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Abstract

This thesis investigates the biophysical mechanisms underlying func-

tional magnetic resonance imaging (fMRI) measures of brain activity. Diffusion-

weighted fMRI (DWfMRI) has been suggested as an alternative to the es-

tablished Blood Oxygenation Level Dependent (BOLD) method. It is spec-

ulated to be sensitive to transient microstructural changes within active

brain tissue, which could provide a more direct measure of neuronal activ-

ity than techniques relying on attendant haemodynamic changes. DWfMRI

has yet to become widely accepted however, as the mechanism driving the

observed signal is not well understood. Here, experimental and theoretical

investigations of the fMRI signal are presented.

As part of this work, a functional MRI study was undertaken to compare

BOLD and DWfMRI responses to stimulated brain activity in human volun-

teers. The effect of different experimental protocols were explored, with an

emphasis on stimulus design. Analysis methods and their potential impact

on interpretation of the response are explored.

Neuronal activation is accompanied by heamodynamic changes detectable

with Optical Imaging Spectroscopy. Additionally, there is a growing base of

evidence showing microstructural changes in excited neuronal tissue. This

tortuosity change might be observable through the use of Spatial Frequency

Domain Imaging (SFDI). These properties can be observed in the animal

model and compared with fMRI to aid interpretation. The following work

presents the development of in-vivo optical imaging techniques for the mea-

surement of tissue optical property changes during brain activity. This in-

cludes theoretical explorations of the analysis pipeline, and of the potential

limitations of these techniques and their sensitivity.

A Monte Carlo simulation of light transport through tissue was written

to provide calibration data for the optical imaging methods. The simulation

was used to explore the impact of tissue parameters on the optical results

and inform interpretation. The simulation was extended to explore tissue

absorption in the context of biophotomodulation.
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1 Introduction

1 Introduction

Brain activity can be mapped using a range of techniques, and a well ac-

cepted method is magnetic resonance imaging. It is commonly used in both

clinical applications,1 such as in planning of brain tumor resection,2 mapping

of cortical functions for epilepsy interventions,3 Alzheimer’s identification4

and monitoring, or evaluation of traumatic brain injury,5 and in research,

where it is used to study for example memory,6 language7,8 and ageing.9,10

The standard functional MRI method, Blood Oxygenation Level Depen-

dent (BOLD) fMRI, was first introduced in 1990 by Ogawa et al .11 The

measured BOLD signal is complex, and relies on physiological changes in

cerebral blood oxygenation, flow, volume and oxygen extraction fraction,

as well as on physical parameters, including magnetic susceptibility, volume

fraction, vessel orientation and more. Since active regions of neurons re-

quire the influx of fresh oxygenated blood to replenish the cells with energy,

BOLD maps have been thought of as activation maps, with an increase in

blood flow being interpreted as a direct effect of oxygen consumption or

energy usage of the brain tissue.12,13 It is however important to note that

the BOLD signal is an indirect measure of activation. Since the signal is

a composite effect of haemodynamic rather than neuronal changes, the re-

sponse is driven by changes in nearby vessels. It can include contributions

from vessels remote from the activation site due to the anisotropic density

of vessels and draining patterns in the brain,14 and the signal is weighted

towards the surface, where vessel diameters are larger. Neurovascular cou-

pling, the mechanisms which links neuronal activity to blood flow increase,

is also not fully understood,15 and this behaviour can change with brain re-

gion,16–18 age19 and pathology.20–22 The interpretation of the BOLD signal

is therefore not straight forward.

LeBihan et.al. (2001) proposed an alternative measure of neuronal ac-

tivity with MRI.23 They suggested that brain cellular volume changes could

be measured as an alternative, more direct indicator of neuronal activity.

There is growing evidence of cell volume changes in activated brain tissue

from ex-vivo work, this has been measured in model systems such as brain

slices and cell cultures from rat, using optical birefringence,24 piezoelectric

tranducers,,25 microscopy26 and intrinsic optical imaging.27,28 The method

proposed for the detection of this process is called Diffusion Weighted func-
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tional MRI (DW-fMRI). MRI can be made sensitive to the microscopic

diffusion of water molecules through tissue. As the molecules move within a

spatially varied magnetic field, the phase shifts become distributed, and this

loss of coherence can be detected as a signal attenuation.29 This means that

water molecules can in turn be used to probe the tissue microstructure, as

diffusion of the molecules will be affected by the cellular structures and cell

sizes and orientations.29 Diffusion of water has been shown to decrease with

neuronal activation,23,30 and it has been suggested that this is caused by

the swelling of cortical cells31 and by a shrinking of the extracellular space

which increases its tortuosity,32 in turn restricting local diffusion.

Importantly, the DW-fMRI response to activation occurs several seconds

before the BOLD response,30 as shown in Figure 1.1. The rapid onset could

indicate that the DW-fMRI response is linked very directly to neuronal ac-

tivity or linked to a fast coupling mechanism,33 and could therefore measure

a more immediate effect of this activity than the haemodynamic response.

It has been stipulated that if the signal is largely caused by cell swelling, the

location of the response could be closer to the site of the activation com-

pared to BOLD, and that the response would be more closely aligned with

the temporal onset of activity.29 If haemodynamic contributions could be

reduced, the signal could also be less affected by the many physiological con-

founds of concern in BOLD mentioned previously. DW-fMRI has however

not become widely used, perhaps due to the fact that the biophysical origin

of the signal is still not fully understood.34 It is still debated whether the

signal is caused by cell swelling,33 haemodynamic effects,35 or a combination

of the two.36 It has been shown that the diffusion response persists under

neurovascular coupling inhibitors, which quench the BOLD response while

maintaining the neuronal response as demonstrated by local field potential

(LFP) recordings.33 This would suggest the DW-fMRI signal contains a

component which is not vascular in origin. It has also been observed in

ganglia37 and brain slices17 without blood, with the use of neurotransmit-

ters. Another group concluded the DfMRI signal is vascular in origin after a

hypercapnia study, where the short rise time could not be observed for high

b-values.36 Yet another group used calcium imaging combined with diffu-

sion MR measurements, which indicated a direct correlation between the

depolarisation of the neuronal cell membrane and water diffusion changes

during hyperexcitability in cell cultures, but they could not find correlation

15
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Figure 1.1: Time courses of the response to a 16 second visual stimulus (highlighted in
green) as measured with BOLD (blue) and with DW-fMRI with a b-value of 0 (red),
and with DW-fMRI with a b-value of 1800 (yellow), averaged across participants. The
response measured with a high diffusion weighting shows a more rapid onset after stimulus
start, in agreement with the results in the study by Le Bihan et. al.

to normal neuronal activity, suggesting the DW-fMRI signal is not sensitive

enough to detect it.34

This thesis aims to verify the signal source of the DW-fMRI by using con-

current high resolution optical measurements of the tissue microstructure.

The technique developed detects, for the first time, cellular swelling along-

side the DW-fMRI signal using Spatial Frequency Domain Imaging (SFDI).

This optical imaging method measures remitted light from tissue to provide

information on the absorption and scattering properties of the tissue.38,39

Scattering measurements can be used to indicate changes in cell size.24 As

cells expand, the membrane refractive index changes, changing the measured

scattering parameters. If cellular swelling drives the DWfMRI signal, the

time course of scattering changes should be in agreement with the rapid

onset of its response. Absorption can be related back to the concentrations

of chromophores in the tissue. The highest absorbing of these are oxy-
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genated and deoxygenated haemoglobin, while other major chromophores

are cytochrome, lipids and water. As oxy- and deoxyhaemoglobin have dis-

tinct absorption spectra, the remitted light can be used to monitor their

concentrations. The optical measurements therefore allows deconvolution of

the haemodynamic contributions from the DW-fMRI signal. By employing

these two techniques together, information about diffusion, absorption and

scattering can be recorded for the same neuronal event, providing informa-

tion on the link between cellular swelling and measured diffusion.

Providing a proof for the signal source of the DWfMRI response could

provide confidence in the technique, bringing it to further use and develop-

ment. If the method could offer improvements in how neuronal activity is

measured, this would have benefits both in clinical and research applications

which currently rely on BOLD fMRI. Further, the concurrent investigation

of neuronal activity and the simultaneous haemodynamic changes, could

help improve understanding of the tight interconnectivity between the two,

known as neurovascular coupling. As well as being the target of academic

interest, with rapidly increasing number of citations in recent years,40 neu-

rovascular coupling has been shown to be impaired in a range of pathological

conditions, and holds potential as an indicator in health and disease. In par-

ticular, there is growing evidence for impairment of neurovascular coupling

in Alzheimer’s Disease (AD).21 AD and vascular dementia is a leading cause

of death, and while it remains a complex disease it is thought to have a

significant neurovascular component.21

17
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1.1 Neurovascular coupling

The brain requires large amounts of energy, which it derives primarily from

oxygen and glucose. The brain does not have the means of storing energy

reserves, it therefore requires rapid and sufficient supply of nutrients to be

transported to the activated areas via the blood stream.40 This is regulated

by a process known as neurovascular coupling, which describes the interplay

between neuronal activity and the associated changes in blood flow.

The definition of the neurovascular unit (NVC, Section 1.1.2) in 2001,

identified key vascular and neuronal components involved in the regulation

of cerebral blood flow.41 Interest in the topic is still increasing in recent

years due to the interest in neurodegenerative diseases previously assumed

to be unrelated to the vascular system.40 By emphasising the relationship

between cerebral blood supply and brain cells, this definition challenged

the classification of for example Alzheimer’s disease as a neurodegenerative

and stroke as a cerebrovascular diseases. Technological advances have also

enabled researchers to investigate this connection further.40

Neurovascular coupling has gained much interest within neuroscience

and psychology.18,20,40,42 Understanding of the cells’ control of blood flow

is central to understanding brain function, as well as to and to develop

treatments for defects to cerebral blood flow control which can be associated

with neurological disorders such as stroke, hypertension and Alzheimer’s dis-

ease.16 Neurovascular coupling is also key to interpreting functional imag-

ing data43 The complex interplay between neuronal activity and heamody-

namic changes drives the observed signal changes, and has therefore been

an important topic in neuroimaging since the early uses of fMRI in the

1990s.11,44,45 Angelo Mosso invented the first neuroimaging technique in

1881,46 and in 1890, Roy and Sherrington first discovered the ability of an

active region of neurons to increase local cerebral blood flow.47 In 1945,

Craigie48 showed that the density of vasculature changed throughout the

brain, and that increases in neuronal activity was associated with a change

in blood flow. This close coupling was established with the development of

the blood-oxygenation level dependent (BOLD) imaging technique in 1990

by Ogawa et al.11
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Figure 1.2: The structure of a neuron. The soma is the cell body, which contains the
nucleus of the cell. The axon extends away from the cell body, and can reach over a meter
in length in humans. It is covered in a myelin sheet, which accelerates propagation of
electrical signals along the axon.

1.1.1 Neuronal activity and metabolism

Neurons are specialised cells which transmit information between each other

and to muscle or gland cells. A schematic of the neuron structure is shown

in Figure 1.2. It consists of the cell body or soma containing the nucleus

and cytoplasm, an axon which extends to form branched nerve terminals,

and dendrites which receive information from other neurons. Groups of

interconnected neurons, known as neural circuits, communicate using chem-

icals transmitted via synapses, which form the contact points between their

dendrites and axons.

Neurons exchange information in the form of electrical and chemical sig-

nals. They are able to generate electrical potentials by maintaining voltage

gradients across their cell membranes. These gradients are caused by the dif-

ference in intra- and extracellular concentrations of charge-carrying ions like

Na+, K+, Cl- and Ca2+. When it is not activated, this is referred to as the

resting membrane potential, and ranges between -40mV and -90 mV.49 The

gradients are controlled via the voltage-gated ion channels within the cell

membrane on the axon and soma. A stimulus causes specific ion-channels

in the cell membrane to open, which allows ions to flow through, changing

the membrane potential. With a large enough voltage charge, it creates an

all-or-none electrochemical pulse known as an action potential. When the

neuron ‘fires’, this cross-membrane potential travels along the axon of the

cell, activating the synapse connecting it with other cells. Non-neuronal

cells in the brain and spinal cord known as glia do not generate electrical
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impulses, but they form myelin, a substance consisting of lipids and pro-

tein. Myelin can form a layer covering the axons of neurons, and cause the

electrical signalling via the axon to accelerate.

If a neuron responds at all, it responds completely. Greater intensity

stimulation does not give a stronger signal, but the firing frequency can get

higher.50 This depends on the type of receptor. Tonic receptors are slowly

adapting. These respond to steady stimulus with a steady firing rate, and an

increased intensity of stimulus usually increases the firing frequency. Phasic

receptors are quickly adapting. These types respond to steady stimulus by

decreasing or stopping firing. One example of this is skin touching an object;

at first the neurons fire, but on continued contact they stop. Neuronal

activity can also undergo habituation,51 where the response to a stimulus

dampens on repetition. This can be observed with fMRI, for example with

visual and auditory stimulus.52,53

After a firing event, the synapses need to be reset. The maintenance of

Na+/K+ ion gradients across the cell membrane relies on the energetic com-

pound ATP54 Neurons are responsible for 70− 80% of the energy consumed

by brain cells, the rest is used by glial cells such as astrocytes, oligoden-

drocytes, and microglia.55 On firing, the synapse releases neurotransmitters

like glutamate. Astrocytes surround the neuronal synapses, taking up glu-

tamate and converting it to glutamine, which is returned to the neurons.

This resets the synapse for the next event. Glutamate requires three Na+

ions to be taken up alongside it to remain electrochemically neutral, which

activates the Na+/K+ ion pumps to reset the osmotic gradient. This is a

metabolic process, and the energy required is released by converting ATP

to ADP. The astrocyte requires conversion of two ATP molecules per gluta-

mate metabolised.56

The ATP required by neurons and glial cells is regenerated from ADP

through the metabolism of glucose in the mitochondria, Figure 1.3. First,

glucose enters the cell and is phosphorylated to G6P. This is a rapid process,

therefore a steep glucose gradient is maintained over their membranes.54 In

neurons, G6P proceeds to the glycolytic pathway and the pentose phos-

phate pathway (PPP). This generates building blocks for DNA and RNA

while reducing NADP+ to NADPH, a species which is important for mit-

igating against oxidative stress.57 Glycolysis (Figure 1.4) is an anaerobic
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Figure 1.3: The metabolism of glucose, which regenerates ATP from ADP.

process which converts glucose into to pyruvate molecules, meanwhile pro-

ducing ATP from 2 ADP. Pyruvate can be actively transported into the

mitochondria. There, it is further converted to Acetyl coenzyme A (acetyl-

CoA) which is metabolised through the tricarboxylic acid (TCA) cycle, as

shown in Figure 1.5.57 The TCA cycle generates energetic compounds in

the form of three NADH, one FADH2 and one GTP. NADH and FADH2 are

electron carriers, which go on to take part in the electron transport chain

(ETC). Most of the ATP produced by aerobic metabolism of glucose is gen-

erated in the ETC, which consists of five main protein complexes located in

the inner membrane of the mitochondria, Figure 1.3. NADH and FADH2

donate their electrons to Complexes I and II respectively, and these pass the

electrons on through the complex chain, allowing a series of redox reactions

occur. Energy is generated through this process, and it causes hydrogen

ions to build up in the matrix space outside the inner membrane, forming

an electrical and chemical concentration gradient across it. In response, the

H+ ions diffuse back across the membrane mainly by passing through ATP

synthase, driving it to oxidatively phosphorylate ADP to ATP. Overall this

process consumes O2, with each glucose molecule generating 30-36 molecules

of ATP, as well as water and CO2, which is released back to the plasma.58

Astrocytes’ G6P can also be used in the PPP, however it is primarily

metabolised via glycolysis to produce lactate from generated pyruvate, with

very little mitochondrial oxidation.59 Unlike neurons, astrocytes are also

able to store glucose is as glycogen, which is the largest form of energy
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Figure 1.4: A glucose molecule can be converted into two pyruvate molecules. Pyruvate
is converted into acetyl CoA, which takes part in the TCA cycle.

Figure 1.5: The TCA cycle. Inputs and outputs are marked in red and blue respectively.
Acetyl CoA is produced from pyruvate and provides an acetyl group to the cycle. Overall
the process generates three NADH, one FADH2 and one GTP.
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reserve in the brain.58

Neurons are predominantly oxidative, processing glucose to form NADPH

through the PPP, while astrocytes are mostly glycolytic,59 generating lac-

tate and pyruvate.57 The oxygen is delivered by the blood stream, where

it is carried by the red blood cells through binding to haemoglobin (Section

1.3.1). Since neurons operate via aerobic mitochondrial metabolism they are

very sensitive to hypoxia, surviving only 3 to 5 minutes in an anoxic envi-

ronment60 Astrocytes on the other hand are primarily anaerobic. Although

they can generate ATP via the TCA cycle, they mainly rely on anaero-

bic glycolysis, and can in fact be cultured for up to 24 hours from human

brain tissue.61 Although astrocytes require much less energy to function

than neurons, they have direct access to the vasculature, as capillaries are

to a large extent covered by their endfeet.62 This has led to the suggestion

that astrocytes act as mediators, transferring additional energetic species to

neurons.63

The brain requires large amounts of energy, accounting for around 20

percent of the body’s energy use.64 Although the brain’s energy is primarily

transferred through the metabolism of glucose, other energy sources can be

used if glucose is not available. Examples of this is during fasting, when

ketones are metabolised, and during intense physical activity, when the use

of lactate is increased.58 There are limited options for energy storage, so the

brain relies almost entirely on the blood stream for supplying the metabo-

lites required in ATP production.64 The regulation of blood supply to active

neurons is therefore crucial to their function and health, with a reduction in

the brains’ metabolism of glucose and oxygen playing a role in neurodegen-

erative disorders as well as in ageing.58

1.1.2 The neurovascular unit

The neurovascular unit (NVU) refers to the network of components that con-

trol the blood flow to the brain. It comprises neurons, astrocytes, pericytes,

the blood-brain barrier, endothelial cells, myocytes and extracellular ma-

trix components,41 as well as the blood vessels themselves.65 The interplay

between these components controls the vasodilation and vasoconstriction in

regions of the brain in order to moderate the local levels of oxygen, nutrients

and by-products. The NVU is functionally heterogeneous throughout the

brain,65 and the density of the NVU components varies along the angioar-
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chitecture. An overview is shown in Figure 1.6.

The brain blood supply comes from two pairs of arteries; the carotid

arteries at the front of the neck and the vertebral arteries along the back of

the neck. These come together at the base of the brain to form the circle

of Willis, which is connected to the anterior, middle and posterior cerebral

arteries supplying all areas of the brain. They divide into progressively

smaller arteries and arterioles along the brain surface before entering into

the brain tissue.66 They reach the capillary beds, which form a densely

connected network. The majority of the supply of oxygen and nutrients to

the cells takes place via the capillaries. Capillaries are thin, 5 to 10µm. Red

blood cells can therefore barely fit through it, yet their velocity through

the cerebral capillaries is quite high, ranging between 0.3 and 3.2 mm per

second. This speed varies by region, as some regions of brain tissue have

higher metabolic demands, requiring more rapid supply.66

The blood-brain barrier provides a boundary between the brain and the

blood stream, allowing for the entry of nutrients from the blood to the brain

and the exit of by-products back to the blood stream. This ensures that

metabolites such as glucose, amino acids and ketones can transfer efficiently

through selective transport, while also protecting the brain by limiting the

diffusion from the blood to the brain of solutes that could damage the neu-

rons. The blood-brain barrier consists of capillary endothelial cells with tight

junctions that inhibit water-soluble molecules from entering, allowing only

small nonpolar lipids and gases like O2 or CO2 to passively diffuse across

according to their concentration gradients.65 Any other nutrients require

passive or active mediated transporters. Proteins for example must cross by

interaction with receptors and transporters. Carbohydrates, amino acids,

fatty acids and organic cations and anions are transferred transferred in by

solute carrier proteins.58 Glucose is carried by various transporters, and of

these the levels are highest for GLUT1 and GLUT3. Glucose crosses the

blood-brain barrier by the help of GLUT1. The barrier cells have unidirec-

tional transporters which, during glucose or oxygen deprevation, couple the

sodium electrochemical gradient to admit glucose against its concentration

gradient. GLUT3 ensures it is taken up by the neurons, this transporter has

a higher affinity and transport capacity for glucose than the others, and can

therefore ensure the neurons are supplied with glucose even if concentrations

are low.58
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Figure 1.6: Penetrating arterioles enter the brain tissue, As arterioles move deeper into
the brain and become thinner, the environment around them change. Pial artieries (left)
run along the cortical surface, within the subarachnoid space. They enter the brain and
become penetrating arterioles (middle), reaching down to the capillary beds. Here, neurons
and astrocytes start appearing. By the capillaries (right) the smooth muscle cells have
been replaced by pericytes.

The environment directly surrounding arterioles vary by region, as shown

in Figure 1.6. Arteries entering the brain from the subarachnoid space are

covered by a layer of smooth muscle cells (SMC) and pia mater, which be-

comes thinner as the arterioles reach deeper into the brain.40 The arterioles

are met by the endfeet of astrocytes. On the capillaries the SMC layer

is replaced by pericytes, which emerge between the endothelial cells and

the astrocyte endfeet.65 Pericytes are contractile cells which regulate and

stabilise the microvascular cerebral blood flow.67 Pericytes at different lo-

cations along the capillary function differently; those near the arteriole are

likely more involved in the blood flow regulation, those in the middle are

thought to be important for maintaining the blood-brain barrier, and those

at near the venule may regulate the flow of immune cells.67

Brain tissue is itself heterogeneous, with noticeable structural differences

depending on depth. This has given rise to the classification of brain layers,

as shown in Figure 1.7. Cajal describes the nerve cells as arranged into four

layers, from the molecular layer closest to the surface, down through the layer

of small pyramidal cells, then the layer of large pyramidal cells, and finally

the layer of polymorphous cells.68 Perpendicular to the surface, neurons

responsible for similar tasks are grouped together as they need to commu-

nicate. These ‘columns’ of neurons have similar response behaviours.69

1.1.3 Neurovascular coupling mechanism

The proposed mechanisms by which blood flow is increased during brain

activity are sometimes described as either ‘feedback’ or ‘feedforward’. Work
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Figure 1.7: The structure of nerve cells for the different brain layers, as described by Cajal.

as early as 1890 proposed feedback mechanisms, which suppose that the

metabolic demands of the neurons drive the blood flow response.47 Blood

flow not only delivers oxygen and glucose, but brings away by-products of

brain metabolism such as lactate and CO2, as well as Aβ and τ , which

are building blocks for plaques and tangles that are present in Alzheimer’s

Disease.70 Some of the by-products, including adenosine, CO2, H+ and lac-

tate, are vasodilators. It has therefore been suggested that the build up of

these products causes the expansion of vessels, which facilitates the increase

in blood flow associated with activation.71 Blocking of adenosine receptors

has indeed been shown to reduce the blood flow response to activation.71

The feedback model is in agreement with studies showing that oxygen and

glucose is reduced in the active region prior to the blood flow response.72

This initial reduction in O2 is also shown to increase deformability of red

blood cells, which leads to increased blood flow in capillaries.73 Feedforward

mechanisms propose that increase in cerebral blood flow is independent of

metabolism, and instead is driven by neurovascular signalling pathways.

This model is supported in the work of Fox and Raichie,74 which showed

that during activity, the blood flow increases much more than the oxygen

metabolic rate (CMRO2). cerebral blood flow increase is therefore greater

than that required to supply the tissue with oxygen, and in fact occurs even

when oxygen and glucose is present in excess. Their work challenged the
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idea of CBF changes being metabolically driven. This is also key to the pro-

duction of a BOLD signal; although the consumption of O2 has increased,

activity causes the oxygenation of the venous blood to increase, as the in-

creased blood flow more than compensates for this.75 The mechanism for

this signalling is still unclear,16 there may be multiple pathways. The mod-

els are not mutually exclusive. Recent work suggests neurovascular coupling

is caused by a combination of the two; it is largely caused by a feed-forward

triggering of blood flow through signalling, with a feed-back mechanism ad-

justing the blood flow based on the regional metabolism.16 The influence of

the two models is also likely to vary by region. Different brain regions have

widely different base oxygen levels76 and vascular structure, and in some

areas this could cause local hypoxia on activation, driving vasodilation and

resulting in CBF increase.40

Already in 1897 it was suggested astrocytes could regulate cerebral blood

flow.68 They are in contact with neurons, and their endfeet envelop cere-

bral blood vessels, giving them a good location for mediating neurovascular

coupling. This appears to be controlled via Ca2+ transients, as the concen-

tration of Ca2+ within astrocytes is raised during neuronal activity,77 and

Ca2+ has been shown to cause both dilations and constrictions in nearby ar-

terioles.78 This ability was investigated in brain slices under different levels

of pO2.
79 Uncaging Ca2+ in 95% O2 solutions caused arteriole constriction,

but in 20% O2, which is closer to physiological levels, the process reversed,

giving arteriole dilation. The role of astrocytes in neurovascular coupling

was challenged by an in vivo two-photon study which indicated calcium

increase occurred after the onset of arteriolar dilation, and that vasodila-

tion was preserved in mice lacking the primary pathway for astrocytic Ca2+

increase.80,81

Pericytes may contribute to regulation of microvascular blood flow, this

was suggested as early as 1923, due to their suitable location on capillaries.82

Pericytes express contractile proteins and are located on the capillaries where

there are no smooth muscle cells.83 Pericytes’ ability to constrict and dilate

have been shown in situ, for example in retinal capillaries, where they re-

spond to neurotransmitters due to changes in Ca2+ concentration. This has

also been shown in brain slices, where pericytes constrict capillaries under

noradrenaline and dilate them under glutamate.16 A study by Hall et al84

used this behaviour to conclude that capillaries are dilated by the pericytes
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being actively relaxed. They used in vivo two-photon imaging to monitor

pericyte dilation in the somatosensory cortex of mice during whisker pad

stimulation. Results indicated that the pericytes are the first to dilate after

a stimulus, therefore playing a major role in the regulation of blood flow

in the brain. They observed far greater dilations of the capillaries where

pericytes were present. Pericytes also have the ability to propagate between

each other.16 In response to electrical stimulus in retina and cerebellar slices,

it has been shown that pericytes have the ability to propagate these signals

to distant pericytes.85 This ability combined with the relative proximity of

neurons to pericytes compared to arterioles, has lead to the suggestion that

vascular signals could be initiated by pericytes and propagated to upstream

arterioles.16

Neurovascular coupling is impaired in certain diseases and pathologi-

cal conditions. Examples of this include hypertension, Alzheimer disease,

and ischemic stroke.20 The alterations can come in various forms, such as

reduced global cerebral perfusion which can follow cardiac arrest or hypoten-

sion, or microvascular changes in white matter, which can be linked to for

example hypertension or diabetes.86 If the blood flow response to activation

is reduced, it could reduce the oxygen and glucose supply to neurons, reduc-

ing neuronal activity and cerebral function.21 Cerebral blood flow plays an

important role in vascular dementia, with damage to the vascular supply or

reduced blood flow together with neurodegeneration being the leading cause

of cognitive impairment.86 In Alzheimer’s disease (AD), blood flow changes

can become less responsive to neuronal activity, known as neurovascular de-

coupling.21 This has been linked to a breakdown of the neurovascular unit

through pericyte deficiency.87 Altered neurovascular coupling and a delayed

vessel dilatory response, has been measured by optical imaging of retinal ves-

sels and investigated as a potential biomarker of AD.88 A stroke can cause

local structural damage which alters the coupling, or cause changes to the

vasoreactivity, reducing the CBF increase caused by activation.20 Instances

of this are also found in fMRI studies of multiple sclerosis (MS) patients,

who have been shown to have reduced BOLD and CBF responses to visual

stimuli.21 One study also reported altered neurovascular coupling in patients

with chronic stress.22 Breakdown of the neurovascular unit and therefore

neurovascular coupling has also been found in normal ageing,89 which is the

biggest risk factor for Alzheimer’s disease and vascular dementia.21

28



1 Introduction Neurovascular coupling

Figure 1.8: Left: The time course of a BOLD response to a 16 second stimulus, averaged
across ten participants. Right: An example hemodynamic response for a 16 second whisker
stimulus in the rat, from old data acquired previously in the group.

1.1.4 Implications for fMRI

The mechanisms of neurovascular coupling is key to the interpretation of

fMRI data.16 During neuronal activity, the energy demands of the cells

increases the cerebral metabolic rate of oxygen (CMRO2), which describes

the rate at which oxygen is transferred to the cells. To supply enough oxy-

genated haemoglobin (HbO) and nutrients, there is an increase in cerebral

blood flow (CBF), with arterial blood flowing towards the active site, causing

an increase in the regional blood volume (CBV). This process also washes

out the deoxygenated haemoglobin (Hbr).

A typical haemodynamic response to activation is shown in Figure 1.8

The BOLD fMRI signal is a composite measurement, indicating changes in

cerebral blood volume, flow and CMRO2. Paramagnetic deoxyhaemoglobin

distorts the local magnetic field to a much greater extent than diamagnetic

oxygenated haemoglobin. This has the effect of changing the frequency and

phase of nearby spins. In order to detect this process, BOLD measures the

T2* relaxation (Section 1.3.1), which largely depends on the local concentra-

tions of deoxyhaemoglobin.11 The blood flow supplies a surplus of oxygen

(with CBF increasing by 2:1 over CMRO2),
74 The relative concentration

of deoxyhaemoglobin is reduced during activity. As the Hbr concentration

decreases, the BOLD signal increases, and is therefore indicative of over-

oxygenation in the activated region.

There is still some debate about which parts of the vascular system drive

the hemodynamic changes. Arteries and arterioles have been viewed as driv-
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ing the blood flow response to activation because these are the site of most

vascular resistance20,90 and are rich in SMCs which are absent on capillar-

ies.91 Much of the activity related CBF increase is however believed to be

caused by the capillaries.67 Capillaries are closer to neurons than arteries,

and because they have large surface areas, even small changes in diameter

could produce large changes in flow.16 The early idea of capillary recruit-

ment suggested that closed or slowly perfused capillaries are opened during

brain activity.92 In vivo imaging has however showed that almost all capil-

laries are already fully perfused under physiological conditions.93 Capillary

dilation occurs before dilation of penetrating arterioles (by 1.38 ± 0.38 s),84

and is therefore not a passive effect of increased flow in the larger vessels.

Capillary diameter is believed to be controlled to a significant extent by

the active relaxation of pericytes. One study94 observed these actions of

pericytes in vivo using two-photon microscopy, but also found increase in

flow of red blood cells through capillaries without pericyte induced capillary

dilations. They therefore concluded precapillary and penetrating arterioles

are responsible for regulating blood flow, rather than capillaries. Another

study have argued that the contractile cells on capillaries are actually SMCs,

and that true pericytes do not have this ability, with blood flow being reg-

ulated instead by arteriole SMCs.91 These contradictions could however be

due to difficulties of distinguishing pericytes and SMCs, as pericytes are

morphologically heterogeneous and there is a lack of specific markers for

them.40

BOLD is however not indicative of capillary CBF changes, but of a

combination of contributions. Activity in specific neural regions can elicit

a BOLD response from a wider area of interconnected vessels. Although

arteries can dilate quite significantly, giving between 5 and 25% increase

in diameter95 it is veins that contribute most significantly to the BOLD

signal. Arteries are smaller in volume and have high oxygenation (> 95%)

and therefore give relatively little contribution to the signal. Meanwhile

venous blood has an oxygen saturation of 0.45,96 and the signal is large due

to the large increases in deoxygenated haemoglobin. The heterogeneity of

the angio-architecture of the brain will influence the location of the signal.

The layout of larger veins entering the brain with branching at depths,

means that the heavily venous signal is both delayed and shifted closer

to the surface relative to the activated capillaries.14 The density of brain
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capillaries also varies significantly within the brain depending on location

and energy needs, with higher capillary density in gray vs. white matter.66

In addition, volume exchange effects can impact the signal independently of

blood oxygenation changes, for example through arterial changes in CBV

that displace extravascular tissue.97

In early research it was assumed that the behaviour of neurovascular

coupling represented a linear dependence of haemodynamic response to neu-

ronal activity,98,99 however more recent studies suggest it varies between

brain regions,16–18 across age groups19 and between the contexts of health

and disease.21,22 Regional differences have been detected for example by

using BOLD fMRI and electrophysiological measurements during whisker-

stimulus in the rat,18 and by BOLD and local field potentials in the monkey

visual cortex.100 The depth dependent fMRI signal changes show a fast

onset in deep layers, with the initial dip pronounced in layer I, and con-

current measurements of arteriole and capillary diameters with two-photon

microscopy have indicated a propagation of vasodilation upstream toward

the cortical surface and downstream to the capillary beds.95 BOLD models

are therefore becoming increasingly complex101 and are starting to account

for layer-dependence.102

Neurovascular coupling is additionally important to DW-fMRI, as the

signal could depend on activity related neuronal or glial cell swelling.23 It

is unclear which cells swell in response to activation. Pericytes’ active di-

lation to regulate capillary flow is one example, but swelling has also been

observed in neurons103 and astrocytes.104 Cellular volume is regulated by

anion channels, which are important for decreasing the cell volume after

osmotic swelling.103,104 When separating the soma from the dendrites and

axon of mouse cortical neurons, Cl- currents are reduced by a half, indicating

the volume sensitive channels are present in both the soma and dendrites.103

Astrocytes can dilate due to aquaporins in their membranes. These are pro-

teins that act as channels, allowing water to flow through. The process is

controlled by osmotic gradients, in turn caused by clearance of excessive

K+ due to high neuronal activity. Both neurons and astrocytes swelling is

triggered by osmotic gradient.104
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1.2 The basics of MRI

1.2.1 Background

MRI relies on the nuclear property of spin, which represents a nucleu’s quan-

tum mechanical angular momentum. Protons spin at a given rate whether

in a magnetic field or not. A spinning charge generates a magnetic dipole

moment, and the spin property causes the nuclei to be magnetic, along its

spin axis. The nuclear magnetic moment is given by

µN =
e~

2mp
(1.1)

where e is the charge of the particle, ~ is the reduced Planck constant and

mp the mass of the proton. For a proton the charge is +1e. The spin can be

thought of as a vector, with components along the x, y and z-axes. It has

a quantised magnitude, and depends on the particle type, and is denoted

by the spin quantum number, S. According to quantum mechanics, the

spin component along the z-axis, Sz can take 2 · S values. For hydrogen,

which has S = 1/2, there are therefore two possible values, Sz = +1/2 and

Sz = −1/2.

In water the nuclei undergo diffusion, where random motion which causes

them to interact and change each others local environments. At room tem-

perature thermal collisions have energies that are much higher than needed

to reorient a nucleus in a magnetic field, however it is well shielded and

only interact weakly with the environment. Since the nuclei experience ran-

dom and weak interactions, the precession will over time be very similar to

that of non-interacting particles; the orientations of the magnetic dipoles

are random, and the magnetization faces in different directions to form a

nearly spherical distribution.

In the absence of an outside influence the magnetisation of a group of

spins will form a nearly spherical distribution. If the nuclei are affected

by a static external magnetic field, they will however have a tendency to

point in the direction of the external field. The net magnetization vector,

representing the average magnetisation at any given time, will therefore be

pointing in this direction.

In a magnetic field, the two nuclear spin states of the proton become

separated by an energy gap, ∆E. This is referred to as the Zeeman effect.
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Figure 1.9: (Left) The Zeeman effect. The introduction of a nucleus, here with spin
quantum number 1/2, into the external magnetic field causes the energy levels to split,
with an energy gap ∆E given by the Zeeman Equation. (Right) The populations of spins
for each energy state at thermal equilibrium is determined by the Boltzmann distribution.
Transitions between states requires absorption or emission of energy.

This separates the spin states into a low energy and a high energy state. The

Zeeman equation describes how this energy gap scales with the magnetic

field strength, B0.

∆E = γhB0 (1.2)

Here γ is the gyromagnetic ratio of the nucleus, which represents the ratio

of the particles’ magnetic moment to its spin angular momentum.

The introduction of the external magnetic field causes the distribution of

spins to rotate around the field direction, referred to as precession. The pre-

cession frequency is proportional to the field, and is given by the resonance

Equation 1.5. For a proton, γ = 2.675× 108 rad s−1T−1. The gyromagnetic

ratio is also the ratio between the observed angular frequency of Larmor pre-

cession (in rad s−1) and the strength of the magnetic field in proton NMR

applications, such as in MRI imaging. For this reason, the value of γ is often

given in units of MHz/T.

Although the lower energy state would be favoured by the spins in order

to minimise the system’s energy, the presence of thermal motion causes a

group of spins to be distributed between these states in accordance with

the Boltzmann relationship, which is given in Equation 1.3. N1 and N0 are

the populations of the upper and lower levels, ∆E is the energy difference

between the two states, k is Boltzmanns constant and T is the temperature

in Kelvin. There will be a slight excess of spins in the lower energy state,

however the population difference is very small (around one in one million

at 1 T).
N1

N0
= e

−∆E
kT (1.3)
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MRI measures the relaxation of nuclear spin from an excited state back to

equilibrium. The spins can transition between the states by either absorbing

or emitting a photon with energy equal to the difference between the two

states. The Planck relation (Equation 1.4) relates a photon’s energy to its

frequency, ν.

E = hν (1.4)

Here h represents Planck’s constant, which is 6.626 · 10−34 Js. The signif-

icance of this constant is that energy can only be absorbed or released in

discrete quantities. The frequency a photon must have in order to cause a

transition between the two states can be found by combining Equations 1.2

and 1.4 to give Equation 1.5. This is the Larmor or resonance equation and

the resonance frequency ν is therefore called the Larmor frequency.

