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ABSTRACT 

The minimal element of the nervous system, the synapse, is a plastic 

structure that has the ability to change in response to various internal and 

external factors. This property of the synapse underlies complex behaviors such 

as learning and memory. However, the exact molecular and cellular mechanisms 

involved in this process are not fully understood. To understand the mechanisms 

that regulate synapse development and plasticity I took advantage of a powerful 

model system, the Drosophila larval neuromuscular junction (NMJ). In this 

system, both anterograde and retrograde signaling pathways critical for 

coordinated synapse development and plasticity have been documented.  

An anterograde WNT/Wingless (Wg) signaling pathway plays a crucial 

role in both developmental and activity-dependent synaptic plasticity at the NMJ. 

Presynaptic motor neuron terminals secrete highly hydrophobic Wg, which 

travels to relatively distant postsynaptic sites where it activates a signal 

transduction pathway required for postsynaptic development. In the first half of 

my thesis I unraveled a previously unrecognized cellular mechanism by which 

Wg is shuttled to postsynaptic sites. In this mechanism Wg rides on secreted 

microvesicles or exosomes that contain a dedicated WNT secretion factor, the 

WNT-binding transmembrane protein, Evenness Interrupted/Wntless/Sprinter 

(Evi/Wls/Srt). To our knowledge, this was the first in vivo study demonstrating 

that neurons release exosomes, which are involved in trans-synaptic 

communication. Moreover, this was the first study showing that hydrophobic 
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WNT signals are transported to the extracellular space on exosomes to reach 

WNT-receptor containing target cells.  

Retrograde signals are also critical during development and plasticity of 

synaptic connections. These signals function to adjust the activity of presynaptic 

cells according to postsynaptic cell outputs, to maintain synaptic function within a 

dynamic range. However, the mechanisms that trigger the release of retrograde 

signals and the role of presynaptic cells in this signaling event are not clear. In 

the second half of my thesis, I provided evidence that a crucial component of 

retrograde signaling at the fly NMJ, Synaptotagmin-4 (Syt4), is transmitted to the 

postsynaptic cell through anterograde delivery of Syt4 via exosomes. Drosophila 

Syt4 is known to reside on postsynaptic vesicles at the NMJ and function as a 

calcium sensor to release a retrograde signal upon synaptic activity. This event is 

required for coordinated maturation of the presynaptic terminal. We 

demonstrated that retrograde Syt4 function in postsynaptic muscle is required for 

activity-dependent presynaptic growth. However, surprisingly, Syt4 protein was 

not synthesized in postsynaptic muscles. Instead, Syt4 was produced in 

motorneurons and transferred to postsynaptic muscle cells via exosome 

secretion by presynaptic cells. The above study provided evidence for a 

presynaptic control of postsynaptic retrograde signaling through exosomal 

transfer of an essential retrograde signaling component. 

In summary, this body of work reveals a novel mechanism of trans-

synaptic communication through exosomes. While intercellular communication 

through exosomes had been demonstrated during antigen presentation in the 
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immune system, our studies were the first to substantiate this mode of 

communication in the nervous system. Thus, these studies provide a significantly 

deeper and novel understanding of the mechanisms underlying synapse 

development and plasticity.  
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Part of the following chapter is reprinted from a Nature Reviews in Neuroscience 

review (Korkut, C. and Budnik, V. (2009). WNTs tune up the neuromuscular 

junction. Nat Rev Neurosci. 10(9): 627-634.) 
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Neural circuits in the nervous system consist of highly specific neuronal 

connections, which are the basis for sensory, motor and cognitive abilities. The 

single unit of this complex network is the synapse, where communication 

between a neuron and its target cell takes place. Both simple and complex 

behaviors such as learning and memory depend on the ability of synapses within 

relevant circuits to change structurally and functionally upon various internal and 

external factors. This phenomenon is called synaptic plasticity. This flexibility of 

synaptic connections is pivotal for the adaptation of an organism to a changing 

environment. Although the term ‘’plasticity’’ in neuroscience was coined over a 

century ago, the exact underlying molecular and cellular mechanisms are still a 

matter of intense investigation. 

