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ABSTRACT 

 
 
 

 Transcriptional regulation of gene expression is critical for all unicellular and 

multicellular organisms. The ability to selectively induce or repress expression of only a 

few genes from the entire genome gives cells the ability to respond to changing 

environmental conditions, grow and proliferate. Multicellular organisms begin life as a 

single totipotent cell, which undergoes many cell divisions during embryonic and later 

postnatal development. During this process, the dividing cells of the embryo 

progressively lose their pluripotency and adopt restricted cell fates. Cell fate restriction 

leads different cell types to gain unique transcriptional profiles. This transcriptional 

profile or gene expression pattern not only defines the cell types and restricts the ways 

in which they can respond to signals, it also has to be faithfully re-established in the 

progeny of these fate-restricted cells when they divide. 

 Different mechanisms have evolved in multicellular organisms to propagate 

transcriptional memory of cell identity. Most of mechanisms involve modifications of 

chromatin such as epigenetic modification of DNA or alterations of associated histones. 

In contrast to multicellular organisms which have considerable cellular diversity and a 

long lifespan for which cell fates and transcriptional memory needs to be maintained, 

single celled budding yeast, Sachharomyces cerevisiae have a life cycle of about 90 

minutes in normal nutrient rich conditions. However, even budding yeast have 

tremendous potential to respond to changing environmental conditions like nutrient 

availability by inducing expression of various genes. We observed that members of the 
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GAL gene cluster, which encodes genes induced in response to and for metabolizing the 

sugar galactose, showed heritable transcriptional memory of previous activation. This 

dissertation thesis describes the studies I have done for my graduate research to define 

this phenomenon of transcriptional memory at the yeast GAL genes and to determine 

the mechanism by which it can be formed and inherited. 

 Chapter I gives an introduction to different mechanisms of establishing 

transcriptional memory in unicellular and multicellular organisms. Chromatin based 

mechanisms have been well studied in multicellular organisms but not observed in 

budding yeast. We compare chromatin based or nuclear inheritance with cytoplasmic 

inheritance that can be observed in yeast. Chapter II describes work done to define the 

phenomenon of transcriptional memory at GAL1 gene. We define this as a faster rate of 

induction of the GAL1 gene, compared to a naïve gene, after a brief period of 

repression. We show that this cellular memory persists through mitosis and can be 

passed on to the next generation. We also show that chromatin remodeling enzymes 

appear to be required for rapid reinduction, raising the question if yeast may also 

possess chromatin associated, nuclear mechanisms for cellular memory. Chapter III 

describes experiments that show that cellular memory observed at GAL1 is cytoplasmic 

in nature and also compares our work with similar examples observed recently by other 

groups. Finally, Chapter IV offers a perspective of the significance of such cellular 

memory mechanisms in budding yeast and outlines some potential further experiments 

to better understand the control of GAL1 induction kinetics. 
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Abstract 

Establishment of cellular memory and its faithful propagation is critical for successful 

development of multicellular organisms. As pluripotent cells differentiate, choices in 

cell fate are inherited and maintained by their progeny throughout the lifetime of the 

organism. A major factor in this process is the epigenetic inheritance of specific 

transcriptional states or transcriptional memory. In this review, we discuss some of 

these chromatin transitions and mechanisms by which they are inherited by subsequent 

generations. We also discuss illuminating cases of cellular memory in budding yeast 

and evaluate whether transcriptional memory in yeast is epigenetically or 

cytoplasmically inherited. 

 

 

 

 

 

 

 
 
 
A version of this chapter will be published: 
Kundu S, Peterson CL. 2009. Role of chromatin states in transcriptional memory. 
Biochim Biophs Acta. (in press) 
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Introduction: Transcriptional choice and its inheritance 

All organisms regulate their genetic repertoire in response to their environment 

as well as cell intrinsic cues. Single-celled organisms like yeast can coordinately induce 

and repress sets of genes as a result of stimuli like nutrient starvation, mating 

pheromones or DNA damage. In addition to responding to extracellular signals, 

multicellular organisms can also undergo cell differentiation. Cell differentiation is the 

culmination of numerous, highly regulated gene expression events that occur during 

embryonic development and throughout the life of an adult organism, where it controls 

growth, homeostasis and tissue repair. Some of these gene expression patterns or 

transcriptional choices become marked by epigenetic alterations of the genome, 

resulting in a transcriptional memory of gene expression profiles that are inherited by 

progeny.  

 

Cell fate determination is an integral part of embryonic development in all 

multicellular organisms. A single-celled zygote undergoes many mitotic divisions till 

the blastocyst stage, where the inner cell mass (ICM) contains all the totipotent cells 

that will ultimately give rise to the embryo-proper. As the ICM cells further divide, they 

reorganize to form the three germ layers – ectoderm, mesoderm and endoderm, which 

are fated to form distinct tissues and organ systems. During these events, genes that 

encode pluripotency markers are transcriptionally repressed, and gene products 

characteristic of particular cell fates begin to be expressed. As these cells further divide 

and differentiate, such characteristic gene expression states get ‘locked in’ and are 
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faithfully replicated in all progeny of fate-restricted cells. This transcriptional memory 

can persist through multiple rounds of cell division, and in many cases throughout the 

lifetime of the organism even in the absence of the initiation signals. Such cellular 

memory posits the existence of one or more mechanisms that transmit information of 

active or silent gene state from mother to daughter cells. Mechanisms for providing 

cellular memory can be divided into two broad classes: cytoplasmic inheritance and 

nuclear inheritance (Fig. 1).  

 

Cytoplasmic inheritance of transcriptional memory involves the presence of a 

protein or small molecule located in the cytoplasm of the cell that gains memory of a 

particular transcriptional event. During cell division, such a protein or small molecule 

signal can be passed on to daughter cells by distribution of the cytoplasm of the mother 

cell. It can be envisaged that such memory would be relatively short-lived – its duration 

or persistence is limited by dilution and/or half-life of the cytoplasmically inherited 

memory factor. In metazoan development, some key contributors to cytoplasmic 

inheritance via maternal ooplasm include mitochondrial DNA and well as maternally 

inherited miRNAs. Inheritance of maternal miRNAs is critical for early mouse 

embryonic development and has been shown to control gene expression profiles during 

early zygotic divisions (Tang et al. 2007). The cytoplasmic inheritance model will be 

revisited in a later section of this review. 
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The nuclear or epigenetic inheritance model of transcriptional memory involves 

changes in the chromatin state of target genes; changes that can persist through DNA 

replication and mitosis. These changes can be covalent marks on DNA and/or histones, 

and therefore would not alter the genomic information of pluripotent cells or their 

differentiated progeny.  

 

The term “epigenetics” was coined by C.H. Waddington (1957) and ‘epigenetic 

inheritance’ classically refers to ‘heritable changes in gene expression and phenotypes 

that does not involve alterations in the DNA sequence’. Over decades, this description 

has come to encompass many different phenomena such as chromatin modifications and 

transcriptional control by regulatory RNAs (Holliday 2006; Bird 2007; Goldberg et al. 

2007; Ptashne 2007). Currently, there is an active debate on whether ‘epigenetic 

inheritance’ should include only phenomena such as DNA cytosine-methylation, where 

the mechanism of its transmission has been clearly established (Ptashne 2007), or 

whether it can refer to chromatin-based (such as histone modifications, higher order 

chromatin folding) or non-chromatin-based (such as RNA, prions) gene regulatory 

processes as well when the mechanism of inheritance is not yet discovered (Bird 2007; 

Goldberg et al. 2007; Patel et al. 2009). However, there is growing consensus that 

changes in chromatin structure that can instruct or perpetuate a pattern of gene 

expression in the absence of the primary causative signal, can be termed ‘epigenetic’. 
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Where mechanisms for faithful replication of these chromatin marks have 

evolved, nuclear or epigenetic memory can persist through many generations and 

indeed throughout life. The substrate for these long-term memory marks is the 

chromatin and chromatin structure participates directly in transcriptional activation or 

repression of gene loci. Below we review some chromatin basics, and then we discuss 

several examples of chromatin based mechanisms for transcriptional memory. 
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Figure 1. Mechanisms for nuclear and cytoplasmic inheritance of transcriptional 

memory. A multipotent progenitor cell can respond to a particular signal(s) by altering 

its transcriptional profile. This step can lead to cell-fate commitment. Memory of 

adopted cell fate can be transmitted by various epigenetic or other chromatin based 

mechanism or by cytoplasmic signals. Changes in chromatin state can involve DNA-

cytosine methylation, histone modifications and/or histone variants. Cytoplasmic 

inheritance could involve a signal-induced peptide, RNA or small molecule that 

maintains target genes in ON or OFF state. Persistence of cellular memory in each case 

depends on faithful transmission of the ‘memory mark’ to subsequent generations. See 

text for details. 
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Chromatin as a regulator of transcription 

 The large genome of eukaryotes is packaged into chromatin, a DNA and protein 

containing complex structure. This structure facilitates compaction of the genome, 

thereby fitting it into the small volume of a nucleus. Importantly, and in ways still being 

avidly studied and discovered, it is a critical component of gene regulatory activities. 

The basic component of chromatin is a nucleosome, generated by wrapping 

approximately 147bp of DNA ~1.7 times around an octamer of core histone proteins. 

The canonical histone octamer contains 2 copies each of histones H2A, H2B, H3 and 

H4. Structurally, these histones consist of a central globular or ‘histone-fold’ domain 

and flexible NH2-terminal and COOH-terminal tail domains. As DNA wraps around the 

histone octamer, it makes intimate contacts at 14 positions (Luger et al. 1997; Davey et 

al. 2002; Suto et al. 2003). These tight associations occlude potential transcription 

factor binding sites and leads to steric hindrance to DNA-binding by transcriptional 

activators, repressors and the core transcriptional machinery (Hansen and Wolffe 1994). 

This protection of DNA is also evidenced biochemically by restricted access to DNA 

cleavage agents like micrococcal nuclease (MNase) and restriction enzymes. 

 

Beyond this primary level of nucleosomal or ‘beads-on-a-string’ structure are 

successive higher orders of chromatin folding that ultimately compact DNA into 

chromatin fibers, with one of the highest degrees of compaction seen in the classical 

‘metaphase chromosome’. The next clearly distinguishable state of folded chromatin 

that is more compacted than ‘beads-on-a-string’ nucleosomes, is the 30nm fiber. It 



 10

appears unclear still if the in vitro idealized solenoid or zigzag structure of 30nm fiber is 

actually found in vivo (Hansen 2002; Horowitz-Scherer and Woodcock 2006). It has 

been proposed that budding yeast interphase chromatin, which is mostly 

transcriptionally active is equivalent to a 30 nm fiber (Bystricky et al. 2004). On the 

other hand, folding of the 30nm fiber upon itself has been proposed to form 

heterochromatin, with the aid of fiber crosslinking proteins such as linker histones and 

MeCP2 (Grigoryev et al. 2004; McBryant et al. 2006).  

 

 In addition to core histones, metazoans also have a set of unrelated histone 

called the linker histones (like H1). Mammals appear to have at least eight H1 histone 

variants five of which are expressed ubiquitously in somatic tissue and some studies 

indicate that deletion of individual variants can cause distinct phenotypes (Alami et al. 

2003; Izzo et al. 2008; Sancho et al. 2008). Like core histones, linker histones are also 

highly basic in amino acid composition. There is on average 1 linker histone per 

nucleosome, which protects an additional ~20bp of DNA (Parseghian and Hamkalo 

2001; Zlatanova et al. 2008). MNase digestion of H1 containing chromatin generates a 

~168bp footprint and this particle has been termed the chromatosome (Simpson 1978). 

H1 binds to DNA at its entry and exit points in the nucleosome and is important for 

stabilization of higher order chromatin folding (Hamiche et al. 1996; Zlatanova et al. 

2000; Georgel et al. 2003; Woodcock et al. 2006). Like their core histone counterparts, 

linker histones are also composed of two functional domains – the globular and tail 

domains. While the globular domain interacts with nucleosomes, the NH2-terminal and 
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COOH-terminal tails of linker histone are also sites of post translational modifications, 

and C-terminal tail is required for stabilizing higher order chromatin folding (Draves et 

al. 1992; Thomas et al. 1992; Talasz et al. 1996; Ramakrishnan 1997; Vermaak et al. 

1998; Dou et al. 1999; Bharath et al. 2002; Garcia et al. 2004; Lu and Hansen 2004; 

Hale et al. 2006; Wisniewski et al. 2007; Villar-Garea and Imhof 2008). However, 

whereas removal of H1 has no effect on viability of unicellular organisms like 

Tetrahymena, Aspergillus nidulans and Saccharomyces cerevisiae, linker histones are 

essential for cellular differentiation in higher eukaryotes (Shen et al. 1995; Steinbach et 

al. 1997; Ushinsky et al. 1997; Patterton et al. 1998; Vermaak et al. 1998; Ramon et al. 

2000; Ner et al. 2001; Fan et al. 2005). Xenopus, mouse, human and others also show 

cell-type specific variants of histone H1 that control transcription regulation of specific 

genes and nucleosome spacing (Bouvet et al. 1994; Kandolf 1994; Patterton and Wolffe 

1996; Fan et al. 2003; Izzo et al. 2008). There is evidence that H1 subtype switching 

occurs in Xenopus and mammalian embryos during development (Clarke et al. 1998). 

This suggests a mechanism that may provide memory of cell fate specification during 

embryonic development.  

 

 How can chromatin structure be modified to regulate access to transcriptional 

regulators and the core transcriptional machinery? Cells employ two general enzymatic 

strategies that regulate chromatin dynamics. In the first case, ATP-dependent chromatin 

remodeling enzymes use energy derived from ATP hydrolysis to mobilize nucleosomes, 

evict some or all of the histones from the nucleosome or to exchange histone variants. 
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These enzymes all contain ATPases of the Swi2/Snf2 superfamily and are broadly 

classified into the SWI/SNF-, the ISWI-, the CHD- and the Ino80-subfamilies (Smith 

and Peterson 2005; Hogan and Varga-Weisz 2007). Some like the SWI/SNF complex 

are mostly transcriptional regulators; in yeast there are two SWI/SNF family members – 

RSC and SWI/SNF complexes (Laurent et al. 1992; Peterson and Herskowitz 1992; 

Kwon et al. 1994; Peterson et al. 1994; Cairns et al. 1996). Members of the SWI/SNF 

family are primarily involved in transcriptional activation. For instance, the yeast 

SWI/SNF complex is recruited during activation of many genes during late mitosis as 

well as some highly inducible metabolic genes like INO1, SUC2, GAL1-10, PHO5 and 

PHO8 (Pollard and Peterson 1997; Krebs et al. 2000; Dhasarathy and Kladde 2005; 

Adkins and Tyler 2006; Ford et al. 2008).  Complex eukaryotes have several different 

SWI/SNF (also called BAF complexes), with the catalytic subunit being Brg1 or Brm, 

and a variety of associated subunits (Khavari et al. 1993; Wang et al. 1996; Kadam et 

al. 2000). Brg1 is essential for mammalian development, as mice harboring a brg1 

deletion show periimplantation lethality (Bultman et al. 2000). Some of the associated 

subunits are also tissue restricted. For instance BAF60c is restricted to the myocardial 

lineage, while BAF53b is neuron-specific (Olave et al. 2002; Lickert et al. 2004). Other 

ATP-dependent remodeling enzymes, like ISWI and Mi-2, usually function in 

transcriptional repression. Mi-2 complexes, a prominent member of the CHD 

(chromodomain containing) subfamily play critical roles at different stages of 

hematopoiesis, and ISWI complexes are critical for normal development and 

differentiation as evidenced by periimplantation lethality of mice lacking the catalytic 
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subunit, Snf2h (Stopka and Skoultchi 2003; Williams et al. 2004). The Ino80 subfamily, 

which includes INO80 and SWR1 complexes are characterized by a split ATPase 

domain, and the SWR1 complex is required for exchange of the histone variant H2A.Z 

into nucleosomes.  

 

The second category of chromatin remodeling enzymes is those that mediate 

posttranslational modifications of histones. Nucleosomal histones can be extensively 

modified at their N- or C-terminal tail domains, or even at some internal sites. Histone 

modifications function primarily by influencing the binding of non-histone proteins, 

like transcription factors and other chromatin remodeling enzymes, to nucleosomes, 

although some marks (e.g. H4K16ac) directly impact chromatin structure. A wide 

variety of enzymes have been identified in all organisms that catalyze diverse 

modifications such as methylation, acetylation, phosphorylation, ubiquitilation and 

SUMOylation (Khorasanizadeh 2004). Histone modifications are reversible since there 

are also demethylases and deacetylases dedicated to removal of these groups. Though 

isolated modifications probably do not significantly affect DNA-histone or nucleosome-

transcription factor contacts, they often are found in combinations and act 

synergistically to recruit or occlude chromatin associated proteins and generate 

transcriptionally favorable or unfavorable chromatin domains (Ruthenburg et al. 2007). 

Histone modifying enzymes and ATP-dependent remodelers often act in concert for 

regulating gene expression.  
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Finally, the most stable and replicable of chromatin modifications are those on 

the DNA itself, i.e. cytosine methylation of CpG islands by DNA methyltransferases. 

Though yeast and C.elegans lack DNA methylation, it is critical in other metazoans for 

development and differentiation (Rountree et al. 2001). In addition there are RNA based 

chromatin regulatory processes exemplified by X-inactivation, heterochromatin 

formation and position-effect variegation, which have been discussed in detail 

elsewhere ((Grewal and Elgin 2007; Riddle and Elgin 2008; White and Allshire 2008) 

and others).  

