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Abstract 

 

A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] 

in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx, elicits exocytosis.  

This dissertation examines the effect on both spontaneous and elicited exocytosis of 

a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to 

release from internal stores in the form of Ca2+ syntillas.  Ca2+ syntillas are focal 

cytosolic transients mediated by RYRs, which we first found in hypothalamic 

magnocellular neuronal terminals.  (Scintilla, Latin for spark, found in nerve 

terminals, normally synaptic structures.)  We have also observed Ca2+ syntillas in 

mouse adrenal chromaffin cells (ACCs).  Here the effect of Ca2+ syntillas on 

exocytosis is examined in ACCs, which are widely used as model cells for the study 

of neurosecretion.   

Elicited exocytosis employs two sources of Ca2+, one due to influx from the 

cell exterior through voltage-gated Ca2+ channels (VGCCs) and another due to 

release from intracellular stores.  To eliminate complications arising from Ca2+ 

influx, the first part of this dissertation examines spontaneous exocytosis where 

influx is not activated.  We report that decreasing syntillas leads to an increase in 

spontaneous exocytosis measured amperometrically.  Two independent lines of 

experimentation each lead to this conclusion.  In one case release from stores was 

blocked by ryanodine; in another, stores were partially emptied using thapsigargin 
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plus caffeine after which syntillas were decreased.  We conclude that Ca2+ syntillas 

act to inhibit spontaneous exocytosis, and we propose a simple model to account 

quantitatively for this action of syntillas. 

The second part of this dissertation examines the role of syntillas in elicited 

exocytosis whereby Ca2+ influx is activated by physiologically relevant levels of 

stimulation.  Catecholamine and neuropeptide release from ACCs into the 

circulation is controlled by the sympathetic division of the Autonomic Nervous 

System.  To ensure proper homeostasis tightly controlled exocytic mechanisms must 

exist both in resting conditions, where minimal output is desirable and under stress, 

where maximal, but not total release is necessary.  It is thought that sympathetic 

discharge accomplishes this task by regulating the frequency of Ca2+ influx through 

VGCCs, which serves as a direct trigger for exocytosis.  But our studies on 

spontaneous release in ACCs revealed the presence of Ca2+ syntillas, which had the 

opposite effect of inhibiting release.  Therefore, assuming Ca2+-induced Ca2+ release 

(CICR) via RYRs due to Ca2+ influx through VGCCs, we are confronted with a 

contradiction.  Sympathetic discharge should increase syntilla frequency and that in 

turn should decrease exocytosis, a paradox.  A simple “explanation” might be that 

the increase in syntillas would act as a brake to prevent an overly great exocytic 

release.  But upon investigation of this question a different finding emerged.  

We examined the role of syntillas under varying levels of physiologic 

stimulation in ACCs using simulated action potentials (sAPs) designed to mimic 
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native input at frequencies associated with stress, 15 Hz, and the basal sympathetic 

tone, 0.5 Hz.  Surprisingly, we found that sAPs delivered at 15 Hz or 0.5 Hz were 

able to completely abolish Ca2+ syntillas within a time frame of two minutes.  This 

was not expected.  Further, a single sAP is all that was necessary to initiate 

suppression of syntillas.  Syntillas remained inhibited after 0.5 Hz stimulation but 

were only temporarily suppressed (for 2 minutes) by 15 Hz stimulation, where 

global [Ca2+]i was raised to 1 – 2 µM.  Thus we propose that CICR, if present in 

these cells, is overridden by other processes.   Hence it appears that inhibition of 

syntillas by action potentials in ACCs is due to a new process which is the opposite 

of CICR.  This process needs to be investigated, and that will be one of the very next 

steps in the future.  Finally we conclude that syntilla suppression by action 

potentials is part of the mechanism for elicited exocytosis, resolving the paradox. 

In the last chapter speculation is discussed into the mechanisms by which 

physiologic input in the form of an action potential can inhibit Ca2+ syntillas and 

furthermore, how the Ca2+ syntilla can inhibit exocytic output. 
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Chapter 1 

A short introduction 

 

We already know a lot about the roles of calcium ions (Ca2+) in the regulation of 

exocytosis.  But that information focuses on Ca2+ influx from outside of the cell 

through Ca2+ channels into a distinct microdomain wherein lie docked, primed 

vesicles.  There, Ca2+ executes its most notorious role, serving as a final signal to 

trigger release.   But Ca2+ is also stored inside cells and neurons at high 

concentrations within organelles such as the endoplasmic reticulum.  

Interestingly, this Ca2+ can be released into separate microdomains distinct from 

those generated by influx (ZhuGe et al., 2006).  Nonetheless, there is little 

information to date about how this type of Ca2+ release affects the process of 

exocytosis and neurotransmission (Figure 1.1). 

This dissertation examines possible roles of internal Ca2+ stores in the 

process of exocytosis.  Some very surprising discoveries are uncovered when 

the focus is shifted away from Ca2+ in the extracellular saline to that stored within 

the cell.    Three background chapters follow, describing in relevant detail the 

model system employed in this work to study neurotransmission – the chromaffin 

cell, the process of exocytosis in these cells and Ca2+ signaling specifically as it 
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relates to this system.  In chapter five, a new and quite unexpected role for Ca2+ 

in exocytosis is presented in detail.  That is, Ca2+ syntillas, which are brief, focal 

cytosolic Ca2+ transients arising from internal stores, are shown to cause an 

inhibition of spontaneous exocytosis in mouse chromaffin cells!  

Following this discovery, work presented in chapter six shows that this 

inhibition of exocytosis is relieved by physiologically relevant levels of stimulation.  

Unexpectedly, when the cell receives input and fires an action potential, Ca2+ 

syntillas become inhibited within the time course of a few minutes.  These 

findings suggest that internal Ca2+ stores serve as an important mediator of the 

exocytotic output based on physiologic input.  Accordingly, this chapter presents 

evidence to support another entirely new idea that spontaneous release and not 

elicited release may account for basal levels of catecholamine output into the 

circulation during resting conditions in an organism.   

 In the final chapter seven, these findings are summarized and discussed 

in terms of their place in physiology and neurotransmission.  Speculation is also 

presented into the mechanisms by which Ca2+ syntillas could inhibit exocytosis 

and furthermore, how physiologic stimulation in the form of action potentials 

could inhibit syntillas.  After reading this dissertation you will find that internal 

Ca2+ stores are anything but insignificant in the process of exocytosis and, that 
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Ca2+ released from these stores, actually lies at the center of cell to cell 

communication in excitable cells and neurotransmission.  

 

Importance in physiology and neuroscience 

An inhibitory function of syntillas on spontaneous exocytosis has profound 

implications in neuroscience and general physiology.  Spontaneous exocytosis 

has specific functions in a range of neurons, including synapse stabilization and 

maintenance, regulation of post synaptic protein synthesis, and regulation of 

excitability in postsynaptic neurons.  Therefore syntillas could serve as an 

upstream regulator of these important functions.  Moreover, since this study was 

done in the chromaffin cell it directly implies that syntillas can serve as a potent 

regulator of catecholamine release into the circulation.   

Another significant implication of this work is that at basal levels of 

physiologic stimulation set by the sympathetic tone, known as the “rest and 

digest” state, the major driving force behind long term, low level output into the 

circulation may in fact be due to the suppression of syntillas. Therefore it may be 

that spontaneous release, and not the direct triggering of exocytosis by Ca2+ 

influx (i.e., elicited release), is the predominate form of exocytosis in adrenal 

chromaffin cells. 
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Disease relevance 

As a homeostatic regulatory mechanism that prevents mass output of 

catecholamines into the circulation, aberrations in the syntilla process could lead 

to severe pathologies.  For example,  high catecholamine levels in the circulation 

due to elevated sympathetic tone is thought to be an aetiological factor in a broad 

range of diseases, including various types of cancer, diabetes mellitus, open-

angle glaucoma, osteo- and rheumatoid arthritis and asthma (Fitzgerald, 2009). 

Ca2+ spontaneously released from internal stores in the form of syntillas is 

mediated through ryanodine receptors (RYRs), which have three isoforms 

(RYR1, 2, and 3).  RYR1 mutations are associated with malignant hyperthermia 

and central core disease (Benkusky et al., 2004).  RYR2 mutations in cardiac 

tissue play a role in stress-induced polymorphic ventricular tachycardia (a form of 

cardiac arrhythmia) and arrhythmogenic right ventricular dysplasia ARVD (Zucchi 

and Ronca-Testoni, 1997).  It has also been shown that levels of type RYR3 are 

greatly increased in PC12 cells over expressing mutant human Presenilin 1, and 

in brain tissue in knockin mice that express mutant Presenilin 1 at normal levels, 

and thus may play a role in the pathogenesis of neurodegenerative diseases, like 

Alzheimer's disease (Thibault et al., 2007; Zhang et al., 2009).  The presence of 

antibodies against ryanodine receptors in blood serum has also been associated 

with myasthenia gravis (Skeie et al., 2003). 
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Figure 1.1  What is the role of internal Ca2+ stores in exocytosis?  It is well known 

that Ca2+ influx through voltage-gated calcium channels (VGCC) into the microdomain 

where vesicles, in neurons and dense core granules, in adrenal chromaffin cells are 

docked and primed serves as a trigger for their exocytosis.  On the other hand, Ca2+ is 

also stored at high concentrations within cellular organelles.  Ca2+ can be released from 

these stores into a separate microdomain.  But much less is known about the role that 

this Ca2+ plays in the process of exocytosis.   
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Chapter 2 

The chromaffin cell: an ideal system for the study of 

neurotransmission 

 

The work presented in this dissertation is carried out in the mouse adrenal 

chromaffin cell (ACC).  ACCs are often used as models of neurons since they are 

quite unique in that they share the same properties of neurons and secretory 

cells (Winkler and Fischer-Colbrie, 1998; Garcia et al., 2006). 

At the time of this dissertation there is a sizeable knowledge base for the 

ACC.  Here I outline the most interesting features of these cells as they 

necessarily provide a foundation for the biological interpretations within this work.   

The interested reader can find a more in depth account of the developmental, 

morphologic and functional properties of ACCs cross-species in the very 

comprehensive review series on chromaffin cells published in Acta Physiologica 

2008, 192 (143-335). 

 

 



 

8 

 

Brief background 

ACCs were first described in useful detail at the turn of the 19th century, when 

Alfred Kohn discovered these cells were closely related to neurons in the 

sympathetic ganglia and showed that they have secretory properties (Kohn, 

1898, 1902, 1903).  The name “chromaffin” cell actually comes from Kohn’s 

observation that the cells reacted with chromium salts, imbuing them with a 

yellowish-brown staining pattern (the brown color is a product of the reaction 

whereby chromium salts oxidize and polymerize catecholamines stored inside 

granules within the cell) (Hingerty and O'Boyle, 1972).   In the 1960’s advances 

in microscopy technology and access provided morphologists a means to begin 

describing the developmental, structural, ultra-structural and functional 

characteristics of these cells (Coupland, 1965a, b; Coupland and Hopwood, 

1966; Coupland, 1989).  By the end of the 1960’s William Douglas had first 

postulated his theory of stimulus-secretion coupling based on data from perfused 

cat adrenals, which underscored the important role of Ca2+ ions as signals linking 

cellular excitation with the initiation of exocytic secretion (Douglas, 1968).  As 

tissue culture techniques were developed during the 1970’s, the earlier studies 

on the adrenal that were previously performed in situ or in vitro were extended as 

ACCs became amenable to molecular biology, fluorescence microscopy, 

biochemical and electrophysiological techniques.  In the early 1980’s through the 
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turn of the next century, powerful electrophysiological and electrochemical 

recording techniques for single cell recording of exocytosis emerged.  From the 

first reports on patch clamp capacitance (Neher and Marty, 1982), amperometry 

(Leszczyszyn et al., 1990) and patch amperometry (Albillos et al., 1997), the 

ACC has consistently proven to be the model of choice for the study of 

exocytosis.  To date, we have a detailed picture of the morphologic, molecular 

and functional features of these cells which is evermore evolving. 

 

Basic anatomy and physiology 

Chromaffin cells are largely found within the adrenal medulla where they 

comprise the majority of that tissue (Figure 2.1).  Ganglion and supporting 

sustentacular cells are also present in the medulla, but to a lesser extent.  While 

ACCs tend to be arranged in clusters and trabeculae, ganglion cells can be 

singly interspersed or clustered among the ACCs and are often found in 

association with nerve fibers.  The support cells surround the clusters of ACCs 

(O'Connor, 2003). 

 Some chromaffin cells are also located at what is called the organ of 

Zuckerkandl, at the inferior mesenteric artery where they form paraganglia about 

both sides of the aorta.  The majority of precursor chromaffin cells, however, 
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differentiate at the center of the adrenal gland in response to the glucocorticoid 

cortisol, and do not migrate to the organ of Zuckerkandl. 

 Within the ACCs are catecholamine-storing secretory vesicles called large 

dense core granules (LDCGs).  Catecholamines inside the LDCGs are released 

from ACCs and sympathetic nerve terminals through exocytosis.   In this 

process, other contents of these granules, including chromogranins, various 

peptides and enzymes can also be co-released into the circulation. 

 Neuronal reuptake provides the primary method by which catecholamines 

are removed from the synaptic cleft.  To a lesser extent, non-neuronal reuptake 

mediated by the family of organic cation transporters can also play a role in 

catecholamine clearance.  After reuptake, cytosolic catecholamines can be 

repackaged into granules via active transport or become deaminated and 

metabolized through O-methylation or oxidation.  The liver enzyme, alcohol 

dehydrogenase is necessary to undergo complete catecholamine degradation to 

vanillylmandelic acid (VMA).  Once released into the bloodstream, 

catecholamines have a brief half-life of about 1-2 minutes.  They are removed 

from the circulation primarily by neuronal reuptake, but they are also subject to 

renal excretion (O'Connor, 2003; Fung et al., 2008). 
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Neurogenesis of ACCs 

Chromaffin cells are born from the same multipotent embryonic stem cells in the 

trunk of the neural crest that give rise to sympathetic neurons (Figure 2.2).  

During development these stem cells migrate from the dorsal surface of the 

neural tube along specified pathways determined by specific guidance factors 

within their microenvironment (Le Douarin et al., 1994). 

In the developing adrenal gland, before the capsule is complete, 

neuroblasts and nerve fibers migrate from the neural crest and penetrate 

between the cortical cells (Crowder, 1957).  The invading neuroblasts originate 

cords of pheochromoblasts, in various stages of differentiation (Hervonen, 1971; 

Coupland, 1989), containing cortical cell islets.  The pheochromoblasts initially 

display a high proportion of nucleus to cytoplasm, marked polyribosomes and 

some LDCGs.  Pheochromoblasts and cortical cells, including those that are 

functionally active with catecholamines and neuropeptides, remain interrelated 

up to the fetal period (Wilburn and Jaffe, 1988). 

After postnatal degeneration of cells of the fetal cortex and during 

formation of the final cortex, the islands of neuroblasts settle against the central 

vein, and reach a compact, highly vascularized structure in the medulla of the 

adrenal gland.  At that time the reticular zone begins to develop, and cortical cells 
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begin to appear among chromaffin cell groups (Figure 2.3 A)  (Diaz-Flores et al., 

2008).   

 

Structural and functional characteristics  

In humans, ACCs in the medulla are located in a 2 mm thick region proximal to 

the adrenal cortical reticularis (Quinan and 1933, 1933), where they are in direct 

contact and surround small groups of cortical cells (Figure 2.3 A).  Since the two 

endocrine components are interwoven, with cortical cells located within the 

medulla and vice versa, the suggestion of paracrine interaction has been 

proposed (Bornstein et al., 1997). 

Interestingly, ACCs conserve plasticity and can be induced to express 

neuronal characteristics including neurite growth (Unsicker et al., 1978; Aloe and 

Levi-Montalcini, 1979; Doupe et al., 1985).  For example, it has been reported 

that striated astroglia can induce morphologic and neurochemical changes in 

adrenergic-enriched ACCs (Uceda et al., 1995). 

Within the medullary tissue, ACCs are constrained within clusters and 

short trabeculae between sustentacular cells.  The ACCs are directly apposed to 

each other, separated by a gap of 150–250 Å in width, where they present 

interdigitating processes with their neighboring cells in the tissue clusters.  The 
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medulla is highly innervated by preganglionic sympathetic fibers and small 

numbers of sympathetic ganglion cells are also interspersed within the tissue 

(Figure 2.3 B).  Microvillae are observed on the cell surface and extend into the 

extracellular space where several cells converge.  The surface area proximal to 

the capillary endothelium is separated from the capillary by a fibrillary, granular 

material and a basement membrane (Figure 2.3 B) (Diaz-Flores et al., 2008). 

In the medullary tissue ACCs are moderately large and exhibit a polygonal 

or columnar shape.  On the other hand, cultured or dissociated ACCs are 

spherical (see Figures 2.3 B and 2.2).   

The nucleus of the ACC can display marked variability.  For example, 

ACCs generally have a single nucleus, but the appearance of two or more is not 

so uncommon.  The nuclei can be round or ellipsoidal, large or small and, may 

contain up to three nucleoli.  While the nucleus is most frequently centrally 

located, eccentric location is also possible.  In a clear nuclear background, the 

chromatin tends to be arranged about the periphery and its pattern can be finely 

or coarsely clumped (Diaz-Flores et al., 2008). 

The cytoplasm, which tends to be finely granular, most notably contains 

the chromaffin granules which define the cell as well as the common cellular 

organelles.  These include a large Golgi apparatus, rough endoplasmic reticulum, 
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free ribosomes, round and oval mitochondria with parallel and narrow cristae, 

lysosomes, vacuoles, multivesicular bodies, microtubules, microfilaments, 

centrioles and occasionally cilia.  The Golgi is located proximal to the nucleus 

and sometimes forms an arch about it.  The other organelles are generally 

distributed about the chromaffin granules (Diaz-Flores et al., 2008). 

ACCs are generally thought to form two separate populations of 

adrenergic and noradrenergic cells, based on their capacity to synthesize, store 

and release either epinephrine or norepinephrine.  In the adrenal medulla of the 

adult rat, 15–20% of adrenal chromaffin cells exhibit the noradrenergic 

phenotype, while 80–85% are adrenergic (Coupland, 1989; Hodel, 2001).  The 

noradrenergic cells are often found in the center of the medulla, while adrenergic 

cells tend to reside in areas adjacent to the adrenal cortex (Coupland, 1989).  It 

is important to note that these observations whereby each chromaffin cell 

appears to contain a single type of granule come mostly from studies in rat and 

cow.   In mouse ACCs, two populations of differently sized LDCGs have been 

described within the same cell (Figure 2.4 A).  Whether these separate 

populations represent two distinct synthetic pathways or simply different stages 

of biosynthesis is unknown (Grabner et al., 2005).  However, in our own 

amperometric recordings from mouse chromaffin cells bathed in 100 µM 

ryanodine, an intense form of stimulation that promotes more complete release 
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from granules, we indeed observe heterogeneity in the quantal size (Q) 

distributed as Q1/3, where two or even three distributions best fit the data 

(Lefkowitz et al., 2008). 

 

Chromaffin granules and secretory products 

In ACCs secretory products are stored in large dense core granules (LDCGs) of 

the classical regulated secretory pathway (Burgess and Kelly, 1987) and are 

analogous to the LDCGs found in neurons.  Chromaffin cell LDCGs are known to 

contain a majority of the established neuropeptides, although often at low 

concentrations (Toth and Hinson, 1995).  In addition, LDCGs contain the 

catecholamines, epinephrine or norepinephrine, as well as serotonin and ATP 

(Winkler and Fischer-Colbrie, 1998; Chen et al., 2005).  Consequently, the 

catecholamines are oxidizable molecules and thus are amenable to 

electrochemical measurements, such as amperometry and voltammetry 

(Teschemacher, 2005).  Not only do the LDCGs of chromaffin cells contain 

similar molecules to the LDCGs of neurons, but they also share a similar 

morphology, biogenesis, life cycle and membrane composition (De Camilli and 

Jahn, 1990; Thomas-Reetz and De Camilli, 1994). 
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Depending on the type of secretory content (i.e., epinephrine or 

norepinephrine), LDCGs display variations in their size, shape and electron 

density.  These variations are strikingly marked in certain species, while in others 

the differences are subtle.  For example, in mice, rats, hamsters and dogs the 

differences are clearly distinct (Coupland, 1965a, b; Carmichael et al., 1987; 

Grabner et al., 2005), while in primates the differences are few (al-Lami, 1969; al-

Lami and Carmichael, 1991).  Epinephrine LDGCs vary by species and range 

between 50 and 350 nm in diameter (in mouse ACCs 170–350 nm).  They have 

a round morphology, present a moderate electron density with a fine granular 

content appearance, and tend to exhibit a narrow and uniform light halo (Figure 

2.4 B).  Alternatively norepinephrine LDGCs have a larger diameter (185–495 nm 

in mouse ACCs) and an irregular, oval or elliptical shape with higher electron 

density.  The core of norepinephrine LDGCs tends to be eccentrically located 

about its surrounding membrane (Figure 2.4 B) (Coupland, 1965a, b; Grabner et 

al., 2005). 

In addition to the catecholamines, LDCGs contain abundant amounts of 

granule matrix protein chromogranins, which are precursors to the neuropeptides 

catestatin and pancreastatin.  Amongst these are chromogranins A and B or 

secretogranin I, C or secretogranin II (Winkler and Fischer-Colbrie, 1992; 

Montero-Hadjadje et al., 2008).   LDCGs also contain neuropeptides and 
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enkephalins (Kataoka et al., 1985), adenine nucleotides, high concentrations of 

Ca2+ (Winkler and Westhead, 1980; Winkler and Carmichael, 1982; Winkler, 

1993), syntaxin 1A, synaptotagmin I (Yoo et al., 2005) and plasminogen activator 

(Parmer et al., 1997). 

ACCs also express adrenomedullin, a peptide of the proadrenomedullin N-

terminal 20 peptide (Kobayashi et al., 2003) and enzymes, such as dopamine β-

hydroxylase and tyrosine hydroxylase.  Epinephrine cells, but not norepinephrine 

cells, express phenylethanolamine-N methyltransferase, which catalyses the 

methylation reaction that converts norepinephrine into epinephrine.  This reaction 

takes place in the cytosol and therefore the epinephrine molecules are 

necessarily transported back into the LDCGs via a vesicular monoamine 

transporter (VMAT) pump.  This process is stimulated by glucocorticoids (Hodel, 

2001).   Additionally, ACCs secrete trophic factors that promote survival of 

various types of neurons (Schumm et al., 2004). 

ACCs also contain a population of microvesicles that is distinct from the 

population of LDCGs and are closely related to neuronal synaptic vesicles.  That 

is, these microvesicles are similar to synaptic vesicles in morphology, membrane 

composition, and like synaptic vesicles, they undergo exo/endocytotic recycling.  

In chromaffin cells these microvesicles take up and store acetylcholine but not 

catecholamines.  Conversely, it has been shown that catecholamines, but not 
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acetylcholine, is taken up and stored in two populations of mature LDCGs, that 

differ in their relative size (Bauerfeind et al., 1993). 

 

Physiologic effects of secretory products  

From a physiological viewpoint, one of the most important jobs carried out by 

ACCs is to synthesize and secrete epinephrine and norepinephrine.  Following 

release into the blood, these monoamines bind to alpha or beta adrenergic 

receptors on target cells of various organs, where they induce essentially the 

same effects as direct sympathetic nervous stimulation, though their release from 

ACCs leads to longer lasting and more widespread effects since they can cause 

effects in cells and tissues that are not directly innervated (Figure 2.5).  The 

adrenergic target receptors belong to the family of seven-pass transmembrane 

proteins known as G-protein coupled receptors (GPCRs) which stimulate or 

inhibit intracellular signaling pathways via second messengers such as cyclic 

adenosine monophosphate (cAMP) and Ca2+.  Thus, complex physiologic 

responses result from stimulation of the adrenal medulla based on the differential 

expression of multiple receptor types in different tissues and cells.  Some of the 

major effects mediated by catecholamine release include increased rate and 

force of contraction of heart muscle, constriction of blood vessels and therefore 
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increased arterial blood pressure, dilation of bronchioles, stimulation of lipolysis 

in fat cells, increased metabolic rate and glycolysis in skeletal muscle, dilation of 

the pupils and the inhibition of specific parasympathetic activities such as 

gastrointestinal secretion and motor activity (Guyton and Hall, 2000, 2006). 

 In addition to the catecholamines, ACCs release the neurologically active 

neuropeptides, which also help mediate widespread physiologic responses.  For 

example, the chromogranins, the major peptide cargo of the LDCGs, can be 

cleaved after exocytosis into the neuroactive catestatins to negatively modulate 

the neuroendocrine activity of the releasing ACC or nearby ACCs.   Furthermore, 

neuropeptide Y (NPY) can modulate vasoconstriction and the release of 

enkephalins from ACCs can serve as an endogenous opioid, acting as an 

analgesic to allow an organism to focus on escape or defense during the 

sympathetic stress response, “fight or flight” (O'Connor and Frigon, 1984; 

O'Connor, 2003). 

 

Regulation by the sympathetic nervous system and “tone”  

Secretion from ACCs is under control of the sympathetic autonomic nervous 

system.  Like the neurons of the sympathetic system, ACCs are also controlled 

by preganglionic acetylcholine-secreting nerves originating in the spinal cord.  
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While the sympathetic neurons, which have fine axons that extend into their 

target organs, exert localized control at their axon terminals, the secretion of 

hormones from ACCs elicits a widespread response (Figure 2.5).  Common 

stimuli for secretion include exercise, hypoglycemia, hemorrhage and emotional 

distress.    

A critical feature of the autonomic nervous system is that only a very low 

frequency of stimulation is necessary to maintain full activation of is targeted 

effectors.  For example, only one nerve impulse every other second is enough to 

maintain a normal, basal parasympathetic or sympathetic effect.  Moreover 

maximal activation is achieved by an impulse rate near 15 times per second.  By 

comparison, the skeletal nervous system requires a rate of 50 – 500 impulses 

per second to achieve maximal activation (Guyton and Hall, 2000). 

Under resting conditions, colloquially known as “rest and digest”, the 

parasympathetic and sympathetic nervous systems are continually active at 

basal rates.  These basal rates of activity are known as the tone.  The 

importance of tone is that it allows the nervous system to both increase and 

decrease the activity of an effector organ.  For example, the sympathetic tone 

normally keeps systemic arterioles constricted to half their maximal diameter.  By 

increasing the degree of sympathetic stimulation above normal (supertonic), 
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these vessels can be further constricted.  On the other hand, subtonic stimulation 

allows the arterioles to dilate (Guyton and Hall, 2000, 2006).   

