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ABSTRACT 
 

 
 Erythropoiesis maintains stable tissue oxygenation in the basal state, while 

accelerating red cell production in anemia, blood loss or high altitude. The principal 

regulator of erythropoiesis is the hormone erythropoietin (Epo). In response to hypoxic 

stress, Epo can increase a 1000-fold, driving erythropoietic rate by up to 10-fold. It’s 

been suggested that survival pathways activated by the Epo receptor (EpoR) underlie its 

regulation of erythropoietic rate. A number of apparently redundant EpoR survival 

pathways were identified in vitro, raising the possibility of their functional specialization 

in vivo. 

 Here I assessed the roles of three survival pathways activated by EpoR in 

erythroblasts in-vivo: the suppression of cell-surface Fas and FasL, the suppression of the 

pro-apoptotic regulator Bim, and the induction of the anti-apoptotic regulator Bcl-xL. I 

used the novel CD71/Ter119 flow-cytometric method of identifying erythroblast 

maturation stages in vivo to measure these apoptotic pathways in fetal liver and adult 

erythropoietic tissues. I found that these pathways differ markedly in their regulation of 

erythropoietic rate. 

 Using mouse genetic models, I found that apoptosis mediated by interaction 

between erythroblasts that co-express cell-surface Fas and FasL plays a key 

autoregulatory role in stabilizing the size of the erythroblast pool in the basal state. 

Further, mice mutant for Fas or FasL showed a delayed erythropoietic response to 

hypoxia or high Epo. This suggests that Fas and FasL accelerate the stress response by 

providing an apoptotic ‘cell reserve’ that can be rescued by Epo in stress.  
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I also examined the in-vivo behavior of two cell-intrinsic apoptotic regulators, 

Bcl-xL and Bim, previously unexamined in stress. The induction of Bcl-xL was rapid but 

transient, whilst the suppression of Bim was slower but persistent. My data suggest that 

Bcl-xL is a key mediator of EpoR’s anti-apoptotic signal very early in the stress response, 

before Bim and Fas are suppressed. Bcl-xL adaptation to high Epo occurs through 

inhibition of Stat5 activation, and resets it for the next acute stress. 

 My findings suggest that in vivo, Epo regulates erythropoietic rate through 

erythroblast apoptosis, and that various apoptotic regulators play distinct and unique roles 

in this process. My work provides new molecular insights into erythropoiesis that are 

relevant to cytokine biology and to clinical approaches of disease treatment.  
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CHAPTER I 

INTRODUCTION 

  

 

1. Erythropoietin-dependent feedback loop in erythropoiesis 

 Erythropoiesis is the process of hematopoietic progenitor differentiation into red 

blood cells. In mice, definitive erythropoiesis takes place in the fetal liver during 

embryogenesis, and in the bone marrow and spleen microenvironments in the adult. In 

the basal state, erythropoietic rate is low, allowing only for the continued replacement of 

senescent erythrocytes in the periphery. Insufficient pO2 supply in tissues occurs during 

blood loss, malignant disease, high growth rate in embryogenesis, and during ascents to 

high altitude. These situations lead to an increase in the erythropoietic rate, a process 

termed stress erythropoiesis (Figure 1.1A-B). The principal regulator of both basal and 

stress erythropoiesis is hormone erythropoietin (Epo), produced in the adult kidney in 

response to hypoxia. This gives rise to a negative feedback loop (Figure 1.1A), whereby 

hypoxia-induced Epo can increase the rate of erythropoiesis up to 10-fold. In turn, 

generated erythrocytes correct tissue hypoxia and lower Epo level to normal. It is not 

clear how Epo regulates basal and stress erythropoiesis in vivo (Figure 1.1C). In my 

thesis work, I used novel flow-cytometric methods and various mouse models of 

erythropoietic stress to address this important question.  
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2.   Molecular basis of serum erythropoietin increase in hypoxic stress 

Epo is essential to erythropoiesis, and Epo-/- or Epo receptor (EpoR)-/- mice are 

embryonic lethal due to failure to produce nucleated red cells 1. Epo is a 34 kDa 

glycoprotein with a high degree of sequence homology between humans and mice 2,3. It is 

produced in the fetal liver during embryogenesis, while in adulthood, the kidney 

peritubular fibroblast-like cells are the primary source of Epo 4. Epo gene transcription is 

activated by basic helix-loop-helix hypoxia-inducible transcription factors (HIF-2α and 

HIF-β) at the hypoxia-response element (HRE) sites in the 3’ enhancer of Epo 5. While 

HIF-β is constitutively expressed and localizes to the nucleus, HIF-2α stability is 

regulated post-translationally. Under normal oxygen conditions, HIF-2α is hydroxylated 

by the prolyl hydroxylase domain enzymes (PHDs), polyubiquitinated by the von Hippel-

Lindau (VHL) E3 ubiquitin ligase protein, and subsequently degraded by the proteasome. 

Low oxygen results in a reduced hydroxylation of HIF-2α, and leads to its stabilization 

and nuclear translocation to markedly induce Epo transcription 6,7. HIF-2α conditional-

knockout mice develop anemia after post-natal ablation 8. Conversely, mice with targeted 

inactivation of the VHL gene have increased Epo and over-abundance of erythrocytes 

(polycythemia) 9,10. Serum Epo increases with decreasing hematocrit (red cell fraction of 

total blood volume), reaching up to 10,000 mU/mL in severe anemia compared to basal 

levels of about 10 mU/mL 4,11. Epo induction can be detected within the first two hours of 

hypoxic stress. It peaks by 12 to 48 hours, and then tails off as corrective mechanisms are 

activated 12,13. Conversely, polycythemia suppresses endogenous Epo production to 

prevent any additional erythropoiesis until balance is restored 14. Hematopoietic 
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progenitors committed to the erythroid lineage express EpoR and become Epo-dependent 

for their survival and the subsequent differentiation.  

 

3. Acute and chronic erythropoietic stress 

 Abnormally low erythropoietic rate results in anemia, while higher-than-needed 

erythropoiesis results in erythrocytosis, sluggish blood flow and clotting. In mice, the 

bone marrow, with its limited physical space, serves as the primary site for basal 

erythropoiesis, while the spleen contains stress-responsive progenitors 15-17. Acute tissue 

hypoxia occurs when blood oxygen tension is sharply reduced. It results from blood loss, 

upon acute exposure to low atmospheric oxygen, or from acute carbon monoxide 

poisoning. Mammals have multiple and complex mechanisms to correct tissue hypoxia. 

For example, acclimatization to low oxygen at high altitude includes changes in 

ventilatory and cardiovascular function 18, plasma volume 19, blood acid-base balance, 

and systemic and cellular metabolic changes 20. Importantly, tissue hypoxia also leads to 

an increase in erythropoietic rate, which is a slower, but often more permanent corrective 

function 20. Epo and many other stress-induced factors, such as stem cell factor (SCF), 

glucocorticoids, and bone morphogenetic protein 4 (BMP4) regulate stress erythropoiesis 

in vivo 17,21-23. Of those, Epo is the principal regulator of erythropoietic rate. 

 Although Epo peaks in a matter of hours, erythropoiesis is increased for many 

days until homeostasis is re-established 24. Acute tissue hypoxia, if not corrected, 

becomes chronic hypoxic stress where the stimulus for increased erythropoietic rate 

persists. Of note, the term chronic erythropoietic stress describes the persistence of 
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erythropoietic stimulus with or without hypoxic stress (e.g. polycythemia). Chronic 

erythropoietic stress where tissue hypoxia is present often results from long-term 

physiological and pathological conditions. Pregnancy is a physiological chronic stress 

due to continued fetal demand for oxygen. Other causes include chronic obstructive 

pulmonary disease, thalassemias and sickle cell disease, and renal failure. Chronic stress 

is also present in myelodysplasia (MDS) and cancer patients with ineffective bone 

marrow erythropoiesis due to inflammatory response or chemotherapy. 

 Polycythemia results from over-active erythropoiesis in pathology, and also in 

physiological settings, such as upon a descent from high altitude 25,26. Physiological 

polycythemia resolves naturally via suppressed erythropoietic activity. In contrast, 

pathological polycythemia results from defects in hematopoietic progenitors, such as 

mutations in the EpoR or Jak2 27,28, or due to mutations in the Epo production pathway 

9,29,30. Understanding how Epo regulates the erythroid molecular pathways will allow us 

to develop new and effective treatments for anemia present in various human disorders. 

 

4. Classical stages of erythroid differentiation 

Definitive erythropoiesis is Epo-dependent and begins in the fetal liver on day 

~E11 of gestation, eventually moving to the bone marrow by birth. Starting with the 

hematopoietic stem cell (HSC) and its progeny, the common myeloid progenitor (CMP), 

cells are restricted to the megakaryocytic-erythrocytic progenitor stage (MEP) via the 

cross-antagonism between erythroid transcriptional factor GATA-1 and 

myeloid/lymphoid transcriptional factor PU.1 (Figures 1.1 and 1.2) 31,32. MEP 



 
  
 

6 

compartment contains “Burst-forming unit-erythroid” (BFU-e) progenitors and the 

“Colony-forming unit-erythroid” (CFU-e) progenitors, identifiable by colony-forming 

potential in semi-solid culture medium. BFU-e progenitor gives rise to ~500 cells in 6 to 

10 days in response to Epo and a burst promoting factor, such as interleukin-3 (IL-3) or 

SCF 33,34. In response to Epo only, CFU-e progenitor gives rise to colonies containing 8 

to 32 hemoglobinized cells after 2 to 3 days of in vitro culture 35. Starting with the CFU-

e, terminal differentiation is achieved in 3 to 4 cell cycles, with cells progressing through 

the pro-erythroblast, basophilic, polychromatic and orthochromatic erythroblast stages, as 

identified morphologically (Figure 1.2 and 1.3). Pro-erythroblasts and basophilic 

erythroblasts are large cells. They have a large nucleus and appear blue with H&E stain. 

As cells differentiate, they condense their nuclei, reduce in size, and accumulate 

hemoglobin 2,36. Orthochromatic cells are small and stain light brown. They expel their 

nuclei to become reticulocytes and are released into the bloodstream. Reticulocytes 

complete hemoglobin synthesis and mature into erythrocytes whose number and quality 

in the circulation determine tissue oxygen levels. 

 

5. Erythroblastic islands: critical niches for erythropoiesis in vivo 

 Erythroblasts possess cell-autonomous differentiation properties. However, in 

vivo, efficient erythropoiesis also relies on cell-cell interactions that occur in specialized 

developmental niches, called erythroblastic islands (Figure 1.3) 22,37. Present in the 

erythropoietic tissue, each island consists of a central macrophage surrounded by up to 30 

developing erythroblasts of various maturation status. Major functions of erythroblastic 
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island macrophages are numerous and include: iron supply for heme biosynthesis; 

phagocytosis of expelled nuclei upon differentiation; and improved erythroblast 

proliferation and survival (via cell-cell interactions through adhesion factors, or via 

secreted cytokines). These functions lead to an amplified erythroblast frequency and 

faster reticulocyte release, both essential for stress response 22. Erythroblastic islands also 

provide an opportunity for erythroblasts to interact and regulate each other (for example, 

through Fas/FasL co-expression by early erythroblasts). 

 

6.  Flow-cytometric detection of primary erythroblasts in vivo 

 The drawback of previous studies of Epo action in erythropoiesis was the use of 

leukemic erythroid cell lines, indirect detection of progenitors via colony assays, and the 

lack of reliable flow-cytometric markers for in vivo detection of erythroid cells. Our lab 

pioneered a new flow-cytometric method to study erythroblast development stages in 

vivo using two markers, CD71 and Ter119, and the cell size parameter (FSC, forward 

scatter) (Figure 1.2A). CD71 is a transferrin receptor that is highly expressed in early 

erythroblasts for iron acquisition 38,39. Ter119 is an erythroid-specific cell surface antigen 

40. This method allows us to quickly and easily identify different stages of erythroid 

development, similar to those seen by morphological examination, directly in freshly 

harvested hematopoietic tissues 41,42. In the adult, Ter119mid/CD71high cells have pro-

erythroblast morphology and are termed ProE. Total Ter119high cells further resolve into 

three subpopulations: EryA (Ter119high/CD71high/FSChigh), EryB 

(Ter119high/CD71high/FSClow), and EryC (Ter119high/CD71low/FSClow). In cytospin 
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preparations, EryA, B and C subsets morphologically correlate to the basophilic, 

polychromatic and orthochromatic stages, respectively (Figure 1.2A) 42,43. A similar 

staging method based on CD71 and Ter119 markers is applied to the fetal liver (Figure 

1.2C) 44-46. Recently, other groups have used similar flow-cytometric methods to 

visualize erythroid precursors in vivo 47,48. In my thesis work, I used our flow-cytometric 

method to test the in vivo roles of erythroid survival pathways in the mouse stress 

response.  

 

7.  Epo-responsive erythroid progenitors 

 In the basal state, the onset of Epo dependence occurs at the CFU-e stage 2,46,. 

Pro-erythroblasts (ProE) and basophilic erythroblasts (EryA) are Epo-responsive because 

they also express EpoR 49,50. Late erythroblasts are Epo-independent. Epo appears to act 

on a broader spectrum of progenitors during stress, when BFU-e and CFU-e subsets 

rapidly expand 15,51,52. Recently, stress response was shown to depend on a specialized 

spleen BFU-e progenitor 17,53,54. This self-renewing subset responds to BMP4, SCF, 

hypoxia and Epo by giving rise to stress BFU-e. In turn, stress BFU-e cells rapidly divide 

to form large colonies in vitro in response to only Epo 17. Proliferating stress BFU-e are 

characterized by their unique expression of both immature (CD34 and cKit) and mature 

(CD71 and Ter119) markers, similar to the putative human stress progenitor 

(CD34+Kit+GlyA+) isolated from patients with sickle cell anemia 55. In addition to CFU-

e, ProE and EryA cells rapidly increase in frequency and absolute number, most notably 

in the spleen during stress response (Figure 1.2B). This early increase is disproportionate 
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compared to the frequency of later erythroblasts, and is concomitant with a decrease in 

erythroblast apoptosis 42. The molecular mechanisms of how Epo regulates this cell 

expansion in vivo are not clear. 

 

8.   Epo Receptor structure and function in erythropoiesis 

 EpoR is a homodimeric type I receptor expressed at a low density on the surface 

of hematopoietic progenitors 2,56,57,58,59. EpoR is 82% homologous between humans and 

mice 2. It does not possess intrinsic kinase activity, but is pre-associated with Janus 

tyrosine kinases 2 (Jak2) required for receptor activation 60,61. Similar to EpoR-/- 

embryonic-lethal phenotype, Jak2-/- embryos die on day E12.5 due to severe anemia 62. In 

contrast, V617F mutation in the Jak2 leads to hyper-activation of signaling and 

myeloproliferative disease 27,63. Upon Epo binding, activated Jak2 phosphorylates eight 

conserved tyrosines in the cytoplasmic tail of EpoR to recruit signaling partners via their 

Src Homology 2 (SH2) domains 64,65. EpoR can activate various signaling pathways 

leading to cell proliferation, survival and differentiation. They include signal transducer 

and activator of transcription 5 (Stat5), phosphoinositide-3-kinase/AKT, phospholipase 

Cγ, Grb2/Shc, Ras, and MAPK 65,66. In addition to positive signaling that facilitates 

erythropoiesis, EpoR recruits negative regulators including CIS, SOCS1 and SOCS3, 

Shp1 and 2, and SHIP1 to prevent its over-activation 65,67. Truncations of the EpoR distal 

domain, where negative regulators of signaling are normally recruited, lead to 

polycythemia in humans and mice 28,68. Because signaling studies were performed using 
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in vitro culture, the precise in vivo stages of development at which they are activated, and 

their functional outcomes, are still not understood. 

 Interestingly, signaling pathways activated by the EpoR are common to other 

cytokine receptors 69. EpoR carries no instructive signal for erythroid differentiation 

1,66,70. Instead, EpoR is thought to play a permissive role by providing an essential 

survival signal to erythroblasts starting with the CFU-e stage, the onset of Epo-

dependence 46,71-73. Pro-erythroblasts and basophilic erythroblasts (ProE and EryA) are 

also the targets of EpoR signaling. Past the basophilic stage, EpoR expression diminishes 

and is not required to complete differentiation 2,36,49,50. 

EpoR signaling requirements are more stringent during stress where Epo can 

increase a 1000-fold. EpoR-haploinsufficient mice have normal steady-state 

erythropoiesis, but fail to achieve normal stress response 74. Similarly, mice with 

truncated EpoR lacking all tyrosines (known as EpoR-HM) respond poorly to stress 67,75. 

One important function of EpoR is activation of transcriptional factor Stat5, implicated in 

the stress response in vivo 43,76,77. Stat5-null mice die perinatally from anemia 77. In 

contrast, Stat5-deficient mice lack only the first exon of Stat5a and Stat5b, but still 

express variable levels of N-terminally truncated Stat5 that is constitutively activated 78. 

These mice are viable but suffer from embryonic anemia and a deficient stress response 

as adults 43,77. Stat5 in erythropoiesis participates in the induction of pro-survival protein 

Bcl-xL and the transferrin receptor, both important functions still unexamined during 

stress response in vivo 43,76,79,80. An additional EpoR-activated pathway, implicated in 

stress response, is the PI3K/AKT which inhibits forkhead transcriptional factors and 
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death receptor expression 81-84. To date, few studies have directly addressed how EpoR 

survival signals regulate basal and stress erythropoiesis in vivo. 

 

9.  Hypothesis: Epo regulates erythropoietic rate in vivo via progenitor 

apoptosis 

 One well-established molecular consequence of EpoR signaling in vitro is 

erythroblast survival 2,36,51,73,85-87. Therefore, EpoR has been suggested to regulate 

erythropoietic rate in vivo by activating progenitor survival pathways 73. A mechanistic 

model has been proposed where the majority of continuously generated erythroblasts 

undergo apoptosis in the basal state. Only cells least sensitive to apoptosis become 

erythrocytes. During stress, the greater the concentration of Epo, the greater the number 

of total cells rescued from cell death (Figure 1.4). This hypothesis is based on the 

observations that in vitro, CFU-e-like cells undergo apoptosis when deprived of Epo. 

Increasing Epo concentration in culture results in the increased rescue from apoptosis, 

while the cell-cycle is unaffected 36,51,73,85-87. This model contains two implicit 

requirements, untested in vivo: the strength of anti-apoptotic signal delivered by EpoR 

increases with more Epo; and that progenitors vary in sensitivity to Epo via unknown 

mechanisms. To date, multiple pathways have been implicated in erythroblast survival in 

vitro. They include pro-survival protein Bcl-xL, pro-apoptotic proteins Bim and Nix, 

death receptor Fas and its ligand, FasL, Trail-R, anamorsin, oncostatin M, Serpina-3G, 

Pim1, Trb3 and FoxO3a 42,43,88-93. However, the precise nature of the EpoR survival 

signal in vivo remains unclear. To test the hypothesis that Epo regulates erythropoietic 



 
  
 

12 

rate through erythroblast apoptosis in vivo, I focused on three survival/apoptosis 

pathways: Fas, Bim and Bcl-xL. My specific aims were to investigate their in vivo 

behavior in different erythropoietic tissues, and to compare and contrast their potentially 

unique roles in basal and stress erythropoiesis. 

 

10.  Extrinsic and intrinsic apoptotic pathways 

 Apoptosis is a programmed cell death triggered for many reasons, including 

development, growth factor withdrawal, DNA damage, and death receptor ligand binding 

94. Apoptosis is characterized by a coordinated process of cell and nuclear shrinkage, 

cleavage of intracellular proteins and DNA, and the formation of apoptotic bodies for 

phagocytosis. The proteolytic activation of cysteine-rich aspartate proteases (caspases) 

initiates apoptosis in the cell. Two main apoptotic pathways exist in the cell: the intrinsic 

pathway initiated at the mitochondria, and the extrinsic pathway activated by death 

receptors of the tumor necrosis factor superfamily (for example, Fas and Trail-R) 94. 

 Growth factor withdrawal or DNA damage initiate the intrinsic pathway. In this 

pathway, B-cell lymphoma 2 (Bcl-2) family of pro-survival and pro-apoptotic proteins 

regulate the mitochondrial permeability to cytochrome c and other proteins 95. Upon 

release from the mitochondria, these factors activate caspases in the cytosol or cleave 

DNA directly. The extrinsic pathway is activated upon death receptor ligand binding. 

This event leads to the recruitment of adaptor proteins to form death-inducing signaling 

complex (DISC), proteolytic cleavage of initiator caspases (e.g. caspase-8) and the 

activation of executioner caspases (e.g. caspase-3). The intrinsic and extrinsic apoptotic 
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pathways are linked through the caspase-8-mediated cleavage of pro-apoptotic protein 

Bid that leads to mitochondrial permeability downstream of the death receptor activation. 

My thesis work describes how Epo modulates the intrinsic and extrinsic apoptotic 

pathways in erythroblasts in vivo. 

 

11.  Pro-survival protein Bcl-xL 

 Bcl-xL is a pro-survival Bcl-2 family protein that forms heterodimers with pro-

apoptotic proteins Bax and Bak, preventing cytochrome c release from mitochondria and 

caspase activation 95. Previous work has shown that Bcl-xL is essential to prevent 

erythroblast apoptosis in vitro and in the basal state in vivo 43,76,96-99. Bcl-xL
-/- mice die in 

utero of anemia 100. Bcl-xL is synergistically induced by EpoR-Stat5 signaling and 

GATA-1 transcriptional factor. It accumulates with erythroid differentiation, reaching its 

highest levels in the most mature erythroblasts 101. Most, but not all, studies suggest that 

Bcl-xL is a major mediator of the anti-apoptotic effect of Epo in erythroblasts 102. Recent 

in vitro studies using bone marrow erythroid progenitors pre-expanded in culture showed 

no clear Bcl-xL induction with Epo, while spleen, the stress reserve organ, was 

unexamined 67. In contrast, in vivo studies utilizing 5-fluorouracil-induced anemia 

showed a clear induction in the Bcl-xL protein in total bone marrow during the recovery 

103. Prior to my thesis work, it was unknown whether EpoR-Stat5-mediated Bcl-xL 

induction enhances early erythroblast survival, an essential feature of the stress response 

in vivo. 
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12.  Pro-apoptotic protein Bim 

 Pro-apoptotic BH3-only member of the Bcl-2 family, Bim, regulates lymphocyte 

homeostasis and has been implicated in erythroid apoptosis 90,104-106. Bim expression in 

hematopoiesis is regulated by FOXO transcriptional factors 107. At the protein level, Bim 

is regulated by ERK-dependent phosphorylation and degradation, as well as sequestration 

by the microtubular dynein motor complex 107-110. In response to cytokine withdrawal, 

Bim can induce apoptosis by binding and neutralizing the pro-survival Bcl-2 proteins. In 

erythropoiesis, EpoR-Jak2 signaling in cultured bone marrow erythroid progenitors 

repressed Bim transcription, whereas in erythroid cell lines, ERK repressed Bim protein 

via phosphorylation and degradation 89,90. Additional evidence suggests that GATA-1, via 

transcriptional factor LRF, suppresses Bim-mediated erythroblast apoptosis 106. Bim-

depleted erythroid cells are more resistant to apoptosis in vitro. However, Bim-/- mice 

suffer from an autoimmune syndrome making it difficult to understand the role of Bim in 

erythropoiesis in vivo 89. To date, the pattern of Bim expression in erythroblasts during 

differentiation in the basal stress and during stress is unknown, nor is it known if in vivo, 

Epo suppresses Bim to enhance erythroblast survival during stress. 

  

13.  Death receptor Fas and its ligand, FasL 

 Pro-apoptotic death receptor Fas (CD95) and its ligand, FasL have been proposed 

to regulate erythropoietic rate in vivo. Fas belongs to the tumor necrosis factor receptor 

superfamily. Upon FasL crosslinking, it activates the extrinsic and intrinsic apoptotic 

pathways. Fas and FasL are known to regulate the lymphoid compartment and non-
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lymphoid tissue homeostasis 111-116. Evidence also suggests that Fas apoptosis contributes 

to anemia in myelodysplastic syndromes and multiple myeloma 117-122. Fas and FasL 

were found to be expressed on human erythroid progenitors in vitro. These studies 

proposed FasL could negatively regulate erythroid output by inducing apoptosis in Fas-

bearing erythroblasts 92,123,124. However, mice mutant in Fas or FasL suffer from an 

autoimmune syndrome precluding the study of Fas role in erythropoiesis in vivo 125. 

 Previous publications from our lab provided the first in vivo evidence for the 

apoptotic regulation of erythropoietic rate 42,44. Spleen ProE and EryA were found to 

continually undergo high rates of cell death, an unusual finding for a healthy tissue. A 

proportion of primary spleen ProE and EryA erythroblasts were also found to co-express 

Fas and FasL, resulting in apoptosis of the Fas-bearing cells. In stress, total erythroblast 

apoptosis and Fas-positive erythroblast frequency decreased in an Epo-dose- and time-

dependent manner 42. Similarly, we found that Fas and FasL negatively regulate the rapid 

erythroblast expansion in the fetal liver 44. These correlative data suggest that in vivo, Fas 

and FasL continually mediate apoptosis locally at the erythroblastic islands, where 

progenitors interact with each other (Figure 1.3). This cell-to-cell autoregulatory 

apoptosis may help prevent wasteful fluctuations in progenitor number for a stable basal 

erythropoietic rate, which is a homeostatic function. Another possible in vivo Fas 

function is to maintain an apoptotic reserve of cells which can be immediately rescued by 

Epo from cell death during stress (Figure 1.4). In my thesis work, I tested these proposed 

Fas functions in erythropoiesis using Fas- and FasL-mutant mice bred onto an immune-

deficient background to rescue their autoimmune disease 125. 
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14.  Principal questions addressed in this thesis 

 In Chapter III, I address the role of Fas and FasL in basal and stress erythropoiesis 

in vivo, using mutant mouse models. In Chapter IV, I examine the expression patterns of 

Bcl-xL and Bim in basal and stress erythropoiesis, and the manner in which they are 

regulated by EpoR signaling. Chapter V summarizes the flow-cytometric methodologies 

developed by our laboratory. The last chapter discusses the principal results and proposes 

future directions. 
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Figure 1.1 
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Figure 1.1 Epo-mediated negative feedback loop regulates both basal and stress 

erythropoiesis to maintain normal tissue oxygen. 

(A)  To re-establish pO2 homeostasis during tissue hypoxia, kidneys increase the 

production of erythropoietin (Epo) which increases the rate of erythropoiesis. Epo levels 

increase with the degree of hypoxia, reaching a 1000-fold induction in the most severe 

hypoxic stress. 

(B)  Basal erythropoiesis in an adult occurs primarily in the bone-marrow to replace 

aging erythrocytes. Stress erythropoiesis is the increase in the rate of red cell production 

to re-establish normal tissue oxygen. In mice, spleen is an erythropoietic reserve organ 

(inset). In humans, bone-marrow is the primary site for both basal and stress 

erythropoiesis.  

(C)  The path of hematopoietic and erythroid development is illustrated. 

Hematopoietic stem cells (HSC) give rise to multiple lineages. Downstream of the HSC, 

common myeloid progenitors (CMP) cells produce macrophages and the 

megakaryocytic-erythrocytic progenitors (MEP). Erythroid differentiation proceeds from 

the burst-forming-unit erythroid (BFU-e) stage onward. Macrophages and erythroblasts 

constitute a developmental niche called erythroblastic island (described in Figure 1.3). 

Generated red cells regulate tissue pO2. My thesis work addresses the question of how 

Epo regulates erythropoietic rate. 
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Figure 1.2 
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Figure 1.2  Identification of erythroid progenitors in primary mouse tissue.  

(A)  Early erythroid progenitors (BFU-e and CFU-e), found in the MEP progenitor 

pool, are defined by their ability to form erythroid colonies in response to Epo in culture. 

Later erythroid stages (labeled with roman numerals i through iv) are traditionally 

identified based on morphological staining criteria (top). Similar erythroblast stages can 

be identified directly in hematopoietic tissue using cell surface markers CD71, Ter119, 

and forward scatter, a measure of cell size (corresponding stages are directly below 

erythroblast cytospins). EpoR expression extends to earlier compartments (yellow box 

with dashed line), but becomes essential for the formation of ProE cells from the closely-

preceding CFU-e progenitors (red arrow). ProE and EryA stages are Epo-dependent, and 

their frequency varies with the level of stress. Figure was created by me. 

(B)  Representative flow-cytometric plots of freshly-isolated splenocytes from mice 

injected with saline (basal) or a dose of Epo (stress). Animals were sacrificed two days 

post-injection. Cells were stained with CD71 and Ter119 markers. Dead cells were 

excluded using DAPI viability dye. Ter119high gate is subdivided further based on CD71 

and forward scatter (FSC). ProE (Ter119medCD71highFSChigh) and EryA 

(Ter119highCD71highFSChigh) subsets are Epo-dependent (blue) and greatly increase in 

frequency during stress. EryB (Ter119highCD71highFSClow) and EryC 

(Ter119highCD71lowFSClow) erythroid progenitors (red) arise from the EryA pool, and are 

Epo-independent 42. Modified from Figure 3.1B. 

(C)  Representative flow-cytometric plot of freshly-harvested E13.5 fetal liver stained 

with CD71 and Ter119 markers, and a viability dye. Erythroblast development in fetal 
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liver begins with the S0 subset that contains total hematopoietic progenitors [HSC 

through MEP, as shown in (A)]. S1 through S5 subsets contain fetal erythroblasts of 

increasing maturation status. Fetal liver staining method published in 46. 
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Figure 1.3 
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Figure 1.3  Erythroblastic islands: critical niches for basal and stress 

erythropoiesis in vivo.  