 

Strategies to establish transcriptional memory by modifying chromatin state 

 Establishing cellular memory of a particular transcriptional state is essential in 

multicellular organisms to get fruitful cell fate specification during development. As 

fate-restricted cells multiply during organogenesis, various mechanisms have evolved 

that replicate the transcriptional state of the progenitor cell in its daughters. Therefore 

genes that confer for example pluripotency or alternate cell fates are stably turned off, 

while genes characteristic of the chosen cell-fate are maintained in a transcriptionally 

active or poised state. As a consequence, despite having identical genomes, how cells of 

different tissues respond to signals that they encounter is determined by their inherited 

‘lineage identity’. To maintain characteristic identity and function of different tissues 

during the lifetime of an organism, cells of individual tissues must maintain and 

propagate their distinct transcriptional profiles or in other words, have transcriptional 

memory of their gene expression profile. Since chromatin remodeling is often required 
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to silence or activate genes, transcriptional memory would involve propagation of 

differential chromatin states in different tissues. Such transcriptional memory can be 

established and inherited by using various chromatin modifying strategies introduced 

above. We will discuss some specific enzymatic activities and their roles below. 

 

DNA methylation 

 DNA methylation, predominantly at symmetrical CpG dinucleotides, is usually 

associated with gene silencing (Bird and Wolffe 1999; Klose and Bird 2006). Genomic 

methylation patterns are very stable and heritable in somatic differentiated cells. Once 

established, they are faithfully replicated at every cell division by the ‘methylation 

maintenance’ enzyme DNMT1, which uses hemimethylated DNA substrate to restore 

symmetrical CpG methylation pattern (Bestor 2000; Pradhan and Esteve 2003). There 

are two developmental stages – germ cells and preimplantation embryos – where the 

genomewide methylation pattern is reprogrammed. The fertilized egg undergoes a wave 

of demethylation during preimplantation development, which erases part of the 

inherited, parental methylation pattern. After implantation, the embryo then undergoes 

de novo methylation to establish a new embryonic methylation pattern. DNMT3A/B are 

the primary de novo DNA methylases that establish new methylation patterns and are 

expressed in most dividing cell types along with DNMT1 (Li et al. 1992; Okano et al. 

1999; Goll and Bestor 2005). Another protein, DNMT3L, is similar to DNMT3A/B in 

amino acid sequence but lacks enzymatic activity. It is expressed only in germ cells 

during de novo methylation and is believed to regulate DNMT3A/B (Bourc'his et al. 
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2001; Suetake et al. 2004). There is also an oocyte-specific form of DNMT1 (DNMT1o) 

that accumulates to very high levels in the cytoplasm of oocytes and persists in 

preimplantation embryos. It enters nuclei at the eight-cell stage to maintain imprinted 

methylation patterns (Howell et al. 2001). 

 

 Genomic methylation patterns are largely erased during the proliferation and 

migration of primordial germ cells (PGCs) and reestablished in sex-specific patterns 

during gametogenesis (Trasler 2006; Schaefer et al. 2007). These demethylation and de-

novo methylation events are critical for generating totipotent cells with broad 

developmental potential and for establishment of parental-specific methylation marks at 

imprinted genes (Chaillet et al. 1991; Stoger et al. 1993; Tremblay et al. 1995). During 

gametogenesis, imprinted genes are epigenetically marked such that they are expressed 

exclusively from maternal or paternal alleles of the progeny. De novo methylation by 

DNMT3A and DNMT3B is essential for this pattern of parental imprinting (Okano et 

al. 1999; Kaneda et al. 2004). Reprogramming is also required for normal development 

of cloned animals and to generate stem cells as well as for appropriate stem cell 

differentiation (Reik et al. 2001; Farthing et al. 2008). In mouse PGCs, reprogramming 

during development coincides with the re-expression of some pluripotency genes, 

including Sox2 and Nanog (Yamaguchi et al. 2005). However it is not known if 

demethylation is a requisite for re-expression of pluripotency genes. Overall, DNA 

methylation has key roles in epigenetic gene regulation and silencing, in particular in 
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genomic imprinting, X chromosome inactivation, and silencing of retrotransposons 

(Bird 2002; Li 2002; Reik 2007). 

 

In dividing cells, the maintenance methyltransferase, DNMT1 provides 

epigenetic memory of transcriptionally silenced loci. This methylation pattern has also 

been proposed to inhibit transposition as well as recombination and expansion of 

repetitive elements (Bird 1995; Yoder et al. 1997; Walsh et al. 1998). Maintenance of 

imprinted silencing by DNMT1 is linked to DNA replication by its association with 

PCNA and CAF1 (Leonhardt et al. 1992; Chuang et al. 1997; Bestor 2000; Rountree et 

al. 2000; Sarraf and Stancheva 2004). This association provides the mechanism for 

propagation of epigenetically silent states but not transcriptionally active states through 

S-phase to subsequent generations. Experiments suggest that methylation by itself does 

not prevent transcription (Keshet et al. 1986; Buschhausen et al. 1987; Kass et al. 1997), 

but instead transcriptional silencing of methylated loci is due to methyl-CpG binding 

domain proteins (MBDs), that alter chromatin structure. The primary MBDs are MBD1, 

MBD2, MBD3 and MeCP2 (Hendrich and Bird 1998; Ng et al. 1999; Rountree et al. 

2001). The MBD proteins interact with and recruit histone deacetylases (HDACs) such 

as HDAC1, HDAC2, Mi-2/NURD which deacetylate the associated chromatin to render 

it transcriptionally incompetent (Nan et al. 1998; Wade et al. 1999; Zhang et al. 1999).  
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Histone modifications 

 The NH2- and COOH-terminal tails of core histones are subject to extensive and 

dynamic posttranslational covalent modifications. These modifications alter the charge 

on histone tail residues, for example, lysine methylation or acetylations neutralize its 

positive charge. This can alter the interaction of modified histones with neighboring 

nucleosomes or change accessibility of chromatin to transcription factors and other 

chromatin remodeling enzymes. Prominent among marks associated with the 

transcriptionally active state are H3K4me, H2BK123Ub and multiple acetylations of 

H2B-, H3- and H4-lysines (H2BK11,16ac; H3K9,14,18,23,27ac; H4K5,8,12,16ac) 

(Roth et al. 2001). Some or all of these changes can change chromatin structure leading 

to a more permissive environment for transcription. Similarly, H3K9me and H3K27me 

are some of the more common marks associated with repressed loci (Zhang 2003; 

Martin and Zhang 2007). Different enzymes catalyze these histone modifications and 

can be conserved across species. Histone modifying enzymes are also important for 

controlling expression of many developmentally regulated genes. At the same time, 

histone demethylase and deacetylase enzymes have also been discovered that reverse 

these marks (Shi et al. 2004; Bradbury et al. 2005; Lee et al. 2005; Shi et al. 2005; 

Tsukada et al. 2006; Agger et al. 2008). As expected, at most loci in dividing or 

differentiated cells, certain histone modifications can co-exist or act together to 

reinforce open or accessible chromatin configuration and vice versa. This observation 

has led to speculation that particular patterns of histone modifications might predict 

transcriptional status of genes in different cell lineages (Dover et al. 2002; Ng et al. 
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2002b; Lewis et al. 2004; Margueron et al. 2005; Nightingale et al. 2006). Interestingly, 

adult and embryonic stem cells have been shown to possess domains of ‘bivalent’ 

chromatin, where positive and negative histone modifications coexist at certain gene 

loci, which may poise these genes for appropriate regulation when the stem cells 

differentiate (Bernstein et al. 2006; Attema et al. 2007). Such chromatin domains may 

be essential for pluripotency and are resolved into active or repressed state during 

lineage specification. 

 

 A key question is the precise mechanism by which histone modifications are 

transmitted through cell divisions. Unless existing marks are replicated, transcriptional 

memory cannot be propagated. Many studies have shown that as a replication fork 

proceeds along the DNA, nucleosomes are disassembled but they are rapidly and 

efficiently reassembled on the newly replicated strands. As DNA is replicated, old (H3-

H4)2 tetramers are distributed on the daughter strands onto which newly synthesized or 

old H2A-H2B dimers are added (Jackson 1988; Yamasu and Senshu 1990; Yamasu and 

Senshu 1993; Henikoff et al. 2004; Groth et al. 2007). Simultaneously, newly 

synthesized (H3-H4)2 tetramers are also deposited to fill in the gaps between the old 

tetramers and subsequently, H2A-H2B dimers are added to these tetramers too. Thus it 

appears that while hybrid octamers of old tetramers and new dimers can form, (H3-H4)2 

tetramers remain essentially intact through DNA replication and chromatin assembly. 

Since the redistributed old tetramers contain histone modifications representing active 

or repressed chromatin, they can potentially recruit enzymatic activities that would 
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interpret the existing marks and replicate them on the newly formed octamers. 

Interestingly, there appear to be potential candidates that can ‘read’ and ‘write’ 

H3K4methyl marks on chromatin (Wysocka et al. 2005; Ruthenburg et al. 2007). 

Another interesting candidate is the bromodomain protein, Brd2, which can bind to 

H4K14ac and promote transcription. It has been suggested that binding of Brd2 to 

acetylated chromatin can persist during mitosis, thus providing memory of 

transcriptional activity across cell divisions (Kanno et al. 2004). 

 

Another intruiging possibility is the semi-conservative model of chromatin 

assembly (Tagami et al. 2004; Nakatani et al. 2006). According to this model, a 

tetramer of H3/H4 dimers can be split equally between the two strands of newly 

replicated DNA and these older H3/H4 dimer can then be used as a template to replicate 

modifications on the newly assembled nucleosomes. Other alternative models to 

propagate histone modification patterns have also been proposed and may be evidenced 

in replication of H3K9me mark by Swi6 (Jackson and Chalkley 1985; Hall et al. 2002). 

 

 One of the classic examples of transcriptional memory involves the 

developmental regulation of expression of several hundred genes in Drosophila and 

other metazoans, including homeotic (Hox) genes, by the interplay of two antagonistic 

sets of gene products that regulate chromatin structure – the Polycomb group (PcG) and 

the  Trithorax group (TrxG). Hox genes encode homeodomain transcription factors that 



 21

specify cell fates and therefore their transcription must be precisely regulated, since 

misexpression can lead to severe developmental abnormalities such as formation of 

appendages at wrong positions. In fact, genes encoding Polycomb proteins were first 

discovered in Drosophila as mutations that led to transformation of body-segmentation 

patterns along the embryonic anterior-posterior axis, thus transforming the identity of 

one segment to another.  

 

The initial patterns of homeotic gene transcription are established in response to 

positional information in the early embryo. During Drosophila embryogenesis, the 

function of PcG and TrxG proteins is maintenance, but not initiation, of homeotic gene 

expression, even after the regulators that established the precise segmentation patterns 

have long disappeared. Polycomb and Trithorax proteins repress and activate genes 

respectively, and together they maintain these gene expression patterns through 

subsequent cell divisions and thus establish memory of cell fate (Grimaud et al. 2006; 

Schuettengruber et al. 2007). These complexes bind to and act via Polycomb and 

Trithorax response elements (PREs/TREs) and control gene expression (Ringrose and 

Paro 2004; Beisel et al. 2007; Ringrose and Paro 2007). Some PcG and TrxG members 

possess histone methyltransferase activity. PRC2 complex contains E(Z) (EZH2 in 

mammals), which is an H3K27 methyltransferase that mediates silencing of HOX and 

other loci. PcG can bind to both H3K9me and H3K27me but have a much stronger 

preference for the latter. TrxG members TRX (MLL is the mammalian ortholog) and 

ASH1, in contrast, are H3K4 methyltransferases and are associated with activated gene 
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expression. TRX protein contains a SET domain, which is very similar to the 

S.cerevisiae Set1p, the first identified H3K4-methyltransferase. Differential H3 lysine 

methylation status of promoter and coding regions can thus confer a transcriptional ON 

or OFF status such as at the Drosophila Ubx gene (Papp and Muller 2006). In addition 

to the immediate and local effect, these two complexes have important functions for 

propagation of the transcriptional state they establish. Once recruited, PcG and TrxG  

complexes regulate cellular pluripotency and differentiation by maintaining silent or 

open chromatin states that can be inherited through multiple cell divisions even after 

decay of the primary silencing or activating signal (Dejardin and Cavalli 2004; 

Srinivasan et al. 2008). A recent study proposes an elegant mechanism to maintain the 

PRC2 mediated H3K27me3 mark during DNA replication and thereby propagate 

transcriptional memory to subsequent cell generations (Hansen et al. 2008). Helin and 

colleagues show that once EZH2, EED and SUZ12 containing PRC2 complex catalyzes 

methylation of H3K27 at a particular chromatin locus, the complex itself is recruited to 

this target locus by binding the H3K27me3 modification. This PRC2 recruitment 

persists through subsequent rounds of DNA replication and cell division leading to 

methylation of newly incorporated histones at this locus, thus maintaining the chromatin 

mark and preserving transcriptional repression in proliferating cells. 

 

 Biochemical studies reveal that both the PcG and TrxG complexes are 

large and have many categories with different functions, all aimed at long term control 

of chromatin configuration at homeotic and imprinted genes (Shao et al. 1999; Francis 
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et al. 2004; Terranova et al. 2008). Polycomb group proteins are characterized by two 

large, multisubunit complexes – PRC1 and PRC2. The PRC2 complex is recruited to 

PREs where it initiates silencing, whereas the PRC1 complex plays a key role in the 

maintenance of silencing (Lund and van Lohuizen 2004). PRC2 complex member, 

E(Z), is the H3K27 methyltransferase. H3K27me is required for targeting to the PREs, 

while specificity of targeting is modulated by other subunits like EED, Esc and Su(z)12. 

H3K27me is recognized by the chromodomain of the Polycomb (Pc) subunit of PRC1, a 

mechanism that is reminiscent of other complexes that use similar mechanisms for 

targeting to specific gene loci (Levine et al. 2004; Kohler and Villar 2008). PRC2 can 

also interact with the HDAC, RPD3, possibly in a developmentally restricted manner 

(Tie et al. 2001). Thus one can speculate that local histone deacetylation by RPD3 in the 

vicinity of PRC2 target sites could reinforce transcriptional repression at these loci. 

Coupled to this, binding of PRC1 via H3K27me can generate a stably repressive 

chromatin structure that is refractory to gene expression. In support of this, there is 

evidence that PRC1 inhibits remodeling by SWI/SNF and transcription by RNA 

Polymerase II in vitro (King et al. 2002; Otte and Kwaks 2003).  Also, PRC1 interacts 

with TAFs and the transcriptional machinery, suggesting that PRC1 can interact with 

promoters and providing a direct link to transcriptional control (Breiling et al. 2001; 

Saurin et al. 2001). Though there are many studies determining the functions and 

interacting partners of PRC1 and PRC2 complexes, it is still unclear how PRC2 is  first 

recruited to PRE-containing target loci to initiate silencing. However, another group of 

polycomb proteins like pleiohomeotic (Pho) can bind to certain sequences contained in 
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PREs with sequence-specificity, and may have a role in PRC2 targeting (Pirrotta et al. 

2003; Ringrose et al. 2003; Wang et al. 2004). 

 

 Mutations in genes encoding TrxG proteins were isolated as suppressors of 

polycomb mutants, indicating that TrxG proteins functionally antagonize PcG proteins 

(Kennison and Tamkun 1988; Daubresse et al. 1999; Levine et al. 2002). One category 

of TrxG members includes Trx and Ash1, which are SET-domain proteins that catalyze 

H3K4 methylation (Petruk et al. 2001; Beisel et al. 2002; Byrd and Shearn 2003; 

Schwartz and Pirrotta 2007). The founding member of the SET-domain proteins is the 

budding yeast Set1p, which also trimethylates H3K4 for transcriptional activation, 

showing that these functions have been conserved through evolution. Trx and Ash1 can 

also be recruited to Hox genes but the mechanism for that is still unclear. Ash1 is 

believed to prevent H3K27 trimethylation by PRC2 at the Ubx gene by binding 

immediately downstream of the promoter, thus keeping the locus transcriptionally 

active (Papp and Muller 2006). Binding of Trx and Ash1 is also believed to promote 

transcriptional elongation and this may be stimulated in past by the H3K4me mark. 

Another group of TrxG members includes subunits of the Drosophila SWI/SNF 

chromatin remodeling complex, like Brahma (BRM), Moira (MOR) and Osa (OSA) 

(Kennison and Tamkun 1988; Papoulas et al. 1998; Collins et al. 1999; Crosby et al. 

1999). Like the SET-domain TrxG members, some of these factors are also conserved 

across many species, for example, the yeast homolog of BRM is the Swi2/Snf2p 

ATPase, which forms the catalytic subunit of yeast SWI/SNF. The Kismet (KIS) TrxG 
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member also encodes an hCHD7 related ATP-dependent remodeling enzyme. Thus 

TrxG employs both histone methylation and ATP-dependent chromatin remodeling to 

maintain a heritable transcriptionally ON state. Due to the critical role of PcG and TrxG 

proteins in maintaining transcriptional memory of developmentally regulates genes, 

these complexes are extensively studied to determine mechanisms of cell fate choice, 

stem cell pluripotency as well as cancers. 

 

Histone variants 

 The canonical histones that make up a core nucleosome particle – H2A, H2B, 

H3 and H4, are expressed and incorporated into chromatin only during DNA 

replication. In addition, organisms express variants of canonical histones H2A (H2A.Z, 

macroH2A, H2A.X and H2ABbd) and H3 (H3.1, H3.2, H3.3, H3.1t and Cenp-A/Cse4) 

and each of these is thought to have specific properties and function and can establish 

structurally distinct chromosomal domains in the genome (Wu and Bonner 1981; Malik 

and Henikoff 2003; Chakravarthy et al. 2004; Tagami et al. 2004; Chakravarthy and 

Luger 2006; Park and Luger 2008). Unlike their canonical counterparts, nucleosome 

incorporation of most histone variants is not S-phase restricted but occurs through 

replication independent mechanisms. Emerging evidence indicates that correct 

distribution of some histone variants is important for the effective control of gene 

expression and cell fate decisions. Though the precise mechanisms of targeted 

deposition are still being worked out, distinct and often dedicated multiprotein 
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complexes have been discovered that target histone variants for deposition at active 

genes, centromeres and silent loci. For example, the ATP-dependent chromatin 

remodeling complex SWR1 is targeted to specific genomic sites like 5′ ends of genes 

and exchanges canonical H2A-H2B dimers for H2A.Z-H2B at these loci. The histone 

chaperone, HIRA binds specifically to H3.3–H4 dimers and deposits them on 

transcriptionally active chromatin (Ray-Gallet et al. 2002; Krogan et al. 2003; Kobor et 

al. 2004; Mizuguchi et al. 2004; Tagami et al. 2004).  

