 

fully segmented standard rat atlas in MIVA (Zhang et al., 2010b; Liang et al., 2011). The 

registration procedure provided the coordinates of each seed ROI in the image space. In 

this study two seed regions of interest, bilateral IL and bilateral amygdala, as well as a 

control seed region, unilateral (right) motor cortex, were selected (as shown in Figure 

3.1). After registration, all functional images were pre-processed with steps of motion 

correction, spatial smoothing (FWHM = 1mm), voxel-wise linear detrending and 0.002-
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0.1Hz band-pass filtering. Data sets with excessive motion (>0.5 mm, 17 runs in total) 

were discarded. The time course for each individual voxel was further corrected for head 

movement by regression on the six motion parameters (translations and rotations) 

estimated in the procedure of motion correction. The global signal was estimated by 

averaging the time courses of all voxels inside the whole-brain mask. The ventricle and 

white matter signal was estimated by averaging the time courses of all voxels inside the 

ventricle and white matter.  

Functional connectivity analysis 

Functional connectivity was evaluated using seed-based correlational analysis on 

a voxel-by-voxel basis (Zhang et al., 2010b). Regionally averaged time courses from all 

voxels inside the seed regions were used as reference time courses. Pearson cross-

correlation coefficients between reference time courses and the time course of each 

individual voxel were calculated. This correlational analysis was carried out for each run. 

Correlation coefficients were transformed using Fisher’s z transformation and then 

averaged across runs and animals. Subsequently, the averaged z values were transformed 

back to r values, yielding a mean correlation map for each seed. RSFC maps were 

displayed by thresholding the correlation coefficient at 0.21 and a cluster size of 10 

voxels (equivalent to uncorrected p<0.001) (Forman et al., 1995). The reliability of 

functional connectivity was examined through inter-subject reproducibility. Animals 

were randomly divided into two subgroups and functional connectivity maps were 

separately created for each group. The strength of functional connectivity was 

quantitatively compared on the voxel-by-voxel basis between the two subgroups. 
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Figure 3.1. Seed ROI definitions. Three seed ROIs were used in the present study: 

bilateral infralimbic cortex (IL), bilateral amygdala and unilateral (right) motor cortex. 

All ROIs were defined based on a fully segmented standard rat atlas in MIVA and 

overlaid on anatomical images (Zhang et al., 2010b; Liang et al., 2011). Distances to 

Bregma (mm) are labeled at the bottom of each image. 
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Wavelet analysis 

Wavelet transform coherence (WTC) was previously utilized for analyzing 

dynamic changes between rsfMRI time series (Chang and Glover, 2010). This approach 

was used in the present study to investigate the dynamics of the anticorrelated 

relationship between time courses of IL and amygdala. Briefly, the continuous wavelet 

transform of a time series (xn, n=1,2…N) with equal time step Δt was defined as: 

         
  

 
    

         
  

 
   

      [1] 

where n is the time index, s is the time scale, and ψ0 is the Morlet wavelet as follows: 

                   
 

 
  

    [2] 

where ω0 is dimensionless time and set at 6, η is dimensionless frequency. The wavelet 

power was defined as          . Similarly, the cross wavelet transform (XWT) for two 

time series is defined as  

                            [3] 

Where * denotes complex conjugation. XWT evaluates the common power of two time 

series in time frequency space. To evaluate the coherence of cross wavelet transform, 

cross wavelet coherence was calculated as follows: 

   
     

        
       

 

        
     

 
         

     
   [4] 

Cross wavelet coherence can be seen as local “correlation coefficients” in time frequency 

space. The statistical significance was determined using Monte Carlo methods. Wavelet 
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transform coherence and cross-wavelet transform were implemented with a matlab 

toolbox provided by Grinsted et. al. 

(http://www.pol.ac.uk/home/research/waveletcoherence/), and detailed information could 

be found in Ref. (Grinsted et al., 2004). 

Results   

Anticorrelated relationship between amygdala and infralimbic cortex  

Figure 3.2 showed the RSFC maps from the seed of IL. Anticorrelated functional 

connectivity between IL and amygdala was evident without any global signal correction 

(referred to as “uncorrected” hereafter) (Fig 3.2a). Interestingly, negative RSFC from IL 

was only observed in amygdala while positive RSFC was widely spread across cortical 

and subcortical areas. With the correction of the global signal (Fig 3.2c), the spatial 

location of anticorrelation remained in amygdala. In addition, anticorrelation was also 

observed in some other regions such as hypothalamus (HT) after global signal regression. 

By contrast, the wide spread positive RSFC seen in the uncorrected map was greatly 

confined to more anatomically specific regions including anterior cingulate cortex (ACC),  

septum, caudate-putamen (CPU), neuclus accumbens (NAcc), and dorsal lateral 

prefrontal cortex (dlPFC). These results were consistent with the previous literature 

suggesting that global signal regression significantly improved the spatial specificity of 

positive RSFC (Fox et al., 2009). The RSFC map obtained after removing the white 

matter and ventricle signal (Fig. 3.2b) showed an intermediate pattern between the 

uncorrected map (Fig. 3.2a) and the map corrected for the global signal (Fig. 3.2c), also 

consistent with the results in human studies (Fox et al., 2009). 
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Figure 3.2. IL RSFC maps. (a) The IL RSFC map in the awake condition without 

correction of any global signal. (b) The IL RSFC map in the awake condition with 

correction of the ventricle and white matter signal. (c) The IL RSFC map in the awake 

condition with correction of the global signal. (d) The IL RSFC map in the anesthetized 

condition with correction of the global signal. Data from all maps were corrected for six 

movement parameters. All maps were overlaid on anatomical images. Distances to 

Bregma (mm) are labeled at the bottom of each image. 
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The reciprocal anticorrelated relationship between the amygdala and IL can be 

observed in the RSFC maps from the amygdala as shown in Figure 3.3. Negative RSFC 

was clearly observed in IL in the uncorrected map (Fig. 3.3a). Similarly, corrections of 

the ventricle and white matter signal (Fig. 3.3b) as well as the global signal (Fig. 3.3c) 

significantly improved the spatial specificity of positive RSFC between amygdala and 

HT, as well as between amygdala and hippocampus. The anticorrelation between 

amygdala and IL remained largely the same. Additionally, some other regions such like 

CPU also showed an anticorrelated relationship with amygdala after global signal 

removal. Figure 3.2 and 3.3 collectively showed high anatomical specificity of the 

reciprocal anticorrelated relationship between the amygdala and IL. 

