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Abstract 

 

The parasitic nature of viruses requires that they adapt to their host 

environment in order to persist.  Herpesviruses are among the largest and most 

genetically complex human viruses and they have evolved mechanisms that 

manipulate a variety of cellular pathways and processes required to replicate and 

persist within their hosts.  Human cytomegalovirus (HCMV), a member of the β-

herpesvirus sub-family, has the capacity to influence the expression of many host 

genes in an effort to create an optimal environment for infection.  One 

mechanism utilized by HCMV to alter gene expression is the host RNA 

interference (RNAi) pathway.  This is evidenced by a requirement of host factors 

to process viral micro-RNAs (miRNAs) and by the dynamic expression of host 

miRNAs during infection.   

The work presented in this dissertation demonstrates that productive 

HCMV infection reprograms host miRNA expression in order to positively 

influence infection.  I was able to identify a cohort of infection-associated host 

miRNAs whose change in expression during infection was highly significant.  

Using the enhancer-promoter sequences of this panel of host miRNAs, I 

statistically enriched for the presence of functional transcription factor binding 

sites that regulated the expression of two highly conserved clusters of host 

miRNAs: miR132/212 and miR143/145.  Given that inhibiting their infection-



 xiii 

associated change in expression during infection was detrimental to viral 

replication, it suggests that HCMV mechanistically influences the expression of 

these miRNA clusters.  In order to determine the functional relevance of these 

miRNAs, I assembled a cohort of potential miRNA target genes using gene 

expression profiles from primary fibroblasts.  By statistically enriching for miRNA 

recognition elements (MRE) in the respective 3’-UTR sequences, I generated a 

miRNA target network that includes thousands of host genes.  I evaluated the 

efficacy of our novel miRNA target prediction algorithm by confirming the 

functionality of enriched MREs present in the 3’-UTR of KRas and by confirming 

anecdotal miRNA targets from published studies.  Gene ontology terms enriched 

from infection-associated host miRNA target networks suggest that the utility of 

host miRNAs may extend to multiple host pathways that are required for viral 

replication.  The targeting of multiple miRNAs to shared genes increased the 

statistical likelihood of target site enrichment.  I propose that identifying 

cooperative miRNA networks is essential to establishing the functional relevance 

of miRNAs in any context.  By combining contextual data on the relative 

miRNA/mRNA abundance with statistical MRE enrichments, one will be able to 

more accurately characterize the biological role of miRNAs. 
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A. The Herpesvirales Order and Human Cytomegalovirus 

 

Herpesviruses 

  

 The first identified herpesvirus, Pseudorabies virus, was isolated in 1902 

by Aladar Aujeszky (14, 240).  Since then, at least one herpesvirus has been 

identified in almost all animal species (Table 1.1) (99).  Herpesviruses were 

historically classified based on the architecture of the virion.  The identification of 

numerous novel herpesvirus species and the characterization of their replication 

and pathogenesis eventually led the establishment of the Herpesviridae family.  

The more recent availability of extensive nucleotide sequence data resulted in 

the establishment of the higher taxonomic order Herpesvirales, which is divided 

into three distinct families of herpesviruses based on their species restrictions 

and sequence conservation (Table 1.1) (75).  The Herpesviridae family 

represents one of the largest and most genetically complex families of viruses.  It 

is speculated that the family is between 200 and 300 million years old, implying 

that they have been co-evolving with animals throughout their evolutionary 

divergence (155, 220).  The extensive host range of the Herpesviridae highlights 

the longevity of this family, and its ability to adapt to and persist within such 

discrete environments has allowed these viruses to survive multiple mass 

extinction events (270, 271).  Co-evolution with their hosts has allowed them to 
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persist within the respective hosts for their entire lifetime without commonly 

causing debilitating or malignant disease. 

 

Family Sub-
Family Genus Hosts 

Alloherpesviridae None 
Batrachovirus 
Cyprinivirus 
Ictalurivirus 

Salmonivirus 

Frog, Eel & Fish 

Herpesviridae 

Alpha 
(α) 

 

Simplexvirus 
Varicellovirus 

Iltovirus 
Mardivirus 
Scutavirus 

Unassigned 

Human, Bird, 
Turtle, Cow, 
Marsupial, 

Primate, Rabbit, 
Antelope, Cat, 
Deer, Dog & 

Horse 

Beta 
(β) 

 

Cytomegalovirus 
Roseolovirus 

Muromegalovirus 
Proboscivirus 
Unassigned 

Human, Primate, 
Mouse, 

Elephant, 
Guinea Pig, Pig 
& Tree Shrew 

Gamma 
(γ) 
 

Lymphocryptovirus 
Rhadinovirus 

Macavirus 
Percavirus 

Unassigned 

Human, Primate, 
Antelope, Cow, 
Hippopotamus, 

Pig, Sheep, 
Horse, Weasel, 

Mouse, Hamster, 
Seal 

Unassigned Unassigned Iguana 

Malacoherpesviridae None Ostreavirus 
Aurivirus 

Oyster 
Abalone 

 

The distinct biological properties of the Herpesviridae family delineate it 

into three separate sub-families: alpha (α), beta (β) and gamma (γ) (Table 1.1 

and 1.2).  These sub-families are based on the host range, the duration of the 

Table 1.1:  The Herpesvirales order.  Listed in this table are all known members of the 
Herpesvirales order.  They are organized into family, sub-family and genus.  The far right 
column lists the host-range for the respective family in order to illustrate the ubiquitous nature 
of the herpesviruses.  Each respective genus can harbor up to 17 individual species with both 
unique and similar hosts.  There are currently 96 documented herpesviruses listed by the 
International Committee on Taxonomy of Viruses.  
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replication cycle, cytopathology and specific characteristics of latency (Table 1.2) 

(99, 281).  The sub-families are more definitively classified on the basis of 

genome arrangement and sequence variability, but these distinctions are 

generally accurately defined by the classifications that are based on biological 

properties.  The mapping of phylogenetic relationships through DNA sequencing 

has, however, helped to establish viral ancestry and determinants of species 

specificity (155, 221).  

 

Sub-
Family 

Human Herpesvirus 
Species Biological Properties 

Alpha 
(α) 

Herpes Simplex Virus 1 (HSV1) - Variable host range 
- Short reproductive cycle 
- Rapid spread in culture 
- Efficient destruction of infected cells 
- Establishment of latency primarily in sensory 

ganglia 

Herpes Simplex Virus 2 (HSV2) 

Varicella Zoster Virus (VZV) 

Beta 
(β) 

Human Cytomegalovirus (HCMV) - Restricted host range 
- Long reproductive cycle 
- Slow spread in culture 
- Infected cells frequently become enlarged 

(cytomegalia) 
- Latency can be established in secretory glands, 

lymphoreticular cells, kidneys and other tissues 

Human Herpesvirus 6 (HHV6) 

Human Herpesvirus 7 (HHV7) 

Gamma 
(γ) 

Epstein-Barr Virus (EBV) - Restricted host range 
- In vitro replication in lymphoblastoid cells, and 

lytic infections can occur in some types of 
epithelioid and fibroblastic cells 

- Specificity to either T- or B-lymphocytes 
- Establishment of latency primarily in lymphoid 

tissue 
- Associated with cellular transformation 

Kaposi’s Sarcoma Associated 
Herpesvirus (KSHV) 

 

 

Table 1.2:  The human herpesviruses.  The human herpesviruses are all members of the 
Herpesviridae family.  Their sub-family and species classifications are illustrated in this table 
along with the biological properties that distinguish the respective sub-families.  
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The enveloped herpesvirus virion ranges in size from 120 – 200 nm, and 

its surface is studded with an array of glycoproteins.  The electron dense dsDNA 

genome is enclosed within an icosahedral capsid structure (12, 110, 301).  

Between the capsid and the envelope is a distinct, protein-rich region known as 

the tegument.  This ordered structure contains viral proteins that are required for 

regulating a multitude of processes involved in activation of viral gene expression, 

immune evasion and virion assembly (227, 230).  The herpesvirus genome 

ranges in size from 120 kbp – 230 kbp, and it has the unique capacity to code for 

a large array of enzymes involved in nucleic acid metabolism, protein 

modification/processing and DNA replication.  A distinct set of core genes 

involved in nucleotide metabolism, DNA replication and virion structure are 

conserved within the Herpesviridae family, but not all are essential for viral 

replication (6, 229).  Herpesviruses characteristically replicate and encapsidate 

their DNA genomes in the nucleus and production of infectious progeny 

inevitably kills the host cell (Figure 1.1) (226, 227).  Herpesviruses can also 

establish a latent reservoir where the viral genome is maintained with minimal 

viral gene expression. This life-long latent infection can be reactivated under 

various circumstances, and this can subsequently cause various symptomatic 

disorders (Figure 1.1) (99).  Human cytomegalovirus (HCMV) represents the 

largest and most genetically complex member of the Herpesviridae family.  Its 

presence among the human population is ubiquitous, and the virus has 
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developed elaborate strategies that allow it to persist for the lifetime of the host 

with little to no apparent pathology. 

 

 

 

 

 

 

 

 

Figure 1.1: Progression of herpesvirus infections.  This figure illustrates the progression of 
herpesvirus infections in cell culture and in-vivo.  Following primary infection, lytic replication is 
initiated and latent infections are established in order to allow for dissemination of the infection 
and for the retention of latent virus.  The thickness of each arrow indicates the relative frequency 
at which each event occurs. This figure was adapted from Fields Virology (99).     
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Human cytomegalovirus 

 

Human cytomegalovirus is a member of the β-herpesvirus subfamily.  It is 

a ubiquitous, species-restricted pathogen with seropositivity rates ranging from 

50% to greater than 95% depending on the demographic being tested (214).  

HCMV is spread horizontally by close or intimate contact with bodily fluids, so the 

rates of seroprevalence increase with age and are linked with socioeconomic 

standards of living (45, 147, 290).  HCMV exhibits three characteristic types of 

infection: productive, persistent and latent (99).  Each is characterized by the 

extent of viral gene expression and viral genomic replication occurring in the 

infected cell, and by the relative amount of infectious progeny virus being 

produced.  Primary productive infections are typically asymptomatic and virus 

can be shed for a period of months to years in urine, feces, saliva, tears, semen 

and cervical secretions (99, 141).  Productive replication of HCMV is believed to 

inevitably kill the host cell, and infection can be propagated either through cell-to-

cell spread or through primary infection of neighboring cells by newly generated 

mature virions (99, 212).  Although HCMV is a species-restricted human virus, it 

exhibits a promiscuous tropism pattern within its host.  Not every cell-type is 

capable of supporting a complete productive replication cycle, but the majority of 

human cells and organs can be infected (32, 299).  This phenomenon contributes 

to the unique patterns of virus shedding, dissemination and pathogenesis.  Within 

the host, mature virus is thought to be shed from fully permissive cells such as 
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fibroblasts, epithelial cells and smooth muscle cells.  This theory is supported by 

the established cell culture model systems with these particular cell types (333, 

334).  Dissemination of HCMV infection in-vivo is thought to be mediated by 

immature myelomonocytic leukocytes and dendritic cells (DC).  Although 

leukocytes are not fully permissive to productive replication, it is speculated that 

they passively transfer the virus to other organs within the host (99, 299).  The 

surveillance functions of these cells are ideal for transporting the virus to other 

tissues and organs.  Differences in cell tropism among the various strains of 

HCMV in vitro are a result of the loss of tropism-specific genes (42, 53, 165).  

These factors mediate similar effects in-vivo, but the availability of host factors 

required for viral replication also contribute to cell tropism.  Host factors also 

contribute to the establishment and maintenance of latent HCMV infection.  

Episomal DNA is latently maintained in CD34+ monocyte progenitors with 

minimal viral gene expression.  These cells do not support productive replication 

but they allow for maintenance of latent genomes and reactivation of viral DNA 

(224, 326).  In instances of immunosuppression, viral gene expression can be 

activated and productive replication can commence again.  The exit and entrance 

into the latent state is partially mediated through epigenetic silencing of viral gene 

expression through chromatin modification (272, 304).  It has also been proposed 

that alterations in host miRNA expression profiles contribute to maintenance of 

the latent infection (263).  The requirement of host factors is a hallmark of HCMV 

replication and it is necessary for precise control of almost all aspects of infection.  
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HCMV can also be spread vertically from mother to child via trans-placental 

congenital infection, intrapartum transfer or through breast milk (150, 275, 324).  

Given the ability of the virus to cross the placental barrier, congenital HCMV 

infection is the leading cause of birth defects associated with an infectious agent.   

Congenital infection with HCMV can result in the formation of various 

neurological sequelae, some of which can lead to serious developmental 

disorders (4, 182).  Approximately 1% of all live births present active HCMV 

infection, and roughly 10% of those births exhibit symptomatic HCMV disease 

(213).  Historically, it was presumed that primary infections during gestation were 

responsible for the majority of the cases of congenital HCMV disease.  However, 

more recent studies have shown that pre-existing maternal infections and 

primary infections of infants have similar incidences of disease (106, 361).  

Congenital HCMV disease can be diagnosed by identifying intrauterine 

developmental abnormalities such as organ enlargement or brain malformations, 

but the infectious nature of the disease can only be inferred through maternal 

HCMV antibody seropositivity since there is considerable overlap with the 

pathological sequelae of other infectious and genetic disorders (35, 274).  HCMV 

infection also presents a significant risk to immuno-compromised hosts, as 

weakened immune surveillance can allow for extensive viral replication.  Patients 

undergoing allogenic stem cell transplants, solid organ transplants, AIDS patients 

or patients with autoimmune diseases are all at significant risk of either acquiring 

new infections or for reactivating latent virus (62, 84, 331).  Cases of HCMV 
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disease in immuno-competent hosts have also been described (57, 327).  It is 

speculated that the virus is the cause of up to 8% of all cases of mononucleosis 

(169).  HCMV infection is also associated with the manifestation of numerous 

diseases including atherosclerosis, hypertension, glioblastoma multiforme (GBM) 

and Alzheimer’s disease (20, 86, 210, 264, 314).  The role that the virus plays in 

disease causality or progression has not been accurately defined.  However, the 

presence of the virus in the relevant cell types and tissues is a strong positive 

correlation of disease development.  Regardless of the type of infection, the 

severity of HCMV disease is dependent on the efficiency of host immune 

surveillance and the degree of viral replication that occurs. 

The HCMV virion has the characteristic enveloped structure and the viral 

membrane is studded with a complex network of glycoproteins required for cell 

binding, fusion, entry and cell-to-cell spread (39).  The virion itself is pleomorphic 

and is larger than that of the other human herpesviruses (200 - 300 nm).  Its 

dsDNA genome encased within a ~125 nm icosahedral capsid and this is 

supported by the viral tegument structure, which contains a multitude of host and 

viral proteins (Figure 1.2 A) (99, 340).  The most abundant of these proteins are 

pp65, a viral phosphoprotein required for inhibiting the cellular interferon 

response and pp71, a viral transactivator (329, 340).  The functions of tegument 

proteins are quite diverse.  They support the structure of the virion, regulate 

fusion and uncoating, dampen the host responses to infection and transactivate 

the expression of viral genes.  The ~235 kbp viral genome is the largest of the 
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Herpesviridae family, and it has the capacity to code for ~170 viral genes and 15 

viral miRNAs (Figure 1.2 B & C) (118, 225, 316).  It is organized into unique-long 

(UL) and unique-short (US) regions, which are flanked by terminal (TRL and TRS) 

and internal (IRL and IRS) repeat sequences (Figure 1.2 C) (99).  HCMV 

represents one of the largest and most genetically complex human viruses.  The 

requirement of cellular factors is essential to the progression of infection, and a 

hallmark of HCMV infection is its characteristic ability to reprogram host gene 

expression in order to create an optimal environment for infection (373).  The 

impact that infection has on host gene expression can be observed even at the 

initial events of virion binding (37).    
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Figure 1.2:  HCMV virion structure and genomic coding capacity.  (A) The HCMV virion is 
illustrated with the characteristic structural and genomic components.  (B) The coding capacity 
of the dsDNA genome is broken down according to the gene functions.  The chart illustrates the 
documented function of all the characterized viral genes.  (C) The HCMV genome is 
represented to show the coding regions of the viral open reading frames and their orientation, 
the repeat regions, the viral miRNAs and the replication origin.  The legend next to the genome 
illustration relates how each respective segment is labeled.  Below the genome annotation is a 
plot showing the GC-content of the viral genome based on a calculation made using a sliding 
window of 50 bp. 
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HCMV infection begins at the plasma membrane where viral glycoproteins 

mediate binding and entry through interactions with host proteoglycans and 

membrane proteins (Figure 1.2).  The glycoprotein gB, one of the most highly 

conserved herpesvirus core proteins, regulates heparan sulfate binding along 

with other complexes of glycoproteins such as gH:gL, gM:gN and gO (99).  

Although these complexes do not represent all of the viral glycoproteins, they are 

thought to be the most important given that they are required for viral replication 

(133).  Other cell membrane components such as the epidermal growth factor 

receptor (EGFR), platelet-derived growth factor receptor alpha (PDGFRα) and 

integrins have also shown to influence virion binding and fusion.  Regulating the 

coordinated interaction of each of these molecules is thought to be essential for 

infection (97, 313, 348, 349).  Membrane fusion in fibroblasts occurs at the 

plasma membrane, but in other relevant cell types entry and fusion occurs within 

endocytic vesicles (99, 284).   

Virion fusion at the plasma membrane releases the nucleocapsid into the 

cell cytoplasm along with viral tegument proteins, which immediately begin to 

counteract host antiviral defenses (Figure 1.3) (2, 40, 284).  The capsid is 

transported along microtubules to the nucleus within minutes of infection, and the 

linear viral genomic DNA is deposited into the nucleus allowing for immediate 

transactivation of viral gene expression (Figure 1.3) (2).  Shortly after the linear 

viral DNA is deposited into the nucleus, the parental genome is circularized (222).  

This will later allow for the formation of concatameric genomes via rolling circle 
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replication.  Viral gene transcription is mediated by host RNA polymerase II and 

follows an ordered cascade: immediate early (IE) à early/delayed early (E/DE) 

à late (L).   

Expression of IE genes occurs shortly after the viral genome is deposited 

into the nucleus and does not depend on the prior expression or function of other 

viral genes.  IE genes are typically involved in trans-activating gene expression, 

inhibiting antiviral responses and altering the cellular environment in preparation 

for DNA replication (40, 51, 69).  The expression of IE genes is also dependent 

on the availability of host transcription factors, which regulate activity of the major 

immediate early promoter (MIEP) (146, 181, 288).  The immediate early proteins 

IE1 and IE2 are critical mediators of infection.  They influence the expression and 

function of host transcription factors required for regulating viral gene expression 

and viral DNA replication (48, 127, 262, 366, 367).  Immediate early genes also 

activate the expression of E/DE genes, which initiates by 6 hpi and continues 

through 18 – 24 hpi.  These genes are required for viral DNA replication, 

nucleotide synthesis and capsid maturation.  Expression of E/DE genes is 

dependent on the prior expression of IE genes because they are critical trans-

activators of viral gene expression and because they regulate the accumulation 

of host factors required for viral gene expression (56).  HCMV infection requires 

the contribution of host factors for mediating viral DNA replication, gene 

expression and protein translation.  Infected cells appear to be in a G1/S- or M-

like phase of the cell cycle, but replication of host cell DNA is blocked. This 
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environment generates host factors required for viral DNA replication (48, 49, 99, 

131).  Temporal accumulation of E/DE gene products allows for the initiation of 

viral DNA replication, which occurs between 18 – 24 hpi (Figure 1.3) (2).  The 

episomal genome is the substrate for viral DNA replication.  It allows for the 

formation of concatameric genomes via rolling circle replication.  Viral genomic 

replication occurs in distinct compartments within the nucleus and host cell cycle 

and DNA damage response (DDR) factors aid in the process (79, 87, 256).  

Accumulation of nascent viral genomic DNA subsequently leads to expression of 

late (L) genes, which is dependent on the initiation of viral replication and the 

prior expression of IE and E/DE genes.  Late genes regulate genomic 

encapsidation, virion assembly and egress.  As viral DNA is synthesized, 

encapsidation proteins recognize the concatameric template through cis-acting 

sequences and insert unit-length DNA into the procapsid structure (2, 339).  A 

nucleolytic cleavage of the concatameric DNA generates the mature 

nucleocapsid.  This process is reminiscent of the “head full” assembly of dsDNA 

bacteriophages.  Although the mechanistic aspects of this process are best 

understood in Herpes simplex virus (HSV) models, functional packaging proteins 

have been identified in HCMV and they are assumed to share similar roles in the 

process (291, 353).  Virion assembly and envelopment occurs in a two-step 

process (227).  The assembled nucleocapsid is first transported out of the 

nucleus through dissolution of the nuclear lamina (176, 226, 238).  Following 

nuclear egress, the capsid is then enveloped in the cytoplasm by large inclusions 
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of the golgi body and the endoplasmic reticulum (2, 13, 303).  This process is 

guided by the interaction of tegument proteins with the capsid and envelope 

glycoproteins (171, 354).  The enveloped virion is then transported to the cell 

membrane and fusion results in the egress from the infected cell.  Progeny virus 

can be detected in infected cell supernatants as early as 48 hpi.  The ability of 

HCMV to reprogram host gene expression and to commandeer host signaling 

pathways is essential to viral replication, dissemination and persistence.   

The necessity of host genes for regulating infection is a hallmark of HCMV 

infection.  These factors are involved in almost every aspect of viral replication 

and they contribute to the establishment of each distinct phase of infection.  One 

particular pathway that has recently been shown to contribute to HCMV 

replication is the host RNA interference pathway (RNAi).  Viral encoded miRNAs 

depend on the host RNAi pathway for processing and functional implementation, 

and infection impacts the expression of host miRNAs whose proper function is 

required for efficient viral replication (116, 316, 347).    
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Figure 1.3:  Human cytomegalovirus replication.  The life cycle of HCMV replication is illustrated 
in this figure.  Upon attachment at the plasma membrane, the viral capsid and tegument proteins 
are released into the cell cytoplasm.  The capsid is trafficked to the nucleus and viral gene 
expression begins almost immediately after the genome has been deposited into the nucleus.  
Viral genomic replication occurs via a rolling circle mechanism, and immature capsids are 
packaged and assembled in the nucleus.  After budding from the nucleus, the capsids acquire 
the tegument layer and are enveloped in the cytoplasm.  After acquiring the viral envelope, the 
assembled virions bud from the cytoplasmic membrane.  Virion maturation continues after the 
particle is released as envelope glycoproteins and tegument proteins undergo conformation 
changes.       
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B. RNA Silencing 

 

Discovery of RNA-mediated post-transcriptional gene silencing 

 

The fortuitous discovery of RNA interference began with the observation 

that transient transduction of a chimeric expression vector into plants actually 

resulted in repressed expression of a chalacone synthase transgene (245).  