While supertonic sympathetic stimulation through direct innervation of 

target organs can only increase organ activity by increasing norepinephrine 

output, supertonic stimulation through ACCs has a more complex effect.  That is, 

during higher rates of stimulation, ACCs also secrete neuropeptides in addition to 

increasing catecholamine output into the blood (Fulop et al., 2005). 
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Figure 2.1  Adrenal chromaffin cells (ACCs) reside within the adrenal 

medulla.  The adrenal glands are located just above the kidneys (Left) and are 

comprised of the inner medulla, where the ACCs reside, and an outer cortex 

surrounded by the capsule (Center).  An electron micrograph of a section from an 

isolated mouse ACC is shown at right, where the filled arrows depict Large 

Dense Core Granules (LDCGs) at the cell membrane and open arrowheads point 

to mitochondria. 

(Figure adapted from Carmichael, S.W. 1979-84. The Adrenal medulla. In Eden Press ; Agent, 

Montréal, Québec, Canada; Buffalo, N.Y. v. and Grabner et al., 2005)  
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Figure 2.2  Adrenal chromaffin cells and sympathetic neurons both derive 

from multipotent neural crest cells.  Sympathetic neurons and chromaffin cells 

originate from a pool of bipotential TH+ positive sympathoadrenal progenitors 

that are initially located in the primary sympathetic ganglia. These cells re-

migrate to the secondary sympathetic ganglia or the adrenal anlage, where they 

undergo final differentiation in response to the local environment. BMPs, bone 

morphogenetic proteins; FGF, fibroblast growth factor; GDNF, Glial cell line-

derived neurotrophic factor; NGF, nerve growth factor.  

(Figure modified after Ghzili, H.L. GrumolatoE. ThouennonY. TanguyV. TurquierH. VaudryY. 

Anouar. 2008. Role of PACAP in the physiology and pathology of the sympathoadrenal system. 

Front Neuroendocrinol. 29:128-141. and Huber, K. 2006. The sympathoadrenal cell lineage: 

specification, diversification, and new perspectives. Dev Biol. 298:335-343.) 
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Figure 2.3  Structural and functional characteristics of the adrenal gland 

and medulla.  A. (Top)  Three cortical zones and part of the medulla are 

depicted in a section of rabbit adrenal gland.  (Bottom)  The adrenal is a highly 

vascularized structure.  Blood empties from the cortical and medullary veins 

through a single large central vein, which leaves the adrenal either by the vena 

cava or renal vein.  B. (Left)  In the intact medulla, ACCs are columnar or 

ellipsoidal in shape and rather basophilic.  They present with a granular 

cytoplasm due to hormone-containing granules. They are typically arranged in 

clusters around medullary veins, as seen in this image of a rabbit adrenal (H&E 

stain).  (Right)  The adrenal medulla is abundantly innervated by preganglionic 

sympathetic fibers.  Small numbers of sympathetic ganglion cells are also 

commonly observed in the medulla.  Two ganglion cells are circled. 

(Courtesy of Richard A. Bowen, DVM, PhD, Colorado State University.) 
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Figure 2.4  Electron micrographs of large dense core granules (LDCGs) in 

mouse and rat adrenal chromaffin cells (ACCs).  A.  There appear to be two 

populations of different sized LDCGs centered at 187 and 330 nm in mouse 

ACCs.  Typically the larger LDCGs (open arrows) possess excess membrane 

giving a halo appearance around the granule's dense core, while the cores of 

smaller granules (filled arrow) appear to have a tightly associated membrane.  B.  

Epinephrine granules are round, present moderate density, and the light halo is 

narrow and uniform (Left, arrows), while norepinephrine granules can exhibit 

variable shape and generally have a larger diameter, higher electron density and 

their dense cores are eccentrically situated with regard to their surrounding 

membranes (Right, arrows). (EM at 14,000X). 

(Adapted from Grabner et al., 2005 (Top) and Diaz-Flores et al., 2008)  
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Figure 2.5  Regulation of ACC secretion by the sympathetic nervous 

system.  Catecholamine or peptide secretion from ACCs of the adrenal medulla 

is regulated by neural stimuli.  During moderate stimulation, associated with the 

basal sympathetic tone, only low levels of catecholamines are released into the 

blood.  During higher levels of stimulation associated with the stress response 

known as “fight or flight” more catecholamines and also peptides are released.  

Stress leads to secretion both in ACCs and sympathetic neurons.  Impulses 

arrive at both kinds of cells through preganglionic cholinergic neurons originating 

in the spinal cord.  Sympathetic neurons discharge norepinephrine (NE) locally, 

while ACCs secrete epinephrine (Epi), NE and peptides into the bloodstream, 

affecting multiple organs. 
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Chapter 3 

Exocytosis in the chromaffin cell: machinery and mechanisms 

 

Compared to neurons 

Not surprisingly, the release process in ACCs also shares basic principles 

with the release process in neurons.  Yet, important differences exist.  The most 

salient difference lies in the spatial organization of LDCGs and voltage-gated 

Ca2+ channels.  That is, chromaffin cells are characterized by a large distance 

between LDCGs and Ca2+ channels.  Accordingly, isolated ACCs lack active 

zones and experience only a limited degree of regionalized LDCG release, which 

may in part be related to the overall spherical shape of isolated chromaffin cells.  

Another difference is that the coupling of Ca2+ channels to the release process is 

less tight than in synapses.  The same high threshold Ca2+ channel subtypes 

described in neurons (Olivera et al., 1994) have also been identified and 

characterized in mouse ACCs, although the extent to which each type 

contributes to release varies (Cuchillo-Ibanez et al., 2002).  In addition, the 

coupling between individual action potentials (APs) and release events is usually 

loose.  In spite of this loose coupling, however, the presence of multiple channel 

types and vesicle pools that are released with different delays, in concert with 
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adaptations in firing properties of these cells, give rise to a system that can be 

finely modulated, and seem to ensure a reliable coupling between AP, Ca2+ influx 

and release (Moser and Neher, 1997b, a; Winkler and Fischer-Colbrie, 1998). 

 

Granule pools and mobilization 

The average bovine ACC contains between 17,000 - 22,000 LDCGs 

(Vitale et al., 1995; Plattner et al., 1997).  Different LDCG pools have been 

defined by the readiness of granules within that pool to be released depending 

on kinetic, morphologic, and regulatory properties (Garcia et al., 2006) (Figure 

3.1).  The majority of granules are found in a distinct cellular compartment called 

the reserve pool, where they may remain for an extended period of time after 

their formation.   From the reserve pool, LDCGs are mobilized into another 

distinct compartment called the readily releasable pool, whereby granules can be 

mobilized for release within a time frame of seconds.  As Figure 3.1 depicts, an 

intermediate pool, the slowly releasable pool, has also been described where 

granules reside in a docked but unprimed state (Steyer et al., 1997; Trifaro et al., 

1997; Voets et al., 1999).    It has been estimated that about 1–3% of LDCGs 

comprise the readily releasable pool (Plattner et al., 1997).  
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LDCG density is decreased as the granules approach the cell membrane 

(Plattner et al., 1997) and this traffic is highly regulated by the remodeling of the 

subplasmalemmal filamentous actin (F-actin) cytoskeleton (Aunis and Bader, 

1988; Vitale et al., 1995; Gasman et al., 2003).  Upon stimulation, the 

subplasmalemmal F-actin network undergoes rapid disassembly in a reversible 

manner (Cheek and Burgoyne, 1986; Burgoyne et al., 1993). 

LDCGs situated within the releasable pool are docked at the plasma 

membrane and may be in a primed (readily releasable pool) or unprimed stage 

(unprimed pool).  That is, the granules are either fully fusion competent or may 

require more priming steps to enter that stage.  The final priming steps have 

been shown to require ATP.  Of the 22,000 LDCGs in a bovine ACC, the number 

of docked LDCGs is estimated between 364 and 629 (Plattner et al., 1997).  

Furthermore, the reserve pool and the readily releasable pool can be selectively 

mobilized depending upon differential levels of secretion and the required 

secretagogue (Duncan et al., 2003; Fulop et al., 2005; Haynes et al., 2007; 

Doreian et al., 2009).  
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Stages in the exocytosis of LDCGs 

After LDCGs are recruited to the plasma membrane, they go through several 

stages before their exocytic release (Figure 3.2).  In the first stage, LDCGs 

undergo docking, where they are linked and tethered to the plasma membrane.  

This is followed by a priming step, where attachment to the final release site is 

advanced and the granule becomes competent for exocytosis.  The contents of 

the LDCGs are ultimately released into the extracellular space when a sufficient 

rise in Ca2+ within the vicinity of the granules serves as the final trigger for 

exocytosis, whereby the LDCG and the plasma membrane fuse with each other.  

After exocytosis, fused LDCGs can be retrieved through endocytosis and thereby 

undergo another round of secretion (Sudhof, 1995). 

 

Machinery and mechanisms by exocytotic stage 

Docking:   Electron micrographs of mouse embryonic ACCs reveal that about 

30% of LDCGs localize to within 50 nm of the plasma membrane.  LDCGs 

located within this distance of the membrane are anatomically regarded as being 

in a docked state.  

Of the major molecules identified to be involved in exocytosis, Munc18-1 

and the syntaxins play a crucial role in docking.  In ACCs from Munc18-1 
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knockout mice, the fact that less than 5% of LDCGs are able to dock at the 

plasma membrane strongly suggests that Munc18-1 is the critical molecule in this 

process (Voets et al., 2001b; Gulyas-Kovacs et al., 2007).  Since Munc18-1 is a 

soluble protein, it is thought that it regulates docking of LDCGs by binding to the 

membrane proteins on the granules or the plasma membrane or both. 

The syntaxins, which are able to interact with munc18-1 (Hata et al., 1993; 

Pevsner et al., 1994), are also critical for docking.  There are many isoforms of 

syntaxin and at least five isoforms (syntaxin1A, 1B, 2, 3 and 4) are localized at 

the plasma membrane.  Due to possible functional redundancy among the 

isoforms, examination of the precise role for syntaxin in docking has been 

difficult.  Nonetheless recent evidence has emerged that support a critical role for 

plasma membrane syntaxins in docking.  First, the expression level of syntaxin1 

is reduced by about half in Munc18-1-deficient neurons and ACCs (Voets et al., 

2001b; Gulyas-Kovacs et al., 2007).  And second, viral infection of ACCs with 

botulinum neurotoxin C1, which cleaves syntaxin1A, 1B, 2 and 3, is shown to 

significantly reduce docking of LDCGs (deWit et al., 2006). 

  Other members of the soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE) proteins, including SNAP-25 and 

synaptobrevin, do not seem to be involved in the docking of LDCGs.  Although 

secretion is strongly suppressed in SNAP-25 deficient ACCs, the docking of the 
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LDCGs is not affected (Sorensen et al., 2003b).  A study involving the double 

knockout of synaptobrevin2 and cellubrevin, a ubiquitous isoform of 

synaptobrevin, yields similar results (Borisovska et al., 2005).  Therefore, it is the 

interaction of Munc18-1 and syntaxin and, not the SNARE protein complex that is 

crucial in docking (Gulyas-Kovacs et al., 2007). 

 

Priming: Once the LDCGs are docked, they must be primed to undergo fast 

Ca2+-triggered fusion with the plasma membrane.  The priming process involves 

both ATP-dependent and -independent steps.  In ACCs it has been shown that 

ATP is a necessary component prior to the final exocytic Ca2+ trigger (Holz et al., 

1989; Xu et al., 1998).  Three cytosolic proteins have been identified to assume a 

prominent role in the ATP-dependent priming steps of Ca2+-triggered exocytosis.  

These proteins include phosphatidylinositol transfer protein (PITP) (Hay and 

Martin, 1993), type I phosphatidylinositol 4-phosphate-5-kinase (PIP5KI) (Hay et 

al., 1995) and NSF (Malhotra et al., 1988).   

 The recruitment of phosphoinositide by PITP followed by the 

phosphorylation of phosphoinositide by PIP5KI is thought to constitute a major 

component of ATP-dependent priming.  This is based on the fact that PITP and 

PIP5KI are found to be essential for priming to occur in PC12 cells, derivatives of 

ACCs (Hay and Martin, 1993; Hay et al., 1995). Essentially, PIP5KI requires ATP 



 

40 

 

to phosphorylate phosphatidylinositol 4-phosphate (PIP) and generate 

phosphatidylinositol 4,5-bisphosphate (PIP2).  PIP2 then binds to synaptotagmin 

(Syt) and the Ca2+-dependent activator protein for secretion 1 (CAPS1), two 

major proteins implicated in the final steps of Ca2+-triggered exocytosis.  In 

support of this view, the level of PIP2 has been shown to control the size of the 

releasable granule pool in ACCs (Milosevic et al., 2005).  The α- and γ- isoforms 

of PIP5KI can prime LDCG secretion (Wang et al., 2005), while LDCG secretion 

is partially reduced in PIP5KIγ knockout mice (Gong et al., 2005).  Therefore, the 

generation and regulation of PIP2 by the PITP and PIP5KI proteins seem to be 

crucial events in ATP-dependent priming. 

The ATPase protein, N-ethylmaleimide-sensitive factor (NSF), is also 

known to serve a crucial role in ATP-dependent priming (Malhotra et al., 1988).  

This is supported by studies in PC12 cells where NSF increases granule priming 

leading to secretion (Banerjee et al., 1996a) and where the endogenous t-

SNARE proteins, syntaxin 1 and SNAP-25 are found to be highly reactive, readily 

forming SNARE complexes with exogenously added v-SNAREs, due to high 

levels of NSF activity (Lang et al., 2002).  Basically, once SNARE proteins have 

participated in a round of exocytosis they are left in a residual stable complex 

within the plasma membrane.  In this conformation known as the cis-complex, 

SNARE proteins are tethered together on the same membrane and are 
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considered inactive for exocytosis.  NSF importantly disassembles this complex 

into the trans-complex whereby the SNARE proteins are no longer on the same 

membrane so that another round of exocytosis can proceed.  That is, NSF binds 

to SNAP proteins in the cis-SNARE complex in an ATP-dependent manner.  

Once bound, NSF then hydrolyzes ATP to pry the SNARE complex apart.  Since 

the trans-complex is resistant to NSF-mediated disruption (Weber et al., 2000), 

NSF is thought to promote the active form of the SNARE complex. 

At least two protein groups, the Munc13 proteins and CAPS1, are thought 

to serve a crucial role in ATP-independent priming.  In neurons, Munc13-1, -2 

and -3 are considered to be the major players in this type of priming (Augustin et 

al., 1999; Varoqueaux et al., 2002).  The priming function of Munc13-1 is thought 

to proceed through a syntaxin1 binding interaction that displaces Munc18-1 and 

renders the t-SNARE protein into an open conformation whereby it can form a 

SNARE complex (Dulubova et al., 1999; Sassa et al., 1999).  The C-terminal 

residues of Munc13-1 and Munc18-1 are thought to compete for binding to an 

overlapping domain on syntaxin1 (Betz et al., 1997).  In ACCs, though, the 

expression level of Munc13-1 is low, and Munc13-1 knockout mice show no 

signs of secretion defects (Stevens et al., 2005).  Even so, over expressing 

Munc13-1 in ACCs leads to an increase in LDCG secretion (Ashery et al., 2000; 
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Stevens et al., 2005).  Furthermore, Munc13-1 point mutants that do not bind 

syntaxin1 also do not prime LDCG exocytosis (Stevens et al., 2005). 

While it is established that Munc13-1 is critical for priming, the current 

view of its specific function, to displace Munc18-1 from syntaxin1 by 

competitively binding to syntaxin1, has recently become questionable.  In 

neurons, for example, a smaller domain (residues 1045–1531) within the domain 

(residues 1100–1735) for LDCG priming in ACCs (Stevens et al., 2005) has been 

uncovered that does not contain a syntaxin1 binding site (Basu et al., 2005).  So 

the binding of Munc13-1 to syntaxin1 may exclusively contribute to priming in 

ACCs.  Furthermore, Munc18-1 not only can bind to syntaxin1, but it can also 

bind to the entire SNARE complex (Dulubova et al., 1999; Zilly et al., 2006).  

Munc18-1 also facilitates SNARE-mediated lipid fusion reactions in vitro (Shen et 

al., 2007).  For LDCG exocytosis in ACCs Munc 18-1 also serves an additional 

role in priming beyond that of docking (Gulyas-Kovacs et al., 2007).  These 

studies suggest that Munc13-1 and Munc18-1 may not compete for binding to 

syntaxin1, but could instead act together on the SNARE complex to promote 

priming. 

Ca2+-dependent activator protein for secretion 1 (CAPS1), a cytosolic 

protein which contains a Munc13 homology domain, is also involved in priming 

(Fujita et al., 2007; Sugita, 2008).  At least in PC12 cells, the protein acts at a 
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rate-limiting, Ca2+-dependent priming step.  Specifically, CAPS1 contains a 

Pleckstrin homology (PH) domain that binds to PIP2 in a Ca2+-based manner. 

This interaction with PIP2 seems to regulate the number of LDCGs that undergo 

exocytosis (Grishanin et al., 2002; Grishanin et al., 2004).  

In mouse ACCs, however, the priming function of CAPS1 is not so clear.  

This is because CAPS1-deficient embryonic ACCs suggest that CAPS1 may play 

a different role in loading catecholamines into LDCGs without necessarily having 

a role in the actual exocytosis (Speidel et al., 2005), since that study found no 

defects in LDCG exocytosis.  But embryonic ACCs also express CAPS2, a close 

isoform of CAPS1, which raises the possibility of a functional redundancy.  Since 

CAPS1 knockout mice die immediately after birth it is difficult to analyze the 

function of this protein in the Adult ACC, where CAPS2 is no longer expressed 

(Speidel et al., 2003).  A CAPS1 knockdown line of PC12 cells, which also do not 

express CAPS2, has recently been employed to circumvent this issue (Fujita et 

al., 2007).  That study finds CAPS1 to be critical in the priming and refilling of the 

releasable pool of LDCGs, but not for granule loading.  These conclusions are 

based on capacitance recordings that showed reductions in the fast and the slow 

burst components as well as in the sustained release component when CAPS1 is 

knocked down.  Therefore CAPS1 not only plays a critical role in Ca2+-
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dependent, regulated exocytosis but also in constitutive exocytosis downstream 

of granule docking (Fujita et al., 2007). 

 

Triggering: After LDCGs are docked and primed, they are triggered to fuse with 

the plasma membrane.  The trigger is well known to be Ca2+ influx into the same 

microdomain of the LDCGs through Ca2+ channels during membrane 

depolarization.   This implies the presence of a Ca2+ sensor at the exocytic site.  

That sensor has been thought for some time to be synaptotagmin (Syt), a 

membrane protein associated with LDCGs and synaptic vesicles (Perin et al., 

1990). 

There is compelling evidence for this idea.  In neurons, Syt1-knockout 

mice show a marked decrease in Ca2+-dependent neurotransmitter release from 

synaptic vesicles (Geppert et al., 1994; Fernandez-Chacon et al., 2001) and in 

ACCs from these mice, LDCG secretion is also partially reduced (Voets et al., 

2001a).  Exocytosis in ACCs can be broken down into three components: a fast 

burst component, a slow burst component and a refilling or sustained component 

which are representative of the RRP, SRP and the UPP, respectively (Figure 3.1) 

(Neher and Sakaba, 2008). Since Syt1-deficient ACCs show a selective 

reduction in the fast bursting component of Ca2+-dependent exocytosis it is most 
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likely that Syt1 serves as the Ca2+-sensor (Voets et al., 2001a; Sorensen et al., 

2003a). 

The mechanism Syt1 employs to trigger exocytosis is still unknown.  The 

fact that there are at least 14 isoforms of Syt1 makes this particularly hard to 

investigate (Sudhof, 2002).  For example, at least in PC12 cells, Syt1 and Syt9 

may function as redundant Ca2+ sensors (Lynch and Martin, 2007).  On the other 

hand, a clue comes from the fact that Syt1 and its targets must interact within a 

range of Ca2+ concentrations optimal for triggering exocytosis.  In ACCs, this 

range is 1-10 µM (Neher and Sakaba, 2008).  Furthermore, Syt contains two 

Ca2+-binding C2 domains that bind to phospholipids, including PIP2, in a Ca2+-

dependent manner (Brose et al., 1992; Sutton et al., 1995; Arac et al., 2006).  

Accordingly, the major targets of Syt appear to be phospholipids.  This is 

supported by the fact that C2 domains inhibit Ca2+-triggered exocytosis when 

introduced into permeabilized PC12 cells.  Moreover, the ability of the C2 

domains to inhibit secretion correlates with their ability to bind phospholipids 

(Sugita et al., 2002; Sugita, 2008).   

Syt can also interact with syntaxin1 (Bennett et al., 1992; Shao et al., 

1997) and SNAP-25 (Zhang et al., 2002) in a Ca2+-dependent manner.  In PC12 

cells Syt1 specifically binds to the C-terminal residues of SNAP-25 and LDCG 

secretion is decreased if those residues are mutated. 
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GTP can also serve as a trigger for exocytosis in a Ca2+-independent 

manner in ACCs (Bittner et al., 1986; Ahnert-Hilger et al., 1992; Burgoyne and 

Handel, 1994).  In fact, GTP triggers exocytosis without increasing intracellular 

Ca2+ in a range of other secretory cells including PC12 cells (Klenchin et al., 

1998), pancreatic beta cells (Regazzi et al., 1989) and mast cells (Gomperts, 

1983; Fernandez et al., 1984).  In PC12 cells, this GTP-triggered form of 

exocytosis does not require cytosolic proteins, ATP or Ca2+ (Klenchin et al., 

1998).  Furthermore, since the clostridial neurotoxins can block both GTP-

triggered (Banerjee et al., 1996b; Glenn and Burgoyne, 1996; Wang et al., 2004) 

and Ca2+-triggered exocytosis, the only difference between the two forms may be 

the signal sensor that triggers exocytosis in each case. 

The major GTP sensors in this type of secretion are currently thought to 

be the RalA and RalB GTPases (Wang et al., 2004; Li et al., 2007).  These 

proteins interact with an octameric protein complex termed the exocyst complex, 

which contains Sec5 (Hsu et al., 1996).  Ral physically binds to Sec5 in a GTP-

based manner (Moskalenko et al., 2002; Sugihara et al., 2002).  Unfortunately, 

just as the Ca2+-dependent mechanism by which Syt1 triggers exocytosis is 

unknown, the mechanism by which the GTP-dependent interaction between Ral 

and the exocyst complex are employed to trigger exocytosis also remain a 

mystery. 
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Fusion: The fusion step in exocytosis requires that the LDCG come into 

contact with the plasma membrane, allowing lipids to flow from one bilayer to the 

other.  To accomplish this, the energetically highly unfavorable process of 

displacing water from between the two hydrophilic bilayers must be overcome.  

The SNARE proteins are thought to catalyze this final fusion step (Jahn and 

Scheller, 2006).  

The SNARE complex essentially consists of four SNARE motifs; one from 

syntaxin1, two from SNAP-25 and one from synaptobrevin2.  These motifs are 

aligned in parallel with their transmembrane domains next to each other (Sutton 

et al., 1995). The current view is that the zippering of the SNARE motifs from 

their N-terminus to their C-terminal membrane domains act like a winch using 

energy freed when the interacting helices wrap around each other to pull the two 

bilayers together (See Figure 3.2, Fusion).      

Many studies have tested this idea in the ACC.  Basically, any mutations 

designed to impair the zippering of SNAREs lead to a decrease in exocytosis in 

these cells (Sugita 2008).  Furthermore, studies where the C-terminus of SNAP-

25 is mutated reveal a decrease in the fast burst phase of exocytosis.  This 

suggests that the C-terminal region of the SNARE complex is strongly coupled to 

exocytosis triggering.  On the other hand, the N-terminal region probably is not, 
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since mutations in the N-terminus do not significantly affect exocytosis 

(Borisovska et al., 2005; Sorensen et al., 2006). 

 

Fusion pores & mode 

ACCs secrete their transmitter molecules when LDCGs fuse with the cell 

membrane, and form what is termed a fusion pore, which connects the granule 

lumen with the cell exterior.  Once formed, the fusion pore either closes, allowing 

the granule to be reused (kiss-and-run or transient exocytosis) (Ceccarelli et al., 

1973), or it fully expands whereby the granule membrane merges with the 

plasma membrane (full fusion exocytosis) (Heuser and Reese, 1973).  The fusion 

pore can also fluctuate between an open and a closed state within the 

millisecond timeframe (flickering) before fully fusing (Fernandez et al., 1984).  

Thus, fusion pore behavior can lead to two separate modes of exocytosis based 

on whether the dense-core of the granule is completely or incompletely released. 

The exocytic mode is thought to be heavily influenced by sympathetic 

activity  (Takiyyuddin et al., 1990; Watkinson et al., 1990).  This means that the 

various constituents within the granule can be retained in a selective manner.  

For example, intense stimuli results in full fusion and complete release of granule 

contents (Viveros et al., 1971), where catecholamines and neuropeptides within 



 

49 

 

the same LDCG (Winkler and Westhead, 1980) are released at the same time.  

Conversely, more modest levels of stimulation lead to the kiss-and-run mode.  

This mode is characterized by a more rapid and transient release of 

catecholamines through a restricted fusion pore (~4 nm in diameter) (Klyachko 

and Jackson, 2002).  In this case the granules remain intact after exocytosis, and 

the larger neuropeptide cargos within the granule are retained (Fulop et al., 

2005).  Thus, LDCG exocytosis seems to employ a size exclusion mechanism to 

differentially release catecholamines and neuropeptides that are co-packaged in 

the same granule (Takiyyuddin et al., 1990; Watkinson et al., 1990; Takiyyuddin 

et al., 1994).  In addition to fusion pore size, pore duration can also importantly 

affect the amount of transmitter released during the exocytic response.  In sum, 

the ACC can selectively release its secretory molecules by complete or 

incomplete exocytosis by dilating with full fusion, or by closing with transient 

fusion.  In transient fusion, the amount of transmitter released can be further 

modulated by controlling the open time of the pore (An and Zenisek, 2004) (Zhou 

et al., 1996; Albillos et al., 1997; Ales et al., 1999). 
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Analyzing exocytosis with amperometry 

Much of what we know about exocytic modes of fusion in ACCs derives 

from studies using carbon fiber amperometry (Figure 3.3).  This technique 

produces a current trace at high temporal resolution (< 1 ms) and sensitivity (< 

1,000 molecules), whereby spikes in the current represent the molecules 

released from single granules.  While the area under the spike is proportional to 

the amount of transmitter, the spike shape provides kinetic information about 

each step of release, from formation of the fusion pore, to pore expansion, 

through diffusion of the vesicular contents.  In contrast to the quantal responses 

in postsynaptic cells, which typically vary only in frequency, amperometric 

presynaptic recordings have revealed that individual events can vary in size and 

shape (Evanko, 2005; Mosharov and Sulzer, 2005). 