 

Absence of anticorrelation in anesthetized rats 

Considering that one major function of the IL-amygdala circuitry is regulating 

affective behaviors, it can be expected that anesthesia will disrupt the functional 

connectivity within the IL-amygdala circuit. Indeed, our data showed that the 

anticorrelated relationship between IL and amygdala observed in awake rats was 

completely abolished in isoflurane-anesthetized rats even with the global signal 

correction as shown in both Fig 3.2d and Fig 3.3d. This remarkable difference indicated 

that: i) the anticorrelated relationship observed in awake rats was not induced by 

preprocessing methods because the same preprocessing methods were applied to both 

awake and anesthetized rats data, and ii) the anticorrelation between amygdala and IL has 

important functional relevance that is impacted by anesthesia. 
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Figure 3.3. Amygdala RSFC maps. (a) The Amygdala RSFC map in the awake condition 

without correction of any global signal. (b) The Amygdala RSFC map in the awake 

condition with correction of the ventricle and white matter signal. (c) The Amygdala 

RSFC map in the awake condition with correction of the global signal. (d) The Amygdala 

RSFC map in the anesthetized condition with correction of the global signal. Data from 

all maps were corrected for six movement parameters. All maps were overlaid on 

anatomical images. Distances to Bregma (mm) are labeled at the bottom of each image. 
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RSFC maps of unilateral motor cortex 

In order to examine the specificity of the anticorrelation between amygdala and IL, 

a control seed region unilateral motor cortex was also selected. Figure 3.4 demonstrated 

the RSFC maps of unilateral (right) motor cortex in awake (Fig. 3.4a) and anesthetized 

(Fig. 3.4b) rats, respectively. Both maps were obtained after the global signal regression. 

In awake rats, we observed strong functional connections between right and the left 

motor cortices, whereas this bilateral connection was less apparent in anesthetized rats. 

This result is consistent with the notion that anesthesia reduced the strength of RSFC (Liu 

et al., 2011). More importantly, no anticorrelated RSFC was observed in either awake or 

anesthetized group, suggesting that the anticorrelated relationship observed between IL 

and amygdala was specific to the frontolimbic circuit as oppose to a general effect. 

 

Distributions of correlation coefficients of RSFC between IL and amygdala  

It was previously reported that global signal regression dramatically changed the 

distribution of computed correlation coefficients in RSFC maps: (i) artifactual negative 

correlations were induced, and (ii) the distribution became approximately normal with a 

mean correlation value close to zero (Fox et al., 2009). In the present study, we 

independently extracted regional mean time courses from amygdala and IL for each run, 

with or without global signal regression, and calculated their temporal correlation 

coefficients. Figure 3.5 showed the histograms of correlation coefficients before (Fig. 

3.5a) and after (Fig. 3.5b) global signal regression. The distribution of correlation  
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Figure 3.4. RSFC maps from unilateral (right) motor cortex in (a) the awake condition 

and (b) the anesthetized condition. Both maps were obtained after global signal 

regression. Distances to Bregma (mm) are labeled at the bottom of each image. 
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coefficients indeed shifted towards a Gaussian shape with global signal regression (Fig 

3.5b). Nevertheless, the majority of correlation coefficients was in the negative range 

regardless of global signal regression (Fig. 3.5a, mean correlation coefficient = -0.20, Fig. 

3.5b, mean correlation coefficient = -0.37).  

 

Reliability of anticorrelation between amygdala and infralimbic cortex 

To test the reliability of the anticorrelated relationship between spontaneous 

BOLD fluctuations in amygdala and IL, data from all animals were randomly divided 

into two subgroups and a RSFC map, with the seed of IL, was individually obtained for 

each subgroup. Figure 3.6a and 3.6b showed the RSFC maps from the two subgroups, 

demonstrating excellent consistency. Quantitatively, the computed correlation 

coefficients between the two RSFC maps well agree with each other on a voxel-by-voxel 

basis (Fig. 3.6c, r = 0.58, p < 10-5). Similar results can be obtained from the seed of 

amygdala (data not shown). These results suggest that the anticorrelated relationship 

between amygdala and IL observed in awake rats was highly reliable. 

 

Time-frequency dynamics of anticorrelation between amygdala and infralimbic cortex 

WTC was utilized to investigate time-frequency dynamics of the anticorrelated 

relationship between amygdala and IL, with and without global signal regression. We 

observed a strong anti-phase relationship in cross-wavelet power and wavelet transform 

coherence between the time courses of IL and amygdala (Figure 3.7 showed one   
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Figure 3.5. Histograms of correlation coefficients between regional mean time courses of 

IL and amygdala (a) without and (b) with global signal regression.  
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Figure 3.6. Reproducibility of anticorrelation between IL and amygdala. Data from all 

animals were randomly divided into two subgroups. (a) The IL RSFC map generated 

from one subgroup with global signal regression. (b) The IL RSFC map generated from 

the other subgroup with global signal regression. Distances to Bregma (mm) are labeled 

at the bottom of each image. (c) The voxel-to-voxel correlation of the RSFC strength 

between the two subgroups.  
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example), and this anti-phase relationship was relatively consistent throughout the whole 

scan. In addition, the anti-phase relationship was evident without global signal regression.  

 

Discussion 

In the present study we have characterized the anticorrelated temporal relationship 

between spontaneous BOLD fluctuations in IL and amygdala in awake rats. To the best 

of our knowledge, this is the first study investigating negative RSFC in animals. 

Independent of preprocessing methods, we observed robust anticorrelation within this 

anatomically well-defined frontolimbic circuit. In addition, this anticorrelation was 

highly reliable as reflected from its high reproducibility between two randomly divided 

subgroups. Moreover, this anticorrelation was between two distinct and distant 

anatomical regions, and contained high anatomical specificity. Furthermore, the 

anticorrelated relationship between the two regions was absent in anesthetized rats even 

with global signal regression. Taken together, data of the present study have provided 

strong evidence validating the existence of anticorrelated RSFC. 

The influence of global signal regression 

Although the presence of anticorrelation was independent of global signal 

regression, it was noticeable that global signal regression indeed affected the spatial 

pattern of RSFC maps and the distribution of correlation coefficients. Consistent with 

previous reports (Fox et al., 2009), global signal removal significantly improved the 

spatial specificity of positive RSFC. Interestingly, global signal regression enlarged areas  
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Figure 3.7. Wavelet transform coherence analysis revealed anti-phase relationship 

between IL and amygdala. (a) Cross wavelet power of IL and amygdala time series from 

one representative RSFC run. (b) Cross wavelet coherence of IL and amygdala time 

series from the same RSFC run. Time series in (a) and (b) were not corrected for the 

global signal. (c) Cross wavelet power of IL and amygdala time series from the same 

RSFC run after global signal regression. (d) Cross wavelet coherence of IL and amygdala 

time series after global signal regression.  X axis represents time (sec) and Y axis 

represents period. 
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of negative RSFC. Compared to uncorrected maps, additional regions such as 

hypothalamus (HT) showed anticorrelated relationship with IL (Fig. 3.2c), and CPU 

showed anticorrelated relationship with amygdala (Fig. 3.3c). Although the origin of 

these enlarged anticorrelated areas after global signal removal was not clear, we speculate 

that it could result from the propagation effect of indirect connectivity. It is well known 

that amygdala and HT are tightly connected as part of the amygdala-hypothalamic-

pituitary-adrenal axis which is responsible for the autonomic stress/fear body response. 