(I-IV)  Erythroblastic islands isolated from E15.5 fetal liver. Erythroblasts develop 

around a central macrophage (m), with most of the cells in a similar developmental stage. 

Island IV contains more mature erythroblasts. Arabic numerals indicate the likely 

developmental stage of erythroblasts (2 =most immature, 4 =most mature). Scale Bar: 

20µ. (Image used with permission from author Merav Socolovsky). 
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Figure 1.4 
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Figure 1.4 Proposed model: Epo regulates erythropoietic rate by rescuing 

progenitors from apoptosis. 

 Spleen (left), the reserve organ in mice, contains stress-responsive progenitors, 

which in the basal state undergo high rates of cell death 42. This portion of dying cells 

forms a ‘reserve’ population (black fraction) to be rescued from apoptosis when needed. 

In contrast, bone marrow (right) replaces senescent erythrocytes (RBC) during the steady 

state, but it has a lower apoptotic reserve and smaller physical space capacity for stress 

erythropoiesis. In vitro studies suggested a model where increasingly greater Epo (stress) 

leads to a graded rescue of erythroblasts from apoptosis (indicated by a decreasing 

apoptotic fraction). Spleen can increase its absolute erythroblast number because, unlike 

the bone marrow, it can physically enlarge in size (indicated by the increasing size of the 

circles). My thesis work tested the survival pathways activated by the EpoR in spleen and 

bone marrow erythroid progenitors during stress erythropoiesis in vivo. Figure was 

designed and created by me. 
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Chapter II Attributions and Copyright information 

 

MATERIALS AND METHODS 

 

All sections of this chapter were written by me. Materials and Methods discussed in this 

chapter are applicable to the subsequent Chapters III and IV. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Mice 

 Balb/C mice were purchased from Taconic, C57BL/6J strains were purchased 

from the Jackson Laboratories (Bar Harbor, ME). MyD88-/- mice were kindly provided to 

us by Dr. Egil Lien (University of Massachusetts Medical School, Worcester, MA). 

B6.MRL-Faslpr/J (Jackson Laboratories stock #000482) were crossed with B6.129.S7-

Rag1tm1Mom/J (Jackson Laboratories stock #002216) to obtain homozygous double-mutant 

lpr-Rag1-/- mice (C57BL/6J background). The homozygous double mutant gld-Rag1-/- 

mice (Balb/C background) were obtained by crossing CPt.C3-Faslgld/J (Jackson 

Laboratories, stock #002932) with C.129.S7(B6)-Rag1tm1Mom/J (Jackson Laboratories 

stock #003145). Genotyping was performed by PCR according to Jackson Laboratories 

protocols. In all experiments, lpr-Rag1-/- and gld-Rag1-/- mice were compared to their 

respective Rag1-/- controls. Mice were used at 10 to 14 weeks of age.  

 Stat5-/- mice were obtained from Dr. Lothar Hennighausen, (NIDDK, Bethesda, 

MD). β-thalassemia mice and the ts-VHL-/- mice were described previously 42. Bim-/- 

mice, B6.129S1-Bcl2l11tm1.1Ast/J (stock #004525), were purchased from Jackson 

Laboratories. EpoR-H and EpoR-HM mice were obtained from Dr. James Ihle, St. Jude 

Children’s Research Hospital, Memphis, TN 75. In all experiments, mice were matched 

for the same background strain, gender, and age. For low oxygen chamber experiments, 

Balb/C male littermates of 6 to 11 weeks of age were used. All experiments with mice 
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were conducted in accordance with an animal protocol approved by the University of 

Massachusetts Medical School IACUC committee. 

 

Erythropoietic stress 

 Recombinant human erythropoietin (Epoetin alfa, Amgen, Thousand Oaks, CA) 

was injected at the indicated doses subcutaneously in a total volume of 150 µl in sterile 

isotonic saline. Human purified Fas:Fc chimeric fusion protein (BD Biosciences, San 

Diego, CA) was injected at 100 µg per mouse, intraperitoneally. Reduced atmospheric 

oxygen treatment was conducted using the BioSpherix A-chamber (BioSpherix, Lacona, 

NY) for the indicated time periods. Hypoxia was achieved by displacing oxygen with 

nitrogen at normal atmospheric pressure. Temperature, humidity and carbon dioxide 

readings were monitored.  

 

Live cell surface-staining for flow cytometry 

 Antibody staining and flow cytometry were performed as described (Chapter V 

and 42,44). Cells from freshly isolated tissues were gently strained through 40-µm strainer 

in the presence of cold phosphate-buffered saline and 5% fetal calf serum (1xPBS/5% 

FCS) or 0.2% bovine-serum albumin (BSA).  

The following antibodies and reagents were used: PE- or FITC-rat anti-mouse 

CD71 (C2 clone), PE- or APC-rat anti-mouse Ter119, biotin-hamster anti-mouse Fas 

(Jo2 clone) or FasL (MFL3 clone) (BD Biosciences). DAPI (Roche, Indianapolis, IN) or 

7-AAD (BD Biosciences) viability dyes were used. 
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Cells were immunostained for 20-45 minutes on ice in the presence of blocking 

rabbit or mouse immunoglobulin (Jackson ImmunoResearch, West Grove, PA), 2.5 

µg/mL fluorochrome-conjugated anti-Ter119 (BD Biosciences, San Diego, CA), and 2.5 

µg/mL fluorochrome-conjugated anti-CD71 (BD Biosciences).  

Staining for Fas or FasL was done along with anti-CD71/Ter119 for 1 hour on ice 

with 5 µg/mL biotin-conjugated anti-Fas (Jo2 clone, BD Biosciences) or 5 µg/mL biotin-

conjugated anti-FasL (MFL3 clone, BD Biosciences). APC-conjugated streptavidin 

(Invitrogen, Carlsbad, CA) was used to amplify the biotin signal after washing the cells. 

Following all the staining steps, cells were washed twice and resuspended in the viability 

dye-containing buffer until analysis. Proper washing of cells is essential to specific signal 

detection. Alexa Fluor 350-Annexin V (Invitrogen) staining was performed according to 

the manufacturer’s instructions (1 hour on ice in Annexin V-specific buffer; Annexin V 

buffer was also used for subsequent washes and viability dye staining).  

 

Intracellular protein staining  

 To detect intracellular Bcl-xL and Bim, cells were first stained with LIVE/DEAD 

fixable viability stain (Invitrogen), followed by surface-labeling for Ter119 and CD71 in 

the presence of blocking IgG. Next, cells were fixed with PBS solution containing 3% 

paraformaldehyde and 2% sucrose, and frozen in 90%FBS/10%DMSO at -80°C. On day 

2, samples were thawed, washed with 1xPBS/0.2%BSA buffer, and permeabilized with 

BD Cytofix/CytopermTM Perm/Wash reagent. Cells were then stained in the Perm/Wash 

solution with anti-Ter119 (to maintain Ter119 signal in fixed cells) and with anti-Bcl-xL 
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antiserum (BD Biosciences 556361) or anti-Bim antibody (Cell Signaling, #2819), or 

isotype control. Isotype control for Bcl-xL was Normal Rabbit Serum (Jackson 

Immunoresearch). Isotype control for Bim was Rabbit IgG (Jackson Immunoresearch). 

Primary Bcl-xL or Bim staining was detected using secondary antibody (anti-Rabbit-

APC, Invitrogen A-10931). Proper washing of cells is essential to specific signal 

detection. Biological sample used for determining the isotype control’s background 

fluorescence consisted of a cell mix pooled from all mouse samples in a given experiment 

(isotype signal was similar across individual biological samples regardless of genotype or 

treatment). 

 

Phospho-Stat5 staining  

 Cells were first stained with LIVE/DEAD viability dye, then resuspended in 

phosphowash (1xPBS, 1 mM sodium orthovanadate, 1 mM β-glycerol phosphate, 1 

µg/mL microcystin), fixed in 1.6% paraformaldehyde, permeabilized in 80% acetone and 

stored at -80°C. Thawed cells were stained in 1xPBS/3% milk with AF647-conjugated 

anti-phospho-Stat5 antibody (BD Biosciences 612599) and for Ter119 and CD71 as 

described previously.  

 

Reticulocyte detection 

 Reticulocytes were detected as a DNA-negative, RNA-positive cell population in 

blood, as described 48. 1-2 µl of EDTA-preserved whole blood were stained at room 

temperature for 30 minutes in 1xPBS with RNA/DNA dye Thiazole Orange (Sigma-
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Aldrich, St. Louis, MO; used at ~1:1000 dilution of fresh 1 mg/mL stock solution in 

methanol), followed by addition of DNA dye DRAQ5 (BioStatus, Shepshed, United 

Kingdom; used at 1:2500 of 5 mM stock solution) for 5 minutes at 37°C. Cells must be 

kept in original Thiazole Orange/DRAQ5 staining solution until analysis. Data were 

collected using the 488nm and the 633nm lasers [FITC and APC (670/40 filter) channels, 

respectively] on LSRII (BD Biosciences) flow cytometer. 

For all flow cytometry experiments, stained cells were analyzed on LSRII flow 

cytometer (BD Biosciences). Cell sorting was done at the Umass Flow Cytometry Core 

Facility on a DakoCytomation MoFlo (Fort Collins, CO). 

 

Flow cytometry data analysis 

 Data were analyzed with FlowJo software (Tree Star, Ashland, OR), as described 

in more detail in Chapter V 42,46. Singlets and live cells (based on DAPI, 7-AAD, or 

LIVE/DEAD stains) were selected, and subsets were gated based on Ter119, CD71 

expression and forward scatter (FSC). Gating strategy for fetal liver and adult 

erythroblasts was performed as described in Chapter V. For Fas surface stain, Fas-

positive gate was drawn based on secondary antibody-only control, as described above. 

For Annexin V, positive gate was drawn based on the sample where Annexin V stain was 

omitted. For each subset in each biological sample, non-specific isotype control’s median 

fluorescent intensity (MFI) signal was subtracted from the MFI of Bcl-xL or Bim signal 

prior to plotting the data. 
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Peripheral blood analysis 

 Hematocrit was determined using the CritSpin Microhematocrit centrifuge kit 

(Iris Sample Processing, Westwood, MA). For Complete Blood Count (CBC), whole 

blood was collected by cardiac puncture of euthanized animal into EDTA collection tubes 

and processed on Heska Hematology Analyzer (Heska, Loveland, CO) at the Umass 

Animal Facility.  

 

CFU-e colony assay 

 Freshly isolated fetal liver, spleen and bone-marrow cells were manually counted, 

and cells were plated for tissue culture in M3231 Methocult® methylcellulose media 

(StemCell Technologies, Vancouver, Canada) supplemented with 2 U/mL rh-Epo 

(Amgen). On day 3, plates were stained with 3,3'-Diaminobenzidine (Sigma-Aldrich) and 

scored for erythroid colonies. Results are expressed as total CFU-e colonies per 106 live 

plated cells. 

 

Erythropoietin ELISA 

 Enzyme Linked Immunosorbent Assay (ELISA) for mouse Epo was performed 

according to the manufacturer’s instructions (Quantikine ELISA, R&D Systems, 

Minneapolis, MN). EnVision 2102 Multilabel Reader (Perkin Elmer, Waltham, MA) was 

used to quantify fluorescence. Data were converted into mU/mL by multiplying pg/mL 

value by 129,000 IU/mg (International Standard for fully glycosylated Epo protein 4,126). 
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Statistical analyses and data presentation 

 Statistical analysis of basal state Fas and FasL-mutant mouse data in Chapter III 

was performed using PASW (SPSS, Chicago, IL) and SAS (SAS, Cary, NC) statistical 

software. Specifically, data were log-transformed and residuals were tested for normality 

by Kolmogorov-Smirnov test (performed in PASW). Log-transformed data were then 

analyzed by general linear mixed model ANOVA with gender and genotype as fixed 

effects, and with experiment as the random effect (performed in SAS). Unadjusted p-

values (p<0.05 considered significant) were reported in Chapter III figures for each 

gender-genotype group.  

 F probability distribution test (F test) in Chapter III was performed on residuals 

derived from untransformed data: First, experiment, gender and genotype were taken into 

account for deriving the residuals (performed in PASW). Residuals were next compared 

using F test in Microsoft Excel software (Redmond, WA). Similar, or even more 

significant, p-values were obtained via F test on raw pooled data directly within 

Microsoft Excel. 

 For all other statistical tests, Microsoft Excel or GraphPad Prism software (La 

Jolla, CA) were used. For presentation in the figures, all data were plotted using 

Microsoft Excel or GraphPad Prism software, and adjusted in Adobe Photoshop and 

Illustrator Software. 

 

Quantitative real-time PCR  
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 Total RNA was prepared from freshly sorted erythroblasts using the AllPrep 

DNA/RNA Micro Kit (Qiagen) with on-column DNase treatment. Reverse-transcription 

was conducted using Superscript II (Invitrogen) with random hexamer primers. The ABI 

7300 sequence detection system, TaqMan reagents and TaqMan MGB probes (Applied 

Biosystems) were used, and several dilutions of each template were used to ensure 

detection in the linear range of the assay. A ‘no template’ and ‘no reverse-transcriptase’ 

controls were included. The threshold cycle (Ct) for housekeeping genes GAPDH or β-

actin were subtracted from the Ct for genes of interest to yield a relative expression value. 

Where indicated, the relative expression for each gene of interest in each sample was then 

normalized to its expression in the S0 fetal liver subset or saline-injected bone-marrow 

EryA adult subset (Chapter IV).  

QRT-PCR TaqMan probes used: GAPDH (Mm99999915_g1), β -actin 

(Mm02619580_g1), β -globin (Mm01611268_g1). Bcl-xL primers were 

CTGGGACACTTTTGTGGATCTCT and GAAGCGCTCCTGGCCTTT. BimEL primers 

were TCTTTTGACACAGACAGGAGC and AATCATTTGCAAACACCCTCC. BimL 

primers detected both BimEL and BimL isoforms, and were 

CTCAGTGCAATGGCTTCCATA and AATCATTTGCAAACACCCTCC. 
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CHAPTER III 
 
 

NEGATIVE AUTOREGULATION BY FAS STABILIZES ADULT 
ERYTHROPOIESIS AND ACCELERATES ITS STRESS RESPONSE 

 

 

ABSTRACT 

 Erythropoiesis maintains a stable hematocrit and tissue oxygenation in the basal 

state, while mounting a stress response that accelerates red cell production in anemia, 

blood loss or high altitude. Thus, tissue hypoxia increases secretion of the hormone 

erythropoietin (Epo), stimulating an increase in erythroid progenitors and erythropoietic 

rate. Several cell divisions must elapse, however, before Epo-responsive progenitors 

mature into red cells. This inherent delay is expected to reduce the stability of 

erythropoiesis and to slow its response to stress. Here we identify a mechanism that helps 

to offset these effects. We recently showed that splenic early erythroblasts, ‘EryA’, 

negatively regulate their own survival by co-expressing the death receptor Fas, and its 

ligand, FasL. Here we studied mice mutant for either Fas or FasL, bred onto an immune-

deficient background, in order to avoid an autoimmune syndrome associated with Fas 

deficiency. Mutant mice had a higher hematocrit, lower serum Epo, and an increased 

number of splenic erythroid progenitors, suggesting that Fas negatively regulates 

erythropoiesis at the level of the whole animal. In addition, Fas-mediated autoregulation 

stabilizes the size of the splenic early erythroblast pool, since mutant mice had a 

significantly more variable EryA pool than matched control mice. Unexpectedly, in spite 

of the loss of a negative regulator, the expansion of EryA and ProE progenitors in 
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response to high Epo in vivo, as well as the increase in erythropoietic rate in mice 

injected with Epo or placed in a hypoxic environment, lagged significantly in the mutant 

mice. This suggests that Fas-mediated autoregulation accelerates the erythropoietic 

response to stress. Therefore, Fas-mediated negative autoregulation within splenic 

erythropoietic tissue optimizes key dynamic features in the operation of the 

erythropoietic network as a whole, helping to maintain erythroid homeostasis in the basal 

state, while accelerating the stress response.  

 

INTRODUCTION 

The production of red blood cells (erythropoiesis) is continuous throughout life, 

maintaining an optimal number of circulating red cells and tissue oxygen tension (pO2). 

A decrease in tissue pO2, as may occur in anemia, bleeding, high altitude or respiratory 

disease, drives erythropoiesis up to 10-fold its basal rate. This response is regulated 

through a negative feedback loop in which decreasing tissue pO2 increases synthesis of 

the hormone Epo (Figure 3.1A) 7,24,127. Epo-mediated activation of its receptor, EpoR 56, 

on erythroid progenitors increases their number and consequently, erythropoietic rate and 

tissue pO2. During accelerated rates of erythropoiesis, Epo cooperates with additional 

factors, notably glucocorticoid hormones and stem cell factor 15,21,128,129. 

Epo controls an early cellular compartment within the ‘erythroblastic island’, the 

developmental niche on the surface of a macrophage that supports erythroid maturation 

130 (Figure 3.1A). Three to five cell divisions must elapse before cells in this early 

compartment mature into red blood cells. This inherent delay in the pO2/Epo-regulated 
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feedback loop is likely to compromise the stability and rapid stress response of the 

erythropoietic system. Additional control mechanisms may therefore exist to compensate 

for this inherent delay.  

The earliest Epo-dependent progenitor is the ‘Colony-forming Unit-erythroid’ or 

CFU-e, giving rise to colonies of at least 8 red cells within 48-72 hours in vitro 35. Its 

erythroblast progeny are classified by their morphology 131. We previously developed a 

flow-cytometric approach to identify erythroblasts directly in freshly-harvested mouse 

hematopoietic tissue, using cell surface markers CD71, Ter119 and cell size, measured by 

flow-cytometric forward scatter (FSC). We classify increasingly mature erythroid 

precursors subsets as ‘ProE’ (CD71high Ter119med), ‘EryA’ (CD71highTer119highFSChigh), 

‘EryB’ (CD71highTer119highFSClow) and ‘EryC’ (CD71lowTer119highFSClow) 42 (Figure 

3.1A-B). We found that, in addition to the well documented increase in CFU-e 52,132, the 

early erythroblast subsets ProE and EryA are responsive to EpoR signaling in vivo 42.  

Epo promotes erythroblast survival in vitro 73, suggesting this mechanism may 

underlie its regulation of erythropoietic rate. Our recent experiments in vivo 42 confirm 

this hypothesis. During basal erythropoiesis, the majority of ProE and EryA undergo 

apoptosis, particularly in spleen, the murine organ of erythropoietic reserve 133. During 

stress, high Epo decreases their apoptosis, increasing ProE and EryA number 42. The 

reasons for this apparently wasteful mechanism of erythropoietic rate regulation have not 

been addressed experimentally.  

EpoR activates several survival pathways, including Stat5-mediated induction of 

Bcl-xL 76,99,134,135, other Stat5 targets 67,90,136,137 and the EpoR-activated phosphoinositide 
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3-kinase (PI3K)-AKT pathway 81,82. The death receptor Fas, and its ligand, FasL, were 

first proposed to contribute to erythroid homeostasis based on their expression in human 

bone marrow 92. We found that, in vivo in the mouse, splenic ProE and EryA, but not 

their bone marrow counterparts, co-express Fas and FasL. During stress, high Epo 

suppresses their Fas expression, strongly correlating with their decreased apoptosis 42. 

These findings suggested the hypothesis that, in the basal state, splenic ProE and EryA 

negatively regulate their own survival through Fas and FasL-mediated inter-cellular 

interactions; and that Epo-mediated Fas suppression is a key mechanism regulating 

erythropoietic expansion during stress (Figure 3.1A) 42. 

Negative autoregulation through co-expression of Fas and FasL was previously 

implicated in terminating the clonal expansion of activated T cells 138-140. Similarly, we 

recently found that Fas and FasL co-expression in fetal liver erythroid progenitors 

terminates their initial wave of expansion at the onset of fetal erythropoiesis 44. Here we 

set out to assess the contribution of Fas and FasL to erythropoiesis in the adult. We bred 

lpr or gld mice, mutant in Fas and FasL respectively, onto the Rag1-/- immune-deficient 

background, in order to avoid an autoimmune syndrome that may impact erythropoiesis. 

Our findings in both the lpr-Rag1-/- and gld-Rag1-/- mice were similar, showing that Fas-

mediated autoregulation in spleen negatively regulates erythropoiesis at the whole animal 

level. Strikingly, these experiments also revealed that Fas-mediated autoregulation 

imparted key dynamic properties to the erythropoietic system. We found that it is 

responsible for stabilizing the basal precursor pool, enhancing their resistance to random 

perturbations. Further, it also accelerated the erythropoietic response to high Epo, an 
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unexpected effect for a negative regulator. Therefore, the dynamic properties of the Fas-

mediated autoregulation offset the dynamic deficits of the slower, pO2/Epo-regulated 

feedback. Of interest, negative autoregulatory loops, in the context of simple 

transcriptional networks, were shown to accelerate the response to a stimulus, and to 

enhance network stability 141-144. Our findings here suggest that these loops, which are 

abundant in biological systems, similarly improve the homeostasis and dynamic 

responses of lineage-specific progenitors in vivo.  

 

RESULTS 

Hypoxia and return to normoxia alter Fas expression and survival of early 

erythroblasts 

Erythropoietic stress results in suppression of Fas expression and reduced 

apoptosis in splenic ProE and EryA 42. These findings suggested the model illustrated in 

Figure 3.1A, in which Fas-mediated cell death is a result of intercellular interactions 

between Fas and FasL-co-expressing cells within the spleen early erythroblast 

compartment; these interactions are blocked by high Epo during stress (Figure 3.1B).  

Here we investigated this model further by housing mice in a hypoxic 

environment of 11% oxygen for 8 days, followed by a return to normoxia (21% oxygen). 

Hypoxia caused a sharp increase in plasma Epo (Figure 3.1C, lower left panel), 

suppressing Fas expression in EryA and enhancing their survival (Figure 3.1C, upper 

panel: example of flow-cytometric measurements of Fas expression and Annexin V 

binding; middle panels: summary of data from 2 to 9 mice per time point). Decreased 
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apoptosis and Fas expression were associated with increased spleen EryA (Figure 3.1C, 

lower right panel). A return to 21% oxygen resulted in a rapid reversal, with Epo and 

EryA declining below their starting levels, and both Fas expression and apoptosis rising 

well above their starting basal levels. These results suggest that modulation of Fas-

mediated apoptosis by Epo plays a role in both the expansion of the EryA pool in 

response to hypoxia, and in its rapid contraction with the return to normoxia. 

 

Effect of reducing Fas-mediated apoptosis with Fas:Fc in vivo 

To examine the effect of Fas on EryA survival directly, we administered MyD88-/- 

mice with the purified chimeric molecule, Fas:Fc 145, which acts as a decoy receptor, 

binding FasL on the surface of EryA and blocking its ability to activate Fas. Control 

MyD88-/- mice were injected intraperitoneally with an equal volume of saline. The 

MyD88-/- strain was used in order to avoid potential reaction to contaminating bacterial 

Lipopolysaccharide (LPS) in the Fas:Fc preparation 146. A single administration of Fas:Fc 

(100 µg) resulted in a ~20% reduction in unoccupied surface FasL in both splenic ProE 

and EryA, measured by binding of the Fas-blocking monoclonal antibody MFL3, 

directed against FasL (Figure 3.10D) 147. This procedure decreased the number of 

Annexin V+ EryA from 70% in control to 50% in Fas:Fc-injected mice by 48 hours. 

There was an associated increase in EryA, and a doubling in blood reticulocytes (Figure 

3.10). Reticulocytes, identified by their RNA content, mature within 24 hours 148; a 

doubling of reticulocytes suggests a doubling of erythropoietic rate over the most recent 

24 hours. These results support a causal relationship between Fas expression, EryA 
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survival and erythropoietic rate.  

 

The dose/response characteristics of Epo-mediated Fas suppression and EryA 

expansion  

To assess the quantitative relationship between Epo, Fas suppression and EryA 

numbers we injected mice (n=38) with varying doses of Epo, of between 1 and 300 Units 

/25 g body weight. We measured the Fas response on day 3, previously found to 

correspond to the lowest Fas expression level attained following acute Epo injection 42. 

We found that EryA frequency in Ter119+ spleen cells was inversely related to the 

fraction of EryA cells that expressed Fas (Figure 3.2A, left panel). Half maximal 

suppression of Fas expression was seen in mice injected with 10 U /25 g (Figure 3.2A, 

right panel), corresponding to a doubling of EryA frequency. Complete suppression of 

Fas expression was seen at 30U /25g, and resulted in a 6-fold increase in EryA frequency.  

 

The frequency of EryA is inversely related to their Fas expression  

The relationship between EryA frequency, and the fraction of EryA that express 

Fas, may be fitted by a model in which EryA undergo Fas-mediated negative 

autoregulation (Figure 3.2B). We considered the frequency of EryA within the 

erythroblastic island, ‘A’, to be the result of three principal factors: first, a continuous 

input from earlier progenitors, ‘ß’; second, a continuous output, proportional to A, ’αA’, 

into more differentiated progenitor subsets; and last, Fas-dependent cell death. We 

assumed that Fas-mediated cell loss would result when two EryA cells, expressing Fas 
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and FasL respectively, interact within the erythroid compartment. The probability of such 

an encounter is proportional to the product of the frequencies of Fas+ and FasL+ EryA 

cells. This product is approximately equal to A2F, where ‘F’ denote the fraction of EryA 

cells that express Fas (Figure 3.2B; the fraction of EryA that express FasL in adult spleen 

is high enough that it can be approximated to 1; see Text 3.1: ‘Regulation of the EryA 

progenitor pool by Fas’). These considerations allow the steady-state level of EryA, at 

any given level of Fas, to be found by solving a quadratic equation. The inverse 

relationship between EryA and Fas in Figure 3.2A is fitted well by a hyperbolic curve 

that represents the (positive) steady-state solutions for EryA (‘A’) in this equation, at 

different steady-state levels of Fas (‘F’) (R2=0.89, Text 3.1). This goodness of fit 

supports the model’s key assumption, that Fas-mediated cell loss is a result of negative 

autoregulation within the EryA pool, and is proportional to the square of the frequency of 

EryA within the erythroblastic island. Further, it suggests that Epo concentration, which 

sets the desired steady-state EryA pool size, does so in part by regulating the level of Fas 

expression in the EryA population (Figure 3.1A).  

 Of note, using a different modeling approach, we found a similar relationship in 

fetal liver, where Fas-mediated loss of early erythroblasts was proportional to the square 

of the frequency of early erythroblasts in the tissue 44.  

 

Generation of Fas and FasL-deficient mice on an immune-deficient background 

We made use of the lpr and gld mouse strains that carry naturally-occurring loss-

of-function mutations of Fas and FasL, respectively 125. The lpr mutation consists of an 
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insertion of an early transposable element, carrying a polyadenylation signal, in the 

second intron of the Fas gene. This causes premature termination of the transcript and a 

drastic decrease in Fas transcription, though it does not fully eliminate it. In the gld strain, 

there is a point mutation at the C-terminus of FasL that abolishes its ability to bind Fas. 

Both the lpr and gld mice develop a lymphoid proliferative autoimmune syndrome 149. In 

order to avoid this complication, we bred these mouse strains onto an immune-deficient, 

Rag1-/- background that lacks T and B cells 150. Erythroid parameters, such as basal 

hemoglobin concentration, though consistent within a given inbred strain, differ 

somewhat between mice of different genetic backgrounds, likely reflecting quantitative 

differences in the control of erythropoiesis 151. We therefore chose to generate two 

distinct genetic background strains. The gld-Rag1-/- mice were bred on the Balb/C 

background, and the lpr-Rag1-/- mice on the C57BL/6 background. As controls, we used 

age and strain-matched Rag1-/- mice, which on either the Balb/C or the C57BL/6 

backgrounds, have normal erythropoietic parameters when compared with wild-type mice 

of the same background strain. Further, the double homozygous mutant strains, gld-Rag1-

/- and lpr-Rag1-/-, showed no sign of autoimmunity, as evident from their small spleen 

size, absence of immune cells from the blood and spleen, and lack of anemia (Table 3.1).  

 

Basal Erythropoiesis in lpr-Rag1-/- and gld-Rag1-/- mice 

The chronic absence of an erythropoietic regulator may not be apparent from 

simple inspection of the hematocrit in the steady state 76. This is due to a vast 

erythropoietic reserve, coupled with the pO2/Epo negative feedback loop which 
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automatically adjusts Epo levels and erythropoietic rate so as to maintain a near- normal 

tissue pO2. Therefore, to assess how the loss of a regulator affects steady state 

erythropoiesis requires analysis at all levels of the pO2/Epo negative feedback loop, 

including Epo concentration and the erythroid progenitor and precursor pools. We first 

examined the hematocrit (the fraction of all blood volume that is attributable to red blood 

cells), blood reticulocytes and plasma Epo. lpr-Rag1-/- mice on the C57BL/6 background 

had a normal reticulocyte count and normal hematocrit (Figure 3.3A, top left panel, Table 

3.1). However, plasma Epo was significantly lower, by 35%, than in control mice 

(p=0.001; Epo= 9.0±0.8 mU/mL, mean ±SEM, in lpr-Rag1-/-, and 13.7±1.0 for Rag1-/- 

controls; Figure 3.3A, bottom left panel, and Figure 3.3B). Therefore, lpr-Rag1-/- mice 

compensate for the chronic absence of a negative regulator through the pO2/Epo negative 

feedback loop, decreasing Epo concentration so as to avoid an unnecessary increase in 

hematocrit.  