ν = γB0 (1.5)

The system is excited using a radio frequency (RF) pulse. This causes

the distribution of spins to rotate, in such a way that the net magnetisation

vector is at an angle relative to the Z-direction and it will start to precess

around the Z-axis at the Larmor frequency. Spins in the higher energy state

can transition by spontaneously emitting energy in the form of RF at the

reference frequency. Over time the spins will relax back to their equilibrium

state, where the net magnetisation vector lies along the direction of the

external magnetic field.

After excitation the spins undergo relaxation via two mechanisms each

describing the orthogonal vector evolution of the magnetisation vector. Fig-

ure 1.10 shows this in terms of the respective time constants. T1 or spin-

lattice relaxation describes longitudinal relaxation of the net magnetisation

vector. The MZ vector, which describes the Z-component of the magneti-

sation, returns to its original position via an exponential recovery, with the

time constant T1.

MZ = M0(1− e−
t
T1 ) (1.6)

T2 or spin-spin relaxation describes the transverse relaxation of the net

magnetisation vector. The excited protons go out of phase with each other.

Figure 1.10 shows exponential decay of the signal as the transverse compo-

34



1 Introduction The basics of MRI

nents of magnetisation, MXY , start to dephase.

MXY = MXY 0(e
− t
T2 ) (1.7)

T1 relaxation is the process by which the longitudinal magnetization

(Mz) approaches equilibrium. This represents a loss of energy, as the spins

return from the excited state to their thermal equilibrium. The energy is

transferred to the surrounding nuclei, atoms, and molecules through inelastic

interactions. Collisions, rotations, or electromagnetic interaction from the

nearby nuclei cause fluctuating magnetic fields, and if their RF fields are

very close to the resonance condition, energy will be transferred in the form

of very small amounts of heat. T1 relaxation is therefore sometimes referred

to as spin-lattice or thermal relaxation. The amount of energy is very small

compared to the molecular kinetic energies, it is therefore dispersed quickly

and is typically small compared with body temperatures. From the Equation

1.6, the T1 time will be the time after excitation when the z-component

of the net magnetisation has returned to (1 − 1
e ), or around 63%, of its

maximum value. Different biological materials have T1 values ranging from

a few tenths of a second to several seconds.

T2 relaxation causes the transversal magnetization perpendicular to the

magnetic field (Mxy) to decrease exponentially, as shown in Figure 1.10.

This represents a dephasing of spins, so that coherence between the trans-

verse components of the net magnetisation decays until the spins become

randomly distributed in the transverse plane. T2 relaxation accompanies all

T1 relaxation processes, as a change in energy would affect both transverse

and longitudinal spin components. It can also occur separately, therefore T2

is always shorter than T1. This secular T2 relaxation is caused by tissue fac-

tors affecting the local magnetic field, such as presence of nearby molecules

containing iron or electronegative oxygen. Unlike the T1 processes, it pro-

gresses via elastic interactions, where energy is preserved. Here spins are

affected by their neighbouring spins magnetic field, without loss of energy

to the environment, it is therefore sometimes referred to as spin-spin relax-

ation. The T2 process is fast compared to T1, therefore T1 relaxation times

are longer than or equal to T2.

T2 assumes decay due to the random interactions between spins, however

the signal actually decays faster than what what T2 would predict. T2*
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Figure 1.10: T1 recovery (left) and T2 decay (right). T2∗ relaxation causes the transversal
magnetisation to decay faster than what would be expected for T2 alone.

relaxation includes static magnetic field effects, additional to the tissue-

characteristic effects causing T2 relaxation. These are fixed factors like

small inhomogeneities in the applied magnetic field B0, differences in the

magnetic susceptibility of different types of tissue which distorts the field

further, especially at the boundaries between tissue and air, and any type

of metal that might be present in or on the patient. T2* relaxation is given

by Equation 1.8. √
1

T2∗
=

1

T2(random)
+

1

T2(fixed)
(1.8)

Tissues have inherent relaxation times, and can therefore be distin-

guished in T1 and T2-weighted MR images. Spin-lattice and spin-spin relax-

ation is most efficient when the motion of the nuclei, in the form of rotation

and translations causing variation of the local magnetic field, is close to the

Larmor frequency. Since the Larmor frequency is proportional to the field

strength, this optimal tumbling rate changes at higher field (Figure 1.11).

Free water has a range of tumbling rates and is mostly inefficient at T1

and T2 relaxation. It therefore has long relaxation times and shows up as

dark or low-signal areas in T1-weighted images, and bright in T2-weighted

images. The field strength has little effect on the rates because the fraction

of water with a given frequency of motion does not change much. Water

molecules are small and magnetically de-shielded, as the dipole exposes H

nuclei to the external field by pulling electron density away from them. Fat

on the other hand has large molecules where the protons are magnetically
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shielded. This leads to a lower resonance frequency and short relaxation

times, which causes it to give high signal in T1-weighted images, appearing

bright, and to appear dark in T2-weighted images. As an example CSF

(T1≈4.1 seconds and T2=1.8 seconds at 3T)105 contains much more water

than white matter (T1≈900 ms and T2≈70 ms at 3T)106 and relaxation

times are longer. T2 is shorter in tissues than for example CSF, because the

motion of protons in water and in macromolecules is slowed down by the in-

teraction between them, more closely resembling the Larmor frequency. For

less mobile protons, a higher field strength means a smaller fraction of them

will have tumbling rates on the scale of the Larmor frequency, therefore T1

will increase, and typically be proportional to B0(1/3) for most biological

tissues. Proteins, large macromolecules and more solid tissues such as ten-

dons have short T2 relaxation times. These have slow motion below the

Larmor frequency, and re-orient slowly, causing nearly static local magnetic

fields. T2 relaxation accompanying T1 can be lengthened by increasing the

field, as T1 is lengthened, but the relaxation due to static fields is not much

affected. T2 can however be reduced at high field in the case of molecular

diffusion which appears to be accentuated at high fields, and for chemical

exchange which is more efficient at high field, this can for example occur

in brain imaging at 7T due to structures containing iron. Bone will appear

dark primarily because the water density is low, and the water there would

be mostly bound to collagen and have short T2. The water protons res-

onate slightly faster than those in fat, the difference in resonance frequency

is known as the water-fat chemical shift. Several methods have been de-

veloped to take advantage of these differences to suppress or separate the

signal from the water and fat.

1.2.2 Detection and localisation of the signal

The MRI signal is detected using coils which are orthogonal to each other

and to the static field. Transverse magnetisation that rotates around the

direction of the main magnetic field will induce an AC current in an orthog-

onal coil. This current oscillates at the Larmor frequency. When excited

spins undergo relaxation this signal, reflecting the magnitude of MXY , takes

the form of a free induction decay (FID), as shown in Figure 1.12. Because

of the dephasing of the spins, the envelope of the signal forms an exponen-

tial decay, with the time constant T2*. This signal obtained is largest if
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Figure 1.11: The motion of molecules, or tumbling rate, affects both T1 and T2 relaxation
times. The T1 relaxation is most efficient when the molecular motion approaches the
Larmor frequency, this can be seen as a minimum on the curve. T2 depends additionally
on local magnetic fields present at motions below the Larmor frequency.

the spins are flipped by 90◦ so that the net magnetisation vector lies in the

XY-plane. The time-domain FID signal can be Fourier transformed to give

a representation in the frequency-domain, forming the basis of the NMR

spectrum. The receiver coils orthogonal arrangement allows them to pick

up signals as sine waves from two axes simultaneously, one records the part

of the signal that is in phase with the reference signal (the real channel) and

one that is 90◦ out of phase (the imaginary channel).

The time between excitation and when the signal is measured is called the

echo time (TE), and the time between measurements is the repetition time,

TR. The length of TE and TR determines the T1 or T2 contributions to the

signal in MRI images. A long TR will give the longditudinal magnetization

Mz time to re-align with M0, but with a shorter TR the differences between

the T1 relaxation of different tissues will be more apparent. A short TE

means little T2 relaxation has occurred, so two tissues with different T2

values are not well differentiated. T2 weighting therefore requires long TR

to minimise T1 contribution and long TE, but too long TE would give very

little signal, so the sensitivity to T2 is best when TE close to equal to T2. A

short TR and short TE maximises T1 contrast while minimising T2, giving

a T1 weighted image. TE and TR can also be set to minimize contributions

of both T1 and T2, with a long TR and a short TE. This gives a proton
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Figure 1.12: Free-induction decay (FID)

density weighted image.

In order to determine the origin of the signals, MRI uses magnetic field

gradients. A magnetic field gradient is a linear change in magnetic eld

strength along a given direction through the magnet. This is generated by

gradient coil pairs positioned along the three main axes around the bore of

the magnet, by passing equal current through the coil pairs in opposite di-

rections. The field gradient passes through the centre of the magnet, where

the eld is always constant. By varying the current in each coil, a gradient

can be created as a linear combination of the components along the x, y

and z directions. Across the gradient, the nuclei will have different resonant

frequencies in accordance with the Larmor equation (1.5). The signal am-

plitude at a location along the gradient will therefore be proportional to the

number of spins, or concentration at the given point.

Slice encoding involves applying an RF pulse along with a gradient to

selectively excite spins in a ‘slice’ of the sample. The slice selection gradient

creates a linear variation in the resonance frequencies across the sample in

an axis perpendicular to the slice, and the accompanying RF pulse excites

the spins among them which have the corresponding frequency. In order

to achieve a uniform excitation of spins at a specific frequency, the RF

pulse should be a sinc pulse, which is the Fourier transform of a square

wave in frequency space. Since the full shape of a sinc pulse would have

infinite side lobes, the generated pulse is truncated to a finite range. The
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RF will therefore actually excite a small range of frequencies depending on

its bandwidth, and with a stronger gradient these frequencies will occur in a

thinner section of the sample. The limit for how thin a slice can be imaged

is dependent on the maximal steepness of the gradient, which is determined

by the maximal current. Gradients are also characterised by their slew rate;

this is a measure of how fast the system can reach the peak amplitude, and

sets the limits for the minimum achievable TE and TR. A fast slew rate

requires a high voltage.

State of the art scanners use Fourier transform imaging techniques for

spatial encoding. After excitation of a slice, phase and frequency encoding

gradients are applied. The phase encoding gradient is turned on for a short

time, and causes dephasing; the spins phase will depends on their position

along the gradient. After the gradient is turned off, the spins will return

to have the same frequency, however the phase difference persists after the

gradient is turned off. The frequency encoding gradient is applied during

readout of the signal, perpendicular to the direction of the phase encoding.

The frequency encoding gradient causes a linear change in local resonance

frequencies along the gradient direction. The effect of these gradients is that

spins will have a frequency and phase which depends on their position along

the X and Y directions in the slice along the Z direction.

The raw data collected is referred to as k-space, Figure 1.13. There will

be a line in k-space corresponding to each phase encoding step, and each line

will consist of a point for each step in the frequency encoding. Filling in k-

space requires application of several phase encoding gradients. The duration

of the acquisition sequence will therefore be a product of repetition time,

the number of phase encoding steps, and the number of frequency encoding

steps. K-space is the Fourier transform of a magnetic resonance image, with

each point in k-space containing data from all locations within the image.

1.2.3 Methods in MRI

MRI sequences are commonly based on either a spin-echo (SE) or a gradient-

echo (GRE) sequence. A spin-echo sequence is shown in Figure 1.15. It

involves applying a 90◦ pulse followed by a 180◦ rephasing pulse. The first

pulse flips the spins into the transverse plane, as shown in Figure 1.14. Spins

will precess at slightly different speeds due to slight variations in the local

microscopic field. Due to T2 relaxation, the spins will start to dephase. The
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Figure 1.13: K-space contains a line for each phase encoding step (vertical), and each line
contains a point per frequency encoding step (horizontal).

next pulse is applied after half the echo time. This inverses the transverse

magnetisation so that it becomes flipped in the transverse plane. This has

the effect of rephasing the spins; as they continue they will eventually realign

at the echo time TE = 2t. This is when the center of the spin echo occurs and

the signal is read. The sequence can be repeated, and the time used for each

is called the repetition time TR. The 180◦ pulse can be applied several times

for each repetition to give Multi-Echo SE. The echo becomes progressively

smaller due to T2 relaxation, and this can be used for T2 mapping. It can

also be used for phase-encoding: the 180◦ pulse can be repeated with a

different phase encoding for each. This allows recording of multiple echoes

for each TR, which fills multiple lines of k-space per 90◦ pulse, and drastically

reduces imaging time. SE can be used to obtain T2-weighted rather than

T2*-weighted images. The T2* relaxation which occurs due to static field

inhomogeneities is reversed by the 180◦ refocusing pulse. SE is therefore less

affected by susceptibility artefacts than GE sequences. T2 weighting in SE

does however require long TR and therefore long acquisition times.

A gradient echo (GE) sequence consists of two gradients which are of

equal strength and opposite polarity. The first is a dephasing gradient,

which accelerates the dephasing of the spins, Figure 1.15. This reduces

the FID by a known amount. The second gradient is a rephasing gradient

which reverses the phase. It will only refocus spins that were affected by

the dephasing gradient, returning the FID as a gradient echo. Effectively,

spins are refocused fast by reversing their directions rather than by inverting

them as in SE. T2 and T2* processes are unaffected, and the FID continues
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Figure 1.14: The spin echo sequence rotates the net magnetisation vector by 90◦, and the
spins start to dephase (left). The second pulse then flips the transverse magnetisation
(middle). As the spins continue to move in the same direction as before (right), they will
eventually realign. Slower precessing spins have not moved far, while the faster spins now
have a longer way to travel. This causes them to rephase, which is when the spin echo
occurs.

Figure 1.15: A spin-echo sequence (left) and a gradient-echo sequence (right).

to decay with time constant T2*. The peak echo occurs when the area

under the rephrase gradient is equal to that under the diphase gradient.

The rephasing gradient can be left on for twice the time of the dephasing

gradient, to frequency-encode the signal. In GE the flip angles are less than

90◦, usually 10−80◦, so the longditudinal magnetization is recovered faster.

This allows for shorter TR and TE and therefore shorter acquisition times.

GE forms the echo without the need for the 180◦ pulse, the TE is therefore

shorter than for SE. The lack of refocusing pulse also means there is a T2*

contribution, making GE more prone to magnetic susceptibility artefacts

than SE. This can give a T2* weighted image. The magnetic field can be

distorted by species such as iron, providing for instance a method to image

iron deposition, as well as forming the basis for BOLD fMRI. If the TR is

reduced, the transverse magnetisation will not be fully decayed before the

next repetition. This will be affected by the flip angle too. Depending on

how this is dealt with the sequence can be either a GE with spoiled residual
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Figure 1.16: The EPI sequence (left). (Right) K-space is traversed along the frequency
(horizontal) and phase (vertical) encoding axes.

transverse magnetisation or a steady state GE where the residual transverse

magnetisation is conserved and participates in the signal.

Standard imaging techniques require several repeats to fill the phase ad-

justed lines of k-space. This causes long scan times, especially for larger ma-

trix sizes, which is impractical for functional imaging. Echo-planar imaging,

or EPI, is a very fast acquisition technique able to obtain 15 to 30 images in

a second. This is useful to image fast processes in the body such as in fMRI.

As an example, EPI is capable for example of imaging the heart without the

motion artefacts which would blur the image in other forms of MRI.107,108 It

can also be used in diffusion and perfusion imaging, for example to evaluate

stroke.109 The fast imaging time is accomplished by acquiring all the lines

in k-space in a single repetition time TR. EPI uses a single RF excitation

to record multiple lines of data, either traversing k-space in one excitation,

called single-shot EPI, or in a small number of excitations, called multi-shot

EPI. Figure 1.16 shows the sequence diagram used in SE-EPI. After the

SE Rf-pulses, strong frequency encoding gradients are applied repeatedly

with an alternating polarity, with a low-magnitude phase encoding gradient

between each. This has the effect of traversing k-space as shown in Figure

1.16. The initial gradients are used to move the signal from the middle of

the k-space to the left bottom corner. Each oscillation of the readout gradi-

ent corresponds to a line in k-space. Positive frequency lobes sweep k-space

left-to-right, negative lobes right-to-left, while each step in phase encoding

gives a step increase along the y-axis.
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Figure 1.17: fMRI can provide good spatial resolution while maintaining good temporal
resolution.

1.3 Functional MRI

Functional magnetic resonance imaging (fMRI) is a prevalent method for

imaging brain activity. Compared to other imaging modalities it provides

high spatial resolution of around 1 mm and good temporal resolution.110 Al-

though gadolinium or iron based contrast agents are sometimes used, fMRI

techniques such as BOLD and ASL can also be non-invasive, and do not

require any injections or radiation. It has a higher temporal resolution than

PET, which requires radiation and is less readily available in clinical settings.

Electroencephalography (EEG) and magnetoencephalography (MEG) are a

more direct measure of neuronal activity than fMRI and have very high tem-

poral resolution. MEG and EEG however have lower sensitivity than fMRI

and localisation is more difficult.111 Determining the sources of the EEG or

MEG signal requires assumptions which can depend on mathematical, bio-

physical or neurophysiological models.112 Since its invention in the 1990s,

fMRI and has therefore been widely used in cognitive neuroscience.113–116

1.3.1 BOLD fMRI

Blood Oxygen Level-Dependent (BOLD) imaging is the predominant fMRI

technique, as it is relatively easy to implement, and has good functional

contrast.117 It detects a composite signal caused by regional changes in

blood saturation, blood flow and blood volume. The measurement relies on

the change in magnetic susceptibility observed with the oxygenation state
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Figure 1.18: The structure of the heme B group. Different hemes exist, with the major
ones being A, B, C and O. These are based on the same central heterocyclic ring structure,
called a porphyrin, but have different functional groups on the pyrrole sub-units. Oxygen
binds to heme via the sixth position of the central iron ion. Deoxyhaemoglobin (left) is
paramagnetic (0.273 ppm relative to water), while oxyhaemoglobin (right) is diamagnetic
(-0.008 ppm relative to water). The Fe2+ ion in deoxyhaemoglobin has a high-spin 3d6

electron configuration, leaving four unpaired electrons. On binding of the oxygen, the ion
changes to a low-spin d6 state.

of haemoglobin, which is diamagnetic in the oxygenated state and paramag-

netic in the deoxygenated state. Haemoglobin contains heme groups, shown

in Figure 1.18, which is capable of binding oxygen. The centrally held iron

ion coordinates with the four nitrogen atoms in the plane of the heme group,

as well as being covalently bound to the protein via nitrogen positioned be-

low the ring. The sixth position can be reversibly bound to O2; one oxygen

atom binds to the iron and the other extends outward in an “end-on-bent”

geometry. When there is no oxygen bound to the iron centre, a very weakly

bonded water molecule can take its place. In deoxyhaemoglobin, the iron

centre is ferrous, with an Fe2+ oxidation state. When oxygen binds to the

haemoglobin, it temporarily oxidises Fe2+ to Fe3+, while turning into the

form O2
-.

Deoxyhaemoglobin is paramagnetic. Paramagnetism is caused by un-

paired electrons, and in HBr the heme iron is in a high spin state, with four

unpaired electrons (S=2). Oxyhaemoglobin exists in the low spin state, with
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no unpaired electrons (S=0), it is therefore weakly diamagnetic. When the

oxygen dissociates from haemoglobin, the iron in the heme group transi-

tions from a low spin state to a high spin state.118 As shown in Figure

1.18, this takes the central ion from a configuration with no unpaired elec-

trons, which is diamagnetic, to a configuration with four unpaired electrons,

which is paramagnetic. Deoxyhaemoglobin has a magnetic susceptibility of

∆χdeoxy = (0.273 ± 0.006) ppm relative to water,118 while oxyhaemoglobin

has ∆χoxy = (−0.008 ± 0.003) ppm. Fully oxygenated blood is therefore

slightly more diamagnetic than water.

Paramagnetic materials are weakly attracted by an external magnetic

field, while diamagnetic materials are repelled. The presence of both these

species distort the local magnetic field, but due to their relative magnetic

susceptibility difference, the paramagnetic deoxyhaemoglobin has a much

greater effect on the local field than oxygenated haemoglobin. This dis-

tortion has the effect of changing the frequency and phase of nearby spins.

Changes in the regional concentrations of oxy- and deoxyhaemoglobin there-

fore creates time-dependent changes in T2* relaxation times.

Attempts have been made at creating models of the BOLD response,

however these complex interactions are not fully understood. A BOLD re-

sponse is shown in Figure 1.19. The response typically begins within around

500 ms and peaks after 3-5 s after stimulus onset.119 At the peak it reaches

a few percent change relative to baseline. An initial increase in deoxy-

haemoglobin is often seen at the onset of stimulus, and the origin of this

behaviour has been controversial for years.120 This was detected as a an

‘initial dip’ in the BOLD signal45 after first being observed by intrinsic op-

tical imaging.121 After the sharp onset, the signal slowly returns to baseline

over several seconds. For an ongoing stimulus, the peak is instead followed

by a drop to a plateau, which occurs 6-12 seconds after stimulus onset.122

There is also a post-stimulus undershoot which is often observed44,123 as a

significant lowering of the baseline after a stimulus, and the origin of this is

still under debate.124 This undershoot is transient, but highlights the im-

portance of stimulus design, as leaving long enough gaps between stimulus

repeats will allow the system to return to baseline.

The early balloon model125 from 1998 considered volume and deoxy-

haemoglobin content, providing the signal as a non-linear function of these.

Here, an increase in flow is thought to inflate the venous ’balloon’ and dilute
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Figure 1.19: A typical BOLD response. The data was averaged from ten volunteers during
a visual stimulus (16 seconds flickering checkerboard with 54 second interval, 15 repeats).

the deoxygenated blood and pushing it out at an increased rate, increasing

the BOLD signal. This allows for an initial dip in signal, because prior

to inflation the increased blood flow is not yet large enough to counteract

the increase in CMRO2. It also provides a post-stimulus undershoot as the

balloon relaxes after the flow reaches a peak, causing a reduction in the

dispelling of deoxygenated blood. Experiments have since suggested the

physiological response is more complex, and that blood flow and oxygen

metabolism could be parallel and perhaps driven by different mechanisms of

neuronal activity.124 A negative BOLD signal can often sometimes be mea-

sured, this occurs most frequently in cortical regions near areas of positive

signal, but its origins are still unclear.126,127

It was initially thought that the BOLD signal was linearly related to

activity, with all increase in neuronal activity resulting in a proportional

increase in the regional blood flow. Attempts were therefore made to rep-

resent the signal by a haemodynamic response function (HRF) convolved

with a function describing neuronal activity.128 Later work showed the re-

sponse has non-linear scaling with respect to the frequency, amplitude and

duration of the stimulus. The typical response peaking after 3-5 s is seen

for a short (< 1 s) to medium length stimulus,119 with more complex non-

linear dynamics for a prolonged stimulus (> 8 s).129 Responses to longer
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stimuli will have the same time to peak as for shorter stimuli, and show a

plateau effect.126 Blood flow response to stimulus also varies by age and

pathology.111

1.3.2 Other fMRI methods

Unlike the composite signal of BOLD, other fMRI techniques are able to

measure individual parts of the haemodynamic response. Cerebral blood

flow can be measured with arterial spin labeling (ASL) fMRI. This is a non-

invasive technique which relies on the arterial water. Rather than measur-

ing percentage change like BOLD, it gives an absolute value which is more

physiological, and it has a higher spatial and temporal resolution. There

are however challenges to ASL, the main one being a poor signal-to-noise

ratio.130 Measurements are confounded by partial volume effects, where the

spatial limitations caused by fast imaging causes grey matter, white matter

and CSF to contribute to the signal in a voxel, and the difference in flow

measured is affected by the difference in voxel heterogeneity. Another issue

is the transit times required for the labeled blood to reach the region of in-

terest, the imaged region could contain voxels with labeled blood headed for

another voxel or voxels which the labeled blood has not reached yet. This re-

quires a compromise between the delay between labeling and measurement,

and the loss of signal due to relaxation.131

Another technique is vascular space occupancy (VASO) fMRI, which

measures changes in cerebral blood volume. This is achieved through the

non-invasive measurements of changes in extravascular water signal. It mea-

sures changes in CBV rather than in blood oxygenation which is done with

BOLD. Blood and tissue have different T1 properties, and VASO uses an

inversion recovery pulse to null out the signal from blood. It can therefore

measure signal from the tissue, and the intensity will be proportional to

(1-CBV).132 VASO provides improved localisation compared with BOLD,

giving signal peaks in the middle cortical layers where the neuronal activ-

ity response to stimulus is greatest.132 However, VASO fMRI has lower

sensitivity than BOLD, with about 1/3 the contrast-to-noise ratio (CNR).

There is also a need to account for CSF. The original model assumes a voxel

contains tissue and blood, so the increase in blood volume would indicate

an equal decrease in tissue volume. CSF has a long T1 time which means

it is likely to have negative magnetisation at the nulling time, and could
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Figure 1.20: A diffusion weighted MRI sequence. The diffusion gradients (Gdiff) are
applied on either side of the 180◦ refocusing pulse. Readout is typically done using EPI,
to reduce the effect of motion.

therefore complicate interpretation.132

1.3.3 Diffusion Weighted fMRI

Diffusion Weighted functional MRI (DW-fMRI) has been suggested as an

alternative, more direct indicator of neuronal activity than BOLD.30 It relies

on measuring brain cellular volume changes by detecting changes in water

diffusion through activated areas of the brain. DW-fMRI is based on ex-

panding the method of Diffusion Weighted Imaging (DWI) which is used

to map diffusion in tissue. In pure water, the molecules follow brownian

motion, diffusing freely. In tissue the water molecules are restricted, as they

interact with cell membranes and macromolecules which changes their mo-

tion. Cell membranes create barriers which limit the available extracellular

and intracellular space. The more cells are present, the more restricted

the motions become. With few cells, the extra-cellular space is large and

water molecules can diffuse more freely, and move through damaged cell

membranes. In highly cellular areas with many intact cell membranes, like

tumor tissue, the extra-cellular space is reduced and motions restricted. Wa-

ter in extra- and intra-cellular space and intravascular space all contribute

to the MR signal observed.133

The DWI measurement is based on a T2-weighted spin-echo sequence,

adding symmetric bipolar gradients, applied either side of the 180◦ refocus-

ing pulse, as shown in Figure 3.3. The diffusion gradients are described by

the b-value, which is used to denote the degree of diffusion weighting. The
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b-value is a function of the gyromagnetic ratio, the gradients’ magnitude G

and width δ and the spacing between them ∆ according to Equation 1.9.

Static molecules will receive phase information from the first gradient and

be rephased by the second, leaving the signal intensity preserved. Moving

molecules are not completely rephased by the second gradient, so signal in-

tensity is lost. DWI measures the degree of signal attenuation, which is

proportional to the degree of water motion.133 This is described by Equa-

tion 1.10, where S is the signal intensity, S0 is the signal at b = 0, b is the

b-value and D the apparent diffusion coefficient. This technique can be used

to distinguish tissues based on their cellularity and is used for example for

imaging tumors.

b = γ2G2δ2(∆− δ

3
) (1.9)

S = S0 · exp(−b ·D) (1.10)

DW-fMRI measures this effect over time, with observable decreases in

diffusion of water during neuronal activation.30,33 The Le Bihan group

showed the implementation of DW-fMRI, acquiring its responses to visual

stimuli and comparing these with BOLD measurements (Figure 3.1).30 By

increasing the b-value, they were able to detect a more rapidly onsetting

response, which they interpreted as a reduction in the haemodynamic com-

ponent of the signal. If this method measures changes in cell volume, DW-

fMRI has the potential to provide better spatial specificity, and a response

with better temporal agreement with stimulus onset than BOLD.29 The

cellular response is a more immediate effect of the activity than the haemo-

dynamic response, and their location is closer to the site of the activation.

In line with this, the DW-fMRI response to activation occurs several sec-

onds before the BOLD response.30 This could suggest that the diffusion

response is linked either directly to neuronal activity or to it through a fast

coupling mechanism.33 If the DW-fMRI signal is largely driven by cellular

changes rather than heamodynamics, it is less likely to be affected by the

many physiological confounds of concern in BOLD.

Diffusion Weighted fMRI has not become as widely used as BOLD, likely

because the relationship between the DW-fMRI signal and cellular swelling is

still contested.17,31,34 Early DW-fMRI studies attributed the signal changes

directly to neuronal activity,30,33 however this has been challenged, with

one prominent concern being the possibility of haemodynamic contributions
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Figure 1.21: Le Bihan measured the diffusion (red) and BOLD (blue) fMRI responses,29

showing the relatively faster response function of DW-fRMI at a b-value of 1800/mm2.

to the signal,36 or even a largely vascular origin.35 Jin et al found a dif-

fusion signal change on visual stimulus in the cat, with a more rapid onset

than BOLD, however when using a contrast agent to remove intravascular

contributions the signal was mostly quenched, leading them to conclude the

signal was vascular in origin.35 DWfMRI signal has also been detected in

response to hypercapnia, which elicits a haemodynamic response similar to

that of a visual stimulus, but is not caused by neuronal activation.36 There

is a possibility of neuronal firing changes or reductions during hypercapnia,

however it has not been shown to increase firing rates as would be needed

to explain their results.

DWfMRI has been investigated in model systems without haemody-

namic artefacts. A study using diffusion MR microscopy showed diffusion

accompanying stimulation of snail ganglia without blood.37 Their results

suggested the signal was driven by cellular swelling. Another study looked

at the correlation between activity and the DW-fMRI signal in vitro by us-

ing concurrent Ca2+ fluorescence imaging, for detection of spiking neuronal

activity.34 They used rat brain cortical cultures, which shows spontaneous

neuronal activity but is without haemodynamic artefacts. They found a

simultaneous increase in DW-fMRI signal with the prolonged depolarisation

of neurons using pharmacological manipulators, and the swelling of cells was

shown to play an important role in this case. They could however not find

evidence of correlation between DW-fMRI and normal spontaneous neuronal

activity, concluding that DW-fMRI is able to detect hyperexcitability, but

that it is not sensitive enough to detect normal neuronal activity. It has
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been argued that the lack of observable diffusion changes could be due to

the lower density of functional synapses in slices compared to brain tissue.37

There has also been evidence of DW-fMRI signal originating in activity in

live hippocampal slices17 and in rat spinal cord,134 both of which are with-

out vasculature and free of haemodynamic effect. One study33 by the Le

Bihan group used an inhibitor of neurovascular coupling, nitroprusside, in

an attempt to remove potential haemodynamic contributions to the mea-

sured diffusion. They discovered that although the haemodynamic response

to stimulation disappeared, they were able to maintain the field potentials

in the area, and detect a diffusion response on stimulation. They concluded

that DW-fMRI is not vascular in origin.

In early work the rapid onset was attributed to heamodynamic effects;

one study detected a diffusion signal preceding the BOLD response by a sec-

ond, and suggested the signal originated in arteries.135 The increased delay

with b-value was thought to reflect a weighting of the signal towards arteri-

oles and capillaries.136 A 2009 paper from Kohno et al recorded DWfMRI

and BOLD simultaneously with non-invasive Near Infrared Spectroscopy in

human visual cortex.137 They found that the diffusion MRI signal had a

shorter rise time than both the BOLD signal and total haemoglobin content

optical signal, which is assumed to be the fastest observable vascular sig-

nal. They therefore concluded the diffusion decrease was driven by events

occurring before the vascular responses.

Although conflicting results exist, it is clear that optical imaging of cell

structural changes aligned with DWfMRI in vivo could provide confidence

that that the signal source is related to cell swelling.

1.4 Optical Imaging

Optical imaging encompasses a wide range of techniques. It relies on mea-

suring responses to light, which depending on the method can range from

the UV-region through to visible light and into the infrared region. Mea-

surements are made on different scales, including macroscopic 2D or 3D

imaging of tissue samples or in vivo endoscopic imaging and imaging down

to microscopic levels. Some optical imaging techniques have found clini-

cal applications, for example intra-operative imaging138 and optical brain

imaging using near-infrared (NIR) light, which is able to penetrate through

the scalp to the brain.139 In research, optical studies in animal models
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have for example provided insight into Alzheimer’s disease,140 stroke141 and

epilepsy,142 as well as neurovascular coupling.143–145

Various optical imaging techniques have been used for the study of brain

function. Unlike most functional imaging methods, optical imaging can be

be made sensitive to a range of different contrast mechanisms,146 and is

therefore often used concurrently with other techniques to supply compli-

mentary data for interpretation or reduce confounds. Another advantage of

optical imaging compared to other methods used to study brain function,

is the relatively simple, low-cost setup. Typically the brain tissue is illumi-

nated by a light source, this can be transmitted through a coloured filter to

give illumination at a wavelength of interest. The diffusely reflected light

from the tissue is imaged with a camera.

Light scattering limits the depth sensitivity of optical methods. As scat-

tering increases, less light is able to reach certain depths, which in turn limits

image resolution. Light that travels far through a medium will also undergo

more scattering which causes blurring and limits resolution, so sensitivity

will depend its baseline absorbing and scattering properties.147 In clinical

optical brain imaging this is normally overcome by using near-infrared (NIR)

light, which more efficiently penetrates through the skin and skull to reach

brain. In imaging of small animals however, the light is better able to reach

into the brain with less loss of resolution, and other wavelengths can be

used. Resolution can be further improved by thinning the skull, exposing

the cortex to give direct high-resolution imaging of the brain surface.

1.4.1 Optical Imaging Spectroscopy

Optical Imaging Spectroscopy (OIS) is an optical method which is used in

studies of brain activity. It is capable of detecting changes in tissue absorp-

tion in vivo by analysing light remitted from tissue. This is used to infer

the concentration of chromophores such as cytochromes or metabolites, but

is most often used to measure oxy- and deoxyhaemoglobin. haemoglobin

saturation is linked to the processes underlying activity, and are therefore

indicative of microscopic functional changes.146 OIS was originally intro-

duced in a 1977 study, which showed that infrared light could be used to

noninvasively monitor changes in cerebral blood oxygenation in an animal

model.139 The method can be used to monitor haemodynamic changes for

clinical purposes, but is also used in animal models for imaging of exposed
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Figure 1.22: Spectra of the molar extinction coefficients for oxy- (red) and deoxy-
haemoglobin (blue). The vertical lines show the wavelengths 470, 560, 570 and 630 nm,
which were used in OIS.

brain. Imaging the exposed cortex directly can give very high resolution and

minimal interference with normal brain activity.146

Oxy- and deoxyhaemoglobin (HbO2 and HbR) are the highest absorb-

ing chromophores in the brain, both at visible and NIR wavelengths. Their

molar extinction coefficients are shown in Figure 1.22. When OIS is used to

monitor haemodynamics as an indicator of brain activity, the relative con-

centrations of the two species must be estimated by monitoring absorption

at different wavelengths. Early work used a single wavelength to measure

total haemoglobin changes. This is sometimes referred to as intrinsic imag-

ing, and the wavelength chosen was an isobestic point, where the HbO2 and

HbR absorption is equal. Illumination at several wavelengths, sometimes

called hyperspectral imaging, can be used to infer a relative change in these

species. HbO2 and Hbr have unique absorption spectra, and the baseline

values can be assumed.148 Measurements are typically made at wavelengths

where one species is absorbed preferentially over the other, as well as the

isobestic point, in order to calculate changes in HbO2, HbR and HbT. Ap-

plications of OIS usually involve illumination at multiple wavelengths. This

allows discrimination absorption due to the various absorptive species in the

tissue, like oxy- and deoxyhaemoglobin.

OIS uses a relatively simple setup, as shown in Figure 1.23. A white light

source projected through a filter illuminates the brain tissue at a chosen
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Figure 1.23: Optical Imaging Spectroscopy setup. Illumination at different wavelengths
can be achieved with a switching galvanometer. This contains a broad light source, such
as a Xe lamp, and an array of filters which can be switched between rapidly. The light
remitted from the tissue is captured by the CCD camera

wavelength. A CCD camera captures the remitted light for processing. By

adding components such as a mechanical filter wheel, the wavelength of

the projected light can be changed rapidly, and remitted light at several

wavelengths can be measured at a rate of several frames per second.

OIS measures the attenuation of light, A, which is dependent on the path

length L the light travels through a medium, and the concentration ci and

the extinction coefficient Ei of the absorbent species present, Equation 2.2.

The path length distribution will have to be estimated, usually through a

simulation. Baseline concentrations can be assumed, but the signal change

is usually calculated instead. If it is assumed that the effect of changes in

the concentration of the other chromophores in the tissue is negligible in

the visible spectrum, the attenuation becomes dependent on the concentra-

tions of only oxy- and deoxygenated haemoglobin, HbO2 and Hbr,149 giving

Equation 1.12. This equation has two unknowns, so measurements must be

made with at least two wavelengths for spectroscopic deconvolution.