These variations are thought to depend on the opening and closing of the 

fusion pore (Fisher et al., 2001).  Upon the initial formation of the fusion pore, a 

small amount of transmitter diffuses out as the pore slowly expands and 

produces what is known as a prespike foot signal on the current trace (Figure 

3.3).  Dependent upon fusion pore modulation, the initial pore can either rapidly 

expand or become unstable and close.  Rapid pore expansion produces a quick 

spike in the trace immediately following the prespike foot.  This type of 

amperometric signal is difficult to interpret in terms of exocytic mode, since an 
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expanding fusion pore that collapses into the cell membrane (full fusion) could 

produce the same spike signal as a fusion pore that first dilates, and then rapidly 

closes (kiss-and-run) (Figure 3.3).  Furthermore, sometimes the fusion pore 

forms and expands so quickly that just a spike shows up in the record with no 

prespike foot, another situation where it is difficult to discern the mode.  On the 

other hand, when the fusion pore closes without dilating, only the prespike foot is 

left on the current trace.  These stand-alone-foot (SAF) events are much easier 

to interpret, as they are taken to exclusively represent the kiss-and-run mode.  In 

one other type of event, the fusion pore fluctuates between an open and a closed 

state (flickering) before closing or dilating, which can show up on the 

amperometric record as a longer duration bumpy SAF or a bumpy prespike foot 

(Chow et al., 1992; Wang et al., 2001; Wang et al., 2003). 

 

Endocytosis of LDCGs  

After exocytosis, the LDCG membrane and its components can be recovered 

from the cell membrane by a process called endocytosis.  In ACCs there are two 

basic mechanisms of endocytosis which largely depend on the mode of 

exocytosis.  That is, incomplete or kiss-and-run exocytosis results in an endocytic 

process distinct from that by which granule membrane retrieval is accomplished 

after complete or full fusion exocytosis.   
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 In kiss-and-run style exocytosis, where the dense core is retained by the 

granule, the endocytic mechanism is a clathrin-independent reversal of the fusion 

process that depends on the activation of protein kinase C (PKC) (Chan and 

Smith, 2003).  In this case, the fusion pore opens only enough to allow small 

transmitter release and then rapidly closes, maintaining an intact granule (Barg et 

al., 2002).  This form of rapid endocytosis, compensatory endocytosis, is 

energetically efficient since it allows granule components to remain in position 

together on the same granule, therefore making the granule instantly available 

for catecholamine reloading (Henkel and Almers, 1996; Engisch and Nowycky, 

1998; Holroyd et al., 2002; Taraska et al., 2003; Taraska and Almers, 2004).  In 

ACCs there is a significant fraction of LDCGs, corresponding to those proteins 

whose elimination is slower, which undergo rapid compensatory endocytosis 

(Perrais et al., 2004).  This rapid endocytosis (msec – sec), is triggered by Ca2+  

(Neher and Zucker, 1993; Artalejo et al., 1995), and the recapture of fusing 

secretory granules involves the protein dynamin-1.  Another form of rapid 

endocytosis, excess endocytosis, can occur in ACCs whereby membrane 

retrieval exceeds the amount of exocytosis. This process is mediated by GTP 

and calmodulin (Artalejo et al., 1995; Artalejo et al., 1996). 

Full fusion exocytosis, on the other hand, results in a slower form of 

endocytosis. Once the LDCG has fused with the cell membrane and all its 
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contents are completely released, the retrieval of granule membrane and its 

components are accomplished by a Ca2+-independent, clathrin-mediated 

mechanism (Geisow et al., 1985).  In this process granule membrane is 

selectively retrieved from the cell surface according to its membrane 

components.  Specific granule proteins, such as synaptotagmin, are marked by 

accessory proteins which recruit a clathrin coat to that membrane area to reform 

a granule.  The clathrin-coated granule is then severed by the protein dynamin-2, 

which is thought to form a ring around the neck of the endocytosing granule.  The 

granule is next internalized by the endosome and transported by to the trans-

Golgi network for repacking.  In the ACC this process occurs in a timeframe of 

about 30 minutes.  By 6 hours LDCG membrane components reappear in new 

granules (Lingg et al., 1983; Patzak and Winkler, 1986; Fulop et al., 2005).  
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Figure 3.1  Different LDCG pools in chromaffin cells exist according to their 

readiness to participate in exocytosis.  The readily releasable pool (RRP), 

contains granules that are in the final stage of maturation, just before fusion is 

triggered by the last Ca2+-dependent step.  The RRP is depleted with relatively 

short delay (100 ms). The slowly releasable pool (SRP), contains granules that 

are associated with the cell membrane as a result of the formation of the SNARE 

complex and is depleted within a few seconds.  Its delay may be explained by 

additional priming steps required by granules to become release competent and 

enter the RRP.  Another pool, the unprimed pool (UPP) has also been described 

wherein granules are docked but unprimed.  The reserve pool (RP) contains 

granules that are recruited from the cytoskeleton to become docked. 

(Adapted from Garcia et al., 2006) 
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Figure 3.2  Exocytosis of large dense core granules  (LDCGs) in chromaffin 

cells.  Once LDCGs are recruited to the cell membrane, they must proceed 

through docking and priming steps before they receive the trigger signal to fuse 

with the plasma membrane.  The proteins involved at each step are shown for 

each stage of exocytosis.  See text for details.  
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Figure 3.3  Amperometry reveals kinetic details of individual exocytotic 

events.  See text for details. 

(Figure adapted from Evanko, 2005)  
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Chapter 4 

Calcium and the chromaffin cell: sources, signals and syntillas 

 

The Ca2+ ion serves a crucial role in cell to cell communication within neural 

networks and excitable cells.  In the chromaffin cell, Ca2+ is most prominently 

responsible for connecting the electrical input into a cell, the action potential, to 

the chemical output from the cell, exocytosis.  But Ca2+ is a potent second 

messenger with a large array of targets attributed to this divalent cation and its 

ability to activate numerous cell functions could become problematic if not tightly 

controlled.  Thus, intricate regulatory mechanisms abound to ensure that the 

Ca2+ ion is able to provide a reliable coupling signal within this electrochemical 

input-output system and therefore high fidelity communication.  Accordingly, 

these regulatory mechanisms tend to center around controlling the amount of 

Ca2+ within a specific space, or microdomain, within the cell at the precise time. 
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Cytosolic [Ca
2+

] in ACCs 

Fluctuations of intracellular free [Ca2+] must be highly coordinated in space and 

time within the ACC to regulate exocytosis and other processes.     Therefore 

under basal conditions, the ACC importantly maintains a free [Ca2+]cyto around 

130 nM, about 10,000-fold lower than the extracellular [Ca2+] (Xu et al., 1997).  

To do this, the ACC employs specific membrane proteins, such as Na+/Ca2+ 

exchangers and Ca2+ ATPase pumps located on the cell membrane or the 

membranes of internal compartments within the cell such as the ER, 

mitochondria, or LDCGs (Zhou and Neher, 1993; Xu et al., 1997).  Pumps alone, 

however, are not sufficient to maintain the low resting levels of free [Ca2+]cyto. The 

ACC additionally contains a multitude of Ca2+ buffering proteins.  In fact, the total 

cytosolic [Ca2+] is in the super-micromolar range, but the majority of this Ca2+ is 

bound to high-affinity Ca2+ binding proteins such as calmodulin (Zhou and Neher, 

1993). 

These endogenous Ca2+ buffers result in very fine control over [Ca2+]cyto, 

creating micro- or even nano-domains whereby Ca2+ rises only in a distinct space 

within the cell proximal to a Ca2+ source, before it is quickly buffered (Neher, 

1998a) (Figure 4.1).  For example, Ca2+ influx through voltage-gated Ca2+ 

channels (VGCCs) has been shown to result in discrete rises in [Ca2+] within a 

micrometer of these channels (Simon and Llinas, 1985).  In bovine ACCs, it has 
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been calculated that during stimulation the majority of LDGCs are exposed to a 

[Ca2+] which rises monotonically to a peak of < 10 µM and decays over tens of 

milliseconds, due to their non co-localization with Ca2+ channels on a molecular 

scale (Chow et al., 1994).  That is, 90% of LDCGs have been estimated to reside 

approximately 200 – 300 nm from the nearest Ca2+ channel (Klingauf and Neher, 

1997).   Rises in [Ca2+] within a smaller domain (in the range of nanometers) is 

also possible, say in the case of influx through a single channel (Augustine et al., 

2003).  For example, in bovine ACCs it is estimated that about 10 % of LDCGs 

reside within 30 nm from the nearest Ca2+ channel and can experience peak 

[Ca2+] of ~ 100 µM (Klingauf and Neher, 1997). 

 

Cytosolic Ca2+ Sources in ACCs 

Ca2+ can enter the cytosol from two sources, the extracellular fluid and the 

various intracellular storage compartments.   While Ca2+ influx is mostly mediated 

by voltage-dependent Ca2+ channels embedded in the cell membrane, release of 

Ca2+ from internal stores into the cytosol is largely mediated through IP3 and 

RYR channels. 
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Ca2+ channels: ACCs fire action potentials which in turn open plasmalemmal 

Ca2+ channels.  The resultant Ca2+ influx leads to the rapid triggering of 

exocytosis (Penner and Neher, 1988; Cheek and Barry, 1993; Livett, 1993; 

Aunis, 1998).  These voltage-gated Ca2+ channels are formed by a multi-subunit 

protein complex which consists of a pore-forming 1-subunit with several 

auxiliary proteins, including the intracellular -subunit and a disulfide-linked - -

subunit (Garcia et al., 2006) (Figure 4.2 A).  Genetic variation, differential 

expression as well as alternative splicing mechanisms are thought to contribute 

to the possibility of multiple combinations of these subunits, which provide the 

basis for the functional diversity among the Ca2+ channel subtypes.   Based on 

their range of activation, all Ca2+ channel subtypes can be classified into either 

low voltage activating threshold (LVA; T-type) or high voltage activating threshold 

(HVA; L-, N-, P/Q- and R- type) channels (Garcia et al., 2006) (Figure 4.2 B).  

 The only known type of LVA Ca2+ channel is the T-type channel (T for 

“transient”).  These channels are characterized by their fast inactivation with a 

transient current at holding potentials between -50 and -60 mV.  In addition to 

their low activation threshold, T channels also display a similar permeability to 

Ca2+ and Ba2+ with a single channel conductance of about 8 pS (Fox et al., 

1987b, a).   Although T-type channel mRNA has been detected in bovine ACCs 

(Garcia-Palomero et al., 2000), their currents are difficult to record.  Nonetheless, 
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these currents have been reported in bovine (Diverse-Pierluissi et al., 1991) and 

rat ACCs (Hollins and Ikeda, 1996).  It has been suggested that these channels 

may only be expressed in developing ACCs (Bournaud et al., 2001), which could 

account for their elusive detection in other species.  On the other hand, it may be 

that these channels are disrupted by isololation. Interestingly, T-type channels 

can be up-regulated within a timeframe of hours to days following stress-

mimicking conditions in isolated rat ACCs (Carbone et al., 2006). 

 HVA L-type, or “long-lasting” Ca2+ channels,  have been characterized in 

ACCs of mouse (Hernandez-Guijo et al., 1998), rat (Prakriya and Lingle, 1999), 

cow (Artalejo et al., 1991; Bossu et al., 1991), cat (Albillos et al., 1994), human 

(Gandia et al., 1998) and pig (Kitamura et al., 1997).  They display little 

inactivation during depolarizing steps and a lower sensitivity to depolarized 

holding potentials when Ba2+ is the charge carrier.  In ACCs, if Ca2+ is used as a 

charge carrier instead, then these channels are completely inactivated 

(Hernandez-Guijo et al., 2001).  The single channel conductance is between 18 

and 25 pS in 100 mM Ba2+ (Garcia et al., 2006). These channels are highly 

characteristic of most excitable cells, serving as the main pathway for Ca2+ influx 

in heart, smooth muscle and neuroendocrine cells.  The L-type current of each 

tissue is a consequence of differential expression of four 1-subunits, 1C, 1D, 

1F, and 
1S.  These channels are sensitive to 1,4-dihydropyridines (DHP), which 
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can act as agonists  (e.g., BAY K 8644) (Nowycky et al., 1985) or antagonists 

(e.g., nifedipine, nitrendipine, nisoldipine, nimodipine, furnidipine) (Fleckenstein, 

1983; Spedding, 1985). 

 HVA N-type or “neuronal” Ca2+ channels have been characterized in 

ACCs of mouse (Hernandez-Guijo et al., 1998), cow (Artalejo et al., 1992; Lopez 

et al., 1994), pig (Kitamura et al., 1997), cat (Albillos et al., 1994), rat (Prakriya 

and Lingle, 1999), and human (Gandia et al., 1998). They display faster 

inactivation than L-type channels, which is voltage-dependent (Fox et al., 1987a) 

and, they do not persist at less negative holding potentials (Villarroya et al., 

1999).  They have a single channel conductance between 11 – 15 pS (Tsien et 

al., 1987).  At least in cow, N-type channels can also contain a non-inactivating 

component, called "non-classical N-type" (Artalejo et al., 1992).  N-type channels 

are particularly sensitive to conotoxins.  For example, they are irreversibly 

blocked by the Conus geographus toxin -conotoxin GVIA (Nowycky et al., 1985; 

Kasai et al., 1987) and reversibly blocked by the Conus magus toxin -conotoxin 

MVIIA (Valentino et al., 1993). 

 P-type or "Purkinje" Ca2+ channels are another type of HVA channel, but 

their expression levels in ACCs are low.  For example, in mouse (Hernandez-

Guijo et al., 1998) and rat ACCs (Gandia et al., 1995), P channels contribute only 

10–15% to the total Ca2+ current.  Nonetheless, P/Q-type channels are highly 
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coupled to catecholamine secretion in ACCs, most likely due to their close 

proximity to the release site in situ (Polo-Parada et al., 2006).  These channels 

are relatively insensitive to changes in the holding potential and do not inactivate 

during depolarizing steps (Regan, 1991; Mintz et al., 1992).  They can be 

selectively blocked by the funnel web spider toxin FTX, its synthetic analog sFTX, 

and by -agatoxin IVA at nanomolar concentrations.  Since it is difficult to 

separate the 1A-subunit into P- and Q-type channels (Sather et al., 1993), 

coupled with their low expression levels, P-type channels are generally grouped 

together with Q-type channels and referred to collectively as  P/Q-type channels. 

 The characterization of HVA Q-type channels is based mostly on 

pharmacological properties. That is, Q channels are resistant to blockade by 

DHPs, -conotoxin GVIA, and low concentrations (<100 nM) of -agatoxin IVA, 

but are sensitive to -conotoxin MVIIC (1–3 µM) (Wheeler et al., 1994).  In ACCs 

the P/Q component of the whole cell Ca2+ current is voltage inactivated 

(Villarroya et al., 1999), and can be pharmacologically isolated by 2 µM -

conotoxin MVIIC, -conotoxin MVIID, or -agatoxin IVA (Gandia et al., 1997). 

 The last subtype of HVA Ca2+ channel is the R-type or “resistant” channel 

named for its insensitivity to blockade by DHPs, -conotoxin GVIA, -agatoxin 

IVA, and -conotoxin MVIIC (Randall and Tsien, 1995).  This channel inactivates 
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rapidly, and is more sensitive to blockade by Ni2+ than by Cd2+.  There are reports 

of a selective R channel blocker SNX-482 in rat nerve terminals (Newcomb et al., 

1998), but others have suggested that at least in the bovine ACC, that this toxin 

also blocks P/Q channels (Arroyo et al., 2003).  While some studies employing 

whole cell recordings fail to report an R-type current component (Albillos et al., 

1993; Gandia et al., 1993; Albillos et al., 1994; Artalejo et al., 1994; Kitamura et 

al., 1997; Gandia et al., 1998; Lukyanetz and Neher, 1999; Albillos et al., 2000), 

others using the perforated-patch configuration do find an R-type component 

(e.g., in mouse adrenal medullary slices and mouse and rat ACCs (Hollins and 

Ikeda, 1996; Albillos et al., 2000; Aldea et al., 2002; Carabelli et al., 2003; Cesetti 

et al., 2003)). 

 There are extreme interspecies differences in Ca2+ channel subtypes in 

primary cultures of ACCs (Figure 4.2 C) (Garcia et al., 2006).  It also is worth 

noting that in mouse ACCs, which are employed in the studies of this 

dissertation, that even though L-type and N-type Ca2+ channels account for up to 

80% of the whole cell Ca2+ channel current, the activation kinetics of secretion 

from these cells favor the R-type and N-type channels (Albillos et al., 2000; Chan 

et al., 2005; Polo-Parada et al., 2006).  Furthermore, in freshly isolated mouse 

ACCs, we have found that the respective percentages that the L- and N-type 

components contribute to the total current can vary from ACC to ACC as well.  
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For example, the L-type fraction on average is about 40%, but some cells exhibit 

L-type fractions as low as 20 % and others up to 60%. The physiological 

relevance of these extreme inter-species and even intra-species differences may 

have specific consequences differentially controlling the exocytic release of 

epinephrine and norepinephrine according to variable stimulation. 

 

Internal Ca2+ stores:  Cytosolic [Ca2+] in the ACC is constantly defined not 

only by influx and extrusion across the cell membrane, but also by uptake into 

and release from the Ca2+ storing organelles.  In the ACC the ER, mitochondria 

and LDCGs account for the bulk of internal Ca2+ storage.   

Similar to ER Ca2+ stores in other excitable cells, in ACCs the ER acts like 

a homogeneous thapsigargin-sensitive source whereby Ca2+ can be released via 

IP3 or RYRs (Alonso et al., 1999; Inoue et al., 2003).   Ca2+ entry through VGCCs 

can directly activate Ca2+ release from the ER.  This phenomenon, termed Ca2+-

induced-Ca2+-release (CICR) has been well documented in bovine (Alonso et al., 

2002) and rat ACCs (Alonso et al., 1999), but in mouse ACCs CICR is presently 

a controversial topic, where CICR is thought to exist, but to a smaller extent 

(Rigual et al., 2002). 
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The mitochondria can act as a Ca2+-sink in ACCs and is thought to play an 

important role in shaping cytosolic [Ca2+] transients (Garcia-Sancho and 

Verkhratsky, 2008).    Ca2+ is taken up by the mitochondria by the mitochondrial 

uniporter, which is a low affinity/high capacity system (Gunter and Pfeiffer, 1990; 

Trenker et al., 2007).  The mitochondrial membrane potential, which is highly 

negative inside, creates a steep driving force capable of storing Ca2+ in the 

mitochondrial matrix at up to 5 - 6 orders of magnitude above the cytosolic [Ca2+] 

(Bernardi, 1999).  In bovine (Xu et al., 1997) and rat (Herrington et al., 1996; 

Babcock et al., 1997) ACCs, mitochondria have been shown to be essential to 

rapid clearance of cytosolic Ca2+ loads.  For example, during conditions of 

maximal stimulation by depolarization with high K+, mitochondria can take up 

Ca2+ at the same rate as Ca2+ entry through VGCCs (Montero et al., 2000; 

Montero et al., 2001; Villalobos et al., 2002).  

Ca2+ release from the mitochondria occurs primarily via a Na+/Ca2+ 

exchanger and to a lesser extent via a Na+-independent system (Gunter and 

Pfeiffer, 1990; Gunter et al., 1994).  On the other hand, under conditions when 

the mitochondria is completely depolarized, Ca2+ may be able to exit from the 

matrix through the uniporter, which usually only allows entry (Montero et al., 

2001). 
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  The LDCGs of the ACC occupy nearly 20% of the cell volume and have 

a [Ca2+] of about 40 m (Mundorf et al., 2000).  Therefore, LDCGs account for 

greater than 60% of all Ca2+ within the ACC, thus making these granules the 

largest source of stored Ca2+ (Mundorf et al., 2000).   The majority of this Ca2+, 

however, is not free.  Instead it is tightly bound to chromogranins within the 

granule matrix.  But chromogranin affinity for Ca2+ is sensitive to pH, which 

means that intra-granular changes in pH could affect the free [Ca2+] (Yoo and 

Albanesi, 1991).  Furthermore, the granule membrane has IP3 receptors (Yoo 

and Albanesi, 1990) and, it has been proposed that Ca2+ mobilization from 

LDCGs could serve a role in assisting exocytosis (Mundorf et al., 2000).  It is also 

very worthwhile to note recent work whereby RYRs are strongly suggested to 

exist on the LDCGs of mouse neurohypophyseal nerve terminals (McNally, 

2008).  Interestingly, the intra-granular [Ca2+] can be decreased by stimulation 

with high K+, caffeine, or ATP (Moreno et al., 2005). 

Together, Ca2+ fluxes between cell membrane calcium channels and 

intracellular Ca2+-storing organelles act in concert to provide a dynamic system 

by which Ca2+ signaling and homeostasis within the ACC is maintained (Figure 

4.3).  At rest, Ca2+ flux rates are low and cytosolic and mitochondrial [Ca2+] is 

about 100 nM.  On the other hand, ER [Ca2+] is maintained within the range of 

500 – 1000 M at rest.  The extracellular saline [Ca2+] is also very high, in the 1 – 
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2 mM range.  Thus, steep electrochemical gradients favor diffusion of Ca2+ into 

the cytosol from the ER and through VGCCs in the cell membrane.  Under 

conditions of minimal or low frequency stimulation, the Ca2+ signal within the 

ACC is almost exclusively determined by the rate of diffusion through the cytosol 

and binding by endogenous Ca2+  buffers (Neher, 1998b, a).  In this case, global 

[Ca2+] can rise to about 1 M and Ca2+-ATPases in the ER and cell membrane 

return the cytosolic [Ca2+] to basal levels.  During strong stimulation, however, 

global [Ca2+] can rise to levels near 10 M.  In this case, mitochondria located 

proximal to release sites are thought to take up Ca2+ via the uniporter and most of 

the Ca2+ that enters the cytosol is accumulated in the mitochondria (Herrington et 

al., 1996; Park et al., 1996; Montero et al., 2000).  This Ca2+ is released from the 

mitochondria post stimulation over a period ranging from seconds to minutes 

(Villalobos et al., 2002).  It has been proposed that the slightly elevated global 

[Ca2+] during this phase may contribute to the mobilization of LDCGs from the 

reserve pool to the readily releasable pool (Neher, 1998b, a).  Again, release of 

Ca2+ from LDCGs may also occur during stimulation, but is controversial. 
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IP3 and RYRs mediate Ca2+ release from internal stores 

As mentioned earlier, Ca2+ can be released into the cytosol of the ACC from 

internal stores such as the ER via inositol 1, 4, 5-trisphosphate (IP3) or ryanodine 

receptors (RYRs).  The IP3 and RYRs constitute two separate, but similar 

families of Ca2+ release channels.  For example, all members of each family are 

comprised of a tetramer of homologous subunits with large n-terminal domains 

that include specific regulatory sites.  Furthermore, the channels of both families 

are 46% identical in a 134 amino acid segment of their c-terminal domains (Gill, 

1989).  

 Release of Ca2+ into the cytosol by the IP3 receptor is initiated in response 

to cytosolic increases in the second messenger IP3.  This is generally triggered 

by the binding of certain ligands to G-protein coupled receptors on the cell 

membrane which in turn promote the hydrolysis of PIP2 and thereby generate 

intracellular IP3.  The activation of the IP3 receptor by IP3 is not dependent on 

extracellular Ca2+.  There are also various pharmacologic tools for the IP3 

receptor, but they are poor.  For example, heparin is commonly used as a 

blocking agent, but there is evidence that it may also activate RYRs.  Moreover, 

newer drugs such as xestospongin C and 2-APB are non-specific (Collin et al., 

2005). 
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The RYR family has 3 known isoforms in mammals, type-1 (RYR1), type-2 

(RYR2) and type-3 (RYR3) (Figure 4.4)  RYR1 is primarily expressed in skeletal 

muscle, RYR2 in cardiac muscle and RYR3, while primarily expressed in the 

brain, is also present in multiple tissue types.  The RYR subtypes are highly, but 

differentially expressed throughout the brain.  (Non-mammalian vertebrate 

skeletal muscles express two isoforms in almost similar amount, - and -RYR 

which are homologues of mammalian isoforms RyR1 and 3, respectively (Ogawa 

et al., 2002).)  These Ca2+ release channels all show high affinity to the plant 

alkaloid, ryanodine, for which they are named.  Though the specific isoforms are 

usually associated with the distinct tissue type in which they are expressed, it 

should be noted that multiple isoforms can exist within the same cell.   In the 

mouse ACC type-2 RYRs are highly expressed and are distributed evenly just 

below the cell membrane, while type-3 RYRs are expressed  to a much lesser 

extent and their distribution lies about the perinuclear region in a punctuate 

fashion (ZhuGe et al., 2006). 

The release of Ca2+ through RYRs expressed on the SR or ER is 

accomplished by different mechanisms according the RYR type.  For example, 

RYR1 (skeletal muscle) activation occurs via a physical coupling to the 

dihydropyridine receptor, whereas, the primary mechanism of activation for 

RYR2 (cardiac) is CICR (Fabiato, 1983).  RYR3 activation is also thought to 
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occur by a CICR mechanism, and has been suggested to play a role in 

amplifying the Ca2+ release signal from RYR1 (Yang et al., 2001).  Furthermore, 

Ca2+ release from a number of RYRs in a cluster can result in a fast, transient, 

spatiotemporally-restricted rise in cytosolic [Ca2+] termed a Ca2+ spark in muscle 

(Cheng et al., 1993) or a Ca2+ syntilla in nerve terminals (De Crescenzo et al., 

2004) or ACCs (ZhuGe et al., 2006).   

RYRs are the major cellular mediator of CICR, whereby stimulation by 

Ca2+ on the cytosolic side causes the channel to open and release stored Ca2+,  

thus establishing a positive feedback mechanism to amplify Ca2+ signals (Zucchi 

and Ronca-Testoni, 1997).  But Ca2+ is not the only second messenger that can 

activate RYRs.  For example, in cardiac and pancreatic cells, cyclic ADP-ribose 

can also initiate the Ca2+ release.  In addition, RYRs can participate in another 

positive feedback mechanism to amplify Ca2+ release by indirectly interacting with 

IP3 receptors to give rise to what is called a Ca2+ wave.  This occurs when Ca2+ 

released by RYRs activates the phospholipase C pathway, thereby raising IP3 

levels. 

In addition to ryanodine, which locks RYRs in a sub-conductance state at 

nanomolar concentrations, but completely blocks them at micromolar 

concentrations (Hille, 1992), RYRs are sensitive to a number of other 

pharmacologic agents.   Known antagonists include dantrolene and ruthenium 
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red, both of which are reported to have poor specificity (Vites and Pappano, 

1994; Collin et al., 2005).  Both pharmacologic and physiologic agonists of RYRs 

have been reported.  Pharmacologically, xanthines (e.g., caffeine and 

pentifylline) activate the RYR by potentiating its sensitivity to Ca2+ (Xu et al., 

1998).  Physiologically, cyclic ADP-ribose acts as a gating agent, possibly by 

making FKBP12.6 (12.6 kilodalton FK506 binding protein) dissociate from RYR2.  

Normally, FKBP12.6 binds to and blocks the RYR2 channel (Wang et al., 2004). 