This functional connection resulted in positive correlations between BOLD fluctuations 

in amygdala and HT as shown in Figs. 3.3b and 3.3c. Since IL and amygdala contained 

an anticorrelated relationship in their BOLD fluctuations, it can be predicted that this 

anticorrelated relationship would propagate to areas that were positively correlated to 

amygdala such as HT. This propagation effect, being masked by the global signal in 

uncorrected maps, became detectable after the global signal was removed. Similar 

argument can be used to explain the anticorrelation between amygdala and CPU appeared 

after global signal regression. However, it has to be noted that we cannot rule out the 

possibility that IL and HT are directly connected with an anticorrelated relationship. 

Further experiments are needed to resolve this issue.  

The distribution of correlation coefficients between IL and amygdala was also 

altered by global signal regression, shifting to an approximately normal distribution 

centered at about CC=-0.37. However, it did not change the sign of the majority of 

correlation values. Taken together, although global signal regression indeed affected the 

resultant RSFC maps as expected (Murphy et al., 2009), it was clearly not attributing to 

the anticorrelated RSFC observed between IL and amygdala. 
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Impact of Anesthesia 

The anticorrelated relationship between IL and amygdala was absent in the 

anesthetized condition. Accumulating evidence has suggested that anesthesia profoundly 

affects RSFC. For instance, Lu and colleagues demonstrated a dose-dependent decrease 

of cross-hemispheric functional connec -chloralose-anesthetized rats (Lu et al., 

2007). Similarly, Liu et. al. found that intrinsic BOLD fluctuations and functional 

connectivity in the resting rat were strongly dependent on anesthesia depth (Liu et al., 

2011). In human subjects, functional connectivity in the motor cortices was completely 

ablated with deep anesthesia (Peltier et al., 2005). Taken together, these results suggest 

that anesthesia significantly weakens RSFC relative to the awake condition. In the 

present study, anesthesia weakened the positive RSFC between left and right motor 

cortex (Fig. 3.4), and completely abolished the negative RSFC between IL and amygdala 

regardless of preprocessing procedures (Fig. 3.2d and Fig. 3.3d). These results were in 

line with previous animal imaging studies indicating that anesthesia reduces the 

amplitude of RSFC (Liu et al., 2011). More importantly, distinct difference between 

awake and anesthetized rats further ruled out the possibility that the anticorrelation 

observed at the awake condition was a processing artifact because the same preprocessing 

procedures were applied to both conditions. Furthermore, our data demonstrated that 

RSFC might serve as a sensitive marker for the functionality of brain circuitry given the 

fact that the IL-amygdala circuit is critically involved in affective behaviors that are 

impacted by anesthesia. This result also provided important evidence supporting the 

advantage of measuring RSFC in awake animals particularly in studies of neural 
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circuitries subserving cognitive and emotional functions (Zhang et al., 2010b; Liang et al., 

2011). 

 

Possible Neural Mechanism 

The anatomy and function of the IL-amygdala circuit have been well studied 

using various methods. These studies may shed light on understanding the neural 

mechanism underlying the negative RSFC within this circuit. It is well known that the IL-

amygdala circuitry is implicated in affective behaviors such as fear conditioning and 

extinction in rodents (LeDoux, 2000), as well as in emotion regulation in humans and 

nonhuman primates (Phelps et al., 2004; Phelps and LeDoux, 2005). In addition, 

malfunction in this circuit has been found to be tightly linked to mood and anxiety 

disorders (Shin et al., 2004). Anatomically, IL and amygdala share dense reciprocal 

connections (Russchen, 1982b, a; Sesack et al., 1989; McDonald, 1998). These physical 

connections provide the anatomical basis of the observed anticorrelated RSFC between 

the two regions. More importantly, there is substantial evidence suggesting IL could exert 

inhibitory regulation on amygdala. For instance, electrical stimulation of IL reduces 

responsiveness of central nucleus output neurons in the amygdala to basolateral amygdala 

(BLA) stimulation (Quirk and Gehlert, 2003), and chemical stimulation of IL activate 

cFos in the ITC neurons which are known to inhibit central nucleus output neurons (Pare 

and Smith, 1993). These results collectively suggest that the anticorrelated relationship 

between amygdala and IL observed in the present study could arise from an inhibitory 

interaction between them.  
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Time-frequency dynamics  

One recent human study examined the anticorrelation between DMN and TPN by 

employing WTC and found that the anticorrelation between these two networks was not 

static (Chang and Glover, 2010). In the present study, wavelet analysis revealed a more 

stable anti-phase relationship between spontaneous BOLD fluctuations from IL and 

amygdala in awake rats. This difference may suggest a stronger anticorrelated 

relationship over time in rats and may also explain why it can be observed even in the 

mask of the global signal.    

 

The influence of motion 

In the present study, effects of movement in rats was minimized by using (i) 

motion correction; (ii) discarding data sets with excessive movement (> 0.5 mm, 17 

sessions in total); and (iii) regressing out motion correction covariates. However, we did 

notice that movement of awake rats was significantly larger than that of anesthetized rats. 

There is the possibility that the difference in anticorrelation between awake and 

anesthetized rats was due to different levels of movement during data acquisition. To rule 

out this possibility, data from awake rats with minimal movement (< 0.125 mm, i.e. ¼ 

voxel size) were selected (33 sessions in total, 27.3% of the whole data set). In this 

subgroup, movement in awake rats was not significantly different from anesthetized rats 

(two-sample t-test, p = 0.19). Figure 3.8 showed that strong anticorrelated RSFC between 

amygdala and IL was persistent in this subgroup. This result suggests that the 
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anticorrelated RSFC observed in the present study cannot be attributed to the factor of 

movement. 

 

Limitations and Future implications 

Although the current study has shown for the first time robust fMRI 

anticorrelation in a system with known inhibitory connections, it cannot resolve the 

debate on the origin of anticorrelations in humans.  There are important differences 

between the rat and human results which prohibit this extension.  First, the rat 

anticorrelations are present even prior to global regression, but the human anticorrelations 

are not.  Second, the rat anticorrelations are between two specific anatomic regions with 

known strong anatomical connections, the human anticorrelations are between two wide- 

spread networks. Nevertheless, the finding of this study makes it possible to uncover the 

neurophysiologic basis of anticorrelated RSFC when combining with other techniques 

such as neuron recordings. Since anticorrelated RSFC represents a group of functional 

connections with distinct neurophysiologic features, it can tremendously contribute to 

studies of neural circuitries and brain networks. More importantly, given the vital role 

that RSFC plays in regulating brain function at normal and pathological conditions, the 

results of the present study can help test the hypothesis that negative RSFC might serve 

as an important biomarker to evaluate the functionality of neural circuits at normal and  
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Figure 3.8. IL RSFC maps from a subgroup of awake rats with movement smaller than 

0.125mm (a) without and (b) with global signal regression. Movement in this subgroup 

was similar to that in anesthetized rats (two sample t-test, p = 0.19). 
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pathological conditions. Therefore, the present study has opened a new avenue to further 

expanding the applicability of rsfMRI. 
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Abstract 

Thalamocortical connectivity plays a vital role in brain function. Anatomical and 

functional aspects of thalamocortical networks have been extensively studied in animals 

by numerous invasive techniques. Non-invasively mapping thalamocortical networks in 

humans has also been demonstrated by utilizing resting-state functional magnetic 

resonance imaging (rsfMRI). However, success in simultaneously imaging multiple 

thalamocortical networks in animals is rather limited. This is largely due to profound 

impact of anesthesia used in most animal experiments on functional connectivity 

measurement. Here we have employed an awake animal imaging approach to 

systematically map thalamocortical connectivity for multiple thalamic nuclei in rats. 