By contrast, the gld-Rag1-/- mice, on the Balb/C background, had a significantly 

elevated hematocrit (p<0.00001; hematocrit= 52.0 ±0.3% vs. 49.8 ±0.4% for gld-Rag1-/- 

vs. Rag1-/- respectively, mean ±SEM, Figure 3.3A; a similar difference was found in a 

second group of mice assayed using a Coulter counter, Table 3.1). Reticulocyte count 

was also more than double that of controls (p<0.0001; Reticulocyte count= 1.40 ±0.14% 

vs. 0.59 ±0.04% for gld-Rag1-/- vs. Rag1-/- respectively, Figure 3.3C-D), and hemoglobin 

concentration was also significantly elevated in 2 independent experiments (Table 3.1). 

As comparison, mice we housed for 3 weeks in 12% oxygen, equivalent to an altitude of 

14,000 feet, increased their hematocrit from 51.6 ±0.2 to 57.8 ±0.5%, an increase of 6%. 
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Therefore, the 2.2% increase in hematocrit in the gld-Rag1-/- mice represents 

approximately a third of the erythropoietic output in high altitude hypoxia. Unlike the 

lpr-Rag1-/-, plasma Epo in the gld-Rag1-/- mice was not significantly different to that of 

controls (Figure 3.3A), possibly because of the already low basal Epo in control Balb/C 

mice which was ∼40% lower than in control mice on the C57BL/6 background (Figure 

3.3A, lower panels, black symbols). 

Of note, responses by both gld-Rag1-/- (Balb/C background) and the lpr-Rag1-/- 

(C57BL/6 background) mice have in common a higher erythropoietic rate per unit plasma 

Epo than in matched control mice, consistent with the absence of a negative regulator of 

erythropoiesis.  

 

Increased splenic CFU-e, ProE and EryA in gld-Rag1-/- and lpr-Rag1-/- mice 

A representative flow-cytometric histogram in Figure 3.4A shows that the 

frequency of the ProE and EryA subsets within gld-Rag1-/- spleen erythropoietic tissue 

(Ter119+ cells) was increased. A similar analysis in 11 to 40 mice per strain/sex 

combination is summarized in Figures 3.4B and 3.4D. An increase in subset frequency 

does not necessarily reflect a corresponding increase in cell number, since it may also 

arise as a result of decreased cell number in other subsets. We therefore also examined 

the absolute number of cells in each of the erythroid precursor subsets, computed by 

multiplying the subset frequency data by the fraction of Ter119+ cells per spleen and the 

spleen weight, for each individual mouse (Figure 3.5A).  

These data show significant increases, ranging from 1.5- to 4-fold, depending on 
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genotype and sex, in both the frequency and absolute number of spleen CFU-e, ProE, 

EryA and EryB, in gld-Rag1-/- and lpr-Rag1-/- mice (Figures 3.4A-C and 3.5A). 

Specifically, all the splenic ProE, EryA and EryB subsets showed increased frequency 

within the Ter119high compartment in both gld-Rag1-/- and lpr-Rag1-/- mice relative to 

matched controls, with this increase reaching statistical significance in ten of the twelve 

comparisons made, namely ProE (p<0.02), EryA (p<0.002) and EryB (p<0.002) in 

female lpr-Rag1-/- mice, ProE (p<0.002), EryA (p<0.002) and EryB (p<0.02) in male lpr-

Rag1-/- mice, ProE (p<0.02), EryA (p<0.02) and EryB (p<0.02) in female gld-Rag1-/- 

mice, and EryB (p<0.02) in male gld-Rag1-/- mice. The frequency of ProE and EryA in 

male gld-Rag1-/- mice was also increased relative to controls but did not reach statistical 

significance. Similarly, the absolute number of cells in each of these erythroid subsets 

increased in both gld-Rag1-/- and lpr-Rag1-/- mice, reaching significance in nine of the 

twelve comparisons made, namely, ProE (p<0.005), EryA (p<0.0005) and EryB 

(p<0.0005) in female lpr-Rag1-/- mice, ProE (p<0.0005), EryA (p<0.0005) and EryB 

(p<0.05) in male lpr-Rag1-/- mice, and ProE (p<0.05), EryA (p<0.005) and EryB (p<0.05) 

in female gld-Rag1-/- mice. The number of ProE, EryA and EryB in male gld-Rag1-/- mice 

also increased but the differences did not reach statistical significance (Figure 3.5A). The 

number of gld-Rag1-/- mice available for analysis was smaller than that of the other 

sex/strain combinations (Figures 3.4B and 3.5A), possibly accounting for the failure of 

the change in their erythroblast subsets to reach statistical significance.  

Of note, there was no significant change in any of the equivalent subsets in bone 

marrow (Figure 3.4D) for any sex/strain combination. These results are consistent with 
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the pattern of erythroid Fas and FasL co-expression, which is largely restricted to spleen 

42. The largest increases were observed in ProE and EryA, in agreement with their higher 

Fas and FasL expression 42.  

 

Variability in basal erythropoietic rate and in the size of splenic erythroid subsets in 

gld-Rag1-/- and lpr-Rag1-/- mice 

Whilst the mean size of the ProE and EryA pools increased in gld-Rag1-/- and lpr-

Rag1-/- mouse populations, their actual size in individual mice was highly variable. Using 

an F-test we found significantly higher variance in both the frequency and absolute 

number of nearly all erythroblast subsets in the gld-Rag1-/- and lpr-Rag1-/- mice, and in 

gld-Rag1-/- reticulocytes, compared with matched Rag1-/- controls (significantly different 

variance is marked with an ‘f’; Figures 3.3D, 3.4B-C, 3.5A). The EryA frequency 

distributions (Figures 3.5B and 3.11) show the larger spread of EryA pool size in the 

mutant mice. We also found increased coefficient of variation (CV) for EryA and ProE in 

male, but less so in female, gld-Rag1-/- and lpr-Rag1-/- mice (Figures 3.5B and 3.11). The 

coefficient of variation measures variability independently of the population mean. 

Overall, CV values for all splenic erythroblast subsets and for peripheral blood 

reticulocytes in both gld-Rag1-/- and lpr-Rag1-/- male and female mice, are significantly 

increased (p=0.017, Figure 3.11B). These findings indicate that a key function of Fas-

mediated negative autoregulation is to suppress variability in the steady-state precursor 

pool and in erythropoietic rate, thus stabilizing the basal state. 
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A delayed response to Epo-driven erythropoietic stress in gld-Rag1-/- and lpr-Rag1-/- 

mice 

We took two approaches to assess the stress response of the gld-Rag1-/- and lpr-

Rag1-/- mice. First, we injected mice with a single high dose of Epo (300 U /25 g body 

weight), and followed the resulting increase in erythropoietic rate for 6 days (Figure 

3.6A-D). Initially, on days 1 and/or 2, hematocrit was higher in both gld-Rag1-/- and lpr-

Rag1-/- mice compared with controls, by 1-2%, possibly reflecting the larger basal 

erythroblast pool in these mice. However, between days 2 and 3, there was a significantly 

faster increase in hematocrit in control mice, which rose by over 4% in the space of 24 

hours, overtaking the hematocrit of gld-Rag1-/- and lpr-Rag1-/- mice (Figure 3.6A, 3.6D). 

There was no equivalent rapid increase in hematocrit in the gld-Rag1-/- and lpr-Rag1-/- 

mice. By subtracting the mean hematocrit on day 2 from the mean hematocrit on day 3, in 

5 independent comparisons between independent experiments on those days, we found 

that the rate of change in the hematocrit was significantly higher in control mice 

(p<0.005, Figure 3.6D). The slower increase in hematocrit in both gld-Rag1-/- and lpr-

Rag1-/- mice at this time was due to a slower expansion of EryA precursors, in spite of 

their larger basal EryA pools (Figure 3.6B, 3.6C). The difference in EryA expansion was 

largest on days 2 (lpr-Rag1-/- mice) and 3 (gld-Rag1-/- mice) (Figure 3.6C), corresponding 

to the time when Epo-mediated Fas suppression in wild-type mice reaches its peak 42.  

Of note, EryA expansion in control mice was a massive, 30- to 60-fold increase 

over the basal EryA pool. The shortfall in EryA on day 2 in the lpr-Rag1-/- mice was 

equivalent to 10 times the size of the basal EryA pool, or 30% of the total expansion in 
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control mice on that day (Figure 3.6B,C, p<0.05; the size of the basal EryA pool is 

marked Figure 3.6C as a black bar). A similar delay in EryA expansion was seen in gld-

Rag1-/- mice (Figure 3.6B,C). Further, injection of a much lower Epo dose (10U /25 g 

body weight) in lpr-Rag1-/- mice again resulted in delayed hematocrit and ProE responses 

(Figure 3.12). Therefore, the presence of Fas-mediated negative autoregulation 

accelerates the erythropoietic response over a wide Epo stress range.  

Analysis of changes in the ProE population showed similar results. In spite of its 

larger size in the basal state, expansion of the ProE pool in both gld-Rag1-/- and lpr-Rag1-

/- mice was slower between days 1 and 3, the differences in the absolute size of the pools 

reaching significance on days 1 (gld-Rag1-/- mice) and 3 (lpr-Rag1-/- mice) (Figure 3.7A). 

Furthermore, the rate of increase in ProE in response to Epo peaked in all mice between 

days 1 and 2, attaining a significantly lower level in gld-Rag1-/- and lpr-Rag1-/- mice 

compared with matched controls (p=0.00004, Figure 3.7B,C).  

 

A delayed erythropoietic stress response to reduced atmospheric oxygen in gld-

Rag1-/- mice 

 In a second approach, we examined the response of the gld-Rag1-/- mice to an 

acute reduction of atmospheric oxygen to 11% (Figure 3.8). The response to reduced 

atmospheric oxygen is complex since, in addition to elevating serum Epo, it stimulates 

additional cytokines as well as changes in ventilation and plasma volume that may 

indirectly alter erythropoietic responses 18,19,21. Furthermore, the actual increase in serum 

Epo in response to lower atmospheric oxygen is determined not only by the initial 
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hypoxic stimulus, but also by the ensuing erythropoietic response, which determines the 

duration of tissue hypoxia (Figure 3.1A). We chose to examine gld-Rag1-/- mice, since, 

unlike the lpr-Rag1-/- strain, their starting baseline Epo levels are very similar to those of 

their matched controls (Figure 3.3B). We found that in spite of their higher starting 

hematocrit and reticulocyte count, the increase in erythropoietic rate in gld-Rag1-/- mice 

was significantly slower, as seen by a significantly delayed increase in hematocrit (Figure 

3.8A) and a lower reticulocyte count (Figure 3.8B). There was a correspondingly slower 

increase in EryC erythroblasts (Figure 3.8D), at both 24 and 72 hours. This sluggish 

response presumably prolonged the tissue hypoxia in these mice, as reflected by their 

higher serum Epo at 72 hours (Figure 3.8C). These results clearly show a delayed stress 

response in mice lacking Fas-mediated negative autoregulation of erythroblasts.  

Unlike the response to injection of a fixed, high Epo dose (Figure 3.6), the slower 

erythropoietic response to hypoxia in the gld-Rag1-/- mice was not associated with a 

difference in the size of the ProE/ EryA pools at the early (24 hour) time point. Such a 

difference may have occurred earlier; alternatively, hypoxia may accelerate the 

maturation of EryA cells, so that reserve, Fas+ EryA cells in control mice do not 

contribute to an increase in the EryA pool but instead differentiate rapidly and contribute 

to the increase that we see in the EryC pool by 24 hours (Figure 3.8D). Indeed, it has 

been observed previously that hypoxic stress as a result of bleeding or phenylhydrazine 

stress accelerates erythroblast maturation 152-154. The larger number of EryA in gld-Rag1-

/- by 72 hours presumably reflects the higher Epo level at that time, in turn a result of the 

more prolonged stress these mice presumably experience, due to their sluggish 
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erythropoietic response to the initial hypoxic stimulus.  

 

DISCUSSION 

We investigated the role of Fas and FasL-mediated negative autoregulation in the 

early erythroblast pool. We generated gld-Rag1-/- and lpr-Rag1-/- mouse strains, deficient 

in FasL and Fas, respectively, bred onto two distinct genetic backgrounds. Both these 

strains showed similar erythropoietic deficits. They confirm the hypothesis that Fas and 

FasL are negative regulators of splenic EryA and ProE, resulting in negative regulation of 

erythropoiesis at the whole animal level. In addition, they show a striking, non-redundant 

role for Fas in stabilizing basal erythropoiesis. Surprisingly, in spite of the removal of a 

negative regulator and the consequent larger basal precursor pool, the response of the 

mutant mice to erythropoietic stress was significantly delayed. These findings reveal that 

an autoregulatory loop local to erythropoietic tissue can exert key dynamic properties on 

erythropoiesis as a whole. They also provide experimental evidence that regulation of 

erythroid precursors through apoptosis, though apparently wasteful, accelerates the 

response to erythropoietic stress.  

 

The presence of a local negative autoregulatory loop in spleen erythropoietic tissue 

Several lines of evidence suggest that EryA and ProE negatively regulate their 

own survival through their Fas and FasL-mediated interactions. First, the pattern of co-

expression of both Fas and FasL by EryA and ProE 42,44; second, the close apposition of 

cells within the erythroblastic island, making an interaction between Fas+ and FasL+ cells 
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possible 44; and last, our finding that a mathematical model in which EryA negatively 

regulate their own survival via the Fas/FasL interaction, accounts well for the 

experimental data correlating splenic EryA frequency with their Fas expression, across a 

wide range of Epo concentrations in vivo (Figure 3.2 and Text 3.1). 

  

Fas-mediated negative autoregulation decreases erythropoiesis at the whole-animal 

level 

 Both acute and chronic inhibition of Fas suggest that it negatively regulates 

erythropoiesis at the level of the whole animal. An acute decrease in erythroblast FasL by 

transient administration of the decoy receptor Fas:Fc resulted in an acute increase in 

erythropoietic rate, reducing ProE and EryA apoptosis and doubling reticulocyte number 

by 48-72 hours (Figure 3.10).  

 Chronic loss of Fas function in the gld-Rag1-/- and lpr-Rag1-/- mice is likely to 

elicit compensation through the pO2/Epo-mediated negative feedback loop, which 

automatically adjusts Epo levels and erythropoietic rate so as to maintain a near-normal 

basal hematocrit and tissue pO2. Although lpr-Rag1-/- mice had normal reticulocytes and 

hematocrit, their plasma Epo was significantly lower, by 35%, than in matched Rag1-/- 

controls, evidence of compensatory adjustment. By contrast, gld-Rag1-/- mice were 

apparently unable to significantly lower their already low plasma Epo. Consequently, 

their reticulocyte numbers in peripheral blood, a direct measure of erythropoietic rate, 

more than doubled, and there was a corresponding significant 2.2% increase in 

hematocrit. This increase is equivalent to a third of the increase in hematocrit we 
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observed in mice housed in 12% oxygen, equivalent to hypoxia at 14,000 feet.  

 While many pathways have been implicated in the regulation of erythropoietic 

rate, a specific contribution to the stress response in vivo had been determined for very 

few. Of note, mice lacking ERK1, a recently described negative regulator of splenic 

erythropoiesis, showed a similar increase in hematocrit to that seen here for the gld-Rag1-

/- mice, without a significant change in plasma Epo 155. Taken together, both the lpr-Rag1-

/- and gld-Rag1-/- strains show increased erythropoietic rate per unit plasma Epo when 

compared with matched controls, confirming that local negative regulation at the level of 

splenic erythropoietic tissue has a negative effect at the level of the whole animal.  

 There is no indication that Fas and FasL interact with alternative receptors or 

ligands. Therefore, the difference in the response of the gld-Rag1-/- and lpr-Rag1-/- mice 

at the level of the hematocrit and serum Epo is likely attributable to their different genetic 

backgrounds. The response of both these mouse strains at the level of the ProE and EryA 

precursors, the direct sites of action of Fas and FasL, was very similar.  

 

Loss of Fas function results in a specific increase of spleen ProE and EryA pools 

 We found a significant 1.5- to 4-fold increase in the number of splenic, but not 

bone marrow, ProE and EryA in both the gld-Rag1-/- and lpr-Rag1-/- mice, consistent with 

the pattern of erythroid Fas and FasL expression 42. We also identified an increase in 

CFU-e specific to spleen, suggesting that these cells are regulated by Fas, in agreement 

with their counterpart in fetal liver 44. Bone marrow progenitor subsets were either 

normal or even decreased in number, possibly as a compensatory response to their 
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increase in spleen (Figure 3.4C,D).  

The increase in spleen ProE, EryA and CFU-e is due to the absence of a spleen-

specific negative regulator, rather than erythropoietic stress, since it is not associated with 

elevated serum Epo, and since there is no associated increase of bone marrow 

progenitors. It is unlikely that the increase in ProE/EryA is a consequence of expansion in 

an earlier, Fas-regulated progenitor compartment, since there was no significant change 

in bone marrow erythroid progenitors, platelets or white cells (Table 3.1). An earlier 

report of increased CFU-S in adult lpr and gld mice 156 is complicated by the autoimmune 

syndrome in these mice, which in the present work we addressed by breeding the lpr and 

gld mutant mice onto the immune-deficient Rag1-/- background.  

The expansion in ProE and EryA precursor pools in the gld-Rag1-/- and lpr-Rag1-/- 

mice represents a substantial non-redundant negative regulatory function of Fas. 

Nevertheless, it is likely to be an underestimate of the actual number of ProE/EryA that 

are regulated by Fas in wild-type mice, as suggested by the response to stress (see 

below). Compensatory mechanisms that could ameliorate the absence of Fas or FasL 

include upregulation of alternative negative regulators such as ERK1 155, attenuation of 

alternative EpoR anti-apoptotic pathways such as Stat5-induced Bcl-xL, phosphoinositol-

3 kinase/AKT and suppression of Bim and Foxo3a 23,90,134, or a decrease in factors that 

stimulate erythropoiesis such as BMP4 53.  

 

A stabilizing function for the Fas and FasL-mediated negative autoregulatory loop  

Random variation in the number of progenitors is an inevitable consequence of 
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inherent fluctuations in biological systems 157-159, found in mice that are genetically 

identical, of similar age and housed in similar stable conditions. The pO2/Epo-mediated 

negative feedback loop (Figure 3.1A) adjusts overall mean erythropoietic rate in the face 

of such fluctuations over time, but the intrinsic delay in this loop may result in 

oscillations and limit the system’s stability. Here we found that in the absence of Fas or 

FasL, there was a significant increase in variability, reflected by both increased variance 

and increased coefficient of variation, of splenic ProE, EryA and EryB in individual 

mice, compared with control mice (Figures 3.4B and 3.5A). Bone marrow erythroid 

subsets were not affected, but there was increased variability of overall erythropoietic 

rate, as reflected by the reticulocyte counts. Therefore, Fas-mediated autoregulation in 

spleen has a stabilizing effect on erythropoiesis at the whole animal level, offsetting the 

limitations of the pO2/Epo-mediated negative feedback loop. 

The stabilizing influence of the Fas/FasL interaction is a result of its sensitivity to 

the size of the erythroblast pool. For comparison, a recently identified cell-autonomous 

negative regulator of splenic erythropoiesis in vivo, ERK1, does not appear to contribute 

to the stability of erythropoiesis 155. Fas-mediated apoptosis of ProE or EryA depends on 

the probability that two cells expressing Fas and FasL respectively, encounter each other 

within the erythropoietic niche. This probability is dependent on their frequency in tissue 

(Figure 3.2 and Text 3.1). Should their frequency be in excess, Fas-mediated loss of EryA 

would accelerate, providing an automatic correction. Conversely, a shortage of EryA 

would lower the probability of their interaction and death, allowing their number to 

increase. Both negative and positive corrections take place locally in erythropoietic 
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tissue, with little delay and without the need to engage the pO2/Epo-mediated negative 

feedback loop, avoiding potentially deleterious corrective swings in systemic tissue pO2.  

 

Fas-mediated negative autoregulation accelerates the stress response 

Unexpectedly for mice lacking a negative erythropoietic regulator, the response of 

gld-Rag1-/- and lpr-Rag1-/- mice to acute Epo administration was delayed. The splenic 

EryA pool expanded 30-fold its basal size in control mice by day 2; this massive increase 

was reduced by 30% in the gld-Rag1-/- and lpr-Rag1-/- mice, reflecting a significant 

shortfall, equivalent to 10 times the size of the basal EryA pool. This shortfall occurred in 

spite of a larger than normal basal EryA pool in the mutant mice. We found a similar 

delay in the expansion of ProE cells in the gld-Rag1-/- and lpr-Rag1-/- mice. 

To explain this phenomenon, we propose the model illustrated in Figure 3.9. 

EryA are continuously formed from earlier progenitors (=EryA input) but the majority 

dies, with only a small fraction remaining as the basal EryA pool. However, the 

apoptosis-prone EryA form a reserve population that may be rapidly recruited by high 

Epo during stress. We propose that the rapid, 30-fold expansion in EryA within 2 days of 

Epo administration corresponds to the size of the reserve EryA population. The smaller 

initial expansion in the gld-Rag1-/- and lpr-Rag1-/- mice suggests that part of the EryA 

reserve is regulated through Fas, and is missing in these mutant mice.  

These observations suggest that the high apoptotic rates of ProE and EryA in the 

basal state, in part due to Fas, provide a mechanism that accelerates the stress response. 

The rescue of ProE/EryA from apoptosis allows a faster increase in their number 
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compared with their generation by cell division from earlier progenitors. This faster 

increase accelerates erythropoietic rate and prevents a prolonged tissue hypoxia. We 

found that the response of the erythropoietic system to reduced atmospheric oxygen was 

similarly delayed in gld-Rag1-/- mice, as reflected by lower reticulocyte counts and a 

slower increase in hematocrit. In this more complex, hypoxic stimulus to the system, we 

noted that the principal difference in the erythroblast pools between gld-Rag1-/- and 

control mice appeared at the EryC stage, rather than in the earlier, ProE and EryA stages. 

We suggest that this may be due to accelerated maturation of erythroblasts, noted in the 

older literature in response to hypoxic stress 152-154.  

Of note, in ERK1-/- mice, the stress response is timely and somewhat amplified 

155. Unlike Fas-mediated autoregulation, which is exerted at the level of erythroblasts, 

ERK1 appears to suppress a much earlier, BMP-dependent BFU-e progenitor, which is 

therefore unlikely to contribute to the initial, acute phase of stress.  

 

The negative autoregulatory motif  

Negative autoregulation is a frequent motif in biological networks. Computational 

and experimental approaches in simple transcriptional networks in E.Coli suggested that 

it has two principal effects: conferring resistance to random fluctuations, and accelerating 

the response to a stimulus 141-144,160,161. To our knowledge, the functional role of negative 

autoregulation within higher-level intercellular networks had not been tested 

experimentally. Our work suggests that the negative regulatory motif may exert similar 

‘logic’ in higher-level networks, helping to maintain both stability and a fast stress 
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response of tissue progenitors.  
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Figure 3.1 
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Figure 3.1  Epo regulation of erythropoiesis through Fas-mediated apoptosis.  

(A) Epo-dependent erythroblastic island precursors CFU-e, ProE and EryA (in blue) 

co-express Fas and FasL, and mature into Epo-independent EryB, EryC and red blood 

cells (RBC, in red). ‘F’ =Fas expressing cells, shown undergoing cell death as a result of 

interaction with FasL-expressing cells within the Epo-dependent (blue) compartment 

(black flat-headed arrow). A negative feedback loop driven by tissue pO2 regulates Epo 

levels in blood, which in turn enhance erythroblast survival, by either suppressing Fas 

and FasL expression, or by non-Fas dependent pathways. HSC =hematopoietic stem 

cells.  

(B) Flow-cytometric identification of Epo-dependent ProE and EryA subsets (in blue) 

and Epo-independent EryB and EryC (in red), in adult Balb/C mouse spleen, in basal 

conditions (top panels) or 48 hours following Epo injection (300 U /mouse, lower 

panels). ProE are defined as Ter119medCD71high cells; Ter119high cells are further 

subdivided based on forward scatter (FSC) and CD71 expression into EryA (CD71high 

Ter119highFSChigh), EryB (CD71highTer119highFSClow) and EryC (CD71lowTer119high 

FSClow).  

(C) The erythropoietic response of mice to a hypoxic environment. Mice (Balb/C) 

were examined either in the basal state (‘a’, 21% atmospheric oxygen), when housed in 

11% oxygen for 8 days (assay times ‘b’ and ‘c’ at 13 hours and 3 days, respectively), and 

when placed back in normoxia (21%; assay times ‘d’ and ‘e’, at 1 and 2 days post-

hypoxia). Top panels show representative flow-cytometric histograms of Fas expression 

and Annexin V binding at the indicated assay times. Gates refer to the Fas+ and Annexin 
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V+ populations, determined with reference to staining controls in which either the anti-

Fas antibody (left panel) or Annexin V (right panel) were omitted. The fraction of cells 

positive for Fas or Annexin V at each time point is noted. Middle panel shows a summary 

of similar data, 2 to 9 mice per time point. Lower panels show corresponding serum Epo 

levels and EryA cell number in spleen (expressed as total EryA cells /gram body weight). 

*p<0.05, **p<0.002, ***p<0.0001 (two-tailed t-test, unequal variance). 
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Figure 3.2 
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Figure 3.2 Fas and FasL-mediated negative autoregulation of the EryA pool. 

(A) Wild-type Balb/C mice were injected with a single Epo injection subcutaneously, 

of 1, 3, 6, 10, 30, 100 or 300 U /25 g body weight. Spleen EryA were examined on day 3 

post injection. Left panel shows EryA cell frequency (of total erythroid cells) relative to 

basal frequency, plotted against the number of EryA cells that express Fas (Fas+ EryA, 

expressed as a ratio to basal levels). Data points represent individual mice. Blue =mice in 

the basal state (n=15), red =mice injected with Epo (n=38). For clarity only mice injected 

with 30 U (which maximally suppress Fas) or less are included in the left panel (for 30 U, 

6 highest data points lie at the maximal Fas suppression and maximal EryA frequency). 

Data are fitted with a curve derived from the mathematical model described in panel (B) 

and in the Text 3.1. Right panel shows the dependence of Fas+ EryA on the dose of 

injected Epo, in the same dataset as in the left panel; all mice injected with a given Epo 

dose were pooled into one data point, mean ±SEM. 

(B) Schematic of the factors that regulate the size of the EryA pool, ‘A’, measured as 

the fraction of all Ter119+ cells that are EryA. F =fraction of EryA cells that express Fas. 

ß =input into the EryA pool from earlier progenitor stages. αA =output from the EryA 

pool into later erythroid subsets (EryB). A2F =Fas-mediated cell loss. See mathematical 

model described in Text 3.1. In panel (A) of this figure, A is plotted against F, expressed 

as a ratio to the A and F values in the basal state, respectively.  
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Figure 3.3 
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Figure 3.3  Increased erythropoiesis in mice deficient in the Fas pathway. 

 Legend in (A) also applies to panels (B) and (D). lpr-Rag1-/- mice are on the 

C57BL/6 background (in blue), and are compared with control Rag1-/- mice on the 

C57BL/6 background. gld-Rag1-/- mice are on the Balb/C background (in red), and are 

compared with control Rag1-/- mice on the Balb/C background. 

(A) Hematocrit (=fraction of the blood volume that is due to red cells) and Plasma 

Epo of lpr-Rag1-/-, gld-Rag1-/- and Rag1-/- age- and strain-matched control mice. M= 

males. F= females. Box and whiskers delineate the central 50% and 90% of readings, 

respectively. Median is indicated with a horizontal line; arithmetic mean with a ‘+’. Data 

points correspond to individual mice. Between 11 and 40 mice examined per genotype. 

*p<0.05, **p<0.005, ***p<0005 (ANOVA). 

(B) Hematocrit vs. plasma Epo in the subset of mice where both values were 

measured, in the basal state, for lpr-Rag1-/- and matched Rag1-/- control mice (left panel), 

and for gld-Rag1-/- and matched Rag1-/- controls (right panel). Data are mean ±SEM of 

≥16 mice. *p≤0.001 (two-tailed t-test, unequal variance). 

(C) Flow-cytometric measurement of reticulocyte number. Top: whole blood stained 

with either DRAQ5 (detects DNA) or Thiazole Orange (TO, detects both DNA and 

RNA). Reticulocytes lack a nucleus but retain RNA. They therefore form a DRAQ5-

negative, TO-positive population. Bottom panel shows analysis in wild-type (WT) mice 

either in the basal state or following Epo injection; and in gld-Rag1-/- and control Rag1-/- 

mice.  

(D)  Reticulocytes in lpr-Rag1-/-, gld-Rag1-/- and matched Rag1-/- controls, measured 
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by flow cytometry. ***p<0.0001, two-tailed t-test, unequal variance; ff= p<0.001, F test. 

 



 
  
 

68 

Figure 3.4 
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Figure 3.4  Increased frequency of spleen, but not bone-marrow, erythroid 

progenitors and precursors in mice deficient in the Fas pathway. 

 The Legend in panel (B) also applies to (C) and (D).  

(A) Representative flow-cytometric analysis of spleen erythroid subsets in gld-Rag1-/- 

and matched Rag1-/- controls, showing increased frequency of ProE and EryA within 

Ter119+ cells.  

(B)  Frequency of erythroblast subsets in spleen erythropoietic tissue, measured as in 

(A), expressed as fraction of all spleen Ter119+ cells. F=female M=male. Box and 

whiskers delineate the central 50% and 95% of readings, respectively, with the median 

indicated with a horizontal line and arithmetic mean with a ‘+’. Data points are individual 

mice (11-40 mice per sex/genotype combination). Data were pooled from several 

independent experiments. 

