
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2005-10-27 

The Role of Tec Kinases in CD4The Role of Tec Kinases in CD4++  T Cell Activation: A Dissertation T Cell Activation: A Dissertation 

Cheng-Rui Michael Li 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Enzymes and Coenzymes Commons, and the Immunology and Infectious Disease 

Commons 

Repository Citation Repository Citation 

Li C. (2005). The Role of Tec Kinases in CD4+ T Cell Activation: A Dissertation. GSBS Dissertations and 
Theses. https://doi.org/10.13028/t57e-g133. Retrieved from https://escholarship.umassmed.edu/
gsbs_diss/3 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1009?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/t57e-g133
https://escholarship.umassmed.edu/gsbs_diss/3?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/gsbs_diss/3?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


THE ROLE OF TEC KINASES IN CD4+ T CELL
ACTIVATION

A Dissertation Presented

Cheng-Rui Michael Li

Submitted to the Faculty of the

University of Massachusetts Graduate School of Biomedical Sciences , Worcester

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

OCTOBER 2i , 2005

IMMUNOLOGY AND VIROLOGY PROGRAM



COPYRIGHT INFORMATION

Some information and data presented in this dissertation have also appeared in the

following publication:

Li C-R and Berg L.J. 2005. Itk is not essential for CD28 signaling in naive T

cells. J ImmunoI174:4475-



Dr. Janet Stavnezer, Chair of Committee

Dr. Joonsoo Kang, Member of Committee

Dr. Leslie J. Berg, Dissertation Mentor

Dr. Anthony Carruthers, Dean of the



ACKNOWLEDGEMENTS

I am deeply indebted to my family: parents , my wife and my brother. Without

your unconditional love and unwavering support I would not have made it where I am

today.

I would like to than my mentor, Dr. Leslie Berg, for her guidance, support and

patience throughout the years of my graduate career. Not only has she provided an

mspmng scientific environment but also a role model as a critical and successful

scientist.

I am grateful to all the members of the Berg lab , past and present. Everyone has

helped one way or another, and contributed in making the work place really enjoyable.

I would like to thank my committee members Dr. Janet Stavnezer, Dr. Joonsoo

Kang, Dr. Cynthia Chambers, and Dr. Francis Chan for their direction and insightful

opinions and suggestions throughout my thesis work.

I would like to thank Drs. Rose Zamoyska, Pamela Schwartzberg, and Falk Weih

for the CD2-rtT A transgenic mouse line, the Itk- Rlk- mouse line, and the pTLC plasmid

vector, respectively.



ABSTRACT

The Tee family tyrosine kinases Itk, Tee and Rlk are expressed in T cells.

Previous studies have established that these kinases are critical for TCR signaling,

leading to the activation ofPLCyl. To further understand the functions of Tee kinases in

T cell activation, we took three different approaches. First, we performed a thorough

analysis of CD28-mediated signaling events and functional responses with purified naIve

T cells from Itk- mice and a highly controlled stimulation system. Data from this set of

studies definitively demonstrate that CD28 co stimulation fuctions effciently in naIve

CD4+ T cells in the absence of Itk. Second, in order to further study the functions of Tee

kinases in vivo we generated transgenic mouse lines expressing a kinase-dead (KD)

mutant of Tee on the Itk- Rlk- background, hoping to study mice that are functionally

deficient for all three Tee kinases. The results hint the importance of the Tee kinases in T

cell development and/or survival. Finally, in order to identify potential transcriptional

targets of Itk, we used micro array technology to compare global gene expression profiles

of naIve and stimulated Itk- versus Itk+ CD4+ T cells. This analysis provided a short list

of differentially expressed genes in Itk- versus Itk CD4 T cells, providing a starting

point for further studies of Itk in T cell activation. Collectively, these studies clarfied the

role of Itk in CD28 signaling, revealed some unexpected aspects of Tee family kinases in

T cells , and indicated potential targets of Itk-dependent signaling pathways in T cells.
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CHAPTER I

INTRODUCTION



Introduction

Over millions of years of selection, vertebrates have acquired an immune system

known as the adaptive immune system, as an addition to the innate immune system

present universally (1). In the innate immune system, cells nonspecifically cope with

invading organisms (pathogens), mainly by phagocytosis, and eliminate them. The innate

immune response is not enhanced when the body is infected again by the same pathogen.

In contrast, the adaptive immune system consists of specialized cells, known as T and B

lymphocytes, that recognize antigens from invading pathogens through specific receptors

expressed on their surface. Following the initial encounter with a pathogen, the adaptive

immune system responds more rapidly and more vigorously when the same pathogen

invades the body again. Thus, specificity and memory are the hallmarks of the adaptive

immune system.

The specificity of the adaptive immune system is achieved through umque

receptors that recognize foreign antigens. These antigen receptors are termed .Qell

receptor (TCR) and .Qell receptor (BCR) for T and B lymphocytes, respectively. The

expression of TCR or BCR in each individual cell results from the rearrangement of gene

segments that encode parts of the receptors during development. For instance, the TCR

on ap T cells , which comprise the major T cell population in the body, is a heterodimer

that consists of an a chain and a p chain; the expression of TCR a chain is the result of

rearanging of Va, J a, and Ca segments in the a chain gene locus, while the expression

ofTCR p chain is the result of rearranging ofVP, Dp, J , and Cp segments in the p chain



gene locus. This rearrangement event plus possible imprecise joining among genomic

segments result in an enormously diverse repertoire of receptors. For instance, the

human TCR repertoire has been estimated to be on the order of 10 (2). While the BCR

recognizes and binds directly to antigens that include proteins and pathogenic particles

the TCR can only recognize antigenic peptides processed in and presented by antigen-

presenting cells (APCs). APCs process antigens to peptides and present the antigenic

peptides on molecules known as major histocompatibility (MHC) molecules. There are

two types of MHC molecules. Class I MHC molecules are present on the surface of

almost all nucleated cells, and class II MHC molecules are present on specialized

immune cells known as professional APCs, such as dendritic cells (3). Thus, TCRs

recognize not only the foreign antigenic peptide, but the self MHC molecules as well. 

addition to TCR, T cells also express one of two coreceptor molecules, CD4 or CDS , that

recognize class II or class I MHC molecules , respectively. These coreceptors facilitate

the interaction between T cells and APCs. Thus , ap T cells can be distinguished as CD4

and CDS+ lineages by coreceptor expression.

When B cells are activated by binding to antigens through BCRs , they undergo

clonal expansion and secrete a soluble form of BCR, known as antibody, which in turn

binds and neutralizes antigens. Neutralized antigens are more easily recognized and

destroyed by the innate immune cells. During B cell responses, BCRs also undergo an

editing ' process , known as affinity maturation, through somatic hypermutation of the

coding sequence, resulting in the best possible affnity to the antigen. On the other hand



when T cells are activated by antigens presented on APCs, they also undergo clonal

expansion; in addition, they differentiate into functional subsets. Some T cells act

directly on the antigen bearing cells , as when cytotoxic T cells kill virus-infected cells.

Other subsets of T cells function as regulators that orchestrate the immune response

through secreting soluble small proteins, known as cytokines , as well as through cell-cell

interaction. However, it is generally accepted that activated T cells do not undergo

receptor affnity maturation, which means that the TCR on a given mature T cell will not

change regardless of the activation status of the T cell.

cell development and maturation occur in the thymus, where T lineage-

committed cells go through CD4CDS double negative (DN) and CD4CDS double

positive (DP) stages to the mature CD4 single positive (CD4+ SP) or CDS single positive

(CDS+ SP) stage. During thymic development, T cells are selected so that only those

that express TCRs with appropriate affinity to self-MHC can survive and mature (4). The

rearrangement and selection events ensure a highly diverse T cell repertoire that can

recognize foreign peptides presented on self MHC molecules while not responding to

self-peptides presented on self-MHC. When T cells are mature, they leave the thymus

and enter the secondary lymphoid organs (i. e. spleen, lymph nodes, and Peyer s patches).

Before a T cell encounters its specific antigen, it is called a "naIve" T cell. NaIve T cells

continuously migrate from one lymphoid organ to another via blood and lymph (5 , 6).

In the secondary lymphoid organs , T cells scan APCs for antigens. If a T cell does not

recognize its specific antigen, it migrates to the next secondary organ. This continuous



migration allows T cells to make rapid contact with antigens. When a T cell recognizes

an immunogenic peptide presented on APCs through TCR-MHC/peptide interaction, it is

activated. The signals from TCR and some accessory receptors, known as co stimulatory

molecules, are transduced through the cell to the nucleus, where de novo expression of a

varety of genes is activated. This gene expression is vital for the function of activated T

cells.



TCR signaling and T cell activation

T cell activation is initiated by the interaction between the TCR on the T cell and

the MHC/peptide complex that is present on the APC (7). This signal first induces a

reorganization of the plasma membrane and membrane associated signaling proteins

followed by the formation of a series of signaling complexes, which in turn facilitate the

activation of effector signaling molecules such as phospholipase C-yl (PLCyl).

Subsequently, the signal transduced in this way induces the activation and nuclear

translocation of many important transcription factors , such as NFAT, AP- , and NFKB.

These signaling events culminate in the activation of the expression of a variety of genes

that are crucial for effector functions of activated T cells, such as interleukin-2 (IL-2), a

critical T cell growth factor. This series of events is described sequentially as follows

(Figure 1- 1).

In addition to the binding of the TCR to the MHC/peptide complex, the T cell-

APC interaction also requires the binding of coreceptors CD4 or CDS to MHC class II or

class I molecules , respectively, and the interactions between adhesion molecules, such as

LFA-l on T cells and ICAM- l on APCs. Imaging studies have demonstrated that a

special structure, termed the immunological synapse (IS), forms in the area where these

interactions occur (S, 9). Biochemical studies have shown that upon ligation, TCR

molecules associate to cell membrane domains, known as lipid rafts, which are critical

for TCR signaling (10- 13). These rafts contain enrched glycosphingolipid, and are

relatively resistant to non-ionic detergents , such as Triton X- I00, at low temperatures
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(14). A number of intracellular proteins that transduce TCR signals associate with the

rafts, including the Src family tyrosine kinase Lck and the transmembrane adaptor protein

Linker for ctivation ofT cells (LAT) (15 , 16).

While the a heterodimer of a TCR is responsible for the specific recognition of

and interaction with the MHC/peptide complex , transduction of the signal from this

interaction depends on the intracellular non-polymorphic components of the TCR/CD3

complex. In addition to the a chains, this complex is comprised of a TCRS chain dimer

a CD3 Y chain, a CD3 8 chain, and two CD3 E chains (17). The intracellular components

of these chains contain a unique motif, the Immunoreceptor-based Tyrosine ctivation

otif (ITAM) with a consensus YXXVLX(6- YXXVL sequence (18 , 19). There are three

ITAM motifs on each TCRS chain, and there is one such motif on each of the y, 8 , and E

chains. A number of studies have shown that the IT AM motifs are both necessary and

suffcient for transducing the signals initiated by TCR ligation (20 , 21).

The earliest experimentally detectable event after TCR ligation is the

phosphorylation and activation of the Src family tyrosine kinases, such as Lck. 

mentioned above, Lck is targeted to the plasma membrane via its N-terminal

myrstylation (22), and is further localized to the activated TCR complex by its

association with the coreceptors CD4 or CD8 (23). The first substrates of activated Lck

are thought to be the IT AM motifs on the intracellular components of the TCR complex.

Another Srcfamily tyrosine kinase, Fyn, functions similarly to Lck (24). Phosphorylated



tyrosine residues on the S chain ITAMs then recruit the Syk family tyrosine kinase ZAP-

70 ( eta-chain- ssociated Qrotein of 70kDa) to the complex, through the binding of

tandem .src homology 2 (SH2) domains on ZAP-70 to the two phosphorylated tyrosine

residues on the !TAM (25 , 26). Once bound to the S chain in this fashion, ZAP-70 is

activated by Src kinase-mediated tyrosine-phosphorylati of the kinase domain

activation loop (27 28). Subsequently, activated ZAP- undergoes

autophosphorylatio , which allows binding to other SH2 domain-containing proteins

(29). Activated Src and Syk tyrosine kinases are then able to phosphorylate other kinases

as well as a number of molecules, known as adaptor proteins, that lack enzymatic

activities but function to mediate interactions among other signaling proteins (30). 
One

such adaptor protein is LAT , which was originally identified as a 36-38 kDa protein that

is rapidly phosphorylated after TCR ligation and that associates with a number of other

signaling molecules including PLCy1 and Grb2 (31-33).

After being phosphorylated by ZAP-70 (34), LAT recruits a number of enzymes

and adapter proteins , including Grb2 which brings the small G protein Ras activator SOS.

Another important adaptor protein, SLP-76 (.sH2-domain-cont g leukocyte Qrotein of

76kDa), joins the complex via its interaction with Gads (35). SLP-
76 can bind multiple

effector molecules, and thus, bring them to the signaling complex. These molecules

include Vav and Itk (see below). Another critical membrane-proximal event is the

activation of Phosphoinositol-3 kinase (PI3K). PI3K activation is thought to require Lck

activity (36 37). Activated PI3K phosphorylates the position of

- - - - - ----- -,- ,-- " - -- -



phosphotidylinositol (4 5)-bisphosphate (PIP ) to generate phosphotidylinositol (3,4,5)-

trisphosphate (PIP ). Importantly, this provides a binding site at the membrane for a

number of signaling molecules that contain p.1eckstrin homology (PH) domains , such as

PLCy 1 and Itk.

PLCyl is a central effector signaling molecule in T cells. As mentioned

previously, PLCyl is recruited to the signaling complex by interacting with LAT via its

SH2 domains and additionally by binding to PIP via its PH domain. Activation of

PLCyl requires the phosphorylation of multiple tyrosine residues on this molecule.

Subsequently, activated PLCyl catalyzes the hydrolysis of phosphotidylinositol (4 5)-

bisphosphate (PIP ) to generate two products, inositol (l,4,5)-trisphosphate (IP ) and

diacylglycerol (DAG). IP binds to its receptor in the endoplasmic reticulum (ER), and

induces the release of calcium stored in the lumen of the ER. This release of stored

calcium then activates calcium channels in the cell membrane to open, resulting in an

influx of calcium from the extracellular environment. The elevated cytoplasmic calcium

concentration is crucial for functions of activated T cells. The other product of PLCyl

DAG, activates the protein kinase C (PKC) family serine/theronine kinases, which in turn

activate NFKB. Moreover, DAG can directly activate another Ras activator, RasGRP

leading to the activation of Ras/MAPK pathways (38 , 39).

. "
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Figure 1-1 A schematic view of TCR signaling pathways

Engagement of the TCR leads to rapid activation of Lck and Zap- , which

phosphorylate numerous downstream targets, including the adapter molecules LA T and

SLP-76. Together, these adapters form a platform for the accumulation of molecules into

a signaling complex that includes PLCy1 , Grb2 , Gads , Vav, Tee familykinases , and other

associated molecules. Itk (and probably other Tee kinases) physically interact with SLP-

76 and possibly LAT, bringing Itk into this complex where it can phosphorylate PLCyl.

Activation of PLCy1 by Itk leads to the generation of IP3 which is required for Ca2+ flux

within the cell and DAG which activates members of the PKC family and RasGRP. This

results in the downstream activation of mitogen-activated protein kinases, such as JN

ERK1 and ERK , and other effectors that direct gene transcription.
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The signals that are generated on the cell membrane by the interaction of TCR

and APC/peptide complex are then transduced to stimulate the activation of a variety of

transcription factors. Among these are the nuclear factor of 
ctivated cells (NAT),

NFKB and AP- l. NFAT plays a crucial role in the induction of gene transcription after T

cell activation (40). The inactive form of NFAT is hyperphosphorylated and resides in

the cytosol. After TCR stimulation, elevated calcium levels lead to the activation of a

calcium-dependent phosphatase, calcineurin, which in tur dephosphorylates NF AT.

Dephosphorylated NF A T is then able to translocate into the nucleus and induce

transcription of NFAT-dependent genes, such as IL- , in cooperation with other

transcription factors. Sustained elevation in intracellular calcium is required for NF AT-

dependent gene expression, as NFAT is rapidly phosphorylated in the nucleus by kinases

such as GSK3 , and exported back to the cytosol (41 , 42).

The transcription factor AP- 1 is a heterodimer of members of the Fos and Jun

families. AP-1 activity is regulated both at the level of transcription and post-

translational modification. For instance , Fos expression requires signals transduced by

the itogen- ctivated 2rotein (MAP) kinase, the xtracellular ignal-regulated protein

kinase (ERK), which is downstream of the small G protein Ras (43). On the other hand

to be transcriptionally active, Jun family proteins need to be phosphorylated. This

requires another MAP kinase, c-Jun N-terminal kinase (JN), whose activation needs

Rho family small G proteins (44, 45). Different combinations of specific Fos and Jun

family members may have distinct effects in transcriptional regulation.



The transcription factor NFKB consists of homo- or hetero-dimers of the Rei

family proteins, which have five major members: RelA (P65), RelB , c-Rel , NFxBI (p50

and its precursor pI 05), and NFKB2 (p52 and its precursor pIOO). In resting cells, NFKB

is tightly controlled by IKB proteins. Upon T cell activation, IKB molecules are

phosphorylated by IxB kinases (IK), ubiqitinated, and degraded, allowing NFKB to

translocate to the nucleus. The mechanisms of the activation of IK after TCR ligation

are as yet not fully elucidated. However, PKCe and the CARAI-BcllO-MALTl

complex are apparently required (46). Furthermore, recent data have implicated caspase-

8 (47) and PDKI (48) in NFKB activation through BcllO-MALTl.

Once in the nucleus, activated transcription factors cooperate in activating 

novo gene transcription. Significantly, the promoter of the 1L- gene contains binding

sites for several families of transcription factors including NF AT , AP- , and NFKB. IL-

2 is a T cell growth factor that is vital for T cell survival and proliferation, and is thus

crucial for an effective adaptive immune response. Lack of IL-2 wil lead T cells to a

state of unresponsiveness. Therefore, production of IL-2 is considered a hallmark or a

gold standard of T cell activation.



Costimulation in T cell activation

In addition to the signal initiated by the interaction of TCR with MHC/peptide

optimal activation of T cells requires a second signal, known as co stimulation. If T cells

are stimulated through Their TCR without co stimulation, they may enter a state of

unresponsiveness, known as anergy (49, 50). Costimulation provides additional signals

that enhance cell survival , promote cell proliferation, and enhance effector functions such

as cytokine production, among others. There are two major families of receptors that

have been shown to provide critical co stimulatory signals to T cells: One is the tumor

necrosis factor receptor (TNFR) family that includes OX40 , CD27, CD30, 4- 1BB , and

HVEM (51); the other is the CD28 family that includes CD28 and inducible co stimulator

(ICOS), which belongs to the immunoglobulin superfamily (52 , 53). Additionally, recent

studies also suggest possible crosstalk between members of the TNFR and CD28 families

(54, 55).

The contribution of each receptor to T cell activation and effector function

depends on its cell surface expression pattern and on the status of the T cells. For

instance, with the exception of CD27 and HVEM, none of the TNFR family members is

expressed on naIve T cells; the expression of these receptors is highly up-regulated in

effector T cell (reviewed in (51)). This expression pattern suggests that perhaps the

major role of the TNFR family co stimulatory receptors is to enhance T cell effector

functions. Similarly, the CD28 family member ICOS is not constitutively expressed on

naIve T cells; its expression is induced after TCR activation (56). In contrast, CD28 is



constitutively expressed on naIve T cells, and provides the primary costimulatory signal

for the activation of naIve T cells (see below). In addition to CD28 and ICOS , the CD28

family also has members that function to inhibit T cell activation, such as CTLA- , PD-

and BTLA. These negative co stimulatory receptors, also referred to as "co-inhibitory

receptors are crucial to maintain homeostasis of the immune system after a response (57).

CD28 was the first receptor identified to provide a positive co stimulatory signal 

T cell activation (58), and CD28 costimulation is the best studied co stimulatory pathway.