 

 What are the functions of these histone variants? In yeast, H2A.Z is found 

within 1-2 nucleosomes that flank all RNA Polymerase II transcribed genes that are 

both active and inactive. In addition it also prevents ectopic spreading of 

heterochromatin (Stargell et al. 1993; Meneghini et al. 2003). Thus H2A.Z seems to be 

important to maintain an open state of chromatin. This premise is supported by the 

observation that nucleosomes that harbor H2A.Z-H2B dimers are less stable (Abbott et 

al. 2001; Zhang et al. 2005; Jin and Felsenfeld 2007). H2A.Z also promotes formation 

of 30nm fibers (Fan et al. 2002). Surprisingly, loss of yeast HTZ1 has a very mild 

phenotype in nutrient-rich steady state growth conditions, indicating that transcription 

of most genes is unperturbed even upon loss of H2A.Z. In contrast, the importance of 

H2A.Z for regulating chromatin configuration is clearly seen during mammalian 

embryonic development. Loss of H2A.Z results in preimplantation lethality in mice 

(Faast et al. 2001; Fan et al. 2002).  There is also an active genomewide displacement of 

H2A.Z from early mouse PGCs that correlates with the timing of genomewide DNA 
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demethylation, suggesting a role of H2A.Z loss in chromatin decondensation and 

reprogramming (Hajkova et al. 2008).  

 

A more recently discovered H2A variant, H2A.Bbd (Barr body-deficient) 

appears to be exclusively associated with transcriptionally active chromatin and was 

shown to be excluded from inactive X chromosomes in mammalian females (Chadwick 

and Willard 2001). It is significantly diverged from canonical H2A in amino acid 

sequence and structure, and its distribution overlaps with regions of histone H4 

acetylation, suggesting that this histone variant has evolved to perform a specialized 

function of stably marking active chromatin, possibly through cell divisions (Bao et al. 

2004; Gautier et al. 2004; Gonzalez-Romero et al. 2008). In contrast to the distribution 

of H2A.Bbd, the H2A variant, macroH2A is enriched on the silenced X chromosome 

and marks inactive chromatin (Costanzi and Pehrson 1998; Chadwick and Willard 

2001). Its enrichment on the inactive X chromosome coincides with Xist RNA 

spreading and therefore with initiation of silencing. 

 

Similar to H2A.Z, H3.3 may also be also involved in maintenance of open, 

transcriptionally active chromatin. H3.3 differs from canonical H3 at only 4 amino acid 

positions. However, unlike H3, H3.3 gene is outside the histone gene cluster and 

synthesized independent of S phase. Thus, unlike the canonical H3, H3.3 deposition is 

replication-independent and transcription-dependent (Smith 2002; Malik and Henikoff 
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2003). As a result, H3.3 is also enriched in ‘activating’ posttranslational modifications 

such as H3K4me and H3K9,14,18,23ac, whereas canonical H3 preferentially 

accumulates repressive modifications like H3K9me (McKittrick et al. 2004; Chow et al. 

2005; Schwartz and Ahmad 2005; Wirbelauer et al. 2005; Daury et al. 2006).  

 

H3.3 deposition plays critical roles during embryonic development. It replaces 

canonical H3 during meiotic X chromosome inactivation in mouse germline (van der 

Heijden et al. 2007). This could provide persistent memory of maternally expressed and 

paternally imprinted genes at a stage where DNA methylation is reversed. Also in early 

mouse zygotes H3.3 is incorporated only into paternal chromatin coinciding with its 

decondensation, soon after gamete fusion (van der Heijden et al. 2005).  Consequently, 

a null mutation of the H3.3 chaperone, HIRA has gastrulation defects in mouse embryos 

and is early embryonic lethal (Roberts et al. 2002). Also in accordance with the role of 

H3.3 in decondensation of paternal chromatin, mutations of Drosophila HIRA lead to 

formation of haploid embryos with only maternal chromosomes, which die before 

hatching (Loppin et al. 2005). An interesting example of the involvement of H3.3 in 

transcriptional memory comes from studies on MyoD gene expression in Xenopus 

embryos (Ng and Gurdon 2008). The authors demonstrate that memory of MyoD 

transcription persists through 24 cell divisions in non-muscle cell lineages of nuclear 

transplant embryos and this duration coincides with H3.3 occupancy at the MyoD 

promoter. 
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 It is very tempting to envisage a scenario where histone variants could mark 

different chromatin domains – euchromatin, facultative heterochromatin and 

constitutive heterochromatin. As pluripotent cells adopt cell fates during differentiation, 

inheritance of such chromatin domains via the ‘histone variant signature’ could 

faithfully reproduce the transcription profile of a differentiated cell type in its 

successive progeny. However, some questions still remain. Besides the yet unsolved 

question of how these histone variants (and their chaperones) are targeted to mark loci, 

it is also still unclear how information of histone variant occupancy is replicated during 

S-phase. This knowledge is crucial to understand the mechanism of inheriting memory 

of transcriptional state. As is the case with inheriting histone modifications, the two 

popular models of replicating histone variant occupancy are the conservative and 

semiconservative model of histone deposition during DNA replication (Annunziato 

2005; Hake and Allis 2006). Since, extensive labeling and density sedimentation studies 

do not favor the semiconservative model, another intriguing possibility that could at 

least be relevant to inheritance of transcriptionally active states and therefore pertinent 

to H2A.Z and H3.3 is a proposed scenario involving both replication-coupled (RC) and 

replication-independent (RI) nucleosome assembly (Henikoff et al. 2004). As the 

replication fork crosses a transcriptionally active locus, there can be RC deposition of 

canonical H3 containing tetramers. But since both old and new tetramers would be 

randomly distributed over this locus, the old H3.3 containing tetramers would also be 

redeposited albeit at lower frequency. However, this lower density of H3.3 containing 

nucleosomes could still be enough to promote open chromatin and continue 
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transcription from the locus after replication. Once transcription resumes, there would 

be RI deposition of H3.3 again at the locus and thus active chromatin would be 

reconstituted after each round of DNA replication. 

 

RNA-based silencing  

 Many trans-acting, small non-coding RNAs, including miRNAs and piRNAs 

that regulate developmental and other gene expression are themselves parentally 

imprinted (discussed in (Royo and Cavaille 2008)). However, cis-acting non-coding 

RNAs are implicated in many instances of long term chromatin silencing. The first 

wave of imprinted X-chromosome inactivation in preimplantation mouse embryos is 

mediated by the Xist RNA. Once transcribed, Xist RNA spreads from its origin in cis to 

coat the X-chromosome and recruits other silencing factors (Wutz and Jaenisch 2000; 

Chaumeil et al. 2006). Not only does Xist form a chromosomal memory of X 

inactivation during differentiation, Xist coating recruits further repressive chromatin 

changes -- histone variant macroH2A, DNA methylation and PcG recruitment to 

reinforce silencing (Kohlmaier et al. 2004; Masui and Heard 2006). These chromatin 

changes allow the inactivated X-chromosome to be stably silenced at later stages of 

development even in the absence of Xist. 

 

 RNA interference (RNAi) mediated heterochromatin formation has also 

emerged as a robust means of establishing heritable chromatin states. RNAi regulates 

heterochromatin formation and spreading at the pericentric dg and dh repeats in 
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Schizosaccharomyces pombe (Volpe et al. 2002; Irvine et al. 2006). The process 

initiates when either of these repeats in transcribed. This is fed into the RNAi pathway, 

eventually generating siRNAs that get incorporated into the RITS (RNA-induced 

transcriptional silencing) complex. RITS activity recruits the H3K9 methyltransferase, 

Clr4 and eventually the heterochromatin protein Swi6 binds to H3K9me to form 

silenced heterochromatin at centromeres. Inheritence of centromeric silencing through 

successive generations appears to require a mechanism connecting RNAi and early 

replication of centromeric repeats (Chen et al. 2008; Kloc et al. 2008). 

 

 

Cellular memory in budding yeast 

 Unlike multicellular organisms, unicellular budding yeasts like Saccharomyces 

cerevisiae and Candida albicans demonstrate no significant differentiation or functional 

asymmetry between ‘progenitor’ mother cells and their progeny. Nevertheless, these 

cells have complex genetic networks that lend themselves to considerable robustness 

and sensitivity when a growing population of yeast encounter and respond to 

environmental changes. Can activation of such transcriptional networks lead to a 

heritable memory of adaptive response in yeast cells too? There appear to be at least 

two clear situations where in fact cellular memory is formed. One is the frequency of 

‘white-opaque’ cell type switching in Candida albicans (Srikantha et al. 2006; Zordan 

et al. 2006; Zordan et al. 2007). Another is the rapid reactivation of galactose induced 

transcription of the GAL gene cluster (GAL1, GAL10 and GAL7) following a period of 
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transcriptional repression by glucose (Brickner et al. 2007; Kundu et al. 2007; 

Zacharioudakis et al. 2007). Interestingly, in both these examples memory of the 

transcriptional response persists for at least a few generations. What is the mechanism 

by which transcriptional memory in yeast is inherited by successive generations? Yeast 

lack DNA methylation and therefore this mode of epigenetic inheritance is absent. For 

both of the above examples of transcriptional memory, regulators of chromatin structure 

have been suggested. Studies on white-opaque switching of C.albicans indicate that the 

histone deacetylases HDAC2 and RPD3 are involved since deletion of these genes 

affects switching frequency (Klar et al. 2001; Srikantha et al. 2001). Yet there is still no 

clear mechanism of how the mark of histone deacetylation is inherited by subsequent 

generations. For transcriptional memory of GAL1 induction, chromatin transitions as 

well as cytoplasmic signaling networks have been proposed and these will be evaluated 

further. 

 

The yeast GAL system and models of transcriptional memory 

 The GAL genes in budding yeast encode enzymes of the Leloir pathway which 

is activated by galactose and expresses proteins to internalize and metabolize this sugar. 

GAL genes can be broadly separated into two groups – the structural genes (GAL1, 

GAL5, GAL7, GAL10), that encode enzymes to metabolize galactose; and regulatory 

genes (GAL2, GAL3, GAL4, GAL80) that transport galactose and control expression of 

the structural genes. Expression of Gal1p (galactokinase), Gal7p (galactose-1-phosphate 

uridyl transferase) and Gal10p (uridine diphosphoglucose epimerase) enzymes is tightly 
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regulated in the presence of different sugars and they are induced 1000-fold in the 

presence of galactose (Johnston et al. 1994; Lohr et al. 1995; Bhat and Murthy 2001).  

 

 All GAL genes are activated by Gal4p, which binds to its target sequences 

upstream of these genes. GAL1 and GAL10 genes are transcribed divergently from their 

location on chromosome II and share 4 tandem Gal4p activator binding sites (UASG) 

(Fig. 2). When yeast cells are growing in glucose containing media, transcription from 

GAL1 and GAL10 is shut off by 2 mechanisms. Firstly, little Gal4p is produced in 

glucose and all Gal4p that binds to the UASG is inactivated by Gal80p repressor which 

binds and masks the C-terminal activation domain of Gal4p. Secondly, glucose-

responsive repressor proteins Mig1p, Nrg1p and Nrg2p bind to sequences in the URSG 

and actively repress transcription (Treitel and Carlson 1995; Wu and Trumbly 1998; 

Frolova et al. 1999; Zhou and Winston 2001). 

 

 When cells grow in ‘permissive’ carbon sources like raffinose or glycerol, 

glucose-repression by Mig1p, Nrg1p and Nrg2p is alleviated and only the galactose-

specific Gal80p repressor is active at the GAL loci. Simultaneously, GAL4 gene is 

upregulated and Gal4p activator is synthesized. This transition poises the GAL1 gene 

for activation. As a result, when galactose becomes available, induction of GAL1 

transcription occurs much more rapidly and transcripts accumulate within 20 minutes of 

GAL1 induction as opposed to 2-3 hours taken for GAL1 induction, when cells are 

shifted directly form glucose to galactose. 
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Figure 2. Schematic representation of activation of the GAL1-10 locus. (Top) GAL1 

and GAL10 genes are transcribed divergently. They share 4 Gal4p binding sites (black 

bars). The URS site on GAL1 promoter is recognized by glucose-repressors like Mig1p. 

Blue ovals represent nucleosome positions when the genes are repressed in glucose. 

(Bottom) Transcriptional activation of GAL genes requires the presence of galactose 

sugar. Extracellular galactose is transported to the cytoplasm by Gal2p permease. 

Intracellular galactose binds Gal3p co-inducer protein and this complex inactivates 

Gal80p repressor.  Inactivation of Gal80p leads to activation of Gal4p activator. Gal4p 

is a transcription factor that binds to DNA sites upstream of structural GAL genes like 

GAL1 and GAL10 and promotes their transcription (wavy arrows). GAL1 gene product 

is Gal1p or the galactokinase enzyme that converts galactose to galactose-1-phosphate. 

Then other enzymes of the GAL regulon (Gal7p, Gal10p, Gal5p) further act on this 

substrate to metabolize galactose for energy production in the cell. See text for details. 
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When galactose is present in the environment, it is transported to the cytoplasm 

by the Gal2p membrane-bound permease and presence of cytoplasmic galactose is 

signaled by the co-inducer protein, Gal3p, which binds galactose and translocates to the 

nucleus (Wightman et al. 2008). The Gal3p-galactose complex can bind and inactivate 

the Gal80p repressor. Inactivation of Gal80p in turn activates Gal4p, which binds to 

UASG sites upstream of the GAL structural genes, recruits the transcriptional machinery 

and thus turns on transcription (Fig. 2) (Platt and Reece 1998; Peng and Hopper 2002). 

Besides the core transcriptional machinery, activated Gal4p also recruits the SAGA 

histone modifying complex and the chromatin remodeling enzyme, SWI/SNF. Neither 

of these chromatin modifying activities is however required for GAL1 transcription 

though Spt20p component of SAGA is essential for GAL1 activation, suggesting a role 

of this complex in providing physical contacts between Gal4p and the core 

transcriptional machinery (Bhaumik and Green 2001; Larschan and Winston 2001; 

Bhaumik et al. 2004). GAL1 induction in the presence of galactose leads to 

translocation of the locus to nuclear pore. Transcription-dependent nuclear pore 

localization has been observed for many highly induced yeast genes and is believed to 

aid efficient export of mRNA into the cytoplasm (Casolari et al. 2004; Casolari et al. 

2005; Abruzzi et al. 2006; Cabal et al. 2006; Taddei et al. 2006).  

 

 

 When cells are grown in the neutral sugar raffinose and then the naïve GAL1 

gene is induced with galactose, GAL1 transcripts are detectable by 20 minutes post-
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induction. However, if in these cultures, GAL1 transcription is repressed with glucose 

till 6 hours and then turned back on, by transferring cells back to galactose containing 

medium, reinduction occurs with much faster kinetics compared to the initial round of 

induction. Steady-state level of transcription is observed within 5 minutes of GAL1 

reinduction (Fig. 3, top). This phenomenon of rapid reactivation that follows a period of 

repression reflects an example of transcriptional memory (Kundu et al. 2007). Such 

‘short-term’ transcriptional memory of GAL1 activity persists through mitosis, requires 

chromatin remodeling by SWI/SNF and is ultimately lost by 6 hours of growth in the 

absence of galactose stimulus, or in other words, persists for approximately 3 cell cycles 

before being lost. 

 

 In another experimental paradigm, a different phenomenon which can be called 

‘long-term’ memory is observed. Here, glucose grown cells are GAL1-induced, 

repressed with glucose and reinduced again by shifting cells back to galactose 

containing medium (Brickner et al. 2007; Zacharioudakis et al. 2007). In the first round 

of GAL1 induction, cells have to overcome not only Gal80p-repression but also 

glucose-repression by Mig1p, Nrg1p and Nrg2p and have to synthesize Gal4p activator 

at the same time. Hence induction of the naïve gene requires 3-4 hours. In contrast, 

GAL1 reinduction occurs within 2 hours after glucose repression (Fig. 3, bottom). 

Compared to the ‘short-term’ memory described above, the transcriptional response 

during GAL1 reinduction is slower in this form of memory but persists for 12 hours or 

longer. Interestingly, different factors have been implicated for ‘short-term’ and ‘long-
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term’ memory. Studies by Brickner et al. (2007) suggest that formation and inheritance 

of this ‘long-term’ memory require the histone variant, H2A.Z and Nup2p mediated 

nuclear pore association. However, a recent report clearly shows that in budding yeast 

nuclear pores and proteins or DNA associated with them are retained exclusively within 

the mother cell while the daughter cell always received new pore complexes 

(Shcheprova et al. 2008). This argues against the theory of nuclear propagation of 

memory since any GAL1 gene that was bound to the pore complexes through extended 

periods of glucose repression would certainly be segregated asymmetrically to the 

mother cell and there appears no mechanism to instruct the daughter cell’s copy of 

GAL1 about its nuclear localization status.  

 

 

 

 

 

 

 

 

 

 

 

 



TRANSCRIPTIONAL MEMORY AT YEAST GAL GENES

SHORT-TERM  MEMORY

Raffinose Galactose Glucose Galactose

LONG-TERM  MEMORY

Glucose Galactose Glucose Galactose

1-6 hrs

12 hrs

Factors involved :

SWI/SNF

Gal3p/Gal1p?