(C) CFU-e progenitors in spleen and bone marrow (per 1x106 plated cells). Data 

pooled from two independent experiments for females, and one experiment for males, for 

each genotype.  

(D)  Frequency of erythroblast subsets in bone marrow expressed as fraction of all 

spleen Ter119+ cells.  

For all panels, *p<0.05 **p<0.02, ***p<0.002 (ANOVA, for difference in 

means). f= p <0.05 ,ff= p<0.02, fff= p<0.002 (F test, for difference in variance).  
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Figure 3.5  
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Figure 3.5  Loss of Fas function results in a larger and more variable basal spleen 

erythroid progenitor pool. 

(A) Spleen erythroid subsets ProE, EryA or EryB, expressed as absolute number of 

cells per gram body weight, in gld-Rag1-/-, lpr-Rag1-/- and matched Rag1-/- controls, 

shown separately for male (M) and female (F) mice. Data correspond to the same mouse 

dataset as in Figure 3.4. Box and whiskers delineate the central 50% and 90% of 

readings, respectively, with the median indicated with a horizontal line and arithmetic 

mean with a ‘+’. Data points correspond to individual mice. Between 11 and 40 mice 

were examined per genotype; data pooled from several independent experiments. 

*p<0.05, **p<0.005, ***p<0.0005 (ANOVA, for difference in means); f =p<0.05, ff 

=p<0.005, fff =p<0.0005 (F test, for difference in variance).  

(B) Frequency distribution histograms for EryA, in male and female lpr-Rag1-/- and 

matched Rag1-/- controls. The coefficient of variation for each group is shown. Purple 

line is the fitted normal distribution curve. Same dataset as in panel (A). 
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Figure 3.6 
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Figure 3.6  Delayed response to Epo-induced stress in mice deficient in the Fas 

pathway. 

(A-D) gld-Rag1-/-, lpr-Rag1-/- and matched Rag1-/- control mice were injected with Epo 

(300 U /25 g body weight) subcutaneously at t=0. The erythropoietic response was 

followed for 6 days. Data are mean ±SEM for 3 to 18 mice per time point per genotype, 

pooled from up to 3 experiments per time point. Data at t=0 are the basal state data shown 

in Figures 3.3A and 3.5A, pooled for males and females. 

(A) Hematocrit measurements. 

(B) Spleen EryA (cells per gram body weight) in the same mouse set as in the top 

panel. Data points are individual mice, with the mean ±SEM for each day marked as a 

horizontal line.  

(C) The difference in mean EryA number (shown in panel B) between the mutant gld-

Rag1-/- or lpr-Rag1-/- and their matched Rag1-/- controls, for each day. The size of the 

corresponding control (Rag1-/-) EryA pool is marked with a black bar. 

(D) The rate of change in hematocrit between days 2 and 3 following Epo injection. 

The same dataset as in panel (A), showing the differences in hematocrit measured in 

multiple independent experiments on days 2 and 3. Altogether 5 independent 

comparisons are shown. 

For all panels, *p<0.05, **p<0.005, ***p<0.0005 (t-test, unequal variance). 
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Figure 3.7 
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Figure 3.7 Delayed response to Epo-induced stress in mice deficient in the Fas 

pathway. 

(A-C) Analysis of the ProE response to Epo injection. The same experiment and dataset 

as in Figure 3.6. 

(A) Spleen ProE (cells per gram body weight). Data points are individual mice, with 

the mean ±SEM for each day marked as a horizontal line. Data pooled from 1 to 3 

experiments with 3 to 18 mice per genotype. 

(B) The rate of change in spleen ProE between days 1 and 2 post-Epo injection in the 

mutant gld-Rag1-/- (indicated in red) or lpr-Rag1-/- (blue) and their matched Rag1-/- 

controls. Dataset as in panel (A). Each point represents the mean difference in ProE 

between independent experiments done on days 2 and 3, in 5 independent comparisons.  

(C) The rate of change in spleen ProE throughout the first 3 days of response to Epo, 

computed as in panel B. The rate of change between days 0 and 1, days 1 and 2, and days 

2 and 3, were plotted on days 0.5, 1.5 and 2.5, respectively. Data points represent pooled 

mutant (lpr/gld) or control differences (mean ±SEM).  

For all panels, *p<0.05, **p<0.005, ***p<0.0005 (t-test, unequal variance). 
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Figure 3.8 
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Figure 3.8  Delayed response to hypoxia-induced stress in mice deficient in the 

Fas pathway. 

(A-D) gld-Rag1-/- or control mice were transferred to a hypoxia chamber with ambient 

11% oxygen for 1 or 3 days. Data are mean ±SEM for 4 to 9 age- and gender-matched 

mice per time point per genotype. Data at t=0 are the basal state data shown in Figures 

3.3A and 3.5A, pooled for males and females. 

(A)  Hematocrit measurements, performed via CritSpin microcentrifugation. 

(B)  Reticulocyte measurements, performed flow-cytometrically, as in Figure 3.3C. 

(C)  Plasma Epo, measured by ELISA. 

(D)  Spleen erythroid subsets ProE, EryA, EryB and EryC, expressed as absolute 

number of cells per gram body weight in gld-Rag1-/- and matched Rag1-/- controls.  

For all panels, *p<0.05, **p<0.005, ***p<0.0005 (t-test, unequal variance). 
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Figure 3.9 
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Figure 3.9  Absence of a Fas-regulated EryA reserve delays the response to stress. 

EryA cells are continuously formed from earlier precursors (‘input’). In the basal 

state, when Epo concentrations are low, only a small fraction of these cells survive, 

forming the ‘basal EryA pool’ (in purple). The remaining EryA undergo apoptosis, either 

through Fas (‘Fas-regulated reserve’, green) or alternative mechanisms (‘Alternative 

reserve’, blue). Together, the EryA reserve pools are 30- to 60-fold the size of the basal 

pool (see Figure 3.6). During the initial response to stress, high Epo levels rescue the 

EryA reserve pools from apoptosis, resulting in an immediate increase in the size of the 

surviving EryA pool and an increase in erythropoietic rate (solid colors indicate surviving 

cells, dashed lines indicate cells that underwent apoptosis). 

We suggest that lpr and gld mice partially compensate for the absence of the Fas-

regulated reserve by generating fewer EryA cells (a smaller input). In this way, the 

absence of Fas-mediated apoptosis does not excessively increase the basal EryA pool 

(which does increase 1.5- to 4-fold, see Figure 3.5; this increase is much smaller than the 

stress-induced increase and is not shown). During stress, the absence of the Fas-regulated 

reserve in lpr and gld mice reduces the number of EryA that may be immediately 

recruited into the surviving EryA pool and consequently delays the stress response.  
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Figure 3.10 
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Figure 3.10, associated with Figure 3.1. Inhibition of Fas with Fas:Fc decreases 

EryA death and increases erythropoietic rate.  

 MyD88-/- mice (C57BL/6 background) were each injected intraperitoneally with 

100 µg of human purified Fas:Fc chimeric protein (BD Biosciences), or with an equal 

volume of saline (200 µl). 

(A) Flow-cytometric histogram of Annexin V binding of spleen EryA cells, showing 

decreased apoptosis 48 hours following injection of Fas:Fc.  

(B) Summary of Annexin V binding in two independent experiments, at 48 hours and 

at 72 hours post-injection. Data points correspond to individual mice.  

(C) Summary of reticulocyte count (red blood cells younger than 24 hr, identifiable 

by their cytoplasmic RNA, which is absent in older red cells) in the same 

mice/experiments as in panel (B). Fas:Fc caused an increase in reticulocytes, reflecting 

increased erythropoietic rate. 

(D) Summary of FasL-positive frequency in spleen ProE and EryA 24 hours post-

Fas:Fc. Fas:Fc treatment blocked immunodetection of FasL on the cell surface. 
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Figure 3.11 
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Figure 3.11, associated with Figure 3.5. Increased variance in lpr/gld erythroid 

progenitor subsets. 

(A) Frequency distribution histograms for EryA, in male and female gld-Rag1-/- and 

matched Rag1-/- controls. The coefficient of variation for each group is shown. Purple 

line is the corresponding normal distribution curve. Same dataset as in Figure 3.5. A 

similar analysis for the lpr-Rag1-/- mice is shown in Figure 3.5B. 

(B) Coefficient of variation (CV) for subsets ProE, EryA-C and reticulocytes in male 

or female lpr-Rag1-/- or and gld-Rag1-/- mice and corresponding Rag1-/- controls. The 

difference in CV between control and lpr/gld is significant at p=0.017 (paired t-test, 

treating the CV as a standard statistical variable). 
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Figure 3.12 
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Figure 3.12, associated with Figure 3.6  Delayed response to Epo injection in lpr-

Rag1-/- mice.  

 Female mice were injected with 10 U of Epo subcutaneously. Hematocrit, ProE 

and EryA progenitors were measured on day 3 post injection. *p<0.05 (two-tailed t-test, 

unequal variance). Basal hematocrit values are for lpr-Rag1-/- females. 
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Table 3.1 

 

 

 

 

 

 

 

Table 3.1, associated with Figure 3.3.  

 Complete blood counts (CBC) for the indicated mouse strains. n =number of mice 

used for each strain in each experiment. HCT =hematocrit. HGB =hemoglobin. RBC 

=red blood cells. MCV =mean corpuscular volume. WBC =white blood cells. PLT 

=platelets. All data are mean ±SEM. t-test (unequal variance) p-values are indicated. 
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Text 3.1  Regulation of the EryA progenitor pool by Fas. 

 The data in Figure 3.2A (left panel) can be fitted by a model in which Fas acts as 

a negative autoregulator of the EryA pool (Figure 3.2B).  

Let the number of EryA cells within the erythroblastic island be ‘A’. ‘A’ is expressed 

relative to the basal frequency of EryA within the erythroblastic island, (measured 

experimentally as the fraction of Ter119+ cells that are ‘EryA’ in the basal state).  

‘A’ is the result of three principal factors (Figure 3.2B):  

• a continuous input from earlier progenitors, β;  

• a continuous output, αA, into more differentiated progenitor subsets;  

• Fas-dependent loss through cell death.  

 

The probability of Fas-mediated cell death is proportional to the probability of a Fas-

positive EryA cell encountering an EryA cell that expresses FasL, at sufficiently close 

quarters to result in activation of the Fas receptor. If the fraction of EryA cells that 

expresses Fas is denoted by ‘F’, then the frequency of Fas-positive EryA cells in the 

erythroblastic island is ‘AF’; similarly, if the frequency of FasL expression amongst 

EryA is ‘L’, the frequency of FasL-positive EryA cells in the island is ‘AL’. The 

probability of this encounter is therefore proportional to AF * AL = A2FL . However, 

since nearly all EryA cells express FasL, and since the change in FasL expression in 

response to Epo is relatively small, we can substitute L ≈1. The probability of Fas-

mediated cell death is therefore proportional to ‘A2F’, a term that varies with the square 

of the frequency of EryA in the erythroblastic island, for any given level of Fas.  
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This model allows us to predict how the frequency of EryA changes with Fas 

expression in response to Epo. Thus, change in EryA pool over time, 
dA
dt

, is given by: 

 
dA
dt

= β − kA2F −αA  (1) 

where ‘k’ is a proportionality constant. When a new steady state is attained between days 

2 and 3 following an Epo injection (Liu et al), there is no net change in ‘A’, making   

 
dA
dt

= 0 . Therefore, equation (1) becomes:  

 β − kA2F −αA = 0  (2) 

For a given constant value of β, α and F, the corresponding value of ‘A’ may be found by 

solving equation (2) as a simple quadratic equation: 

 A =
α ± α 2 + 4kFβ

−2kF
 (3) 

 

Epo levels change with erythropoietic stress, suppressing F. We assume that the input β 

and the output coefficient, α, remain relatively constant in spite of changes in the level of 

Epo. The inverse relationship between EryA (‘A’, expressed relative to the basal 

frequency of EryA within Ter119+ cells) and the number of Fas+ EryA (‘F’, expressed 

relative to the frequency of Fas+ cells within EryA cells) in Figure 3.2A is fitted well by a 

hyperbolic curve that represents the (positive) solutions for ‘A’ in equation (3), for 

different steady-state levels of Fas (‘F’) (R2=0.89). 
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The initial fitted constants were β=1.3, α=0, k=0.5. R2=0.88. 

The zero value fitted by the ‘solver’ software for α reflects its low actual value relative to 

β, with the result that the curve fitting for equation (3) is relatively insensitive to small 

changes in α around zero. To find the actual value for α:  

As F→ 0, then, from equation (2),   

 A =
β
α

 (4) 

 

Experimentally, we know that under these circumstances, ‘A’ is in the order of 30- to 60-

fold the basal EryA pool (This increase is the measured expansion of EryA. Figure 3.4A 

and main text). From equation (4), and from the value for β obtained by the curve fitting, 

this gives a value for α between 0.02 and 0.04. Substituting these values in the equation 

describing the curve in Figure 3.2A does not substantially alter the curve and its fitness to 

the data (R2 remains 0.89).  
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CHAPTER IV 

CONTRASTING DYNAMIC RESPONSES IN VIVO OF THE BCL-XL AND BIM 
ERYTHROPOIETIC SURVIVAL PATHWAYS 

 

ABSTRACT   

 Survival signaling by the erythropoietin (Epo) receptor (EpoR) is essential for 

erythropoiesis and for its acceleration in hypoxic stress. A number of apparently 

redundant EpoR survival pathways were identified in vitro, raising the possibility of their 

functional specialization in vivo. Here we used mouse models of acute and chronic stress, 

including a hypoxic environment and β-thalassemia, to identify two markedly different 

response dynamics for two early erythroblast survival pathways in vivo. Induction of the 

anti-apoptotic protein Bcl-xL is rapid but transient, whilst suppression of the pro-

apoptotic protein Bim is slower but persistent. Similar to sensory adaptation, however, 

the Bcl-xL pathway ‘resets’, allowing it to respond afresh to acute stress superimposed on 

a chronic stress stimulus. Using ‘knock-in’ mouse models expressing mutant EpoRs, we 

found that adaptation in the Bcl-xL response is due to adaptation of its upstream regulator 

Stat5, both requiring the EpoR distal cytoplasmic domain. We conclude that survival 

pathways show previously unsuspected functional specialization for the acute and chronic 

phases of the stress response. Bcl-xL induction provides a ’stop-gap’ in acute stress, until 

slower but permanent pathways are activated. Further, pathological elevation of Bcl-xL 

may be the result of impaired adaptation, with implications for myeloproliferative disease 

mechanisms.  
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INTRODUCTION  

 Hypoxic stress accelerates the production of red cells by up to ten-fold 162. 

Erythropoietin (Epo) is essential for both basal and stress erythropoiesis. Epo exerts its 

effect by activating its receptor, EpoR, on the surface of erythroid progenitors 163. 

Colony-forming unit-erythroid (CFU-e) progenitors and their immediate proerythroblast 

and basophilic erythroblast progeny are Epo-dependent 2. Until recently, the rarity of 

these cells within hematopoietic tissue confined their biochemical study to in-vitro 

culture systems, where they were found to undergo apoptosis when deprived of Epo 73. It 

was therefore suggested that Epo regulates erythropoietic rate through the number of 

erythroid progenitors it rescues from apoptosis 73.  

 Recently, we 42 and others 47,164 made use of cell-surface markers to identify 

maturation-specific erythroblast subsets directly within freshly isolated mouse 

hematopoietic tissue 42, including the Epo-responsive ProE (proerythroblasts, 

CD71highTer119medium ) and EryA (early basophilic erythroblasts, CD71highTer119 high 

FSChigh). This approach confirmed the central role of apoptosis in the erythropoietic 

stress response, showing that a substantial fraction of the early erythroblast compartment, 

particularly splenic ProE and EryA, undergo apoptosis in vivo in the normal basal state. 

Stress-induced high Epo levels suppress apoptosis and consequently promote early 

erythroblast expansion and an increase in erythropoietic rate 42. 

Although a number of EpoR-activated survival pathways have been identified 

67,76,81,90,136, relevance to erythropoiesis in vivo was documented for only a few, largely 

through gene ‘knockout’ studies revealing abnormal basal or stress erythropoiesis 
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43,76,84,155,165. Importantly, it is unknown how multiple survival pathways integrate in vivo 

to provide a coherent erythropoietic stress response, and whether the large number of 

survival pathways represents redundancy or functional specialization. The study of these 

pathways in vivo, now made possible with the advent of flow-cytometric techniques 

(Chapter V) 42,47,164, may assist in answering this question.  

 We recently investigated the role of the death receptor Fas, and its ligand, FasL, 

which are co-expressed by early erythroblasts and suppressed by EpoR signaling in vivo 

42,44 (Chapter III). We found that, in addition to regulating cell survival, this pathway 

stabilizes basal erythropoiesis and accelerates its response to stress (Chapter III). 

Therefore, anti-apoptotic pathways may have system-level functions that are not 

immediately apparent from their anti-apoptotic effects in culture. Here we set out to 

investigate two apoptotic regulators of the Bcl-2 protein family that are targeted by EpoR 

signaling, the anti-apoptotic protein Bcl-xL, and the pro-apoptotic Bim protein. Bcl-xL 

induction is a major survival pathway in erythroblasts 96,97, where it is regulated by 

EpoR-activated Stat5 76,78 synergistically with GATA1 101. Bcl-xL
-/- mice die in utero of 

anemia, and Bcl-xL
-/- ES cells do not contribute to erythropoiesis in chimeric mice 166. In 

a Stat5-deficient mouse 167, reduced Bcl-xL in early erythroblasts results in ineffective 

erythropoiesis and anemia 43. Severe ineffective erythropoiesis in adult erythroblasts 

conditionally-deleted for Bcl-xL 
165 is corrected if mice are also deleted for the pro-

apoptotic proteins Bax and Bak 88, suggesting that the requirement for Bcl-xL in 

erythropoiesis is due to its anti-apoptotic effect.  

 In spite of the clear role for Bcl-xL in basal erythropoiesis, it is not known 
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whether erythroblast Bcl-xL levels increase further during stress, contributing to enhanced 

erythroblast survival. Elevated levels of erythroblast Bcl-xL have been implicated in 

Polycythemia Vera 168,169, suggesting that Bcl-xL-mediated enhanced erythroblast 

survival has the potential to increase erythropoiesis above the basal rate 169. It is not, 

however, known if this happens physiologically. 

We contrasted Bcl-xL with Bim, a BH3-only pro-apoptotic Bcl-2 family protein 

170. Bim downregulation is a key component of survival signaling by cytokines and 

oncoproteins such as Bcr-Abl or Jak2V617F in hematopoietic progenitors 171,172. EpoR 

survival signaling in vitro was recently shown to be in part due to decreased Bim mRNA 

89,90 and to ERK-mediated phosphorylation and degradation of the Bim protein 89. 

Further, Bim-/- mice have normal red cell numbers but these arise from a smaller pool of 

progenitors with enhanced survival 89. Like Bcl-xL, in addition to EpoR signaling, Bim 

suppression is also mediated by GATA-1, via its transcriptional target LRF 106. LRF-/- 

mice, which die in utero secondary to severe erythroblast apoptosis and anemia, were 

partly rescued by Bim deletion 106. In spite of the clear role of Bim suppression in 

erythroblast survival, it is not known whether this pathway participates in the stress 

response.  

Here we used intracellular multiparameter flow cytometry to measure Bcl-xL and 

Bim in stage-specific erythroblasts directly in erythropoietic tissue of fetal and adult mice 

as they are undergoing differentiation and responding to stress in vivo. We found a 

similar, highly dynamic activation of the Bim and Bcl-xL survival pathways in the fetus 

that was dependent on both developmental day and erythroblast differentiation stage. 
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These pathways diverge, however, in the adult, where their contrasting dynamic 

responses suggest a clear segregation of function during the acute and chronic phases of 

the stress response.  

 

RESULTS  

Erythroid developmental delay in Stat5-/- embryos 

The definitive erythropoietic lineage generates enucleated red cells and first begins in the 

murine fetal liver on embryonic day 11.5 (E11.5). Using cell surface markers CD71 and 

Ter119, we divided fresh fetal liver into a developmental sequence of increasingly mature 

subsets S0 to S5 46 (Figure 4.1A). Most S0 cells (≥70%) are erythroid progenitors at the 

colony-forming unit stage (CFU-e), just preceding the onset of Epo/EpoR dependence 

that takes place at the transition from S0 to S1 46. Subsets S1 to S5 contain increasingly 

mature Epo-dependent CFU-e, proerythroblasts and erythroblasts 46. Between E11.5 and 

E14.5, fetal liver cell number increases 1000-fold, and the majority shift in maturational 

stage from earlier erythroid progenitors and precursors (S0/S1/S2) at E11-E12, to late 

erythroblasts at E13-E14 44 (Figure 4.1A). We previously showed that these dynamic 

changes are associated with an apoptosis rate that is dependent on both differentiation 

stage and developmental day 44. Apoptosis is seen principally in CFU-e and early 

erythroblasts (S1-S2), where it is highest on E11.5, decreasing to a low value on E12-

E12.5 and rising again on E13-E14 44.  

 Given this dynamic picture, we set out to characterize the developmental and 

maturation-stage-specific expression of Bcl-xL and Bim in wild-type and in Stat5-/- mice 
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(Figure 4.1). The Stat5-/- mice 77 are anemic in utero leading to perinatal death, a similar 

but more severe phenotype to that of the hypomorphic Stat5 mouse in which only the first 

Stat5 exon is deleted 76,167. We first analyzed the CD71/Ter119 profiles on sequential 

developmental days and found that erythroblast maturation in the Stat5-/- embryos was 

delayed, as seen by their delayed progression from the S1 to S3 (Figure 4.1A,B). 

Specifically, on E12.5, the S1 subset contained only 10% of wild-type fetal liver cells, 

but 35% of the Stat5-/- fetal liver cells (p<0.005); by contrast, the more mature S3 subset 

contained ≥60% of wild-type, but only 20% Stat5-/- fetal liver (p=0.005). This pattern was 

not simply due to delayed expression of the cell surface markers Ter119 or CD71, as 

evident from cell size analysis of the S1 and S3 subsets using the flow-cytometric 

forward scatter parameter, which was unaltered for cells in each respective subset.   

 

Bcl-xL and Bim expression in fetal liver is differentiation-stage and embryonic-day 

dependent  

 We assessed Bcl-xL and Bim protein expression using intracellular flow 

cytometry (Figure 4.1C,D), employing an anti-Bcl-xL antibody that we previously 

verified for its specificity 43, and an anti-Bim antibody whose specificity we verified 

using Bim-/- splenocytes (Figure 4.8A). We found that, consistent with previous findings 

in vitro 78,97, Bcl-xL is expressed at very low levels in the early S0-S2 compartment and 

increases with erythroblast differentiation (Figure 4.1C,D, upper panels). However, in 

addition, Bcl-xL expression was highly dependent on developmental day, with high levels 

in the early S0-S2 subsets of E11.5 embryos, decreasing rapidly in the same subsets with 
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embryonic age (Figure 4.1D, upper panel).  

Expression of the anti-apoptotic Bim protein is also dependent on both 

differentiation stage and embryonic day. We found a highly significant increase in both 

the long (BimL) and extra-long (BimEL) transcripts (Figure 4.8B, p<0.0001) and in the 

Bim protein (Figure 4.1D, lower panel, p<0.0001) with the transition from S0 to S1, a 

transition that marks the onset of erythroid progenitor dependence on EpoR 46. This 

raised the possibility that induction of the pro-apoptotic Bim protein at the S0/S1 

transition may be the cause of EpoR dependence. However, we found no significant 

differences in Epo dependence or in the sensitivity of Bim-/- fetal liver erythroid 

progenitors to Epo using a CFU-e assay in vitro (Figure 4.8C). 

Bim protein expression peaks in S1 and is gradually suppressed with erythroid 

differentiation, reaching its lowest values in mature erythroblasts (Figure 4.1D, lower 

panel). Similar to Bcl-xL, Bim expression was also a function of developmental day. For 

a given maturation subset, Bim expression is lowest on E11.5, peaking on E12.5, and 

decreasing in older embryos (Figure 4.1D). The changing fetal liver Bcl-xL and Bim 

during embryonic days E11.5-E12.5 match our previous findings of large changes in 

apoptosis, cell number and Fas expression at this time 44.  

 

Bim and Bcl-xL expression in fetal liver are regulated by Stat5 

The rapidly changing expression of Bim and Bcl-xL during E11.5-E12.5 (Figure 

4.1D), and the developmental delay in the Stat5-/- fetal liver (Figure 4.1A,B), together 

impede our ability to assess the role of Stat5 in regulating Bim and Bcl-xL expression at 
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this time. However, the CD71/Ter119 profiles and Bim and Bcl-xL expression begin to 

stabilize at E13.5, and the Stat5-/- fetal liver profile approaches that of wild-type embryos 

(Figure 4.1D, Figure 4.1A,B). We therefore compared Bim and Bcl-xL expression in 

Stat5-/- fetal liver and wild-type littermates on E13.5-E14.5 (Figure 4.1E, Figure 4.8D,E).  

Bcl-xL expression in the Stat5-/- fetal liver was 1.5- to 2-fold lower in the early 

erythroblast subsets S1 (p=0.01), S2 (p=0.03) and S3 (p=0.002). Bim levels in Stat5-/- 

fetal liver were 30% and 40% higher, respectively, in the S3 and S4/5 subsets (p<0.01), 

suggesting Stat5 regulates its expression. For comparison, we also assessed expression of 

the erythroblast apoptotic regulators Fas and FasL in the Stat5-/- fetal liver. We found no 

significant difference in Fas expression between Stat5-/- embryos and wild-type 

littermates (Figure 4.9).   

 

Bcl-xL is rapidly induced in adult early erythroblasts in response to a single Epo 

injection  

We examined Bcl-xL expression in response to a single dose of Epo, the principal 

mediator of the stress response. A single subcutaneous injection (300 U /25 g) results in a 

rapid increase in serum Epo, peaking by 6 hours, persisting for 24 hours and declining to 

baseline by 36 hours (Figure 4.2A). We measured Bcl-xL expression by intracellular flow 

cytometry, in each of the adult flow-cytometric erythroblast subsets ProE, EryA, EryB 

and EryC 42 (Chapter V and Figure 4.2B), in freshly explanted bone-marrow and spleen 

at the indicated time points (Figure 4.2C-E). In control, saline-injected mice, Bcl-xL 

expression increases 6-fold with differentiation from ProE to EryC in both bone-marrow 
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and spleen, a pattern similar to that of fresh fetal liver (representative histograms in 

Figure 4.2C; summary of several experiments in Figure 4.2E). Injected Epo caused a 

further induction of Bcl-xL expression in all erythroblast subsets (Figure 4.2C,E). 

Proportionally, this increase was largest and most rapid in the earliest subsets, where 

basal Bcl-xL levels are lowest, and where it peaked 5-fold its basal level within 16 hours 

of Epo injection in splenic ProE (p=0.0006) and 3-fold by 18 hours in splenic EryA 

(p=0.0009) (Figure 4.2C,E).  

To assess the sensitivity of the Bcl-xL pathway to injected Epo, we carried out a 

dose/response curve in vivo, injecting mice with the indicated Epo dose and examining 

peak Bcl-xL expression at 18 hours in splenic EryA (Figure 4.2D). This analysis shows 

that half the maximal response is obtained with the injection of 3 U /25 g, estimated to 

result in a serum concentration of 0.3 U/mL, approximately a ~10-fold increase above 

basal serum Epo. This response is more sensitive than that of the Fas-suppression 

pathway, where we found a half-maximal response with an injection of 10 U /25 g 

(Chapter III).  

Induction of the Bcl-xL protein is associated with an increase in the Bcl-xL mRNA 

that follows a similar time course (Figure 4.3A).  

 

Expression pattern of Bim in basal and stress adult erythropoiesis 

 We used intracellular flow cytometry in adult spleen and bone-marrow, freshly 

explanted at the indicated time points following either saline or Epo injection (300 U /25 

g), to examine Bim expression. Bim is expressed at its highest levels in the early, ProE 
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subset, declining gradually in subsequent differentiation subsets and reaching a quarter of 

its ProE level in EryC (Figure 4.3B). In response to an Epo injection Bim levels 

decreased further in all subsets (Figure 4.3B,C), with the largest decline in the early 

bone-marrow and spleen ProE progenitors, where they fell ~2-fold (p<0.0001).  

Importantly, the time course of Bim suppression in response to Epo injection was 

much slower, and more prolonged, than the Bcl-xL response. Maximal Bim suppression 

was reached at 72 hours post injection in most subsets, a time when the Bcl-xL induction 

had already peaked and returned to baseline (Figure 4.3C).  

 

The erythroblast response to reduced atmospheric oxygen 

 The modulation of erythroblast Bim and Bcl-xL levels by an Epo injection in vivo 

suggested that these pathways are likely to play a role in the physiological stress 

response. To test this, we placed mice in a reduced oxygen environment in which 

atmospheric partial oxygen pressure was reduced to 11% for up to 5 days (Figure 4.4). 

Epo levels in blood plasma rose rapidly in the first 24 hours, from a basal level of 12 

mU/mL, to a peak of 29 mU/mL (p=0.001). This high Epo level was sustained until day 

3. On days 4 and 5 Epo began to decline to a new, lower plateau of 18 mU/mL (Figure 

4.4A).  

 The hematocrit response was rapid, rising from 51.5% to 56% in the first 24 

hours, and reaching a sustained plateau of 57% (Figure 4.4B). The rapid initial increase 

in hematocrit is likely in part to be the result of plasma volume adjustment in response to 

hypoxia 19,173.  
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 We examined the response of individual flow-cytometric erythroblast subsets in 

freshly explanted tissue at the indicated time points (Figure 4.4C-I). The results shown 

are from 23 pooled experiments, with at least 6 mice per time point. To evaluate the 

various responses in relation to the plasma Epo levels, the Epo response in Figure 4.4A is 

replicated as a gray line in subsequent panels (Figure 4.4E-I). 