Seed-based correlational analysis demonstrated robust functional connectivity for each 

thalamic nucleus in the cortex, and the cortical connectivity profiles revealed were in 

excellent accordance with the known thalamocortical connectional relationship. In 

addition, partial correlation analysis was utilized to further improve the spatial specificity 

of thalamocortical connectivity. Functional connectivity maps generated by partial 

correlation were in remarkable agreement with the results from literature tracing studies. 

Taken together, these findings have provided important evidence supporting the validity 

of rsfMRI measurement in awake animals. More importantly, the present study has made 

it possible to non-invasively investigate the function, neuroplasticity and mutual 

interactions of thalamocortical networks in animal models. 
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Introduction 

The thalamus and cerebral cortex are connected through well-organized 

connections. Studies have long revealed that the thalamus acts as the “gateway” for 

almost all extrinsic and intrinsic information before they reach the cortex via 

thalamocortical connections (Guillery and Sherman, 2002). More recently, research has 

suggested that the thalamus plays many significant roles that extend beyond the relay 

function. For instance, it has been shown that the interactions between the lateral 

geniculate (LG) nucleus—a thalamic nucleus that transmits visual information—is 

actively involved in information processing (Schmid et al., 2010), binocular rivalry 

(Haynes et al., 2005; Wunderlich et al., 2005), visual attention (O'Connor et al., 2002), 

perception and cognition (Saalmann and Kastner, 2009). In addition, the function of 

thalamus is critical to the states of wakefulness, sleep and consciousness (Alkire et al., 

2008; Poulet et al., 2012). Furthermore, it has been reported that thalamocortical 

connectivity is essential for the establishment of oscillatory brain waves (Jones, 2001). 

Also importantly, abnormal thalamocortical connectivity has been observed in multiple 

brain disorders like schizophrenia (Welsh et al., 2010; Woodward et al., 2012), 

suggesting its vital psychopathological relevance. 

Given the critical importance of thalamocortical networks, numerous studies have 

examined the anatomical and functional aspects of thalamocortical connectivity through a 

wide range of invasive techniques such as retrograde/anterograde tracing and 

electrophysiological methods (Krettek and Price, 1977; Van Groen and Wyss, 1995; 
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Vertes and Hoover, 2008). These studies have identified characteristic connectional 

patterns for separate thalamic nucleus groups (Swanson, 2004). Specifically, 

thalamocortical connections related to primary sensory and motor cortices are relatively 

simple and well organized. For instance, LG nucleus is predominantly connected to the 

visual system; medial geniculate (MG) nucleus is essentially connected to the auditory 

system; and ventral group of dorsal thalamus (VENT) is primarily linked to the 

sensorimotor system. Interestingly, these thalamocortical connectivity patterns are well 

preserved in multiple species from rodents to humans (Jones, 2007). In contrast, thalamic 

nuclei connected to higher-tier association cortices can have more complex connectivity 

patterns with possible overlapping cortical projections. For example, medial group of 

dorsal thalamus (MED) has connections to the prefrontal cortex and cingulate; midline 

group of dorsal thalamus (MTN) and anterior group of dorsal thalamus (ATN) both 

contain connections to the prefrontal cortex, cingulate and hippocampal formation; MTN 

is also connected to subcortical regions like lateral septal complex (LSX); and lateral 

group of dorsal thalamus (LAT) projects to association cortices in parietal, temporal and 

occipital regions. A summary of the thalamocortical connectional relationship is shown in 

the diagram in SI Figure 1.  

Most techniques for studying thalamocortical connections suffer from 

invasiveness and inability to systematically trace connectivity across multiple 

thalamocortical networks. Non-invasively and simultaneously examining functional 

connectivity between separate thalamic nuclei and their corresponding cortices has posed 

a significant challenge, albeit this ability can be extremely important in further 

understanding the characteristic functions of individual thalamocortical networks as well 
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as their mutual interactions. To bridge this gap, Zhang and colleagues (Zhang et al., 2008; 

Zhang et al., 2010a) have successfully demonstrated the feasibility of mapping the 

thalamocortical networks in humans by utilizing an emerging brain mapping technique of 

resting-state functional magnetic resonance imaging (rs-fMRI). rs-fMRI measures 

functional connectivity between brain regions based on synchronized spontaneous 

fluctuations of the rsfMRI signal (Biswal et al., 1995). With this technique, the 

thalamocortical connectivity patterns revealed well agreed with the known anatomical 

connectivity relationship (Zhang et al., 2008; Zhang et al., 2010a). However, success in 

this research topic in animals is rather limited (Pawela et al., 2008). This can largely be 

attributed to the profound impact of anesthesia used in most animal experiments on the 

measurement of resting-state functional connectivity (Lu et al., 2007; Liu et al., 2011; 

Liang et al., 2012b). Indeed, our recent study showed that thalamocortical connectivity 

and local network organizations of the rat brain can be significantly altered by using 

routine anesthetizing procedures (Liang et al., 2012a). Consequently, the confounding 

effects of anesthesia have significantly hindered the exploration of thalamocortical 

networks in animals by using rsfMRI. 

In the present study we have employed a previously established awake animal 

rsfMRI approach to map thalamocortical connectivity in rats. This imaging method can 

avoid the confounding effects of anesthesia on rsfMRI measurement. To examine 

whether specific thalamocortical connectional relationship in rodents can be reliably 

revealed by this approach, anatomically defined thalamic nucleus groups were used as 

separate seed regions of interest (ROIs) to generate the corresponding functional 

connectivity maps. Resulting functional connectivity in the cortex has demonstrated high 
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spatial specificity and is in excellent accordance with the known thalamocortical 

connectional relationship.        

 

Materials and Methods 

Animal Preparation and MR Experiment 

rsfMRI data collected at the identical condition from several previous studies 

(Zhang et al., 2010b; Liang et al., 2011, 2012a) were pooled and re-analyzed for the 

purpose of the present study. Detailed descriptions of the experimental procedures can be 

found in aforementioned studies. Briefly, 42 adult male Long-Evans rats were acclimated 

to MRI restraint and noise for seven days to minimize the stress induced by imaging as 

described before (Zhang et al., 2010b; Liang et al., 2011, 2012a). During the 

experimental setup, the rat was briefly anesthetized by isoflurane (2%) and the head was 

secured into a head restrainer with a build-in coil, and the body was fit into a body 

restrainer. After the setup was completed, isoflurane was removed and the whole system 

was positioned in magnet. Rats were all fully awake during imaging sessions. In order to 

compare the thalamocortical connectivity at the awake and anesthetized conditions, 16 of 

42 rats underwent the imaging session at the anesthetized condition at minimum 7 days 

after they were imaged at the awake condition. In this experiment, the animal preparation 

procedure was the same as that in the awake imaging experiment. Isoflurane gas (2%) 

was then delivered to the animal through a nose cone in the magnet to maintain the 

anesthetized state. The body temperature of the animal was monitored and maintained at 
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37°C ± 0.5°C by using a feedback controlling heating pad. All studies were approved by 

IACUC of the University of Massachusetts Medical School. 

