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ABSTRACT 

Molecular recognition, defined as the specific interactions between two or more 

molecules, is at the center of many biological processes including catalysis, signal 

transduction, gene regulation and allostery.  Allosteric regulation is the modification of 

function caused by an intermolecular interaction.  Allosteric proteins modify their 

activity in response to a biological signal that is often transmitted through the 

interaction with a small effector molecule.  Therefore, determination of the origins of 

intermolecular interactions involved in molecular recognition and allostery are essential 

for understanding biological processes.  Classically, molecular recognition and 

allosteric regulation have been associated to structural changes of the system.  NMR 

spectroscopic methods have indicated that changes in protein dynamics may also 

contribute to molecular recognition and allostery.  This thesis is an investigation of the 

contributions of both structure and dynamics in molecular binding phenomena. 

In chapter I, I describe molecular recognition, allostery and examples of allostery 

and cooperativity.  Then I discuss the contribution of protein dynamics to function with 

a special focus on allosteric regulation.  Lastly I introduce the hemoglobin homodimer, 

HbI of Scapharca inaequivalvis and the mRNA binding protein TIS11d.  

Chapter II is the primary focus of this thesis on the contribution of protein 

dynamics to allostery in the dimeric hemoglobin of scapharca inaequivalvis, HbI.  

Thereafter I concentrate on the mechanism of adenine recognition of the 

Tristetraprolin-like (TTP) protein TIS11d; this study is detailed in Chapter III.  In 

Chapter IV I discuss broader impacts and future directions of my research. 
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This thesis presents an example of the use of protein NMR spectroscopy to 

probe ligand binding.  The studies presented in this thesis emphasize the importance 

of dynamics in understanding protein function.  Measurements of protein motions will 

be an element of future studies to understand protein function in health and disease. 
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PREFACE 
 

For clarity this dissertation has been organized such that each chapter 

encompasses one complete idea.  Therefore each research based chapter and 

appendix includes an abstract, introduction, discussion and references.  As a result 

there are some minor redundancies; this allows for each chapter to contain a complete 

idea. 
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CHAPTER I 
 
 

INTRODUCTION
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 MOLECULAR RECOGNITION AND ALLOSTERY 

Molecular recognition is a specific interaction between molecules driven 

by noncovalent bonding.(1) Covalent chemical bonds are formed between atoms 

that share an electron pair.  Noncovalent bonds arise from favorable 

electromagnetic interactions and include:  ionic bonds, hydrogen bonds, 

hydrophobic interactions and van der Waals forces.(2) Since noncovalent bonds 

are inherently weaker than covalent bonds, multiple noncovalent interactions are 

necessary to drive a favorable interaction between molecules. Structural studies 

suggest that high affinity interactions arise as the sum of many close range 

noncovalent interactions, and therefore, the complementarity between molecules 

is essential for the formation of high affinity molecular recognition.(2) Molecular 

recognition defines the specificity of an intermolecular interaction and provides 

insights into the range of biological partners a molecule can bind. Molecular 

recognition is important in many biological processes including enzyme catalysis, 

metabolism, signal transduction and gene regulation and allostery.(3) 

Allostery is the modification of function caused by an intermolecular 

interaction. Allosteric proteins modify their activity in response to a biological 

signal that is often transmitted through intermolecular interactions with small 

effector molecules.  The simplest model for allostery assumes that a proteins 

may exist and function in two states: an active “relaxed” (R) state and an inactive 

“tense” (T) state.(4) In this model, allostery is achieved when exogenous signal 

promotes a structural transition from the T state to the R state.  
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Determination of the origins of intermolecular interactions involved in 

molecular recognition and allostery are essential for understanding and 

intervening in biological processes.  Classically, crystallographic studies have 

provided a structural explanation for the origin of intermolecular interactions, 

molecular recognition and allosteric regulation.   

However, new methods in NMR have indicated that a structural transition 

between low and high activity conformers is not the only way molecular 

recognition or allostery may be achieved.  In 1984, Dryden proposed a model 

where allosteric communication could be achieved in the absence of a structural 

transition.(5) In this model, cooperativity is entropically driven.  Changes in 

protein conformational entropy can differentiate high and low affinity states and 

drive the cooperative mechanism.  As such, small changes in the conformational 

fluctuations of many atoms in the protein upon binding the effector molecule, 

could add up to a significant difference in free energy.  The importance of 

changes in protein dynamic in ligand binding processes and in allostery has been 

recently highlighted from NMR relaxation studies.(3, 6, 7)  
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MOLECULAR RECOGNITION AND BINDING SPECIFICITY 

Protein promiscuity defines a protein’s ability to perform multiple functions.   

Differential expression and environmental conditions such as pH and 

temperature may drive protein promiscuity.(8, 9) Additionally, post-translational 

modifications, oligomeric states, the concentration of ligand and allostery can 

transform protein function.(10-12) Furthermore, proteins may conduct multiple 

functions through promiscuous molecular recognition.  Characterizing the factors 

leading to a protein’s promiscuity is essential for understanding the broad role of 

a protein's function in the cell.  An important topic of this thesis is on promiscuous 

molecular recognition. 

Protein molecular recognition of biological partners forms the biochemical 

foundation of life.(13) Fundamental biological processes such as DNA 

replication, transcription, translation, and signal transduction are mediated by the 

molecular recognition of biological molecules in the cell.  The promiscuity of 

protein molecular recognition defines the binding specificity of a protein.  Proteins 

can be highly selective for one binding partner or they may function 

promiscuously and bind many non-complementary partners.(13) The total range 

of partners a protein binds defines a protein’s role in the cell under a set of 

conditions.  

Classically, it is believed that promiscuous proteins are able to bind many 

different ligands using hydrophobic interactions, hydrogen bonds and perhaps 

most importantly conformational flexibility.(13) Protein flexibility allows 

promiscuous proteins to adopt several conformations to bind different ligands 
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with comparable affinities. The diverse array of protein complexes of a 

promiscuous protein naturally suggest that the protein is flexible enough to 

exchange between all the known conformations; and structural and dynamic 

studies strongly support the theory of conformational selection of a protein in a 

dynamic equilibrium.(14, 15) In addition to conformational exchange promiscuous 

proteins may use changes in protein flexibility to modulate the contribution of 

conformational entropy to bind each unique partner.(16-18)  
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THE CHARACTERIZATION OF HEMOGLOBIN COOPERATIVITY 

Human hemoglobin (Hb) is the first and most thoroughly characterized 

allosteric protein.  It has formed the basis of our understanding of allosteric 

regulation and was the focus of the first determination of the molecular origin of a 

disease – sickle cell anemia.(19) The following is a brief history of the discovery 

and modeling of Hb cooperativity. 

  Cooperativity is the simplest form of allosteric regulation.  In a 

cooperative system the ligand acts as an effector molecule, such that ligand 

binding alters the protein affinity for additional ligands.  There are two kinds of 

cooperativity, positive and negative.  For positive cooperativity, ligand binding 

causes an increase in affinity for the ligand at distal binding sites; whereas, for 

negative cooperativity, ligand binding causes a decrease in affinity for the ligand 

at distal binding sites.  Hemoglobin binds oxygen with positive cooperativity.(20)  

Each of the following models has been modified to better represent Hb 

cooperativity but can be applied in other systems as appropriate. 

Myoglobin, Mb, is a monomeric non-cooperative homologue of Hb.  Mb 

binds oxygen as described by the following equation 

.    (1) 

The hyperbolic binding curve of Mb to oxygen is shown in Figure 1.1. The 

allosteric nature of Hb was first observed by the physiologist Christian Bohr in 

1904.(19) He recognized that hemoglobin did not bind oxygen like myoglobin.  

For a simple equilibrium as shown in (1), the fraction of HbO2 as a function of 

oxygen concentration would be hyperbolic. Instead, Bohr observed that Hb binds 

! 

Mb + O
2

! 

MbO
2
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oxygen according to a sigmoidal curve, Figure 1.1.  He recognized that Hb has 

an increased affinity for oxygen as more oxygen is bound indicating that Hb binds 

oxygen cooperatively.  Although the cooperative mechanism was unknown, Bohr 

determined that the cooperativity of Hb was essential for the efficient transfer of 

oxygen and carbon dioxide to the body and the lungs, respectively.(21) 

Archibald Vivian Hill derived the Hill equation in order to model 

cooperative binding curve of Hb. He hypothesized that hemoglobin may bind 

several oxygen molecules as follows: 

.    (2) 

To model the equilibrium in Equation 3, Hill derived the following equation 

 

" =
L[ ]

n

K
d

n
+ L[ ]

n " (3) 

such that L is free ligand, # is the fraction of ligand bound, Kd is the dissociation 

constant and n is the Hill coefficient.(22)  

 Gilbert Adair determined the molecular weight of Hb and considering the 

stoichiometric ratio of iron to Hb he concluded that Hb contained four oxygen 

binding sites.(23) The Hill equation assumes that Hb binds four oxygen 

molecules simultaneously and is insufficient to model Hb cooperative binding.  

This observation indicated that the Hill equation is insufficient to model Hb 

cooperativity since oxygen binding was best fit with a Hill coefficient of 2.8.(24)  

From this, Adair proposed an equilibrium model where the binding affinity of Hb 

to O2 increased for each successive binding event.  Figure 1.2 is a visual 

representation of the sequential model. 

 

Hb + nO
2
"Hb O

2( )
n
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Figure 1.1:  Oxygen dissociation curves of human myoglobin and human 

hemoglobin.   The fraction of ligand bound, Y, is shown as a function of the 

partial pressure of oxygen.(22, 25) The myoglobin dissociation curve shown in 

black is hyperbolic as expected from equation 1.  The hemoglobin curve in red is 

sigmoidal indicative of cooperative binding.   

 

The plot is generated from the following references: 

Reginald Garrett, C.M.G. Biochemistry, 1141 (Cengage Learning, 2010). 
 

Bisswanger, H. Enzyme Kinetics: Principles and Methods, 320 (John 
Wiley & Sons, 2008). 
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Figure 1.2: The Sequential Model and the MWC model.   In both the 

sequential and MWC models, the T and R states are designated by a blue 

square or a red circle, respectively.  For the sequential model, dissociation 

constants K1, K2, K3, and K4 decrease consecutively for a positive cooperative 

system like Hb.  The MWC model assumes only two quaternary conformations of 

Hb exist.  The ratio of T and R states at equilibrium is L.  Without oxygen, the T 

state is favored and therefore L is greater than one.  For positively cooperative 

Hb, the equilibrium L is shifted towards the R state by the constant c, which is the 

ratio of the dissociation constants of ligand by the R state, KR and the T state KT.  

Since the R state binds more tightly to oxygen than the T state, the ratio of KR to 

KT is less than one. 

 
Image generated by J. M. Laine. 
 
References: 
 

Monod, J., Wyman, J., and Changeux, J. P. (1965) On the Nature of 
Allosteric Transitions: A Plausible Model, J Mol Biol 12, 88-118. 
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Figure 1.2 
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Linus Pauling proposed the first structural model for Hb cooperative 

binding.(26) He postulated that through heme-heme interactions oxygen binding 

by a heme group could cause nearby hemes to increase their oxygen affinity.  

Assuming that Hb contains four equivalent hemes that can interact with two other 

hemes, Pauling was able to model the sigmoidal curve of Hb oxygen binding.(26) 

In 1960, Max Perutz, the pioneer of protein structure determination, solved 

the crystal structure of horse hemoglobin at 5.5 Å.(27) The hemoglobin tetramer 

consists of two ! and two " subunits; the complex is a dimer of !" heterodimers.  

In 1964 Perutz determined the unliganded form of horse hemoglobin and 

determined that the " subunits within the tetramer move closer together upon 

binding oxygen.(27) This discovery inspired Jacques Monod, Jean-Pierre 

Changeux and Jeffries Wyman to better model Hb cooperativity and allostery in 

general for multimeric proteins.(19) 

Together, Monod, Wyman and Changeux devised the MWC model, 

wherein cooperativity arises due to concerted conformational rearrangements 

between subunits of multimeric proteins.(28) In this model Hb exists in one of two 

states, the high affinity R or low affinity T state.  In this case oxygen drives the 

formation of the R state and cooperativity is driven by population shift.  In this 

model, the quaternary conformation determines the affinity for ligand.(28)   

Figure 1.2 shows the MWC model applied to Hb in detail. 

In support of this model, Perutz developed a “stereo-chemical” mechanism 

to describe Hb cooperativity.(29) Perutz noticed that in the Hb T state salt 

bridges exist at the subunit interface; these contacts do not exist in the R state.   
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According to Perutz’s mechanism binding oxygen disrupts the interface salt 

bridges, effectively destabilizing the T state and driving the formation of the R 

state.  

The binding affinity of Hb for oxygen is altered by changes in pH; this is 

called the heterotropic effect.  Perutz observed that a proton is released upon 

binding ligand and hypothesized that pH and the cooperative transition of Hb 

were linked and caused the heterotropic effect.  Attila Szabo and Martin Karplus 

validated Perutz’s mechanism and strengthened the MWC model by 

quantitatively reproducing the equilibrium properties of hemoglobin with respect 

to pH.(30)  

Structural studies on Hb reveal how pH can affect binding affinity for 

oxygen, and they reveal how hemoglobin mutations distant from the heme 

stabilize a conformation and therefore, alter Hb affinity for ligand.  Edelstein used 

structural studies to determine how protein mutations cause disease. The sickle 

cell mutation Glu-!6-Val forms a hydrophobic patch at the surface of Hb.  

Sickling occurs when Hb forms fibers, which consist of fourteen Hb molecules 

woven into helical strands formed from interactions at the hydrophobic patch.(31) 

These strands form from the Hb T conformation but not the R state.(31) This is 

consistent with the disease condition where cell sickling occurs in the blood upon 

deoxygenation and cells unsickle upon oxygenation at the lungs.(31, 32) 

The determination of the structure of hemoglobin and the characterization 

of hemoglobin biochemically forged a new era in medicine.  For the first time the 

structure of a protein was known to be critical in characterizing the protein’s 
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function as well as a molecular disease.  With only slight modifications, the two-

state allosteric MWC model has quantitatively modeled equilibrium and kinetic 

studies of hemoglobin.(19) The investigation into hemoglobin cooperativity has 

formed the backbone for understanding allosteric regulation and cooperativity 

was explained by structural changes in one subunit that drive structural changes 

in the second.   
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 CONTRIBUTION OF PROTEIN DYNAMICS TO MOLECULAR RECOGNITION AND 

ALLOSTERY 

NMR spectroscopy is a powerful technique to study molecular recognition 

and allosteric proteins because it can be used to probe both structure and 

dynamics with atomic resolution.  This section reviews examples of the 

contribution of fast (ps-ns) and slow (µs-ms) protein dynamics in protein function. 

Fast time scale (ps-ns) Dynamics  

Protein structures determined through x-ray crystallography define the 

mean conformation of a protein averaged over many identical molecules within 

the protein crystal.(33) Fast time scale motions corresponding to small amplitude 

conformational changes cannot be resolved by this technique.(5) NMR 

techniques provide evidence for the existence of intramolecular motions across 

many timescales including bond vibrations, side-chain rotations, bending at a 

hinge, local unfolding and global oscillations or protein “breathing”.(5, 33) Bond 

vibrations and bond librations occur on the ps-ns time scale and establish the 

range of conformational microstates available to a protein.(34) Conformational 

entropy is the residual entropy of the mean conformation of a protein arising from 

the number of available microstates a protein explores and therefore is related to 

protein flexibility.(35, 36) 

Classically binding processes are described according to a structural 

transition that occurs upon binding ligand.  Ligand binding can stabilize one 

conformation of a protein over others without perturbing the dynamic fluctuations 
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of the atomic position about the mean conformation, Figure 1.3(A). 

Alternatively a ligand can also change the shape of the probability 

distribution of the dynamic fluctuations of the atomic positions about the 

conformational mean without perturbing its position, Figure 1.3(B).  In the latter 

case ligand binding occurs in the absence of a structural transition. In most 

cases, both changes in structure and dynamics contribute to ligand binding, 

Figure 1.3C.   Because fast time scale dynamics provide information on 

conformational entropy,(37) studies of protein dynamics occurring in the ps-ns 

time scale can provide insight into the thermodynamic role of flexibility in protein 

binding and function.   

At physiological temperature, proteins fluctuate between microstates 

within a conformational well on the ps-ns timescale.  The total number of 

microstates available to the system determines the protein conformational 

entropy.(37) Fast time scale dynamics occurring in the ps-ns time scale are 

sensitive to the number of microstates a protein explores within the 

conformational well that make the largest contribution to the conformational 

entropy of the protein.  Therefore, fast time scale dynamics can be used to 

estimate the conformational entropy of the system.(38)  
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Figure 1.3: Theoretical reaction coordinates of ligand binding.  A) Ligand 

binding is driven by a conformational transition in protein, P. B) Ligand binding 

occurs in the absence of a conformational transition. Given that the width of an 

energetic well is proportional to the number of accessible microstates.  The red 

bar indicates an increase in protein (7) and accessible microstates and is 

thermodynamically spontaneous.  The blue bar indicates a decrease in protein 

flexibility and accessible microstates and binding is disfavored. C) Ligand binding 

causes a change in the mean conformation of P and simultaneously alters the 

available microstates the protein explores. 

 

Figure created by J. M. Laine. 
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Figure 1.3 
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Using Lipari-Szabo model-free analysis the internal motion of a protein 

can be characterized by a generalized order parameter, S2, and the internal 

correlation time, !e.(39, 40) S2 and !e define the amplitude and timescale of the 

motion of a bond vector, respectively.  Figure 1.4 shows the stochastic motions 

of a bond vector within a cone. The change in internal dynamics observed upon 

ligand binding reflects changes in conformational entropy and can be calculated 

using 

      ,(37)  (4) 

 

for which kB is the Boltzmann constant, and SR and ST are the square root of the 

order parameters of the R and T states respectively for spin i.  This analysis is 

limited because only those order parameters that can be directly compared can 

be included.  Secondly, all residues with S2 > 0.95 must be excluded because the 

entropic changes associated with very rigid residues is underestimated by this 

equation. Lastly, this equation assumes that all motions are uncorrelated and the 

calculated value should be considered an upper limit of the conformational 

entropy difference for the residues included.(37)  
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Figure 1.4:  Stochastic motions within a cone of a bond vector, µ . The 

Lipari-Szabo order paramater is related to !°, the cone semi-angle, by the 

function .(34) When S2 = 1 the bond is rigid, and S2 = 0 

the internal motion is isotropic. (41, 42) 

 

Figure adapted from the following reference:  Ishima, R. & Torchia, D.A. Protein 

dynamics from NMR. Nat Struct Biol 7, 740-3 (2000). 
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Protein flexibility is essential for proper protein function.(43-45) For 

example, fast time scale motions in the flaps of HIV protease allows for targets to 

gain access and bind the HIV active site.(44) DNA binding proteins utilize protein 

flexibility to coordinate non-specifically with DNA to search more effectively for 

target sequences.(43) Protein flexibility and changes in protein conformational 

entropy has been implicated in protein function, ligand binding and allosteric 

regulation.(3, 6, 7, 18, 44, 46, 47) Studies on calmodulin (CaM) peptide binding 

by Wand et al. provided the first evidence that NMR S2 can be used to assess 

protein conformational entropy.(17, 18) 

CaM binds hundreds of different !-helical peptides with similar affinities 

but with diverse entropic contributions.(16) Changes in methyl side chains order 

parameters of CaM were determined for each peptide and used to calculate an 

apparent change in CaM conformational entropy for each reaction.  Remarkably, 

changes in CaM conformational entropy correlate linearly to the total change in 

entropy of binding, and CaM conformational entropy is a significant component to 

high affinity binding.(17)  

Wand et al. used the calmodulin system to discern the magnitude of the 

contribution of each component of the total change in entropy, "Stot.(18)   

   (5) 

where "Sprotein, "Sligand are the change in conformational entropy of the protein 

and ligand respectively, "SRT is due to the change in rotational and translational 

entropy associated with the tumbling of CaM and ligand, "Ssolvent is due to 

changes in the entropy of the water.  The changes in conformational entropy of 
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each of the six CaM-peptide complexes are linearly related to the total entropy as 

follows.(18) 

 (6) 

!Stot is measured by isothermal titration calorimetery.  !Ssolvent is calculated from 

changes in the solvent accessible surface area of the free and bound structures 

of CaM and both Sprotein and !Sligand are determined from changes in methyl side 

chain order parameters, !S2
protein and !S2

ligand normalized by residue, n.  In this 

case the contribution of !SRT +!Sother is the y-intercept and is small.  The slope, 

m is the relationship of the changes in conformational entropy of each CaM 

complex to the total entropic contribution of binding.  For each complex the 

entropic contribution from the change in conformational entropy drives 

binding.(18) This study provides absolute evidence of the robust contribution of 

conformational entropy to high affinity binding and suggests that conformational 

entropy will contribute to all kinds of binding events including allosteric regulation.   

The NMR study of the negative cooperative binding of catabolite activator 

protein, CAP to cyclic AMP, cAMP is a prime example of the importance of 

protein flexibility in cooperative binding.  CAP is a symmetric homodimer capable 

of binding two cAMP molecules.  In this study Kalodimos et al., characterizes 

changes in the structure and dynamics of CAP, cAMP-CAP and cAMP2-CAP.(6) 

Upon binding one cAMP, fast time scale motions are unaffected in both 

monomers.  Although the ligand bound monomer changes conformations, the 

unbound monomer does not undergo a structural transition until it binds ligand as 

well.(6) Binding two cAMP molecules dampens all fast time scale motions and 
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causes a robust conformational entropic penalty and causes the negative 

cooperativity of CAP.(6) 

Slow time scale (µs-ms) Dynamics  

Slow-time scale protein dynamics occurring in the µs-ms time scale are 

biologically significant because these motions occur at the same timescale as 

binding events, protein folding and conformational rearrangements.(6, 48-51) 

The kinetics of a two state chemical exchange process is defined as 

,     (7) 

where k1 is the forward rate constant and k2 is the reverse rate constant.  The 

equilibrium constant is defined as Keq = k1/k2 and the apparent exchange rate is 

defined as kex = k1 + k2.  

An atom’s chemical shift is dependent on its local chemical environment. 

As a result chemical shift is very sensitive to the conformation of a protein and 

can be used to observe structural rearrangements.  The observed chemical shift, 

!obs, is a population-weighted average of the conformational states the protein 

accesses.  In a simple two state R and T model  

!obs= pR!R+ pT!T ,    (8) 

pR and pT are the population of the R and T conformers at equilibrium and !R and 

!T are the chemical shifts of each state. If !R and !T are different, kex can be 

observed using NMR techniques.  Using the Lipari-Szabo model free analysis the 

chemical exchange contribution to relaxation relaxation, Rex, can be measured.  
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To probe these motions further, relaxation dispersion methods can be used to 

measure the rate of exchange, the population distribution of the states and the 

chemical shift of lowly populated and “invisible” species.(39, 52, 53) The 

importance of lowly populated conformations has been highlighted in binding 

processes, enzyme catalysis and allostery.(14)  

Using relaxation dispersion techniques, Loria et al. discovered that the 

inherent slow time scale motions and the enzymatic function of RNase A are 

coupled.(54) Regions of RNAse A fluctuates between two conformations open 

and closed, and the rate of slow time scale protein motions of regions of RNase 

A are the same as the rate of catalysis, kcat and the off rate, koff.(55) Binding 

substrate or product shifts the population of RNase A to the closed conformation, 

however the rate of exchange of RNase A is the same as the enzyme-substrate 

complex and the enzyme-product complex.(56) RNase A is always at the 

equilibrium between bound and free conformations and the population of each 

conformation changes in each step of the catalytic cycle.  By sampling the next 

relevant conformation of the catalytic cycle slow motions of RNase A drive 

catalytic turnover.(56)  

In addition to enzyme function, Tollinger et al. used relaxation dispersion 

techniques to determine the role of slow time scale dynamics in the allosteric 

regulation of the KIX domain of CREB binding protein, CBP.(53)  KIX is a 

modular domain of CBP and it is capable of binding many different transcription 

factors at two distinct sites.  At one locus KIX can bind the mixed lineage 

leukemia, MLL protein.  KIX binds the transcription factor c-Myb at a second 
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distal locus.  Binding to MLL activates KIX and doubles it’s affinity for cMyb.(57) 

Upon binding MLL, KIX undergoes a population shift of 7% from the T state to 

the cMyb conformation, R state.(53) In this case, the allosteric mechanism is 

driven by conformational selection consistent with the MWC model. 
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MOLECULAR RECOGNITION OF RNA BY TIS11D 

The human protein TIS11d regulates mRNAs involved in mammalian 

hematopoiesis.(58, 59) Knock out, KO, mice of the TIS11d mouse homologue 

gene Zfp36l2 hemorrhage and die two weeks from birth.(58) The mice have 

fewer hematopoietic progenitor cells and as a result have reduced red and white 

blood cells, hemoglobin, hematocrit and platelets.(58) Recent screens of patient 

suffering from acute myeloid leukemia, AML, and acute lymphoblastic leukemia, 

ALL, have implicated TIS11d in the pathogenesis of these diseases.(59)  In 

patients and in cancerous immortalized cell lines, both single-point mutations as 

well as frameshift mutation and point mutations have been identified throughout 

the TIS11d gene locus.(59)  

TIS11d is one of the three known human TTP-like proteins, TTP, TIS11b 

and TIS11d.  Trisetraprolin is also known as TTP, TIS11, ZFP36, or Nup475.  

TIS11b is also known as ERF1, ZFP36L1, or cMG1.  TIS11d is also known as 

ERF2, ZFP36L2, or the gene encoding butyrate response factor-2.  In mice a 

fourth member has been identified in placenta, ZFP36L3.(60) TTP and TTP-like 

proteins are involved in the regulation of important cytokines and growth factors 

associated with chronic inflammation and cancer.(61, 62)  

TTP-like proteins contain three domains types, N-terminal domain, NTD, 

C-terminal domain, CTD, and an RNA binding domain, RBD, Figure 1.5.  
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Figure 1.5: TTP-like proteins bind RNA through a CCCH TZF domain. TTP-

like proteins contain a N-terminus domain (NTD) an RNA binding domain (RBD) 

and a C-teriminus domain (CTD). The NTD is shown in pea green, the RBD is 

purple and the CTD is dark green.  The homology of each domain of TIS11b and 

TIS11d is calculated with respects to TTP, the prototype of the TTP-family.  B) 

The structure of the RBD of TIS11d bound to ARE13 is shown within the cartoon. 