Factors involved :

Gal1p

H2A.Z

Induction in 
~20 min

Induction in 
≤ 5 min

Induction in 
~4 hrs

Induction in 
≤ 2 hrs

39

Figure 3. Schematic to summarize the two forms of transcriptional memory 

observed at the GAL gene cluster. Two different experimental regimens that lead to 

memory are shown. ‘Short-term’ and ‘long-term’ forms of memory differ in the time 

for which memory and in factors required to form memory. Short-term memory results 

in faster reinduction compared to long-term memory, but persists for lesser time. See 

text for details.
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It has also been proposed that H3K4me (catalyzed by Set1p) might provide 

transcriptional memory of GAL10 induction since the mark can persist at the locus till 5 

hours after glucose repression (Ng et al. 2003). However deletion of Set1p has no effect 

on ‘short-term’ transcriptional memory of GAL genes (Kundu et al. 2007). On the other 

hand, our studies have shown that neither histone variants nor nuclear pore localization 

seem to contribute to short-term GAL1 memory. Instead, we observed that short-term 

memory depended on chromatin remodeling by SWI/SNF (Kundu et al. 2007). How 

could an ATP-dependent chromatin remodeling enzyme promote transcriptional 

memory? One model proposes that SWI/SNF could be causing short-term GAL1 

memory by generating open chromatin conformation at the promoter, perhaps through 

alternate nucleosome positioning. However, since memory of GAL1 transcription is 

heritable, this alternate chromatin configuration would need to be reestablished after 

each round of DNA replication even in the absence of SWI/SNF. Interestingly, genetic 

analysis revealed that deleting either of the two ISWI complexes, ISW1 or ISW2 could 

rescue short-term transcriptional memory in swi2 cells. Since ISWI complexes 

establish repressive chromatin configuration at gene promoters by altering nucleosome 

positions, it is conceivable that SWI/SNF maintains open chromatin at GAL1 promoter 

by preventing ISWI function during short-term glucose repression. Though this scenario 

can explain the requirement of SWI/SNF for short-term transcriptional memory, the 

mechanism of its inheritance is still not clear. 
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Like complex genetic networks of higher eukaryotes, genetic networks of yeast 

are also controlled at different steps by feedback or feedforward loops. Such loops 

increase the responsiveness of the network to subtle environmental changes and reduce 

stochastic noise or cell heterogeneity in gene activity (Ozbudak et al. 2002; Stelling et 

al. 2004; Kaern et al. 2005). The GAL transcriptional network also incorporates 

signaling loops – positive signaling via Gal3p and negative signaling via Gal80p that 

can together enhance the robustness of response of the population to galactose (Acar et 

al. 2005; Ramsey et al. 2006; Ronen and Botstein 2006; Ajo-Franklin et al. 2007). 

Significantly, long-term memory at GAL genes indeed appears to require signaling by 

Gal1p, high amounts of which can be cytoplasmically distributed to progeny through 

multiple cell divisions (Zacharioudakis et al. 2007). This is very interesting since Gal1p 

and Gal3p are very closely related proteins that are believed to have diverged from a 

common ancestor such as the galactokinase enzyme still seen in Kluymeromyces lactis. 

This means that Gal1p can bind galactose (although with a higher Km than Gal3p) and 

therefore when present in the cell in high concentrations, Gal1p functions as a weaker 

galactose coinducer (Meyer et al. 1991; Platt et al. 2000; Hawkins and Smolke 2006; 

Hittinger and Carroll 2007).  

 

Two questions arise – firstly, if Gal1p functions as a co-inducer in providing 

‘long-term’ memory to robustly signal the presence of galactose in the environment, 

then can the actual co-inducer, Gal3p, also not provide memory? Secondly, do Gal1p or 

Gal3p also contribute to cytoplasmic inheritance of ‘short-term’ memory? 
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Zacharioudakis et al. (2007) showed that Gal3p did not contribute to long-term memory 

at GAL10 gene. In addition, we observed that Gal1p was not required for short-term 

memory. Instead, overexpressing Gal3p constitutively increased rate of initial GAL1 

induction almost to the rate of reinduction after short-term repression (our unpublished 

results). This is significant because the GAL3 gene is induced 3-5 fold in the presence of 

galactose. Thus the cellular level of Gal3p co-inducer is responsive to presence of the 

inducer, galactose and higher cytoplasmic amount of Gal3p can be transmitted to 

daughter cells during mitosis, even when galactose has been removed from the medium. 

In the event that galactose again becomes available in the space of a few cell cycles, 

cells already have higher than basal level of cytoplasmic Gal3p to bind galactose and 

thus can respond more rapidly by inducing the GAL genes than naïve cells. Since Gal3p 

has a very high affinity for binding galactose, relatively small amounts of the Gal3p-

galactose complex can alleviate Gal80p-repression. Together, these results clearly 

demonstrate that both short-term and long-term memory of GAL gene transcription is 

transmitted to future generations by cytoplasmic distribution of signaling molecules.  

 

Concluding remarks 

 In all metazoans, and indeed even in yeast, inheritance of transcriptionally active 

or silenced loci involves chromatin changes. Different mechanisms of inheritance of 

cellular memory have different half-lives or persistence. At most instances therefore, 

cells employ more than one strategy cooperatively to regulate both efficiency of cellular 

memory and also the plasticity of the system. Unlike other organisms, cellular memory 
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in budding yeast appears so far to be entirely cytoplasmic in nature. Activation of a 

genetic network builds up a large cellular concentration of signaling proteins, whose 

half-lives can be longer than the life cycle of yeast. Thus at each round of cell division, 

cytoplasm of the initial population divides and high levels of signaling proteins (like 

Gal1p or Gal3p) that were built up are distributed to daughter cells till either the protein 

is diluted out or is turned over. Since no mechanisms to perpetuate or regenerate these 

signals are known, cytoplasmically inherited memory is eventually lost and the network 

is reset. 
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Abstract 

Posttranslational modification of nucleosomal histones has been suggested to contribute 

to heritable transcriptional memory. We describe a case of transcriptional memory in 

yeast where the rate of transcriptional induction of GAL1 is regulated by the prior 

expression state. This transcriptional state is inherited by daughter cells, but does not 

require the histone acetyltransferase, Gcn5p, the histone ubiquitinylating enzyme, 

Rad6p, or the histone methylases, Dot1p, Set1p, or Set2p. In contrast, we show that the 

ATP-dependent chromatin remodeling enzyme, SWI/SNF, is essential for 

transcriptional memory at GAL1. Genetic studies indicate that SWI/SNF controls 

transcriptional memory by antagonizing ISWI-like chromatin remodeling enzymes. 
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Introduction 

Specific patterns of gene expression are established during development, and 

these gene expression programs can be maintained through many cell divisions. The 

process of establishing and maintaining a transcriptional state that is heritable to 

progeny has been termed transcriptional memory. Within eukaryotic cells, chromatin 

structure plays a key role in establishing and maintaining ON/OFF states of gene 

expression. In its simplest state, chromatin is composed of long, linear arrays of 

nucleosomes that contain 147 bp of DNA wrapped about twice around an octamer of 

the core histones (two each of H3, H4, H2A, and H2B). Within cells, nucleosomal 

arrays are condensed into higher order structures, and the dynamic folding/unfolding of 

these structures is associated (and likely causative) with transcriptional activity. 

 

Genetic and biochemical analyses of transcriptional regulatory mechanisms have 

led to the identification of two classes of highly conserved “chromatin 

remodeling/modification” enzyme that regulate the dynamic state of chromatin (for 

reviews see (Becker and Horz 2002; Peterson and Laniel 2004)). One class of chromatin 

remodeling/modification enzymes catalyzes the covalent attachment or removal of post-

translational histone modifications (e.g. lysine acetylation, serine phosphorylation, 

lysine and arginine methylation, and lysine ubiquitylation). These histone marks can 

regulate the formation of higher order chromatin structures (e.g. H4-K16Ac; (Shogren-

Knaak et al. 2006)), or they can serve as the nucleating event for binding of nonhistone 

proteins that establish active or inactive chromatin states. For example, methylation of 
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H3-K9 provides a binding site for the HP1 protein which nucleates formation of 

repressive, heterochromatic structures (Grewal and Elgin 2002). HP1 can interact with 

the H3-K9 methyltransferase which has suggested a means for how this chromatin 

structure can be reestablished following DNA replication (Grewal and Elgin 2002). 

Likewise, methylation of histone H3 at K4 is associated with transcriptionally active 

loci in many eukaryotes, and it has been suggested that H3-K4me could provide a 

memory of previous transcriptional activity (Ng et al. 2003). 

 

 In addition to histone modifying enzymes, a distinct class of chromatin 

remodeling/modification enzyme uses the free energy derived from ATP hydrolysis to 

enhance the accessibility of nucleosomal DNA or change the histone composition of 

nucleosomes (Becker and Horz 2002; Smith and Peterson 2005). This family can be 

subdivided into at least five groups based on their biochemical properties and overall 

sequence similarity of their ATPase subunits: (1) SWI/SNF, (2) ISWI, (3) Mi-2/CHD, 

(4) Ino80/Swr1, and (5) Rad54 (Flaus et al. 2006). Whereas many members of the 

ISWI-like and Mi-2/CHD-like subgroups appear dedicated to transcriptional repression 

pathways (Kehle et al. 1998; Fazzio et al. 2001; Unhavaithaya et al. 2002), most 

SWI/SNF-like enzymes play roles in the activation of transcription (Peterson and 

Workman 2000). Notably, the Drosophila SWI/SNF complex harbors the Brm ATPase 

which is a member of the TrX family of gene products that function as “memory 

factors” to maintain the transcriptional active state of homeotic genes during embryonic 

development (Tamkun et al. 1992). 
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Here we find that transcriptional induction of the yeast GAL1 gene exhibits 

“memory” of the preceding transcriptional state. Specifically, the rate of transcriptional 

induction of a naïve gene is slower than for a GAL1 gene that was previously 

transcribed. This ability to re-induce GAL1 with fast kinetics survives at least one round 

of DNA replication and mitosis, indicating that this memory phenomenon is inherited 

by future generations. Previous studies have demonstrated that nucleosomes at the 

GAL1 locus are subject to a variety of histone modifications during transcription, but we 

find that none of these marks are required for memory. In contrast, we find that 

inactivation of the SWI/SNF remodeling enzyme eliminates transcriptional memory at 

GAL1, such that the rate of transcriptional induction is nearly identical between a naïve 

gene and a GAL1 gene that had been previously transcribed. Surprisingly, we find that 

inactivation of ISWI-based chromatin remodeling enzymes restores transcriptional 

memory in a swi/snf mutant, suggesting that SWI/SNF prevents ISWI-based enzymes 

from erasing the memory of a previous round of transcription. 
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Results 

Transcriptional memory at GAL1 gene is heritable 

GAL1, which encodes the enzyme galactokinase, can be transcriptionally 

induced by ~1000-fold when yeast cells are grown in media containing galactose. 

Addition of glucose leads to rapid and efficient repression of GAL1 by multiple 

mechanisms, including a decrease in levels of the Gal4p activator and the galactose 

permease (Gal2p), and by activating several glucose repressor proteins that act in cis at 

the GAL1 promoter (Johnston et al. 1994; Carlson 1998). Further, in neutral carbon 

sources such as raffinose, glycerol, or lactate, GAL1 is maintained in a poised state due 

to the masking of the Gal4p activation domain by the Gal80p repressor. We were 

specifically interested in how the trans-acting glucose repressors function, and 

therefore, we investigated the re-induction of GAL1 following a short period of glucose 

repression (see Fig. 4a). Cells were first grown in raffinose media so that GAL1 was 

poised for activation. Upon addition of galactose to the growth medium, GAL1 

transcription commenced and transcripts appeared by 20 minutes post-induction (Fig. 

4a, b). However, accumulation of maximum levels of GAL1 transcripts required > 1 

hour of growth in galactose media. Next, GAL1 expression was repressed by addition of 

2% glucose and cells were grown for an additional hour. Surprisingly, when cells were 

washed into fresh media containing galactose, GAL1 transcription resumed very rapidly 

(Fig. 4a, b; Fig. 10). Re-induction of GAL1 transcription peaked < 10 min after the 

addition of galactose (Fig. 4a, b). Thus, these results suggest that cells “remember” that 

GAL1 was previously transcribed, and consequently they are poised to rapidly re-induce 
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GAL1 transcription when galactose again becomes the dominant carbon source. Similar 

results were found for the reinduction of the GAL7 and GAL10 genes, indicating that 

this phenomenon is a general property of the GAL gene cluster (data not shown). 

 

We next tested whether the ability to re-induce GAL1 with rapid kinetics was a 

transient state or whether it could survive long term growth in glucose media. Cells 

were grown overnight in raffinose media and then galactose was added for 60’ to induce 

GAL1 expression. Glucose was then added to repress GAL1, and at varying times after 

glucose addition, cell aliquots were transferred to galactose media and GAL1 re-

induction kinetics were monitored. Figure 5a illustrates that cells grown for 2 to 4 hours 

in glucose media retained the ability to rapidly reinduced GAL1 after subsequent 

addition of galactose (rapid induction defined as maximal expression at 20’ following 

galactose addition). In contrast, cells grown for 6-8 hours in glucose re-induced GAL1 

with the slower kinetics that mirrored induction kinetics of a naïve gene (compare lanes 

10-15 of Fig. 5a with Figure 4a). Since the yeast cell cycle is ~2 hours in glucose media, 

these results suggest that the ability to rapidly re-induce GAL1 might survive DNA 

replication and/or mitosis. To test this idea definitively, we performed an elutriation 

experiment (Fig. 5b). Cells were grown in galactose media until mid-log phase, and 

then cells were arrested at the G1/S transition of the cell cycle by treatment with alpha 

factor. Arrested cells were washed into glucose-containing media and then released 

from the cell cycle block and allowed to undergo one synchronous cell division in 

glucose media. Centrifugal elutriation was then performed in glucose media to isolate 
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small, unbudded daughter cells from this culture. The daughter cell population was then 

transferred to galactose media and GAL1 re-induction kinetics were followed. The data 

shown in Fig. 5b demonstrates that these daughter cells retained the ability to re-induce 

GAL1 with rapid kinetics (i.e. peak expression at 20 minutes). These results indicate 

that memory of GAL1 gene transcription can be stably inherited. 
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Figure 4: Transcriptional memory at the GAL1 gene. (a) Northern analysis of GAL1 

RNA levels. Schematic at top depicts regimen of growth in different carbon sources. 

Raf, 2% raffinose; Gal, 2% galactose; Glc, 2% glucose. Initial induction of GAL1 

occurs with slower kinetics than when GAL1 is re-induced following glucose 

repression. (b) Graph comparing kinetics of GAL1 induction and re-induction, averaged 

over three experiments performed as described in panel a. Error bars represent the 

standard deviation at each point. Slightly different time points were taken in different 

experiments, so in these cases no error bars are shown. The bottom panel represents an 

ACT1 loading control for total RNA levels. The numbers indicate fold induction of 

GAL1 transcripts normalized to ACT1 transcripts, with the maximally induced state set 

to a value of 1. 
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Figure 5. Transcriptional memory persists through cell division. (a) Cells were 

grown overnight in raffinose prior to addition of galactose. After 1 hour, cells were 

transferred to glucose media. At indicated times, an aliquot of cells was washed into 

fresh galactose media and GAL1 reinduction was observed. The “memory” state is 

maintained through at least 4 hours of repression. (b) Glucose-grown daughter cells 

retain transcriptional memory. Cells were grown overnight in galactose media and then 

arrested at the G1/S boundary with alpha factor (lane labeled “Gal”). Arrested cells 

were then released from alpha factor into glucose medium to repress GAL1 and 

simultaneously undergo one synchronous division (lane labeled “Gal+Glc”). An aliquot 

of these cells were washed into galactose media to monitor re-induction kinetics (lanes 

labeled “no elutriation”). The remainder of the cells were elutriated to isolate daughter 

cells that had undergone mitosis in glucose media. Daughter cells were washed into 

galactose media to follow kinetics of GAL1 reinduction. The bottom panel represents an 

ACT1 loading control for total RNA levels. The numbers indicate fold induction of 

GAL1 transcripts normalized to ACT1 transcripts, with the maximally induced state set 

to a value of 1. 
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The transcriptional machinery is disassembled during glucose repression 

One possibility is that rapid re-induction kinetics involves the persistent 

association of one or more components of the RNAP II transcription machinery with the 

GAL1 promoter during glucose repression. For instance, if TBP remains bound to the 

promoter during glucose repression, then re-induction might occur with faster kinetics. 

GAL1 transcription is activated by Gal4p, which binds to four sites within the UASGAL 

between the GAL1 and GAL10 genes (Fig 6a). When galactose is added to raffinose-

grown cells, Gal80p-dependent inhibition of Gal4p is relieved, and Gal4p recruits a 

variety of transcription factors, including the SWI/SNF remodeling enzyme, the SAGA 

HAT complex, and the transcriptional mediator complex (Bhaumik and Green 2001; 

Larschan and Winston 2001; Lemieux and Gaudreau 2004; Dhasarathy and Kladde 

2005). These events are followed by assembly of the pre-initiation complex (PIC) and 

transcription of GAL1. We used chromatin immunoprecipitation to follow the 

recruitment of these factors to the GAL1 promoter during growth in galactose and 

during subsequent glucose repression (Figure 6). As expected, robust levels of Gal4p 

were detected at UASGAL when cells were grown in raffinose or galactose media. 