All MRI experiments were conducted on a Bruker 4.7 T magnet. A dual 1H 

radiofrequency (RF) coil configuration (Insight NeuroImaging Systems, Worcester, MA) 

consisting of a volume coil for exciting the water proton spins and a surface coil for 

receiving MRI signal was used; the volume and surface coils were actively tuned and 

detuned to prevent mutual coil coupling. This dual-coil configuration allows for sufficient 

RF field homogeneity in the rat brain for RF transmission, while preserving the 

advantage of higher signal-to-noise ratio (SNR) provided by the smaller reception coil. 

For each MRI session, RARE sequence was used to acquire anatomical images with the 

following parameters: TR = 2125ms, TE = 50ms, matrix size = 256×256, FOV = 

3.2×3.2cm2, slice number = 18, slice thickness = 1mm, RARE factor = 8. Gradient-echo 

images were then acquired using the echo-planar imaging (EPI) sequence with the 

following parameters: TR = 1s, TE = 30ms, flip angle = 60°, matrix size = 64×64, FOV = 

3.2cm×3.2cm, slice number=18, slice thickness = 1mm. Two hundred volumes were 

acquired for each scan, and six to nine scans were obtained for each session.  

 

rsfMRI Data Analysis 

rsfMRI images of all rats were first co-registered to a fully segmented rat atlas 

based on anatomical images by using Medical Image Visualization and Analysis (MIVA, 

http://ccni.wpi.edu/). Preprocessing steps included motion correction with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/), spatial smoothing (FWHM = 1mm), regression of 
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motion parameters and the signals of white matter and ventricles to eliminate the 

contributions of physiologic noise to the rsfMRI signal, and 0.002-0.1Hz band-pass 

filtering. Scans with excessive motion (>0.25 mm) were discarded.  

To accommodate the spatial resolution of rsMRI, the thalamus was partitioned 

into eight thalamic nuclei ROIs and seven of them were selected as seeds for functional 

connectivity analysis (Figure 4.1) with one ROI (reticular nucleus of thalamus) excluded 

due to its little cortical connections reported in the literature (Swanson, 2004). The total 

number of voxels in EPI images that fit into the ROI of each individual thalamic nucleus 

was LG: 15, MG: 17, VENT: 79, LAT: 34, MED: 26, MTN: 26, and ATN: 30. This 

calculation was based on our segmented atlas template that was resampled to the spatial 

resolution of EPI images (0.5x0.5x1mm3). Anatomical definitions were based on the 

Swanson atlas (Swanson, 2004). Detailed anatomical information of all seed ROIs can be 

found in SI Table 4.1.  

Functional connectivity was evaluated using seed-based correlational analysis on 

a voxel-by-voxel basis (Zhang et al., 2010b; Liang et al., 2012a). Time courses from all 

voxels within individual seed regions were averaged and used as reference time courses. 

Pearson cross-correlation coefficients between these reference time courses and the time 

course of each individual voxel were then calculated. Correlation coefficients (i.e. r 

values) were transformed to z scores using Fisher’s z transformation. This correlational 

analysis was carried out for each scan. To assess the reproducibility of functional 

connectivity maps, rats were randomly split into two subgroups for each (awake or  
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Figure 4.1. ROI definitions of thalamic nucleus groups. Spatial maps of seven thalamic 

nucleus groups were displayed in different colors overlaid on anatomical images. 

Distance to bregma (in mm) is labeled at the bottom of each slice. L, left, R, right. 
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anesthetized) condition. A thalamocortical connectivity map was generated for each seed 

in each subgroup. The correlation coefficient of z scores between individual 

corresponding voxels from two subgroups was then calculated. This process was repeated 

for 100 times. Averaged correlation coefficients from 100 repetitions provided a measure 

of reproducibility of functional connectivity maps. 

 

Statistics  

For each seed ROI, a linear mixed-effect model was calculated using the lme4 

package in the R environment (http://www.r-project.org, version 2.15.1) with the random 

effect of rats and the fixed effect of z scores. The p value of the fixed effect for each 

voxel was then calculated by using the Markov chain Monte Carlo (MCMC) method with 

10000 samples (implemented in the languageR package in R). Maps were thresholded at 

p value < 0.05, corrected for multiple comparisons with the False Discovery Rate (FDR) 

criteria. Maps of t values were displayed. 

 

Winner-take-all approach 

To simultaneously display multiple thalamocortical networks for all seven ROIs, 

a winner-take-all approach was utilized. For each voxel that showed significant 

connectivity with at least one seed ROI (i.e. p<0.05, FDR corrected), it was assigned to 

the ROI with the highest z score in all seven thalamic nucleus connectivity maps. 

Winning voxels that did not pass the statistical threshold were not displayed. 
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Results 

Cortical connectivity of individual thalamic nucleus groups 

The connectivity profiles of individual seeds were generated by the correlational 

analysis of the rsfMRI signal in rats. All seven thalamic nucleus groups were broadly 

divided into two categories: nucleus groups related to sensory-motor cortices and nucleus 

groups related to polymodal association cortices. Sensory-motor related thalamic nucleus 

groups (Figure 4.1) included LG (visual), MG (auditory) and VENT (somatosensory and 

motor).  

In awake rats, the LG connectivity map showed robust functional connectivity 

with the visual cortex (Figure 4.2a). Other subcortical and cortical brain regions revealed 

in the functional connectivity map included part of thalamus, hypothalamus, 

hippocampus and temporal cortex. In the MG connectivity map shown in Figure 4.2b, 

connectivity with the auditory cortex was clearly observed. In addition, part of 

hippocampus and thalamus appeared to connect to MG. With respect to VENT, the 

connectivity map revealed prominent cortical connectivity in somatomotor, 

somatosensory and anterior cingulate cortices, as shown in Figure 4.2c. Strong 

subcortical connections were also evident in caudate-putamen (CPu). 

Four thalamic nucleus groups are related to polymodal association cortices 

(Figure 4.1): LAT, MED, MTN and ATN. In awake rats, widespread cortical connections 

were observed in the LAT connectivity map (Figure 4.3a), prominently involving 

somatosensory, motor, anterior cingulate and insular cortices. In addition, the LAT 

connectivity map also showed functional connectivity with subcortical regions such as 
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Figure 4.2. Functional connectivity maps of sensory-motor related thalamic groups. a) 

Map of LG connectivity. b) Map of MG connectivity. c) Map of VENT connectivity. All 

maps were thresholded at p value<0.05, FDR corrected and t values were color coded and 

displayed. Distance to bregma (in mm) is labeled at the bottom of each slice. L, left, R, 

right. 
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CPu (Figure 4.3a). The other three thalamic groups, MED, MTN and ATN, all showed 

very similar connectivity profiles, mostly with the prefrontal cortex, cingulate and CPu 

(Figure 4.3b, c, d).  