Around the same time, other groups working in plant and fungal models 

observed similar phenomena wherein transient over-expression lead to 

concomitant repression of transgene expression (76, 282, 338).  Terms such as 

post-transcriptional gene silencing (PTGS), quelling and co-suppression were 

adopted to describe the apparent dissidence of these observations, but the 

general consensus in the field was that nucleic acid was guiding antisense-

mediated repression of gene expression.  Even before the characterization of the 

biogenesis and targeting of short interfering RNAs (siRNAs) or microRNAs 

(miRNAs), various groups had adopted effective antisense-mediated 

transduction strategies for disrupting gene expression (100, 123).  These initial 

observations were later addressed by the finding that a heterochronic, non-

coding C. elegans gene, lin-4, was essential for creating a temporal decrease in 

LIN-14 protein levels during development (185).  Here it was suggested that a 

small lin-4 transcript, which harbored complementarity to the LIN-14 3’-UTR, was 

regulating LIN-14 protein translation through a sequence-specific RNA-RNA 
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interaction.  It was proposed that dsRNA acted as a “trigger” for inducing an 

antisense-mediated repression of gene expression.  Subsequent work validated 

that the transient introduction of dsRNA with complementarity to a target gene of 

interest was sufficient to “interfere” with target gene expression.  From these 

observations, the term “RNA interference” was born (101,158, 251). Further 

characterization of the lin-4 locus and other similar forward genetic studies 

showed that short interfering RNA duplexes, which are expressed from inherited 

genetic loci, are capable of negatively regulating gene expression through 

sequence-specific interactions (88, 89, 232, 273, 307). The establishment that 

dsRNA was the substrate mediating RNAi catalyzed the biochemical 

characterization of miRNA processing and helped identify miRNA coding genes.   

The pioneering work that identified the biochemical components required 

for RNAi-mediated regulation of gene expression was carried out in plant, fungus, 

fly and nematode model systems.  Subsequent exploratory comparisons later 

identified orthologous genes in vertebrates.  There is conservation of core RNAi 

pathway components among eukaryotes, but the distinctions between species lie 

mainly at the molecular level of miRNA processing and targeting.  In line with this 

theme was the identification of an RNA-dependent RNA polymerase (RdRP) as 

the first essential gene required for mediating RNAi in plants and fungus (66, 74).  

These genes were identified through the use of “quelling-defective” strains of 

Neurospora crassa (which identified qde-1) and random mutagenesis screens of 

Arabidopsis thaliana (which identified sgs-2 and sgs-3) (67, 90, 233).   
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Subsequent studies also identified an RdRP orthologue in C. elegans (302, 309).  

It was proposed that the role of the RdRP was to amplify the aberrant dsRNA 

intermediates required to initiate PTGS, and later this theory would be 

substantiated by the biochemical characterization of the anti-viral PTGS 

response in plants (91, 196, 233).  The necessity of an RdRP for propagating 

PTGS is one of the main determinants distinguishing RNAi in plants, nematodes 

and fungi from that in flies and vertebrates (113).  Soon after, a flurry of similar 

studies identified other functional components of the RNAi pathway including 

proteins with homology to a RecQ DNA helicase (qde-3) and RNAseD (mut-7) 

(68, 162).  These findings supported the idea that dsRNA directed the enzymatic 

degradation of target RNAs, which resulted in PTGS.  The initial division of the 

field between different animal and plant model systems helped establish sets of 

conserved genes that were required for mediated PTGS.  This was critical for 

identifying RNAi pathway components in other species through homology 

comparisons, and it also helped establish the idea that RNAi was derived from a 

common ancestral mechanism (93).  The identification of these first sets of 

essential genes gave way to an enormous expansion of the field of RNAi and led 

to the precise biochemical characterization of miRNA biogenesis and targeting in 

mammals.   
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miRNA biogenesis and targeting 

 

 miRNAs represent a specific class of small non-coding RNAs (ncRNA).  

The characterization of ncRNAs in eukaryotes is continually expanding, but the 

biogenesis and function of mammalian miRNAs is well understood (reviewed in 

113, 164).  miRNA genomic coding loci can be located either within the intronic 

sequences of other genes (intragenic) or they can be found within the vacant 

flanking sequences between coding genes (intergenic) (Figure 1.4).  miRNA 

coding loci have also been identified in exonic coding sequences, but the 

occurrence of these loci is relatively rare (279, 322).  Intragenic miRNA 

transcription is presumably coincident with that of the respective coding gene, but 

evidence suggesting that these miRNAs can also be independently expressed 

has yet to be formally discredited (279).  miRNA coding loci can consist of a 

single miRNA, or they can be clustered with other miRNAs that will be expressed 

in the same poly-cistronic transcript (188) (Figure 1.4 and 1.5).   
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Similar to other classically defined genes, miRNA expression is mediated 

by RNA polymerase II (RNAPII), and miRNA transcripts are capped and poly-

adenylated (43, 189).  RNAPIII has been shown to be able to direct transcription 

of miRNAs as well, but it is thought that the presence of repetitive Alu elements 

near miRNA coding genes may be largely responsible for this phenomenon (36).  

Primary miRNA (pri-miRNA) transcripts form a characteristic hairpin structure 

that is recognized in the nucleus and cleaved into a pre-miRNA hairpin by a 

Figure 1.4:  miRNA genomic coding loci.  The various miRNA genomic coding arrangements 
and clustering patterns are illustrated in this figure.  The green and blue boxes represent the 
exonic coding sequences of two arbitrary genes, and the genomic miRNA coding loci (hairpin 
structures) are represented alongside those genes in order to illustrate intergenic, intragenic 
and exonic miRNA coding loci. 
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micro-processor complex containing the RNAse III enzyme Drosha (Figure 1.5) 

(77, 115, 128, 179).  The pre-miRNA hairpin is actively transported out of the 

nucleus through Exportin 5, where it is bound and processed in the cytoplasm by 

the RNAse III enzyme Dicer (Figure 1.5) (34, 142, 161, 170, 363).  The resulting 

dsRNA duplex is then unwound and the thermodynamic stability of the 5’ end of 

the duplex dictates which strand is utilized as the “guide” to regulate mRNA 

translation (Figure 1.5) (247, 279, 295).  The mature miRNA, which is ~22 nt in 

length, is incorporated into a miRNA-containing ribonucleoprotein complex 

(miRNP) also known as the miRNA-induced silencing complex (miRISC), and the 

Argonaut protein AGO2 directs binding to the target mRNA (Figure 1.5) (201, 

223).   
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Figure 1.5:  Mammalian miRNA biogenesis.  The biochemical mechanism of mammalian 
miRNA biogenesis is illustrated in this figure.  miRNA transcription is typically mediated by RNA 
polymerase II, and pri-miRNA transcripts are enzymatically processed in the nucleus by the 
Drosha complex.  Pre-miRNA hairpins are actively transported into the cytoplasm, where they 
are processed into dsRNA duplexes by the RNAse III enzyme Dicer.  The mature miRNAs are 
loaded into RISC miRNP complexes, and they post-transcriptionally mediate gene expression 
through mRNA translational inhibition or transcript degradation.   
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Micro-RNA recognition elements (MRE) guide miRISC to the target 

mRNAs.  Typically, MREs are located in the 3’-UTR of mRNA messages and 

they exhibit complementarity to nucleotides 2-7 at the 5’ region of the mature 

miRNA known as the “seed” region (119, 192, 193, 246).  Although the majority 

of mammalian MREs have been shown to be located in 3’-UTR sequences, 

functional MREs in the 5’-UTR and in exonic coding sequences have also been 

described (211, 276).  The extent of seed complementarity and the composition 

of flanking sequences around the MRE have also been shown to influence the 

efficacy of the miRNA in inhibiting mRNA translation (Figure 1.6) (23).  siRNAs 

exhibit extensive complementarity to their target message and typically induce 

mRNA cleavage upon binding (Figure 1.6) (143, 218).  This effect is also seen 

with the majority of plant miRNAs as they also harbor extensive target 

complementarity (reviewed in 344).  miRNA binding in vertebrates typically 

results in translational repression, but the exact mechanisms governing 

translational repression are still being defined (reviewed in 254).  The 

observation that miRNAs can be associated with polysomes suggests that this 

effect occurs after translation initiation (216, 257).  Subsequent studies indicated 

that the mechanism of translational repression involves de-adenylation of the 

target transcript and inhibition of translation initiation through interference with 

cap binding (26, 140, 357).  Even though the majority of mammalian miRNAs 

induce translational inhibition and the majority of plant miRNAs induce mRNA 

cleavage, exceptions to these dogmas have been observed in both systems (362, 
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364).  In rare cases, miRNA targeting has even been shown to increase protein 

translation (70, 341).  Taken together, the available literature suggests that there 

are aspects of miRNA biogenesis and targeting that have yet to be fully 

appreciated and characterized.  Regardless of this assumption, the 

characterization of miRNA-mediated translational inhibition through MRE 

recognition in a target’s 3’-UTR is very well established.   

Figure 1.6:  miRNA seed sequences are targeting determinants.  Nucleotides 2-7, near the 5’-
end of a mature miRNA are known as the “seed sequence”.  This region dictates the targeting 
repertoire of the miRNA based on complementarity to a target mRNA.  Different seed types 
have been described based on the extent of seed complementarity and, 5’-flanking sequences.  
These respective seed sequences are designated based on the number of nucleotides 
contributing to MRE recognition (6mer, 7mer and 8mer).  As a reference for comparison, the 
complementarity of an siRNA is shown alongside the different miRNA seed sequences. 
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Using these targeting criteria, various groups have developed 

mathematical algorithms that identify functional MREs in the 3’-UTRs of predicted 

target genes (27, 73).  Various factors beyond complementarity to the miRNA 

seed have been shown to influence the efficacy of miRNA binding, and the 

respective prediction protocols each use different criteria such as site 

conservation, UTR architecture, site spacing, site number and strength of the 

various seed types to score the predictions (38, 81, 134, 166, 175, 205, 287). 

Concordance among each prediction algorithm can be seen in their 

establishment that mammalian MREs are over represented in 3’-UTRs and that 

extensive site complementarity and site number are strong predictive measures 

of MRE functionality.  Currently, the Sanger miRBase suggests that the human 

genome codes for over 2000 functional miRNAs.  Given the small sequence 

requirement for miRNA targeting, it is predicted that every protein coding gene is 

potentially regulated by a miRNA and that over half of these sites are 

evolutionarily conserved (107).  Combinatorial approaches that joined 

transcriptomic and proteomic analyses indicated that not only are miRNAs 

capable of simultaneously controlling the expression of many different genes, but 

that there is a significant amount of variability in the degree translational 

repression dictated by the extent of MRE complementarity (16, 122, 296).   

These elegant studies began to illustrate the dynamic range of translational 

inhibition imposed by miRNAs, and they emphasize the cooperative ability of 

miRNAs to co-regulate the expression of shared targets.  A similar study 



 28 

suggested that miRNAs act to generate thresholds of gene expression that are 

specific to particular cell types and conditions (235).  Given the promiscuous 

nature of miRNA targeting, the unique miRNA expression patterns and the 

dynamic range of translational regulation, it has also been proposed that miRNAs 

are critical to the diversification of animal species through the reciprocal evolution 

of MREs and mRNA UTR sequences (58, 95, 204).  Taken together, these 

results suggest that the utility of RNAi is essential for most cellular processes and 

for the evolution and diversification of higher order animal species.  The global 

and dynamic control that miRNAs exert on gene expression is illustrated by the 

fact that many cellular processes, biochemical pathways and diseases have 

been associated with characteristic miRNA expression profiles.    

 

miRNA functions and disease associations 

 

Since the characterization of miRNA biogenesis and targeting, miRNA-

mediated regulation of gene expression has been linked to a continually 

expanding list of cellular pathways, processes and diseases.  The first defined 

roles of miRNAs were related to developmental timing in C. elegans (232, 251, 

273, 307).  These studies showed that the heterochronic miRNAs lin-14 and let-7 

regulated the timed expression of proteins required for proper progression 

through the sequential larval stages of development.  Similar studies in C. 

elegans later identified the novel miRNAs lsy-6 and miR-273, which were 
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required for asymmetric development of chemosensory neurons (55, 152).  

Given the relatively low abundance of these miRNAs, these findings ushered in 

the idea that the precise coordinated timing of miRNA expression was critical to 

temper the expression of their target genes.  This idea was supported by similar 

studies in mice that identified embryonic stem cell-specific miRNAs that were 

thought to be involved in maintenance of pluipotency and mammalian 

development (135).  Collectively, these works supported the idea that miRNA 

expression profiles were cell/tissue specific, and that their function was required 

to regulate many different biological processes.   

The experimental validation of novel miRNA targets allowed for the 

refinement of miRNA targeting determinants beyond seed complementarity.  

These improved prediction protocols allowed for large-scale miRNA target 

analyses, which began to illustrate the extensive control that miRNAs potentially 

exerted on gene expression (92, 166, 193, 267, 315).  These studies led to the 

discovery and characterization of many novel miRNA genes and miRNA targets.  

Subsequent correlative reviews revealed that miRNA-mediated regulation of 

gene expression was an essential cellular mechanism required for the function of 

many different pathways and processes including cellular differentiation, 

development, cell cycle, DNA damage, apoptosis and immunity (61, 136, 199, 

285, 317, 337).  Similarly, deregulated miRNA expression was linked to 

phenotypic determinants of diseases such as cancer, heart disease, metabolic 

disorders and other acquired or genetic diseases (94, 98, 144, 197, 208, 209, 
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337).  The advent of microarray technology and high throughput sequencing 

(HTS) allowed groups to simultaneously analyze the expression profiles of 

miRNAs and mRNA transcripts in different tissues and cell types (11, 178, 312).  

These studies reinforced the idea that miRNA expression profiles were cell 

specific and that the kinetic nature of these profiles were critical for differentiating 

particular environments and cellular events.  These techniques were also utilized 

to correlate particular diseases with unique patterns of miRNA expression (1, 21, 

163, 208, 265).  These expression-profiling studies illustrated that particular 

diseases or infections could be identified through specific miRNA expression 

signatures.  They also showed that analyzing miRNA expression was 

instrumental in identifying genes and pathways that were essential for regulating 

the progression of particular diseases or infections. 
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C. Viruses and RNAi 

 

RNAi-mediated anti-viral defense in mammals 

 

During the initial characterization of quelling and co-suppresion in fungus 

and plants, it was demonstrated that actively transcribed plasmid coding 

sequences from transiently transduced vectors could be used as a template for 

mediating PTGS (65, 253).  It was proposed that this could potentially be part of 

an antiviral response given that both viral and non-viral sequences could 

effectively inhibit viral replication if the complementary sequences were present 

in the genome of the infecting pathogen (24, 91).  These theories were supported 

by works that illustrated both the disseminating protective capacity of PTGS and 

the potential for viruses to encode proteins that antagonize the accumulation of 

aberrant small RNAs required for mediating protective PTGS (156, 269).  

Collectively, this illustrated that the small RNAs produced during the antiviral 

RNAi response were not dependent on a particular sequence.  It also suggested 

an evolutionary selection of this protective mechanism given the fact that viruses 

had evolved a defense against it.   

The RNAi-mediated antiviral response is one of the main protective 

defense mechanisms of plants and invertebrates (reviewed in 80).  Initially, it was 

speculated that this protective defense mechanism was universal and that it 

existed in many other species.  In higher vertebrates, however, the evolution of 
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the protein-based immune system could have replaced RNAi-mediated anti-viral 

protection.  Although mammalian host miRNA expression signatures have been 

correlated with attenuated replication of various viruses, the effect has not been 

definitively shown to be a result of the host miRNAs to directly targeting viral 

nucleic acid (183, 252, 255, 266, 368).  These findings have contributed to the 

assumption that there is a very low probability that the mammalian genome 

codes for virus-specific miRNAs, which are intrinsic to the host anti-viral 

response.  There is some evidence that certain viral infections in mammals elicit 

the production of siRNAs or miRNAs from viral RNA, but this is thought to be due 

to RNA secondary structure that is recognized and processed by host RNAi 

machinery. (10, 28, 167, 289).  The capacity of these small RNAs to inhibit viral 

replication through targeting viral RNA has also not been substantiated, which 

suggests that they do not represent an RNAi-mediated anti-viral response.  

Vertebrates also do not retain a functional RdRP, which is required to amplify the 

virus-specific siRNAs generated in response to infections in invertebrates and 

plants.  Lastly, if RNAi were a critical component of the mammalian anti-viral 

protective response, then one might anticipate that mammalian viruses harbor 

some mechanisms to counteract this host defense.  A few viral proteins have 

been described as having RNAi suppression activity, but, these studies were 

often carried out in physiologically irrelevant environments and the specificity of 

the RNAi suppressive effects have not been defined (8, 28, 126, 151, 350, 358, 

374).  A KSHV gene stabilizes a viral mRNA transcript by antagonizing the 
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functional targeting of two host miRNAs, but this effect is not part of a general 

RNAi suppressive response. (154).  A non-coding RNA expressed by West Nile 

virus (WNV) can effectively suppress RNAi in insects and mammals.  However, 

this is not surprising given that arthropod viruses characteristically encode 

suppressors of RNA silencing (293).  

The necessity of RNAi suppression for viral replication has not been 

demonstrated and the RNAi pathway itself is typically still functional during viral 

infections (10, 104, 167, 237, 289).  Despite the fact that some viral proteins can 

attenuate miRNA production and the fact that small RNAs have been shown to 

be processed from viral nucleic acid, the collective interpretation of these studies 

would indicate that the mammalian the RNAi pathway does not mediate a viral-

sequence-specific anti-viral protective response.  This, however, should not 

discredit the fact that the mammalian RNAi pathway has been shown to be 

required for various aspects of viral replication.  The contribution of the 

mammalian RNAi pathway to viral replication is evidenced by the 

expression/function of virally encoded miRNAs and by infection-dependent 

changes in host miRNA expression that are required for regulating various 

aspects of infection.  
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Viral miRNAs 

 

 The characterization of miRNA coding loci and requirements for 

biochemical processing catalyzed efforts to identify viral miRNAs.  To date, a 

number of viruses have been shown to code for miRNAs (reviewed in 261).  

These are typically dsDNA viruses belonging to the herpesviridae family, but 

other viruses including adenovirus (AdV), baculovirus, human immunodeficiency 

virus (HIV), polyomaviruses and picornaviruses have also been shown to harbor 

functional miRNAs (25, 29, 33, 85, 116, 157, 231, 258, 259, 289, 305, 321). RNA 

Pol II mediates the transcription of viral miRNAs, but RNA Pol III-dependent 

transcription has also been observed in specific contexts (10, 33).  In these 

incidences, tRNA-like non-coding RNAs are transcribed from the viral genome by 

RNA Pol-III and can bypass nuclear processing by the Drosha complex.  Given 

that these viruses do not possess the factors required for processing and 

targeting miRNAs, they utilize host machinery to in order to direct miRNA-

mediated regulation of gene expression.  Viral miRNAs have been shown to 

regulate the expression of both host and viral genes during infection, and they 

contribute to various aspects of viral infection.   

Work with herpes simplex virus suggested that viral miRNAs contribute to 

the maintenance of latency by tempering the expression of viral transactivators 

(130, 174, 325, 335, 336).  In turn, this inhibits the reactivation of viral gene 

expression and prevents immunological recognition of latently infected cells.  
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This idea was proposed to apply to other herpesviruses as well, given miRNA 

complementarity to viral immediate early genes (239).  Work with HCMV has 

shown the capacity of viral miRNAs to regulate the expression of viral genes 

during productive infection (117, 328).  Using transient reporter assays, miR-

UL112-1 was shown to regulate the expression of multiple viral genes through 

MREs located in 3’-UTR sequences (117).  Similarly, the US7 3’-UTR harbors 

MREs for miR-US5-1 and miR-US5-2 with varying degrees of complementarity, 

and each was shown to be capable of regulating its expression (328).  This is 

proposed to have applications relevant to both viral replication and immune 

evasion since these viral miRNAs control the expression of viral transactivators 

and immunodominant antigens.  A similar mechanism was identified with simian 

virus 40 (SV40) wherein a viral miRNA tempers the expression of the large T 

antigen in order to escape immune recognition.  Bioinformatics approaches 

suggest that HCMV miRNAs are actually required to compensate for down-

regulated host miRNAs by targeting the same genes or pathways (342).  Large-

scale RISC-IP analysis of EBV and KSHV miRNAs suggests that they also 

preferentially target host genes that are involved in a variety of processes 

relevant to all stages of infection (83).  These hypotheses are supported by the 

finding that both EBV and KSHV harbor human miRNA orthologues (114, 191).   

Viral miRNAs have also been shown to be capable of regulating the 

expression of host genes during infection.  Given the growing number of 

characterized viral miRNAs, this is speculated to be a universal trait with 
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commonalities in targeted transcripts and pathways (46).  HCMV miRNAs have 

been shown to aid in immune evasion by inhibiting IL36 production and MICB 

expression (138, 242).  Interestingly, EBV and KSHV miRNAs were also shown 

to repress MICB expression through similar mechanisms in order to prevent NK 

cell recognition (83, 243).  Although most HCMV miRNAs have been shown to be 

non-essential for replication in culture, an MCMV knock out model suggests that 

the in vivo functionality of viral miRNAs needs to be formally addressed (78, 82).  

This notion is also supported by the finding that hcmv-miR-148D, a miRNA only 

found in clinical strains of HCMV, is also required for tempering the host immune 

response to infection by down-regulating levels of the chemokine RANTES (165).  

Similarly, an EBV miRNA has also been shown to inhibit the expression of a T-

cell attracting chemokine in order to presumably escape immunological 

clearance (359).  Expression profiling experiments using WT and miRNA-deleted 

viruses further suggest that the EBV miRNAs contribute to the transforming 

properties of the virus (71, 96).  Similar studies suggest that this may be 

mediated by de-regulating the expression of pro-apoptotic genes and oncogenes 

in concert with host miRNAs (217, 277).  An in-vivo study using a miRNA-

deficient virus, however, suggests that these miRNAs play a more integral role in 

the establishment of acute infection rather than in oncogenesis (345).  The 

documented functions of KSHV miRNAs have also been attributed to the 

establishment and maintenance of latency by regulating cell proliferation and 

survival (190, 191, 206).   
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In each case, viral miRNAs are not essential to viral replication in-vitro, but 

their necessity in-vivo has not been formally tested.  These studies have, 

however, illustrated that virally encoded miRNAs are capable of regulating both 

host and viral gene expression.  The requirement of miRNAs for viral replication 

is also illustrated by the fact that viral infections can impact the expression of 

host miRNAs that are required for efficient replication.  Typically, infection-

associated deregulated host miRNA expression leads to a concomitant change in 

target transcript translation, which is advantageous to viral replication. 

 

Role of host miRNAs during viral infections 

 

 Host miRNAs are capable of simultaneously regulating the expression of 

many different genes, and their functions have been associated with essentially 

every cellular process and pathway studied.  Given the parasitic nature of viruses, 

it was intuitive to predict that they were capable of manipulating the expression 

host miRNAs to regulate cellular processes required for efficient replication.  

Gene expression profiling studies defined the impact that viral infections had on 

host miRNA expression and subsequent studies validated host miRNA-mediated 

regulation of genes involved in various aspects of viral replication and 

pathogenesis.  The roles that host miRNAs play during viral infections are still 

being defined, but their utility during infection is well appreciated.  
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 Many viruses have been shown to impact the expression of host miRNAs 

during infection in an effort to regulate the accumulation of target proteins whose 

function are relevant to viral persistence.  The latent membrane protein 1 (LMP1) 

of EBV is a viral oncogene responsible for activating cellular signaling cascades 

similar to the TNF-α receptor or CD40 (99).  It has been shown to be capable of 

modulating the expression of multiple host miRNAs, and this effect contributes to 

immortalization and the establishment of latent infection (112, 195, 207, 365).  

EBV latency progresses through distinct stages marked by the transition of naive 

B-cells into a memory state.  Unique miRNA expression profiles at the respective 

stages suggests that they may play a role in the establishment and maintenance 

of latent infection (44).  Similarly, unique miRNA expression profiles in EBV-

associated B-cell lymphomas suggest that deregulated miRNA expression 

contributes to transformation (145).  Expression profiling experiments with HCMV 

during productive and latent infections suggest that host miRNAs play a large 

role in controlling the respective stages of replication (263, 316, 347).  Although 

the mechanisms governing deregulated host miRNA expression during HCMV 

infection are still being deciphered, HCMV, MCMV and herpesvirus saimiri (HVS) 

have each been shown to post-transcriptionally downregulate the expression of 

host miRNAs through optimized MREs present in a viral ncRNA that act similar to 

“miRNA sponges” (41, 52, 186, 215).  Interestingly, each virus employs this post-

transcriptional mechanisms in order to downregulate a common miRNA: miR27.  