Zinc atoms are shown as purple spheres coordinated by the CCCH residues 

(pink sticks) of the first and second zinc fingers of TIS11d. The RNA cognate 

sequence bound to TIS11d is shown as light purple sticks. C) The RBD of the 

TTP family is highly identical. The amino acid sequences of the RBD of TTP, 

TIS11d and TIS11b are shown. CCCH residues are highlighted in pink. Residues 

that differentiate each sequence from the family are bold and underlined. 

 

The structure of TIS11d-ARE13 is generated from the PBD file 14GO. 

 

Reference:  

Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. 
Recognition of the mRNA AU-rich element by the zinc finger domain of 
TIS11d. Nat Struct Mol Biol 11, 257-64 (2004). 
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The NTD and CTD coordinate mRNA degradation by recruiting and 

binding mRNA degradation machinery.(10, 63) The RBD recognizes and binds to 

AU rich elements, (AREs) of single stranded RNA through a CX8CX5CX3H type 

tandem zinc finger (TZF).  The RBD of TTP-like proteins binds to an ARE 

cognate sequence 5!-UUAUUUAUU-3!.(64, 65) The primary sequence homology 

of the TTP family is listed for each protein in Figure 1.5. AML and ALL related 

point mutations have been discovered in each domain of the TIS11d gene 

locus.(59) Specifically, the missense mutations H62Q and D219E are located in 

the NTD and the RBD, respectively, are linked to AML.  These residues are 

critical for proper function as they are conserved within the TTP family.(59)  

The RBD of TIS11d consists of two zinc fingers (ZF1 and ZF2) connected 

by an 18 amino acid linker.  The length of the linker is conserved within the TTP 

family. Two sequences preceding each ZF in the TTP family are precisely 

conserved; the sequence RYKTEL directly precedes ZF1 and the sequence 

KYKTEL directly precedes ZF2.  

The NMR structure of TIS11d bound to a 5!-UUAUUUAUU-3! reveals that 

each ZF of TIS11d binds 5!-UAUU-3! RNA element exclusively through hydrogen 

bonding, van der Waals forces, and base stacking.(66, 67) Each R/KYKTEL 

sequences makes significant contacts with the RNA to form a pocket and bind 

U6 and U2 at ZF1 and ZF2 respectively.  The glutamate and leucine of 

R/KYKTEL and R160 and R198 of ZF1 and ZF2 recognize the adenine of each 

UAUU element through hydrogen bonds. The amide backbone of TIS11d forms 

hydrogen bonds with the Watson-Crick edge of each nucleotide.  The conserved 
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aromatic residues Y170, F176, Y208 and F214, base stack with RNA bases. 

 Molecular dynamic simulations of the RBD of TIS11d reveal that without 

RNA the structure of the ZFs of TIS1d remain intact but reorient such that TIS11d 

becomes more compact.(68) To bind RNA, TIS11d must open globally and the 

fingers must reorient.(68) This study shows that the backbone flexibility of 

TIS11d in complex with ARE is more rigid than when bound to polyuridine.(68) 
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HBI COOPERATIVITY 

The hemoglobin homodimer of Scapharca inaequivalvis, HbI, binds 

oxygen cooperatively and is driven by changes in both structure(69) and 

dynamics.  Like Hb, HbI binds gaseous ligands such as oxygen, O2, nitric oxide, 

NO, and carbon monoxide, CO at its coordinated Fe(II)-heme (ferroprotopophyrin 

IX). The tertiary fold of homodimeric HbI is homologous to human hemoglobin 

although its quaternary arrangement of subunits is unique.  In the case of HbI the 

E and F helices of the globin fold form the dimeric interface; in Hb these helices 

are solvent exposed.(70)  At the HbI interface, the hemes are directly connected 

to the opposite symmetric monomer through hydrogen bonds in both the R and T 

states, Figure 1.6.  In the T state Asn100 and Lys96 hydrogen bond with the 

heme of the opposite monomer at heme propionates 1 and 2; in total 6 hydrogen 

bonds are formed at the interface.  Upon binding ligand, the interface broadens 

and Asn100 and Lys96 hydrogen bond to propionate 1.(70) In the R state, Lys96 

is indirectly bonded to the heme of the opposite monomer at propionate 2 but this 

connection is mediated through a water molecule.  In total, there are 6 links in the 

HbI R and T states.   

 The difference in subunit orientation between oxygen bound and deoxy 

hemoglobin is a 3.4° rotation.(69, 71) Similarly, the distance between iron atoms 

of the heme groups only shifts 1.8 Å, such that the distance between hemes is 

16.6 Å in the unliganded state and 18.4 Å in the liganded state.  In the HbI 

unliganded T state conformation, a key residue, Phe97, packs against the 

proximial histidine, His101, within the heme pocket.(70) This packing maintains 
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the concave conformation of the heme.  The HbI interfaces of the R and T states 

are shown in Figure 1.6. Upon binding ligand, F97 is released from the heme 

pocket into the homodimer interface where it disrupts coordinated water 

molecules.  The motion of the Phe side chain to the interface allows the proximal 

His to form a strong hydrogen bond with the carbonyl oxygen of F97 and the iron 

is free to move into the plane of the heme.  

 Studies by Royer et al., imply that water is important for communication 

between monomers at the interface of HbI.   A cluster of 17 crystallographic 

waters are found at the HbI dimer interface of deoxy HbI; CO-HbI has 11 

crystallographic waters, Figure 1.7.(72) HbI binds oxygen more tightly in the 

presence of high concentrations of solutes such as glycerol, glucose and 

sucrose; solute causes an increase in binding affinity by stabilizing the bound 

state of HbI.(72)  Fits of HbI affinity for O2 with respect to osmotic pressure 

estimate that HbI releases 6 water molecules upon binding O2.(72) The osmotic 

pressure alters the water interface between HbI subunits and simultaneously 

disrupts communication between subunits. This suggests that water is essential 

for communication between HbI subunits and is important for HbI cooperativity.  
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Figure 1.6: Local conformational changes at the interface of HbI.  Here are 

the interfaces of T (top) and R (bottom) states of HbI.  The interfacial E helices 

are gray and the F helices are black, hemes are blue and CO is magenta.  The 

propionate groups of the hemes are labeled 1 and 2.  Important residues side-

chains are colored.  The proximal histidine, His101 is pink.  The distal histidine, 

His69, is cyan.  The interface residues Lys96, Phe97 and Asn100 are orange, 

red and green respectively. 

 

Structures of unliganded and CO-HBI are generated from the PBD files 4SDH 

and 3SDH respectively.   

 

Reference:   

Royer, W.E., Jr. High-resolution crystallographic analysis of a co-operative 
dimeric hemoglobin. J Mol Biol 235, 657-81 (1994). 
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Figure 1.6 
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Figure 1.7: Crystal structures of the CO-bound HbI R and T conformations 

of HbI and F97Y.  The HbI homodimer monomers are in dark and light purple, 

blue sticks represent the prosthetic heme, CO is green, residue F97 is shown in 

red, and water molecules are shown as light blue spheres.  The top panel 

contains the structures of free and bound wild type HbI.  The bottom panel 

contains the structures of free and bound F97Y HbI.  The E and F interface 

helices are labeled in the top panel of deoxy wild type HbI. 

 

Structures of unliganded and CO-HBI are generated from the PBD files 4SDH 

and 3SDH respectively.  Structures of unliganded and CO-F97Y are generated 

from the PDB files 2AUP and 2AUO respectively. 

 

References:  

Royer, W.E., Jr. High-resolution crystallographic analysis of a co-operative 
dimeric hemoglobin. J Mol Biol 235, 657-81 (1994). 
 
Knapp, J.E., Bonham, M.A., Gibson, Q.H., Nichols, J.C. & Royer, W.E., Jr. 
Residue F4 plays a key role in modulating oxygen affinity and 
cooperativity in Scapharca dimeric hemoglobin. Biochemistry 44, 14419-
30 (2005). 
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Figure 1.7 
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 Although local structural rearrangements are important for HbI 

cooperativity they are not sufficient to describe the thermodynamics of 

cooperative binding.  For HbI, the ligand binding affinity of the R state is 300-fold 

higher than the T state.(69) HbI binds oxygen with positive cooperativity and with 

a Hill coefficient of 1.5.(11) Ikeda-Saito et al. determined the thermodynamic 

properties of HbI cooperative ligand binding using a Van’t Hoff analysis.(11) They 

measured the HbI oxygen binding equilibria in 0.1 M phosphate buffer at pH 7.8 

for 10 µM – 100 µM HbI.(11) The cooperativity of HbI is unaffected by changes in 

the concentration of HbI or by changes in pH.  However, the effect of salt or 

buffer concentration was not tested.  The oxygen equilibria were measured at six 

different temperatures: 10.0, 15.1, 20.0, 25.1, 29.8, and 35.0 °C.(11) Assuming 

that HbI does not undergo a conformational change between 10 °C and 35.0 °C, 

they determine that the cooperativity of HbI is entropically driven.  Consider 

Table 1.1 which lists the thermodynamics of HbI cooperative ligand binding to 

oxygen at standard temperature and pressure.(11) In human hemoglobin 

cooperativity is enthalpically driven and entropically disfavored.(73) In contrast, 

entropy drives HbI positive cooperativity.  Binding of the second oxygen is 

thermodynamically more favorable and is driven by a decrease in entropic 

restraint (-T!S). This effect could result from a change in the conformational 

entropy of HbI and a change in the water surrounding HbI.(74)  
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Table 1.1: Thermodynamics of HbI Cooperative Binding to O2 at 298 K.(11) 

!G is the free energy change of the system, !H is the change in enthalpy, !S is 

the change in entropy, and T is the temperature in Kelvin.(11) 
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Table 1.1 
 

First O2      Second O2         Energy Differences 
  
   !H1 =  - 11.4 kcal mol-1     !H2 = - 7.4 kcal mol-1     

!!H2-1 =   4.0 kcal mol-1  
-T!S1 =     9.4 kcal mol-1 -T!S2 =    4.1 kcal mol-1     -T!!S2-1 = - 5.3 kcal mol-1 

   !G1 =  -  2.0 kcal mol-1    !G2 = - 3.3 kcal mol-1     
!!G2-1 = - 1.3 kcal mol-1 
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Although cooperativity in HbI is entropically driven, local structural 

rearrangements are essential for HbI cooperativity.  In particular, residue F97 is 

critical for these rearrangments.  Upon mutating F97 to tyrosine, cooperativity is 

reduced.  The Hill coefficient of F97Y binding is 1.1.(75) In this case Y97 does 

not pack against His101 in the unliganded state and does not transition between 

the heme pocket but instead is located in the interface for both the R and T 

conformations.(75) William Royer determined the structure of both the R and T 

states of Hb and F97Y.(70, 75) He hypothesized that the hydroxyl group of 

tyrosine may either streically hinder packing in the heme pocket and or stabilize 

the tyrosine in the hydrophillic interface.(75)   

Despite the importance of F97Y in local rearrangements, the F97Y HbI 

mutant does not dramatically alter the overall tertiary structure of the HbI R or T 

states.  When aligned with residues 10-146 of wild type HbI the bound and deoxy 

forms differ by 0.07 and 0.18 root mean square deviations respectively.(75) The 

subunits rotation upon binding ligand is also similar to wild type at a 3.0° rotation.  

The R state assemblage differs from wild type, by a 0.15° rotation and the T state 

differs by 0.31° rotation from wild type.(75) The R and T state conformations of 

F97Y are shown in Figure 1.7.  Although the crystallographic interface waters of 

both the R and T state of F97Y are different from wild type, the interface waters 

at the interface of the T state of F97Y are more different than the interface waters 

of the F97Y R state. The Asn100 and Lys96 links in wild type HbI are conserved 

in the T state of F97Y.  In the R state of F97Y, the water-mediated link by Lys96 

is lost, but otherwise the connective network is maintained. 
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Several additional mutants of HbI have been designed to probe the role of 

local structural rearrangements at the homodimeric interface and the contribution 

of water to wild type cooperativity.  These mutants have been characterized by 

flash photolysis and structurally through x-ray crystallography, Table 1.2. 
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Table 1.2: HbI Mutants. Flash photolysis is used to measure kinetics near 

physiological conditions as reported.(71, 72, 76-80) These mutants have not yet 

been characterized thermodynamically.  The crystallographic waters in each of 

the bound and unliganded mutant structures differs from wild type.  The high 

affinity mimic adopts the conformation of the bound state in the presence or 

absence of ligand.  The low affinity mimic adopts the conformation of the 

unliganded state in the presence or absence of ligand.  Those mutants that have 

high affinity favor undergo a conformational change upon binding ligand, 

however the interface crystallographic waters of both the bound and unliganded 

states is most similar to the crystallographic water molecules observed in the 

bound interface of wt HbI. 
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Table 1.2 

 
Variants of HbI Ligand Hill Coefficient Qualities 

 
Wild type      O2    1.5 ± 0.05  Wild type 

F97Y   O2     1.1 ± 0.05  High-affinity Mimic 

I114F   O2     1.04 ± 0.04  Low-affinity Mimic 

T72I   O2  ~1.2   High-affinity Favor 
T72V   O2  ~1.7   High-affinity Favor 
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The F97Y and I114F mutants do not undergo wild type like local structural 

rearrangements at the interface.  For both the R and T states, the F97Y interface 

residues resemble the R state. For both R and T states, I114F interface residues 

resemble the T state.  T72I and T72V mutants disrupt the water network between 

HbI subunits and alter cooperativity: T72I diminishes cooperativity and T72V 

enhances cooperativity.  The cooperativity of each of these mutants is different 

from wild type cooperativity.  This suggests that local structural rearrangements 

and changes in water dynamics at the interface are linked and are critical in HbI 

cooperativity. 

Cooperativity can arise through changes in 1) protein and/or solvent 

structure, 2) protein and/or water dynamics.  Crystallographic studies of HbI and 

the F97Y mutant have revealed the structural contributions to cooperativity and 

have also implicated a role of the interfacial water in HbI cooperativity.  The 

thermodynamics of cooperative binding of oxygen by HbI reveal that entropy 

drives HbI cooperativity.  A change in entropy can arise from changes in protein 

or water dynamics.  
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SCOPE OF THESIS 

Currently the importance and relevance of protein dynamics for 

cooperative binding and molecular recognition is in its infancy.  Typically 

hemoglobin cooperativity is attributed to a change in conformation.  This thesis 

demonstrates how both structure and dynamics are important for cooperativity.  

The primary aim of this thesis is to understand how changes in HbI 

flexibility contribute to cooperativity and how changes in dynamics are coupled 

with structural changes of the protein and the interfacial water.  HbI becomes 

more flexible upon binding CO, and notably the E and F interface helices of HbI 

undergo the largest change in flexibility.  Also, the conformational entropy of HbI 

contributes to cooperative binding.  The HbI mutant F97Y has significantly 

reduced cooperativity and we observe that F97Y does not undergo wild type-like 

changes in flexibility upon binding ligand.  This is a proof of principle that the 

backbone fast time-scale dynamics of HbI contribute to cooperative binding. 

The second aim of this thesis is to study the mechanism of adenine 

recognition by TIS11d.  This research demonstrates that TIS11d binds three high 

affinity RNA targets.  The chemical shifts of backbone amides of TIS11d bound 

to RNA suggest that TIS11d binds each of these RNA sequences differently. 

The study of Hb and TIS11d furthered our understanding of protein 

dynamics and can be applied to other systems as highlighted by my collaborative 

projects in the appendices.  
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ABSTRACT 
 

Upon ligand binding, the homodimeric hemoglobin of Scapharca 

inaequivalvis (HbI) undergoes a transition between a low affinity and a high 

affinity state characterized by a 300-fold increased affinity for oxygen with a Hill 

coefficient of 1.5.(1)  A van’t Hoff analysis of HbI indicates that cooperative 

binding of HbI to oxygen is due to a change in entropy.(2) The change in entropy 

of the system observed upon ligand binding may arise from changes in the 

protein, the ligand or in the water of the system.  The focus of this study is on 

determining the contribution of the change in entropy of the protein backbone to 

HbI cooperative binding.  NMR relaxation techniques reveal that the fast internal 

motions of HbI contributes to the cooperative binding to carbon monoxide in two 

ways, 1) by contributing favorably to the free energy of the system and 2) by 

participating in the cooperative mechanism at the HbI subunit interface.  As a 

proof of principle we measured the fast internal motions of the weakly 

cooperative HbI mutant, F97Y.  In this case, we observe that the fast backbone 

motions of F97Y are disrupted throughout the mutant protein and at the F97Y 

homodimeric interface.  The protein conformational entropy change associated to 

CO binding estimated for F97Y HbI is of opposite sign than that estimated of wild 

type HbI, hence it does not contribute favorably to the very low cooperativity of 

this mutant protein.  The results of this study suggest that interface flexibility and 

backbone conformational entropy of HbI participate and are important for the 

cooperative mechanism of carbon monoxide binding.  In future studies, MD 

simulations and NMR relaxation techniques will be used to measure the entropic 
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contributions of the water and of HbI side-chains in HbI cooperativity.  These 

studies will reveal the role of protein and water and how their coupling 

contributes to HbI cooperativity. 
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INTRODUCTION 

Allosteric regulation is an essential function of many proteins that control a 

variety of different processes such as catalysis, signal transduction, and gene 

regulation.(3-5) Structural rearrangements have historically been considered the 

main means of communication between different parts of a protein. Recent 

studies have highlighted the importance of changes in protein flexibility as an 

effective way to mediate allosteric communication across a protein.(6-8) The 

dimeric hemoglobin from Scapharca inaequivalvis (a blood clam) (HbI) is the 

simplest possible allosteric system, with cooperative ligand binding between two 

identical subunits. HbI is unusual in this regard, as all other known allosteric 

hemoglobins invariably incorporate unlike subunits. Because of its simplicity, HbI 

is an excellent system for directly exploring key issues of allostery. HbI binds 

oxygen and CO cooperatively (the Hill coefficient, n, is equal to 1.5 for oxygen 

binding) at two chemically identical sites with no modulation of ligand affinity by 

non-heme ligands.(9) The dimer is formed by apposition of the E and F 

helices,(1, 10) bringing the heme groups into close proximity and permitting more 

direct communication in HbI than in mammalian hemoglobins, Figure 2.1. This 

assembly, which we term an “EF dimer”, has now been found in hemoglobins 

from echinoderms (11) and megadalton annelid hemoglobin complexes.(12)  

Ligand binding in HbI is associated with localized structural transitions (Fig. 

2.1)(13) characterize by only a slight change in quaternary structure (3.3º subunit 

rotation) but with striking tertiary changes at the dimeric interface, including the 

movement of Phe 97 (F4) from the heme pocket into the interface.(1)  



 58

 
 
 
 

 

 

 

Figure 2.1: Local conformational changes at the homodimeric interface of 

HbI.  The HbI interface of the unliganded low affinity state is in (A) and the CO 

bound high affinity state is in (B).  The E helices are gray and the F helices are 

black, hemes are blue and CO is magenta.  The propionate groups of the hemes 

are labeled 1 and 2.  Important residues side-chains are colored.  The proximal 

histidine, His101 is pink.  The distal histidine, His69, is cyan.  The interface 

residues Lys96, Phe97 and Asn100 are orange, red and green respectively. 
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Figure 2.1 
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(Individual residues of proteins that adopt the globin fold are named according to 

the helical position in sperm whale myoglobin, the first globin structure 

determined.  Residue Phe 97 of HbI is at the fourth position of the F helix of the 

globin fold.) The side chain motion of Phe 97 disrupts a cluster of well-ordered 

water molecules.  As a result, the observed water molecules in the crystal 

structures are more abundant and more ordered in the unliganded interface than 

the liganded form.(1) 

Thermodynamic equilibrium studies of oxygen binding to HbI have shown 

that cooperativity in HbI is an entropically driven effect.(2) In particular, the 

differences in free energy, enthalpy and entropy between the first and second 

oxygen binding event are !!G = -1.3 kcal/mol, !!H = 4.0 kcal/mol and  

-T(!!S) = -5.3 kcal/mol at 298 K, respectively.  Hence, in HbI, binding of the 

second oxygen molecule is made thermodynamically more favorable by a less 

negative !S. This effect could result from a change in the conformational entropy 

of HbI or that of the water surrounding HbI when oxygen binding occurs.  The 

importance of changes to protein dynamics in ligand binding processes has been 

recently highlighted from NMR relaxation studies.(6, 14-19) 

HbI is unstable when bound to oxygen because oxygen oxidizes the iron 

of the HbI heme, but HbI is stable when bound to carbon monoxide.  Although we 

know that HbI binds carbon monoxide with higher affinity than oxygen we 

hypothesize that the entropic contribution to cooperativity is the same. This is a 

reasonable hypothesis because the crystallographic structures of HbI bound to 

CO or O2 are very similar; the average RMSD between CO-HbI and O2-HbI is 
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less than 0.1.(10, 20)  

All of this evidence points to a combination of the structure and dynamics 

of HbI and of the interfacial water in allosteric communication between the two 

binding sites.  In order to fully understand the cooperative mechanism of HbI, 

each of these contributions must be measured.  In this study, we investigated 

how changes in backbone HbI flexibility contribute to cooperativity using nuclear 

magnetic resonance (NMR) spectroscopy.  To investigate how changes in 

protein dynamics are coupled to and correlated with structural changes upon 

ligand binding we compared the internal backbone dynamics of wild type HbI with 

those of the mutant HbI, F97Y.  For the mutant protein the side chain at position 

97 is locked at the dimeric interface, mimicking the high affinity conformation.(21) 

In F97Y, the structural transition associated with ligand binding, from the low 

affinity to the high affinity state is completely restricted at the interface. 
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RESULTS 

HbI is a symmetric dimer in solution  

HbI is a symmetric dimer in solution in both the liganded and unliganded 

states, as confirmed by the observation of only one set of signals corresponding 

to a monomeric subunit in two-dimensional (2D) 1H–15N correlation spectra. 

Figure 2.2 shows the different spectra acquired for CO-bound and unbound HbI 

and F97Y. The chemical shift differences between these two spectra reflect the 

structural changes undergone by the protein upon CO binding. Even the subtle 

ligand-linked structural changes in HbI detected by x-ray crystallography 

(between 0.5 and 1 Å) result in significant differences in chemical shift values. In 

HbI the structural change, although relatively localized, affects the chemical 

environment of the entire dimeric interface because ligand binding is coupled 

with a change in quaternary structure (3.3º subunit rotation) (22) in addition to 

striking tertiary changes at the core of the interface.  

 

Resonance assignments  

The backbone assignment of unliganded and CO-liganded HbI and of 

unliganded F97Y HbI were determined using a three-dimensional triple 

resonance [1H, 15N]-TROSY experiments including, HNCO, HN(CA)CO, HNCA, 

HN(CO)CA, HNCACB, and CBCA(CO)NH (23, 24) collected at 14.1 T and at 298 

K using uniformly labeled 13C/15N samples.  
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Figure 2.2: Amide Chemical shifts of HbI. This is an overlap of the [1H, 15N]-

TROSY spectrum of (A) CO-HbI and unliganded HbI (B) and CO-F97Y and 

unliganded F97Y.  In both A and B the CO bound conformations are red and 

unliganded conformations are blue.  Unliganded peaks that undergo moderate 

chemical shifts upon binding ligand are labeled in both A and B.  Residue D20 

does not undergo a chemical shift change in each of the four spectra.  Residue 

L54 is too low intensity to be assigned in B.
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Figure 2.2 
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Assignment of the CO-bound F97Y mutant HbI was obtained by comparison with 

the spectrum of CO-bound WT HbI supplemented by the use of 1H–1H NOESY 

and HMQC-NOESY-HSQC experiments. Each subunit of HbI consists of 146 

residues. In addition to the three proline residues that do not give rise to a signal 

in a 2D 1H–15N correlation spectrum, the following residues could not be 

assigned due to overlap or lack of signal; CO-HbI: 2, 12, 56, 81, and 130; 

unliganded HbI 2, 70, 71,73- 75, 77, 97, 99-103 105, 106, 111-114; CO-F97Y 

HbI: 2, 12, 56, 81, 99, 117, 130; unliganded F97Y HbI: 2, 12, 36, 42, 50, 51, 53, 

56, 65, 69-77, 97-107, 113, 117, 130.   

 

Effect of the paramagnetic Fe2+ in the unliganded state on the relaxation rates  

The presence of a paramagnetic center in the unliganded state of HbI 

dramatically affects the relaxation properties of the nearby nuclei.  Because of 

the increased transverse relaxation rates the signal of many of the residues on 

helix E and helix F is too low for detection in the unliganded state.  The 

paramagnetic contribution, due to interaction with the metal ion, to the transverse 

and longitudinal relaxation rates is a function of the distance from the Fe2+ ion 

with 1/r6 dependence.  As a consequence, the paramagnetic effect is the 

dominant contribution to R1, R2, and NOE for nuclei proximal to the Fe center, but 

will be negligible for nuclei that are >15 Å away from the paramagnetic center. 

Residues with a non-negligible paramagnetic contribution to the relaxation rates 

can be easily identified from a plot of R1 and R2 as a function of 1/rN-Fe
6, where rN-



 66

Fe is the distance between the amide N and the Fe2+ ion. The only residue that 

we identify as susceptible to the paramagnetic interaction with the Fe2+ ion was 

A98: this residue was excluded from the model free analysis.(25) 

 

Internal dynamics of HbI 

NMR 15N longitudinal, R1, and transverse, R2, relaxation rate constants, 

and {1H}-15N nuclear Overhauser enhancement (NOE) (26-28) were measured 

for all the spectrally resolved amide backbone groups in WT and F97Y HbI in 

both the unliganded and unliganded states at 14.1 T and 298 K, (Figure 2.3 A). 