 The absolute numbers of spleen ProE and EryA erythroblasts increased over the 

initial 3 days, reaching new plateaus that were 4- and 3-fold higher than basal values, 

respectively (Figure 4.4C,D). This increase in cell number was associated with a marked 

and significant reduction in apoptosis, with the number of Annexin V+ cells declining 

from 55% to 32% (p=0.002) and 42% to 30% (p=0.001) in the ProE and EryA subsets, 

respectively (Figure 4.4E). 

 

The response of erythroblast Bim, Fas and Bcl-xL to reduced atmospheric oxygen 

 Given the clear changes in ProE and EryA apoptosis, we investigated their 

expression of the apoptotic regulators Fas, Bim and Bcl-xL. We previously showed that 

cell surface Fas on spleen ProE and EryA decreases in response to a number of acute and 

chronic erythropoietic stress conditions. Maximal Fas suppression is reached within 24 to 

48 hours and is maintained for the duration of the stress stimulus (Figure 4.4F) (Chapter 

III) 42.  

 The Bcl-xL response was rapid and transient, its expression peaking by 18 hours 

in both ProE and EryA, and then rapidly dipping below baseline by 24 hours, in spite of 

the persisting high Epo levels (Figure 4.4G). The response of Bim, by contrast, was 
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slower, reaching maximal suppression at 48 hours, with low levels maintained for the 

duration of high Epo levels (Figure 4.4H,I).  

 We examined the possibility that the transient increase in Bcl-xL may be due to 

the relatively modest increase in plasma Epo generated by the hypoxic environment. We 

injected mice with Epo (300 U /25 g) daily for 3 consecutive days, which generates 

increasingly high plasma Epo equivalent to that of maximal stress conditions 162 (Figure 

4.2A). We measured the Bcl-xL response 18 hours following each injection (Figure 4.10). 

The amplitude of the Bcl-xL response was larger in response to this higher Epo dose than 

in the response to the hypoxic environment, as expected from the Epo dose/Bcl-xL 

response curve (Figure 4.2D). However, the response to the second and third Epo 

injections was smaller or absent (Figure 4.10), suggesting that the transience of the Bcl-

xL response is unrelated to Epo dose. 

 

Response of the Bim and Bcl-xL pathways to chronic erythropoietic stress   

We went on to assess the Bim and Bcl-xL response to chronic erythropoietic 

stress. The Bcl-xL expression profiles in the ProE/EryA-C subsets in either spleen or 

bone-marrow was unaltered by 3 distinct erythropoietic stress conditions: pregnancy at 

mid-gestation, chronic anemia due to β-thalassemia 174, and chronic erythrocytosis due to 

tissue-specific deletion of the von Hippel-Lindau gene that results in elevated Epo (ts-

VHL-/-) 9 (Figure 4.5A). Plasma Epo is elevated to 30 mU/mL and 220 mU/mL in the ts-

VHL-/- and β-thalassemia mice, respectively (Figure 4.11), a concentration range in 

which Bcl-xL induction was seen in acute stress (Figure 4.4). Further, we have previously 
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shown that cell surface Fas and FasL are downregulated in the same chronic stress 

models 42. 

Unlike Bcl-xL, Bim expression in the β-thalassemia mice was suppressed in all 

erythroblast subsets (Figure 4.5B), to levels similar to those seen in response to an acute 

Epo injection (Figure 4.3B). 

 

The Bcl-xL response to an ‘acute on chronic’ stress stimulus 

  The transience of the Bcl-xL response to stress is reminiscent of sensory systems 

that undergo adaptation, such as neutrophil chemotaxis or sensory neural adapting 

systems. These systems respond to a change in the stimulus, rather than to absolute 

stimulus levels 175. We therefore asked whether the desensitization of the Bcl-xL pathway 

to chronic stress was permanent, or whether an acute change in the level of stress, 

superimposed on a chronic stress stimulus, would re-stimulate Bcl-xL induction.  

 We injected β-thalassemia mice with a single Epo dose of 300 U /25 g, and 

examined their Bcl-xL response at 18 hours post injection. We found a clear induction in 

Bcl-xL in all erythroblast subsets in the β-thalassemia mice, closely resembling that of 

control mice in the bone-marrow, and only a little short of the wild-type response in the 

spleen (Figure 4.5C). This experiment suggests that while the Bcl-xL response 

desensitizes to chronic stress, it rapidly responds to new changes in stress superimposed 

on the chronic stress levels.  

 

Stat5 activation in vivo undergoes adaptation 
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 We asked whether adaptation in the Bcl-xL stress response is due to adaptation in 

Stat5, its upstream regulator. We first examined the time course of Stat5 activation in 

vivo following Epo injection (300 U /25 g), using intracellular flow cytometry in freshly 

explanted spleen and bone-marrow at the indicated time points post-injection (Figure 

4.6A). The number of ProE and EryA containing active, phosphorylated Stat5 (p-Stat5) 

increased rapidly following injection, peaking by 30 minutes, but declining rapidly to a 

lower level by 6 hours (Figure 4.6A). Of note, plasma Epo peaked at 6 hours (Figure 

4.2A), suggesting the decline in p-Stat5 is intrinsic to the p-Stat5 response and is not due 

to declining Epo.  

 Signal adaptation may be due to negative feedback 176,177. p-Stat5-mediated 

transcriptional activation of SOCS family proteins results in their feedback inhibition of 

the Jak2 and Stat5 response 178. This negative regulation in part depends on SOCS protein 

binding to phosphotyrosines on the activated EpoR cytoplasmic domain 163. To 

investigate the possibility that Stat5-mediated negative feedback is responsible for 

adaptation in the p-Stat5 response, we investigated two ‘knock-in’ mouse models, 

expressing the EpoR mutants EpoR-H and EpoR-HM 75, both lacking the negative 

regulatory distal portion of the EpoR cytoplasmic domain containing 7 of its 8 

phosphotyrosines, including SOCS family docking sites 163. In EpoR-HM, the remaining 

Y343, a Stat5 docking site, is mutated to phenylalanine 75. The EpoR-H mouse has a 

mildly elevated basal hematocrit. By contrast, the EpoR-HM mouse has only a mild 

anemia in the basal state but a deficient stress response 75.  

 We tested the response of freshly harvested fetal liver early erythroblasts derived 
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from EpoR-H, EpoR-HM and wild-type embryos to continuous stimulation with Epo for 

up to 6 hours in vitro. The time course of response of wild-type erythroblasts was similar 

to that of adult erythroblasts in vivo (Figure 4.6A,B). The peak p-Stat5 response to Epo 

stimulation in EpoR-HM erythroblasts was 15% of the response in wild-type or EpoR-H 

mice, in agreement with previous results 179. In EpoR-H erythroblasts, peak p-Stat5 was 

similar to that of the wild-type response, though baseline p-Stat5 was higher. In both 

EpoR-HM and EpoR-H, duration of the initial p-Stat5 peak was prolonged substantially 

(Figure 4.6B). These findings suggested that the distal EpoR cytoplasmic domain, likely 

through binding to Stat5-induced SOCS family proteins, is responsible for curtailing the 

p-Stat5 response. 

 

The Bcl-xL and Bim stress responses in EpoR-H and EpoR-HM mice 

 The finding that the p-Stat5 signal undergoes adaptation (Figure 4.6A,B) suggests 

it may be responsible for the adaptation in the Bcl-xL response. To test this, we asked 

whether failure of p-Stat5 adaptation in the EpoR-H mice (Figure 4.6B) would prevent 

adaptation of the Bcl-xL response.   

 We therefore injected EpoR-H mice with Epo (300 U /25 g) and examined the 

resulting induction in Bcl-xL. The peak Bcl-xL response was closely similar to that of 

matched wild-type control mice (Figures 4.6C and 4.12A). There was little increase in 

Bcl-xL in EpoR-HM mice, consistent with p-Stat5 as the principal regulator of the Bcl-xL 

stress response (Figures 4.6C and 4.12A). Importantly, there was a failure of adaptation 

of the Bcl-xL response in EpoR-H mice. Bcl-xL levels remained elevated well above their 
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initial baseline at 36 and 48 hours post-injection in spleen ProE, and at 36 hours in EryA 

and EryB (p<0.005, Figure 4.6D), even though Bcl-xL levels in wild-type mice (Figure 

4.6D) and serum Epo (Figure 4.2A) had returned to baseline. This strongly suggests that 

adaptation in the Bcl-xL response requires the EpoR distal cytoplasmic domain and is 

most likely a result of adaptation in the p-Stat5 response, also dependent on this domain 

(Figure 4.6B).  

 Bim expression was suppressed in EpoR-HM mice in response to a single Epo 

injection (300 U /25 g). However, suppression was less efficient than in wild-type mice, 

by a small but statistically significant amount (Figures 4.6E, 4.12B, p=0.03 and p=0.001 

in ProE and EryA, respectively). These results suggest that, in addition to Stat5, other 

pathways, likely ERK, regulate the EpoR-mediated Bim suppression 89.  

 

The p-Stat5 response to an ‘acute on chronic’ stress stimulus 

 Although Bcl-xL expression is not elevated in chronic stress, it is induced in 

response to an acute stimulus superimposed on the chronic stress stimulus (Figure 4.5C). 

Given the proposed role of Stat5 activation in Bcl-xL induction, we similarly examined 

the p-Stat5 response to chronic and ‘acute on chronic’ stress stimuli. We found no 

increase in the level of p-Stat5 activation in ProE freshly isolated from β-thalassemic 

mice (Figure 4.6F, upper panel), in spite of the chronically elevated plasma Epo in these 

mice (Figure 4.11). A single injection of Epo (300 U /25 g) however, resulted in a rapid 

increase in p-Stat5 activation in both β-thalassemic mice and in matched control mice 

(Figure 4.6F, lower panels). Therefore, both the p-Stat5 and Bcl-xL responses ‘reset’ 
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during chronic stress, allowing them to respond afresh to an acute change in stress.  

 

DISCUSSION 

We examined Bim suppression and Bcl-xL induction, two EpoR-activated 

erythroblast survival pathways in fetal and adult basal and stress erythropoiesis. Their 

analysis in vivo revealed previously unsuspected functional specialization of EpoR- 

pathways to either the chronic or acute phases of the stress response. Bcl-xL induction 

behaves like a classical sensory adapting pathway, being insensitive to the prevailing 

level of stress, and instead responding only to changes in stress level. Adaptation allows 

Bcl-xL to provide a stop-gap at the onset of stress that rapidly rescues early erythroblasts 

from apoptosis, until slower but persistent stress pathways, such as Bim or Fas 

suppression, are activated. Mechanistically, we suggest that adaptation in the Bcl-xL 

response is the result of adaptation in the response of p-Stat5, its upstream regulator.  

 

Regulation of Bim and Bcl-xL expression in early vs. late erythroblasts  

We delineated the expression pattern of both Bim and Bcl-xL proteins throughout 

erythroid maturation in adult and fetal hematopoietic tissue in vivo. The basal pattern 

observed in the absence of stress is one of low Bcl-xL and high Bim in early erythroblasts, 

gradually inverting with differentiation so that in mature erythroblasts Bim levels are 

low, and Bcl-xL levels are high (Figure 4.7A). These results are consistent with the 

previously reported increase in Bcl-xL transcript and protein with erythroid differentiation 

in vitro 78,97, and with the increase in Bcl-xL and decrease in the pro-apoptotic Bid and 
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Bax transcript with the transition from early to late erythroblasts in murine bone-marrow 

164. Together with our previous findings of high Fas and FasL co-expression in early, but 

not late, erythroblasts 23,42,44, a strong pattern emerges of apoptosis-prone early 

erythroblasts, containing high levels of pro-apoptotic regulators and only low levels of 

anti-apoptotic proteins, gradually transitioning into apoptosis-resistant late erythroblasts 

in which anti-apoptotic proteins predominate. This underlying pattern explains why high 

levels of apoptosis are seen in early erythroblasts but not in late erythroblasts during 

normal fetal and basal adult erythropoiesis in vivo 23,42,44 (Chapter III; Figures 4.1D, 4.2E 

and 4.3B), and was recently suggested as being responsible for the sensitivity of early 

erythroblasts to irradiation 164.  

Bcl-xL expression is regulated by both GATA-1 and by EpoR-activated Stat5 101. 

Similarly, Bim suppression is regulated by both EpoR-activated ERK 89 and by GATA-1-

induced LRF 106. Here we find that in addition, Bim is regulated by EpoR-activated Stat5, 

as suggested by higher Bim levels in the Stat5-/- fetal liver and to a lesser extent in the 

adult EpoR-HM mouse (Figures 4.1E, 4.6E and 4.12B). Lower Bcl-xL in the S1-S3 

subsets of the Stat5-/- fetal liver, and in EpoR-HM mice in the basal state, support older 

reports of the role of Stat5 in the induction of erythroid Bcl-xL 43,76,78. The role of Stat5 is 

especially notable, however, in the Bcl-xL stress response, which is absent in the EpoR-

HM mice (Figure 4.6C).  

Based on their expression patterns, we propose that EpoR and GATA-1 -mediated 

regulation of Bim and Bcl-xL are largely segregated into the early and late erythroblast 

compartments, respectively (Figure 4.7A). Specifically, the underlying, largely stress-
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insensitive gradual increase in Bcl-xL and gradual suppression of Bim with 

differentiation, is likely to be mediated by GATA-1. Superimposed on this pattern are 

Epo-mediated, stress-dependent adjustments that accelerate Bcl-xL induction and Bim 

suppression in early erythroblasts (Figures 4.2, 4.3 and 4.7A). Thus, only the apoptosis-

prone CFU-e, proerythroblasts and early basophilic erythroblasts (=’early erythroblast 

compartment’) are dependent on EpoR signaling for survival in the basal state. Further, 

during hypoxic stress, it is principally the early erythroblast compartment that is Epo-

responsive, undergoing expansion as a result of a rapid drop in apoptosis 23,42,44 (Chapter 

III and Figure 4.4E). The susceptibility of the early erythroblast compartment to 

apoptosis is precisely the characteristic that gives plasticity to the erythropoietic system, 

allowing the level of EpoR signaling to determine erythropoietic rate. 

We previously showed that Epo-mediated suppression of early erythroblast 

apoptosis during stress is strongly correlated with suppression of early erythroblast Fas. 

Using Fas and FasL-mutant mice, we recently found that the Fas suppression pathway 

accounts for ~30% of the early erythroblast expansion in stress (Chapter III). Bim 

suppression and Bcl-xL induction are therefore likely to cooperate with Fas suppression, 

and potentially with as yet uncharacterized other anti-apoptotic pathways, in achieving 

the full expansion of the early erythroblast compartment during stress.  

In late erythroblasts, Bim, Bcl-xL and Fas expression are relatively unaffected by 

EpoR-stress signaling. Consistent with this, in Stat5-/- embryos and in EpoR-HM mice, 

where EpoR-Stat5 signaling is deficient, Bcl-xL levels are only modestly lower in late 

erythroblasts; the underlying pattern, likely GATA-1-mediated, of a gradual increase in 
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Bcl-xL and decline in Bim, is preserved.  

Importantly, our results show that Stat5-regulated Bcl-xL expression in vivo varies 

with differentiation stage, with embryonic day, and with the phase of the stress response. 

These factors should therefore be considered in the interpretation of Bcl-xL measurements 

in vivo and in models of this system in vitro.  

 

Adaptation allows functional specialization of the Bcl-xL response to the acute phase 

of stress 

 The acute and chronic phases of the stress response differ in their requirements. 

At the onset of stress the speed of the response is paramount, a property that is 

unimportant during the chronic, maintenance phase. Here we find that the Bcl-xL 

response is significantly faster than Bim or Fas suppression. In addition, the Bcl-xL 

response undergoes rapid adaptation, which makes it insensitive to the prevailing 

absolute level of stress. Like other classical sensory adapting mechanisms, though, it is 

re-activated as soon as a new change in stress takes place. In this way, the dynamic range 

of the Bcl-xL response is extended, allowing a rapid response to changes in stress 

irrespective of the baseline stress levels. Our new data on the Bcl-xL pathway show that 

distinct molecular mechanisms regulate the acute and chronic phases of stress. The EpoR 

is therefore capable of generating at least two broad types of signal: persistent, giving rise 

to persistent suppression of Bim and Fas, and a rapidly adapting signal, responsible for 

the adaptation of the Bcl-xL response (Figure 4.7B).  
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Mechanism of adaptation in the Bcl-xL response 

We identified adaptation in the p-Stat5 response in erythroblasts in vivo and 

suggest this to be the mechanism of adaptation in the Bcl-xL response. Both p-Stat5 and 

Bcl-xL respond similarly to an ‘acute on chronic’ stress stimulus, a response typical of 

other biological adapting systems like sensory adaptation or neutrophil chemotaxis. 

Adaptation of both p-Stat5 and Bcl-xL depends on the distal domain of the EpoR, a 

previously documented negative regulatory domain that contains docking sites for the 

Stat5-induced SOCS family of negative regulators 163 (Figure 4.7C). Negative feedback is 

a well-documented mechanism of adaptation in sensory systems 176,177. Stat5 

transcriptionally activates SOCS inhibitors that feed back to limit Jak2 and Stat5 

activation 178. Though well-documented, the precise effect of this pathway on the p-Stat5 

signal was not previously investigated. Here we found that in EpoR-H mice that lack this 

feedback inhibition, peak p-Stat5 signal intensity is not higher than in wild-type. 

However, the duration of the peak is prolonged (Figure 4.6D). Therefore, p-Stat5-

mediated negative feedback is likely responsible for the adaptation of both the p-Stat5 

and Bcl-xL responses. 

 

Implications for myeloproliferative disease mechanisms 

 The rapid adaptation of the Bcl-xL response to stress raises the possibility that 

prolonged periods in which Bcl-xL is elevated may be harmful. Indeed, persistently 

elevated levels of Bcl-xL are characteristic of Polycythemia Vera and other 

myeloproliferative syndromes 168,169,180. High Bcl-xL was suggested as a cause of Epo-
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independent erythroid differentiation in Polycythemia Vera and of the apoptosis 

resistance of other myeloproliferative syndromes and neoplasms 168,180,181. Our results, 

supported by recent reports of SOCS protein inactivation in myeloproliferative disease 

182,183, suggest that impairment of p-Stat5 and Bcl-xL adaptation may contribute to their 

prolonged activation. Together these results point to the importance of adaptation in the 

Bcl-xL response as a homeostatic and tumor-suppressive mechanism. 
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Figure 4.1 
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Figure 4.1 Delayed maturation and altered Bcl-xL and Bim expression in Stat5-/- 

fetal liver. 

(A) Representative CD71/Ter119 profiles of Stat5-/- fetal livers and wild-type 

littermates freshly isolated on consecutive embryonic developmental days (E11.5 to 

E14.5). S0 to S4/5 are increasingly differentiated erythroid progenitors and precursors 

subsets 46. Dead cells were excluded using LIVE/DEAD viability dye. E11.5 S3 cells are 

yolk sac-derived, primitive lineage erythroid cells. 

(B) Summary statistics for analysis performed as in ‘A’, on 5 to 21 embryos per data 

point (mean ±SEM). Pooled from 3 independent experiments with multiple litters. Stars 

indicate statistically significant difference between wild-type and Stat5-/- subsets with the 

following p values: For S1, E12.5 *p=0.002, E13.5 *p=0.00001. E14.5 *p=0.014. For S3, 

E12.5 *p=0.005, E13.5 *p=0.00004. E14.5 *p=0.010 (two-tailed t-test, unequal 

variance). 

(C) Intracellular flow cytometry for Bcl-xL and Bim proteins, in the indicated fetal 

liver subsets. Representative histograms are shown. Freshly isolated wild-type E14.5 fetal 

liver cells were stained with CD71, Ter119 and the LIVE/DEAD viability dye as in ‘A’. 

Cells were then fixed, permeabilized and stained intracellularly with: an anti-Bcl-xL 

antibody or non-specific Rabbit Serum; an anti-Bim antibody or Rabbit IgG isotype 

control.  

(D) Bcl-xL and Bim protein expression profiles, measured as in panel ‘C’, in fresh 

wild-type fetal liver cells at the indicated embryonic days, in each of the indicated 

differentiation subsets S0 to S4/5. Expression is measured as median fluorescence 
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intensity (MFI), from which non-specific background fluorescence, defined as the MFI of 

the corresponding subset when binding an isotype control antibody/non-specific serum, 

was subtracted. Data points are mean ±SEM.  

For Bcl-xL: n=5 to 14 wild-type embryos per data point, pooled from 3 

independent experiments with multiple litters. Statistical significance values: S1, E11.5 

vs. E14.5, *p<0.05 (two-tailed t-test, unequal variance). E14.5 S2 vs. S3, and E14.5 S3 

vs. S4-5, *p<0.0002 (paired t-test).  

For Bim: n=6 wild-type Balb/C embryos per data point. Statistical significance 

values: E13.5 S0 vs. E13.5 S1, *p<0.0001; E12.5 S1 vs. E12.5 S3, *p<0.0001; E11.5 S1 

vs. E12.5 S1, *p<0.0001 (two-tailed t-test, unequal variance). Similar developmental 

pattern was observed in C57BL/6 and Balb/C backgrounds.  

(E) Lower Bcl-xL and higher Bim protein expression in E14.5 Stat5-/- embryos 

compared with wild-type littermate controls, at the indicated differentiation subset. 

For Bcl-xL: n=11 to 21 embryos per genotype, with each symbol type representing 

median expression for one litter. Means ±SEM for the population are indicated. Statistical 

significance values: S2, *p=0.03. S3, *p=0.002 (paired t-test).  

For Bim: data points are individual embryos. Mean ±SEM for the population is 

shown. Statistical significance values: S3 and S4-5, *p<0.01, two-tailed t-test, unequal 

variance. See also Figure 4.8D,E. 

MK performed all experiments for this figure with help from AP. 
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Figure 4.2 
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Figure 4.2 Bcl-xL induction in adult early erythroblasts in response to Epo 

injection. 

(A) Time course of plasma Epo, assayed by ELISA, following a subcutaneous 

injection of 300 U /25 g. Two mice (identified as either circles or triangles) were assayed 

per time point.  

(B) Gating strategy for freshly explanted ProE, EryA, EryB and EryC spleen 

erythroid subsets 42. Live cells were selected, and subsets gated based on Ter119, CD71 

expression and forward scatter (FSC). 

(C) Representative flow-cytometric histograms of intracellular Bcl-xL protein in the 

indicated spleen erythroblast subsets. Anti-Bcl-xL antiserum was used to stain 

erythroblasts from a saline-injected mouse (blue histograms), or an Epo-injected mouse 

(300 U /25 g, red histograms) in freshly explanted spleen at 18 hours post injection. An 

isotype control antibody was used to measure the non-specific binding in each subset 

(grey histograms). 

(D) Epo dose/ Bcl-xL response in vivo in spleen EryA. Wild-type Balb/C mice were 

injected subcutaneously with either saline (=basal, blue circle) or a single, increasing 

dose of Epo (1, 3, 10, 20, 30, or 300 U /25 g, red circles). Bcl-xL was measured by flow 

cytometry as in panel ‘C’ at 18 hours post-injection, with the non-specific fluorescence 

reading subtracted for each subset. Data from two independent experiments were pooled 

and normalized. Data points were fitted with a Hill curve. Each data point represents 

mean ±SEM of n=3 to 4 mice. 

(E) Bcl-xL expression measured as in panel ‘C’ in freshly explanted spleen, in each 



 
  
 

119 

erythroblast subset at each of the indicated time points following a single Epo injection 

(300 U /25 g). Each data point for Epo-injected mice is mean ±SEM of n=4 mice for 

t=16, 18, 24, 48 hours; and mean of 2 mice for t=12 hours. Blue curves are mean ±SEM 

of n=14 saline-injected mice pooled from all time points. The same blue curves are 

reproduced for comparison with Epo-injected mice at each time point). Statistical 

significance values: ProE at t=16h, in bone-marrow *p=0.005, in spleen *p=0.0006. 

EryA in spleen, *p=0.0009 at 16h, *p=0.0009 at 18h. EryA in bone-marrow, *p=0.013 at 

16h, *p=0.015 at 18h. The induction of Bcl-xL in splenic EryA was significantly higher 

than in bone-marrow EryA (*p=0.021). Two-tailed t-test with unequal variance used for 

all comparisons. 

 MK performed experiments for part (D) and analyzed the data. YL performed the 

rest of experiments presented in this figure. 
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Figure 4.3 
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Figure 4.3 Transient Bcl-xL induction contrasts with slower Bim suppression in 

response to Epo injection. 

(A) Time course of Bcl-xL mRNA expression following a single Epo injection (300 U 

/25 g), in freshly isolated and sorted spleen and bone-marrow EryA. Quantitative real-

time PCR, data points are mean ±SEM of 3 independent experiments. Data are expressed 

relative to the β-actin mRNA and normalized to the value in bone-marrow EryA in 

saline-injected mice.  

(B) Bim protein expression in adult erythroid differentiation subsets 3 days following 

a single injection of either Epo (red, 300 U /25 g) or saline (black). Bim was measured by 

flow cytometry in freshly explanted tissue, as illustrated in Figure 4.8A. Data are mean 

±SEM of n=21 mice for saline injection, and n=10 mice for Epo injection. *p<0.000005 

(two-tailed t-test, unequal variance) for differences between Epo-injected and saline-

injected mice. 

(C) Time course of Bcl-xL upregulation (red symbols, plotted on the left, red-

numbered y-axis) and Bim suppression (black symbols, plotted on the right-numbered y-

axis) in spleen (circles) and bone-marrow (BM, triangles) in response to a single Epo 

injection (300 U /25 g) on day 0. Includes a subset of the data plotted in panel ‘B’ (for 

Bim) and Figure 4.2E (for Bcl-xL). For Bim, 5 experiments were normalized together. 

Bim data are mean ±SEM of n=21 mice for day 0, and n=3 to 10 mice for days 1 to 5. 

Bim ProE curves (black lines) for spleen and bone-marrow were hand-drawn. Statistical 

analysis was performed by comparing Bim readings on day 0 with readings on the 

following days. Where indicated, spleen ProE: *p<0.005. Spleen EryA: *p<0.025. BM 
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ProE: *p<0.02; BM EryA: *p<0.01. For all statistical tests, two-tailed t-test with unequal 

variance was used. 

 YL performed experiments for part (A) and Bcl-xL experiments for part (C). MK 

performed all the Bim experiments with help from AP, and analyzed data presented in 

this figure. 
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Figure 4.4 
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Figure 4.4 A reduced oxygen environment elicits a rapid, transient Bcl-xL 

induction and a slow, persistent Bim suppression. 

(A – I) Mice were placed in a low oxygen chamber (11%) on day 0, for the numbers of 

days indicated. 

(A) Endogenous plasma Epo, assayed by ELISA. Data are mean ±SEM. Difference 

relative to day 0 (n=27 mice) were significant at the following levels: day 1 (n=6), 

*p=0.001; day 3 (n=6), *p=0.006; day 4 (n=12), *p<0.0001; day 5 (n=3), *p=0.0000005. 

This Epo time course is drawn as a grey line in panels E to I. 

(B) Daily hematocrit (HCT) measurements on blood collected immediately post-

euthanasia. Data are mean ±SEM of n≥6 mice per time point. Differences from day 0 are 

significant at the following levels: 12h, *p=0.019; 18h to day 5, *p<0.0002. 

(C-D) Absolute number of spleen ProE and EryA per gram body weight. Data pooled 

from 23 independent experiments. Each data point is mean ±SEM of n≥6 mice. 

Differences from day 0 (n=82 mice) are significant at the following levels: Spleen ProE 

day 1, *p=0.005; day 2, *p=0.047; days 3 to 5, *p≤0.005. Spleen EryA day 2, *p=0.034; 

days 3 to 5, *p≤0.001. 

(E) Annexin V binding in spleen ProE (blue) and EryA (black). Data points are mean 

±SEM of 33 mice for day 0 and 3 to 7 mice for subsequent days, pooled from 2 to 5 

independent experiments per day. Differences from day 0 are significant at the following 

values: Spleen ProE days 3 to 5, *p≤0.002. Spleen EryA day 1, *p=0.001; day 3, 

*p=0.03; day 4, *p=0.02; day 5, *p=0.001.  

(F) Fas-positive cell frequency in spleen ProE (blue) and EryA (black), measured by 
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flow cytometry in freshly explanted tissue. Data are mean ±SEM of n=26 mice, pooled 

from 4 experiments (day 0) or n=3 mice for subsequent days. Differences from day 0 are 

significant at the following values: Spleen ProE day 1, *p=0.024; day 3, *p<0.00001; day 

5, *p=0.001. Spleen EryA day 5, *p=0.04.  

(G) Bcl-xL protein expression in spleen ProE and EryA measured by flow cytometry 

in freshly explanted tissue. Data pooled from three independent experiments. Each data 

point is mean ±SEM of n≥3 mice. Differences from day 0 (n=17) are significant at the 

following levels: Spleen ProE 18h (n=3), *p<0.001; 24h (n=7), *p=0.019; day 2 (n=5), 

*p<0.0005. Spleen EryA 12h, *p=0.046; 18h, *p<0.0001; day 2, *p=0.02 

(H-I) Bim protein expression in spleen (H) and bone-marrow (I) ProE and EryA, 

measured by flow cytometry in freshly explanted tissue. Data are mean ±SEM of n≥3 

mice pooled from two experiments. Differences from day 0 are significant at the 

following levels: Spleen ProE day 1, p=0.014; days 3-5, p<0.002. Spleen EryA day 0.5, 

p=0.0014; day 2, p=0.038; days 3-5, p<0.03. Bone-marrow ProE day 2, p=0.007; day 3, 

p<0.00001; day 4, p<0.001; day 5, p=0.04. Bone-marrow EryA day 1, p=0.002; day 2, 

p=0.0001; day 3, p=0.05. 