Other DNA viruses including herpes simplex virus, human papillomavirus and 
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hepatits B virus have also been shown to influence the accumulation of host 

proteins by deregulating host miRNA expression during infection, and these 

infection dependent changes in host miRNA expression are required for efficient 

viral replication (121, 352, 369-371).   

The utility of host miRNAs in regulating viral infection is not limited to DNA 

viruses.  Some of the pioneering work in this field was performed using hepatitis 

C virus (HCV) infection models.  The liver-specific miR122 is capable of binding 

to the HCV genome, and this interaction is critical for stabilizing viral transcripts 

and for enhancing viral protein translation (70, 153, 300).  This particular 

scenario is unique in the sense that direct binding of a host miRNA to viral 

genomic material enhances viral replication.  Reconstituting miR122 expression 

in non-hepatic cells can even render them permissive to HCV replication, 

suggesting that this miRNA is a critical factor required for efficient replication (54, 

108).  Host miRNAs have also shown to contribute to HIV infection.  Although 

initial studies with HIV focused on identifying host specific anti-viral miRNAs that 

inhibited replication by directly targeting the viral genome, it was later 

appreciated that HIV-1 also down-regulated the expression of the miR17/92 

cluster to allow for accumulation of a viral co-factor PCAF (330).  Other RNA 

viruses including WNV and enterovirus EV71 have also been shown to exert 

control over host miRNA expression and these events are required for efficient 

viral replication (132, 310).  Although the majority of these studies focused on 

characterizing the involvement of host miRNAs with the replicative capacity of 
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human viruses, similar phenomena have also been described for viruses whose 

natural hosts include horses, birds and pigs (124, 318, 319).   

 Collectively, these works demonstrate that host mRNAs exert an important 

contribution to viral infections.  They are essential for controlling the expression 

of cellular genes required for viral replication and they can potentially limit the 

spread of infection by controlling the expression of host immunomodulatory 

factors.  Numerous viruses with unique tropisms, pathologies and virological 

characteristics have been shown to reprogram host miRNA expression, and they 

each employ unique strategies in order to accomplish this goal.  These effects 

can contribute to viral replication, immune escape and pathology.  This suggests 

that the host RNAi pathway represents an essential component of the cellular 

gene expression machinery that viruses have adapted to subvert in order to 

persist within a host.   
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D. Summary 

HCMV is one of many viruses that have been shown to reprogram the 

expression of host miRNAs during infection.  It utilizes the host RNAi pathway in 

order to implement the function of its own miRNAs and to influence the 

expression of genes that are involved in viral replication.  To date, the 

mechanism by which HCMV manipulates the expression of host miRNAs is 

unclear, and the extent of our understanding of host miRNA-mediated regulation 

of gene expression during infection is incomplete.  The fact that miRNAs are 

capable of simultaneously regulating the expression of many genes suggests 

that deregulated miRNA expression during HCMV infection could have dramatic 

effects on cellular gene expression.  To this end, we sought to define the 

mechanisms by which HCMV reprograms host miRNA expression and to analyze 

the networks of genes potentially regulated by host miRNAs during infection.   

Using a panel of host miRNAs whose infection-dependent change in 

expression was highly significant, we were able to enrich for functional 

transcription factor binding sites that regulate the expression of two conserved 

host miRNA clusters.  The infection-dependent change in expression of these 

miRNAs was required for efficient replication, and they exhibit converse changes 

in expression patterns during infection.  This further suggests that HCMV is 

manipulating the expression of host miRNAs in order to positively influence viral 

replication.  Using the panel of infection-associated host miRNAs, we also 
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generated a global miRNA target network based on the enrichment of MREs 

using a novel target predication algorithm.  This protocol illustrates the extent of 

regulation that host miRNAs potentially exert during HCMV infection.  This 

protocol could easily be adapted in order to study the target networks of miRNAs 

in other diseases, infections or cellular processes.  Given that miRNA-mediated 

repression of protein accumulation is relatively weak, the identification 

cooperative miRNA networks that co-regulate shared targets will help to 

accurately define the roles that miRNAs play in any scenario.         
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Chapter II: 

 

Materials and Methods 
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Cell culture, viruses and infections:  

 

Human embryonic lung fibroblasts (HEL, Coriell: GM01604) and the 

U373MG glioblastoma-derived cell lines (a gift from Eng-Shang Huang at the 

University of North Carolina School of Medicine) were maintained in Dulbecco’s 

Modified Eagle Medium (DMEM, Invitrogen) supplemented with either ten or five 

percent fetal bovine serum (FBS, Invitrogen) respectively and 

penicillin/streptomycin antibiotics (Invitrogen).  Infections were carried out by 

washing cell monolayers once with phosphate buffered saline (PBS, Invitrogen) 

and incubating the appropriate amount of human cytomegalovirus strain AD-169 

(ATCC: VR-538) diluted in DMEM supplemented with two percent FBS and 

penicillin/streptomycin antibiotics for a 3 hour absorption period.  After aspirating 

the infection media and washing the cell monolayers with PBS, regular growth 

media was added and cell pellets and supernatants were harvested as 

necessary for the respective experiments. 

 

Microarray  

 

HELs were either mock-infected or infected with AD-169 at MOI=5 for a 

time-course of five days.  Cells were harvested at 24 hour intervals, and whole-

cell RNA was purified using Trizol© (Invitrogen).  5 ug of RNA was sent to LC 

Sciences for microarray analysis.  RNA samples were hybridized to a microarray 
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chip harboring probes against all known viral and cellular miRNAs based on the 

Sanger miRBase release version 13.0 (MRA-1041).  The previous 48 hpi 

biological replicate array experiments were performed as described, but the 

microarrays harbored probes based on earlier releases of the Sanger database 

(miRBase release 8.2 and 9.0).  Prior to examining the infection-induced 

changes in mean fluorescence intensity (MFI) of the individual miRNA probes, 

LC Sciences performed a fluorescence background subtraction through the use 

of internal controls and they normalized fluorescence signals based on variance 

between replicate probe readings.  An analysis of variance (ANOVA) was 

performed on the corrected MFI readings to determine if a miRNA exhibited a 

significant mean fold-change in expression over the entire time-course of 

infection.  A Benjamini and Hochberg post-test correction was performed to 

minimize the inclusion of false positive changes due to multiple comparisons.  

Data curated from biological replicate microarray experiments was compiled to 

generate a panel of miRNAs whose infection-associated change in expression 

was highly significant.  These miRNAs each exhibited statistically significant 

change in expression at 48 hpi (t-test; p<0.01) that was reproducible among the 

individual experiments.  They also had negligible variance in their fold-change in 

expression among the biological replicates (ANOVA, p>0.05). 
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Motif Enrichment 

 

Data from triplicate independent biological replicate microarray 

experiments yielded both a panel of detectable miRNAs whose expression was 

significantly impacted by HCMV infection at 48 hpi, and a panel of miRNAs 

whose expression is undetectable in mock-infected and infected cells.  The 

genomic locations of the respective miRNAs and their coding genes (if a miRNA 

was intragenic) were used to obtain 500bp of upstream promoter region 

sequence using the Ensembl BioMart (103).  Enrichment of DNA motifs was 

performed using the multiple expectation maximization for motif elicitation suite 

version 4.7 (MEME) (17).  The MEME algorithm was used to enrich for DNA 

motifs that are present only in the promoter sequences of detectable miRNAs 

with infection-associated changes in expression.  This was done by 

discriminatively enriching for sequences against a background motif frequency 

that was generated using the promoter regions of undetectable miRNAs.  The 

enrichment protocol outputs weighted probability motif matrices that indicate the 

relative frequency of each base at the respective position within the sequence.  

We used the motif comparison tool (TOMTOM) to align the respective motifs to 

known transcription factor binding site matrices found in the Transfac® database 

(125, 219).  
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qRT-PCR 

 

Whole-cell RNA was purified from mock-infected and MOI=1 time-course 

infected HELs (preceded by LNA transfection where applicable) or U373MG cells 

using Trizol©.  For miRNA expression profiling, 5 -10 ng of RNA was reverse 

transcribed using random hexamer primers with the Taqman© RT kit, and 2 ul of 

cDNA was used for qPCR analysis using the Taqman© miRNA gene expression 

assays (Life Technologies).  For gene expression profiling, 500ng of RNA was 

reverse transcribed using random primers, and 2 ul of cDNA was used for qPCR 

analysis.  Reactions were run on the StepOnePlus real-time PCR machine (Life 

Technologies).  Fold change in gene expression was calculated relative to 

GAPDH using the ΔΔCt method (203).  Amplification threshold readings for each 

miRNA were first calibrated to GAPDH (ΔCt).  The corrected threshold readings 

for infected cells were then normalized to the corresponding values in the 

respective mock-infected time-points (ΔΔCt).  For analyzing miRNA expression 

after LNA transfection and subsequent mock-treatment or MOI=1 infection, 

amplification threshold readings were calibrated first to GAPDH, and relative 

miRNA levels were quantitated by normalizing to the respective scramble LNA 

transfected time-point. Similarly, fold change in expression was calculated using 

the ΔΔCt method.  Standard curves for calculating miRNA copy number were 

generated using synthetic RNA oligonucleotides. 
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Cloning and Reporter Assays 

 

The miR132/212 promoter region was amplified from HEL DNA via PCR 

using the primer set F_1508 & R_1508.  The amplicon was cloned into pGL3-

basic vector (Promega) by digestion with Mlu I and Bgl II and subsequent ligation 

with T4 DNA ligase (New England Biolabs; NEB).  Promoter truncations were 

engineered with the same protocol using forward primer F_1508 and the 

respective reverse primers listed.  Transcription factor binding site (TFBS) 

mutations were generated by PCR from T_269 template DNA using the primers 

listed.  CRE_1/2 and SP1_1/2 double mutations required a separate set of 

primers due to the fact that the previous mutation overlapped the primer-binding 

site.  Using Mlu I and Xho I digestion, the miR143/145 promoter was cloned 

similar to the miR132/212 promoter using the primer set F_1899 and R_1899.  

The subsequent truncation constructs were engineered using R_1899 and the 

respective forward primers listed.  Mutations of the two Pax4 sites and the one 

AP2 site in the miR143/145 promoter were engineered similar to the miR132/212 

promoter.  The Pax4 binding motif consists of a paired domain (PD) and a 

homeo-domain (HD) (311).  Mutation of each Pax4 TFBS required that we 

mutate each domain individually and this required the use of two separate primer 

pairs for each Pax4 TFBS (Pax4_1_HD & PD and Pax4_2_HD & PD).  Reporter 

assay transfections were performed using Lipofectamine 2000 (Invitrogen).  

HELs were co-transfected with 250pmol of the respective truncation- or TFBS-
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mutant-Firefly luciferase constructs and 250pmol of the HSV-TK-Renilla 

luciferase calibrator plasmid (Promega) in 24-well tissue culture plates.  24 hours 

post-transfection, cells were either mock-infected or infected at MOI=1 with 

HCMV.  Cells were harvested at the respective time-points and lysed in 1x 

passive lysis buffer (Promega).  Luciferase luminescence was activated using the 

Dual-Glo® luciferase assay system (Promega) and signals were read using a 

Synergy H4 microplate reader (Biotek).  To calculate fold change in reporter 

activity, Firefly luciferase activity in each sample (miR-promoter) was first 

normalized to Renilla luciferase activity (TK-promoter).  These corrected signals 

were then normalized to the normalized signal in un-transfected cells.  Fold 

change in promoter activity in infected cells was calculated relative to its 

respective mock-infected control. 
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miR132/212 Truncation Primers 

Primer Sequence 

F_1508 GCATACGCGTAGTAAGCAGTCTAGAGCCAAG 

R_1508 GCATAGATCTCACCTTCCCCAACTTCTCTG 

R_988 GCATAGATCTCCGCCTCGCCACTATAAAT   

R_506 GCATAGATCTAAAGTGAGGCGAAGGTGCT   

R_269 GCATAGATCTAGCGGAGCTGTCCTCTCAG   

R_97 GCATAGATCTGGAGGCGGAGCAGCAGAG 

 

miR132/212 TFBS Mutant Primers 

Primer Sequence 

F_CRE_1 CCAGGCACGCGGCCCCTAAAATCAGAGGGCCGTGACG 

R_CRE_1 CGTCACGGCCCTCTGATTTTAGGGGCCGCGTGCCTGG 

F_CRE_2 CCCTGACGTCAGAGGGCCGTAAAATCAAAGATGTCCCAGAGGGG 

R_CRE_2 CCCCTCTGGGACATCTTTGATTTTACGGCCCTCTGACGTCAGGG 

F_SP1_1 CTTCCGGCGGGGGCGTGGGTTTTTGGCGGGACCTGGCGAGGCCC 

R_SP1_1 GGGCCTCGCCAGGTCCCGCCAAAAACCCACGCCCCCGCCGGAAG 

F_SP1_2 GGGGCGGGACCTGGCGAGGCCTTTTTCCCCCGGTCCTGAGAGGAC 

R_SP1_2 GTCCTCTCAGGACCGGGGGAAAAAGGCCTCGCCAGGTCCCGCCCC 

F_CRE_1/2 CCAGGCACGCGGCCCCTAAAATCAGAGGGCCGTAAAA 

R_CRE_1/2 TTTTACGGCCCTCTGATTTTAGGGGCCGCGTGCCTGG 

F_SP1_1/2 TTGGCGGGACCTGGCGAGGCCTTTTTCCCCCGGTCCTGAGAGGAC 

R_SP1_1/2 GTCCTCTCAGGACCGGGGGAAAAAGGCCTCGCCAGGTCCCGCCAA 
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miR143/145 Truncation Primers 

Primer Sequence 

F_1899 GCATACGCGTCCACAGTGACCACTAAGCAATG 

R_1899 GCATCTCGAGCACTTACCACTTCCAGGCTGAT 

F_1497 GCATACGCGTCAGGTGAGCCATGTAGTCCA 

F_999 GCATACGCGTAGCACAGGAGGAAGAGATGG 

F_497 GCATACGCGTCCCAGGACTAGGGGTTGTCT 

F_268 GCATACGCGTAGGCCACAGACAGGAAACAC 

 

miR143/145 TFBS Mutant Primers 

Primer Sequence 

F_Pax4_1PD GCCAGGCATGGTGGTGAGAGAGTGTAGTCCCAGCTAC 

R_Pax4_1PD GTAGCTGGGACTACACTCTCTCACCACCATGCCTGGC 

F_Pax4_1HD GTCTCTACTAAAAATACAGGGGGGAGCCAGGCATGGTGGTGAGAGAG 

R_Pax4_1HD CTCTCTCACCACCATGCCTGGCTCCCCCCTGTATTTTTAGTAGAGAC 

F_Pax4_2PD GTCTGCCCAGGACTAGAGAGAGTCTAAGGATAAGGAG 

R_Pax4_2PD CTCCTTATCCTTAGACTCTCTCGTAGTCCTGGGCAGAC 

F_Pax4_2HD GAGAGTCTAAGGATAAGGAGCTGGGGGGTTGGATGGTGAAATAACCTAAA 

R_Pax4_2HD TTTAGGTTATTTCACCATCCAACCCCCCAGCTCCTTATCCTTAGACTCTC 

F_AP2 GCCAGGTTGGAGTCCCGAAAAAAACCACCAGAGCGGAGCAG 

R_AP2 CTGCTCCGCTCTGGTGGTTTTTTTCGGGACTCCAACCTGGC 
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 Reporter assays for determining the influence of MREs present in the 

KRas 3’-UTR were performed similar to what was described for the promoter 

truncation/mutations described above.  Cells were co-transfected with 5 ug 

calibrator plasmid without the KRas 3’-UTR and with 5 ug of an experimental 

plasmid that harbored the KRas 3’-UTR.  24 hours after transfection, the cells 

were infected with HCMV AD169.  Cells were harvested 48 hpi to assay for 

luciferase expression.  The calibrator plasmid was a pGL4.10-derived vector 

(Promega) with the HCMV MIEP driving the expression of Firefly luciferase 

(pGL4.11).  The HCMV MIEP was cloned by amplifying the promoter region from 

pGL4.75 (Promega) using the MIEP primers in the table below, and sub-cloning it 

into pGL4.1 using EcoRV and BglII sites.  The Renilla luciferase construct 

containing the KRas 3’-UTR was generated by Chin et al 2008 and was obtained 

from Addgene (60).  This 3’-UTR contains a single point mutation that was 

converted to the WT sequencing using the LCS6 primer set.  The subsequent 

MRE mutants were engineered using the respective primer sets listed in the table 

below.     
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pGL4.11 Cloning and KRas 3’-UTR MRE Mutants 

Primer Sequence 

MIEP_F GACGATATCTCAATATTGCGGATTAGCCATAT 

MIEP_R GACTCTAGAGATCTGACGGTCACTAAACTAG 

LCS6_F CTGACCTCAAGTGATTCACCCACCTTGGCCT 

LCS6_R AGGCCAAGGTGGGTGAATCACTTGAGGTCAG 

m132_F TTCCTGCTCCATGCAGACTTTTAGCTTTTACCTTAAA 

m132_R TTTAAGGTAAAAGCTAAAAGTCTGCATGGAGCAGGAA 

m143.1_F TCATGTTAAAAGAAGTCATTTCAAACTCTTAGTTTTT 

m143.1_R AAAAACTAAGAGTTTGAAATGACTTCTTTTAACATGA 

m143.2_F ACAGTTTGCACAAGTTCATTTCATTTGTATTCCATTG 

m143.2_R CAATGGAATACAAATGAAATGAACTTGTGCAAACTGT 

 

Transfections and western blots:  LNA transfections were carried out by 

electroporation.  Cells were resuspended in Gene Pulser electroporation buffer 

(BioRad) and to ensure a consistent amount of nucleic acid was always 

transfected, the respective amounts of locked nucleic acid (LNA; Exiqon) were 

added for the particular conditions: [Scramble = 500pmol of scr. LNA], [miR132 = 

250pmol miR132 LNA + 250pmol scr. LNA], [miR212 = 250pmol miR-212 LNA + 

250pmol scr. LNA], [miR132+miR212 = 250pmol miR-132 LNA + 250pmol 

miR212 LNA].  Cells were electroporated in 0.1 cm cuvettes (BioRad) using a 

Gene Pulser II at 0.12kV, 300uF (BioRad).  miRNA mimic transfections were 

performed using Lipofectamine 2000 (Invitrogen).  Similar to the LNA 

transfections, equal amounts of Scramble and miRNA-specific mimics were 

added to ensure that a consistent amount of material was transfected in each 
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condition: [Scramble = 200pmol of scr. mimic], [miR143 = 100pmol miR143 

mimic + 100pmol scr. mimic], [miR145 = 100pmol miR145 mimic + 100pmol scr. 

mimic], [miR143+miR145 = 100pmol miR143 mimic + 100pmol miR145 mimic].  

Transfected cells were infected 24 hours later at an MOI=1 when applicable.  Cell 

monolayers and supernatants were collected at 24-hour intervals for subsequent 

analysis by western blot and plaque assay.  Whole-cell lysates were prepared by 

re-suspending cell pellets in radio-immuno-precipitation (RIPA) buffer (PBS, 

0.1%NP-40, 1% sodium dodecyl sulfate, 0.5% sodium deoxycholate, sodium 

vanadate, phenylmethylsulfonyl fluoride, and aprotinin) and incubating on ice for 

1 hour with occasional vortexing.  Lysates were cleared by centrifugation and 

100 ug of protein were resolved by SDS-PAGE.  Proteins were transferred to a 

polyvinylidene fluoride (PVDF) membrane (Millipore) and membranes were 

blocked in tris-buffered saline with 0.05% Tween-20 (TBST) and 0.2% milk prior 

to blotting for specific proteins.  Immuno-blots were carried out using antibodies 

against IE1/IE2 (Millipore), pp65 (Virusys), gB55 (UMass Medical School, Shan 

Lu), actin (Sigma) and KRas (Abcam).  Membranes were washed with TBST and 

incubated with rabbit-IgG horse raddish peroxidae (HRP) conjugated secondary 

antibody (GE life sciences) diluted in TBST.   Blots were developed by washing 

membranes in TBST prior to incubation with chemilluminescent substrate (Perkin 

Elmer), exposing blots to imaging film (Kodak) and development.  Plaque assays 

were performed by making triplicate serial dilutions of supernatants and 

subsequently infecting HEL monolayers.  After a 3-hour absorption period, 



 55 

infection media was removed and 20% carboxy-methyl cellulose (Sigma) 

prepared in growth media was added to each well.  10-14 days post infection, 

cell monolayers were washed and plaques were visualized with Giemsa stain 

(Sigma).   

 

miRNA target enrichments: Using published microarray data that analyzed the 

expression of host transcripts during productive HCMV infection, we focused our 

target prediction analysis on genes that exhibited an MFI>200 in mock and 

infected cells (131).  The 3’-UTR sequences for the respective genes were 

collected using the Ensembl BioMart (103).  To identify miRNA target sites that 

were enriched in these sequences, we adapted a protocol that was initially 

utilized to calculate the likelihood of a 7mer site being present in a 3’-UTR (95). 

We first determined the frequency of all possible 2mer and 3mer sequences 

present in each 3’-UTR.  This yielded a measurement of base frequency and size 

that would be used to calculate the probability of observing a given 6mer, 7mer 

or 8mer MRE.  After determining the observed frequency of each MRE, we used 

a Markov-based analysis to calculate the probability of observing the respective 

sites given the size and base frequency of each 3’-UTR.  We corrected those 

probabilities using a binomial analysis to determine the probability of observing a 

given miRNA target site multiple times if it was identified more than once. 
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Introduction 

  

Gene expression profiling has allowed researchers to simultaneously 

evaluate the expression of essentially every human gene in various cells, tissues 

and conditions.  These techniques have been implemented in the study of both 

acquired and inherited diseases, and they have contributed to the postulation 

that unique gene expression patterns could be used to identify particular disease 

states and to characterize mechanistic aspects of pathogenesis (15, 47, 208). 

Along these lines, unique miRNA expression profiles have been correlated with 

the manifestation of numerous diseases (94, 98, 144, 197, 208, 209, 337).  By 

elucidating novel miRNA expression patterns, one can subsequently identify 

target transcripts whose miRNA-mediated regulation of expression is relevant to 

disease causality or progression (163, 178).  Gene expression profiles have also 

proved essential in identifying co-regulated gene sets, and they ushered in new 

strategies to help characterize transcriptional mechanisms governing deregulated 

gene expression (187, 351).  By combining miRNA expression profiling with 

global promoter sequence analyses, we sought to elucidate the complex 

landscape of transcriptionally mediated changes in miRNA expression that occur 

during HCMV infection.   

  HCMV has the ability to globally reprogram host gene expression in order 

to create an optimal environment for replication (40, 373).  This infection-

associated gene expression profile illustrates the result of both the cellular 



 58 

response to infection and the viral manipulation of cellular gene expression in 

order to create a suitable environment for replication.  HCMV has specifically 

been shown to alter the expression of host genes through the combined use of 

host transcription factors and viral transcriptional activator/enhancers (180, 367).  