During glucose repression, Gal4p remained at high levels for the first 1 hour in glucose, 

and then levels decreased ~2-fold at extended times in glucose media (Fig 6b, top). The 

lower level of Gal4p was also observed in long-term glucose grown cultures and likely 

reflects partial occupancy of the multiple Gal4p binding sites (Ren et al. 2000). These 

ChIP signals are specific to Gal4p since a gal4strain showed no enrichment of Gal4p 

at the UASGAL (Fig 6b, bottom).  
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We also found that TBP, Mediator, RNA Polymerase II, SWI/SNF, and SAGA 

were recruited to the GAL1 promoter following galactose addition, but unlike Gal4p, 

none of these factors could be detected at GAL1 after 1 hour of transferring the cells to 

glucose-containing medium (Fig. 6c). Thus, components of the transcription machinery 

rapidly dissociate from the promoter soon after GAL1 transcription is repressed by 

glucose addition. Since the ability to rapidly re-induce GAL1 persists for 2-4 hours in 

glucose, these results suggest that this phenomenon is not due simply to persistent 

association of transcription factors with the promoter. 
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Figure 6. Rapid dissociation of the transcription machinery during glucose 

repression. (a) Schematic representation of the GAL1-10 regulatory region. UASGAL 

marks the Gal4p binding sites. URSGAL contains the binding sites for the glucose 

repressor, Mig1p. Regions covered by primers for chromatin immunoprecipitation 

(ChIP) are shown as horizontal lines. TATA represents the TBP binding sites and +1 

represents the transcription start sites. (b) Gal4p ChIP in wild type and gal4strains. (c) 

ChIP for TBP, RNA Polymerase II, Mediator (-Srb4-13myc), SWI/SNF (-Snf6) and 

SAGA (-Spt3-13myc). For all factors, appropriate strains were grown in raffinose 

media until mid-log phase, and GAL1 was induced for 1 hour by adding galactose. Cells 

were then washed into media with glucose to repress GAL1 transcription for the 

indicated times. 3’ GAL1 ORF, telomere (Chr VI-70bp from right end) and ACT1 PCR 

primer sets were included as nonspecific controls. Numbers indicate ratio of %IP values 

to corresponding nonspecific control.  
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The kinetics of RNA polymerase II recruitment to the GAL1 promoter was also 

analyzed throughout an induction/re-induction timecourse (Fig. 2d). In the initial round 

of GAL1 induction, high levels of RNAPII was detected at the GAL1 promoter within 

20-40 minutes (Fig. 7), consistent with the appearance of GAL1 mRNA (Fig. 4a). 

Strikingly, RNAPII was recruited much faster during re-induction of GAL1, with 

significant amounts of RNAPII detected 5’ after galactose addition. Similar results were 

found for recruitment of TBP (data not shown). Thus, these results indicate that this 

phenomenon of GAL1 transcriptional memory occurs at the level of transcription 

initiation. 
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Figure 7. RNA Polymerase is recruited rapidly during GAL1 reinduction. RNA 

Polymerase II ChIP in wild type strain comparing induction and re-induction using the 

regimen shown above panel. Below is shown quantitation of a representative 

experiment.
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Histone modifications are not required for transcriptional memory 

Posttranslational modification of the core histones is an ideal candidate for an 

chromatin-inheritance mechanism that could contribute to the rapid GAL1 re-induction 

kinetics. Histone lysine methylation is particularly attractive as this mark has a much 

longer half-life as compared to lysine acetylation (Katan-Khaykovich and Struhl 2005). 

Indeed, the transcription-associated methylation of histone H3-lysine 4 (H3-K4me) has 

been hypothesized as a possible agent for memory of recent transcriptional activity (Ng 

et al. 2003). We tested whether Set1p, which is responsible for H3-K4 methylation 

(Briggs et al. 2001; Roguev et al. 2001), or Set2p and Dot1p which methylate H3-K36 

(Strahl et al. 2002) and H3-K79 (Feng et al. 2002; Lacoste et al. 2002; Ng et al. 2002a; 

van Leeuwen et al. 2002) respectively, are required for transcriptional memory at 

GAL1. Interestingly, none of these methyltransferases are required for the rapid kinetics 

of GAL1 re-induction (Fig. 8a). After re-inducing GAL1 transcription, transcript levels 

peaked within 20 min in set1 set2or dot1strains (Fig. 8a). We also tested the re-

induction kinetics of a rad6strain, since Rad6p-dependent ubiquitinylation of histone 

H2B-K123 is required for H3 methylation (Dover et al. 2002; Ng et al. 2002b; Sun and 

Allis 2002). In this case as well, GAL1 re-induction was rapid (Fig. 8b). Finally, we 

monitored re-induction kinetics in a gcn5 strain to eliminate SAGA-dependent 

acetylation of histone H3. In this case as well, no effect was observed on GAL1 memory 

(Fig 8c). Thus, posttranscriptional histone modifications do not appear to be responsible 

for imparting transcriptional memory at the GAL1 locus. 
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Figure 8. Histone modifying enzymes are not essential for rapid GAL1 re-

induction. Northern blot analyses as in Figure 1. (a) Schematic at top illustrates growth 

media regimen. RNA was isolated from set1, set2or dot1strains. (b) Identical 

analysis as in panel a, but with a rad6strain. (c) Identical analysis as in panel a, but 

with a gcn5strain. All Northerns were subsequently probed for ACT1 as a loading 

control. 
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Table 1. List of different histone modifications tested for the requirement in 

transcriptional memory. GAL1 induction and reinduction kinetics were compared by 

Northern Blot in strains listed below. Each of this strain lacks a histone modifying 

enzyme that is responsible for particular histone modification. 
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Transcriptional memory requires SWI/SNF 

After determining that chromatin remodeling via histone modifications might 

not be required for the faster re-induction kinetics of GAL1, we turned to the ATP-

dependent chromatin remodeling enzymes. Previous studies have shown that SWI/SNF 

is recruited by the Gal4p activator to the GAL1 locus (Lemieux and Gaudreau 2004). 

Several studies have also shown that inactivation of SWI/SNF does not alter steady 

state GAL1 expression (Burns and Peterson 1997; Lemieux and Gaudreau 2004). 

Likewise, we found that the kinetics of GAL1 induction in a swi2strain are nearly 

equivalent to those of a wild type strain (Fig. 9a). In contrast, the swi2 strain was 

unable to rapidly re-induce GAL1 following a 1 hour period of glucose repression. 

Indeed, the kinetics of induction and re-induction were nearly identical (Fig. 9a, b). This 

defect in re-induction kinetics was observed irrespective of whether raffinose-grown 

swi2cells were switched to galactose for 2 hours (Fig. 9a) or if they were grown 

overnight in galactose (Fig. 10b). Thus it appears that inactivation of SWI/SNF 

eliminates the memory of previous GAL1 activation. 
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Figure 9. SWI/SNF is essential for GAL1 memory. (a) Northern analyses. Schematic 

at top illustrates the growth regimen for swi2D cells. (b) Comparison of GAL1 induction 

and reinduction kinetics, averaged over three experiments performed as in panel a. Error 

bars represent the standard deviation at each point. Slightly different time points were 

taken in different experiments, so in these cases no error bars are shown.
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One possibility is that SWI/SNF is not involved in the mechanism of 

transcriptional memory but that SWI/SNF is generally required to antagonize glucose 

repression. To test this idea, wild type and swi2cells were grown overnight in glucose, 

and then GAL1 induction kinetics were monitored after cells were transferred to 

galactose media. In both the wild type and swi2strains, GAL1 transcripts appeared by 

4 hours after galactose addition, demonstrating that SWI/SNF is not required to 

antagonize glucose repression at GAL1 during an initial round of transcriptional 

induction (Fig. 10a). 

 

We next tested if the ATPase activity of SWI/SNF was required for 

transcriptional memory. GAL1 re-induction kinetics were monitored in a strain 

harboring the swi2K798A allele, which encodes an ATPase-defective version of the 

Swi2p catalytic subunit. GAL1 re-induction in the swi2K798A strain was much slower 

than the isogenic wildtype strain (~40’ in swi2K798A vs ~5’ in WT), indicating that the 

enzymatic activity of SWI/SNF is essential for the ability to rapidly re-induce GAL1 

transcription. We note that re-induction kinetics in the swi2K798A strain are 

reproducibly faster than the isogenic swi2strain which may indicate an additional 

ATP independent role for SWI/SNF in GAL1 memory (compare Fig. 10c to Fig. 9a). 
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Figure 10. SWI/SNF has no defect in GAL1 induction. (a) Isogenic wild type and 

swi2strains were grown overnight in glucose and then cells were transferred to 

galactose media. Both strains showed similar GAL1 induction kinetics after overcoming 

long-term glucose repression. (b) Northern blot showing that GAL1 transcriptional 

memory is lost in swi2cells even if they are grown in galactose for a long period. 

Wild type and swi2 cells were grown overnight in galactose to ensure steady state 

GAL1 expression. GAL1 was repressed by adding 2% glucose and grown for 1 hour. 

Cells were then washed into galactose media and GAL1 reinduction was followed. In 

these experiments, glucose repressed cultures also contained 2% galactose. (c) An intact 

Swi2p ATPase domain is required for rapid GAL1 reinduction. Northern analysis of 

RNA isolated from cells harboring a swi2K798A allele which inactivates the ATPase 

activity of SWI/SNF. Blots were re-probed for ACT1 as a control. 
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Loss of ISWI-like enzymes restores memory at GAL1 in the absence of SWI/SNF 

Our data suggest that the initial round of GAL1 transcription establishes a 

heritable state that is poised for rapid re-induction. Previous studies have identified two 

changes in GAL1 chromatin structure that occur during transcriptional induction and 

that may contribute to this SWI/SNF-dependent memory state: (1) two nucleosomes 

surrounding the GAL1 promoter are lost (Lohr and Lopez 1995) and (2) promoter 

proximal nucleosomes are tri-methylated at H3-K4 by the Set1p methyltransferase (Ng 

et al. 2003). The methylation of H3-K4 leads to the subsequent recruitment of an Isw1-

containing, ATP-dependent chromatin remodeling enzyme (Santos-Rosa et al. 2003). 

When the transcriptionally active GAL1 gene is repressed by glucose, the promoter 

proximal nucleosomes are rapidly re-assembled (Lohr 1984; Lohr and Lopez 1995), and 

high levels of H3 K4me3 persist (Ng et al. 2003); P.J.H and C.L.P., unpublished 

results).  

 

One possibility is that SWI/SNF may influence the re-positioning of promoter 

proximal nucleosomes such that subsequent PIC formation is favored. If this model is 

correct, then only small changes in nucleosome positioning are required, as Cavalli and 

Thoma have previously shown that the low resolution view (+/- 50 bp) of GAL1 

promoter nucleosomes is identical when samples are analyzed from cells grown long-

term in glucose or from galactose-induced cells that are treated with glucose for less 

than 1 hour (Cavalli and Thoma 1993). Alternatively, the first round of GAL1 

transcription may lead to a locus with a lower density of nucleosomes, even after 
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subsequent glucose repression. Indeed previous studies indicate that several hours of 

glucose repression is required before the entire GAL1 locus is restored to a regular 

nucleosomal array (Cavalli and Thoma 1993). SWI/SNF action may favor this 

chromatin state, whereas ISWI-like enzymes may promote the re-assembly of a more 

regular nucleosomal array.  

 

Although our data suggest that the SET1-dependent recruitment of Isw1p is not 

essential for GAL1 re-induction kinetics (Fig. 8a), we tested the possibility that a 

functional relationship exists between SWI/SNF and ISWI-like remodeling enzymes in 

transcriptional memory at GAL1. Budding yeast contain two distinct ISWI-like 

enzymes, Isw1 and Isw2 (Vary et al. 2003; Mellor and Morillon 2004), and each 

functions as the catalytic subunit of distinct multi-subunit remodeling complexes. We 

created isogenic isw1, isw2isw1swi2, and isw2swi2 strains and monitored 

GAL1 re-induction kinetics. Whereas the isw1 or isw2 single mutants had no effect on 

GAL1 induction or re-induction kinetics (Fig. 11), we found that deletion of either ISW1 

or ISW2 restored rapid re-induction kinetics in the swi2strain (Fig. 12a, b).  

 

Furthermore, deletion of ISW2 allowed a swi2strain to grow on 

galactose/antimycin solid media (data not shown). In contrast, inactivation of Set1p did 

not restore rapid GAL1 re-induction kinetics in a swi2 mutant (Fig 12c). Taken together, 

these results suggest that SWI/SNF controls memory of recent GAL1 transcription by 

antagonizing the repressive role of ISWI remodeling complexes. Such functional 
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antagonism between SWI/SNF and ISWI-like enzymes is not unique to the GAL1 gene, 

as deletion of the ISW2 gene also alleviates the transcriptional requirement for 

SWI/SNF in the induction of the INO1 gene when cells are grown in low levels of 

inositol (Fig. 12d). 
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Figure 11. Single mutants of ISWI complexes show transcriptional memory. 

Induction and re-induction kinetics for isw1 and isw2 mutants. The indicated 

strains were grown as described in the schematic and northern analysis was done with 

the isolated RNA samples. ACT1 is the loading control.
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Figure 12. SWI/SNF antagonizes ISWI-like remodeling complexes. (a) Northern 

blot analysis for RNA isolated from WT, isw1and isw1swi2strains. (b) Northern 

analysis for RNA isolated from isw2and isw2swi2strains. (c) Inactivation of 

Set1p does not restore rapid re-induction kinetics in the absence of SWI/SNF. (d) 

Analysis of INO1 expression. The indicated isogenic strains were grown in minimal 

media containing high (100 M) or low (10 M) concentrations of myo-inositol. Blots 

were re-probed for ACT1 as a control. 
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Discussion 

How do SWI/SNF and ISWI-like complexes function at GAL1? 

Our data suggest that the SWI/SNF that is recruited during the first round of 

GAL1 transcription potentiates the re-induction of GAL1 following a period of glucose 

repression. Furthermore, we found that this requirement for SWI/SNF can be bypassed 

by removal of the Isw1- or Isw2-based remodeling enzymes. Based on these results, we 

speculate that these two types of chromatin remodeling enzymes compete with each 

other to establish a GAL1 chromatin structure that is permissive for rapid re-induction 

of GAL1. As cells divide, this chromatin state can be inherited initially but is eventually 

lost. In cells lacking SWI/SNF, the abundant Isw1 and Isw2 enzymes establish an 

alternative, repressive chromatin state. In this situation, memory of the recent 

transcriptional activity is erased and slow re-induction kinetics result. Since SWI/SNF 

and ISWI-like enzymes tend to have opposing effects on the transcription of several 

yeast genes (including GAL1 and INO1), it is tempting to consider that such direct 

antagonism may be a more general phenomenon. 

 

Recently van Oudenaarden and colleagues have described a distinct example of 

GAL1 transcriptional memory in which cells “remember” whether they were previously 

exposed to high or low concentrations of galactose (Acar et al. 2005). This particular 

memory phenomenon requires the GAL3 and GAL80 regulatory loops and likely 

involves the cytoplasmic inheritance of the positive regulator, Gal3p. Cytoplasmic 

inheritance of the Gal3p that is expressed during the first round of induction may 
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contribute to the rapid induction kinetics that follows glucose repression. However, 

SWI/SNF plays a dominant role in transcriptional memory that is independent of Gal3p 

or the Gal2p permease since SWI/SNF does not affect GAL3 or GAL2 expression 

during the first round of galactose induction (Fig. 13). Thus, transcriptional memory at 

GAL1 appears to involve a cytoplasmic mechanism that generally controls GAL1 

expression levels, and a chromatin-based mechanism that specifically regulates the rate 

of transcriptional reinduction following transient glucose repression. 
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Figure 13: Loss of SWI/SNF does not affect GAL2 or GAL3 expression. Reverse 

transcriptase PCR performed in wild type and swi2 cells grown overnight in 2% 

raffinose, 2% glucose, or 2% galactose to detect steady state levels of GAL2 and

GAL3 transcripts. Galactose expression of GAL2 and GAL3 is equal in WT and swi2

cells. ACT1 was used as a loading control.
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Materials and methods 

Yeast strains, media and growth conditions 

Strains used in this study are isogenic derivatives of the S288c background. Genotypes 

are provided in the list of strains used. S. cerevisiae liquid cultures were grown at 30°C 

in YEP (1% yeast extract, 2% bacto-peptone) media supplemented with 2% glucose, 

2% galactose or 2% raffinose + 0.2% sucrose depending on whether GAL1 activation or 

repression was required. For re-induction studies, aliquots of glucose-grown cultures 

were centrifuged for 5’ at room temperature, cell pellets were washed once with YEP, 

centrifuged for 5’, and pellets resuspended in pre-warmed YEPGal. To activate INO1 

expression cells were grown to mid-log phase in SD medium complete with amino 

acids. INO1 expression was repressed by adding 100M myo-inositol. Deleted strains 

were made by a PCR-based method using kanamycin resistance cassette (Longtine et al. 

1998). Deletions were confirmed by PCR from genomic DNA with primers designed in 

the ORF of the individual deleted gene. 

 

Centrifugal elutriation 

Centrifugal elutriation of wild type cells was performed as described (Johnston and 

Johnson 1997). 

 

RNA isolation and analysis 

Total RNA was isolated from yeast grown to logarithmic phase in appropriate media by 

hot phenol extraction method. Concentration of RNA was determined by measuring 
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A260 after dissolving in diethyl pyrocarbonate-treated water. 10g (for GAL1 

expression) or 25g (for INO1 expression) of total RNA from each sample was 

electrophoresed on 1% formaldehyde agarose gels and Northern blotting was done. The 

housekeeping gene ACT1 was used as loading control. Radioactively labeled probes for 

hybridization were generated by PCR amplification of the complete GAL1, INO1 or 

ACT1 ORFs from genomic DNA. 

 

Chromatin Immunoprecipitation 

Mouse monoclonal antibody to the Gal4-DBD (RK5C1) was obtained from Santa Cruz 

Biotechnology. Anti-TBP and anti-Snf6 (for SWI/SNF) antibodies were kind gifts from 

M.R. Green and J. Reese. Mouse monoclonal antibody to RNA Polymerase II 

(CTD4H8) was obtained from Covance Research Products. SAGA (13-myc tagged 

Spt3) and Mediator (13-myc tagged Srb4) were immunoprecipitated with mouse 

monoclonal anti-Myc (9E10) antibody (Santa Cruz Biotechnology). ChIP assays were 

performed as described (Li et al. 2000). The immunoprecipitated DNA was amplified 

using quantitative PCR performed with -32P-dCTP and then electrophoresed on 5% 

acrylamide gels. Reactions were visualized and quantified by PhosphorImager. 