For all statistical tests, two-tailed t-test with unequal variance was used.  

MK performed all the experiments presented in this figure with help from AP, and 

analyzed all of the data. 
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Figure 4.5 
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Figure 4.5 The Bcl-xL response to chronic stress and to ‘acute on chronic’ stress.  

(A) Bcl-xL expression in each of the three indicated mouse models of erythropoietic 

stress (red symbols) and matched controls (blue symbols), measured in freshly explanted 

tissue. Each data point is mean ±SEM of 2 to 4 mice. There were no statistically 

significant differences between chronic stress and control mice. 

(B) Representative experiment showing Bim expression in β-thalassemia mice in 

spleen (top) and bone-marrow (bottom). Two wild-type (black symbols) and one β-

thalassemia mouse (red symbols) are shown.  

(C) The Bcl-xL response to an ‘acute on chronic’ stimulus. Bcl-xL expression in 

spleen and bone-marrow erythroblasts in β-thalassemia mice and matched controls, 18 

hours following a single injection of either Epo (300 U /25 g, red symbols) or saline (blue 

symbols). Data points are mean ±SEM of n=3 to 4 mice. Representative of 4 independent 

experiments. Statistically significant differences in Bcl-xL between Epo and saline 

injections in each mouse model were seen in wild-type spleen ProE, *p=0.025; EryA, 

*p=0.0009; EryB, *p=0.01; EryC, *p=0.006; β-thalassemia spleen EryA, *p=0.0004; 

EryB, *p=0.004; EryC, *p=0.03; Wild-type BM EryA, EryB and EryC, *p≤0.0005; β-

thalassemia BM EryA and EryB, *p<0.0005; EryC, *p=0.025. The increase in spleen 

EryA Bcl-xL was significantly higher (p=0.023) in wild-type spleen than in wild-type β-

thalassemia mice. For all statistical tests, two-tailed t-test with unequal variance was 

used. 

 MK performed β-thalassemia experiment in part (A), and all of experiments in 

parts (B) and (C), with help from AP [part (C)]. YL performed the rest of experiments 
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shown in part (A). MK analyzed all the data in part (A) for β-thalassemia, and in parts 

(B) and (C).  
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Figure 4.6 
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Figure 4.6 Adaptation in the Bcl-xL and p-Stat5 responses is dependent on the 

EpoR C-terminal cytoplasmic domain.  

(A) The p-Stat5 response in spleen ProE and EryA in vivo, measured in freshly 

explanted spleen at the indicated time points following a single Epo injection (300 U /25 

g). Data are pooled from four independent experiments. Each time point is the mean ± 

SEM of data from 2 to 4 mice. 

(B) The p-Stat5 time course in response to Epo stimulation for the indicated periods. 

Freshly harvested fetal liver cells from EpoR-HM, EpoR-H and matched wild-type 

embryos at E13.5 were stimulated in vitro with 2 U/mL Epo. p-Stat5 in S1 cells is shown, 

expressed as median fluorescence intensity above background (isotype-control antibody). 

Representative of 3 similar experiments. 

(C) The Bcl-xL response in EpoR-H and EpoR-HM mice. Bcl-xL was measured 18 

hours following a single injection of either Epo or saline, in freshly explanted spleen 

ProE and EryA of EpoR-H, EpoR-HM or wild-type controls. Data are mean ±SEM of 

n=3 to 5 mice per bar. Significant Bcl-xL increase from basal levels in spleen ProE and 

EryA was seen in Epo vs. saline injected wild-type (black) and EpoR-H (red) mice (stars 

without brackets: WT ProE *p=0.003; EpoR-H ProE *p=0.012; WT EryA *p=0.00004; 

EpoR-H EryA *p=0.0001), but not in EpoR-HM mice. Bcl-xL was reduced in basal state 

EpoR-HM spleen EryA (red star with red bracket, *p=0.027) compared with wild-type 

basal control. Bcl-xL induction in wild-type spleen EryA was significantly above that of 

EpoR-HM EryA (black stars with brackets, *p=0.007, two-tailed t-test with unequal 

variance). 
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(D) Time course of the Bcl-xL response in EpoR-H mice and in matched wild-type 

controls, following a single Epo injection (300 U /25 g). Measurements were made in 

freshly explanted spleen at the indicated time points. Bcl-xL is significantly higher in 

EpoR-H at 36 and 48 hours (p<0.005, paired t-test on all subsets).  

(E) Bim protein in spleen ProE and EryA of wild-type and EpoR-HM mice on day 3 

following a single Epo injection (300 U /25 g). Data are mean ±SEM of n=4 to 5 mice 

per bar. There was no significant difference in basal Bim between EpoR-HM and wild-

type control mice. Bim was significantly suppressed following Epo injection (*p<0.001). 

Bim was suppressed by a significantly smaller extent in EpoR-HM ProE and EryA 

subsets (stars with brackets, *p=0.03 and *p=0.001, respectively, two-tailed t-test with 

unequal variance).  

(F) The p-Stat5 histograms in vivo at peak response (30 minutes) following a single 

injection of either Epo (300 U /25 g) or saline, in either β-thalassemia mice or in matched 

wild-type controls, measured in freshly explanted spleen ProE. The p-Stat5+ gate was 

drawn based on the non-erythroid population in spleen (grey histograms).  

 EP developed and performed experiments, and analyzed the data shown in parts 

(A), (B) and (F). MK performed all of the experiments and data analysis in parts (C-E). 
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Figure 4.7 
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Figure 4.7 Regulation of Bcl-xL and Bim expression in erythropoiesis. 

(A) Model depicting expression of Bcl-xL and Bim in the late and early erythroblast 

compartments, in basal erythropoiesis (solid lines) and during stress (fading shaded area). 

GATA-1 induces Bcl-xL and suppresses Bim with differentiation, with maximal 

responses achieved in late erythroblasts. During stress, EpoR signaling operates 

principally in the early erythroblast compartment, accelerating both Bim suppression and 

Bcl-xL induction. Model does not quantitatively depict the actual data. 

(B) Contrasting dynamic stress responses of the Bcl-xL, Bim and Fas pathways, both 

driven by the EpoR in the early erythroblast compartment. A sudden increase in stress 

drives a rapid, but transient adapting Bcl-xL response. This response is re-activated with a 

further change in the stress level, but is insensitive to the absolute level of stress. Bim and 

Fas suppression in response to stress is slower but persistent and reflects the level of 

stress.  

(C) Mechanism of adaptation in the Bcl-xL response. EpoR-HM activation of both p-

Stat5 and the Bcl-xL is drastically attenuated, due to the absence of Stat5 phosphotyrosine 

docking sites on the EpoR-HM mutant receptor, in support of the role of p-Stat5 in the 

EpoR and stress-induced Bcl-xL induction. In wild-type mice, the EpoR distal 

cytoplasmic domain binds p-Stat5-activated negative regulators of Jak2 and Stat5 such as 

SOCS3, SOCS2 and CIS, limiting the duration of both the p-Stat5 and the Bcl-xL 

responses. In EpoR-H mice, absence of the distal EpoR domain results in a prolonged 

response and loss of adaptation.  

 MK designed and created all parts of this figure. 
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Figure 4.8 
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Figure 4.8 Bim and Bcl-xL in fetal liver erythropoiesis. 

(A) Bim protein measurement by intracellular flow cytometry. Freshly explanted 

spleen cells from wild-type (blue) and Bim-/- (red) mice were stained with the 

LIVE/DEAD viability dye, fixed, permeabilized, and stained with an anti-Bim antibody 

(Cell Signaling, #2819) or isotype control IgG, as described in materials and methods. 

Dead cells were excluded from analysis. Highly similar data were obtained when gating 

on erythroid subsets in spleens of wild-type and Bim-/- mice. 

(B) Quantitative real-time PCR for the Bim isoforms BimEL and BimL in sorted S0 

and S1 subsets from freshly harvested wild-type fetal liver. Data were expressed as a 

ratio to β-actin mRNA in each sample and normalized to the levels measured in S0 cells. 

Differences between S0 and S1 are statistically significant, BimEL+L, *p=0.0003; BimL, 

*p=0.0000004 (two-tailed t-test, unequal variance). 

(C) CFU-e assay performed on wild-type and Bim-/- fetal livers. CFU-e colonies per 

whole fetal liver are shown for each genotype. Data are mean ±SEM of 6 individual fetal 

livers per genotype from the same E13.5 litter. Grey bars are a pool containing one Bim 

wild-type embryo and five Bim+/- embryos. No significant (NS) difference in CFU-e 

numbers between the genotypes was observed (p>0.05, two-tailed t-test, unequal 

variance). Similar results were obtained when data were expressed as CFU-e colonies per 

1x106 plated cells. Representative of two similar experiments. 

(D) Lower Bcl-xL expression in Stat5-/- embryos compared with wild-type littermate 

controls, at the indicated embryonic day and differentiation subset. n=11 to 21 embryos 

per genotype, with each symbol type representing median expression for one litter. 
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Means ±SEM for the population are indicated. Statistical significance values: E13.5 S1, 

*p=0.012 (paired t-test).  

(E) Higher Bim protein expression in Stat5-/- embryos compared with wild-type 

littermate controls: data points are individual embryos. Mean ±SEM for the population is 

shown. Statistical significance values: E13.5 S3 and S4-5, *p<0.01, two-tailed t-test, 

unequal variance.  

 MK performed experiments, analyzed and presented the data shown in parts (A) 

and (C-E). KH helped MK perform experiments in part (C), and also performed 

experiments for part (B). 
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Figure 4.9 
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Figure 4.9 Fas expression in E14.5 fetal liver erythroblasts. 

 Cell-surface Fas was measured on freshly explanted fetal livers from wild-type or 

Stat5 heterozygous embryos (n=6) and from Stat5-/- embryos (n=3). No significant 

differences were detected between the genotypes (two-tailed t-test, unequal variance). 

 MK performed experiment and analyzed the data presented in this figure. 
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Figure 4.10 
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Figure 4.10 The Bcl-xL response to repeated Epo injections.  

 Bcl-xL expression in spleen EryA following consecutive Epo injections. Wild-

type mice were injected at time points 0, 24 and 48 hours with either Epo (300 U /25 g, 

indicated with arrowheads) or with saline. Bcl-xL expression was assayed by flow 

cytometry in 2 mice for each treatment, 18 hours following each injection.  

YL performed this experiment and analyzed the data.



 
  
 

141 

Figure 4.11 
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Figure 4.11 Plasma Epo measurements in mice with β-thalassemia and in ts-VHL-

/- mice.  

 For each mouse model, two independent ELISAs, each with similar results, were 

pooled together. Individual mouse data as well as mean ±SEM are shown. Epo increase 

in β-thalassemia was significant at p=0.002 (two-tailed t-test, unequal variance).  

 MK performed all of the experiments and data analysis presented in this figure. 



 
  
 

143 

Figure 4.12 
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Figure 4.12 The Bcl-xL and Bim Epo responses in the EpoR-H and EpoR-HM 

mice. 

Experiment and same mouse dataset as in Figure 4.6C and 4.6E.  

(A) Bcl-xL expression in spleen (left) and bone-marrow (right) in erythroid subsets, 18 

hours post-Epo or saline injection in wild-type, EpoR-H, and EpoR-HM mice. 

Experiment and same mouse dataset as in Figure 4.6C.  

 Left panel: Black stars without brackets indicate significant Bcl-xL induction in 

spleen EryB and EryC subsets in Epo treated mice (*p<0.005). No significant Bcl-xL 

induction was observed in EpoR-HM spleens (light blue vs. dark blue bars). EpoR-HM 

mice failed to increase Bcl-xL to the level of EpoR-H or wild-type mice (black stars with 

brackets, *p<0.02). Basal Bcl-xL levels in EpoR-HM EryB and EryC were also lower 

than in basal wild-type mice (red stars with red brackets, *p<0.05). 

 Right panel: Bcl-xL induction in the bone-marrow erythroid subsets was observed 

for all three genotypes. Stars indicate significant differences. Wild-type Epo response vs. 

control: ProE, EryA and EryB, *p<0.0002. EpoR-H Epo response vs. control: ProE, EryA 

and EryB, *p<0.0001; EryC, *p=0.025. EpoR-HM Epo response vs. control: ProE, 

*p=0.003; EryA, EryB and EryC, *p<0.05. Magnitude of Bcl-xL induction in EpoR-HM 

subsets was lower compared with wild-type induction (black stars with brackets, 

*p<0.006). Basal Bcl-xL levels in EpoR-HM bone-marrow subsets were lower than in 

basal wild-type mice (red stars with red brackets, *p<0.02).  

(B)  Bim expression in spleen (left) and bone-marrow (right) in erythroid subsets, 3 

days following Epo or saline injection in wild-type, EpoR-H, and EpoR-HM mice. 
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Experiment and same mouse dataset as in Figure 4.6E. Data are mean ±SEM of n=4 to 5 

mice per bar.  

 In both wild-type and EpoR-HM spleen EryB and EryC subsets, Bim was 

significantly suppressed below their respective basal levels with Epo (black stars, no 

brackets, *p<0.001). Similar findings were observed in the bone-marrow subsets (wild-

type subsets: *p<0.0005; EpoR-HM subsets: *p<0.03). Magnitude of Bim suppression in 

EpoR-HM mice was lower than in the wild-type mice (black stars with brackets, 

*p<0.005). Some differences in basal Bim levels were observed between wild-type and 

EpoR-HM mice (gray bars vs. light blue bars, not indicated in plots: spleen EryB, p=NS; 

spleen EryC, *p=0.02; BM ProE, *p=0.004; BM EryA, *p=0.01; BM EryB, p=NS; BM 

EryC, *p=0.03).  

For all statistical tests, two-tailed t-test with unequal variance was used. 

 MK performed all of the experiments and data analysis presented in this figure. 
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CHAPTER V 

IDENTIFICATION AND ANALYSIS OF MOUSE ERYTHROID PROGENITORS 
USING THE CD71/TER119 FLOW-CYTOMETRIC ASSAY 

 

 

SHORT ABSTRACT  

 A flow-cytometric method for identification and molecular analysis of 

differentiation-stage-specific murine erythroid progenitors and precursors, directly in 

freshly-harvested mouse bone marrow, spleen or fetal liver. The assay relies on cell-

surface markers CD71, Ter119, and cell size. 

 

INTRODUCTION  

The study of erythropoiesis aims to understand how red cells are formed from 

earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell 

formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered 

by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in 

Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic 

stress response. The resulting increase in the number of circulating red cells improves 

tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to 

the survival and recovery from physiological and pathological conditions such as high 

altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation.  

 The mouse is a key model for the study of erythropoiesis and its stress response. 

Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between 
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embryonic days E11.5 and E15.5, in the neonatal spleen, and in adult spleen and bone 

marrow. Classical methods of identifying erythroid progenitors in tissue rely on the 

ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-

solid media. Their erythroid precursor progeny are identified based on morphological 

criteria. Neither of these classical methods allow access to large numbers of 

differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-

cytometric method of identifying and studying differentiation-stage-specific erythroid 

progenitors and precursors, directly in the context of freshly isolated mouse tissue (Figure 

5.1). The assay relies on the cell-surface markers Ter119, CD71, and on the flow-

cytometric ‘forward-scatter’ parameter, which is a function of cell size. The 

CD71/Ter119 assay can be used to study erythroid progenitors during their response to 

erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen 

conditions. It may also be used to study erythroid progenitors directly in the tissues of 

genetically modified adult mice or embryos, in order to assess the specific role of the 

modified molecular pathway in erythropoiesis.  

 

PROTOCOL 

1 Harvesting of tissues: 

1.1 Prepare tubes containing 2 to 5 mL cold staining buffer (phosphate-buffered 

saline (PBS) with added 0.2% BSA and 5mM glucose). Keep tubes on ice prior to 

tissue harvest. 
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1.2 Cull mice according to appropriate approved protocol (e.g. CO2 inhalation 

followed by cervical dislocation). 

1.3 Draw blood by cardiac puncture into EDTA or heparin blood-collection tubes for 

later analysis (e.g. hematocrit, reticulocyte count or CBC analysis). 

1.4 Harvest the spleen and bones, placing tissues from each mouse in a separate tube, 

prepared in step 1. Easy access to spleen is from the left side. For the bone 

marrow, harvest one or both femurs. Keep tubes with harvested tissue on ice. 

1.5 If desired, weigh the spleen. Mice undergoing an erythropoietic stress response 

are likely to show a significant increase in spleen weight. 

 

2 Preparation of spleen cells: 

2.1 Using a pre-moistened 3 mL syringe plunger, gently push the spleen, or part of 

the spleen (ideally, 0.1 gram or less, equivalent to approximately 108 cells) 

through a 40 µm sterile cell strainer (Fisherbrand catalog number 22363547 or 

other) placed on top of a 50 mL conical tube. Keep the tube on ice during this 

procedure. Wash the cells through the strainer with a total of 2 mL staining buffer.  

2.2 Gently pipette the strained cell suspension to break up any small clumps. If 

necessary, re-strain the cells. 

2.3 Wash the cells twice by centrifugation and resuspend in cold buffer. For 

centrifugation, spin for 3’ to 5’ at approximately 1400 RPM at 4°C. 

2.4 Count the cells using a hemocytometer. Typical yields are 1-2 x 108 cells/spleen. 

For flow cytometry analysis, aliquote 1 to 2 x 106 cells per sample, either into 
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FACS staining tubes (BD Falcon polystyrene round-bottom tubes, 352008) or U-

bottom 96 well plate (BD Falcon 353910). Sample staining volume is 200 µl, to a 

final cell concentration 0.5 to 1 x 107 cells/mL or 1-2 x 106 cells/ 200 µl sample. 

 

3 Preparation of bone marrow cells: 

3.1 Prepare 1 or 3 ml syringes with an attached 26G needle, pre-filled with cold 

staining buffer.   

3.2 Remove muscles attached to the femur so as to visualize the bone clearly.  

3.3 Using sharp surgical scissors, snip off both ends of the femur, as close as possible 

to the ends of the bone. This should reveal a small hole at each cut end, leading 

into the bone-marrow cavity, which runs through the length of the femur. 

3.4 Using the pre-filled syringe in step 1, insert the needle through one of these holes, 

and gently flush the marrow out through the hole at the other end into a tube. 

3.5 Dissociate the flushed cells by gentle pipetting, and strain through a 40 µm 

strainer as for the spleen above (see section 2.1). 

3.6 Wash cells twice by centrifugation in cold staining buffer. 

3.7 Count the cells and resuspend as in section 2.4. Typical yields are approximately 

 107 cells per femur.  

 

4  Preparation of fetal liver cells: 

4.1 To prepare timed-pregnant female mice, set up mice for mating in the evening; 

examine for vaginal plugs before 10 am the following day; the day on which the 
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vaginal plug is detected is considered day 0.5. Veterinary staff may be able to 

assist investigators who are unfamiliar with this technique to identify pregnant 

females. 

4.2 Timed-pregnant female mice are culled on days E11.5 to 14.5 of pregnancy. The 

uterine horns are removed into a Petri-dish containing ice-cold culture medium or 

staining buffer. 

4.3 Embryos are removed from each uterus and the fetal liver is dissected. A 

dissecting microscope is required for E12.5 embryos or younger.  

4.4 Livers may be dissociated mechanically by pipetting in buffer, and are processed 

either individually in 96-well plates, or pooled together, depending on 

experimental requirements.  

4.5 A fetal liver at E13.5 has ∼107 cells. Cells are washed twice in staining buffer and 

resuspended at 1-2 x 106 cells/ 200 µl sample for flow-cytometric analysis.  

 

5 Antibody staining for flow cytometry: 

5.1 Prepare a primary antibody staining pre-mix to be used for all samples, except for 

control samples, containing the following:  

• ChromePure Rabbit IgG (Jackson, 015-000-003), to a final concentration of 

200 µg/mL. Check the stock concentration on the bottle (it can vary). This is 

used to block Fc receptors in mouse cells; alternative species that may be used 

for this are mouse IgG or rat IgG. Species choice is determined by the 

potential presence in the staining protocol of secondary antibodies directed 
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against primary rat/mouse/rabbit antibodies, in which case those species 

cannot be used as blocking antibodies. Alternatively, 5% rabbit serum may 

also be used in place of purified IgG. A further alternative is the use of 

monoclonal antibodies or Fab fragments directed at the mouse Fc receptors. 

The basic protocol below does not include any secondary antibodies and so 

IgG of any of the three species may be used. 

• CD71-FITC, diluted 1:200 (stock 0.5 mg/mL, BD-Biosciences, 553266) 

• Ter119-PE, diluted 1:200 (stock 0.2 mg/mL, BD-Biosciences, 553673) 

• Any additional antibodies directed at surface epitopes of interest, e.g. 

antibodies directed at Fas or FasL (final concentration 5 µg/mL) (see 42,44). 

Mix the antibody solution gently by inverting the tube 2-3 times. 

5.2 Add 200 µl of the pre-mix to each cell sample and gently resuspend the cells. 

5.3 Prepare control cell samples as follows: 

• ‘Unstained’: these cells are left in staining buffer and provide the background 

autofluorescence of the cells. 

• ‘Single color’ controls: one such control is required for each antibody/color 

used in the protocol. The cells in these controls are stained either with a 

directly conjugated primary antibody, or with both a primary antibody and a 

conjugated secondary antibody. These controls are used to correct for spectral 

overlap between channels. 

• ‘Fluorescence minus one’ (FMO) controls: one such control is required for 

each antibody/color in the protocol: cells are stained with all the 
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colors/antibodies in the protocol except for the color/antibody for which this is 

the FMO control. The FMO control for a particular channel provides the true 

background for that channel. It may include non-specific antibody of the same 

isotype, and conjugated with the same fluorescence mark as the test antibody 

(isotype control). 

5.4 Incubate samples and relevant controls in the primary antibody stain on ice for 

45’ to 1 hour in the dark (put aluminum foil cover on ice-bucket).  

5.5 At the end of incubation, wash the cells by adding 3 mL of staining buffer to each 

sample tube and spin for 3’ to 5’ at approximately 1400 RPM at 4°C. If using 96 

well plates, wash the cells three times in a volume of 200 µl. 

5.6 If relevant, apply secondary antibody stain. Apply and wash as for the first 

antibody stain. 

5.7 If relevant, a stain with Annexin V (apoptosis marker) is applied at the end of 

incubation, using a Hepes buffer as in the manufacturer’s instructions. This stain 

is applied for 15 minutes at room-temperature, or for 1 hour on ice. 

5.8 Cells are resuspended for flow cytometry analysis in staining solution containing 

a cell-impermeable DNA dye, to exclude dead cells. Several DNA dyes are 

available, including Propidium Iodide, 7-amino-actinomycin D (7AAD), or DAPI. 

The choice from amongst these depends on the available flow-cytometer 

channels, given the channels taken up for specific antibody staining, and channels 

available on the flow-cytometer. 7AAD is obtained from BD-Biosciences 

(559925) and used according to the manufacturer’s instructions. For DAPI 



 
  
 

154 

staining, make a stock of 1 mg/mL in dimethylformamide (DMF) from powder 

(Roche, 236276), keep at -20°C, and dilute 1:10,000 to 1:15,000 in staining 

buffer.   

 

6 Flow-cytometric sorting: 

6.1 Cells are labeled with CD71, Ter119, and a viability dye as described for flow-

cytometric analysis (section 5). Cell concentration during labeling may be 

increased to 5 x 107/mL.  

6.2 Antibody labeling for lineage-positive non-erythroid cells may be added with the 

primary antibody stain, if required, as follows:  

Mix an equal volume of each of the following antibodies to make the lineage 

master mix:   

FITC Rat Anti-Mouse CD41 MWReg30, BD Pharmingen  553848 

FITC Rat Anti-Mouse CD45R/B220 RA3-6B2, BD Pharmingen  553087 

FITC Hamster Anti-Mouse CD3e 145-2C11, BD Pharmingen  553061 

FITC Rat Anti-Mouse CD11b/Mac-1 M1/70, BD Pharmingen  557396 

FITC Rat Anti-Mouse Ly-6G and Ly-6C (Gr-1) RB6-8C5, BD Pharmingen  

553126  

Use the master mix at 1:80 (This is equivalent to 1:400 dilution of each individual 

antibody stocks, which are all 0.5 mg/mL). 

6.3 Use low-pressure sorting conditions and wide nozzles. For the Aria (BD 

Biosciences) we use 100 µ nozzle, 20 psi pressure. 
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6.4 Collection buffer: PBS with added 20% Fetal Bovine Serum.  

6.5 To check the purities of the sorted populations, re-run a small aliquot from each 

sample in a buffer that contains a viability dye (7AAD or similar). 

 

REPRESENTATIVE RESULTS  

 CD71/Ter119 staining of adult bone marrow or spleen identifies a developmental 

sequence of four subsets, labeled ProE, EryA, EryB and EryC (Figure 5.2) 42. 

Morphologically, these correspond to increasingly mature erythroblasts. Figure 5.2 

illustrates the gating sequence at the data analysis stage, which discards very small event 

(including nuclei, red cells), aggregated cells and dead cells.   

 Expression of cell-surface proteins may be measured simultaneously for each of 

these subsets, by adding the relevant antibodies at the same time as Ter119 and CD71 

staining. Figure 5.2 shows an example of cell-surface expression of the death receptor 

Fas 42. This measurement was carried out in mice injected with Epo, or in control mice 

injected with saline. It is apparent that Epo suppresses Fas expression in the EryA 

population in vivo 42.  

 Expression of intracellular proteins or cell cycle status may also be measured for 

cells in each subset. Figure 5.3 illustrates representative cell cycle analysis of freshly 

harvested bone-marrow cells. These measurements require, in addition to cell-surface 

staining with CD71 and Ter119, the fixation and permeabilization of cells for 

intracellular labeling (see Discussion section).  
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 In fetal liver, non-erythroid cells are first excluded by gating on ‘Lin-‘ cells that 

are negative for CD41, Mac-1, Gr-1, B220 and CD3 (Figure 5.4). The remaining cells are 

sub-divided into 6 subsets, S0 to S5. The precise pattern of cells in fetal liver is 

dependent on embryonic age (see Discussion section). A representative cell cycle 

analysis of the S3 subset in E13.5 fetal liver is shown (Figure 5.5).  

 

DISCUSSION 

 The flow-cytometric methodology allows simultaneous investigation of any 

cellular function that may be detected with a fluorescence-conjugated specific antibody 

or ligand, including cell-surface markers, protein expression, cell survival, cell signaling 

using phospho-specific antibodies 184, and cell cycle status. These measurements may be 

made in each of a number of differentiation-stage specific subsets, in the context of 

freshly isolated erythropoietic tissue. This method therefore allows assessment of 

functional and molecular changes at different levels of the erythropoietic system, in 

response to a wide range of erythropoietic stimuli or as a result of genetic mutations.  

 No antibody is without cross-reactivity, and cross-reactivity may be tissue- 

specific. It is therefore important to verify, even for previously tested antibodies, their 

specificity in the context of erythropoietic tissue, using either a null or a knock-down cell 

model.  

 Cells from specific erythroid subsets may be sorted for RNA or transcriptome 

analysis. Sort experiments should use low sorting pressures and wide nozzles, in order to 

minimize the shear stress on the cells. We recommend checking cell purity and viability 
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following each sorting experiment. Of note, in the case of multiparameter flow 

cytometry, the true background for each color is its ‘FMO’ control (see 5.3), which 

includes, in addition to autofluorescence, the background due to spectral overlap from all 

other colors. At the analysis stage, a subset-specific ‘FMO’ control needs to be used. 

 

Differentiation stage of erythroblasts within the flow-cytometrically defined subsets  

 The flow-cytometric ProE/EryA/EryB/EryC subsets are defined in terms of cell-

surface marker expression and forward scatter. While it is likely that each of these 

subsets corresponds to approximately the same morphological erythroblast differentiation 

stage in a wide variety of mouse models, we recommend verifying this when examining a 

new mouse model. Cells from each of the flow-cytometrically-defined subsets should be 

sorted and cytospin preparations examined for morphological staging of erythroblasts.  

 Although the CD71/Ter119 subsets each contain erythroblasts of similar 

differentiation stage, there remains a degree of heterogeneity within each subset. In the 

first application of the CD71/Ter119 method, we divided Ter119+ cells into regions I to 

IV based on their CD71 expression. The precise borders between these regions were 

determined arbitrarily 43. We subsequently added cell size information to the analysis, in 

the form of the forward scatter parameter. This allowed us to divide Ter119high cells into 

subsets by following natural population contours 42 (Figure 5.2). This approach resulted 

in populations of more uniform maturation and in more reproducible results, and has been 

recently adapted by other investigators 155,185,186. The EryA subset may be subdivided 

further where desired 186. One group suggested the use of CD44 in place of CD71 47. 
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Although CD44 is less useful in resolving early erythroblast stages, it may resolve later 

erythroblast subsets with more precision. Both markers may therefore be used, or 

alternatively, their choice may depend on the specific subsets of interest.  

 An alternative strategy employs multispectral imaging using the ImageStream 

technology (Amnis Corporation, Seattle, WA) 48. It allows the simultaneous and rapid 

acquisition of both morphological and flow-cytometric data on many thousands of cells. 