  

Ca2+ Syntillas  

Ca2+ “syntillas” are highly localized, brief, spontaneous Ca2+ transients that 

resemble Ca2+ sparks in muscle cells and have been shown to arise from 

ryanodine-sensitive internal stores of both hypothalamic nerve terminals (De 

Crescenzo et al., 2004) and adrenal chromaffin cells (ZhuGe et al., 2006) (Figure 

4.5).  Our group initially discovered these Ca2+ transients in neurohypophyseal 

nerve terminals and later found them in ACCs.  Thus, we have termed them 

“syntillas” (scintilla, Latin for spark; first found in nerve terminals, synaptic 

structures). 

Syntillas can be mediated by different isoforms of RYR according to cell 

type.  In nerve terminals the frequency of syntillas can be modulated by a 

voltage-dependent mechanism, whereby the RYR1 is thought to directly interact 
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with L-type Ca2+ channels, in a process termed voltage induced Ca2+ release 

(VICaR) (De Crescenzo et al., 2006).  On the other hand, in mouse ACCs, 

syntillas do not display voltage dependence and are most likely mediated by 

RYR2.  This derives from RT-PCR and immunocytochemistry studies in these 

cells where high levels of RYR2, but only low levels of RYR3 and virtually no 

trace of RYR1 are detected.  The RYR3 is distributed in a highly punctuate, 

perinuclear fashion about the center of the cell.  RYR2 by contrast displays a 

subplasmalemmal distribution throughout the cell, which seems to be consistent 

with the localization of syntillas by imaging (ZhuGe et al., 2006). 

Since discovered, the function of syntillas had become the subject of 

intense investigation within our group.  It is well known that Ca2+ influx from 

outside the cell, through calcium channels, results in exocytosis.  Therefore we 

first postulated that Ca2+ release from stores within the cell (syntillas) should also 

function to elicit exocytosis.  But a previous study from our group had shown that 

this was not the case.  That is, syntillas do not trigger exocytotic events, despite 

their release of sufficient Ca2+ to do so if released within several hundred 

nanometers of a docked, primed vesicle.  Instead, we found that Ca2+ syntillas 

are released into microdomains distinct from the canonical exocytotic 

microdomains near the plasma membrane wherein docked, primed vesicles 

reside (ZhuGe et al., 2006). 
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The function of Ca2+ syntillas is now known.  The following chapters of this 

dissertation describe in detail how syntillas function by exerting an inhibitory 

influence over spontaneous exocytosis in mouse ACCs and furthermore, how 

syntillas are modulated by physiologic stimulation of these cells.    
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Figure 4.1  Ca2+ microdomains and nanodomains. A separation between Ca2+ 

channel and target of the Ca2+ signal at about 200 nm (target lies within a Ca2+ 

microdomain) and another one in the range of 10 – 20 nm separation (target lies 

within a Ca2+  nanodomain). (Left) The first one represents a mean distance for 

randomly mixed channels and release sites in the case of adrenal chromaffin 

cells. (Right) The second one is characteristic for the case that a Ca2+ channel is 

part of the release machinery.  

(Adapted from Neher, 1998a) 
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Figure 4.2  Voltage gated calcium channels (VGCCs).  A. Family composition 

of a VGCC complex and structure of the 1 subunit. (Left) Diagram of a high-

voltage-activated VGCC complex, indicating the α1, α2/δ, β, and γ subunits. The 

α1 subunit forms the channel, comprising the voltage-sensing mechanism, the 

Ca2+ selective pore, and the target of identified pharmacological agents. (Right)  

Predicted structure and transmembrane topology of the α1 subunit. Each domain 

possesses six putative membrane-spanning segments (1-6) and pore-forming P-

loop (SS1-SS2). All high voltage-activated channel α1 subunits possess a 

conserved region in the domain I-II linker that binds the Ca β subunit as well as a 

conserved EF hand motif in the carboxyl terminus. Other structural elements 

identified amongst the various types of high voltage-activated Ca2+ channels 

include: a high affinity G-protein βγ-subunit binding site in the I-II linker (Cav2.1 

and Cav2.2); distinct regions in the domain II-III linker responsible for functional 

interaction with the synaptic release machinery (Cav2.1 and Cav2.2), binding to 

AKAP-79 (Cav1.2), cysteine string protein (Cav2.2) and the skeletal muscle 

excitation-contraction coupling machinery (Cav1.1); as well as carboxyl terminal 

regions shown to interact with calmodulin (Cav1.2, Cav2.1, Cav2.2, Cav2.3), 

Ca2+ -binding protein-1 (Cav1.2, Cav2.1), CASK (Cav2.2) and mint-1 (Cav2.2). B. 

Family classification of voltage-gated Ca2+ channels, based on biophysical 

properties, pharmacological sensitivity and sequence homology.  The Cav1 and 

Cav2 subfamilies comprise the high-voltage-activated channels, while the Cav3  

subfamily contains low-voltage-activated (T-type) channels. C Relative 

proportions of different neuronal calcium channel subtypes in primary cultures of 

chromaffin cells isolated from bovine, rat, mouse, cat, pig, and human adrenal 

medullary tissues.  

(Adapted from Zamponi GW (2005) Voltage-gated calcium channels. Georgetown, Tex.New 
York, N.Y.: Landes Bioscience/Eurekah.com ; Kluwer Academic/Plenum Publishers. And  Garcia 
et al., 2006) 
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Figure 4.3  Functional triads responsible for the generation of 

subplasmalemmal high Ca2+ microdomains in chromaffin cells. The voltage-

dependent Ca2+ channel (1, VDCC) of the plasma membrane (PM), the 

ryanodine receptor (2) from the endoplasmic reticulum (ER), the Ca2+ uniporter 

(3) from the surrounding mitochondria (MIT), and the secretory granule (SG) are 

all strategically located beneath the plasma membrane.  Ca2+ entry through 

VDCC triggers Ca2+-induced Ca2+-release (CICR) from ER and generates a local 

[Ca2+]cyto microdomain (μD) of about 50 μM.  In the bulk of the cytosol (CYT), the 

[Ca2+]cyto increase is much smaller, about 2 μM.  The mitochondrion, placed at 

the triad, near the high Ca2+ microdomain (MIT1) quickly takes up Ca2+ and can 

eventually reach [Ca2+] of near 1000 μM.  The mitochondrion placed far away 

from the high Ca2+ microdomain (MIT2), increases its [Ca2+] to only about 2 μM.  

Adapted from Garcia et al. (2008) 
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Figure 4.4  3D reconstructions comparing RYR1, RYR2 and RYR3. A. Solid 

body representations of cytoplasmic surface of RYR3 (blue), RYR1 (green), 

RYR2 (red).  Domain architecture is conserved. B. RYR3 superimposed with the 

major differences (yellow) that are obtained when the reconstruction of RYR3 is 

subtracted from RYR1. Arrows indicate the main difference which is tentatively 

attributed to the D2 region which is absent from RYR3.  C.  RYR2 structure and 

the relationship to important domains associated with function, regulatory 

proteins and CPVT point mutations.  

(Adapted from Wagenknecht and Samsó, 2002  and Blayney and Lai, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 



 

98 

 

 

Figure 4.5  Evolution of a Ca2+ syntilla in a mouse adrenal chromaffin cell.  

(Top) Images display the evolution of a single Ca2+ syntilla resulting from the 

opening of RYRs. Changes in cytosolic Ca2+ were measured using fluo-3 

(50 μM), which was introduced into the cell in the salt form through the patch 

pipette. The images were acquired at a rate of 200 Hz with an exposure time of 

5 ms. The change in Ca2+ concentration in the images is expressed as ΔF/F0 (%) 

and displayed on a pseudo-color scale calibrated at the right of the second row of 

images. Numbers above the images correspond to the numbers in the top part of 

the panel below and indicate the time at which the image was obtained. Ca2+ 

syntillas were recorded with a high-speed imaging system from chromaffin cells 

that were voltage-clamped at a holding potential of −80 mV in the absence of 

extracellular Ca2+ in this case. (Bottom) The time course of the signal mass or 

the total moles of Ca2+ released in the syntilla shown in panel above.  

Adapted from ZhuGe et al., (2006) 
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Chapter 5 

Suppression of calcium syntillas increases spontaneous 

exocytosis in mouse adrenal chromaffin cells 

 

 

Abstract: A central concept in the physiology of neurosecretion is that a rise in 
cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx, 
elicits exocytosis.  Here we examine the effect on spontaneous exocytosis of a rise in 
focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release 
from internal stores in the form of Ca2+ syntillas.   Ca2+ syntillas are focal cytosolic 
transients mediated by RYRs, which we first found in hypothalamic magnocellular 
neuronal terminals.  (Scintilla, Latin for spark, found in nerve terminals, normally 
synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal 
chromaffin cells.  Here we examine the effect of Ca2+ syntillas on exocytosis in 
chromaffin cells.  In such a study on elicited exocytosis, there are two sources of 
Ca2+, that due to influx from the cell exterior through voltage-gated Ca2+ channels 
and that due to release from intracellular stores.  To eliminate complications arising 
from Ca2+ influx, we have examined spontaneous exocytosis where influx is not 
activated.  We report here that decreasing syntillas leads to an increase in 
spontaneous exocytosis measured amperometrically.  Two independent lines of 
experimentation each lead to this conclusion.  In one case release from stores was 
blocked by ryanodine; in another, stores were partially emptied using thapsigargin 
plus caffeine after which syntillas were decreased.  We conclude that Ca2+ syntillas 
act to inhibit spontaneous exocytosis, and we propose a simple model to account 
quantitatively for this action of syntillas. 
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Introduction 

 

Since the work of Katz, Douglas and their collaborators almost half a century ago 

(Katz, 1969) a central concept in the physiology of neurosecretion is that a rise in 

cytosolic [Ca2+], resulting from Ca2+ influx, triggers exocytosis.  More recently it 

has become clear that the rise in [Ca2+] occurs in a microdomain within the 

vicinity (i.e., at a distance of 200-300 nm in chromaffin cells) of plasmalemmal 

Ca2+ channels (Garcia et al., 2006; Neher and Sakaba, 2008).  This finding 

raises the possibility of other microdomains where a rise in focal [Ca2+] might 

mediate other processes, allowing Ca2+ to subserve a number of functions 

without crosstalk.  This possibility receives further support from the study of Ca2+ 

sparks in smooth muscle cells.  Ca2+ sparks are focal Ca2+ transients found in 

striated and smooth muscle and mediated by Ryanodine Receptors (RYRs) 

(Cheng and Lederer, 2008).  In striated muscle they are the quanta or building 

blocks that make up a global increase in [Ca2+] to trigger contraction (Csernoch, 

2007).  However, in smooth muscle Ca2+ sparks have quite a different function.  

They activate large conductance Ca2+-activated K+ channels (BK channels) 

located within 150-300 nm of the spark site (Zhuge et al., 2002); the resulting K+ 

efflux and hyperpolarization deactivates voltage-gated Ca2+ channels and thus 

terminates contraction.  Hence in smooth muscle sparks have quite the opposite 
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function from that in striated muscle and the opposite of a global [Ca2+] in smooth 

muscle.  In smooth muscle sparks cause a relaxation (Nelson et al., 1995; 

ZhuGe et al., 1998).  

 Ca2+ syntillas are brief (on the order of tens of milliseconds), focal 

cytosolic Ca2+ transients due to release from intracellular stores and mediated by 

RYRs (De Crescenzo et al., 2004; Collin et al., 2005).  They were first found in 

freshly isolated neurohypophyseal terminals of magnocellular neurons (De 

Crescenzo et al., 2004).   Because the transients resembled Ca2+ sparks found in 

muscle, we designated them Ca2+ syntillas (scintilla, Latin for spark; from a nerve 

terminal, normally a synaptic structure).   In a previous study (ZhuGe et al., 

2006), we also found such focal transients in freshly isolated mouse adrenal 

chromaffin cells, which resemble in their magnitude, time course and 

spontaneous frequency those found in neurohypophyseal nerve terminals.  That 

study established two main points: 1. syntillas in chromaffin cells arise from 

intracellular stores, as indicated by their occurrence in the absence of 

extracellular Ca2+; and 2. syntillas do not trigger exocytotic events, despite their 

releasing sufficient Ca2+ to do so if the release were to occur within several 

hundred nm of a docked, primed large dense core granule (LDCG).   Hence we 

proposed that Ca2+ syntillas arise in a different microdomain from that of the 
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docked, primed granule.  However we did not uncover the function of Ca2+ 

syntillas, the topic addressed here.  

Here we examine the effects of Ca2+ syntillas on exocytosis in mouse 

adrenal chromaffin cells.  We have begun by studying spontaneous exocytosis in 

the form of individual exocytotic events as measured amperometrically.  (We use 

the term “spontaneous” rather than “basal” exocytosis since a low level of 

stimulation is sometimes designated “basal” stimulation, e.g., Fulop et al, 2005.) 

There are three reasons for studying spontaneous exocytosis.  First elicited 

exocytosis demands Ca2+ influx through voltage-gated Ca2+ channels, and so 

there are two sources of cytosolic Ca2+, that from influx and that from intracellular 

stores.  The examination of spontaneous exocytosis allows us to examine the 

latter without activating the former and hence circumvents the complication of 

two Ca2+ sources.  Second, the study of spontaneous exocytosis has, since the 

time of Katz (Katz, 1969), contributed valuable insights into the general process, 

most notably establishing the quantal or vesicular nature of exocytosis.   Third, in 

neurons it is increasingly apparent that spontaneous exocytosis is not simply a 

byproduct of synaptic transmission but has a physiological role and is worth 

studying in its own right (see (Glitsch, 2008)) for the following reasons.  In 

hippocampal CA1 pyramidal cells spontaneous glutamate release maintains 

dendritic spines via AMPA receptor activation (McKinney et al., 1999).  Moreover, 
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spontaneous neurotransmitter release may regulate dendritic protein synthesis 

and thus influence expression of receptors on postsynaptic cells (Sutton and 

Carew, 2000).  Furthermore, spontaneous neurotransmitter release can influence 

the processing of synaptic inputs in small interneurons and affect the 

interneuron’s ability to fire action potentials (Carter and Regehr, 2002).  Finally, 

short-term potentiation of mEPSCs regulates excitability of postsynaptic 

supraoptic neurons in the hypothalamus (Kombian et al., 2000).  Hence, in a 

number of neurons, spontaneous exocytosis has its own function. 

In this study we find that preventing Ca2+ release from intracellular stores 

in the form of Ca2+ syntillas, in two different and independent ways, results in an 

increase in frequency and magnitude of spontaneous exocytotic events as 

measured by amperometry.  The syntillas were monitored by using a unique high 

temporal and spatial resolution optical imaging system which permits monitoring 

of the entire cell and a “signal mass” analysis which measures the total amount 

of Ca2+ released per individual syntilla (See Methods).  Contrary to expectation, 

we conclude that Ca2+ syntillas inhibit spontaneous exocytosis of LDCGs. 
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Materials and methods 

 

Tight-seal, whole cell recordings on chromaffin cells, freshly dissociated 

from adult male Swiss Webster mice as described previously (ZhuGe et al., 

2006), were performed with a HEKA EPC10 amplifier (HEKA Electronics, 

Lambrecht, Germany) on the same day as isolation. Mice (6–8 weeks) were 

sacrificed by cervical dislocation in accordance with the IACUC guidelines at the 

University of Massachusetts Medical School.  Patch pipette solution (mM) was: 

0.05 K5fluo-3 (Molecular Probes, Eugene, OR), 135 KCl, 2 MgCl2, 30 Hepes, 4 

MgATP, 0.3 Na-GTP, pH 7.3. The pipette solution buffered at 150 nM [Ca2+] 

(mM) was: 0.025 K5fura-2 (Molecular Probes) or 0.05 K5fluo-3, 0.25 EGTA, 0.175 

CaCl2, 135 KCl, 2 MgCl2, 30 Hepes, 4 MgATP, 0.3 Na-GTP, pH 7.3.  The pipette 

solution buffered at 500 nM [Ca2+] (mM) was: 0.025 K5fura-2 (Molecular Probes) 

or 0.05 K5fluo-3, 0.1 EGTA, 0.1 CaCl2, 135 KCl, 2 MgCl2, 30 Hepes, 4 MgATP, 

0.3 Na-GTP, pH 7.3.  EGTA, fura-2 or fluo-3 and CaCl2 values were predicted 

with the free- Ca2+ and Mg2+ program within IGOR Pro (Wavemetrics, Lake 

Oswego, Oregon) to achieve a free- [Ca2+] of 150 nM or 500 nM, then adjusted 

based on measurements of global [Ca2+]i with fura-2. Bath solution: 135 NaCl, 5 

KCl, 10 Hepes, 10 glucose, 1 MgCl2, and 2.2 CaCl2, pH 7.2.  Except when 

otherwise indicated, all reagents came from Sigma (Saint Louis, MO). 
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Fluorescence images using fluo-3 as a Ca2+ indicator were obtained using 

a custom-built wide-field digital imaging system described previously (ZhuGe et 

al., 2006).  To assess the properties of individual Ca2+ syntillas quantitatively, the 

signal mass approach was used, as conceptualized by Sun et al. (Sun et al., 

1998) and developed for wide-field microscopy of Ca2+ sparks by ZhuGe et al 

(ZhuGe et al., 2000).  The purpose of this approach is to obtain a measure of the 

total amount of Ca2+ (as opposed to concentration of Ca2+) released by a focal 

Ca2+ transient.  Global [Ca2+]i was measured by fluorescence with cell-

impermeant fura-2 (25 µM) that was loaded into cells through the patch pipette 

and measured as previously described (Grynkiewicz et al., 1985; Becker and 

Fay, 1987; Drummond and Tuft, 1999).   

Corrections for buffers in the calculations of signal mass, simulations for 

Figure 5.6 and amperometric measurements are as follows.  For the syntillas 

recorded in control and ryanodine experiments, where the only exogenous Ca2+ 

buffers were fluo-3 (50 µM) and ATP (4 mM), we corrected the signal mass 

value, as determined from the fluo-3 signal, for competition by endogenous Ca2+ 

buffer, as described previously (De Crescenzo et al., 2004; ZhuGe et al., 2006).  

Briefly, a correction factor of 2.15 was calculated from the binding ratios at 

resting Ca2+ of the fluo-3, ATP and the endogenous buffer.  For the syntillas 

recorded in experiments where the resting [Ca2+] was buffered to normal resting 
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values with the addition of 250 µM EGTA and 175 µM Ca2+, the fluo-3 signal 

mass was multiplied by 4.38 to account for the added competition by the EGTA.  

This number was determined empirically using computer simulations of the 

"typical" chromaffin syntilla (ZhuGe et al., 2006) with the addition of 250 µM 

EGTA, Kd=180 nM, koff=0.45/s (Naraghi and Neher, 1997), and increasing the 

syntilla Ca2+ current magnitude until the fluo-3 signal mass equaled that in 

simulation without the EGTA.  Note that this is much less than the factor of 17.46 

that is predicted by equilibrium buffering, where the binding ratio of the EGTA is > 

600:1.  The binding of Ca2+ by EGTA is too slow to significantly compete with 

fluo-3 over the few tens of milliseconds duration of a syntilla.  Additionally, the 

simulations demonstrate that the effect of this amount of EGTA on the free [Ca2+] 

spatiotemporal profile is negligible in the syntilla microdomain where high (>> 

1µM) [Ca2+] occurs. 

 

Experimental protocols 

1. Fluo-3 Ca2+ imaging and amperometry.  After the patch is ruptured to provide 

the whole cell configuration, we waited at least two minutes for the fluo-3 to reach 

equilibrium in the cell. In a typical experiment, when the fluorescence was stable, 

we began to record two 4-second image sequences in a row (200 images 

separated by 20ms, with an exposure time of 10ms). Then we started to record 



 

107 

 

the amperometry for 4 to 6 minutes (2 to 3 segments of two minutes each).  After 

the amperometric recording, two more 4-second image sequences of fluo-3 

fluorescence were recorded.  These two image sequences and the ones 

recorded earlier were used to establish the syntilla frequency for that cell.  These 

data show no difference between the frequency at the beginning and the 

frequency at the end of the experiments. So in a typical cell, both amperometry 

and fluo-3 fluorescence were recorded. 

2. Ryanodine protocol.  Ryanodine stock was first prepared in DMSO at 

100mM. Just before the experiments, ryanodine was dissolved in the 

physiological solution at 1/1000 to reach the 100 µM concentration used.  The 

cells were bathed in the 100 µM ryanodine solution in the dark for 30 minutes 

before recordings started.   

In control, a caffeine pulse increased the basal [Ca2+]i  on average by 316 

 91 %  (N=3).  [Ca2+]i always returned to basal levels after the pulse.  We found 

that after 30 minutes in ryanodine, the response to caffeine was minimal, 

inducing a mean increase of only 10  2% above baseline (N=3).   Increasing the 

incubating time to 60 minutes in ryanodine in two cells did not further decrease 

the caffeine response (11% and 18% above baseline in response to caffeine).  
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3. Reserpine protocol.  The cells were bathed in the 100 µM ryanodine 

solution (for control) or in 100 µM ryanodine plus 1µM reserpine, in the dark for 

30 minutes, before experiments commenced (Mundorf et al., 2000; Gong et al., 

2003).  Preliminary experiments show that 1 µM reserpine alone compared to 

control (normal saline solution, in the absence of ryanodine) gave a significant 

decrease in mean charge of amperometric spikes (0.21  0.04 pC, N=6, in 

control solution versus 0.10  0.01 pC, N=17, in presence of reserpine, p= 

0.012).  This 50% decrease is comparable to the reserpine effects (30% 

decrease) reported previously in adrenal chromaffin cells  (Mundorf et al., 2000; 

Gong et al., 2003).    

4. Thapsigargin and caffeine protocols. (See legend of Figure 5.4 and 

Results.)   

 

Data Analysis 

Statistical analyses and plots were performed in OriginPro 8.0 (Origin, 

Northampton, MA).  In all cases except for syntilla frequency and signal mass, 

data was first averaged per cell and is reported as mean ±SE of all cells.  Data 

from syntilla frequency and signal mass is reported, as previously (ZhuGe et al., 

2006), as mean ±SE of individual records and mean ±SE of individual syntillas, 
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respectively. Statistical analysis of difference was made with a Student's t-test 

(log-transformed, for charge data) or a Mann-Whitney test (for syntilla 

frequencies) and the p-values are presented in the Figure captions, as 

appropriate.  A p-value less than 0.05 is significant except in multiple 

comparisons, where the Bonferroni corrected p values must be less than 0.02 

(significance is indicated by an asterisk). N indicates the number of cells and n 

the number of events, i.e., syntillas or amperometric spikes. 

 

Modeling the relationship between syntillas and exocytosis.  

We modeled the relationship between syntillas and the frequency of 

amperometric events, in Figure 5.6B as a simple two-state system: granules that 

are able to release their catecholamines, and granules that are inhibited from 

releasing them by a process caused by a rise in [Ca2+] in a Ca2+ microdomain, 

which for purposes of fitting the data as seen in Figure 5.6B we define as a 

volume where free [Ca2+] generated by a syntilla was > 10 µM. The two state 

model is represented as: 

IR  
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where α is the rate of inhibition due to syntillas and β is reverse rate to the 

releasable state. (We note that the syntilla microdomain could be set for any level 

of free [Ca2+], but 10 µM was chosen because it gave a slightly better fit to the 

data in Figure 5.6B and for a number of other reasons enumerated in Results.  

However, in Figure 5.6A we show the contour lines delimiting volumes 

corresponding to values of free [Ca2+] for 1, 3, 10 and 30 µM.)  The number of 

releasable granules R, and therefore the observed frequency of amperometric 

events in this case is: 

+
f amp    (eq. 1) 

We modeled α as proportional to the product of the syntilla frequency and the 

volume of the syntilla microdomain, which we call the Syntilla Index or SI:   

 synsyn Vf=SI    (eq. 2) 

 

where fsyn is the syntilla frequency, and Vsyn is the volume of the syntilla 

microdomain exceeding 10 µM free [Ca2+]. The units of SI are µm3/s.  Each of the 

four experimental conditions shown in Figure 5.6A (control, ryanodine, buffered 

control, buffered Tg+caffeine) has a corresponding SI value.  
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We can simplify by combining equations 1 and 2 to obtain: 

SIk+
f amp

1

1    (eq. 3) 

 where k*SI is equal to the ratio / .   

The equation describing the frequency of amperometric events in 

granules/s at equilibrium is: 

  
SIk+

F=famp
1

1
0   (eq. 4) 

  

where F0 is the frequency of events when syntillas are completely abolished 

(SI=0). Assuming that the carbon fiber monitors ~10% of the cell surface (Haller 

et al., 1998; Grabner et al., 2005), whole-cell, amperometric frequencies were 

plotted against their corresponding SI’s as seen in Figure 5.6B.  

 

Determining syntilla microdomain volume.   

To determine the SI it was first necessary to find the volume of the syntilla 

microdomain as defined above.  To do this we used the same approach as in 

ZhuGe et al. (2006) where we determined the spatiotemporal profile of free 
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[Ca2+] using as input the ICa of the average chromaffin cell syntilla as derived 

from the first derivative of the average signal-mass over time.  We determined ICa 

from the average peak signal mass for each experimental condition in Figure 5.6 

(control, ryanodine, buffered control, buffered Tg+caffeine) using the time course 

found in ZhuGe et al (2006).  A computer simulation with the ICa for each 

condition as input was carried out, and the resulting spatiotemporal profile of free 

[Ca2+] was established (Figure 5.6A).  (The ordinate in Figure 5.6A represents 

one spatial dimension with the other two being identical to the first.  Together 

they make up a hemisphere rather than a sphere since the type two RYRs and 

hence the syntillas are in a subplasmalemmal space where diffusion can only 

occur in a hemispherical volume.)  The free [Ca2+] used to compute the volumes 

were 30, 10, 3 and 1 µM at their maximum spatial extent.   For the SI we used 10 

µM free [Ca2+]. The volumes were 0.02895, 0.00045, 0.0194, and 0.01435 µm3 

for control, ryanodine, buffered control, and buffered Tg+caffeine respectively.  

The corresponding syntilla frequencies were 0.81, 0.28, 0.78, and 0.42 s-1, as 

shown in the lower panel of Figure 5.6A.  By equation 2, these gave SI values of 

0.0235, 0.000126, 0.015, and 0.006 µm3/s.   
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Amperometric measurements. 