 

Reverse transcriptase PCR 

Wild type and swi2cells were grown to mid-log phase in YEP medium with 2% 

glucose, 2% galactose or 2% raffinose + 0.2% sucrose at 30°C. 10 ml of cells were 

harvested and total RNA was extracted as described above. First-strand cDNA was 
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synthesized using 2.5g RNA, SuperScript II RNase H– reverse transcriptase 

(Invitrogen), and 2pmol each of GAL2, GAL3, or ACT1 downstream primers, following 

the manufacturer's instructions. Subsequently, 32P-labeled PCR was performed using 

l of the first-strand cDNA reaction, and gene-specific primer sets to determine the 

relative levels of GAL2, GAL3, and ACT1 mRNA for each strain. After 14 cycles (for 

ACT1) or 25 cycles (for GAL2 and GAL3) of amplification, PCR products were 

electrophoresed on 10% acrylamide gels. 
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Abstract 

Several recent studies have shown that yeast GAL genes are transcriptionally induced 

with faster kinetics if the gene had been previously expressed. Depending on the 

particular experimental regimen, GAL gene transcriptional memory can persist for 1-2 

cell divisions in the absence of inducer (short-term memory) or for >6 cell divisions 

(long-term memory). Whereas short-term memory requires the SWI/SNF chromatin 

remodeling enzyme, long-term memory has been reported to involve numerous factors, 

including the Htz1 histone variant, components of the nuclear pore, and the product of 

the GAL1 gene, the enzyme galactokinase. Here we have evaluated the role of Htz1, 

SWI/SNF, nuclear pore components, GAL3, and GAL1 in both short-term and long-term 

memory of GAL genes.  Our results indicate that transcriptional memory of GAL genes 

is primarily controlled by the cytoplasmic inheritance of the Gal3p and Gal1p signaling 

factors rather than the propagation of different chromatin states. 
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Introduction 

 Adaptability to changing growth conditions is crucial for cell survival. In order 

to adapt to their microenvironment cells adopt different fates by regulating signaling 

and transcriptional networks. Many mechanisms are used by cells to form a 

transcriptional memory of such gene expression changes, some of which are heritable. 

The ability to pass on this information to their progeny might give the daughter cells an 

advantage in surviving in altered environmental conditions. Transcriptional memory is 

often associated with changes in the chromatin of these cells and two commonly 

observed heritable changes involve DNA methylation and histone modification patterns 

at gene loci. Chromatin structure is a key component is determining the ON/OFF state 

of genes and has been widely implicated in metazoans as well as microbes to regulate 

gene expression.  

 

Microorganisms have in their repertoire, a multitude of genes and metabolic 

pathways that gives them versatility in responding to nutrient stress. Microorganisms, 

including yeast, can turn on or off different genetic pathways that allow them to best 

utilize available nutrients. Such pathways consist of chromatin regulating and 

transcription factors as well as signaling proteins that can communicate with the 

environment to sense carbon sources, phosphate concentrations etc. and also internal 

levels of these nutrients. Often times, feedback regulation mechanisms are built into 

these pathways which promote systems properties like homeostasis, increased 

sensitivity and faster kinetics of gene activation to reach steady state expression levels. 
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The GAL gene cluster of budding yeast has been extensively studied in these 

respects. GAL genes can be broadly separated into two groups – the structural genes 

(GAL1, GAL5, GAL7, GAL10), that encode enzymes to metabolize galactose; and 

regulatory genes (GAL2, GAL3, GAL4, GAL80) that transport galactose and control 

expression of the structural genes. Expression of Gal1p (galactokinase), Gal7p 

(galactose-1-phosphate uridyl transferase) and Gal10p (uridine diphosphoglucose 

epimerase) enzymes is tightly regulated in the presence of different sugars and they are 

induced 1000-fold in the presence of galactose (Johnston et al. 1994; Lohr et al. 1995; 

Bhat and Murthy 2001). While the Gal4p activator and the Gal80p repressor respond 

specifically to presence of galactose sugar, other repressor proteins like Mig1p, Nrg1p 

and Nrg2p are involved in broader glucose-sensitive repression of GAL and other 

carbon-utilizing genes (Treitel and Carlson 1995; Treitel et al. 1998; Wu and Trumbly 

1998; Frolova et al. 1999; Zhou and Winston 2001). The membrane-bound galactose 

permease Gal2p and co-inducer Gal3p regulate galactose entry and gene activation 

respectively. Thus Gal3p is a key signaling protein participating in feedback loops and 

homeostasis of the system. A very interesting property of GAL genes like GAL1 

galactokinase, that has become evident over the past year, is transcriptional memory of 

previous activation. This memory is heritable and lasts for few generations before it is 

lost. Studies from our and other groups have implicated factors involved in chromatin 

regulation, nuclear localization of GAL1 as well as cytoplasmic pools of signaling 

proteins as to participate in transcriptional memory at GAL1, which results in faster 

reinduction of the gene following a brief period of glucose repression (Brickner et al. 



 90

2007; Kundu et al. 2007; Zacharioudakis et al. 2007). Interestingly, using different 

experimental regimens, these studies have found differences in duration of persistence 

of this memory.  

 

When cells are grown in the neutral sugar raffinose and then the naïve GAL1 

gene is induced with galactose, GAL1 transcripts are detectable by 20 minutes post-

induction. However, if in these cultures, GAL1 transcription is repressed with glucose 

till 6 hours and then turned back on, by transferring cells back to galactose containing 

medium, reinduction occurs with much faster kinetics compared to the initial round of 

induction. Steady-state level of transcription is observed within 5 minutes of GAL1 

reinduction. This phenomenon of rapid reactivation that follows a period of repression 

reflects an example of transcriptional memory (Kundu et al. 2007). Such ‘short-term’ 

transcriptional memory of GAL1 activity persists through mitosis, requires chromatin 

remodeling by SWI/SNF and is ultimately lost by 6 hours of growth in the absence of 

galactose stimulus, or in other words, persists for approximately 3 cell cycles before 

being lost. 

 

 In another experimental paradigm, a different phenomenon which can be 

called ‘long-term’ memory is observed. Here, glucose grown cells are GAL1-induced, 

repressed with glucose and reinduced again by shifting cells back to galactose 

containing medium (Brickner et al. 2007; Zacharioudakis et al. 2007). In the first round 

of GAL1 induction, cells have to overcome not only Gal80p-repression but also 



 91

glucose-repression by Mig1p, Nrg1p and Nrg2p and have to synthesize Gal4p activator 

at the same time. Hence induction of the naïve gene requires 3-4 hours. In contrast, 

GAL1 reinduction occurs within 2 hours after glucose repression. Compared to the 

‘short-term’ memory described above, the transcriptional response during GAL1 

reinduction is slower in this form of memory but persists for 12 hours or longer. Thus 

there is a distinct possibility that different molecular mechanisms are at work to provide 

heritable, cellular memory of recent GAL1 transcription.  

 

Here we re-evaluate the role of chromatin remodeling factors and cytoplasmic 

signaling molecules in both ‘short-term’ and ‘long-term’ transcriptional memory of 

GAL genes. We find that the cytoplasmic inheritance of the Gal1p and Gal3p signaling 

molecules are the primary determinant of transcriptional memory. The histone variant 

HTZ1 and the SWI/SNF chromatin remodeling enzyme are required for the rapid 

transcriptional response of the reinduced state, but this appears to be due to a change in 

the rate-limiting steps for GAL1 induction. 
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Results 
 
Long-term memory at GAL1 is independent of SWI/SNF or components of the nuclear 

pore but requires Gal1p 

Transcriptional memory at GAL1 has been defined as the ability to reinduce 

GAL1 transcription with much faster kinetics compared to initial induction. We and 

others (Brickner et al. 2007; Kundu et al. 2007; Zacharioudakis et al. 2007) have shown 

that memory persists through several cell divisions during glucose repression. We 

previously reported that the capacity for rapid GAL1 reactivation, where steady state 

levels of transcript could be detected within 5 minutes of reactivation, persisted only for 

6 hours of growth in glucose. However, Brickner and colleagues (Brickner et al. 2007) 

reported a ‘long-term’ memory phenomenon, where the capacity for rapid reactivation 

persisted longer than 12 hours. In this set of experiments, glucose grown cultures were 

shifted to galactose, whereas in our case raffinose grown cultures were shifted to 

galactose to measure induction kinetics. Given the discrepancy in duration of memory 

between the two reports, we first tested if our strains (S288c background) could 

recapitulate the ‘long-term’ memory. GAL1 transcription was induced following 

overnight glucose growth (GlcGal) in both wild type and swi2 strains to measure 

rates of initial induction. These cultures were then glucose repressed for 12 hours and 

GAL1 and GAL10 reinduction rate was measured again (GlcGalGlcGal). Wild 

type cells showed long-term memory for GAL10 (Fig. 1b) and GAL1 transcription (data 

not shown). Surprisingly, swi2 also showed long-term memory at both GAL1 and 

GAL10 genes similar to wild type (Fig. 14a). 
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 In another report (Zacharioudakis et al. 2007), Tzamarias and colleagues showed 

that the GAL1 gene product, galactokinase enzyme, is essential for long term memory. 

It is possible that high levels of cytoplasmic Gal1p allow it to function as a weak 

counterpart of Gal3p co-inducer and thus provide long-term cytoplasmically heritable 

memory of previous GAL1 induction.  We tested their model in our strains and found 

that indeed gal1lost long-term transcription memory. We monitored induction 

(GlcGal) as well as reinduction (GlcGalGlcGal) in wild type and gal1 strains 

and observed that gal1cells showed very similar rates of GAL10 induction and 

reinduction following 12 hours of glucose repression suggesting that GAL1 contributed 

to memory of its own transcription (Fig. 14b). 

 

 The GAL1 locus has been shown to migrate to the nuclear periphery when it is 

actively transcribed and associates with the nuclear pore complex (Casolari et al. 2004; 

Casolari et al. 2005; Abruzzi et al. 2006; Cabal et al. 2006; Taddei et al. 2006). Also 

Brickner and colleagues (Brickner et al. 2007) reported that a component of the nuclear 

pore complex, Nup2p was required for prolonged retention of GAL1 gene to the nuclear 

periphery and suggested that this could lead to long-term memory of GAL1 

transcription. We tested if Nup2p is required for long-term memory of GAL genes by 

comparing the rates of initial induction (GlcGal) and reinduction 

(GlcGalGlcGal) of GAL10 following 12hrs of glucose repression in a 

nup2strain (Fig. 14c). From our experiments, we observed that nup2 had no defect 

in transcriptional memory. 
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Figure 14. Long-term memory at GAL1 requires its gene product but not 

SWI/SNF or nuclear pore localization. Schematic at top depicts regimen of growth in 

different carbon sources. Gal, 2% galactose; Glc, 2% glucose. (a) RT-PCR of GAL1 and 

GAL10 mRNA levels from a swi2mutant strain. GAL1 and GAL10 reinduction is fast 

compared to initial induction following long term glucose repression (12hr). SWI/SNF 

is not required for long-term memory. (b) RT-PCR analysis of GAL10 mRNA levels 

following initial induction and reinduction after long-term glucose-repression (12hr). 

Wild type culture showed a memory of previous GAL10 induction, which was lost in 

gal1 strain. Top panel shows a representative experiment, bottom panel is an average 

of three experiments. (c) RT-PCR analysis of GAL10 induction and reinduction kinetics 

in nup2following long-term glucose-repression (12hr). Long-term memory does not 

require Nup2p. Data for above panels is averaged over three independent experiments 

and represented as relative fold increase over ACT1 mRNA control normalized to a 

maximum value of 1. Error bars represent the standard deviation at each point. 
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Gal1p and H2A.Z contribute to long-term memory but not to short-term memory 

 Since we found that SWI/SNF is required for short-term memory but 

dispensable for long-term memory, we wanted to determine if other factors reported to 

be required for long-term memory also played a role in short-term memory which was 

observed in the following experimental conditions – RafGalGlcGal, with 1 hr of 

glucose repression. Brickner et al. (2007) reported that long-term memory of GAL1 

transcription required the histone variant H2A.Z. After confirming these results in our 

strain background, we asked if H2A.Z was also required for short-term memory. 

Interestingly, we found that htz1 strains could rapidly reinduce GAL1 transcription 

suggesting that H2A.Z was not required for short-term memory (Fig. 15a).  

 

Since Brickner et al. also reported that long-term memory of transcription 

required Nup2p, we sought to determine the role of nuclear pore association for long-

term and short-term memory. We already observed that long-term memory was intact in 

nup2 (Fig. 14c).  Next we used two deletion strains, nup2 and sac3, to test if 

nuclear pore localization was required for short-term memory. While Nup2p is a 

component of the nuclear pore complex, Sac3p is a nuclear pore associated protein that 

is involved in mRNA export from the nucleus. It has been reported (Cabal et al. 2006; 

Kohler et al. 2008) that localization of the active GAL1 gene to the nuclear periphery is 

compromised in both these strains. Significantly, we observed no defect in either nup2 

or sac3strains for rapid GAL1 reactivation or short-term memory (Fig. 15b). 
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Next, we tested if Gal1p was also required for short-term memory. As expected, 

wild type cells showed robust short-term memory at GAL10 (Fig. 15c). However when 

we tested the gal1 strain, we observed this strain rapidly reactivated GAL10 

transcription following 1hr of glucose repression. Thus we concluded that a high 

cytoplasmic level of Gal1p is not essential for transcriptional memory of GAL10 

expression after a brief period of repression. These results revealed that the factors 

required for short-term and long-term memory are distinct. 
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Figure 15. Short-term memory does not require H2A.Z, nuclear pore localization 

or Gal1p. Schematic at top depicts regimen of growth in different carbon sources. Raf, 

2% raffinose; Gal, 2% galactose; Glc, 2% glucose. (a) Northern analysis of wild type 

(left) and htz1 (right) showing rapid GAL1 reinduction following short term glucose 

repression (1hr). (b) Short-term GAL1 memory also does not require localization of the 

GAL1 gene to nuclear pores. Nuclear pore-localization of actively transcribed GAL1 

locus is defective in nup2 (left) and sac3 (right) mutants. (c) Northern analysis of 

GAL10 RNA levels in wild type (left) and gal1 (right) strains during initial induction 

and reinduction, following short-term glucose repression (1hr). gal1 strain also can 

rapidly reinduce GAL10 transcription and is thus not required for short-term memory. 

Top panel shows a representative experiment, bottom panel is an average of three 

experiments. Error bars represent standard deviation. In (a), (b) and (c), the bottom 

panel represents an ACT1 loading control for total RNA levels. The numbers indicate 

fold induction of GAL1 or GAL10 transcripts normalized over ACT1 transcripts with the 

maximally induced state set to a value of 1 and are averaged over three experiments. 
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SWI/SNF promotes rapid PIC loading but does not generate alternate nucleosome 

positions 

 We had reported (Kundu et al. 2007) that chromatin remodeling by SWI/SNF is 

required for short-term transcriptional memory at GAL1. We proposed a model in which 

SWI/SNF could be establishing alternate nucleosome positions at GAL1 promoter 

during glucose repression. If so, then this would facilitate faster PIC assembly on the 

promoter during reinduction and thus faster appearance of transcripts. To test if 

chromatin remodeling by SWI/SNF could facilitate faster PIC assembly on the GAL1 

promoter at the time of reinduction, we monitored loss of RNA Polymerase II during 

glucose repression and reloading (during GAL1 reinduction). We observed that wild 

type cells were able to recruit RNA Polymerase II much faster to the promoter than 

swi2 (Fig. 16a, left). While we saw greater than 10-fold enrichment for RNA 

Polymerase II within 10 minutes of GAL1 reinduction in wild type, this was severely 

compromised in swi2. We also observed that both TBP and SWI/SNF were recruited 

faster to the GAL1 locus during reinduction (data not shown). From these results it can 

be concluded that the transcription machinery was loaded faster during reinduction in 

wild type cells but not in swi2. This was not due to a defect in reloading of 

nucleosomes during glucose repression in swi2 strain. A ChIP for histone H3 showed 

that promoter nucleosomes were regained with equal efficiency in both wild type and 

swi2 (Fig. 16a, right). 
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Since SWI/SNF indeed seemed to aid PIC re-loading, we decided to test our 

model that SWI/SNF dependent chromatin remodeling was generating alternate 

nucleosome positions at the GAL1 promoter at the time of short-term glucose 

repression. We mapped the positions of the two promoter proximal nucleosomes at 

GAL1 locus (see Fig. 16b for schematic representation) by nucleosome scanning ChIP. 

Wild type cells were grown overnight in glucose media (long-term repressed) and 

collected after crosslinking. Alternatively, raffinose grown cells were shifted to 2% 

galactose for 2hrs to fully induce GAL1. They were then shifted to 2% glucose for 1hr 

to repress GAL1 gene (short-term repressed) and then collected after crosslinking. 

Mononucleosomal chromatin was prepared from both samples and used for ChIP with 

-histone H3 antibody. Quantitative PCR was done with primer pairs scanning 

approximately 300bp around the predicted dyads of nucleosome B (Fig. 16c, left) and 

nucleosome C (Fig. 16c, right).  

 

In long-term repressed cells, nucleosomes B and C were found to be positioned 

around their predicted dyads protecting ~160bp of DNA. When mononucleosomal 

chromatin was prepared from cells growing in galactose, these nucleosomes could not 

be seen. However, we observed that both nucleosomes returned to their original 

positions when the gene was briefly repressed. This was shown by the near overlap in 

the profiles of both nucleosomes B and C when compared between long-term repressed 

and short-term repressed cultures. Thus no alternate nucleosome positions could be 

detected (Fig. 16c). We repeated the same set of experiments with a swi2 strain and 
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obtained similar results confirming that SWI/SNF was not involved in nucleosome 

positioning at the GAL1 promoter during glucose repression (Fig. 16d). Thus we 

concluded that the role of SWI/SNF in promoting rapid GAL1 reinduction was not by 

generating a novel pattern of nucleosome positions at the GAL1 promoter.  
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Figure 16. SWI/SNF promotes nucleosome loss and RNA Polymerase II loading at 

GAL1 promoter. (a) Left, RNA Polymerase II ChIP in wild type and swi2 strains 

showing that faster recruitment during GAL1 reinduction is dependent on SWI/SNF. 