Because CD28 is expressed constitutively on all CD4+ T cells (59), it is able to provide

the crucial primary co stimulatory signal to naIve T cells. CD28 is a 44kDa glycosylated

transmembrane protein belonging to the immunoglobulin superfamily and is expressed on

T cells as a disulfide-linked homodimer. At the complementary determining region 3-

like region (CDR3-1ike region) of its extracellular domain, there is a conserved MYPPPY

motif. It is this MYPPPY motif that mediates the interaction of CD28 with its ligands

B7. 1 and B7. , expressed on APCs such as dendrtic cells and B cells (60). Antibodies

that bind the MYPPPY region, such as the 37.51 clone, are used to stimulate CD28

mimicking the binding to its natural ligand (61). The intracellular tail of CD28 lacks any

direct enzymatic activity. Thus, the signal transduced by CD28 is through the

recruitment of other signaling molecules to its intracellular tail. Within the 41 amino acid

residues of the CD28 intracellular tail, there are four tyrosine residues , one of which is in

a conserved YMN motif. Phosphorylation of the tyrosine in the YM motif

provides a binding site for SH2 domain-containing signaling proteins, such as Grb2 and



the regulatory p85 subunit ofPI3K (62). Moreover, there are two proline-rich motifs in

the CD28 intracellular tail that provide binding sites for SH3 domain containing proteins

(63).

Studies in which the CD28 gene is mutated or the interaction of CD28 with its

ligands is disrupted have demonstrated that CD28 is crucial in many aspects of the

generation of an efficient immune response. First, CD28 co stimulation prevents T cell

anergy. This has been demonstrated by in vitro experiments where CD28-

interactions are blocked by either antibodies or soluble CTLA4-Ig fusion proteins. Under

these conditions , T cells enter an anergic state, which can be rescued only by delivering

CD28 co stimulatory signals or by providing extra IL-2 (64-67). These data demonstrate

that CD28 signaling plays a critical role in preventing T cell anergy and controllng T cell

responsIveness. Second, in the presence of suboptimal TCR/CD3 signaling, CD28

ligation promotes IL-2 production by enhancing IL-2 transcription, mRA stability and

translation. In addition to IL- , CD28 co stimulation also enhances production of other

cytokines, such as IL- , IL- , IFNy, and GM-CSF (68 , 69). CD28 costimulation also

up-regulates the expression IL-2 receptor a and B chains (70, 71). Increased IL-2 and IL-

2 receptor interactions then enhance proliferation of activated T cells. Furthermore

CD28 co stimulation can promote cell cycle progression by down-regulating the negative

regulators GSK3 and p27 P (72). It has also been established that the signal through

CD28 promotes survival of activated T cells, through up-regulation of the anti-apoptotic

Bcl-2 family member, Bel-xL (73). In addition, after CD28 ligation, activated Akt can



prevent Fas-mediated apoptosis by inhibiting the formation of the death-inducing

signaling complex (DISC) (74), providing another mechanism by which CD28

co stimulation promotes T cell survival. Finally, CD28 co stimulation promotes energy

metabolism in activated T cells by increasing their glucose uptake and glycolytic rate in

response to activation. These responses require the activation of PI3K-Akt after CD28

stimulation (75 , 76). Increased metabolism would provide the energetic and biosynthetic

needs of sustaining a response by activated T cells.

The signaling mechanisms of CD28 co stimulation have not yet been fully

elucidated. No unique signaling molecule or pathway has been identified that is solely

activated by CD28 stimulation alone. Stimulation of both TCR and CD28 is needed to

effect T cell activation, which makes it diffcult to dissect these two pathways. Perhaps

this has led to the notion that CD28 signaling provides "quantitative" assistance to T cell

activation. However, evidence has indicated a difference between CD28 and TCR

signaling, in that CD28 signaling is insensitive to inhibition by cyclosporine A and thus is

independent of calcium and calcineurin (60, 77, 78). Although many signaling

molecules , such as Vav, SLP-76 and Grb2 have been implicated in transducing the CD28

signal, mounting evidence has suggested that PI3K and its down-stream pathways are

crucial for CD28 co stimulation. After CD28 ligation, the tyrosine residues on the CD28

intracellular tail, particularly the one in the YMN motif, are phosphorylated. This

phosphorylation requires the Src kinases Lck and Fyn (79). Phosphorylation of the

tyrosine in the YM motif creates a binding site for the SH2 domain of the regulatory



subunit of PI3K, p85 (80-82); the binding affnity with p85 is 10- 100 fold higher than

that with Grb2 (83). More importantly, it has been demonstrated that ligation of CD28

by B7. 1 or B7.2 can induce the accumulation of the products of active PI3K, D-

phosphoinositide lipids including PIP (84, 85).

The best studied down-stream signaling molecule of PI3K is the PH domain

containing serine/threonine kinase Akt, whose activation, as measured by its

phosphorylation at S473 and/or T308 , is often used as an indication of PI3K activity.

Ligation of CD28 can lead to Akt activation (86-88), and many of the above mentioned

functions of CD28 co stimulation can be attributed to Akt activation. The PI3K product

PIP induces localization of Akt to the membrane. Akt is then phosphorylated and

activated by PDKI (89). Activated Akt, in turn, has multiple down-stream targets

including transcription factors such as NFKB , FoxO and CREB , and other kinases such as

GSK3 and mTOR (90). Through activating NFKB , activated Akt enhances transcription

of genes encoding cytokines, such as IL- , and other proteins like Bel-xL. By inhibiting

GSK3 , signaling through activated Akt can help to maintain activated NFAT in the

nucleus, since GSK3 has been shown to phosphorylate NF AT and facilitate its export

from the nucleus (91). Through activating mTOR and down-stream p70S6K, activated

Akt enhances protein translation. Thus, the PI3K-Akt signaling pathway can be viewed

as a signature of CD28 co stimulation (Figure 1-2).
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Figure 1-2 PI3K pathways in CD28 costimulation

Stimulation of CD28 leads to the phosphorylation of tyrosine residues on its intracellular

tail, especially the one in the YMN motif. Phosphorylation on this site recruits and

activates PI3K, which in,tum generates PIP . Both PDK1 and Akt are recruited to the

membrane via the binding of the PH domain and PIP . Subsequently, Akt is activated by

PDK1 , and then regulates multiple down-stream pathways, including transcription factors

such as NFKB and FoxO, and other kinases such as mTOR and GSK3. In this way the

PI3K pathway transduces the signal from CD28 to promote gene expression, translation

cell survival, cell cycle progression, and energy metabolism.
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As mentioned above, CD28 co stimulation promotes transcription of a variety of

genes , including cytokines like IL-2. Evidence indicates that NFKB is perhaps the most

relevant transcriptional target of CD28 co stimulation (92). A link between CD28

co stimulation and NFKB was found initially with the identification of a CD28 responsive

element (CD28RE) in the 1L- gene promoter. This element was found to specifically

bind to nuclear complexes from anti-CD28 stimulated T cells. The sequence of this

CD28RE is similar to the NFKB binding site (93-96). Subsequently, CD28RE has been

identified in many other genes, including Bcl-xL, CD40 ligand (CD40L), IL- , and GM-

CSF (95 , 97 , 98). It is not quite clear how the CD28 signal induces NFKB activation in T

cells. However, several studies have shown that IK activity is increased by CD28

stimulation (98-100). Akt is also involved in IKK activation, although Akt may not

directly phosphorylate IKK (90, 101). Furthermore, Akt has also been involved in

directly regulating NFKB activity by phosphorylating ReiA/p65 ofNFKB (102, 103). In

addition, a recent study demonstrated that a PI3K down-stream protein, PDK1 , plays a

critical role in activating IKK through regulating the activation of PKCe and the

recruitment of CARA1-BCL10-MALT1 complex (48). Therefore, it seems that the

PI3K and its down stream pathways playa major role in transducing CD28-induced

NFKB activation.



Itk and Tee family tyrosine kinases

In 1990, a novel non-receptor tyrosine kinase was identified from a mouse liver

cDNA library and was found to be expressed in hepatocellular carcinoma cell lines; this

kinase was termed Tee (104). Subsequently, several other proteins were identified that

share extensive sequence similarities with Tee , making the Tee family the second largest

family of non-receptor kinases. There are five members of the Tee family, all of which

are primarily expressed in hematopoietic cells. In addition to Tee, there are Btk (105

106), Itk (also known as Tsk and Emt) (107- 109), Rlk (also known as Txk) (110, 111),

and Bmx (also known as Etk) (112). All Tee family members share the same overall

domain structure (Figure 1-3). From the C-terminus , there is a kinase domain, followed

by an SH2 domain and then an SH3 domain. This structure resembles that of the Src

family of tyrosine kinases. However, Tee kinases lack the C-terminal regulatory tyrosine

present in Src kinases, suggesting that these kinases require a distinct mechanism of

regulation. N-terminal to the SH3 domain, there is a Tee homology (TH) domain, which

comprises a Btk homology (BH) motif and one or two proline rich region(s) (PRR).

Finally, at the N-terminus of the protein is a PH domain, which can bind to PIP and

facilitate membrane recruitment of Tee family kinases. There are some varations of this

general domain structure. Specifically, Rlk does not possess an N-terminal PH domain.

Instead, it has an N-terminal cysteine-string that can be palmitoylated and can result in

Rlk recruitment to the plasma membrane. In addition, Bmx does not have a PRR in the

TH domain.



Figure 1-3 Domain structures ofTec family kinases

Tee family kinases share an overall similar structure. This strcture includes a C-

terminal kinase domain followed by an SH2 and an SH3 domain. N-terminal to the SH3

domain, there is a Tee h9mology (TH) domain that consists of a Btk homology (BH)

motif and one (Itk, Rlk) or two (Btk, Tee) proline rich region(s) (PRR). At the N-

terminus of the protein, there is a pleckstrin homology (PH) domain. Exceptions to this

structure include Rlk and Bmx. At its N-terminus , Rlk does not have a PH domain, but

instead a cysteine-string. Bmx does not have a PRR motif in the TH domain.
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The importance. of the Tee family kinases was first revealed when it was

discovered that mutations in Btk were responsible for the human genetic disorder X-

linked agammaglobulinemia (XLA) and the murine mutant X-linked immunodeficiency

(xid), both of which are characterized by reduced serum immunoglobulins and defective

B cell development (105 , 106 , 113 , 114). At least three Tee family kinases are expressed

in T cells; they are Tee , Itk and Rlk. So far, no mutation ofthese kinases has been related

to any human T cell defects. However, studies of mice with targeted mutations in Itk 

Itk and Rlk demonstrate that these Tee kinases are important in T cell development

activation and effector functions (115- 122). Among these three Tee kinases, Itk seems to

be predominant in T cells.

The activation of Itk is dependent on two major events: its localization to the

plasma membrane and its phosphorylation at multiple sites. Upon TCR stimulation, the

Src and Syk family kinases , as well as PI3K, are rapidly activated. Activation of Src and

Syk kinases leads to the phosphorylation of the adaptor proteins LAT and SLP-76.

Simultaneously, activated PI3K generates PIP Increased PIP recruits Itk to the

membrane via the PH domain of Itk. This recruitment allows Itk to join a signaling

complex consisting of SLP- 7 6 , Gads, Grb2 , PLCy 1 and LA T (123- 125). In this complex

Itk is able to be tyrosine-phosphorylated by the Src kinase Lck in its kinase domain (126).

This is followed by Itk auto-phosphorylation on a tyrosine in its SH3 domain (127).

These phosphorylation events result in full activation of the kinase. The localization of

Itk to the membrane can be negatively regulated by the phosphatases PTEN and PHIP

- n

- .- - -



which dephosphorylate PIP at the D-3 and D-5 positions, respectively, and convert PIP

back to PIP . This dephosphorylation thus prevents further recruitment of Itk to the

membrane. It is believed that Tee is activated in the same manner as Itk. Because of the

lack of PH domain, Rlk localization does not depend on PIP . Instead, palmitoylation of

Rlk' s N-terminal cysteine-string facilitates its recruitment to the membrane (128, 129).

In addition, Itk is thought to be regulated by conformational changes directed by intra-

and inter-molecular interactions involving its SH2 domain, SH3 domain and PRR motifs.

For instance the PRR motif and the SH3 domain can mediate intra-molecular interaction

within Itk, and this interaction is thought to be inhibitory (130). More recently,

biochemical studies have shown that the peptidylprolyl isomerase cyclophilin A

contributes to a conformation change in Itk via isomerization of a proline residue in its

SH2 domain (131 , 132).

Once the Tee kinases are activated, they are capable of phosphorylating and

activating PLCy1 , which is also present in the LAT-Gads-SLP-76-Itk complex.

Activated PLCy1 then hydrolyzes PIP to generate the second messengers IP3 and DAG.

As described above, IP3 stimulates calcium mobilization and eventually leads to the

activation of the NFAT transcription factors, while DAG activates PKC and RasGRP

resulting in the activation of the NFKB, AP-1 and other pathways (Figure 1- 1).

Therefore, by activating PLCy1 , Tee kinases transduce TCR signals critical in regulating

T cell development, activation, effector function and homeostasis. More recent studies

have also implicated Itk in regulating actin polarization through interaction with Vav



after T cell activation, and this function seems not to require the kinase activity of Itk

(133).

Consistent with a major role of Tee family kinases in regulating PLCy1 , T cells

fTOm Itk- or Itk- Rlk- mice display diminished TCR-induced IP3 production, calcium

mobilization and MAP kinase activation (115 , 117, 119). Functionally, these mice have

impaired positive selection during thymocyte development. When Itk- or Itk- Rlk-

CD4+ T cells are stimulated through the TCR in vitro they produce decreased amounts of

IL-2 and proliferate to a lower extent compared to wild-type T cells (115- 117).

Furhermore, these cells also show defective functional differentiation (119, 121 , 134).

Finally, T cells from Itk- mice also display a defect in activation induced cell death

(AICD) (135). The Tee deficient T cells do not show appreciable defects (136).

However, when wild type T cells were stimulated in the presence of antisense

oligonucleotide against Tee, proliferation and IL-2 production were reduced, suggesting

that Tee also functions in TCR signaling (137).

As described earlier, optimal activation of naIve T cells requires not only TCR

signals but also co stimulatory signals from CD28. Biochemical studies have implicated

Itk in CD28 signaling. These studies showed that, following CD28 ligation of Jurkat

cells , Itk associates with the CD28 intracellular tail and becomes phosphorylated (138).

This interaction between Itk and CD28 has been shown to require functional Lck activity

(79, 139). Additionally, the interaction has been mapped to the proline rich region of



CD28 and the SH3 domain of Itk (140). Additionally, Itk has been shown to be capable

of phosphorylating all tyrosine residues of the CD28 intracellular tail (141). Together

these data suggest that Itk may act as a positive regulator in CD28 signaling. However, a

functional study using primary T cells from Itk- mice failed to substantiate the

conclusions from these biochemical studies (142). On the contrary, this study showed

hyperresponsiveness ofItk- T cells to anti-CD28 stimulation; these cells proliferated to a

much higher extent when compared to T cells from littermate controls. Although this

study did not examine the biochemical mechanisms of the hyperresponsiveness, the

results led the investigators to conclude that Itk is a negative regulator of CD28 signaling

(142). However, based on our knowledge of TCR and CD28 signaling, it is difficult to

reconcile such opposing roles for Itk in the TCR and the CD28 signaling pathways. The

role of Itk in CD28 co stimulation signaling will be analyzed and discussed in detail in

Chapter II.

In T cells, Itk, Rlk, and Tee are expressed at different levels. Experiments using

quantitative real-time PCR have determined that Itk mRA is present at the highest level

Rlk mRA levels two- to threefold lower and Tee mRA at a level close to 100-fold

lower than that of Itk (143). This hierarchy of expression may imply their relative

importance in T cells. Indeed, a comparison among all the single deficient mouse lines

reveals that the loss of Itk results in the most severe defects on T cell development and

fuction. Further, the loss of Rlk has moderate defects and the loss of Tee has no

obvious defect on T cell development and function (115- 117, 136). However, a single



deficiency of any of these kinases , and even double-deficiency of both Itk and Rlk, does

not eliminate TCR signaling; instead, all TCR signaling aspects are reduced. These

effects are in striking contrast to those of mutations in more TCR-proximal molecules

such as Zap-70. These observations have generated the notion that Tee kinases modulate

or amplify the effciency of downstream signaling (144, 145). However, functional

redundancy appears to exist among Tee family kinases. For instance, the defects

observed in Itk and Rlk double deficient T cells are more severe than those of Itk single

deficient T cells (117). Similarly, the defects in Btk and Tee double deficient B cells are

more severe than those in Btk single deficient B cells (136).



Work presented in this thesis

To furher understand the role of the Tee family kinases in T cell activation, three

different approaches have been taken to address different questions. First, as presented in

Chapter II, we performed a thorough analysis of CD28-mediated signaling events and

functional responses with purified naIve T cells from Itk- mice in a highly controlled

stimulation system. Data from these set of studies definitively demonstrate that CD28

co stimulation functions effciently in naIve CD4+ T cells in the absence of Itk. Second

in order to fuher study the fuctions of Tee kinases in mice that are functionally

deficient in all three Tee kinases, we generated transgenic mouse lines expressing a

kinase-dead (KD) mutant of Tee on the Itk- Rlk- background. These experiments are

presented in Chapter III. Intriguingly, the expression of the trans gene was detected at the

mRA level, but not at the protein level. Although we did not obtain our expected

mouse model for further studies, the results hint at the potential importance of the Tee

kinases in T cell development and/or survival. Finally, to further understand the function

of the Tee family kinase Itk and to identify potential transcriptional targets of Itk, we

used micro array technology to compare global gene expression profiles of naIve and

stimulated Itk- versus Itk CD4+ T cells. As presented in Chapter IV, this analysis

resulted in a short list of differentially expressed genes in Itk- versus Itk+l- CD4 T cells

providing a starting point for further studies of Itk in T cell function.

Overall, these studies contribute to the general knowledge of the role of the Tee

family kinases in CD4+ T cell activation. Using these three different approaches, we



were able to reveal some unexpected aspects of this family of kinases in T cells and to

clarify some existing confusion about the role of Itk in CD28 co stimulation signaling.

The data also indicate the potential importance of selection pressure in T cell

development and homeostasis.



CHAPTER II

THE ROLE OF ITK IN CD28

COSTIMULATORY SIGNALING



Introduction

As described above, two signals are required for the optimal activation of naive T

cells, one from the TCR and the second from a co-stimulatory receptor. In the absence of

the co-stimulatory signa:l TCR engagement often leads to T cell death or non-

responsiveness (49). On naIve T cells, the CD28 receptor provides the primary

co stimulatory signal following interaction with CD80 or CD86 (B7. 1 or B7.

respectively) on antigen presenting cells (reviewed in (53, 146)). Functionally, CD28

costimulation enhances the survival, cell cycle progression, energy metabolism, and

cytokine production by activated T cells. Although tremendous effort has been directed

at elucidating the signaling pathway(s) initiated by CD28 stimulation, the detailed

mechanism by which CD28 costimulation operates has not yet been completely

determined, in part due to the diffculty of distinguishing the TCR- versus the CD28-

mediated signals in primary T cells.

The Tee family tyrosine kinase Itk has previously been implicated in CD28

signaling. While Itk is primarily associated with TCR signaling (143, 147, 148), a

number of biochemical studies have demonstrated an interaction between Itk and CD28.

Specifically, Itk co-immunoprecipitates with CD28 from Jurkat tumor cells, and in

addition, is tyrosine-phosphorylated in response to CD28 crosslinking (138 , 140). 

vitro studies using recombinant proteins indicate that Itk binding to CD28 depends on the

activity of the Src- family tyrosine kinase, Lck (79), a conclusion that was reinforced by

data from Lck-deficient Jurkat T cells (139). Structure-function analysis of CD28 furher



demonstrated that the SH3 domain of Itk binds to proline-rich sequences in the CD28

cytoplasmic tail, an interaction that has been suggested to enhance Itk kinase activity

(140). Finally, Itk has been shown to phosphorylate all four tyrosine residues of the

CD28 cytoplasmic tail in in vitro kinase assays (141), providing additional evidence for a

positive role ofItk in CD28 signaling.