Relaxation parameters could not be accurately determined for the following 

residues because of spectral overlap: 3, 5, 6, 8, 23, 27, 28, 37, 39, 42, 43, 57, 

58, 61, 63, 70, 82, 86, 89, 93, 95, 100, 104, 107, 114, 118, 120, 129, 131, 133, 

137 in CO-HbI, 5, 12, 15, 17, 23, 24, 27, 28, 30, 36, 37, 42, 44, 53, 56, 58, 72, 

91, 104, 107, 137 in unliganded HbI, 16, 21, 23, 27, 28, 29, 31, 39, 42, 43, 44, 

49, 55, 57-60, 63, 69, 71, 72, 78, 83, 86, 89, 92-94, 97, 103, 104, 107, 114, 115, 

118-120, 124, 131, 137 in CO-F97Y HbI and 5, 10, 11, 16, 18, 19, 21, 23, 27, 29, 

39, 48, 62, 63, 65, 66, 78, 80-82, 89, 93, 114, 119-121, 123, 127, 129, 136, 141 

in unliganded F97Y HbI.  In addition, the following residues were excluded from 

the model free analysis due to the large relaxation parameter errors resulting 

from low signal intensities in one or more of the relaxation experiments, 50, 51, 

54, 76, 79, 130, 142, 143 in unliganded HbI, 96, 101, 102, 142 in CO-F97Y and 

37, 40, 47, 54, 79, 96, 112, 115, 142, 146 in unliganded F97Y. 



 67

 

 

 

Figure 2.3: Amide relaxation rates of HbI and Phe-97-Tyr.   Relaxation rates 

of wt HbI are in (A) and F97Y are in (B). CO bound species are shown as closed 

circles, deoxy species are shown as open circles.  Error bars represent the error 

of the fit. 
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Figure 2.3 
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Laboratory-frame relaxation data were analyzed using the Lipari-Szabo model 

free formalism.(29, 30) Knowledge of the rotational diffusion properties of HbI is 

necessary for model free analysis. Analysis of the R2/R1 ratio (31) was used to 

estimate the overall rotational correlation time and determined the isotropic 

diffusion model to be the best representation for the rotational diffusion of WT 

HbI and F97Y HbI in both the liganded and unliganded states.  

The order parameters, S2, describing the amplitude of the backbone 

motion on the ps-ns time scale, were calculated for HbI in both the free and CO-

bound states (Figure 2.4 A). The order parameter difference between the free 

and bound state represents the change in backbone dynamics that occurs upon 

ligand binding. CO-binding induces HbI to become, on average, more flexible, 

S2
(bound) - S

2
(unliganded) < 0 (Figure 2.5 A).  The interfacial helices E and F undergo 

the most dramatic change, becoming less rigid upon binding CO (Figure 2.5 A). 

Thermodynamic equilibrium studies of oxygen binding to HbI have shown that 

binding of the second oxygen molecule is made more favorable by a less 

negative entropic term, !S.(2) This suggests that ligand binding by HbI is 

entropically driven.  From the order parameters, the protein conformational 

entropic contribution to the binding free energy of carbon monoxide was 

estimated to be -2.1 ± 0.4 kcal/mol.  Although this result only accounts for the 

changes in conformational fluctuations of the residues with a calculated order 

parameter and neglects any correlation between spins, it supports the hypothesis 

that the increased protein flexibility associated with ligand binding contributes to 

cooperativity in HbI.  
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Figure 2.4: Backbone order parameters (S2) of HbI and F97Y. Order 

parameters of wt HbI are in (A) and F97Y are in (B). CO bound species are 

shown as closed circles, deoxy species are shown as open circles.   Structural 

elements are shown at the top of each plot.   Solid bars represent !-helices and 

lines represent loops. 
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Figure 2.4 
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Figure 2.5: Ligand induced changes in HbI and Phe-97-Tyr backbone 

flexibility. Order parameters of wt HbI are in (A) and F97Y are in (B).  For each 

available pair of backbone residues a black bar indicates the difference between 

bound and free order parameters.  Error bars are the sum of the error in the fit.  

Structural elements are shown at the top of each plot.  Solid bars represent !-

helices and lines represent loops. 
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Figure 2.5 
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To further test this hypothesis, the change in internal dynamics upon CO-

binding was measured in the high affinity-state mimic F97Y.  This mutant protein 

of HbI explores the effect of mutation on the F4 phenylalanine whose side-chain 

conformational transition, from the heme pocket to the dimeric interface, plays a 

central role in the allosteric mechanism of HbI and is characterized by a greatly 

reduced cooperativity: the Hill coefficient is 1.1.(21) If the increased flexibility 

observed upon binding is involved in HbI cooperativity, we expected this mutant 

to show a different change in dynamics upon ligand binding.  Indeed, F97Y does 

show a different trend: on the average F97Y is more rigid in the CO-bound state 

than in the free state (Figure 2.4 B). The estimated contribution to the free 

energy of binding arising from the conformational restriction associated with 

carbon monoxide binding is 2.4 ± 0.6 kcal/mol. This mutant protein is generally 

more rigid than the WT, in both the free and bound state.  The backbone 

dynamics of the mutant protein is restricted at the interface by the F97Y 

mutation, since HbI is cooperative it is likely that this interface mutation could 

yield an overall rigidification of the protein in both the CO bound and unliganded 

states of the protein.  

When comparing the order parameters calculated in the liganded and 

unliganded states of each protein, the most obvious difference between the 

internal dynamics is observed at the interfacial helix E, which upon CO-binding 

becomes more rigid in F97Y but more flexible in wild-type HbI (Figure 2.5 B).  

The direction of changes in internal dynamics of wild-type and mutant HbI are 

mapped onto the structures of CO-HbI and CO-F97Y respectively (Figure 2.6).  
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This result suggests that the backbone dynamics at the dimeric interface are 

involved in HbI cooperativity and are coupled with HbI allosteric regulation.  

However, a full understanding of the cooperative mechanism of HbI requires an 

assessment of the entropic contributions of the water and of protein side-chains.  
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Figure 2.6: Changes in average backbone flexibility of HbI and F97Y.   

Backbone amide residues that undergo a significantly different change in order 

parameters outside the error of the sum of differences and undergo a change in 

order parameters greater than 0.02 are represented as blue and red spheres.  

Red spheres indicate a significant increase in flexibility upon ligand binding.  Blue 

spheres indicate a significant decrease in flexibility upon ligand binding.  Wild-

type HbI is in A and F97Y is shown in B.  The helical backbones of wild type and 

F97Y are shown as grey loops.  Hemes and ligands are shown as grey sticks 

and grey spheres respectively. 

 
Structures of CO-HBI are generated from the PBD file, 3SDH and structures of 

CO-F97Y are generated from the PDB file 2AUO. 
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DISCUSSION  

Structural studies of HbI have been powerful in demonstrating the 

important role of local structural rearrangements in cooperative ligand binding.  

For the first time, using NMR, we demonstrate that the dynamics of HbI are also 

involved in HbI cooperativity.  The backbone flexibility of HbI contributes to 

cooperativity in two ways, 1) by contributing favorably to the free energy of the 

system and 2) by participating in the cooperative mechanism at the HbI subunit 

interface. As a proof of principle we measured the fast internal motions of the 

weakly cooperative HbI mutant, F97Y.  The change in backbone flexibility of 

F97Y is disrupted throughout this mutant protein and particularly at its interface. 

The conformational entropy change associated with ligand binding disfavors 

cooperativity in F97Y.  These results demonstrate that changes in conformational 

entropy contribute together with structural changes to the cooperative 

mechanism of HbI. 

X-ray crystallography has shown that the F-helix of HbI undergoes the 

largest conformational change upon binding ligand.(1) HbI undergoes a 

quaternary structural rearrangement upon binding ligand; the HbI subunits rotate 

by 3.3º.  The conformational rearrangement by helix F including F97 is critical; as 

is evident by the loss of cooperativity in the F97Y mutant of HbI.  Thus, both the 

structure and dynamics of the F-helix of wild type HbI are sensitive to ligand 

binding.(1, 32) F97Y undergoes a similar change in quaternary structure 

characterized by 3.0º subunit rotation.(21) However, for both the unliganded and 

CO bound states of F97Y, the tyrosine side-chain at position 97 remains in the 
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hydrophilic interface; this prevents helix F from undergoing a conformational 

transition that brings its backbone closer to the heme.(21) The ligand promoted 

change in the dynamics of helix F is not significantly perturbed in the mutant 

F97Y relative to wild type.  This result suggests that the change in dynamics of 

helix F is a result of ligand binding may not be essential in HbI cooperativity.  

Crystallographic data suggests that the conformation of the E helix is not 

perturbed by ligand binding.  However, our data indicate that helix E becomes 

more flexible upon ligand binding and that this change in dynamics is important 

for the HbI cooperative mechanism.  In fact, ligand binding has the opposite 

effect on the dynamics of the E helix in F97Y, where it becomes more rigid, and 

this mutant protein has greatly reduced cooperativity relative to the wild type. 

Equilibrium thermodynamic studies of the thermodynamics of oxygen 

binding show that HbI cooperativity is driven by favorable changes in entropy.  In 

this study we estimate that the difference in conformational entropy between 

bound and unliganded states of HbI favors HbI cooperativity.  The change in 

conformational entropy of F97Y disfavors cooperativity. Previous studies of HbI 

have not been able to estimate the role of HbI conformational entropy to 

cooperativity.  In this study we have learned that the changes in backbone 

conformational entropy favor HbI cooperativity and that changes in HbI dynamics 

of HbI are involved in HbI cooperative binding.  

Molecular dynamics (MD) simulations of HbI have been used to 

investigate the role of interfacial water molecules in the cooperative mechanism 

of HbI.(33) The results of these studies indicate that water clusters in unliganded 
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HbI are less dynamic than in liganded HbI.(33) In addition, energy transfer 

between subunits is observed to be 10% more effective in the presence of 

interfacial water molecules.(33)  

In future studies we plan to use MD simulations to understand the 

coupling between the change in structure and dynamics of the interfacial helices 

(E and F) and of the interfacial water and its role in cooperativity.  If water 

dynamics mediate the cooperative mechanism at the interface, then comparison 

of MD simulations of wild type and mutant F97Y HbI will show changes in the 

dynamics of interfacial water molecules and reduced or lost coupling between the 

water and the protein.  The results of MD simulations, together with studies of the 

HbI, the side-chain dynamics will reveal the full significance of the protein 

dynamics in HbI cooperativity. 
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MATERIALS AND METHODS 

Protein expression and purification 

HbI was expressed in E. coli Q-cells (34) under the control of a T7 

promoter, in M9 minimal media supplemented with a standard vitamin mix and a 

trace metals solution.(35) To label HbI, the glucose or ammonium chloride of M9 

was substituted with 13C and 15N labeled compounds respectively.  HbI was 

induced for 6 hours with 1 mM Isopropyl !-D-1-thiogalactopyranoside, IPTG, and 

supplemented with 84 µM amino levulinic acid, ALA. 

HbI was purified as previously described (35). Cell pellets were 

resuspended in 0.5 M Tris pH 8.0, 100 mM NaCl, 10 mM 

Ethylenediaminetetraacetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride 

(PMSF) and 5% (w/v) glycerol. Cells were lysed by sonication, duty cycle 7, for 

30 seconds every minute for five minutes.  The lysed cell solution was treated 

with DNase1, RNaseA and 6 mM MgCl2 for thirty minutes.  Cellular debri was 

pelleted by centrifugation at 15,000 rpms.  Contaminates salt out of solution at 

45% saturation with ammonium sulfate; HbI salts out at 95% saturation with 

ammonium sulfate.  HbI was isolated using a DEAE column in 40 mM 2-

(Cyclohexylamino)ethanesulfonic acid (CHES) pH 9.0 and a CM sepherose 

column in 40 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

(HEPES) pH 7.0.   

Sample preparation  
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CO-HbI samples were degassed with CO and NMR tubes were filled with 

CO before being sealed with epoxy.  Unliganded HbI samples were prepared 

from CO-HbI; to remove CO, samples were first agitated and flashed with white 

light in the presence of oxygen. Then to produce unliganded samples O2-HbI was 

flashed with white light in a N2 environment overnight.  A trace amount of sodium 

dithionite was added to deoxy HbI samples before being sealed with epoxy within 

the anaerobic chamber.  Absorbance at 534 nm, 416 or 422 nm light indicates 

the presence of deoxy HbI, O2-HbI and CO-HbI respectively.  Similar procedures 

have been successfully used on other hemoglobins for many years.(36-38) 

NMR spectroscopy 

3D sensitivity-enhanced gradient-selected [1H,15N]-TROSY (tranverse-relaxation 

optimized spectroscopy) triple-resonance experiments (HNCA, HN(CO)CA, 

HNCACB, CBCA(CO)NH, HNCO, and HN(CA)CO)(23, 24) were collected at 14.1 

T and at 298 K using uniformly labeled 13C/15N 0.4 mM Hbl and 0.6 mM F97Y 

HbI (50 mM HEPES pH 7.0, 150 mM NaCl, and 95%H2O/5%D2O, T = 298 K). 

Additional 3D 15N edited 1H–1H NOESY and HMQC-NOESY-HSQC experiments 

were collected at 14.1 T and 298 K and used to aid in the backbone resonance 

assignment of HbI and F97Y HbI in both the free and bound states.  All NMR 15N 

relaxation experiments were performed on [U-15N] samples of HbI and F97Y HbI 

(50 mM Hepes, pH 7.0, 150 mM NaCl, 95%H2O/5%D2O, T = 298 K) at the 

following concentrations: 0.8 mM CO-HbI, 0.8 mM unliganded HbI, 0.7 mM CO-

F97Y and 1.0 mM unliganded F97Y.  All NMR triple-resonance and 15N spin 

relaxation data were collected on a Varian Inova spectrometer operating at 600 
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MHz equipped with a triple-resonance cold probe. The temperature was 

calibrated using a sample of 100% methanol. 15N R1 and R2 values and {1H}-15N 

NOE were measured using standard methods (39-41). Nine relaxation delays, 

two of which were duplicates, were used to measure R1 and R2.  Relaxation 

delays ranged between 0 and 0.666 seconds for R1 and between 0 and 0.090 s 

for R2. The interval between 180° pulses in the CMPG experiment used to 

measure R2 was 1.5 ms. Three sets of NOE data (proton saturated and non-

saturated spectra) were collected in an interleaved manner.  Data were acquired 

with 128 ! 2048 (t1! t2) complex points and spectral widths of 2200 x 8,000 Hz. 

Data processing was performed using NMRPipe (42) and Sparky (43) software, 

Curvefit (www.palmer.hs.columbia.edu), along with in-house written programs.  

Intensities of cross peaks were used to quantify relaxation and uncertainties were 

estimated from duplicate (R1, R2) or triplicate (NOE) experiments. 

Model free analysis 

The dominant source of 15N amide relaxation is through dipole dipole (DD) 

interactions with the attached protein and chemical shift anisotropy (CSA).  The 

experimentally measured relaxation rates R1, R2, and the NOE depend on the 

reduced spectral density function J(!) which describes internal motions: (44) 
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where c = !N"# / $3 and d = (µ0 / 8%)h&H&X / (rNH)3 and, µ0 is the permeability of 

free space, h is Planck’s constant, &H and &X are the gyromagnetic ratios of the H 

and X nuclei respectively, rHX is 1.04 Å. 

Relaxation rates were analyzed using the Lipari-Szabo model free 

formalism.(29, 30) The Lipari-Szabo model free formalism assumes that the 

internal motion of the N-H vector is uncorrelated from the overall rotational 

motion of the protein.  In the Lipari and Szabo formalism extended by Clore et al 

(45) the spectral density function can be described as 
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parameter is a measure of the degree of freedom of the motion of the 

intermolecular amide bond vector; 
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is equal to 1 if the motion is completely 

restricted and is equal to 0 for isotropic motion 
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 is the effective correlation time 

of the generalized order parameter.  
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 is the isotropic rotational correlation time 

and 
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s are the effective correlation times of the fast and slow internal 

motions.  Both 
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s  are much faster than 
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Values of the R2/R1 ratio were used to estimate the rotational diffusion 

tensor using the program r2r1_diffusion (www.palmer.hs.columbia.edu). 

Residues that have a value of the R2 rate constant beyond one standard 

deviation from the mean and/or have NOE values less than 0.65 were eliminated 
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from this analysis.(31) 

  The relaxation data were analyzed using the program FAST Modelfree 

(46) (http://xbeams.chem.yale.edu/~loria) and Modelfree 4.20 

(www.palmer.hs.columbia.edu).  Five different motional models were used to 

facilitate the analysis of the relaxation data: 1, 2, 3, 4, 5 (47).  For models 1-4 
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  Order parameters have been used to estimate an upper bound for the 

change in entropy, !S, resulting from conformational restriction: (48)  
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for which kB is the Boltzmann constant, and Sa and Sb are the order parameters 

of the a and b states for spin i.  This equation only accounts for the entropic 

effect of the part of the conformational ensemble characterized by the set of 

 

S
2

 

values but neglect any correlation between spins.  The error in the 

conformational entropy is propagated from the error in the fits of the order 

parameters.  
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ABSTRACT 

 
The human protein TIS11d is an important regulator of mRNA transcripts 

involved in hematopoiesis.(1, 2) Mutant TIS11d is associated with the 

pathogenesis of acute myeloid leukemia and acute lymphoblastic leukemia; point 

mutations and frame shift mutations have been identified throughout the TIS11d 

gene locus of leukemic cells and immortalized cancer cell lines.(2) TIS11d binds 

5!-UUAUUUAUU-3! RNA sequences, although the mRNA targets of TIS11d are 

unknown.  Studies of the TIS11d mouse homologue implicate TIS11d in the 

binding and regulation of Notch 1 mRNA at the 3!UTR (and other unknown 

targets) and demonstrate the potential tumor suppressor activity of TIS11d.(3) 

We show that TIS11d binds three sequences, 5!-UUUUAUUUAUUUU-3! (ARE),  

5!-UUUUUUUUAUUUU-3! (FM313), and 5!-UUUUAUUUUUUUU-3!(FM413) with 

high affinity.  Backbone chemical shift differences of TIS11d in complex with 

each of these three high affinity targets suggest that TIS11d binds each RNA 

differently.  NMR titration data shows that TIS11d binds different RNA sequences 

through different kinetic mechanisms and although 50% identical, zinc finger 1 

(ZF1) and zinc finger 2 (ZF2) of TIS11d contribute to RNA binding differently.  
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INTRODUCTION 

The human protein TIS11d is an important regulator of mRNA transcripts 

involved in hematopoiesis.(1, 2) Knock out, (KO) mice of the TIS11d mouse 

homologue gene Zfp36l2 die two weeks from birth from hemorrhaging.(1) The 

mice have fewer hematopoietic progenitor cells and as a result have reduced red 

and white blood cells, hemoglobin, hematocrit and platelets.(1) In humans, 

misregulation of TIS11d is associated with the pathogenesis of acute myeloid 

leukemia, AML, and acute lymphoblastic leukemia, ALL.(2) Frameshift mutation 

and point mutations throughout the TIS11d gene locus were identified in the 

leukemic cells from patients with acute myeloid leukemia and in several 

cancerous immortalized cell lines.(2) AML- and ALL- related point mutations 

have been discovered in the NTD, CTD and RBD of the TIS11d gene locus.(2) 

The missense mutations H62Q and D219E are linked to AML; residues H62 and 

D219 are conserved in the TTP family.(2) The mutation at residue D219 is within 

the TIS11d RBD.  The missense mutation, A329V is detected in ALL patients and 

is not conserved in the family.(2) 

In cells, overexpression of wild type TIS11d suppresses cell proliferation 

and induces apoptosis.(2) The apoptosis-related proteins caspase-3, PARP and 

phosphorylated H2AX, are induced by overexpression of TIS11d.(2) Similar to 

the response of cells that are exposed to ultraviolet radiation, TIS11d activates 

the S phase checkpoint with increased amounts of p53 and diminished p21.(2) A 

frameshift mutation, I373fsX91 of the carboxy–terminal region has been used as 

a control in overexpression studies of TIS11d in HeLa cells.  Overexpression of 



"#

I373fsX91 only has a limited effect on cell proliferation and does not mediate 

H2AX phorphorylation or activation of the S phase checkpoint.(2)  

The presence of H2AX phosphorylation and activation of the S phase 

checkpoint indicate that DNA damage is occurring within the cell.  Misregulation 

of proteins involved in histone biosynthesis and chromatin remodeling causes a 

similar DNA damage response as TIS11d.  In addition, histone biosynthesis 

proteins have also been linked to AML.(4) If the function of TIS11d is linked to 

histone biosynthesis then misregulation of histone chaperones could be the 

source of TIS11d related leukemia.   Reduction in p21 in the DNA damage 

response is a hallmark of inaccurate DNA repair by translesion DNA 

synthesis.(5) The overexpression of TIS11d activates the S phase checkpoint 

and reduces p21 suggesting that TIS11d may be involved in DNA repair.(2) 

The RBD of the TTP family is highly conserved; the NTD and CTD of the 

TTP family are less homologous, Figure 1.5.(6, 7) However, in vivo, TTP, 

TIS11d and TIS11b may only be partially redundant; they do not bind all the 

same in vivo mRNA targets or proteins nor are they expressed in the same cell 

types.(6, 8-10) There is strong evidence that TTP regulates over 100 in vivo 

mRNA targets including TNF!.(8, 11, 12) Studies of the TTP and TIS11d 

lymphocyte double knock out mice implicate TIS11d and TTP in the binding and 

regulation of Notch 1 mRNA.  Notch 1 mRNA is the only known in vivo mRNA 

target of TIS11d, and DII4 mRNA is the only known in vivo target of TIS11b.(13, 

14) The search for in vivo mRNA targets is hampered by the lack of knowledge of 

the binding specificity of the RBDs of these proteins.  
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In a magnetic field, magnetically active nuclei have a characteristic 

resonance frequency.  The resonance frequency relative to a standard is the 

chemical shift.  Chemical shift is sensitive to the local chemical environment of a 

nucleus and therefore is related to the structure of the molecule.  The chemical 

shift is then sensitive to structural transitions and ligand binding events that affect 

the distribution of electrons around a nucleus.  Using only the observed chemical 

shift changes, it is difficult to identify which structural changes are associated 

with ligand binding.  Therefore, in this study of TIS11d we cannot identify the 

structural differences of TIS11d in complex with three different RNA sequences 

based only on the difference between the two-dimensional NMR spectra of these 

complexes.  

In this study we have used NMR and gel electrophoresis mobility shift 

assays (EMSA) to investigate the mechanism of adenine recognition by TIS11d.  

Using EMSA we have identified three RNA sequences that TIS11d binds with 

high affinity.  NMR titration data shows that TIS11d binds different RNA 

sequences through different kinetic mechanisms.  Although zinc fingers 1 (ZF1) 

and zinc finger 2 (ZF2) of TIS11d are each 50% identical each contribute to RNA 

binding differently.  Future studies on the structure, flexibility and conformational 

entropy of RNA bound TIS11d will reveal the full significance of adenine 

recognition in the selection of mRNA targets. 
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MATERIALS AND METHODS  

Reagents 

All materials used were reagent grade except for the following purified 

chemicals.  Deuterium oxide (>99%) was purchased from Spectra Stable 

Isotopes (Columbia, MD).  15N ammonium chloride (98%), 13C glucose (98%), 

and were purchased from Sigma-Aldrich (St Louis, MO).  

Expression and Purification of TIS11d: 

The RBD of TIS11d (residues 151-220) was expressed from the pet21b 

vector within BL21(DE3)E. coli.  Isotopic labeling with 15N was performed by 

growing the cells in M9 enriched with 1 g of 15NH4Cl per liter.  Carbon labeling 

was performed by growing cells in 13C-glucose. The cells were grown at 37°C to 

an OD600 of 0.8 and then induced for 4 hours with 1 mM Isopropyl !-D-1-

thiogalactopyranoside, IPTG, and 0.15 mM ZnSO4 at the same temperature.  In 

total 3 mgL-1 of TIS11d is purified, 50% of the protein is soluble and 50% is 

harvested from inclusion bodies.  Cell pellets were resuspended in chilled lysis 

buffer: 25 mM HEPES pH 7.8, 100 mM NaCl, 1 protease inhibitor pellet, and 2 

mM DTT.  Cells were lysed by sonication, duty cycle 7, for 30 second increments 

every minute for five minutes.  Inclusion bodies were pelleted by centrifugation 

for 30 minutes at 25,000 rpm and were dissolved in reducing buffer: 50 mM Tris 

pH 8.0, 150 mM DTT, 6.4 M guanidine for 30 minutes at 75 ºC.  The cell slurry 

was titrated with 10% (v/v) trifluoroacetic acid, TFA to pH 2.0. TIS11d was 

isolated using a Sep-Pak reverse phase column and was eluted with a step-wise 
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gradient of acetonitrile and TIS11d fractions are lyophilized at -40 ºC overnight. 

The soluble fraction of TIS11d was purified as discussed previously.(15) 

Refolding TIS11d: 

 TIS11d was refolded by dialysis in 10 mM TRIS pH 6.2, 20 mM KCl, 2.5 

mM DTT at room temperature overnight. In the refolding buffer the concentration 

of ZnSO4 was 2.5 times the concentration of unfolded TIS11d.  

Gel Mobility Shift Assays: 

Gel shift mobility assays were conducted as discussed previously.(16) 

Optimal binding of TIS11d to RNA was measured in the presence of 2 mM 

dithiothreitol, DTT.  The concentration of TIS11d was measured using a 

Ninhydrin assay.  The affinities of TIS11d, Kd (apparent) for the sequence: 5!-

UUAUUUAUU-3! (ARE13), 5!-UUUUUUAUU-3! and 5!-UUAUUUUUU-3! were 

measured by direct titration of 3 nM labeled RNA with increasing concentrations 

of TIS11d.  As discussed previously, the Kd,app of TIS11d-5!-

UUUUUUUUAUUUU-3! and TIS11d-5!-UUUUAUUUUUUUU-3!  were fit to the Hill 

equation.(16)  

 

" =
P[ ]

t
( )

n

P[ ]
t

( )
n

+ K
d ,app( )

n  ,   (1) 

where 

 

"  is the measured fraction bound, 

 

P[ ]
t
is the total protein concentration,

 

K
d ,app is the apparent binding constant and n is the hill coefficient. The binding 

affinity of TIS11d to ARE13 is a very high affinity interaction.  
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Therefore the Kd,app of TIS11d to ARE13 is not fit to the Hill equation but to the 

quadratic equation  
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where 

 

L[ ]
t
is the total ligand concentration.  The lower limit of binding to U13 and 

ARE7 was estimated by competition with ARE13.   