The sagittal and axial views of the connectivity maps for all seven thalamic nuclei 

groups in awake rats were shown in SI Figure 4.2. The cortical connectivity patterns for 

all seven thalamic nuclei in the anesthetized rat were shown in SI Figure 4.3. The results 

indicated that the thalamocortical connectivity was significantly compromised in all 

thalamocortical networks at the anesthetized condition. These results were also consistent 

with the finding in our previous publication (Figure 7 in Liang et al., 2012b). 

To estimate the reproducibility of functional connectivity maps, voxel-wise 

correlation between two randomly divided subgroups was calculated for individual nuclei 

and repeated for 100 times. Averaged correlation coefficients across 100 repetitions were 

highly significant for all seeds in awake rats (CCaverage = 0.74, 0.82, 0.80, 0.81, 0.82, 

0.82 and 0.80 for LG, MG, VENT, ATN, LAT, MED and MTN, respectively, p<10-7 for 

all seeds). In anesthetized rats, averaged correlation coefficients were also high but 

tended to be lower than those in awake rats (CCaverage= 0.65, 0.63, 0.73, 0.71, 0.72, 

0.72 and 0.71 for LG, MG, VENT, ATN, LAT, MED and MTN, respectively). Two 

representative examples of voxel-wise correlations between two randomly divided 

subgroups in awake and anesthetized rats were shown in Figure 4.4. 

 

Multiple thalamocortical networks revealed by the winner-take-all approach 
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Figure 4.3. Functional connectivity maps of poly-modal association cortices related 

thalamic groups. a) LAT connectivity map. b) MED connectivity map. c) MTN 

connectivity map. d) ATN connectivity map. All maps were thresholded at p value<0.05, 

FDR corrected and t values were color coded and displayed. Distance to bregma (in mm) 

is labeled at the bottom of each slice. L, left, R, right. 
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Figure 4.4. Two representative examples of voxel-wise resting-state functional 

connectivity (RSFC) correlations between two randomly divided subgroups in awake and 

anesthetized rats. 
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Multiple thalamocortical networks measured by resting-state functional 

connectivity in awake rats were simultaneously displayed by using the whole-brain 

winner-take-all approach (Figure 4.5, see Methods for details). The map clearly showed 

highly organized cortical connectivity patterns for individual thalamic nucleus groups 

that were in excellent accordance with the known anatomical connectivity relationship. 

For example, dominant LG connectivity was observed in the visual cortex (labeled in red); 

and MG connectivity was mostly in the auditory cortex (labeled in yellow). In addition, 

LAT showed robust connectivity in somatosensory cortex (labeled in blue). Interestingly, 

MED, MTN and ATN showed differential connectivity patterns in the winner-take-all 

map, and these patterns also agreed with their anatomical connections (Krettek and Price, 

1977; Van Groen and Wyss, 1995; Vertes and Hoover, 2008). Specifically, dominant 

MED cortical connectivity was seen in the prefrontal cortex and cingulate (labeled in 

green). MTN connectivity (labeled in brown) was evident in subcortical regions of lateral 

septal complex (LSX).  

 

Improved spatial specificity of cortical connectivity with partial correlation 

Functional connectivity maps of MED, MTN and ATN revealed by full 

correlation analysis (Figures 4.3b, c and d) showed almost identical profiles in the 

prefrontal regions. It is likely that similar cortical connectional patterns among these 

nucleus groups resulted from indirect connectivity to the cortex mediated by inter-

nucleus connections. To examine this possibility, we further inspected inter-nucleus  
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Figure 4.5. Multiple thalamocortical networks revealed by the winner-take-all map 

approach. The color of each voxel was labeled as the color of the winning thalamic 

nucleus seed. Colors of all thalamic nucleus seeds are identical to those in Figure 1. 

Distance to bregma (in mm) is labeled at the bottom of each slice. L, left, R, right. 
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connectivity between all nucleus groups. The result indicated that these three thalamic 

nucleus groups indeed had very high mutual connectivity among themselves. Mean 

connectivity strength (estimated by r values) between MED-MTN, MED-ATN and 

MTN-ATN were 0.66, 0.50 and 0.38 respectively, while the mean connectivity of these 

three nucleus groups with the other four nucleus groups were considerably lower (MED: 

0.26, MTN: 0.18, ATN: 0.26). Therefore, strong inter-nucleus connections among MED, 

MTN and ATN could mediate indirect connectivity to the cortex, resulting in apparently 

similar cortical connectivity patterns among these three nucleus groups. For the purpose 

of differentiating the connectivity pattern for MTN, MED and ATN, the method of partial 

correlation was utilized. For each of the three nucleus groups, the time courses of the 

other two nucleus groups were used as covariates when evaluating its specific functional 

connectivity. Similar to the full correlation analysis, partial correlation coefficients (i.e. r 

values) were transformed to z scores using Fisher’s z transformation. The same statistical 

analysis and threshold were applied. The resulting maps showed distinct connectivity 

patterns for each seed (Figure 4.6). MED retained the characteristic functional 

connectivity with prefrontal regions including infralimbic (IL), prelimic (PL), anterior 

cingulate and orbital frontal cortices. Interestingly, its connectivity pattern obtained by 

partial correlation analysis was consistent with the pattern in the winner-take-all map 

(Figure 5, labeled in green). Also similar to the pattern in the winner-take-all map, MTN 

connectivity was dominant in subcortical areas including LSX (Figure 5, labeled in 

brown). In contrast, the ATN showed a distinct pattern with its specific connectivity in 

retrohippocampal regions—a more posterior part of the brain. 
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Figure 4.6. Functional connectivity maps of MED, MTN and ATN generated by partial 

correlation analysis. The functional connectivity map of one nucleus group was obtained 

by controlling for the rsfMRI signals of the other two nucleus groups. a) MED 

connectivity map. b) MTN connectivity map. c) ATN connectivity map. All maps were 

thresholded at p value<0.05, FDR corrected and t values were color coded and displayed. 

Distance to bregma (in mm) is labeled at the bottom of each slice. L, left, R, right. 
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To further examine the validity of connectivity profiles revealed by partial 

correlation analysis, we compared the functional connectivity results of the three nucleus 

groups with their anatomical connectivity pattern in well-established tracing studies 

(Figure 4.7, results of tracing studies were respectively adopted from (Krettek and Price, 

1977; Van Groen and Wyss, 1995; Vertes and Hoover, 2008)). In these tracing studies 

anterograde tracers were injected respectively in mediodorsal nucleus (part of MED, 

Figure 4.7a), paraventriclar nucleus (part of MTN, Figure 4.7b), and anterodorsal nucleus 

(part of ATN, Figure 4.7c) in rats. For each of all three nucleus groups, remarkable 

correspondence was observed between the functional connectivity pattern and the tracer 

destination from the injection site. These results collectively provided strong evidence 

validating partial correlation analysis in improving the spatial specificity of rsfMRI.   