To date, only a single study has addressed the role of Itk in CD28 signaling in

primary T cells. Surprisingly, this study concluded that Itk is a negative regulator of

CD28 signaling. This latter conclusion was based on the finding that CD4+ T cells from

Itk- mice showed enhanced proliferative responses to CD28 costimulatory signals

compared to cells from wild type mice (142). One complication of this initial study is the

fact that Itk- mice have a greatly increased population of previously-activated/memory

CD4+ T cells compared to controls. This altered subset distribution of naIve versus

memory CD4+ T cells in Itk- mice might have skewed the responses of these cells to

TCR plus CD28 stimulation, independently of a role for Itk in CD28 signaling. Because

of this concern, we chose to re-address the role of Itk in CD28 signaling using a panel of

assays that assess CD28 signaling in the presence, as well as the absence, of TCR

stimulation. Overall, the data demonstrate that Itk is not a negative regulator of CD28

co stimulatory activity; in contrast, to the best of our knowledge, all aspects of CD28

signaling are intact in the absence ofItk.



Results

Inereased numbers of memory phenotype CD4+ T eells in Itk- - miee

Previous studies have documented that Itl/- mice have a modest defect in positive

selection, resulting in a two-fold reduction in the total numbers of CD4+ T cells in the

spleen and lymph nodes of Itk- mice compared to controls (115 , 116, 120). Surrisingly,

however, the population of CD4+ T cells in Itk- mice is highly enriched for cells with a

previously-activated or memory phenotype (CD4 CD44 CD62L ). As shown in Figure

, we routinely find a 3- fold increase in the proportion of CD4+ T cells expressing

high levels of CD44 in lymph nodes of Itk- mice compared to wild type C57BL/10 mice.

In addition, an increased number of CD4 CD44 T cells is detectable in Itk- mice as

early as four weeks after birth. When CD4 CD44 T cells were analyzed for CD69 and

CD25 expression, fewer cells from Itk- mice compared to controls expressed these early

activation markers, suggesting that these cells have not been recently activated (Figure 2-

1B). Overall, these data indicate that, while total T cell numbers are reduced in the Itk-

mice, the proportion of cells with a memory phenotype are actually increased. Although

it is not clear why these cells accumulate in Itk- mice, one possibility relates to a modest

defect in activation-induced cell death (AICD), as previously described (135).



Figure 2- Itk- mice have increased activated/memory-like CD4+ T cells

A. Lymph node cells from C57BL/IO (WT) and Itk- mice were stained with anti-CD4

and anti-CD44 antibodies. Histograms show CD44 staining on gated CD4+ T cells. The

numbers on each histogram indicate the percentage of CD44 cells in the CD4

population. Data shown are representative of five experiments.

B. Lymph node cells from WT and Itk- mice were stained with antibodies to CD4

CD44 , and CD69 or CD25. Mean percentages:J SD ofCD69+ or CD25+ cells among the

CD4 CD44 population are indicated for 2 WT and 6 Itk mice analyzed.
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Naive Itk- - CD4+ T eells are not hyperresponsive to CD28 eostimulation

previous study described increased responsiveness of Itk- CD4+ T cells

compared to wild type CD4+ T cells following stimulation through CD28 , leading to the

conclusion that Itk is a negative regulator of CD28 signaling (142). Consistent with these

earlier data, we also observe that when equal numbers of total CD4+ T cells from Itk-

mice or wild type control mice are stimulated with PMA plus anti-CD28-coated beads

the proliferative response of the Itk- CD4+ T cells is significantly higher than that of the

control cells (Figure 2-2A). However, since the CD4+ T cell population from Itk- mice

contains an increased proportion of memory phenotype cells, we reasoned that the

increased responsiveness of these cells might be attributable to this altered subset

distribution. To test this possibility, we repeated this experiment using highly purified

naIve CD4+ (CD44 ) T cells. As shown in Figure 2- , purified naIve Itk- CD4+ T

cells are not hyperresponsive to CD28 co stimulation. To further support the idea that

increased proportions of activated CD4 T cells may increase the overall response of total

CD4 T cells upon stimulation, purified Itk- CD44high CD4 T cells proliferate much more

vigorously than naIve CD4 T cells stimulated with PMA plus anti-CD28 (Figure 2-2C).



Figure 2- Purifed n aive Itk- CD4+ T cells are not hyperresponsive to CD28

stimulation

A. Total CD4+ T cells were from WT and Itk- mice were stimulated with the indicated

concentrations of PMA ,in the presence of anti-CD28 antibody-coated beads ("anti-

CD28") or isotype control antibody-coated beads. Cell proliferation was measured by

thymidine incorporation at 72h.

B. Sorted naIve CD4+ T cells from WT and Itk- mice were stimulated with the indicated

concentrations of PMA in the presence of anti-CD28 antibody-coated beads ("anti-

CD28") or isotype control antibody-coated beads. Cell proliferation was measured by

thymidine incorporation at 72h. Data shown are representative of three experiments.

C. Sorted naIve (CD441ow) and activated (CD44high
) CD4 T cells from Itk- mice were

stimulated with the indicated concentrations of PMA in the presence of anti-CD28

antibody-coated beads. Cell proliferation was measured by 3 thymidine incorporation

at 72h.
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These findings re-opened the question of the role of Itk in CD28 signaling and

function, and suggested that further investigation of this issue was warranted. Therefore

we proceeded to examine the responses of Itk- T cells to stimulation through the TCR

plus CD28 , using conditions in which T cell activation is stringently dependent on CD28

co stimulation. For these experiments, purfied Itk- and wild type naIve CD4+ T cells

were stimulated with antibody-coated latex beads. When stimulated with beads coated

with anti-CD28 antibody alQne, or anti-CD3 antibody alone, neither population ofT cells

exhibited any proliferative response. In contrast, when cells were stimulated with beads

coated with a mixture of anti-CD3 plus anti-CD28 antibodies (1:9 ratio), both populations

of cells proliferated robustly. While the response of the Itk- cells was reduced compared

to that of the wild type T cells , this response still represents a 300-fold enhancement

over the response to anti-CD3 antibody alone (Figure 2-3A). Based on these data, we

conclude that CD28 co stimulatory activity functions quite effciently in naIve Itk- CD4

T cells.

To substantiate these findings using bona fide MHC/peptide stimulation in the

presence or absence of B7. 1 (CD80), we examined purified naIve CD4+ T cells from

Rag2- SC.C7TgItk- and RagT SC.C7TgItk+ mice. The 5C.C7 TCR recognizes moth

cytochrome e residues 87- 103 (MCC) peptide presented on MHC class II IE molecules

(149). T cells were stimulated with CHO- cells or CHO- /B7. 1 cells as APCs in the

presence of varying concentrations of the MCC peptide, and proliferative responses were

measured. At each given peptide concentration, both Itk as well as Itk- CD4+ T cells



show a similar degree of increased responsiveness to stimulation with APCs expressing

B7. 1 compared to APCs that lack B7. 1 (Figure 2-3B). These data confirm the conclusion

that CD28 costimulation fuctions effectively in the absence ofItk.



Figure 2-3 CD28 co stimulation functions effciently in the absence of Itk

A. Sorted naIve CD4+ T cells (CD44 ) from WT and Itk- mice were stimulated with

antibody-coated beads as indicated. Cell proliferation was measured by 3 thymidine

incorporation 72h after stimulation. Mock, cells incubated with isotype control antibody-

coated beads alone. Data shown are representative of three experiments.

B. Purified CD4+ T cells from RagT SC.C7Tg Itk- and Rag2- SC.C7Tg Itk mice were

stimulated with mitomycinC-treated CHO- (IE ) or CHO- /B7. 1 (IE +B7. 1) cells

and the indicated concentrations of MCC peptide. Cell proliferation was measured by

thymidine incorporation 72h after stimulation.
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CD28 eostimulation enhanees gene expression in the absenee of Itk

One function of CD28 costimulation is to enhance gene expression induced by

TCR signaling. Among the genes most dramatically affected by CD28 co stimulation are

those encoding the cytokine IL- , the survival factor Bcl-xL, and the effector molecule

CD40L (73 , 95 , 97, 150). To assess whether CD28 co stimulation leading to enhanced

gene expression was functional in the absence of Itk, wild type and Ite- naIve CD4+ T

cells were stimulated with a variety of conditions , and IL- , Bel-xL, and CD40L mRA

levels were measured by real-time quantitative PCR. Whereas each one of these genes

showed a unique response to the stimulation conditions tested, they all exhibited

enhanced mRNA levels following CD28 co stimulation (Figure 2-4). In addition, this

pattern was observed for both wild type and Itk- T cells. Interestingly, the increased

levels of IL- , Bcl-xL, and CD40L mRA seen with CD28 plus CD3 stimulation

compared to CD3 stimulation alone, are completely abolished following addition of the

PI3K inhibitor, L Y294002 (Figure 2-4). This effect is also observed for the CD28

co stimulatory effect on Bel-xL mRNA levels in response to PMA stimulation. Together

these data demonstrate the effectiveness of CD28 co stimulatory signals to enhance gene

expression in the absence of Itk, and further, indicate the importance of PI3K in this

activity.



Figure 2-4 CD28-mediated enhancement of gene expression functions efficiently in

the absence of Itk

NaIve CD4+ T cells were purified from WT and Itk- mice. Cells were stimulated with

antibody-coated beads or ,PMA as indicated, in the presence or absence of the PI3K

inhibitor L Y294002 at 10/-M. Six hours after stimulation, cells were harested, total

RNA was isolated, and cDNA was synthesized. The levels of IL-2 (A), Bcl-xL (B), and

CD40L (C) mRA were determined by real-time quantitative PCR. Data were

normalized to the expression of GAPDH mRNA in each sample. Data shown are

representative of three experiments. NS, non-stimulated.
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Figure 2-4 CD28-mediated enhancement of gene expression functions efficiently in

the absence of Itk



CD28 eostimulation aetivates NFKl in the absenee of Itk

The transcription factor NFKB , is an important target of the CD28 co stimulatory

pathway (92). To assess the ability of CD28 costimulation to activate NFKB in the

absence of Itk, we stimulated wild type and Itk- naIve CD4+ T cells with anti-CD3

antibody alone or in combination with anti-CD28 antibody. After 60 minutes, nuclear

lysates were prepared from the cells, and levels of activated NFKB were examined by

ELISA. As shown in Figure 2- , anti-CD3 antibody stimulation is not suffcient to

induce detectable NFKB activation in either cell type, whereas anti-CD3 plus anti-CD28

antibody stimulation induced significant levels of activated NFKB in both wild type and

It/(I- T cells (Figure 2-5). Although in these experiments we only measured the activation

of p65 (RelA), we believe that other NFKB family members such as cRel would be

activated similarly. These data confirm the ability of CD28 co stimulatory signaling to

activate the NFKB transcription factors in the absence of Itk.

:--



Figure 2-5 CD28 costimulation activates NFKB in the absence of Itk

NaIve CD4+ T cells were purified from WT and Itk- mice. Cells were stimulated with

antibody-coated beads as indicated. One hour after stimulation, cells were harested and

nuclear lysates prepared. Activated NFKB p65 was measured by ELISA. Data shown are

representative of three experiments. Mock, cells stimulated with isotype-control

antibody-coated beads.
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Figure 2-5 CD28 costimulation activates NFKB in the absence of Itk



CD28 eostimulation does not enhanee TCR-indueed ealcium mobilzation in CD4+ T

eells

Calcium mobilization has also been implicated as a target of CD28 co stimulation

(151 , 152). Specifically, when Acuto and colleagues examined intracellular biochemical

events after CD28 engagement by expressing a tailess mutant of CD28 in Jurkat cells

PLCy phosphorylation and calcium mobilization were found to be diminished in these

cells after CD28 crosslinking. These defects could be partially rescued by

overexpression of Itk. These data led to the conclusion that CD28 costimulation

enhances calcium mobilization through Itk activation (152). To examine the potential

role of CD28 in calcium mobilization, and to test whether Itk is involved, we performed

calcium flux analysis and compared wild type and Ite- CD4+ T cells , stimulated through

TCRlCD3 or TCRlCD3 plus CD28. As shown in Figure 2- , CD28 stimulation alone

does not induce a calcium flux in wild type or Itk- CD4+ T cells. In contrast, CD3

stimulation alone induced a robust calcium flux in wild type, but not Itk- CD4+ T cells.

This is consistent with previously published data (115). Importantly however, when

CD4+ T cells were stimulated by CD3 plus CD28 crosslinking, the calcium response was

similar to that seen when cells were stimulated through CD3 alone. A serial titration of

the amount of anti-CD3 was tested. Anti-CD28 did not enhance CD3-induced calcium

mobilization at any dose. These data demonstrate that the CD28 co stimulatory signal

does not enhance TCR-induced calcium mobilization in primary T cells.



Figure 2-6 CD28 crosslinking does not enhance TCR-induced calcium mobilzation

CD4+ T cells from WT and Itk- mice were loaded with Ca indicator dyes. The cells

were stimulated with anti-CD28 alone, anti-CD3 alone, or anti-CD3 plus anti-CD28

crosslinking. The calcium flux over time after stimulation was analyzed by FACS. Data

shown are representative of a serial titration of anti-CD3 antibody.
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Figure 2- CD28 crosslinking does not enhance TCR-induced calcium mobilzation



Stimulation ofCD28 alone induees phosphorylation of Akt and GSK3fJ in the absenee of

Itk

Although signaling through CD28 alone does not lead to functional changes in T

cells , several biochemical events can be detected following CD28 stimulation. One such

signaling pathway is the activation ofPI3K, leading to the phosphorylation and activation

of the serine/threonine kinase, Akt, and the subsequent phosphorylation of GSK3p (90).

To examine whether these events occurred normally in the absence of Itk, naIve CD4+ T

cells from wild type and Itk- mice were stimulated with anti-CD28 antibody alone, and

Akt and GSK3p phosphorylation were detected with phospho-Akt- and phospho-GSK3p-

specific antibodies. As shown in Figure 2- , Akt and GSK3 p were both phosphorylated

comparably in wild type and Itk- CD4+ T cells. These data demonstrate that the CD28-

PI3K-Akt-GSK3p signaling pathway is intact in the absence of Itk, indicating that Itk is

not required for CD28 signaling.



Figure 2- Stimulation of CD28 alone induces phosphorylation of Akt and GSK3p

in the absence of Itk

NaIve CD4+ T cells were purfied from WT and Itk- mice. Cells were stimulated with

plate-bound anti-CD28 antibody for the indicated times. Lysates were prepared and

protein was resolved by SDS-PAGE. Akt phosphorylation (Ser473) and GSK3

phosphorylation (Ser9) were detected by immunoblotting with phospho-specific

antibodies. Membranes were stripped and re-probed with antibodies to the p85 subunit of

PI3K and GSK3 as loading controls. Data shown are representative of three

experiments.
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Discussion

Based on prevIOUS studies, a number of independent lines of evidence had

implicated Itk in CD28 signaling. For instance, several studies performed in Jurkat tumor

cell lines or with recombinant proteins documented Itk binding to the CD28 cytoplasmic

tail (79 , 138 , 139). In addition, Itk phosphorylation and activation has been demonstrated

following CD28 stimulation of Jurkat T cells , and a peptide of the CD28 cytoplasmic tail

was shown to activate Itk enzymatic activity in vitro (140). Finally, the CD28

cytoplasmic tail has also been shown to be a substrate ofItk kinase activity (141). These

biochemical data were then complemented by a single study examining CD28 functional

activity in unfractionated populations of Itk- CD4+ T cells (142). This latter study

concluded that Itk has a negative role in CD28 signaling.

Using purified naIve CD4+ T cells and defined stimulation conditions we have

examined in detail the requirement for Itk in CD28 signaling and in CD28-mediated

co stimulation. Due to the fact that Itk is required for optimal TCR signaling, it is difficult

to ascertain whether CD28 co stimulatory activity is equally effective in the presence

versus the absence of Itk. Nonetheless , our data definitively demonstrate that CD28-

mediated co stimulation functions quite efficiently in the absence of Itk, and to a first

approximation, is as effective in 1(/(1- T cells as in wild type T cells. This conclusion is

supported by the biochemical data showing that two measurable outcomes triggered by

CD28 stimulation alone, namely the phosphorylation of Akt and GSK3p, are completely



independent of Itk. Taken together, these findings definitively demonstrate that Itk is not

a negative regulator in CD28 co stimulatory signaling. Instead, the data indicate that Itk is

not required for CD28 signaling or function in naIve CD4+ T cells.



CHAPTER III

GENERATION OF TEC KINASE-DEAD

MUTANT TRANSGENIC MOUSE LINES



Introduction

At least three members of the Tee family of tyrosine kinases are expressed in T

lymphocytes; they are Itk, Rlk and the prototypic member, Tee. Numerous studies have

demonstrated the importance of Itk and Rlk in T cell activation and functional

differentiation (reviewed in (147, 153, 154)). Data from biochemical and functional

studies have indicated a role for Tee in TCR as well as CD28 signaling. First, Tee is

tyrosine-phosphorylated and activated upon TCR or CD28 crosslinking (155 , 156).

Second, Tee protein levels in primary mouse T cells are up-regulated after TCR

activation (157). Furthermore, overexpression of Tee in the Jurkat human T cell line

enhanced NFAT activation and IL-2 and IL-4 promoter activities upon TCR and CD28

crosslinking (155, 156, 158) Finally, when Tee protein levels in primary T cells are

decreased by using an antisense oligonucleotide, proliferation and IL-2 production are

diminished upon TCR stimulation (137).

In spite of the established roles for Itk and Rlk, TCR signaling still functions in

Itk- as well as Itk- Rlk- T cells, but at reduced levels. For instance, PLCy

phosphorylation and Ca mobilization are reduced, instead of being completely

abolished, upon TCR stimulation (115 , 117). These data have led to the notion that Tee

family kinases function as modulators or amplifiers that fine-tune TCR signaling (144

145). This hypothesis was fuher supported by a set of studies where kinase-dead

mutants ofLck or Itk were overexpressed in Jurkat cells (159). In this study, expression



of kinase-dead Lck fully abolished the calcium response upon T cell activation, but

expression of kinase-dead Itk only reduced this response. However, one should be

cautious in the interpretation ofthese data, as kinase activity may not be the only function

of Tee family kinases. For instance, Itk may function as an adaptor protein to help

establish the signaling complex through interactions with other signaling molecules, such

as SLP- , LAT , Vav1 , and Grb2. Indeed, one very recent study has indicated a kinase-

independent role for Itk. In this study, endogenous expression of Itk in Jurkat cells was

knocked down using an RNAi approach. TCR-induced Vav localization and actin

polarization were reduced in these cells. However, re-expression of either the wild type

or a kinase-dead mutant of Itk rescued the defective Vav localization and actin

polarzation (133).

An alternative explanation of why T cells deficient for Itk or Itk/lk have only a

reduction in TCR signaling could be functional redundancy among the Tee family

kinases. For instance, T cells from Rlk- mice have no detectable defects in TCR

signaling (117 , 136), but T cells from Itk- Rllr mice manifested more severe defects than

those from Itk- mice (117). These data suggested that Itk can compensate for Rlk

function in Rlk- T cells. Furthermore, overexpression of Rlk can partially restore the

defects of Itkf T cells (160). Similarly, T cells and B cells from Tee I- mice do not

exhibit detectable defects, but B cells from Btk- 7ee l- mice manifested more severe

defects than from Btk- cells (136). All these data suggest that functional redundancy



among Tee family kinases exists. To date, there is no report on the phenotype of Itk and

Tee double deficient or Itk, Rlk and Tee triple deficient mice.