Host transcription factors are also used to regulate the expression of viral genes 

(278, 294).  Given the ability of HCMV to transcriptionally reprogram the 

expression of host genes that facilitate viral replication, we hypothesized that the 

virus similarly manipulates the expression of host miRNAs whose proper function 

is required for efficient viral replication.   
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Results 

 

HCMV infection impacts global host miRNA expression 

 

To determine the extent to which productive HCMV infection impacts the 

expression of host miRNAs, we measured the infection-associated changes in 

endogenous miRNA expression by utilizing a microarray platform.  Human 

embryonic lung (HEL) fibroblasts were either mock-infected or infected with 

HCMV at an MOI=5, and cells were harvested every twenty-four hours for a time-

course of five days.  Primary fibroblasts such as HELs are the model cell type in 

which to study productive HCMV replication.  They are fully permissive to 

productive infection and they are used throughout this dissertation.  Purified 

whole-cell RNA from the individual samples was then sent to LC Sciences for 

microarray analysis.  RNA from each sample was hybridized to independent 

microarrays harboring Cy5-labeled probes against all known cellular miRNAs as 

specified in miRBase 13 (875 mature miRNAs).  Mean fluorescence intensity 

(MFI) readings were quantified from the individual probes in order to ascertain 

the fold change in miRNA expression relative to the respective mock-infected 

controls.  Background subtraction and normalization for variance between 

replicate probe readings were performed prior to calculating the infection-

associated fold-change in expression.  An analysis of variance (ANOVA) was 

performed on the normalized mock-infected and infected MFI readings to 
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determine whether the mean fold-change in expression over the time-course of 

infection was statistically significant.  A Benjamini and Hochberg correction was 

also applied to minimize the inclusion of false positive changes due to multiple 

comparisons. 



 61 

Fi
gu

re
 3

.1
: H

C
M

V
 in

fe
ct

io
n 

re
pr

og
ra

m
s 

th
e 

ho
st

 m
iR

N
A

 e
xp

re
ss

io
n 

pr
of

ile
.  

(A
) E

ac
h 

po
in

t r
ep

re
se

nt
s 

a 
m

iR
N

A
 w

ho
se

 m
ea

n 
in

fe
ct

io
n-

as
so

ci
at

ed
 c

ha
ng

e 
in

 e
xp

re
ss

io
n 

ov
er

 th
e 

tim
e-

co
ur

se
 o

f i
nf

ec
tio

n 
ha

s 
be

en
 d

ee
m

ed
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t (
AN

O
V

A
, 

p<
0.

01
 w

ith
 a

 B
en

ja
m

in
i a

nd
 H

oc
hb

er
g 

co
rr

ec
tio

n)
.  

Fo
r e

ac
h 

pl
ot

, t
he

 m
ea

n 
flu

or
es

ce
nc

e 
in

te
ns

ity
 (M

FI
) o

f p
ro

be
s 

in
 m

oc
k-

in
fe

ct
ed

 c
el

ls
 is

 p
lo

tte
d 

on
 th

e 
X

-a
xi

s,
 a

nd
 fr

om
 th

e 
re

sp
ec

tiv
e 

in
fe

ct
ed

 c
el

ls
 o

n 
th

e 
Y

-a
xi

s.
  (

B
) T

hi
s 

pa
ne

l r
ep

re
se

nt
s 

M
FI

 
re

ad
in

gs
 fr

om
 c

on
se

cu
tiv

e 
m

oc
k-

in
fe

ct
ed

 ti
m

e-
po

in
ts

 a
t 2

4 
hp

i (
X-

ax
is

) a
nd

 4
8 

hp
i (

Y
-a

xi
s)

.  
Th

e 
R

2  v
al

ue
s 

ill
us

tra
te

 th
e 

co
rr

el
at

io
n 

be
tw

ee
n 

m
iR

N
A

 e
xp

re
ss

io
n 

va
lu

es
 in

 m
oc

k 
vs

. i
nf

ec
te

d 
ce

lls
.  

(C
) A

 p
an

el
 o

f s
ta

tis
tic

al
ly

 c
on

fid
en

t i
nf

ec
tio

n-
as

so
ci

at
ed

 h
os

t m
iR

N
A

s 
at

 4
8 

hp
i w

as
 c

om
pl

ie
d 

fro
m

 th
re

e 
bi

ol
og

ic
al

 re
pl

ic
at

e 
m

ic
ro

ar
ra

y 
ex

pe
rim

en
ts

 p
er

fo
rm

ed
 a

s 
de

sc
rib

ed
 

in
 (A

). 
Th

e 
m

iR
N

A
s 

lis
te

d 
ex

hi
bi

t a
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t c
ha

ng
e 

in
 e

xp
re

ss
io

n 
in

 e
ac

h 
in

di
vi

du
al

 e
xp

er
im

en
t (

t-t
es

t, 
p 

< 
0.

01
) 

an
d 

th
ey

 d
is

pl
ay

 n
o 

si
gn

ifi
ca

nt
 v

ar
ia

bi
lit

y 
in

 fo
ld

-c
ha

ng
e 

am
on

g 
th

e 
re

pl
ic

at
es

 (A
N

O
V

A,
 p

 >
 0

.0
5)

.  



 62 

From this experiment, we observed that HCMV infection impacted the expression 

of over 40% of the detectable cellular miRNAs to varying degrees and with no 

unidirectional trend (364 miRNAs; Figure 3.1A).   

As the infection time-course progressed, the impact on host miRNA 

expression became more readily apparent (Figure 3.1; R2 values illustrated in the 

respective plots).  This effect appeared to be infection-dependent as comparison 

of consecutive mock-infected time-points showed little change in host miRNA 

expression (Figure 3.1B).  From three independent biological replicate microarray 

experiments, we assembled a cohort of host miRNAs whose infection-associated 

change in expression at 48 hpi was highly significant (Figure 3.1C).  Each of 

these miRNAs exhibited a statistically significant change in expression in each 

individual experiment (t-test; p<0.01) and had negligible variance in fold change 

among the replicate experiments (ANOVA; p>0.05).  This particular time-point 

was chosen since it embodied an ideal window in which to analyze the impact 

that the various aspects of viral replication could potentially have on host miRNA 

expression.  It represents a time at which nearly all viral genes are being 

expressed and DNA replication is nearing peak levels.  It also represents a time 

well after virion attachment and entry, and a time well before the effects of viral 

assembly and egress begin to compromise the integrity of the cell.  It is important 

to note that this profile represents an incomplete list of host miRNAs whose 

expression is impacted by HCMV infection.  The earliest of the replicate 

microarray experiments utilized probes that were based on the Sanger miRBase 



 63 

release 8, and the current miRBase release 20 lists roughly triple the number of 

human miRNAs (2578 mature miRNAs).   

These observations extend the breadth of expression profiling data from 

previously published work (347).  We have quantified the infection-associated 

change in expression of many more host miRNAs over a more extensive time-

course of infection and our technically optimized arrays exhibit better 

performance and reliability.  Our findings also complement other studies through 

the use of a different cell line and a different strain of HCMV while still exhibiting 

concordance among the data (316, 347).  The impact that infection had on 

miRNA expression levels is reminiscent of observations made with respect to 

changes in cellular mRNA expression during HCMV infection (373).  Similar to 

host miRNAs, the expression of host mRNA transcripts is also extensively 

deregulated during infection.  This suggests that the alterations in miRNA 

expression could either represent events influenced by the virus to create an 

ideal environment for replication, or the host anti-viral responses aimed at limiting 

viral replication.  While the impact that HCMV infection has on host miRNA 

expression is profound, it is still unclear how infection leads to these global 

changes.  Therefore, we sought to analyze the mechanism by which HCMV 

could be impacting miRNA expression. 
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Discriminative DNA motif enrichments identify functional transcription factor 

binding sites present in the promoters of infection-associated host miRNAs  

 

HCMV specifically manipulates the expression of host transcription factors 

in order to regulate the expression of both host and viral genes during infection

(48, 181, 294, 366, 367).  These host TFBS regulate the expression of viral 

genes and contribute to the generation of essential host factors required for 

replication.  Therefore, we hypothesized that the virus was also manipulating the 

expression of host miRNAs through the use of transcriptional elements present in 

their enhancer/promoter regions (hereafter referred to as promoter regions).  To 

identify transcription factor binding sites (TFBS) that could potentially regulate 

miRNA expression during infection, we began by enriching for DNA motifs 

present in the genomic sequences upstream of our panel of infection-associated 

host miRNAs and their respective coding genes (Figure 3.2).  Using the Ensembl 

BioMart, we gathered 500bp of genomic sequence upstream from the pre-miRNA 

hairpin loci and from their respective coding gene’s transcriptional start site if the 

miRNA was intragenic (102).  Intragenic miRNAs are generally believed to be co-

transcribed with their respective coding genes.  However, we did not want to 

ignore the fact that transcription of an intragenic miRNA could still be mediated 

by independent transcriptional elements present upstream of the pre-miRNA 

hairpin.  Putative promoter region sequences were also gathered from a 

“background dataset” of miRNAs whose expression was undetectable in both 
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mock-infected and infected cells in order to establish a background frequency of 

non-specific DNA motifs.  Promoter region enrichment analyses were performed 

using the MEME suite (17).   

 

Figure 3.2: DNA motif enrichment from infection-associated host miRNA promoter regions.  
(Step 1) We began by defining potential promoter regions based on the genomic location of 
the respective miRNAs.  If a miRNA coding locus was intergenic, we collected 500 bp of 
sequence upstream from the pre-miRNA hairpin.  If the miRNA locus was intragenic, we 
collected 500 bp of sequence upstream from the pre-miRNA hairpin, and 500 bp of 
sequence upstream from the transcriptional start site of the respective coding gene.  This 
generated three sequence datasets: upregulated miRNA promoters, downregulated miRNA 
promoters and undetectable miRNA promoters.  (Step 2) We then discriminatively enriched 
for DNA motifs present in up- and down-regulated miRNA promoters relative to 
undetectable miRNA promoters.  This protocol yielded a panel of position-specific, weighted 
probability motif-matrices.  Using the TOMTOM algorithm available in the MEME suite, they 
were then aligned to known transcription factor binding site motif-matrices present in the 
Transfac® database.      
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The MEME algorithm uses expectation maximization to enrich for 

weighted motif matrices from a panel of input DNA sequences.  We used our 

background dataset in order to discriminatively enrich for DNA motifs using 

position-specific prior probability matrices (18).  This allowed us to identify DNA 

motifs that were specifically enriched in the promoter regions of infection-

associated host miRNAs.  DNA motifs were enriched separately from the 

promoter regions of miRNAs whose expression increased during infection and 

from miRNAs whose expression decreased during infection in order to determine 

whether specific DNA motifs could be associated with directional changes in 

miRNA expression.  This protocol yielded a panel of unique DNA motif matrices 

that were significantly enriched in the promoters of infection-associated host 

miRNAs (Figure 3.3).  Our analysis focused on motifs that were enriched at least 

5 times from the respective datasets (Table 3.1, MEME), and were between the 

range of 3 - 25 bp in size.  The MEME_E-value reflects the corrected probability 

that this same motif can be enriched from another random dataset of the same 

size.  Given that our experimental datasets were relatively small, we felt that the 

enrichment E-value could be potentially misleading.  To alleviate this concern, we 

validated the motif enrichment using the MAST module available in the MEME 

suite (19).   
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Using this algorithm, we searched for the enriched motif-matrices in our 

control promoter region dataset of undetectable miRNA promoter sequences 

(MAST1) and from a dataset of eukaryotic promoter sequences (MAST2). The 

number of promoter sequences used for the individual enrichments is listed in the 

respective columns.  A chi-squared test was then performed using the frequency 

of positive motif identifications from the respective control datasets to validate 

that there was significant enrichment of the DNA motifs in our experimental 

datasets (MAST1_ χ2 and MAST2_ χ 2).  The rows highlighted in red indicate 

motifs that mapped to known transcription factor binding sites annotated in the 

Transfac® databse.  The enrichment of motifs 8 and 12 in a control dataset of 

eukaryotic promoters (MAST2_ χ 2; upregulated table, p>0.05) likely reflects that 

these are true TFBS given that they can be found in the promoters of other 

random eukaryotic genes.   
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Upregulated miRNA Promoter Regions 

Motif MEME 
(41 sequences) MEME_E-Value MAST1                                  

(171 sequences) MAST1_ χ2 MAST2                                   
(4806 sequences) MAST2_ χ  2 

1 39 1.90E-26 13 < 0.001 1091 < 0.001 
2 23 1.00E-07 3 < 0.001 4 < 0.001 
3 15 2.50E-07 5 < 0.001 0 < 0.001 
4 5 1.20E-06 0 < 0.001 0 < 0.001 
5 6 3.30E-05 0 < 0.001 0 < 0.001 
6 15 4.70E-02 0 < 0.001 0 < 0.001 
7 20 1.60E-04 19 < 0.001 1217 < 0.0012 
8 13 1.60E-06 16 < 0.001 1524 N.S. > 0.05 
9 6 2.20E+00 10 N.S. > 0.05 987 N.S. > 0.05 

10 15 1.20E+00 2 < 0.001 3 < 0.001 
11 5 5.90E+03 0 < 0.001 0 < 0.001 
12 6 3.10E+05 3 < 0.019 929 N.S. > 0.05 
13 7 4.30E+04 12 N.S. > 0.05 880 N.S. > 0.05 
14 11 5.70E+04 0 < 0.001 1 < 0.001 
15 12 3.10E+05 0 < 0.001 0 < 0.001 
16 8 1.70E+06 10 < 0.013 20 < 0.001 
17 9 8.80E+05 3 < 0.001 2 < 0.001 
18 5 6.30E+04 0 < 0.001 0 < 0.001 
19 7 7.60E+06 7 < 0.008 40 < 0.001 
20 9 5.00E+06 0 < 0.001 0 < 0.001 
21 17 1.20E+06 3 < 0.001 2 < 0.001 
22 7 5.60E+05 0 < 0.001 0 < 0.001 
23 8 4.60E+06 0 < 0.001 0 < 0.001 

 
Downregulated miRNA Promoter Regions 

Motif MEME 
(41 sequences) MEME_E-Value MAST1                                  

(171 sequences) MAST1_ χ2 MAST2                                   
(4806 sequences) MAST2_ χ  2 

1 31 2.20E-40 5 < 0.001 12 < 0.001 
2 48 3.00E-26 10 < 0.001 604 < 0.001 
3 21 2.60E-07 4 < 0.001 64 < 0.001 
4 10 7.50E-07 7 < 0.0012 3 < 0.001 
5 24 2.40E-06 0 < 0.001 0 < 0.001 
6 7 1.00E-03 0 < 0.001 0 < 0.001 
7 8 8.10E-03 6 < 0.0066 8 < 0.001 
8 10 4.70E-03 0 < 0.001 2 < 0.001 
9 15 2.80E-11 3 < 0.001 3 < 0.001 

10 11 8.70E-05 4 < 0.001 437 < 0.0075 
11 11 1.30E-04 0 < 0.001 0 < 0.001 
12 8 8.80E-01 8 < 0.024 11 < 0.001 
13 7 5.60E+00 0 < 0.001 0 < 0.001 

 
Table 3.1: Statistical enrichment of DNA motifs from the promoter regions of infection-associated 
host miRNAs.  These tables illustrate: the number of times each motif was enriched from the 
respective experimental datasets (MEME), the corrected probability that this same motif can be 
enriched from another random dataset of the same size (MEME_E-value), the number of times 
the listed motif was enriched from either our control dataset of undetectable miRNA promoters 
(MAST1) or from a dataset of eukaryotic promoter sequences (MAST2) and the significance of 
those respective enrichments (MAST1_ x2 and MAST2_ x2).  
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Using the TOMTOM algorithm available through the MEME suite, we then 

aligned the enriched weighted motif matrices against known transcription factor 

binding site (TFBS) matrices annotated in the Transfac® database (125, 219).  

This algorithm uses a Pearson’s correlation coefficient to calculate similarities 

between motif matrices and calculates a probability that the queried motif aligns 

to any given TFBS motif.  Table 3.2 illustrates the DNA motifs that aligned to 

annotated TFBS with high confidence.   

Our alignment analyses indicated that there are both unique and shared 

TFBS present in the promoters of up- and down-regulated infection-associated 

host miRNAs.  This suggests that HCMV may be utilizing combinations of 

transcription factors to influence the expression of host miRNAs during virus 

infection through conserved TFBS present in their promoter regions.  It is also 

apparent that the majority of the enriched DNA motifs do not map to known 

TFBS.  Given that these motifs were discriminatively enriched against 

background datasets of other eukaryotic promoter sequences with high 

confidence, it is unlikely that they represent ubiquitous transcriptional elements 

such as transcriptional start sites, intron acceptor/donor sites or poly-adenylation 

signals.  It is possible, however, that they represent epigenetic DNA regulatory 

elements such as CpG islands.  It is known that HCMV utilizes epigenetic 

mechanisms to influence viral gene expression during infection, so it is plausible 

that similar mechanisms are employed to reprogram host miRNA expression

(139, 241, 272).    
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Upregulated miRNA Promoter Regions 
Motif Name E – Value miRNAs Harboring TFBS 

2 HIC-1 4.46E-02 

MIR101-1, MIR126, MIRLET7I, MIR25/106B, MIR7-1, MIR192/194-2, 
MIR183, MIR7-2, MIR132/212, MIR27A, MIR638, MIR182, MIR125A, 
MIR362 
MIR16-1, MIR130A, MIR638, MIR16-2, MIR101-2, MIRLET7G, MIR7-1, 
MIR25/106b, MIR7-3 

8 AP2 2.32E-02 
MIR25, MIR192/MIR194-2, MIR7-2, MIR132/212, MIR638, MIR182, 
MIR125A  
MIR16-1, MIRLET7G, MIR7-1, MIR25/106b, MIR126, MIR7-3 

12 
ATF-3 1.62E-02 

MIR132/212, MIR25, MIR7-2 
MIR7-3, MIRLET7G, MIR25/106b CREB 4.05E-02 

ATF-1 4.77E-02 

14 Oct-1 3.40E-02 
MIR16-2, MIR101-2, MIRLET7G, MIR30B, MIR106A, MIR194-1, MIR20B, 
MIR532, MIR16-1, MIR362 
MIR7-3  

16 
Zfp-219 5.32E-04 MIRLET7I, MIR132, MIR660 

MIR16-1, MIR638, MIR101-2, MIR7-1, MIR25/106b SP-1 3.21E-02 
 

Downregulated miRNA Promoter Regions 
Motif Name E – Value miRNAs Harboring TFBS 

2 Pax-4a 3.23E-02 

MIR494, MIR370, MIR424, MIR148B, MIR181D, MIR181A2, MIR127, 
MIR99A, MIR145, MIR197, MIR222, MIR181B2, MIR199A1, 
MIR181A1/B1, MIR10A, MIR542, MIR432, MIR155, MIR30A, MIR125B2, 
MIR221, MIR574, MIR214, MIR125B1, MIR493, MIR134, MIR100, 
MIR143, MIR320A, MIR320D1, MIR320B1, MIR320C2, MIR320D2, 
MIR320B2, MIR320C1, MIR181A2 
MIR181A1/B1, MIR155, MIR125B1, MIR370, MIR152, MIR148B, MIR10A, 
MIR574, MIR99A, MIR503, MIR199A2, MIR484 

5 Oct-1 3.42E-02 

MIR370, MIR181A2/100, MIR99A, MIR197, MIR222, MIR181A1, MIR10A, 
MIR542, MIR155, MIR30A, MIR214, MIR181B1, MIR134, MIR143, 
MIR320B1, MIR320B2, MIR320C1, MIR181A2 
MIR99A,MIR181A1/B1, MIR125B1, MIR503/424, MIR199A2 

7 SP-1 3.03E-03 MIR574, MIR320A, MIR181D, MIR10A 
MIR152, MIR148B, MIR574, MIR484 

9 AP-2 4.30E-02 
MIR145MIR199A1, MIR574, MIR152, MIR493, MIR143, MIR320A, 
MIR320D2 
MIR148B, MIR10A, MIR574, MIR155, MIR484, MIR503/424, MIR199A2 

12 
SP-1 1.74E-02 MIR152, MIR197, MIR503, MIR320A 

MIR152, MIR148B, MIR484, MIR574 Egr-1 2.76E-02 
 
Table 3.2: Transcription factor binding sites are enriched in the promoter regions of infection-
associated host miRNAs.  Using the TOMTOM module of the MEME suite, position-specific, 
weighted, probability matrices generated from the DNA motif enrichments were aligned to known 
transcription factor binding site motif matrices present in the Transfac® database.  The E-value 
represents a corrected probability that our enriched motif accurately represents the annotated 
TFBS motif matrix.  The miRNAs harboring the indicated TFBS are listed in the far-right column 
(miRNAs Harboring TFBS).  The names that are not bold-faced represent sites found in the 
promoter sequence of the cognate coding gene for the respective intragenic miRNAs. 
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Other DNA regulatory elements such as insulator, enhancer or repressor 

cassettes may also account for the DNA motifs that did not map to known TFBS.  

It is also possible that these matrices represent TFBS binding motifs that have 

yet to be characterized.  All of these sequences could still potentially regulate 

miRNA transcription, but would not align to TFBS motifs.  Given, that TFBS are 

enriched in the promoter sequences of our cohort of infection-associated host 

miRNAs, we next sought to test their functionality in regulating the expression of 

host miRNAs whose proper function is required for efficient replication. 
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HCMV reprograms the expression of two conserved host miRNA clusters whose 

function are required for efficient viral replication 

 

 In order to analyze the utility of the TFBS identified by our DNA motif 

enrichment analysis, we focused on the promoter regions of two well-conserved 

clusters of host miRNAs: miR132/212 and miR143/145.  These two particular 

clusters were chosen for subsequent evaluation for a variety of reasons.  Given 

the degree of their evolutionary conservation and their clustered genomic loci, 

these miRNA clusters could potentially have a larger and/or more robust cellular-

targeting capacity and thus a greater potential to influence viral replication (7, 

59).  The miR132/212 and miR143/145 promoter regions harbor a subset of the 

TFBS identified from the DNA motif enrichment, and each cluster exhibits robust 

converse changes in expression during infection (Figure 3.4 A - F).  This allowed 

us to investigate the influence that particular transcription factors had on changes 

in miRNA expression during HCMV infection.  These particular miRNA clusters 

are also very well studied.  Their validated functions are likely relevant to HCMV 

replication and pathogenesis, and their expression is controlled by transcriptional 

regulators that are required for HCMV replication (5, 168, 286, 343, 356, 360) .     

To validate the infection-associated change in expression of the 

miR132/212 and miR143/145 clusters, we purified whole-cell RNA from mock-

infected and MOI=1 infected HELs and analyzed changes in miRNA expression 

relative to GAPDH by Taqman qRT-PCR (Figure 3.4 E & F).  In agreement with 
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the results of our microarray studies, miR132/212 expression increased steadily 

over the time-course of infection (Figure 3.4 E).  The increased fold-change in 

miR212 expression relative to miR132 likely reflects some non-specific binding of 

the miR212 probe with miR132 as each mature miRNA exhibits a high degree of 

sequence similarity (Figure 3.4 C).  Conversely, expression of the miR143/145 

cluster was decreased over the time-course of infection and to a slightly greater 

extent than that of miR132/212 (Figure 3.4 F).  We recapitulated the qRT-PCR 

validation for deregulated miRNA cluster expression in another permissive glial-

derived cell line, U373MG (data not shown), and validated the deregulated 

expression of miR132 and miR145 during productive infection of HELs by 

northern blot (Figure 3.4 G).  We also quantified the absolute copy number of 

each of the respective mature miRNAs in resting HELs and this revealed that 

miR143/145 are present at levels >2-log higher than miR132/212.  (Figure 3.4 H). 