A(λ) = L
∑
i

Ei(λ)ci (1.11)

A(λ) = L(λ)(eHbO2(λ)∆HbO2 + eHbr(λ)∆Hbr) (1.12)

OIS can therefore measure the haemodynamic response that underlies

BOLD and confounds DWfMRI. By concurrently measuring Hbr and HbO2

concentrations, the Mayhew group made predictions for blood flow changes,

55



1 Introduction Optical Imaging

and used it to estimate the oxygen consumption (CMRO2).
150 This showed

that CMRO2 increases early during stimulation, with a peak around 2 sec-

onds after onset, even at low stimulation intensities. Another concurrent

study investigated the negative BOLD response.126 They used OIS haemo-

dynamic data to generate predictions of the BOLD response through a bio-

physical model, showing the negative response originating in deep cortical

layers. BOLD fMRI can also provide an estimate of the total blood volume,

and be used to parameterise the OIS calculations. Interpretation of OIS

measurements often requires estimates of blood saturation, blood volume

fraction and the wavelength dependent distributions of pathlengths of the

remitted photons. The first two can be estimated with MRI and MRI Vf

maps respectively.151

A disadvantage of OIS is that in the visible spectrum the technique is in-

vasive. There have been human studies from surgery,148 however in humans

however most studies are done in animal models. The requirement to use

anaesthesia could be a potential downside, as there is evidence to suggest

the haemodynamics may change under anaesthesia, with the responses to

stimulation decreasing.148 OIS can however be used non-invasively in hu-

mans if done in the infrared region, as this wavelength is able to reach into

the cortex, through the scalp. OIS has the advantage of a spatial resolution

of microns and a temporal resolution of milliseconds, which is better than

fMRI can currently achieve.148

Path lengths must be estimated with Monte Carlo simulations (MCS).

These simulations (detailed in Section 4) can include tissue parameters such

as absorption and scattering, and may consist of one or more layers. The

brain is heterogeneous, with vessel density48 and function95,152 varying by

location. A layered simulation model can account for this by assigning

different optical properties by depth.

For OIS measurements of brain activity it is often assumed that scatter-

ing does not change significantly during activation, there is however likely

to be a change in scattering caused by microstructural changes during ac-

tivity. This was observed already in 1968, when Cohen et al studied nerve

fibers, detecting changes in scattering and birefringence during stimulus.24

If cell swelling occurs during measurements this will affect the path length,

and should be accounted for in analysis. Scattering changes can be mon-

itored simultaneously with absorption changes using spatial frequency do-
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main imaging.

1.4.2 Spatial frequency domain imaging

Spatial Frequency Domain Imaging (SFDI) is an in vivo optical imaging

technique which, like OIS, can measure wavelength dependent optical prop-

erties. It specifically measures the frequency dependent reflectance of spa-

tially modulated light.39 Light remitted from a tissue will be affected by

absorption and scattering, and the effect will vary with the spatial frequency

of the illumination. SFDI takes advantage of this to separate the effects of

these two processes, providing measurements of absorption and scattering

simultaneously. Like in OIS, the wavelength dependence of light absorption

can be used to determine the concentration of chromophores and indicate

haemodynamic changes. In addition to this, the scattering parameter de-

tected with SFDI can be used to monitor tissue structural changes, which

could potentially help confirm the signal source of DWfMRI.

A typical setup is shown in Figure 1.24. A spatial light modulator is

used to generate a sinusoidal pattern. The pattern illuminates the object,

and the remitted light is measured with a CCD camera. Remission of light

is a function of time and space, and so gives two groups of techniques: time-

resolved and spatially resolved measurements, Figure 1.25. Time-resolved

techniques are again divided into time-domain and frequency-domain tech-

niques through Fourier transform equivalency. Similarly, spatially resolved

techniques can be divided into the real spatial domain and the Fourier trans-

form equivalent; spatial frequency domain measurements. SFDI therefore

concerns properties which depend on spatial frequency, a measure of the

level of detail per degree of visual angle.

Time-domain techniques measure the temporal point-spread function (t-

PSF), which is the spreading of a propagated pulse in time. Frequency

domain techniques measure the temporal modulation transfer function (t-

MTF), which is the attenuation and phase delay of a periodically varying

photon density wave. The spatial real domain techniques use the spatial

point spread function (s-PSF) which tracks the spatial dependence of re-

flected or transmitted light generated from a point-like illumination. In

SFD, the spatial modulation transfer function (s-MTF) encodes both the

depth and optical property information about a turbid media. This allows

for quantitation and tomographic imaging of the optical properties changing
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Figure 1.24: Spatial frequency domain imaging setup.

Figure 1.25: Spatial frequency domain imaging is related by Fourier Transform to spatially
resolved imaging methods, similarly to how frequency domain methods are related to time
domain methods. Figure adapted from Cuccia et al, 2009
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throughout the media.38

Cuccia et al first presented ’Modulated Imaging’ as a method for optical

property mapping of turbid media in 2005.153 They implemented consid-

erations of steady-state diffusion to show that modulated light of different

frequencies could be used to extract optical properties. Using phantoms

with a range of properties to validate their SFDI measurements, the group

showed they could extract maps of absorption and scattering, achieving a 6

% and 3 % accuracy respectively.38 Although shown previously using similar

methods, this approach also allowed sampling at different depths by varying

the spatial frequency, providing a new approach to tomography of turbid

media. By varying the spatial frequency of the illumination pattern, the

depth of detection can be controlled, this differs from planar illumination

(such as in OIS) which relates to a fixed mean depth.153 Mahzaar et al

showed that increased spatial frequency enhanced the fluorescence of struc-

tures near the surface, while suppressing signal from deeper structures.154

This is important for studies of brain tissue, as the properties monitored

change at different rates throughout the brain.

The early work by Cuccia separated the AC and DC components of re-

mitted light using a demodulation technique which required images acquired

at three phase shifts per processed image.153 Vervandier and Gioux155 sug-

gested the use of an alternative demodulation, which requires only one image

at the given spatial frequency, reducing acquisition time. Each line of the

image is Fourier transformed, and the AC and DC components of the line are

separated in frequency space by a cutoff frequency. The AC and DC images

are then determined by applying an inverse Fourier transform to each line. In

Vervandier’s work the cutoff frequency is determined automatically for each

line, by smoothing the Fourier transformed line and locating the highest AC

frequency. The spectrum is then divided at the closest local minimum. The

Tromberg group, imaging at a single spatial frequency set a cutoff frequency

for all lines to get best quality images for the given spatial frequency.156 For

imaging with only a single spatial frequency, the Vervandier method enables

the use of static spatial light modulators; since there is no need to apply a

phase shift these can replace dynamic but potentially expensive instruments

like digital micromirror devices.156

The Tromberg group showed how SFDI could be performed in the visible

range using a microprojector,157 which is the approach used in this thesis.
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They demonstrated the setup on a mouse brain, achieving an accuracy of less

than 11 % deviation from known phantom µa values and 3% from known µ′s

as measured with a spectrophotometer. This demonstrates that SFDI can be

a relatively cheap method, and still be capable of achieving good accuracy.

Optical property mapping has also been done via endoscope;158 Angelo et

al showed this can be used for real-time applications with a maximum error

of 0.004 mm−1 for absorption and 0.05 mm−1 for scattering.

Previous imaging studies88,159 have indicated that Alzheimer’s disease

leads to a lessened ability for vasodilation during oxygen deficiency. This

could lead the neurons to experience hypoxic stress causeing the production

of Aβ oligomers, which themselves have been suspected of damaging vascu-

lar function.39 A study by Lin et al used SFDI to measure scattering and

absorption values in brain tissue of mice, comparing results from Alzheimer’s

disease models and controls.39 They used 17 wavelengths, and the skull was

not thinned, in an attempt to avoid potential artefacts. The group was

able to find quantifiable differences between the two groups, demonstrating

this methods sensitivity to structural changes. The work did not account

for different gross brain anatomy between models however, which could ac-

count for some differences. Building on Vervandiers demodulation method,

the Tromberg group suggested combining this more rapid SFDI with Laser

Speckle Imaging (LSI).156 LSI is a technique used to measure blood flow,

based on the random interference by laser light illuminating tissue, known

as a speckle pattern. Changes in flow change the intensity in the pattern

due to interactions between the incident light and the moving red blood

cells. The accuracy of LSI is limited by the non-uniform distribution of

µa and µ′s, but since SFDI is able to distinguish the effect of the two, the

combined approach could correct for some of this error. SFDI has been

also used to detect functional changes in absorption and scattering in the

rat cortex during spontaneous CSD events.160 The study found scattering

changes which preceeded the haemodynamic response, borth in space and

time. The reduction in µ′S was attributed to neuronal depolarisation.

1.5 Thesis overview

This thesis develops a concurrent in vivo optical and fMR imaging technique

to detect haemodynamic and microstructural changes in activated brain

tissue and explore their correlation with the Diffusion Weighted fMRI signal.
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The rat barrel cortex is used as model for neuronal activation, and the

stimuli are presented using well-known activation pathways. The optical

data is acquired through a triggered acquisition setup within the MR bore,

in order to monitor and distinguish both the haemodynamic and the cell

volume responses during acquisition of DWfMRI or BOLD data.

Objectives

1 Collection of BOLD and DWfMRI data from human volun-

teers

Human functional data will be collected with the initial aim of re-

producing results in the literature. This will allow for comparing the

measured activation maps and time courses of the response to acti-

vation for the two methods. By collecting and comparing data from

both human and animal studies, results collected in the animal will be

transferable, and be likely to reflect dynamics present in humans. The

DWfMRI data is expected to show a more rapid onset, smaller activa-

tion region more specific to layer 4, and to have lower correlation with

the location of blood vessels compared with BOLD. The parameters

in the analysis pipeline will be carefully considered, and the sensitivity

to the results on these parameters will be evaluated.

2 Collection of BOLD and DWfMRI data from an animal model

The animal model allows for experiments to be performed with in-

creased number of repetitions, as the anaesthetised model can be kept

stable for several hours. The model can therefore be used to test a va-

riety of experimental conditions and stimulus designs. The time course

of the responses may depend on stimulus duration and intensity, and

could help explain the differing observations of the DWfMRI signal in

the literature. The interval between stimulus repeats can also be var-

ied, to look for oscillatory effects; perhaps the shape of the response

can be influenced by not allowing enough time for the signal to return

to baseline. The effect of different b-values on response shape will also

be investigated, as the rapid onset is expected to be prevalent only

at high b-values.30,161 The pre-clinical system has readily adjustable

scan protocols, and can be set up to measure the depth profile of the

response. This is interesting because DWfMRI is reported to be better
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localised to layer 4,162 and less weighted by vessel architecture than

BOLD.

3 Optical measurements of heamodynamic and structural changes

With OIS and SFDI, changes in oxygenated and deoxygenated blood

and in scattering properties can be measured during activity and used

to monitor their time courses relative to stimulus onset. The dynam-

ics will be correlated between these signals and the responses observed

with DWfMRI and BOLD, to supply additional information about the

processes occurring during the fMRI signal change. Optical methods

allow for more rapid imaging which will give increased temporal resolu-

tion of the dynamics. The optical methods require building a forward

model of light transport through tissue via simulation as well as design

and calibration of an optical imaging system capable of implementa-

tion into the magnet bore.

4 Concurrent optical and fMRI measurements

Concurrent measurements allow the time courses to be compared for

the same neuronal event. The biological response can vary between re-

peats and between animals, so direct comparison of concurrent signals

avoids possible bias from averaged separate trials. The concurrent and

measurements will confirm whether or not the pathway is activated

and if the fMRI should show a response to an individual stimulus, act-

ing as a ground truth when comparing DWfMRI and BOLD responses.

Previous experiments in slices and cell cultures have shown correlation

between cellular changes and diffusion during hyprexcitability, but not

during normal spontaneous neuronal activity. The concurrent model

will allow for measurements during a well-known reproducible stim-

ulus, and with more repetitions which will increase the signal. The

data will be analysed to deconvolve the measured haemodynamic sig-

nals from the DWfMRI signal, to determine the extent to which these

contributes to the measured response.

The data collected will aid in the interpretation of the DWfMRI func-

tional data, and potentially validate the biophysical origin of the measured

response. As well as improving our understanding of existing work, it could

support the further development of DWfMRI and the expansions of its ap-

plications in research and in a clinical context.
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2 Methods

This chapter describes the methods used for acquisition of MRI data, for

both preclinical studies of an animal model (7T) and human responses to vi-

sual stimuli (3T). It outlines the optical methods used, including instrument

setup, acquisition parameters and analysis methods, and the implementa-

tion of the optical setup within the magnet bore. The in vivo model is

described, including model preparation and presentation of stimulus. Image

and signal processing methods are presented, which are used for analysis of

both optical and fMRI data.

Method development was a key aspect to this work, and the setup, ac-

quisition parameters and analysis methods were iteratively adapted during

testing. In this chapter, the final version of the setup is described, with

motivations for the choices made, as well as a discussion of limitations im-

posed by the setup, with suggestions for improvements that could be made

in future work.

2.1 In vivo model

MRI and Optical Imaging experiments were performed using a rat model

of neuronal activation. Electrical stimulation of the rat whisker pad is a

well-known paradigm, which produces rapid and laminar specific responses

in the whisker barrel cortex.163 Each whisker is represented by a ‘barrel’ in

the rodent primary somatosensory cortex.164 The barrels are discrete units

located in layer 4, which are arranged almost identically to the layout of the

whiskers on the snout (Figure 2.1).165 When the whiskers are deflected, it

initiates an action potential in sensory neurons, which release glutamate at

the synapse located in the brain stem. The information is then passed to the

thalamus, where thalamocortical neurons are excited, triggering a response

in the primary somatosensory barrel cortex.164 The neuronal activity will

occur on the opposite side of the electrode site, and electrodes are therefore

placed on the opposite side of the cranial window in the case of optical

imaging.

For the in vivo work involved in this study it is necessary to anaesthetise

the animal, visualise the rat brain, apply a stimulus to evoke a neuronal re-

sponse, and to closely monitor the animal throughout the experiment. Blood

pressure, temperature and breathing is monitored to ensure the welfare of
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Figure 2.1: The whisker model pathway. When stimulated, the sensory neurons (1) gen-
erates an action potential, which initiates release of glutamate in the brain stem (2).
The thalamocortical neurons are excited (3), which triggers a response in the primary so-
matosensory barrel cortex. The barrel’s layout is near identical to the whisker positions,
with each whisker represented by a barrel.

the animal and to ensure stable experimental conditions. Brain visualisation

requires a surgery to expose and thin the skull.

All experimental work was performed with UK Home Office approval

under a valid project license. Before commencing work using animal mod-

els, the required Home Office course was undertaken, including modules PIL

A, B and C for work with rat and mice. Further training on anaesthesia

and surgery was done through the in-house biological services facility. Key

techniques used are the induction and maintenance of anaesthesia, cannu-

lation of the femoral artery and vein, injection of substances, tracheotomy

and thinning of the cranial window using a stereotactic frame. These pro-

cedures are required for preparation of the animal and for monitoring of the

animal during surgery and during data acquisition. After the experiment

an overdose of anaesthesia is administered.

2.1.1 Preparation and monitoring

All animals (Female Hooded Lister rat, > 70 days old) were kept in a day-

night cycle for at least 14 days and provided food ad libitum before exper-

iments. The animal was weighed prior to starting, and the required doses

of administered substances calculated based on its weight (160-250g). The

anaesthesia protocol began with isofluorane (2% in 2L/min O2) sent to the
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induction chamber of an anaesthetic machine, where flow meters could be

used to set the required flow rates. Once the anaesthesia took effect and the

animal was asleep, 25% Urethane (1.25g/kg) was administered through in-

traperitoneal (IP) injection. The Urethane was made up from 12.5g > 99%

crystals dissolved in 50 mL distilled water. The rat was left in the hold-

ing cage under observation until toe pinch reflexes are lost. The analgesic

Buprevet (Buprenorphine, 0.3 mg/mL, dosage 0.5 mg/kg) was injected sub-

cutaneously (SC). Atropine sulphate (600 µg/mL, dosage 0.4− 0.8 mg/kg)

was injected SC to reduce mucous secretion.

Cannulation of the femoral artery and vein was performed for the mon-

itoring of blood pressure, as well as for drug infusion and optionally the

administration of MRI contrast agents. Cannula were prepared from Portex

fine-bore polythene tubing (inner diameter 0.4 mm, 750 mm length) fitted

onto a 1 mL syringe filled with saline containing heparin (500 I.U/mL). Dur-

ing surgery, the animal was kept at its body temperature of (36.5 ±1.5)◦

using a heating blanket (TC-1000 Temperature controller, CWE, INC) con-

trolled by a temperature probe. Before incision the area was whetted with

saline. The incision was made along the natural angle of the hind leg and the

underlying fat layer opened up. The vein, artery and nerve were carefully

separated. A suture was tied around the vein close to the leg, and pulled

back slightly by a clamp. A cut was made diagonally into the vein, scissors

pointing towards the heart. The cannula was inserted through the opening

and tied into place with suture thread at both ends of the vein. The process

was repeated for the artery, but the artery was clamped closest to the heart

prior to the diagonal cut.

In order to prepare the cranial window, the animal was secured in place

using a Kopf Instruments small animal stereotaxic frame. The skull was

exposed by blunt dissection and thinned to translucency using a micro drill

(Cadrim Nail Drill, 38000 rpm) fitted with 2.35 mm shank tungsten carbide

ball burrs with 1 mm head, while wetting with saline to cool. An acetal

ring (2 cm inner diameter, 0.5 cm height) was positioned over the cranial

window, and secured into place with dental cement to create a well. The

well was filled with saline, this keeps the thinned skull wet and therefore

transparent. Figure 2.2 shows the visibility through the thinned skull under

saline.

During the experiment the blood pressure was recorded using a monitor-
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Figure 2.2: The cranial window. The window, shown in yellow in the diagram in the
top left corner, approaches the midline at the top of the image, and extends between the
lambda line on the left and the bregma line on the right. Four veins are indicated by the
blue arrows, these appear dark, branching laterally from the midline. A set of arteries are
just visible as thin, brighter lines near the lower right corner, indicated by the red arrows.
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ing device attached to the arterial cannula, with the mean arterial pressure

(MAP) expected to be in the range 75 − 105 mmHg.166 Phenylephrine

(0.13 − 0.26 mg/hr) was administered through the venous cannula during

experiments to maintain blood pressure between the physiological limits.

Blood gas analysis was performed using Abaxis VetScan i-STAT1. This

provides oxygen content (pO2) and CO2 content (pCO2) of the blood as

an indicator of the physiological state of the animal. The temperature was

monitored throughout the experiment using the temperature probe. For

MRI experiments the temperature was regulated by heated water running

along the inside of the holding bed floor, as well as by a heating blanket

placed over the animal.

In order to maintain a steady breathing rate and to control the oxygen

levels, the animal was kept on a Harvard Apparatus VentElite ventilator.

This was done to keep the physiology of the animal consistent across data

acquisition. The rat lung volume is estimated as 7 mL per kg,167 and the

ventilator tidal volume was set accordingly, calculated based on the individ-

ual animal’s weight. The breathing rate was set to 70 breaths per minute.

Breathing was monitored using a breathing pad placed under the animals

chest. Air was supplied at a rate of 4 L/min, either using medical air or a

mixture consisting of 20% O2 and 80% N2.

Temperature, blood pressure and breathing data were recorded with the

CED and displayed on screen. An example of these traces are shown in

Figure 2.3. This allowed vitals to be monitored throughout the experiment,

and conditions could be adjusted if necessary. The traces were also logged

to file.

For Optical Imaging on the bench, the animal remains in the stereotactic

frame. The camera is mounted onto the adjustable stand using a custom

3D-printed mount and positioned into place. The projector is clamped onto

a stand and aligned until the projected image (FOV 15×15 mm) is in focus

over the cranial window. For MRI experiments, the animal is placed prone

in a holding bed (Figure 2.4). The head is supported at a natural elevation

via adjustable pads, and by the use of a bite bar. A 3D-printed scaffolding

is mounted over the bed to secure the optical components in place over the

head, as shown in Figure 2.4. The optical well slots into the front end of

the optics rig and ensures the rat’s head is secured in place. To allow for

concurrent optical imaging and fMRI, a custom surface coil was created,
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Figure 2.3: Example trace of vitals recorded during an experiment. The blue trace shows
the applied stimulus, which is a 5 Hz oscillation with a duration of 16 seconds. The
green plot shows the breathing, which should proceed at a steady rate before the start
of an experiment. The temperature measurement was affected by the application of the
stimulus, but returned to function normally between repeats.
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Figure 2.4: A custom holding bed was designed and used to hold the animal during MRI.
The animal is placed prone facing towards the right, or front of the bed. For optical
imaging, the scaffolding is placed over the animal’s head, and the optical well is slotted
into the circular opening and fastened using the attachment screws.

which attached to the optical well so that it could be secured in place over

the head, while providing visibility to the cranial window. The bed is aligned

to place the animal cortex at the center of the bore.

2.1.2 Activation paradigm

A neuronal response was generated via an electrical whisker stimulus. Two

electrodes were made from thin tungsten wires (0.25 mm diameter). The

tungsten is non-magnetic and therefore suitable for use in MRI, and the

connectors allowed for flexibility in moving the animal during setup without

removing the wires. Just before use, the electrode tips were scraped to re-

move any oxide formed on the surface, in order to ensure good conductivity.

They were implanted in the whisker pad in a posterior direction, one just

below the top whisker row, and the other just above the bottom row, to

allow them to activate a large region of the whisker pad. The electrodes

were connected via a BNC cable to a DAC channel on the CED, with a 1

kOhm resistor and ammeter connected in series for displaying the applied

current. The stimulus waveform is specified on the PC, and played to the

CED via custom MATLAB code. The CED had a 5V range over a 16-bit

DAC, with the target voltage converted to a DAC value in the code, and

just over 2V output producing a targeted 2 mA current.

Hypercapnia challenge was used to elicit a change in blood flow and vol-
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ume. This is an abnormal increase in CO2 levels in the blood, which causes

an increase both in the breathing rate and circulation.168 During a hyper-

capnic experiment, the gas mixture used for artificial ventilation is adjusted

to include 10% CO2 using a flow meter. The CO2 was added after a one

minute baseline, and kept up for a maximum of 2 minutes before turning it

off and allowing the physiological response to return to baseline. Hypercap-

nia is thought to involve no change in the rate of oxygen consumption,169

and is therefore detectable using BOLD fMRI even if no neuronal activity

is triggered. The signal changes associated with hypercapnia tend to be sig-

nificant and detected widely throughout the brain, and is therefore useful as

a confirmation of the viability of the setup. The respiratory and circulatory

changes might also have an improving effect on the animal condition, and

therefore improve the signal detected from stimuli.

2.2 Optical Imaging

The optical imaging methods used, Optical Imaging Spectroscopy (OIS) and

Spatial Frequency Domain Imaging (SFDI), are similar in set-up, with the

main difference being the presentation of incident light. This section outlines

the implementation of these methods, including trigger sequencing between

camera and light source and image projection. It discusses integration of the

optical acquisition setup within the MRI bore, optimisation and validation

of each method, and the methods used for analysis of the optical data.

2.2.1 Optical data acquisition

Optical imaging requires a camera and a light source to illuminate the

sample. Here, images were acquired using a Thorlabs Quantalux sCMOS

CS2100M-USB monochrome camera. It was capable of recording images of

1920 x 1080 pixels, supported up to 87 dB dynamic range, and could provide

a maximum frame rate of 50 fps when using the full sensor. The camera

had functionality accessible via an SDK, and could therefore be controlled

via script. This provided control over parameters such as exposure time,

image size and binning, as well as allowing for triggering exposure and for

the images to be collected.

The sample is illuminated using a Sutter Lambda DG-4 PLUS/USB

ultra-high speed wavelength switching galvanometer (World Precision In-
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struments). It contains a Xenon arc lamp operating as a broad light source,

and has four slots for replaceable wavelength filters, which it can switch

between at a speed of 0.5 or 1 ms for nearby or distant filters. Settings can

be controlled via PC and script using a serial port.

Spatial Frequency Domain Imaging requires the projection of a pattern

of spatially modulated light onto the sample. This is achieved using an

LED pico-projector (Contrast 800:1, supporting a resolution of 1920× 1080

pixels). The images to be projected are generated using MATLAB and

displayed on full screen using the projector as a second monitor.

Updating the projected image takes time, and doing so between each

frame in the acquisition would reduce the achievable frame rate. The pro-

jector was therefore modified to use the switching galvanometer output as

light source, rather than the pre-installed LED. On the projector side, the

guide was secured in place with a 3D-printed holder, which was glued onto

the interior of the projector casing. With this setup, the projector can

display a single image for the duration of the experiment. The alternation

between illumination wavelengths can also be easily controlled using the gal-

vanometer, and wavelengths will be the same across OIS and SFDI, so that

results can be compared. To focus the image over the cranial window, the

lenses in the projector were removed, and the opening instead fitted with a

50 mm focal length lens (Thorlabs) in a lens tube, which was held in place

by a 3D-printed adapter.

In order to record fMRI and optical imaging data simultaneously, the

the light must be projected to and recorded from within the MR bore. As

the optical equipment contains metal and must be kept outside the scanner

room, imaging fibres are used to transmit light across the distance from the

source to the bore. An imaging fibre was repurposed from an Avotec MRI

Projector system. The fibre was coupled to the projector output using a

suitable objective and custom 3D printed supports, as shown in Figure 2.7.

The other fibre end was fitted with lenses and an angled mirror, to produce

a projected image of dimensions 15mm × 15mm. Remitted light from the

sample was collected using a non-magnetic Endoscan endoscope (following

Kennerley et al.151). The endoscope consisted of a 50K fiber optic bundle

and prisms to provide perpendicular imaging. It allowed for adjustable focus,

and connected to the camera C-mount.

Optical data is acquired at set intervals to provide a time series, which
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can then be compared across experiments and across optical and MRI modal-

ities. In order to compare time courses of the optical and fMRI responses,

the setup should acquire images at known intervals throughout the experi-

ment. For the optical acquisition this requires control over the duration and

the sampling rate of an acquisition. For concurrent measurements it is also

vital to get a matching time stamp between the MRI and optical data sets,

which requires a trigger pulse to ensure the two time courses are correlated.

This is handled by a trigger sequence, which is demonstrated in Figure 2.6.

In order to monitor the dynamics of neuronal activity biophysical changes,

the optical data must be acquired rapidly. Like a typical BOLD response

in humans, the response to whisker stimulation in the rat model has a long

time course of several seconds, and can take up towards a minute to return

to baseline. The functional MRI signal is acquired at a speed of one frame

per second, see Section 2.3. Optical imaging however, can achieve signifi-

cantly faster rates without loss of resolution. Higher temporal resolution not

only provides a more accurate time course, but is also more sensitive to fast

dynamics, such as the cell structural changes. A user-controlled triggered

setup was constructed to ensure reliable and rapid acquisition.

To measure changes in chromophore concentrations concurrently with

MRI data, images should be acquired rapidly at four repeating wavelengths.

The optical set-up therefore requires a switching galvanometer to switch be-

tween wavelengths, in coherence with the camera acquisition. This sequence

is externally triggered by the MRI system so that images are acquired at

known time points relative to the MRI measurements. A trigger sequence

was set up to control data acquisition, according to the schematic shown in

Figure 2.5 and the sequence in Figure 2.6.

The acquisition is controlled using a CED 1401 (Cambridge Electronic

Design Limited). This is a device capable of receiving and recording trigger

signals. Remote control via PC is possible, here MATLAB is used. A pre-

configured output can be loaded, to be played on command or optionally

when receiving an external trigger. This is used to initiate a custom trigger

sequence, which can run camera acquisitions at the required frequency. The

CED is also used to record vitals during the experiment. The camera has

pin-outs which are accessed using the recommended Thorlabs I/O cable and

breakout board. This provides a trigger-in pin to start acquisition of an

image.
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Figure 2.5: Acquisition setup. The computer loads a pre-configured trigger sequence to
the CED (1). Once the MRI acquisition begins, it triggers the CED (2) to start playing
the pre-configured sequence which runs the camera at the desired frequency (3). For an
OIS acquisition, the camera triggers the switching galvanometer to switch filter between
each image (Green). For an SFDI acquistion, the computer controls the image displayed
onto the sample (Blue). The images are collected on the computer (4).

In order to acquire concurrent MRI and optical data, the trigger sequence

can be initiated by the MRI system. The 7T Bruker Bio MRI machine gives

the option of sending a trigger pulse for a given pulse sequence, on the start

of acquisition, for each volume, or for each slice. The trigger pulse was

collected via a BNC cable, and transmitted to the E3 input on the Events

socket on the CED via a home-made connector. For the DtiEpi sequence

used for diffusion functional imaging there is no trigger out option in the

scan card, so the RF blanking pulse was used instead. On triggering the

CED drives the camera at a set frequency so that images are acquired at

known time points relative to the MRI measurements. Figure 2.6 shows a

trigger sequence set up for in vivo experiments.

The data acquisition is handled through MATLAB. The triggering se-

quence is prepared using a custom made GUI. It enables the hardware trig-

gering mode of the CCD camera and sets the exposure time. It enables

remote control of the switching galvanometer, loads in the ring buffer which

defines the filter sequence, and sets it up for strobe triggering via the camera

trigger. It also loads in the CED trigger sequence, which can be modified

to the required frequency, and sets this to be played at an external trigger.

During an experiment, a script is run to grab frames from the camera and
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Figure 2.6: The trigger sequence used to control the set-up. When the MRI acquisition
starts, a TTL pulse is sent to the CED, triggering a pre-loaded custom trigger sequence.
The end of the camera exposure window triggers the switching galvanometer to move to
the next filter. There can then be a gap in camera acquisition to save the data.

write these to file.

For imaging under an illumination pattern, the updating of the projected

image could become a bottle neck for the achievable imaging rate. The

sine pattern images to be displayed could be pre-generated with the desired

colours by given RGB values, but drawing the frame to the displayed figure

is slower than the fast switching rate of the galvanometer. It would also

require additional processing power during the acquisition, which detracts

from the work of grabbing the camera frames and storing these to disk,

reducing the maximum imaging rate. The projector was therefore modified

to use the switching galvanometer light guide as a light source, rather than

the inbuilt bright white LED. This enables reliable rapid switching, and

the projection image can be updated once, prior to starting the acquisition,

freeing the script up to focus exclusively on rapid data capture. This also

means the exact same wavelength filters can be used in both OIS and SFDI,

enabling direct comparisons.

2.2.2 Optical Imaging Spectroscopy

OIS was used to determine the concentration of oxy- and deoxygenated

hemoglobin (HbO and Hbr), by measuring the degree of absorption as light

propagates through the tissue. Light travelling through a medium will be

attenuated due to the medium’s absorption and scattering properties, this

is detailed in Chapter 4. In OIS, the attenuation of light by tissue is calcu-

lated under illumination at different wavelengths. Attenuation is found from

images I relative to ‘white’ images IW at the respective wavelengths, where

74



2 Methods Optical Imaging

Figure 2.7: A readily available pico-projector was modified to generate the illumination
pattern required for SFDI. Originally, the casing housed a bright white LED (positioned
in the right chamber in the middle image), and the light passed through the polarisers
and image forming elements to reflect of the mirror (on the left in the middle image)
and out through a set of magnifying lenses. The LED was replaced with the light guide
by creating an opening through the back wall, and a custom holder was 3D-printed and
glued to the casing base, to support the light guide in place as shown in the left image.
To produce the small FOV required for illuminating the optical window, the magnifying
lenses were removed from the front of the projector and replaced with an objective (shown
in the image on the right), which was secured onto the casing with another 3D-printed
adapter. The adapters required in the modification of the projector were modelled in
Blender according to the required dimensions.
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there is no sample and all the light is reflected. In each case dark images, ID

and IWD are acquired with no illuminating light, and used as a correction;

subtracting them from the lit images removes any signal measured by the

pixels which does not belong to the reflected light from the light source.

A = log
I(λ)− ID(λ)

IW (λ)− IWD(λ)
(2.1)

The wavelengths are chosen so that the light is absorbed to different extents

by the different chromophores. Of particular interest is oxygenated and de-

oxygenated haemoglobin, their absorption spectrum is shown in Figure 2.8,

with the filter wavelengths highlighted. They cover an isobestic point and

points with a large difference in absorption, both with HbO higher and with

Hbr higher, as reference points. Other chromophores such as cytochrome

could be taken into account, but are only present in very low concentrations.

OIS therefore relies on measuring attenuation changes in remitted light

to calculate absorption properties of the tissue, which can be related back to

chromophore concentrations. The Beer-Lambert law, Equation 2.2, relates

the attenuation of light A to the the concentration ci and the extinction

coefficient εi of the absorbent species present via the path length L travelled

by the light through the medium.

Figure 2.8: Spectra of the molar extinction coefficients for oxy- (red) and deoxy-
haemoglobin (blue). The vertical lines show the wavelengths 470, 560, 570 and 630 nm,
which were used in OIS.
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Figure 2.9: The differential path length (red) gives the change in attenuation per change
in µa. A change in µa, such as the difference between the two marked points, will have
a more significant impact on the total path length (green), than on the differential path
length.

A(λ) = LµA = L
∑
i

εi(λ)ci (2.2)

The path length is not known. As light moves through the tissue, scat-

tering causes it to disperse. Only some of the photons are remitted back

out of the tissue, and these will have travelled along a distribution of path

lengths. OIS therefore relies on the modified Beer-Lambert law, Equation

2.3 which provides the changes in chromophore concentration from attenu-

ation changes.170 Here, G is a function which depends on scattering, but is

independent of µA.

∆A = −ln I
I0

= ∆L · µA +G ≈ ∆L · µA (2.3)

This expression involves the differential path length Ld, which is defined as

the local gradient of the attenuation against the absorption coefficient as

shown in Equation 2.4. The implications of the differential path length is

demonstrated in Figure 2.9. The change in Ld is less affected by a change in

µA than the overall path length L is, and is therefore more robust to minor

changes in wavelength than the total path length.

∆L = ln(10) · ∆A

∆µA
(2.4)

Most of the light entering tissue will only reach the surface layers before

being absorbed or remitted due to scattering. Only a small amount of the

remitted light will have reached deeper, and deeper objects will therefore

contribute less to the detected signal. The possible path lengths will there-

fore form a probability distribution, which depends on the tissue’s optical
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properties.

The differential path length can be found by determining the average

path length travelled by light through the tissue.170 If the possible path

lengths are represented by a probability distribution, this is equivalent to

the mean or expected value of that path length distribution, as given by

Equation 2.5.

∆L =< L >= E[X] =

k∑
i=1

(xi · pi) (2.5)

The path length distribution can be determined for a given tissue using a

Monte Carlo simulation, which is discussed in Section 4. Using this estimate,

changes in µA are determined from attenuation changes:

ln
I1
I2

= ∆A = ∆L∆µA (2.6)

Once the attenuation data ∆A is converted into ∆µA, the chromophore

concentrations are determined. If two wavelengths are used to determine two

chromophore concentrations (typically of HbO2 and HbR), the equation for

µA

∆µA = εHbO2∆cHbO2 + εHbr2∆cHbr2 (2.7)

can be rewritten as a set of simultaneous equations

∆cHbO2 =
ελ1
Hbr ·∆µA(2)− ελ1

Hbr ·∆µA(1)

ελ1
Hbrε

λ2
HbO2

− ελ1
Hbrε

λ2
HbO2

(2.8)

where ∆µA(i) refers to the change at the given wavelength i

∆µA(i) =
∆A(λi)

L(λi)
(2.9)

If more than two wavelengths are used, the concentration changes can be

determined using a linear least-squares fit.171 The matrix form of this cal-

culation is shown in Equation 2.10.

K = αC + E (2.10)

Here C is a vector representing the unknown concentration changes, and K

is a vector containing the i observations of the dependent variable, here µA

changes. α is a matrix with i observations (one for each wavelength) of the
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j independent variables (extinction coefficients). E represents the residual

errors in the fit for each wavelength.

The changes in concentration can be determined by rearranging to the

form shown in Equation 2.11. Here α′ denotes the transpose and (α′α)−1 is

the pseudo-inverse of α. The residual errors of the fit is given by Equation

2.12.

C = (α′α)−1α′K (2.11)

E = K − αC (2.12)

In practice, the attenuation data A is used to generate K, using the

differential path length estimate for the relevant wavelength.

K(w, i) =
log(10) ·A(w, i)

Lw/log(10)
(2.13)

C can then be found using Equation 2.11, and the error in this result is

found by substituting the residual error E;

δC = (α′α)−1α′E (2.14)

It is important to keep in mind the assumptions made in OIS during

analysis. The modified Beer-Lambert Law has been determined to be in-

correct,172 but the differential form applies if attenuation changes are rela-

tively small, G is constant and µA change is homogeneous. This means that

the differential modified Beer-Lambert law assumes homogeneous absorp-

tion change in the tissue, and that intensity loss from scattering is constant.

As discussed in Chapter 1, this is not generally the case however, as scat-

tering changes have been widely reported during neuronal activation and

CSD events, and tissue absorption changes are typically not spatially ho-

mogeneous. It has been estimated that for a tissue with optical properties

similar to that of the cerebral cortex, a 1% change in scattering coefficient

will cause the calculated chromophore concentration changes to increase by

around 0.5 µM.172

Concurrent measurements can help to mitigate these errors. By mea-

suring both absorption and scattering changes during activity, Spatial Fre-

quency Domain Imaging not only provides a fuller picture of the underly-
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ing biophysical changes, but can provide better estimates of the absorption

changes than if scattering is ignored.

2.2.3 Spatial frequency domain imaging

SFDI measured diffuse reflectance Rd, which is dependent upon both scat-

tering and absorption. In order to separate these, more than one diffuse

reflectance value is required. The images are demodulated in order to de-

termine the components of Rd caused by the high reference frequency of

the illumination pattern and by the low frequency planar components of

the light. These are typically referred to as the AC and DC components

respectively.

The spatially modulated light S is represented using Equation 2.15,

where S0 is the planar illumination source, M is the modulation depth,

α is the phase shift and fx is the spatial frequency.153

S = S0[
1

2
+M sin(2πfx + α)] (2.15)

The original work used an illuminating sine pattern, and their demodu-

lation method based on three images (I1, I2 and I3) per spatial frequency.