To further understand the function of the Tee family kinases in T cells, one ideal

approach would be to generate a mouse line, in which all three Tee family members are

deficient. However, the genes for Rlk and Tee are linked very closely on the same

chromosome in both human and mouse. In human, both Rlk and Tee are mapped to the

4p12 locus (110 , 161). In mouse Rlk is mapped to 40.0cM on chromosome 5 , and Tee 

mapped to 41.0cM on the same chromosome (162- 164). In addition, on mouse

chromosome 5 , there is merely 72 884bp between the Rlk and Tee genes. This makes it

virtually impossible to generate Rlk- -ree l- 
mouse line by crossing Rlk- mice with Tee

mice. Furhermore, of the 72 884bp between the two genes on mouse chromosome 5

there are other genes , some of which may encode indispensable proteins , such as gamma-

aminobutyrc acid (GABA-A) receptor, and nicotinic cholinergic receptor alpha

polypeptide 9. Thus an approach that would delete the whole locus in between the two

genes is not appropriate. To circumvent this technical diffculty, we generated transgenic

mouse lines , in which a kinase-dead (KD) mutant of Tee (TecKD) would be expressed in

T lymphocytes on the Itk- Rlk- double-deficient background. We expected that this

overexpressed mutant protein would behave as a dominant negative competitor for the

endogenous wild type Tee, and inhibit its function. We reasoned that, with this genetic

strategy, we could lear more about the functions of Tee in T cells, especially the kinase

dependent functions.



Results

Generation of eonstruets

The FLAG-tagged Tee K397E mutant (TecKD) cDNA was generated previously

by site-directed mutagenesis, where the conserved lysine397 was replaced by glutamate

so that the kinase canot bind its substrate ATP. This cDNA has been successfully

expressed in Jurkat cells (155). In order to obtain constitutive expression of the TecKD

transgene, both in the thymus and in the periphery, we elected to use the vector pTLC.

This vector contains the mouse lek gene proximal promoter, which drives the expression

at early stages in developing thymocytes, and a human CD2 gene 3' - locus control region

(hCD2 3' LCR), which ensures the expression in peripheral T cells (165 , 166). Using

this vector, Weih and colleagues successfully expressed a Nur77 transgene in both

thymocytes and peripheral T cells (167).

We were also interested in controlling the expression of the transgene in vivo

facilitate studying the functions of Tee in different stages in T cell development and

activation. To this end, we decided to generate a second set of transgenic mice, in

which the expression of the transgene could be induced. In addition, this second set of

transgenic mice would also serve as a backup, in case the constitutive overexpression of

the trans gene might elicit tremendous defects through development. In order to obtain

inducible expression of TecKD in the T cell lineage in vivo we chose to use the

tetracycline-responsive gene induction system (TetOn) that has been described previously

(168, 169). Using this system, Zamoyska and colleagues successfully controlled the

----



expression of an Lck trans gene on the Lek- background (169).

constructs are shown in Figure 3-

The structures of the



Figure 3-1 The constructs for generating TecKD transgenic mice

The upper panel shows the construct of TLC- TecKD, in which the 1.9kb FLAG-tagged

TecKD cDNA was cloned into the vector under the control of the lek proximal promoter.

The human CD2 3' 10c fontrol region (hCD2 3' - LCR) ensures the expression of

transgene in the periphery as well as in the thymus. Lower panel shows the construct of

TRE- TecKD, in which the 1.9kb FLAG-tagged TecKD cDNA was placed under the

control of!etracycline responsive lement (TRE) and the minimal human CMV promoter.

The TRE promoter is activated by the binding of the inducer protein, rtTA, in the

presence of tetracycline or a related antibiotic, doxycycline. The inner restriction sites (in

italics) indicate where the cDNA was cloned in to the vectors; the outer restriction sites

indicate how the trans genes were cut out of the vectors.
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Founder lines and genotyping

Traditionally, to make transgenic mice, the transgene fragments are injected into

fertilized eggs of a mixed background. This usually results in large numbers of fertilized

eggs and pups for screening. In our experiments, to make all mice on the same genetic

background while saving backcross steps, we generated transgenic mice directly on the

Itk- Rlk- background. To this end, three-week old female Itk- RIlC mice were

superovulated and bred to adult male Itk- Rlk- mice. The resulting fertilized eggs should

all be Itk- Rlk- The transgene fragments were micro-injected directly into these

fertilized Itk- Rlk- eggs. Therefore, all transgenic mice are on Itk- Rlk- double-deficient

background.

With the TLC- TecKD transgenic construct, five out of 53 pups were detected to

be trans gene positive by Southern Blot (Figure 3-2). All Southern Blot positive samples

were PCR positive and viee versa confirming that PCR can be used for routine

genotyping tests. Three of the founders (#9 , #12 and #53) were males and two (#11 and

#37) were female. The mice were generally phenotypically normal. Over time, however

the mice, with the exception of line #9 , were much heavier than wild type controls of the

same age. When bred to Itk- Rlk- mice, the two female founders (#11 and #37) failed to

produce offspring. Of the progeny of line #9 , all males were trans gene positive and all

females were trans gene negative, indicating that the transgene was integrated in the Y

chromosome.



With the TRE- TecKD transgenic construct, eight out of 44 pups were detected to

be trans gene positive by Southern Blot (Figure 3-3). Similarly, the PCR results matched

Southern Blot results. When the founders were crossed to the inducer transgenic line Itk-

Rlk- rtTAtg and fed doxycycline, the progeny from all lines were generally

phenotypically normal, and did not manifest the "obesity ' phenotype.



.."' .

Figure 3-2 Genotype of the founders of TLC- TecKD transgenic mice

Genomic DNA from the tails was digested with BamI and resolved on a 1 % agarose

gel. After transfer to nylon membrane , the samples were detected with p labeled probe

corresponding to the 1.9kb,TecKD cDNA.
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Figure 3-2 Genotype of the founders of TLC- TecKD transgenic mice
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Figure 3-3 Genotype of the founders of TRE- TecKD transgenic mice

The upper panel: Genomic DNA from the tails was digested with EcoRI and resolved on

a 1 % agarose gel. After transfer to nylon membrane, the samples were detected with 

labeled probe corresponding to the 1.9kb TecKD cDNA. The lower panel: Genomic

DNA samples were subjected to PCR with primers annealing to TRE promoter and Tee

cDNA.
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The expression of the transgenes

The mRA expression of the TLC- TecKD transgenes was detected in

thymocytes , lymphocytes and splenocytes from progeny of all TLC- TecKD lines and the

founders by RT-PCR (Figure 3-4). Similarly, when the TRE-TecKD founders were

crossed to the inducer transgenic line Itk- Rlk- rtTAtg (see Materials and Methods in

Chapter VI) and fed with doxycycline, mRA expression of the TRE- TecKD trans gene

was also detected (Figure 3-5). Further, full-length mRNA can be detected by RT-PCR

with primers correlating to the 5' end of the FLAG tag and 3' end of Tee. These data

further confirmed that the trans gene constructs were the correct ones.

Because a FLAG tag (eight amino acid residues) was added to the N-terminus of

TecKD , the molecular weight of the mutant protein is expected to be 0.8kDa larger than

that of the wild type protein. Thus the protein was expected to be detected by Western

Blotting as a slightly shifted band compared to the wild type Tee protein. However

when Western Blotting was performed with an antibody to Tee, no such shifted band was

detected, and the signal from the wild type Tee band was not increased in the TecKD

positive samples , where mRA for the transgene was detected by RT-PCR (Figure 3-6).

When an antibody to FLAG was used, no specific signal could be detected (data not

shown). Exhaustive analysis has been performed with a variety of gel concentrations

cell lysate amounts, and film exposure periods. Furthermore, when anti-FLAG antibody

was used in an immunoprecipitation assay, no signal was detected from the

immunoprecipitate (data not shown). The same results were obtained for both TLC-



TecKD and the inducible TRE- TecKD transgenic lines. These data indicate that there is

no or very little transgenic TecKD protein expressed in the cells.



Figure 3-4 mRA expression of the TLC- TecKD transgene

Total RNA was isolated from thymi and spleens of TLC- TecKD transgenic mice

transgenic negative littermates (Tg-), and the parental Itk- Rlk- mice. RT-PCR was

performed for the transgeJ;e FLAG-Tee (upper panel), and HPRT control (lower panel).

As expected, the transgene was detected in the thymus as well as in the periphery.
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Figure 3-5 mRA expression of the TRE- TecKD traDsgeDe

The TRE-TecKD transgenic mice were crossed to the inducer rtTA Tg line and fed

doxycycline. Total RNA was isolated from transgenic positive mice (TRE- TecKD),

transgenic negative litteI1ate (Tg-), and the parental Itk- Rlk- mice. RT -PCR was

performed for the trans gene FLAG-Tee (upper panel), and HPRT control (lower panel).
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Figure 3- Protein expression of TecKD transgene by Western Blottng

Thymocytes and splenocytes from TLC-TecKD transgenic mice, transgenic negative

littermate, and the parental Itk- Rlk- mice were lysed. Equal amounts of cell lysate

protein was resolved thrqugh SDS-P AGE. After transfer to PVDF, the samples were

probed with anti-Tee antibody (upper panel). The membrane was stripped and re:-probed

with anti-PI3K P85 antibody as loading control (lower panel). No overexpression of the

Tee protein can be detected. No band with increased MW correlating FLAG-Tee was

detected. When the samples were probed with anti-FLAG antibody, no specific signal

was detected (not shown here). The same results were obtained when TRE-TecKD

transgenic mice were crossed to the inducer rtTA line and fed doxycyline (not shown

here).
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Phenotype of TeeKD transgenie miee

As mentioned above, the transgenic mice expressing TecKD mRA were

generally normal and bred well, with the exception of two female TLC- TecKD founders

that did not generate any litters. The cellularty ofthymi, lymph nodes , and spleens from

the transgenic mice were very comparable with that of the parental 

Itlf Rlk- mouse line

(Figure 3-7). When thymocytes and lymphocytes from TecKD transgenic mice were

analyzed by flow cytometry, the cell populations and percentages were found to be very

comparable to those from the parental 
Itk- Rlk- mouse line (Figure 3- , 3-9).



Figure 3-7 Thymus and lymph node cellularity from TecKD transgenic mice

The TRE-TecKD mice were crossed to the inducer rtTA transgenic line and fed

doxycycline water. Cell numbers of the thymi and lymph nodes from both TecKD

transgenic lines are not significantly different from those in the parental Itk- Rlk- mice.

Data shown are representative of three separate experiments.
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Figure 3-8 Flow cytometric analysis of thymus and lymph node from TLC- TecKD

transgenic mice

Thymocytes and lymph node cells from the TLC- Tee transgenic mice (TLC- TeeKD Tg)

and the parental Itk- Rlk- mice were stained for CD4 and CD8 and analyzed by F ACS.

The data show no significant difference between the two genotypes. Data shown are

representative of three separate experiments.
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Figure 3-9 Flow cytometric analysis of thymus and lymph nodes from TRE- TecKD

transgenic mice

TRE-TecKD transgenic mice were crossed to the inducer rtTA transgenic mice (TRE-

TeeKDTg x rtTATg). T4e mice were fed doxycycline water. ThynlOcytes and lymph

node cells from these mice and the parental Itk- Rlk- mice were stained for CD4 and

CD8 and analyzed by F ACS. The data show no significant difference between the two

genotypes. Data shown are representative of three separate experiments.
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Discussion

In an effort to elucidate the function of Tee , and other Tee family kinases in T cell

development and function, we generated transgenic mouse lines expressing kinase-dead

Tee on Itk- Rlk- double-deficient background. Although the expression of the trans gene

was clearly detected at the mRA level, no expression of the transgenic protein could be

detected by Western Blotting. The reason(s) for this is not clear. Nonetheless , we can

rule out some possible technical issues. First, the expression of mRNA can be detected.

This indicates the proper activation of the promoters and correct junctions between the

cDNA and promoters. Second, after initial analysis of the transgenic mice, the constructs

were again sequenced again and found to be correct (data not shown). Thus, it is most

likely that the problem occurred at or post translation. It is not very likely that the FLAG

tagged protein is unstable, because the same eDNA, has been expressed at high levels in

Jurkat cells under the control of other promoters and acted as a dominant negative

competitor (155, 156). There are some other technical issues that we did not rule out.

For instance, effcient initiation of translation may not be started, or the translation may

be stopped pre-maturely, due to mutation(s) or damage(s) of the transgenic fragment

before microinjection into the fertilized eggs. To test these, the TLC- TecKD construct

can be transfected into Jurkat cells. If TecKD protein can be expressed in Jurkat cells

the problem would not have been due to the construct. Moreover, the sequence of the

expressed TecKD message from the transgenic mice could be analyzed and verified.
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Successful expression of the TecKD cDNA in a cell line but not in transgenic

mouse models led us to the hypothesis that the loss of protein expression of the transgene

may be due to selection/survival pressure on the T cells. For instance, it is possible that

normal expression and function of the Tee family members Itk, Rlk, and Tee are critical

for T cell development in the thymus and survival in the periphery. The loss of Itk and

Rlk could be partially compensated by Tee. However, when all three members are

deficient, it is possible that the T cells were unable to mature in the thymus or could not

surive in the periphery. Thus , only those cells , in which the TecKD transgenic protein

expression was somehow suppressed, could mature, migrate to and survive in the

periphery. One caveat of this explanation is that this "suppression" process would have

to function very effciently, as thymus and lymph node cellularities in the transgenic mice

are comparable to those in the parental mouse line. Nonetheless, this hypothesis is in

agreement with the notion that there is functional redundancy among Tee family kinases.

In support of this hypothesis, efforts in expressing the TecKD mutant in bone marrow

cells with a retroviral delivery system also did not yield protein expression (W. c. Yang,

L. Atherly and L.J. Berg, unpublished observations). Therefore, enforced expression of a

dominant negative competitor has not been a successful approach to study the function of

Tee in primary T cells. A few experiments could be done to test this hypothesis. First

the TLC- TeeKDTg or TRE- TeeKDTgxrtTATg mice could be bred to WT background to

examine if the TecKD transgenic protein can be expressed in T cells. Second, the TRE-

TeeKDTg mice could be crossed to mice that express the rtTA trans gene under the control

of non- cell-specific promoters

g. 

the aetin gene promoter, to test if the TecKD



transgenic protein can .be expressed in non- T cells. Similarly, the TecKD-encoding

retroviral vector could be transfected into bone marrow cells from WT mice. Under these

conditions, the other Tee family kinases e. Itk and Rlk, are expressed normally in T

cells; hence there should be no selection pressure against the expression of TecKD

cDNA. If under these conditions, the overexpression of the TecKD protein would

support the above hypothesis. On the other hand, if under these non-pressure conditions

the expression of the TecKD protein still can not be detected, it would likely be due to

some technical issues

g. 

mutation(s) in the cDNA constructs.



CHAPTER IV

GLOBAL GENE EXPRESSION PROFILING OF

ITK DEFICIENT CD4+ T CELLS



Introduction

The functions of a cell rely on the proteins it contains, which is controlled mainly

by the transcription of the genes encoding them. Thus, the fuctions of an activated T

cell depend primarly on de novo gene expression upon stimulation. The established role

for Itk, a Tee family kinase, in TCR signaling is to positively regulate PLCy, hence

activating the downstream calcium-dependent and DAG-dependent pathways (reviewed

in (153)). Therefore, positive selection, which requires TCR signaling, during T cell

development in the thymus is impaired in the absence of Itk (120). Additionally, upon

stimulation, peripheral mature T cells proliferate and produce IL-2 to diminished levels in

the absence of Itk (115 , 116). It has been shown that upon stimulation, the activation of

transcription factors that are important for T cell function is defective in Itk- T cells

compared to wild type T cells. For instance, when Itk- T cells are stimulated through

TCR or TCR plus CD28 , both NFAT and NFK1 activation are impaired compared to

wild type controls (121 , 170). Moreover, the activation of MAP kinases, ERK and JN

is defective in Itl/- T cells upon stimulation (134 , 135 , 144). In addition, it was recently

reported that c-Jun phosphorylation was diminished when Itk deficient T cells were

stimulated with a super antigen, SEB (171). These data suggest that the activation of the

AP 1 transcription factor is also defective in Itk- T cells. Therefore, the global gene

expression profile in Itk- T cells may be altered.



The transcription factors NFAT, NFKB and AP1 control the expression of a

variety of genes. However, there are other transcription regulators that may be regulated

by Itk. Furthermore, Itk may directly function in the nucleus. It was reported that Itk can

localize to the nucleus after TCR stimulation by phosphorylating and interacting with the

nuclear importin Rch1a (172). In an recent in vitro study, it was shown that Itk can

directly phosphorylate the Th1 specific transcription factor, T-bet, promoting an

interaction between T-bet and GATA3 that reduces GATA3 DNA binding and represses

Th2 development (173). These data imply that Itk may have a function in the nucleus.

To further understand the functions of Itk in T cell development and T cell activation and

to identify potential downstream targets of Itk, we decided to compare global gene

expression profies between Itk- and wild type CD4+ T cells, at naIve and activated

states, using the Affymetrix GeneChip micro array MOE430A containing 22 600 probe

sets , which can be used to analyze over 14 000 well-characterized mouse genes.

Since positive selection during T cell development in the thymus is impaired in

the absence of Itk (120), TCR repertoires in Itk- mice may be skewed such that

positively selected T cells may express TCRs with increased affnities than those from

wild type mice. These possibly biased T cell repertoires in Itk- mice could potentially

complicate the analysis. To circumvent this possible complication, we chose to compare

CD4+ T cells from 5 C. C7TgRag Itk +1- (Itk +1- or WI) and 5 C. C7TgRag l- Itk- - (Itk- mice.

All CD4+ T cells from these mice should express the same 5C.C7 TCR homogeneously.

To stimulate the cells, we chose to use anti-CD3 plus anti-CD28 coated latex beads, a



condition that has been shown to fLllly activate naIve CD4+ T cells (170). Data from

replicate experiments were statistically analyzed with Bioconductor packages (174) and

dChip (175).



Results and discussion

Quality assessments

For comparson of non-stimulated (NS) naIve CD4+ T cells, five separate

experiments were performed for both SC.C7TgRag 7tk and SC.C7TgRag Itk-

genotypes. For comparison of stimulated CD4+ T cells , CD4+ T cells were stimulated

and cultured for 6 or 36 hours. Three separate experiments were performed for each

genotype at each time point. Thus data from a total of 22 arrays were analyzed.

The data quality of the 22 arrays was assessed, using the Affy and AffyPLM

packages from Bioconductor. The parameters chosen are elative Log Expression

(RLE), ormalized sealed .standard Errors (NSE), and RNA Degradation Plot. RLE

values are calculated for each probe set by comparing the expression value on each array

against the median expression value for that probe set across all arays. Under the

assumption that the expression of most genes does not change across arrays , ideally the

majority of the RLE values should be close to 0 (zero). An array that has RLE values far

higher or lower than zero indicates that the aray is of low quality. For NUSE, the

standard error estimates for each gene on each array are standardized across arrays so that

the median standard error for each gene is 1 (one) across all arrays. This process

accounts for variability differences among genes. An array that has elevated NUSE

relative to the other arrays is typically of low quality. RNA Degradation Plot compares

intensities of probe sets of each gene from the 3' end to the 5' end. RNA degradation



patterns are expected to be similar across all the arays. An array that has reduced 3' end

intensities compared to the other arrays is oflow quality.

These quality analyses flagged out two arays with lower quality than all others.

One of these was from non-stimulated Itk- cells, while the other was from Itk- cells that

had been stimulated for 6 hours. Both of these samples had extended ranges of RLE

(Figure 4-1A), increased NUSE (Figure 4-2A), and reduced 3' intensities (Figure 4- 3 A),

compared to all other samples. Thus, these two arrays were excluded from further

analysis. The RLE, NUSE and RNA degradation plots of these 20 arrays are shown in

Figures 4- , 4- , and 4- , respectively. These twenty arrays include: 5 arrays of

non-stimulated Itk cells, 4 arays of non-stimulated Itk- cells, 3 arrays of 6-hour

stimulated Itk cells, 3 arrays of 6-hour stimulated Itk cells, 3 arrays of 36-hour

stimulated Itk cells, and 2 arrays of 36-hour stimulated Itk cells. Further statistical

analyses were performed by using the AffylmGUI package from Bioconductor and dChip

program.