Chemical Shift Calculations: 

TIS11d-ARE13 has been assigned previously.(17) The free form of TIS11d 

was assigned using standard triple resonance experiments: HNCA, HN(CO)CA, 

HNCACB, CBCA(CO)NH.  The RBD of TIS11d contains four prolines, P161, 

P190, P207, P210.  Using the assignments of free TIS11d and TIS11d in 

complex with ARE13 TIS11d-U13, TIS11d-5!-UUUUUUUUAUUUU-3! and TIS11d-

5!-UUUUAUUUUUUUU-3! were assigned.  Amide cross-peaks of the TIS11d 

RNA complexes wee assigned from the assignments of TIS11d and TIS11d-

ARE13.  Residues that undergo large chemical shifts could not be assigned.  

Amide cross-peaks of the N-terminal residues S151, T152 and residue H181 are 

absent in the free form of TIS11d and in each of the TIS11d complexes.  

Residues R188, H189 of free TIS11d are also absent.  Amide cross-peaks of 

residues: R153, Y154, T156, E157, C159, Y170, F176, A177, R184, L186, T187, 

K191, K193, L196, C197, T199, F200, R211, H213, F214 of TIS11d-U13 could 

not be assigned with certainty but are present in the spectrum.  The residues: 

T156, E157, L158, C159, R160, T187, R189, of TIS11d-5!-UUUUUUUUAUUUU-

3! could not be assigned with certainty but are present in the spectrum.  Residues 
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R153, Y154, T156, C159, R184, L186, T187, K193, T194, E195, R198, T199, 

F200, R211, H213, F214 of free TIS11d-5!-UUUUAUUUUUUUU-3! could not be 

assigned and are absent from the TIS11d-5!-UUUUAUUUUUUUU-3! spectrum. 

Chemical shift differences between the free and bound states of TIS11d 

were monitored using a series of 1H-15N HSQCs.  All experiments were collected 

on a 600 MHz Varian spectrometer at 25 °C.  All spectra were processed with 

nmrPipe,(18) visualized with nmrDraw(18) and Sparky.(19) The chemical shift 

differences, ", were determined using " = (#H
2 +  (#N$N/$H)2)1/2, where #H is the 

chemical shift difference of proton, #N is the chemical shift difference of nitrogen 

and $N, $H are the gyromagnetic ratio of nitrogen and hydrogen atoms.  Chemical 

shift differences were mapped onto the TIS11d-ARE13 NMR structure using 

PyMOL.(20) Chemical shift difference plots are generated using Grace.(21) 

NMR titrations: 

NMR titrations were conducted by titrating small volumes (µl) of 1-4 mM 

into a 600 µl sample of TIS11d.  For each titration the starting concentration of 

TIS11d was less than 300 µM. Titrations were complete at stoichiometric excess.  

The titrations of TIS11d with either ARE13 or U13 were repeated twice and show 

the same results.  Chemical shift changes between the free and bound states of 

TIS11d were monitored using a series of 1H-15N HSQCs.  
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RESULTS 

The binding affinity of TIS11d for ARE cognate sequences 

The affinity of TIS11d for three ARE-like sequences has been determined 

using quantitative gel electrophoretic mobility shift assays. TIS11d binds 5!-

UUUUAUUUAUUUU-3! (ARE13), 5!-UUUUUUUUAUUUU-3! and 5!-

UUUUAUUUUUUUU-3! with nM affinity.  Out of the three, TIS11d binds the 

ARE13 cognate sequence with the highest affinity, Figure 3.1.  The affinity of 

TIS11d for U13 and ARE7 are estimated through competition gel shift.  TIS11d 

binds U13 and ARE7 weakly and therefore, only a lower limit can be determined, 

Figure 3.2.  At higher concentrations of RNA, the RNA self associates and 

migrates within the agarose gel as a mixture of complexes. The affinity of TIS11d 

for ARE-like sequences and the free energy differences of binding are listed in 

Table 3.1. 

 The structure of TIS11d shows that each ZF of TIS11d binds the UAUU 

sequence element.(17) This suggests that the shortest RNA sequence TIS11d 

can bind using both ZFs is eight bases long.(22) In order to verify this we tested 

the affinity of TIS11d for 5!-UUUUAUU-3!, ARE7.  In this case the Ki (apparent) is 

greater than 20 µM.  If either ZF1 or ZF2 selected a UAUU recognition element 

out of context the affinity of ARE7 would be comparable to the affinity of 5!-

UUUUUUUUAUUUU-3! or 5!-UUUUAUUUUUUUU-3!.  Since the affinity of ARE7 

is too weak to be measured we conclude that TIS11d binds RNA only if both 

fingers bind RNA. 
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Figure 3.1:  Direct titration of TIS11d with the ARE13 cognate sequence.  The 

fraction bound is determined as a function of the concentration of TIS11d 

increasing from 70 pM to 986 nM designated by the black triangle as determined 

by gel mobility shift assays.  Within the gel, fluorescently labeled RNA appears 

as dark band.  The lower band is free RNA and the higher band is bound RNA. 

Binding to ARE13 was determined by direct titration and fitting to the quadratic 

equation. 
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Figure 3.2 RNA competition assays of TIS11d bound to RNA ARE13 cognate 

sequence.  The fraction of TIS11d bound to ARE13 is competed off with 

increasing the concentration of RNA at maximum 20 µM designated by the black 

triangle.  Within the gel, fluorescently labeled RNA appears as a dark band.  The 

lower band is free RNA and the higher band is bound RNA. The competing RNAs 

are in the following panels: (A) ARE13, (B) U13.   
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Table 3.1: The specificity of TIS11d for ARE-like sequences. The RNA codes 

are listed in the first column with the corresponding RNA sequence listed 5! to 3! 

in the second; bases can be identified by positions numbered 1-13.  The 

recognition element of ZF2 is shown in bold and the recognition element of ZF1 

is underlined. For ARE77 and U13 the Ki apparent is > 20 µM.  !G is the free 

energy of binding RNA and !!G = !G(RNAx) -  !G(ARE13), this indicates the 

thermodynamic preference for ARE13.  The fold ARE preference for ARE13 is 

listed in the final column.  Errors listed are the standard deviation of three 

duplicates. 
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RNA           Sequence   Kd apparent          !G          !!G     ARE preference 

              (kcal mol-1)  
 
ARE13   UUUUAUUUAUUUU     3 ± 1 nM -11.7 ± 0.1   0  1 
FM313   UUUUUUUUAUUUU   24 ± 7 nM -10.4 ± 0.2 1.3  8 
FM413   UUUUAUUUUUUUU   16 ± 3 nM -10.6 ± 0.1 1.1  6 
ARE7    UUUUAUU __    > 20 "M 
  U13   UUUUUUUUUUUUU    > 20 "M 
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TIS11d binds single stranded RNA in the 3! to 5! direction such that ZF1 

binds the 3! UAUU element and ZF2 binds the 5! UAUU element.(17) The 

adenines at positions A5 and A9 are critical for generating the highest affinity 

recognition by TIS11d.  Upon substituting both adenines with uridines TIS11d 

binding is more than 8,000 times weaker than for ARE13, Table 3.1.   However 

removal of one of the two adenines yields only a six fold or eight fold reduction in 

affinity, Table 3.1.   

The adenine at position five and the adenine at position nine contribute 

similarly to TIS11d recognition.  Removal of either the adenine at position five or 

the adenine at position nine causes a similar reduction in affinity.  Therefore, ZF1 

and ZF2 of TIS11d contribute similarly for the selection of ARE sequences.  This 

is not surprising since ZF1 and ZF2 of TIS11d are more than 50% identical in 

primary sequence. Although the RBD of TIS11d is nearly identical to the RBD of 

TTP, the binding specificity of TTP and TIS11d are different. TTP and TIS11d 

bind ARE13 with similarly affinity.(22) However, TIS11d and TTP bind 5!-

UUUUUUUUAUUUU-3! and 5!-UUUUAUUUUUUUU-3! with different 

affinities.(22) TIS11d is tolerant of U-A base substitutions at either positions 5 or 

9.  TTP is less tolerant of these substitutions.  As a result, TTP prefers the ARE13 

twenty times more than either the FM3 or FM4 sequences.(22) Removal of both 

adenine bases has an affect on the binding affinity of TIS11d, the binding is so 

weak it cannot be measured.  
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Chemical shift changes in TIS11d associated with high affinity binding to ARE13 

 Chemical shift changes are observed for most of the residues of the RBD 

of TIS11d upon addition of RNA, Figure 3.3 (C).  The most significant changes 

come from those backbone residues that interact and recognize RNA bases, 

Figure 3.4(A).  Three residues undergo the largest change in chemical shift, 

R160, K191 and R198.  The backbone amide of R160 and R198 forms hydrogen 

bonds with the A9 and A5 RNA bases, respectively.(17) K191 may make contact 

with the phosphate backbone of the RNA although the contact is not clear from 

the NMR structure.(17) The conserved residues of the R/KYKTEL sequence that 

precedes ZF1 and ZF2, undergo moderate changes in chemical shifts, these 

residues also form backbone hydrogen bonds with the 5!UA bases of each 5!-

UAUU-3! recognition element.  
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Figure 3.3: Chemical shifts of TIS11d and TIS11d-ARE13.  (A) The 1H-15N 

heteronuclear single quantum coherence (HSQC) spectra of TIS11d and ARE13-

TIS11d are shown in red and blue, respectively.  The largest chemical shifts are 

mapped by a grey bar and labeled.  (B) Amide chemical shift differences, !", 

have been determined using !" = ("H
2 +  ("N#N/#H)2)1/2, where "H is the chemical 

shift difference of proton, "N is the chemical shift difference of nitrogen and #N, #H 

are the gyromagnetic ratio of nitrogen and hydrogen atoms.  Increasing chemical 

shift differences mapped from white to red onto the NMR structure of ARE13-

TIS11d using PyMOL (C).  Zinc is shown as grey spheres and RNA is shown as 

blue lines.   

 

The structure of TIS11d-ARE13 is generated from the PBD file 14GO. 

 

Reference:  

Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Recognition of 

the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol 

Biol 11, 257-64 (2004). 
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Figure 3.4: Chemical shift differences of TIS11d bound to cognate RNA are 

larger than to pulyuridine.   Atop each plot is a schematic representation of the 

TZD of TIS11d; the black horizontal bars represent ZF1 and ZF2, the blue 

horizontal bars are the preceding conserved RYKTEL and KYKTEL sequences, 

white circles represent the CCCH residues of ZF1 and ZF2, the red circles 

represent residues whose side chains form base stacks with RNA bases in the 

TIS11d-ARE13 complex, black dots denote a residue that hydrogen bonds to a 

RNA base in the TIS11d-ARE13 complex.  For each plot, black bars designate the 

magnitude of amide backbone chemical shift differences of TIS11d between 

states.  A) Chemical shift differences between free TIS11d and TIS11d in 

complex with the highest affinity cognate sequence ARE13, (!" =TIS11d – 

TIS11d-ARE13) B) The chemical shift differences of free TIS11d and TIS11d 

bound to pulyrudine, (!" =TIS11d – TIS11d-U13). C) The chemical shift 

difference between TIS11d-ARE13 and TIS11d-U13, (!" =TIS11d-ARE13 – 

TIS11d-U13).   
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Figure 3.4 
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Chemical shift changes in TIS11d associated with weak binding to U13 

The chemical shift differences between TIS11d and TIS11d-U13 highlight 

the changes that occur to TIS11d upon binding U13, Figure 3.4(B).  The 

observed differences suggest that the complex of TIS11d with U13 maintains 

some of the structural features present in the TIS11d-ARE complex.  Chemical 

shift changes occur throughout ZF1, ZF2 and the linker upon binding weakly to 

U13.  

Residues Y208 and E195 of TIS11d in ZF2 and the KYKTEL sequence 

preceding ZF2 respectively undergo the largest change in chemical shift upon 

binding U13, Figure 3.4(B).   The chemical shifts of these residues overlap with 

the chemical shifts of TIS11d-ARE13.  In the TIS11d-ARE13 conformation of 

TIS11d the backbone amide of E195 hydrogen bonds to U4 and the side-chain of 

Y208 intercalates between U6 and U7.  This suggests that binding to U4 and 

coordinating U6 and U7 by TIS11d-U13 is similar to the base coordination in 

TIS11d-ARE13. 

The structure of TIS11d when bound to ARE13 is stabilized by 

intramolecular H-bonds and by a hydrophobic core made of hydrophobic 

residues of the linker and ZF1.(17) Upon binding U13 the largest measurable 

chemical shift differences occur for residues L158, K173, Y192, E195, Y208, and 

I215, Figure 3.4(B). The chemical shift of these important residues is labeled in 

the 1H15N-HSQC spectra shown in Figure 3.5.  These residues are involved in 

intramolecular H-bonds or are part of they hydrophobic cluster that stabilizes the 

structure of TIS11d in the TIs11d-ARE13 complex.  



""#

 

 

 

 

 

Figure 3.5: Amide backbone chemical shifts of TIS11d bound to polyurdine.  

The 1H-15N heteronuclear single quantum coherence (HSQC) spectrum of 

TIS11d-5!-UUUUUUUUUUUUU-3! is red, free TIS11d is blue, and TIS11d-ARE13 

is black.  Grey bars indicate large chemical shift differences between TIS11d 

(blue) and TIS11d-5!-UUUUUUUUUUUUU-3! (red); for these peaks the TIS11d-

5!-UUUUUUUUUUUUU-3! cross-peaks are labeled.  
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In particular, Y192 is part of a hydrogen-bonding network that stabilizes the C-

terminus of TIS11d.(17) Y208 hydrogen bonds to the sulfur of C212 and I215 

forms a hydrogen bond with the carbonyl of E195.(17) The side-chain of L158 

participates in this hydrophobic core.(17) The chemical shift of K173 is unclear, 

Wright et al hypothesize it may be sensitive to the RNA phosphate backbone.(17)  

The presence of large chemical shift differences between the spectra of 

TIS11d-U13 and free TIS11d suggests that many of the structural features of 

TIS11d-ARE13 are conserved in the TIS11d-U13 complex.  However, not all of the 

chemical shift changes observed upon addition of ARE13 are present.  For, 

instance backbone amides of residues K155 and F162 undergo a smaller 

transition upon binding U13 than upon binding ARE13.  This suggests that 

hydrogen bonds are absent, suboptimal or that the conformation of TIS11d is 

different at the N-terminus.   

Differences between TIS11d-ARE13 and TIS11d-U13, Figure 3.4 (C), 

highlight differences between the spectra.  Residues R160, Q175 and R198 

undergo large changes in chemical shifts upon binding ARE13.  These changes 

are diminished upon binding TIS11d-U13. Upon binding ARE13 backbone amides 

of R160, R198 and Q175 form hydrogen bonds to RNA.  R160 and R198 form 

hydrogen bond to the A9 and A5, respectively and Q175 forms a hydrogen bond 

to U10.   These diminished changes in chemical shifts suggest that hydrogen 

bonding to U9, U5, and U10 may be absent or weakened and that the chemical 

environment near these residues is different.  It is also possible that TIS11d does 

form hydrogen bonds with these bases and that TIS11d is characterized by an 
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equilibrium between two or more conformational states.  In general the chemical 

shifts of TIS11d-U13 are mores similar to free TIS11d than to the chemical shifts 

of TIS11d-ARE13, Figure 3.4 (B, C).  Upon binding U13 backbone amides of 

TIS11d undergo fewer and smaller chemical shifts.  We hypothesize that U13 

promotes a transition to a conformation that is more compact than the unbound 

state but that is more dynamic than the ARE-bound state and that only some of 

the H-bonds and hydrophobic interactions known to stabilize the TIS11d-ARE 

complex are present. 
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Chemical shift changes in TIS11d associated with high affinity binding to FM313 

5!-UUUUUUUUAUUUU-3! has one adenine at position nine; this adenine 

is coordinated by ZF1.  Upon binding 5!-UUUUUUUUAUUUU-3!, TIS11d 

undergoes moderate chemical shift changes throughout ZF1, ZF2 and linker, 

Figure 3.6 (A).  The chemical shift changes at ZF1 are larger than the chemical 

shift changes at ZF2; this suggests that ZF1 binds the 5!-UUAU-3! and ZF2 binds 

5!-UUUU-3!.  This is consistent with 3! to 5! RNA recognition observed in the 

TIS11d-ARE NMR structure.  The largest measured chemical shifts TIS11d 

undergoes upon binding 5!-UUUUUUUUAUUUU-3! is at residues F162 and T194, 

Figure 3.6 (A).  In the TIS11d-ARE structure, the backbone amide of F162 forms 

a hydrogen bond to the sulfur of C159 and the backbone amide of T194 forms a 

hydrogen bond to the RNA base U8, Figure 3.7.   

The chemical shifts of ZF2 of TIS11d-5!-UUUUUUUUAUUUU-3! is nearly 

identical to the chemical shifts of TIS11d-U13, Figure 3.6 (B). The most 

significant chemical shift difference between TIS11d-5!-UUUUUUUUAUUUU-3! 

and TIS11d-U13 is at residue F162.  The NMR structure of TIS11d-ARE13 shows 

that the backbone amide of F162 forms a hydrogen bond to the sulfur of C159.  

The observed chemical shift differences suggest that this bond is present in 

TIS11d-5!-UUUUUUUUAUUUU-3! and it is either absent or weakened in TIS11d-

U13.  Perhaps the N-terminus of TIS11d-5!-UUUUUUUUAUUUU-3! is more stable 

than TIS11d-U13.  In ZF2 residues R198 of TIS11d-5!-UUUUUUUUAUUUU-3! is 

different than TIS11d-ARE13, Figure 3.6 (C).  R198 forms a hydrogen bond to A5 

in the TIS11d-ARE13 structure.  ZF2 of the TIS11d-5!-UUUUUUUUAUUUU-3! 
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complex binds 5!-UUUU-3! therefore the backbone amide R198 cannot form a 

hydrogen bond to an adenine. 
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Figure 3.6: Amide backbone chemical shift difference analysis of TIS11d-5!-

UUUUUUUUAUUUU-3! Atop each plot is a schematic representation of the TZD 

of TIS11d; the black horizontal bars represent ZF1 and ZF2, the blue horizontal 

bars are the preceding conserved RYKTEL and KYKTEL sequences, white 

circles represent the CCCH residues of ZF1 and ZF2, the red circles represent 

residues whose side chains form base stacks with RNA bases in the TIS11d-

ARE13 complex, black dots denote a residue whose backbone amide hydrogen 

bonds to a RNA base in the TIS11d-ARE9 complex.  For each plot, black bars 

designate the magnitude of amide backbone chemical shift differences of TIS11d 

between states.  A) Chemical shift differences between free TIS11d and TIS11d 

in complex with the high affinity sequence FM33, (!" =TIS11d – TIS11d-5#-

UUUUUUUUAUUUU-3#) B) The chemical shift difference between TIS11d-5#-

UUUUUUUUAUUUU-3# and TIS11d-U13, (!" =|TIS11d-5#-UUUUUUUUAUUUU-3# 

– TIS11d-U13|).  This highlights the TIS11d chemical shift differences between 

the high affinity binding to 5#-UUUUUUUUAUUUU-3# and the low affinity binding 

to U13. C) The chemical shift differences of TIS11d-5#-UUUUUUUUAUUUU-3# and 

TIS11d bound to ARE13, (!" =|TIS11d-5#-UUUUUUUUAUUUU-3# – TIS11d-

ARE13|). This figure highlights the residues of TIS11d in complex with 5#-

UUUUUUUUAUUUU-3# that are different from the highest affinity binding to the 

cognate ARE13. 
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Figure 3.7: Amide backbone chemical shifts of TIS11d bound to 5!-

UUUUUUUUAUUUU-3!.  The 1H-15N HSQC spectrum of TIS11d-5!-

UUUUUUUUAUUUU-3! is purple, free TIS11d is blue, and TIS11d-ARE13 is 

black.  Grey bars indicate large chemical shift differences between TIS11d (blue) 

and TIS11d-5!-UUUUUUUUAUUUU-3! (purple); for these peaks the TIS11d-5!-

UUUUUUUUAUUUU-3! cross-peaks are labeled.  
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The chemical shifts of ZF2 of TIS11d-5!-UUUUUUUUAUUUU-3! are nearly 

identical to the chemical shifts of TIS11d-ARE13, Figure 3.6 (C), except for 

residue Q175. In the NMR structure of TIS11d-ARE13, the backbone amide of 

Q175 forms a hydrogen bond to U10.  This data suggests that ZF1 binds to 5!-

UUAU-3! without forming a hydrogen bond between Q175 and U10 or the nature 

of this interaction at this location is altered. The backbone amide of residue R160 

hydrogen bonds to A9 and undergoes one of the largest chemical shift changes 

upon binding ARE13, this peak cannot be assigned and does not overlap with the 

cross-peak location of free TIS11d or TIS11d-ARE13.  This suggests that this 

hydrogen bond is perturbed or absent in the TIS11d-5!-UUUUUUUUAUUUU-3! 

complex.   

Although the chemical shifts of ZF1 are most similar to the chemical shifts 

of TIS11d-ARE13, Q175 and R160 are sensitive to the particular RNA sequence 

bound to ZF2 and may be important in determining the different binding affinity of 

TIS11d for the ARE13 and 5!-UUUUUUUUAUUUU-3! sequences. 
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Chemical shift changes in TIS11d associated with high affinity binding to FM413 

Upon binding 5!-UUUUAUUUUUUUU-3!, TIS11d undergoes minor 

chemical shift changes throughout ZF1, ZF2 and the linker, Figure 3.8 (A).  The 

largest chemical shift difference is at residue Y208.  In the TIS11d-ARE13 NMR 

structure, Y208 forms an intramolecular stabilizing hydrogen bond with the sulfur 

of C206.  The chemical shift differences of TIS11d- 5!-UUUUAUUUUUUUU-3! are 

nearly identical and mostly overlap with TIS11d-U13, Figure 3.8 (B) and Figure 

3.9 (B).  There are no large chemical shift differences between the two 

complexes; this suggests that TIS11d-5!-UUUUAUUUUUUUU-3! adopts a similar 

conformation as TIS11d-U13.  Like TIS11d-U13, TIS11d-5!-UUUUAUUUUUUUU-3! 

is substantially different from TIS11d-ARE13, Figure 3.8 (C) and Figure 3.9 (A).    

Surprisingly, even though ZF2 binds to the sequence element 5!-UAUU-3! the 

preceding KYKTEL sequence and ZF2 are more similar to TIS11d-U13 than to 

TIS11d-ARE13.  Residues in this region are missing from the TIS11d-5!-

UUUUAUUUUUUUU-3! 1H15N-HSQC spectrum; these peaks are present in the 

TIS11d-U13 spectrum, Figure 3.9 (B).  This suggests that this finger may be 

flexible and is undergoing a chemical exchange process. 

The backbone chemical shifts observed for TIS11d-5!-

UUUUAUUUUUUUU-3! suggests that although an adenine is present at ZF2, 

TIS11d does not bind it like TIS11d-ARE13.  ZF2 of TIS11d binds adenine as in 

the high affinity recognition of ARE13 only if an adenine is also present at ZF1 

suggesting the existence of communication between ZF1 and ZF2. 
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Figure 3.8: Amide backbone chemical shift difference analysis of TIS11d-5!-

UUUUAUUUUUUUU-3!. Atop each plot is a schematic representation of the TZD 

of TIS11d; the black horizontal bars represent ZF1 and ZF2, the blue horizontal 

bars are the preceding conserved RYKTEL and KYKTEL sequences, white 

circles represent the CCCH residues of ZF1 and ZF2, the red circles represent 

residues whose side chains form base stacks with RNA bases in the TIS11d-

ARE13 complex, black dots denote a residue that hydrogen bonds to a RNA base 

in the TIS11d-ARE13 complex.  For each plot, black bars designate the 

magnitude of amide backbone chemical shift differences of TIS11d between 

states.  A) Chemical shift differences between free TIS11d and TIS11d in 

complex with the high affinity sequence FM43, (!" =TIS11d – TIS11d-5#-

UUUUAUUUUUUUU-3#).  B) The chemical shift difference between TIS11d-5#-

UUUUAUUUUUUUU-3# and TIS11d-U13, (!" =|TIS11d-5#-UUUUAUUUUUUUU-3# 

– TIS11d-U13|).  This highlights the TIS11d chemical shift differences between 

the high affinity binding to 5#-UUUUAUUUUUUUU-3# and the low affinity binding 

to U13. C) The chemical shift differences of TIS11d-5#-UUUUAUUUUUUUU-3# 

and TIS11d bound to ARE13, (!" =|TIS11d-5#-UUUUAUUUUUUUU-3# – TIS11d-

ARE13|). This figure highlights the residues of TIS11d in complex with 5#-

UUUUAUUUUUUUU-3# that are different from the highest affinity binding to the 

cognate ARE13. 
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Figure 3.8 
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Figure 3.9: Amide backbone chemical shifts of TIS11d bound to 5!-

UUUUAUUUUUUUU-3!.  A) The 1H-15N HSQC spectrum of TIS11d-5!-

UUUUUUUUAUUUU-3! is green, free TIS11d is blue, and TIS11d-ARE13 is black.  

B) The 1H-15N HSQC spectrum of TIS11d-5!-UUUUAUUUUUUUU-3! is green, 

and TIS11d-U13 is red.  



"#$

 

Figure 3.9 
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TIS11d-5!-UUUUAUUUUUUUU-3! and U13-TIS11d have similar chemical 

shifts, however, TIS11d has a high affinity for 5!-UUUUAUUUUUUUU-3! but not 

for U13.  TIS11d binds 5!-UUUUAUUUUUUUU-3! as tightly as 5!-

UUUUUUUUAUUUU-3! regardless of the favorable interaction associated with 

binding to an adenine at ZF1.  Changes in the conformational entropy of TIS11d 

could drive the high affinity binding to 5!-UUUUAUUUUUUUU-3!.  The backbone 

chemical shifts of TIS11d bound to ARE13, 5!-UUUUUUUUAUUUU-3! and 5!-

UUUUAUUUUUUUU-3! are different.  Although we cannot identify the particular 

structural differences that result in the observed differences in backbone 

resonance frequencies for these TIS11d complexes, we can conclude that 

TIS11d binds these RNA sequences in different conformations.
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Tis11d recognizes RNAs through different mechanisms 

TIS11d requires an intermediate to bind ARE13 but not polyuridine.  