These were acquired at phase offsets 0, 2/3π and 4/3π radians. MAC can

then be determined using Equation 2.19. This represents the amplitude en-

velope of the reflected photon density standing wave at the given frequency,

Figure 2.10.

MAC(xi, fx) =
21/2

3
([I1(xi)−I2(xi)]2+[I2(xi)−I3(xi)]2+[I3(xi)−I1(xi)]2)1/2

(2.16)

This demodulation removes the average image noise, as this is common to

the three images, and removes any constant ambient light. It also does not

require knowledge of the spatial frequency, removing any spatial calibration

errors.

Once the data is separated into its components, it is calibrated against

a phantom of known optical properties, Equation 2.17. MAC(fx) is the

product of the intensity of the light source, I0 and the modulation trans-

fer functions of the optical system, MTFsystem(xi, fx) and of the turbid

medium, Rd(xi, fx) as shown in Equation 2.18, so this calibrates for the

system dependent properties. Using the known properties, the diffuse re-
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Figure 2.10: Adapted from Cuccia et al. 2009. The modulated reflectance (above) and
the demodulated AC and DC components (below).

flectance of the phantom is modelled as Rd(xi, fx). The reference measure-

ment MAC,ref (xi, fx) is then used to find the diffuse reflectance at each point

in the image. The modular transfer function represents the system’s spatial

frequency response. It represents the contrast at different frequencies.

Rd(xi, fx) =
MAC(xi, fx)

MAC,ref (xi, fx)
×Rd,ref,pred(fx) (2.17)

MAC(xi, fx) = I0 ·MTFsystem(xi, fx) ·Rd(xi, fx) (2.18)

MAC(i, j, fx) = I0(i, j, fx)(i, j, fx) (2.19)

A reference measurement on a turbid media with known optical proper-

ties will therefore calibrate for the absolute intensity of the source and the

MTF of the imaging system. This avoids PSF deconvolution which could

amplify noise and uncertainties

Vervandier and Gioux155 suggested the use of an alternative demodu-

lation, requiring only one image at the given spatial frequency, reducing

acquisition time. Each line of the image is Fourier transformed, and the
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Figure 2.11: The Hilbert transform deconvolution process as described by Nadeau et al.173

After subtracting the DC map, the AC component of the image is Fourier transformed
and multiplied by a spiral phase function map, which contains real and imaginary parts
as shown. When the inverse FFT is applied to the product, the sine pattern in the
transformed image has become shifted by 90◦. This shifted image can be combined with
the unshifted AC to give the demodulated AC image.

AC and DC components of the line are separated in frequency space by a

cutoff frequency, which is determined automatically. The AC and DC im-

ages are then determined by applying an inverse Fourier transform to each

line. In Vervandier’s work155 the cutoff frequency is determined automati-

cally for each line, by smoothing the Fourier transformed line and locating

the highest AC frequency. The spectrum is then divided at the closest local

minimum. In their further work using this method, the Tromberg group

opted to set a cutoff frequency for all lines to get best quality images for a

given spatial frequency.156

Another alternative approach suggested by the Tromberg group relies

on a Hilbert transform.173 They were able to extract optical properties

from a single frame, with differences of 1% in µA and µ′S compared with

the 3-phase demodulation. Here, a complex-valued spiral phase function is

generated, according to Equation 2.20, where u and v are the coordinates

in the Fourier space. This gives a map with real and imaginary parts. This

process is demonstrated in Figure 4.2

S(u, v) =
u+ iv√
u2 + v2

(2.20)

The authors formulate the demodulation problem in terms of Equation

2.21, with the goal being to extract RAC , the AC diffuse reflectance term
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from the original data I.

I(x, y) = 0.5 ·RDC(x, y) + 0.5 ·M(x, y)

M(x, y) = RAC(x, y) · cos{2πfx,y +�x,y}
(2.21)

The Hilbert transform is obtained with Equation 2.22. First, the DC com-

ponent is removed from original data I, to give the AC image. A 2-D fast

Fourier transform is applied to the AC image to give M . M is multiplied

by the phase function map S, which is made to have the same dimensions.

The inverse FFT is applied to this product, this has the effect of shifting

the modulating sine wave by 90◦. This can be thought of as converting the

modulating cosine into a sine function. The Hilbert transform of the AC

image M is the magnitude of this image.

H(x, y) = |FFT−1{FFT [M(u, v)] · S(u, v)}| (2.22)

The Hilbert transform H is multiplied by i, the complex unit, and added to

M . The magnitude of the result is the demodulated AC diffuse reflectance.

R(x, y) = |M(x, y) + iH(x, y)| (2.23)

The Hilbert demodulation, and indeed other Fourier based approaches,

are susceptible to ringing artefacts. This stems from the cut-off around the

edges of the image, which causes the projected pattern to be finite. The

edges have the effect of a sharp cut-off filter, adding a smoother filter such

as a Butterworth filter would reduce this effect.

In this project, both the 3-phase and Hilbert demodulation methods are

used, this is to aid development of the optical acquisition an processing. For

in vivo experiments, a demodulation method based on 1 or 2 images can pro-

vide faster sampling speed. During development and testing on phantoms,

dynamics are less important, and 3-phase demodulation is used alongside

Hilbert-demodulation for comparison.

2.3 MRI acquisition in the animal model

MRI of the rat model was performed using a small-bore (30 cm diameter) 7T

Bruker Biospec 70/30 USR scanner, fitted with a 200 mm diameter actively

shielded gradient (200 mT/m, 640 T/m/s slew rate). For experiments with
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only MRI, a phased array surface coil suitable for rat brain imaging was

secured over the head of the rat. A custom made circular surface coil was

used for concurrent imaging experiments, which was needed for visualisation

of the brain for optical imaging. This was made from a non-conducting

copper wire, attached to the surface of the acetal well (20 mm diameter)

around the cranial window.

The animal was positioned with the brain area centered in the bore. An

initial localiser scan was run. The coil was then ‘wobbled’ to account for the

magnetic field distortion caused by the presence of the animal. Susceptibility

effects cause small changes to the magnetic field and Larmor frequencies in

the animal, and the electronics should be ‘tuned’ to its specific resonance

frequency. The animal also changes the impedance of the transmit and

receive coils, which reduces the energy transfer between the coil and the

animal. To account for this, the RF coil impedance should be changed

to ‘match’ that of the wires between the RF amplifier and coil. These

adjustments are made by manually turning the ‘tune’ and ‘match’ handles

on the coil until the RF power is optimised as indicated by an on-screen

display. This process provides better signal and reduces noise.

The stimulus is expected to generate a response in a position around

3 cm posterior to bregma. To identify this region, a coronal T2 scan (T2

TurboRARE) was performed, with a slice barely touching the top of the

brain as shown on the localiser scan. Bregma was identified from this scan,

and an axial slice centered over it. The slice was then shifted by an offset of

3 cm.

Once the slice position was determined, the magnetic field was shimmed.

Saturation slices were added diagonally on either side of the brain, as well

as under it, as shown in Figure 2.12. A B0 map was collected, (FOV 50 ×
50×50 mm, 3 averages) which gives a measure of the spatial variation in the

magnetic field. This was used as the basis for a map shim, using an iterative

correction over the area of interest, defined as an ellipsoid positioned over

the brain as shown in the Figure.

GRE-BOLD fMRI data was acquired with a T2star FID EPI sequence,

and DWfMRI with a DtiEpi sequence. For both functional measurements

the slice thickness was set to 1 mm, and the repetition time was one second.

Ten dummy scans were added at the beginning of the sequence, this allows

the system magnetisation to reach a steady state before starting data col-
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Figure 2.12: Left: Saturation slices. Middle: The positioning of the slices, 3 mm back
from bregma. Right: The positioning of the B0 map used for shimming.

lection, and the duration of these scans was accounted for when setting the

initial delay for the stimulus onset. Structural scans were performed using

the same slice position as the functional scans. These included T1-weighted

images (T1 FLASH) and T2-weighted images (T2TurboRARE).

2.4 Data analysis methods

Optical and fMRI data can be analysed in order to determine active sites, to

reduce artefacts and in order to extract and understand the time-domain sig-

nal. A wide range of signal processing tools are available for these purposes.

In this project a combination of tools are used, including both standard

processing packages and custom analysis pipelines.

Concurrent data from the animal model is not mapped to the anatomy,

as is common in most fMRI processing pipelines. The motivation for this is

to avoid potentially introducing artefacts through fitting of the data, and be-

cause the focus of the experiments is the dynamic response of the functional

signal, rather than on the location of the response.

2.4.1 Statistical Parametric Mapping

Functional MRI data, and other types of functional data such as MEG,

EEG or PET data, is often analysed using Statistical Parametric Mapping

(SPM). In broad terms, this process realigns a time series of voxel data to

account for any shift in the anatomical locations relative to the voxels, then

warps the data to match a standard anatomical template and smooths it.

Then, General Linear Modelling (GLM) is used to determine the statistical

correlation of each voxel to test parameters.

Motion during data acquisition will cause voxel signal changes over time
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which are not caused by brain function. Realignment is done to minimise

this effect. The motion is represented by an affine transformation of a rigid

body. It is parametrised by minimising the sum of the squared differences

between each scan and a reference, which is usually taken to be the first

scan or the average of all scans in the series. To apply the transformation,

the data is re-sampled using a tri-linear, sinc or spline interpolation. The

transformation can realign the data to within around hundred microns, but

there may still be residual motion artefacts.

Residual motion artefacts after realignment can be caused by non-linear

effects, where the motion artefact is not linear with respect to displacement

throughout the scans. Examples of this include movement that occurs be-

tween the acquisition of different slices, artefacts from interpolation, effects

of inhomogeneities in the magnetic field, and spin-excitation history effects.

This can be accounted for by fitting the time series data to a function of

the estimated movement, as determined by the realignment. The estimate

is then subtracted from the data.

In addition to these spatial realignments, there could exist temporal ef-

fects caused by a slight delay between acquisition of the different slices.

Temporal realignments are sometimes performed using a sinc interpolation.

The artefact would cause small delays in functional responses, these are usu-

ally small compared to the time course of the biophysical delay of response,

so this realignment is therefore usually only performed if the temporal dy-

namics are important.

For this thesis, functional data was largely analysed using custom MAT-

LAB code. This was useful during data acquisition, because it allowed for

quickly analysing animal fMRI data between experiments to check if activ-

ity can be detected. This way, the animal’s condition or the experimental

parameters could be improved before starting comparative experiments, to

optimise the chance of seeing a consistent stimulus response. This approach

was also used in analysing the results, as it gave full control over which

analysis steps to include, and how to parameterise them. By varying the

processing pipeline, the effect of each step on the result could be considered,

and the results critically analysed.
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2.4.2 General Linear Modelling

General linear modelling (GLM) can be used to determine the active region

of the brain from functional MRI data. If a repeating stimulus is applied, the

time-base signal measured in the active region should be a repeated response

following the progression of the stimulus. By comparing the stimulus signal

with the time-dependent signal in an MRI voxel, such a response could be

found.

GLM estimates the linear equation

Y = b0 + b1 · x1 + b2 · x2...bn · xn (2.24)

where the coefficients bi represents the contributions of each of the variables

xi to the prediction of the dependent variable Y . If Y represents the time-

dependent signal in a voxel, and x1 the applied stimulus, the coefficient b1

is the number of stimulus functions required to make up the signal. A map

of b1 for all voxels in the MRI image can therefore be seen as a map of

where the signal best matches the time course of the stimulus, indicating a

response.

The GLM regression can be represented in matrix notation as

Y = Xb+ e, Y =


Y1
...

Yn

 , X =


1 x11 . . . x1k
...

...
...

1 xn1 . . . xnk

 e =


e1
...

en

 (2.25)

where e contains the residual value, and indices 1 to n relate to the i-th

observation of the variables. The column vector b will contain k unknown

regression coefficients, and 1 for the intercept. The sum of the squared

residuals is minimised bu finding the coefficients which satisfy[
X ′Xb = X ′Y

]
(2.26)

which has a unique solution if the X variables are linearly independent and

the inverse of X ′X exists:[
(X ′X)−1X ′Xb = (X ′X)−1X ′Y, b = (X ′X)−1X ′Y

]
(2.27)

In GLM, a generalised inverse is used instead of an inverse. Ag is the gen-
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eralised inverse of A if

AAgA = A (2.28)

YM = Xb+ eX ′Xb = X ′YMb = (X ′X)−1X ′YM (2.29)

M is an m× s matrix of coefficients defining s linear transformations of the

dependent variables.

The MRI data can be analysed to determine the region of activity, and

the result overlaid onto the structural image. The active region is found

through general linear modelling, GLM. This provides a fit to the time

series data at different locations in the image through combining different

functions according to Equation 2.30.

data = a · f1 + b · f2 + c · f3...+ σ (2.30)

where σ is an error term. The different functions, or ‘design matrix’, can

contain for example a DC offset, a ramp and the applied stimulus. The

coefficients a, b, c... are then adjusted to minimise the error. The result will

be a map containing the value of each coefficient in each location of the

image. The map representing the coefficient for the stimulus function will

indicate the regions of the image where the temporal data is most correlated

to the stimulus. This can be used to select the active region, for example by

thresholding. GLM also provides a method for de-trending the data; since

one term, here b · f2 depends on the ramp, this term can be removed:

data = data− b · f2 (2.31)

It is also possible to convolve the stimulus with the haemodynamic re-

sponse function (HRF), a curve which shows the expected shape of the

response to stimulus. The convolved stimulus function would likely fol-

low the shape of the signal in the active region more closely. The HRF is

however only an approximation, as neurovascular coupling varies through-

out the brain, it should not be assumes that the HRF would be the same

throughout data.18 As the response shapes are compared between BOLD

and DWfMRI, is is also important not to assume a response function, as

this would introduce bias into the results.
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2.4.3 Registration

Registration refers to the process of aligning image data to ensure spatial

correspondence between images. This can be performed on a set of func-

tional data to account for the effects of motion. By registering EPI images

to each other, shifts due to participant movement, as well as the effect of

breathing can be reduced. It can also be used to transform functional data

into the same space as structural data acquired with different slice geometry

from the same participant. Also know as co-registration, this allows acti-

vation maps to be overlaid onto the corresponding structures in the higher

resolution anatomical data. Functional data from a one or more participants

can also be aligned with a standard anatomical template, a process referred

to as normalisation. This requires more extensive deformations, but can be

useful in cross-participant comparisons and averaging.

In this work, registration was used to move EPI data into the same

space as structural SWI data, collected as part of the human fMRI study

described in Chapter 3. The data sets were acquired during the same scan

sessions, with the same slice orientation, the transformation was therefore

minimal and linear. Registration was limited to this application; to avoid

any potential data loss from fitting errors, motion correction was instead only

done on the temporal data. Co-registration was also not performed, as the

focus of the data analysis was on the temporal dynamics of activation rather

than its anatomical location, as well as on the spatial differences between

DWfMRI and BOLD functional data, which were acquired with the same

slice geometry and therefore compared directly. For fMRI experiments in

the animal model, described in Chapter 5, registration was not performed as

the animal is under anaesthesia and the head secured in place, so movement

was assumed to be minimal.

2.4.4 Frequency filtering

Frequency filtering was performed to reduce the effects of motion on the

fMRI time series. Over the course of an experiment, the baseline may drift

if the subject moves, and this can be seen as a low frequency change. A

high-pass filter, which removes frequencies below a given cut-off frequency,

was applied to remove this effect, with the cut-off value set to be significantly

lower than the repetition time of the stimulus, so as to avoid interfering with
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Figure 2.13: Butterworth filter (above) and a frequency representation of a recorded MR
time course (below). The frequency-space multiplication of the two removes the central
frequencies, filtering out slow drifts in intensity, which are likely caused by motion.

the functional response.

A Butterworth filter was applied to the data, and the filter value is

given by Equation 2.32. The filter profile is shown in Figure 2.13, and can

be adjusted by changing the order n and cut-off frequency fc. In order to

use this as a high-pass filter, the value at each point was subtracted from 1.

|H(f)| = 1√
1 + ( ffc )2n

(2.32)

Figure 2.13 shows an example of frequency filtering. The time series from

each voxel in the data set was Fourier transformed to give its representation

in frequency space. It was then multiplied by the filter before applying an

inverse Fourier transform to convert the data back into a time series.

2.4.5 Spatial smoothing

Spatial smoothing is a process which averages voxels with their neighbours.

This results in blurred edges in the images, removing higher frequencies

and enhancing low frequencies, acting as a low-pass filter. In the smoothed

images, spatial correlations are more pronounced. In fMRI, this is justified

by the degree of spatial correlation inherent in the data due to adjacent

brain regions having similar function.
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Spatial smoothing is achieved by convolving the data with a function

referred to as a kernel. The kernel is often given by a Gaussian, Equation

2.33. This forms a symmetric bell curve, where a gives the height of the peak,

b is the peak position, and c gives the curve width, or standard deviation.

f(x) = a · exp(−(x− b)2

2c2
(2.33)

This has a specific width, expressed as the full width at half maximum

(FWHM), which will determine the degree of smoothing. The FWHM is

given by

FWHM = 2
√

2 · ln 2c (2.34)

Whether to use smoothing, or which size of filter to use, needs to be

considered in relation to the application. Spatial smoothing reduces spatial

resolution of the data, and therefore the spatial specificity of a signal’s lo-

cation. This could cause a problem, for example by reducing sensitivity to

activation expected to have a narrow spatial extent. Signal peaks that lie

close together may also be merged, caused them to appear as a single peak,

or appear to be shifted.174

The benefits of smoothing include an improvement of the SNR, which

increases sensitivity. If the target signal has a Gaussian shape with a FWHM

of close to 8 mm, smoothing with an 8 mm Gaussian filter would spread out

noise with a smaller spatial extent, faster than it would affect the signal.

SNR will be optimised by adjusting the filter width to correspond to the

width of the expected signal,175 which will depend on the functional area

of interest in the brain. The size of a signal is not always known, and

filter width might be based on pilot data or published observations. If the

filter size is too large, narrow activations could become reduced and lose

significance, however if it is too small, the gain in SNR will be minimal,

but it will still reduce resolution. Liu et al. showed that spatial smoothing

causes a reduction in noise, which goes on to cause an expansion of the

estimated region of neuronal activity.176 They suggest a smoothing kernel

with a FWHM of maximum two voxels for mapping function with correlation

based methods, such as GLM. A similar FWHM of 2-3 voxels was suggested

by Chen and Calhoun,177 who used Independent Component Analysis (ICA)

and found this kernel size suitable for single subject analysis.
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3 Functional diffusion MRI in human

This chapter presents a study of DW-fMRI in human at 3T. It provides

theoretical background about diffusion and describes how diffusion mea-

surements are made with MR. It outlines uses of diffusion for functional

contrast in the literature, and perspectives drawn from this work about the

origin of the signal. The present study is then presented, including the study

aims, and its design as it intends to compare and explore the contrast mech-

anisms of DW-fMRI and BOLD, with an outline of the analysis process and

an exploration of its effect on the results.

3.1 Introduction

Diffusion Weighted functional MRI has been suggested as an alternative ap-

proach to the standard BOLD method for the measurement of brain activity.

It is important to note that the BOLD response is an indirect measure of

activity, with a BOLD map reflecting a complex haemodynamic response to

activation, affected by blood flow, oxygenation and volume, which is not eas-

ily interpreted. BOLD is limited in both its spatial and temporal resolution

due to its origin in haemodynamics. The increase in local blood flow will

depend on a large area of vessels which can generate a signal from regions

of neurons not necessarily involved in the active process.14 The time taken

for the typical BOLD signal to emerge after activation is around 4 seconds,

which could limit the temporal accuracy.29

A functional MRI technique based on diffusion has been considered based

on the idea that water diffusion could be made sensitive to dynamic struc-

tural changes occurring on a cellular scale during activity. The diffusion

weighted signal has indeed been shown to decrease during stimulus,30,33

and changes in cell size have been observed in optical studies of brain slices

and cultures.24,103,104 Early DW-fMRI studies attributed observed signal

changes directly to neuronal activity,34 however the relationship between the

DW-fMRI signal and cellular swelling is still contested.17,31,34 This is likely

a reason why diffusion fMRI has not become as widely used as BOLD. A

motivation for using diffusion weighted fMRI is that cellular swelling would

provide a more direct measure of neuronal activity than the ensuing haemo-

dynamic response. However, there is still a need for research into brain

cellular swelling, and more information is required to establish the link be-
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Figure 3.1: Diffusion (blue) and BOLD (red) fMRI responses averaged across repetitions,
adapted from Le Bihan 2007.29 Their results clearly show the DWfMRI response preceed-
ing the BOLD response by several seconds, and featuring a relatively rapid onset. This
was taken as an indication that the diffusion weighted response was driven by a mecha-
nism more directly linked to neuronal activity than the slower hemodynamic mechanism
underlying the BOLD response.

tween DW-fMRI and its proposed biophysical origin.34

One notable and well cited article29 exploring diffusion weighted MRI

as a functional imaging tool was published by Le Bihan et al in 2006. In

this work they compared responses obtained during a visual stimulus with

DW-fMRI and BOLD, as shown in Figure 3.1. Their results show that

the diffusion weighted fMRI signal occurs seconds before the BOLD signal.

This could suggest that the diffusion response is linked either directly to

neuronal activity or to it through a fast coupling mechanism.33 The acti-

vation maps also show smaller active regions, which they suggest reflects

DW-fMRI’s sensitivity being weighted towards a cellular mechanism, rather

than a haemodynamic one. If the link between this signal and activity

mediated cellular swelling could be confirmed, the method could become a

valuable competitor to BOLD, with the potential to provide higher spatial

and temporal specificity.29

Here, a study is devised to further investigate the DW-fMRI signal. It

aims to confirm the fast response, and investigate the dynamics of the re-

sponse to visual stimulus under different stimulus designs. It outlines con-

siderations for the acquisition and analysis of DWfMRI data, and discusses

what the results might tell us about the underlying mechanism driving the
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measured signal.

3.1.1 Free diffusion

Diffusion describes the net movement of a substance from a region of high

concentration to a region of low concentration. From a macroscopic view,

the particles spread more evenly over time, with the distribution of dis-

placements forming a bell curve. This takes the shape of a bell curve, which

gradually flattens out over time, as shown in Figure 3.2.

In pure water, the molecules diffuse freely and randomly. On a micro-

scopic level, their behaviour follows Brownian motion, which describes the

random motion of particle movement in a fluid. The directions from which

the particles experience interactions are constantly changing, which means

there is no preferred direction of flow.

Using Fick’s laws of diffusion, Einstein showed178 that particle displace-

ments in Brownian motion was related to the diffusion coefficient (m2s−1),

connecting microscopic Brownian motion to the macroscopic concept of dif-

fusion. For N particles starting at the origin at a time t = 0, the displace-

ments form a probability density function with the form

ρ(x, t) =
N√

4πDt
e−

x2

4Dt (3.1)

The equation describes a normal distribution with mean, or center point,

µ=0, and a variance of σ2 = 2Dt. Based on this expression, the diffusion

coefficient was shown to be dependent on the mean square displacement of

the particles, Equation 3.2, where n is the dimension of Brownian motion.

x̄2 = 2nDt (3.2)

3.1.2 Diffusion in MRI

Diffusion Weighted MRI (DW-MRI) can be used to study the diffusion of

water within tissue. In tissues, the water molecules are restricted, as they

interact with cell membranes and macromolecules which change their mo-

tion. Cell membranes create barriers which limit the available extracellular

and intracellular space. The more cells are present, the more restricted

the motions become. With few cells, the extra-cellular space is large and
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Figure 3.2: The displacement of particles undergoing Brownian motion can be described
by a bell curve, which flattens out over time.

water molecules can diffuse more freely, and move through damaged cell

membranes.

Diffusion MRI measures a macroscopic quantity which relates to the

probability distribution of particle displacement over time. The Einstein

equations assume free diffusion, where the distribution of molecular dis-

placements follows a Gaussian law. However in tissues, this is not generally

the case, therefore, diffusion is no longer described accurately by the true

diffusion coefficient.179 To account for this concept in diffusion MRI, the

Apparent Diffusion coefficient, or ADC was defined.180

The diffusion distance in tissue is on the scale of micrometers, with the

root mean square of the displacement of water molecules during a DWI

acquisition estimated to be around 8 µm.181 This is similar to the average

size of a human cell, which measures around 10 µm, and is therefore on the

right scale to explore tissue structure on a cellular scale.133,179 The DWI

signal from tissue contains contributions from motion of water molecules in

extracellular space, intracellular space and intravascular space.182133

The sensitivity to the cellularity of tissue means DW-MRI has found use

for example for imaging tumors. Tumor tissue is highly cellular with many

intact cell membranes, so the extra-cellular space is reduced and motions

restricted. This is an efficient technique for this purpose because it is not

too time consuming and does not require any contrast agent.133

3.1.3 The diffusion sequence

A diffusion weighted MR sequence is shown in Figure 3.3. It is based on a T2-

weighted spin-echo sequence, where a 90◦ pulse is followed after a given time
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Figure 3.3: A diffusion weighted MRI sequence. A pair of diffusion gradients, Gdiff , are
included before and after the refocusing pulse, and the signal S is read out with EPI.

by a 180◦ pulse. DW-MRI adapts this by applying a sequence of symmetric

or bipolar gradients on either side of the refocusing pulse. Static molecules

will receive phase information from the first gradient and be rephased by

the second, leaving the signal intensity preserved. Moving molecules are

not completely rephased by the second gradient, so signal intensity is lost.

DW-MRI measures the degree of signal attenuation, which is proportional

to the degree of water motion.133

The sequences sensitivity to diffusion can be changed through adjust-

ment of the diffusion gradients. This is characterised by the b-value, origi-

nally defined in 1965 by Stejskal and Tanner,183 which is given in Equation

3.3. It describes the relationship between the gradients’ magnitude G, their

duration δ and the spacing between the gradients ∆, as shown in Figure 3.4.

b = γ2G2δ2(∆− δ

3
) (3.3)

The b-value therefore indicates the gradient strength and duration, with

a higher b-value giving stronger diffusion weighting. It is typically 0 −
4000s/mm2, and the units are the inverse of the units in D. The value used

depends on the anatomy to be imaged, as well as on the field strength. A

large b-value gives more pronounced attenuation, but also limits the signal-

to-noise ratio. Clinical DWI of the brain is typically done with a b-value

between 0 and 1000 s/mm2. Two sequences might have the same b-value,

but different sequence timings. This could give different time for water
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Figure 3.4: The Stejskal and Tanner diffusion sequence with the variable parameters
highlighted.

to diffuse, with more diffusion time providing more chance to interact with

obstacles, and reducing ADC.184 The gradient pulse timings should therefore

be specified along with the b-value.

Diffusion weighted sequences typically start with acquiring a b0 image,

this is acquired with the b-value set to zero, providing a T2-weighted image

which can be used as a baseline in analysis. The sequence includes fat sup-

pression to reduce chemical shift artefacts. Since fat molecules have high

restriction they produce a high signal, which can obscure useful informa-

tion.185 This also reduces the high chemical shift artefacts from EPI, which

is the most commonly used DW imaging technique.185

Diffusion requires high intensity gradients with longer duration than

many other common sequences, and therefore create relatively large Eddy

currents.186 This effect interferes with the readout gradients, effectively re-

ducing the region over which the gradients vary linearly, which can lead

to image distortions. EPI is sensitive to Eddy currents, and since the cur-

rents depend both on the magnitude and the direction of the gradients,

images acquired with different b-values or diffusion encoding directions will

be inconsistently affected. Uncorrected, this causes problems with registra-

tion, leading to artefacts such as ghosting, and errors in calculated diffusion

properties.187,188 Corrections can be applied in post processing,188 and the

sequence timings can also be adjusted to reduce Eddy currents, as equal and

opposite Eddy currents created from switching on or off gradients respec-

tively can be effectively cancelled out.186
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Figure 3.5: Diffusion can be described by a tensor, which specifies a value along each of
its eigenvectors. The example shows the isotropic (left) and anisotropic case (right)

3.1.4 Applications

The development of the EPI technique in the early 1990s made DWI a

possibility in a clinical setting, because the fast acquisition significantly re-

duced the sensitivity to motion artefacts. Early works established DWI as

a method for detection of acute stroke,189,190 showing that DWI could be

used to detect infarcts sooner than conventional T2-imaging. DWI could

identify stroke after less than an hour and the imaging time was less than

two minutes, while T2 imaging was unable to show it for 2-3 hours, and

sometimes did not show the infarct at all.

The direction of diffusion can be measured by applying diffusion gra-

dients along a set of coil combinations in turn. The diffusion information

from each voxel can be described by a diffusion tensor, as demonstrated

in Figure 3.5. The directions are given by the eigenvectors, with lengths

given by the eigenvalue λ indicating the degree of diffusion along the given

direction. Isotropic diffusion gives a spherical ellipsoid, where λ1 = λ2 = λ3.

Anisotropy leads to a more elongated shape, as diffusion occurs more readily

along certain axes. Anisotropy will reduce the degree of diffusion, and there-

fore gives a brighter region of the image. Anisotropy is high for example in

bundles of fibre in white matter, and DWI can be used to map out the white

matter tracts, providing insight into connectivity and brain maturation.191

DWI results are sometimes represented as a trace image, which shows

the sum of the eigenvalues. By averaging across the number of directions

used, this provides an image referred to as an ADC map. Measuring along
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for example three perpendicular directions, this map approximates the mean

diffusivity, but is in fact likely to give an overestimate of the true mean ADC,

which requires measurements along 6 directions.192

Diffusion Tensor Imaging (DTI)193 uses the eigenvalues individually, and

can be used for example to study white matter connectivity in the brain.

The diffusion tensor is a mathematical description of the displacement of the

molecules, modelled as a 3D Gaussian distribution. It can be represented

in various ways depending on application. Fractional anisotropy (FA) maps

represent the amount of diffusion asymmetry in each voxel. This is calcu-

lated using the eigenvalues as shown in Equation 3.4, which gives a value

between 0 and 1.194

FA =

√
1

2

√√√√(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√
(λ1

2 + λ2
2 + λ3

2)
(3.4)

These FA values can also be used to present a principal diffusion direction

map, which is used to show fiber bundle orientation. The voxels are coloured

by anisotropy and direction; conventionally the orientation determines the

colour and the brightness is determined by the FA value. For example given

angles α β and γ with respect to the x, y and z directions, the voxel colour

is weighted by Red = FA ∗ cos(α), Green = FA ∗ cos(β), and Blue =

FA ∗ cos(γ).

Diffusion weighted images can be used to generate a fiber tracking map.

Here, tracts are traced out starting from a selected seed voxel by following

the primary eigenvector of each subsequent voxel to determine the next

neighbouring voxel, and for each step changing direction to the new voxel’s

eigenvector. This progresses until a termination condition is reached, such

as the FA value reaching a lower threshold, or a minimum fiber length is

reached. Results may vary depending on termination condition and the

exact seed voxel selected, as well as on acquisition parameters, with a high

number of diffusion directions required for reliable results, and high b-values

giving more angular contrast, but lower snr.195,196 For clinical use, the

requirement for shorter acquisition times means resolution is limited and

therefore some fibers are too small to be imaged. This can be improved

with longer imaging times, which are used in research.197
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3.1.5 Signal equation

The signal S obtained with a DWfMRI sequence is given by Equation 3.5.

Here S0 is the baseline signal intensity, TR the repetition time and TE

the echo time. The effective transverse relaxation rate is given by ∆R2∗ =

∆(1−Y )V , where V is the volume and Y is the saturation of O2. With the

inclusion of the diffusion gradients, the signal obtained becomes dependent

on the b-value, and the diffusion constant D:

S = S0(1− e
−TR
T1 ) · e

TE
R∗2 · e−bD (3.5)

When the diffusion gradients are turned off and b = 0, the final diffusion

exponential term becomes 1 and cancels out, the signal obtained therefore

becomes the a spin-echo BOLD signal. During a DWfMRI acquisition on

the other hand, b can be varied and the other variables are assumed to be

constant.

Diffusion weighted images will contain T1 and T2 contrast in addition

to the diffusion contrast. Areas in an image can therefore become bright

even without highly restricted diffusion, because of high T2 values. This

is known as T2 shine-through effect.198 The effect can be reduced to some

extent by keeping the TE short, and the b-value large, but the diffusion

gradients and the refocusing pulse extends the TE, therefore it could still be

present and cause difficulties with interpretation. A solution to this problem

is to divide the diffusion weighted image by the corresponding unweighted

image acquired with b = 0 s/mm2. By rearranging the signal Equation 3.5

to the form

ln

(
S

S0

)
∝ −b ·D (3.6)

it predicts that the natural log of the signal intensity ratio is proportional to

the b-value, decreasing linearly from the baseline signal. The division there-

fore converts the image into an ADC map, and removes the shine-through

effect, as the ADC is independent of the magnetic field strength.133,198 The

signal generally becomes more attenuated for larger b-values, however highly

cellular environments will continue to show high signal intensity. This means

the slope, and therefore the ADC value, is smaller for highly cellular areas,

such as tumors, compared with normal tissue. While the DW images have

high signal in areas of restricted diffusion, the resulting ADC image is there-
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fore darker, or low in signal, in these areas.133 By imaging with different

b-values, the ADC value can be determined per voxel using Equation 3.6.

Measurements using at least two b values are required, and the fit to the

slope can be improved by using more, reducing the error in the ADC calcu-

lation, and improving the signal-to-noise in the resulting ADC map.133

From the equation 3.6, a plot of the signal fraction ln( SS0
) against b

would be expected to give a straight line, with a slope equal to the apparent

diffusion coefficient ADC. When the diffusion does not follow free Gaussian

diffusion as in a homogeneous medium however, this is not generally the

case. In the brain, the signal typically deviates from this linear relationship

for high and low b-values, as shown in Figure 3.6.

For low b-values of 300-500 s/mm2, the signal is lower than expected

due to the influence of Intravoxel incoherent motion, or IVIM. IVIM was

first described by Le Bihan as molecular diffusion and microcirculation in

capillaries (known as perfusion), which causes a distribution of phases within

a single voxel.180 In gradients are applied in an MRI experiment, this causes

spins to de-phase within a voxel, and some of the signal is lost. With strong

gradients the signal loss from IVIM is largely caused by diffusion, but at

weaker gradients blood microcirculation in capillaries contributes, as with

very low b-values the pseudo-diffusion coefficient associated with blood flow

is higher than that of water diffusion. Large vessels tend to have fast flow,

which means they have high diffusion values. Their signal is therefore easily

attenuated by including diffusion gradients with low b-values, but smaller

vessels with slower flow may still contribute above b-values of 200 s/mm2.

For high b-values of 1000-1500 s/mm2 the signal often shows kurtosis effect.

Kurtosis is measured as the degree of deviation of diffusion from Gaussian

law, this has diagnostic applications, and has been used for example in the

characterisation of ischemic stroke199 and tumors.200

The water in the intravascular space will diffuse further in a given time

frame than that in the extracellular or intracellular space, due to blood

flow.133 If diffusion is slow relative to the flow of blood, it will be masked

by the flow. For functional measurements in this study, measurements will

be done every second. The flow changes with stimulation and could affect

measurements.
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Figure 3.6: For diffusion following Gaussian law, the plot of signal attenuation against
b-value would be expected to form a straight line, with a slope equal to the diffusion
coefficient. In tissue however, with hindered diffusion, this is not generally the case.
Deviations are caused by IVIM at low b-values of 300-500 s/mm2, and at high b-values
of 1000-1500 s/mm2 due to the kurtosis effect. (Adapted from Le Bihan et al)

3.1.6 Biexponential model

Measurements done on brain and other tissues appear to show two distinct

slopes of different gradient D. This can be fitted with a biexponential func-

tion, and the analysis method proposed by the Le Bihan group therefore

describes diffusion of water in the cortex using a biphasic model.30 This

relates the two slopes to two separate diffusion pools, one with fast and

one with slow diffusion, which are in slow exchange with each other.29 The

signal equation can then be written as

S = S0fslowe
−bDslow + S0ffaste

−bDfast (3.7)

where f describes the volume fractions, 70% for the fast diffusing pool and

30% for the slow, with fslow + ffast = 1, and D the diffusion coefficients for

each of the two phases. If the variations in the signal are small, the signal

change dS/S can be modeled as

dS

S
= Fslowdfslow + Ffastdffast, (3.8)

where df is the change in volume fraction of the given diffusion phase.

Several considerations of these two ‘pools’ have been proposed, for in-

stance relating the fast diffusing pool with extracellular water and the slow

with the intracellular. The volume fractions do not agree with the ratio
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between intra- and extracellular water however, with evidence suggesting

the ADC change in both pools is driven by water in intracellular space.201

Though the biexponential continues to provide a good fit for measurements,

no biophysical origin has been established for the two pools.29 Despite this,

the volume changes in the two phases have been shown to correlate well

with the volume changes in the intra- and extracellular spaces which occur

during the cell size changes observed in different experiments.202,203

The intra- and extracellular contributions to the BOLD signal vary with

field strength. Simulations have shown that in the case of larger vessels (25

µm radius), the extravascular signal contributes 68% of the signal at 3T,

and is the only contributor at 7T, with intravascular contributions nulled

out.204 For smaller radius vessels (3mum) the values change to 58% and 93%

respectively. This is consistent with estimates of intravascular contribution

being around 1/3 at 3T and negligible at higher field strengths.