 

Discussion 

In the present study we have investigated the patterns of thalamocortical 

connectivity in rodents by utilizing resting-state functional connectivity (Zhang et al., 

2010b; Liang et al., 2012a). We found that the cortical connectivity from separate 

thalamic nuclei well agreed with the known thalamocortical anatomical connections in 

awake rats. In addition, the cortical connectivity for each thalamic nucleus was highly 

reproducible and more prominent at the awake condition relative to the anesthetized 

condition. Furthermore, greater spatial specificity of functional connectivity was obtained 

by partial correlation analysis in nucleus groups with high mutual connectivity, and  



173 
 

Figure 4.7. The spatial patterns of thalamocortical connectivity showed great agreement 

with the corresponding anatomical connectivity patterns identified in literature tracing 

studies. Left panels are functional connectivity map obtained by partial correlation 

analysis. Right panels are adopted from tracing studies with the injections sites 

originating from mediodorsal nucleus (part of MED, Panel a), paraventriclar nucleus 

(part of MTN, Panel b), anterodorsal nucleus (part of ATN, Panel c), respectively, in the 

rat (Krettek and Price, 1977; Van Groen and Wyss, 1995; Vertes and Hoover, 2008). 

White dots or lines indicated labeled neurons in destination regions.  
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considerably improved spatial specificity was further validated by the high resemblance 

to the corresponding anatomical connectivity profiles identified in previous tracing 

studies (Krettek and Price, 1977; Van Groen and Wyss, 1995; Vertes and Hoover, 2008). 

To our best knowledge, it is the first study that simultaneously mapped multiple distinct 

thalamocortical networks in the rat brain.  

The significance of the present study is in two folds. First, the excellent 

consistency between the cortical functional connectivity profiles for multiple thalamic 

nuclei and the known thalamocortical connectional relationship has provided very 

important evidence supporting the measurement of resting-state functional connectivity 

in awake rat brain. This establishment of this approach can significantly extend the 

applicability of rsfMRI research in numerous animal models which currently remains 

tremendously underexplored. Second, the present study demonstrated the feasibility of 

simultaneously mapping multiple thalamocortical networks in the rat brain. This ability 

makes it possible to further non-invasively investigate the function, neuroplasticity and 

mutual interactions of thalamocortical networks.  

Robust functional connectivity was observed between thalamic nucleus groups 

subserving sensory-motor functions and their corresponding cortices (i.e., LG was 

connected with visual cortex, MG was connected with the auditory cortex and VENT was 

connected with motor/somatosensory cortices). The anatomical circuitries of these first-

order thalamic nuclei are relatively simple as they all project to their corresponding 

sensory and motor cortices with little overlap. For example, axons of LG project to layer 

4 of the primary visual cortex through excitatory synapses (Sherman, 2005). Accordingly, 

the observed functional connectivity of sensory-motor related thalamic nucleus groups all 
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had quite distinct connectivity profiles that well agreed with their respective anatomical 

connectivity patterns. Nevertheless, it is still worth to note that even for sensory-motor 

related thalamic nuclei, significant overlaps in their cortical connectivity were still 

observed. Overlaps in the connectivity maps in the sensory-motor related thalamic seeds, 

though not as significant as polymodal association cortex-related nuclei, can be induced 

by several factors including the partial volume effect and indirect cortico-coritical 

connectivity. At the rsfMRI spatial resolution of the present study (0.5x0.5x1mm3), when 

calculating the reference time course of a thalamic nucleus (see Materials and Methods), 

it is virtually impossible to avoid the partial volume effect from its neighboring nuclei. 

This partial volume effect can induce overlapping cortical connectivity between sensory-

motor related nuclei. In addition, indirect cortico-cortical connectivity can also cause 

overlaps in cortical connectivity between sensory-motor related nuclei.  

Thalamic nucleus groups related to higher-order polymodal functions also showed 

significant connections with various cortical regions (Figure 4.3). LAT had obvious 

functional connections with somatosensory, motor, insular and cingulate regions. This 

connectivity pattern was consistent with its anatomical connectivity profile (Paxinos, 

2004). In addition, MED, MTN and ATN all showed robust connectivity with prefrontal 

regions (Figure 4.3b, c, d). Notably, when full correlation analysis was used to assess 

functional connectivity, the connectional profiles of MED, MTN and ATN did not appear 

much difference in their specific connectivity. This situation can be attributed to the 

indirect connectivity mediated through strong mutual connectivity among these three 

nucleus groups. It was previously shown that the thalamus had strong inter-nucleus 

correlations in resting-state activities (Zhang et al., 2010b). In the present study, these 



177 
 

three thalamic nucleus groups also showed considerably stronger connectivity among 

themselves than with other nucleus groups. Therefore, to examine that whether similar 

functional connectivity profiles of MED, MTN and ATN resulted from the mediating 

effects of inter-nucleus connections, partial correlation analysis was applied. This 

analysis method generated the functional connectivity map of one nucleus group by 

controlling for the resting-state activities of the other two nucleus groups. Our results 

clearly revealed distinct spatial patterns among the three nucleus groups. More 

interestingly, in the partial correlation maps, MED still showed robust functional 

connectivity with the prefrontal cortex, while this particular connectivity almost 

completely diminished in the connectivity maps of the other two seeds (Figure 4.6b, c). 

These results suggest that the prefrontal connectivity of MTN and ATN showed in full 

correlation maps were very likely mediated by MED. Anatomically, MED and the 

prefrontal cortex have robust and reciprocal connections (Paxinos, 2004). This 

connectional relationship revealed in tracing studies (Krettek and Price, 1977) also well 

corresponds to the functional connectivity pattern observed in the partial correlation map 

(Figure 4.7a). In addition, MTN consists of several small nucleus groups and has diverse 

afferent and efferent connections. Interestingly, part of efferent projections of MTN are in 

subcortical areas such as LSX (Vertes and Hoover, 2008). Again this result is consistent 

with the functional connectivity pattern revealed by partial correlation analysis (Figure 

4.7b). With respect to ATN, two major nuclei of ATN, anterodorsal nucleus and 

anteroventral nucleus, both have projections in retrohippocampal regions (Van Groen and 

Wyss, 1995), which was also clearly revealed in the partial correlation map of ATN 

(Figure 4.7c). Taken together, these results strongly suggest that partial correlation 
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analysis can significantly improve the spatial specificity of rsfMRI while maintaining 

great sensitivity.  

In addition to the well-established cortical connectivity patterns, we also observed 

prominent resting-state functional connectivity that was not extensively reported. For 

instance, strong connectivity between CPu and several thalamic nuclei was observed in 

the present study (Fig. 4.3), whereas the only anatomical connection reported was 

between CPu and parafasicular nucleus, a small region in dorsal thalamus (Cornwall and 

Phillipson, 1988). This discrepancy might indicate a previously overlooked connection, 

or it may originate from indirect connections between CPu and other cortical regions. 