Quantal release of catecholamine from single chromaffin cells was monitored 

electrochemically using carbon fiber electrodes with a tip diameter of 5.8 µm 

(ALA Scientific Instruments, Westbury, NY), as described before (ZhuGe et al., 

2006).  Amperometric signals, i.e., oxidation currents, were monitored with a VA-

10 amplifier (NPI Electronic, Tamm, Germany), filtered at 0.5 kHz, digitized at 1 

kHz with a Digidata 1200B acquisition system, and acquired with Patchmaster 

software from HEKA.  Amperometric spikes were identified and analyzed using 

the Mini Analysis Program (Synaptosoft, Decatur, GA).  Each event was visually 

inspected so that artifacts could be rejected from the analysis.  The root mean 

square noise in acquired traces was typically < 0.25 pA as determined by the 

Mini Analysis program.  The detection threshold for an event was set to 2.5 times 

the baseline root mean square.   Overlapping events were rare, and were 

excluded from analysis.  To minimize errors due to possible variation in 

exocytosis among cells from different animals, cells from each animal were 

divided into two groups: one as control and the other treated with agents such as 

ryanodine.  SAFs were separated from spikes based on criteria somewhat similar 

to (Wang et al., 2006), where an index of event shape was used to evaluate the 

“rectangularity” of a putative SAF.  In the present study, to qualify as an SAF an 

event had to meet the criteria of an amplitude less than 2.5 pA and a ratio of  full-
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width at half-height to event duration greater than 0.25.  Event durations for 

spikes and SAFs are defined as the duration between the time when the event 

signal exceeds, and the time when it returns to, the detection threshold amplitude 

as defined above. 
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Results  

 

For all experiments reported here, except for those of Figure 5.3, freshly 

dissociated mouse adrenal chromaffin cells were studied in whole cell voltage-

clamp mode with the membrane potential held at -80 mV.  Calcium indicator dyes 

were introduced through the patch pipette in the salt form, favoring its 

confinement to the cytosol and ensuring the same concentration from cell to cell; 

fluo-3 was used for detection of Ca2+ syntillas and fura-2 for measurement of 

global cytosolic [Ca2+].  Amperometry was used to monitor individual exocytotic 

events. 

 

Blocking ryanodine receptors 

To examine the effect of Ca2+ stores on spontaneous exocytosis, we first 

employed 100 µM ryanodine (See Methods for protocol), which, as we have 

shown previously,  blocks Ca2+ syntillas in mouse adrenal chromaffin cells 

(ZhuGe et al., 2006).  Figure 5.1 illustrates the fundamental findings of this first 

set of experiments.  In panel A, a cell is shown from a single image under control 

conditions (left) with a typical Ca2+ syntilla and another cell bathed for 30 minutes 

in ryanodine (right), with syntillas decreased in frequency and amplitude (De 
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Crescenzo et al., 2004; ZhuGe et al., 2006).  This is due to block of RYRs, the 

Ca2+ channels embedded in the ER membrane which are responsible for Ca2+ 

syntillas (De Crescenzo et al., 2004 ; ZhuGe et al., 2006) as well as Ca2+ sparks 

(Cheng and Lederer, 2008).  In panel B, typical amperometric traces are shown 

from a control (left) and ryanodine treated (right) cell where individual events are 

more frequent and of larger amplitude.  The Ca2+ syntillas decreased in 

frequency whereas, quite surprisingly, the amperometric events increased in 

frequency upon treatment with ryanodine (Figure 5.1C, left).  Moreover, the 

average magnitude of the individual Ca2+ syntilla, as measured by its signal mass 

was decreased whereas the mean charge per amperometric event increased 

(Figure 5.1C, right).   (Simply put, the signal mass is a measure of the total 

amount of Ca2+ released per individual syntilla and hence it is given in units of 

moles of Ca2+.  See methods.) 

 The total charge per single spontaneous amperometric event (i.e., its 

magnitude) in the presence and absence of ryanodine is given in the distribution 

of Figure 5.2A, with the inset showing the difference between the two 

distributions, that is, the additional events in the presence of ryanodine.  These 

distributions count all events, and show an increase in both their frequency and 

magnitude in the presence of ryanodine.  When the events are separated into 

spikes and stand-alone feet (SAF) (Figure 5.2B and C), the frequency of the 
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spikes, but not of the stand-alone feet, is increased by ryanodine.    Thus, the 

increase in frequency of spikes is not due to a shift from SAFs to spikes.  (SAFs 

are taken to represent partial granule emptying or “kiss and run” events, whereas 

spikes may represent either full fusion or “kiss and run” events (Wang et al., 

2003; Gong et al., 2007).)  What accounts for the increase in the magnitude of 

the SAFs and spikes in the presence of ryanodine?  In the case of the SAF’s, 

which are approximated by a square wave, the amplitude alone is increased and 

not the duration.  In the case of the spikes, the amplitude, rise time and duration 

are all increased (Table 5.1). 

 A change in global cytosolic Ca2+ concentration might be invoked to explain 

these results.  However, global cytosolic Ca2+ concentration, as determined 

ratiometrically with fura-2, did not change in the presence of ryanodine [133.0 ± 

28.4 nM (n=11)] versus [140.0 ± 35.0 nM in control (n=5, p=0.89)].    Furthermore 

100 µM ryanodine caused a decrease in the global calcium transient evoked by 

20mM caffeine (See ryanodine protocol in Methods) as expected, showing that 

ryanodine was indeed blocking  Ca2+ release via RYRs.  Hence, there was no 

increase in global cytosolic [Ca2+] to explain the increase in amplitude and 

frequency of the spontaneous amperometric events.  In sum, both the frequency 

and the magnitude of the amperometric spikes increased upon a decrease in the 

frequency and signal mass of the Ca2+ syntillas in the presence of ryanodine. 
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Blocking ryanodine receptors in the presence of reserpine 

The ryanodine-induced increase in frequency of exocytotic events is not readily 

explained by an inhibitory effect of syntillas on the vesicular monoamine 

transporter (VMAT).   Nevertheless we examined the exocytotic events in the 

presence of reserpine to block the VMAT – with and without ryanodine.  1 M 

reserpine was applied for at least 30 minutes (Mundorf et al., 2000; Gong et al., 

2003) before recording, a standard protocol which was sufficient to exert the 

expected effects. (See Methods.)  However, reserpine did not block the effects of 

ryanodine on the frequency of amperometric events (0.12 ± 0.03 (N = 17) and 

0.40 ± 0.13 S -1 (N=12, p<0.02) for reserpine and reserpine plus ryanodine, 

respectively) nor the mean charge increase (0.09 ± 0.01 (N = 17) and 0.26 ± 0.03 

pC (N= 12, p<0.00001) for reserpine and reserpine plus ryanodine, respectively).  

 

Blocking ryanodine receptors in unpatched intact cells 

In unpatched cells, we observed much the same spontaneous exocytotic activity 

as in whole cell recording.  Furthermore, the same effects of ryanodine on 

amperometric events observed under conditions of whole cell recording are also 

seen in unpatched cells where the cytosol is not disturbed (Figure 5.3 and Table 
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5.2).  Thus, the effect on spontaneous exocytosis extends beyond conditions of 

whole-cell recording to intact cells. 

 

Decreasing Ca2+ levels in ryanodine-sensitive internal stores 

To examine the effect of Ca2+ stores in a way that did not depend on ryanodine 

blockade and that would provide another, independent line of evidence, we 

employed thapsigargin (Tg) to deplete the Ca2+ stores.  Tg, which blocks the 

sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump that returns Ca2+ to 

the ER, by itself did not appear to cause substantial store depletion in the 

chromaffin cells, since syntilla frequency did not decrease under this condition 

compared to its control (0.37 ± 0.11 vs  0.46 ± 0.06) (Figure 5.4A).  This is to be 

expected when the stores have a minimal leak, as found, for example, in smooth 

muscle (ZhuGe et al., 1999).  In that situation, not only is it necessary to prevent 

reuptake of Ca2+ into stores by blocking the SERCA pump, but caffeine also has 

to be employed transiently to elicit release from the stores.  Therefore, we treated 

the cells with Tg and then delivered a brief pulse of caffeine.  Subsequently, after 

a one minute pause to allow the cells to recover from the transient Ca2+ release, 

syntillas and exocytosis were monitored over 4 to 6 minutes (Figure 5.4A).    

Neither Tg alone nor caffeine alone had an effect on syntillas or amperometric 

events as compared to the data under control conditions as shown in Figures 5.1 



 

120 

 

and 5.2.  Tg+caffeine decreased the frequency of syntillas compared to Tg alone 

or caffeine alone (Figure 5.4B).  In the second case, that is, when caffeine was 

puffed in the absence of Tg, syntillas were recorded after 1 minute.  Only with the 

Tg+caffeine protocol did we find a corresponding increase in the frequency of 

both Spikes and SAFs (5.4C).  The charge of amperometric events was not 

significantly altered (Figure 5.4D).  However, when we measured global [Ca2+] in 

each condition, we found that Tg+caffeine caused a rise in mean global cytosolic 

[Ca2+] to about 500 nM (Figure 5.4E).  This rise in global [Ca2+] was a 

confounding condition since it has been reported that elevation of global calcium 

can facilitate the spontaneous release of granules in cultured bovine adrenal 

chromaffin cells (Augustine and Neher, 1992) over a range of [Ca2+]i  levels 

above 200 nM and saturating at 10 µM.   

To distinguish the possible effect of the elevated global [Ca2+] from that of 

syntillas, we experimentally separated them in two ways.   First we buffered the 

internal solution to 500 nM to study only the effect of a higher global [Ca2+].  

Second we buffered the internal solution to 150nM, the approximate resting level 

(see below) and applied Tg+caffeine, to study the effect of lower Ca2+ syntilla 

frequency alone without a global increase. 
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Internal solution buffered to 500nM 

To do this we buffered the internal solution with Ca2+ and EGTA to mimic the 

increased global Ca2+ levels in the Tg+caffeine experiments and monitored both 

syntillas and amperometric events.  The results are shown in Figure 5.4, 

rightmost column in green.  We detected no difference in the frequency of 

syntillas when global Ca2+ was elevated to 500nM (Figure 5.4B).  Nor did we find 

an increase in the frequency or charge of amperometric events when resting 

global Ca2+ was raised from 135 nM to 500 nM (Figure 5.4C and D).  This was to 

be expected, however, since significant facilitation of granule release was not 

achieved until [Ca2+]i  reached levels near 1 µM in Augustine et al. (1992).    

 Internal solution buffered to 150nM along with treatment with Tg+caffeine. 

We buffered the internal cytosolic [Ca2+] to 150 nM with EGTA introduced 

through the patch pipette (Figure 5.5).  With this buffering the global [Ca2+] in 

control cells versus Tg alone or Tg+caffeine treated cells was not different 

(p>0.025), as determined with ratiometric fura-2 measurements.  (Control: 106 ± 

9 nM, (n=4) versus Tg alone: 127±30 (n=6; p=0.53l); and control versus 

Tg+caffeine: 176.4 ±38 nM (n=5; p=0.14).)    Moreover, these levels were well 

below the 500 nM concentration which itself was without detectable effect on the 

amperometric events (See previous paragraph.)  Upon Tg+caffeine treatment in 

the buffered condition, we again saw a decrease in the syntilla frequency and an 
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increase in frequency and magnitude of amperometric events as we did when 

RYRs were blocked with ryanodine (Figure 5.5A).  The distribution of the total 

charge per amperometric event in control and treated cells is shown in Figure 

5.5B.    The distribution of the amperometric events suppressed by release of 

Ca2+ from stores is shown in the inset of Figure 5.5B.  As with the experiments 

using ryanodine, there was an increase in spike frequency without change in 

SAF frequency (Figure 5.5C).  There was an increase in the mean magnitude of 

all the amperometric events, which was evident when the spikes and SAFs were 

grouped together (Figure 5.5A), although this was not as marked as that 

observed with ryanodine (Figure 5.1C).  However, there was no increase in rise 

time of spikes, nor in SAF amplitude (Table 5.3), in contrast to the experiments 

with ryanodine.   (Hence the change in amplitude of amperometric events seen in 

Figure 5.5A appears to simply be a consequence of an increase in spike 

frequency without a change in SAF frequency (Figure 5.5C).)  Finally, the 

amplitude of the syntillas in these experiments did not change (Figure 5.5A), 

again in contrast to the experiments with ryanodine (Figure 5.1C).  The mean 

signal mass of the syntillas as given in Figure 5.5A has been corrected for the 

EGTA buffering as outlined in Methods.  With this correction the signal mass 

does not differ from the signal mass in unbuffered solution (Figure 5.1C), 

whereas the frequency of syntillas has decreased.  This is reminiscent of the 

finding with Ca2+ sparks in smooth muscle where a partial depletion of the ER 
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results in a decrease in spark frequency without a change in amplitude.  The 

reason appears to be that a small reduction of [Ca2+] in the ER regulates spark 

frequency even when that reduction is not sufficient to result in a substantially 

smaller driving force on the Ca2+ (ZhuGe et al., 1999).  The results from the 

experiments using buffered internal solutions show that the global [Ca2+] in the 

range of 150 to 500 nM has no detectable effect on spontaneous exocytosis.    

 The results with Tg and caffeine, taken together with those of ryanodine 

above, argue against an effect mediated by the level of the [Ca2+] in the ER, for 

example an effect on the store operated channels, since in one case the stores 

are depleted while in the other they are not.  The results with Tg and caffeine 

also indicate that the effect on release is an acute effect.  The effect occurs 

within minutes after the application of caffeine, a time too short for granule 

synthesis or recycling. (Wakade et al., 1988; von Grafenstein and Knight, 1992).   

 

Relationship between exocytotic events and syntillas 

The data from the experiments reported here were used to construct a plot of the 

relationship between Ca2+ syntillas and frequency of spontaneous amperometric 

events (Figure 5.6B).  We devised a “syntilla index” (SI), which is the product of 

the syntilla rate and the volume of the syntilla microdomain, as defined in 
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Methods and shown in Figure 5.6A. We show four spatiotemporal contour lines 

delimiting volumes of four [Ca2+]’s within the syntillas microdomain (from 1 to 30 

µM) (Figure 5.6A).  We do not provide a contour line for lower [Ca2+], since 

buffering the global [Ca2+] to 500 nM was without effect on spontaneous 

amperometric events.  Similarly a target which can only be affected by a [Ca2+] 

an order of magnitude higher than 30 µM has no precedent so far as we know.  

The syntilla rate for each experimental condition is summarized directly below the 

contour lines in Figure 5.6A.  The relationship between Ca2+ syntillas and 

amperometric event frequency (Figure 5.6B) was fitted by assuming that the 

granules reached a state where they could be exocytosed and the action of a 

syntilla, directly or indirectly, resulted in the inhibition of that state. 
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Discussion 

 

The central finding of this study is that decreasing the frequency of Ca2+ 

syntillas leads to an increase in the frequency and magnitude of spontaneous 

exocytosis.  We therefore propose, as the simplest explanation, that syntillas 

exert an inhibitory influence over spontaneous exocytosis.  The result cannot 

easily be explained by hitherto unknown effects of the agents used to produce 

the decrease in syntilla frequency since we used two quite different sets of 

agents in separate experiments, whose effects have been studied in 

considerable detail over decades. Our results also rule out two explanations for 

the findings. First, the increase in magnitude of the amperometric events 

observed upon blocking syntillas does not seem to be due to a change in granule 

filling since it is not affected by reserpine (See Results).  Second, a trivial 

explanation for the increase in frequency of amperometric events might be that 

an increase in magnitude improves detection, thus making it appear that the 

frequency has risen.  For this to be the case, there would need to be smaller 

undetected events in the control condition.  But when we lowered the threshold 

for inclusion in the data from 0.5 pA to 0.2 pA we found only 21 more events in 

addition to the 918 in Figure 5.2A which would increase the frequency by about 

2.3%.  This is far from sufficient to account for the 450% increase observed in the 
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presence of ryanodine (Figure 5.2C).   Moreover, in the experiments with 

Tg+caffeine, the frequency of spikes increases but the charge apparently does 

not.  Finally the same effects on amperometric events are found when ryanodine 

is applied to intact, unpatched cells. 

 

A second Ca2+ microdomain   

The increase in exocytotic frequency and magnitude upon blocking syntillas is 

quite unexpected, given the usual role attributed to Ca2+ in the exocytotic 

process. Nevertheless, at least one precedent exists for such a result, and that is 

the effect of the analogue of syntillas, Ca2+ sparks, in smooth muscle.  In that 

case sparks, by activating Ca2+-sensitive, large conductance K+ channels within 

the spark microdomain, elicit current which hyperpolarizes the membrane, thus 

turning off voltage-activated Ca2+ channels and causing relaxation.  This effect is 

precisely the opposite of what might be expected of cytosolic Ca2+ in muscle 

(Nelson et al., 1995).  This mechanism of relaxation depends on the action of 

Ca2+ in a distinct microdomain, calculated to be within a radius of 150-300 nm 

from the Ca2+ release site (Zhuge et al., 2002).  We suggest that in adrenal 

chromaffin cells, the syntillas act in a different microdomain from that where the 

final exocytotic step occurs.  This conclusion is borne out by a previous study, as 

well as the present one, in which Ca2+ syntillas, despite their ability to raise [Ca2+] 
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to supermicromolar levels within their microdomain, do not elicit exocytosis 

(ZhuGe et al., 2006). One microdomain might be termed the exocytotic domain 

where the voltage-gated Ca2+ channels responsible for elicited exocytosis are 

found and where the final exocytotic steps are triggered by Ca2+; and the other 

the syntilla microdomain where RYR2s are present and where Ca2+ has an 

inhibitory effect on spontaneous exocytosis.   

 

Physiological role of spontaneous exocytosis and its regulation by syntillas.   

Is the spontaneous exocytosis examined here of physiological significance?  And 

is the regulation exerted by the syntillas on catecholamine release of quantitative 

importance?  We can gain some insight into these questions by comparing our 

results with recent work from the Smith laboratory (Fulop et al (2005), Doreian et 

al 2008, 2009) on physiological levels of stimulation of mouse chromaffin cells.  

These investigators call attention to two different physiological types of 

stimulation – a low frequency (0.5 Hz) and a high frequency (15 Hz) 

corresponding, respectively to resting sympathetic tone and “stress-associated” 

sympathetic activation (Brandt et al., 1976; Kidokoro and Ritchie, 1980). 

Fulop et al (Fulop et al., 2005) found a rate of approximately 0.93 

amperometric events per second per amperometric site per cell for both stimulus 
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paradigms, the difference in the two conditions being primarily the magnitude of 

the individual events.  In our study the rate was 0.16 ± 0.03 s-1 in control 

conditions and 0.73 ± 0.15s-1 in the presence of ryanodine when virtually all 

syntillas were blocked.  Thus the rate when syntillas are suppressed is 66% of 

that at physiological levels of stimulation.  (If the plot in Figure 5.6 is extrapolated 

to zero syntilla rate, then the rate of amperometric events achieved by a 

physiological stimulation level (0.93 s-1) and the rate achieved by syntilla 

suppression (0.78 s-1) are of the same magnitude.)   

Physiologically, in terms of relevance to the whole organism, it is of some 

interest to examine the rate of catecholamine release, i.e., moles s-1 of 

catecholamines.  At the lower physiological stimulation rate of 0.5 Hz Fulop et al 

(2005) measured 200 pC of catecholamines, for a mean rate of 1.73 aM s-1 of 

catecholamine per amperometric site per cell.  (At their higher rate of 15 Hz, 

Fulop et al (2005) found that the amount of catecholamine released per second 

(M s-1) approximately doubled.)  We measured 0.06 aM s-1 of catecholamine per 

amperometric site per cell under control conditions and 1.06 aM s-1 of 

catecholamine) in the presence of ryanodine, which almost completely 

suppressed the syntillas.  Several points deserve mention.  First, the effect of 

suppressing syntillas on the rate of spontaneous catecholamine release is not 

trivial, amounting to more than a 10-fold increase.  In fact it is greater than that of 
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increasing the stimulation from 0.5 to 15 Hz, which results in an approximate 2-

fold increase in rate of catecholamine release.  Second, the rate of 

catecholamine release when syntillas are almost completely suppressed (1.06 

aM s-1) is 62% of that at 0.5 Hz (1.73 aM s-1).  That is, the two values are of the 

same order of magnitude, the intriguing implications of which have not eluded our 

notice.  From these considerations we suggest that syntillas may well be a potent 

physiological regulator of catecholamine release.   

The parameters of individual exocytotic events at the two levels of 

physiological stimulation have also been measured (Doreian et al 2008, 2009; 

supplementary data) and can be compared to spontaneous events in the present 

study.   First, the mean amperometric amplitude and magnitude with basal 

stimulation at 0.5Hz (4.0 ± 0.43 pA, 0.08 ± 0.01pC) are the same as spontaneous 

release (5.4 ± 1. 3 pA, 0.08 ± 0.01pC ).  Moreover, when spontaneous syntillas 

are suppressed with ryanodine, the mean amplitude and charge (14.5 pA, 0.28 

pC) are the same as reported for stimulation at 15Hz (16.3 pA, 0.31 pC).  In sum, 

when the amplitude and magnitude of individual amperometric events are 

considered, suppression of syntillas with ryanodine yields the same increase as 

stimulation at 15 Hz.  Therefore Ca2+ store modulation of spontaneous release 

may involve the mechanisms invoked by the Smith group to describe differences  

in 0.5 vs. 15Hz stimulation, i.e,  a change in mode of release from kiss and run to 
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full  fusion.  This points to the possible relevance of the mechanisms affecting 

spontaneous release for understanding elicited release at physiological levels of 

stimulation. 

 

Dual effect of syntillas on spontaneous exocytosis   

The two effects of suppressing syntillas on spontaneous exocytosis, increasing 

the frequency and increasing the magnitude, might be linked or independent. If 

the increase in frequency and the increase in charge are indeed distinct effects, 

how might this happen?  We propose that some LDCG’s exposed to the syntilla 

microdomain are simply removed temporarily from the releasable pool, and so 

the frequency of spontaneous exocytosis goes down.   Other granules exposed 

to Ca2+ in the syntilla microdomain would have their pore machinery modified 

resulting in less catecholamine release.   This effect is reminiscent of the findings 

of Ales et al. (Ales et al., 1999), where greater Ca2+ influx caused a shift away 

from full fusion and toward kiss and run events.  The larger Ca2+ influx in that 

study, resulting from extracellular Ca2+ concentrations as high as 90 mM, might 

have impinged on the Ca2+ syntilla microdomain and thus mimicked the effects of 

syntillas. 
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A second hypothesis is that block of Ca2+ syntillas causes greater 

recruitment of a population of larger LDCGs.   Such a population has been 

observed in mouse chromaffin cells both morphologically and physiologically 

(Grabner et al., 2005).  In this case the observed changes in the parameters of 

the amperometric spikes are consistent with a larger dense core granule being 

exocytosed through a pore of the same size as that of the smaller LDCGs which 

is opening at the same rate.  On the one hand such a shift from a population of 

smaller LDCGs to larger ones is attractive because it explains both changes in 

frequency and magnitude of amperometric events by a single mechanism.  On 

the other hand the effects of blocking syntillas on magnitude and frequency of 

amperometric events seem separable so that they may indeed be different 

effects. 

Speculation into the molecular components involved in the regulation of 

spontaneous exocytosis by syntillas are discussed in the final Chapter 7. 
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Figure 5.1  Effect of 100 µM ryanodine.  A. Changes in cytosolic [Ca2+] 

measured with the Ca2+–indicator dye, Fluo-3, and expressed on a pseudo-color 

scale as the change in fluorescence over the baseline fluorescence (ΔF/F0).  

Image threshold is 15% of ΔF/F0. Syntillas are larger and more frequent under 

normal conditions (left) and they are smaller, less frequent or completely blocked 

in the presence of ryanodine (right).  B. Representative amperometric trace from 

a cell in absence (left) and presence (right) of ryanodine.  In the presence of 

syntillas (left, control) amperometric events are smaller and less frequent.  When 

syntillas are blocked or decreased (right, 100 µM ryanodine) amperometric 

events are larger and more frequent.  C. Left panel: 100µM ryanodine decreases 

syntilla frequency (left bar graph) from 0.81 ± 0.12 (n = 4) to 0.28 ± 0.09 s-1 (N = 

18) (p < 0.02).  Conversely, ryanodine increases exocytotic frequency (right bar 

graph) from 0.16 ±0.03 (N = 12) to 0.73 ± 0.15 s-1 (N =13) (p < 0.002). Error bars 

± S.E.M.  Right panel: 100 µM ryanodine also decreases the mean signal mass 

of the individual syntilla from 28.5 ± 3.9 (N = 13) to 6.2 ± 0.9 x10-20 moles (n = 

18) (p < 0.00001) and increases the mean charge per amperometric event from 

0.08 ± 0.01 (N =12) to 0.28 ± 0.03 pC (N =13) (p < 0.0003). 
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Figure 5.2  Population of LDCGs blocked by ryanodine.  A. Frequency 

distribution of individual amperometric events according to charge (pC) in control 

(white, 918 events) and ryanodine treated cells (stripes, 2536 events).  The 

difference between the two distributions is shown on an expanded x-axis in the 

inset. B. Examples of amperometric events recorded from mouse chromaffin 

cells.  The first two traces show a spike, the second one with a pre-spike foot. 

The third one represents a stand alone foot (SAF). (Panel A includes all events, 

both SAFs and spikes. The criteria for classifying an event as an SAF are given 

in Methods.) C. Left panel shows the frequency of the spikes and the SAFs in 

control solution (0.08 ± 0.01 s-1 for both, N=12).  Spike frequency increases in 

presence of ryanodine (0.67 ± 0.14 s-1, p< 0.0008, N=13).  Right panel shows 

that ryanodine increases the mean charge of spikes (0.14 ± 0.03 to 0.31 ± 0.03 

pC, p<0.0003, N = 12 for control and N = 13 for treated cells) and SAFs (0.02 ± 

0.00 to 0.04 ± 0.01 pC, p<0.01, N = 12 for control and N = 13 for treated cells). 
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Figure 5.3  Effect of 100 µM ryanodine in unpatched cells.  In the results 

shown here the same protocol was used as in Figures 5.1 and 5.2, except that 

the cells were not patched and hence the cytosol was left undisturbed.  A.  All 

amperometric events. (Left) frequency of all events in control (0.09 ± 0.02 s-1, N 

= 28) vs. ryanodine (0.49 ± 0.14 s-1, N = 9), p<0.0002.  (Right) magnitude of all 

events for control (0.18 ± 0.2 pC, N = 28) vs. ryanodine (0.26 ± 0.03 pC, N = 9), 

p<0.02.  B.  Amperometric events separated into spikes and SAFs.  (Left) control 

frequency of spikes (0.08 ± 0.02 s-1, N = 28) and SAFs (0.01 ± 0.00 s-1, N = 28) 

vs. ryanodine (0.42 ± 0.13 s-1, N = 9) for spikes, p<0.03; and (0.05 ± 0.02 s-1, N = 

9) for SAFs, p<0.02.  (Right)  magnitude of spikes (0.20 ± 0.03 pC, N = 28) and 

SAFs (0.07 ± 0.01 pC, N = 21) in control vs. ryanodine (0.30 ± 0.04 pC, N = 9) for 

spikes, p<0.02 and (0.06 ± 0.01 pC, N = 9) for SAFs, p=0.6.  
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Figure 5.4  Effect of 2 M thapsigargin plus 20 mM caffeine and buffering 

free [Ca2+]i at 500nM with EGTA and CaCl2. 