Figure 4-1 RLE plots

A. RLE plot for all 22 arays. The two arrays that are indicated with arrows have

extended RLE ranges and thus are of low quality. These two arrays were excluded from

further analysis.

B. RLE plot for the remaining 20 arrays. The RLE ranges of these 20 arrays are similar

and the values are close to 



Figure 4-
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RLE plots



Figure 4-2 NUSE plots

A. NUSE plot for all 22 arrays. The two arays that are indicated with arrows have

increased values and thus are of low quality. These two arrays were excluded from

further analysis.

B. NUSE plot for the remaining 20 arrays. The NUSE ranges of these 20 arrays are

similar, and the values are within H:0.05.
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Figure 4- NUSE plots
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Figure 4-3 RNA degradation plots

A. RNA degradation plot for all 22 arrays. The two arays that are indicated with arrows

have decreased 3' intensities and thus are of low quality. These two arays were

excluded from further an3;lysis.

B. The RNA degradation curves of the remaining 20 arrays are similar and roughly

parallel.
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Patterns of the expression of Tee family kinases

First, we were interested in comparing the expressIOn levels of all T cell-

expressed Tee family kinases in 
Itk CD4+ T cells, Itk, Rlk, and Tee. As shown in

Figure 4- , the signals of all three Tee family kinases in naIve 
Itk CD4+ T cells have a

hierarchy of Itk?Rlk?Tee. These data are consistent with previous quantitative Real-

Time PCR data generated in our lab (143). Thus , this result can serve as another layer of

quality control. Interestingly, as shown in Figure 4- , the kinetics of the expression of

these kinases over the course of stimulation are different. The expression of Itk is slightly

up-regulated at 6-hour of stimulation, but down-regulated after an extended stimulation

of 36-hour. However, the expression of both Tee and Rlk is down-regulated after

stimulation (Figure 4-4B).

The expression patterns of Tee and Rlk in It/(I- CD4+ T cells are similar to Itk

CD4+ T cells (Figure 4-5). These results indicate that while other Tee family kinases, i.

Tee and Rlk may compensate for the loss of Itk in Itk- T cells, the possible

compensation is not through increasing the transcription levels of these kinases.

-- 
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Figure 4-4 The expression patterns of Tec family kinases in Itk +1- CD4+ T cells

A. Average signals and standard deviations of Itk, Rlk and Tee from naIve Itk (WT)

CD4+ T cells were calculated from 5 replicate samples and plotted. The transcription

levels of these Tee family kinases demonstrate the hierarchy of Itk?Rlk'?Tee.

B. A heat map plot of the expression of Itk, Rlk, and Tee in naIve and stimulated Itk

(WT) CD4+ T cells was generated in the dChip program. White represents the average

signal across all samples; blue represents signals lower than the average and the darker

the color the lower the signal; red represents signals higher than the average and the

darker the color the higher the signal. The expression of both Rlk and Tee is down-

regulated after 6-hour (WT06.x) and 36-hour (WT36.x) stimulation. The expression of

Itk however, is slightly up-regulated after 6-hour stimulation (WT06.x) and is down-

regulated after 36-hour stimulation (WT36.x). WTO.x: replicates of non-stimulated Itk

samples.
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Figure 4-5 The expression patterns of Rlk and Tee in Itk and Itk- CD4+ T cells

A heat map plot of the expression of Rlk and Tee in Itk+ (WT) and Itk- (KO) CD4+ T

cells was generated in the dChip program. White represents the average signal across all

samples; blue represents signals lower than the average and the darker the color the lower

the signal; red represents signals higher than the average and the darker the color the

higher the signal. The expression of both Rlk and Tee is similar in naIve Itk- (KOO.

CD4+ T cells and in naIve Itk+ (WTO.x) CD4+ T cells. After 6-hour (K006.x and

WT06.x) and 36-hour (K036.x and WT36.x) stimulation with anti-CD3 plus anti-CD28

coated beads, the expression of Rlk and Tee is decreased in CD4+ T cells from both

genotypes.
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Diferenees in global gene expression of naive Itk 
+1- and Itk- - CD4+ T eells

We compared global gene expression profies of naIve CD4+ T cells from Itk+

and Itk- mice. The data from non-stimulated samples were thus pooled into two groups

according to the genotypes; average expression value for each gene was calculated across

all samples. Statistical analysis was then performed using the Bioconductor package

AffylmGUI. Based on overall noise signal levels from the raw data, we arbitrarily set the

cut-off value of the average raw signal to 64. Thus , a gene whose expression value was

lower than 64 was considered as noise or not expressed. The criteria for determining

significance was that the change in expression should have p-values of lower than or

equal to 0.05 and should have B-statistic values higher than zero. B-statistic is another

guide of significance; the value is the log-odds that the gene is differentially expressed.

From these analyses, we found approximately 189 genes differentially expressed in 
Itk-

CD4+ T cells when compared to Ite/- CD4+ T cells. In general, the changes were

moderate, as few of these genes had fold-changes of higher than 3. More surprisingly,

however, among these genes, we found only 6 genes whose expression was reduced in

Ite- CD4+ T cells. On the other hand, the majority of the "up-regulated" genes were

those that are expressed in other cell types, especially monocytes and dendritic cells. We

noticed that, although the CD4+ T cell preparations from both Itk mice and Itk- mice

are 95% pure (in terms of CD4 staining), the CD4+ T cell preparations from Itk- mice

were consistently less pure (in terms of TCR or CD3 staining). Based on this fact, we

reasoned that most, if not all, of the "up-regulated" genes were likely to be the result of

contaminations from other cell types. With this in mind, we disregarded the "up-



109

regulated" genes, and instead, focused on the genes that are "down-regulated" in naIve

Itk- CD4+ T cells (Table 4- , Figure 4-6).

Among the genes that are down-regulated in naIve Itk- CD4+ T cells, three are

cell membrane proteins including CDS, CD6, and integral membrane protein 2A

(ITM2A) (Table 4- 1). CDS and CD6 are glycosylated membrane proteins of the

scavenger receptor family. During T cell development in the thymus, CDS expression is

regulated according to the TCR signal strength received by developing thymocytes (176).

Studies with CDS deficient mice suggested that CDS acts as a negative regulator of TCR

signaling (177, 178). Available information on CD6 and ITM2A is limited but indicates

that CD6 and ITM2A are expressed with a similar pattern to CDS (179-181). These

studies imply that all three proteins may function in a similar way. In one set of studies

Lucas et al demonstrated that CDS expression levels are lower on Itk- DP thymocytes

and Itk- 5C.C7 TCR-transgenic CD4 SP thymocytes (120). Since we did not detect

differential expression-pattern changes between Itk- and Itk +1- samples after T cell

stimulation (see below), we consider the lower expression levels of CDS , CD6, and

ITM2A in naIve Itk- CD4+ T cells to be carryovers from development in the thymus.

Interestingly, CDS has been implicated in transducing a negative signal to stimulated T

cells (178, 182). Therefore, the lower CD5 expression on naIve It/(I- CD4+ T cells may

enable these cells to be more easily activated in vivo.
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We found that two transcription factors , Sox4 and Tox , are down-regulated in

naIve Itk- T cells (Table 4-1). Both Sox4 and Tox are members of the high 
obility

group (HMG) family of transcription factors. Sox4 is expressed in T and B cells in adult

animals. The Sox4- mice die in utero due to a defect in development of the heart (183).

When fetal liver cells fro Sox4- mice were used to reconstitute irradiated wild-type

mice, B cell development was found to be blocked at the pro-B stage, demonstrating a

critical role of this transcription factor in B cell development (183). When fetal liver

cells from Sox4- mice were mixed with those from wild-type mice and injected into

thymi of irradiated mice, the Sox4- cells displayed a disadvantage in competing with the

wild-type cells (184). This suggests that Sox4 may playa subtle role in T cell

development. In an in vitro system, Sox4 was shown to be able to bind to and

transactivate the human CD2 gene enhancer (185). On the other hand, Tox was identified

from a gene array analysis comparing DP thymocytes cultured with or without PMA and

ionomycin (186). Studies with Tox transgenic mice suggested that it may playa role in

CD8 lineage differentiation (186 , 187). To date, there are no reported studies suggesting

possible function(s) of Sox4 and Tox in peripheral T cells. We did not detect differential

regulation of these two genes between 
Itk- and Itk +1- samples after T cell stimulation

suggesting that the expression of these two transcription factors may not be targets of Itk

in peripheral T cell activation. However, it will still be interesting to examine the

expression patterns of Sox4 and Tox in different stages of developing 

Itk- thymocytes.
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Finally, we found a possible negative signaling regulator, TRB2, whose

expression is down-regulated in naIve Itk- CD4+ T cells (Table 4- 1). TRB2 is a

mamalian homologue of the Drosophila gene Tribbles. Tribbles is crucial in

Drosophila gastrulation, because it inhibits cell cycle progression by inducing

degradation of the CDC25 activator, String (188-190). There are three TRB proteins

identified in mammals , TRB1 , TRB2 and TRB3 , all of which share a central Trb domain.

The Trb domain is homologous to protein serine/threonine kinase, but lacks the active

lysine site. Thus , Trb is predicted to be kinase-dead (190, 191). Working in different

systems , a few groups implicated TRB proteins in various signaling pathways (192- 197).

In liver cells , TRB2 and TRB3 can be coimmunoprecipitated with AId, and can inhibit

the phosphorylation of Akt induced by insulin signaling at both S473 and T308 sites

(192). In 293 cells, overexpressed TRB3 was found to down-regulate TNF-induced

NFKB activation by inhibiting the phosphorylation of p65 (195). In Hela cells and

NIH3T3 cells , overexpressed TRB1 was found to interact with the MAP kinase kinase

MEKK- 1 and inhibit its activity. Thus, overexpression of TRB1 can reduce AP-

transcription factor activity (193). Together, these studies implicate the TRB proteins in

a few different pathways, and they all indicate that TRB proteins fuction as negative

regulators. The expression ofTRB2 in naIve Itk- CD4+ T cells is lower than naIve Itk

CD4+ T cells (Table4- 1). Although at this point we do not know the protein levels of

TRBs in the cells , it is tempting to speculate that lower levels of negative regulators in

naIve Itk- CD4+ T cells could partially compensate for the signaling defects in 
Itk- CD4

T cells , at least at the early stage of activation. Moreover, reduced expression levels 
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negative regulators in naIVe Itk- CD4+ T cells could, again, be the result of selection

during thymocyte development. Further studies will be needed to determine the protein

levels ofTRBs in developing as well as mature peripheral CD4+ T cells.

Overall, we found very few genes that are differentially expressed in naIve Itk-

CD4+ T cells compared to naIve Itk CD4+ T cells. Further, the magnitudes of the

differences are very low; none of them is over 2-fold downregulated (Table 4- 1). These

data indicate that the naIve Itk- and Itk +1- CD4+ T cells are almost identical in terms of

the basal levels of gene expression in the resting state.
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Table 4- Down-regulated genes in naive Itk- vs. Itk- CD4+ T cells

Accession Gene Name Ratio
Number Symbol Value

Cell surface Markers

Ul2434. Cd6 CD6 antigen 00077

007650.1 Cd5 CD5 antigen 0.49 00079

BI966443 Itm2a integral membrane protein 2A 039

Transcription Factors

BE952590 Sox4 SRY -box containing gene 4 0045

AF472514.1 Tox Thymocyte selection-associated HMO
box gene

026

Intracellular Signaling Molecule

BC027159 Trib2
(Trb2)

trbbles homolog 2 (Drosophila) 038

Global gene expression was compared between naIve SC.C7Rag Ite (WT) and
Sc. C7Rag Itk- (KO) CD4+ T cells. The results are from statistical analyses of 5 WT
and 4 KG samples , using Bioconductor package AffylmGUI.

* Ratio = (KO signal/WT signal)
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Figure 4- Down-regulated genes in naive Itk- vs. Itk 
+1- CD4+ T cells

A heat map plot of the genes whose expression is decreased in naIve Itk- CD4+ T cells

was generated with the dChip program. White represents the average signal across all

samples; blue represents signals lower than the average and the darker the color the lower

the signal; red represents signals higher than the average and the darker the color the

higher the signal. WTO. x: replicates of non-stimulated Itk samples; KOO.x: replicates

of non-stimulated Itk- samples.
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Diferenees in global gene expression of stimulated Itk 
+1- and Itk- - CD4+ T eells

We compared global gene expression profies of Itk+ and It/(I- CD4+ T cells

stimulated with anti-CD3 plus anti-CD28. In these experiments, we stimulated the cells

with anti-CD3 plus anti-CD28 coated latex beads for 6 and 36 hours. For the 36-hour

stimulation, exogenous recombinant IL-2 was added in the culture to rule out possible

secondary effects caused by a lack ofIL- , because It/(I- CD4+ T cells have defects in IL-

2 production upon stimulation. We first compared expression profiles from stimulated

samples (6- or 36-hour time point) against non-stimulated samples (0 time point) within

each genotype. Then we compared the expression-changes between the two genotypes.

This analysis would allow us to identify genes whose expression is regulated by both

stimulation and the presence of Itk.

Interestingly, the expression-regulation pattern after stimulation ftom Itk-

samples is almost identical to that from Itk +1- controls. For example, if a gene

expression is up-regulated upon stimulation in the Itk samples, it is also up-regulated in

the Itk- samples, and viee versa. The criteria for determining significance was that the

change should have p-values of lower than or equal to 0. 1 and should have B-statistic

values of higher than zero. The significantly differentially regulated genes are listed in

Table 4-2 and Table 4-3 for the 6-hour and 36-hour stimulation time points , respectively;

heat maps depicting the expression patterns of these genes from both genotypes are

shown in Figures 4-7 and 4- , respectively. It is interesting to note that there is no

overlap between these two lists. Intriguingly, closer examination of the data revealed that
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the genes that are differentially regulated at 6-hour of stimulation are transiently up- or

down-regulated in both genotypes. It will be interesting to compare expression profies at

more time points after stimulation.

After 6 hours of stimulation, the expression of the regulatory subunit of PI3K

p85 , is down-regulated in both Itk and Itk- CD4+ T cells (Table 4- 1). This could be

one mechanism by which activating signals are contracted, as p85 is required for PI3K

activation. However, the magnitude of the downregulation is lower in Itk- CD4+ T cells

than in Itk CD4+ T cells. This result may indicate a delay in the signal contraction in

Itk- CD4+ T cells and allow PI3K signals to continue in stimulated 
Itk- CD4+ T cells for

a longer period of time. The continued stimulating signals may in turn allow ItlC CD4

cells to maintain wild type levels of gene expression by extended stimulation.

However, not all the differentially regulated genes are expressed with the same pattern.

For instance, the magnitude of down-regulation of the negative regulator, TRB2 , is lower

in Itk- CD4+ T cells compared to Itk control cells. In addition, there are a few genes

that are up-regulated in both genotypes, such as IL-22 and GM-CSF. Intriguingly, the

magnitudes of up-regulation of these genes are increased in the absence of Itk (Table 4-

2). The functional relevance of this is not clear, since this increase was transient and did

not continue when the cells were stimulated longer. At 6-hour of stimulation with anti-

CD3 plus anti-CD28 , we consistently find reduced levels of IL- expression in Itk- CD4

cells compared to WT CD4+ T cells, by quantitative real-time RT-PCR analysis

(Chapter II and (170)). To our surprise, this GeneChip analysis failed to identify such



118

defect in Itk- CD4+ T cells. Since the CD4 T cell preparations from Itk- mice are less

pure than from control mice, signals from other contaminating cell types may have

complicated the analysis. In addition, the stimulation conditions may have been too

strong to reveal defects in Itk- CD4+ T cells. It is also possible that the GeneChip aray

analysis may not sensitive enough to detect defects in Itk deficient T cells. Therefore

this analysis may have missed genes whose expression is defective in 
Itk- T cells upon

TCR plus CD28 stimulation, but can not be detected by this method.

Interestingly, at the 36-hour time point of stimulation, we found set of

differentially regulated genes that are in one pathway. After 36 hours of stimulation, IL-

expression is up-regulated (about 3- fold) in Itk- CD4+ T cells while the change in

expression ofIL-4 in Itk CD4+ T cells is negligible at this time point. At the same time

point, GATA3 , the IL-4 specific transcription factor (198), is down-regulated (about 2-

fold) in Itk+ CD4+ T cells , but it changes little in Itk- CD4+ T cells. Furthermore, Rog

(repressor of GAT A), which has been shown to interact with GATA3 and suppress the

latter s transcription activity (199), is up-regulated in both stimulated 
Itk and Itk- CD4

T cells , but the magnitude of up-regulation in Itk- CD4+ T cells is lower than that in Itk +1-

CD4+ T cells (Table 4-3). It is tempting to speculate that the differentially regulated Rog

and GATA3 may allow higher IL-4 expression in Itk- CD4+ T cells at this time point.

These results suggest that higher proportion of Itk- CD4+ T cells may be proceeding to

Th2 differentiation. In line with this, the expression of CCR8 , which is preferentially
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expressed in Th2 cells (200), is up-regulated to a higher extent in Itk- CD4+ T cells than

in Itk CD4+ T cells stimulated for 36 hours.

In this analysis , we have obtained very short lists of genes that are differentially

expressed and differentially regulated in Itk- CD4+ T cells compared to Itk+l- CD4+ T

cells. The patterns of the expression of these genes are complicated. This suggests that

Itk may fuction in regulating a variety of pathways. One possible complication is that

Tee and Rlk could partially compensate for the function of Itk in Ite- T cells , although

their message levels are down-regulated upon stimulation. However, since this analysis

did not reveal the defect of IL- expression, which is consistently identified by other

methods , in Itk- CD4+ T cells , this analysis may have missed some other genes.
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Table 4-2 Differentially regulated genes in Itk- vs. Itk CD4+ T cells after 6-hour

stimulation

Accession
Number

Cell Surface Markers

AI385482

Gene
Symbol

Tnfrsf5

X03019.

Cytokines or Chemokines

Csfl

BC012658.1

AJ249492.

Transcription Factors

NM 030887.

AJ252157.

Ccl22

IItifb
(II22)

Jundm2

Foxol

Name
#Changes

inKO
Samples

* Ratio Value

'i Changes
in WT

Sam les

Tumor necrosis factor receptor
superfamily, member 5 (CD40)

2.48 058

Colony stimulating factor 2
(granulocyte-macrophage) (GM-
CSF)
Chemokine (C-C motif) ligand 22

Interleukin lO-related T cell-derived
inducible factor beta (Interleukin 22)

14. 3.12 086

19.

83.29 23.

086

026

Jun dimerization protein 2

Forkhead box 01

3.43 1.8

0.31 1.93

036

054

BC027159

Intracellular Signaling Molecules

Tribbles homolog 2 (Drosophila) 0.44 0.19 086

010215.

M60651.

Trib2
(Trb2)
II4i1

Pik3r1

Interleukin 4 induced 1

PI3-kinase, regulatory subunit,
polypeptide 1 (p85 alpha)

7.21 2.48

0.38 1.9

023

054

Global gene expression was compared between 6-hour stimulated and naIve SC.C7Rag
Itk (WT) as well as between 6-hour stimulated and naIve SC.C7Rag 1tk- (KO) CD4

cells. The differences between stimulated versus naIve KO samples were then
compared to those between stimulated versus naIve WT samples. The results are from
statistical analyses using Bioconductor package AffylmGUI.