3.1.7 Diffusion functional imaging

Diffusion weighted imaging was developed in 1985, prior to fMRI, and had

already been established for clinical applications in stroke detection and

ischemia and tumor evaluation. Early observations included detection of

apparent diffusion coefficient change during epileptic activity in rats, which

causes large, extraphysiological neuronal activation.205 It was not until the

early 2000s that DW imaging was used for functional imaging.

Several early studies employing diffusion weighting in a functional imag-

ing context, aimed to use this to measure blood flow. This was based on the

concept of IVIM,180,206 which some groups have attempted to use to improve

fMRI spatial specificity.207,208 This has been a limitation of BOLD fMRI, as

the flow increase due to activity occurs in a wide area, involving remote large

arteries or veins supplying the active neuronal region. By including diffusion

gradients with low b-values in the sequence, the sequence can ”crush” the

contributions to the MR signal which originate in the largest vessels.209210

The larger vessels have fast flow, and their signal therefore disappears even

at low b-values. The remaining signal is weighted towards that from capillar-

ies, which are in close proximity to the activated tissue. This provides more

spatially specific activation maps, which has been attributed to a selective

sensitivity towards arterial blood flow.207,208 The method has been used for

example to study the contribution from different vasculature to the BOLD
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signal.211 The Song group also identified that the ADC-contrast preceeded

the BOLD response with around 1 second, taking this as an indication that

it was sensitive to blood flow changes in arteries, as these would have a

different spatial location than the veins and be engaged prior to them.135

As hardware improved, and higher b-values could be achieved, diffusion

weighted imaging was explored as a contrast in itself. A 2001 study23 by the

Le Bihan group showed a change in the diffusion signal during activation of

human visual cortex with a 8 Hz flickering checkerboard. The observed tran-

sient decrease in ADC was small (<1%), but followed the time course of the

stimulus, and was tentatively ascribed to cortical cell swelling. Their 2006

study30 described a diffusion model based on slow and fast diffusion water

compartments, and this analysis suggested the water diffusion decrease was

caused primarily by a water phase transition, rather than from a decrease in

diffusion coefficient, which could have been caused by a tortuosity increase

in the extracellular space.

A key concern for DWfMRI is the potential hemodynamic contribution

to the measured signal. The DW-fMRI signal has been ascribed to cell

swelling from neuronal activation alone, to residual vascular effects, or to

a combination of these.17,34 Aso et al. modelled the diffusion response as

consisting of a haemodynamic response function (HRF) and a diffusion re-

sponse function, concluding the HRF contributed around a quarter of the

signal at peak, while only the DRF contributed at the response onset, show-

ing a rapid initial rise.212 he early onset of DWfMRI relative to BOLD has

been reported by several groups. Using bipolar diffusion gradients with a b-

value of 1800 s/mm2, one group137 used a checkerboard stimulus of 4 x (10.5

s on + 21 s off) and GLM analysis with a box car function, concluding dif-

fusion slowdown preceeded the vascular response by 2.9 second. The BOLD

time course more strongly correlated to concurrent NIRS optical measures

of hemodynamics than DWfMRI, suggesting diffusion changes were driven

by earlier events.

Some groups have attempted to remove the effects of haemodynamic

changes in tissue to clarify the biophysical basis of diffusion changes. Several

studies have used model systems without blood or vasculature to exclude any

hemodynamic confounds. To investigate activity induced swelling at a cellu-

lar level, one study37 used diffusion MR microscopy. To avoid any vascular

contributions to the measured signal, they investigated snail ganglia without
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blood. Their results suggested diffusion changes under stimulation arising

from cellular swelling, and indicated the ganglia were involved in swelling.

Water diffusion was shown to be significantly reduced during activity in rat

spinal cord134 One study34 by Bai et al looked at the interplay between

activity and the DW-fMRI signal in vitro by using DW-fMRI together with

calcium fluorescence imaging. Their model was cortical cultures from rat

brains, which shows spontaneous neuronal activity, and is without haemo-

dynamic, respiratory and other physiological artefacts. The fluorescence

imaging can detect intracellular Ca2+ concentrations which follow neuronal

action potentials, detecting neuronal activity. They found a simultaneous

increase in DW-fMRI signal with the prolonged depolarisation of neurons

using pharmacological manipulators, and the swelling of cells was shown to

play an important role in this case. They could however not find evidence

of correlation between DW-fMRI and normal spontaneous neuronal activ-

ity, concluding it is not sensitive enough to detect it. It has been argued

that the lack of observable diffusion changes could be due to the slices lower

density of dendritic spines and functional synapses. This points to a need

for further studies into which parts of cells undergo swelling.31

Another approach to removing the effects of hemodynamics, is by the

use of drugs which can inhibit neurovascular coupling. In this model, the

link between neurovascular coupling and water microscopic diffusion can

be compared between inhibited and non-inhibited stimulation. In one such

study33 by the Le Bihan group, they used nitroprusside as an inhibitor of

neurovascular coupling during rat forepaw stimulation, and discovered that

although the hemodynamic response to stimulation disappeared, they were

able to maintain the local field potentials in the area, and detect a diffusion

response on stimulation. With the b-values 250, 1000 and 1800 s/mm2 the

DWfMRI showed a slightly higher peak amplitude than BOLD, and occurred

earlier by about 3 seconds. They concluded that DW-fMRI is not vascular

in origin.

If DWfMRI is dependant upon cellular rather than purely hemodynamic

mechansims, the region of activation should have a closer dependence on

the location of the activated neurons than BOLD. Layer dependent fMRI

has gained interest in the last twenty years, with early work based on an-

imal studies and the first human study taking place in 2007.213 This first

study by Ress et al214 showed it is possible to obtain a profile of the fMRI
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response indicating its size along the neocortical laminae by sampling on

a sub-millimeter scale. For BOLD, the signal peaks in the superficial part

of the grey matter and declines for deeper layers. Layered fMRI has been

used to study the negative BOLD response. The Logothetis group measured

BOLD, CBV and CBF in macaque visual cortex and showed that neurovas-

cular coupling differed not only between layers, but also between the positive

and negative BOLD responses, with the positive signal coming from regions

of increased CBV and CBF, while areas of negative BOLD showed increase

in CBV but a decrease in CBF.152 Layered fMRI has started being used

to study the flow of information between cortical regions. By using fMRI

method sensitive to cerebral blood volume (CBV-fMRI) as well as BOLD,

one group showed input and output of a task localised to superficial and deep

laminae respectively, in agreement with anatomical studies.215 The diffusion

functional signal is also dependent on depth,216 and has been shown to be

significantly higher in the middle cortical layers, indicating better localisa-

tion of neuronal activity than BOLD. A 2019 study was able to show layer

specific connectivity with DW-fMRI during forepaw stimulus in the rat.162

They achieved a significant improvement in sensitivity by imaging at 9.4T

using cryocoils, and imaged under isotropic diffusion weighting with b =

1500 s/mm2. The group later obtained a temporal response along a depth

profile of the rat brain217 by using an approach known as line scanning.218

This was achieved by removing the phase encoding dimension, which ef-

fectively means each phase encoding step instead samples along the read

direction. They defined the imaging region by adding saturation bands to

suppress signal from outside the area of interest, removing motion artefacts,

and achieved fast acquisition rates with Large Tip Angle scanning,219 replac-

ing the 90 excitation pulse with a single 150 pulse, which avoids problems

of strong T1 weighting.

One key concern about DWfMRI is whether the method is sensitive

enough to reliably detect neuronal activity.34,161 Some of the work showing

the relationship between diffusion changes and neuronal activation have used

drugs to generate epileptic responses, which can cause more marked tissue

structural changes than those obtained from a stimulus response. A 2016

study showed that DWfMRI measures at a range of b-values from 0 to 2400

s/mm2 corresponded well with the depolarisation of rat cortical neurons

by drugs, however they concluded the method was not sensitive enough to
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detect normal spontaneous activity.34 On the other hand, a 2019 study

reported DWfMRI showing sensitivity similar to that of BOLD for a finger-

tapping stimulus paradigm, with responses measured with a b-value of 1200

s/mm2 slightly preceeding those with 0 s/mm2.161 They compared signal

time series of IVIM and apparent diffusion coefficient fMRI while selectively

suppressing perfusion and free-water diffusion, and concluded that DWfMRI

is sensitive to a decrease in intra or extracellular diffusion.

3.1.8 Aims

A study was been undertaken for the acquisition of DWfMRI and BOLD

data from healthy volunteers. The aim was threefold. First, to attempt

to replicate key results from the original study published by Le Bihan et

al.30 This was to confirm that the diffusion response can be obtained on the

current scanner using the same method as outlined in their work, and to con-

firm the rapid onset and smaller activation region they observed. Secondly,

data collected from humans could provide transferability of the analogous

fMRI data collected on rats to the human clinically applicable context. This

is needed to validate the model system to be used for the concurrent opti-

cal and MR measurements. Thirdly, this comparative study of DW-fMRI

and BOLD allows for further exploration of the DW-fMRI signal. The goal

was to test different experimental designs to determine the sensitivity of

this method to activation compared to BOLD, and to further investigate

diffusion-dependent dynamics by varying stimulation paradigms.

In the original study, the stimulation protocol (dartboard, 8Hz) consisted

of 3 repeats of 20s (or 16s) stimulus and a 20s (or 24s) intervals. The activa-

tion maps based on raw diffusion-sensitised data clearly showed activation

(Figure 3.7). The voxels indicated to be active by DWfMRI appeared to

be more localised to the cortical ribbon than the broader BOLD activation.

In the original work the BOLD response appeared filtered out at b = 1800

s/mm2 and the DW-fMRI response had a more rapid onset. Their activa-

tion maps were calculated using a boxcar basis function to avoid introducing

bias from convolving with an expected HRF.
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Figure 3.7: DW-fMRI at b = 1800s/mm2 (above) and BOLD fMRI (below) activation
maps from the study by Le Bihan et al.,30 detected with the same acquisition and process-
ing parameters. The SPM activation maps were based on high-resolution data sets. Voxels
detected as activated from BOLD fMRI encompasses large subcortical areas beyond the
cortex.

3.1.9 Study design

Data was acquired with a SIEMENS MAGNETOM Prisma 3T scanner (80

mT/m @ 200 T/m/s) at the York Neuroimaging Centre (YNiC). Unless oth-

erwise stated, a 32-channel head coil was used. Experimental protocols were

approved by the York Neuroimaging Centre ethics committee and were in

accordance with the Declaration of Helsinki. The training required to per-

form scanning on volunteers was completed, including first aid certification.

Participants were sought primarily from the local student population and

the YNiC volunteer pool (N=53, Age=22-51). The inclusion criteria asked

for healthy volunteers with no known vision problems. Volunteers were all

provided with a Participant information form. Written consent was ob-

tained from all participants (Study specific consent form). On the day of

the scan, investigators aided the participant in completion of the MR safety

form immediately prior to scanning. All participant forms are included in

the Appendix (7.3)

BOLD was also acquired using an SE-EPI sequence. Since the DW-fMRI

sequence is based on an SE-sequence, this provides a comparison of the two

methods which is unaffected by using the same sequence, only without the

diffusion weighting but SE-BOLD gives lower signal and is not the method

of choice for standard BOLD imaging. Additionally, GE BOLD is expected

to be more affected by the draining pattern of vessels than SE-BOLD, as it

is more affected by contributions of larger vessels. In fact, one simulation

study showed SE-BOLD giving highly localised signals to activation, while

GE-BOLD gave signals running from the layer of activity up towards the
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Figure 3.8: The visual stimulus used in the 3T study consisted of a radial checkerboard,
flickering at 5 Hz. Between stimulus repeats the screen returns to grey.

surface, with each layers signal containing contributions originating in lower

layers.220 For SE-BOLD, the b-value was simply set to zero.

Diffusion measurements require strong gradients, and especially for func-

tional sequences these are switched on and off rapidly. This can generate

heat, the diffusion functional scans were therefore separated in the scan

protocol by other scans.

3.1.10 Stimulus presentation

The fMRI study employed a visual stimulus in the form of a radial black-

and-white checkerboard (Figure 3.8), flickering at 5 Hz. This was designed

to correspond to the stimulus used in the study by Le Bihan et al.,30 and

a visual stimulus was chosen because it is a common activation paradigm

with a well-known pathway and well-defined region of activation.

The stimulus was created in MATLAB and displayed using functionality

provided by the Psychotoolbox (http://psychtoolbox.org/). The custom

script is included in Appendix 7.1.6. The image was projected onto a screen

visible to the participants within the scanner. The stimulus sequence was

initiated by the scanner, which was set to produce a trigger pulse at the

beginning of acquisition for each slice.

In the original study, the stimulation protocol (dartboard, 8Hz) consisted

of 3 repeats of 20s (or 16s) stimulus and a 20s (or 24s) intervals. A few

changes were made to the stimulus design of the original experiment. One

was to increase the spacing between repeat stimuli blocks. If the spacing
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time is too short, the signal may not fully return to baseline after each

section. This might affect the dynamics of the following block, and the

interval was therefore increased in an attempt to avoid this. The effect is

explored in 3.2.6 below. Another change was the addition of a 60 second

baseline before the first stimulus epoch. This was intended to provide a

solid estimate of the intensity measured in the absence of stimulus, and help

in interpreting whether the response has just been reduced, or fully relaxed

back to baseline after the stimulus is switched off. Further repetitions were

also added to enhance statistical power, with most experiments consisting

of either 10 or 15 repetitions. This should reduce the impact of motion on

the averaged response, and potential adaptation effects, which might cause

the the response time course to change for later repeated measurements, as

the subject becomes accustomed to the stimulus. In the human study the

visual stimuli were kept relatively short compared to in the animal model,

to reduce the time required for the volunteer in the scanner. Stimuli were

therefore prepared with the aim of giving statistical robustness while also

keeping overall experiment time within a reasonable duration.

3.1.11 Data collection

After an initial T2 localiser scan, a short DWfMRI setup scan was run to

perform the necessary adjustments for the later diffusion functional imag-

ing, including power calibration and shimming. By shimming prior to the

functional scans, the functional sequence timings can be kept consistent and

set to trigger the stimulus from the first acquired slice. The setup scan was

set to acquire 10 slices over the visual cortex, and acted as a positional ref-

erence for the subsequent scans. The orientation of the slice packet is shown

in Figure 3.9.

Structural scans were acquired using whole-brain isotropic T2-weighted

imaging, with voxel size 1.0 × 1.0 × 1.0 mm, FOV 256 × 256, 128 slices,

TR=2500 ms, TE=564 ms, and variable flip angle. In addition, suscepti-

bility weighted imaging (SWI) was performed in plane with the functional

scans, with voxel size 0.8×0.8×2.5 mm (0.625×0.625×2.5mm resolution),

FOV 290× 290, 10 slices and a distance factor of 20%, TR=28 ms, TE=20

ms, and flip angle 15. BOLD responses were collected using a GRE-EPI

sequence, with voxel size 3.0 × 3.0 × 3.0mm, base resolution 96, 10 slices,

TR=1000 ms, TE=30 ms, FOV 290× 290, multiband acceleration factor 2,
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3 Functional diffusion MRI in human Introduction

Figure 3.9: The location of the image slice packet, shown outlined in yellow, which is used
for functional scans. The slices are positioned over the visual cortex, using the saggital
image from the initial localiser scan as a reference. The adjustment volume is outlined in
green.

flip angle 90.

DW-fMRI was measured using a monopolar diffusion weighted imaging

sequence. To enable repeated measurements for functional imaging, the

diffusion directions had to be defined using a table of vectors, with one

vector for each repeat measurement, each vector containing values for the

diffusion weighting to be used along each of the three main axes. These

had to be created beforehand and loaded in to the program. For isotropic

diffusion, the three values were all set to
√

1/3 ≈ 0.5574 to give a unit length

vector, according to Equation 3.9. The diffusion weighting was specified by

entering the b-value in the scan card.

|v| =
√
x2 + y2 + z2

|v| = 1, x = y = z

1 =
√

3 · x2

x =

√
12

3

(3.9)

The functional diffusion sequence acquired an additional frame with b-value

0 s/mm2 which was collected at the very start of the sequence. The stimulus

was therefore adjusted for diffusion scans by adding one second (equal to

one TR of 1000 ms) to the initial baseline. The extra frame included for
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Figure 3.10: Activation maps from GLM analysis of the raw data, using a block stimulus
as design matrix. The diffusion weighted data shows very little to no activation, and voxels
within the visual cortex appear not to be significantly more correlated to the stimulus than
voxels outside the head.

diffusion weighted sequences was later accounted for in analysis.

3.1.12 Detection of activated voxels

Activation maps were generated using GLM (detailed in Chapter 2), using

a block representation of the stimulus. Figure 3.10 shows the raw activation

maps for BOLD, DWfMRI (b=0) and DWfMRI (b=1800) for a represen-

tative set of measurements from the same participant. The DWfMRI data

shows considerably smaller activation regions. Although a response can be

extracted from the diffusion weighted data, it can be difficult to distinguish

active voxels from noisy pixels which appear to correlate with the stimulus.

Activation maps can be improved for example by using spatial smoothing,

which is discussed later in this chapter.

In subsequent analysis, voxels were considered to be active if the Z-score

was above a given cut-off value, and were typically thresholded to have a

Z-score of at least 4 for BOLD and 2 for DWfMRI. The GLM results show

voxels outside the head, which are clearly due to noise. To avoid these

contributions to the signal, the activation maps were multiplied by a brain

mask, which is 1 over the brain and 0 anywhere else, this can be made for

example by thresholding the raw EPI data. To reduce the contributions

of noise within the brain region, these selections were further limited to

include only voxels within a cluster size of 3 or larger, which are more likely

to represent an active region. These steps are demonstrated in Figure 3.11.
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Figure 3.11: An example activation map from GLM analysis of the raw data, using a
block stimulus as design matrix (left). The activation data can be masked to exclude data
from outside the head, removing noise voxels (middle), and further filtered by minimum
cluster size (right), here with removal of any voxels with fewer than 5 neighbours.

The signals were further averaged across the active voxels to extract the

time series.

When performing GLM, the resulting Z-scores will reflect how well each

voxel’s time course correlates with the function representing the stimulus.

The choice of this function could therefore determine which voxels are se-

lected as active, influencing the average response extracted from the active

region. For BOLD, the heamodynamic response function (HRF) is quite well

characterised,221 and can therefore be convolved with the stimulus train to

create a GLM design matrix. This will be a closer match to the measured

signal, and accounts for the delay in response onset after the stimulus is

applied. For DWfMRI however, the diffusion response function (DRF) is

poorly defined, and is expected to differ from the HRF. As this study in-

vestigates and compares these response time courses, a block representation

was used, with the aim of avoiding bias from convolving with a response

function. There are potential drawbacks to this approach. As the DRF is

expected to have a more rapid onset, the DWfMRI signal might be more eas-

ily extracted than BOLD due to its greater similarity to the design matrix.

The BOLD signal is of greater amplitude however, and with more active

voxels than DWfMRI, so the average should still be representative. The

square input function might also affect the shape of the responses obtained,

enhancing the appearance of a rapid onset. The likelihood that this is a real

feature would increase if the signal was averaged across a significant number

of voxels. Such circularity could be especially affected by any spiking noise
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Figure 3.12: Activation maps produced from analysis of a BOLD experiment with GLM
and PCA. GLM identifies more voxels as active than PCA, even for high Z-scores, and
the activity is indicated in slightly different areas for the two methods.

which correlates to the stimulus onset. To mitigate this, time courses could

be obtained by selecting only neighbouring active voxels, as these would be

more likely to originate in a real activation.

To avoid assumptions about the response shape altogether, the data can

also be processed by principal component analysis (PCA, detailed in Section

2). PCA can be used to generate activation maps and time series like GLM,

but the time series is extracted without the need for a design matrix. Fig-

ure 3.12 shows a comparison of activation maps resulting from an example

analysis with GLM and PCA. The GLM analysis yields significantly more

activated voxels, which are reduced by thresholding the Z-score. At a high

Z-score of 10 the region highlighted as active can be seen to differ between

the two analysis methods. In Figure 3.13, the time course of the voxels

selected by PCA analysis appears more noisy than that of GLM. Following

from this, the mean response from GLM is smoother than that from PCA,

even for the lower Z-score, and plateaus more evenly towards the peak. This

could be effected by the square stimulus shape in the design matrix. GLM

however gives a time series with peaks that more reliably follow the stimu-

lus, and with a higher average amplitude. GLM was therefore used for the

remainder of the analysis unless otherwise stated.

Another option for extracting a response shape from fMRI data is to

use Independent component analysis, or ICA. ICA makes no assumptions

about the response shape or stimulus design, but can be used to separate a

multivariate signal into components. Unlike PCA, which aims to reduce the

dimensions of the data by describing it in terms of its principal components,
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Figure 3.13: The time series (left) and mean responses (right) obtained from analysing
the sample functional data using GLM and PCA. GLM provides a less noisy time course,
with peaks that more reliably track the stimulus ’on’-periods, resulting in a less noisy
mean response than PCA.
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Figure 3.14: The time series of an example BOLD signal as determined using ICA. The
method can be used to obtain a mean response function (right) without the requirement
for assumptions about the stimulus.

ICA decomposes the data into statistically independent components, finding

a maximally independent basis. ICA was performed on the BOLD and

DWfMRI data using MELODIC from the FSL toolbox.222 The results for

a representative BOLD experiment is shown in Figure 3.14. Here, ICA

produces a clear time course, and the mean response takes on a typical

HRF shape.

Although the method works well for BOLD, the DWfMRI data shows

no clear activation, this is demonstrated in Figure 3.15. The BOLD power

spectrum shows a strong component at the repetition frequency of the stim-

ulus as one would expect, with harmonic components present at multiples

of this frequency. This could not be found in the DWfMRI (b=1800) data

however. The figure shows an example power spectrum from the same par-

ticipant acquired in the same session as the BOLD data, but no clear acti-

vation could be seen for any of the components extracted, or for any level

of spatial smoothing (FWHM = 0, 4), even for participants showing strong

BOLD activation with ICA. The activation maps also indicate only noise,

even though the BOLD maps show activity localised to the visual regions.

This disparity is likely due to the smaller signal magnitude and the greater

relative noise of DWfMRI compared with BOLD. A potentially shorter and

steeper response shape could also make the DWfMRI signal harder to detect

by ICA, spanning fewer time points reducing statistical weight, and having

greater resemblance to noise. A GLM-based signal extraction was therefore

used for the functional data analysis.
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Figure 3.15: The power spectra obtained by independent component analysis of BOLD
(above) and DWfMRI raw data (below). The repetition frequency of the stimulus (14.285
Hz/1000) is highlighted by the vertical bar in the power spectrum, where BOLD shows a
strong component, while DWfMRI does not. The activation maps also show no signs of
activation in DWfMRI, but locates the extracted BOLD signal to the visual regions.
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Figure 3.16: The effect of spatial smoothing with a Gaussian kernel of varying width (0,
2, 4 and 8 left to right) for BOLD (top) and DWfMRI data (bottom). For very wide
kernels on the right, the area labeled as active bleeds over into areas without activity,
such as the CSF and skull. Smoothing also has the effect of amplifying the larger areas
of noise outside the head. For DWfMRI, smoothing brings out the very small regions of
activation, which can otherwise be hard to distinguish from noise.

3.1.13 Spatial smoothing

Spatial smoothing was performed using a 3D Gaussian kernel of different

values of FWHM (2, 4 and 8). The effect of the choice of kernel size on

the images is shown in Figure 3.16. Without further processing, The data

sets were analysed with GLM and thresholded to select voxels with a Z-score

larger than 4. From the BOLD images, it is clear that for a very wide kernel,

the area considered activated by this approach bleeds out to include areas

which are not activated, as voxels are highlighted over the CSF. Similarly,

noisy pixels which are located outside the head in this data set, are extended.

For the DWfMRI data set, smoothing appears to have the effect of bringing

out narrow active regions that might not be easily identified otherwise. As

the signals are expected to be more highly localised compared with BOLD,

smoothing could be especially beneficial in exposing such activity. In fact,

in the absence of smoothing, ’active’ voxels appear quite similar to noise

pixels.

The time courses extracted for the smoothed data sets are shown in Fig-

ure 3.17. For both measurement methods, spatial smoothing has the effect

of reducing signal intensity. This could be explained by the inclusion of more

nearby voxels with a lower Z-score, which reduces the average signal. The

overall shape of the signal is however largely maintained. For the DWfMRI

data set, the response appears to be less noisy after smoothing.

For the following analysis, spatial smoothing was applied with a kernel
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Figure 3.17: Time courses obtained from BOLD (left) and DWfMRI functional data (right)
after smoothing with Gaussian kernels of differing FWHM. The responses were extracted
from the same set of voxels, namely those labelled as active by the FWHM = 4 case for
the given sequence. For each smoothing level, these voxels were thresholded to include
those with a Z-score of at least 3.

size of 2 FWHM. This was considered beneficial particularly for the purposes

of bringing out the DWfMRI response, as this was often weak, and not easily

identified in activation maps otherwise. This should increase confidence in

the statistical significance of the voxels identified as activated.

Spatial smoothing should be considered carefully for the purposes of

comparing the time courses of the two responses. In some cases the rapid

onset became less apparent at larger kernel size.

3.1.14 Temporal filtering

The data was subjected to frequency filtering to reduce the effects of motion

on the time series. A Butterworth high-pass filter was used to remove the

low-frequency component of the full time series. The filter, with a cutoff

frequency of 0.009 rad/s and order 6, was used in all subsequent analysis.

The cutoff frequency was chosen to be significantly lower than the repeti-

tion time of the stimulus, in order to avoid affecting with the functional
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Figure 3.19: Baseline correction using a mean baseline from the initial 60 second delay,
and using a moving baseline averaged across the 10 seconds of data points immediately
preceding each stimulus trial. By accounting for a slowly drifting signal, the average
response begins more reliably follows the expected onset from and return to baseline.

response. A representative example of a filtered time series is shown in Fig-

ure 3.18. The overall low-frequency drift within the signal is removed, while

the higher frequency changes coinciding with the activation of the stimulus

are maintained.

Because the response shape was of significant interest, no low-pass fil-

tering was applied to the time series, as this would could reduce the slope

of the onset. The effect of any remaining baseline drift can be countered

by using a moving window to calculate the baseline at the relevant point

in the time series. For a repeated stimulus, the response to each trial can

be determined based on the change relative to the signal in the preceding

few seconds. This is demonstrated in Figure 3.19. The example data shows

a slow drift in signal, likely due to participant motion. Here, the initial

60 second delay contains some noise, which could affect an estimate of the

mean. The 10 seconds prior to each trial are used as a baseline, in an at-

tempt to include enough points for a reasonable mean value, but to avoid

including data from the tail-end of the previous response. As can be seen

from the figure, using a moving baseline leads to the mean response more

closely following the x-axis prior to stimulus onset, and returning to it after

relaxation, as one would expect. A moving baseline was therefore used in

the subsequent analysis.

The averaged response from repeated stimuli can be further smoothed

out using a Savitzky-Golay filter. This involves applying a successive poly-

nomial fitting over a moving window of adjacent data points, with the goal

of smoothing the data while maintaining its overall shape. This was applied

only if stated, and was set to have order 2 and frame length 5.
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3.2 Results

Initial experiments were conducted to ensure the DWfMRI signal could

be detected, and parameters were adjusted to improve the measurement.

Changes made to hardware configuration and sequence modifications are

outlined below. After testing the effect of these parameters, the sequence

and was selected and kept for the remaining experiments. Further optimi-

sations might be possible, but the sequence was accepted for the current

purposes due to time constraints and considerations of ethical and efficient

use of participant time. The data from the remainder of experiments were

pre-processed using methods as outlined above, with the various parameters

varied to determine their effect on the results. Pre-processing included spa-

tial smoothing with FWHM = 2, and frequency filtering with fc = 0.009,

unless otherwise stated.

3.2.1 Hardware

The first 9 sets of experiments were conducted using a 64-channel head coil.

The diffusion weighted data appeared not to show much activation, so a

32-channel coil was tested instead. Figure 3.20 shows a comparison of a few

examples of the activation maps determined using the two coils. The 32-

channel coil appears to show more activation in the DWfMRI data, which

is an important factor as there are so few active voxels with this method.

The 64-channel coil appears to give more artifact in the DWfMRI images,

with show a streak of brighter voxels crossing the left hemisphere, which is

not as apparent in the 32-channel data. The 32-channel coil also seemed to

provide clearer, more consistent response time courses for DWfMRI, which

are shown in Figure 3.21. Following these tests the 32-channel coil was

considered a better choice for the purposes of the study, and was used for all

subsequent experiments. The impact of coil choice specifically on fMRI has

been investigated in the literature, with differences observed dependent on

cortical depth,223 and on brain region,224 as well as having different effects

on tSNR loss observed due to acceleration.225

3.2.2 Sequence design

The first two participants were scanned using an available diffusion weighted

scan protocol based on a bipolar sequence. The data showed little to no acti-
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Figure 3.20: Comparison between BOLD (above) and DWfMRI activation maps (below)
from a 16 second stimulus using a 64-channel head coil (top) or a 32-channel head coil
(bottom). The example data sets have been pre-processed in the same way (FWHM = 8,
fc = 0.009), and the activated voxels determined with GLM using a block-design. Data
acquired with the 32-channel head coil yielded a higher number of active voxels. The
64-channel coil appeared to produce more artefacts in the DWfMRI images than the 32-
channel coil.

vation as shown in Figure 3.22. For the next participants, this was exchanged

for a monopolar sequence. With the same stimulus design, with 16 second

stimuli with 24 second spacing, the monopolar data showed similar results.

The monopolar images appeared to be of higher quality visually, and this

sequence was carried forward for subsequent scans. The key consideration

however, was that it allows the TE to be shorter.

3.2.3 The effect of the b-value

The majority of DWfMRI experiments used a b-value of 1800s/mm2, to

correspond to the original Le Bihan study.30 Data was also collected at

different b-values, (0, 600, 1200 and 1500 s/mm2) to demonstrate the ef-

fect the degree of diffusion weighting has on the response shape. A greater

degree of diffusion weighting has been suggested to ’filter out’ the haemo-

dynamic effects from the signal,30 so the higher values were expected to

reduce the influence of the slower plateau effect after the response peak, and

the time course tend from resembling the b = 0 s/mm2 response towards

the shape of the response observed using b = 1800 s/mm2. The average
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Figure 3.21: The responses collected with BOLD (left) and DWfMRI (right) using the
64-channel (above) and 32-channel coil (below). The 32-channel DWfMRI data appears
less noisy, as expected from the higher number of activated voxels, as shown in Figure
3.20.
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Figure 3.22: DWfMRI b=1800 s/mm2 activation maps acquired during a visual stimulus
with ’on’ and ’off’ timings 16 and 24 s respectively, using a bipolar (above) and monopolar
(below) sequence. The maps show very few voxels labelled as activated, even after spatial
smoothing with FWHM = 4, and these voxels are due to noise remote from the visual
regions. The signals averaged across trials appear square, with no sign of a response in
the noise, and the results are similar across participants.
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Figure 3.23: Diffusion Weighted fMRI was performed using a range of b-values (0, 600,
1200, 1500 and 1800 s/mm2). The average responses are shown with shaded errors (left),
with larger errors for the b=1800 case. Larger b-values are expected to give lower SNR.
The normalised mean responses differ most significantly in the return to baseline, with
the appearance of a post-stimulus dip for b=0 and up until b=1200, which is not present
for the higher diffusion weightings. The onset appears to become slightly steeper with
higher b-values in line with reports in the literature, a trend which is promoted by the
application of temporal filtering (right).

responses collected using different b-values are shown in Figure 3.23. The

slope of the onset does appear to become steeper with stronger diffusion

weighting, however the effect is less marked than in the results reported

by Le Bihan et al.. The increase in b-value has a significant effect on the

post-stimulus undershoot however. This could be due to a filtering out of a

part of the haemodynamic response as suggested, as the return to baseline

is more rapid as expected from a fast cellular mechanism. The response

is less weighted by the undershoot, which has been linked to an excess of

deoxy-hemoglobin.226 It might however be explained by an arterial origin,

with the diffusion weighting removing sensitivity to large draining veins.

3.2.4 Functional response time course

Figure 3.24 shows the average functional responses obtained with the BOLD

and DWfMRI (0s/mm2, 1800s/mm2) sequences for a 16 second stimulus.

The data sets have been spatially smoothed (FWHM=2) and frequency

filtered. In accordance with the original study, the diffusion weighted signal

shows a rapid onset relative to BOLD, as well as a a reduced appearance of

post-stimulus undershoot.
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Figure 3.24: The mean responses across 10 stimulus repetitions, averaged across partic-
ipants for BOLD, and DWfMRI b = 0s/mm2 and b = 1800s/mm2 (N = [5,6,6]). The
normalised responses are shown below, and the 16 second stimulus ‘on’ duration indicated
in grey. 127
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3.2.5 Temporal offset

As an indicator of the temporal offset between the DWfMRI and BOLD time

series, the responses averaged across participants were compared by shifting

the former relative to the latter. For each offset, the normalised root-mean-

squares (nRMS) of the two time series x(t) and y(t) was calculated using

Equation 3.10, where ȳ is the mean of the measured data.

RMS =

√∑
t=1 T (xt − yt)2

T

nRMS =
RMS

ȳ

(3.10)

The nRMS is plotted against offset in Figure 3.25. The error is min-

imised for a 2 second offset. This indicates the b=1800 diffusion response

preceeds BOLD as expected from Le Bihan et al.,30 however their results

show an offset closer to 4 seconds. Their results also show that for b=0 and

BOLD, nRMS is minimised for the case with no offset, meaning there is

approximately no delay between these two time series. This is not the case

for the data plotted in the right panel of Figure 3.25. Here there appears

to be an offset similar to that of b=1800. This is reflected in the b=0 time

courses in Figure 3.24, where the b=0 curve shows a smaller shoulder on the

stimulus onset.

3.2.6 Interstimulus spacing

As can be seen in Figure 3.24, the BOLD response to the visual stimulus

takes close to a minute to relax back to baseline. Here, the interval between

stimuli repeats was chosen to allow the biological response enough time to

play out and for the signal to return to baseline. By repeating the stimu-

lus more frequently than this, a later response is likely to be influenced by

the tail effects of its predecessor. After the stimulus, the vessels have be-

come dilated to allow the oxygenated blood to flow towards the active site.

Pre-dilated vessels could allow the hemodynamic changes to progress more

rapidly. DWfMRI shows less post-stimulus undershoot, and if it is largely

or in part driven by cellular rather than hemodynamic changes, frequent re-

peats might not affect the response curve in the same way it would BOLD.

However, any vascular effects might contribute to the observed rapid onset.

The Le Bihan study, as well as others,137,161,227 have employed such shorter
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Figure 3.25: The normalised RMS for different offsets of the DWfMRI time series (b=1800
on the left and b=0 on the right) averaged across participants relative to the average BOLD
response. For b=1800 the derivative of the nRMS (dashed line) crosses zero at 2.015 s,
indicating the approximate relative delay of the BOLD response.

(< 60s) intervals. A benefit of this is that more repeats can be performed

without requiring long scan times, and long intervals have been suggested

to increase the chance of other cognitive processes confounding the mea-

surements.228 To investigate the effect of inter-stimulus interval (ISI), the

experiment was repeated with a shorter spacing of 24 seconds.

Average responses from the 16 second stimulus with short and long ISI

are shown in Figure 3.26. With a shorter stimulus interval, an early signal

increase appears in the BOLD response, similar to the rapid onset reported

for DWfMRI in the literature. If the driving mechanism for the response

is assumed to be equal for the short ISI to that measured with the longer

stimulus spacing, this indicates that the later responses are affected by an

unrelaxed starting condition. The larger error bars seen for the short ISI

data are likely influenced by a smaller sample size, but could be an indi-

cation the response is less regular. Unlike BOLD, the DWfMRI response

maintains the rapid onset even when the stimulus spacing is long, clearly

showing early activation, and a faster return to baseline. This appears in

agreement with a different mechanistic sensitivity between the two methods.

Notably, the short stimulus spacing appears to exaggerate the onset, indi-

cating DWfMRI too is affected by the unrelaxed conditions, which would

indicate a dependence on hemodynamic effects linked to pre-dilated vessels.
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Figure 3.26: Comparison of GRE-BOLD and DWfMRI (b=1800) averaged across par-
ticipants (above) and normalised (below), for different inter-stimulus intervals, with long
ISI: (16s ’on’ + 54s off, BOLD: N = 16, DWfMRI: N = 11) and short ISI (16s on + 24s
off, BOLD: N = 6, DWfMRI: N = 9). All experiments are averaged across 15 stimulus
repetitions. Shaded areas indicate the on duration of the stimulus.



3 Functional diffusion MRI in human Results

3.2.7 Stimulus duration

Data was acquired using different stimulus durations of 16, 8, 4 and 2 sec-

onds. This was done to investigate the stimulus shape’s dependency on

the stimulus duration, and to look for differences in this dependency be-

tween BOLD and DWfMRI. The slow effects of hemodynamic changes was

expected to affect BOLD response shape more for stimuli over a couple of

seconds, while DWfMRI should be less affected if hemodynamics plays a

smaller role.

Simple GLM with a block design stimulus provided very few activated

voxels for the short stimuli (<= 4 seconds). With Z-scores of 4, 3 or even

2, the voxels highlighted clearly corresponded to noise, being located both

remote from the visual cortex and also outside the head, and giving temporal

responses with a very sharp box-like shape. Lowering the Z-score to 0.5 the

responses took on a more plausible shape, but activation maps highlighted

the entire dataset without noticeable activation specific to the visual areas.