 William James in his Principles of Psychology was the first to link brain 

plasticity to behavior in 1890 (James, 1890).  However, the pioneering 

neuroscientist, Ramon y Cajal established the first real conceptual foundation for 

neural plasticity and its association with learning (Berlucchi and Buchtel, 2009). 

Cajal proposed that the nervous system was composed of individual neurons that 

are separated by specialized tiny spaces. This hypothesis became to known as 

the ‘’Neuron Doctrine’’ (Cajal, 1906; De Felipe, 2002). Cajal also showed that 

regenerative plasticity took place in central nervous system (CNS) neurons by 

demonstrating the ability of these neurons to grow new axons after injury. Prior to 

this, regenerative plasticity had only been described in peripheral nervous 

system (PNS) neurons (De Felipe, 2002). The findings of the ‘’father of modern 

neuroscience’’ led neuroscientists to investigate synaptic plasticity as well as the 
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mechanisms underlying this phenomenon further.  

 Several decades later, in 1949, the first attempt to explain the biological 

mechanisms underlying synaptic plasticity came fro m Donald Hebb, who 

postulated that “when axon of cell A is near enough to excite a cell B and 

repeatedly and persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A’s efficiency as one 

of the cells firing B is increased” (Hebb, 1949). The firing of two neurons not only 

increases the strength of their synapses but also results in morphological 

changes at the synapses. The Hebbian rule ‘’neurons that fire together wire 

together’’ (Brown and Milner, 2003; Hebb, 1949) has been a foundation for 

understanding the formation of neural networks and how these networks control 

behavior.  

 Bliss and Lomo presented supporting evidence to the Hebbian theory with 

the discovery of the phenomenon of Long Term Potentiation (LTP) in 1973 (Bliss 

and Lomo, 1973). Briefly, upon high frequency stimulation of presynaptic 

neurons, a dramatic increase in the excitatory postsynaptic potential as well as a 

decrease in the threshold to fire an action potential takes place and these 

changes last from a few hours to days, depending on the stimulation paradigm 

used. The phenomenon of LTP is thought to be the cellular model for synapse 

strengthening and memory formation. In addition to functional changes such as 

alterations in presynaptic neurotransmitter release and postsynaptic receptor 

clustering, LTP also induces structural changes at the synapse including an 

increase in both postsynaptic spine size and number (Lang et al., 2004; 
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Leenders and Sheng, 2005). A specific type of glutamate receptors, known as N-

Methyl-D-Aspartate (NMDA) receptor has been demonstrated to be required for 

LTP and therefore critical for synaptic plasticity (Collingridge et al., 1983). These 

postsynaptic NMDA receptors function as ‘’coincidence detectors’’ that couple 

two simultaneous events: (1) the release of glutamate by the presynaptic cell; (2) 

the depolarization of the postsynaptic cell membrane induced by glutamate 

gating of a second class of glutamate receptor, AMPA receptors. This event 

serves to relieve a Mg++ block of NMDA receptors at resting potentials (Bourne 

and Nicoll, 1993). Opening of NMDA receptors allow calcium influx into the 

postsynaptic cell. Subsequently, the increased intracellular calcium concentration 

triggers signal transduction pathways such as the activation of 

Calcium/Calmodulin Kinase II (CaMKII) and cyclic adenosine monophosphate 

(cAMP) pathways. These pathways then lead to both short-term changes, 

including local receptor phosphorylation, and long-term changes through 

regulation of gene transcription and new protein synthesis (Alberini et al., 1995; 

Lynch et al., 1983; Malenka et al., 1988). One piece of evidence for the 

association between memory formation and LTP was demonstrated in a study 

where blocking NMDA receptors in rodents inhibited spatial memory formation 

(Morris et al., 1986). However, it is clear that LTP is not the entire story, as other 

forms of memory are not affected by defective LTP (Lynch, 2004). 

 In contrast to synaptic strengthening by LTP, synaptic depression is 

thought to occur through a phenomenon called Long Term Depression (LTD), 

which results from low frequency stimulation for long periods (Ito and Kano, 
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1982). Consequently, the postsynaptic cell generates a decreased response and 

spine size and number are reduced. LTP and LTD have been studied profoundly 

in mammalian models, such as hippocampal slices. However, simpler model 

organisms provide the ability to study mechanisms underlying synaptic plasticity 

in the context of intact organisms.  