# Changes in KG samples= (KO 6Hr signal/KG OHr signal)

'i Changes in WT samples= (WT 6Hr signal/WT OHr signal)

* Ratio= (KG 6Hr signal/KO OHr signal)/(WT 6Hr signal/WT OHr signal))
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Figure 4- Differenti lly regulated genes in Itk- vs. Itk 
+1- CD4+ T cells after 6-hour

stimulation

A heat map plot of the genes whose expression is differentially regulated in Itk vs. Itk

CD4+ T cells after 6-hour stimulation was generated with the dChip program. White

represents the average signal across all samples; blue represents signals lower than the

average and the darker the color the lower the signal; red represents signals higher than

the average and the darker the color the higher the signal. WTO.x: replicates of nOll-

stimulated Itk samples; WT06.x: replicates of 6-hour stimulated Itk samples; KOO.

replicates of non-stimulated Itk- samples; K006.x: replicates of 6-hour stimulated Itk-

samples.
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Figure 4- Differentially regulated genes in Itk- vs. Itk CD4+ T cells after 6-hour

stimulation
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Table 4- Differentially expressed genes in Itk- vs. Itk +1- CD4+ T cells after 36-hour

stimulation

Accession Gene
#Changes Changes

Number Symbol
Name inKO in WT Ratio Value

Sam les Sam les

Cytokines

021283 114 lnterleukin 4 1.4 038

NM 010556 lnterleukin 3 1.85 0.23 082

Transcription Factors

008091 Gata3 GAT A binding protein 3 1.8 0.7 038

AK015881 Rog Repressor of GAT A 1Al 082

Cell Surface Markers

NM 007720 Ccr8 Chemokine (C-C motif) 038

receptor 8

008479 Lag3 Lymphocyte-activation gene 3 1.46 5.50 0.27

BB476707 Plxncl Plexin C1 (CD232) 0.33 017

Metabolism related

BC022959 Acsl6 Acyl-CoA synthetase long- 1.60 7.31 0.22 002
chain family member 6

NM 022888 Folr4 Folate receptor 4 (delta) 4.32 1.77 2A5 038

Global gene expression was compared between 36-hour stimulated and naIve SCC7Rag
Itk+ (WT) as well as between 36-hour stimulated and naIVe SCC7Rag Itk- (KO) CD4

cells. The differences between stimulated versus naIve KG samples were then
compared to those between stimulated versus naIve WT samples. The results are from
statistical analyses using Bioconductor package AffylmGUI.

# Changes in KG samples= (KO 36Hr signal/KG OHr signal)

Changes in WT samples= (WT 36Hr signal/WT OHr signal)

* Ratio= (KG 36Hr signal/KO OHr signal)/(WT 36Hr signal/WT OHr signal)
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Figure 4- Differentially regulated genes in Itk- vs. Itk CD4+ T cells after 36-

hour stimulation

A heat map plot of the genes whose expression is differentially regulated in Itk- vs. Itk +1-

CD4+ T cells after 36-hQur stimulation was generated with dChip program. White

represents the average signal across all samples; blue represents signals lower than the

average and the darker the color the lower the signal; red represents signals higher than

the average and the darker the color the higher the signal. WTO.x: replicates of non-

stimulated Itk samples; WT36.x: replicates of 36-hour stimulated Itk+/- samples;

KOO.x: replicates of non-stimulated Itk- samples; K036.x: replicates of 36-hour

stimulated Ite- samples.
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GAT A 3
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CCR8
Folate receptor 4 (Delta)
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Figure 4- Differentially regulated genes in Itk- vs. Itk CD4+ T cells after 36-

hour stimulation
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CHAPTER V

DISCUSSION AND FUTURE DIRECTIONS
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The data presented in this thesis have addressed the role of the Tee family

kinases in CD4+ T cell activation by using three different approaches. We were able to

reveal some unexpected aspects of this family of kinases in T cells and to clarify some

existing controversy about the putative role for Itk in CD28 costimulation signaling. The

data also hint at the potential importance of selection pressure in T cell development and

homeostasis. These studies contrbute to the overall knowledge of the role of the Tee

family kinases in CD4+ T cell activation.

The role of Tee family kinases in CD28 eostimulation

Numerous studies have established that the Tee kinases are critical for TCR

signaling by activating PLCyl. However, their role in other pathways has been

controversial. Intense efforts to elucidate the CD28 costimulatory signaling pathway

involved biochemical studies performed in Jurkat cell lines and implicated one of these

family members , Itk, in positively regulating CD28 signaling. These biochemical studies

relied on at least one of the following conditions: the use of Jurkat cells or other cell

lines , the overexpression of proteins , and the use of anti-CD28 antibody for stimulation.

First, the Jurkat cell line and its derivatives have been widely and successfully used in

investigating the details in signaling in T cells (201). However, potential defects in this

cell line may complicate the interpretation of the results. For instance, the phosphatase

PTEN is defective in Jurkat cells, which results in accumulation of PIP on the plasma

membrane and constitutive localization ofItk at the membrane (202). Since PI3K and its

downstream signaling pathways are important for CD28 signaling, Jurkat cells receive
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constitutive "co stimulation intracellularly. Second, overexpresslOn strategies make

studying protein function convenient; however, overexpressed protein may skew the

equilibrium of intermolecular interactions, leading to non-physiological associations.

Finally, use of anti-CD28 antibodies to crosslink CD28 molecules assumes that antibody

binding to CD28 mimics the interaction between B7 molecules and CD28. In light of a

recent analysis comparing different anti-CD28 antibody clones and mapping the binding

sites on the CD28 molecule (203), this assumption may not necessarily be true. For

instance, while the anti-mouse CD28 antibody clone 37.51 binds close to the MYPPPY

motif where B7 binds , other antibody clones , such as anti-human CD28 clone 5. 11A1

bind to a different motif, the C"D loop (203). Binding to different sites may induce

distinct conformational changes of the CD28 intracellular tail (61), and may induce a

mitogenic effect by directly activating NFKB (203). Therefore, in studying CD28

signaling by antibody stimulation methods, one must be careful in selecting antibodies

for stimulation and making conclusions based on these results.

On the other hand, another study examined the response of total primary CD4

T cells from It/(I- mice by measuring T cell proliferation after anti-CD3 plus anti-CD28

stimulation. These data showed that total CD4+ T cells from Itk- mice proliferated much

more vigorously than CD4+ T cells from litter-mate controls. These data led the

investigators to conclude that Itk may act as a negative regulator in CD28 co stimulatory

signaling (142). This conclusion strikingly contradicted that of the biochemical studies in

Jurkat cells. However, we now know that the proportion of memory-like CD4+ T cells is
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consistently 3- 5 fold higher in Itk- mice than that of wild type mice and thus this

conclusion is based on the response of non-equivalent cell populations. To confirm that

this is the case, we decided to re-examine the role of Itk in CD28 signaling using highly

purified naIve CD4+ T cells and a well-controlled stimulation system. As described in

Chapter results fTOm our functional analyses show that naIve CD4+ T cells from Ite-

mice are not hyperresponsive to anti-CD3 plus anti-CD28 stimulation or MHC/peptide

plus B7. stimulation. Therefore, Itk is not a negative regulator in the CD28

co stimulatory signaling pathway. Furthermore CD28 co stimulation functions very

effciently in naIve Itk- CD4+ T cells. Moreover, the PI3K-Akt-GSK3 pathway, the

only biochemically detectable signaling event upon CD28 ligation alone, is normal in

naIve Itk- CD4+ T cells. These data indicate that Itk is not essential in CD28 signaling.

We believe that this study helps to clarfy the controversies in the literature about the role

of Itk in CD28 costimulation.

The PI3K-Akt pathway has been implicated as being the most important

transducer of CD28 co stimulatory signals (90, 204, 205). Our data re-affirm the crucial

role of PI3K in CD28 costimulation signaling, since CD28 co stimulation effects are

completely abolished when naIve CD4+ T cells are treated with the PI3K inhibitor

L Y294002 (Figure 2-4).

Importantly, our studies identified a previously unappreciated defect in NFKB

activation in Itl(l- CD4+ T cells stimulated with anti-CD3 plus anti-CD28 antibodies
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(Figure 2-5). Since NFKB activity is indispensable for T cell activation and effector

function, elucidation of the mechanisms by which Itk regulates the NFxB pathway is

crucial. One possible mechanism through which Itk may mediate NFxB activation is

through PKC8. PKC8 is a calcium-independent, DAG-dependent member of the PKC

family. PKC8 is primarily expressed in T cells and is uniquely recruited into the

immunological synapse formed durng T cell activation (206, 207). The importance of

PKC8 in TCR/CD2S-induced NFxB activation has been demonstrated by PKCg T cells.

In these cells , TCR/CD2S-induced activation of NFxB , but not NFAT, is dramatically

impaired. Strikingly, the activation of NFKB in the absence of PKCe is specifically

impaired in response to TCR ligation, since the activation ofNFKB is normal in response

to TNF treatment in PKCg T cells (20S).

One mechanism by which Itk may regulate PKCe is through the PLCyl product

DAG. Another possible mechanism may be via an Itk-PKCe interaction. Itk and Tee

have been shown to be able to associate with PKCe in an in vitro system (209). It is

possible that by directly interacting with PKCe , Itk facilitates the recruitment ofPKCe to

the membrane, a critical step for its function (210). Alternatively, Itk may indirectly

regulate the localization of PKCe through regulating TCR- induced actin polymerization

and polarization. Since a role for Itk is implicated in actin polymerization and

polarization (133, 211 , 212), it is possible that in the absence of Itk, defective actin

polymerization and polarization may affect localization of some proteins to the rafts upon
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TCR/CD28 stimulation, including PKC8. Therefore, it will be interesting to examine

IKK activation, PKC8 localization and activation after CD3/CD28 stimulation in 
Itk-

cells.

In the absence of Itk, CD28 stimulation effciently enhances T cell responses

induced by TCR signaling. However, the magnitude of the response from Itk- T cells is

stil lower than that from wild type T cells. Since Itk is required for optimal TCR

signaling, we reason that this decreased response from Itk- T cells is likely due to the

TCR signaling defects in these cells. Because of the difficulty in dissecting the CD28

and TCR signals functionally, it is hard to ascertain whether CD28 co stimulatory activity

is equally effective in the presence or absence of Itk. It is stil possible that other T cell

Tee family kinases , Tee and Rlk, may partially compensate for the loss of Itk, although

we did not detect increased expression levels of Tee or Rlk in 
Itk- T cells. For instance

Tee has been shown to be capable of associating with the CD28 intracellular tail via the

Tee SH3 domain and the proline rich regions of CD28 (155). This binding pattern 

similar to the binding between Itk and CD28 (140). Moreover, Tee can be activated by

CD28 stimulation, and activated Tee can then phosphorylate the RasGAP associated

adaptor protein, p62
DOk (Dok1) (155). Finally, overexpressed Tee can enhance

transcription of IL-2 and IL-4 reporter constructs in response to anti-CD28 plus PMA

stimulation (155, 156). These data indicate that Tee may also playa role in CD28

co stimulatory signaling. Whether these data from experiments with cell lines truly reflect

a physiological role for Tee in CD28 co stimulation awaits the examination of responses
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of naIve Tee I- 
and Tee Itk- T cells to CD28 co stimulation. To date, there is no report

implicating Rlk in CD28 signaling. Nonetheless, it will be interesting to examine CD28

signaling and CD28 co stimulatory activity in naIve T cells that are deficient for all three

Tee family kinases.

TeeKD transgenie miee

In an effort to elucidate the function of Tee family kinases in T cell development

and function, we generated transgenic mouse lines expressing kinase-dead Tee on the Itk-

Rlk- double-deficient background, hoping to obtain mice functionally lacking all three

Tee kinases. The expression of the transgene was clearly detected at the message level

as shown in Figures 3-4 and 3-5. However, expression of the transgenic protein could

not be detected. Although we cannot rule out possible technical issues , it is tempting to

speculate that the loss of protein expression of the TecKD trans gene may be due to a

selection/survival pressure on the TecKD transgenic T cells. For instance, in the TecKD

transgenic Itk- Rlk- mice, if the Tee family kinases are essential for T cell development

and/or survival, the survival pressure may select for those T cells in which the transgenic

kinase-dead Tee protein is not expressed and/or the transgenic protein is rapidly

degraded.

Data from some of our other studies also prompted us to think that there might be

some selection or compensational mechanisms functioning in T cells. In those studies

transgenic mice were generated that express the phosphatase PTEN under the control of
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the proximallek promoter. Expression of the transgenic protein was high in thymocytes.

It was expected that overexpressed PTEN would decrease the amount of PIP in the

plasma membrane. However, contrary to this , the PIP levels in the thymocytes from

these mice were much higher than those from wild type control mice (W-C Yang, C-R Li

and LJ Berg, unpublished data). These data imply that in the thymocytes from the PTEN

transgenic mice, some mechanisms may have developed to compensate for the

overexpressed PTEN by increasing PI3K activity, since signaling down-stream of PIP

important for cell survival and cell cycle progression. The development of these

mechanisms may have been the result of a selection pressure for survival. Surprisingly,

selection is very effcient in both the PTEN transgenic mice and the TecKD transgenic

mice, as the thymic cellularty of the PTEN transgenic mice and the TecKD transgenic

mice are similar to those of their littermate controls.

If such selection mechanisms truly exist and function effciently in T cells

strategies involving expression-based disruption of Tee would not be successful on the

Itk- Rlk- background. Therefore, an Itk- Rlk- 7ee l- mouse line is still needed for these

studies. As mentioned earlier, the Tee and Rlk genes are linked closely on the same

chromosome, making it very diffcult to generate a Tee Rlk double-mutant allele with

conventional targeting methods. This problem might be solved by using a recently

developed BAC- (bacterial artificial chromosome) based targeting technique (213). This

method would save large amounts of time and resources necessary to achieve such

double mutations by conventional targeting techniques.
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Global gene expression profiling of Itk +1- and Itk- - CD4+ T eells

In an effort to identify potential transcriptional targets of Itk, the major Tee family

kinase expressed in T cells, we performed a gene expression profile analysis on Itk and

Itk- CD4+ T cells. To our surprise, this set of analyses resulted in a very short list of

genes that are differentially expressed in Itk- versus Itk

+/- 

CD4+ T cells. When

comparing non-stimulated naIve Itk- CD4+ and Itk+ CD4+ T cells , we disregarded all

up-regulated" genes , because the majority ofthese may be the result of the CD4+ T cells

from Itk- mice being less pure than those from Itk +1- mice. We understand that by doing

this we may be missing some bona fide up-regulated genes in Itk- T cells. Even then, the

small number of down-regulated genes in naIve Itk- CD4+ T cells suggests that, in terms

of the basal level of gene transcription, the Itk- CD4+ and Itk CD4+ T cells are very

similar. In addition, comparison of the non-stimulated naIve CD4 Itk- and CD4 Itk

cells suggests that the few down-regulated genes are the result of altered TCR signaling

during development of Itk- CD4+ T cells.

Furthermore , when comparing stimulated Itk+ CD4+ and Itk- CD4+ T cells , we

did not identify many differentially regulated genes. Surrisingly, this analysis even

failed to identify genes, such as IL- and Bel-xL whose expression is always found by

quantitative real-time PCR to be lower in Itk- CD4+ T cells compared to WT CD4+ T

cells stimulated under the same anti-CD3 plus anti-CD28 condition. This could be due to

the conditions of the antibody stimulation, which may have been too strong to reveal

defects in Itk- CD4+ T cells. It is also possible that the GeneChip aray analysis may not
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sensitive enough to detect defects in Itk deficient T cells. Therefore, this analysis may

have missed genes whose expression is defective in Itk- T cells upon TCR plus CD28

stimulation, but can not be detected by this method. Moreover, when the cells were

stimulated for 36 hours, exogenous IL-2 was added to the culture, to rule out possible

defects in Itk- CD4+ T cells that are secondary to their reduced ability to produce IL-

upon stimulation. This added IL-2 may have in turn masked some defects in Itk- CD4

T cells, because there are shared signaling pathways between IL-2 and TCR/CD28 , such

as the PI3K-Akt pathway. With this in mind, it will be interesting to compare expression

profies from Itk CD4+ and Itk- CD4+ T cells that are stimulated with varous

conditions

g. 

titration of anti-CD3 and anti-CD28 antibodies, for various periods of

time. Again, possible functional compensation from Rlk and Tee may also contribute to

the results. Nonetheless , we have found several interesting genes , whose expression is

regulated both by TCR/CD28 stimulation and by Itk. These differentially regulated

genes not only re-emphasize the importance of Itk in TCR signaling but also provide

clues or a new starting point for further investigation of the functions of this Tee family

kinase. The first step in these efforts wil be to verify these findings by other methods

such as quantitative real-time RT-PCR. If the differential expression of these genes can

be verified, the next step will be to examine whether these differentially expressed genes

result in differential protein levels in the cells. In addition, the complex expression

patterns of these genes imply that Itk may participate in regulating several different

pathways at different stages of T cell activation.
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The implieations of functions of Tee kinases in T eells and other eel! types

Compellng evidence has indicated that the Tee family kinase Itk plays an

important role in Th2 effector differentiation. When wild type naIve CD4+ T cells are

stimulated under Th2-skewing conditions Itk expression levels are increased (134).

When naIve Itk- CD4+ T cells are stimulated they produced reduced amounts of IL-

than wild type CD4+ T cells (121 , 134). Furthermore, under certain conditions, e.

stimulation with altered peptide ligand, where wild type CD4+ T cells produce IL- Itk-

CD4+ T cells preferentially produce IFNy (134). More importantly, Itk- mice canot

mount protective Th2 responses to infections with pathogens that are used to evaluate

effective Th2 responses , such as in the Sehistosoma mansoni and Leishmania major in

vivo models (119, 121). Consistent with a role for Itk in Th2 differentiation, when Itk-

mice were subjected to allergic asthma induction, these mice had decreased production of

Th2 cytokines such as IL-5 and IL- , reduced T cell infitration in the lung and reduced

mucus production (214). The mechanisms by which Itk may promote Th2 differentiation

may involve the regulation of T -bet, a Th1 specific transcription factor. Itk has been

shown to directly phosphorylate T -bet, and may inhibit its expression (134 , 173).

Taken together, these findings not only established a role for Itk in Th2

differentiation and related allergic response but also indicate that Itk is a promising

therapeutic target. To support this idea, expression levels or polymorphisms of the Tee

family kinase Itk has been correlated with human allergic disorders. For instance

increased expression of Itk has been detected in peripheral blood T cells from patients
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with atopic dermatitis (215). Moreover, it was recently found that certain polymorphisms

at the 5' end of the Itk gene are related to human atopy (216). Therefore, successful

control of the functions of Itk in vivo may help to treat human allergic disorders such as

asthma and atopy.

In designing therapeutic agents , it should be noted that kinase activity may not be

the only function of Tee family kinases. Indeed, a kinase-independent function of Itk has

been recently demonstrated in studies where the endogenous expression of Itk in Jurkat

cells was eliminated using an RNAi-based approach. TCR-induced Vav localization and

actin polarization were reduced in these cells, but were rescued by re-expression of a

kinase-dead mutant of Itk (133). These data indicate that the Tee kinases may function

not only as kinases but also as adaptor molecules that integrate the signaling complexes.

Thus, more attention is needed to dissect the functions of individual domains of Tee

kinases in T cell activation. A better understanding of the functions of different domains

of the Tee kinases wil certainly assist in designing of therapeutic agents that target

members ofthis family ofkinases. To this end, genetically targeted mouse models will be

needed that express physiological (endogenous) levels of Tee kinases with mutations in

different domains.

The use of primary T cells from genetically manipulated animals, such as the Itk-

or the Itk- Rlk- mouse lines, has successfully provided substantial knowledge on the

genes and/or their products. However, there are two potential difficulties in assessing
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data from these experiments in general. One of these is the inability to distinguish

between the direct effects of the gene of interest at the developmental stage of the cells

under investigation versus the effects imposed by the gene on the cells through

development up to that point. Specifically, the peripheral T cells from Itk- mice have

developed in the absence of Itk throughout the developmental stages in the thymus.

When these cells are stimulated and compared to wild type peripheral T cells that have

developed in the presence of Itk and stimulated under the same conditions, it is diffcult

to rule out the possible developmental effects that the lack of Itk has had on the

peripheral Itk- T cells.

The other diffculty is that a single gene may be expressed in a varety of cells

types that can affect one another. For instance, in addition to T cells, Itk is also expressed

in mast cells, NK cells, and possibly others. Possible defects in these cells may have

extrinsic effects on T cells in an Itk- mouse. Indeed, when Itk- mast cells are stimulated

through the IgE receptor, they produce dramatically increased amounts ofIL- , IL- 13 and

IL-6 when compared to wild type mast cells, implying that Itk may playa negative role in

mast cell activation (Y Kosaka and LJ Berg, personal communication). Increased levels

of these cytokines may drive the overall environment of the Itk- mice to the Th2 type. In

support of this idea, serum from Itk- mice contains higher levels of IgE, an indication of

a Th2-skewed environment ((119), Y Kosaka and LJ Berg, personal communicationJ.