In order to improve the maps and voxel selection, tests were performed

with a wider block stimulus shape as the design matrix. The stimulus was

also jittered, this involved adding a small delay (1-3 seconds) to the stimulus

train, so that each repeated ‘on’ period of the design matrix occurs slightly

after the corresponding experimental stimulus onset. This should have bet-

ter resemblance to the response shape and timing of the BOLD response as

determined by the previous experiments. Figure 3.27 shows the activation

maps of BOLD and DWfMRI data for a stimulus of 4 second duration, de-

termined using varying width and jitter. For the BOLD data, the activation

of the visual regions becomes more prominent with increased jitter delay,

which is to be expected from the slow rise to peak. Increasing the width

is also beneficial. For DWfMRI, a longer jitter time reduces the number of

active voxels, but an increased width of the stimulus improves the maps.

Time series were extracted from the data using the design matrix which

gave the best activation maps, determined by giving the greatest activation

in the visual region: J = 3, W = 2 for BOLD, and J = 1, W = 3 for

DWfMRI. The responses are shown in Figure 3.28. The BOLD responses all

show a plateau after stimulus end, with the width of this plateau increasing

for the longer stimuli. The DWfMRI signal relaxes more rapidly towards

the baseline however, with signal intensity declining sharply right after the

stimulus ‘on’ period. For these measurements, the longer the duration of
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Figure 3.27: Activation maps from a 4 second stimulus acquired using both DWfMRI
(above) and BOLD (below) in the same participant (Z = 2). The maps were generated
using a design matrix with different jitter delays (J [s]) and with extended block widths
(W [s]).
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3 Functional diffusion MRI in human Results

the stimulus, the slower this return to baseline becomes. This mirrors the

BOLD behaviour, supporting a hemodynamic contribution also in DWfMRI.

Notably, even long duration stimuli do not produce the post-stimulus un-

dershoot in DWfMRI.

3.2.8 Susceptibility weighted imaging

Susceptibility weighted images (SWI) provides a map of magnetic suscep-

tibility differences in tissue.229 In the clinic, this can be used to detect

deoxygenated blood, as well as ferritin and calcium, and to detect levels of

iron in the brain, which can provide very useful information on neurological

disorders such as multiple sclerosis, stroke, trauma and tumors, as well as

ageing.229 SWI can be used to map out blood vessels, which can be used to

spatially correlate the functional responses with the vessel structure.

Susceptibility weighted images were acquired in plane with the func-

tional scans, with more slices so that the functional data lay fully within

the region spanned by the images. After acquisition the data is automat-

ically pre-processed, generating an additional output data set in the form

of a Minimum Intensity Projection (mIP) map. These maps are used in

the clinic to better visualise the veins. The 17 mIP images were generated

by considering a rolling window of 7 of the 24 SWI slices at a time, and

determining the minimum intensities across each set.

In order to correlate values from the functional data sets and the struc-

tural MIP data set, the EPI data was transformed into the coordinate system

of the MIP data. Since the SWI and EPI data is acquired in the same posi-

tion and orientation, this could be achieved by accounting for the voxel size

and image dimensions to create a set of coordinates for each of the two data

sets, and interpolating the data from one to the other in 3D. Figure 3.29

shows the correlation of the images after processing.

Figure 3.29: The correlation between transformed EPI (green) and SWI images (purple).
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3 Functional diffusion MRI in human Results

Figure 3.30: The MIP images from three central slices, with the BOLD and DWfMRI
(b=1800 s/mm2) activation maps from a 16 second stimulus overlaid. The DWfMRI
activation covers a smaller region, has overall lower Z-scores, and appears to occur closer
to the surface.

Figure 3.30 shows the MIP images from three central slices over the

visual cortex, with the activation maps from BOLD and DWfMRI (b=1800

s/mm2) overlaid. The active regions differ visibly between the two methods,

with the diffusion weighted response here occurring closer to the surface.

This could be indicative of a regionally and biologically differing driving

force behind the measured response, however DWfMRI activation near the

surface could still be related to the large structures of vasculature present

there. The greater area of activation in BOLD is in line with expectations

from the literature.
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3 Functional diffusion MRI in human Discussion

3.3 Discussion

DWfMRI showed overall poorer sensitivity than BOLD, and this represented

a challenge in processing. The smaller signal amplitude and presence of noise

should be considered in analysis, and care taken not to lose the signal (or

induce one) by applying the same conditions as used for BOLD processing.

The responses obtained with diffusion weighting were markedly different

from standard BOLD, and changes such as a reduction in the post-stimulus

dip were apparent also when moving from a b=0 measurement to b=1800,

indicating this was diffusion-related and not explainable by the different

sequences alone.

Perhaps the most notable results in this chapter are the relatively rapid

onsets observed of DWfMRI signals relative to BOLD. Although the larger

contributions of noise in diffusion measurements complicates the analy-

sis somewhat, the discrepancies in onset between methods appears repro-

ducible. These experiments also confirmed that the stimulus design could

have a significant effect on the response shape. A short inter-stimulus in-

terval of < 54s did cause an appearance of rapid onset in the BOLD data,

which was not present for stimuli with longer intervals, however the rapid

onset persisted in DWfMRI also when the response was given sufficient time

to relax.

Certain barriers remain to researching DWfMRI. The built-in diffusion

weighted sequences on a standard scanner are not currently designed for

functional imaging, and so set-up for this takes time. Here, a structural

sequence had to be used for functional imaging by creating an external file

and loading this into the software. There were also limited options available

in the settings, which only allowed for changing the b-value and not the

sequence timings, which extended the gradient pulses into the TE. Acquir-

ing a suitable sequence and implementing it could be a multi-step process

with ethical and administrative requirements, and might require technical

expertise beyond standard operator qualifications. The lack of standards in

sequence design also means that the method might vary quite significantly

between research groups. In the literature the descriptions are also often

limited to only reporting the b-value used and not the full timings of the

sequence. As explained in this chapter, this leaves room for interpretation,

as the same b-value might be produced with different gradient pulse tim-

ings. This affects reproducibility, and might lead different groups to report
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3 Functional diffusion MRI in human Discussion

different observations for the same experimental protocol.

Unlike the 7T scanner, on the 3T scanner is intended for use on humans,

which imposes extensive additional safety measures and restricts access to

hardware. It was therefore not an option to connect to directly monitor the

hardware, for example with the CED, to further monitor the acquisition tim-

ings. Custom sequences to be installed on the scanner have to be obtained

from recognised sources and pre-approved for use in a clinical context, as

part of safety measures put in place to ensure participant and equipment

safety. This means there are limited options to adjust sequences for testing

purposes. In fact, it can be difficult to determine the exact behaviour of

a sequence. The sequence operations are described in documentation, but

insight into the scripts themselves are limited, with the inclusion of propri-

etary code. As such sequences can be purpose-built for specific applications,

there is a risk that these have been optimised in ways that are detrimen-

tal for use in other contexts, and some care should be taken to ensure the

sequence for example does not include unwanted filtering.
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4 Light transport modelling

4 Light transport modelling

OIS and SFDI both require a forward model of light propagation within

tissue in order to interpret the collected data. In OIS, Beer-Lambert law

estimation of chromophore concentrations requires an estimate of the path

length light has travelled before being remitted back from the tissue and

captured by the camera, and the absorption will be wavelength dependent.

SFDI requires a pre-calculated look-up table to determine the contributions

of absorption and scattering from diffuse reflectance measurements. In both

cases a well-defined model is needed to determine the diffuse reflectance for

given tissue optical properties.

Properties of photon transport in tissues can alternatively be estimated

analytically using radiative transfer theory, however this is complicated

to solve without approximations. The diffusion approximation of radia-

tive transfer can be used to determine diffuse reflectance,230 however it has

drawbacks. The diffusion approximation is typically less accurate with an

increase in absorption coefficient and with a decrease in scattering coeffi-

cient.231 Several tissues have albedos within this lower range, which means

the accuracy of the approximation could be questioned.232 It also breaks

down close to the radiation source.233 For the applications in this thesis,

it is therefore necessary to build a forward model for determining diffuse

reflectance. This can be achieved with a Monte Carlo simulation of light

transport through the tissue.234

This chapter introduces the optical properties of tissues which impact

on photon traversal through them, and outlines the simulation of this light

transport and some results this can provide.

4.1 Tissue optical properties

The way in which light interacts with a medium is dependent on the medium’s

optical properties. These properties include absorption and scattering, as

well as the refractive index and the anisotropy, which influences the direction

of scattering. The refractive index, denoted n, is a measure of the velocity

light will travel through a medium, v, relative to the speed of light in vacuum

c, with n = c/v. It is useful for determining how light is bent when moving

from one medium to another (Figure 4.1). If a photon travels through mul-

tiple tissue layers, or enters or exits a tissue, the relative refractive indices
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4 Light transport modelling Tissue optical properties

Figure 4.1: Left: Light passing from air into a medium with a higher refractive index,
causing the trajectory of the photon to change. Right: The extinction coefficient spectra
of chromophores common in tissue. Oxy- and deoxyheamoglobin are significant absorbers
in the visible range shown in the inset. Other chromophores such as cytochromes also
have high extinction coefficients, but these are present in only comparatively minor con-
centrations.

therefore influences the trajectory.

Absorption occurs when a photon’s energy corresponds to the energy

gap of a molecule in the medium; the photon energy is transformed into

internal energy in the absorber, exciting it. In tissues, key absorbers include

both the oxygenated and deoxygenated forms of haemoglobin (Figure 4.1),

with smaller contributions from water, melanin and lipids, depending on the

tissue composition. Absorption is quantified by the absorption coefficient

µa[cm
−1], which is defined as the probability of the photon being absorbed

per unit of infinitesimal path length.

Scattering occurs when the light trajectory is changed due to nonuni-

formities within a medium. It can be thought of as being caused either by

particles or regions that have a different refractive index to its surround-

ings.235 Like with absorption, the scattering coefficient µs[cm
−1] gives the

probability of a scattering event occurring as a function of distance. Scat-

tering is often approximated using Mie theory or Rayleigh scattering. Mie

theory is used when the atomic or molecular particles the light scatters off

are close in size to the light’s wavelength, if particles are much smaller, under

around a tenth of the wavelength, the Rayleigh regime is used.

After scattering, the new direction of the photon is given by the scatter-

ing phase function, which provides the probability of scattering in a given

direction relative to the original trajectory. This function is typically de-
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4 Light transport modelling Tissue optical properties

Figure 4.2: Left: a schematic of a scattering event, with the angles of deflection θ and
azimuthal angle phi. Right: The Henyey-Greenstein phase function for various values of
the anisotropy factor g.

noted p(θ, φ), where the angles θ and φ refer to the deflection angle and

azimuthal angle of scattering respectively, as shown in Figure 4.1. However,

when the tissue is thick enough that multiple scattering events occur, the

scattering structures within the tissue are considered randomly oriented.

The φ component is therefore averaged, and its contribution can be ignored,

and when the θ component is averaged by multiple scattering, the effect can

be described g =< cosθ >, the dimensionless anisotropy factor.235 Scatter-

ing can be represented by the Henyey-Greenstein scattering phase function,

Equation 4.1. In Figure 4.2, this function is plotted for different values of g,

which can take the values −1 ≥ g ≤ 1. A g value close to 1 indicates mainly

forward scattering, while isotropic scattering has a value of 0.

f(θs) =
1

4π

1− g2

[1 + g2 − 2g · cos(θs)]
3
2

(4.1)

When significant scattering occurs, this is sometimes denoted in terms

of the reduced scattering coefficient µ′s = µs(1 − g). This describes the be-

haviour in the diffusion regime, when multiple scattering events causes light

to diffuse through the medium.235 Biological tissues are optically turbid,

with a great degree of scattering occurring with thicknesses larger than the

mean free path 1/µs, which is typically 100 µm or less.235

The absorption and scattering coefficients are sometimes combined to

give µt, the total interaction coefficient. Tissues are also sometimes de-

scribed by the albedo, which indicates the fraction of extinction which is
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caused by scattering.

µT = µa + µs (4.2)

albedo = µs/(µa + µs) (4.3)

The overall effect of scattering and absorption on reducing the light

intensity over the distance travelled is referred to as attenuation. Depending

on the application or field of study, attenuation might be described in terms

of the decadic attenuation coefficient, µ10, or the Napierian attenuation

coefficient, µ, where

µ10 =
µ

ln10
(4.4)

This is important to be aware of, as the choice is not always made clear in

various literature.

The light transport through tissue can be modelled using a Monte Carlo

Simulation; as the µa, µs and scattering angle are all represented by prob-

ability distributions, these can be selected for each step based on a random

number, until the photon becomes absorbed, remitted or reaches a boundary.

By propagating a series of photons through a model tissue, it can generate

a probability distribution of the escaped photon’s path lengths.

4.2 Monte Carlo methods

The Monte Carlo method is a statistical approach to approximating the

solution to a mathematically complex problem by using random numbers.

They can be used for either probabilistic or deterministic problems. In the

first case, the aim is to find a result of a random process. This is simulated

by picking random numbers which enact the random process, and the results

is found with the observed random numbers. In the second case, the problem

can be formulated theoretically, but the solution can not be found directly;

the theoretical steps involved in the process can then be solved with a Monte

Carlo simulation.236 First formulated in 1949 by Metropolis and Ulam,237

the method has found a wide range of applications in problems requiring

sampling, estimation or optimisation. In chemistry, it has been used to

study kinetics in chemical processes,238 and to develop materials such as

those used in organic LEDs,239 as experimenting on models of the material

rather than physical samples is often a cheaper and less time-consuming

approach to optimise its parameters. Monte Carlo techniques also have

141



4 Light transport modelling Monte Carlo methods

N = 10000 N = 100000 N = 1000000
π = 3.1572 π = 3.1468 π = 3.1417

Figure 4.3: Monte Carlo estimates of π. The more points are sampled within the square,
the closer the estimate becomes to the true value, which is 3.1416 to four decimal places.

applications in finance,240 one example is in risk analysis, and in statistics,

where it for example can be used in the bootstrap method, to simulate

values such as confidence intervals.241 It can even be used as to perform a

tree search, to solve for example the classical traveling salesman problem.242

Monte Carlo simulations rely on a large number of samples. The Law of

Large Numbers states “As the number of identically distributed, randomly

generated variables increases, their sample mean approaches their theoretical

mean.” This can be demonstrated by a simple example of a Monte Carlo

estimate of π. Figure 4.3 shows a quadrant of a circle with radius 1 inside

a square with sides of length 1. If a random point is picked inside the

square, the probability of a point being within the quadrant is π/4. For a

large number of random points, the fraction of points which fall within the

quadrant will be close to the expectation value. Through repeated sampling,

ie. as n → ∞, the estimate of π will become closer and closer to the

true value. This reliance on repeated measurements is a reason why many

Monte Carlo simulations are inherently parallelisable. When each run of the

experiment is independent on the others, they can be run simultaneously

with the use of parallel computing, significantly increasing efficiency.

Monte Carlo simulations can be used to determine a physical quantity

which is equivalent to the expected value of one or several random vari-

ables. Light transport is an example of a deterministic problem, where the

processes of absorption and scattering can be formulated mathematically,

however resulting properties of the photon’s trajectory can not be calcu-

lated directly from these formulas. The random variable is represented by

multiple independent samples, and the expected value is found by averag-
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Figure 4.4: Estimated value of π as a function of the number of points used in the estimate,
with the true value represented by the horizontal line.

ing these samples. Photon propagation can be expressed in the form of

probability distributions which describe the step size of photon movement

between sites of photon-tissue interaction, and the angles of deflection after

a scattering event.243 By randomly sampling this distribution each time,

the distribution of results after a large number of samples should reflect the

expected value. MCS was first used to study light transport in biological

materials in 1983.244 Later work introduced anisotropic scattering,245 and

in 1995 Wang and Jacques implemented a Monte Carlo Multi-Layered pro-

gram (MCML), which allowed a tissue model to be defined by layers with

individual tissue optical properties.243 The simulation implemented in this

project is based on the equations used in their work.

4.3 Monte Carlo Simulation

The scripts were written in MATLAB and are included in 6,??. Figure 4.5

shows the simulation model. The incident light is represented by an infinitely

narrow photon beam which is directed perpendicularly onto the surface of

a tissue. The tissue can consist of multiple layers which are stacked parallel

to the x,y-plane, each with its own optical properties.

A layered model is used because it allows for assigning different opti-

cal properties depending on the tissue depth. With the layered structural

classification and depth dependent vascular density of the brain discussed

in Chapter 1, a layered model should provide a more accurate description

of the brain optical properties than a homogeneous slab.
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Figure 4.5: The Monte Carlo simulation models a photon beam which is perpendicularly
incident on a tissue whose surface is aligned with the X,Y-plane. The tissue is intended
to be infinite, but to save computation time a photon will be considered to have escaped
the tissue if it has travelled too far to be likely to contribute to the remitted light in the
region of interest. The maximum depth d of the tissue and the maximum radius r which
define the model boundaries are therefore chosen to be large enough not to interfere with
the simulation, but small enough to remain relatively efficient. The tissue can be defined
as consisting of multiple layers with the boundaries between them parallel to the surface.
On the right of the figure, the photons’ simulated paths are shown.

In the simulation, layers are defined by the layer thickness, anisotropy

factor, refractive index and absorption and scattering coefficients. The dif-

ferent components that make up brain tissue, such as grey matter, white

matter, CSF and blood, can be included in this model by accounting for

their properties.

Photons moving through the tissue are treated as classical particles.

Statistical sampling is used to determine the step size a photon will move

before an interaction occurs, and the angles associated with a change in

direction after it undergoes scattering. It is also used to determine whether

it internally reflects or transmits at a boundary, and whether a photon with

a small weight will be stopped or not.

Figure 4.6 shows a flow diagram of the simulation. The photon starts

out with unit weight w, which is reduced by specular reflectance Rsp when

it enters the tissue. The step size s is statistically sampled, and as long as

the step size is small enough to fit in the current layer, the photon is moved

around the layer, undergoing absorption and scattering events after each

step. The absorption reduces the weight. If the photon hits a boundary, it

will undergo transmission or internal reflection depending on its incidence

angle. After each step the step size is reset. The photon will continue

to propagate until it leaves the tissue or the weight is 0. If the weight

is sufficiently low, the Russian roulette technique determines whether the

weight will be set to zero or increased. As each photon terminates, its data
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Specular reflectance
W ← W - Rsp

Initialise step size
S ← ln(Ɛ)

Find distance d to 
layer boundaries

S ≤ d × μT?

Move to boundary
Boundary interaction?

Move S / μT
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Reverse Z-
direction

New photon
W = 1, S = 0

Find α𝑖 , α𝑡
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Internal reflection Transmission
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No
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No

Yes

S = 0?
No
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Figure 4.6: A flowchart of the Monte Carlo simulation used in this project.
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is stored and the next photon is initialised.

The photon is represented by a class, which keeps track of the photon

weight, its current coordinates and directional cosines, its total path length

travelled through each tissue layer, and the photon activity, which indicates

whether the photon is propagating, has stopped, or has escaped the tissue.

The tissue is represented by a structure, which has entries for each layer

containing its thickness, absorption coefficient µa, scattering coefficient µ′s,

refractive indices n, and anisotropy factor g.

In order to reduce computation time, a set of boundary conditions is set

for how far a photon can travel. A maximum radius from the Z-axis is set to

terminate photons that travel too far away from the source, these photons

are unlikely to contribute to the light captured by the camera. There is a

depth boundary, as a photon can only travel as deep as the lower limit of the

last tissue layer. In some cases where only remitted light will be considered,

for example when determining path length distributions for OIS, it can also

be beneficial to set a depth boundary within the tissue model to terminate

any photon that travels too deeply to be likely to affect the remitted light.

In order to validate the simulation, predictions of diffuse reflectance and

transmittance were calculated and compared with the results of Wang et al,

as shown in Table 1. The tissue had optical properties relative refractive

index n = 1, µa = 10 cm−1, µs = 90 cm−1, anisotropy factor g = 0.75

and thickness 0.02 cm. The results are based on 10 simulations of 50 000

photons each.

Table 1: Simulation results of diffuse reflectance (Rd) and total transmit-
tance (Tt) from turbid medium. The results from the MCS are similar to
the values published by Wang et al.

Simulation Rd average Tt average

Wang et al 0.09734 0.66096
MCS 0.09761 0.66112

Simulations were run on a high-performance computing cluster to speed

up processing. Parallel processing allows several CPUs to work on the sim-

ulation simultaneously. Because each photon’s life cycle is independent of

the other photons, they can be simulated in parallel, and the results of indi-

vidual runs can be combined. Since the simulation results are additive, one

simulation can be divided into several independent smaller simulations and

processed in parallel on different CPUs. For example, instead of running a

146



4 Light transport modelling Path length distribution

single simulation for 10 000 000 photons, 50 simulations of 200 000 photons

each can be ran simultaneously and their results combined, reducing the

overall simulation duration to around one 50th of the time.

4.4 Path length distribution

The Monte Carlo simulation can be used to determine how far a photon

has travelled through the tissue before being remitted. After each move the

photon makes, the distance travelled between interaction sites is recorded

into the photons path length for the given tissue layer. If the photon is

remitted back out from the tissue, the distance it travelled is added to an

array, along with the current photon weight. The results from the simula-

tion are binned to provide a function of the number of photons travelling a

given path length. This is then normalised to give a path length probability

distribution (Figure 4.7).

Simulations were run to investigate the dependency of the path length

distribution on the input optical parameters, and its sensitivity to each. The

model was set to mimic brain tissue, and had optical properties g = 0.85 and

n = 1.4. The results are shown in Figure 4.7. The maximum depth of the

tissue was set to 50 mm, and the radial limit for the photons propagation in

the X,Y-direction was set to 10 mm. The boundary conditions were chosen

so that photons would terminate by absorption, lateral escape or remission,

to avoid artifacts from photon escape through the deep limit of the tissue,

which is assumed to be negligible in the real system. For each experiment, 20

simulations were performed in parallel, each with 50 000 photons, yielding

a concatenated result based on 1000 000 photons. The path length results

were divided into 100 bins.

The results from simulations at various µA values show that a larger

absorption coefficient reduces the average depth the photons reach before

remitting, and indicate the path length is quite sensitive to this parameter.

4.5 Point-Spread Function

The tissue response to incident light can be described by a point-spread

function (PSF). This is a concept frequently used in optics to characterise

the response of an imaging system to a point source. The PSF generated

by the simulation indicates the probability of photon escape as a function
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Figure 4.7: Path length distributions as a function of the absorption coefficient µa (left)
and of the anisotropy factor g (right). Increasing µa increases the probability of photon
absorption, so remitted photons are less likely to have travelled far through the tissue. A
larger g value leads to a flattening of the curve, as the increased forward scattering causes
photons to travel deeper before potentially being remitted.

of radial distance from the point of incidence. The Monte Carlo Simulation

was set up to produce a PSF from the diffusely reflected light. If a photon

escapes back out from the surface of the tissue, the (x,y)-coordinates of

the point where it was remitted are stored, along with the current photon

weight. Figure 4.8 shows a PSF generated from a simulation of a sample

tissue.

SFDI measures the modular transfer function (MTF), which is the Fourier

transform of the PSF. For SFDI analysis, it is beneficial to express the dif-

fuse reflectance as a function of radial distance (Rd(ρ)). The tissue surface

in the simulation was divided into bins along the radial axis ρ, defined by

concentric rings originating at the z-axis and with equal spacing (Figure

4.8A). Following the work by Wang et al.,243 the indices of the radial bins

were calculated using Equation 4.5 to minimise error, here ∆r represents

the bin size.

r = [(i+ 0.5) +
1

12(i+ 0.5)
]∆r (4.5)

Upon escaping, the photon’s distance from the z-axis was calculated from

its coordinates, and its weight added to the corresponding radial bin. At

the end of the simulation, the data is normalised (4.8) by dividing each bin

by the area of the surface ring, given by Equation 4.6.243

∆a = 2π(i+ 0.5)(∆r)2 (4.6)
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Figure 4.8: Left: 3D view of example PSF data. Right: Radial bins used to normalise
PSF, distributed on a 25x25 mm grid. The colour bar shows the radial distance [mm].

4.6 Diffuse reflectance

The diffuse reflectance Rd(k) can be determined by a Fourier transform of

the spatial point spread function Rd(ρ) for the given optical properties. If

the PSF Rd(ρ) is radially symmetric, this is a 2-D Fourier transform in the

x-y plane, which can be reduced to a 1-D Hankel transform of order zero.

This is calculated as in Equation 4.7, where J0(kρ) is the zeroth-order Bessel

function of the first kind. Since ρ is binned into n finite intervals ∆ρi, the

integral can be expressed in terms of the sum in Equation 4.8.38

Rd(k) = 2π

∫
ρJ0(kρ)Rd(ρ)dρ (4.7)

Rd(k) = 2π

n∑
i=1

ρiJ0(kρi)Rd(ρi)∆ρi (4.8)

Cuccia et al38 present the diffusion approximation for calculating the

spatial frequency dependence of diffuse reflectance at given optical proper-

ties. They compare this with results from the Monte Carlo predictions used

in SFDI analysis, as shown in Figure 4.9. To validate the calculations, this

figure was replicated, using the diffusion approximation calculated for the

same transport lengths. Here l∗ = 1/µtr is the transport mean free path,

where µtr = µa + µ′s, and for each curve µ′s/µa = 100. The bin size ∆r was

set to 0.09 mm to compare with Cuccia et al. There are minor differences

between the two figures, which are mainly noticeable for higher spatial fre-

quencies. It is unclear why this is the case, as the optical properties and

the bin size used were the same. The image analysis relying on the dif-
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fuse reflectance is however performed at low spatial frequencies (typically

0− 0.3mm−1), so the results should still be largely comparable.

Figure 4.9: Cuccia et al present simulation results of diffuse reflectance dependence on
spatial frequency, which correspond with the diffusion approximation

4.7 Look-up table

Analysis of SFDI image data involves determining optical properties from

diffuse reflectance data. For each point in the image, reflectance values from

two frequencies, fx and 0mm−1, are used to determine the optical properties

(OP) µa and µ′s. Since the relationship between these values is calculated

via a forward model which determines Rd from OPs, the OP values need to

be found through interpolation.

The analysis is typically done using a pre-computed look-up table (LUT).

Figure 4.10: Diffuse reflectance dependence on spatial frequency, replicated from Cuccia
et al.
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Figure 4.11: The process used to generate the LUT, shown by Angelo et al. in their
paper.246 Monte Carlo simulations provide a map of (RAC ,RAC) as a function of (µa,µ′s).
This data is resampled at linear intervals of diffuse reflectance. They finally determine an
analytic fit of the resampled LUT, which can be evaluated for given (RAC ,RAC) values.
For this thesis, the resampled LUT was used directly, without the analytical fitting.

Figure 4.11 demonstrates this process, as proposed by Angelo et al.246 The

Monte Carlo simulation can provide the Rdk and Rd0 values for a range of

relevant optical properties. This provides a table where each set of [µa, µ
′
s]

values acts as indices to the corresponding reflectance values. By interpo-

lating the data linearly with respect to Rdk and Rd0, a new table can be

generated. Here, the OPs can be found using the reflectance values as in-

dices. The image values can therefore be rounded to the nearest spacing and

found directly, and the values can then be calculated without the need for

fitting procedures during analysis of each individual data set. This table can

also be used to fit a function, on the form [µa, µ
′
s] = f(RdkAC,RdkDC).246

In their paper, the group achieved 0.2% error in µa and 0.09% error in µ′s

with the linear Rd LUT and 1.9% error in µa and 2.8% error in µ′s from 2-D

fit LUT. For this thesis, the Rd-LUT was sampled directly, without the use

of a fitting function.

In order to validate the method, a Look-up table was generated using

the diffusion approximation as a forward model. Input optical properties

µa = [0.0001, 0.45] and µ′s = [0.001, 4.5] were chosen to cover the range typi-
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Figure 4.12: The errors in optical properties when sampling the generated LUT, as differ-
ence from the true value plotted against the albedo. For µa errors are smallest close to an
albedo of 0.9, as this is the typical value for input properties used to generate the table.
For µ′s, errors are fairly small consistently.

cal for tissues, and to reflect typical tissue albedo, µ′s ≈ 10µa. Rd(µa, µ
′
s, fx)

was determined for N absorption coefficients and M reduced scattering co-

efficients for fx = 0.1, giving a N ×M matrix. Different matrix sizes were

tested by increasing the number of input optical property pairs. This data

was linearly interpolated to generate two new data sets linear with respect

to Rd, one for absorption and one for scattering. The new indices Rd were

equally spaced over the range 0 to 1. This allows for indexing the data by

rounding to the nearest multiple of the spacing distance.

The errors in the fit were determined by selecting optical property pairs

[µa, µ
′
s], determining the [Rd(0), Rd(k)] values by the diffusion approxima-

tion, and comparing the look-up values at Rd(0), Rd(k) with the input OP

pair. The error of the fit for table based on 500µa×500µ′s is shown in Figure

4.12. This shows that estimates of µa are most accurate for a 0.9 albedo,

which is achieved when 9µa ≈ µ′s. This is unsurprising because this is the

typical albedo of tissues, and the input values used to generate the fit are

chosen within the typical OP range. Errors varied with the input table size,

ranging from 15% at a size of 100× 100, to 1.5% at 1000× 1000.

4.8 Absorption estimates for light therapy

The developed Monte Carlo simulations were used in conjunction with a re-

search study on the therapeutic effects of biophotomodulation (PBM). The

study aimed to investigate if the application of light onto the back of the

skull could have neuroprotective benefits, as this has been hypothesised to
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stimulate mitochondrial production of ATP. As part of the experimental

protocol, 31P MRI was used to detect any changes in the rates of ATP pro-

duction before and after light treatment. The simulations of light transport

could provide an estimate of the amount of externally applied light which is

able to reach the grey matter, where the mitochondrial cytochrome-C oxi-

dase is thought to absorb it. This can help indicate whether photons even

reach the sufficient depth for such a process to be likely to occur, and can

show how the grey matter absorption varies with wavelength, which could

influence the choice of light source.

4.8.1 Motivation

It has been suggested that red/near infrared light can be used to improve

brain cell function in various neurological or psychological conditions such as

Alzheimer’s Disease,247,248 brain injury,249 Parkinson’s disease,250 depres-

sion and anxiety251,252 and age-related cognitive decline.253 These condi-

tions cause neuronal mitochondria to undergo oxidative stress, increase cell

death and reduce the production of adenosine triphosphate (ATP). PBM

has been shown to improve mitochondrial function and ATP production

in animal models of ageing and neurodegenerative disease,254,255 however

clinical applications have been limited, as the potential mechanism of PBM

is not clear. A leading theory suggests that the light can cause excitation

of cytochrome-c oxidase within the mitochondria, which in turn increases

ATP production.256,257 It has however been shown that blue light, which is

strongly absorbed by cytochrome-c oxidase, actually reduced ATP produc-

tion.258

To investigate the effects on metabolic rate of the PBM technique, ten

participants with no known neurodegenerative conditions were scanned with
31P Magnetic Resonance Spectroscopy (MRS) to measure ATP metabolism

in the brain before and after treatment with light, applied for 20 minutes

each day for four days. To complement these experiments, Monte Carlo

simulations were run for a layered model tissue parameterised to represent

the human head. The simulations could provide an estimate of the amount

of externally applied light which is able to reach the grey matter where the

mitochondrial cytochrome-C oxidase is thought to absorb it. This provides

an indication of whether photons reach sufficient depth for such a process to

be likely to occur. It can also show how the grey matter absorption varies
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with wavelength, which could influence the choice of light source.

4.8.2 Tissue optical properties

The tissue model consisted of five layers; skin, skull, CSF, grey matter and

white matter. Tissue layer thicknesses were similar to estimates from other

models.259 The thickness of skull however, was initially set to a low estimate

of 3 mm, this is because measured values are very dependent on region (and

age and gender),260 and the back of the skull is generally thinner. Refractive

indices were all set to equal values as has been done in previous simulations,

and the anisotropy factor g were similar to previous models.259 Wavelength

dependent absorption and reduced scattering parameters were estimated for

each layer using reported literature values.

Table 2: Tissue layer parameters used in comparative simulations of indi-
vidual layers and a combination of these layers

Property Skin Skull CSF Gray White

thickness [mm] 3 3 2 4 20
refractive index 1.365 1.365 1.365 1.365 1.365

g 0.88 0.94 0.999 0.96 0.87

Scattering properties of skin were calculated by combining the effects of

Mie and Rayleigh scattering.261

µ′sMie = 2 · 105 · λ−1.5 (4.9)

µ′sRayleigh = 2 · 1012 · λ−4 (4.10)

µ′sskin = µ′sMie + µ′sRayleigh (4.11)

The µ′s value for CSF was set to a constant 3 · 10−4 for all wavelengths.

Studies have indicated values between 0 and 0.3 mm−1 will not significantly

affect path lengths.262 The scattering properties of skull, grey matter and

white matter were calculated using Equation 4.12. Jacques (2013) provides

an overview of tissue optical properties as determined in the literature.263

The data is converted into fitting parameters according to this equation,

where the wavelength (λ) is normalised by a reference wavelength of 500

nm. The value b is referred to as the scattering power, giving the wavelength

dependence of µ′s and a is the value of µ′s at 500 nm, which is used as a
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scaling factor. The listed typical a and b values for bone, brain and white

matter were used to determine µ′s for skull, grey matter and white matter

respectively.

µ′s = a(
λ

500(nm)
)−b (4.12)

The µa values for skin were estimated using Equations 5-8.261 These

provide an estimate for both epidermal and dermal absorption. Epidermal

absorption is calculated from melanine absorption and a skin baseline ab-

sorption. The melanine fraction was set to 0.04, which is a medium value

for the light-skinned range, and likely to be suitable for the participants in

the study. Blood fraction in skin (bf ) was set to 0.03, this is typically 2-5%

in well-perfused tissue.261 Epidermal thickness (depi) was assumed to be 0.1

mm, compared to the 3 mm thickness of skin (dskin), the ratio was used to

weight the result.

µabaseline[mm
−1] =

0.244 + 85.3
−1λ−154

66.2

10
(4.13)

µaderm = bf · µablood + (1− bf ) · µabaseline; (4.14)

µamelanine[mm
−1] =

(6.6 · 1011) · λ−3.33

10
(4.15)

µaepidermal[mm
−1] = fmelanine ·µamelanine+(1−fmelanine) ·µabaseline (4.16)

µaskin =
depi
dskin

· µaepi +
dskin − depi

dskin
· µaderm (4.17)

The µa value for skull was set to a constant 0.04 mm−1 for all wavelengths.

CSF absorption was assumed to be similar to that of water. Grey matter

and white matter µa was estimated from extinction coefficients and concen-

trations of oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), cytochrome-C

oxidase (CytC-Ox), cytochrome-C reductase (CytC-Red) and water. The

amounts used are listed in Table 3. These are based on previously esti-

mated concentrations,264 but adjusted to fit the water content and blood

content difference between white and grey matter.265 The estimated µa and

µ′s spectra for each tissue layer are shown on the next page.
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Figure 4.13: The µa and µ′s spectra used for the different tissue layers in the base light
transport simulation. The spectra were generated by considering the relative contributions
from the different tissue components, using optical property estimates from the literature.
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Table 3: Chromophore concentrations used in predictions of µa spectra of
brain tissue

Grey matter White matter

HbO2 [µM/L] 88.037 47.40
HbR [µM/L] 37.73 20.32

CytC-Ox [µM/L] 8 8
CytC-Red [µM/L] 1.36 1.36

Water [ml/g] 0.82 0.72

4.8.3 Results

The five layer simulation consists of several separate experiments which cover

the wavelength range 350-1000 nm in increments of 5 nm. Each experiments

is run on 100 nodes, with 500 photons per node. This gives 50 000 photons

per experiment. At lower absorption the jobs are likely to have longer run

times, and the photon number was therefore limited to reduce computation

time.

Depth dependent absorption results are shown in Figure 1 and the cy-

tochrome absorption in grey matter is shown in Figure 2. Absorption values

are expressed as the fractional photon weight (fpw) of the photons incident

onto the tissue surface which are absorbed at a given depth.

The simulation was run for different tissue parameters to evaluate their

impact on the grey matter absorption, as well as how this effect was reflected

in the amount of light absorbed by Cytochrome-C. Skull thickness varies

quite significantly by region. A typical maximum skull thickness was selected

as 8 mm using the data from Sawosz et al.260 The CSF thickness would

vary with the shape of the cortical surface. Sulci depth and width could be

affected by age, but as an estimate large sulci are around 16 mm deep.266

The thickness of the CSF layer was increased from 2 mm to 7 mm to indicate

the effect this would have on absorption.

Figure 4.17 shows the results on changing the melanin fraction in skin,

the blood fraction in the grey matter, the thickness of the CSF layer, and the

thickness of the skull. The results are compared with the base simulation,

which uses the tissue parameters estimated from literature values, and the

layer thickness informed by the structural MR data from the participants.

The most significant effect is seen with changing the melanin fraction

of skin. For the high end of the range of melanin, ie darker skin tones,
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Figure 4.14: Absorption is shown as a function of depth and wavelength for the five layer
model. The large absorption in skin in the 350-450 nm range prevents most light from
reaching the skull (3-6 mm). Above this limit light starts to be absorbed also in the grey
matter.