These results confirm that productive HCMV infection alters the 

expression of two conserved host miRNA clusters.  Given the extent of the global 

deregulation of host miRNA expression, this effect likely represents events that 

are associated with the host response to infection and/or the regulation of viral 

replication. 
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Figure 3.4: HCMV infection impacts the expression of two conserved host miRNA 
clusters.  (A&B) The genomic locations of the miR132/212 (A) and the miR143/145 (B) 
clusters are illustrated along with pertinent TFBS identified from the DNA motif 
enrichments.  (C&D) The sequences of the mature miRNAs from each cluster are 
aligned with the seed sequences highlighted in blue, and sequence homology indicated 
by the connecting red lines.  (E&F) Expression of the miR132/212 (E) and miR143/145 
(F) clusters during HCMV infection was validated by qRT-PCR in HEL fibroblasts.  (G) 
Expression of miR132 and miR145 during HCMV infection was validated by northern 
blot.  (H) miRNA cluster copy number was calculated in resting HELs.  An ANOVA 
analysis and a Tukey post-test were performed to determine if the respective miRNA 
copy numbers were significantly different from each other (** = p<0.01).    
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In order to establish the requirement of de-regulated miRNA expression 

for viral replication, we counteracted the virus-induced changes in miRNA 

expression during infection and analyzed the impact on viral replication.  To 

neutralize the accumulation of miR132/212, we transfected cells with miRNA-

specific locked nucleic acid (LNA) prior to infection.  These are chemically 

modified antisense oligonucleotide inhibitors that prevent miRNA function 

through a sequence-specific interaction with the mature miRNAs.  Conversely, to 

counteract the infection-associated decrease in miR143/145 expression we 

transfected cells with synthetic miRNA mimics prior to infection.  The reduction of 

mature miR132/212 levels after LNA transfection and the accumulation of mature 

miR143/145 after mimic transfection were verified pre- and post-infection by 

qRT-PCR (data not shown).  After pre-treating HELs with either LNA or miRNA 

mimics, we infected with HCMV at an MOI=1 and assayed for the effects on viral 

replication and viral gene expression (Figure 3.5). 
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Figure 3.5:  Altered miRNA expression is required for efficient HCMV replication.  A) To 
inhibit accumulation of miR132/212 during HCMV infection, HEL fibroblasts were 
transfected with antisense LNAs and infected 24 hours later at MOI=1.  Supernatants and 
cell monolayers were harvested at 24 h intervals for a time-course of 5 days and plaque 
assays and western blots were performed to assess the effects on viral replication (left 
panel) and markers of viral gene expression (right panel).  B) To counteract the 
downregulation of miR143-145 expression during infection, HEL fibroblasts were 
transfected with miRNA mimics and infected 24 hours later at MOI=1.  The same protocol 
was followed to assess the effects on viral replication (left panel) and viral gene expression 
(right panel).  Mean viral titers were analyzed by ANOVA with a Tukey post-test in order to 
determine if the changes in titers relative to the respective scramble control were 
statistically significant.   
A) [*, miR132 LNA, p<0.05; miR212 LNA, p=n.s; miR132+212 LNA, p<0.05] 

[**, miR132 LNA, p<0.001; miR212 LNA, p<0.01; miR132+212 LNA, p<0.05] 
[***, miR132 LNA, p=n.s.; miR212 LNA p=n.s; miR132+212 LNA, p<0.05].   

B) [*, p<0.001]  
[**, p<0.001]  
[***, p<0.05]. 

 



 78 

Inhibiting the infection-associated increase in miR132/212 expression by 

LNA transfection resulted in a modest, but statistically significant attenuation of 

viral replication (Figure 3.5 A; left panel).  miR132 LNA transfection repressed 

viral replication ~5-fold beginning at 72 hpi and continuing through 120 hpi.  The 

reduced inhibitory effect of miR132 LNA transfection seen at 120 hpi likely 

reflects the turnover of the LNA given that it had been transfected 5 days earlier.  

This inhibitory effect of miR132 LNA transfection was ~2-fold greater than what 

was observed after inhibiting miR212 function.  This likely reflects the fact that 

mature miR132 is present at levels >1-log higher than mature miR212 and that 

both miRNAs likely target the same network of transcripts given their conserved 

seed sequences (Figure 3.4 C, D & H).  miR132 LNA transfection also had a 

greater inhibitory effect on viral replication than did miR132 + miR212 LNA 

transfection (Figure 3.5 A).  This may represent cross-reactivity of the LNAs.  

Given the degree of sequence conservation between miR132 and miR212, it’s 

possible that co-transfection of both LNAs could dilute the effects of miR132 LNA 

transfection alone (Figure 3.4 C).  The attenuation of viral replication after LNA 

transfection was also reflected as a modest delay in early (pp65) and late (gb55) 

viral protein accumulation (Figure 3.5 A; right panel).  Similar to the recovery of 

viral replication at later time-points, viral protein expression recovered to WT 

levels at the later time-points presumably as LNA was turned over.  Collectively, 

these results support the idea that reprogramming miR132/212 expression is 

required for efficient replication.   
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Counteracting the infection-associated decrease in miR143/145 

expression by miRNA mimic transfection also resulted in an attenuation of viral 

replication (Figure 3.5 B; left panel).  miR143 mimic transfection resulted in a ~2-

log decrease in viral replication at 72 hpi that progressively recovered to a ~1-log 

reduction at the later time-points post-infection.   This effect, however, was not 

reflected as a defect in viral protein accumulation (Figure 3.5 B; right panel).  

Over-expressing miR143 during infection had little to no impact on viral protein 

accumulation.  Since mimic transfection dramatically reduced viral replication 

without any noticeable impact on viral protein accumulation, miR143 may be 

regulating the expression of a factor(s) required for viral particle assembly or 

release.  It is unlikely that miR143 over expression is attenuating viral DNA 

replication because gB55 expression has not been affected.  gB is characterized 

as an early/late protein, and DNA replication is required in for appreciable levels 

of protein to accumulate.  miR145 mimic transfection resulted in a ~1-log 

reduction in viral replication and this was also reflected by a defect in viral protein 

accumulation (Figure 3.5 B).  Early viral protein (pp65) accumulation recovered 

to WT levels at 120 hpi, but early/late viral protein (gB55) accumulation was 

attenuated throughout the infection time-course.  Inhibiting the infection-

associated reduction in miR143 and miR145 had unique phenotypes with respect 

to viral replication and viral protein accumulation.  This likely reflects the fact that 

each miRNA regulates a unique set of targets that contribute to infection.     
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These results confirm that HCMV re-programs the expression of two 

conserved clusters of host miRNAs during productive infection.  The requirement 

of de-regulated miRNA expression for efficient viral replication reinforces the 

hypothesis that HCMV infection manipulates host miRNA expression in order to 

create a suitable environment for infection.  The reduced inhibitory effect of 

miR132/212 LNA transfection relative to miR143/145 mimic transfection on viral 

replication may be due to the fact that miR143 and miR145 exist at much higher 

steady state levels in HEL fibroblasts and potentially exert a greater repressive 

capacity on host gene expression.  Given that miR143 and miR145 mimic 

transfection each had unique phenotypes with respect to attenuating viral 

replication and viral gene expression, it is likely that each miRNA regulates a 

distinct network of host genes because they each harbor unique seed 

sequences.  The mechanism by which HCMV manipulates the expression of 

these host miRNA clusters has not been determined.  Given the utility of host 

transcriptional machinery in regulating viral infection, it is likely that HCMV 

utilizes TFBS present in the miRNA promoters to re-program their expression 

during infection.   
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TFBS identified by DNA motif enrichments contribute to deregulated host miRNA 

expression during HCMV infection  

      

The genomic coding region for the miR132/212 and miR143/145 miRNA 

clusters are intergenic, thus leading us to presume that their expression is 

independently controlled by transcriptional elements that are distinct from 

flanking genes.  In order to test the functionality of the TFBS identified by the 

DNA motif enrichment analysis, we designed reporter assays to analyze the 

activity of miRNA promoter regions during infection.  We began by truncating the 

miR132/212 and miR143/145 promoter region in order to determine the location 

of the minimal essential region required for regulating miRNA expression during 

HCMV infection (Figure 3.6 A & 3.7 A).  We then mutated the enriched TFBS 

contained within the minimal essential region in order to assay their functionality 

(Figure 3.6 B & 3.7 B).  Briefly, HEL fibroblasts were co-transfected with a 

miRNA promoter truncation or TFBS-mutant constructs along with a calibrator 

reporter to control for transfection efficiency.  One day post-transfection, the cells 

were either mock-infected or infected with HCMV at an MOI=1.  Cells were then 

harvested at the respective time-points post-infection and promoter activity was 

assayed by quantifying changes in luciferase activity.  Fold change in luciferase 

activity in all samples were first normalized to the calibrator reporter signal and 

this corrected signal was normalized to the same signal in un-transfected cells.  

The change in promoter activity during infection was then calculated relative to 
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the respective mock-infected control samples.  After quantifying fold-change in 

luciferase expression, an ANOVA analysis and a Tukey post-test were performed 

to determine if there was a statistically significant difference in the mean fold-

change in reporter activity over the time-course of infection among the respective 

truncated or mutated constructs.

Truncation of the miR132/212 promoter revealed that the majority of the 

activating potential resided in a region ~269 bp upstream of the miR212 pre-

miRNA hairpin sequence (Figure 3.6 A).  Each sequential truncation had little to 

no effect on reporter activation until the promoter was truncated to 97 bp when 

essentially all reporter activity was lost (Figure 3.6 A; T_97).  The statistical 

analysis illustrated that each construct has a statistically significant difference in 

mean reporter activity over the time-course of infection relative to T_97.  Within 

this promoter region were two classes of TFBS identified by our DNA motif 

enrichment: CREB/ATF and SP1.  Mutational analysis of the respective sites 

revealed that the cooperative activity of both CREB and SP1 was required for 

maintaining promoter activity during infection (Figure 3.6 B).  Individual and 

collective mutation of the respective CRE sites had little to no effect on promoter 

activation at 96 hpi (Figure 3.6 B; CRE_1, CRE_2 and CRE_1/2).  However, 

mutation of one particular SP1 site increased luciferase expression ~3-fold, 

suggesting that SP1 could be exerting an inhibitory effect on promoter activity 

(Figure 3.6 B; SP1_2 & SP1_1/2).  The collective mutation of all TFBS 

completely abrogated luciferase expression, further suggesting that the 
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cooperative effects of CREB activation and SP1 repression are required for 

maintaining proper miRNA expression during infection.   

 

 

 

 

Figure 3.6: The infection-associated change in miR132/212 expression is mediated by SP1 
and CREB.  (A) Truncated miR132/212 promoters were engineered to drive the expression of 
luciferase in order to ascertain where the minimal essential promoter elements resided.  (B) 
Mutations of the respective TFBS were engineered in order to test their contribution to reporter 
expression during infection.  The dotted line on the histogram illustrates a reporter signal 
equal to that of the calibrator construct.  Values above or below that line represent a 
respective increase or decrease in promoter activity during infection. 
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The utility of each of these particular transcription factors is supported by 

their established contribution to HCMV infection (180, 181, 294, 366, 367).  SP1 

and CREB each are capable of modulating activity of the MIEP and HCMV 

specifically modulates their accumulation during infection (180, 181).  This effect 

is also required for regulating NF-κB activity during infection (366, 367).  These 

results are further supported by the observation that CRE sites present in the 

miR132/212 promoter serve to activate their transcription in other contexts such 

as during neuronal maturation and morphogenesis (168, 343).   

Truncations of the miR143/145 promoter region revealed that the 

repressive capacity of this promoter was progressively lost as the promoter 

region was shortened (Figure 3.7 A).  An ANOVA and Tukey post-test analysis of 

the mean fold-change in promoter activity over the time-course of infection 

revealed that there was a significant difference among the T_1899 and T_268 

truncation constructs (Figure 3.7 A).  This suggested that the repressive potential 

of the miR143/145 promoter region was located ~1899 nucleotides upstream of 

the pre-miR143 hairpin sequence.  Within this region were two classes of TFBS 

identified by our DNA motif enrichment: AP2 and Pax4a.  Mutation of each 

individual TFBS site or of all the combined sites, however, had no effect on 

promoter activity (Figure 3.7 B).  This, however, is not necessarily inconsistent 

with transcriptional repression of miR143/145 expression during infection.  The 

initial increase in luciferase expression at 24 hpi followed by the robust 

repression by 48 hpi suggests that elements within the miR143/145 promoter are 
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capable of inhibiting promoter activity during infection (Figure 3.7 A).  The fact 

that miR143/145 promoter activity is not efficiently repressed until 48 hpi 

suggests that factors required for that inhibition may not accumulate until that 

time post-infection.  This factor could be either a host or viral gene product, but 

an infection-dependent event is required for eliciting the effect on miR143/145 

promoter activity.  It is also possible that miR143 or miR145 may regulate the 

host anti-viral response to infection.  The initial increase in miRNA promoter 

activity may represent the host-response to infection, and this effect could have 

been attenuated at 48 hpi by the virus.  The lack of functionality of the TFBS 

associated with down-regulated miRNAs, which were identified in our DNA motif 

enrichment analysis likely reflect a limitation in our TFBS enrichment protocol.     
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A large portion of DNA between the miR143 and miR145 pre-miRNA 

hairpins was excluded from the DNA motif enrichment and the reporter construct 

design.  Unlike miR132 and miR212, which are only separated by 472 bp, 

miR143 and miR145 are separated by over 1.6 kbp of genomic DNA.  When we 

performed the DNA motif enrichments and designed the truncation constructs, 

we were operating under the assumption that each miRNA within the respective 

Figure 3.7: The infection-associated change in miR143/145 expression is partially 
controlled at the transcriptional level.  (A) Truncations of the miR143/145 promoter were 
engineered to drive the expression of luciferase in order to ascertain where the minimal 
essential promoter elements resided.  (B) Mutations of the respective TFBS were 
subsequently engineered in order to test their functionality during infection.  The dotted 
line on the histogram illustrates a reporter signal equal to that of the calibrator construct.  
Values above or below that line represent a respective increase or decrease in promoter 
activity during infection. 
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clusters were co-transcribed, and we therefore limited our analysis to the 

sequences preceding the upstream pre-miRNA hairpin.  This strategy was also 

used in consideration of the data size limitations imparted by the web-based DNA 

motif enrichment software.  Even though the miR143/145 promoter region that 

we assayed was capable of repressing reporter activity at time-points after 24 

hpi, it is possible that functional TFBS between the miRNA coding loci were 

excluded.  p53 has also been shown to regulate miR145 expression through the 

use of p53 response elements present ~1500 bp upstream of miR145 (286).   

p53 is relocated away from host chromatin during HCMV infection where it 

plays important roles in regulating viral replication (129, 234).  Given the 

clustered miR143/145 coding loci and the proximity of p53 response elements to 

miR143, it is likely that either p53 or its unavailability during infection contribute to 

the transcriptional control of miR143 as well.  It is also possible that a post-

transcriptional mechanism may be influencing mature mi143/145 levels.  From 

our microarray studies (Figure 3.1) and our qRT-PCR assays (Figure 3.4) we 

know that there are reduced levels of mature miR143 and miR145 at 24 hpi.  

Given this initial increase in promoter activation at 24 hpi it is possible that some 

post-transcriptional mechanism may be responsible for the decrease in mature 

miRNA levels.  p53 has been shown to post-transcriptionally regulate the 

accumulation of mature miR143 and miR145 through a specific interaction with 

the Drosha complex (323).  It is also important to mention that the DNA motif 

enrichment was performed using sequences ~500 bp upstream of the pre-miRNA 



 88 

hairpins.  The Pax4_1 site was outside of that 500 bp region, supporting the 

notion that it is not contributing to the deregulated expression of miR143/145 

during infection.  Regardless of the speculated implications, these assays show 

that transcriptional control of host miRNA expression is exerted by HCMV during 

productive infection.  
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Discussion 

 

We have demonstrated that productive infection of primary fibroblasts with 

HCMV is sufficient to reprogram the global expression of host miRNAs (Figure 

3.1).  This effect was robust and reproducible, and biological replicate 

experiments allowed us to curate a panel of HCMV infection-associated host 

miRNAs.  This unique expression profile was used for an informatics-based 

approach to understand the transcriptional mechanisms governing the change 

host miRNA expression during infection.  The impact that HCMV infection had on 

host miRNA expression was extensive, and this suggested that these events 

represented either the host cell response to infection or the manipulation of host 

gene expression by the virus.  The infection-associated change in expression of 

the miR132/212 and miR143/145 clusters was required for efficient viral 

replication (Figure 3.5).  Using our panel of infection-associated host miRNAs, 

we identified DNA motifs that were specifically associated with the promoter 

regions of up- and downregulated miRNAs and a subset of these motifs mapped 

to TFBS sequences (Figure 3.3 and Table 3.2).  Analysis of the miR132/212 

promoter region suggested that their infection-associated change in expression 

was transcriptionally mediated.  Mutation of enriched TFBS present in their 

promoter region revealed that the cooperative function of CRE and SP1 sites 

were required to maintain optimal promoter activity during infection.  Analysis of 

the miR143/145 promoter region suggested that transcriptional mechanisms 
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were partially responsible for controlling their expression during HCMV infection.  

However, potential limitations in our informatics-based approach failed to identify 

TFBS responsible for downregulating miR143/145 during HCMV infection. 

This work illustrates the extensive impact that HCMV infection has on host 

miRNA expression.  The diverse mechanisms employed by the virus to 

accomplish this effect reflect the widespread control that the virus exerts host 

transcription in order to replicate.  Little evidence exists to support the idea that 

host miRNAs are required for positively influencing the expression of viral genes 

during infection.  There is also no complete curated list of HCMV transcript 

sequences, which makes it difficult to predict the probability of host miRNAs 

targeting viral genes.  We therefore sought to analyze the impact that infection-

associated host miRNAs exerted on global host transcript networks in order to 

more accurately define the relevance of de-regulated host miRNA expression 

during HCMV infection.  Using our curated panel of infection-associated host 

miRNAs, we identified a vast network of host genes that harbor significantly 

enriched MREs.  This would suggest that host miRNAs potentially exert 

extensive control on host gene expression during infection, and that HCMV 

manipulates this mechanistic control in order to positively influence infection. 

 

 

            

 



 91 

 

 

 

Chapter IV: 

 

Infection-Associated Host miRNAs 
Regulate Large Networks of Host 

Genes 
 

 

 

 

 

 



 92 

 Introduction 

 

Gene expression profiling has helped to establish that individual cell types 

and tissues have unique gene expression patterns.  Implicit in this theory are the 

inherent differences in miRNA and mRNA expression profiles, and the kinetic 

nature of their expression as a result of various stimuli.  The distinct expression 

patterns of miRNAs and mRNA transcripts help sculpt a unique protein 

expression landscape that phenotypically distinguishes a particular environment.  

When determining the influence that miRNAs exert on a potential target, one 

must consider: 1) The relative levels of a miRNA(s) and it is cognate target 

mRNA; 2) The change in expression of the respective miRNAs and mRNAs; 3) 

The statistical confidence that the particular message harbors a functional MRE.  

Typically, miRNA target prediction algorithms exclude contextual information 

relating to relative miRNA and mRNA expression levels.  Essentially, these 

programs analyze 3’-UTR sequences and score the predictions based on 3’-UTR 

architecture and MRE evolutionary conservation (73).  More recently, newer 

models have emerged that combine sequence analysis with gene expression 

profiling in order to increase the likelihood of identifying functional MREs (9, 244).  

In the context of HCMV infection, a miRNA target prediction protocol must 

consider the relative expression of both miRNAs and mRNAs in uninfected and 

infected cells.  HCMV infection characteristically impacts the expression of many 

cellular genes during infection in order to inhibit protective host responses and to 
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generate host factors required for replication (40, 131, 316, 347, 373).  This 

creates a unique gene expression profile that is ideal for viral replication.  Given 

the potentially extensive influence that miRNAs exert on host gene expression 

during HCMV infection, we thought it necessary to develop a novel protocol for 

identifying relevant miRNA targets.   

Using a probability based MRE enrichment algorithm, we identified an 

extensive network of host genes whose expression is likely regulated by HCMV 

infection-associated host miRNAs.  These mRNA targets harbor statistically 

significant MRE(s) identified by the enrichment of various miRNA seed types 

within their 3’-UTR sequences.  Using the relative fold changes in miRNA and 

mRNA expression during infection and the statistical significance of the 

respective MREs, we were able to visualize the global network of miRNA target 

genes.  The efficacy of our enrichment protocol is supported by the anecdotal 

identification of miRNA targets from published studies and by our experimental 

validation of functional miR143 MREs present in the KRas 3’-UTR.  Analysis of 

gene ontology terms associated with the miRNA target networks revealed that 

host miRNAs potentially regulate many host pathways that are relevant to HCMV 

replication.  Together, these findings suggest that host miRNAs are essential for 

creating a gene expression landscape that supports efficient HCMV replication.   
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Results 

    

miRNA target networks can be identified using a novel probability-based MRE 

enrichment protocol  

 

To begin identifying networks of host genes whose expression is regulated 

by infection-associated miRNAs during HCMV infection, we assembled a panel 

of target candidates whose expression in mock-infected and infected cells was 

easily detectable (Figure 4.1).  Host mRNA expression data was gathered from a 

microarray profiling study by Hertel et al 2004 wherein human foreskin fibroblasts 

were infected with HCMV AD169 at an MOI=10 and fold changes in gene 

expression were observed at 50 hpi (131).  Focusing our MRE predictions on 

genes with appreciable expression in primary fibroblasts served to increase the 

likelihood of identifying functional MREs.  Since miRNAs can only target genes 

whose transcripts are coincidentally present in the same place at the same time, 

we can eliminate non-functional predictions and experimental noise by removing 

genes whose likelihood of encountering a miRNA is physiologically improbable.  

After assembling a cohort of target candidates, we gathered their respective 3’-

UTR sequences using the Ensembl BioMart to use as the template for identifying 

MREs (102).   



 95 

  In order to identify functional MREs, we developed a probability-based 

algorithm that uses 3’-UTR sequences as a template for the statistical 

enrichment of various MREs (6mer, 7mer and 8mer; Figure 4.1).  This protocol is 

based on an algorithm developed by Farh et al 2005, where the probability of any 

Figure 4.1: MRE prediction protocol.  1) In order to predict targets of HCMV infection-
associated host miRNAs, we focused our enrichment analyses on candidate genes that 
exhibited appreciable expression in primary fibroblasts.  These transcripts exhibited an 
MFI ≥ 200 in both mock-infected and infected cells as detected by microarray analysis.  
The picture illustrates a representative image generated from a microarray.  2) After 
gathering 3’-UTR sequences of the respective target candidates, we predicted the 
likelihood that the presence of an MRE represented a statistical enrichment.  Our analysis 
focused on identifying only 6mer, 7mer and 8mer MREs and their respective orientations 
are illustrated.   
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given 7mer being enriched in panel of 3’-UTR sequences is calculated (95).  By 

computing the size of the 3’-UTR and the frequency of all possible 2mer and 

3mers, we can use a Markov based probability calculation to determine the 

likelihood that the presence of a particular MRE is not due to chance.  This 

probability can then be corrected using a binomial calculation in order to correct 

the significance of enrichment if multiple MREs are present in a single 3’-UTR.  A 

significantly enriched MRE(s) would suggest that the sequence has been 

retained in that 3’-UTR and therefore implies some functionality.  Multiple MRE 

types have been described, and their functional efficacy has been tested in vitro 

(23, 38).  This work has led to the postulation that more extensive 

complementarity between nucleotides 2-8 in the miRNA seed dictates more 

robust regulation of mRNA translation.  Although the efficacy of each MRE is not 

totally equivalent, miRNA-mediated repression of mRNA translation has been 

documented with each respective seed type.  We therefore considered each 

MRE type when predicting targets of HCMV infection-associated host miRNAs.   