This environment in Itk- mice is strkingly contrary to what one would predict based on

the role of Itk in Th2 differentiation. cells that develop and survive in such a
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dysregulated cytokine environment, however, may have been re-wired to fit in that

environment. Therefore, when these cells are stimulated and compared to cells from a

wild type (un-skewed) environment and stimulated under the same conditions, it is

diffcult to distinguish an intrinsic effect of the gene of interest (Itk in this case) and the

extrinsic effect from the environment.

Moreover, there may also be an increase of other cell types in Ifl/- mice, such as

CD4+ non- T cells, since the CD4+ T cell preparations from Itk- mice are consistently less

pure (in terms of CD3 or TCR staining) than those from Itk +1- or wild type mice. It is not

clear why and how the numbers of other types of cells should increase. However, it is

possible that Itk may also be expressed in other cell types, such as dendritic cells

macrophages and granulocytes. The loss of Itk may then affect the development and/or

function of these cells, which may in turn affect yet other cell types such as T cells. This

is a yet poorly explored field that may prove to be an important and fritful one. Results

from these studies will not only help to explain the phenotypes of Itl/- mice, but also

fuher our understanding of how this family of kinases functions in different cell type

and aid in a more rational design of therapeutic agents. Therefore, a better

understanding of the functions of the Tee family kinases in different cell types will

require cell lineage-specific as well as developmental or activation stage-specific

manipulation of these kinases.
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CHAPTER VI

MATERIALS AND METHODS
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Mice

The Itk- mouse line was generated previously in the lab (115) and has been

backcrossed to C57BL/10 (B10) mice (Charles River Laboratories , Wilmington, MA)

for over ten generations. The Itk- mice were also crossed to the RagTI- 
background and

5C.C7 TCR transgenic (5C.C7Tg). The Itk- Rlk- mouse line was a generous gift from

Dr. Pamela Schwartzberg (117). The hCD2-rtTA transgenic mouse line on the B10

background was a generous gift from Dr. Rose Zamoyska (169). This mouse line was

crossed to Itk- Rlk- mice to generate It/( Rlk- rtTATg. All mice used were between 6 to

12 weeks old and maintained in a Specific-Pathogen-Free (SPF) facility.

Preparation of naive CD4+ T cells

Lymph nodes and spleens were dissected from mice, and single-cell suspensions

were prepared. After red blood cells were lysed, the cells were labeled with anti-CD4-

coated magnetic microbeads (Miltenyi Biotec, Auburn, CA). The labeled cells were then

separated by Auto-MACS (Miltenyi Biotec, Auburn, CA) according to manufacturer

instructions. The enrched CD4+ cells were stained with anti-CD4-CyChrome (Cy) and

anti-CD44-FITC (BD Pharmingen, San Diego , CA). CD4 CD441ow (naIve) T cells were

sorted on a Becton-Dickinson FACSVantage cell sorter. Purified populations were ::95%

CD4 CD441ow cells. For some experiments, naIve CD4+ T cells were purified with anit-

CD4-FITC (BD Pharmingen), anti-FITC MultiSort kit (Miltenyi Biotec) and anti-CD62L

magnetic microbeads (Miltenyi Biotec), according to the manufacturer s instructions.
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This purification strategy yielded 90% to 97% CD4 CD441ow T cells. The CD4+ T cells

from Rag2-1- S 
C. C7Tg Itk- and Rag2- Sc. C7TgItk mice are consistently /95% CD441ow

After purification, the cells were resuspended with RPMI- 1640 medium supplemented

with 10% fetal bovine serum (FBS), 3mM L_Glutamine, 100 unit/ml penicilin, 1001lg/ml

streptomycin, 10mM HEPES , and 50llM 2-mercaptoethanol.

T cell stimulation

Purified naIve CD4+ T cells were stimulated with antibody-coated latex beads or

plates. Surfactant-free sulfate-charged 91lm white polystyrene latex beads (Interfacial

Dynamics Corporation, Tualatin, Oregon) were coated with the following combinations

ofmonoc1onal antibodies: anti-CD38 (clone 145 2C11 , BD Pharmingen) at 0.51lg/ml plus

a hamster IgG isotype control (eBioscience, San Diego , CA) at 4.51lg/ml; anit-CD3Dat

51lg/ml plus anti-CD28 (clone 37. , eBioscience) at 4.51lg/ml; anti-CD28 at 51lg/ml; or

a hamster IgG isotype control at 51lg/ml. For antibody coating, latex beads were

incubated at lx10 /ml with the indicated combinations of antibodies at 37 C for 1.5 hours

with rotation; after washing with PBS, the beads were resuspended in RPMI- 1640

medium supplemented with 10% FBS. To coat plates with anti-CD28 antibody, plates

were incubated at 37 C with anti-CD28 (clone 37. , eBioscience) at 51lg/ml for 1.5

hours , and then stored at 4

To stimulate naIve CD4+ T cells, purified cells were incubated with an equal

number of antibody-coated latex beads, or on anti-CD28 coated plates, at 37 C for
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indicated period of time. Where indicated, PMA (Sigma, St. Louis, MO) was added at

varous concentrations.

T cell proliferation assay

To stimulate naIve CD4+ T cells, lxl0 purified cells were incubated with an

equal number of antibody-coated latex beads. Where indicated, PMA (Sigma) was added

at various concentrations. For stimulation of Rag2- 5C.C7Tg T cells, lx10 purified

CD4+ T cells were incubated with varying concentrations of the moth cytochrome c

(MCC) peptide residues 93- 103 plus 1xl05 mitomycin C-treated CHO cells expressing

mouse MHC class II IE (CHO-IE\ (217)), or CHO cells expressing IE and mouse B7.

(CHO- /B7. l; (135)). The culture volume was 200 f.l. After incubation at 37 C for 48

hours, If.Ci of Thymidine (NN, Boston, MA) was added to each well, and the plates

were incubated for 18 additional hours. The cells were then harvested on a Tomtec

Harester 96 (Orange, CT), and 3 Thymidine was quantified on a Trilux microbeta

counter (PerkinElmer, Wellesley, MA). As a control, cells were also stimulated with

5ng/ml PMA and 375ng/ml ionomycin (Calbiochem, La Jolla, CA).

Western Blotting analysis

Following stimulation, the cells were lysed with lysis buffer containing 25mM

Hepes (pH7.5), 150mM NaCl, lmM EDTA, 1% Triton x- lOO, lmM , and
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protease inhibitor cocktail (Roche, Indianapolis, IN). Forty micrograms of lysate protein

from each sample was resolved by SDS-P AGE, transferred to Immobilon-P PVDF

membrane (Millpore, Bilerica, MA), and then probed with antibodies to phospho-AKT

or phospho-GSK3 (Cell Signaling Technology, Beverly, MA). After stripping, the

membranes were re-probed with antibodies to total AKT (Cell Signaling Technology),

GSK3 (Santa Cruz Biotechnology Inc , Santa Cruz, CA), or p85 subunit of PI- kinase

(Upstate Biotechnology, Lake Placid, NY). Antibody binding was detected by

chemiluminescence using the ECL kit (Amersham Biosciences, Piscataway, NJ). 

detect Tee trans gene expression, antibodies to mouse Tee (Upstate Biotechnology) and to

FLAG (Sigma) were used.

Quantitative rea/-time PCR

T cells were stimulated as described above for 6 hours; total RNA was isolated

from stimulated cells with RNeasy kit (Qiagen, Valencia, CA). After treatment with

DNAse I (Ambion Inc, Austin, TX), 1Jlg of total RNA was used to synthesize cDNA

with SuperScript first strand cDNA synthesis kit (Invitrogen, San Diego, CA).

Quantitative Real-Time PCR was performed on an i-Cycler (BioRad, Hercules, CA),

using SYBR Green PCR core reagents (ABI, Foster City, CA). The primer sequences are

as the followings:

IL2 F 5' CCTGAGCAGGATGGAGAATTAC3'

IL2 R 5 ' TCCAGAACATGCCGCAGAG3'
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BclxL F 5' A TTGGTGAGTCGGA TTGC3'

BclxL R 5 ' CACAGTCA TGCCCGTCAG3'

CD40L F 5' GATCCTCAATTGCAGCAC3'

CD40L R 5' CCGATTAGAGCAGAAGGTG3'

GAPDH F 5' ATGTGTCCGTCGTGGATCTGA3'

GAPDH R 5' CCTGCTTCACCACCTTCTTGAT3'

Preparation ofnuclear extracts and detection of activated NFKB (P65)

After stimulation, the cells were harvested and washed with PBS. The cells were

then resuspended with 200 1 Buffer A (10mM HEPES pH 7. 10mM KCl, 0. 1mM

EDTA, 0. 1mM EGTA, 1mM DTT, and protease inhibitor cocktail). The samples were

incubated on ice for 15 minutes, and 12. 1 of 10% NP40 was added. After vigorous

vortexing, the samples were briefly centrifuged. The supernatant was removed and the

pellets were washed once with Buffer A. Fifty microliters of Buffer C (20mM HEPES

pH7. OAM NaCl ImM EDTA 1mM EGTA 1mM DTT, and protease inhibitor

cocktail) was added to each sample. The samples were incubated on ice for one hour

with vigorous vortexing every 5 minutes. The samples were then centrifuged at

maximum speed for 15 minutes. The supernatant containing nuclear protein was

collected and protein concentration was determined by Bradford assay (BioRad

Hercules, CA) according to manufacturer s instructions. Five micrograms of nuclear

protein was subjected to NFKB (P65) functional ELISA using BD TransFactor NFKB P65
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kit (BD Biosciences, Palo Alto, CA), according to the manufacturer s instructions.

Briefly, 51lg of nuclear protein, mixed with blocking solution to a volume of 50 Ill, was

added into a well pre-coated with NFKB binding oligonucleotides (sequence

GGGGTATTTCC). The binding of activated NFKB from the nuclear extract to the

oligonucleotides was detected with an anti-p65 antibody, HRP-conjugated secondary

antibody, and HRP substrate TMB. The signals were read on an EMax precision

microplate reader (Molecular Devices Corporation, Sunnyvale , CA)

FA CS analysis

Cells were stained with the indicated antibodies in HBSS supplemented with 3%

FCS for 30 min at 4 C. Cells were then washed and analyzed on a BD F ACSCalibur (BD

Biosciences, San Jose, CA). Data were analyzed using CellQuest software (BD

Immunocytometry Systems, San Jose, CA) or FlowJo software (Tree Star Inc , Ashland

OR). The antibodies used were anti-CD4-CyChrome (Cy), anti-CD4- , anti-CD69-

FITC, anti-CD44-FITC, anti-CD44-Cy, anti-CD25-FITC, and anti-CD62L- , anti-CDS-

FITC , anti-TCRp-FITC and anti-TCRyo-FITC (BD Pharmingen, San Diego , CA).

Calcium flux analysis

CD4+ T cells were resuspended in RPMI-1640 containing 3% FBS and calcium

indicator dyes Fluo-3 (Molecular Probes Inc, Eugene, OR) at 3/-g/ml and Fura-Red

(Molecular Probes Inc) at 5/-g/ml M. Cells were incubated at 37 C in the dark for 45
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minutes, washed twice with RPMI-1640 containing 3% FBS , and incubated with the

same medium for 30 minutes in the dark. The cells were then stained with Biotin-

conjugated anti-CD3 (clone 145 2cll , eBioscience) at 2/-g/ml or 5/-g/ml with or without

10/-g/ml of Biotin-conjugated anti-CD28 (clone 37. , eBioscience). The cells were

washed twice with HBSS, resuspended with HBSS at 10 /ml, and kept on ice in the dark

until analysis. Prior to analysis, 4XI0 cells (in 300/-l) were added to 500/-l HBSS and

warmed to Flow cytometric analysis was performed at 37 C on a BD

FACSCalibur (BD Biosciences). Cells were collected for 30 seconds prior to stimulation

and 5 minutes after addition of 5/-g/ml streptavidin (Pierce Biotechnology Inc, Rockford

IL). Finally, 5/-g/ml ionomycin was added, and cells were collected for additional 1.5

minutes. The results were analyzed with FlowJo software.

Generation of constructs for TecKD transgenic mice

A point mutation, K397E, in the mouse Tee cDNA was introduced by site-

directed mutagenesis; a FLAG tag was added to the 5' end of the cDNA. This mutant

version of Tee cDNA is called TecKD , since the mutation disrupts the binding of ATP

and hence the activity of the kinase (158). The vector pTLC, which contains a 3.2kb

mouse lek proximal promoter, a BamHI cloning site and a human CD2 3' - LCR, was a

kind gift of Dr. Falk Weih (167). The vector pTRE2 was purchased from BD

Biosciences Clontech (Palo Alto , CA).
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To generate a construct in which the expression of TecKD is driven by the lek

promoter, the TecKD cDNA was first cut out from pMSCV vector with XhoI and

HindIII, and sub-cloned in to pBluescript (pBS). The plasmid pBS- TecKD was then

digested with BamHI and the insert was cloned into pTLC after the lek promoter. The

resulting plasmid is named pTLC- TecKD. DNA sequencing was performed at every

cloning step to verify correct junctions , direction and sequences.

To generate a construct in which the expression of TecKD can be induced by

tetracycline or doxycycline , the pBS- TecKD plasmid was digested with BamBI and Not!

and then cloned into pTRE2 after the tetO/CMVmin promoter. The resulting plasmid

was named pTRE- TecKD. DNA sequencing was performed to verify correct junctions

direction and sequence.

The plasmids were expanded in E. eoli. and purified with a plasmid Maxi-prep

kit (Qiagen). To remove the vector, plasmids pTLC- TecKD was digested with SacII and

plasmid pTRE- TecKD was digested with the combination of XhoI and Sap!. Finally, the

transgenic fragments TLC- TecKD and TRE- TecKD were purfied by gel-extraction.

Generation of TecKD transgenic mouse lines

Three-week old female Itk- Rlk- mice were superovulated and bred to adult male

Itk- Rlk- mice. Thus, the resulting fertilized eggs should all be Itk- Rlk- The transgene
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fragments were micro-injected directly into these fertilized Itk- Rlk- eggs. Therefore, all

transgenic mice are on Itk- Rlk- double-deficient background. The micro-injection was

performed by the University of Massachusetts Medical School Transgenic Animal

Modeling Core. Founders were screened by both Southern Blot and PCR on genomic

DNA from tails.

Screening transgenic founder lines by Southern Blot

The 1.9kb FLAG- TecKD fragment was labeled with PdCTP (NN, Boston

MA), random hexamer primers, and the Klenow fragment of DNA polymerase 1. The

labeled probes were cleaned with MicroSpin G-25 columns (Amersham Biosciences

Piscataway, NJ). The tail DNA from founders and wild-type controls were digested with

BamHI (for the TLC-TecKD lines) or XhoI plus SapI (for the TRE-TecKD lines).

Digested tail DNA was resolved with a 1 % agarose gel in T AE, and transferred to nylon

membrane. The membranes were then probed with p labeled FLAG- TecKD probes.

After stringent wash, the signal was detected by autoradiography.

Genotyping TecKD transgenic mice by PCR

PCR was also utilized in the initial screening of the founders. After confirming

that PCR results were the same as those from Southern Blotting, PCR was used routinely

for genotyping progeny.
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For genotyping the TLC- TecKD lines , the primers used were:

5 ' CTGTGAACTTGGTGCTTGAGGGCTC3' (on the lek promoter)

GACAGGGAATGACACCATCATCG3' (on Tee cDNA)

For genotyping the TRE- TecKD lines , the primers used were:

CGCCTGGAGACGCCATC3' (on the " Tet-on" promoter)

GACAGGGAATGACACCATCATCG3' (on Tee cDNA)

Induction of TecKD transgene expression

To induce the expression of the transgene in the TRE- TecKD mouse lines , the

mIce were crossed to Itk- Rlk- rtTATg mice. The mice were fed drinking water

containing doxycycline (Sigma) at 2mg/ml and 0.4% sucrose. Drinking water was

prepared fresh and changed every two days.

Stimulation of CD4+ T cells for microarray analysis

CD4+ T cells were purified from Rag2- SC.C7Tg Itk- and Rag2- SC.C7TgItk

mice as described above. The cells were left unstimulated or stimulated for 6 hours or 36

hours with anti-CD3 plus anti-CD28 antibody-coated beads. The six-hour stimulation

was the same as described above. For the 36-hour stimulation, 1X10 CD4+ T cells were

incubated with an equal number of antibody-coated beads, incubated at 37 C for 24

hours. Subsequently, recombinant mouse IL-2 (BD Pharmingen) was added to a final
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concentration of 5ng/ml. The culture was continued at 37 C for 12 additional hours

before harvest.

Isolation of total RNA and synthesis of cRNA for microarray analysis

After cell harvest, total RNA was extracted with TriZol reagent (Invitrogen)

according to the manufacturer s instrctions. The RNA samples were furher purified

with RNeasy kit (Qiagen, Valencia, CA). cDNA and cRNA synthesis were performed

according to Affymetrix protocols. Briefly, 101lg of each total RNA sample was used

to synthesize double-strand cDNA using cDNA synthesis kit (Invitrogen) with an

oligo( dT)24 primer containing a T7 promoter sequence added to the 3' end (Affymetrix

Santa Clara, CA). Subsequently, biotin-labeled cRNA was synthesized from the cDNA

samples by in vitro transcription (NT) using the ENZO TM BioAray High Yield RNA

Transcription Labeling kit (ENZO Life Sciences Inc, Faringdale, NY). The labeled

cRNA samples were purified using RNeasy kit (Qiagen), and then fragmented by mild

alkaline treatment at 94 C for 35 minutes.

Microarray hybridization and scanning

Fragmented cRNA samples were used to prepare hybridization cocktail at a final

concentration of 0.051lg/lll. A mixture of four control cRNAs from bacterial and phage

genes was included in the hybridization cocktail (BioB , BioC , BioD and ere, at 1.5 , 5 , 2.
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and 100 pM respectively) to serve as hybridization controls. A biotin-labeled

oligonucleotide, B2 , was also included to the hybridization cocktail, which hybridized to

unique features at the center and four comers of each chip to facilitate precise alignent

and mapping of the probe sets. Hybridization and scaning were performed at University

of Massachusetts Medical School Genomics Core Facility, according to Affymetrix

protocols. Briefly, the sample cocktails were incubated at 99 C for 5 minutes

equilibrated to 45 C for 5 minutes, and clarified by centrifugation (14 OOOg) at room

temperature for 5 minutes. Aliquots of each sample were hybridized to MOE430A

GeneChip arays (Affymetrix) at 45 C for 16 hours with rotation. The arrays were then

washed, stained with R-phycoerythrn Streptavidin (Molecular Probes), washed again

and scanned by the GeneAray Scanner (Agilent Technologies). Prior to MOE430A

hybridization, Test GeneChip arays (Affymetrix) were hybridized to test sample

integrty.

Microarray data analysis

Initial data analysis was performed by Affymetrix Microarray Suite (MAS) 5.

software (Affymetrix). All further statistical analyses and quality assessment were

performed by using Bioconductor version 1.6 (http://ww.bioconductor.org) (174) in the

R environment (http://ww. project.org). Expression values were background corrected

normalized, and summarzed by using the default settings of the Affy, AffyPLM and

AffylmGUI packages from Bioconductor and the dChip program (175).
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Cutting Edge: Itk Is Not Essential for CD28 Signaling in
Naive T Cells 
Cheng-Rui Li and Leslie J Berg

Itk, a member of the Tee family of tyrosine kinases, is crit-
ical for TCR signaling, leading to the activation of phos-

pholipase Cy 1. Early biochemical studies perfrmed in
tumor cell lines also implicated Itk in CD28 signaling.
These data were complemented by functional studies on

primary Itk 

/- 

T cells that suggested a negative role for
Itk in CD28 signaling. In this report, we describe a thor-
ough analysis ofCD28-mediated responses in T cells lack-

ing Itk. Using purifed naive CD4+ T cells from Itk-

mice, we examine a range of responses dependent on
CD28 costimulation. We also analyze Akt and glycogen
synthase kinase-3fJ phosphorylation in response to

stimulation ofCD28 alone. Overall, these experiments
demonstrate that CD28 signaling, as well as CD28-
mediated costimulation of TCR signaling, function 
ficiently in the absence of Itk. These findings 

indicate
that Itk is not essential for CD28 signaling in primary
naive CD4+ T cells. The Journal of Immunology,

2005, 174: 4475- 4479.