Binding to ARE13 is slow on the chemical shift timescale.  At intermediate 

concentrations of RNA amide cross-peaks exist for both free and bound states of 

TIS11d, Figure 3.10 (A).  At substoichiometric concentrations of TIS11d (2% - 

17% RNA : TIS11d), amide peaks of TIS11d migrates by fast exchange to an 

intermediate state.  During this process cross-peaks do not shift towards the 

cross-peak position of TIS11d-ARE13; this suggests that TIS11d access an 

intermediate encounter complex to bind ARE13. Example shifts of cross-peaks to 

an intermediate are magnified within Figure 3.10 (B).  

Binding to U13 is slow on the chemical shift timescale.  At intermediate 

concentrations of RNA amide cross-peaks exist for both states of TIS11d. 

TIS11d does not access an intermediate upon binding U13.  The only exception in 

this case is for residue E182.  E182 undergoes fast exchange at 

substoichiometric concentrations of U13 : TIS11d (0%-25%). E182 is part of the 

linker of TIS11d, and it is not clear what the role of this residue is in TIS11d 

specificity.   

Titrations of TIS11d with 5!-UUUUUUUUAUUUU-3! and 5!-

UUUUAUUUUUUUU-3! show that TIS11d recognizes RNA by intermediate 

exchange with respects to chemical shift and transitions to an intermediate are 

not observed in either case, Table 3.2.  However, the TIS11d-ARE13 intermediate 

is an important step in binding ARE13.    
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Figure 3.10: TIS11d accesses an intermediate to bind ARE13. A) TIS11d is 

titrated with ARE13 (5!-UUUUAUUUAUUUU-3!), chemical shifts are determined by 

1H-15N HSQCs.  TIS11d binds ARE13 by accessing an intermediate and then 

transitioning to the high affinity complex.  Fast chemical exchange of TIS11d on 

the chemical shift time-scale provide evidence of an intermediate. Cross-peaks of 

substoichiometric concentrations of TIS11d:ARE13 are colored as follows: 0% 

red, 3% orange, 7% yellow, 10% green and 13% blue.  The final position of 

TIS11d-ARE13 is black. The trajectory of cross-peaks of TIS11d in fast exchange, 

are not in-line with the final positions of TIS11d-ARE13 cross-peaks. Example 

cross-peaks undergoing fast exchange are labeled in A and enlarged in B.  For 

all other subsaturating stoichiometric concentrations of RNA13 cross-peaks of 

both free and bound TIS11d are present within the spectrum; this is typical of a 

slow exchange process with respects to chemical shift, and reflect a second 

transition.  The chemical shift analysis if TIS11d with ARE13 suggests that TIS11d 

forms an intermediate encounter complex that is required to form the final 

TIS11d-ARE13 conformation.  
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Table 3.2: The exchange of ARE-like sequences.  In this table RNA 

sequences are listed 5! to 3!.  The exchange processes are defined with respect 

to chemical shift.
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Table 3.2: The exchange of ARE-like sequences.  

 
RNA                   Sequence       Exchange 

 
ARE13     UUUUAUUUAUUUU       Fast, Slow 
FM313     UUUUUUUUAUUUU    Intermediate 
FM413     UUUUAUUUUUUUU    Intermediate 
ARE7      UUUUAUU __     

   U13     UUUUUUUUUUUUU         Slow 
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DISCUSSION 

 Mutations in the TIS11d gene have recently been linked to patients with 

acute myeloid leukemia.(2) However, the activity of TIS11d in the cell is 

unknown.  In this study, gel mobility shift assays reveal that TIS11d is most 

selective for the ARE13 sequence.  However, TIS11d also binds to the 5!-

UUUUUUUUAUUUU-3! and 5!-UUUUAUUUUUUUU-3! sequences with high 

affinity.  Given the high affinity of TIS11d binding to ARE13, 5!-

UUUUUUUUAUUUU-3! and 5!-UUUUAUUUUUUUU-3!, each of these RNA 

sequences may be biologically important.  

 The backbone chemical shifts of TIS11d bound to U13 are indicative of 

non-specific binding of RNA.  Low affinity recognition of polyuridine may be 

useful for scanning mRNA sequences for high affinity targets.  The ability to bind 

non-specifically to mRNA will enhance the speed that TIS11d may locate a 

relevant mRNA target. 

 TIS11d is highly selective for UAUU sequence within a polyuridine stretch.  

However, ZF1 and ZF2 of TIS11d bind UAUU sequences directly but both ZF1 

and ZF2 are sensitive to the RNA sequence bound by the other zinc finger.  

Q175 of ZF1 only undergoes a large chemical shift change upon binding ARE13.  

ZF2 only undergoes large chemical shifts in the context of full-length ARE13.  The 

full-length RNA sequence sensitivity of TIS11d may not be present in all of the 

TTP-like proteins.  If ZF1 and ZF2 of TTP or TIS11b bind UAUU sequences 

independently with high affinity then these proteins could recognize shorter 
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sequences in vivo.  This could also differentiate the specificity of each TTP-like 

protein for ARE sequences in mRNAs. 

 Amide chemical shifts of TIS11d in complex with each of these RNAs 

suggest that the conformation of TIS11d is dependent on the sequence it binds.  

If the ARE13 sequence is the only biologically significant target sequence, then 

adaptor proteins may recognize and select for that unique conformation.  The 

conformation of TIS11d for each of these high affinity targets may be an 

indication of the mRNA sequence and could direct down stream effects.  

The promiscuous RNA binding proteins human PUMILIO1 and PUMILIO2 bind 

different RNA sequences in three distinct conformations with high RNA binding 

affinity.(23) The conformation of protein-RNA complexes have an effect in vivo, 

especially if adaptor proteins that bind the protein-RNA complex select for a 

particular conformational mode.(24)   

 This study and the conformational studies on PUMILIO proteins highlight 

the importance of conformational analysis of promiscuous proteins.  Studies of 

the DNA binding by CCHH type zinc fingers have allowed for zinc finger base 

selective engineering. In these studies molecular recognition is driven by the 

individual amino acids in direct contact with each base.(25) These studies 

suggest that CCHH type zinc fingers are modular, and the binding specificity of 

zinc finger chimeras exemplify CCHH type zinc finger modularity.(25) Our studies 

of TIS11d indicate that the CCCH zinc fingers of TIS11d are not modular as the 

RNA sequence recognized by one finger affects the RNA binding activity of the 

other zinc finger. 
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 We hypothesize that the high affinity binding of TIS11d to 5!-

UUUUAUUUUUUUU-3! is entropically driven.  Determination of the structure and 

flexibility of TIS11d in each of these complexes may provide insight into the 

mechanism of RNA recognition by TIS11d.   
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THESIS IMPLICATIONS AND FUTURE DIRECTIONS 

Protein flexibility contributes to protein function 

Proteins are flexible molecules that often undergo conformational changes 

to perform their biological functions including catalysis, signal transduction, 

metabolism, transcription and translation.  NMR spectroscopy is a powerful 

technique that can monitor protein motions over a broad range of time scales. 

This thesis focuses on understanding the role of protein dynamics on 

allostery and molecular recognition, two essential functions of proteins that 

permit fine-tuning of a variety of essential processes in the cell.  In particular, the 

fast time scale (ps-ns) dynamics of HbI were measured. This study showed that 

the flexibility of HbI is important in both the intersubunit communication as well as 

in the thermodynamics of cooperativity.  Our NMR spectroscopic studies of 

TIS11d free and bound to four different RNA sequences suggest that structure 

and dynamics of TIS11d contribute to TIS11d binding specificity.   

 

Fast protein motions and conformational entropy contribute to protein function 

 In ligand binding processes, changes in flexibility, due to a change in the 

number of states accessible to a protein (change in conformational entropy) can 

make a large contribution to the free energy of binding.  Historically it has been 

difficult to estimate protein conformational entropy. The development of NMR 

relaxation experiments and their recent applications to study fast (ps-ns) protein 

dynamics, however, have highlighted the importance of changes in protein 

flexibility in ligand binding processes.(1-3) Therefore, studies of protein dynamics 
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in the ps-ns time scale are a critical component to understand cooperativity.  In 

this study CO-HbI is shown to be more flexible than unliganded HbI while the 

opposite is truefor the less cooperative mutant (F97Y); CO-F97Y is more rigid 

than unliganded F97Y.  These results are strong evidence that HbI modulates its 

flexibility to bind ligand cooperatively.  The cooperativity of HbI has been shown 

to be entropically driven.(4) This study highlights the importance of evaluating the 

protein conformational entropy contribution to cooperativity and to ligand binding 

processes. 

This is the first study of a cooperative protein that has significant changes 

in flexibility at the inter-subunit interface that is necessary for cooperativity, 

suggesting that changes in fast time scale motions are involved in the 

cooperative communication between monomers.  These motions may be coupled 

to changes in water dynamics at the interface; therefore, this system is an ideal 

model for studying protein-water communication.  Characterizing the fast time 

scale motions of mutants of HbI with altered cooperativity which either mimic the 

low affinity state or disrupt the interfacial water cluster (F97L, T72V and I114F), 

will reveal the balance between structural and dynamical changes in 

cooperativity. Previous studies have shown that the dynamic behavior of the side 

chains can be more complex and heterogeneous than that of the backbone.(5) 

Therefore, the potential entropic contribution of HbI side chains to cooperative 

binding is expected to be large.(5) Because our studies have used only the 

backbone dynamics to characterize the protein conformational entropy changes, 

determination of methyl side-chain dynamics of HbI and HbI mutants will provide 
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a more complete understanding of the dynamic contributions to HbI cooperativity.  

Molecular dynamic simulations will be used to understand the details of the 

coupling between changes in protein and water structures and dynamics in HbI 

cooperativity.  Future molecular dynamic simulations can be used to measure 

changes in the total solvent accessible surface area (SASA) and estimate the 

change in entropy of the solvent.(6) By comparing simulations of CO bound and 

unliganded HbI changes in SASA estimates of the entropic contribution of water 

to cooperative binding can be obtained. 

 Studies of the fast time scale motions of TIS11d will be important to 

estimate the contribution of the change in conformational entropy to RNA 

binding, and these studies will provide insights into the combined role of protein 

structure and dynamics in controlling RNA binding affinity and specificity. In this 

study, TIS11d has been shown to bind three different RNAs with high affinity, and 

our data suggest that TIS11d may bind them in three different conformations.  

The different contribution of conformational entropy to binding each RNA 

sequence could explain the observed differences in structures and binding 

affinities.  Changes in the conformational entropy of the protein, solvent or RNA 

likely contribute favorably to the free energy of the system and could drive high 

affinity recognition of RNA.  Given that the affinities of TIS11d to ARE, FM3 and 

FM4 are similar, I hypothesize that favorable changes in conformational entropy 

compensate for unfavorable differences in the conformations of TIS11d-RNA. 
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Mechanism of long range-communications 

Long-range communications within a protein and between proteins are 

essential in allosteric regulation and signal transduction.(7) The mechanism of 

long-range communications can be described according to a network of linked 

structural changes.(8, 9) However, local structural rearrangements are not the 

only source of long-range communication.  Studies of transmembrane domains 

of signaling proteins demonstrate that long-range communications may be 

achieved through alterations in protein flexibility.(10) Although changes in 

flexibility have been shown to mediate long-range communication and allosteric 

regulation, methods to account for protein flexibility in communicative networks 

have not been developed.(7) 

This thesis identifies several interfacial residues of helix E whose 

dynamics is greatly affected by ligand binding.  A structure based network of 

residues which links the interface E and F helices to ligand binding at the heme 

has been proposed by Royer et al.(9) The integration of the results of the 

structural studies of Royer et al. with the results of future dynamics studies of 

different HbI mutants with altered cooperativity, described above, will reveal the 

coupling between structure and dynamical changes in the inter-subunit 

communication essential for cooperativity. 

For each mutant, the entropic contribution to cooperativity can be 

measured using a Van’t Hoff analysis.  Backbone and side chain contributions to 

conformational entropy can be estimated from changes in order parameters.  The 
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change in entropy associated with the water can be estimated using 

measurements of SASA from MD simulations of bound and unliganded mutants.  

Ideally, the change in entropy associated with HbI and mutant cooperativity will 

be linearly related to the sum of the change in conformational entropy of the 

protein and the change in entropy of the water.  If the dynamics or the solvent 

associated with the intermediate are disrupted by a point mutation in HbI but the 

fully bound or unliganded states are not disrupted, then the measured change in 

entropy of cooperative binding may not be linearly related to the estimate of the 

change in entropy of the system.  The relationship between the location of HbI 

point mutations and the change in the entropy of the protein or the water may 

reveal the connectivity between structural changes and dynamic changes of the 

system associated with HbI cooperativity. 

Slow protein motions contribute to protein function 

 NMR relaxation experiments can monitor protein motions occurring on a 

slow (µs-ms) time scale.(1, 11-14) The slow timescale dynamics of TIS11d has 

not been characterized. This work shows that TIS11d undergoes a 

conformational transition to a binding competent state in order to recognize RNA 

targets.  In future studies, NMR relaxation dispersion experiments will be used to 

measure slow time scale motions of TIS11d in the free state and at different 

concentrations of RNA to determine if a minor population of the binding-

competent state is present in the absence of RNA. If, in the absence of RNA, 

TTP is at the equilibrium with its RNA-binding competent state, we will conclude 

that binding occurs through a selected-fit model of molecular recognition. The 
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absence of relaxation dispersion in the free state of TIS11d will indicate that RNA 

is necessary to promote the transition as predicted by the induced-fit model.  In 

the induced-fit model, ligand induces a change in the protein conformation upon 

binding.  In the selected-fit model, ligand selects and stabilizes a complementary 

protein conformation from a pre-existing equilibrium of states.  

 Impact on the study of biological systems 

 HbI has evolved to utilize conformational entropy to accomplish the 

necessary affinity and cooperativity to bind and release oxygen as needed.  This 

study demonstrates that structural insights, even in a system that is as well 

understood as hemoglobin, may be insufficient to fully characterize protein 

function.  A full analysis of the dynamics of the system is important to understand 

how binding, allosteric regulation and cooperativity occur. 

 TIS11d is a human protein that has been implicated in AML and ALL 

pathogenesis and hematopoiesis.(15, 16) TIS11d binds and targets mRNAs for 

degradation; however, the in vivo mRNA targets of TIS11d are unknown.  The 

discovery of in vivo mRNA targets will provide insight into the role of TIS11d in 

hematopoiesis and the origin of TIS11d related pathogenesis.  This study 

demonstrates that TIS11d can bind three different high affinity targets; each of 

these sequences may mediate TIS11d-mRNA recognition in vivo.  Determination 

of the TTP, TIS11d and TIS11b consensus sequences will reveal the identity of 

potential mRNA targets of each protein that could be validated using 

mutagenesis.  If the consensus sequences of TTP, TIS11d and TIS11b are 
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degenerate then the proteins may be capable of binding many in vivo targets or 

acquire functional specificity through conformational selection. 

In addition, our study of TIS11d suggests that this protein binds different 

RNAs with different conformations that might be important for regulation. 

Structural, dynamical, and biochemical studies of full-length TIS11d in complex 

with its target RNAs and with other proteins of the RNA degradation machinery 

will elucidate the biological functions of the different conformations of TIS11d 

when bound to different RNAs. 

Therapeutic interventions with TTP-like proteins.  

A single intratumoral injection of TIS11b fused to R9, the cell penetrating 

poly-arginine peptide, suppresses tumor growth, enhances inflammatory 

cytokines and stops tumor vascularization.(17) The TIS11b-R9 therapy is a novel 

and potent approach to antitumor therapy and demonstrates the therapeutic 

power of modifying mRNA stability.(17) However, given that the biological 

function of TIS11d in the cell is still not well understood the side effects of these 

therapies cannot be predicted.  Further studies on the binding specificity of 

TIS11d could illuminate potential side effects in humans and may provide 

insights into protein engineering strategies to reduce potential side effects. 
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CONCLUDING REMARKS 

Fundamentally this work highlights the involvement of protein flexibility in 

cooperativity and binding specificity.  The cooperativity of the homodimeric 

hemoglobin HbI of scapharca inaequivalvis is entropically driven and this study 

demonstrates that backbone conformational entropy and changes in interface 

dynamics favor HbI cooperativity.  Protein dynamics are an essential element of 

protein function.  This research demonstrates that the origins of protein function 

is intimately linked to protein flexibility and it calls for the investigation of 

backbone conformational entropy in all entropically driven processes.   

The EF interface of HBI is conserved in invertebrate cooperative 

hemoglobins and has been observed in annelids, mollusks and the deuterostome 

phylum of echinoderms.(18) However, individual residues are not conserved 

within these hemoglobins, which suggests that the EF dimer assemblage has 

arisen through convergent evolution.(18) Therefore the EF interface has been 

independently selected to efficiently regulate oxygen transport in invertebrates.  

Although the thermodynamics of other EF assemblages is unknown, if future 

studies prove that HbI cooperativity is driven by changes in conformational 

entropy then perhaps all EF assemblages utilize changes in conformational 

entropy to bind oxygen cooperatively.  If this is the case, then the EF interface 

may contain some innate feature that promotes cooperativity through dynamic 

and structural changes.  This would be a prime example of the natural selection 

of changes in conformational entropy to generate cooperative binding. 
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TIS11d recognizes three similar RNA sequences with high affinity.  I 

anticipate that fusions of TTP like proteins to R9 will act as potent antitumoral 

agents in humans.  This research and future work on the binding specificity of 

TTP-like proteins will allow for intelligent design of TZFs that will limit potential 

side-effects of this novel treatment in humans.  
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ABSTRACT 

 Hepatitis C NS3/4A protease is a prime therapeutic target responsible for 

cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A and 5A5B, and two 

host-cell adapter proteins of the innate immune response, TRIF and MAVS.  In 

this study, NS3/4A crystal structures of both host-cell cleavage sites are 

determined and compared to the crystal structures of viral substrates.  Two 

distinct protease conformations are observed and correlate with substrate 

specificity: (1) 3-4A, 4A4B, 5A5B and MAVS, which are processed more 

efficiently by the protease, form extensive electrostatic networks when in 

complex with the protease and (2) TRIF and 4B5A, which contain polyproline 

motifs in their full-length sequences, do not form electrostatic networks in their 

crystal complexes.  These findings provide mechanistic insights into NS3/4A 

substrate recognition, which may assist in a more rational approach to inhibitor 

design in the face of the rapid acquisition of resistance. 
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 INTRODUCTION 

Hepatitis C virus (HCV) is a genetically diverse Hepacivirus of the 

Flaviviridae family infecting over 180 million people worldwide (33).  HCV 

contains a positive, single-stranded RNA genome that is translated as a single 

polyprotein along the endoplasmic reticulum by host cell machinery.  The viral 

polyprotein is subsequently processed by host-cell and viral proteases into 

structural (C, E1, E2) and non-structural components (p7, NS2, NS3, NS4A, 

NS4B, NS5A, NS5B) (23).  The NS3/4A protein, a bifunctional protease/helicase 

enzyme formed by the non-covalent association of NS3 and NS4A, hydrolyzes 

four known sites along the viral polyprotein, thereby liberating non-structural 

proteins essential for viral replication.  Previous kinetic data suggest that the first 

cleavage event at junction 3-4A occurs in cis as a unimolecular process, while 

processing of the remaining junctions 4A4B, 4B5A and 5A5B occur bimolecularly 

in trans (2, 22).  Interestingly, these data demonstrated that the NS4A sequence 

is essential for the cleavage of junction 4B5A.  These viral substrates share little 

sequence similarity, except for an acid at P6, cysteine or threonine at P1 and 

serine or alanine at P1’ (Table A.1).  Previous work by our group has revealed 

that the diverse set of NS3/4A substrate sequences are recognized in a 

conserved three-dimensional shape, defining a consensus van der Waals 

volume, or substrate envelope (29).  This conserved mode of substrate 

recognition regulates polyprotein processing and thus the biology of HCV 

replication. 
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Table A.1 Primary cleavage sequences of NS3/4A substrates (genotype 1a). 

Substrate P6 P5 P4 P3 P2 P1 P1’ P2’ P3’ P4’ 

TRIF P(8) S S T P C S A H L 

MAVS E R E V P C H R P S 

3-4A D L E V V T S T W V 

4A4B D E M E E C S Q H L 

4B5A E C T T P C S G S W 

5A5B E D V V C C S M S Y 
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In addition to its essential role in processing the viral polyprotein, NS3/4A 

protease also confounds the innate immune response to viral infection by 

disrupting activation of the transcription factors interferon regulatory factor 3 

(IRF-3) and nuclear factor !B (NF-!B) (13, 21).  Upon the detection of viral RNA 

in host cells, these transcription factors are induced through two distinct 

pathways involving signaling through Toll-like receptor 3 (TLR3) or retinoic acid-

inducible gene I (RIG-I) (1, 37).  NS3/4A protease disrupts the TLR3 and RIG-I 

cascades by cleaving the essential adaptor proteins Toll-interleukin-1 receptor 

domain-containing adaptor-inducing interferon-" (TRIF) and mitochondrial 

antiviral signaling protein (MAVS), respectively (12, 21).  The TRIF and MAVS 

cleavage sites share little sequence homology with other viral substrates: TRIF 

contains cysteine at P1 and serine at P1’, while MAVS contains glutamate at P6 

and cysteine at P1 (Table A.1).  Notably, in place of an acid at position P6, TRIF 

consists of a track of eight proline residues spanning P13–P6, which has been 

previously implicated as part of the substrate recognition motif for NS3/4A (11).  

The NS3-mediated processing of both viral and host-cell targets is central to the 

interplay between HCV replication and the innate immune response, thus 

highlighting the importance of better elucidating the mechanisms of substrate 

recognition.  

Despite great efforts devoted to the development of NS3/4A protease 

inhibitors, the rapid rise of drug resistance in human clinical trials has limited the 

efficacy of the most promising drug candidates.  Drug resistance mutations in the 

protease emerge as molecular changes that prevent the binding of drugs, but still 



 160 

permitting the recognition and cleavage of substrates.  A more detailed 

understanding of the molecular details underlying substrate recognition is 

therefore critical for explaining patterns of drug resistance and for designing 

novel drugs that are less susceptible to resistance.  Here we analyze crystal 

structures of NS3/4A protease in complex with N-terminal products of viral 

substrates 3-4A, 4A4B, 4B5A and 5A5B.  TRIF and MAVS crystal complexes 

further reveal that these host-cell products bind to the protease active site in a 

conserved three-dimensional manner similar to that of the viral products. 

Notably, extensive electrostatic networks involving protease residues D81, 

R155, D168 and R123 form in product complexes 3-4A, 4A4B, 5A5B and MAVS 

while these networks are absent in the 4B5A and TRIF product complexes.  

Short peptides corresponding to the immediate cleavage sequences of TRIF and 

4B5A have significantly weaker affinities for NS3/4, which correlate with their 

inability to form of such electrostatic networks with the protease.  Taken together, 

our findings support previous biochemical studies implicating the role of 

polyproline II helices in TRIF cleavage by NS3/4A (11), and provide a structural 

basis for future studies aimed at better elucidating the detailed mechanism 

NS3/4A substrate recognition and cleavage. 

 

 

 

 

 



 161 

MATERIALS AND METHODS  

Mutagenesis and gene information 

The HCV genotype 1a NS3/4A protease gene described in a Bristol-

Meyers Squibb patent (34) was synthesized by GenScript and cloned into the 

pET28a expression vector (Novagen).  The gene encodes a highly soluble form 

of the NS3/4A protease domain as a single-chain, with 11 core amino acids of 

NS4A located at the N-terminus.  The inactive S139A protease variant was 

subsequently constructed using the QuikChange Site-Directed Mutagenesis Kit 

from Stratagene and sequenced by Davis Sequencing for confirmation. 

Viral substrate and peptide product purchase and storage 

Thirty milligrams of each substrate peptide and the corresponding N-

terminal cleavage product (TRIF and MAVS) were purchased from 21st Century 

Biochemicals (Marlboro, MA).  The TRIF and MAVS peptides were synthesized 

as a 13mer (P13–P1) and 7mer (P7–P1), respectively.  The N-termini of all 

peptides were acetylated, while the C-termini of substrate peptides were blocked 

with amide groups.  All peptides were stored as solids at -20ºC and dissolved in 

DMF to a final concentration of 50–100mM for crystallization trials. 

Expression and purification of NS3/4A protease constructs 

NS3/4A expression and purification were carried out as described 

previously (14, 34).  Briefly, transformed BL21 (DE3) E. coli cells were grown at 

37ºC and induced at an optical density of 0.6 by the addition of 1mM IPTG.  Cells 

were harvested after 5 hours of expression, pelleted and frozen at !80ºC for 



 162 

storage.  Cell pellets were thawed, resuspended in 5mL/g of resuspension buffer 

(50mM phosphate buffer at pH 7.5, 500mM NaCl, 10% glycerol, 2mM !-ME) and 

lysed with a cell disruptor.  The soluble fraction was retained, applied to a nickel 

column (Qiagen), washed with resuspension buffer, and eluted with 

resuspension buffer supplemented with 200mM imidazole.  The eluant was 

dialyzed overnight (MWCO 10kD) to remove the imidazole and the his-tag was 

simultaneously removed with thrombin treatment.  The nickel-purified protein was 

then flash-frozen and stored at !80ºC for up to six months.   