Our MRE enrichment protocol is unique when considered against the 

available web-based prediction algorithms. It allows for batched query of 

contextually filtered target candidates using solely a determinant of target site 

retention (27).  It could easily be applied to any dataset in order to identify 

functional miRNA targets.  Once we curated our panel of potential miRNA targets 

based on gene expression profiling, we then gathered the seed sequences to be 

queried from our infection-associated host miRNAs (6mer, 7mer and 8mers) and 
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used batch searches in order to query all relevant miRNAs and mRNAs 

simultaneously.  Our protocol operates under a simple assumption: if a miRNA 

and it is cognate target are each expressed at appreciable levels and if the 

mRNA 3’-UTR harbors a statistically enriched MRE(s), then the likelihood of a 

functional miRNA:mRNA interaction occurring is statistically probable.   

The available online miRNA prediction programs typically do not allow 

batch searches (30, 107, 111, 118, 160, 228).  Contextually filtering potential 

targets by using gene expression data is also not an option that is typically 

offered in the available web-based prediction programs.  Given the fact the 

miRNA and mRNA expression profiles are unique to each cell type and tissue, it 

is essential to be able to focus MRE predictions on the appropriate candidate 

genes.  There are, however, limitations to our approach.  The stoichiometric 

relationship between miRNA and mRNA copy number is essential when 

analyzing MRE efficacy.  Given that our experiments utilized baseline detection 

and fold-change in MFI data from microarray experiments, we were not able to 

weight the enriched MREs based on the relative copy number of the miRNA and 

their cognate targets.  We were also not able to score predictions based on 

parameters such as MRE conservation or validated functional sites from the 

literature.  These are all prediction parameters that could subsequently be added 

to the current algorithm in order to increase the likelihood of predicting functional 

MREs. 
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We initially sought to validate the efficacy of our MRE prediction algorithm 

by enriching for the presence of previously validated MREs from the literature.  

Wang et al 2005, showed that HCMV infection impacted the expression of host 

miRNA in primary fibroblasts using a similar strain of HCMV (347).  The effect 

that infection had on host miRNA expression was comparable to what we 

observed although the breadth and depth of our dataset was much more 

extensive (Chapter 3, Figure 3.1).  Using reporter assays, they showed that 

miR100 was capable of regulating the expression of both mTOR and Raptor, 

while miR101 was only capable of mediating mTOR expression (albeit much less 

efficiently than miR100) (347).  Using our MRE enrichment algorithm, we were 

able to positively identify miR100 sites in both mTOR and Raptor.  The miR101 

site in mTOR, however, was not identified.  Its lack of MRE enrichment may 

reflect its relatively inefficient ability to reduce mTOR reporter expression.  

Pickering et al 2009 from our own group determined that miR17 and miR20a 

sites present in the E2F1 3’-UTR were required for regulating a G1 cell cycle 

checkpoint (260).  Our MRE enrichment algorithm also positively identified both 

the miR17-5p and the miR20a target sites.  Lastly, Zheng et al 2011 showed that 

miR101 expression was reduced during HSV-1 infection and that this effect was 

required to increase the levels of the pro-viral mitochondrial ATP synthase 

subunit beta (ATPB5) (370).  The MRE that was responsible for inhibiting ATPB5 

protein accumulation during HSV-1 infection was also positively identified by our 

enrichment algorithm (370).  The ability of our enrichment protocol to replicate 
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the observations of other groups supports the efficacy of our MRE prediction 

algorithm.  We applied this protocol to our panel of miRNA target candidates to 

identify the target networks of HCMV infection-associated host miRNAs.  This will 

allow us to begin to analyze the relevance of de-regulated host miRNA 

expression during HCMV infection. 

 Our panel of target candidates was comprised of 6723 unique genes, 

which exhibited appreciable expression (MFI>200) in primary fibroblast before 

and after infection with HCMV at an MOI=10 (131).  From these genes we 

gathered 28,675 associated 3’-UTR sequences, which were annotated in the 

Ensembl BioMart.  Each annotated transcript has multiple associated 3’-UTR 

sequences.  Though many transcripts encode multiple isoforms with potentially 

different 3’-UTR sequences, this magnitude is also partially a product of the 

Ensembl automatic gene annotation system (72).  In any case, duplicate 

enrichments are removed later in the process.  The curated 3’-UTR sequences 

were used as the template for our MRE enrichment protocol.  By assigning 

multiple significance cutoffs (p<0.05 and p<0.01), we were able to visualize the 

number of unique genes with statistically enriched MREs and the respective 

number of total enrichment predictions (Table 4.1).  Our analysis indicates that 

~40% – 80% of detectable genes expressed in primary fibroblasts are potentially 

regulated by HCMV infection-associated host miRNAs.  In order to begin 

assessing the functional relevance of this extensive miRNA mediated regulation 

of gene expression during HCMV infection, we focused further analyses on 
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genes harboring 7mer and 8mer MREs with p<0.01 (hereafter referred to as the 

“infection-associated host miRNA target network”).  The literature has shown that 

each MRE type has the capacity to be functional, but given the size of the 

dataset we wanted to focus subsequent analyses on highly confident MREs that 

exhibit a more robust regulatory capacity. 

 

Significance MRE 
Type 

Target 
Predictions 

Target 
Genes 

Total 
Unique 
Genes 

miRNAs 
with 

Enriched 
MREs 

Total 
miRNAs 

p<0.05 
6mer 19,674 4,560 

5,595 
56 

56 7mer 16,837 4,070 51 
8mer 12,435 3,436 56 

p<0.01 
6mer 3,052 1,763 

2,652 
56 

56 7mer 2,915 1,823 51 
8mer 1,812 1,812 56 

 
Table 4.1:  HCMV infection-associated host miRNAs potentially target vast arrays of host 
genes during infection.  This table summarizes the results from our MRE enrichment 
analysis.  Illustrated are the two significance cutoffs used for identifying statistically enriched 
MREs (Significance), the MRE types that were being queried for the respective enrichment 
(MRE type), the total number of significant sites identified for that particular MRE type 
(Target Predictions), the number of unique genes predicted to harbor the respective MREs 
(Target Genes) the cumulative number of genes harboring enriched MREs (Total Unique 
Genes), the number of infection-associated miRNAs corresponding to the respective 
enriched MREs (miRNAs with Enriched MREs) and the total number of miRNAs queried for 
the enrichment (Total miRNAs).    
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The infection-associated host miRNA target network (7mer & 8mer; 

p<0.01) contains 2013 unique genes harboring 5953 enriched MREs.  Roughly 

37% of the predicted 7mer targets are also 8mer targets and this is reflected by 

the increase in probablistic confidence of those respective 7mer sites.  Given that 

an 8mer is classified by having an adenosine at position 1 in the 5’ end of the 

7mer MRE, a random model would suggest that ~25% of all 7mers are also 

8mers.  The fact that almost 40% of our 7mer MREs are also 8mers supports the 

robustness of our enrichment protocol.  In order to visualize the infection-

associated host miRNA target network, we have plotted the miRNAs and their 

respective targets using Cytoscape (Figure 4.2) (64).  We have illustrated the 

relative fold-change in gene expression using a blue-to-red color schematic that 

indicates downregulated to upregulated gene expression during infection.  One 

can immediately notice that the majority of cellular transcripts exhibit 

downregulated expression during infection while the host miRNAs equally exhibit 

both increased and decreased expression.  Our initial filtering of potential target 

candidates and the particular time point that we are analyzing may have 

contributed to this trend, but these observations are in agreement with other 

gene expression profiling experiments performed in HCMV-infected fibroblasts 

(40).  By visualizing the probabilistic confidence of MRE enrichment using edge 

thickness and color, we can see that the significance of MRE enrichment is 

increased when multiple miRNAs targeted the same transcripts.  This highlights 

the cooperative nature of miRNA-mediated regulation of gene expression.  
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Figure 4.2: The infection-associated miRNA target network.  Illustrated in this plot are genes 
harboring enriched 7mer and 8mer MREs with a p<0.01 (circular nodes) and the respective 
miRNAs corresponding to those MREs (square nodes).  We have removed 7mer MREs that are 
also 8mers, and we have removed duplicate 3’-UTRs since the same MREs are typically 
enriched with similar confidence.  Fold-change in gene expression is illustrated with the color 
scheming shown in the legend (red = upregulation and blue = downregulation), and MRE 
enrichment probabilities are reflected by the edge thickness and color (dark/thick = p<0.01, 
light/thin = p.≤0.01).  The edges are also springe embedded so that an MRE with a better 
enrichment probability is propelled further from the targeting miRNA in 3D.   
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 Each infection-associated miRNA harbors a unique set of predicted target 

transcripts as well.  We also notice that there is not always an inverse correlation 

between fold-change in miRNA expression and target transcript accumulation.  

This finding, however, should not discredit the fact that there may be a correlative 

change in the accumulation of the corresponding proteins.  miRNA-mediated 

regulation of mRNA translation does not always result in a correlative increase in 

mRNA degradation.  Therefore one will not consistently observe an inverse 

correlation between fold-change in miRNA and mRNA accumulation.  One must 

also consider the influence that transcriptional elements play in regulating the 

expression of the predicted target genes.  It is likely that a combination of 

transcriptional regulation and miRNA-mediated control of transcript translation 

cooperate to optimize gene expression levels.  These considerations are criterion 

that can be added to weight probabilities generated by the MRE enrichment 

algorithm.    

The stoichiometric relationship between miRNA and mRNA copy number 

is a more critical determinant for predicting the probability of miRNA-mediated 

regulation of gene expression.  For example, if the relative fold-change in 

expression of a particular miRNA decreases during infection, the absolute 

number of accumulated miRNA molecules may still be sufficient to inhibit the 

translation of a cognate target transcript.  One must also consider the 

cooperative action of miRNAs in regulating the translation of target transcripts.  

The field of miRNA biology has been largely focused on validating the effect that 



 104 

a single miRNA has on the regulation of a single transcript.  This work was 

essential to establish the biochemical mechanisms of miRNA targeting, but it is 

likely that miRNAs cooperatively target large networks of genes in order to 

regulate gene expression.  The fact that each transcript potentially harbors up to 

hundreds of MREs and therefore could potentially be simultaneously regulated 

by hundreds of miRNAs is an aspect of miRNA biology that should be considered 

further.  In order to illustrate the cooperative capacity of deregulated miRNAs 

during HCMV infection, we sought to analyze the regulatory capacity of 

miR132/212 and miR143 on a shared target: KRas.  These miRNAs exhibit 

converse changes in expression during infection, yet KRas harbors statistically 

enriched MREs for each respective miRNA suggesting that they are both capable 

of regulating KRas mRNA translation during HCMV infection. 
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Functional MREs are enriched in the KRas 3’-UTR  

 

 Using our MRE enrichment protocol, we observed that the miR132/212 

and miR143/145 clusters each harbor a unique set of predicted targets (Figure 

4.3 A).  There are, however, a limited number of shared targets and among them 

is KRas.  KRas mRNA expression increases ~2 – 4 fold over the course of 

productive HCMV infection, but protein accumulation is reduced at each 

respective time-point (Figure 4.3 B & C).  This would indicate that a post-

transcriptional mechanism is responsible for downregulating KRas protein 

accumulation during infection.  The KRas 3’-UTR harbors multiple MREs 

corresponding to 7 different miRNAs, each of which exhibit unique changes in 

expression during infection (Figure 4.3 D).  Given that it also contains statistically 

confident 8mer MREs corresponding to miR132/212 and miR143, and that 

miR143/145 are capable of regulating KRas expression in other contexts, we 

hypothesized that these miRNAs were contributing to the repression of KRas 

mRNA translation observed during infection (159).  We sought to assay the 

ability of each miRNA to regulate KRas expression during HCMV infection using 

a reporter assay (Figure 4.4). 
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Figure 4.3:  KRas mRNA is a target of multiple infection-associated host miRNAs.  (A) The target 
networks of miR132/212 and miR143/145 (7mer & 8mer MREs, p<0.01).  KRas is highlighted in 
green.  (B) The increase in KRas mRNA expression during HCMV infection was quantified relative 
to GAPDH by qRT-PCR.  (C) The decrease in KRas protein accumulation during HCMV infection 
was determined by western blot.  IE1 detection is used as a positive control for infection.  (D) All of 
the enriched MREs present in the KRas 3’-UTR are illustrated relative to the 3910 bp amplicon 
used in the subsequent reporter assays (Figure 4.4).  The corresponding miRNAs are color-coded 
and the significance of their enrichment is represented by line thickness (Figure legend).   
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 Briefly, HELs were co-transfected with a Renilla luciferase construct 

containing the KRas 3’-UTR and with a calibrator Firefly luciferase construct 

lacking the UTR.  24 hours after transfection, the cells were infected with HCMV 

and luciferase activity was assayed 48 hpi.  This allowed us to quantify the 

repressive capacity that the KRas 3’-UTR exerted on reporter activity by 

calculating the fold change in luciferase expression relative to the calibrator 

construct.  By engineering reporter constructs harboring the KRas 3’-UTR with 

mutant MREs, we tested the function of the respective sites by quantifying the 

attenuation of reporter repression.  Cloning the KRas 3’-UTR downstream of 

luciferase was sufficient to reduce reporter expression ~10-fold during HCMV 

infection (Fiigure 4.4 B; WT).  This was a positive indication that elements 

present in the KRas 3’-UTR were sufficient to inhibit reporter expression.  As 

each respective MRE was mutated, the repressive capacity of the KRas 3’-UTR 

was progressively lost.  Mutation of both miR143 MREs reduced reporter 

repression ~4-fold (Figure 4.4; m143.1/2).  In agreement with the greater 

repression exerted by miR143 than miR132/212, a higher probability of 

enrichment was predicted for miR143 suggesting that the informatics approach is 

predictive of empirical results.  Mutating each MRE, however, was not sufficient 

to completely alleviate repression of luciferase expression.  It is likely that other 

miRNAs are exerting a repressive effect on reporter expression given that we 

had a statistical enrichment of many other MREs in the KRas 3’-UTR (Figre 4.3 

D).  This would suggest that the combined action of each MRE contained in the 
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3’-UTR is required for downregulating KRas protein levels during HCMV infection 

(Figure 4.3 C).  These results further support the efficacy of our MRE 

enrichments.  They also reflect the fact that the fold change in miRNA expression 

is not necessarily reflective of the ability of a miRNA to target a transcript.  

 

 

 

 

 

 

Figure 4.4: MREs present in the KRas 3’-UTR are capable of repressing reporter 
expression.  (A) Reporter construct design.  The KRas 3’-UTR was cloned downstream of 
luciferase in order to test its ability to inhibit luciferase expression.  MRE mutants were 
engineered in order to test their contribution to reporter repression.  (B) By quantifying the 
fold change in expression of the “KRas-UTR-containing reporter construct” relative to a 
calibrator reporter construct with no 3’-UTR, we calculated the relative repressive capacity of 
the KRas 3’-UTR and the respective MRE mutants.  A t-test was performed in order to 
determine whether the alleviation of reporter repression was statistically significant relative 
to the WT construct (*=p<0.05).   
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Gene ontology term enrichments can be used to elucidate the functional 

relevance of de-regulated host miRNA expression during HCMV infection 

 

To further understand the relevance of global deregulation of host miRNA 

expression during HCMV infection, we sought to analyze the functions of the 

networks of predicted miRNA targets.  By enriching for ontology terms associated 

with each gene, we can begin to discern specific cellular mechanisms and 

processes that may be influenced by miRNA-mediated regulation during HCMV 

infection.     

In order to analyze the potential functional associations of the predicted 

miRNA target genes, we analyzed associated gene ontology (GO) terms using 

the DAVID bioinformatics resources 6.7 (137).  Using our panel of host genes 

harboring statistically enriched MREs, we performed a modified Fisher’s exact 

test to determine whether particular GO terms are enriched in that that data set.  

This is done by observing the number of term associations in our list and 

comparing it against the expected GO term frequency relative to the human 

genome.  This then allows us to compute a corrected probability to determine if 

there is significant term enrichment in our dataset.  GO terms can specifically 

group genes based on aspects of their biological functions: pathway associations, 

protein domains, protein:protein interactions, tissue expression.  They can also 

describe more general terms regarding the validated functions or cellular 

associations of a gene: metabolic process, cytosolic fraction, nucleotide binding.  



 110 

GO terms enriched from our panel of infection-associated host miRNA targets 

revealed a number of pathways and cellular process that are known to be 

required for efficient HCMV replication (Table 4.2).   

 

 

 

 

 

GO 
Category Term Count % P-Value Benjamini 

Pathways 

Pathways in cancer 103 5.3 5.30E-10 1.00E-07 
EGF signaling pathway 32 1.6 4.00E-05 8.40E-04 
Insulin signaling pathway 43 2.2 7.80E-05 1.50E-03 
Glioma 25 1.3 8.80E-05 1.50E-03 
Cell cycle 35 1.8 4.70E-03 4.40E-02 

Protein 
Domains 

Protein kinase, core 103 5.3 1.10E-10 1.40E-07 
Serine/threonine protein kinase 58 3 5.70E-07 2.90E-04 
Tyrosine protein kinase 27 1.4 3.90E-06 4.10E-03 
EGF-like region 56 2.9 1.10E-04 2.80E-02 

Tissue 
Expression 

Epithelium 382 19.5 1.70E-13 3.40E-11 
Brain 966 49.4 2.30E-12 2.30E-10 
Placenta 454 23.2 3.40E-11 2.70E-09 
Leukocyte 35 1.8 4.20E-06 1.70E-04 
Kidney 203 10.4 2.00E-05 7.40E-04 
Bone marrow 106 5.4 3.30E-04 6.90E-03 
Fibroblast 26 1.3 1.60E-03 2.40E-02 

 
 
 
Table 4.2:  GO terms enriched from the infection-associated host miRNA target network.  Using 
the DAVID bioinformatics resources, we calculated GO term enrichments using a modified 
Fisher’s exact test.  This table illustrates the number of genes (Count) associated with the 
particular GO term (Term), the percentage of that count relative to the entire list of miRNA target 
genes (%) and a p-value for that term enrichment (P-Value), which is corrected using a Benjamini 
and Hochberg post-test (Benjamini).  Each GO term is also classified based on more broad GO 
categories (GO category). 
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The enrichment of terms associated with “pathways in cancer” and “cell-

cycle” likely reflect the fact that HCMV exerts control over the host cell cycle and 

DNA damage response during productive infection (48, 49, 87, 129).  The “EGF 

signaling pathway” is activated upon virus binding and the EGFR is one of the 

known cellular receptors of HCMV (40, 349).  “Glioma” and the “pathways in 

cancer” also reflect the associations that have been made by correlating HCMV 

infection with the development of glioblastoma multiforme and the proposed 

transforming potential of the virus (31, 86, 314).  The contribution of these 

pathways to viral replication is further reflected by the enrichment of GO terms 

associated with intercellular signaling pathway mediators like protein kinases.  

HCMV infection increases MAPK activity to mobilize factors such as NF-κB, ERK, 

ATF and CREB, each of which are each required for regulating the expression of 

host and viral genes during infection (48, 172, 278, 294, 366).  There are also 

significant associations with many tissues that are relevant to HCMV pathology 

and disease.  HCMV infection typically starts at the epithelium and congenital 

infections traverse the placenta to ultimately cause damage to the fetal brain or 

nervous system.  Virus is shed in the urine and source of this virus is thought to 

originate in the kidney.  Latent HCMV infection has been observed in subsets of 

CD34+ bone marrow-derived hematopoietic stem cells.  The enrichment of GO 

terms that are associated with many essential aspects of HCMV replication 

supports the efficacy of our MRE enrichment protocol.  
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Figure 4.5: GO term enrichments reveal nodes of target genes associated with cellular 
processes relevant to HCMV replication.  By performing GO term enrichments on the genes 
targeted by infection-associated host miRNAs with >100 targets, we can classify the 
respective miRNAs based on target gene ontology.  These associations can be useful in 
identifying functional targets for subsequent validation and to elucidate key pathways that may 
be regulated by the respective miRNAs.   
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This analysis has helped reveal the extensive nature of miRNA-mediated 

regulation of host gene expression during HCMV infection, and it can also be 

applied on a smaller scale in order to classify specific nodes of miRNAs or genes 

based on their associated functions. 

 By enriching for GO terms associated with target genes of miRNAs with 

>100 predicted targets, we can identify cellular processes and pathways that may 

be regulated by the respective miRNAs during HCMV infection (Figure 4.5).  The 

fact that certain MREs are enriched in a greater number of host genes suggests 

that the respective miRNAs may exert a greater regulatory capacity during 

infection.  This is supported by the observation that the genes of each node are 

shared targets of multiple miRNAs and are therefore capable of being 

cooperatively regulated those miRNAs (Figure 4.5).  This possibility, however, 

would need to be correlated with miRNA copy number in order to determine the 

likelihood in which the miRNAs could potentially target the respective genes.  

This analysis revealed that genes targeted by let7g/i, miR106a/b, miR20a/b, 

miR16 and miR424 are associated with cell cycle, intracellular signaling 

cascades and post-translational phosphorylation.  Genes targeted by 

miR181a/b/d, however, seem to be associated with transcriptional processes and 

DNA binding.  Given the association of miR16 and miR424 with the plasma 

membrane and with the propagation of intracellular signaling cascades, it is 

possible that proliferative signals are propagated to the targets of miR181a/b/d in 

order to regulate the transcription of genes required for viral replication.   
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The let7 family was originally identified as having roles attributed to 

developmental timing in C. elegans, and it is speculated that these functions are 

conserved in higher order eukaryotes given the evolutionary conservation of both 

miRNA and MRE sequences (283).  Studies in human fibroblasts indicated that 

the let7 family is involved in regulating the proliferative response to growth stimuli 

that activate PI(3)K signaling (120).  The node of genes targeted by miR106a/b 

and miR20a/b could also potentially contribute to the proliferative response or the 

cell cycle (Figure 4.5).  This particular set of genes is enriched with 

phosphotransferases and proteins modified by phosphorylation.  CDKN1A (p21) 

is one such gene whose expression is regulated by each of these miRNAs (148).  

This protein regulates cell proliferation and cell-cycle progression by inhibiting 

cyclin-dependent kinase activity through phosphorylation.  Similar terms are 

enriched in the targets of miR16 and miR424, and many of the predicted targets 

have also been substantiated by Selbach et al 2008 (296).  As mentioned 

previously, the precise control of cell-cycle gene expression is a critical aspect of 

HCMV replication.  Upon infection, IE72 inactivates p53 and subsequently 

induces a p21-dependent cell cycle arrest (48, 50).  Given that each of these 

genes are predicted targets of infection-associated host miRNAs, it is likely that 

HCMV utilizes host miRNAs to control cell cycle progression in an effort to 

generate host factors required for viral replication.  Similarly, E2F1 is a 

transcription factor required for transactivating the expression of S-phase genes 

to allow for cell cycle progression.  HCMV induces an E2F1-mediated pro-viral 
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DNA damage response during infection and precise control of E2F1 protein 

accumulation is critical for proper progression through S-phase (87, 260).  This 

further supports the theory that infection-associated host miRNAs are integral to 

controlling host processes required for HCMV replication.  
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Discussion 

 

 We have developed a novel MRE enrichment protocol that identifies 

miRNA target sites using a probabilistic determinant of sequence retention.  This 

algorithm differs from the available web-based protocols and it allows the user to 

perform large-scale batch enrichments on contextually filtered transcripts in order 

to maximize prediction efficacy.  Using this algorithm, we have identified 

previously validated miRNA targets from the literature and we have shown that 

miR143 MREs present in the KRas 3’-UTR are capable of significantly repressing 

reporter expression during HCMV infection.  By enriching for GO terms 

associated with miRNA target genes, we showed that the predicted miRNA 

targets are associated with many host pathways that are relevant to HCMV 

replication.  Given the association of KRas with many of the enriched GO terms 

and its mechanistic regulation by miR143 during infection (and likely other 

miRNAs), precise miRNA-mediated control of KRas protein accumulation is likely 

required for supporting productive infection in primary fibroblasts.  KRas is a 

member of the RAS family of small GTPases.  It is one of the most commonly 

mutated genes in various cancers and it has validated functions that are related 

to propagating growth stimuli in order to influence cell-cycle, cell growth, motility 

and proliferation (280).  KRas also propagates proliferative signals through 

cellular signaling cascades that are relevant to HCMV infection such as MAPK 

and PI(3)K (280).  KRas function has also been linked to HCMV entry, and it 
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presumably propagates signaling cascades initiated by particle binding (346).  