WO signals are required for the optimal activation of na-
ive T cells, one from the TCR and the second from a
costimulatory receptor. On naive T cells, the CD28 re-

ceptor provides the primary costimulatory signal following in-
teraction with CD80 or CD86 onAPCs (for review, see Refs. 1

and 2). Functionally, CD28 costimulation enhances the sur-

vival, cell cycle progression, and cyokine production by acti-

vated T cells. Although tremendous effort has been directed at
elucidating the signaling pathway(s) initiated by CD28 stimu-
lation, the detailed mechanism by which CD28 costimulation
operates has not yet been determined, in part due to the diff-

culty of distinguishing the TCR- vs the CD28-mediated signals
in primary T cells.

The Tec family tyrosine kinase, Itk, has been previously im-
plicated in CD28 signaling. Although Irk is primarily associ-
ated with TCRsignaling (3-5), a number of biochemical stud-
ies have demonstrated an interaction between Irk and CD28.
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Specifically, Itk coimmunoprecipitates with CD28 from J urkat

tumor cells and, in addition, is tyrosine phosphorylated in re-
sponse to CD28 cross-linking (6, 7). In vitro studies using re-
combinant proteins indicate that Irk binding to CD28 depends
on the activity of the Src-family tyrosine kinase, p56lck (Lck)

(8, 9). Structure-function analysis of CD28 additionally dem-
onstrated that the Src homology 3 domain ofItk binds to pro-
line-rich sequences in the CD28-cytoplasmic tail, an interac-
tion that has been suggested to enhance Itk kinase activity (7).
Finally, Irk has been shown to phosphorylate all four tyrosine
residues of the CD28-cytoplasmic tail in in vitro kinase assays

(10), providing additional evidence for a positive role of Irk in
CD28 signaling.

To date, only a single study has addressed the role ofItk in

CD28 signaling in primaryT cells. Surprisingly, this study con-

cluded that Itk is a negative regulator of CD28 signaling. This
latter conclusion was based on the finding that CD4 + T cells
from ltk -1- mice showed enhanced proliferative responses to
CD28 costimulatory signals compared with cells from wild-

type (W)3 mice (11). One complication of this initial study is
the fact that ltk- mice have a greatly increased population 
previously activated/memory CD4+ cells compared with

controls, potentially skewing the responses of these cells to TCR
plus CD28 stimulation, independently of a role for Irk 
CD28 signaling. Based on this concern, we chose to readdress
the role of Irk in CD28 signaling using a panel of assays that
assess CD28 signaling in the presence, as well as the absence, of
TCR stimulation. Overall, our data demonstrate that Irk is not
a negative regulatOr of CD28 costimulatory activity; in con-
trast, to the best of our knowledge, all aspects of CD28 signal-
ing are intact in the absence of Irk.

Materials and Methods
Mice

The Itk- mouse line (12) was backcrossed to C5?BL/10 for:/ 10 generatio

Where indicated, Itk -1- mice were crossed to 5eC? TCR-transgenic Rag2-

mice (Taconic Farms). All mice used were 6- 12 wkof age and maintained in a

specific, pathogen-free facility, following review and approval by the Institu-
tional Animal Care and Use Committee.

2 Address correspondence and reprint requests to Dr. Leslie J. Berg, Department of Pa-

thology, Universiry of Massachusetts Medical School, Worcester, MA 01655. E-mail ad-

dress: Leslie.Bergriumassmed.

3 Abbreviations used in this paper: WT, wild rype; MCC, moth cyochrome c; CHO, Chi-

nese hamster ovary; GSK3(3, glycogen synthase kinase-3(3.
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Preparation of naive CD4+ T cells

CD4 + T cells were purified from lymph nodes and spleens as described previ-
ously (13). CD4+CD44Iow (naive) T cells were sorted on a BD Biosciences
FACSVantage cell sorter. Putified populations wete ::95% CD4+CD44Iow

cells. For some expetiments, naive CD4 + T cells (CD62L high) were putified on
an AutoMACS followinglabelingwi th anti-CD4- FITC (BD Pharmingen), anti-
FITC MulriSort kit (Miltenyi Biotec), and anti-CD62L-magnetic microbeads
(Miltenyi Biotec). This purification stategy yielded 90-97% pure
CD4+ CD4410w

T cells. The CD4 + T cells from RagT/- 5C C7Tgxltk /- and
Rag2- 5C C7Tgxltk +/- mice are consistently ::95% CD441ow

T cell stimulations

Purified naive CD4 + T cells were stimulated with surfactant-free, sulfate-
charged, 4. m white polystyrene latex beads (Interfacial Dynamics) coated
with the following combinations of mAbs: anti-CD3E (l45-2CI 1; BD Phann-
ingen) at 0.5 fLg/ml plus a hamster IgG isotype control (eBiosciences) at 4.

fLg/ml; anti-CD3E at 0. 5 fLg/ml plus anti-CD28 (37. 51; eBiosciences) at 4.5
fLg/ml; anti-CD28 at 5 fLg/ml; or a hamster IgG isotype control at 5 fLg/ml. For
Ab coating, latex beads were incubated at 1 X 10 /ml with the indicated com-
binations of Abs at 37 C for 1.5 h with rotation. For biochemical assays, naive

CD4+ T cells were stimulated with anti-CD28 Ab-coated plates.
To stimulate naive CD4+ T cells, 1 X 10 purified cells were incubated with

an equal number of Ab-coatedlatex beads. Where indicated, PMA (Sigma-Al-
drich) was added at various concentrations. For stimulation of Rag2-
5CC7Tg cells, 1 X 10 purified CD4+ T cells were incubated with varng
concentrations of the moth cytochrome (MCC) peptide (93- 103) plus I X

mitomycin C-treated Chinese hamster ovar (CHO) cells expressing
mouse MHC class II IE (CHO- ; Ref. 14) or CHO cells expressing IE and
mouse CD80 (CHO- /B7. 1; Ref. 15). Proliferation was assessed by pulsing
cells overnight with (3HJrhymidine (NEN).

Western blot analysis

Following stimulation , cells were lysed as described previously (16). Forty mi-
crograms of protein for each sample were transferred to polyvinylidene difluo-
ride membranes and probed with Abs to phospho.-Akt or phospho-glycogen
synthase kinase-3f3 (GSK3f3 (Cell Signaling Technology). After stipping, the
membranes were reprobed with Abs to total Akt (Cell Signaling Technology),
GSK3f3 (Santa Cruz Biotechnology), or the p85 subunit ofpl3K (Upstate Bio-
technology).

Quantitative real-time PCR

T cells were stimulated for 6 h, and RNA and cDNA were prepared as described
previously (IS). Real-time quantitative PCR was performed on an i.-Cycler
(Bio-Rad). Primer sequences are available upon request.

Preparation of nuclear extracts and detection of activated NF-Kl (P65)

Aler stimulation, cells were harested, and nuclear lysates were ptepared. Five
micrograms of nuclear protein were subjected to the NFKB (P65) functional
ELISA using the BD TransFactor NF-KB p65 kit (BD Biosciences). Signals
were analyzed on an EMax precision microplate reader (Moleculat Devices).

Flow cytometry

Cells were stained with the indicated Abs 30 min at 4 C, washed, and an-
alyzed on a BD FACSCalibur (BD Biosciences). Data were analyzed using
CellQuest software (BD Immunocytometry Systems). The Abs used were anti-
CD4-CyChrome (Cy) , anti-CD4- , anti-CD69-FITC, anti-CD44-FITC,
anti-CD44-Cy, anti-CD25-FITC , and anti-CD62L-PE (BD Pharmingen).

Results and Discussion
Increased numbers of memory phenotype CD4+ T cells in Itk 

/- 

mice

Previous studies have documented that Itk /- mice have a

modest defect in positive selection, resulting in an fold re-
duction in the total numbers ofCD4 + T cells in the spleens and
lymph nodes of Itr/- mice compared with controls (12 , 17-
19). However, surprisingly, the population ofCD4+ T cells in
Itk /- mice is highly enriched for cells with a previously acti-
vated or memory phenotype (CD4+ CD44highCD62Llow). M
shown in Fig. we routinely find an fold increase in the
proportion of CD4 + T cells expressing high levels of CD44 in
lymph nodes of Itr/- mice compared with WT C57BL/10
mice. When CD4+ CD44high T cells were analyzed for CD69

CD4+ T cells
CD4+CD44hi T Cells
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FIGUR 1. Naive ltk-

/- 

CD4+ T cells are not hypettesponsive to CD28
stimulation. Lymph node cells from C57BL/I0 (wr) and ltk-

/- 

mice were

stained with anti-CD4 and anti-CD44 Abs. Histograms show CD44 staining
on gated CD4+ T cells; numbers indicate the percentage of CD44high cells.

Data shown are representative of five experiments. Lymph node cells from
wr and ltk-

/- 

mice were stained with Abs to CD4, CD44, and CD69 or
CD25. Mean percentages:! SD of CD69+ or CD25+ cells among the
CD4+CD44high population are indicated for two wr and six ltr/- mice an-
alyzed. C, Total CD4 + T cells from wr and ltk /- mice were stimulated with

the indicated concentrations of PMA in the presence of anti-CD28 or isotype
control Ab-coated beads. Cell proliferation was measured by (3HJthymidine
incorporation at 72h. Sorted naive CD4 + T cells from wr and ltk /- mice

were stimulated with the indicated concentrations of PMA in the presence of
anti-CD28 or isotye control Ab-coated beads. Cell proliferation was measured
by (3HJrhymidine incorporation at 72h. Data shown are representative of three
experiments. Naive CD4 + T cells wete purified from WT and ltk /- mice.

Cells were stimulated for 6 h with 5 ng/ml PMA in the presence or absence of
anti-CD28 Ab-coated beads. The levels of IL-2 and Bcl-xL mRNA were deter-
mined by real-time quantitative PCR. Data were notmalized to the expression
of GAPDH mRNA in each sample and are representative of two experiments.
NS, nonstimulated.
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and CD2S expression, fewer cells from ltk - J- mice compared

with controls expressed these early activation markers, suggest-
ing that these cells have not been recently activated (Fig. IE).
Overall, these data indicate that, although total T cell numbers
are reduced in the ltk - J- mice (12, 17), the proportion of cells

with a memory phenotype is actually increased.

Naive ltr - CD4+ T cells are not hyperresponsive to CD28

costimulation

A previous study described increased responsiveness of ltk -
CD4+ T cells compared with WT CD4+ T cells following
stimulation through CD28, leading to the conel lsion that Irk is

a negative regulator of CD28 signaling (11). To bypass the

TCR-signaling defect intrinsic to ltk - J- T cells, these experi-
ments used PMA plus anti-CD28 Ab as a stimulus. Consistent
with these earlier data, we also observe that when total CD4 + T

cells from ltk - J- mice or WT control mice are stimulated with
PMA plus anti- CD28-coated beads, the response of the ltk -
CD4 + T cells is significantly higher than that of the control
cells (Fig. 1 C). However, because the CD4 + T cell population
from ltk -J- mice contains an increased proportion of memory
phenotype cells, we reasoned that the increased responsiveness
of these cells might be attibutable to this altered subset distri-

bution. To test this possibility, we repeated this experiment us-
ing highly purified naive CD4 + CD44

10w
T cells. As shown in

Fig. 1 and purified naive Itr CD4+ T cells are not

hyperresponsive to PMA plus anti-CD28 Ab stimulation and,
under these conditions, respond comparably to WT naive

CD4 + T cells.
These findings reopened the question of the role of Itk in

CD28 signaling and function. Therefore, we proceeded to ex-
amine the responses of ltk - J- T cells to stimulation through the

TCR plus CD28, using conditions in which T cell activation is
dependent stringently on CD28 costimulation. For these ex-
periments, purified ltk - J- and WT naive CD4 + T cells were

stimulated with Ab-coated latex beads. When stimulated with
beads coated with anti-CD28 Ab alone or anti-CD3 Ab alone,

neither population of T cells exhibited any proliferative re-
sponse. In contrast, when cells were stimulated with beads
coated with a mixture of anti-CD3 plus anti-CD28 Abs (1:9

ratio), both populations of cells proliferated robustly. Although
the response of the ltk - J- cells was reduced compared with that

of the WT T cells , this response still represents an 300-fold

enhancement over the response to anti-CD3 Ab alone. Based
on these data, we conelude that CD28 costimulatory activity
functions quite effciently in naive Itr CD4+ T cells.

To substantiate these findings using bona fide MHC/peptide
stimulation in the presence or absence ofB7. 1 (CD80), we ex-

amined purified naive CD4 + T cells isolated from transgenic
mice expresing the seC7 TCR (SC.C7Tg). For these experiments,

T cells from RagTJ- 5CC7Tgxltr
and RagT - 5CC7Tgxltk+

mice were stimulated with CHO- cells or CHO- /B7.

cells as APCs in the presence of varying concentrations of the
MCC peptide. At each given peptide concentration, both
Itk+ as well as ltk - J- CD4 + T cells show a similar degree of
increased responsiveness to stimulation with APCs expressing

B7. 1 compared with APCs thatlack B7. 1 (Fig. 2E). These dlta

confirm the conelusion that CD28 costimulation functions
effectively in the absence ofItk.
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FIGUR 2. CD28 costimulation functions effciently in the absence ofItk
Sorted naive CD4 + T cells from WT and ltk-

/- 

mice wete stimulated with

Ab-coated beads as indicated. Cell proliferation was measUted 72 h aftet stim-
ulation. Mock cells incubated with isotype control Ab-coated beads alone.

Data shown are tepresentative of three experiments. B, Purified CD4 + T cells

from Rag2-

/- 

5C C7Tg ltk /- and Rng2-

/- 

5C C7Tg Itk +/- mice were stim-

ulated with CHO- (IE ) or CHO- /B7. 1 (IE + B7. 1) cells and the indi-

cated concentrations of MCC peptide. Cell proliferation was measured 72 h
after stimulation.

CD28 costimulation enhances gene expression in the absence of ltk

One function of CD28 costimulation is to enhance gene ex-
pression induced by TCRsignaling. Among the genes most dra-
matically affected by CD28 costimulation are those encoding
the cytokine, IL-2, the survival factor, Bel-xL, and the effector
molecule, CD40L (20 -23) . To assess whether CD28 costimu-
lation leading to enhanced gene expression is functional in the
absence ofItk, WT, and ltk - naive CD4 + T cells were stim-
ulated, and IL-2, Bel-xL , and CD40L mRNA levels were mea-

sured by real-time quantitative PCR. As shown in Fig. 3, each of
these genes exhibited enhanced mRNA levels following CD28
costimulation in both WT and ltk - J- T cells. Interestingly, the

activation-induced increases in IL-2, Bel-xL, and CD40L
mRNA were abolished completely following addition of the
PI3K inhibitor, LY294002 (Fig. 3). Taken together, these data
demonstrate the effectiveness ofCD28 costimulatory signals to

enhance gene expression in the absence ofItk.

CD28 costimulation activates NFKB in the absence ofItk

The transcription factor, NF-KB , is an important target of the
CD28 costimulatory pathway (24). To assess the ability of
CD28 costimulation to activate NF-KB in the absence of Irk,

we stimulated WT and Itr naive CD4+ T cells with anti-

CD3 Ab alone or in combination with anti-CD28 Ab. Mter 60
min , nuelear lysates were prepared from the cells, and levels of
activated NF-KB were examined by ELISA. As can be seen in
Fig. 4A, anti-CD3 Ab stimulation is not suffcient to induce
detectable NF-KB activation in either cell type, whereas anti-
CD3 plus anti-CD28 Ab stimulation induced significant levels
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FIGUR 3. CD28-mediated enhancement of gene expression functions ef-
ficiently in the absence of Irk Naive CD4 + T cells from WT and Itk /- mice

were stimulated for 6 h with Ab-coated beads as indicated, with or without the
PI3K inhibitor LY294002 at 10 fLM. Levels of IL- (A), BcI-xL (B), and
CD40L (C) mRNA were determined by real-time quantitative PCR. Data were
normalized to the expression of GAPDH mRNA in each sample and are rep-
resentative of three experiments. The nonstimulated (NS) samples are the same
data as shown in Fig. 

of activated NF-KB in both WT and Itk /- T cells. These data
confirm the ability of CD28 costimulatory signaling to func-
tion in the absence ofItk.

Ii.
i '

Stimulation ofCD28 alone induces phosphorylation of Akt and GSlG/3
in the absence of Itk

Although signaling through CD28 alone does not lead to func-
tional changes in T cells, several biochemical events can be de-
tected following CD28 stimulation. One such signaling path-
way is the activation of PI3K, leading to the phosphorylation
and activation of the serinelthreonine kinase, Akt, and the sub-
sequent phosphorylation ofGSK3f3 (25). To examine whether
these events occurred normally in the absence of Irk, naive
CD4 + T cells from WT and Itk /- mice were stimulated with

anti-CD28 Ab alone, and Akt and GSK3f3 phosphorylation
were detected with phospho-Akt- and phospho-GSK3f3-spe-
cificAbs. As shown in Fig. Akt and GSK3f3 were both phos-
phorylated comparably in WT and Itk /- CD4 + T cells. These
data demonstrate that the CD28-PI3K-Akt-GSK3f3 signaling
pathway is intact in the absence ofItk, indicating that Irk is not
essential for CD28 signaling.

Using purified naive CD4 + T cells and defined stimulation
conditions, we have examined in detail the requirement for Itk
in CD28 signaling and in CD28-mediated costimulation. Be-
cause Irk is required for optimal TCR signaling, it is diffcult to
ascertain whether CD28 costimulatory activity is equally etfec-
tive in the presence vs the absence ofItk. Nonetheless, our data
definitively demonstrate that CD28-mediated costimulation

il\
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00.
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Anli-CD28
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AKT

p85

GSK3

GSK3

FIGUR 4. Downstream responses to CD28 signaling are functional in na-
ive Itk-

/- 

T cells. Naive CD4+ T cells from WT and ltk-

/- 

mice were

stimulated for 1 h with Ab-coated beads as indicated. Activated NF-KB p65 in
nuclear lysates was measured by ELISA. Data shown are representative of three
experiments. Mock, cells stimulated with isorype-control Ab-coated beads. 
Naive CD4+ T cells from WT and ltk-/- mice were stimulated with plate-
bound anti-CD28 Ab for the indicated times. Akt phosphorylation (Ser473) and
GSK3j3 phosphorylation (Ser ) were detected in totallysates by immunoblot-
ting with phospho-specific Abs. Membranes were stipped and repro bed with
Abs to the p85 subunit ofPI3Kand GSK3j3 as loading controls. Data shown are
representative of three experiments.

functions effciently in the absence ofItk and, to a first approx-
imation, is as effective in Itk /- T cells as in WT T cells. This
conclusion is supported by our biochemical data showing that
two measurable outcomes triggered by CD28 stimulation
alone, namely the phosphorylation of Akt and GSK3f3, are
completely independent of Itk. Ir is possible that effcient
CD28 signaling in Itk -/- T cells is due to compensation by
another Tec-kinase family member , Rlk or Tec, also expressed
in T cells, although examination ofRik and Tec expression in
Itk /- T cells has not indicated any compensatory up-regula-
tion of these additional Tec kinases (Ref. 12 and data not
shown). Overall, these findings demonstrate that Irk is not es-
sential for CD28 signaling or function in naive CD4 + T cells.
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