Crystallization of product complexes and apo enzyme 

For crystallization, the protein solution was thawed, concentrated to 

~3mg/mL and loaded on a HiLoad Superdex75 16/60 column equilibrated with 

gel filtration buffer (25mM MES at pH 6.5, 500mM NaCl, 10% glycerol, 30µM zinc 

chloride, and 2mM DTT).  The protease fractions were pooled and concentrated 

to 20–25mg/mL with an Amicon Ultra-15 10kD device (Millipore).  The 

concentrated samples were either used for crystallization of apo structure or 

incubated for one hour with 2–20 molar excess of substrate product TRIF or 

MAVS.  Diffraction-quality crystals were obtained overnight by mixing equal 

volume of concentrated protein solution with precipitant solution (20–26% PEG-

3350, 0.1M sodium MES buffer at pH 6.5, and 4% ammonium sulfate) in 24-well 

VDX hanging drop trays. 

Data collection and structure solution  

Crystals large enough for data collection were flash-frozen in liquid 

nitrogen for storage.  The TRIF, MAVS and apo crystals were mounted under 
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constant cryostream and x-ray diffraction data were collected at Advanced 

Photon Source LS-CAT 21-ID-F, BioCARS 14-BMC and our in-house RAXIS IV 

x-ray system, respectively.  Diffraction intensities of product complexes were 

indexed, integrated and scaled using the program HKL2000 (27).  All structure 

solutions were generated using simple isomorphous molecular replacement with 

PHASER (24).  The B chain model of viral substrate product 4A4B (3M5M) (29) 

was used as the starting model for all structure solutions.  Initial refinement was 

carried out in the absence of modeled ligand, which was subsequently built in 

during later stages of refinement.  Upon obtaining the correct molecular 

replacement solutions, the phases were improved by building solvent molecules 

using ARP/wARP (25).  Subsequent crystallographic refinement was carried out 

within the CCP4 program suite with iterative rounds of TLS and restrained 

refinement until convergence was achieved (6). The final structures were 

evaluated with MolProbity (7) prior to deposition in the protein data bank.  5% of 

the data was reserved for the free R-value calculation to limit the possibility of 

model bias throughout the refinement process (4).  Interactive model building and 

electron density viewing was carried out using the program COOT (10). 

Double-difference plots and global analysis 

Double-difference plots were computed as described previously (28).  

Briefly, the atomic distances were calculated between each C! of a given 

protease molecule and every other C! in the same molecule.   The differences of 

these C!-C! distances were then calculated between each pair of protease 

molecules and plotted as a contour graph for visualization.  These analyses 
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allowed for effective structural comparisons without the biases associated with 

superimpositions and space group differences.  Double-difference plots were 

used to determine the structurally invariant regions of the protease, consisting of 

residues 32–36, 42–47, 50–54, 84–86 and 140–143.  Structural superimpositions 

were carried out in PyMOL (9) using the C! atoms of these residues for all 

protease molecules.  The apo structure was used as the reference structure for 

the alignments of the TRIF and MAVS product complexes.  The C! RMSD for 

each residue was subsequently calculated to access the degree of structural 

variation throughout the protein.  The B-factor column of a representative 

structure was replaced with these values and used to generate the rainbow color 

spectrum to visualize these variations.   

The viral substrate envelope 

All active site alignments were performed with PyMOL using the C! atoms 

of protease residues 137–139 and 154–160.  For each alignment, the B chain of 

complex 4A4B was used as the reference structure.  The NS3/4A viral substrate 

envelope, representing the consensus van der Waals volume shared by any 

three of the four viral substrate products, was computed as described previously 

using the full-length NS3/4A structure (1CU1) (35) and product complexes 4A4B 

(3M5M), 4B5A (3M5N) and 5A5B (3M5O) (29).  

Active site comparisons of the four NS3/4A viral product complexes were 

performed by superposition the C! atoms of residues 137–139 and 154–160, 

revealing that both the active site residues and substrate products spanning P6–

P1 align closely with an average C! rmsd of 0.24 Å and 0.35 Å, respectively.  
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The consensus van der Waals volume shared by any three of the four cleavage 

products was then calculated to generate the NS3/4A substrate envelope. 

NMR spectroscopy and data processing 

NMR data were recorded using 650µL of 390µM [U-15N] NS3/4A protease 

(95% H2O/5% D2O, 25mM sodium phosphate at pH 7.2, 150mM KCl, 5µM zinc 

chloride, and 1mM TCEP).  Backbone 1H and 15N resonance assignments of 

NS3/4A protease were kindly provided by Herbert Klei of Bristol-Myers Squibb, 

and confirmed using nuclear Overhauser enhancement spectroscopy (NOESY) 

experiments.  Backbone 1H and 15N resonance assignments of NS3/4A protease 

bound to the N-terminal cleavage product of substrate 4A4B were obtained from 

the assignment of the free protein by following the chemical shift changes upon 

titration of the ligand.  All experiments were performed at 298K using a Varian 

Inova spectrometer operating at 600 MHz (14.1 T). Spectra were processed 

using nmrPipe (8) and Sparky (15). 

Binding of the unlabeled peptide corresponding to the N-terminal cleavage 

product of substrate 4A4B to [U-15N] NS3/4A protease was monitored using a 

series of two-dimensional 15N-1H HSQC spectra collected at increasing 

concentrations of the peptide to a final concentration of 2.5 mM.  The change of 

the cross-peak positions for NS3/4A residues was recorded as a function of 

titrated peptide concentration.  The normalized change in the chemical shift was 

calculated for each protease residue using the following equation:  
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where !" is the chemical shift change observed between the free and bound 

states, #  is the gyromagnetic ratio, and the subscript indicates either 1H or 15N 

nuclei.  The b-factors for each residue of the apo enzyme crystal structure were 

then replaced by the maximal chemical shift changes from the titration data.  The 

crystal structure was colored in PyMOL (9) according to the chemical shift 

magnitudes to graphically depict the locations of the shifting residues. 

Van der Waals contact energy 

Van der Waals contact energies between protease residues and peptide 

products were computed using a simplified Lennard-Jones potential as described 

previously (26).  Briefly, the Lennard-Jones potential (Vr) was calculated for each 

protease-product atom pair where r, ! and " represent the interatomic distance, 

van der Waals well depth and atomic diameter, respectively.   
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Vr was computed for all possible protease-product atom pairs within 5Å, and 

potentials for non-bonded pairs separated by less than the distance at the 

minimum potential were equated to #!.  Using this simplified potential value for 

each non-bonded protease-product atom pair, the total van der Waals contact 

energy ($Vr) was computed for each peptide residue.  For graphical 

convenience, Van der Waals energy indexes were then calculated by multiplying 

the raw values by a factor of -10. 
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Fluorescence polarization 

 For fluorescence polarization experiments, the NS3/4A protease domain 

was purified as described previously in purification buffer (25mM HEPES, pH 7.5, 

150mM NaCl, 20% glycerol, 4mM DTT) and subsequently concentrated to 200–

400µM.  The concentrated stocks were then two-thirds serially diluted in 384-well 

plates (Corning) in reaction buffer using the Genesis Workstation (Tecan).  An 

equal volume of substrate buffer (25mM HEPES, pH 7.5, 0mM NaCl, 20% 

glycerol, 4mM DTT) containing 10nM of fluorescein-tagged substrate product 

(4A4B, 4B5A or 5A5B) was added to each well to make a final well volume of 

60µL.  The final condition constituted 5nM fluorescein-tagged cleavage products 

in 25mM HEPES (pH 7.5), 75mM NaCl, 20% glycerol and 4mM DTT.  The plates 

were incubated at room temperature for two hours and five fluorescence 

polarization measurements were taken for each well using the Victor-3 plate 

reader (Perkins Elmer).  Five sets of binding data were collected for each 

substrate product and each trial was processed independently.  The average and 

standard deviations were then calculated from the results of these five trials.  

Fluorescence polarization data (in milli-polarization units, mP) were fit to the hill 

equation, where ET is the total NS3/4A concentration, Kd is the equilibrium 

binding constant, b is the baseline fluorescence polarization and m is the 

fluorescence polarization maximum. 
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RESULTS 

Structure determination of apo NS3/4A and product complexes 

 The apo NS3/4A protease domain and host-cell product complexes TRIF 

and MAVS all crystallized in the space group P212121 with one molecule in the 

asymmetric unit (Table A.2).  For all structures, we utilized the highly soluble 

NS3/4A protease domain described previously, containing the essential residues 

of cofactor NS4A covalently linked at the N-terminus (34).  This NS3/4A construct 

also contains the inactivating mutation S139A, designed to further enhance 

protein stability by minimizing autoproteolysis during the crystallization process.  

The partially inactivated variant still exhibits residual proteolytic activity, as 

observed for other serine proteases (5, 18), likely facilitated by the nucleophilic 

attack of water.  Thus the complete characterization of full-length substrate 

peptides was not possible and short peptides corresponding to the N-terminal 

cleavage products of authentic substrates were used for all crystallization trials.  

Peptide products 4A4B, 4B5A, 5A5B and MAVS spanned P7–P1, while the TRIF 

sequence spanned P13–P1 with a track of eight proline residues at the N-

terminus (Table A.1).  The entire peptide sequence spanning P7–P1 could be 

modeled in each structure except for the TRIF complex, which revealed electron 

density for the residues spanning P6–P1 but not the polyproline track. 

Tertiary structure analysis 

Structural analyses of the NS3/4A apo enzyme were carried out in 

conjunction with: (1) the host-cell product complexes TRIF and MAVS, (2) the 

viral product complexes 4A4B, 4B5A and 5A5B (29) and (3) the full-length  



 169 

 

Table A.2.  Data collection and refinement statistics. 

Dataset TRIF MAVS APO 

PDB ID 3RC4 3RC5 3RC6 

Modeled Ligand PSSTPC QEREVPC (unliganded) 

Resolution (Å) 1.50 (1.50–1.55) 1.60 (1.60–1.66) 1.30 (1.30–1.35) 

Space group P212121 P212121 P212121 

Molecules in AU† 1 1 1 

Cell dimensions: -- -- -- 

a (Å)= 53.9 54.1    54.8 

b (Å)= 58.1 58.2    58.6 

c (Å)= 61.3 61.3   60.9 

Completeness 
(%) 

87.4 (93.1) 99.3 (99.1) 93.1 (97.1) 

Total reflections 136929 97504 190364 

Unique reflection 27770 26041 45595 

Average I/! 13.5 (4.4) 18.8 (5.4) 14.8 (4.1) 

Redundancy 4.9 (4.7) 3.7 (3.7) 4.2 (4.0) 

Rsym (%)‡ 4.8 (30.1) 3.3 (19.3) 4.1 (29.3) 

RMSD! in:    

Bonds (Å) 0.009 0.009 0.009 

Angles (°) 1.28 1.26 1.29 

Rfactor (%)§ 18.7 17.3 16.2 

Rfree (%)§ 21.5 19.3 19.1 

† AU, asymmetric unit. 

‡ Rsym = "|I # <I>|/"I, where I = observed intensity, <I> = average intensity over 
symmetry equivalent. 

! RMSD, root mean square deviation. 

§ Rwork = "||Fo| # |Fc||/"|Fo|.  Rfree was calculated from 5% of reflections, chosen 
randomly, which were omitted from the refinement process. 

() Denotes statistics for the highest resolution shell. 
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NS3/4A structure (35), in which the C-terminus represents the post-cleavage 

product 3-4A.  The seven structures constitute a total of twelve NS3/4A protease 

monomers, which all adopt the same chymotrypsin-like tertiary fold defined by 

the labeling-scheme for trypsin (3).  The N-terminal distorted !-barrel subdomain 

contains two "-helices ("0 and "1) and seven !-strands (A0–F1), while the C-

terminal !-barrel subdomain comprises of two "-helices ("2 and "3) and six !-

strands (A2–F2).  The cofactor NS4A contributes a single !-strand to the N-

terminal distorted !-barrel, which is essential for efficient catalytic function (22).  

The catalytic triad is located in the cleft between these subdomains, with the N-

terminal !-barrel contributing residues H57 and D81 and the C-terminal !-barrel 

contributing the nucleophilic S139.  The active site residues in all crystal 

structures share similar architecture, defined by the catalytic triad residues 

(S139A, H57, D81) and backbone nitrogens of the oxyanion hole (G137, S138, 

S139A). 

Certain global differences are observed between these structures when 

superpositions are performed.  Double-difference plots were therefore generated 

between each co-complex and the apo enzyme to determine the most invariant 

regions (Figure A.1).  Product 3-4A varied most extensively from the apo state, 

which likely reflects differences in genotype, protein size and crystal packing of 

the full-length construct.  The remaining product complexes derive from the same 

NS3/4A protease domain construct, and in general, vary less extensively from 

the apo enzyme.  Notably, the host-cell product complexes are most similar to 

the apo enzyme, while viral product complexes 4A4B, 4B5A and 5A5B vary more  
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Figure A.1 Double-difference plots of product complexes. 

Double-difference plots were computed for viral and host-cell product complexes 

relative to the apo enzyme structure.  NS3 protease residues are numbered 

according to the conventional system, whereas negative numbers indicate 

residues of the cofactor NS4A.  Red and blue contour lines represent positive 

differences of 1.0Å and 0.5Å, respectively, while black and green lines represent 

negative differences of the same magnitudes. 
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Figure A.1 
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extensively.  Taken together, these findings suggest that structural differences 

likely reflect the inherent flexibility in certain regions of the protease.   

The set of double difference plots were further analyzed and the most 

invariant regions of the protease were determined to contain residues 32–36, 42–

47, 50–54, 84–86, and 140–143 (Figure A.1).  Product complexes 4A4B, 4B5A, 

5A5B, TRIF and MAVS consist of ten protease molecules, which were 

subsequently superposed onto the apo enzyme using the C! atoms of the 

structurally invariant residues.  The C! average root mean square (RMS) 

deviation was calculated for each residue and the seven most variable regions of 

the protease were determined to be (Figure A.2A):  (1) the linker connecting 

cofactor 4A at the N-terminus, (2) the loop containing residues 65–70, (3) the 

zinc-binding site containing residues 95–105, (4) the 310 helix region spanning 

residues 128–136, (5) the zinc-binding site containing residues 145–148, (6) the 

active site anti-parallel "-sheet containing residues 156–168 and (7) the C-

terminal !3 helix.  These regions are solvent-exposed and likely influenced by 

both crystal packing effects and inherent flexibility. 

Extensive structural differences are observed near the active site as 

indicated by large RMS deviations for residues 156–168.  These differences are 

most pronounced for the "-strands E2 and F2, which form the anti-parallel "-

sheet constituting the majority of the active site.  This region is least variable near 

the catalytic triad, while the average RMS deviations increase significantly toward 

the loop connecting these "-strands (Figure A.2B).  Though the architecture of 

the protease catalytic triad is conserved, these observations suggest a potential  
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Figure A.2 Average RMS deviations of product complexes. 

All protease molecules from product complexes 4A4B, 4B5A, 5A5B, TRIF and 

MAVS were superposed onto the apo enzyme structure using the most invariant 

core residues 32–36, 42–47, 50–54, 84–86 and 140–143.  (A) The average C! 

RMS deviations were plotted versus residue number and (B) mapped onto a 

representative protease molecule with the most variable regions depicted in red 

and the most invariant regions depicted in blue.  The seven most variable regions 

of the protease are labeled in both panels. 
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Figure A.2 
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dynamic interaction between the anti-parallel !-sheet of the protease active site 

and substrate products.  Further studies are necessary to probe the nature and 

extent of such dynamic interplay.  Nevertheless, though the C" atoms of active 

site residues shift relative to the protease core, these residues superpose well 

onto the APO enzyme with a RMS deviation range of 0.3–0.5Å.  Moreover, the 

residue side chains adopt similar rotamer conformations and interact with the 

same surrounding residues, suggesting that potential flexibility in the protease 

active site would not disrupt its tertiary structure.   

Analysis of viral product binding 

Fluorescence polarization experiments reveal that the viral products bind 

with different affinities to the protease, with the Kd for 4B5A over 10-fold weaker 

than those values for 4A4B and 5A5B (Figure A.3).  Crystal structures reveal 

that these viral products bind in a conserved manner, forming an anti-parallel !-

sheet with protease residues 154–160 and burying 500–600Å2 of solvent 

accessible surface area (19).  The peptide product backbone torsion angles are 

very similar, with positions P1–P4 being the most similar and residues P5–P7 

deviating progressively toward the C-terminus.  A constrained P2 " torsion angle 

of about -60° is observed in product complexes 3-4A, 4A4B and 5A5B.  

Interestingly, these P2 residues could sterically tolerate the substitution of 

proline, which is found at the P2 position in substrates 4B5A, TRIF and MAVS.  

The ability of the P2 residue to adopt this constrained backbone torsion is a likely 

determinant in recognition process, allowing for the proper positioning of the P1 

cysteine for catalysis in the active site.   
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Figure A.3  Fluorescence polarization of viral product binding. 

Fluorescence polarization binding experiments were conducted with the inactive 

S139A protease (circles) and S139A/K136A variant (triangles) with fluorescein-

tagged peptide products (A) 4A4B, (B) 4B5A and (C) 5A5B.  For all conditions, 

trace amounts of peptide were incubated for two hours with increasing 

concentrations of NS3/4A protease in 25mM HEPES (pH 7.2), 75mM potassium 

chloride, 20% glycerol, 0.5µM zinc chloride and 4mM DTT.  Each panel depicts a 

single representative trial, though each reaction condition was repeated five 

times.  (D) Data for each trial were processed independently by least-squares 

regression fitting with the Hill Equation and the average and standard deviation of 

equilibrium dissociation constants (Kd) were calculated. 
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Figure A.3 
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There are many conserved features in viral product binding, involving both 

backbone and side chain interactions (Figure A.4).  For example, eight hydrogen 

bonds between backbone amide and carbonyl groups are completely conserved 

in the product complexes, involving protease residues G137, S138, S139A, 

R155, A157 and S159.  S159 (C159 in product complex 3-4A) and A157 each 

contribute two hydrogen bonds with bound products at positions P5 and P3, 

respectively.  The P1 residue, cysteine in all substrates but 3-4A, interacts 

favorably with the !-system of electrons of F154.  All P1 terminal carboxyl groups 

sit in the oxyanion hole, hydrogen bonding with the N! nitrogen of H57 and the 

amide nitrogens of residues 137–139.  Though the coordinates of the P1 terminal 

oxygen atom are not included in the full-length NS3/4A structure, geometric 

restraints would position it similarly to the other peptide products.  Thus the same 

set of protease residues contacts all peptide sequences, although the precise 

nature of these interactions varies depending on the particular residue involved in 

each contact.  

Despite these similarities, there are also unique features that likely 

underlie the particular specificity of NS3/4A for each substrate (Figure A.4).  For 

example, the four acidic residues in product 4A4B lead to a highly charged 

peptide in solution.  In the bound state, however, the atomic geometry suggests 

that the P5 glutamate is protonated and hydrogen bonding with the carboxyl 

group of the P3 glutamate, which itself forms an ionic interaction with the terminal 

nitrogen of K136.  In fact, K136 interacts differently with all four viral products, 

forming: (1) a hydrogen bond with the P2 carbonyl oxygen of 3-4A, (2) a salt  
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Figure A.4 Stereo view of viral product binding to NS3/4A protease.   

N-terminal NS3/4A cleavage products (A) 3-4A, (B) 4A4B, (C) 4B5A, and (D) 

5A5B are shown binding to the protease active site with the electrostatic 

interactions of backbone and sidechain atoms depicted in black and red, 

respectively. 
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Figure A.4 
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bridge with the P3 glutamate of 4A4B, and (3) an extended conformation that 

does not interact considerably in product complexes 4B5A and 5A5B.  

Fluorescence polarization data confirms a more significant loss in binding affinity 

of product 4A4B for the K136A protease variant compared to products 4B5A and 

5A5B (Figure A.3).  Thus the affinity of a substrate product likely arises from the 

side chain interactions unique to that particular product. 

NMR solution studies of product 4A4B binding 

The NS3/4A protease active site is located on the surface of the protein 

and thus highly solvent-exposed.  The analysis of viral and host-cell product 

binding is therefore complicated by the proximity of symmetry-related molecules 

within the crystal lattice.  To investigate the possibility of crystal packing effects 

confounding structural observations, we carried out NMR HSQC titration 

experiments using peptide product 4A4B spanning P7–P1 (Figure A.5A).  HSQC 

chemical shift perturbations upon product titration are consistent with the 

molecular interactions observed in the crystal complex.  The normalized chemical 

shift perturbations for each protease residue were compared to the buried 

surface area calculated directly from product complex 4A4B (Figure A.5B).  

These data indicate that the same set of protease residues with large chemical 

shift perturbations are also observed to interact extensively with product 4A4B in 

the crystal structure.  The NMR solution studies recapitulate our structural 

observations and suggest that our crystal structure analyses are indeed 

representative of the interactions occurring in solution. 
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Figure A.5 NS3/4A H1, N15 NMR HSQC titration data.   

(A) NMR spectra reveal N15 labeled NS3/4A chemical shift perturbations upon 

titration of increasing concentrations of substrate 4A4B product peptide.  Cross-

peaks are colored according to the concentration of peptide product 4A4B, 

ranging from 0mM (blue) to 2.5mM (red).  For clarity, the titration data for the 

highest peptide concentration (2.5mM) are only depicted in the insets.  (B) The 

apo NS3/4A crystal structure was colored according to the chemical shift 

changes between the apo enzyme state and 2.5 mM product 4A4B.  Protease 

residues undergoing chemical shifts are colored by a spectrum ranging from pink 

(small shifts) to red (large shifts).  All unassigned residues are depicted in white. 
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Figure A.5 
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Analysis of host-cell product complexes TRIF and MAVS 

Active site superpositions (residues 137–139; 154–160) reveal that TRIF 

and MAVS peptide products both bind to the protease active site in a conserved 

three-dimensional shape (Figure A.6).  Both substrate products form anti-parallel 

!-sheets with protease residues 154–160.  There is no clear electron density in 

the TRIF complex for the proline residues spanning P13–P7.  Nevertheless, the 

residues from P6–P1 overlap closely with the corresponding residues in the 

MAVS complex.  The P1 cysteine residues of both substrate products interact 

with the aromatic ring of F154.  Eight hydrogen bonds are observed in both 

structures, involving the amide nitrogens or carboxyl oxygens of residues G137, 

S138, S139A, R155, A157 and S159.  A157 and S159 each contribute two 

hydrogen bonds with the P3 and P5 residues, respectively.  In both structures, 

the carbonyl groups at position P1 interact with the protease oxyanion hole, 

defined by the backbone amide nitrogens of residues 137–139.  Thus, the post-

cleavage products of the cellular substrates TRIF and MAVS bind to the protease 

active site in a conserved manner despite their large variations in primary 

sequence.  

There are also many differences in the binding of TRIF and MAVS 

involving mainly sidechain interactions with the protease (Figure A.6).  For 

example, MAVS interacts closely with the protease electrostatic network formed 

by residues D81, R155, D168 and R123.  The P4 glutamate of MAVS interacts 

with R155 and R123 in this network, while the P6 glutamate forms a salt bridge 

with R123.  The TRIF peptide product, however, lacks such extended residues  
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Figure A.6 Stereo view of host-cell product binding to NS3/4A protease. 

(A) The apo enzyme structure and N-terminal cleavage products (B) TRIF and 

(C) MAVS are shown binding to the protease active site with the electrostatic 

interactions of backbone and sidechain atoms depicted in black and red, 

respectively. 
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on this surface of the molecule, and the electrostatic network is notably absent 

with the participating residues adopting conformations observed in the apo 

structure.  Previous studies demonstrate that a large fraction of full-length TRIF 

exists as polyproline II helices, and that the interaction of NS3/4A with a 

polyproline II helix facilitates TRIF cleavage (11).  The absence of clear electron 

density for the proline residues suggests that full-length TRIF may be necessary 

to stabilize the polyproline track in a conformation capable of specific interaction 

with NS3/4A. 

Comparison of host-cell and viral product binding 

Host-cell product binding was analyzed on a broader basis by comparison 

with the binding of viral substrates, previously reported by our group (29).  Both 

viral (3-4A, 4A4B, 4B5A, 5A5B) and host-cell (TRIF, MAVS) substrate products 

bind to the protease active site in a conserved three-dimensional shape.  The 

peptide backbone torsional angles are very similar, being most conserved at 

position P1 and deviating slightly toward position P6.  All peptide products adopt 

constrained P2 ! torsion angles, even those containing non-proline residues at 

this site.  However, van der Waals analyses of substrate products indicate large 

variations in sidechain interactions with the protease.  All of the NS3/4A 

substrates contain either cysteine or threonine at position P1, while five of the six 

contain an acid at position P6.  The P1 and P6 substrate residues each 

contribute the same amount of van der Waals energies in all product complexes 

(Figure A.7).  The amino acid makeup of viral cleavage sequences is much more 

diverse at positions P5–P2, and in general, the van der Waals energies at  
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Figure A.7 Van der Waals energies of viral substrate binding. 

The van der Waals binding energies for subsites P7–P1 of each NS3/4A 

cleavage product (3-4A, 4A4B, 4B5A, 5A5B, TRIF and MAVS) are graphically 

depicted with their primary amino acid sequences tabulated below. 
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Figure A.7 
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each position correlate with amino acid size.  For example, the P4 glutamates in 

substrates 3-4A and MAVS, and to a lesser extent the P4 methionine in substrate 

4A4B, are associated with larger van der Waals energies relative to the 

substrates with smaller P4 residues.  Likewise, the larger glutamate residues at 

both P3 and P2 of substrate 4A4B also correlate with greater contact energies 

compared to the other substrates, which contain smaller amino acids at these 

positions. 

Though similar in shape, protease substrate binding can be further 

categorized into two groups: (1) product complexes 3-4A, 4A4B, 5A5B and 

MAVS bind with an intact electrostatic network involving residues D81, R155, 

D168 and R123, while (2) product complexes 4B5A and TRIF bind without this 

network such that R155, D168 and R123 maintain conformations observed in the 

apo enzyme.  Notably, the 4B5A and TRIF cleavage sites contain fewer charged 

residues compared to the other substrates, which may underlie their inability to 

form the electrostatic network.   Binding studies demonstrate that both 4B5A and 

TRIF have relatively weaker affinities for NS3/4A compared to the other 

substrates (11, 31).  However, most biochemical studies have been conducted 

on small peptides corresponding to the immediate cleavage sequences of TRIF 

and 4B5A.  Indeed, kinetic studies revealed that full-length TRIF is processed 

more efficiently than peptides corresponding to the cleavage sequence (11).  