KRas is also involved in regulating cell shape, motility and cytoskeletal 

arrangement.  Given the fact that deregulated miR143 expression during HCMV 

infection may be relevant to viral particle assemble or release (Figure 3.5), it is 

likely that this may be partially regulated through it is ability to control KRas 

expression.  

 The promiscuous nature of miRNA targeting makes it difficult to identify 

functional MREs.  The global analysis of miRNA target networks is essential 

when analyzing the relevance of changes in miRNA expression in any 

environment.  We propose that analyzing the cooperative action of statistically 

enriched MREs, and the relative levels of miRNA and mRNA target candidates, 

will allow researchers to discern the complex nature of miRNA-mediated 

regulation of gene expression.  We have used productive HCMV infection as the 

model in which to study this phenomenon, but the mechanistic aspects that we 

have described are likely ubiquitous.  
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Summary 

 

Human cytomegalovirus is an obligate intracellular pathogen.  Its parasitic 

nature requires that it subvert host responses aimed at limiting infection and that 

it assume control of essential host pathways that are required for viral replication.  

To this end, HCMV has evolved elaborate strategies that allow it to escape 

immune surveillance and to reprogram host cell gene expression in order to 

create a suitable environment for infection.  The mammalian RNAi pathway is 

one such mechanism that is commandeered by HCMV.  The requirement of the 

host RNAi pathway for infection is evidenced by the necessity of host machinery 

for the function of viral miRNAs and by the ability of host miRNAs to influence 

viral replication.  I propose that host miRNAs contribute to various aspects of 

HCMV infection, and that the virus assumes control over the host RNAi pathway 

in order to efficiently replicate.  The data presented in this dissertation indicate 

that HCMV reprograms host miRNA expression during productive infection, and 

that this infection-dependent reprogramming is required for efficient viral 

replication.  This effect is partially mediated through the utility of host 

transcription factors such as SP1 and CREB, each of which is each also required 

for regulating viral gene expression during infection.  By identifying global 

infection-associated miRNA target networks, I have determined that miRNA-

mediated regulation of host gene expression during infection is extensive.  Nodes 

of predicted miRNA target genes have statistically enriched associations with 
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cellular functions and pathways that are relevant to HCMV replication and 

persistence.  I also propose that correlating fold change in miRNA:mRNA 

expression during infection is not an effective means to identifying functional 

miRNA targets.  This is evidenced by the functionality of miR143 MREs enriched 

in the KRas 3’-UTR, and the results have led me to speculate that analyzing the 

cooperative action of miRNAs to co-regulate shared targets is essential in 

determining the functional relevance of host miRNAs in regulating productive 

HCMV infection.  The experimental work-flow utilized in this body of work could 

easily be applied to other investigational settings in order to examine the 

relevance of deregulated miRNA expression in any context.   

 

HCMV-specific miRNA expression profiles could help elucidate specific 

mechanisms governing various aspects of viral infection  

 

Our panel of statistically confident, infection-associated host miRNAs 

represents a novel, HMCV-specific host miRNA expression profile (Figure 3.1 C).  

The comparative analysis of miRNA expression profiles alone harbors great 

potential when characterizing host contributions to cellular tropism, disease and 

the various stages of infection.   

The utility of host miRNAs in regulating the characteristic events of HCMV 

infection could be ascertained using classical determinants of viral gene 

expression kinetics.  Alterations in host miRNA expression elicited by particle 
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binding could be identified by binding virus to cells at 4°C and subsequently 

performing gene expression profiling analyses.  Studies have shown that cellular 

gene expression is impacted as early as 1 hpi suggesting that particle binding is 

sufficient to impact host gene expression (373).  However, this effect was 

observed during productive infection and the involvement of host miRNAs was 

not investigated.  Inhibiting cellular protein translation using cyclohexamide or 

inhibiting DNA replication using foscarnet could potentially characterize host 

miRNAs as having functions relevant to IE/E or E/DE viral replication events.  

The relevance of miRNAs to L events of viral replication could be inferred 

through the use of mutant virus strains, which are defective in capsid loading or 

virion egress (3, 297).  These studies could also give indication as to which viral 

proteins are contributing to the deregulated miRNA expression at the relevant 

times post-infection.   

Analyzing HCMV-specific miRNA expression profiles from infections in 

fully permissive cells against infections in cells that do not support a complete 

productive replication cycle could prove useful in identifying miRNA-mediated 

determinants of cell tropism.  It is known that clinical strains of HCMV harbor 

ancillary genes that contribute to in-vivo tropism patterns (42, 53, 149).  The 

mechanistic function of those genes is still being defined, but the potential role 

that host miRNAs play in this process has not been investigated.  Endothelial cell 

tropism is dictated by events that occur after virion fusion and entry, which 

suggests the necessity of a specific nuclear transport mechanism (306, 308).  
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The contribution of specific host factors in regulating these processes has not 

been formally discredited, and it is therefore possible that miRNAs contribute to 

HCMV tropism given their mechanistic control of gene expression.  An exemplary 

model to support this hypothesis is illustrated by miR122, a liver-specific miRNA 

that enhances HCV replication (70, 153).  Reconstituting miR122 expression in 

non-permissive cell lines is sufficient to support efficient HCV replication (54, 

108).   

Comparison of HCMV-specific miRNA expression profiles to other virus-

specific miRNA expression profiles could be used to identify miRNAs whose 

deregulated expression is either common to viral infections or are specific to 

particular classes of viruses.  miRNA expression profiling of HPV(+) cervical 

cancer tissues and cell lines revealed that many of the deregulated miRNAs 

exhibited similar expression dynamics as our HCMV infection-associated host 

miRNAs (371).  Furthermore HPV E6 protein was proposed to be responsible for 

upregulating miR16 expression during infection.  The miR16 family regulates the 

cell-cycle and cell growth, and their increased expression is thought to contribute 

to blocking cell-cycle progression (200).  Given functional similarities in HPV E6 

and HCMV IE proteins, it is possible that increasing miR16 expression may serve 

to modify the proliferative capacity of the infected cell in order to create an 

environment that is suitable for replication.  GO terms enriched from the 

predicted targets of miR16 further suggest that the control over cell cycle may be 
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exerted through miRNA-mediated control of signaling cascade intermediates 

(Figure 4.5).   

Comparing the miRNA expression profiles from the different stages of 

HCMV infection in the relevant cell types could also help elucidate the 

contribution of host miRNAs in the establishment and maintenance of the 

respective stages: productive, persistent and latent.  Studies have shown that the 

different stages of EBV latency can be characterized by unique miRNA 

expression patterns, and similar studies with HCMV have also begun to analyze 

the influence of host miRNAs in the establishment and maintenance of latency 

(44, 263).  Evidence in the literature suggests that miR106a/b and miR20a/b may 

have roles that are relevant to maintaining latent HCMV.  The miR17/92 family 

and its homologues are comprised of miR17, miR19a/b, miR20a/b, miR25, 

miR106a/b and miR93.  This particular family of miRNAs is involved oncogenesis 

given their roles in controlling cell proliferation, differentiation and cell survival 

(250).  Decreased miR106a/b and miR20a/b have been shown to regulate 

monocyte differentiation by allowing for accumulation of AML1 (RUNX1) (105).  

HCMV is latently maintained in CD34+ bone marrow progenitor cells, which are 

monocytic precursor cells.  Given that increased miR106a/b and miR20a/b 

expression is sufficient to prevent monocyte differentiation, this may represent a 

mechanism by which HCMV could maintain a latent infection.   
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miR132/212 and miR143/145 are potentially key players in HCMV biology 

 

 We observed that productive HCMV infection results in a robust alteration 

of host miRNA expression (Figure 3.1 A & C).  The lack of a correlation between 

miRNA expression in mock and infected cells indicated that this effect was 

infection dependent (Figure 3.1 A; R2 values).  This was also illustrated by the 

static nature of miRNA expression in consecutive mock-infected time-points 

(Figure 3.1 B).  The global change in host miRNA expression during infection 

was extensive and robust, suggesting that their expression is specifically de-

regulated during infection (Figure 3.1).  We validated the infection-associated 

change in expression of two conserved clusters of host miRNAs (miR132/212 

and miR143/145) and determined that their altered expression contributed to 

efficient viral replication (Figure 3.4 & 3.5).  This suggested that HCMV 

specifically reprogrammed the expression of these host miRNAs, and it indicates 

that their functionality contributes to infection.  Each of these miRNA clusters has 

validated functions that are relevant to different aspects of HCMV infection and 

pathogenesis.   

 The best characterized functions of miR132/212 are related to neuronal 

morphology and maturation.  miR132 regulates the expression of methyl-CpG-

binding protein 2 (MeCP2) and this effect impacts dendritic spine density and 

neuronal maturation (168, 343).  This effect is interesting given the phenotypic 

similarities with neurological disorders associated with congenital HCMV infection.  
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HCMV infection is also capable of inhibiting neuronal precursor cell differentiation, 

and this is thought to contribute to HCMV-associated neurological diseases (248, 

249).  It is possible that deregulated miR132/212 expression during HCMV 

infection of neurons or neuronal precursor cells could contribute to these effects.  

The relevance of MeCP2 to HCMV replication is also intriguing given the fact that 

the HCMV genome is methylated and enriched in GC dinucleotides (Figure 1.1).  

MeCP2 can bind to a single methylated CpG residue and has functions relevant 

to transcriptional repression and chromatin modification (194).  We determined 

that MeCP2 expression is not influenced by miR132/212 during productive 

HCMV infection in HEL fibroblasts (data not shown).  We also observed a 

dramatic cellular re-localization of MeCP2 protein from nuclear foci to perinuclear 

aggregates during HCMV infection.  This suggested that other mechanisms 

might exist to limit MeCP2 nuclear function during productive infection.  However, 

it is still possible that miR132/212-mediated regulation of MeCP2 expression 

could contribute to neurological pathology that is characteristic to congenital 

HCMV infection.  The ability of miR132/212 to influence MeCP2 expression 

during HCMV infection should be examined in relevant neuronal or neuronal 

precursor cell types or in an animal model of congenital infection (292).  miR132 

expression is also upregulated during KSHV, HSV-1 and HCMV infection in 

monocytes (177).  This effect is thought to be required for regulating p300 

expression in order to subvert the host interferon response.  miR132 has also 

been shown to regulate the host inflammatory response by regulating the 
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expression of acetylcholinesterase (298).  Taken together, these results suggest 

that deregulated miR132/212 expression during HCMV infection could potentially 

serve to mediate various aspects of viral replication, immunity and disease.   

      The miR143/145 cluster also has validated functions relevant to HCMV 

replication.  Decreased expression of miR143 and miR145 is associated with the 

development of numerous types of cancers (5).  These associations are 

reminiscent of the dynamic gene expression patterns, metabolic changes and 

intracellular signaling signatures during HCMV infection, which have garnered it 

the title of an “onco-modulatory” virus (22, 63, 236).  miR145 expression is 

attenuated during HPV infection, and this is speculated to inhibit both the antiviral 

effect of miR145 targeting HPV genes and the ability of miR145 to regulate the 

cellular transcription factor KLF4 (121).  Although our MRE enrichment protocol 

did not identify KLF4 as a predicted target of miR145, other downregulated host 

miRNAs including miR25 and miR7 were predicted to target KLF4.  This 

potentially highlights the utility of KLF4 in regulating HCMV replication.  

miR143/145 also regulate cytoskeletal dynamics in smooth muscle cells (SMC) 

(360).  This is interesting given that the defect in HCMV replication imposed by 

miR143 over-expression may be involve deregulated events involving the 

cytoskeleton required for virion assembly or egress (Figure 3.5).  miR143/145 

also affect KRas signaling by regulating the accumulation of Ras response 

element binding protein 1 (RRBE1) (159).  Over-expression of either miRNA 

leads to attenuated MAPK and PI(3)K signaling, and this is contrary to what is 
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observed during HCMV infection.  It’s also possible that miR143 and/or miR145 

represent a part of the host anti-viral response to infection.  As mentioned in 

chapter 3, miR143/145 promoter activity is strongly activated at early times post-

infection (Figure 3.7).  This initial activation could represent the host response to 

infection, and the later attenuation could represent the virus combatting that 

response.  Preliminary enrichment analyses indicated that the HCMV Merlin 

genome harbors statistically enriched MREs corresponding to miR143, 

supporting the idea that miR143 may be an anti-viral host miRNA (data not 

shown).  This analysis, however, used the HCMV Merlin genomic sequence as a 

template for the enrichment of host MREs (AY446894.2).  Therefore, it is still 

unclear whether the corresponding viral transcripts also harbor functional host 

MREs.  Similar to the validated miR132/212 functions, deregulated miR143/145 

expression during HCMV infection could potentially serve to mediate various 

aspects of viral replication and disease.  These findings highlight the necessity of 

analyzing the global miRNA target networks when identifying the functional 

relevance of deregulated miRNA expression. 
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Identifying mechanisms governing deregulated host miRNA expression 

during HCMV infection 

 

Identifying the regulatory mechanisms that govern miRNA expression 

during HCMV infection is essential to understanding their relevance to viral 

replication.  By enriching for DNA motifs associated with infection-associated 

host miRNA promoters, we were able to assemble a cohort of host TFBS whose 

functions were likely relevant to controlling host miRNA expression during 

infection.  We determined that deregulated miR132/212 expression during HCMV 

infection was transcriptionally mediated by the cooperative action CREB and SP1.  

The utility of these particular transcription factors is supported by their 

documented contribution to HCMV replication.  Although we determined that 

transcriptional mechanisms contributed to deregulated miR143/145 expression 

during infection, our protocol failed to identify functional TFBS that contributed to 

this effect.  This may reflect limitations in our experimental design.   

As mentioned in Chapter 3, it is possible that the large amount of genomic 

sequence between the miR143 and miR145 coding loci may contain 

transcriptional elements that contribute to regulating miR143/145 expression 

during infection.  Future DNA motif enrichments should not operate under the 

assumption that clustered miRNAs are co-transcribed in the same transcriptional 

unit, and thus should include genomic sequences preceding each clustered 

miRNA.  Even if a particular set of clustered miRNA are co-expresed in the same 
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transcriptional unit, this optimized protocol will allow us to analyze the 

contribution of TFBS between the clustered miRNA in regulating their expression 

during HCMV infection.  It is also likely that post-transcriptional mechanisms may 

be influencing the accumulation of miR143/145 expression during infection.  This 

concern could be addressed by quantifying pri-miR143/145 levels during 

infection by qRT-PCR, but future experiments should quantify the absolute copy 

numbers of pri-miRNAs, mature miRNAs and mRNAs through the use of high 

throughput sequencing or microarray.  This will effectively allow us to investigate 

the influence of post-transcriptional mechanisms in regulating global miRNA 

expression.  This analysis could also strengthen the DNA motif enrichment 

analysis by allowing us to concentrate on miRNAs whose expression is more 

likely controlled at the transcriptional level.   

Clustering miRNAs and host genes on the basis of infection-associated 

fold change in expression could also help to more accurately elucidate 

transcriptional mechanisms governing changes in gene expression during 

infection.  The use of a spline-based multivariate regression method has proved 

useful in identifying sets of co-regulated genes (268, 320).  Clustering the 

miRNAs on the basis of expression kinetics will allow us to discriminatively curate 

statistically robust groups of co-regulated genes in order perform DNA motif 

enrichments.  This analysis can also be applied to host mRNAs to identify genes 

whose expression is transcriptionally modulated during infection.  This criterion 

could subsequently be incorporated into the MRE enrichment protocol in order to 
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decipher the impact of miRNA-mediated vs. transcriptionally-mediated 

mechanisms regulating gene expression during infection.  Transcription factor 

expression data can also be incorporated to weigh the likelihood that a particular 

transcription factor is functional based on its absolute expression levels and it is 

relative change in expression during infection.  The promoter analyses should 

also incorporate epigenetic signatures such as CpG islands.  HCMV gene 

expression can be influenced by epigenetic mechanisms and it is possible that 

similar mechanisms control host gene expression during infection (202).   

   

Identifying infection-associated host miRNAs networks 

 

 In order to identify targets of HCMV infection-associated host miRNAs, we 

developed a probability-based algorithm that uses 3’-UTR sequences as a 

template for the statistical enrichment of various MREs.  This novel protocol 

allows the end user to perform large-scale batch probabilistic enrichments on 

contextually filtered gene sets.  The efficacy of this protocol was evidenced by 

the positive identification of validated miRNA targets from our own lab and from 

other published studies, and by the functionality of MREs identified in the KRas 

3’-UTR.  Analysis of the infection-associated host miRNA target network revealed 

that miRNA-mediated control of host gene expression during HCMV infection is 

extensive.  We have also determined that correlating fold change in 

miRNA:mRNA expression during infection is not an effective means to identifying 
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functional miRNA targets.  This is evidenced by the functionality of miR143 

MREs enriched in the KRas 3’-UTR.  miR143 expression is robustly decreased 

during HCMV infection (Figure 3.4).  This effect, however, does not alleviate the 

ability of this miRNA to regulate KRas expression during infection (Figure 4.4).  

These results have led me to speculate that analyzing the cooperative action of 

miRNAs to co-regulate shared targets is essential in determining the functional 

relevance of host miRNAs in regulating productive HCMV infection.   

Our algorithm calculates the probability that the presence of an MRE(s) in 

a 3’-UTR sequence is due to random events.  This probability can be corrected in 

future software updates in order to account for the presence of other miRNA 

MREs and the absolute levels of the miRNA and mRNA in question.  This will 

allow the end user to more accurately identify functional miRNA targets.  The 

absolute copy numbers of miRNAs and their cognate target mRNAs can be used 

to weight the MRE enrichments based on the likelihood of a miRNA:mRNA 

interaction occurring.  The thresholds for binning miRNAs and mRNAs based on 

relative copy number would have to be determined empirically, but the protocol 

would operate with the intention of positively weighting the enrichment 

probabilities of genes with desirable relative copy numbers.  The enrichment 

probabilities can also be weighted using the number of ancillary MREs present in 

the given 3’-UTR.  Currently, the MRE enrichment algorithm only calculates the 

probability of a single miRNA’s MRE being present.  This can be performed for 

the different MRE types (6mer, 7mer and 8mer) but it does not consider the 
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contribution of other miRNAs whose MREs are also enriched in that same 3’-

UTR.  The last addition to this protocol should include enrichment of other 

miRNA seed types described by Bartel et al 2009 (23).  We are still operating 

under the same assumption: if a miRNA and it is cognate target are each 

expressed at appreciable levels and if the mRNA 3’-UTR harbors a statistically 

enriched MRE(s), then the likelihood of a functional miRNA:mRNA interaction 

occurring is statistically probable.  However, we can now correct the enrichment 

probabilities using the relative copy numbers of miRNAs:mRNA and the 

cumulative summation of additional sites within that same 3’-UTR.  This will allow 

the end user to more accurately predict the presence functional MREs.   

In order to analyze the global implications that deregulated host miRNA 

expression had on HCMV replication, we enriched for GO terms associated with 

the predicted miRNA target networks.  This analysis identified host pathways and 

processes that are known to contribute to various aspects of HCMV infection and 

it implicated host miRNAs in the regulation of HCMV replication and pathology 

(Table 4.2).  These findings support the efficacy of our MRE enrichment protocol 

and they suggest that the phenotypic function of miRNAs can be inferred through 

GO analysis of their respective targets (Figure 4.5).  Cell types and tissues are 

distinguished by their unique gene expression profiles.  Implicit in this fact is the 

constant dynamic between miRNA and mRNA expression levels.  The result of 

which, is a unique miRNA:mRNA repertoire for the respective tissues and cell 

types.  Therefore, miRNAs could potentially have a completely unique mRNA 
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target network in each environment, and a completely unique phenotypic function.  

I propose that applying GO term enrichments to the predicted miRNA target 

network will allow the user to infer the phenotypic function of a miRNA (or a 

family/cluster of miRNAs).  This information can also aid in the identification of 

functional miRNA target genes.           

 

Workflow for analyzing the effects of dynamic miRNA expression 

 

 The work presented in this thesis have led us to propose that analyzing 

the cooperative ability of miRNAs to co-regulate shared targets is essential in 

determining the functional relevance of host miRNAs in regulating productive 

HCMV infection.  To address this concern we employed a novel MRE enrichment 

protocol and we have validated the efficacy of this algorithm using both 

experimental and anecdotal measures.  Future updates of this software should 

consider the relative copy number of miRNA:mRNA and the presence of ancillary 

MREs in a given 3’-UTR when correcting the enrichment probabilities.  This will 

allow the end user to more accurately predict the presence of functional MREs.  

By combining this miRNA target prediction algorithm with GO term enrichments, 

one will also be able to infer a phenotypic relevance of the miRNA target 

networks and thus can more accurately identify relevant miRNA-regulated genes.  

I present here, a work-flow designed for studying the relevance of changes in 

miRNA expression in any context or environment (Figure 5.1).  
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This work-flow could be applied in order to identify functional targets of both host 

and viral miRNAs.  Accordingly, it can also be used to identify functional MREs 

present in either host or viral transcripts.  Given the observation the miRNAs are 

capable of regulating the expression of viral genes through MREs present 

anywhere in viral transcripts, identifying functional MREs in viral genes should 

not solely focus on 3’-UTR sequences (198).  

Figure 5.1: Work-flow for investigating the relevance of degregulated miRNA expression.  
The experimental protocols illustrated in this figure can be applied in any context to study 
the functional relevance of deregulated miRNA expression.  It will address the mechanisms 
controlling miRNA expression (2b-4b & 5) and their phenotypic implications by analyzing 
miRNA target networks (2a-4a & 5).  
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Identifying functional miRNA target networks should start by quantifying 

absolute copy numbers and calculating relative fold change in expression of 

miRNAs and mRNA transcripts in infected cells (Figure 5.1; 1).  After contextually 

filtering potential mRNA targets based on empirically determined detection limits, 

3’-UTR sequences to the respective genes can be gathered and the MRE 

enrichments can be performed (Figure 5.1; 2a).  MRE enrichment probabilities 

will be weighted using relative miRNA:mRNA copy numbers and by incorporating 

the influence of ancillary MREs present in the same 3’-UTR (Figure 5.1; 3a).  

Subsequent MRE validation can also be used as a means to weigh MRE 

enrichment probabilities using experimentally validated data (Figure 5.1; 4a).  

Predicted target networks can then be used as the template for GO term 

enrichments (Figure 5.1; 5).  This will help decipher the phenotypic relevance of 

individual miRNAs or clusters/families of miRNAs based on the GO term 

associations of their respective target network genes.   