Right, histone H3 ChIP in wild type and swi2 strains to measure nucleosome 

occupancy at GAL1 promoter. Loss of SWI/SNF does not inhibit kinetics of promoter 

nucleosome regaining during glucose repression. However SWI/SNF promotes 

nucleosome loss and RNA Polymerase II loading during reinduction. RNA Polymerase 

II and H3 levels were tested at the GAL1 promoter and normalized to a telomere 

sequence (Chr VI-70bp from right end). (b) Schematic representation of the GAL1-10 

regulatory region. UASGAL marks the Gal4p binding sites. URSGAL is the binding site 

for glucose dependent repressor, Mig1p. Ovals represent previously mapped 

nucleosome positions. Ovals shown in solid lines represent GAL1 promoter 

nucleosomes that are mapped in (c) and (d).  TATA represents the TBP binding sites 

and +1 represents the transcription start sites. (c) Nucleosome scanning ChIP with 

histone H3 antibody in wild type strain for promoter nucleosomes B (left) and C (right). 

Black lines represent overnight glucose grown cultures and grey lines represent short-

term (1hr) glucose repressed cultures following brief GAL1 induction. On X axes of 

graphs, B1-B10 represent 10 primer pairs spanning positions (-302) to (+3) from 

translation start site. C1-C10 represent 9 primer pairs spanning positions (-148) to 

(+160) from translation start site. On the Y axis is plotted the relative H3 %IP 

normalized to a maximum value of 1. (d) Same as in (c) but with swi2 strain. 
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Gal3p co-inducer overexpression leads to rapid GAL1 induction in wild type 

 We considered an alternate hypothesis in which the different rates of GAL1 

induction are controlled by the rates of signaling molecule accumulation (k1) and 

chromatin remodeling (k2) (see model in Fig. 20). In this model, transcriptional memory 

is due to the cytoplasmic inheritance of the Gal3p or Gal1p signaling molecules which 

are induced to high levels in the first round of expression. In the initial round, the 

signaling step is slow compared to remodeling (i.e. k2 > k1). But in the second round, 

signaling is very rapid due to already high levels of Gal3p or Gal1p which had built up 

in the cytoplasm during initial induction. Hence the signal amplification step becomes 

fast and results in rapid PIC assembly and gene activation (i.e. k2 < k1). 

 

 To rule out the simple explanation that induction of Gal3p expression in the first 

round was defective in swi2 strains, we did RT-PCR to measure induction of GAL3 

(Fig. 17a) gene expression in wild type and swi2and saw that expression of signaling 

proteins was not compromised in swi2. One prediction of this model is that increasing 

levels of signaling molecules prior to the first round of induction should uncover a 

kinetic role for SWI/SNF. To test this idea, both wild type and swi2strains were 

transformed with a high copy number plasmid driving Gal3p expression from a 

constitutive ADH1 promoter or with the appropriate vector control and Gal3p 

expression levels from these transformants were monitored by RT-PCR (Fig. 17b). 

Northern analyses were performed to compare GAL1 induction and reinduction kinetics. 

The induction and reinduction kinetics of wild type and swi2strains transformed by 
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vector plasmid controls were similar to the untransformed strains (Fig. 18a). As 

predicted by our model, constitutive expression of Gal3p in wild type greatly increased 

the rate of initial induction such that accumulation of GAL1 transcripts was nearly 

indistinguishable form rate of reinduction (Fig. 18b, left). Strikingly, rapid GAL1 

reinduction was not rescued in swi2strain even by constitutive expression of Gal3p 

(Fig. 18b, right) clearly suggesting the requirement of a SWI/SNF dependent chromatin 

remodeling step for efficient GAL1 activation (k2 in Fig. 20). We did observe, as 

expected, that the general GAL1 activation rate in both rounds was equally improved in 

Gal3p overexpressing swi2strain as compared to the one containing the vector 

control. 
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Figure 17. RT-PCR analyses for GAL3 mRNA levels from strains in different 

growth media. (a)  Both wild type and swi2 strains express basal levels of GAL3 

mRNA in glucose. In galactose, expression is induced to similar levels. (b) GAL3 

mRNA levels were measured in strains indicated on the X axis of the graph. 2% 

raffinose grown and 2% galactose grown cultures were compared. ‘+ Gal3’ indicates 

strain transformed with PADH1-GAL3 plasmid. ‘+ empty’ indicates strain transformed 

with appropriate vector control. GAL3 mRNA levels were normalized to ACT1 mRNA 

levels. No. of PCR cycles for GAL3 mRNA – 25; no. of cycles for ACT1 mRNA – 12. 
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Figure 18: Gal3p co-inducer overexpression leads to rapid GAL1 induction in wild 

type. (a) Northern analysis in wild type (left) and swi2 strain (right) transformed with 

empty plasmid vector control. (b) Northern analysis in wild type (left) and swi2 strain 

(right) constitutively overexpressing Gal3p from a plasmid. Constitutive expression of 

Gal3p rapidly turns on GAL1 transcription even upon initial induction in wild type. 

Memory is not rescued in swi2 though general rates of induction and reinduction are 

elevated. All Northerns were subsequently probed for ACT1 as a loading control. The 

numbers indicate fold induction of GAL1 transcripts over ACT1 and averaged over three 

experiments.   
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Rate of nucleosome loss reflects faster GAL1 induction rate with constitutive Gal3p  

 To measure the rate of activation dependent nucleosome loss from GAL1 

promoter, histone H3 ChIPs were performed using different strains. As expected, 

nucleosome loss was much rapid during GAL1 reinduction compared to initial induction 

in wild type (Fig. 19a). Whereas complete nucleosome loss after initial induction 

required upto 45 min (RafGal), this was achieved within 5 min during reinduction 

(RafGalGlcGal). Constitutive expression of Gal3p greatly enhanced nucleosome 

loss even during initial induction (RafGal) suggesting that robust Gal3p signaling 

promoted rapid recruitment of chromatin remodelers like SWI/SNF and the PIC to the 

promoter. In contrast, loss of promoter nucleosomes was slower in swi2compared to 

wild type and enhanced only slightly by constitutive Gal3p expression (Fig. 19b). Taken 

together, these results clearly indicated that a high residual level of Gal3p alone from 

previous activation events was not sufficient to promote rapid reactivation of GAL1 

transcription. Instead, rapid reactivation following short-term repression of GAL1 

showed a clear dependence on chromatin remodeling by SWI/SNF in addition to 

optimum cytoplasmic signaling to achieve efficient rates of transcription. 
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Figure 19: Rate of nucleosome loss reflects enhanced GAL1 induction kinetics with 

constitutive expression of Gal3p. (a) H3 ChIP in wild type with and without 

constitutive expression of Gal3p. Promoter nucleosomes are lost more rapidly during 

GAL1 reinduction. Constitutive Gal3p enhances rate of nucleosome loss during initial 

induction nearly to rate of nucleosome loss seen during reinduction in wild type 

(compare ‘wild type+Gal3p’ with ‘wild type+vector – reinduction’). (b) H3 ChIP in 

swi2 with and without constitutive expression of Gal3p. Rate of nucleosome loss is 

increased only slightly compared to appropriate strains in wild type background during 

initial induction. In all ChIPs, H3 %IP was normalized to a telomere sequence and then 

normalized to a maximum value of 1. 
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Figure 20: Two-step model for optimum induction kinetics of GAL1 transcription. 

Extracellular galactose in transported into the cell nucleus via signaling proteins Gal2p 

and Gal3p. This activates Gal4p activator allowing it to recruit SWI/SNF. Chromatin 

remodeling by SWI/SNF leads to rapid loss of promoter nucleosomes and PIC 

assembly, resulting in GAL1 induction. Gal4p activation (shown as Gal4p*) leads to 

increased production of Gal2p and Gal3p, thereby amplifying the signal. k1 and k2 

represent the rate determining steps of this pathway. In the absence of SWI/SNF, other 

non-specific chromatin remodelers may cause promoter nucleosome loss. This 

eventually opens up the chromatin and allows slower PIC assembly and transcription 

initiation. In the initial round of induction, Gal2p and Gal3p levels need to be built up 

through expression of those genes, making k1 the rate determining step. After a brief 

period of glucose repression, when GAL1 is reinduced, cytoplasmic levels of signaling 

proteins is already high. Hence k1 becomes fast making k2 (chromatin remodeling) the 

slowest and thus rate limiting step. 
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Discussion 

 Heritable memory of transcriptional choice and cell fate is a hallmark of 

differentiated tissue and cell types in metazoans. Various mechanisms, primarily DNA 

methylation and chromatin modifications have been implicated for such memory. While 

the unicellular budding yeast does not have the potential to undergo differentiation into 

multiple cell types, it does have tremendous capacity to adapt to changes in its 

immediate environment by changing its transcriptional profile. Many groups have 

studied the dynamic regulation of metabolic genes of Saccharomyces cerevisiae in 

conditions of nutrient stress (Ramsey et al. 2006; Ronen and Botstein 2006; Ajo-

Franklin et al. 2007; Acar et al. 2008). The galactose utilization (GAL) genes have been 

particularly well studied (Lohr and Lopez 1995; Bhat and Murthy 2001). More recently, 

we and others have shown that in addition to the intricate positive and negative control 

of the GAL gene cluster, these genes exhibit a unique property which is cellular memory 

of previous gene activation (Acar et al. 2005; Brickner et al. 2007; Kundu et al. 2007; 

Zacharioudakis et al. 2007). 

 

 For our studies of GAL1 induction, we have induced cells which had been 

growing in log phase in a neutral sugar, raffinose. The advantage of this approach is that 

growth in raffinose relieves GAL1 of the additional layer of active glucose repression. 

Thus, when we measured GAL1 induction, we were able to interrogate the kinetics of 

the galactose specific steps exclusively. Since non-specific glucose repression is already 

relieved in raffinose-grown cells, GAL genes can respond more rapidly to addition of 
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galactose in the medium. This approach also enabled us to detect the very rapid 

reactivation of GAL1 (within 5 minutes) after brief repression, which we called 

transcriptional memory. We also demonstrated that this phenomenon was stable through 

mitosis, lasted for about 6 hours and required chromatin remodeling by SWI/SNF, 

suggesting that regulating chromatin organization was at least in part responsible for 

memory. However, the groups of Brickner and Tzamarias measured GAL1 induction 

kinetics starting with a glucose-repressed system. Thus in their case, activation required 

not only GAL system-specific steps, but also (i) alleviation of glucose repression by 

Mig1p, Nrg1p, Nrg2p; and (ii) synthesis of Gal4p activator. By this approach, while 

both GAL1 induction and reinduction occurred in the time scale of hours instead of 

minutes, transcriptional memory persisted longer – at least 12hrs. In this study we 

sought to distinguish between this ‘long-term’ memory and the ‘short-term’ and 

SWI/SNF dependent memory that we observed. 

 

First we asked if SWI/SNF, we had previously shown to be required for short-

term memory (Kundu et al. 2007), also played a role in long-term memory and found to 

our surprise that in fact long-term memory was independent of SWI/SNF dependent 

chromatin remodeling (Fig. 14a). Recently, Tzamarias and colleagues showed through 

elegant experiments that Gal1p provided ‘long-term’ memory of its own recent 

transcriptional activity. S.cerevisiae Gal1p (galactokinase) and Gal3p (galactose-

binding co-inducer) are believed to have diverged from a common ancestral protein that 

is still present in Kluveromyces lactis (Meyer et al. 1991; Platt et al. 2000; Hawkins and 
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Smolke 2006; Hittinger and Carroll 2007). As a result, while S.cerevisiae Gal3p has lost 

galactokinase activity due to a point mutation in its catalytic domain, Gal1p has a much 

lower affinity for binding galactose compared to Gal3p. Thus Gal1p can act as a weak 

co-inducer protein when present in relatively large amounts in the cell. Considering that 

GAL1 is induced ~1000-fold by growth in galactose (Johnston et al. 1994), high Gal1p 

concentrations likely can autoregulate gene expression. As reported (Zacharioudakis et 

al. 2007) we were able to see loss of long-term memory from gal1 cells (Fig. 14b). 

However to our surprise, gal1 had no defect in short-term memory (Fig. 15c). 

 

 We then tested if we could also detect H2A.Z dependence of ‘long-term’ 

memory in our strains, to rule out the simple possibility of background specific 

peculiarities. As reported by Brickner and colleagues, we did observe failure of rapid 

GAL1 reinduction in htz1 cells. Nevertheless, we determined if htz1 also lost short-

term memory and saw that these strains were as competent as wild type cells in our 

experimental regimen (Fig. 15a). We also ruled out the need for nuclear pore 

localization of actively transcribed GAL1 gene as a requirement for short-term memory 

since mutants previously reported to have defects in pore localization of GAL1 had no 

effect on memory (Fig. 15b). 

  

 We proceeded to elucidate the mechanism for short-term memory at GAL genes. 

We tested two models for this purpose. Our first model was based on the requirement of 

SWI/SNF for rapid reactivation. We hypothesized that the function of SWI/SNF was to 
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establish alternate positions for GAL1 promoter nucleosomes that were reloaded during 

glucose repression. To test this model, we compared promoter nucleosome positions 

between short-term (1hr) repressed and glucose-grown cells. Nucleosome positions at 

GAL1-10 locus have been extensively mapped (Lohr 1984; Lohr and Lopez 1995). We 

used this information for doing higher resolution nucleosome scanning ChIPs but 

surprisingly found that promoter nucleosomes returned to their original (as mapped in 

glucose-grown cells) positions within 1hr of glucose repression in both wild type and 

swi2cells (Fig. 16b, c). Thus contrary to our hypothesis, SWI/SNF was not involved 

in maintaining alternate nucleosome positions at the GAL1 locus. Instead, presence of 

SWI/SNF seemed to aid faster RNA Polymerase II loading (Fig. 16a) and therefore 

faster PIC assembly. 

 

 These results led us to our second model that GAL1 activation was a process 

whose rate was determined by two slow steps, with the rate of the slowest step 

determining the kinetics of the final output, i.e. appearance of GAL1 transcripts (Fig. 

20). During initial induction, signal transduction (via Gal2p and Gal3p signaling 

proteins) was the slowest and rate determining step. On the other hand at reinduction, 

sufficient cytoplasmic levels of signaling proteins made this step a rather fast one. We 

hypothesized that the new rate determining step during GAL1 reinduction was 

chromatin remodeling by SWI/SNF (possibly to evict promoter nucleosomes). The 

simplest test for this hypothesis was to constitutively express the Gal3p co-inducer and 

compare GAL1 induction and reinduction rates. As we expected, wild type cells 
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overexpressing Gal3p could rapidly lose promoter nucleosomes and turn on GAL1 

transcription within minutes of adding galactose to the growth medium, thus clearly 

suggesting that building up the galactose signal was indeed the rate limiting step for 

initial GAL1 induction (Figs. 18 and 19). Strikingly, swi2cells overexpressing Gal3p 

continued to have slow GAL1 induction as well as reinduction. This result signified that 

SWI/SNF dependent chromatin remodeling was indeed the second rate determining step 

in this two-step process. 

 

 What then is ‘memory’ of previous activation? Based on our and others’ 

findings we believe that while chromatin remodeling enhances efficiency of gene 

activation, the heritable memory of this event is cytoplasmic in nature, i.e. cellular 

levels of signaling proteins like Gal3p. In this context, it is intriguing to note that the 

half-life of Gal3p is approximately 4-5 hours, which corresponds very well with the 

duration for which we observe ‘transcriptional memory’. From a more general 

perspective we speculate that such systems evolved to give yeast cells better 

adaptability and growth advantage in an unpredictable and rapidly changing natural 

environment. 
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Materials and methods 
 
Yeast strains, media and culture conditions 

Strains used in this study are isogenic derivatives of the S288c background. Genotypes 

are provided in the list of strains used. S. cerevisiae liquid cultures were grown at 30°C 

in YEP (1% yeast extract, 2% bacto-peptone) media supplemented with 2% glucose, 

2% galactose or 2% raffinose + 0.2% sucrose depending on whether GAL1 activation or 

repression was required. For Gal3p overexpressing strains, wild type and swi2 strains 

were transformed with 2-micron plasmids expressing full length Gal3p from a 

constitutive ADH1 promoter or the relevant vector control. Transformants were selected 

and grown on SD plates under URA selection. 

 

RNA isolation and analysis 

Total RNA was isolated from yeast grown to logarithmic phase in appropriate media by 

hot phenol extraction method. Concentration of RNA was estimated by measuring A260 

after dissolving it in diethyl pyrocarbonate-treated water. 10μg of total RNA from each 

sample was electrophoresed on 1% formaldehyde agarose gels and Northern blotting 

was done. The housekeeping gene ACT1 was used as loading control. Radioactively 

labeled probes for hybridization were generated by PCR amplifying the complete 

GAL1, GAL10 or ACT1 ORF from genomic DNA. 
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Reverse transcriptase PCR 

Cells were grown to mid-log phase in YEP medium with 2% glucose, 2% galactose or 

2% raffinose + 0.2% sucrose at 30°C. 10 ml of cells were harvested and total RNA was 

extracted as described above. First-strand cDNA was synthesized using 2.5µg RNA, 

SuperScript II RNase H– reverse transcriptase (Invitrogen), and 2pmol each of 

downstream primers designed for genes of interest, following the manufacturer's 

instructions. Subsequently, 32P-labeled PCR was performed using 2µl of the first-strand 

cDNA reaction, and gene-specific primer sets to determine the relative levels of GAL1, 

GAL3, GAL10 and ACT1 mRNA for each strain. After 12 cycles (for GAL1, GAL10 and 

ACT1) or 25 cycles (for GAL3) of amplification, PCR products were electrophoresed on 

10% acrylamide gels. Reactions were visualized by PhosphorImager. 

 

Chromatin Immunoprecipitation 

Rabbit polyclonal antibody to C-terminus of Histone H3 (ab1791) was obtained from 

Abcam Inc. Mouse monoclonal antibody to RNA Polymerase II (CTD4H8) was 

obtained from Covance Research Products. ChIP assays were performed as described 

by (Li et al. 2000). The immunoprecipitated DNA was amplified using quantitative 

PCR performed with -32P-dCTP and then electrophoresed on 5% acrylamide gels. 