It is likely to become the ‘gold standard’ with respect to molecular analysis of stage-

specific erythroblasts, since the morphological criteria by which differentiation stage is 

defined may be measured directly. However, at the present time this technology is less 

widely available than conventional flow cytometry, and suffers from two drawbacks: it 

does not allow cell sorting; and it is limited to a smaller number of flow-cytometric 

parameters.  

 

Intracellular antigens 

 Detection of intracellular proteins or BrdU requires cell fixation and 

permeabilization. The precise fixation and permeabilization procedure depends on the 

intracellular antigen in question. We use the LIVE/DEAD Fixable Dead Cell Stain 

(Molecular Probes) during the fixation procedure, to distinguish viable from dead cells. 

Of note, permeabilization with detergents usually impacts the Ter119 signal, which is 

partially detergent soluble. We overcome this difficulty by using gentle detergents (such 

as the saponin-based ‘perm/wash’ buffer from BD Biosciences). We also stain for Ter119 

both prior to, and following, the fixation & permeabilization procedure, in order to 
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optimize the Ter119 signal. Alternatively, it is possible to sort viable cells from each of 

the CD71/ Ter119 subsets first, and carry out fixation and permeabilization separately on 

purified cells from each subset (e.g. see the cell cycle analysis in fetal liver) 46. 

 

Fetal liver CD71/Ter119 subsets 

 The CD71/Ter119 staining pattern in fetal liver is dependent on embryonic age 44 

(Figure 5.4). We subdivide fetal liver cells into 6 subsets, S0 to S5 46. At the onset of 

definitive erythropoiesis in fetal liver on embryonic day 11 (E11), cells are concentrated 

in subsets S0 and S1 and are largely erythroid colony-forming cells (CFU-e). With 

embryonic development, CFU-e cells differentiate into proerythroblasts and maturing 

erythroblasts, and gradually populate subsets S2 to S5 (Figure 5.4).  

 Subsets S1 to S5 are composed almost entirely of erythroid cells of the definitive 

lineage. These subsets are absent in the EpoR-/- fetal liver. A small number of Ter119+ 

cells in fetal liver correspond to the primitive (yolk sac) erythroid lineage. These cells are 

apparent in EpoR-/- fetal liver, where no definitive lineage erythroblasts arise, but by 

E13.5 form less than 1% of Ter119+ cells in wild-type fetal liver 46.   

 The S0 subset is heterogeneous. At E13.5, 70% of S0 cells are erythroid cells at 

the CFU-e stage, just prior to the onset of EpoR dependence 46. The remainder are earlier 

progenitors as well as cells of other hematopoietic lineages, principally megakaryocytes 

and macrophages; these cells may be sorted or gated out 46 (Figure 5.4).   

 

Interpretation of changes in the frequency of erythroid subsets 
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 Changes in the frequency of erythroid subsets should be interpreted with care. A 

change in frequency of cells in any given subset may be due to their altered apoptotic 

rate, altered transit time through that subset, or alternatively may be due to changes in the 

number of cells in other subsets. A common cause for increased frequency of early 

erythroblast subsets ProE and EryA is erythropoietic stress of multiple etiologies 42. 

Similar findings have been noted in the 1960’s by inspecting erythroblast morphologies 

during the stress response 154. The precise reason for the increase in the relative frequency 

of earlier precursors during stress is not clear, but in part may be due to the improved 

survival of these precursors during stress 42.  
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Figure 5.1 
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Figure 5.1  Experimental strategy to study erythropoiesis using flow cytometry. 

(A) The mouse is a key model for the study of erythropoiesis and its stress response. 

Mouse erythropoiesis occurs in the spleen, bone marrow, and in the fetal liver (middle). 

In these tissues, hematopoietic stem cells (HSC) are restricted to the erythroid lineage 

(blue and red stages), which in turn gives rise to red blood cells. Proper number of red 

cells maintains tissue oxygen (green) normal and negatively regulates Epo. Not enough 

red cells leads to tissue hypoxia. In turn, high Epo (green) increases erythropoiesis to 

correct the deficit. 

(B) To study erythroid cells, we first isolate total cells from hematopoietic tissues 

(e.g. fetal liver). 

(C) Freshly-isolated cells are labeled with fluorescent markers directed against 

erythroid, or any additional membrane or intracellular, antigens. Fluorescence data of the 

labeled sample are collected using flow-cytometer. Cells can be physically sorted using a 

cell sorter into separate tubes. 

(D) Sample data are then analyzed using FlowJo analysis for erythroid markers, 

apoptosis and cell cycle. Representative analysis of fetal liver is shown in the middle 

panel. Sorted populations can be cytospun onto microscope slides (cytospins shown), 

analyzed for their protein and mRNA content, or cultured for further analysis. 

 This figure was designed and created by MK [with the exception of FlowJo panel 

in the middle of part (D)]. 
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Figure 5.2 
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Figure 5.2 The CD71/Ter119 erythroid subsets in mouse spleen. 

(A) Gating strategy: Spleen cells were processed and labeled with antibodies directed 

at CD71 and Ter119. This figure shows the analysis strategy following the data 

acquisition step. Dot-plot I shows all acquired events. The diagonal gate represents events 

that are likely to be single cells/events, excluding doublets or larger aggregates. Cells in 

this gate are further analyzed in dot-plot II. Here, very small events, likely nuclei or 

debris, are excluded. The gated cells are shown in dot-plot III, where DAPI-positive cells, 

that are likely membrane-permeable apoptotic cells, are excluded from further analysis. 

Dot-plot IV shows the resulting population of viable spleen cells. The ProE gate contains 

CD71highTer119intermediate cells. Ter119high cells are further analyzed in dot-plot V. Here 

CD71high cells are subdivided into less mature, large ‘EryA’ erythroblasts 

(CD71highTer119highFSChigh) and smaller, more mature ‘EryB’ erythroblasts 

(CD71highTer119highFSClow). The most mature erythroblast subset is EryC 

(CD71lowTer119highFSClow). Dot-plot VI shows cell-surface Fas expression, specifically 

in the EryA subset, in mice in the basal state (injected with saline), and mice injected 

with a single dose of Epo. Staining with Fas was carried out simultaneously with the 

CD71/Ter119 staining. 

(B) Cytospin preparations of cells sorted from each of the indicated subsets. Cells 

were stained with Giemsa and with Diaminobenzidine, the latter generates a brown stain 

with hemoglobin. (Cytospin data were originally published in 42). 

 MK performed the experiment and data analysis for part (A). 
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Figure 5.3 
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Figure 5.3 Cell cycle analysis of CD71highTer119high erythroblasts in mouse bone 

marrow. 

 Mice were injected intraperitoneally with BrdU, and spleen and bone marrow 

were harvested 30 to 60 minutes later. Bone marrow cells were fixed and permeabilized, 

and in addition to being stained for CD71 and Ter119, were stained for BrdU 

incorporation into their replicating DNA with a monoclonal antibody directed at BrdU 

(fixation, permeabilization and BrdU-staining protocol was according to manufacturer’s 

instruction). BrdU-positive cells are in S-phase of the cycle. Interphase cells are BrdU-

negative and may be resolved into G1 or G2/M phases using the DNA dye 7AAD.  

 RP/JS/EP performed the experiment shown in this figure. 
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Figure 5.4 
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Figure 5.4 CD71/Ter119 erythroid subsets in mouse fetal liver. 

(A) Gating strategy: Fetal liver cells were labeled for CD71, Ter119, and a cocktail of 

FITC-labeled antibodies directed at non-erythroid lineage markers (‘Lin’). Viable cells 

(7AAD-negative) were analyzed for Lin expression, and the Lin- cells were further sub-

divided into the S0 to S5 erythroid subsets. Younger, E13 fetal liver is composed of less 

mature erythroblasts, shown by the near absence of cells in the mature S4/S5 subsets. 

(B) Cytospin preparations of cells sorted from each of the indicated subsets. Cells 

were stained with Giemsa and with Diaminobenzidine, the latter generates a brown stain 

with hemoglobin. (Cytospin data were originally published in 46). 

 RP and JS performed the experiments shown in this figure. 
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Figure 5.5 

 

 

 



 
  
 

170 

Figure 5.5 Cell cycle analysis of fetal liver erythroid subsets. 

 Pregnant mice were injected with BrdU, and fetal livers were harvested 30 to 60 

minutes later, fixed, permeabilized and stained with antibodies against CD71, Ter119 and 

BrdU. Cell cycle status of S3 cells is shown. 

 RP/JS/EP performed the experiment shown in this figure. 
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Table 5.1 Specific reagents and equipment: 

 

Name of the reagent Company Catalogue 
number 

40 mm sterile cell strainer  Fisherbrand 22363547 
Polystyrene round-bottom tubes for FACS 
staining  

BD Falcon 352008 

U-bottom 96 well plate  BD Falcon 353910 
ChromePure Rabbit IgG Jackson 

ImmunoResearch 
015-000-003 

CD71-FITC (stock 0.5 mg/mL) BD-Biosciences 553266 
Ter119-PE (stock 0.2 mg/mL)  BD-Biosciences 553673 
7AAD  BD-Biosciences 559925 
DAPI powder  Roche 236276 
FITC Rat Anti-Mouse CD41 MWReg30 BD Pharmingen  553848 
FITC Rat Anti-Mouse CD45R/B220 RA3-
6B2 

BD Pharmingen  553087 

FITC Rat Anti-Mouse CD411b/Mac-1 
M1/70 

BD Pharmingen  557396 

FITC Rat Anti-Mouse Ly-6G and Ly-6C 
(Gr-1) RB6-8C5 

BD Pharmingen  553126 

FITC Hamster Anti-Mouse CD3e 145-
2C11  

BD Pharmingen  553061 

APC BrdU Flow kit BD Pharmingen 557892 
Annexin V-biotin BD Pharmingen 556418 
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Chapter VI Attributions and Copyright information 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

All sections of this chapter were written by me. 
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CHAPTER VI 

DISCUSSION AND FUTURE DIRECTIONS 

 

6.1  Relevance of my thesis work  

 Erythropoiesis is essential to life, and is characterized by a number of remarkable 

properties. Its key regulator, Epo, spans a large concentration range, upregulating 

erythropoietic rate as high as 10-fold to precisely match physiological need. Another 

property is its rapid response to stress where a large number of cells are quickly 

generated. Yet another essential property is the ability of erythropoiesis to maintain a 

stable red cell output with minimal deviations for very long periods of time. Even though 

these are clearly observable characteristics, the molecular mechanisms that create them 

remain ‘hidden’ from view. For example, the precise nature of the EpoR survival signal 

in erythroblasts is still unclear. Many pathways have been implicated based on studies in 

vitro, but few have been tested in vivo. 

 There are many important reasons to describe these mechanisms in more detail, 

and to discover new ones. From a clinical perspective, erythropoietic stress occurs in 

many human diseases. For example, Polycythemia Vera arises due to Jak2 mutations 27. 

Anemia results from multiple causes, including ineffective erythropoiesis in 

myelodysplasia, where erythroblasts overexpress Fas and FasL 121. Other causes of 

anemia include chronic disease, kidney disease and diabetes, cancer and chemotherapy, 

nutritional deficiencies and various autoimmune anemia syndromes; anemia is also 

associated with some infectious diseases, notably parvovirus, which specifically destroys 
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red cell progenitors. Other causes include the hemoglobinopathies and other genetic 

causes of anemia. To treat these complex disorders, we must fully understand how in 

vivo, EpoR signaling regulates various cellular functions. From a basic science 

perspective, erythropoiesis contains many of the elements fundamental to other studied 

cellular systems; it has a known cytokine and its receptor, progenitors expressing the 

receptor, and final output (red cells) which negatively regulate the cytokine. Knowing 

how these components act together to create a coherent response to hypoxia may be 

relevant to our understanding of analogous responses in other cytokine-dependent 

systems, such as granulopoiesis, thrombopoiesis, or the generation of neutrophils and 

lymphoid cells 187. 

 

6.2 Innovative approach to study erythropoiesis in vivo 

 My thesis work tested the hypothesis that Epo regulates erythropoietic rate 

through progenitor survival. This hypothesis was based on studies in which several 

apoptotic regulators, including Fas/FasL, Bcl-xL and Bim, were identified downstream of 

EpoR signaling in vitro 89,96,124. How Epo regulates erythropoietic rate through these 

apoptotic pathways cannot be re-created in vitro with great certainty, and must therefore 

be tested using in vivo technology.   

 Previous in vivo approaches to address this question utilized mouse genetic 

models coupled with erythropoietic stress 52,188. Most often, stress was induced by 

bleeding the animal, or by treating it with phenylhydrazine, a highly toxic compound to 

hematopoietic environment, in order to induce acute hemolytic anemia. To understand 
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the response to stress, previous in vivo studies examined ‘peripheral’ parameters. These 

classical methods included: determining the hematocrit, hemoglobin and reticulocyte 

count in peripheral blood; determining serum Epo; determining the radioactive iron 

uptake by the hematopoietic tissue as a reflection of erythropoietic rate; examining 

hematopoietic tissues histologically for a qualitative assessment of erythropoiesis 16. Yet, 

erythroid progenitors could not be isolated for a direct biochemical analysis. To bypass 

this problem, various erythroid culture methods have been developed 189,78. The in vitro 

culture is useful for studying erythroblast biochemistry without complications inherent to 

the in vivo models. However, progenitors are often grown in the absence of a supporting 

microenvironment and with altered cytokine levels. These conditions lead to potentially 

altered expression of cell-surface markers and transcriptional factors, and to the changes 

in the timing and nature of erythroid differentiation, all of which do not directly reflect 

the in vivo process. 

 To address these many issues, our laboratory developed a novel flow-cytometric 

approach (Chapter V) making my in vivo studies possible. I used this approach to identify 

maturation-specific erythroblast subsets that form a developmental sequence directly in 

the murine hematopoietic tissue. I was able to directly measure how erythroblasts at 

specific developmental stages change in frequency with time and stress level directly in 

vivo. Flow cytometry also quantitatively measures various cellular parameters (e.g. cell-

cycle, apoptosis, cell-surface- and phospho- proteins) on a single-cell level. From this 

‘biochemical’ perspective, I addressed how EpoR signaling regulates Fas/FasL, Bcl-xL 

and Bim apoptotic proteins in specific erythroid subsets in vivo. From an ‘organism-
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level’ perspective, I used flow-cytometric and classical measurement methods in various 

genetic models of erythropoietic stress to determine where, when and how in the stress 

response each of the three apoptotic pathways plays a role. 

 

6.3  Novel findings  

 First, my analysis of erythropoiesis in vivo provides evidence in support of the 

hypothesis that erythroblast apoptosis determines erythropoietic rate. Second, my work 

describes an important new concept in the field of erythropoiesis, that survival pathways 

each have unique, specialized properties and functions in the erythropoietic response. 

Many of these properties could not have been predicted from the survival response of 

single cells in vitro. 

 In my work with Fas- and FasL-mutant mice (Chapter III), I found that Fas/FasL 

play an important autoregulatory role at the local tissue level, where they minimize 

random fluctuations in erythroblast frequency, stabilizing the size of the erythroblast pool 

in the steady state. In mice mutant for Fas or FasL, basal erythropoiesis was increased 

and, importantly, was more variable. Furthermore, the erythropoietic stress response to 

high Epo or low oxygen in mutant mice lagged significantly behind that of control mice. 

In keeping with the hypothesis originally described in Chapter I, Figure 1.4, these data 

suggest that Fas/FasL in wild-type spleen provide an apoptotic ‘reserve’ of cells. 

Although apparently wasteful in the basal state, this reserve allows mice to quickly rescue 

cells from apoptosis and recruit them to increase erythropoietic rate during stress. 
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 I also compared and contrasted the in vivo behavior of two cell-intrinsic apoptotic 

regulators, Bcl-xL and Bim (Chapter IV), previously unexamined in the stress response. I 

found Bcl-xL responded only to acute, but not chronic, stress. My data suggest that Bcl-xL 

is a key mediator of EpoR’s anti-apoptotic signal very early in the stress response in ProE 

and EryA cells, before Bim and Fas are suppressed. Bcl-xL adaptation to high Epo occurs 

at the level of Stat5 activation, and resets it for the next acute stress. 

 In addition, I ‘resurrected’ an old model of erythropoietic stress, the low 

atmospheric oxygen treatment (Figure 3.1C in Chapter III and Figure 4.4 in Chapter IV). 

This stress model provided me with a unique opportunity to test my hypothesis in a more 

physiological, albeit more complex, setting. In the process of testing this model, I found 

increased erythroblast apoptosis when mice were transferred back from hypoxia to a 

normal oxygen environment (Figure 3.1C). Therefore, regulation of apoptotic rates is 

important in both increasing and decreasing erythropoietic rate. Together, my overall 

findings suggest that in vivo, Epo regulates erythropoietic rate by modulating erythroblast 

apoptosis, and that various apoptotic regulators play distinct and unique roles in this 

process. 

 

6.4  Interpretations and future directions 
  
 Erythropoiesis is a complex and dynamic process; my thesis work addressed only 

some of its aspects. Future experiments derived from this work will provide new and 

exciting discoveries relevant to the field of erythropoiesis and other areas of molecular 

biology. 
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New flow-cytometric identification of BFU-e and CFU-e progenitors. 

 It is currently unknown whether EpoR regulates the survival of earlier erythroid 

subsets, the BFU-e and the CFU-e, in adult mice. Unlike in the fetal liver, where CFU-e 

activity was identified in both the S0 and S1 populations based only on CD71 and Ter119 

markers 46, we cannot easily identify BFU-e and CFU-e progenitors in the adult, where 

they are very rare. Previous studies used negative exclusion criteria to define CFU-e in 

the bone marrow as CD71highcKit+Ter119low (and Endoglin+) 190,191. A similar approach 

was used to define stress BFU-e as CD71medcKit+Ter119low (population I) and CFU-e as 

CD71hicKit+Ter119med (population II) 54. Overall, CD71, Ter119 and cKit may not 

provide the most precise method of staging erythroid progenitors in the adult. Therefore, 

new markers are needed to improve the specific identification of BFU-e and CFU-e 

subsets in the fetal liver as well as in adult basal and stress erythropoiesis. Based on in 

vitro methods, EpoR is thought to be induced between the BFU-e and CFU-e stages, with 

CFU-e expressing maximal levels 2. Currently, there are no reliable antibodies for flow-

cytometric use against the murine EpoR. The overall cell-surface expression of this 

receptor is very low, even in the CFU-e subset. In the future, a reliable EpoR antibody 

may allow us to better resolve early erythroid subsets and to determine EpoR expression 

in other cell lineages and tumors. 

 

Transit time through erythroid differentiation stages in basal state and in stress. 

 My work focused on understanding how erythroblasts within a given subset, as 

defined by two cell surface markers and cell size, during stress differ in their survival 
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properties from cells in the equivalent subset in the basal state in vivo. It takes roughly 3 

to 4 days for CFU-e progenitors to reach the late EryC stage. Thus, a given erythroid 

subset on day 3 of the Epo response likely does not contain the same cohort of cells 

found there at time-point 0. Furthermore, the rate at which cells transition from one 

subset to the next may be altered during stress response. Literature suggests that acute 

stress accelerates erythroid maturation, with bigger cells appearing in the blood early on. 

It was previously suggested that in response to stress, there is a ‘skipped’ cell division 

that allows polychromatic cells to become reticulocytes that are larger and contain more 

hemoglobin 153,154. Therefore, apart from effects upon erythroblast survival, these data 

point to additional Epo roles in cell cycle and differentiation. 

 The continuous input of progenitors from earlier differentiation stages may affect 

our measurements of apoptotic regulators in early erythroblasts. Thus, future experiments 

should determine the transition time of progenitors from one subset to the next in the 

basal state and during stress. To do this, an in vivo labeling system will need to be 

developed and tested (in vivo cell labeling with BrdU/CFSE, adoptive transfer of labeled 

progenitors or progenitors expressing Bcl-xL-GFP fusion protein, inducible transgenic 

mouse models). 

  

How does the continuous input from earlier erythroid compartments into the ProE pool 

affect our interpretation of observed Bcl-xL adaptation to high Epo? 

 Our data show that Epo is still high when ProE and EryA suddenly become 

refractory in their Bcl-xL response to Epo stimulation between 18 and 24 hours (Chapter 



 
  
 

180 

IV, Figures 4.2, 4.4 and 4.10). Reduction of Bcl-xL signal between 18 and 24 hours in the 

ProE population could result from: (a) a switch from positive to negative regulation of 

Stat5 signaling directly in those cells and the subsequent degradation of Bcl-xL protein, or 

(b) an input of cells with low Bcl-xL from an earlier subset of possibly an altered lineage.  

 Our results with EpoR-H mice (where Stat5 and Bcl-xL persist high for longer, as 

shown in Figure 4.6), and our laboratory’s preliminary data with SOCS3 knock-down in 

cultured fetal liver erythroid progenitors, both show persistent Stat5 activation when the 

negative regulation of EpoR signaling is disrupted. These data support our model 

according to which, Epo-sensitive progenitors themselves become refractory to Epo 

stimulation. However, we cannot exclude the possibility that some CFU-e, also refractory 

to Epo stimulation, may transition into the ProE subset by 24 hours. To address if the 

refractory period in the Bcl-xL response occurs in the same progenitors in vivo, labeled 

cells will be examined throughout the differentiation after multiple Epo injections. If the 

refractory period occurs in the same, labeled cells, a second Epo injection at 18 to 24 

hours should not induce, or maintain, Bcl-xL mRNA or protein in these cells (as in Figure 

4.10). 

 The short time-frame of Bcl-xL response (Figure 4.3) makes it unlikely that the 

input of very early, low-frequency progenitors (BMP4R/stress BFU-e 17) with low Bcl-xL 

is responsible for the Bcl-xL reduction in the ProE and EryA. To address whether these 

very early progenitors play a role in the Bcl-xL adaptation mechanism, flexed-tail mutant 

mouse defective in BMP4R progenitors that give rise to stress BFU-e 53, could be utilized. 
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If Bcl-xL adaptation in ProE and EryA in Epo-injected mutant mice is preserved, then 

progenitors prior to the CFU-e stage are likely not involved. 

 

At which differentiation stage does the suppression of Fas and Bim begin? 

 During stress, Epo persists above basal level for at least 36 hours (Figure 4.2A). 

In contrast to Bcl-xL upregulation, Fas and Bim suppression takes longer to be achieved 

(Figures 4.3 and 4.4) 42. Cell labeling experiments are necessary to address whether Fas 

and Bim suppression begins in very early CFU-e progenitors or only in the ProE and 

EryA subsets. 

 Alternatively, Epo indirectly participates in the generation of ‘stress BFU-e’ 

17,53,54 that lower Fas and Bim developmentally (via GATA-1), or via activation of other 

receptors (e.g. cKit or Glucocorticoid Receptor). To test this, flexed-tail mutant mice can 

be injected with Epo to see if Fas and Bim suppression on day 3 is absent due to the 

defect in very early, stress-responsive progenitors. Furthermore, if stress BFU-e can be 

purified, their Fas and Bim response to Epo in culture, or in vivo via adoptive mouse 

transfer, may also be studied. 

 

How does EpoR signaling lead to Fas down-regulation?  

 The mechanism of Fas/FasL down-regulation by Epo in EpoR-expressing cells 

remains unstudied. Therefore, future experiments could determine whether Epo 

suppresses Fas by decreasing Fas mRNA stability, or by suppressing its transcription. 

This could be done by sorting and culturing erythroblasts (ProE/EryA or S1-2) with or 
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without transcriptional inhibitors and monitoring Fas mRNA by quantitative real-time 

PCR. EpoR activates multiple signaling pathways including Stat5, Stat1, PI3K/AKT and 

MAPK. While Stat5 does not appear to suppress Fas (Figure 4.9), Stat1 192 and 

PI3K/AKT 83,193,194, but not ERK 155, pathways may regulate Fas transcription. These 

regulators could also be tested in vitro by depletion with shRNA, or by retroviral 

transduction of erythroblasts with dominant-negative and constitutively-active mutant 

molecules. Micro-RNAs may also regulate the expression of Fas and FasL, and could be 

tested. 

 Fas and FasL can exist in two main forms, membrane-bound and soluble: sFas 

results from alternative splicing 195, while sFasL results from cleavage of membrane 

bound FasL by metalloproteases 196. Therefore, future experiments, using metalloprotease 

inhibitors in spleen EryA cultures or in vivo, could address whether metalloproteases (e.g. 

MMP-8 and ADAM10) function as Fas or FasL sheddases and whether sheddase action 

is required for erythroblast Fas and FasL down-regulation. Alternative splice variants of 

Fas will be detected by quantitative real-time PCR, while soluble Fas or FasL will be 

monitored by an ELISA method. 

 

The role of Bim in stress erythropoiesis in vivo. 

 My work established that Bim expression declines with erythroid differentiation, 

and is further suppressed by erythropoietic stress. However, Bim-/- fetal livers contained 

normal CFU-e numbers (Figure 4.8C), which suggests that Bim is not the only pro-

apoptotic factor in early erythroblasts. Furthermore, the magnitude of Bim suppression 
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was not as high as for Fas suppression or Bcl-xL upregulation (Figure 4.3C). It has not 

been determined whether Bim-/- mice have an enhanced response to erythropoietic stress. 

Adult Bim-/- mice appear to suffer from an autoimmune disorder complicating the study 

of their erythropoietic stress response 89. To bypass this issue, experimental strategy 

similar to Fas-mutant mice (Chapter III) could be used: Bim-/- mice could be bred onto 

Rag1-/- background to prevent an autoimmune syndrome, and their basal and stress 

erythropoiesis could be examined. Multiple apoptotic regulators could also be examined 

to ensure that the phenotype is not masked by compensatory upregulation of apoptosis 

via other pathways. For example, Trail-R2 receptor, expressed on human erythroid cells 

197, could be one such molecule that needs to be tested in mouse erythroblasts. 

Furthermore, Bim-/-Rag1-/- mice can be crossed with Fas-mutant mice, providing a new 

model where two negative regulators of erythropoiesis are removed. 

  

Significance 

 Much work remains to be done in order to fully understand how EpoR regulates 

erythropoietic rate, as well as how these findings may be relevant to studying other 

systems and diseases. For example, my work on the adapting nature of Stat5-Bcl-xL 

response downstream of EpoR in vivo has potential implications for myeloproliferative 

diseases. Elevated levels of Bcl-xL were found in Polycythemia Vera and other 

myeloproliferative syndromes, where they are thought to contribute to cytokine 

independence of progenitors. Mutations in Jak2 are an established cause of persistent 

Stat5 activation and elevation of Bcl-xL. Our work suggests that failure of the 
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mechanisms of adaptation of the Stat5 and Bcl-xL response may also contribute to these 

syndromes 27,169,182,183. 

 

 

 

 

 

 

 

 



 
  
 

185 

REFERENCES 

1. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E 
and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. 
Cell. 1995;83:59-67. 
2. Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. 
Eur J Biochem. 1992;210:649-663. 
3. Shoemaker CB, Mitsock LD. Murine erythropoietin gene: cloning, expression, 
and human gene homology. Mol Cell Biol. 1986;6:849-858. 
4. Jelkmann W. Molecular biology of erythropoietin. Intern Med. 2004;43:649-659. 
5. Stockmann C, Fandrey J. Hypoxia-induced erythropoietin production: a paradigm 
for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol. 2006;33:968-979. 
6. Brahimi-Horn MC, Pouyssegur J. HIF at a glance. J Cell Sci. 2009;122:1055-
1057. 
7. Haase VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J 
Physiol Renal Physiol. 2010;299:F1-13. 
8. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal 
ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A. 2007;104:2301-2306. 
9. Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers 
with targeted inactivation of the von Hippel-Lindau tumor suppressor. PNAS. 
2001;98:1583-1588. 
10. Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with 
conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 
2006;66:2576-2583. 
11. Erslev AJ, Caro J. Physiologic and molecular biology of erythropoietin. Med 
Oncol Tumor Pharmacother. 1986;3:159-164. 
12. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C. Rate of 
erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl 
Physiol. 1989;66:1785-1788. 
13. Abbrecht PH, Littell JK. Plasma erythropoietin in men and mice during 
acclimatization to different altitudes. J Appl Physiol. 1972;32:54-58. 
14. Risso A, Turello M, Biffoni F, Antonutto G. Red blood cell senescence and 
neocytolysis in humans after high altitude acclimatization. Blood Cells Mol Dis. 
2007;38:83-92. 
15. Broudy VC, Lin NL, Priestely GV, Nocka K, Wolf NS. Interaction of Stem Cell 
Factor and its receptor c-kit mediates lodgement and acute expansion of hematopoietic 
cells in the murine spleen. blood. 1996;88:75-81. 
16. Ou LC, Kim DW, Layton MJ, Smith RP. Splenic erythropoiesis in polycythemic 
response of the rat to high-altitude exposure. J Appl Physiol. 1980;48:857-861. 
17. Paulson RF, Shi L, Wu DC. Stress erythropoiesis: new signals and new stress 
progenitor cells. Curr Opin Hematol. 2011. 
18. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid 
body function and impaired ventilatory responses to chronic hypoxia in mice partially 



 
  
 

186 

deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002;99:821-
826. 
19. Schmidt W. Effects of intermittent exposure to high altitude on blood volume and 
erythropoietic activity. High Alt Med Biol. 2002;3:167-176. 
20. West, Schoene, Milledge. High Altitude Medicine and Physiology (ed 4). 
London: Hodder Arnold; 2007. 
21. Bauer A, Tronche F, Wessely O, et al. The glucocorticoid receptor is required for 
stress erythropoiesis. Genes Dev. 1999;13:2996-3002. 
22. Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood. 
2008;112:470-478. 
23. Socolovsky M. Molecular insights into stress erythropoiesis. Curr Opin Hematol. 
2007;14:215-224. 
24. Ebert BL, Bunn HF. Regulation of the erythropoietin gene. Blood. 1999;94:1864-
1877. 
25. Rice L, Alfrey CP. The negative regulation of red cell mass by neocytolysis: 
physiologic and pathophysiologic manifestations. Cell Physiol Biochem. 2005;15:245-
250. 
26. Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-
regulator of red-cell mass. Lancet. 1997;349:1389-1390. 
27. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to 
constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144-1148. 
28. Divoky V, Liu Z, Ryan TM, Prchal JF, Townes TM, Prchal JT. Mouse model of 
congenital polycythemia: Homologous replacement of murine gene by mutant human 
erythropoietin receptor gene. Proc Natl Acad Sci U S A. 2001;98:986-991. 
29. Percy MJ, Furlow PW, Lucas GS, et al. A gain-of-function mutation in the HIF2A 
gene in familial erythrocytosis. N Engl J Med. 2008;358:162-168. 
30. Ang SO, Chen H, Hirota K, et al. Disruption of oxygen homeostasis underlies 
congenital Chuvash polycythemia. Nat Genet. 2002;32:614-621. 
31. Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem 
cell. Immunity. 2007;26:726-740. 
32. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair 
involving multiple partners. Oncogene. 2002;21:3368-3376. 
33. Iscove NN, Sieber F. Erythroid progenitors in mouse bone marrow detected by 
macroscopic colony formation in culture. Exp Hematol. 1975;3:32-43. 
34. Axelrad AA, McLeod DL, Shreeve MM, Heath DS. Properties of cells that 
produce erythrocytic colonies in vitro. In: Robinson WA, ed. Hemopoiesis in culture. 
Washington: U.S. Government Printing Office; 1974. 
35. Stephenson JR, Axelrad AA, McLeod DL, Shreeve MM. Induction of colonies of 
hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA. 
1971;68:1542-1546. 
36. Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and 
maturation of murine erythroid precursor cells. J Cell Physiol. 1988;137:65-74. 
37. Bessis M. [Erythroblastic island, functional unity of bone marrow]. Rev Hematol. 
1958;13:8-11. 