Fold change in expression data can be used to cluster genes based on 

similar expression kinetics during infection, and upstream genomic sequence 

from these clusters can be used as the template for performing DNA motif 

enrichment analyses (Figure 5.1; 2b).  Prior to this, however, pri-miRNA 

accumulation can be examined in order to remove the promoter sequences of 

miRNAs whose expression is regulated post-transcriptionally.  This will allow the 

user to focus on genes that have a higher likelihood of being transcriptionally 

regulated during infection.  Also, transcription factor abundance and fold-change 
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in expression can be utilized to assign significance to the respective TFBS being 

investigated.  DNA motif enrichment will be used in order to identify functional 

TFBS that potentially influence gene expression during infection and GC islands 

can also be identified to test the contribution of methylation to the deregulation of 

miRNA and mRNA expression during HCMV infection (Figure 5.1; 3b).  

Functionality of the identified promoter elements can subsequently be validated 

and the utility of particular TFs can be incorporated into the GO analysis. 

The promiscuous nature of miRNA-mediated regulation of gene 

expression makes it difficult to characterize the relevance of deregulated miRNA 

expression to any process or pathway.  I propose that the combined use of 

bioinformatics and experimental molecular biology will help elucidate the complex 

network of influences that miRNAs exert of host gene expression.        
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HCMV miRNAs Expressed During 
Productive Infection Display 

Sequence Variability 
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Introduction 

 

After the characterization of miRNA coding determinants and biochemical 

processing, there was a significant effort to determine whether viral genomes 

also harbored miRNA coding loci.  This was typically done by identifying potential 

miRNA hairpin structures in silico using RNA folding prediction algorithms, and 

subsequently cloning small RNA fractions from infected cells in order to validate 

the mature miRNA sequences.  Many of the initial studies focused on large 

dsDNA viruses such as the herpesviruses, but various groups have shown that 

many other viral species also express mature miRNAs during infection (261).   

One of the first viruses shown to express mature miRNAs during infection 

was HCMV (258).  These miRNAs were identified during the productive infection 

of multiple relevant cell types with both lab-adapted strains and clinical isolates of 

virus (85, 116, 225, 258).  Small RNA fractions were cloned from infected cells 

and the predicted mature miRNAs were identified through sequencing or 

northern blot.  A subset of these miRNAs were also classified as having IE, E/DE 

or L expression kinetics based on the requirement of protein synthesis or DNA 

replication for their expression (116).  The recent utilization of high throughput 

RNA sequencing revealed that both the “guide” and “passenger” strands can 

accumulate to appreciable levels during HCMV infection (225, 316).  Currently, 

the Sanger miRBase lists 15 viral miRNA coding loci present in the HCMV 

genome and 26 detectable mature miRNAs processed from the respective 
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hairpins (173).  Only a fraction of these miRNAs have been functionally validated, 

but they have been shown to be capable of regulating the expression of both 

host and viral genes during infection (332).   

There are still some unanswered concerns regarding the presence or 

absence of a number of miRNA coding loci predicted by Grey et. al. 2005, and 

the presence of alternatively processed miRNAs known as “isomiRs”.  Therefore, 

we sought to validate the expression and mature sequence of the predicted 

HCMV miRNAs using a microarray “probe walking” experiment that detected the 

accumulation of consecutive 22 nt sequences along the predicted miRNA hairpin 

during productive infection.  This work was done in concert with a former 

graduate student of the Kowalik Lab, Dr. Bradford Stadler, and with the help of a 

former post-doctoral fellow Herve Seitz. 
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Results 
 

The 15 HCMV miRNAs listed in the Sanger database were identified in 4 

landmark studies (Table A1) (85, 116, 225, 258).  Cumulatively, these works 

predicted the presence of over 20 viral miRNAs.  Hairpin structures predicted by 

Grey et al 2005 corresponding to regions in UL31, UL53, UL54, UL102 and 

UL111 were never further investigated beyond their predication.  The detection of 

miR-UL70 was also speculated to have been an artifact given that it was 

detected in mock-infected cells and because it is detection was not consistently 

replicated by other groups.  The advent of high throughput sequencing ushered 

in the idea that there is some degree of variability in the mature miRNA 

sequences (184, 355, 372).  The differential processing of pre-miRNAs has been 

observed and this can lead to sequence and length variability at both the 3’ and 5’ 

ends of the miRNA (109, 184, 355).  The mechanistic aspects of this variability 

are beginning to be discerned, but this phenomenon has important implications in 

miRNA functions since the production of these isomiRs could potentially result in 

the regulation of novel targets through miRNA seed variability.  To this end, we 

designed an experimental protocol that employed microarray “probe walking” in 

order to analyze the accumulation of sequences along each of the predicted 

miRNA hairpins during productive infection.  This experimental design would also 

allow us to investigate the potential for variability in these same sequences 

through differential miRNA processing. 
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Accession1 ID2 Mature ID3 Publication4 
MI0001680 hcmv-mir-UL112 hcmv-miR-UL112-3p Pfeffer 2005 (258) hcmv-miR-UL112-5p 
MI0001681 hcmv-mir-UL148D hcmv-miR-UL148D Pfeffer 2005 (258) 

MI0001678 hcmv-mir-UL22A hcmv-miR-UL22A-3p Pfeffer 2005 (258) 
Dunn 2005 (85) hcmv-miR-UL22A-5p 

MI0001679 hcmv-mir-UL36 hcmv-miR-UL36-3p Pfeffer 2005 (258) hcmv-miR-UL36-5p 
MI0024164 hcmv-mir-UL59 hcmv-miR-UL59 Stark 2012 (316) 
MI0024165 hcmv-mir-UL69 hcmv-miR-UL69 Stark 2012 (316) 

MI0003688 hcmv-mir-UL70 hcmv-miR-UL70-3p Grey 2005 (116) hcmv-miR-UL70-5p 

MI0023578 hcmv-mir-US22 hcmv-miR-US22-3p Stark 2012 (316) hcmv-miR-US22-5p 

MI0001684 hcmv-mir-US25-1 hcmv-miR-US25-1-3p Pfeffer 2005 (258) 
Dunn 2005 (85) hcmv-miR-US25-1-5p 

MI0001685 hcmv-mir-US25-2 hcmv-miR-US25-2-3p Pfeffer 2005 (258) hcmv-miR-US25-2-5p 

MI0023579 hcmv-mir-US29 hcmv-miR-US29-3p Grey 2005 (116) hcmv-miR-US29-5p 

MI0001686 hcmv-mir-US33 hcmv-miR-US33-3p Pfeffer 2005 (258) hcmv-miR-US33-5p 

MI0003687 hcmv-mir-US4 hcmv-miR-US4-3p Grey 2005 (116) hcmv-miR-US4-5p 
MI0001682 hcmv-mir-US5-1 hcmv-miR-US5-1 Pfeffer 2005 (258) 

MI0001683 hcmv-mir-US5-2 hcmv-miR-US5-2-3p Pfeffer 2005 (258) hcmv-miR-US5-2-5p 
Predicted hcmv-mir-UL31 - Grey 2005 (116) 
Predicted hcmv-mir-UL53 - Grey 2005 (116) 
Predicted hcmv-mir-UL54 - Grey 2005 (116) 
Predicted hcmv-mir-UL102-1 - Grey 2005 (116) 
Predicted hcmv-mir-UL102-2 - Grey 2005 (116) 
Predicted hcmv-mir-UL111A - Grey 2005 (116) 
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In order to analyze the expression and sequences of the predicted viral 

miRNAs during productive infection, we designed 22 nt custom microarray 

probes staggered by 1 base that spanned the entire pre-miRNA hairpin (Figure 

A.1).  It is of note to mention that miR-UL59, miR-UL69 and miR-US22 were 

discovered after the design of this experiment and were therefore excluded from 

our analysis.  Similar to the microarray studies in Chapter 3, whole-cell RNA was 

purified from mock-infected and MOI = 5 infected HEL fibroblasts at 48 hpi.  

Small RNAs were fractionated from the whole-cell RNA and they were 

subsequently hybridized to our custom microarray.  This allowed us to analyze 

the accumulation of sequences along the entire pre-miRNA hairpin by quantifying 

the fluorescence generated from the binding of the consecutive array probes 

(Figure A1). 

Table A.1: The HCMV genome harbors novel viral miRNAs.  Numerous groups have 
predicted the presence of miRNAs in the HCMV genome using in-silico prediction 
algorithms to identify miRNA hairpin structures.  The expression and function of a 
subset of those miRNAs have been validated during infection, but the expression of a 
number of predicted miRNAs from Grey et al 2005 have not yet been substantiated.  
Included in this table are all of the validated viral miRNAs listed in the Sanger miRBase 
release 20 (Accession1) and the unsubstantiated miRNAs predicted by Grey et al 2005.  
Also illustrated are the miRNA identifiers (ID2), the mature miRNAs processed from the 
respective hairpins (Mature ID3) and the relevant publications that identified the 
respective viral miRNAs.  The rows highlighted in green indicate the miRNAs included in 
our analysis.   
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  Upon investigating the accumulation transcripts corresponding to the 

unsubstantiated miRNAs predicted by Grey et al 2005 (miR-UL31, miR-UL53, 

miR-UL54, miR-UL102-1, miR-UL102-2 and miR-UL111A), we determined that 

these predicted hairpins did not represent true virally encoded miRNAs (Figure 

A.2 A).  The majority of the array probes corresponding to the predicted pre-

miRNA hairpins generated little to no detectable fluorescence, and those that did 

fluoresce had equivalent signals in both the mock-infected and infected samples.  

This would indicate that no complementary small viral RNA sequences exist, and 

that the array probes are detecting cellular artifacts.  Given that the RNA 

hybridized to the arrays was size-selected to enrich for small RNAs, it is unlikely 

Figure A.1: Viral miRNA “probe walking” design.  The viral pre-miRNA sequences were 
used as the template to design 22 nt probes, staggered by 1 base, which covered the 
entire pre-miRNA sequence.  After hybridizing RNA to our custom array, we calculated the 
relative accumulation of small RNAs with complementary sequences by quantifying the 
mean fluorescence intensity generated by the binding of the respective array probes.  
Below each plot is the pre-miRNA sequence annotated in the Sanger miRBase 20.  The 
bold-faced/underlined sequence represents the annotated mature miRNAs, and the boxed 
areas represent sequences corresponding to probes that generated an MFI>300.  The 
dotted lines on the MFI plots illustrate the location of a probe corresponding to the mature 
miRNA sequences listed in miRBase 20.  Each plot illustrates MFI signal generated by the 
same probe-sets in mock (blue) and infected (red) cells. 
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that these probes are detecting cellular transcripts.  Some of the probes do 

harbor limited complementarity to cellular miRNAs, but it is difficult to determine 

whether they are binding to miRNAs with limited complementarity or to some 

other small RNAs that could have arisen from RNA degradation.  A similar 

pattern was also observed for HCMV-miR-UL70 (Figure A.2 B).  Although miR-

UL70 is listed as a viral miRNA in the Sanger miRBase 20, its detection during 

infection was not consistently replicated.  More recent works that utilized deep 

sequencing to analyze the HCMV miRNA transcriptome were also unable to 

detect miRNAs corresponding to miR-UL70 (225, 316). These findings support 

the notion that miR-UL70 is not an HCMV-encoded miRNA.      



 145 

 

Figure A.2: Predicted HCMV pre-miRNAs and miR-UL70 are not virally encoded miRNAs.  (A) 
Using the custom microarray “probe walking” protocol, we detected the accumulation of 
transcripts corresponding to the predicted pre-miRNAs from Grey et al 2005: miR-UL31-1, miR-
UL53-1, miR-UL54-1, miR-UL102-1, miR-UL102-2 and miR-UL111A.  (B) The same protocol 
was used to detect mature miRNAs processed from the miR-UL70 pre-miRNA as well.  Based 
on the limited detection and equivalent signals in mock-infected and infected cells, these results 
suggest that none of these transcripts represent true viral miRNAs.   
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Using the miRNA probes that generated the highest MFI readings, we 

compared the relative accumulation of each mature viral miRNA with respect to 

what was observed by other groups (Figure A.3).  Generally, these trends were 

in concordance with observations made by Stark et al 2012 and Meshesha et al 

2012, but there were differences in the ranking of each mature viral miRNA 

among the respective groups (225, 316).  The lack of concordance in the ranked 

accumulation of the respective mature miRNAs in each study suggests the 

potential for variability in either regulation of miRNA expression or processing in 

the respective experimental conditions.   

Figure A.3: Relative accumulation of HCMV miRNAs.  Using the microarray probes that 
generated the highest MFI readings as a determinant of the most abundant viral miRNA, we 
compared the relative accumulation of each viral miRNA to other published studies.  
Generally, the rankings were similar among the individual groups.  However, differences in 
the accumulation of the respective mature miRNAs indicate to potential variability in miRNA 
expression or processing in the respective experimental conditions.  miRNAs highlighted in 
green were not included in our study.   
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Using the “probe-walking” protocol, we also mapped the mature 

sequences of the remaining HCMV miRNAs listed in Table A1 (Table A2).  A 

general trend that emerged when comparing probes that generated the highest 

MFI readings to the annotated mature miRNA sequences listed in the Sanger 

miRBase 20 was that these probes typically corresponded to sequences that 

were offset from the miRBase annotations by 1-3 bases at the 5’ end of the 

mature miRNA (Table A2).  Assuming that there is an average GC content 

among the template RNA being hybridized to the array, probes with 100% 

complementarity to the target template will exhibit the highest fluorescence 

readings.  As the probes walk along the pre-miRNA sequence and 

complementarity is lost, the fluorescence signal will begin to decrease.  Although 

this is not necessarily a linear loss of signal, we can assume that peak 

fluorescence signals will give an accurate representation of target accumulation.  

A representative set of MFI plots in Figure A.4 illustrates the broad and/or 

staggered peak readings, which indicate the potential variability in mature miRNA 

sequence and/or length.  Given that each respective set of observations were 

made using unique experimental conditions, it is tempting to speculate that 

productive HCMV can potentially generate unique sets of mature viral miRNAs 

depending on the virus strain and cell type being infected.  However, given the 

concordance among Stark et al 2012 and Meshesha et al 2012 and the 

increased sensitivity of their deep sequencing protocols, further sequence-based 

experimentation would be required to substantiate this theory.  
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miRNA Sequence Source 

HCMV-miR-UL22A-5p 
        UAACUAGCCUUCCCGUGAGA miRBase 20 
        UAACUAGCCUUCCCGUGAGA  Stark et al 2012 
        UAACUAGCCUUCCCGUGAGA Meshesha et al  2012 
GUCUAACUAGCCUUCCCGUGAG  

HCMV-miR-UL22A-3p 
UCACCAGAAUGCUAGUUUGUAG miRBase 20 
UCACCAGAAUGCUAGUUUGUAG  Stark et al 2012 
UCACCAGAAUGCUAGUUUGUAG Meshesha et al  2012 
UCACCAGAAUGCUAGUUUGUAG  

HCMV-miR-UL36-5p 
   UCGUUGAAGACACCUGGAAAGA miRBase 20 
   UCGUUGAAGACACCUGGAAAGA  Stark et al 2012 
   UCGUUGAAGACACCUGGAAAGA Meshesha et al  2012 
GUCGUUGAAGACACCUGGAAAG  

HCMV-miR-UL36-3p 
   UUUCCAGGUGUUUUCAACGUGC miRBase 20 
   UUUCCAGGUGUUUUCAACGUG  Stark et al 2012 
   UUUCCAGGUGUUUUCAACGUG Meshesha et al  2012 
CUUUCCAGGUGUUUUCAACGUG  

HCMV-miR-UL112-5p 
CCUCCGGAUCACAUGGUUACUCA miRBase 20 
CCUCCGGAUCACAUGGUUACUCA  Stark et al 2012 
CCUCCGGAUCACAUGGUUACUCA Meshesha et al  2012 
CCUCCGGAUCACAUGGUUACUC  

HCMV-miR-UL112-3p 
   AAGUGACGGUGAGAUCCAGGCU miRBase 20 
   AAGUGACGGUGAGAUCCAGGCU  Stark et al 2012 
   AAGUGACGGUGAGAUCCAGGC Meshesha et al  2012 
UAAGUGACGGUGAGAUCCAGGC  

HCMV-miR-US33-5p 
GAUUGUGCCCGGACCGUGGGCG miRBase 20 
GAUUGUGCCCGGACCGUGGGCG  Stark et al 2012 
GAUUGUGCCCGGACCGUGGGCG Meshesha et al  2012 
GAUUGUGCCCGGACCGUGGGCG  

HCMV-miR-US33-3p 
        UCACGGUCCGAGCACAUCCAA miRBase 20 
        UCACGGUCCGAGCACAUCCAA  Stark et al 2012 
        UCACGGUCCGAGCACAUCCA Meshesha et al  2012 
CCGUCACGGUCCGAGCACAUCC  

HCMV-miR-US5-1 
        UGACAAGCCUGACGAGAGCGU miRBase 20 
        UGACAAGCCUGACGAGAGCGU  Stark et al 2012 
        UGACAAGCCUGACGAGAGCGU Meshesha et al  2012 
CCAUGACAAGCCUGACGAGAGC  

HCMV-miR-US25-1-5p 
   AACCGCUCAGUGGCUCGGACC miRBase 20 
   AACCGCUCAGUGGCUCGGACC  Stark et al 2012 
   AACCGCUCAGUGGCUCGGACC Meshesha et al  2012 
GAACCGCUCAGUGGCUCGGACC  

HCMV-miR-US25-1-3p 
   UCCGAACGCUAGGUCGGUUCU miRBase 20 
GUCCGAACGCUAGGUCGGUUCU  Stark et al 2012 
   UCCGAACGCUAGGUCGGUUCU Meshesha et al  2012 
  

HCMV-miR-US25-2-5p 
      AGCGGUCUGUUCAGGUGGAUGA miRBase 20 
      AGCGGUCUGUUCAGGUGGAUGA  Stark et al 2012 
      AGCGGUCUGUUCAGGUGGAUGA Meshesha et al  2012 
UUAGCGGUCUGUUCAGGUGGAU  

HCMV-miR-US25-2-3p 
      AUCCACUUGGAGAGCUCCCGCGGU miRBase 20 
      AUCCACUUGGAGAGCUCCCGCGGU  Stark et al 2012 
      AUCCACUUGGAGAGCUCCCGCGGU Meshesha et al  2012 
CCACUUGGAGAGCUCCCGCGGU  

HCMV-miR-US4-5p 
     UGGACGUGCAGGGGGAUGUCUG miRBase 20 
     UGGACGUGCAGGGGGAUGUCUG  Stark et al 2012 
     UGGACGUGCAGGGGGAUGUC Meshesha et al  2012 
CAUGGACGUGCAGGGGGAUGUC  

HCMV-miR-US4-3p 
   UGACAGCCCGCUACACCUCU miRBase 20 
   UGACAGCCCGCUACACCUCUCU  Stark et al 2012 
   UGACAGCCCGCUACACCUCU Meshesha et al  2012 
GUGACAGCCCGCUACACCUCUC  
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miRNA Sequence Source 

HCMV-miR-US5-2-5p 
CUUUCGCCACACCUAUCCUGAAAG miRBase 20 
CUUUCGCCACACCUAUCCUGAAAG  Stark et al 2012 
CUUUCGCCACACCUAUCCUGAAAG Meshesha et al  2012 
CUUUCGCCACACCUAUCCUGAA  

HCMV-miR-US5-2-3p 
     UAUGAUAGGUGUGACGAUGUCU miRBase 20 
     UAUGAUAGGUGUGACGAUGUCU  Stark et al 2012 
     UUAUGAUAGGUGUGACGAUGUC Meshesha et al  2012 
UUUAUGAUAGGUGUGACGAUGU  

HCMV-miR-US29-5p 
UGGAUGUGCUCGGACCGUGACG miRBase 20 
UGGAUGUGCUCGGACCGUGACG  Stark et al 2012 
UGGAUGUGCUCGGACCGUGACG  Meshesha et al  2012 
   GGAUGUGCUCGGACCGUGACGG  

HCMV-miR-US29-3p 
     CCCACGGUCCGGGCACAAUCA miRBase 20 
     CCCACGGUCCGGGCACAAUCA  Stark et al 2012 
     CCCACGGUCCGGGCACAAUCA Meshesha et al  2012 
CGCCCACGGUCCGGGCACAAUC  

 

Table A.2:  HCMV miRNAs exhibit sequence variability.  This table illustrates the 
mature sequences of the HCMV miRNAs as designated by the respective publications, 
miRBase 20 and from our microarray experiment.  The sequences from Stark et al 2012 
and Meshesha et al 2012 were determined by deep sequencing small RNAs from 
HCMV infected cells, and our sequence was determined by the probe generating the 
highest MFI reading.     
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Discussion 

 

Using our “probe-walking” microarray platform, we were able to monitor the 

accumulation of sequences along each of the HCMV pre-miRNA hairpins (Figure 

A.1).  This allowed us to establish that the predicted miRNAs published by Grey 

et al 2005 (miR-UL31-1, miR-UL53-1, miR-UL54-1, miR-UL102-1, miR-UL102-2, 

miR-UL111a-1 and miRUL70) did not represent true virally encoded miRNAs 

(Figure A.2).  Probes corresponding to the respective pre-miRNA hairpins either 

generated little to no fluorescence or had equivalent signal in both mock and 

infected cells.  This indicated that the probe-sets were detecting mRNA artifacts 

that did not correspond to mature viral miRNAs.  Using the miRNA probes 

corresponding to the highest MFI readings, we were also able to rank the relative 

accumulation of each mature viral miRNA (Figure A.3).  These rankings were 

generally conserved among published findings from Stark et al 2012 and 

Meshesha et al 2012, but the lack of direct concordance in each study suggests 

the potential for variability in either the regulation of miRNA expression or miRNA 

processing.  Given that each assay was performed using unique experimental 

conditions, it is possible the different experimental environments allowed for 

Figure A.4: Mature HCMV miRNAs exhibit variability in sequence and length.  This figure 
illustrates a representative panel of HCMV miRNAs that potentially exhibit variability in length 
due to alternative pre-miRNA processing.  The MFI profiles are illustrated as in Figure A1, but 
listed below each pre-miRNA sequence are the alternative mature miRNAs that were 
detected by Stark et al 2012.  The grey dotted line shown in the MFI profile of miR-US4-5p 
represents the original mature sequence of miR-US4 that was recently corrected by miRBase 
20.       
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variability in the accumulation of mature miRNAs through either transcriptional or 

post-transcriptional mechanisms.  The potential for variability in miRNA 

processing is supported by our findings in Table A2.  The sequences 

corresponding to probes generating the highest MFI readings consistently 

reflected variability in the 5’ end of the mature miRNAs when compared to the 

mature miRNA sequences annotated in miRBase 20.  Stark et al 2012 observed 

that mature HCMV miRNAs accumulating at 24 and 72 hpi exhibited variability in 

length at both the 5’ and 3’ ends (316).  MFI profiles from a representative panel 

of HCMV miRNAs support the idea that alternatively processed miRNAs exist in 

HCMV infected cells (Figure A.4).  Given the consistency in the detection of 

mature HCMV miRNAs with sequences offset at the 5’ ends, it is tempting to 

speculate that productive infection of HEL fibroblasts with AD169 generates a 

unique set of isomiRs relative to that seen during infections of human foreskin 

fibroblasts (HFF) with HCMV Towne (Stark et al 2012) or AD169 (Meshesha et al 

2012).  However, given the sensitivity of deep sequencing it is difficult to 

substantiate this idea without sequencing the mature viral miRNAs that 

accumulate during productive infection of HELs with AD169.  Although, we 

cannot definitively postulate that the mature miRNAs detected by our microarray 

“probe walking” experiment represent a completely unique set of mature HCMV 

miRNAs, our findings support the hypothesis that productive HCMV infection 

yields mature miRNAs with variable length and sequence. 
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