The major limitation of the current study is the relatively low spatial resolution of 

rsfMRI images. Thalamus is a highly heterogeneous brain region consisting of many 

small nuclei with both common and distinct anatomical connectivity. In the current study, 

thalamic nuclei were clustered into several groups (see Table 1 in SI) as seed regions due 

to the resolution limit of rsMRI. This limitation could potentially reduce the sensitivity 

and specificity of functional connectivity mapping due to the averaging of time courses 

of potentially heterogeneous voxels within one thalamic nucleus group. rsfMRI with 

higher spatial resolutions can be applied to more accurately delineate individual thalamic 

nucleus or even sub-nucleus in future studies. In addition, it should be noted that in the 

tracing studies cited in Figure 4.7 the injection sites were only a part of nucleus groups 

used as seed ROIs in the present study. Thus it may not be realistic to expect completely 

identical spatial patterns between the anatomical connectivity and functional connectivity.   
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In the past decade, rsfMRI has been shown to be a powerful tool to noninvasively probe 

dynamic communications between brain regions. Measuring resting-state functional 

connectivity in awake animals is an emerging technique that has the potential to 

substantially extend the applicability of rsfMRI in numerous preclinical animal models. 

Therefore, rigorously validating this approach is of critical importance. The 

thalamocortical networks are perhaps the most well studied neural networks in the brain. 

Given the well-known connectivity patterns, the thalamocortical networks provide an 

ideal model for validating the resting-state functional connectivity measurement in awake 

animals. Our results clearly indicated robust thalamo-cortical connectivity that is in 

excellent consistency with the known anatomical connectional relationship, and therefore 

provided strong evidence validating the approach of measuring rsfMRI in awake animals. 

More importantly, the current study further extended rsfMRI to establish a novel animal 

model of functional thalamocortical connectivity, and thus offered a tool for preclinical 

research of thalamus and thalamocortical connectivity.  Given the vital importance of 

thalamocortical connectivity in brain functions such as consciousness, our resting-state 

animal model represents enormous opportunities of studying this functional connectivity 

at normal as well as pathological conditions.     

 

Supplemental Information 
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SI Table 4.1. Anatomical definitions of thalamic groups. 
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LG 

 LGd lateral geniculate complex dorsal part 

LGv lateral geniculate complex ventral part  

LGvl lateral geniculate complex ventral part lateral zone 

LGvm lateral geniculate complex ventral part medial zone 

MG 

 MGd medial geniculate complex dorsal part 

MGv medial geniculate complex ventral part 

MGm medial geniculate complex medial part 

VENT 

 VAL ventral anterio-lateral complex thalamus 

VM ventral medial nucleus thalamus 

VPL ventral posterolateral nucleus thalamus 

VPLpc ventral posterolateral nucleus thalamus parvicellular part 

VPM ventral posteromedial nucleus thalamus 

VPMpc ventral posteromedial nucleus thalamus parvicellular part 

PP peripeduncular nucleus 

SPF subparafascicular nucleus thalamus 

SPFm subparafascicular nucleus thalamus magnocellular part 

SPFp subparafascicular nucleus thalamus parvicellular part 

MED 

 MD mediodorsal nucleus thalamus  

MDc mediodorsal nucleus thalamus central part 

MDl mediodorsal nucleus thalamus lateral part 

MDm mediodorsal nucleus thalamus medial part 
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SMT submedial nucleus thalamus 

PR perireuniens nucleus 

MTN 

 IAM interanteromedial nucleus thalamus 

IMD intermediodorsal nucleus thalamus 

MID midline nucline dorsal thalamus 

RE nucleus reuniens  

RE1 nucleus reuniens 

REa nucleus reuniens rostral devision anterior part 

REcd nucleus reuniens caudal devision dorsal part 

REcm nucleus reuniens caudal devision medial part 

REcp nucleus reuniens caudal devision posterior part 

REd nucleus reuniens rostral devision dorsal part 

REl nucleus reuniens rostral devision lateral part 

REm nucleus reuniens rostral devision medial part 

REv nucleus reuniens rostral devision ventral part 

PVT paraventriclar nucleus thalamus 

PT parataenial nucleus 

ATN 

 AM anteromedial nucleus thalamus 

AMc anteromedial nucleus thalamus central part 

AMd anteromedial nucleus thalamus dorsal part 

AMv anteromedial nucleus thalamus ventral part 

AV anterioventral nucleus thalamus 

LD lateral dorsal nucleus thalamus 
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IAD interanterodorsal nucleus thalamus 

ATN  anterior nuclie dorsal thalamus 
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SI Figure 1. Summary of the known anatomical thalamocortical connectivity relationship. 

Afferent and efferent projections are both counted. Anatomical information is based on 

Swanson rat atlas and BAMS (http://brancusi1.usc.edu). Thalamic groups are colored as 

Fig. 1. AUD, auditory cortex. VIS, visual cortex. MO, motor cortex. SS, somatosensory 

cortex. LSX, lateral septal complex. VISC, visceral area. AI, agranular insular area. ACA, 

anterior cingulate cortex. RSP, retrosplenial cortex. IL, infralimbic cortex. PL, prelimbic 

cortex. ORB, orbital cotex. RHP, retrohippocampal area.  
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SI Figure 2. Sagittal and axial views of the connectivity maps for all seven thalamic 

nuclei groups in awake rats. 
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SI Figure 4.3. The cortical connectivity patterns for all seven thalamic nuclei in the 

anesthetized rat. 
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 The above studies have established a solid foundation for our understanding of 

large-scale functional neural networks in the awake rat brain using resting-state fMRI. 

Global organizing principles of functional neural networks were explored in Chapter I 

and II, revealing critical topological properties such as small-worldness and modularity as 

well as elementary functional units in the brain. Interestingly, those global properties 

remained intact even in the anesthetized state, although the global network was evidently 

reorganized at the local level. The comparison of connectional strength suggested a 

global but not uniform reduction from awake to anesthetized states, and the impact of 

anesthesia on the connectional strength was different for different brain regions. 

Importantly, the connectional strength was found not to be particularly decreased for 

long-distance connections. Those findings provide novel insights of the neural 

mechanism of anesthesia and consciousness. Resting-state fMRI was also utilized to 

study specific neural circuitries in Chapter III and IV. Chapter III examined the 

anticorrelated connectivity between infralimbic cortex and amygdala with various 

preprocessing methods, and Chapter IV further validate the resting-state fMRI by 

revealing nuclei specific thalamocortical connectivity. 

 These studies provide enormous future opportunities for both studying basic 

mechanism of resting-state functional connectivity and preclinical disease models with 

the awake rat resting-state fMRI. Coupled with other methods like calcium imaging, 

electrophysiology techniques and optogenetics, this imaging model has the unique 

strength for studying the largely unknown neural mechanism of resting-state functional 

connectivity, which is difficult or impossible to be conducted in human subjects. 



193 
 

Furthermore, as a widely used animal model in biomedical research, there are ample 

opportunities to study preclinical animal models with the awake rat resting-state fMRI. 

This type of studies will provide global insights into neural mechanisms of those disease 

models as well as bridge the gap between human imaging studies and basic preclinical 

research.       
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