A. Diagram representing the protocol to decrease the stores with thapsigargin 

and caffeine.  B. Thapsigargin and caffeine decrease syntilla frequency to 0.09 ± 

0.04 s-1 (N = 8) compared with thapsigargin alone, 0.33 ± 0.09 s-1 (N = 15)  (p < 

0.04); with caffeine alone, 0.57 ± 0.14 s-1 (N = 12)  (p < 0.01); and with the free 

[Ca2+]i buffered at 500nM, 0.49 ± 0.08 s-1 (N = 23)  (p < 0.001). C. Thapsigargin 

and caffeine increase the frequency of all amperometric events to 0.44 ± 0.09 s-1 

(N = 8), SAFs to 0.15 ± 0.02 s-1 (N = 8) and spikes to 0.33 ± 0.09 s-1 (N = 8) 

when compared with thapsigargin alone 0.13 ± 0.05 s-1 (N = 9)  (p < 0.01) for all 

events, 0.08 ± 0.02 s-1 (N = 7)  (p < 0.02) for SAFs, 0.07 ± 0.03 s-1 (N = 9)  (p < 

0.02) for spikes, caffeine alone 0.10 ± 0.04 s-1 (N = 10)  (p < 0.01) for all events, 

0.04 ± 0.02 s-1 (N = 10)  (p < 0.001) for SAFs, 0.07 ± 0.03 s-1 (N = 10)  (p < 0.02) 

for spikes, and when the free [Ca2+]i is buffered at 500nM 0.10 ± 0.03 s-1 (N = 10)  

(p < 0.01) for all events, 0.04 ± 0.01 s-1 (N = 9) (p < 0.001) for SAFs, 0.07 ± 0.02 

s-1 (N = 10)  (p < 0.02) for Spikes. D. Thapsigargin and caffeine do not alter the 

quantal charge of amperometric events compared to thapsigargin alone, caffeine 

alone or when the free [Ca2+]i is buffered at 500nM. E. Thapsigargin and caffeine 

increase global [Ca2+]i to 505.3 ± 172 nM (N = 5) compared with typical basal 

global [Ca2+]i in thapsigargin alone 130.0. ± 23 nM (N = 7) (P < 0.03) and caffeine 

alone 71.4 ± 16 nM (N = 7) (P < 0.02).  When free [Ca2+]i is buffered at 500nM 

the mean basal global [Ca2+]i, 397.8 ± 69 nM (N = 6) is not significantly different 

compared to thapsigargin and caffeine (P = 0.59).  Error bars ± S.E.M. 
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Figure 5.5  Effect of 2 M thapsigargin with caffeine.  Chromaffin cells were 

treated with the SERCA inhibitor thapsigargin (2µM) for 20 min or longer and 

briefly exposed to caffeine by picospritzer (1 min, 20mM) to reduce internal Ca2+ 

stores.    A. When Ca2+ stores are reduced and cytosolic Ca2+ is buffered with 

EGTA as described in Methods, the mean frequency of syntillas is reduced from 

0.78 ± 0.15 (N = 15) to 0.42 ± 0.01 (N = 23) (p<0.03), and the amperometric 

event frequency is increased from 0.17 ± 0.02 (N = 20) to 0.39 ± 0.06 s-1 (N = 10) 

(p < 0.0003), left panel.  When the stores are reduced, there is no detectable 

change in the mean syntilla signal mass (25.9 ± 2.3 (n = 47) and 22.1 ± 3.4 (n = 

36), control and treated, respectively); but the mean charge of amperometric 

events increases (0.083 ± 0.014 (N = 20) and 0.143 ± 0.023 pC (N = 10) (p < 

0.026), right panel).  (Panels A and B include both spikes and SAFs.)  B. 

Frequency distribution of individual amperometric events according to charge 

(pC) in control (white, 731 events) and when stores are reduced by thapsigargin 

and caffeine treatment (stripes, 908 events).  The difference between the two 

distributions is shown on an expanded x-axis in the inset in blue.  C. Left panel 

shows that the frequency in control solution with buffer (0.09 ± 0.01 s-1 for spikes 

and 0.08 ± 0.01 s-1 for SAFs is the same as in control solution without buffer as 

given in figure 5.2C).  After treatment with thapsigargin and caffeine, the spike 

frequency increases to 0.30 ± 0.05 s-1 (p<0.00002 and N = 10).  Right panel 

shows the mean charge of spikes (0.13 ± 0.02 vs 0.17 ± 0.02 pC) or SAFs (0.02 

± 0.00 for control and treatment) in control and after thapsigargin plus caffeine 

treatment. 
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Figure 5.6 Relationship between Ca2+ released into the syntilla 

microdomain and exocytotic events.  A. Upper.  Spatio-temporal profiles of 

the Ca2+ syntilla arising from RYR2s near the plasma membrane for each 

experimental condition.  Concentric curves represent different [Ca2+]’s within the 

syntilla microdomain.  Note that the ordinate presents one of the spatial axes, the 

other two being the same as the one shown and together constituting a 

hemisphere (See Methods). Lower.  Syntilla frequency for each of the four 

experimental conditions listed above the upper panel. B.  Relationship of the SI 

for the entire cell versus frequency of exocytotic events from the entire cell 

surface.  The plot shows that the frequency of amperometric events declines to a 

baseline level as the (SI) increases.  The relationship drawn here is based on a 

10 µM syntilla microdomain (see panel A above – green line.  The equation of the 

curve to which the data is fit: 













SIk+
F=famp

1

1
0          (eq. 4) 

is based on a two state model as described in Methods, where LDCGs are either 

in an inhibited or releasable state. A least-squares fit of equation 4 to the data 

points in panel B was performed, resulting in F0 = 7.75 and k = 104.10. The 

correlation coefficient (R2) of the fit is 0.993. 
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Table 5.1  Spike and SAF parameters: control vs 100 µM ryanodine 

   Control      100 µM Ryanodine 

Spikes  mean ± sem  mean ± sem  p value 

Amplitude(pA) 9.20 ± 2.3  15.90 ± 1.6  *0.026 

†Risetime (ms) 6.78 ± 0.65  10.83 ± 0.95  *0.002 

Halfwidth (ms) 11.79 ± 0.89  15.23 ± 1.5         0.068 

‡Tau (ms)  11.45 ± 0.87  14.23 ± 1.38       0.099 

Duration (ms) 62.99 ± 4.86  84.49 ± 7.56     *0.027 

 

SAFs 

Amplitude (pA) 1.09 ± 0.03  1.84 ± 0.06  *0.000 

Duration (ms) 32.68 ± 3.6  33.55 ± 4.3  0.877 

p values are from two sample students t-tests. 
†Risetime is 10 – 90%. 
‡Tau is 67% decay  
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Table 5.2  Spike and SAF parameters: control vs 100 µM ryanodine in 

unpatched mouse chromaffin cells 

   Control     100 µM Ryanodine 

Spikes  mean ± sem  mean ± sem  p value 

Amplitude(pA) 6.9 ± 2.0  14.2 ± 2.1  *0.019 

†Risetime (ms) 19.8 ± 1.3  12.1 ± 0.9            *0.00005 

Halfwidth (ms) 21.2 ± 1.5  19.8 ± 1.2        0.47 

‡Tau (ms)  23.2 ± 1.5  18.3 ± 0.9       *0.008 

Duration (ms) 119.9 ± 11.0  89.2 ± 5.6      *0.018 

 

SAFs 

Amplitude (pA) 1.7 ± 0.11  1.8 ± 0.08  0.53 

Duration (ms) 68.5 ± 11.8  59.7 ± 8.79  0.56 

p values are from two sample students t-tests. 
†Risetime is 10 – 90%. 
‡Tau is 67% decay. 
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Table 5.3  Spike and SAF parameters: control vs Tg + caffeine buffered 

   Control             Tg + Caff 

Spikes  mean ± sem  mean ± sem  p value 

Amplitude(pA) 8.56 ± 1.9  9.71 ± 2.6  0.726 

†Risetime (ms) 9.41 ± 0.93  8.63 ± 0.88  0.552 

Halfwidth (ms) 12.72 ± 0.84  12.1 ± 0.89        0.615 

‡Tau (ms)  13.22 ± 1.2  12.0 ± 1.2       0.462 

Duration (ms) 69.79± 4.0  65.00 ± 4.3     0.424 

 

SAFs 

Amplitude (pA) 1.15 ± 0.06  1.31 ± 0.13  0.306 

Duration (ms) 38.81 ± 4.0  33.10 ± 5.5  0.414 

p values are from two sample students t-tests. 
†Risetime is 10 – 90%. 
‡Tau is 67% decay.   
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Chapter 6 

Physiologically relevant stimulation differentially regulates Ca2+ 

syntillas  

 

 

Abstract: Catecholamine and neuropeptide release from adrenal chromaffin 
cells (ACCs) into the circulation is controlled by the sympathetic division of the 
Autonomic Nervous System (ANS).  To ensure proper homeostasis tightly controlled 
exocytic mechanisms must exist both in resting conditions, where minimal output is 
desirable and under stress, where maximal, but not total release is necessary.  It is 
thought that sympathetic discharge accomplishes this task by regulating the 
frequency of Ca2+ influx through VGCCs, which serves as a direct trigger for 
exocytosis. But studies on spontaneous release in ACCs have revealed the presence 
of Ca2+ syntillas, brief, focal cytosolic Ca2+ transients released from internal stores 
and mediated by RYRs which have the opposite effect of inhibiting release.  
Therefore, assuming CICR via RYRs due to Ca2+ influx through VGCCs, we are 
confronted with a contradiction.  Sympathetic discharge should increase syntilla 
frequency and that in turn should decrease exocytosis, a paradox.  A simple 
“explanation” might be that the increase in syntillas would act as a brake to prevent 
an overly great exocytic release.  But upon investigation of this question a different 
finding emerged. We examined the role of syntillas under varying levels of 
physiologic stimulation in ACCs using simulated action potentials (sAPs) designed 
to mimic native input at frequencies associated with stress, 15 Hz, and the basal 
sympathetic tone, 0.5 Hz.  Surprisingly, we found that sAPs delivered at 15 Hz or 0.5 
Hz were able to completely abolish Ca2+ syntillas within a time frame of two 
minutes.  This was not expected.  Further, a single sAP is all that was necessary to 
initiate suppression of syntillas.  Syntillas remained inhibited after 0.5 Hz 
stimulation but were only temporarily suppressed (for 2 minutes) by 15 Hz 
stimulation, where global [Ca2+]i was raised to 1 – 2 µM.  Thus we propose that 
CICR, if present in these cells, is overridden by other processes.   Hence it appears 
that inhibition of syntillas by action potentials in ACCs is due to a new process 
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which is the opposite of CICR.  This process needs to be investigated, and that will 
be one of the very next steps in the future.  Finally we conclude that syntilla 
suppression by action potentials is part of the mechanism for elicited exocytosis, 
resolving the paradox. 
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Introduction 

 

The adrenal chromaffin cell (ACC) is a major peripheral output of the sympathetic 

nervous system.  Catecholamine and neuropeptide release from ACCs into the 

circulation is controlled by the sympathetic tone (Kidokoro and Ritchie, 1980).  At 

basal levels of stimulation associated with tone, the ACC receives input from the 

splanchnic nerve and fires action potentials (APs) at a rate of 0.5 Hz which is 

thought to result in kiss-and-run style exocytosis, whereby small fusion pores 

allow only catecholamines to be released.  At supertonic rates of stimulation, 

consistent with a sympathetic stress response, ACCs can fire APs at a rate of 15 

Hz and release both catecholamines and larger neuropeptides by full fusion 

exocytosis (Fulop et al., 2005; Fulop and Smith, 2006).  A striking feature of the 

autonomic nervous system is that only a low stimulation frequency is required for 

the activation of autonomic effectors.  For example, one nerve impulse every 

other second is sufficient to maintain the basal sympathetic and parasympathetic 

effect  known as “rest and digest” (Guyton and Hall, 2000). 

Up to this point, it had been assumed that the normal resting rate of 

catecholamine secretion by the adrenal medulla is directly determined by 

voltage-gated Ca2+ channels in response to action potentials the ACC fires based 

on sympathetic input from the splanchnic nerve (Douglas and Poisner, 1962, 
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1963; Baker and Knight, 1978).  In other words, Ca2+ influx every other second, 

serving as a direct trigger for exocytosis, is responsible for basal catecholamine 

release. 

As shown above, however, Ca2+ released from within the ACC from 

internal stores in the form of Ca2+ syntillas, brief (on the order of tens of 

milliseconds), focal cytosolic Ca2+ transients due to release from intracellular 

stores and mediated by RYRs, has a counterintuitive and opposite effect.  

Instead of triggering large dense core granule (LDCG) release, this Ca2+ inhibits 

spontaneous release (Lefkowitz et al., 2009).  Based on this finding, we 

wondered what role syntillas could serve in elicited release.  Could they also 

inhibit elicited exocytosis during physiologic stimulation matching tonic (0.5 Hz) 

and supertonic (15 Hz) input?  While the presence of syntillas during conditions 

of spontaneous release could serve as a guard to prevent mass catecholamine 

output during rest, certainly their presence during intense stimulation 

underscoring a stress response would not be so beneficial. 

Here we examine the role of syntillas under varying levels of physiologic 

stimulation.  Simulated action potentials (sAP) designed to mimic native input 

were used to stimulate ACCs at frequencies associated with stress, 15 Hz and 

the basal sympathetic tone, 0.5 Hz (Brandt et al., 1976; Chan and Smith, 2001; 

Fulop et al., 2005).  We find that physiologic input serves as an upstream 
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regulator of syntillas.  Quite surprisingly sAPs are able to completely abolish Ca2+ 

syntillas within a time frame of a few minutes, depending on the stimulation 

frequency.  Over time this suppression of syntillas leads to increases in 

frequency and amplitude of LDCG release.  A single sAP is all that is necessary 

to initiate syntilla suppression.  Furthermore, syntillas return after high frequency 

stimulation where rises in global [Ca2+] are high.  On the other hand, strikingly, 

syntillas remain suppressed long term (> 30 minutes) after stimulation with a 

single sAP. 

We propose that this action potential induced syntilla suppression may be 

triggered by Ca2+ influx or Ca2+ -mediated 2nd messenger interactions with RYR2.  

This syntilla suppression which would serve to relieve the inhibition that syntillas 

normally exert on exocytosis, instead of direct Ca2+ influx triggering of LDCGs, 

could provide the basis of long term catecholamine release into the general 

circulation.  Such a paradigm would allow for an energetically efficient, high 

fidelity mechanism where the ACC would not need to receive frequent input or 

generate APs at regular intervals to provide consistent basal release and normal 

catecholamine serum levels.  Whether the ACC fires one AP every other second 

or every 10 minutes is sufficient to suppress syntillas and maintain a basal rate of 

exocytosis.  Thus, syntilla suppression by action potentials may be an important 

part of the mechanism in elicited exocytosis. 
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This work implies that in vivo syntillas are basically absent or suppressed 

most of the time, since the animal spends the majority of its time in the resting 

state.  Accordingly, Ca2+ syntillas are only present after intense stimulation, when 

the stress response is initiated – where they are highly desirable to quickly 

punctuate exocytic release.  During this condition, when global [Ca2+]i reaches 

levels that are high enough to persistently release all LDCGs available, it is 

necessary to quickly activate a brake such that the total amount catecholamines 

and peptides within the ACC would not be released and kill the animal.  
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Materials and Methods 

 

Tight-seal, whole cell recordings on adrenal chromaffin cells (ACCs) held at -60 

mV, freshly dissociated from adult male Swiss Webster mice as described 

previously (ZhuGe et al., 2006), were performed with a HEKA EPC10 amplifier 

(HEKA Electronics, Lambrecht, Germany) on the same day as isolation. Mice (6–

8 weeks) were sacrificed by cervical dislocation in accordance with the IACUC 

guidelines at the University of Massachusetts Medical School.  Patch pipette 

solution (mM) was: 0.05 K5fluo-3 or 0.025 K5fura-2 (Molecular Probes, Eugene, 

OR), 135 KCl, 2 MgCl2, 30 Hepes, 4 MgATP, 0.3 Na-GTP, pH 7.3.  Bath solution 

(mM): 135 NaCl, 5 KCl, 10 Hepes, 10 glucose, 1 MgCl2, and 2.2 CaCl2, pH 7.2.  

Except when otherwise indicated, all reagents came from Sigma (Saint Louis, 

MO). 

Fluorescence images using fluo-3 as a Ca2+ indicator were obtained using 

a custom-built wide-field digital imaging system described previously (ZhuGe et 

al., 2006).  To assess the properties of individual Ca2+ syntillas quantitatively, the 

signal mass approach was used, as conceptualized by Sun et al. (Sun et al., 

1998) and developed for wide-field microscopy of Ca2+ sparks by ZhuGe et al. 

(ZhuGe et al., 2000).  The purpose of this approach is to obtain a measure of the 

total amount of Ca2+ (as opposed to concentration of Ca2+) released by a focal 
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Ca2+ transient.  Global [Ca2+]i was measured by fluorescence with cell-

impermeant fura-2 (25 µM) that was loaded into cells through the patch pipette 

and measured as previously described (Grynkiewicz et al., 1985; Becker and 

Fay, 1987; Drummond and Tuft, 1999).  Corrections for buffers in the calculations 

of signal mass have been described previously (Lefkowitz et al., 2009). 

 

Experimental recording protocols 

Fluo-3 Ca2+ imaging and amperometry.  After the patch is ruptured to provide the 

whole cell configuration, we waited at least two minutes for the fluo-3 to reach 

equilibrium in the cell.  In a typical experiment, when the fluorescence was 

stable, we began to record two 4-second image sequences in a row (200 images 

separated by 20ms, with an exposure time of 10ms).  Single 4-second recordings 

were made thereafter over time as indicated in each experiment.  Amperometric 

recordings were made in 2 or 4 minute segments over time as indicated in each 

experiment.  In some cases the data was binned into 15 second intervals to 

follow amperometric effects over time. 

Simulated Action Potentials (sAPs).  Patched cells with access resistances less 

than 20 MΩ and leak conductances below 30 pA were selected for stimulation 

experiments where they received trains of sAPs at either 15 Hz or 0.5 Hz and in 
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some cases just a single sAP.  Simulated action potential waveforms consisted 

of a 3-step ramp as follows (start potential (mV), end potential (mV), duration 

(ms)): 1) -80, 50, 2.5; 2) 50, -90, 2.5; 3) -90, -80, 2.5.  This waveform evoked 

Ca2+ and Na+ currents statistically identical to native action potentials and, thus, 

are considered functionally equivalent (Chan and Smith, 2001).  We found that 

our K-Cl based internal solution produced similar Ca2+ and Na+ currents to those 

reported by Chan and Smith, (2001) where they employed a Cs-glutamate based 

internal solution. 

  

Amperometric measurements. 

Quantal release of catecholamine from single chromaffin cells was monitored 

electrochemically using carbon fiber electrodes with a tip diameter of 5.8 µm 

(ALA Scientific Instruments, Westbury, NY), as described before (ZhuGe et al., 

2006).  Amperometric signals, i.e., oxidation currents, were monitored with a VA-

10 amplifier (NPI Electronic, Tamm, Germany), filtered at 0.5 kHz, digitized at 1 

kHz with a Digidata 1200B acquisition system, and acquired with Patchmaster 

software from HEKA.  Amperometric spikes were identified and analyzed using 

the Mini Analysis Program (Synaptosoft, Decatur, GA).  Each event was visually 

inspected so that artifacts could be rejected from the analysis.  The root mean 

square noise in acquired traces was typically < 0.25 pA as determined by the 
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Mini Analysis program.  The detection threshold for an event was set to 2.5 times 

the baseline root mean square.   Overlapping events were rare, and were 

excluded from analysis.  To minimize errors due to possible variation in 

exocytosis among cells from different animals, cells from each animal were 

divided into two groups: one as control and the other treated with agents such as 

ryanodine.  SAFs were separated from spikes based on criteria somewhat similar 

to (Wang et al., 2006), where an index of event shape was used to evaluate the 

“rectangularity” of a putative SAF.  In the present study, to qualify as an SAF an 

event had to meet the criteria of an amplitude less than 2.5pA and a ratio of  full-

width at half-height to event duration greater than 0.25.  Event durations for 

spikes and SAFs are defined as the duration between the time when the event 

signal exceeds, and the time when it returns to, the detection threshold amplitude 

as defined above. 

 

Statistical analyses 

Statistical analyses and plots were performed in OriginPro 8.0 (Origin, 

Northampton, MA).  In all cases except for syntilla frequency and signal mass, 

data was first averaged per cell and is reported as mean ±SE of all cells.  Data 

from syntilla frequency and signal mass is reported, as previously (ZhuGe et al., 

2006), as mean ±SE of individual records and mean ±SE of individual syntillas, 
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respectively. Statistical analysis of difference was made using a Student's t-test, 

one-way ANOVA or Mann-Whitney test as indicated in the figure captions.  A p-

value less than 0.05 is significant except in multiple comparisons, where the 

appropriated correction was applied.  Significance is indicated by an asterisk. N 

indicates the number of cells and n the number of events, i.e., syntillas or 

amperometric spikes. 
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Results 

 

Under conditions whereby an ACC receives no input stimulation, these cells still 

participate in a form of spontaneous exocytosis, whereby LDCGs are released in 

a non-concerted manner (i.e., spontaneous release).  Our group has recently 

shown that Ca2+ released from ryanodine-sensitive internal stores in the form of 

Ca2+ syntillas, serves to inhibit this spontaneous release, an unusual role for Ca2+ 

in exocytosis (Lefkowitz et al., 2009).  Based on this finding, we wondered what 

role syntillas could serve in elicited release.  That is, the presence of syntillas 

during conditions of spontaneous release seems to make sense from a 

physiologic perspective in that syntillas could serve as a guard to prevent mass 

catecholamine output when the cell is at rest.  But what role, if any, could 

syntillas play in elicited release where at times massive catecholamine output is 

not only desirable but crucial?  To examine this question, freshly dissociated 

mouse ACCs were patched in the whole cell voltage-clamp configuration, held at 

-60 mV and stimulated by 15 Hz or 0.5 Hz trains of simulated action potential 

(sAP) waveforms designed to mimic native physiologic electrical firing patterns 

associated with stress-like sympathetic activation or basal sympathetic tone 

(Brandt et al., 1976; Kidokoro and Ritchie, 1980).  Also, in a set of preliminary 

experiments, unpatched cells were stimulated with the ACC’s native stimulant, 
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acetylcholine (ACh), designed to induce a single action potential.  The Ca2+ 

indicator dyes fluo-3 and fura-2 were used to detect Ca2+ syntillas and monitor 

global cytosolic [Ca2+], respectively. Amperometry was used to follow the effects 

on individual exocytotic events. 

 

Stress-associated elicited release, 15 Hz 

To examine the role of Ca2+ stores during elicited release, patched ACCs were 

stimulated at 15 Hz and Ca2+ syntillas were monitored over time according the 

protocol depicted in Figure 6.1 A.  Strikingly, stressful stimulation completely 

abolishes the presence of syntillas by 2 minutes (Figure 6.1 A, Left).  Equally 

interesting, the syntillas begin to return 3 minutes into stimulation and the syntilla 

frequency is restored to near pre-stimulus levels 2 minutes after the stimulation 

has ceased.  In addition to the frequency of syntillas, we also monitored the 

average magnitude of Ca2+ syntillas by the signal mass approach (see Methods) 

(Figure 6.1 A, Right).  Briefly, the signal mass is a measure of the total amount of 

Ca2+ released per individual syntilla, given in units of moles of Ca2+.  During the 

initial 60 seconds of stimulation the average magnitude of Ca2+ syntillas showed 

a decreasing trend, with a significant difference detected at 60 seconds.  Halfway 

through the 15 Hz stimulation, as the frequency of syntillas began to return to 

pre-stimulus levels, the signal mass of these recovering syntillas showed no 
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significant difference from those recorded before stimulation.  Thus, 15 Hz 

stimulation seems to temporarily suppress both the frequency and signal mass of 

Ca2+ syntillas.  

 To examine the effect of temporary syntilla suppression caused by 15 Hz 

stimulation on elicited exocytosis, we next made amperometric recordings from 

the ACCs before, during and after stimulation and followed the effect over time.  

Figure 6.1 B, (Top) shows that the frequency of amperometric events initially 

undergoes a dramatic, nearly 8-fold increase during the first 30 seconds of 

stimulation, then tapers off to a more moderate, but sustained 2- to 3-fold 

increase about halfway through the stimulation.  The amperometric frequency 

returns to baseline at the end of stimulation.  The effect on the magnitude of 

individual amperometric events, measured by the quantal charge, Q is shown in 

Figure 6.1 B, (Bottom).   

  During 15 Hz stimulation there is obviously another source of Ca2+ in 

addition to release from stores, that of Ca2+ influx.  Thus, as a next step we 

examined the intracellular global [Ca2+] level profile during 15 Hz stimulation.  

That is, if influx over the course of a 4 minute 15 Hz stimulation could lead to 

sustained, increased intracellular Ca2+ levels, then it would be more likely that 

Ca2+ influx, as opposed to suppression of Ca2+ release from stores, accounts for 

the increase in exocytosis during elicited release.  Figure 6.2 shows the results of 
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these experiments where global [Ca2+]i is indeed increased to super micromolar 

levels throughout stimulation.  While we observed an initial transient increase in 

[Ca2+]i upon stimulation that might be explained by CICR (see Discussion), there 

was also a curious spike-like increase in [Ca2+]i immediately before or just as 

stimulation ceased, which could not be explained.   

  

Sympathetic tone associated elicited release, 0.5 Hz 

The ability of 15 Hz stimulation to suppress syntillas would seem to make sense, 

given that the function of syntillas serves to decrease exocytosis.  That is, during 

stressful stimulation which demands high levels of catecholamine output, it would 

be desirable not only to invoke Ca2+ influx, but also to relieve the braking 

mechanism that syntillas exert on exocytosis.  But what about conditions of 

elicited release that begin to approximate spontaneous release, where we know 

syntillas to be present?  Do syntillas persist under low levels of stimulation that 

are associated with the sympathetic tone?  To answer this question we 

stimulated ACCs at 0.5 Hz and monitored the effects on both syntillas and 

exocytosis in the same manner as we did in the 15 Hz stimulation experiments 

(Figure 6.3).  Stimulation at 0.5 Hz led to a complete suppression of syntillas by 2 

minutes, similar to that observed during 15 Hz stimulation.  But unlike the 15 Hz 

stimulation, the syntillas never recovered, even after stimulation ceased (Figure 
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6.3 A, (Left)).  This was an overall surprising result to us.  We expected syntilla 

suppression to be less during low stimulation, hypothesizing that a consistent 

braking system could moderate the exocytic output under basal conditions.  In 

contrast, the syntilla suppression was more complete.  The mean signal mass of 

the residual syntillas during the first minute 0.5 Hz stimulation was not 

significantly different than before stimulation (Figure 6.3 A, (Right)). 