 
  
 

187 

38. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is 
necessary for development of erythrocytes and the nervous system. Nat Genet. 
1999;21:396-399. 
39. Ponka P, Nam-lok C. Identification of an erythroid active element in the 
transferrin receptor gene. J Biol Chem. 2000;275:24185-24190. 
40. Kina T, Ikuta K, Takayama E, et al. The monoclonal antibody TER-119 
recognizes a molecule associated with glycophorin A and specifically marks the late 
stages of murine erythroid lineage. Br J Haematol. 2000;109:280-287. 
41. Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M. 
Identification and analysis of mouse erythroid progenitors using the CD71/Ter119 Flow-
cytometric assay. JoVE. 2011. 
42. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of 
Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the 
erythropoietic stress response in vivo. Blood. 2006;108:123-133. 
43. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. 
Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early 
erythroblasts. Blood. 2001;98:3261-3273. 
44. Socolovsky M, Murrell M, Liu Y, Pop R, Porpiglia E, Levchenko A. Negative 
Autoregulation by FAS Mediates Robust Fetal Erythropoiesis. PLoS Biol. 2007;5:e252. 
45. Zhang J, Socolovsky M, Gross AW, Lodish HF. Role of Ras signaling in 
erythroid differentiation of mouse fetal liver cells: functional analysis by a flow 
cytometry-based novel culture system. Blood. 2003;102:3938-3946. 
46. Pop R, Shearstone JR, Shen Q, et al. A key commitment step in erythropoiesis is 
synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-
phase progression. PLoS Biol. 2010;8. 
47. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct 
stages in erythroid differentiation based on dynamic changes in membrane protein 
expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106:17413-17418. 
48. McGrath KE, Bushnell TP, Palis J. Multispectral imaging of hematopoietic cells: 
where flow meets morphology. J Immunol Methods. 2008;336:91-97. 
49. Wickrema A, Bondurant MC, Krantz SB. Abundance and stability of 
erythropoietin receptor mRNA in mouse erythroid progenitor cells. Blood. 1991;78:2269-
2275. 
50. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin 
receptor characteristics on primary human erythroid cells. Blood. 1991;77:2583-2590. 
51. Peschle C, Magli MC, Cillo C, et al. Kinetics of erythroid and myeloid stem cells 
in post-hypoxia polycythaemia. British Journal of Hematology. 1977;37:345-352. 
52. Hara H, Ogawa M. Erthropoietic precursors in mice with phenylhydrazine-
induced anemia. Am J Hematol. 1976;1:453-458. 
53. Lenox LE, Perry JM, Paulson RF. BMP4 and Madh5 regulate the erythroid 
response to acute anemia. Blood. 2005;105:2741-2748. 
54. Harandi OF, Hedge S, Wu DC, McKeone D, Paulson RF. Murine erythroid short-
term radioprotection requires a BMP4-dependent, self-renewing population of stress 
erythroid progenitors. J Clin Invest. 2010;120:4507-4519. 



 
  
 

188 

55. Luck L, Zeng L, Hiti AL, Weinberg KI, Malik P. Human CD34(+) and 
CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically 
and functionally from normal and suggest distinct subpopulations that generate F cells. 
Exp Hematol. 2004;32:483-493. 
56. D'Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine 
erythropoietin receptor. Cell. 1989;57:277-285. 
57. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA. 
Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand 
activation. Science. 1999;283:987-990. 
58. Miyamoto T, Iwasaki H, Reizis B, et al. Myeloid or lymphoid promiscuity as a 
critical step in hematopoietic lineage commitment. Dev Cell. 2002;3:137-147. 
59. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E. New evidence 
supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic 
progenitors. Cell. 2006;126:415-426. 
60. Huang LJ-s, Constantinescu SN, Lodish HF. The N-terminal domain of Janus 
Kinase 2 is required for Golgi processing and cell surface expression of erythropoietin 
receptor. Molecular Cell. 2001;8:1327-1338. 
61. Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by a ligand-
induced conformation change. Science. 1999;283:990-993. 
62. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 
deficiency defines an essential developmental checkpoint in definitive hematopoiesis. 
Cell. 1998;93:397-409. 
63. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 
in myeloproliferative disorders. N Engl J Med. 2005;352:1779-1790. 
64. Watowich SS. The Erythropoietin Receptor: Molecular Structure and 
Hematopoietic Signaling Pathways. J Investig Med. 2011. 
65. Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction 
mediated by erythropoietin. Trends Cell Biol. 2005;15:146-155. 
66. Constantinescu SN, Ghaffari S, Lodish HF. The Erythropoietin Receptor: 
Structure, Activation and Intracellular Signal Transduction. Trends Endocrinol Metab. 
1999;10:18-23. 
67. Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM. 
Signals for stress erythropoiesis are integrated via an erythropoietin receptor-
phosphotyrosine-343-Stat5 axis. J Clin Invest. 2006;116:683-694. 
68. Watowich SS, Xie X, Klingmuller U, et al. Erythropoietin receptor mutations 
associated with familial erythrocytosis cause hypersensitivity to erythropoietin in the 
heterozygous state. Blood. 1999;94:2530-2532. 
69. Socolovsky M, Fallon AEJ, Lodish HF. The prolactin receptor rescues EpoR -/- 
erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood. 
1998;92:1491-1496. 
70. Socolovsky M, Lodish HF, Daley GQ. Control of hematopoietic differentiation: 
lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci USA. 
1998;95:6573-6575. 



 
  
 

189 

71. Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 
2004;18:1176-1199. 
72. Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A. 
Survival or death of individual proerythroblasts results from differing erythropoietin 
sensitivities: a mechanism for controlling rates of erythrocyte production. Blood. 
1993;82:2340-2352. 
73. Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents 
programmed death in erythroid progenitor cells. Science. 1990;248:378-381. 
74. Jegalian AG, Acurio A, Dranoff G, Wu H. Erythropoietin receptor 
haploinsufficiency and in vivo interplay with granulocyte-macrophage colony-
stimulating factor and interleukin 3. Blood. 2002;99:2603-2605. 
75. Zang H, Sato K, Nakajima H, McKay C, Ney PA, Ihle JN. The distal region and 
receptor tyrosines of the Epo receptor are non-essential for in vivo erythropoiesis. Embo 
J. 2001;20:3156-3166. 
76. Socolovsky M, Fallon AEJ, Wang S, Brugnara C, Lodish HF. Fetal anemia and 
apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in bcl-XL 
induction. Cell. 1999;98:181-191. 
77. Cui Y, Riedlinger G, Miyoshi K, et al. Inactivation of Stat5 in mouse mammary 
epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and 
differentiation. Mol Cell Biol. 2004;24:8037-8047. 
78. Dolznig H, Grebien F, Deiner EM, et al. Erythroid progenitor renewal versus 
differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 
and the GR. Oncogene. 2006;25:2890-2900. 
79. Zhu BM, McLaughlin SK, Na R, et al. Hematopoietic-specific Stat5-null mice 
display microcytic hypochromic anemia associated with reduced transferrin receptor gene 
expression. Blood. 2008;112:2071-2080. 
80. Kerenyi MA, Grebien F, Gehart H, et al. Stat5 regulates cellular iron uptake of 
erythroid cells via IRP-2 and TfR-1. Blood. 2008;112:3878-3888. 
81. Bouscary D, Pene F, Claessens YE, et al. Critical role for PI 3-kinase in the 
control of erythropoietin-induced erythroid progenitor proliferation. Blood. 
2003;101:3436-3443. 
82. Haseyama Y, Sawada K, Oda A, et al. Phosphatidylinositol 3-kinase is involved 
in the protection of primary cultured human erythroid precursor cells from apoptosis. 
Blood. 1999;94:1568-1577. 
83. Kashii Y, Uchida M, Kirito K, et al. A member of Forkhead family transcription 
factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-
Akt activation pathway in erythropoietin signal transduction. Blood. 2000;96:941-949. 
84. Halupa A, Bailey ML, Huang K, Iscove NN, Levy DE, Barber DL. A novel role 
for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall 
reduction of erythroid progenitors and alters their distribution. Blood. 2005;105:552-561. 
85. Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A. 
Survival or death of individual proerythroblasts results from differing erythropoietin 
sensitivities: a mechanism for controlled rates of erythrocyte production. Blood. 
1993;82:2340-2352. 



 
  
 

190 

86. Nijhof W, de Haan G, Pietens J, Dontje B. Mechanistic options of erythropoietin-
stimulated erythropoiesis. Exp Hematol. 1995;23:369-375. 
87. Landschulz KT, Boyer SH, Noyes AN, Rogers OC, Frelin LP. Onset of 
erythropoietin response in murine erythroid colony-forming units: assignment to early S-
phase in a specific cell generation. Blood. 1992;79:2749-2758. 
88. Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed 
mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 
2007;104:19500-19505. 
89. Abutin RM, Chen J, Lung TK, Lloyd JA, Sawyer ST, Harada H. Erythropoietin-
induced phosphorylation/degradation of BIM contributes to survival of erythroid cells. 
Exp Hematol. 2009;37:151-158. 
90. Sathyanarayana P, Dev A, Fang J, et al. EPO receptor circuits for primary 
erythroblast survival. Blood. 2008;111:5390-5399. 
91. De Maria R, Zeuner A, Eramo A, et al. Negative regulation of erythropoiesis by 
caspase-mediated cleavage of GATA-1 [see comments]. Nature. 1999;401:489-493. 
92. De Maria R, Testa U, Luchetti L, et al. Apoptotic role of Fas/Fas ligand system in 
the regulation of erythropoiesis. Blood. 1999;93:796-803. 
93. Shibayama H, Takai E, Matsumura I, et al. Identification of a cytokine-induced 
antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med. 
2004;199:581-592. 
94. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 
2007;35:495-516. 
95. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death 
switch. Nat Rev Cancer. 2002;2:647-656. 
96. Silva M, Grillot D, Benito A, Richard C, Nunez G, Fernandez-Luna JL. 
Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through 
Bcl-XL and Bcl-2. Blood. 1996;88:1576-1582. 
97. Gregoli PA, Bondurant MC. The roles of bcl-X and apopain in the control of 
erythropoiesis by erythropoietin. Blood. 1997;90:630-640. 
98. Dolznig H, Habermann B, Stangl K, et al. Apoptosis protection by the Epo target 
Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Curr Biol. 
2002;12:1076-1085. 
99. Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ. Bcl-xL prevents 
apoptosis of late-stage erythroblasts but does not mediate the anti-apoptotic effect of 
erythropoietin. Blood. 2005. 
100. Motoyama N, Wang F, Roth KA, et al. Massive cell death of immature 
hematopoietic cells and neurons in Bcl-X-deficient mice. Science. 1995;267:1506-1510. 
101. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ. GATA-1 and 
Erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL 
expression. Blood. 1999;94:87-96. 
102. Wojchowski DM, Sathyanarayana P, Dev A. Erythropoietin receptor response 
circuits. Curr Opin Hematol. 2010;17:169-176. 



 
  
 

191 

103. Aispuru GR, Aguirre MV, Aquino-Esperanza JA, Lettieri CN, Juaristi JA, 
Brandan NC. Erythroid expansion and survival in response to acute anemia stress: the 
role of EPO receptor, GATA-1, Bcl-xL and caspase-3. Cell Biol Int. 2008;32:966-978. 
104. Bouillet P, Purton JF, Godfrey DI, et al. BH3-only Bcl-2 family member Bim is 
required for apoptosis of autoreactive thymocytes. Nature. 2002;415:922-926. 
105. O'Connor L, Strasser A, O'Reilly LA, et al. Bim: a novel member of the Bcl-2 
family that promotes apoptosis. EMBO J. 1998;17:384-395. 
106. Maeda T, Ito K, Merghoub T, et al. LRF is an essential downstream target of 
GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev Cell. 
2009;17:527-540. 
107. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of 
the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription 
factor FKHR-L1. Curr Biol. 2000;10:1201-1204. 
108. Strasser A. The role of BH3-only proteins in the immune system. Nat Rev 
Immunol. 2005;5:189-200. 
109. Ley R, Ewings KE, Hadfield K, Cook SJ. Regulatory phosphorylation of Bim: 
sorting out the ERK from the JNK. Cell Death Differ. 2005;12:1008-1014. 
110. Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic 
activity of the Bcl-2 family member Bim is regulated by interaction with the dynein 
motor complex. Mol Cell. 1999;3:287-296. 
111. Curtin JF, Cotter TG. Live and let die: regulatory mechanisms in Fas-mediated 
apoptosis. Cell Signal. 2003;15:983-992. 
112. Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449-1456. 
113. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 
2002;296:1635-1636. 
114. Adachi M, Suematsu S, Kondo T, et al. Targeted mutation in the Fas gene causes 
hyperplasia in peripheral lymphoid organs and liver. Nat Genet. 1995;11:294-300. 
115. Pinkoski MJ, Brunner T, Green DR, Lin T. Fas and Fas ligand in gut and liver. 
Am J Physiol Gastrointest Liver Physiol. 2000;278:G354-366. 
116. Desbarats J, Newell MK. Fas engagement accelerates liver regeneration after 
partial hepatectomy. Nat Med. 2000;6:920-923. 
117. Silvestris F, Cafforio P, Tucci M, Dammacco F. Negative regulation of 
erythroblast maturation by Fas-L(+)/TRAIL(+) highly malignant plasma cells: a major 
pathogenetic mechanism of anemia in multiple myeloma. Blood. 2002;99:1305-1313. 
118. Silvestris F, Tucci M, Cafforio P, Dammacco F. Fas-L up-regulation by highly 
malignant myeloma plasma cells: role in the pathogenesis of anemia and disease 
progression. Blood. 2001;97:1155-1164. 
119. Gersuk GM, Beckham C, Loken MR, et al. A role for tumour necrosis factor-
alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. 
Br J Haematol. 1998;103:176-188. 
120. Gersuk GM, Lee JW, Beckham CA, Anderson J, Deeg HJ. Fas (CD95) receptor 
and Fas-ligand expression in bone marrow cells from patients with myelodysplastic 
syndrome. Blood. 1996;88:1122-1123. 



 
  
 

192 

121. Claessens YE, Park S, Dubart-Kupperschmitt A, et al. Rescue of early stage 
myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a 
dominant negative form of FADD. Blood. 2005. 
122. Dror Y, Freedman MH. Shwachman-Diamond syndrome marrow cells show 
abnormally increased apoptosis mediated through the Fas pathway. Blood. 2001;97:3011-
3016. 
123. Oda A, Nishio M, Sawada K. Stem cell factor regulation of Fas-mediated 
apoptosis of human erythroid precursor cells. J Hematother Stem Cell Res. 2001;10:595-
600. 
124. Dai CH, Price JO, Brunner T, Krantz SB. Fas ligand is present in human erythroid 
colony-forming cells and interacts with Fas induced by interferon gamma to produce 
erythroid cell apoptosis. Blood. 1998;91:1235-1242. 
125. Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today. 
1995;16:39-43. 
126. Jelkmann W. Erythropoietin: structure, control of production, and function. 
Physiol Rev. 1992;72:449-489. 
127. Semenza GL. Involvement of oxygen-sensing pathways in physiologic and 
pathologic erythropoiesis. Blood. 2009;114:2015-2019. 
128. von Lindern M, Schmidt U, Beug H. Control of erythropoiesis by erythropoietin 
and stem cell factor: a novel role for Bruton's tyrosine kinase. Cell Cycle. 2004;3:876-
879. 
129. von Lindern M, Zauner W, Mellitzer G, et al. The glucocorticoid receptor 
cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation 
of erythroid progenitors in vitro. Blood. 1999;94:550-559. 
130. Palis J. Ontogeny of erythropoiesis. Curr Opin Hematol. 2008;15:155-161. 
131. Fawcett DW, Jensh RP. Hemopoiesis. In: Fawcett DW, Jensh RP, eds. Bloom & 
Fawcett: Concise Histology. NY, NY: Chapman & Hall; 1997:84-93. 
132. Gregory CJ, McCulloch EA, Till JE. Transient erythropoietic spleen colonies: 
effects of erythropoietin in normal and genetically anemic W/Wv mice. J Cell Physiol. 
1975;86:1-8. 
133. Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a 
quantitative analysis. J Clin Invest. 1972;51:1179-1185. 
134. Koury MJ, Sawyer ST, Brandt SJ. New insights into erythropoiesis. Curr Opin 
Hematol. 2002;9:93-100. 
135. Silva M, Benito A, Sanz C, et al. Erythropoietin can induce expression of bcl-xL 
through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem. 
1999;274:25855-25861. 
136. Wood AD, Chen E, Donaldson IJ, et al. ID1 promotes expansion and survival of 
primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood. 
2009;114:1820-1830. 
137. Longmore GD. A unique role for Stat5 in recovery from acute anemia. J Clin 
Invest. 2006;116:626-628. 
138. Alderson MR, Tough TW, Davis-Smith T, et al. Fas ligand mediates activation-
induced cell death in human T lymphocytes. J Exp Med. 1995;181:71-77. 



 
  
 

193 

139. Ju ST, Panka DJ, Cui H, et al. Fas(CD95)/FasL interactions required for 
programmed cell death after T-cell activation. Nature. 1995;373:444-448. 
140. Brunner T, Mogil RJ, LaFace D, et al. Cell-autonomous Fas (CD95)/Fas-ligand 
interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 
1995;373:441-444. 
141. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J. From specific gene 
regulation to genomic networks: a global analysis of transcriptional regulation in 
Escherichia coli. Bioessays. 1998;20:433-440. 
142. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 
2007;8:450-461. 
143. Savageau MA. Comparison of classical and autogenous systems of regulation in 
inducible operons. Nature. 1974;252:546-549. 
144. Rosenfeld N, Elowitz MB, Alon U. Negative autoregulation speeds the response 
times of transcription networks. J Mol Biol. 2002;323:785-793. 
145. Ramsdell F, Seaman MS, Miller RE, Tough TW, Alderson MR, Lynch DH. 
gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol. 
1994;24:928-933. 
146. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-
deficient mice to endotoxin. Immunity. 1999;11:115-122. 
147. Nguyen T, Russell J. The regulation of FasL expression during activation-induced 
cell death (AICD). Immunology. 2001;103:426-434. 
148. David Bessman J. Reticulocytes. In: Kenneth Walker H, Dallas Hall W, Willis 
Hurst J, eds. Clinical Methods: The History, Physical and Laboratory Examinations (ed 
3). Boston: Butterworths; 1990:735-738. 
149. Bader-Meunier B, Rieux-Laucat F, Croisille L, et al. Dyserythropoiesis associated 
with a fas-deficient condition in childhood. Br J Haematol. 2000;108:300-304. 
150. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. 
RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68:869-877. 
151. Russell ES, Bernstein SE. Blood and Blood Formation. In: Green EL, ed. Biology 
of the Laboratory Mouse. New York: McGraw-Hill Book Company; 1966:351-372. 
152. Stamatoyannopoulos G, Veith R, Galanello R, Papayannopoulou T. Hb F 
production in stressed erythropoiesis: observations and kinetic models. Ann N Y Acad 
Sci. 1985;445:188-197. 
153. Seno S, Miyahara M, Asakura H, Ochi O, Matsuoka K, Toyama T. Macrocytosis 
Resulting from Early Denucleation of Erythroid Precursors. Blood. 1964;24:582-593. 
154. Borsook H, Lingrel JB, Scaro JL, Millette RL. Synthesis of haemoglobin in 
relation to the maturation of erythroid cells. Nature. 1962;196:347-350. 
155. Guihard S, Clay D, Cocault L, et al. The MAPK ERK1 is a negative regulator of 
the adult steady-state splenic erythropoiesis. Blood. 2010;115:3686-3694. 
156. Schneider E, Moreau G, Arnould A, et al. Increased fetal and extramedullary 
hematopoiesis in Fas-deficient C57BL/6-lpr/lpr mice. Blood. 1999;94:2613-2621. 
157. McAdams HH, Arkin A. It's a noisy business! Genetic regulation at the 
nanomolar scale. Trends Genet. 1999;15:65-69. 



 
  
 

194 

158. Stelling J, Sauer U, Szallasi Z, Doyle FJ, 3rd, Doyle J. Robustness of cellular 
functions. Cell. 2004;118:675-685. 
159. Bratsun D, Volfson D, Tsimring LS, Hasty J. Delay-induced stochastic 
oscillations in gene regulation. Proc Natl Acad Sci U S A. 2005;102:14593-14598. 
160. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. 
Nature. 2000;405:590-593. 
161. Camas FM, Blazquez J, Poyatos JF. Autogenous and nonautogenous control of 
response in a genetic network. Proc Natl Acad Sci U S A. 2006;103:12718-12723. 
162. Erslev AJ, Caro J. Erythropoietin titers in response to anemia or hypoxia. Blood 
Cells. 1987;13:207-216. 
163. Lodish HF, Ghaffari S, Socolovsky M, Tong W, Zhang J. Intracellular signaling 
by the erythropoietin receptor. In: Elliott SG, Foote M, Molineux G, eds. Erythropoietins, 
Erythropoietic Factors, and Erythropoiesis: Molecular, Cellular, Preclinical, and Clinical 
Biology (ed 2nd). Basel: Birkhäuser; 2009:155-174. 
164. Peslak SA, Wenger J, Bemis JC, et al. Sublethal radiation injury uncovers a 
functional transition during erythroid maturation. Exp Hematol;39:434-445. 
165. Wagner KU, Claudio E, Rucker EB, 3rd, et al. Conditional deletion of the Bcl-x 
gene from erythroid cells results in hemolytic anemia and profound splenomegaly. 
Development. 2000;127:4949-4958. 
166. Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T. bcl-x prevents 
apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. 
J Exp Med. 1999;189:1691-1698. 
167. Teglund S, McKay C, Schuetz E, et al. Stat5a and Stat5b proteins have essential 
and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841-850. 
168. Garcon L, Rivat C, James C, et al. Constitutive activation of STAT5 and Bcl-xL 
overexpression can induce endogenous erythroid colony formation in human primary 
cells. Blood. 2006;108:1551-1554. 
169. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL. Expression 
of Bcl-x in erythroid precursors from patients with polycythemia vera [see comments]. N 
Engl J Med. 1998;338:564-571. 
170. Green DR. Life, death, BH3 profiles, and the salmon mousse. Cancer Cell. 
2007;12:97-99. 
171. Kuribara R, Honda H, Matsui H, et al. Roles of Bim in apoptosis of normal and 
Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol. 2004;24:6172-6183. 
172. Shinjyo T, Kuribara R, Inukai T, et al. Downregulation of Bim, a proapoptotic 
relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine 
hematopoietic progenitors. Mol Cell Biol. 2001;21:854-864. 
173. Pugh LG. Blood Volume and Haemoglobin Concentration at Altitudes above 
18,000 Ft. (5500 M). J Physiol. 1964;170:344-354. 
174. Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O. A mouse model for 
beta 0-thalassemia. Proc Natl Acad Sci U S A. 1995;92:11608-11612. 
175. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics 
of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003;15:221-231. 



 
  
 

195 

176. Yi TM, Huang Y, Simon MI, Doyle J. Robust perfect adaptation in bacterial 
chemotaxis through integral feedback control. Proc Natl Acad Sci U S A. 2000;97:4649-
4653. 
177. Kuhara A, Inada H, Katsura I, Mori I. Negative regulation and gain control of 
sensory neurons by the C. elegans calcineurin TAX-6. Neuron. 2002;33:751-763. 
178. Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 
2004;279:821-824. 
179. Klingmuller U, Bergelson S, Hsiao JG, Lodish HF. Multiple tyrosine residues in 
the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc 
Natl Acad Sci U S A. 1996;93:8324-8328. 
180. Hsieh PP, Olsen RJ, O'Malley DP, et al. The role of Janus Kinase 2 V617F 
mutation in extramedullary hematopoiesis of the spleen in neoplastic myeloid disorders. 
Mod Pathol. 2007;20:929-935. 
181. Diaz T, Navarro A, Ferrer G, et al. Lestaurtinib inhibition of the Jak/STAT 
signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis. 
PLoS One;6:e18856. 
182. Capello D, Deambrogi C, Rossi D, et al. Epigenetic inactivation of suppressors of 
cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J 
Haematol. 2008;141:504-511. 
183. Fernandez-Mercado M, Cebrian V, Euba B, et al. Methylation status of SOCS1 
and SOCS3 in BCR-ABL negative and JAK2V617F negative chronic myeloproliferative 
neoplasms. Leuk Res. 2008;32:1638-1640. 
184. Krutzik PO, Hale MB, Nolan GP. Characterization of the murine immunological 
signaling network with phosphospecific flow cytometry. J Immunol. 2005;175:2366-
2373. 
185. Yu X, Kong Y, Dore LC, et al. An erythroid chaperone that facilitates folding of 
alpha-globin subunits for hemoglobin synthesis. J Clin Invest. 2007;117:1856-1865. 
186. Chen ML, Logan TD, Hochberg ML, et al. Erythroid dysplasia, megaloblastic 
anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood. 
2009;114:4045-4053. 
187. Haurie C, Dale DC, Mackey MC. Cyclical neutropenia and other periodic 
hematological disorders: a review of mechanisms and mathematical models. Blood. 
1998;92:2629-2640. 
188. Coleman DL, Russell ES, Levin EY. Enzymatic studies of the hemopoietic defect 
in flexed mice. Genetics. 1969;61:631-642. 
189. Sawyer ST, Koury MJ, Bondurant MC. Large-scale procurement of 
erythropoietin-responsive erythroid cells: assay for biological activity of erythropoietin. 
Methods Enzymol. 1987;147:340-352. 
190. Terszowski G, Waskow C, Conradt P, et al. Prospective isolation and global gene 
expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood. 
2005;105:1937-1945. 
191. Pronk CJ, Rossi DJ, Mansson R, et al. Elucidation of the phenotypic, functional, 
and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 
2007;1:428-442. 



 
  
 

196 

192. Battle TE, Frank DA. The role of STATs in apoptosis. Curr Mol Med. 
2002;2:381-392. 
193. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by 
phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857-868. 
194. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R. Cytokines and BCR-
ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead 
FOXO3a transcription factor. Proc Natl Acad Sci U S A. 2003;100:6523-6528. 
195. Cascino I, Papoff G, Eramo A, Ruberti G. Soluble Fas/Apo-1 splicing variants 
and apoptosis. Front Biosci. 1996;1:d12-18. 
196. Tanaka M, Itai T, Adachi M, Nagata S. Downregulation of Fas ligand by 
shedding. Nat Med. 1998;4:31-36. 
197. Secchiero P, Melloni E, Heikinheimo M, et al. TRAIL regulates normal erythroid 
maturation through an ERK-dependent pathway. Blood. 2004;103:517-522. 
 
 


	Dynamics of Erythropoietic Survival Pathways In Vivo: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page
	Signature Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	Attributions and Copyright Information for Chapter I
	Chapter I: Introduction
	Attributions and Copyright Information for Chapter II
	Chapter II: Materials and Methods
	Attributions and Copyright Information for Chapter III
	Chapter III: Negative Autoregulation by Fas Stabilizes Adult Erythropoiesis and Accelerates Its Stress Response
	Attributions and Copyright Information for Chapter IV
	Chapter IV: Contrasting Dynamic Responses In Vivo of the Bcl-XL and Bim Erythropoietic Survival Pathways
	Attributions and Copyright Information for Chapter V
	Chapter V: Identification and Analysis of Mouse Erythroid Progenitors Using the CD71/Ter119 Flow-Cytometric Assay
	Attributions and Copyright Information for Chapter VI 
	Chapter VI: Discussion and Future Directions 
	References