Additional molecular interactions by the full-length proteins or by adaptor proteins 

in the authentic cellular environment may better facilitate substrate binding.  

Nevertheless, the current structural analyses suggest that NS3/4A substrates 
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vary in specificity by their ability to form and stabilize the protease electrostatic 

network; the sequence specificity is particularly influenced by amino acid 

variation at positions P6, P4 and P2.  

Analysis using the viral substrate envelope 

 The binding of NS3/4A cellular substrates was analyzed in terms of the viral 

substrate envelope (Figure A.8), which was previously defined as the van der 

Waals volume shared by any three of four viral products (29).  This shape could 

not be predicted by the primary sequences alone and highlights the conserved 

mode of viral substrate recognition despite their high sequence diversity.  The 

backbone chains of both TRIF and MAVS fit entirely within the substrate 

envelope, as well as the sidechains of TRIF spanning P5–P1.  The sidechains of 

MAVS are also mostly confined within the substrate envelope, except for the 

longer side chains of the P6 glutamate, P5 arginine and P4 glutamate.  The 

carboxylic acids of these glutamate residues interact extensively with the 

protease electrostatic network, while the P5 arginine packs against loop residues 

159–162.  As these interactions occur outside the viral substrate envelope, we 

speculate that mutations that disrupt the electrostatic network, such as R155K 

and D168A, would preferentially reduce the proteolytic processing of MAVS 

compared to TRIF. 
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Figure A.8 Host-cell product binding and the NS3/4A substrate envelope. 

(A) The NS3/4A substrate envelope is calculated from the consensus van der 

Waals volume shared by any three of the four viral products.  (B) The TRIF 

cleavage product is largely confined within the substrate envelope, (C) while 

MAVS is mostly located within the substrate envelope except for the sidechain 

atoms spanning P6–P4.  
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DISCUSSION 

 The recognition and proteolysis of the viral polyprotein and host-cell 

adaptor proteins by NS3/4A protease play an integral role in the ability of HCV to 

replicate and evade the innate immune response to viral infection (12, 21).  In 

this study, crystal structures of the NS3/4A protease domain reveal that viral and 

host-cell products bind to the protease active site in a similar three-dimensional 

shape, defined by the viral substrate envelope reported previously (29).  The 

MAVS product complex reveals the formation of an extensive electrostatic 

network involving protease residues D81, R155, D168 and R123, which also 

form in viral product complexes 3-4A, 4A4B and 5A5B.  No such networks form 

in the TRIF and 4B5A complexes, and residues in this region of the protease 

adopt the same conformations observed in the apo state.  The absence or 

presence of electrostatic networks also correlate with the affinities of product 

binding, with the Kd of 4B5A being 10-fold weaker compared to products 4A4B 

and 5A5B.  The greater catalytic efficacies of NS3/4A for substrates 4A4B and 

5A5B relative to 4B5A (31) may also derive from the formation of electrostatic 

networks.  However, short peptide may only partially mimic how the viral 

cleavage sequences are processed along the viral polyprotein in the natural 

cellular environment.  Additional molecular features may further modulate the 

binding of TRIF and 4B5A, perhaps facilitated by the proline-rich regions 

contained in both proteins (11).  Thus, the specificity of substrate processing by 

NS3/4A protease seems to arise from at least two distinct molecular interaction 
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patterns, which likely influence the order and kinetics of polyprotein processing 

during the HCV lifecycle.  

 In fact, these structural observations can be further linked to the known 

biology of NS3/4A processing during viral replication.  Previous NS3-mediated 

cleavage assays of HCV polyprotein substrates revealed that NS4A is essential 

for the trans cleavage of junction 4B5A, but not required for the processing of 

junctions 4A4B and 5A5B (2, 22).  Our structural analyses provide further insight 

into the molecular interactions underlying these previous findings.  The NS4A 

cofactor likely stabilizes the tertiary protease fold required for the binding of 

NS3/4A substrates, and the binding of substrate 4B5A may absolutely depend on 

this particular protease conformation.  Substrates 4A4B and 5A5B, however, may 

be able to induce these conformational changes through charge interactions, 

even in the absence of cofactor NS4A.  Thus our findings support the previous 

published data for NS3 HCV polyprotein processing, and future research is 

warranted to better ascertain the dynamic mechanisms of substrate recognition. 

The ability for HCV to establish chronic human infections is highly 

dependent on the viruses’ ability to effectively replicate while simultaneously 

evading the host-cell immune response.  The virally encoded NS3/4A protein 

plays an integral role in this process by mediating the cleavage of essential viral 

proteins and antiviral host cell adaptors.  NS3/4A protease is thus a prime 

therapeutic target and great efforts have been devoted in the development of 

protease inhibitors, which have demonstrated efficacy in late phases of human 

clinical trials.  Nevertheless, the high rate and error-prone nature of HCV 
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replication has led to the emergence of drug resistance against the most 

promising protease inhibitors to date, such as boceprevir, telaprevir and ITMN-

191 (16, 17, 20, 30, 32, 36).  Inhibitor potency often derives from molecular 

interactions that are not essential for substrate recognition and cleavage.  

Mutations in these regions of the protease can selectively prevent drug binding 

while still allowing for the recognition and cleavage of viral and host-cell 

substrates.  Thus identification of the protease residues that are important for 

substrate binding is crucial and will ultimately facilitate the design of drugs that 

target these particular residues.  A more detailed understanding of the 

mechanisms underlying viral and host-cell substrate recognition is therefore 

essential in facilitating a more rationale approach to the design of more robust 

NS3/4A protease inhibitors. 
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CLUSTERS OF BRANCHED ALIPHATIC SIDE CHAINS SERVE 

AS CORES OF STABILITY IN THE NATIVE STATE OF THE 

HISF TIM BARREL PROTEIN 
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ABSTRACT 

Clusters of branched aliphatic side chains, isoleucines, leucines and valines 

(ILV), have been found to stabilize partially-folded intermediates populated during the 

folding of TIM barrel proteins. The evidence supporting this conclusion derives from 

native-state amide hydrogen exchange (NS-HX) or pulse-quench HX analysis, which 

finds that amide hydrogens associated with ILV clusters are preferentially resistant to 

exchange with solvent deuterium in these intermediate states. The unusually long 

lifetime of the native state of the HisF TIM barrel from a thermophilic bacteria, T. 

maritima, enabled an NS-HX test of the role of ILV clusters in stabilizing its native 

conformation. Higher energy states offering protection against exchange were found to 

be associated with a pair of large ILV clusters. The clusters, however, do not segregate 

with the N- and C- terminal halves of the !-barrel, as might be expected from the (ba)4 + 

(ba)4 gene duplication thought to give rise to HisF. Sequence variation following 

duplication gave rise to ILV clusters that offer very strong protection against exchange 

in the !1-!2 and !4-!7 segments of the (!")8 barrel. The strength of the protection 

against exchange through local fluctuations varies inversely with the mean squared 

fluctuations predicted from a simple normal mode analysis. The correlations between 

the ILV clusters, protection against hydrogen exchange and the vibrational properties 

demonstrate a key role for these clusters in determining the thermodynamic, dynamic 

and structural properties of HisF, and, by inference, other representatives of the most 

common platform for catalysis in biology. 
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INTRODUCTION 

The (ba)8, TIM barrel, motif one of the most common folds in biology,1,2 has been 

the subject of numerous studies of its structure,2,3-4 function,5-8 folding,9-12 design,13-21 

and evolution.2,22-26 Evolution presumably recapitulated the ba module through gene 

duplication until its 8-fold manifestation resulted in a stable closed barrel with b1 

hydrogen bonded to b8 and the 8 intervening a-helices forming a continuous 

amphipathic shell around the hydrophobic b-barrel.24 The short loops/turns between the 

!-helices and the "-strands at one end of the barrel are crucial for stability.27,28 The 

longer loops between the "-strands and the subsequent !-helices at the opposite end of 

the barrel invariably form the active site for a host of enzymes from all three 

superkingdoms.29,30 

Although the hydrophobic effect, hydrogen bonding and electrostatic interactions 

all contribute to stabilizing the native fold of TIM barrels, one might ask whether there 

are sequence-specific contributions to stability that differentiate one barrel from another.  

Mutational analysis used to assess the contributions of individual side chains to stability 

invariably finds that most if not all buried side chains are involved in defining the free 

energy of the native state relative to the unfolded state.31-33 However, these classical 

thermodynamic studies do not address the question of whether rare high energy 

microstates within the native manifold are stabilized in a sequence-dependent fashion.  

  We have approached this problem using protection against exchange of amide 

hydrogens for solvent deuterium under conditions favoring the native state of proteins.34 

Less stable segments readily expose their main chain amide hydrogens to solvent and 

are rapidly replaced by deuterium. More stable segments only slowly exchange with 
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deuterium. 2D NMR experiments allow site-specific measurement of the protection 

against exchange and, thereby, a high resolution assessment of the contributions of 

sequence to stability.   

Application of the NS-HX NMR method to the alpha subunit of Trp synthase from 

E. coli (!TS) revealed patterns of protection that were found to reflect the structures of 

partially-folded states on the folding free energy surface.28 The protection patterns vary 

with the sequence in a manner dictated by the location of a large cluster of isoleucine, 

leucine and valine side chains at the N-terminus of the barrel. We had previously 

hypothesized that ILV clusters, which are preferentially resistant to the penetration of 

water and/or hydroxide required for HX,35 serve as cores of stability in partially-folded 

states of !TS.36 Unfortunately, the time constraints of the NMR experiment, ~ 30 

minutes for data collection, and the comparable lifetime of the native state at neutral pH 

and room temperature precluded an analysis of the protection in the fully-folded !TS 

TIM barrel and, thereby, its determinants of stability.   

The T. maritima imidazole-3-glycerol phosphate synthase TIM barrel, the product 

of the HisF gene, proves to be an especially favorable candidate to explore sequence-

specific contributions to the stability of the native state. Sterner and his colleagues,22,37 

have examined the evolution of this very stable HisF barrel and concluded that the 

("!)8 motif arose from a ("!)4 + ("!)4 gene duplication event. Subsequent studies 

revealed differential stability of the N- and C- terminal ("!)4 modules of the HisF 

barrel,38 supporting this view and suggesting that differential HX patterns might persist 

in these modules in the native state.  
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As will be shown, the unusual thermodynamic and kinetic folding properties of 

the HisF barrel permit a site-specific HX examination of the essential hydrogen-bonding 

network in the native thermodynamic state. Similar to their roles in stabilizing folding 

intermediates, ILV clusters preferentially persist in high energy microstates that define 

the essential features of the TIM barrel motif for HisF. The sequences, however, have 

evolved since the gene duplication event in such a way that the clusters are not simply 

associated with either the N- and/or C-terminal halves of HisF. 
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RESULTS 

As a critical prelude to the NS-HX analysis of HisF, it was necessary to identify 

the species that appear during the folding reaction and the barriers that separate them 

along the reaction coordinate. Such data were essential in associating the HX protection 

patterns with on- and off-pathway intermediates in the !TS28 and sIGPS TIM barrels.39 

By contrast, the unusual thermodynamic and kinetic folding properties of HisF enabled 

unique access to the exchange properties of its native state. 

Equilibrium studies of HisF denaturation 

Gdn-HCl induced equilibrium denaturation experiments were performed on HisF, 

and the disruption of secondary structure was monitored by far UV-CD spectroscopy. 

The reversibility was tested by comparing the transition curves generated from 

incubating the native state with increasing concentrations of denaturant with those 

generated by incubating the denatured state with decreasing concentrations of 

denaturant.  Anticipating strong protection against hydrogen exchange in a thermophilic 

TIM barrel, we performed the folding study under the conditions selected for the NS-HX 

experiment, 40 °C and pH 7.2. Surprisingly, the CD-detected unfolding reaction required 

!18 days at pH 7.2 and 40 °C to equilibrate (Figure B.1(a)). By contrast, the refolding 

reaction appeared to equilibrate within 24 hours (Figure B.1(b)). Although all of the data 

are consistent with a cooperative two-state unfolding transition, the contrasting 

responses in the approach to equilibrium imply the presence of an additional rapidly-

accessible and native-like state on the unfolding side of the major barrier that typically 

separates the native state from partially folded states in folding reactions. After 18 days 

at pH 7.2 and 40 °C, the estimated apparent free energy of folding is 10.81 kcal mol-1for  
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Figure B.1. Chemical denaturation curves of HisF monitored by mean residue ellipticity 

at 222 nm and plotted as a function of Gdn-HCl concentration in a buffer containing 10 

mM KPi, 1 mM K2EDTA and 0.5 mM DTT at pH 7.2 and 40 °C. (a) Unfolding 

equilibrium: 1 day (!), 2 days ("), 4 days (#), 10 days ($), 13 days (%) and 18 days 

(!). (b) Refolding equilibrium: 1 day (!), 2 days ("), 4 days (#), 10 days ($) and 18 

days (!). Solid lines indicate fits to a two-state model. 
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Figure B.1 
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the unfolding equilibrium reaction and 10.10 kcal mol-1 for the refolding equilibrium 

reaction (Table B.S1). The small but progressive increase in the denaturant 

dependence of the ellipticity in the native baseline region over the time course of the 

experiment (Figures B.1(a) & B.1(b)) suggest that prolonged incubation in Gdn-HCl 

may lead to the slow degradation or aggregation of the protein. Although the equilibrium 

study did not provide reliable insights, kinetic folding studies proved to be a more fruitful 

approach towards elucidating the folding mechanism of HisF (see below).   

Kinetic studies of the folding mechanism of HisF 

Unfolding and refolding kinetic reactions of HisF were monitored by manual-

mixing and stopped-flow CD. Unfortunately, optical studies of the refolding reaction 

were plagued by aggregation reactions below 1.5 M Gdn-HCl at 40 °C and pH 7.2. To 

enable access to strongly refolding conditions, the kinetic experiments were performed 

at 20 °C and pH 7.2 where self-association was not observed. The traces were fit to one 

or a sum of exponentials and a semi-log plot of the relaxation times is shown as a 

function of the denaturant concentration (Figure B.2(a)). A satisfactory fit of the 

unfolding traces between 4.4 and 5.6 M Gdn-HCl revealed a major slow phase that 

accelerates exponentially with increasing concentrations of Gdn-HCl and a minor faster 

phase, <5%, in the hundreds of seconds time range that is weakly dependent on the 

denaturant concentration.  Above 5.6 M Gdn-HCl, only a single, denaturant-dependent 

phase was observed.  Refolding was more complex, with a sub-millisecond burst-phase 

in ellipticity (Figure B.2(b)), a small amplitude phase, ~10 %, in the 1-10 s time range 

that accelerates at higher Gdn-HCl concentration and a major slow phase that 

accelerates exponentially between 2.6 and ~1.6 M Gdn-HCl before rolling over to a  
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Table B.S1. Apparent thermodynamic parameters derived from 2-state fits of the 

equilibrium unfolding and refolding curves of the Gdn-HCl denaturation of HisF at pH 

7.2 and 40 °C monitored by far UV-CD spectroscopy.
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Figure B.2. (a) A chevron plot of the observed refolding (closed symbols) and unfolding 

(open symbols) relaxation times of HisF, monitored by manual-mixing CD (!) and 

stopped flow CD (SF-CD), (") at 222 nm, extracted from exponential fits and plotted as 

a function of final denaturant concentrations at 20 °C. The assignments of the kinetic 

phases to steps in the proposed folding mechanism (Scheme 1) are indicated. The 

buffer was 10 mm KPi, 1 mM K2EDTA and 0.5 mM DTT at pH 7.2. (b) The 4 day 

equilibrium refolding curve for HisF monitored by CD at 222 nm (!) at 20 °C. The 

refolding burst-phase ellipticity obtained from SF-CD (") under the same conditions is 

also shown. The dashed line indicates a linear extrapolation of the ellipticity of the 

unfolded state. 
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denaturant-independent phase whose relaxation time is ~60 s (Figure B.2(a)).  These 

data are consistent with a five state folding model involving an off-pathway early folding 

intermediate and two sequential on-pathway intermediates, as observed previously for 

sIGPS.40 The small amplitude unfolding phase in the hundreds of seconds time range, 

however, requires an additional species on the native side of the major barrier to 

unfolding, N*. The small amplitude of this phase and its modest denaturant dependence 

implies a subtle change in the secondary structure compared to the native state. 

 
                                   [N ! N*] ! I2 ! I1 ! U 

             "     Scheme I 
             IBP 

 

The assignments of the steps in the mechanism to the refolding and unfolding 

phases are shown in Figure B.2(a) & B.2(b). A detailed analysis of the kinetic folding 

mechanism of HisF will be presented elsewhere. 

The denaturant dependence of the relaxation times for the major unfolding and 

refolding phases in HisF, an inverted V shape or chevron shape, is typical of reversible 

protein folding reactions. By linear extrapolations, the chevron can be used to estimate 

the rate constants for the rate-limiting unfolding and refolding reactions in the absence 

of denaturant.41 The inverse of the relaxation time, t, equals the rate constant, k.  

Although the predicted refolding rate constant from the refolding leg of the chevron, kf = 

144 s-1, is in the range observed previously for another TIM barrel,42 the unfolding rate 

constant, ku = 7.12 ! 10-11 s-1, is responsible for the substantial stability of the HisF 

native state relative to the I2 state; DGN/I2 = -RT ln (ku/kf) = 13.85 kcal mol-1. Pertinent to 

the NS-HX study, the lifetime of the N state in the absence of Gdn-HCl is an astounding 
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!445 years at pH 7.2 and 20 °C. The unfolding leg of the chevron at 40 °C and pH 7.2, 

the conditions for the NS-HX study, reveals a lifetime of the native state of ~116 years 

(ku = 2.72 " 10-10 s-1, & DGN/I2 = 12.44 kcal mol-1. Figure (B.S1)). The denaturant 

dependence of the unfolding relaxation time is such that the lifetime of the native state 

exceeds 115 days up to 2.0 M Gdn-HCl at pH 7.2 and 40 °C.  These extraordinary 

lifetimes enable a unique assessment of the HX properties of the native state of a TIM 

barrel protein. 

Native-state HX-NMR experiments 

The availability of the main chain amide 1H and 15N resonance assignments for 

HisF,43 provided the starting point for the NS-HX experiments. Examination of the 

TROSY 2D 15N -1H correlation spectrum (Figure B.S2(a)) revealed that 212 out of 240 

crosspeaks were sufficiently well resolved at 40 °C to enable accurate measurements of 

their intensities for this study.  Exchange of the amide hydrogen atoms for deuterium 

was monitored by periodically recording the TROSY 2D 15N -1H correlation spectrum as 

a function of time after dissolving lyophilized protein into 2H2O buffer at pH 6.8 (meter 

reading) at 40 °C (Figures B.S2(b) & B.S2(c)). Note that the relationship between pH 

and pD, pD = pH (meter reading) + 0.4,44 means that the actual acidity in solution was 

equivalent to pH 7.2. The precision of the measurements was enhanced by leaving the 

sample in the NMR probe for the entire time course of the experiment, 10 days.   

The 90 Class I NHs exchanged within the time required to dissolve the sample, 

shim the magnet and collect a useful 2D spectrum, 30 min.  The 70 Class II NHs 

underwent > 95% exchange over 7 days, and the 52 Class III NHs did not undergo 

detectable exchange over the full 10 day course of the experiment. The exchange rate  
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Figure B.S1. Chevron plot of unfolding (open circles, open triangles) and refolding 

(closed circles, closed triangles) phases of HisF at pH 7.2 and 40 °C. Data were 

collected by manual-mixing and stopped-flow CD spectroscopy and fit to exponentials 

as described in Materials and Methods. Assignments of the phases to specific steps in 

the folding mechanism shown in Scheme 1 are indicated. The buffer used was 10 mm 

KPi, 1 mM K2EDTA and 0.5 mM DTT at pH 7.2 and 40 °C.  
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Figure B.S1 
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Figure B.S2. 15N-1H TROSY 2D correlation spectra of HisF in (a) aqueous buffer; (b) 

after 30 minutes in 2H2O buffer; (c) after 10 days in 2H2O buffer at pH 7.2 and 40 °C. 

The buffer contained 10 mM KPi, 50 mM KCl and 1 mM K2EDTA.  
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constants for the Class II NHs were obtained by fitting the fractional occupancy of 

hydrogen as a function of time to a single exponential function. Traces and fits at 0 M 

Gdn-HCl for representative set of NHs are shown in Figures B.3(a) and B.3(b) for two 

different time regimes, 30 - 1,000 minutes and 30 - 10,000 minutes, spanned by these 

experiments. From these measurements, protection factors (PFs) were calculated as 

the ratio of the exchange rate constant of the amino acid in an unstructured peptide, kint, 

to the observed exchange rate constant for a particular amino acid in the folded protein 

kobs, PF = kint/kobs.  The kint was taken as the exchange rate for amino acids in random 

coil conformation calculated using the program Sphere 

(www.fccc.edu/research/labs/roder/sphere/). The protection factors range from 3.59 ! 

103 for the more rapidly exchanging NHs to 1.09 ! 107 for slowly exchanging NHs in the 

absence of Gdn-HCl (Table S2). Although there was no evidence in the NMR spectra 

for the time-dependent changes observed in the native baseline region of the CD data 

(Figures B.1(a) and B.1(b)), the fits of the hydrogen occupancies were only considered 

over the first 7 days of exchange. Less than 10% of the native ellipticity was lost in this 

time frame. 

EX1 vs. EX2 limit: Characterizing the exchange regime 

To interpret the protection factors for HisF, one must determine whether 

exchange is limited by the opening rate constant for breaking the hydrogen bond, the 

EX1 limit, or by the fraction of the open state required for exchange, the EX2 limit.45 This 

determination can be made by comparing the kobs values at two different pH values.45,46-

48 In the EX1 limit, a linear dependence in the log-log plot is expected to intersect the y-

axis at the same log unit as the x-axis and have a gradient of one. In the EX2 limit, one  
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Table B.S2. Protection factors and !G°HX for main chain NHs in HisF in the absence of 

Gdn-HCl at pH 7.2 and 40 °Ca.
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Figure B.3. Normalized intensity of 15N-1H cross peak vs log time plots for a 

representative set of NHs that exchange over the time frame (a) 30 - 1,000 min (b) 30 - 

10,000 min at 40 °C and pH 7.2 in deuterated 10 mM KPi, 50 mM KCl and 1 mM 

K2EDTA. The presence of 50 mM KCl, included to mimic the solvent for the resonance 

assignments,43 had no detectable effect on the rate constants for the major unfolding 

and refolding phases corresponding to the [N ! N*] ! I2 reaction (data not shown) 

(Scheme 1) and, therefore, the lifetime of the native state of HisF.     
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Figure B.3 
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expects a linear dependence intersecting the y-axis at one log unit higher than the x-

axis and with a gradient of one. The shift along the y-axis reflects the known 

acceleration of the rate-limiting exchange reaction with increasing pH above ~2.3.49 

Although the raw data do not follow the expectation of either the EX1 or EX2 regime 

(Figure B.S3(a)), when corrected for the increase in the stability of the native state of 

HisF with pH (Figure B.S3(b)), the exchange process for the Class II NHs was found to 

obey the EX2 limit (Figure B.4). In this limit, the protection factors reflect the free 

energy difference between the closed and open forms of the H-bond forming/breaking 

reactions, DG°HX.50 
!G°HX is defined as !G°HX = -RT ln(kobs/kint). The DG°HX values for 

the Class II NHs in the absence of denaturant range from 5 to 11 kcal mol-1 and are 

shown in Table B.S2. Given the exceedingly long lifetime of the native state of HisF 

under these conditions, ~116 years in the absence of denaturant, the observed 

exchange over a period of 10 days must occur within the native manifold of states rather 

than from partially-folded states on the unfolded side of the rate-limiting barrier. 

Although the exchange behavior of the Class I and Class III NHs could not be 

measured, if both exchange by an EX2 mechanism, their !G°HX value would be less 

than 5 kcal mol-1 and greater than 11 kcal mol-1 respectively. 

HX protection patterns in HisF 

The protection patterns for the Class I, Class II and Class III NHs are shown in 

Figures B.5 and B.6. The rapidly exchanging Class I NHs preferentially appear in the 

active-site loops at the C-termini of the !-strands, which for !4, !5 and !8, are either  
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Figure B.S3. (a) The log-log plot of the observed exchange rate constants measured at 

pH 7.2 and pH 6.2 at 40 °C for amide hydrogens of HisF, before correction for the effect 

of pH on stability. The continuous line represents EX2 limit, and the dotted line 

represents EX1 limit. (b) The chevron plots for the major unfolding and refolding phases 

in HisF at pH 6.2 (!) and pH 7.2 (") at 40 °C, obtained from manual mixing CD 

experiments at 222 nm. The buffer was 10 mm KPi, 1 mM K2EDTA and 0.5 mM DTT. 