 As expected, the effect of 0.5 Hz stimulation on exocytosis was less 

dramatic, leading to a sustained 3 – fold increase in amperometric frequency 

during the first 2 minutes of stimulation (Figure 6.3 B, (Top)).  Interestingly, 

stimulation beyond the first 2 minutes had no further effect on amperometric 

frequency.  On the other hand, the amperometric frequency began to rise again 

between one and two minutes post stimulation, a point in time where there is no 

external stimulation and syntillas have been suppressed for about 5 minutes.  

This may offer a first hint at the timeframe in which the absence of syntillas could 

result in exocytic increases (see Discussion).  The mean quantal charge of 

amperometric events showed a rising trend upon 0.5 Hz stimulation, similar to 

that observed during 15 Hz stimulation (Figure 6.3 B, (Bottom)).  The difference 

was, however, that after 0.5 Hz stimulation stopped, the amperometric charge 

continued to rise.  It is worthwhile noting at this point, that the continued rise in 

charge correlates well with a prolonged absence of syntillas after 0.5 Hz 
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stimulation.  This is in contrast to 15 Hz stimulation, where once the syntillas 

returned to near control levels, the amperometric charge also returned to control 

levels.  The implications of this are significant, suggesting that during 0.5 Hz 

levels of stimulation associated with sympathetic tone, occasional stimulatory 

input may only serve to override the default state of inhibition which syntillas 

exert on exocytosis. 

 To be sure of our interpretation of these results it was necessary to look 

at the effect of low frequency stimulation on global cytosolic [Ca2+] over the same 

time frame.  Figure 6.4 A shows a representative global [Ca2+]i recording with 

fura-2 from an individual ACC stimulated at 0.5 Hz.  During the first 30 seconds 

of stimulation the [Ca2+]i rises transiently to levels near 300 nM, then returns to 

near resting levels until stimulation ceases.  Again, we observed an 

unexplainable transient spike in [Ca2+]i at the end of stimulation.  Averaged fura-2 

recordings show that throughout most of the 0.5 Hz stimulation, [Ca2+]i levels 

linger around 200 nM (Figure 6.4 B).  This concentration of [Ca2+]i is not sufficient 

to induce exocytotic release, as demonstrated in a previous study where global 

[Ca2+]i was artificially raised to 500 nM with CaCl2 and EGTA without a 

concomitant increase in basal amperometric frequency examined after a 2 – 5 

minute period for [Ca2+]i equilibration  (Lefkowitz et al., 2009).   
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A single action potential 

Low frequency stimulation at 0.5 Hz, which is associated with basal sympathetic 

tone, can significantly suppress syntillas within 1 minute.  In other words, roughly 

30 sAPs are capable of causing this inhibition.  Therefore, toward elucidating a 

mechanism by which sAPs could suppress syntillas, we next examined what the 

minimal stimulation was necessary to cause the inhibition.  We performed 

experiments where ACCs were given only a single sAP and followed the effects 

on syntillas and exocytosis (Figure 6.5).  We found that a single sAP caused near 

complete suppression of syntillas by 5 minutes and that this suppression 

persisted for 20 minutes, the entire length of the experiment (Figure 6.5 A).   

 Figure 6.5 B shows the amperometry recording protocol we used in these 

experiments.  Basically a 4 minute amperometric recording was performed 

starting 5 minutes after the ACC received a sAP.  The 5 minute pause was 

chosen based on the accompanying syntilla data which showed that syntillas 

were almost completely suppressed by this point in time.  Syntilla suppression 

between 5 – 9 minutes resulted in significant increases in both the frequency and 

charge of all amperometric events (Figure 6.5 C).  The effect on amperometric 

charge was further examined by sorting the events into stand alone foot events 

(SAFs), which are taken to represent kiss-and-run exocytic events and spike 

events, which represent more full release either though full fusion or kiss-and-run 
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modes of exocytosis (Wang et al., 2006; Gong et al., 2007).  We found a 

significant increase in the charge of SAFs, but not in spikes.  In fact, though the 

overall effects on amperometry were significant, they were not very dramatic.  

For example, the mean charge of all amperometric events was only slightly 

increased from 0.12 ± 0.01 pC to 0.16 ± 0.04 pC, only half the value that 

prolonged syntilla suppression for 30 minutes or more is capable of (See below 

and +ryanodine in Table A1 of Appendix A). 
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Preliminary Results and Discussion 

 

The following experiments, which are preliminary data only, have been included 

in this chapter due to their usefulness in advancing speculation about 

mechanisms regarding the syntilla process and its effects on exocytosis  

 

0.5 Hz stimulation after blocking RYRs for 30+ minutes 

If the absence of syntillas were to account for the long term exocytosis of 

catecholamines under basal conditions, then blocking syntillas for a prolonged 

period of time with ryanodine and then stimulating the ACCs at 0.5 Hz should 

yield similar results to blocking the syntillas with ryanodine alone, since both 

treatments decrease syntillas.  For example, since increases in amperometric 

frequency stop after the first 2 minutes of 0.5 Hz stimulation (Figure 6.3 B), then 

syntilla suppression should be the only acting mechanism by which to increase 

exocytosis thereafter.   

 To test this idea we performed experiments where ACCs were stimulated 

at 0.5 Hz after syntillas were first blocked for 30 minutes or longer using 100 µM 

ryanodine, a concentration known to be a potent inhibitor of syntillas in mouse 

ACCs (ZhuGe et al., 2006; Lefkowitz et al., 2009).  We then recorded Ca2+ 
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syntillas and amperometry and compared these results with experiments where 

syntillas were blocked with ryanodine long term, without additional stimulation 

(Figure 6.6).  As expected, both syntilla frequency and signal mass were 

significantly suppressed compared to those normally observed in untreated 

ACCs (Figure 6.6 A).  In the experiment with 0.5 Hz stimulation on top of long 

term ryanodine treatment, syntillas were recorded immediately after the 0.5 Hz 

stimulation ceased.  At this point, syntilla frequency was essentially completely 

suppressed, 0.028 ± 0.018 Hz compared to normally observed frequencies 

around 0.8 Hz. 

 There are multiple points to consider in the amperometry data from these 

experiments (Figure 6.6 B).  Figure 6.7 has been created to make comparisons 

with the previous 0.5 Hz data in Figure 6.3 easier.   

 First, 0.5 Hz stimulation after ryanodine treatment yields a generally 

higher, almost 2-fold increase in amperometric frequency compared to 0.5 Hz 

stimulation alone (Figure 6.7 B, light blue boxes).   

 Second, the increased amperometric frequency lasts throughout the 

duration of the 0.5 Hz stimulation when ryanodine is present, whereas during 0.5 

Hz stimulation alone the frequency increase is gone after 2 minutes (Figure 6.7 

B, light blue boxes).  The two dark blue shaded boxes superimposed on the 

amperometric frequency data in Figure 6.7 B represent the timeframe during 
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which 0.5 Hz stimulation causes a nominal rise in global [Ca2+] above resting 

levels, to about 200 - 250 nM.  As shown in the amperometric data with 0.5 Hz 

stimulation alone, this transient rise in [Ca2+]i can at best produce an increase in 

frequency for up to 2 minutes.  Therefore the prolonged increase in 

amperometric frequency observed when ryanodine is present must be due to the 

absence of syntillas, since we have previously shown that 100 µM ryanodine 

does not alter resting [Ca2+]i levels (Lefkowitz et al., 2009).   

 Third, during 0.5 Hz stimulation on top of ryanodine, both the 

amperometric frequency and charge data are on average decreased compared 

to ryanodine alone (Figure 6.7 B and C).  This is especially noticeable in the 

amperometric charge data where there is a decreasing trend from around 0.3 pC 

to about 0.15 pC over the course of the stimulation.  A possible explanation for 

this could be that Ca2+ influx during the 0.5 Hz stimulation has impinged on the 

syntilla microdomain, partially restoring the inhibitory influence that Ca2+ within 

this microdomain normally exerts over exocytosis.  It would indeed have been 

interesting to see if 0.5 Hz stimulation for a longer period of time could restore 

the amperometric parameters back to normal levels, before syntillas were 

blocked.  Alternatively, if the effects on frequency and charge are separable, then 

the re-release of partially loaded granules due to local recycling during 0.5 Hz 

stimulation could account for the decreasing trend in charge. 
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 Fourth, the combined data from the experiments with 0.5 Hz alone, 

ryanodine alone and then ryanodine + 0.5 Hz reveal a time frame for which the 

absence of Ca2+ within the syntilla microdomain can lead to a maximal effect on 

exocytosis.  The superimposed yellow boxes in Figure 6.7 B and C represent the 

point at which syntillas have been completely or near completely blocked for at 

least 5 minutes and up to more than 30 minutes.  The point where syntillas have 

been suppressed for about 5 minutes (Figure 6.7 A, Left) seems to roughly 

correlate with the point where the amperometric frequency and charge begin to 

increase (Figure 6.7 B, Left).  By 30 minutes or longer without sufficient Ca2+ 

release into the syntilla microdomain (e.g., the data with ryanodine alone), the 

amperometric data have reached maximum values.  For example, in mouse 

ACCs the mean charge of amperometric events seems to be maximal around 

0.35 pC (See Table A1 in Appendix A).  Together this suggests that the absence 

of Ca2+ release into the syntilla microdomain for 30 minutes or longer is enough 

to exert a maximal effect on exocytosis.  The fact that 0.5 Hz stimulation provided 

after syntillas have been suppressed long term can depress amperometric values 

back toward normal levels also suggests a mechanism by which occasional Ca2+ 

influx through VGCCs entering into the syntilla microdomain could balance out 

the effect of syntilla absence (See Discussion). 
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Eliciting a single action potential with ACh in unpatched ACCs 

The previous experiments seemed to indicate that it was necessary for Ca2+ 

release into the syntilla microdomain to be absent for a period of time to relieve 

the inhibitory effect that syntillas normally exert on exocytic output.  For example, 

in the single sAP experiments, if syntillas were suppressed for 5 – 9 minutes, 

then there was only a moderate increase in amperometric frequency and charge.  

On the other hand, if syntillas were suppressed for 30 minutes or more (e.g., the 

ryanodine experiments), then there was a maximal effect on exocytosis.  

Therefore we next wanted to establish an actual time frame in which syntillas had 

to be absent to relieve the inhibition of exocytosis.  We hypothesized that the 

longer syntillas are suppressed, the further exocytosis should increase in 

frequency and charge.       

 To test this, we followed the effects on amperometry over a much longer 

period of time, up to 30 minutes after syntillas were suppressed.  But to monitor 

amperometry constantly over 30 minutes or more we needed to switch to 

unpatched cells, since we found it to be technically very difficult to record from 

patched ACCs beyond 20 minutes.  Moreover, we had previously shown that 

blocking syntillas in unpatched ACCs has the same effect on amperometry as in 

patched cells (Lefkowitz et al., 2009).  Of course, in unpatched cells we could not 

stimulate the cell with sAPs.  Instead, we used an ultra brief, 25 ms puff of ACh, 
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the native stimulant of the ACC, which has been demonstrated to elicit single 

action potentials in ACCs (Cuchillo-Ibanez et al., 2002; de Diego et al., 2008).  

We have found in our own current clamp recordings that this protocol works quite 

well to elicit single and occasionally double or triple action potentials in mouse 

ACCs.  From our own voltage clamp recordings, we further find that these brief 

puffs of ACh result in currents similar to those of sAPs.  We did not use high 

concentrations of ryanodine to block syntillas since our experience has shown 

that full blockade of RYRs with 100 µM ryanodine can occur anywhere between 

17 – 30 minutes.  Therefore we would have no way of knowing at what point in 

time syntilla blockade actually began. 

 Figure 6.8 A depicts a diagram of the protocol used to record 

amperometry before and after a brief ACh puff was used to elicit an action 

potential and presumably block syntillas.  The effects on amperometry followed 

over time are shown both for ACCs that were treated with an ACh puff and those 

that were not (Figure 6.8 B and C, red and black, respectively).  In untreated cells 

there was no significant increase in amperometric frequency or charge 

throughout the duration of recording.  On the other hand, ACCs that were 

administered a brief puff of ACh experienced an increase in both amperometric 

frequency and charge that was significantly different from pre-treatment basal 

levels by around 15 minutes.  Note that these are repeated measures 
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experiments, such that comparisons should be made within each group between 

points in time after the ACh puff to the point in time before the ACh puff (e.g., 

basal is the control).  Statistical comparisons are not made between groups; the 

treated and untreated groups are merely overlaid for comparison. 

 The effects on SAF and spike events were also examined over time 

(Figure 6.8 D).  By plotting a ratio of the mean spike frequency over the mean 

SAF frequency we can get a quantitative index of the effects of syntilla 

suppression on the mode release over time.  For example, a ratio below 1.0 is 

interpreted as a preference for the kiss-and-run mode of exocytosis while a ratio 

above 1.0 represents a preference for more complete release (Wang et al., 

2006).   In ACCs treated with an ACh puff these cells seem to switch to a more 

full release mode between 10 – 19 minutes, a time frame during which syntillas 

would have been suppressed for 8 – 17 minutes (Figure 6.8 D, Left).  Consistent 

with this observation, the ACh puff has no effect on the amperometric charge of 

SAFs over time (Figure 6.8 D, Right - Top), while syntilla suppression does 

cause a significant increase in the amperometric charge of spikes (Figure 6.8 D, 

Right - Bottom).  This is similar to our previous findings, where prolonged syntilla 

blockade with 100 µM ryanodine primarily affected spikes and not SAFs 

(Lefkowitz et al., 2009). 

 



 

177 

 

Discussion 

  

It would be lethal if the entire catecholamine content of the ACC were to be 

released at once.  To prevent this, the sympathoadrenal system must employ 

tightly controlled mechanisms to fine tune exocytic output.  This study finds that 

physiologically relevant forms of stimulation are able to regulate Ca2+ syntillas in 

the ACC, which have previously been found to inhibit spontaneous exocytosis in 

these cells.  Thus, physiological regulation of Ca2+ syntillas could importantly add 

to the mechanisms by which the cell can fine tune output, based on input.   

 

15 Hz 

High frequency stimulation with sAPs, a condition matched to the true 

sympathetic stress response (i.e., “fight or flight”), was able to temporarily 

suppress Ca2+ syntillas.  The temporary syntilla suppression, however, is unable 

to account for the immediate increase in exocytic output as measured by 

amperometry.  That is, prima facie, it appears that as syntillas are depressed the 

frequency of exocytotic events is increased and as the syntillas return, the 

frequency of amperometric events goes back down (Figure 6.1).  But if syntilla 

suppression were responsible for the increase in exocytosis during elicited 
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release, then there would seem to be some inconsistencies.  For example, 

amperometric frequency does not peak at 2 minutes, the time where syntillas are 

completely abolished.  Instead, amperometric frequency is highest during the first 

30 seconds of stimulation, when syntillas are actually still present, albeit at a 

lower frequency.  Moreover, the amperometric charge continues to increase 

throughout stimulation, even as syntillas begin to return to basal levels.  

Therefore, it is unlikely that syntilla suppression alone could account for elicited 

release during 15 Hz stimulation. Instead, increased global [Ca2+]i, in the 1 – 2 

µM range, most likely produces the amperometric increase.  Examination of 

global [Ca2+]i levels in individual ACCs over time before, during and after the 15 

Hz stimulation reveals [Ca2+]i profiles bearing remarkable resemblance to the 

amperometric frequency profile during 15 Hz stimulation over the same time 

course (compare Figure 6.2 A (Left) to 6.1 B (Top)).  During the first 15 – 30 

seconds of intense stimulation, global [Ca2+]i consistently spiked to levels 

between 5 and 10 µM, the same timeframe in which the amperometric frequency 

profile spiked to 8 – fold basal levels.  Furthermore, global [Ca2+]i was sustained 

at levels between 1 – 2 µM throughout the duration of the 15 Hz stimulation, well 

above the levels known to induce exocytosis ACCs (Augustine and Neher, 1992; 

Neher and Augustine, 1992), and returned to basal [Ca2+]i levels immediately 

after stimulation stopped, again consistent with the amperometric frequency 

profile (Figure 6.2 B).  Therefore, it is most likely that syntilla suppression does 
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not account for immediate increases in exocytosis elicited by 15 Hz stimulation – 

instead increased [Ca2+]i does. 

 The fact that syntillas come back during the second half of the 15 Hz 

stimulation, where [Ca2+]i remains high, and are restored to near basal levels 

after stimulation, may provide some insight into the mechanism by which different 

levels of stimulation can differentially regulate the Ca2+ syntilla.  This is discussed 

below and in detail in the final chapter.    

 

0.5 Hz 

On the other hand, low frequency stimulation, a condition matched to that set by 

the sympathetic tone under basal conditions (i.e., “rest and digest”), was able to 

completely suppress Ca2+ syntillas.  What’s more, the syntilla suppression 

persisted even after stimulation ceased.  It is very interesting that any increases 

in exocytic output as measured by amperometry under this condition were gone 

by 2 minutes, which implies that 0.5 Hz input associated with the sympathetic 

tone can only account for exocytic increases in the short term.  That is, Ca2+ 

influx serving as a direct trigger for exocytosis during basal levels of stimulation is 

probably not the controlling factor for long term output, since it was only the first 
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two minutes of 0.5 Hz stimulation that induced an increase in exocytic output 

above that which was already present under spontaneous release conditions. 

 This, however, creates a paradox, since the ACC constantly receives 

stimulation and low levels of catecholamine are constantly secreted at basal 

levels enough to maintain blood pressure, enteric activity and insulin secretion.   

In other words, in vivo, secretion does not just stop after 2 minutes.  But, this only 

seems paradoxical when thinking in terms of Ca2+ influx only as a direct trigger 

for exocytosis.  For example, it may be that the moderate Ca2+ influx occurring 

approximately every other second during resting conditions serves multiple 

purposes.  By suppressing Ca2+ release from internal stores in the form of Ca2+ 

syntillas, moderate stimulation could additionally serve to relieve the inhibitory 

pathway of exocytosis that Ca2+ released into the syntilla microdomain normally 

activates.  Therefore, the major driving force of long term exocytic output under 

resting conditions may be accomplished by syntilla suppression.  Of course, it is 

unclear which component of stimulation leads to syntilla suppression.  But for 

reasons discussed below and in the final chapter, it is tempting to speculate that 

direct exposure of RYR2’s to low levels of Ca2+ or Ca2+ -activated 2nd 

messengers could be responsible. 
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Single sAP 

The time frame for syntilla suppression after a single sAP was only slightly slower 

than in the experiments with 0.5 Hz stimulation, with 1 sAP causing near 

complete suppression by 2 minutes and lasting at least 20 minutes thereafter.  

The prolonged syntilla inhibition in these experiments was not an artifact due to 

run down as a result of long term whole cell patch clamping, since syntillas could 

be recorded at normal frequencies up to 25 minutes after conversion to the whole 

cell configuration in ACCs that were not given a sAP.   

 Though the ability of a single action potential to completely abolish Ca2+ 

syntillas was a surprising finding to us, the phenomenon is not entirely without 

precedent.  That is, in bullfrog sympathetic neurons, the sister cells of ACCs, 

stimulation with a 50 ms depolarizing pulse was found to inactivate Ca2+-induced 

Ca2+ release (CICR) via RYRs within a time frame of 10 – 20 ms (Akita and 

Kuba, 2008).  The faster inactivation time could be explained by the much higher 

amounts of Ca2+ influx encountered during a 50 ms depolarizing square pulse, 

versus a simulated action potential (de Diego et al., 2008).  It is also worth noting 

that in this study, recovery from inactivation was based on global [Ca2+]i levels. 
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Ca2+ influx into the syntilla microdomain 

If basal stimulation were to physiologically serve the purpose of suppressing 

syntillas long term, then how do we explain our preliminary experiments with 

ryanodine and ACh which show that syntilla suppression for more 30 minutes 

can lead to maximal exocytic output?  In other words, why don’t we observe 

maximal catecholamine output in vivo under resting conditions where ACCs are 

thought to fire APs at a frequency around 0.5 Hz?  Again, the answer may be 

that Ca2+ influx through VGCCs during low frequency stimulation serves multiple 

purposes in addition to a direct exocytic trigger; First, as discussed above, to 

inhibit Ca2+ release from RYRs into the syntilla microdomain, this serves to 

increase exocytosis and; Second, to provide at spaced out intervals a nominal 

amount of Ca2+ influx sufficient to impinge upon the syntilla microdomain and 

thereby activate the same inhibitory process on exocytosis (see ryanodine + 0.5 

Hz experiments in Preliminary Results).  Thus, low frequency Ca2+ entry could 

provide the perfect balance between syntilla suppression and activation of the 

syntilla-mediated exocytic inhibition pathway. 
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CICR in Mouse ACCs? 

Both of the fura-2 experiments showed a transient spike in the [Ca2+]i upon 

stimulation, with 15 Hz stimulation producing a much larger spike than 0.5 Hz.  

Whether the initial spike shape in [Ca2+]i  was caused exclusively by Ca2+ influx, 

followed by Ca2+ channel inactivation or Ca2+-induced-Ca2+-release (CICR) 

followed by inhibition of CICR (see (Rios et al., 2008)) is unknown.  Though 

CICR is prevalent in rat ACCs (Alonso et al., 1999; Inoue et al., 2003), at least 

one group has suggested that CICR does not play a significant role in mouse 

ACCs (Rigual et al., 2002).  On the other hand, we find that if a mouse ACC is 

stimulated at 15 Hz and then stimulated at 15 Hz again after a period of rest, 

then the initial spike in [Ca2+]i is much smaller in the later stimulation (Figure 6.2 

A, (Right)).  This could be more easily explained by a CICR mechanism where 

stores were depleted or RYRs were inactivated after the first stimulus, versus the 

alternative explanation where Ca2+ channels remained inactivated over the 

course of minutes.  Further experiments monitoring the levels of store Ca2+ with 

mag-fura-2 will provide insight into this and may be useful in elucidating the 

mechanism by which stimulation is able to operate/suppress syntillas.  
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How does physiologic stimulation regulate Ca2+ syntillas? 

How different levels of physiologically relevant stimulation can differentially 

regulate Ca2+ syntillas is still unknown.  This study does, however, offer some 

clues for speculation into the mechanism, which are addressed in Preliminary 

Results and Discussion and discussed in detail in the final chapter.   

 

How do  Ca2+  syntillas regulate exocytosis? 

We propose that the entry of Ca2+ into the syntilla microdomain activates an 

inhibitory path capable of suppressing exocytosis.  The time frame for exocytic 

inhibition by the syntilla, about 2 – 4 minutes (see preliminary experiments with 

ryanodine + 0.5 Hz), is much faster than the time frame to relieve this inhibition 

(i.e., the absence of Ca2+ in the syntilla microdomain), which begins around 5 

minutes and can take up to 30 minutes to achieve complete relief of exocytic 

inhibition.  This implies a period of time necessary between the syntilla target and 

the eventual suppression of LDCG exocytosis.  

Accordingly, the regulation of LDCG movement from a reserve pool to the 

readily releasable pool could satisfy these time restrictions.  In this case the   

Ca2+ syntilla would target the F-actin network which is thought to serve as a 

barrier to LDCG movement.  In one case, Ca2+ entry into the syntilla microdomain 
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would directly or indirectly promote actin polymerization and maintenance of the 

barrier, which could be accomplished within a time frame of minutes.  The 

absence of Ca2+ in the syntilla microdomain for a prolonged period of time would 

lead to destabilization and breakdown of the actin barrier, a process that would 

seem to be consistent with the progressive increase in exocytosis over the 

course of 30 minutes of syntilla suppression.  On the other hand, not only does 

F-actin serve as a barrier to LDCG movement, but it also provides the tracks for 

LDCG transport to the membrane. Thus, in another case, syntillas could serve to 

block the movement of LDCGs to the membrane by removing F-actin tracks.  

These mechanisms as well as those involving other molecular targets such as 

synaptotagmin1 and synapsin are considered more detail in the final chapter. 

 

Ca2+ syntillas in vivo 

The Ca2+ syntilla can be seen as a brake on exocytosis.  Once the brake is 

relieved, exocytic output begins to increase.  Thus, during normal resting 

conditions, Ca2+ influx must intermittently enter the syntilla microdomain and 

reapply the brake to ensure steady and slow release.  This type of system, where 

exocytic output is largely driven not by constant activation of a trigger, but rather 

by intermittent suppression of an inhibitory pathway is very attractive from an 

energetic point of view.  That is, the ACC does not need to receive frequent input 
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or generate action potentials at regular intervals (as evidenced by the fact that a 

single action potential can initiate the suppression) to provide consistent basal 

release and normal catecholamine output. 
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Figure 6.1 Effects of stressful stimulation on Ca2+ syntillas and 

exocytosis.  A. 15 Hz stimulation temporarily suppresses syntillas.  (Left)  

Simulated action potentials (sAPs) were applied to the ACC at a frequency of 15 

Hz for 4 minutes and syntilla recordings were made before, during and after 

stimulation as indicated in the figure.  The frequency of syntillas is completely 

suppressed after 2 minutes of stimulation but begins to return by 3 minutes 

(N=12cells, 54 records).   (Right)  The mean signal mass of individual syntillas is 

decreased after 1 minute of stimulation and begins to return to pre-stimulus 

levels 3 minutes into stimulation.  Red bars indicate period of stimulation and 

numbers inside bars indicate number of records.  Asterisks represent statistical 

significance at the P<0.05 level compared to -60 s (or pre-stimulus) using a one 

ANOVA and Fisher’s LSD test for pair-wise multiple means comparisons.  B. To 

follow the effect of 15 Hz stimulation on exocytosis over time, amperometric 

recordings were made before, during and after stimulation and the data was 

binned into 15 s intervals.  (Top) The frequency of amperometric events 

immediately increases upon stimulation and gradually tapers off to near basal 

levels as stimulation continues.  (Bottom)  Oppositely, the amperometric charge 

shows a gradually increasing trend over time.  Due to low event frequencies, 

charge data was divided into 30 s intervals before and after stimulation (N = 8 

cells, 32 events before, 630 during and 39 after stimulus). 
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Figure 6.2  Global [Ca2+]i during 15 Hz stimulation.  The Ca2+ indicator dye 

Fura-2 was used to assay changes in global intracellular [Ca2+] before, during 

and after stimulation by sAP’s delivered at 15 Hz.  A. (Left) Representative 

recording from an individual ACC stimulated at 15 Hz.  (Right) Another 

representative recording from a cell that was stimulated at 15 Hz after first being 

stimulated at 0.5 Hz with 2 minutes of rest in between shows a smaller initial 

transient increase.  B.  Mean [Ca2+]i  for each 60 s interval is shown before, 

during and after stimulation. (N= 4 cells). 
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Figure 6.3  Effects of basal stimulation (0.5 Hz) on Ca2+ syntillas and 

exocytosis.  A. 0.5 Hz stimulation completely suppresses syntillas.  (Left)  sAPs 

were applied to the ACC at a frequency of 0.5 Hz for 4 minutes and syntilla 

recordings were made before, during and after stimulation.  The frequency of 

syntillas is completely suppressed after 2 minutes of stimulation and remains 

suppressed after stimulation stops (N=15cells, 114 records).   (Right)  The mean 

signal mass of individual syntillas is not significantly altered during the 2 minutes 

of stimulation while syntillas are being suppressed.  Blue bars indicate 

stimulation and numbers inside bars indicate number of records.  Asterisks 

represent statistical significance at the P<0.05 level compared to -60 s (or pre-

stimulus) using a one ANOVA and Fisher’s LSD test for pair-wise multiple means 

comparisons.  B. Effect of 0.5 Hz stimulation on exocytosis at 15 s intervals over 

time.  (Top) The frequency of amperometric events increases moderately upon 

stimulation then returns to basal levels after 2 minutes.  Note that amperometric 

frequency increases again about 2 minutes after stimulation has ended.  