Figure 4.15: Grey matter absorption. Light beyond 450 nm can reach through skin and
skull and become absorbed in the grey matter, but this makes up less than 1% of the
incident light.
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Figure 4.16: The mean grey matter absorption (left) was multiplied by the fractional µa
of cytochrome-C oxidase in grey matter (middle) to give the fraction of incident photon
weight absorbed by cytochrome in the grey matter (right).

the Cytochrome-C absorption is reduced by about half at the peak at 820

nm, and by two thirds at the target wavelength of 670 nm used in the

study. This is an important consideration in the design of photobiomodu-

lation treatment, as the potential impact of a given light exposure protocol

will vary significantly depending on skin tone. This is an important factor

also in other clinically relevant optical techniques, and racial bias in pulse

oximetry and functional near-infrared spectroscopy has recently come into

focus.267,268

The blood fraction has no significant effect on absorption, and the effect

of CSF thickness is relatively minor, and mostly seen towards higher wave-

lengths. The increased skull thickness however, reduces the absorption as

expected. As skull thickness varies quite significantly by region, the place-

ment of the bulb and the point of light incidence will likely have an effect

on the Cytochrome-C absorption.

4.8.4 A mesh-based light transport simulation

The algorithm implemented by Wang et al. has been validated by numerous

investigators using phantoms with known optical properties, and is regarded

as the gold standard for modelling photon propagation in tissues.269 The

model is limited however, to a tissue model consisting of layers with parallel

boundaries between them. In reality the layers might have different thickness

in different regions, and they could feature curved or uneven surfaces.

This would have an effect on the photon trajectories, as the angle of a
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tissue boundary relative to the photon direction influences the likelihood of

transmission. In the case of the brain surface, the presence of for example

sulci and gyri might affect the paths of photons to different extents depend-

ing on the photon entry point. Sulcal width tends to increase by age, but

is typically 2-3 mm.270 This is well within the horizontal spread of pho-

ton absorption events found in the layered simulation results, with photons

reaching up to 30 mm from the photon trajectory.

A 3D MCS was developed by Jacques et al. in 2013 based on the MLMC

by Wang et al. This model, mcxyc, is available online271 and performs the

simulation in 3D voxel data. The medium is defined as a cube with each

voxel containing an integer to denote which tissue it belongs to. Although

supporting a more nuanced assignment of tissue properties in three dimen-

sional space, the model assumes matched boundaries, with tissues sharing

refractive indices, and does not account for boundary surface orientation.

A new simulation was written by extending the layered simulation, with

the goal of accounting for three dimensional tissue features. This method

uses a model where each volume is represented by a triangle mesh of the

volume surface, and the trigonometric calculations were updated to account

for the tissue boundary orientations. Adjustments made to the code included

1) collision tests for photon intersecting with a boundary, 2) calculation of

the updated direction of a photon after reflection or refraction with the

surface and 3) indexing of absorption events by their layer as well as by the

coordinates.

4.8.5 Implementation

In the new simulation, the z-coordinate can no longer be used to detect

when the photon reaches a boundary. Instead, a test is done by checking for

ray-triangle intersections between the photon’s trajectory and the triangles

making up the mesh. This approach follows the Möller-Trumbore algorithm

introduced in 1997.272

The position of a point in the plane of a triangle can be described in

terms of its barycentric coordinates. The barycentric coordinates defines a

point’s position in reference to a simplex (such as a triangle in 2D space),

and can be thought of as a weighting towards the simplex vertices. If the
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triangle has vertices v1, v2 and v3, the position p is given by

p = w · v1 + u · v2 + v · v3 (4.18)

where w, u and v ≥ 0 are the barycentric coordinates. These have the

property that w + u + v = 1, so there are actually only two degrees of

freedom, and the point can be uniquely described by two of the coordinates.

The point can therefore be expressed more simply:

p = (1− u− v)v1 + u · v2 + v · v3
= v1 + u(v2 − v1) + v(v3 − v1)

(4.19)

A ray intersecting the triangle has origin o and direction ~d. The point

of intersection p will be given by

p = o+ t~d (4.20)

where t gives the distance from the ray’s origin to the intersection point.

Combining this with Equation 4.19, the variable p can be replaced with

the point’s coordinates expressed in terms of barycentrics, which allows the

equation to be rearranged. By doing this, the unknown scalar variables t, u

and v can be separated out.

o+ t~d = v1 + u(v2 − v1) + v(v3 − v1)

o− v1 = −t~d+ u(v2 − v1) + v(v3 − v1)

[
−~d (v2 − v1) (v3 − v1)

]tu
v

 = o− v1

(4.21)

This simplified expression can be solved using Cramer’s rule, which uses

the properties of a determinant, denoted by vertical bars, to solve a set of

linear equations. Let T = o− v1, E1 = v2 − v1 and E2 = v3 − v1.

tu
v

 =
1

|
[
−~d E1 E2

]
|

 T E1 E2

−~d T E2

−~d E1 T

 (4.22)
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Using the solution for the value of a 1x3 matrix, given by

|ABD| = −(AxC) ·B = −(CxB) ·A (4.23)

Equation 4.22 can be written on the formtu
v

 =
1

(~d× E2) · E1)

(T × E1) · E2

(~d× E2) · T
(T × E1)~d

 (4.24)

When performing the calculation, the cross products can be pre-computed

as P = (~d×E2) and Q = (T ×E1), and the equation is then solved for t, u, v

using Equation 4.25 tu
v

 =
1

P · E1

Q · E2

P · T
Q~d

 (4.25)

If the determinant ((~d×E2)·E1) in Equation 4.24) is close to zero, there is

no intersection, as the photon direction and triangle normal are orthogonal.

If u is within 0 to 1 and v is within 0 to 1, there is an intersection.

All the intersections along the current photon direction are stored. The

closest triangle is selected by comparing the distances t from the photon

origin to the intersection points, and the boundary collision is evaluated

using the optical properties of the volume this triangle belongs to.

The surface mesh triangles have a consistent vertex winding order, which

causes all the triangle normals to point outwards. This can be used to

determine if a photon is entering or leaving a volume. Collisions will only

occur if the photon direction is not in the plane of the triangle. If during

the collision the photon is approaching the triangle from the direction the

triangle normal is facing, the dot product will be positive, otherwise it is

negative. The positive or negative dot product therefore indicates that the

photon is entering or leaving the volume which the triangle belongs to,

respectively. This is also used to keep track of which volume the photon

is currently in after escaping a volume; the next intersecting triangle along

the photon direction which has a negative determinant will belong to the

volume the photon is currently in.

When the photon hits a boundary, it can undergo either reflection or

refraction. Figure 4.18 shows the photon’s change in direction in each case.
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Figure 4.18: Reflection (red) and refraction (green) of a photon ~d incident on a plane with
normal ~n. The angle of incidence θi denotes the angle between the photon direction and
the normal of the plane. Here, the angles are calculated using the refractive indices of air
and water.

If the normalised directional vector of the light is ~l, and ~n represents the nor-

mal of the plane facing towards the direction where the light is approaching

from, the angle of incidence cos θi is given by

cos θi = −~n ·~l (4.26)

If the photon is reflected, its new new direction will be given by

~vreflected = ~l + 2 cos θi~n (4.27)

Snell’s law can be used to derive the direction of the photon after refrac-

tion. Let θi and θt be the angle relative to the surface normal of the incident
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ray and the transmitted ray respectively, as shown in Figure 4.18

sinθt =

(
ni
nt

)
sin θi

=

(
ni
nt

)√
1− cos θi

2

cosθt =
√

1− (sin θt)2

=

√
1−

(
ni
nt

)2 (
1−

(
cos θi

2
))

~vrefraction =

(
ni
nt

)
~l +

(
ni
nt

cos θi − cos θt

)
~n

(4.28)

Let r = ni
nt

and c = cos θi = −~n · ~l. The equation can then be expressed

without trigonometric function names as

~vrefraction = r~l + (rc−
√

1− r2(1− c2))~n (4.29)

As a validation for the updated method, a set of simulations were run

for a five-layer model, with identical tissue parameters, but with one using

the layered model and the other using the mesh based tissue model. The

absorption is plotted as a function of depth in Figure 4.19. As expected,

this shows the that two tissue models produce very similar results.

Figure 4.19: Results of two simulations of light transport through a five-layered tissue,
with a layered and a mesh-based tissue model. The resulting absorption values across
layers are very similar for the two approaches (left). The results were obtained from two
simulations with 50 000 photons each. Absorption events plotted according to their [x,y]-
coordinates for the layered (middle) and mesh-based (right) simulations. The spread is
comparable for the two models as expected.
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Figure 4.20: Segmentation of skin, skull, CSF, grey matter and white matter from struc-
tural MR data, presented left to right. The voxels belonging to the skin, skull, grey matter
and white matter were extracted using FreeSurfer,273 and the CSF defined as remaining
voxels, with the exterior of the head thresholded out. The voxel data was limited to only
contain the back of the head to reduce mesh size. The surface meshes shown in the bottom
row were generated by applying the Marching Cubes algorithm to the segmented voxel
data for each layer.

4.8.6 Segmentation and mesh generation

The mesh-based tissue model was generated from MRI structural data. The

data was first segmented to create a mask for each of the volumes skin, skull,

CSF, grey matter and white matter. Segmentation was performed using the

software package FreeSurfer.273 It produced surfaces identifying the grey

matter and white matter from high resolution T1 and T2-weighted structural

images. It also generated a ‘brain mask’ which identifies and removes the

skin, skull and background from the images. These three data sets were

imported into MATLAB along with the raw data for further processing,

where intensity filtering was used generated voxel masks for the skin, skull

and CSF.

A 3D mesh was generated based on the voxel data of each mask using

the Marching Cubes algorithm. Originally presented by Lorensen and Cline
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Figure 4.21: 3D mesh-based simulation results showing the wavelength-dependent absorp-
tion for each layer. The skin is responsible for the majority of the absorption, with only
a few percent of the photon weight reaching the grey matter.

in 1987 for visualising MRI and CT data,274 the method has undergone

development, notably by Chernyaev275 to improve topology preservation,

and is today considered robust and computationally cheap, making it the

most popular algorithm for extracting isosurfaces from volumetric data.276

The segmentation results and reconstructed volume surfaces are shown in

Figure 4.20.

4.8.7 Results

The layered model used for comparing model variations originally consisted

of layer thicknesses [3, 3, 2, 4, 9] mm for skin, skull, CSF, grey and white

matter respectively. To compare layered and mesh-based results, the layer

model was rerun for layer thicknesses similar to those in the mesh data. To

estimate the 3D model layer thicknesses, intersection tests were done using

the participant’s extracted mesh data. A photon was represented by a ray

corresponding to the original photon launch direction, and the intersection

of this ray was determined for each mesh, yielding the separation between

subsequent surfaces. The measurement was repeated and averaged across

a small region on the surface of the back of the head on the model, here

with 11 × 11 rays covering a 2mm × 2mm window. These thicknesses,

averaged across participants and given in Table 4, were used in a new layered

simulation to provide a better comparison. Results shown below were more

similar to the mesh model both in shape and magnitude.

The grey matter absorption in the two models is compared in Figure 4.22.

The mesh model appears to give ≈ 3 times the absorption in grey matter,
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Table 4: Tissue layer thicknesses estimated from 3D MRI data

Tissue Thickness [mm]

Skin 8.5556
Skull 5.8535
CSF 3.4528

Grey matter 6.0926
White matter 26.0455

Figure 4.22: A comparison of the grey matter absorption estimated with a layered and a
mesh-based simulation. When using layer thicknesses measured from the MRI structural
scans to parameterise the layered simulation model, the results are in some agreement for
the lower end of the spectrum, with the mesh-based simulation indicating a greater degree
of absorption towards the higher wavelengths than the layered model.

with a reduction in absorption around the lower (< 800 nm) wavelengths

compared with the layered model results. This is likely due to differences

in layer thicknesses, as these will vary spatially for the mesh model, and

a thicker skin layer could have a marked effect on absorption, as indicated

by the impact of the melanin fraction showed earlier. The more complex

surface might also more effectively trap photons, which would undergo more

transitions between volumes, potentially increasing overall absorption. Fig-

ure 4.23 shows results for the ‘informed’ layered model, parameterised using

the best estimates of layer thicknesses based on participant MR structural

data.

The grey matter absorption results are in some agreement with the study
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Figure 4.23: Simulation results from a layered model parameterised with layer thicknesses
from the structural MRI data. The fractional photon weight absorbed in the grey matter
(left), the fraction of µa in grey matter which is caused by cytochrome-C oxidase (middle),
and the calculated fractional photon weight absorbed by cytochrome-C oxidase within the
grey matter (right). Only about 0.1-0.2% of the light applied is estimated to be absorbed
by Cytochrome-C oxidase.

Table 5: Variations in scalp and skull thicknesses with bulb positioning for
example participants

Min Max Mean ± stdev

Participant 1 7.2643 14.0816 8.8938 ± 1.9066
Scalp Participant 2 4.2765 11.9837 7.6447 ± 1.7976

Participant 3 6.8449 25.6113 12.1934 ± 5.9651

Participant 1 4.3213 7.4759 5.9057 ± 1.0302
Skull Participant 2 3.1980 8.8959 5.0131 ± 1.5541

Participant 3 3.0704 9.1435 5.7416 ± 1.7258

from Wong-Riley et. al (2004).256 The greatest activation they observed

occurred where absorption is high in the figure (830 and 670 nm), and the

least activation occurred at 728 nm, where absorption is low, however the

absorption was also high for 880 nm.

The layer thickness estimation method was used to test the effect of

bulb positioning on the photon trajectory. Similarly to before, 2mm×2mm

regions were sampled using packets of 11 × 11 rays, and this process was

repeated for 3 yaw angles and 5 pitch angles, as indicated in Figure 4.25,

with rotations of [-30, 0] degrees and [-30, 30] degrees respectively, relative

to the center of the head. As summarised in Table 5, the incidence direction

can have a significant effect on the tissue thickness along the line of initial

photon trajectory, with layers doubling or more. Seeing as absorption is so

dominant in the scalp, this is definitely worth considering when designing

such an experiment.
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Figure 4.24: Zoom in over the relevant region of the cytochrome absorption with the
wavelengths sampled by Wong-Riley et. al256 highlighted.

Figure 4.25: The effect of bulb positioning on the effective layer thicknesses was tested
through repeated ray intersection tests for 3 yaw angles (left) and 5 pitch angles (right).
Only the mesh for grey matter is shown for clarity.
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4.8.8 Future work

The mesh-based model is more computationally intensive than a voxel-based

model, and there is likely ways to reduce processing time. Simulation time

varies significantly across different optical properties, and the overall du-

ration is in practice reliant on the number of computation nodes, photon

number and boundary conditions. However as a rough indication, the typi-

cal run time for a job from the mesh-based simulation used in this study was

3-4 hours, while for the layered model with the similar tissue thicknesses the

duration was 5-15 minutes. This is because the test for interaction between

the photon and the mesh surface requires a large number of ray-triangle

intersection tests, rather than checking for a layer boundary in only the

voxels along the photon step size, which can be found by their coordinates.

The intersection test itself is fast, the Möller-Trumbore algorithm has been

described as the fastest option for the generic case,277 however reducing the

triangle count for a less detailed surface could help speed up simulation at

the cost of model accuracy. The algorithm could be developed further to

reduce the number of triangles tested per step, for example by subdividing

the meshes by grouping their vertices into ‘boxes’ by coordinates (like an oc-

tree) and only testing boxes within range of the photon, which could reduce

computation time.

The simulation assumes the light source is an infinitely narrow photon

beam. A more realistic photon launch path could be chosen by representing

the light source as a planar or spherical source, which has been done in

published simulations. For this study, the photons could for example have

parallel starting directions, but the origin of the ray could be picked by

randomly sampling points within a circle parallel to the back of the head with

radius equal to the lamp. Future work might consider the lamp geometry, as

well as its distance from the head surface. The present work does not account

for heat, which might become a relevant factor with a closely positioned

bulb and over time. It also does not consider the effect of hair, with the

participants generally having light hair colours. Hair colour is dependent

on the content of melanin, which affected absorption in the case of skin,

the effect of hair colour and thickness could therefore have an impact, and

should be explored.
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5 Functional MRI in the animal model at 7T

This chapter describes the functional MRI experiments performed using a

rat model at 7T. The experimental design and data acquisition is outlined,

and the analysis process is considered. The results are presented and dis-

cussed, with comparisons drawn with analogous functional measurements

performed on human volunteers at 3T.

5.1 Introduction

There are several advantages to using an animal model for MR studies. With

the application of anaesthesia, the animal can remain in a physiologically

stable state for several hours. During this time, vitals can be monitored

to ensure consistent physiology across trials and across experiments, and

adjustments can be made as needed to maintain breathing, heart rate and

temperature. This minimises confounding factors such as movement and

changes in alertness, which could affect measurements in awake human sub-

jects. Common routes for eliciting functional responses in the rat include

electrical stimulation of the whiskers, fore paw stimulation, or puffing air

against the whiskers. With the option for long duration experiments, ani-

mal models have the advantage of enabling more repetitions, which increases

statistical power. Repeats can be separated by long enough intervals to en-

sure relaxation back to the baseline.

The model opens up for a wide range of different types of experiments.

Contrast agents can for example be administered to increase SNR during

experiments, or to achieve a specific contrast to investigate other aspects

of the functional response. Hypercapnia experiments can be performed to

elicit a change in blood flow and volume, as described in Chapter 2. Some

experiments rely on the application of drugs. An example of this is bicu-

culline, which when applied to the brain or to brain slices generates strong

responses similar to a stroke. This is used in studies of epilepsy. It has

been used in studies of DWfMRI, as these gross changes are more easily

detected than physiological neuronal activity. A wide range of experiments

can be performed on the rat model through concurrent imaging with other

modalities such as optical imaging.

There are however drawbacks of this method. As discussed in Chapter

1, it is possible for the behaviour of neurovascular coupling to change, and
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an example of this is under anaesthesia. Anaesthesia weakens the haemody-

namic response to stimulation, as has been shown in concurrent fMRI and

OIS studies.148 This can have an impact on results from BOLD studies,

where the signal might decrease by as much as a factor of 5.

The small animal scanner allowed greater flexibility in sequence design

than the human scanner. As it cannot be used for scanning humans, the

available sequences do not require the same level of validation, so pulse pro-

grams can be viewed, and certain changes can be implemented. This for

example allowed the phase gradient to be switched off for a given sequence,

to perform line scanning, which is discussed in Section ??. The scanner

also features accessible trigger outputs, which can be used for monitoring

for example RF via BNC cables. This provided more information on exact

sequence timings, as well as the trigger outputs required for running the

optical setup. A few considerations should be made however when com-

paring functional MRI data recorded at different field strengths. Increasing

field strength means the magnetic field becomes less homogeneous, which

contributes to higher magnetic susceptibility related artifacts in the EPI

images.

5.2 Experimental design

All work with animals was performed with UK Home Office approval un-

der the Animals (Scientific Procedures) Act 1986. The necessary accredited

training (PIL A, B and C) was completed prior to the start of experiments.

Further training was done in-house, with each protocol signed off for com-

petency.

5.2.1 Stimulus presentation

In the animal model, activation was achieved with a whisker stimulus as

outlined in Chapter 2. Each experiment began with an initial delay acting

as a baseline measurement, where data was collected in the absence of any

stimulus. The stimulus was typically applied for a duration of 16 seconds,

with an interval of 80 seconds between trials. The stimulus was repeated

for a number of trials to increase statistical power. The spacing in between

stimuli should be sufficient to allow time for the biological response to play

out, which can take over a minute.149
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The stimulus train was started by a trigger TTL pulse from the scanner.

The trigger can be set to fire at the acquisition of a slice or at the start of a

new volume, and is enabled controlled via the options in the trigger card of

the scan window. For BOLD, the CED was triggered to begin both output

and recording at the start of the first slice. The DWfMRI sequence did not

have a trigger out option, so for these scans the RF blanking pulse was used

instead.

5.2.2 Acquisition of MR data

Structural T1 and T2 images were acquired using the in-built T1Flash and

T2TurboRARE scans. These were captured in-plane with the functional

scans, with TE 35.32 ms, TR=2500 ms, FOV = 96 × 96 voxels of 35 × 35

mm and slice thickness 1 mm.

Functional BOLD experiments were performed with a T2starFIDEPI

sequence (TE=10.88 ms, TR=1000 ms, FOV = 64×64 voxels of 35×35 mm).

DWfMRI used the DtiEpi sequence (TE=74.04 ms, TR=1000 ms, FOV =

64 × 64 voxels of 35 × 35 mm, 10 dummy scans). BOLD was typically

set to acquire 3 slices, while DWfMRI was single slice, this was done to

avoid overexerting the system for higher b-values. With the small region

to be imaged and strong gradients required to reach the target b-values,

the system was on occasion pushed quite hard towards its capacity. Before

running an adjusted EpiDti, the duty cycle was therefore tested using the

duty cycle simulation, which was available under the adjustment window of

the scanner software. This predicts the gradient strength as a fraction of

the maximal achievable output. This prediction is evaluated for several time

points throughout the proposed scan, and is used to ensure the gradients

will not pushed too far. The b-values and sequence timing parameters were

adjusted to make sure the duty cycle did not reach above 70%.

Line scan was based on a modified FLASH sequence. The method re-

quires the phase gradient be turned off, this causes data from the same

region to be acquired per phase step, trading in image information for an

increased sampling rate across time. No option for this exists in the scan

card; the adjustment was made by making a small edit to the pulse program.
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5.3 Results

The analysis pipeline for animal MR data was similar to that used for hu-

man data, with the changes made being due to the differences in image size

and quality. After any spatial smoothing and the temporal filtering to ex-

clude low frequency signal changes, the active voxels were determined and

time series extracted. Registration was not used for the animal work. The

breathing rate was kept consistent, and the animals’ heads were secured in

place during experiments, movement should therefore be minimal.

5.3.1 Determination of active voxels

The active voxels were identified using GLM, with a design matrix featuring

a square representation of the applied stimulus. The voxels considered active

after thresholding with a given Z-score, were then typically filtered to remove

noisy data. This was done first by applying a mask to include only the

region of the image showing the head, by setting the Z-score to 0 if the

image intensity was below a cutoff-value. This removes contributions from

noise located in the lower signal background. The active voxels were then

filtered to only include clusters of a certain size.

Figure 5.1 shows an example of BOLD and DWfMRI activation maps

from a whisker stimulus (16 s on, 80 seconds off, 7 repeats). This demon-

strates the level of noise in the data after a simple GLM (Z > 2), and

the difference made by the mask and cluster size filtering. The diffusion

weighted images are somewhat noisier than the BOLD, as expected from

the lower SNR, but the activity is still clearly visible in both cases, with a

Z-score of up to 9. There is a distinct shift due to distortion. This should be

kept in mind for any comparison of the spatial origin of the signals, which

would require a spatial transformation.

Figure 5.2 shows the extracted responses from the identified active re-

gions. Again, the DWfMRI time series is noticeably noisier, yet the active

epochs can be identified above the noise, with around 2-6% change in signal

from baseline.

5.3.2 The effect of different b-values

A 16 second stimulus (80 second interval, 7 repeats) was repeated for BOLD

and for DfMRI with different b-values. For comparison, all resulting data
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Figure 5.1: Activation maps from a BOLD (left) and a DWfMRI experiment (right) in
the same animal. The top row shows the unfiltered maps, after performing GLM with a
square stimulus design matrix. For the lower row, the maps have been masked to exclude
voxels outside the head, and filtered by cluster size (≥ 5). This removes the majority of
the noise.
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Figure 5.2: The time series and average responses extracted from the BOLD (above) and
DWfMRI b=1800 s/mm−1 (below) based on the activation maps in Figure 5.1. The
DWfMRI time series is more noisy as the diffusion weighting reduces SNR.

sets were analysed using a Z-score of 2, and no cluster size thresholding

was performed. The activation maps for the different b-values are shown in

Figure 5.3, with the extracted responses from the active regions plotted in

Figure 5.4.

The activation maps also appear very similar between experiments, with

the activation area for b=0 s/mm2 appearing somewhat larger, but with

all responses occurring in the same location close to the cortical surface.

From the averaged time courses shown, it appears the diffusion weighting

has very little effect on response shape. This is in contrast to what would

be expected from the results from Le Bihan et al. The response from the

b=0 s/mm2 experiment should not have any diffusion weighting, yet the

response onset is just as rapid. In fact, there appears to be no broadening

or plateau of the b=0 signal or dip beyond the baseline as associated with

slower hemodynamic changes, perhaps indicating a sensitivity to primarily

arterial components. Vitals could have deteriorated and affected the lower

b-value scans done later in the day. Since there is no optical data to compare

it with, it is possible that stimulus response differed between experiments.

This is a confounding factor which could also apply to the human data in

the original work by Bihan et al.

177



5 Functional MRI in the animal model at 7T Results

Figure 5.3: Activation maps from DWfMRI experiments with a 16 second stimulus, mea-
sured with different b-values in the same animal. The Z-score was thresholded to Z ≥ 3

5.3.3 Hypercapnia

Hypercapnia experiments were performed using DWfMRI with b=0 and

b=1800 s/mm2. Figure 5.6 shows the activation maps and time series for

each case. GLM was performed with a 150s delay rather than 60 seconds

baseline used, to better characterise the slow response. As HCN should pri-

marily elicit a hemodynamic response without significant neural activation,

the BOLD measurement was expected to show a greater signal change. This

can be seen in the figure, however the effect is not removed by the diffusion

weighting, and the DWfMRI signal therefore appears to contain hemody-

namic components. The signal is less localised to the surface vessels than

BOLD, and appears noisy, however the time course corresponds to that

of a hemodynamic HCN response. The two experiments were performed

on different animals on different days; there could therefore be a difference

in baseline physiology between the two responses. The hypercapnic event

tends to affect the state of the animal as indicated by the vitals measured,

so subsequent experiments on the same animal might still be measured un-

der different physiological conditions however. The experiment also induces

changes in breathing rates, and gasping could cause movements in the an-

imal which could affect the response shape. Due to persistent difficulties

with noise on the scanner system, only one set of data was collected for each

of these experiments.

Hypercapnia results could have been affected by the design of the gas
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Figure 5.4: The DWfMRI responses to a 16 second stimulus recorded at four different
b-values, with normalised amplitude. The responses appear very similar in shape, all
with a rapid onset at the start of the stimulus. Notably, this is also the case for the
b=0 s/mm2 experiment, even though there is no diffusion weighting, and the response is
hemodynamically driven.
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Figure 5.5: Hypercapnia results from BOLD experiments. A representative activation
map (left) shows the whole brain responding during the event, with the design matrix
consisting of a 120 second square stimulus with a delay of 90 seconds rather than 60, to
bring out the delayed response as shown in the time series (right). The time series shows
the average response to hypercapnia across 3 animals.

Figure 5.6: Activation maps (above) and time series from hypercapnia experiments using
diffusion weightings of b=0 (left) and b=1800 s/mm2. The timing of the addition of CO2

into the gas mixture is highlighted by the grey box. Activation maps were produced using
a design matrix with a 2 minute square stimulus delayed by 90 seconds (as with BOLD in
Figure 5.5). The higher diffusion weighting appears to filter out much of the slow response,
and provide a faster return to baseline.
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Figure 5.7: The normalised average responses for different stimulus durations, with 8
seconds, 4 seconds and 2 second stimuli left to right.

delivery system. The ventilator is located outside the magnet room, which

necessitates the use of a breathing tube long enough to reach into the scanner

bore, a distance of close to three meters. The delivery of the CO2 to the rat

is therefor likely to be delayed relative to the start of gas addition into the

supplied air. There might also be a delayed effect from the gas travelling

through the ventilator itself. This could potentially be alleviated against by

moving the gas source closer to the animal.

5.3.4 Stimulus duration

Data was acquired for different stimulus durations, repeating the stimulus

timing which were used for the analogous experiments in humans. The

responses were acquired with BOLD, and with DWfMRI, using b-values of 0

and 1800 s/mm2. The averaged time courses are shown in Figure 5.7. Here,

the rapid onset is evident in all experiments, except for the b=0 s/mm2

measurement of the 8 second stimulus. This reading was likely affected by

noise, or acquired during a time of irregular physiology, as there was little

response on the activation map, which is shown in Figure 5.8. The BOLD

and diffusion weighted data otherwise follow very similar time courses for

a given stimulus. There is therefore no indication of these methods being

driven by different biophysical processes.

The shorter stimuli are likely more sensitive to noise than the 8 second

stimulus, especially the 2 second stimulus, whose response width of only

two frames is similar to the spiking observed in very noisy data. 10 repeats

were used for each of the experiments to increase statistical significance,

however the analysis needs to detect the signal occurring for only two frames
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Figure 5.8: The activation maps from b=0 s/mm2, b=1800 s/mm2 and BOLD experi-
ments, using different stimulus durations.
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per repetition, so the very short stimuli were difficult to extract. From the

diffusion activation maps, there appears to be activation in the target region,

however the z-score is not much greater than in other areas where noise

occurred.

A study by Urban et al performed similar whisker stimulation in rats in

2015, using functional ultrasound.278 They observed a much faster return

of CBV to baseline after a 1 second stimulus than for a 7 second stimulus.

This was attributed to a balloon-like effect, which is dependent on the stim-

ulus duration. Here, there is no noticeably slower recovery of the 8 second

stimulus. This might be affected by the physiology of the animal during

the experiment. Alternatively, the selected region might be weighted to-

ward the arterial parts of the response, as the balloon-effect also varies by

depth. Tian et al measured CBV in rat with depth-resolved fMRI, reporting

a slow recovery of CBV in higher order arteries in combination with post-

stimulus undershoot in lower-order arteries and on the surface.95 This leads

to a smoothing of the sharp arterial response by processes in other parts

of the vasculature.279 Any such depth resolved effect would likely be more

apparent with higher imaging resolution.

The 8 second stimulus BOLD experiment appears to show negative

BOLD (Figure 5.9). The amplitude is small, but the effect is clearly visi-

ble across a region with a significant Z-score. This was not visible for the

shorter stimuli, these might have been too short for the negative response to

come into effect, as this has been show to be dependent on stimulus dura-

tion.280 Negative Z-scores are also found in the same region in the DWfMRI

activation maps, however the relevant voxels are less clustered and could

be caused by noise. If there is a negative BOLD effect, this might indicate

the diffusion weighted response is weighted by heamodynamics, as the effect

is thought to be related to blood flow, and linked to decrease in the local

oxygen consumption.281

5.3.5 Line scanning

Following the work of Nunes et al,217 line scanning218 was performed dur-

ing stimulus to investigate the cortical depth dependence of the response.

They implemented DWfMRI imaging at a temporal resolution of 100 ms for

investigation of the fast response.

The line scans benefit from an approach known as Large-Tip-Angle imag-

183



5 Functional MRI in the animal model at 7T Results

Figure 5.9: The activation maps from the 8 second stimulus BOLD experiment shows a
region of signal decrease during activation. This appears to show negative BOLD, which is
small in amplitude, but easily distinguishable in the activation map. The DWfMRI maps
also have negative z-scores in this region, but it is not clear whether this is significant or
an effect of noise. The DWfMRI response on the right was extracted from only the ‘active’
voxels within the region shown for the BOLD data.
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ing.219 In spin-echo sequences, the TR is restricted by the signal to noise

ratio; the SNR reduces as the TR is shortened. This is due to the longditu-

dinal magnetisation magnitude depending on the TR. Standard SE imaging

uses a 90◦ pulse followed by one or more 180◦ refocusing pulses. By using

a large tip angle of more than 90◦, the longditudinal magnetisation magni-

tude will be larger after the initial 180 degree pulse, increasing the signal.282

The tip angle is optimised between 90 and 180 degrees, and depends on the

TR and the tissue T1 value. The angle is optimised so it is equal to the

GRE Ernst angle right after the 180 degree refocusing pulse, by subtracting

the Ernst angle from 180 degrees. The resulting SE sequence should give a

higher signal than a GRE sequence with the same TR and TE values be-

cause unlike GRE, SE compensates for the static field heterogeneity. The

LTA approach can increase signal in cases where the T1 relaxation is equal

to or longer than the TR, and can be used to achieve good contrast even

with lowered TR and therefore reduce imaging time.219

Line scans were performed using the Ernst angle to increase the signal.

The Ernst angle is the flip angle which maximises the T1 weighted signal,

and can be determined using Equation 5.1.283 The optimal flip angle will be

90◦ only when TR >> T1. In the brain, where the average T1 is 800 msec,

the optimal angle changes significantly for low TR. Although it maximises

signal, imaging is not necessarily done near the Ernst angle, as with multiple

tissues it becomes important to obtain maximum contrast. Here, A T1 of

1939 ms was used, based on measurements of human grey matter T1 at

7T.284

αE = arccos e−
TR
T1 (5.1)

As the pulse program has been changed, the line scan data had to be

manually reconstructed from the raw FID data. This was a long set of digits,

with the alternating data points representing the real and imaginary parts of

the signal. The data is first expressed in complex form, then rearranged into

a 2D array to form the image with dimensions equal to the read direction

FOV specified in the scan protocol, against the number of repetitions mul-

tiplied by the number of phase steps. Then, a Fourier transform is applied

to the data and the absolute value determined per pixel.

Figure 5.10 demonstrates the extraction of temporal data recorded in

a BOLD line scanning experiment, and the resulting time series is shown
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Figure 5.10: Demonstration of data analysis for an example line scanning data set from
a BOLD experiment using a 16 second stimulus. The time series (left) were extracted by
averaging step-wise across the image data in the phase direction, each window covering
10 lines, corresponding to a depth interval of about 0.94 mm.

in Figure 5.11. The time series was averaged across 4 lines along the read

direction, over the indices corresponding to the location of the grey matter

at a depth of 0.6-0.8 mm relative to the animal head surface. The DWfMRI

line scan experiments did not succeed, implementing the sequence involved

making changes to the pulse program, and it was only later discovered that

due to an error in this updated sequence the phase gradient had been left

on.

5.4 Discussion

A significant challenge to MR acquisition was intermittent external noise.

Often, a functional scan would progress fine until the signal suddenly dropped

out, causing the images collected to contain only static noise. Data from

the unaffected repeats could sometimes be extracted, but the noise tended

to cause dropped frames, which prevented reconstruction. Attempts were

made to prevent this, including using shielded BNC cables for the equip-

ment outside the magnetically shielded room, and temporarily disconnecting
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Figure 5.11: Example of a time series and average response extracted from a BOLD Line
scan. Only the repetitions highlighted in blue were used to determine the average response.

equipment in turn during scans. The scanner was inspected by a qualified

engineer, but the noise persisted despite various modules and the software

being swapped out. The source was eventually identified as a damage to the

connection between the PSD power board and HPPR module, which had

occurred during drilling in connection with construction work outside the

building.

Noise was also a hindrance to combining fMRI measurements with opti-

cal data acquisition. A concurrent OIS and MRI experiment was performed

using a custom surface coil. This was required for visibility through to the

cranial window for imaging, which is blocked with the standard setup, and

the signal would be much too reduced if no surface coil was used. The coil

was made using copper tape, which was attached to the underside of the op-

tical well. The power output of the coil was limited, with the setup not able

to generate a 180◦ pulse, which limited the use of spin echo sequences. The

spin echo diffusion sequences therefore gave poor signal. The experiment

could potentially work with a better coil design, however the power limita-

tion is especially detrimental to DWfMRI, which already relies on reduced

signal from the diffusion weighting.

The activation maps for DWfMRI showed much clearer active regions

for the animals compared to the human case. The time courses also appears

less dependent on b-value in the animal data, with response shapes remain-

ing quite consistent with the b=0 response, even for high b-values. The

differences observed between the rat data and human data could be caused

by differences in experimental design. Although visual stimuli in humans

and whisker stimuli in rats are standard models of neuronal activation, the

measurements made might not directly comparable. Rats use their whisker
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sensitivity to a great degree during minute-by-minute activity, as humans

do visual perception. The two processes operate via different neural path-

ways however, and there could be a difference in the underlying biophysical

mechanism of the responses. There could also be a difference in sequence

timings between the two scanners, and perhaps even differences between

the effective b-values. There could also be an effect related to differences in

physiology, such as the neuronal cell density, and also structural differences

of for example vasculature between rats and humans. Being recorded at

different magnetic field strengths, the sensitivity to changes occurring in the

different parts of the vasculature could vary.

The physiological state during the experiment could have an impact

on the response shape. As discussed in Chapter 2, anaesthesia is likely to

impact on the response in the rats. For humans, attention might drift during

an experiment, and responsiveness could be affected by factors like sleepiness

or caffeine. The effect of basal conditions was investigated by Cohen et al,

who applied visual stimuli in humans first by itself, then during a period of

hypo- or hypercapnia.285 While the stimulus produced a fast response under

physological conditions, the response to stimulus during hypercapnia was

markedly different, with an almost complete exclusion of the arterial part

of the response. Although every effort was made to maintain the animal in

a stable condition, it can not be ruled out that changes to the physiology

occurring over time could have had an impact on the response shape.

There has also emerged evidence, based on a rat model, of brain states

having an effect on the functional response shape, and in particular affect-

ing the rapid part of the response. Slack et al.286 observed that recorded

fMRI data could be classified into two different brain states by use of a

neural marker based model initialised using LFP recordings. They grouped

results from the trials recorded during each of these states, referred to as

synchronised and desynchronised. They found that the heamodynamics for

the sychronised state showed an early peak around 5 seconds after stimulus

onset, followed by a plateau and return to baseline, while this initial peak

was not present in the desynchronised state, which instead rises towards the

later peak of around 16 seconds after onset.