The increase in the pH from 6.2 to 7.2 slows the major unfolding reaction by 5-fold while 

leaving the major refolding reaction unchanged. Correcting the kobs for the 5-fold 

slowing of the unfolding reaction at pH 7.2 yields the correlation shown in Figure B.4.  
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Figure B.4. (a) The log-log plot of the observed exchange rate constants measured at 

pH 7.2 and pH 6.2 at 40 °C for amide hydrogens of HisF, after correction for the effect 

of pH on stability (Figure B.S3(b)). The continuous line represents the EX2 limit, and 

the dotted line represents EX1 limit.  
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Figure B.5 A three-dimensional representation of the location of the three classes of 

protection for HisF at pH 7.2 and 40 °C and the location of the five ILV clusters. (a) 

Class I, red, !G°HX ! 5 kcal mol-1; (b) Class II, yellow, 5 ! !G°HX ! 7 kcal mol-1, green, 7 

! !G°HX ! 9 kcal mol-1, blue, 9 ! !G°HX ! 11 kcal mol-1; (c) Class III, purple, !G°HX " 11 

kcal mol-1; (d) Five ILV clusters: Cluster 1 (green), Cluster 2 (red), Cluster 3 (cyan), 

Cluster 4 (purple), and Cluster 5 (black). The structures were generated using PyMol 

and Protein Data Bank entry 1THF. 
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Figure B.6. 2D representation of protection against exchange in HisF at pH 7.2 and 40 

°C. Class I, red, !G°HX ! 5 kcal mol-1; Class II: yellow, !G°HX 5 - 7 kcal mol-1, green, 

!G°HX 7 - 9 kcal mol-1 and blue, !G°HX 9 - 11 kcal mol-1; Class III, purple, !G°HX " 11 

kcal mol-1. Open circles indicate either the absence of the NMR assignment or the 

inability to obtain accurate fits due to spectral overlap and (!) indicates a proline 

residue.
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short !-helices ("4 and "8) or a "-hairpin ("5). Class I NHs also tend to be found on the 

hydrophilic faces of the !-helices and at the C-termini of "1, "2 and "5.  Class II NHs  

are generally found on the nonpolar faces of the !-helices, at the C-termini of "1, "6, "7 

and "8 and at interior positions in "3 and "8. They also can be found in the short C-

terminal loops following the !-helices, which have previously been implicated in 

stabilizing the TIM barrel.27,28 Non-exchanging Class III NHs are predominantly found in 

the "-strands, with one or more members of this class in all 8 "-strands. With the 

possible exception of !1 (3 NHs could not be resolved), at least one Class III NH is also 

found in the other 7 !-helices. Thus, almost the entire "-barrel and segments of most if 

not all of the !-helices in the external shell appear to be intact in higher energy states 

within the native manifold of conformers of HisF.   

Structural dynamics of HX in the Class II NHs 

Insights into the conformational changes accompanying the HX reactions at 

individual sites can be gained by performing HX in increasing concentrations of 

denaturant.51 The denaturant dependence of the protection factors is correlated with the 

exposure of buried surface area in the opening reaction45 and, thereby, is indicative of 

the magnitude of the conformational change. The Gdn-HCl dependence of #G°HX for a 

representative set of Class II NHs is shown in Figure B.7. Within the uncertainty of the 

measurement, +/- 0.16 kcal mol-1, the #G°HX values are independent of the denaturant 

concentration over the range from 0 to 2.0 M Gdn-HCl. Exchange within the native 

manifold occurs through local fluctuations, not by a significant exposure of buried 

surface area in partially-unfolded states on the native side of the rate-limiting  
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Figure B.7. The dependence of !G°HX as a function of Gdn-HCl concentration for a 

representative set of amide hydrogens on HisF. 
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barrier.34,52-54 Estimating a denaturant dependence of DG°HX of less than 0.2 kcal mol-1 

M-1, the surface area exposed in these exchange reactions must be < 200 Å2.55 

Could small scale fluctuations of the sort experienced in normal vibrational modes be 

responsible for HX in the native conformation of HisF? This possibility was explored for 

HisF by calculating the mean squared fluctuations for a simplified C! model of HisF with 

an on-line Gaussian Network Model (GNM) algorithm (http://ignm.ccbb.pitt.edu/). The 

GNM assumes that a protein in its folded state is equivalent to a fully elastic network, 

along the lines of the elasticity theory of random polymer networks.56 The predicted 

equilibrium fluctuations of C! atoms for several proteins are in close agreement with B-

factors from x-ray crystallographic measurements,57,58 supporting the validity of this 

approach.  Pertinent to the present study, Bahar and her colleagues have previously 

observed an inverse correlation between B-factors predicted by the GNM and protection 

against exchange in 29 proteins.59 Comparison with the DG°HX values shows a strong 

correlation with the mean square fluctuations (Figure B.8). Segments with the smallest 

fluctuations, e.g., "-strands, tend to have high protection factors, the segments with the 

highest fluctuations, e.g., loops, tend to have low HX protection factors. The a-helices 

tend to display intermediate fluctuations, perhaps reflecting a mixture of all three 

classes of protection. The correlations imply that HX in the native conformation occurs 

through dynamic channels whose size and lifetimes are dictated by its global vibrational 

properties.60 
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Figure B.8. (a) Mean square fluctuations vs sequence, calculated for HisF from the 

GNM analysis. (b) !G°HX values vs sequence for HisF at 40 °C and pH 7.2. The color 

code represents the "-strands (purple), #-helices (green), and loops (red).  
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Figure B.8 
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DISCUSSION 

Native-state HX properties of HisF 

The lifetime of the native state of HisF at pH 7.2 and 40 °C, ~116 years in the 

absence of denaturant, far exceeds the time required to examine the HX properties of 

this unusually stable TIM barrel protein. 

The protection of main chain NHs against exchange falls into three classes: 

1. Class I NHs exchange with solvent within the time required to initiate the 

exchange reaction by dilution of lyophilized protein into deuterated buffer and 

collect a usable 2D NMR spectrum, ~30 minutes.  In general, the Class I NHs are 

found in loops connecting the C-termini of !-strands with their subsequent "-

helices, the solvent-exposed surface of the "-helical shell and the ends of "-

helices and !-strands (Figures B.5(a) & B.6). Because the Class I NHs 

exchange far more rapidly than the rate of unfolding of HisF, they are most likely 

exchanging by an EX2 mechanism and have #G°HX values less than 5 kcal mol-1.   

2. Class II NHs exchange over the time period from ~30 minutes to 10 days at pH 

7.2 and 40 °C via an EX2 mechanism. The Class II NHs are primarily found at 

the interior, buried positions in the "-helices, in the short turns linking "-helices to 

the subsequent !-strands and preferentially in !3 and !8 (Figures B.5(b) & B.6). 

The #G°HX values range from 5 to 11 kcal mol-1 for the Class II NHs (Figure 

B.5(b) & Table B.S2). 

3. Class III NHs do not detectably exchange over 10 days at pH 7.2 and 40 °C. 

Class III NHs most often appear in the 8 !-strands, but are also found in at least 

7 of the 8 canonical helices (Figures B.5(c) & B.6). If they exchange by an EX2 
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mechanism, the !G°HX values for Class III NHs are greater than 11 kcal mol-1. If 

a subset of the Class III NHs exchange through intermediates on the unfolded 

side of the barrier, they must do so through species whose free energy are at 

least 12.44 kcal mol-1 above the native state.      

Insights into the molecular underpinnings of the HisF TIM barrel 

A closer examination of the protection patterns in the "-strands, #-helices, loops 

and turns in HisF (Figure B.6) hints at the essential structural features that define its 

native thermodynamic state. Most notably, the 8 canonical "-strands contain 58% of the 

non-exchanging NHs and 64% of the "-strand NHs fall into the Class III category 

(Figure B.S4).  The interior of the HisF barrel is well described by 4 layers of side 

chains, as originally recognized by Thornton.61 Each layer consists of 4 side chains from 

either the odd or even numbered strands, alternating as the layers proceed from the N- 

to the C-termini of the "-strands (Figure B.S4). Only the third layer contains 4 Class III 

NHs from the even numbered "-strands, V48 in "2, S101 in "4, L169 in "6 and L222 in 

"8, and 4 Class III NHs from the external side chains of the odd numbered "-strands, 

A8 in "1, V79 in "3, V127 in "5 and A200 in "7, that do not exchange over the period of 

10 days. Examination of the structure further shows that Class III NHs in #-helices, L65 

and V66 in #2, L92 and I93 in #3, A117 in #4, V157 and V158 in #5, I187 in #6 and 

L237 in #8, are closely associated with the side chains in layer 3 of the "-barrel (Figure 

B.S5). This collection of side chains linking the "-strands and #-helices may well 

represent one of the essential features defining the structures encompassed by the 

native thermodynamic state of the HisF barrel.  
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Figure B.S4. 2D representation of the hydrogen-bonding pattern of the !-sheet in HisF. 

The arrows (") depict the hydrogen bonds, pointing from the backbone amide (NH) to 

the main chain carbonyl oxygen (C=O) with the exception of I6 in !1, F77 in !3 and I198 

in !7 where their respective main chain amides are hydrogen-bonded to the side chain 

carboxyl of D45, D98 and D219, respectively. The (!) with a cross indicate proline 

residues, and open circles indicates either the absence of the NMR assignment or the 

inability to obtain accurate fits due to spectral overlap. The (#) represents amino acids 

which are not a part of !-strands. Small circles represent main chain positions whose 

side chains point outside the barrel, large circles represent main chain positions whose 

side chains pointing inside the barrel. The ( ) with dashes indicates amide hydrogen not 

involved in hydrogen bonding in crystal structure. The NHs are color-coded as Class I, 

red, #G°HX ! 5 kcal mol -1; Class II: yellow, #G°HX 5 - 7 Kcal mol -1; green, #G°HX 7 - 

9 kcal mol -1; blue, #G°HX 9 - 11 kcal mol -1; Class III, purple, #G°HX " 11 kcal mol -1. 

The layers of side chains within the !- strands are indicated by dotted lines.
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Figure B.S4 
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Figure B.S5. (a) & (b) A three-dimensional representation of the location of the 

protected 3rd layer of !-strands along with protected "-helices in different dimension. 

Class III NHs in helices are shown as green spheres and Class III NHs in !-strands are 

shown as purple spheres%
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Figure B.S5.  
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The free energy difference between the native state and I2 intermediate (Scheme 

1) can be estimated from the chevron plot (Figure B.2(a)) and yields a value of ~12.44 

kcal mol-1, implying that the intervening transition state ensemble (TSE) must exceed 

that value. Access to the protection factors between 11 and at least 12.44 kcal mol-1, 

i.e., those most crucial to the integrity of the native thermodynamic state was, 

unfortunately, precluded by the aggregation of the protein after 10 days at pH 7.2, at 40 

°C and 2.0 M Gdn-HCl. 

The BASiC hypothesis and HisF 

The BASiC Hypothesis proposes that large clusters of ILV side chains play 

crucial roles in stabilizing partially-folded states in TIM barrel proteins.36 Application of 

the BASiC Hypothesis to the !TS,28 and sIGPS,39,62 TIM barrels found a very good 

correlation between HX protection in their partially folded states and ILV clusters 

observed in their native conformations. The enhanced protection is ascribed to the 

preferentially resistance of such clusters to the penetration of the water and/or 

hydroxide ion required for exchange of underlying NHs and is consistent with the 

hydrophobicity scales of Wolfenden,63 and Kyte & Doolittle.64 Comparison of the 

protection patterns (Figures B.5(b & c)) with the locations of the 5 ILV clusters in HisF 

(Figure B.5(d)) shows that 90% of the Class II and Class III NHs lie within a surface 

defined by a 6Å2 shell around these clusters. If one focuses on the very strongly 

protected, Class III, NHs, one finds that elements of one large ILV cluster stabilize helix-

strand interactions in the "4/!4/"5/!5/"6/!6/"7 region and another stabilizes helix-

strand interactions in the "1/!1/"2 region (Figure B.5(d)). Thus, the BASiC Hypothesis 

accounts for the cores of stability in the native conformation of the HisF TIM barrel 
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protein as well. Although almost all buried side chains are expected to contribute to the 

stability of the native state,36 the dynamic behavior assessed by the HX experiment 

demonstrates a more heterogeneous situation for high energy microstates in the native 

basin. 

Recently, the Rosetta design software package was employed to predict the 

most stable two-fold symmetric HisF TIM barrel,65 motivated by the 4 + 4 gene 

duplication studies of Sterner and colleagues,37 and an earlier conjecture of two-fold 

symmetric of many TIM barrels.66 Exploring the full sequence of HisF, the cut points for 

the (!")4 modules were moved along the sequence, the modules duplicated, fused and 

docked and the energies were minimized. When the cut points over-lapped the natural 

N- and C-termini, the termini were connected with a short linker peptide. The most 

stable symmetric barrels invariably contained a covalently-connected 

!4/"4/!5/"5/!6/"6/!7/"7 segment that agrees very well with the strongly-protected 

region spanned by the large ILV cluster (Figures B.5(d) and B.S4).  

Implications for folding 

The lack of dependence of the #G°HX values on Gdn-HCl concentrations up to 

the unfolding transition zone (Figure B.7) shows that exchange occurs via local 

fluctuations in structure. The possible increase in #G°HX with the concentration of Gdn-

HCl for S90, E91 and D98 (Figure B.7), could reflect the binding of Gdn-HCl to these 

spatially-proximal amino acids. Dunbar and Farber,67 have previously observed the 

binding of Gdn-HCl to several sites on the surface of ribonuclease A. The behavior of 

HisF contrasts with that of other proteins whose unfolding reactions near the transition 

zone are sufficiently rapid that they can traverse the rate-limiting barrier on the time 
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scale of the NS-HX experiment, typically a few hours. In those cases,50,68-69 HX 

accelerates and the !G°HX values decrease as high-energy, partially-unfolded species 

on both sides of the rate-limiting TSE contribute to the exchange process. By contrast, 

the HX results for HisF reflect the dynamic properties of native-like conformers that 

fluctuate around the lowest energy structure and are not simply related to those larger 

conformational changes that depend upon the denaturant concentration. Recognizing 

this limitation, however, the Class II protection against HX observed for half or more of 

the NHs in "3 and "8 (Figures B.6 & B.S4), !G°HX ~ 9 kcal mol-1, implies that these 

two weakened "-strands are the points at which the "-barrel initially fractures in the 

process of unfolding.  

The 2 main chain Class II NHs in "3 form main chain-main chain H-bonds to "2 

and the 2 Class II NHs in "8 form similar H-bonds to "1. The third Class II NH in "3, at 

F77, forms an H-bond to the side chain of D98 prior to "4 (Figure B.S4). Thus, one 

might predict that the two domains bordered by these two weakened "-stands 

interactions, "1/#1/"2/#2 and "4/#4/"5/#5/"6/#6/"7/#7, would comprise stable 

subdomains in one or both of the partially-folded states, I1 and I2, that appear during the 

folding of HisF (Scheme I). As described above, these subdomains are closely 

associated with clusters of ILV residues that are particularly resistant to exchange. 

Similar behavior has been previously observed in folding intermediates for sIGPS and 

#TS.28,62 Direct assessment of the HX protection patterns in the HisF folding 

intermediates that appear during the folding reaction by pulse-quench HX-MS analysis 

is required to test this conjecture for HisF. These experiments are in progress. 

Mechanism of HX 
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The absence of a denaturant dependence for !G°HX for the measurable, Class II, 

NHs (Figure B.7) shows that the fluctuations enabling exchange do not involve large-

scale changes in buried surface area. Thus, the mechanism of HX for HisF must involve 

the molecular events that are small in scale and sufficiently rapid to enable EX2 

behavior. Lumry and Rosenberg,70 proposed the “mobile defect” hypothesis that rests 

on packing imperfections in globular proteins.71 These defects are not static, but rather 

move rapidly through the interior of a protein in response to thermal fluctuations. 

Consistent with this conjecture, Lakowicz and Weber,72 observed the rapid diffusion of 

oxygen into carboxypeptidase A, presumably taking advantage of these mobile defects 

in the process of quenching the triplet state of a buried tryptophan. One might suppose 

that more tightly packed regions would be less receptive to defects because a higher 

free energy cost would be required to disrupt the more efficient packing. More loosely 

packed regions would be less energetically expensive to open and more easily able to 

accommodate a defect. If HX occurs via these mobile defects, resistance to exchange 

might reflect packing densities. 

Another view, espoused by Wagner & Wuthrich,73 supposes that exchange is 

governed by global processes that transiently expose main chain NHs to solvent. In a 

proposed model, they suggest that exchange is enhanced at polar interfaces between 

buried clusters of nonpolar side chains. If one instead considers the global process to 

be the normal vibrational modes of a protein, one finds a connection with the mobile 

defects view. A more tightly packed region would be expected to be involved in higher 

frequency, smaller displacement modes that would restrict the temporal or spatial 

access of water and hydroxide to the underlying main chain NH and vice versa. Either 
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the mobile defects or the global process view could be consistent with exchange via an 

EX2 mechanism, a wide range of protection factors and insensitivity to the denaturant 

concentration. The good correlation between the !G°HX values of amides and the 

predicted mean-squared fluctuations of the respective C" atoms by the GNM model 

(Figures B.8(a) & (b)), however, supports the global process mechanism of exchange 

via the normal vibrational modes of HisF. The correlation between protection against 

exchange and the location of clusters of ILV side chains probably reflects their 

propensity to be buried in the interior of the protein,74,75 where the higher density of C" 

atoms within 8 Å2 would lead to smaller mean squared displacements and retarded HX. 

The unique aversion of aliphatic side chains to water76 may also contribute to the 

enhanced protection seen in and near ILV clusters. 

Insights into the evolution of the HisF barrel 

The location of the stability cores in the native state of HisF does not mirror the 4 

+ 4 gene duplication event thought to have given rise to this TIM barrel protein.2,22 

Sequence variation following the duplication event has caused one core to span three 

over-lapping #/"/# modules, #4/"4/#5/"5/#6/"6/#7, and another core to stabilize the 

#1/"1/#2 module.  

It is interesting, however, that the locations of a different stabilizing feature of TIM 

barrel proteins, the main chain-side chain H-bond clamp, are consistent with the 4 + 4 

model. These clamps are normally formed between the NH of the amino acid in the 

second position from the N-terminus in an odd-numbered #-strand and, most often, the 

carboxylic moiety of an aspartic acid immediately preceding the subsequent even-

numbered #-strand.77 The side chains associated with the NHs in the odd-numbered #-
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strand are large hydrophobes, often branched aliphatic side chains, that sequester the 

H-bond from solvent and significantly decrease the propensity of the NH to exchange 

with solvent. The Class II F77- D98 H-bond clamp is found between !3/"3/ !4, and the 

Class III I198-D219 clamp is found in the analogous position between !7/"7/ !8 (Figure 

B.S4). Although the clamp is conserved, the large hydrophobe is not: F77 in !3 shields 

the !3/"3/ !4 clamp and I198 shields the !7/"7/ !8 clamp. However, both clamps 

preserve a proline just prior to the first position of !3 and !7, and the sequence 

preceding both D98 and D219, GAD, is conserved.77 The tripeptide is consistent with 

previous observations of a conserved GXD sequence prior to even-numbered b-strands 

in TIM barrel proteins.2 

Interestingly, a third clamp between I6 in !1 and D45 prior to !2 is also found in 

HisF but its analog between !5 and !6 is not (Figure B.S4). The GID sequence prior to 

!2 is replaced with GAG prior to !6, eliminating the carboxylic acid H-bond acceptor 

required for the clamp with !5. The sequence of the !1/"1/!2 module has been 

predicted to most closely resemble that for the earliest progenitor of the fundamental 

!/"/! module,37 suggesting that this clamp might have been a key stabilizing element in 

that module. The loss of the clamp as these modules diverged in sequence presumably 

reflects the development of other stabilizing components in the sequence, e.g., the large 

ILV cluster that spans the !4/"4/ !5/"5/!6/"6/ !7 region and, in particular, the !5/"5/!6 

module.   

Summary 

The cores of stability in the native thermodynamic state for HisF, as assessed by 

protection of main chain amide hydrogens against exchange with solvent, correlate well 
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with the location of two clusters of isoleucine, leucine and valine side chains. The higher 

energy states exchange via local fluctuations that expose less than a few hundred 

square angstroms of buried surface area to solvent,55 and can be understood as the 

transient voids created by the normal vibrational modes of HisF. When considered with 

the exchange properties of two other TIM proteins, !TS28 and sIGPS,39 whose ILV 

clusters offer protection against HX to folding intermediates, it is evident that ILV 

clusters serve as cores of stability all along the folding reaction coordinate. These 

clusters are not conserved in sequence or structure. Rather, the clusters move as the 

sequences evolve. What is conserved, however, is the existence of one or more ILV 

clusters that spans multiple adjacent "/!/" modules and plays a primary role in 

stabilizing folding intermediates and the native state of TIM barrel proteins. 
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MATERIALS AND METHODS 

Reagents 

Ultrapure Gdn-HCl was purchased from MP Biomedicals, LLC (Solon, OH), 

deuterium oxide (99.9%), 15N ammonium  chloride and, potassium EDTA were obtained 

from Sigma-Aldrich (St Louis, MO). Monobasic and dibasic potassium phosphates were 

purchased from J. T. Baker Inc. (Phillipsburg, NJ) and Fisher Scientific (Fair Lawn, NJ), 

respectively. All other chemicals were reagent grade. 

Protein expression and purification 

HisF was expressed from the pET11c plasmid containing the HisF gene (a gift 

from Dr. Reinhard Sterner) in E. coli BL21 (DE 3) cells and was purified according to a 

published protocol.78 An overnight culture of freshly transformed cells in LB medium 

supplemented with 0.1 mg/ml ampicillin was used to inoculate a 10 lt culture stocks. The 

cells were harvested, lysed by sonication, centrifuged and the supernatant was heat 

shocked at 75 °C for 15 minutes to precipitate host proteins. The HisF in the 

supernatant was dialysed against 10 mM Kpi, containing 2 mM K2EDTA, and 1 mM DTT 

buffer and purified by column chromatography with a DEAE-Sepharose fast-flow column 

followed by a Sephacryl S-200 column. The purity of the HisF was confirmed by SDS-

PAGE and by measuring the molecular mass with liquid chromatography-electrospray 

ionization mass spectrometry. 

For NMR studies, the transformed E. coli BL21 (DE 3) cells were grown on 

minimal media supplemented with 15N ammonium chloride.43 Cells were grown at 37 °C 

until the OD at 600 nm reached 0.9 at which point the temperature was reduced to 30 

°C, and the cells were allowed to grow for an additional 14 h. The purification followed 
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the above procedures, and the purity of the HisF was confirmed by SDS-PAGE and by 

mass spectrometry.  

Equilibrium measurements 

Circular Dichroism. All CD spectroscopy was performed on a JASCO-810 

spectropolarimeter (Jasco Inc., Easton, MD) equipped with a water-cooled Peltier 

temperature control system. The CD spectra were obtained using a 5 mm path length 

quartz cuvette, a scan rate of 50 nm min -1, and a response time of 2 s. The buffer 

contained 10 mM Kpi, pH 7.2, 1 mM K2EDTA and 0.5 mM DTT. The Gdn-HCl induced 

unfolding was monitored from 215 to 250 nm, and the protein concentration was 5 µM. 

Samples for the unfolding titrations were prepared by adding appropriate volumes of 0-8 

M Gdn-HCl in standard buffer to a stock of native HisF in buffer. Samples for the 

refolding titrations were prepared by adding appropriate volumes of buffer to unfolded 

HisF in 7.5 M Gdn-HCl. The samples were incubated at 40 °C for up to 18 days, and 

aliquots were periodically withdrawn and their CD spectra recorded to measure the 

progress of the unfolding and refolding reactions to equilibrium. The Gdn-HCl 

concentration was determined by refractive index on a Leica Mark II refractometer.79 

The data were fit to a two-state model as described previously.42 

Kinetic measurements 

Circular dichroism. The slow unfolding and refolding kinetics of HisF were 

initiated by manual mixing and monitored with a JASCO-810 spectropolarimeter (Jasco 

Inc., Easton, MD). Data were collected at 222 nm in 10 mm cuvette under continuous 

stirring with a solution volume of 2 ml (manual mixing dead time ~6 s). The fast refolding 

and unfolding kinetics were monitored at 222 nm using an AVIV-202 stopped-flow CD 
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spectrophotometer (dead time ~5 ms). Unfolding experiments were initiated from the 

native state in standard folding buffer, and refolding experiments were initiated from 

protein incubated in 7.5 M Gdn-HCl overnight. The kinetic data were fit to one or more 

exponentials,42,80 using an in-house nonlinear least-squares fitting program, Savuka as 

described.9 The logarithm of the observed relaxation time (s) was plotted as a function 

of final denaturant concentration to produce a chevron plot.41 

Native-state hydrogen-deuterium exchange 

Purified HisF was dialyzed overnight into a buffer containing 10 mM Kpi, pH 7.2, 

50 mM KCl and 1 mM K2EDTA. The sample was concentrated for the HX-NMR study 

with an Amicon Ultra-15 centrifugal filter unit with a 10 kDa membrane and then 

lyophilized. Exchange was initiated by dissolving the lyophilized protein in 2H2O buffer, 

which had been prepared at the required pH and buffer conditions (all the components 

in the buffers were pre-deuterated by repeated cycles of dissolution and lyophilization).  

All pH values reported are corrected meter readings.  Upon addition of 2H2O buffer, the 

sample was immediately transferred to a 5 mm NMR tube (Wilmad LabGlass, Vineland, 

NJ) and placed in the spectrometer at 40 °C; the HisF concentration was ~0.4 mM. The 

time between the initiation of exchange, the transfer to the NMR tube, placement in the 

spectrometer, tuning and shimming, and the beginning of data collection averaged 15 

min. TROSY 2D 15N-1H correlation spectra were recorded over a period of hours to 

days, and the sample remained in the spectrometer for the entire course of the 

exchange reactions. All NMR experiments were recorded on a Varian 600-MHz 

spectrometer, and the spectra were processed in NMR Pipe,81 and analyzed with 

Sparky.82 The temperature was calibrated using a sample of 100% methanol. A list of 



"#$

the 1H and 15N chemical shifts was obtained from the BioMagResBank 

(http://www.bmrb.wisc.edu/) under accession number BMRB-15741, and the TROSY 

spectrum assigned accordingly. 

Analysis of H/D exchange data  

Exchange rate constants for main chain NHs were obtained by fitting the decay 

of 15N-1H TROSY spectrum cross-peak intensities as a function of exchange time to a 

single exponential, I = I0 exp(-kobst), with the initial intensity I0 and the observed 

exchange rate kobs as free variables in the fit. The exchange time was defined as the 

period of time from the dissolution of lyophilized HisF in 2H2O buffer to the end of each 

TROSY 2D experiment. The uncertainties for the kobs values were taken as standard 

errors of the fits. Under the demonstrated EX2 exchange mechanism for the Class II 

NHs, !G°HX was obtained from the equation: !G°HX = -RT ln(kobs/kint), where kint is the 

intrinsic exchange rate calculated for amide protons in unstructured peptides. The kint 

values were obtained using the program SPHERE from model data.83  

Analysis of ILV clusters from the crystal structure of HisF 

Clusters of ILV side chains in the crystal structure of HisF, 1THF,22 were 

identified using in-house software.84 This software identifies networks of ILV side chains 

each of which bury at least 10 Å2 and together bury more than 500 Å2 surface areas 

using the CSU software.85 
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