(Bottom)  Amperometric charge shows a gradually increasing trend over time 

and continues to increase even after stimulation ceases.  (N = 9 cells, 120 events 

before; 18 cells, 944 events during and; 9 cells, 198 events after stimulus). 
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Figure 6.4  Global [Ca2+]i during 0.5 Hz stimulation.  Changes in global [Ca2+]i 

were measured using the Ca2+ indicator dye Fura-2 before, during and after sAP 

stimulation at 0.5 Hz.  A. Representative recording from an individual ACC 

stimulated at 0.5 Hz.  B.  Mean [Ca2+]i  for each 60 s interval is shown before, 

during and after stimulation. (N= 2 cells). 
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Figure 6.5  Effects of a single action potential on Ca2+ syntillas and 

exocytosis.  A.  Stimulation with a single sAP completely suppresses syntillas.   

A single sAP was applied to the ACC at t = 0 s and syntilla frequency was 

recorded at 5 minute intervals before and after stimulation.  Control cells (black) 

did not receive any stimulation and syntillas could be detected at the normal 

frequency up to 30 minutes after cell loading with fluo-3 (N = 11).  In ACCs 

receiving a single sAP the syntilla frequency was completely suppressed 

between 5 and 10 minutes post stimulus (N = 8).    Asterisks represent statistical 

significance at the P<0.05 level compared to -60 s (or pre-stimulus) using a one 

way ANOVA and Fisher’s LSD test for pair-wise multiple means comparisons.  B. 

Diagram of the protocol for recording amperometric events after stimulation with 

1 sAP.  Amperometry was recorded for 4 minutes after a 5 minute rest once the 

ACC received a single sAP.  C.  Mean changes in frequency and charge of 

amperometric events after 1 sAP compared to control.  The frequency of all 

amperometric events is significantly increased from 0.022 ± 0.005 Hz (N = 22) to 

0.115 ± 0.04 Hz (N = 18) between 5 – 9 minutes after a single sAP.  After 

simulataion with 1 sAP the mean charge of all amperometric events and stand 

alone feet events (SAFs) are significantly increased from 0.12 ± 0.019 pC  to 

0.16 ± 0.04 pC and from 0.028 ± 0.005 pC to 0.05 ± 0.003 pC, respectively.  

Asterisks indicate significance at P<0.05 by a log transformed student’s t-test.   

The mean charge of spike events is not significantly altered.  
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Figure 6.6  Effects of basal stimulation (0.5 Hz) after syntillas have been 

blocked with ryanodine for over 30 minutes.  A. (Left) Syntillas are 

suppressed to 0.10 ± 0.033 Hz (n = 11) after exposure to 100 µM ryanodine for 

over 30 minutes.  Immediately after 4 minutes of 0.5 Hz sAP stimulation, syntillas 

are almost completely blocked, 0.028 ± 0.018 Hz (n = 9).  Compare to normal 

syntilla frequencies near 0.8 Hz, dashed line.   (Right)  The mean signal mass of 

individual syntillas in ACCs exposed to ryanodine (red bar) and ryanodine + 0.5 

Hz stimulation (red and blue striped bar) is decreased compared to normal 

(dashed line).  Numbers inside bars indicate number of records.  B. Effect of 

exposure to 100 µM ryanodine for over 30 minutes and 0.5 Hz sAP stimulation 

after ryanodine exposure on exocytosis at 15 s intervals over time.  (Top) The 

frequency of amperometric events is high when syntillas are blocked by 

ryanodine alone.  During 0.5 Hz stimulation after syntillas have been blocked for 

30+ minutes with ryanodine, the frequency of events is still high but shows a 

decreasing trend.   (Bottom)  Amperometric charge shows a gradually 

decreasing trend over time during 0.5 Hz stimulation in ryanodine compared to 

ryanodine alone.  (N = 13 cells, ryanodine alone; N = 10 cells, ryanodine + 0.5 

Hz.). 
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Figure 6.7  0.5 Hz stimulation compared with 0.5 Hz stimulation after 

syntillas have been blocked for over 30 minutes.  See text for details. 
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Figure 6.8  Time is necessary for syntilla suppression to exert its effect on 

exocytosis.  Long term effects on amperometry in unpatched ACCs after a brief 

puff of acetylcholine (ACh) is used to induce a single action potential.    A.  

Diagram showing amperometry recording paradigm.  4 minute recordings are 

made every 5 minutes before and then after a brief, 25 ms puff of 30 µM ACh is 

applied to the ACC.  B. ACCs that did not receive an ACh puff showed no signs 

of increased amperometric frequency over time (black line).  The lower right chart 

shows individual cell recordings (N = 5).  Amperometric frequency increases 

begin to show up between 15 – 20 minutes after receiving an ACh puff (red line).  

The upper right chart shows individual cell recordings (N = 8).  Note that the 

amount of time necessary for an amperometric frequency increase to develop 

after the ACh puff differs from cell to cell.  Asterisks indicate significance at the 

P<0.05 level compared to pre-stimulus levels (basal or first data point) using a 

one way ANOVA for repeated measures and Fisher’s LSD test for pair-wise 

multiple means comparisons (e.g., comparisons are made within groups over 

time and not between groups).  C. ACCs that did not receive an ACh puff also 

showed no significant signs of increased amperometric charge over time (black 

line).  The lower right chart shows individual cell recordings (N = 5).  Charge 

increases begin to show up between 15 – 20 minutes after receiving an ACh puff 

(red line).  The upper right chart shows individual cell recordings (N = 8).  Again, 

the amount of time necessary for an amperometric charge increase to develop 

after the ACh puff also differs from cell to cell.  Asterisks indicate significance at 

the P<0.05 level compared to pre-stimulus levels (basal or first data point) using 

a one way ANOVA for repeated measures and Fisher’s LSD test for pair-wise 

multiple means comparisons (e.g., comparisons are made within groups over 

time and not between groups).  D. Analysis of spike and SAF events over time 

after an ACh puff.  (Left)  The ratio of the mean frequency of spike events to SAF 
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events at each time interval is plotted for ACCs that did not receive an ACh puff 

(black line) and those ACCs that did (red line).  A ratio above 1.0 indicates 

preference for the full fusion mode of release over the kiss and run mode.  

(Right, upper)  The mean charge of SAF events over time is not increased by an 

ACh puff.  (Right, lower)  Instead, it is the mean charge of spike events that 

increases over time Asterisks indicate significance at the P<0.05 level compared 

to pre-stimulus levels (basal or first data point) using a one way ANOVA for 

repeated measures and Fisher’s LSD test for pair-wise multiple means 

comparisons.  
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Chapter 7 

Conclusions, speculation and the road ahead 

 

 

Spontaneous release 

This dissertation describes in detail a novel and unexpected function for Ca2+ in 

the process of exocytosis.   Ca2+ syntillas, brief, focal cytosolic Ca2+ transients 

arising from Ca2+ stores and mediated by RYRs function to inhibit spontaneous 

exocytosis in mouse chromaffin cells.   

 

Ca2+ syntilla                Exocytosis 

 

This conclusion is based on the core findings presented in Chapter 5 which show 

that decreasing the frequency of syntillas leads to an increase in the frequency 

and magnitude (quantal charge measured amperometrically) of exocytosis.  

There can be little doubt about this finding since it was based on concurring 

results of two independent and separate lines of experimentation, each 

employing a quite different strategy to suppress syntillas.   That is, we found 
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exocytosis to be increased both when syntillas were suppressed by: 1.) blocking 

the actual RYRs through  which Ca2+ syntillas are released; and, 2.) decreasing 

the amount of Ca2+ in the stores by blocking the Ca2+ ATPase pump to prevent 

refilling and then activating RYRs to promote emptying of the stores. 
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Elicited release 

By shifting from spontaneous release to studying Ca2+ syntillas in elicited 

release, this dissertation further provides detailed insight for the first time into the 

physiologic relevance of syntilla mediated exocytic inhibition.  Chapter 6 

demonstrated unexpectedly, that physiologically relevant levels of stimulation 

using simulated action potentials delivered at 15 Hz or 0.5 Hz completely 

abolished Ca2+ syntillas within a timeframe of two minutes. 

 

Action potential                Ca2+ syntilla 

 

It was found that the different levels of stimulation could differentially regulate 

Ca2+ syntillas.  During stimulation at 15 Hz, associated with the sympathetic 

stress response, the syntillas are only temporarily suppressed, where they come 

back halfway through stimulation.  Stimulation at 0.5 Hz, set by the basal 

sympathetic tone, completely suppressed syntillas.  While the direct triggering of 

exocytosis by Ca2+ influx was found to be the major driving force behind large 

increases in elicited exocytosis under stressful conditions, this mechanism could 

not account for increases in elicited exocytosis beyond two minutes under basal 

conditions.  Instead, a prolonged suppression of Ca2+ syntillas during 0.5 Hz 
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stimulation, and not Ca2+ influx, correlated with smaller increases in exocytosis 

over the long term.  These findings suggest that internal Ca2+ stores not only 

serve as an important mediator of the exocytotic output based on physiologic 

input, but that syntilla suppression may account for basal levels of catecholamine 

output into the circulation during resting conditions in an organism. 
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Ca2+ syntilla model for neurotransmission 

Overall, the findings presented here suggest that internal Ca2+ stores serve as an 

important mediator of the exocytotic output based on physiologic input.  That is, 

the Ca2+ syntilla lies at the center of cell to cell communication in excitable cells 

and neurotransmission. 

 

Action potential                Ca2+ syntilla               Exocytosis 

 

As detailed in Chapter 6, the Ca2+ syntilla can be seen as a brake on 

exocytosis.  Physiologic input in the form of an action potential relieves the brake 

by inactivating RYRs and therefore Ca2+ release from stores.  Thus, under resting 

conditions, Ca2+ generated from channel influx must intermittently enter the 

syntilla microdomain to ensure steady and slow release.  In vivo syntillas are 

suppressed most of the time, while the animal is in the resting state.  Ca2+ 

syntillas appear only after intense stimulation, when the stress response is 

initiated and serve to quickly punctuate massive exocytic release. 
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Ca2+ syntillas in physiology and neuroscience 

The general physiological and philosophical implications of this work are 

quite substantial. Since the experiments were done in the adrenal chromaffin cell, 

it directly implies that syntillas can serve as a potent regulator of catecholamine 

release into the circulation.  At rest, low levels of catecholamine are constantly 

released into the blood, sub-serving multiple tasks such as regulating basal 

enteric activity, insulin secretion and maintaining a normal blood pressure.  As 

pointed out in Chapter 6, catecholamine release elicited by 0.5 Hz stimulation 

associated with the basal sympathetic tone can only produce increases in 

exocytosis for up to 2 minutes.  Therefore any release beyond the first 2 minutes 

of stimulation is actually due to spontaneous release.  Thus, in vivo, during 

resting conditions where the ACC receives constant input at low frequency, all 

exocytic output is likely in the form of spontaneous release, regulated by the 

presence or absence of Ca2+ within the syntilla microdomain. 

As discussed at length in the introductory Chapter 2, the ACC has long 

been used as a model for neurotransmission in neurons since ACCs are unique 

in that they share the same properties of neurons (Winkler and Fischer-Colbrie, 

1998; Garcia et al., 2006).  Therefore the conclusions in this work are likely to 

carry over to the process of neurotransmission.  This is supported by the 

existence of Ca2+ syntillas in hypothalamic nerve terminals (De Crescenzo et al., 
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2004; McNally et al., 2009) as well as the existence of spontaneous elementary 

Ca2+ release events, that seem to resemble syntillas, in pyramidal neurons 

(Manita and Ross, 2009).  Furthermore, RYRs are widely expressed in the 

mammalian brain (Giannini et al., 1995; Galeotti et al., 2008), where they play a 

central role in the regulation of intracellular Ca2+ homeostasis (Simpson et al., 

1995) and regulate vital brain functions, including protein synthesis (Paschen et 

al., 1996) and neurotransmitter release (Mothet et al., 1998; He et al., 2000).  

While all three isoforms of the receptor (RYR1, RYR2, and RYR3) are present in 

brain, the RYR2 is predominant (Zalk et al., 2007).  Thus the work presented 

herein is especially relevant to secretion in neurons since the Ca2+ syntillas that 

regulate exocytosis in ACCs are thought to be mediated by RYR2. 

 It is tempting to speculate that the syntilla suppression described here 

could also serve as a mechanism to control release rates of what is termed 

“spontaneous” or “unsynchronized” release in neurotransmission.  Neurons 

constantly receive basal input even if at very low frequency.  Unsynchronized 

release events that occur in between or in the absence of action potentials 

cannot proceed by a direct Ca2+ influx triggering mechanism.  Thus, fluctuations 

in the rates of basal release could be altered by controlling release from internal 

stores based on prior action potential input. Therefore the regulation of Ca2+ 

release from internal stores via syntillas may constitute another basis of 
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potentiation in synaptic plasticity (e.g., by increasing the size of the RRP).  

Furthermore, spontaneous exocytosis has specific functions in a range of 

neurons including synapse stabilization and maintenance, regulation of post 

synaptic protein synthesis, and regulation of excitability in postsynaptic neurons.  

Therefore syntillas could serve as an upstream regulator of these important 

functions as well.  

 

 

 

 

 

 

 

 

 

 

 



 

212 

 

Molecular mechanisms 

The biggest questions to arise from this work revolve around the molecular 

components involved in the pathway from physiologic input to exocytic output 

through the release of Ca2+ from internal stores in the form of the Ca2+ syntilla.  

That is, first, how can an action potential inactivate Ca2+ syntillas? And second, 

how does the Ca2+ entry into the syntilla microdomain exert an inhibitory effect on 

exocytosis? 

 

Action potential               Ca2+ syntilla               Exocytosis 

 

As a final part to this dissertation, speculation into the molecular 

mechanisms involved and future lines of experimentation are offered. 
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Regulation of exocytosis by Ca2+ syntillas: 

 

Ca2+ syntilla               Exocytosis 

 

The molecular components of the inhibitory effect of Ca2+ syntillas on 

spontaneous exocytosis are only partially known at this point.  Clearly, RYRs 

mediate the effect, more specifically type 2 RYRs, the “cardiac” type.  The 

evidence for this comes from a previous study in which we detected high levels 

of RYR2 by RT-PCR, but only low levels of RYR3 and virtually no trace of RYR1 

(ZhuGe et al., 2006).  By immunocytochemistry, there was no trace of RYR1, and 

RYR3 was found only in an isolated clump in the cell center.  RYR2 by contrast 

was found in a subplasmalemmal distribution throughout the cell (ZhuGe et al., 

2006), which seems to be consistent with the localization of syntillas by imaging.   

In addition the ability of Tg to affect the syntillas indicates that the SERCA pump 

is also involved in replenishing the Ca2+ that appears in the form of syntillas.   

Ultimately the syntillas must affect either the granules or the 

plasmalemmal sites of spontaneous fusion.  One simple mechanism that could 

account for the decrease in frequency is that the LDCGs carry with them a Ca2+ 

sensor which detects the syntilla and inhibits or limits the LDCG’s ability to 
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complex with the exocytotic machinery.  It is tempting to postulate that this 

sensor is synaptotagmin.  In the absence of the T-SNARE complex at the plasma 

membrane synaptotagmin will undergo a cis interaction with the vesicle 

membrane in the presence of elevated [Ca2+] (Hui et al., 2005; Stein et al., 2007).  

Such an interaction renders the synaptotagmin incapable of complexing with the 

T-SNARE complex at the plasma membrane.  The source of Ca2+ to disable the 

synaptotagmin might be provided by the Ca2+ syntilla before the LDCG reaches 

the plasma membrane. If the effect of Ca2+ syntillas were targeted to only a 

population of large granules, then this hypothesis could explain both the increase 

in frequency and magnitude.  Alternatively, the Ca2+ sensor might have more 

than one effect; for example, the vesicles that are not completely inhibited might 

be rendered less competent to undergo complete emptying, resulting in smaller 

magnitude of the fusion events.  

Another attractive hypothesis involves the subplasmalemmal filamentous 

actin (F-actin) mesh.  It is well documented in chromaffin cells that dissolution of 

the dense actin cortex is necessary to sustain recruitment of LDCGs to the 

membrane during stimulation (Nakata and Hirokawa, 1992; Vitale et al., 1995; 

Tchakarov et al., 1998; Giner et al., 2007).    Therefore syntillas could play a role 

in maintaining the actin mesh under spontaneous conditions.  If the actin network 

breaks down in the absence of syntillas this could explain the increase in 
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frequency of amperometric events observed in the presence of ryanodine.  But it 

could also explain the increase in quantal size of events.  A period of time would 

be required for the actin network to break down, which would be consistent with 

the findings in Chapter 6 that show a period of time between 5 and 30 minutes 

necessary before syntilla suppression correlates with increases in exocytosis.    It 

has been shown that disruption of F-actin favors the full fusion mode of 

exocytosis over kiss and run (Doreian et al., 2008; Doreian et al., 2009).  That is, 

one role of the intact dense F-actin mesh in mouse chromaffin cells is to stabilize 

the fusion pore during exocytosis and keep it from expanding to full fusion.  If 

syntillas help stabilize the F-actin mesh, then their absence would actually have 

two effects; 1.  More LDCGs recruited to the membrane (actin mesh as the 

barrier).  2.  LDCGs at the membrane would primarily undergo full fusion 

exocytosis.  In support of this idea, it is interesting that Doreian et al. (2009) find 

a mean amplitude and charge of 4.0 ± 0.43 pA and 0.08 ± 0.01pC for events that 

undergo kiss and run exocytosis that is similar to the mean amplitude and charge 

of amperometric events we record under spontaneous control conditions 5.4 ± 1. 

3 pA and 0.08 ± 0.01pC, respectively.  Moreover, the same study finds a mean 

amplitude and charge of  16.3 pA and 0.31 pC  for full fusion events, when the 

actin network is broken down during high frequency stimulation, which compares 

well with our mean amplitude and charge of  events recorded in ryanodine 14.5 

pA, 0.28 pC. 
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A line of investigation is currently being pursued in our laboratory 

examining the hypothesis that syntillas exert their mechanism of action by 

maintaining the F-actin mesh barrier.  Preliminary results show that in ACCs, 

blockade of syntillas for more than 1 hour with 100 µM ryanodine leads to lower 

density of polymerized actin, as visualized with phalloidin, in the region 1 µm 

below the ACC periphery compared to control.  Thus, future investigation into the 

effects of Ca2+ syntillas on F-actin will continue. 
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Regulation of  Ca2+ syntillas by physiologic stimulation 

 

Action potential               Ca2+ syntilla 

 

We believe that physiologic stimulation in the form of an action potential leads to 

a direct or indirect interaction with RYR2, since these are the channels most 

likely to mediate Ca2+ syntillas in mouse ACCs (ZhuGe, 2006).  It may be less 

likely to involve a direct interaction since syntilla suppression is not immediate.  

The time frame in which multiple sAPs are able to completely abolish syntillas 

(about 2 minutes) versus the time frame required for a single sAP to accomplish 

complete suppression (about 5 minutes) suggests that the pathway can be 

amplified.  Taken together, this argues against a quick acting all or none 

response that might be expected for a direct protein – protein interaction, such as 

the DHPR voltage-gated Ca2+ channel with the RYR (Li and Bers, 2001), though 

experimentation to rule this out is already underway in our laboratory by checking 

syntilla suppression after sAP stimulation in the presence of  different Ca2+ 

channel type blockers.  Instead, the activation of a 2nd messenger pathway that 

targets RYR2 or leads to store emptying offers a more attractive hypothesis.  

Moreover, the mechanism must be regulated by [Ca2+]i, since the levels of global 
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[Ca2+]i were the main difference in the experiments with 0.5 Hz versus 15 Hz 

stimulation.   

The RYR2 could be targeted either on the cytosolic or the luminal side.  

For example, calmodulin is known to be bound to RYRs on it cytosolic face 

(Yamaguchi et al., 2003).   In bilayer experiments, free calmodulin has been 

demonstrated to activate RYRs, while Ca2+-calmodulin inactivates them (Fruen et 

al., 2000; Balshaw et al., 2001; Balshaw et al., 2002; Fruen et al., 2003; Meissner 

et al., 2009).  Therefore the possibility that calmodulin serves as a sensor to 

modulate syntilla suppression is an attractive one that will be followed up on in 

the future.  It is also interesting that the cytosolic form of Ca2+-calmodulin kinase 

II C (CAMKII C) is able to increase spark frequency in rabbit ventricular myocytes 

(Kohlhaas et al., 2006). Future lines of experimentation in our laboratory will 

consider ablating or knocking down the CAM-binding domain or expressing 

RYR2s without the CAM-binding domain in cultured ACCs.   Another potential 2nd 

messenger target is the 22 kDa Ca2+-binding protein, sorcin.  Sorcin has been 

shown to inhibit Ca2+ sparks, the homologues of Ca2+ syntillas, in cardiac muscle 

and is capable of rapid, reversible inhibition of RYR2 in bilayer experiments 

(Lokuta et al., 1997; Farrell et al., 2003; Seidler et al., 2003). 

Syntilla suppression could also be mediated by a target on the luminal 

side of the RYR2.  For example, in cardiac muscle the termination of Ca2+ sparks 
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largely depends on a signal that depends on Ca2+ depletion in the sacroplasmic 

reticulum (SR), conveyed through ancillary proteins such as calsequestrin and 

triadin (Gyorke et al., 2002; Stern and Cheng, 2004).  It will indeed be interesting 

in the future to see if the Ca2+ stores in these ACCs can be depleted by a sAP 

and if the time frame of depletion matches syntilla suppression. 

 

Final remark 

Ca2+ released from internal stores, in the form of the Ca2+ syntilla, lies at the 

center of cell to cell communication in excitable cells and neurotransmission.  By 

describing a new mechanistic regulation of exocytosis, the Ca2+ syntilla clearly 

increases the complexity as well as the sites of action for the Ca2+ ion in 

neurosecretion.  The work described here reinforces the importance of thinking in 

terms of multiple Ca2+ microdomains in excitable secretory cells. 
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Appendix A.  Comparison of our amperometry values with the literature 

 

Table A1. Comparative spike amplitude and charge, Q parameter values from 

studies on mouse adrenal chromaffin cells. 
Laboratory Study Cell preparation Criteria for 

analysis 
Stimulation IAmp(pA) Q (pC) 

Our 
laboratory 

(Lefkowitz et 
al., 2009) 

Freshly isolated Threshold =0.5 
pA   

None 
+ryanodine 

5.4 ± 1. 3 
14.5 ± 1. 4 

0.08 ± 0.01 
0.28 ± 0.03 

 (ZhuGe et al., 
2006) 

Freshly isolated 
Calcium-free bath 

Threshold =2.5 
times baseline 
rms 

None 7.0 ± 0.6 0.11 ± 0.01 

Corey Smith (Doreian et al., 
2009) 

Cultured 1-2 days Baseline noise 
<10 pA 

0.5 Hz APs 
15 HZ APs 

4.0 ± 0.43 
16.3 ± 1.2 

0.08 ± 0.01 
0.31 ± 0.02 

 (Doreian et al., 
2008) 

Cultured 1-2 days Baseline noise < 
10pA 

0.5 Hz APs 
15 HZ APs 

5.2 ± 0.82 
19.1 ± 1.4 

0.12 ± 0.01 
0.36 ± 0.02 

Aaron Fox (Grabner et 
al., 2005) 

Cultured 2-3 days 
Digitonin-
permeabilized 

Baseline noise 
<2pA 

High Ca2+ in 
bath post 
permeabil-
ization 

na 0.064 for 
small events 
0.329 for 
large events 

 (Grabner et 
al., 2006) 

Cultured 2-3 days 
Digitonin-
permeabilized 

Baseline noise 
<2pA 

High Ca2+ in 
bath post 
permeabil-
ization 

na 0.28 ± 0.03 
All events 
 

Erwin Neher (Sorensen et 
al., 2003) 

Cultured 1-3days Threshold=10pA  1 µM Ca2+ in 
patch pipette 

~ 58pA 
Median 

~ 0.42 
(Q1/3 ~ 0.75 
pC1/3) 

 (Moser and 
Neher, 1997) 

Used day of 
culture – 48Hrs 
 

Threshold=4pA 
AND 30/90% 
risetime <1.5 ms 

10 µM Ca2+ 
in patch 
pipette 

27.0 ± 2.2 
 

~ 0.16 
(Q1/3 = 0.542 
pC1/3) 
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There is to date, relatively little information about spontaneous exocytosis in 

adrenal chromaffin cells in the literature.  

  However as we show in detail in the table above, when comparisons are 

made with mouse data and the threshold of detection is low, our data matches 

that of others.  In our study, we report a mean Q value of 0.08 ± 0.01 pC for all 

amperometric events and 0.14 ± 0.03 for spikes alone and 0.02 ± 0.00 for SAFs 

under control conditions in normal saline.  (To select a spike for analysis, the 

peak amplitude must be ≥0.5 pA and our baseline root mean square (rms) noise 

is typically < 0.2 pA.) 

As evidenced in Table A1, the most meaningful comparisons in the 

literature are found in the recent studies from the Smith laboratory (Doreian et al., 

2008; Doreian et al., 2009).  In these studies two forms of stimulation were 

applied to mouse chromaffin cells cultured for 1 to 2 days.  In the first, light 

electrical stimulation in the form of simulated action potentials (sAPs) was 

administered at 0.5Hz, a stimulus thought to mimic input under basal sympathetic 

tone.  In the second, sAPs were administered at 15 Hz, and thought to mimic 

input under an acute stress response.   

The literature shows that when minimal forms of stimulation are used, or 

when the small events are separated from large events during intense 

stimulation, the spike parameters closely resemble those measured under our 

spontaneous conditions.  In fact, a major source of discrepancy across the 

studies has mostly to do with how spikes are chosen for analysis.  For example, 
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where Sorensen et al. (2003) choose to only analyze events greater than 10 pA, 

the average spike amplitude and charge is going to be much greater than when 

Grabner et al. (2005) choose to analyze events above 2 pA, regardless of the 

stimulation intensity.  In our study, since we examine stand alone feet as well as 

spikes it is necessary to use a very low baseline cut off, requiring that events be 

greater than 0.5 pA.  To discard the data between 0.5 pA and some arbitrary cut 

off value up to 10 pA is to throw out valuable information at least for the purposes 

of our studies. 
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