Although line scanning was not fully explored in this thesis, this method

has the potential to provide some very interesting information on the DWfMRI

signal. Imaging with faster acquisition rates could help detection of the short
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duration stimuli. It also offers valuable depth-dependent information which

could be explored further. On activation the arteries dilate rapidly, and the

venous response is much slower. The BOLD response is delayed relative

to the arterial dilation because the oxygenated blood takes time transfer-

ring into the capillaries and veins.287 The BOLD fMRI response has been

measured as a function of cortical depth in the rat model.95 This showed

a greater ’dip’ in signal post stimulus from the cortical layers close to the

surface, along with a more significant initial dip and larger amplitude at the

peak of the response. Their acquisition protocol used a 1 second TR, but

the stimulus onset was jittered between stimulus repeats. This way the data

could be collected at different time points along the stimulus time course,

which allowed them to estimate the response with a higher temporal resolu-

tion. When acquiring signal from a cortical region which spans across these

layers, the functional MR temporal signal might become smoothed out to

include contributions from both ends of this behaviour. Line scanning could

provide the rapid imaging required by such an experiment without the need

for jittering, ensuring the same biological response is sampled at all depths

for a given time point.
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6 Conclusion

This thesis presents experimental design and acquisition of fMRI and optical

imaging data, the steps and considerations made in analysis of this data,

and the implementation of modelling tools used to interpret results and

theoretically explore the method limitations. The work has had a particular

focus on method developments, and has therefore highlighted some of the

challenges involved with functional MR imaging, optical imaging and the

attempt to apply these methods concurrently.

There are certain barriers which complicate research on DWfMRI, with

key challenges being the lower signal compared with BOLD, and the lack of

a standardised sequence design. Several articles in the field leave out details

when describing their acquisition protocols, for example regarding the choice

between monopolar or bipolar gradients, or reporting only the b-value and

not full sequence timings, which is not sufficient information to characterise

the sequence. Changes in this design could be particularly impactful on the

lower SNR signal. This makes the work harder to replicate and validate,

and has likely contributed to the variation in observations and conclusions

reported in the literature.

The built-in diffusion based sequences on MR systems are not set up

to be used for functional imaging, and investigators must therefore rely on

importing or developing custom sequences, requiring additional time or spe-

cialised expertise to set up. Such sequences can be purpose-built for specific

applications, and there is a risk that these have been optimised in ways that

are detrimental for use in other contexts, for example by including unwanted

filtering. If a sequence is built on proprietary code which is not publicly ac-

cessible, it might hide unwanted or poorly optimised features. The sequence

might also not be easily tested, as the safety measures and restrictions on

direct hardware access prevents direct monitoring. If parameters are not ex-

posed in the scan card or made understandable, this could lead to different

groups potentially obtaining quite different results from similar experiments.

The 7T scanner provided great flexibility, however measurements were

often disrupted by significant noise due to a fault with the imaging system,

which limited the amount of data that could be collected. Further complica-

tions arose from the inclusion of the concurrent optical setup, as the surface

coil had to be replaced with a less efficient coil to allow for optical imaging.

190



6 Conclusion

Future work aiming to combine imaging modalities would benefit from an

improved coil design.

Optical imaging was explored, and while hemodynamic changes could be

measured with OIS, no scattering changes could be detected with SFDI. Any

tissue structural changes occurring during normal brain activity may be too

subtle to detect with the optical acquisition setup described in this thesis.

Although SFDI has been shown to be sensitive to gross changes induced by

the application of drugs, further experiments would be required to determine

if the method is capable of discerning a scattering effect from physiologically

normal response to stimuli. Improvements to the optical setup would likely

be a good starting point. A higher caliber projection system could be devel-

oped to provide better resolution of the projection pattern, as well as higher

intensity illumination, which could provide a greater amount of diffusely

reflected light to base analysis on.

Challenges were highlighted both for imaging on the bench and within

the bore. A key problem to solve for concurrent imaging is the transmission

of light in and out of the bore, and in particular the challenge of retaining a

structured illumination pattern with both good resolution and high enough

intensities from outside the magnetically shielded room. Despite these chal-

lenges, concurrent imaging holds promise as a tool for understanding fMRI in

the animal model. There was often great variation observed for repeat fMRI

measurements in a single experiment, and concurrently collected optical and

fMRI data would be ideal to understand how this related to variations in the

underlying biophysical processes. This would provide a better basis to com-

pare fMRI results between experiments. Additional information about the

underlying mechanisms of activity is required to understand the measured

DWfMRI signals, and concurrent imaging has great potential to provide

this. Further concurrent work would therefore be beneficial as it could help

establish the biophysical driver of the signal.

The overall poorer sensitivity of DWfMRI to activation than BOLD

should be considered in data processing, as the effects of for example spatial

smoothing was shown to differ between the two methodologies. From the

results presented in the 3T study, it appears stimulus design can have great

effect on the response shape. When recording repeat measurements of a re-

sponse, time should be allowed time for the biological response to play out

between repetitions. This is important for any interpretation of the response
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time course, and it is especially important for comparison across experiments

with different stimuli. Response shapes are also sensitive to stimulus dura-

tion, and this warrants further study. With the 1 second repetition time

used, extracting the time course was not straight forward. Imaging with

faster acquisition rates could help detection and improve characterisation of

the short duration stimuli.

The DWfMRI results seem to suggest the response contains hemody-

namic components, and that the shape is driven in part by arterial weighting.

A fast response was observed, however no clear indication could be found of

this early onset being independent of the heamodynamics. The early onset

could be somewhat affected by noise. As seen in GLM activation maps, the

square stimulus often shows correlation with noise, and voxels with spik-

ing noise could be present in the DWfMRI data, giving additional square

weighting. The rapid onset appeared reproducible however, being observed

both in human and animal data and persisting for a variety of stimulus du-

rations and intervals. The post-stimulus undershoot in the human BOLD

data was significantly reduced or removed in DWfMRI showing reduced

sensitivity to this slower vascular effect, indicating the hemodynamic com-

ponents affecting the signal are related to earlier events. For shorter stimuli,

both in human and animal, the rapid onset persisted in DWfMRI, but there

was also great resemblance between the response shapes of DWfMRI and

BOLD. There was therefore no definite proof that the rapid component of

the DWfMRI signal was driven by a non-hemodynamic component which

BOLD was not sensitive to, this effect might be present also in BOLD, but

be occluded for longer stimulus durations by other longer-range parts of the

composite signal.

The differences between animal and human results for similar experi-

ments raise the question of how applicable observations of animal DWfMRI

are to the human case. There is a need to consider the validity of direct

comparison between responses from the visual stimulus versus the whisker

stimulus, both in terms of potential differences in the underlying biophys-

ical mechanism of the responses, and the impact of physiological states,

particularly anaesthesia. Both factors relating to experimental design and

physiology represent possible barriers to transferability. A key challenge

here lies in the sequence design. Preclinical DWfMRI research, like research

involving human participants, would benefit from a standardised protocol.
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6 Conclusion

A standardised protocol would be an important step to making DWfMRI

a clinically viable alternative. Currently BOLD is much easier to imple-

ment due to available sequences commonly being installed in most scanner

systems, and the various settings are already in-place or well documented.

Combined with the higher signal-to-noise ratio and activation maps which

more clearly show active regions, BOLD maintains a clear advantage as

long as no definite argument can be made for how DWfMRI might be a

more direct measure of neuronal activity.
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7 Appendix

7.1 Optical Imaging

This chapter discusses the optical imaging experiments and results. This

includes the development and validation of the optical acquisition setup,

with testing of camera performance, acquisition data rate for storing, cal-

ibrations, and validation using phantoms. It also details the process for

making phantoms used in method calibration. The results from OIS and

SFDI experiments are presented, and discussed in context with the fMRI

results from previous chapters.

7.1.1 Acquisition development and validation

Acquisitions were designed to balance fast imaging rates with memory re-

quirements. Images acquired at full resolution would give a rapidly increas-

ing file size, which could require the data to be stored across different files, or

result in long loading times and slow down analysis. For OIS, the temporal

resolution was considered important, but image resolution was reduced, as

changes occur in a large area of the well, and the precise location was not

a focus. By setting image resolution to 256 × 256 and using 2-factor bin-

ning during functional imaging, the area of interest could be covered while

achieving 16 Hz frame rates, but producing manageable file sizes. Several

protocols were tested for saving data, settling on saving each frame directly

to a .mat-file for the purposes of these experiments. This allowed an exper-

iment of typically 13 minutes to be saved to a single file. For higher frame

rates or longer experiments, it would alternatively be possible to save data

after each trial, with time allotted to the saving process being factored into

the trigger timings. The frame size could be reduced to fit more time points

into a memory buffer. An experiment could further be divided into sections,

such that the frames from a given trial of the stimulus could be kept in

active memory and written to file before starting a new trial.

Figure 7.1 shows camera intensity over time from imaging a white back-

ground, as a test of stability. There is a slight drift in recorded intensity over

time most likely due to gradual heating of the camera components, and the

inclusion of a heat sink does not have a significant effect on the magnitude

of the drift. This could potentially affect readings for very long experiments,

and such experiments may benefit from the addition of a cool down time



Figure 7.1: Camera drift over time. The average intensity readings from the camera
decrease somewhat over the course of minutes, however the effect is slow, fairly regular
and on the scale of less than a percent, and therefore not likely to affect the results. The
inclusion of a heat sink had little effect on the trend during testing.

between trials. The error for the time interval shown represents around 2%

of the measured intensity, and with further reductions in overall measured

intensity it could become difficult to detect any (likely very small) change in

cellular scattering. The effect per experiment should however be minimal,

as low-frequency changes are corrected for in analysis.

Projector calibration In this experiment, the illuminating image is dis-

played using an AAXA Technologies P2 Jr pico projector. Projectors typi-

cally have a non-linear output, meaning that an input computer grey scale

value is not linearly proportional to the output intensity. This was corrected

for in order to produce more sine shaped output. An intensity response

function was measured by acquiring a series of images of a flat white surface

illuminated by the projector while incrementing the computer generated im-

age grey scale from black to white. The averaged intensity for each image

is shown in Figure 7.2. The displayed sine images were adjusted in accor-

dance with the intensity response function to provide a recorded sine wave

image. The baseline of the intensity curve was removed, the was data nor-

malised, and a function was fitted to the curve, using recorded intensity as

the independent variable. This provided an expression giving the computer

value required (0-100) to give a desired recorded intensity. As a test, each

image in the intensity response test was adjusted in this manner, and the



Figure 7.2: Instrument response function for the projector used in this project (Blue).
The red curve shows the same measurement after adjusting the white levels of each image
according to the calibration procedure, giving a straight line as expected.

resulting curve in shown in red in Figure 7.2. Shown in Figure 7.3 is the

recorded sine wave from illuminating a flat white surface with the adjusted

and unadjusted sine wave images.

Distortion correction The lens can cause radially symmetric distortion

of the projected image. Radial distortion is sometimes described as barrel

or pincushion distortion, which refer to the degree of magnification increas-

ing towards the center or towards the periphery of the image respectively.

This is easily visualised with a grid pattern as shown in the Figure 7.4.

The distortion follows Equation 7.1, where (xc, yc) are the coordinates of

the distortion center, (xd, yd) is the distorted point and (x, y) the point

after correction. The radial distortion coefficient k1 is negative for barrel

distortion and positive for pincushion distortion.

x = xc +
xd − xc

1 + k1r2 + k2r4...

y = yc +
yd − yc

1 + k1r2 + k2r4...

(7.1)

The barrel distortion created by the setup lens can be corrected for by

applying a pincushion correction to the generated image before projection.

This counteracts the effect, giving a final image where the straight lines of



Figure 7.3: The sine pattern after (left) and before calibration (right), and the cross-
section of the sine pattern for each image. The instrument response function causes the
displayed pattern to be sharp and square if left uncorrected.

the sine pattern appear parallel as intended. The required correction was

determined before experiments by projecting the grid pattern and adjusting

the k until the lines were parallel.

A few factors could impact on the measurements performed at differ-

ent wavelengths. Firstly, the camera quantum efficiency varies across the

operating wavelengths. The quantum efficiency is a measure of the ability

of the camera to convert incoming photons to electrons, and is therefore a

measure of how the electrical signals or readout response correlates to the

input light intensity for a given wavelength. The manufacturer has provided

measurements of this efficiency, which is shown in Figure 7.5. As the op-

tical imaging analysis relies on combining measurements made at several

wavelength, it is worth noting the variation across the wavelengths chosen.

Here, the quantum efficiency is fairly consistent for the target wavelengths

as shown on the right panel of the figure, with the exception of 470 nm,

where efficiency is somewhat lower. This will lead the intensities measured

under the blue filter to be slightly underestimated in comparison with the

other data.

Another consideration is the filter profiles. The Thorlabs filters have a

center wavelength of ± 2nm and FWHM 10 ± 2nm. As can be seen from

Figure 7.6 however, the filter profiles are not all Gaussian as expected, and



Figure 7.4: Radial distortion can cause the image to warp, and is described by barrel (left)
or pincushion distortion (right). This effect can be caused by lenses, but a correction can
be applied to the digital image so that the projected image appears undistorted. Barrel
distortion (left) is caused by a positive value of k, pin cushion distortion by a negative k,
here k is 0.6 and -0.2 respectively.

Figure 7.5: The quantum efficiency of the camera used for optical imaging.



Figure 7.6: The spectral profiles of the four filters used for OIS. Corrections should be
made in analysis to account for the shape of the filter profiles to avoid errors in relative
intensity scaling in the different channels.

the 570 nm filter is significantly wider than the others. The shape and width

of each filter profile should be included in the analysis to account for the

absorption within that range. Here, the area under the curve was normalised

to one for each filter, and the resulting profile multiplied by the extinction

coefficient spectrum during analysis.

7.1.2 Phantoms

During development, the optical methods were tested using phantoms. The

aim of using these systems is to mimic some behaviours of real tissue, but

they offer more flexibility or have known properties. In order to provide

quantitative results, SFDI must be calibrated using images acquired of sam-

ples with known optical properties. Liquid phantoms were prepared, and

used to test and calibrate the SFDI acquisition and analysis.

There are several options for tissue simulating phantoms described in

the literature. These can be either liquid or solid samples, and are made

from substances which are well characterised. Cuccias original work used 16

turbid phantoms made up of Liposyn lipid emulsion and water-soluble ni-

grosin dye for scattering and absorption properties respectively. The proper-

ties were determined by frequency domain photon migration measurements.

Another alternative for a solid phantom is polymethyldisiloxane, using India

ink and TiO2 for absorption and scattering properties.

Although solid phantoms are more easily transported and last longer, liq-

uid phantoms are convenient because they are easily prepared from readily

available materials, and their optical properties are more easily determined.



Here, liquid phantoms phantoms were prepared using nigrosin dye as ab-

sorbing media and intralipid 20% as scatteing media, following the work of

Saager et al.288 Intralipid is well characterised and therefore suitable for use

as scatterer. For easily achievable concentrations it has scattering properties

which are similar to those of tissue, and relatively low absorbance. Water-

soluble nigrosin dye was used as the absorbing agent, as it has a broad

absorption spectrum in the visible range, similar to tissue. As scattering

and absorption is dependent only on the concentration of each of the two

components, the optical properties are easily determined. By selecting suit-

able concentrations, the absorption and scattering properties can be set to a

sufficiently broad range of values to span the ranges of properties typical for

tissue in the visible region. Here the values were matched to those used by

Cuccia et al.,38 with µA = [0.002− 0.12]mm−1 and µ′S = [0.32− 1.8]mm−1.

The wavelengths used in this project are [630,570,560,470]. In order to

make phantoms with a sensible range of absorption coefficients within this

range, solutions of nigrosin dye were made up at different concentrations.

Absorber solutions were made up to have absorbances close to the targets,

and the true absorption coefficients were calculated from the measured ab-

sorbances. Concentrations were adjusted to give suitable absorbances at 560

nm, as given by the equation 7.2

T = e−µAL = 10−A

−µAL = ln(10−A)

µA =
A · ln(10)

L

(7.2)

Stavern et al showed that the scattering properties of intralipid-10%

closely follow Mie scattering, and can therefore be approximated to by Equa-

tion 7.3 to within 6% error.289 Saager confirmed these findings with separate

measurements.288 The wavelength (λ) is here given in nm.

µS(λ)[mL−1Lmm−1] = 0.016 · (λ · 10−4)−2.4 (7.3)

g(λ) = 1.1− 0.58 · (λ · 10−4) (7.4)

They showed this equation holds for concentrations of around 17% at 400

nm to 4% at 1100 nm. For the desired scattering coefficients, the intralipid



Figure 7.7: Optical properties of the components used to make the phantoms. The nigrosin
dye provides broad absorption in the visible range, as seen to the left. The intralipid
scattering can be approximated by Mie scattering, as shown to the right.

had to be diluted with deionised water to a suitable percentage, following

µ′S [mm−1] = σC%, σ = µs(1− g)/10 (7.5)

where C% is the intralipid concentration in percent volume (< 10%).

7.1.3 OIS analysis

The path lengths required to calculate chromophore concentrations from

attenuation data were determined by simulation as detailed in Chapter 4.

As discussed in Chapter 2, the calculation is done using the differential path

length, as this is less sensitive to small errors in the path length estimate.

The resulting conversion relates a change in attenuation to a change in path

length, according to Equation 7.6.

A = µA · L

δµA =

∫
δA

δL

(7.6)

Practically, the differential path lengths δL were determined from the his-

togram H of the path length distribution across bins x and bin width δq.

L =

∑
i=1 xi · (i− 1) · δq ·H(xi)∑

i=1 xi ·H(xi)
(7.7)

The µA before stimulus is used as a baseline, this is estimated using the

baseline blood volume V (eg. 100 uM) and the baseline blood oxygen satu-



ration Y (eg. 50%). Concentrations of oxy- and deoxy-hemoglobin are given

as

[HbO] = V ∗ Y

[Hbr] = V (1− Y )
(7.8)

During analysis, the attenuation data is divided through by the differ-

ential path lengths, these therefore affect the magnitude of the HbO, Hbr

and HbT signals, as well as the relative magnitude between the three. A

good estimate of the path length distribution is therefore necessary for in-

terpretetation of the results. Simulations were parameterised using optical

properties typical of grey matter, as detailed in Section 4. It was assumed

that the effects of skull and CSF would be negligible, as these layers were so

thin. 100 parallel simulations were run, each with 10000 photons, for each

of the four target wavelengths.

As the density of blood vessels varies significantly by cortical depth,

the model was divided into layers, with each layers absorption properties

affected by a specified blood volume fraction. The haemoglobin, being the

main absorber in the cortical tissue, will have a significant effect on the path

length, with the superficial layers being likely to absorb an incoming photon

before it has travelled very far. The blood volume fractions were based on the

depth profile presented by Kennerley et al,151 which shows experimentally

determined values from rat cortex. Their data is shown in Figure 7.8, along

with the profile which was used in the path length simulations. For deeper

layers literature values were used, assuming white matter below a cortical

thickness of 1.75 mm.290 The transition was smoothed using Savitzky-Golay

filtering to avoid a sharp change. Blood volume fraction has been measured

by PET to be 5.2± 1.4% in grey matter and 2.7± 0.6% in white matter.291

It can vary during hypo- or hypercapnia, within 5.1 to 6.9 % and 2.0 to 2.8

% in grey and white matter respectively.292 Figure 7.9 shows the impact

of including the depth-variation in blood volume fraction, as opposed to

keeping it constant at the literature value.

The OIS data is expected to show a peak for HbO with an amplitude of

around 15 % change with respect to baseline. This is the degree of change

reported in concurrent OIS and fMRI studies using an electrical stimulus

to activate the rat whisker barrel cortex.151 This amplitude of response is

also required to explain the BOLD response observed in that study. The



Figure 7.8: The profile of blood volume fraction per depth, used for simulations of path
length estimates. MR measurements of the blood volume fraction as a function of cortical
depth (blue), were adapted from Kennerley et al.151 Values for the deeper layers were
estimated using literature values, and the transition was smoothed using Savitzky-Golay
filtering.

Figure 7.9: Path length distributions simulated using optical properties typical for grey
matter (left), and using the same properties but introducing a layer-dependent variation
in blood volume fraction. As would be expected, the greater absorption in the superficial
layers of cortex reduces the typical path length, as the photons become more readily
absorbed early on.



Figure 7.10: Response from an example 8 second stimulus, showing the effect of considering
the variation of blood volume fraction by depth. Signal amplitudes are greatly increased
as the differential pathlength is approximately halved.

pathlength effect on the responses are shown in Figure 7.10. Here the dif-

ferences in path lengths have had a significant effect on the amplitude of

the responses, while the relative amplitudes of HbO, Hbr and HbT remain

fairly similar between the two data sets. By including the variation in blood

volume fraction, the differential pathlengths have all been reduced to half

or less relative to those of the single-layer grey matter slab, resulting in a

3-fold increase in signal amplitude.

7.1.4 Simulation for optical analysis

The sensitivity of µ′s measurements are dependent on the spatial frequency.

Simulations were run at µ′s values in the range [0.30− 2.50]mm−1, which is

quoted as typical for tissue,231 and repeated for small changes in µ′s. The

value of µa was held constant at 0.02 mm−1, and 107 photons were used

per simulation. Figure 7.11 shows that sensitivity to µ′s is greatest close to

0.1 mm−1. This agrees with results shown by Cuccia et al.38 The cranial

window has a diameter of 15mm, so this frequency would give only 1.5

waves to cover the area. For a 5% change in scattering, changes predicted

at 0.1 mm−1 of around 1.5 · 10−2 relative to 0.3 diffuse reflectance, would

correspond to a 5% change in diffuse reflectance, which should be detectable.

The sensitivity is however quite sensitive to the spatial frequency, and light

levels remitted from tissue are limited, so the camera must be sensitive to



Figure 7.11: Left: Rdk predictions for small changes in µ′s. The overall curves are very
similar, with differences on a 10−3 scale. Right: The differences in Rdk caused by %
changes in µ′s, as a function of spatial frequency. The peak shown for 0.1 mm−1 would
indicate the spatial frequency with the highest sensitivity to scattering changes.

these changes. For small scattering changes it might be challenging to pick

up the subtle differences in diffuse reflectance, this could well be the case

for neuronal activity related tissue changes.

7.1.5 Results

Results from an example OIS experiment is shown in Figures 7.12 and 7.13.

The activation maps show clear activation, and the averaged response across

stimulus repeats follows a typical time course. Figure 7.14 shows an SFDI

response to a standard 16 seconds stimulus, averaged over 7 repeats. Al-

though the stimulus is clearly in effect, the scattering measurement did not

show any changes on activation. From the SFDI results, it appears that only

muA, not muSr changes during the activation. Scattering properties of the

tissue remain constant throughout the stimulus, and remains at baseline for

the duration of the experiment.

If tissue structural changes are activated by the stimulus, it may be that

these changes are too subtle to be detected with this method. Work in the

literature using SFDI to monitor scattering changes within rat brain, have

demonstrated significant changes during gross neuronal changes.160 The

signals in their study were recorded during cortical spreading depression

(CSD), a heamodynamic event which can occur in response to stroke, which

was induced by the application of KCl solution onto the cortex. The effect

if this would be not just a greater change in scattering, but the changes

were sustained over time. In the case of neuronal activity-related changes,



Figure 7.12: GLM results from an example OIS experiment with an 8 second stimulus.

any scattering effect would likely be smaller and could be relatively short

lived, making it harder to detect. Their measurements were performed un-

der projections with a 0.26 mm−1 spatial frequency, similar to the values

used here. They attribute the scattering changes to neuronal depolarisa-

tion, noting they preceed both spatially and temporally the heamodynamic

changes.

7.1.6 Discussion

SFDI results did not show any scattering changes during stimulus. Any

scattering effects may be lost in analysis. Both the deconvolution step and

the LUT could introduce fitting errors, which could reduce the scattering

measures. Design of the LUT and look-up method might lead to a lowered

sensitivity towards scattering. Even subtle dicrepancies could affect the

result, if the scattering effect is very small.

A challenge in performing optical imaging within the bore is the light

loss which occurs when transmitting the projection in and out of the bore.

A crude test was set up to estimate the transmission efficiency through

the fibre optics. The camera intensity was measured while illuminating a

white background with the light guide output directly, and averaged across

data from a one minute acquisition at 4 Hz. The ambient light levels were

determined through repeating the experiment with the light guide turned

off, and the result was subtracted from the original data, before dividing by

the exposure time to get a value for intensity per uS. The measurement was

repeated, first when illuminating with the light guide through the MRI fibre

and then while illuminating through the endoscope, keeping the distance

between light source and target constant. The results indicated only around

0.34% of light was transmitted through the endoscope, and 0.42% through



Figure 7.13: Mean response from an example OIS experiment with an 8 second stimulus

Figure 7.14: An example SFDI response to a standard 16 seconds stimulus, averaged over
7 repeats.



the MRI fibre.

The values are only intended as a rough estimate, it was for example

assumed during the correction for exposure time that the measured camera

intensity was proportional to light levels, though this is not necessarily the

case. The results do however highlight the challenge of performing optical

imaging within the MR bore; there is significant light loss associated both

with illuminating the sample from a remote source, and with recording out-

put light which is transmitted back through the fibres. For OIS, the setup

can be simplified by illuminating directly via a long light guide from the

switching galvanometer. With SFDI, there will be an added loss of trans-

mission associated with the projector and the input fibre, requiring high

transmission rates.



7.2 Visual stimulus script

1

2 % addpath(genpath(’C:\ toolbox\Psychtoolbox ’))

3

4 % addpath(genpath(’/groups/software/psychtoolbox ’));

5

6 % Clear the workspace and the screen

7 sca; close all; clearvars;

8

9 % Testing:

10 Screen(’Preference ’, ’SkipSyncTests ’, 1);

11

12 % --- Stimulus parameters ---

13 frequency = 12; % Frequency of ’on’ flickering , in Hz

14 seconds_baseline = 60; % 61 for diffusion

15 seconds_stimulus = 16;

16 seconds_interval = 24;

17 repeats = 15;%15 % Number of (stimulus + interval)

repeats

18 rcycles = 6; % Number of white/black circle pairs

19 tcycles = 18; % Number of white/black angular segment

pairs (integer)

20

21 % --- Setup toolbox ---

22 PsychDefaultSetup (2);

23 screens = Screen(’Screens ’); % Get screen numbers for all

attached screens

24 screenNumber = max(screens); % Select the maximum ,

external screen

25 % Define black and white (white will be 1 and black 0).

This is because

26 % in general luminace values are defined between 0 and 1

with 255 steps in

27 % between. All values in Psychtoolbox are defined between

0 and 1

28 white = WhiteIndex(screenNumber);

29 black = BlackIndex(screenNumber);

30 grey = white / 2;

31 pale_grey = grey +0.1;

32 % Open an on screen window using PsychImaging and color



it grey.

33 [window , windowRect] = PsychImaging(’OpenWindow ’,

screenNumber , grey);

34 % Measure the vertical refresh rate of the monitor

35 ifi = Screen(’GetFlipInterval ’, window);

36 % Retreive the maximum priority number and set max

priority

37 topPriorityLevel = MaxPriority(window);

38 Priority(topPriorityLevel);

39

40 % --- Generate pattern ---

41 xRadius = windowRect (3) / 2; % Radial distance from

screen center to edges

42 yRadius = windowRect (4) / 2;

43 screenYpix = windowRect (4); % Screen resolution in Y

44 screenXpix = windowRect (3);

45 % Make checkerboard pattern

46

47 xylim = 2 * pi * rcycles;

48 [x, y] = meshgrid(-xylim: 2 * xylim / (screenYpix - 1):

xylim ,...

49 -xylim: 2 * xylim / (screenYpix - 1): xylim);

50 at = atan2(y, x);

51 checks_w = ((1 + sign(sin(at * tcycles) + eps)...

52 .* sign(sin(sqrt(x.^2 + y.^2)))) / 2) * (white -

black) + black;

53 checks_b (:,:) = ((1 + -sign(sin(at * tcycles) + eps)...

54 .* sign(sin(sqrt(x.^2 + y.^2)))) / 2) * (white -

black) + black;

55 circle = x.^2 + y.^2 <= xylim ^2;

56 checks_w = circle .* checks_w + grey * ~circle;

57 checks_b = circle .* checks_b + grey * ~circle;

58 checks_g = checks_b; checks_g (:,:) = grey;

59

60 % Make this into a PTB texture

61 radialCheckerboardTexture1 = Screen(’MakeTexture ’,

window , checks_w);

62 radialCheckerboardTexture2 = Screen(’MakeTexture ’,

window , checks_b);

63 radialGreyTexture = Screen(’MakeTexture ’, window ,

checks_g);



64

65 % Create fixation cross

66 % Set up alpha -blending for smooth (anti -aliased) lines

67 Screen(’BlendFunction ’, window , ’GL_SRC_ALPHA ’, ’

GL_ONE_MINUS_SRC_ALPHA ’);

68 Screen(’TextFont ’, window , ’Ariel’); Screen(’TextSize ’,

window , 36);

69 [xCenter , yCenter] = RectCenter(windowRect); % Centre

coordinate of window

70 fixCrossDimPix = 40;

71 xCoords = [-fixCrossDimPix fixCrossDimPix 0 0];

72 yCoords = [0 0 -fixCrossDimPix fixCrossDimPix ];

73 allCoords = [xCoords; yCoords ];

74 lineWidthPix = 4;

75

76 numSecs = 1/ frequency;

77 numFrames = round(numSecs / ifi);

78 duration_frames = seconds_stimulus *( frequency /2);

79 numWaitFrames = round(seconds_interval / ifi);

80 numBaselineFrames = round(seconds_baseline / ifi);

81

82 waitframes = 1;

83

84 % Flip outside of the loop to get a time stamp

85 Priority(topPriorityLevel);

86 vbl = Screen(’Flip’, window);

87

88 keys = zeros (1 ,256);

89

90 % --- Wait for trigger ---

91 keyPressed = ’0’;

92 while ~strcmp(keyPressed ,’5%’)

93 [~,key] = KbWait;

94 keyPress = KbName(key);

95 if strcmp(keyPress ,’5%’)

96 keyPressed = keyPress;

97 [~,~,keyCode] = KbCheck;

98 trigger = find(keyCode); keyCode = 0;

99 end

100 end

101 Screen(’DrawLines ’, window , allCoords ,...



102 lineWidthPix , white , [xCenter yCenter], 2);

103

104

105 % --- Run stimulus ---

106 esc = 0; f = 0; r = 0; done = 0;

107 for frame = 1: numBaselineFrames

108 Screen(’DrawTexture ’, window , radialGreyTexture); %

Draw

109 Screen(’DrawLines ’, window , allCoords ,...

110 lineWidthPix , white , [xCenter yCenter], 2);

111

112 vbl = Screen(’Flip’, window , vbl + (waitframes -0.5)*

ifi); % Flip

113 end

114 while ~(esc == 1)

115 while ~(esc == 1) && ~(done == 1)

116 for frame = 1: numFrames

117 Screen(’DrawTexture ’, window ,

radialCheckerboardTexture1); % Draw

118 Screen(’DrawLines ’, window , allCoords ,...

119 lineWidthPix , white , [xCenter yCenter], 2);

120

121 vbl = Screen(’Flip’, window , vbl + (waitframes

-0.5)*ifi); % Flip

122 end

123 %

124 % [ keypress , ~, keyCode ] = KbCheck; % check for

keypress

125 % if keypress == 1 && KbName(keyCode) == ’q’

126 % esc = 1; Screen(’CloseAll ’);

127 % end

128

129 for frame = 1: numFrames

130 Screen(’DrawTexture ’, window ,

radialCheckerboardTexture2);% Draw

131 Screen(’DrawLines ’, window , allCoords ,...

132 lineWidthPix , white , [xCenter yCenter], 2);

133

134 vbl = Screen(’Flip’, window , vbl + (waitframes

-0.5)*ifi); % Flip

135 end



136

137 f = f+1;

138 if f >= duration_frames

139 done = 1;

140 end

141 end

142 done = 0; f = 0;

143

144 for frame = 1: numWaitFrames

145 Screen(’DrawTexture ’, window , radialGreyTexture); %

Draw

146 Screen(’DrawLines ’, window , allCoords ,...

147 lineWidthPix , white , [xCenter yCenter], 2);

148

149 vbl = Screen(’Flip’, window , vbl + (waitframes -0.5)*

ifi); % Flip

150 end

151 %

152 % [ keypress , ~, keyCode ] = KbCheck; % check for

keypress

153 % if keypress == 1 && KbName(keyCode) == ’q’

154 % esc = 1; Screen(’CloseAll ’);

155 % end

156

157 r = r+1;

158 if r >= repeats

159 esc = 1;

160 end

161 end

162

163 Priority (0); % Clear the screen.

164 ListenChar (0); sca;
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7.3.1 General Consent form



York Neuroimaging Centre 
 

 
 

“Diffusion Weighted functional brain imaging: investigating cellular swelling 
as a potential direct measure of neuronal activity” 

 
Participants should complete items 1 to 10 themselves.  

 Please circle 

either YES or NO 

1. I have read the information sheet entitled ‘Diffusion Weighted functional 

brain imaging: investigating cellular swelling as a potential direct measure 

of neuronal activity’. 

YES / NO 

2. I have had the chance to discuss the study and to ask questions. YES / NO 

3. I have had satisfactory answers to all of my questions. YES / NO 

4. Who has explained the study to you? 

Prof/Dr/Mr/Mrs/Ms…………………………………………………………… 

 

5. I understand that I am free to withdraw from the study: 

• At any time. 
• Without having to give a reason. 
• Without prejudice to my academic standing at the University of York. 

YES / NO 

6. I understand that as part of this study I will be shown several repeated 

visual stimuli in the form of a flickering image projected onto a screen 

within the scanner environment. I have been given the opportunity to see 

this outside the magnet and am comfortable to proceed. 

YES / NO 

7. I know that the research information that I will provide will be kept strictly 

confidential. I understand that the information collected about me will be 

used to support other research in the future, and may be shared with 

collaborators and/or used in research/teaching. Fully anonymised data 

may also be made publicly accessible and used in publications. In all 

these cases, no personally identifiable information will be revealed without 

my written agreement. 

YES / NO 

8. If I have any questions or concerns about the research, I know I can 

contact either Frida H. Torkelsen (fht502@york.ac.uk), Dr Aneurin J. 

Kennerley (01904 324230, Aneurin.kennerley@york.ac.uk) or Prof. Alex 

Wade (Alex.wade@york.ac.uk) at the University of York. 

YES / NO 

9. Do you agree to take part in the study? YES / NO 

10. PARTICIPANT 

Signature of Participant.……………………………………………………….……………... Date……..…………………… 

Name (BLOCK LETTERS) ……………………………………………………………………………………………………...….. 

11. INVESTIGATOR 

I have explained the study to the above participant and he/she has indicted his/her willingness 
to take part.  

Signature of Investigator...……………………………………………..……….……..…. Date…………….…..…….…. 

Name (BLOCK LETTERS) …………………………………………………….…………………………………………..…..….. 

 

7.3.2 Study specific consent form



Page | 1 
 

 

York Neuroimaging Centre 

“Diffusion Weighted functional brain imaging: investigating cellular swelling as 
a potential direct measure of neuronal activity” 
 

 
Participant Information Sheet 
You are being invited to take part in a research study. It is important for you to understand why the 
research is being done and what it will involve. Please read the following carefully and ask any questions 
if you wish. 
 
What is the purpose of the study? 
Current neuroimaging techniques which rely on measuring changes in blood oxygenation, flow and 
volume are limited in resolution by the large volume of vessels involved and a slow response to 
activation. An alternative method which relies on measuring biophysical changes in the active brain 
cells appears to overcome these limitations, but has yet to gain traction in the neuroimaging community. 
This study employs both methods with the aim to explore their performance and to aid in the validation 
of the new method by improving our understanding of the underlying biophysical origins of the measured 
signal. 
 
Why have I been chosen? 
Because you are a healthy volunteer with no known vision problems. 
 
Do I have to take part? 
No. It is up to you to decide whether or not to take part. If you do, you will be given this information 
sheet to keep and will be asked to sign a consent form. You are still free to withdraw any time and 
without giving a reason. 
 
What will happen to me if I take part? 
You will first be asked to fill out a participant form to allow you to register as a participant with York 
Neuroimaging Centre (YNiC). We will also run through the MRI exclusion criteria with you at this stage 
to ensure you are eligible. 
 
On the day of the scan, you will be met by the researcher and taken to York Neuroimaging Centre 
(YNiC). You will have the opportunity to change clothes at this stage, and to remove any metal items 
etc. You will then be positioned inside the MRI scanner.  
 
The scan will last no longer than 60 minutes. During the scan, a flickering image will be projected onto 
a screen visible to you inside of the scanner. This will take the form of a checkerboard and will be 
switched on and off for various durations of time.The whole procedure will take less than 2 hours and 
take place at a suitable time between 9-7pm Monday to Friday. The exact time of your scan will be 
confirmed at least one week before.  
 
After the scan session you will be free to retrieve your personal items and leave. 
 
Benefits of taking part in the research 
This project is part of ongoing efforts by researchers at York University to explore the physical basis of 
functional MRI signals with an aim to aid development of increasingly accurate methods for measuring 
neuronal activity. You will be contributing to the evaluation of a method which has the potential to 
replace current functional neuroimaging strategies and provide superior spatial and temporal resolution, 
to the great benefit of the field of neuroimaging. 
 
Is there a chance that the brain scan will detect something wrong with my brain? 
Yes, neuroimaging research can detect brain anomalies (abnormal structural features). Such anomalies 
are uncommon (~3% of volunteers scanned). Most frequently anomalies are benign and will not affect 

7.3.3 Participant information sheet
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