Reactions were visualized and quantified by PhosphorImager.  
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Mononucleosome preparation 

Samples (from 100 ml of culture at A600 ~ 0.7) were crosslinked for 30 min with 37% 

formaldehyde (final concentration of 2%) at 30°C. Reactions were quenched by adding 

2.5M Glycine to a final concentration of 125mM. Cell pellets were collected and 

washed with water to remove residual media. Mononucleosomes were prepared as 

described by (Dion et al. 2007). An aliquot of this sample was de-proteinized and 

crosslinks were reversed. Phenol-chloroform extraction was done and samples were 

ethanol precipitated. The resulting pellet was resuspended and treated with RNaseA 

(1g for 1hr at 37°C) to remove all RNA. Samples were then electrophoresed on 1.5% 

agarose gels to determine the best titration that yielded mononucleosomal DNA. 

 

Nucleosome scanning analysis 

This method was adapted from Sekinger et al., (Sekinger et al. 2005), with 

modifications. Briefly, mononucleosomal chromatin was prepared as described above. 

This material was used for IP with Histone H3 antibody as previously described. The 

immunoprecipitated DNA was amplified using quantitative PCR and a set of 

overlapping primer pairs that were staggered 20bp relative to each other and covering 

an approximately 300bp region of DNA. The products of all primer pairs were 

approximately 100bp long. Efficiency of each primer pair was assayed by performing 

quantitative PCR with genomic DNA. 
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Cellular memory of transcriptional choice 
 
 

There is an emerging concept of cellular memory in budding yeast, in the light 

of current studies on genes of the GAL regulon in S.cerevisiae (and also studies on other 

systems such as white-opaque colony color switching in C.albicans). One can imagine 

that cellular memory of gene expression patterns in response to a change in 

environmental conditions can be very useful information for survival of a yeast 

population. A mechanism to propagate such transcriptional memory to daughter cells 

through mitosis could give a significant growth advantage to this population over 

another ‘naïve population’ facing similar environmental changes for the first time. 

Typical environmental changes could be nutrient stress eg. availability of a new carbon 

source; or others like heat shock and cell damaging agents. 

 

What could be the mechanism for inheritance of transcriptional memory in 

yeast? There are two possibilities – first, cytoplasmic inheritance, where a small 

molecule or protein or RNA expressed in response to the environmental cue has a half-

life longer than the yeast life cycle and thus can be transmitted to daughter cells as the 

cytoplasm of the mother cells divides during mitosis. The second possibility is 

inheritance of a chromatin state where chromatin remodeling enzymes, histone 

modifications and/or histone variants can be used to stably mark transcriptionally active 

or silenced loci. Metazoans have evolved a wide variety of mechanisms such as DNA-

cytosine methylation, incorporation of histone modifications and histone variants, to 

alter chromatin configuration in order to stably mark the transcriptional status of loci or 
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in other words, to maintain transcriptional memory. Some of these mechanisms allow 

chromatin modifications to be replicated on newly synthesized DNA at the time of 

DNA replication, leading to inheritance of chromatin states as a mechanism of 

transmitting transcriptional memory. 

 

As described in Chapter I (Introduction), studies from our group and others on 

the GAL1, GAL7 and GAL10 genes of S.cerevisiae have led to discovery of 

transcriptional memory at these genes, which is defined as rapid reinduction of 

transcription from these genes compared to the initial round of induction, following a 

period of transcriptional repression (Brickner et al. 2007; Kundu et al. 2007; 

Zacharioudakis et al. 2007). Depending on the experimental conditions, two forms of 

transcriptional memory can be observed that I have distinguished as ‘short-term’ 

(lasting 4-6 hours) and ‘long-term’ (lasting 12 hours) memory. They can be separated 

by the factors required for forming memory at each case. The aim of this work has been 

to characterize this phenomenon and describe its mechanism. 

 

What does transcriptional memory at GAL1 mean? 

 One of the first questions that intrigued me was whether transcriptional memory 

at GAL1 was just a property of cells that were growing in galactose or could this 

memory be passed on to future generations even in the absence of the memory-inducing 

signal? Two lines of evidence suggested that memory was heritable. Firstly, cultures 

growing asynchronously in glucose, where GAL1 was induced briefly and then 
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repressed, retained the ability for rapid GAL1 reactivation till ~6 hours. Secondly, when 

synchronized cells were briefly galactose-induced and then repressed, they could grow 

and divide after glucose repression to produce daughter cells that inherited memory of 

their mothers’ galactose exposure. We explored potential mechanisms that could lead to 

rapid reactivation and also lead to its persistence through S-phase. There is a lot of 

exciting evidence regarding the contribution of chromatin state, especially histone 

modifications and histone variants, to stable transcriptional memory during 

development in higher eukaryotes (Henikoff et al. 2004; Grimaud et al. 2006; Hake and 

Allis 2006; Nightingale et al. 2006; Schuettengruber et al. 2007). Since the yeast GAL1 

locus also recruits chromatin remodeling enzymes and exhibits transcription associated 

chromatin modifications, we explored the possibility that one or more of these 

chromatin modifications during the initial round of gene activation could potentiate 

subsequent reinduction and memory. We tested different transcription associated 

histone modifications but found that none could cause transcriptional memory at GAL1, 

including Set1p mediated histone H3K4-me mark, which is known to mark 

transcriptionally active loci in metazoans (Roth et al. 2001; Boa et al. 2003). The 

histone H2A variant H2A.Z, which occupies GAL1 promoter proximal nucleosomes, 

also did not appear to play a role in short-term memory. However, interestingly, H2A.Z 

appears to be required for long-term memory though the mechanism for this is not clear 

(Brickner et al. 2007); and our unpublished results in Chapter III).  
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 Surprisingly, the ATP-dependent remodeling enzyme SWI/SNF seemed to be 

required for short-term GAL1 memory. This was interesting because it had previously 

been shown that though SWI/SNF is recruited to the GAL1 locus during transcriptional 

activation, it is dispensable (Krebs et al. 2000; Lemieux and Gaudreau 2004). We 

proposed that SWI/SNF may play a role not during the initial round of induction but 

probably at very early stages of glucose repression to establish alternate nucleosome 

positions for the returning promoter nucleosomes. Support for this hypothesis came 

from our genetic analysis of transcriptional memory in isw- mutants (Chapter II). ISWI 

complexes are believed to aid establishment of repressive nucleosome positions over 

promoters (Mellor and Morillon 2004). We found that both isw1 and isw2 mutants 

could rescue transcriptional memory in a swi2 background strain suggesting that these 

complexes could be competing to establish alternate nucleosome positions at the GAL1 

locus. However, mapping of promoter nucleosome positions indicated that no alternate 

nucleosome positions were established during glucose repression (Chapter III). 

Curiously, though SWI/SNF is required for short-term memory, it is not required for 

long-term memory. 

 

 An alternate hypothesis was that transcriptional memory was caused by 

cytoplasmic inheritance of a galactose-induced signaling molecule. Presence of 

galactose could induce high cytoplasmic levels of this molecule, which can be passed 

on through some rounds of cell division even in the absence of galactose. The duration 

of memory would then be determined by turn-over and dilution of this factor. Two 
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candidates for cytoplasmic memory factors are the co-inducer protein Gal3p and the 

product of GAL1 gene itself – Gal1p or galactokinase enzyme. Gal3p is a protein that 

binds to galactose when the sugar enters a cell’s cytoplasm. This complex then 

translocates to the nucleus where it binds and inactivates Gal80p repressor protein. 

Inactivation of Gal80p in the presence of galactose in turn activates Gal4p activator 

protein, which is a sequence specific transcription factor that binds to recognition sites 

upstream of structural genes of the GAL regulon. GAL1, which has 4 upstream binding 

sites for Gal4p can be induced ~1000 fold in the presence of galactose. The GAL3 gene, 

on the other hand, has only 1 Gal4p binding site and is modestly induced by about 3-5 

fold (Johnston et al. 1994; Lohr et al. 1995). Thus activation of Gal4p (and hence GAL 

gene transcription) by Gal3p-galactose complex forms a feedforward loop. 

Interestingly, the Gal1p enzyme, which phosphorylates galactose (galactokinase), can 

also bind galactose act as a Gal3p-like co-inducer (Meyer et al. 1991; Platt et al. 2000; 

Hawkins and Smolke 2006; Hittinger and Carroll 2007). But since the Km of Gal1p for 

galactose is much higher than Gal3p, Gal1p must be present in much higher 

concentration in the cytoplasm to function as a co-inducer protein. Yet, the large 

induction of GAL1 expression suggests that there could indeed be very high 

concentration of Gal1p in a cell’s cytoplasm even after glucose repression of GAL1 

expression.  

 

If galactose-induced cells are subsequently shifted to glucose media, 

transcription of GAL1 would stop and transcription of GAL3 would go back to basal 
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levels. But one can imagine that if galactose becomes available in the environment after 

a brief period, there would be significant cytoplasmic levels of Gal3p and Gal1p to 

rapidly bind galactose and reinduce GAL gene expression. This second round of 

induction would then be much faster than the initial round since the slow step of 

synthesizing co-inducer protein to have optimal galactose signaling is now eliminated. 

This kind of cytoplasmic memory would persist as long as daughter cells receive Gal3p 

and/or Gal1p from the mother cell’s cytoplasm at a level above the threshold required 

for rapid reinduction. Indeed Gal1p is required for long-term memory though not for 

short-term memory (Zacharioudakis et al. 2007); and our unpublished results in Chapter 

III). 

 

What steps distinguish the kinetics of GAL1 induction vs. reinduction? 

 Based on our experiments, we propose that induction of GAL1 transcription is 

governed primarily by two rate-determining steps – accumulation of signaling proteins 

to activate Gal4p and chromatin remodeling at GAL1 promoter by SWI/SNF. During 

initial induction of the naïve gene when cells are shifted from raffinose to galactose, 

accumulating sufficient amount of signaling proteins to have robust induction becomes 

the rate limiting step and masks the other slow step of chromatin remodeling. Thus the 

slow activation kinetics (~20 minutes to detect transcripts) possibly reflects the slow 

accumulation of optimal levels of Gal3p signaling protein. During reinduction, 

cytoplasmic Gal3p levels are already high. Therefore signaling is rapid and GAL1 

transcription can reach steady state levels within 5 minutes of reinduction. SWI/SNF 
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can remodel chromatin at the GAL1 promoter during both rounds of induction in wild 

type cells, possibly promoting rapid loss of promoter nucleosomes. However, in the 

absence of SWI/SNF (swi2 strain), remodeling is slow and thus during reinduction, 

even though Gal3p signaling can rapidly activate Gal4p, opening up of chromatin at the 

promoter can be slow, thereby slowing PIC assembly and reinduction kinetics (~20 

minutes to detect transcripts). Thus loss of SWI/SNF exposes the requirement of 

chromatin remodeling for optimal kinetics of GAL1 induction. It is notable that long-

term memory has no SWI/SNF dependence. This can be explained by the fact that rapid 

GAL1 reinduction in this situation requires 2 hours (opposed to 3-4 hours for initial 

induction), which is longer than the time taken to remodel promoter chromatin by 

alternate means in the absence of SWI/SNF (possibly about 20 minutes, as evidenced by 

our experiments for short-term memory). 

 

 How can we test if the cytoplasmic level of signaling proteins governs GAL1 

induction kinetics? This can be done by artificially altering the expression of GAL3 

gene and make it unresponsive to upregulation by galactose. In experiments described 

in Chapter III, I transformed wild type and corresponding swi2strains with a high 

copy number plasmid that expressed GAL3 under the control of a constitutive ADH1 

promoter. Thus cells are constantly producing elevated amounts of Gal3p. Comparing 

GAL1 induction and reinduction kinetics in these strains led to two important 

conclusions. Firstly, overexpressing Gal3p in wild type strain increased the rate of 

GAL1 induction, upon shifting from raffinose to galactose, to the rate of reinduction. 
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GAL1 transcription reached steady-state levels within 10 minutes of both induction and 

reinduction, clearly indicating that galactose signaling was indeed the rate limiting step 

during initial induction. The second significant clue came from the Gal3p 

overexpressing swi2strain. Even though induction and reinduction rates were slightly 

higher in this strain compared to the empty vector control, this strain was still clearly 

slow in both inducing and reinducing GAL1 transcription compared to wild type. This 

result demonstrated that chromatin remodeling by SWI/SNF is the second rate-

determining step in the series of events that lead to GAL1 transcription. In the absence 

of SWI/SNF, transcription eventually occurs and reached optimum levels, but initiation 

is delayed possibly because eviction of promoter nucleosomes becomes inefficient. 

 

 It would be interesting to test the scenario where chromatin remodeling is intact 

but enhancement of Gal3p/Gal1p signaling is compromised. One would imagine that in 

such a strain memory, or rapid reinduction would be lost. Zacharioudakis et al. (2007) 

tested this possibility for long-term memory and found that loss of Gal1p but not Gal3p 

led to loss of memory. However, when we tested the requirement of Gal1p for short-

term memory, we found that it was dispensable. This was perhaps because both Gal3p 

and Gal1p levels are sufficiently high in the duration of short-term memory and 

therefore they were redundant. However, careful observation suggests that gal1 strain 

has a mild defect in the rate of GAL10 reinduction (Chapter III, Figure 15c). One cannot 

do similar experiments with gal3 strains because they have a severe defect in GAL1 

induction (Bhat and Venkatesh 2005). However, we plan to circumvent this problem by 
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using a Ptet -GAL3 strain, where Gal3p expression is under control of a Tet-ON system 

and non-responsive to galactose since its sole Gal4p binding site has been deleted (Acar 

et al. 2005). We plan to grow this strain in conditions where the cellular Gal3p levels 

are always maintained at basal levels found in a wild type strain growing in glucose. 

Under these conditions we plan to test the kinetics of GAL1 induction and reinduction. 

Preliminary experiments comparing GAL1 induction and reinduction rates suggest that 

there is a slight defect in GAL1 reinduction compared to wild type, even though re-

induction is clearly faster than the initial induction (Fig.21). It appears that this defect 

could be stronger than the reinduction defect seen in the gal1 strain. However, faster 

rate of reinduction still suggests that Gal1p and Gal3p are redundant in their function of 

rapid signaling. Hence the next step will be to delete the GAL1 gene in this strain and 

test whether short-term memory can be completely lost in the absence of enhanced 

signaling from Gal3p and Gal1p. 
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Figure 21.  Inability to induce Gal3p expression causes slight defect in GAL1

reinduction. Ptet -GAL3 construct containing strain was grown overnight in media 

containing 2% raffinose and then shifted to 2% galactose. Samples were taken till 2 

hrs after induction to monitor GAL1 induction. Cells were then washed into media 

containing 2% glucose to repress GAL1, for 1 hour and then shifted back to 2% 

galactose-containing media to monitor GAL1 reinduction. RNA was prepared from all 

samples and RT-PCR was performed to measure GAL1 mRNA levels. Values were 

normalized to ACT1 mRNA and expressed as a fraction of maximal induction value 

(set to 1).
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 In summary, the yeast GAL1 gene has provided an excellent system to dissect 

molecular mechanisms of transcriptional memory. Yeast have the ability to adapt to an 

alternate carbon source like galactose by generating a transcriptional response. We saw 

that they also form a memory of this transcriptional response that can be passed on to a 

few generations. Though this mechanism does not involve any chromatin changes, it is 

propagated cytoplasmically by a signaling factor that gets progressively diluted in 

subsequent generations. It should be noted that though more stable, chromatin based 

memory mechanisms have not yet been discovered in budding yeast, such cytoplasmic 

memory appears to last a few generations and therefore can be sufficient given the 

budding yeast’s short lifespan. It might be interesting if such mechanisms have also 

evolved in transiently dividing or amplifying populations of cells in higher organisms, 

possibly as a mechanism of providing a short-term memory of a transient transcriptional 

state. 
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LIST OF STRAINS

STRAIN GENOTYPE 

CY1032 BY4742 MAThis31 leu20 lys20 ura30 rad6::KanMX 
 

CY1069 
 

FY32 S288c MATsnf21::HIS3 ura3-52 his3200 

CY1072 
 

FY1856 MAThis3200 leu20 lys2-128ura30 

CY1102 BY4741 MATa his31 leu20 met150 ura30 set2::KanMX 
 

CY1192 FY631 Mata his4 917- leu21 lys2-173R3 trp1D63 ura3-52 SGY1 
Spt3-13myc 

 
CY1193 FY631 Mata his4 917- leu21 lys2-173R3 trp1D63 ura3-52 SGY212 

Srb4-13myc 
 

CY1267 
 

BY4741 MATa his31 leu20 met150 ura30 dot1::KanMX4 
 

CY1268 
 

MATura3-52 leu2-3,112 trp1 his3 set1::KanMX4 [HHT1-HHF1] 
[HHT2-HHF2] / 

pRS314-copyII (TRP1, HHT2-HHF2)
 

CY1270 
 

FY1370 gcn5::HIS3 his3200 leu21 ura3-52 (in FY1369) 
 

CY1272 
 

CY1069 with CP350 (swi2K798A in YIP5) integrated URA+ 
 

CY1273 
 

CY1069 with isw1::KanMX6 
 

CY1287 
 

CY1269 with isw1::KanMX6 
 

CY1288 
 

CY1072 with isw2::KanMX6 
 

CY1289 
 

CY1069 with isw2::KanMX6 
 

CY1290 
 

CY1069 with set1::KanMX6 
 

CY1291 
 

BY4741 MATa his31 leu20 met150 ura30  gal4::kanMX4 
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LIST OF STRAINS 

 

 
 

STRAIN GENOTYPE 

CY1406 
 

MATa W303 a leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100 
bar1-1 rtt109::kanMX 

 
CY1198 MATa W303 a leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100 

bar1-1 asf1::kanMX 
 

CY1422 BY4742 MAT his31 leu20 lys20 ura30  gal1::kanMX4 
 

CY1087 BY4741 MATa his31 leu20 met150 ura30  htz1::kanMX4 
 

CY1421 MAT ade2::ADE2PGAL1-YFP ura3::URA3Ptet-GAL3 gal3::KanMX 
 

CY1377 BY4741 MATa his31 leu20 met150 ura30  nup2::kanMX4 
 

CY1491 BY4741 MATa his31 leu20 met150 ura30  sac3::kanMX4 
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