 The sea slug Aplysia californica has been an excellent model organism to 

study long-term plasticity. Using the simple ‘’gill and siphon withdrawal reflex’’ of 

Aplysia as a behavioral output, important synaptic processes like sensitization, 

facilitation and habituation have been characterized (Pittenger and Kandel, 

2003). In addition to Aplysia, the fruit fly Drosophila melanogaster has been an 

invaluable model to study long-term behavioral plasticity using mushroom body 

neurons, which are implicated in olfactory memory, as a model system (De Belle 

and Heisenberg, 1994; Heisenberg et al., 1985). Although combined with the 

powerful genetic approaches possible in flies this has been a highly successful 

model, a fine analysis of structural changes at the level of single synapses has 

been more difficult, due to their small size. 

In my thesis research, I used the Drosophila larval neuromuscular junction 

(NMJ), a prime model to understand the molecular and cellular mechanisms of 

synaptic plasticity at identified synapses. 
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The Drosophila Larval Neuromuscular Junction: A model to study synapse 

development, plasticity and function 

The fruit fly Drosophila melanogaster larval neuromuscular junction (NMJ) 

is a powerful in vivo model system to study a wide number of neuroscientific 

processes relevant to synapse biology, such as neurotransmitter release, ion 

channel function, synapse physiology, axon pathfinding and molecular 

mechanisms of synapse formation, development and plasticity (Ruiz-Canada and 

Budnik, 2006). The highly conserved mechanisms and molecules involved in 

these neurobiological processes across species makes the findings using this 

model highly relevant for all organisms. 

 In addition to the advantages of using Drosophila, such as its short life 

cycle and the availability of powerful genetic tools, the easy accessibility of the 

large NMJ synapses has made it a popular system. The NMJ model provides the 

ability to study synapses at single cell resolution, which is quite challenging to 

achieve within brain tissue. Individual motorneurons innervate postsynaptic 

muscle cells in a very stereotypic fashion, which allows researchers to observe 

and compare differences in the same synapse of multiple animals. This is in 

contrast to central synapses in the brain, where billions of synaptic connections 

are formed. Moreover, the cuticle of fruit fly larva is both transparent and thin; 

therefore, synaptic proteins can be easily visualized both as live and fixed 

preparations using microscopy techniques. Live imaging of fluorophore tagged 

molecules through the cuticle of intact larvae allows for observing changes over a 

significant time span during larval development (Koon and Budnik, 2012; Parnas 
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et al., 2001; Zito et al., 1999). 

Another reason why the Drosophila larval NMJ has been used extensively 

is the numerous similarities between excitatory synapses of the vertebrate 

central nervous system and the fly NMJ. First, both synapses are mainly 

glutamatergic, meaning that they use glutamate as the main neurotransmitter 

(Jan and Jan, 1976a). Secondly, similar to central synapses of vertebrates, the 

larval NMJ is highly plastic. During the 4 days of larval development muscle cells 

increase nearly 100-fold in size and motorneuron terminals undergo rapid and 

continuous growth to maintain muscle control (Gorczyca et al., 1993; Keshishian 

et al., 1993; Schuster et al., 1996) (Fig 1.1). This form of developmental plasticity 

has allowed researchers to study genetic mechanisms underlying synaptic 

plasticity, such as activity-dependent synaptic bouton growth (Budnik et al., 1990; 

Zhong et al., 1992). Other forms of acute and experience dependent plasticity 

are also observed in this system (Ataman et al., 2008; Koon et al., 2011). 

Moreover, many of the synaptic proteins and molecular mechanisms are 

conserved between synapses of the Drosophila NMJ and vertebrate central 

synapses. For instance, the Drosophila homolog of vertebrate scaffolding protein 

PSD-95 (Postsynaptic Density-95/Discs-Large/Zona Occludens) is DLG (Discs-

Large) and both proteins function to cluster cell adhesion molecules and ion 

channels at synaptic sites (Kim et al., 1995; Tejedor et al., 1997; Thomas et al., 

1997; Zito et al., 1997). 

 As mentioned above, Drosophila melanogaster has a short life cycle, 

where a fertilized egg takes roughly 10 days to develop into an adult. Embryonic 
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development is completed in about a day at room temperature, resulting larval 

hatching. Next is the larval stage (L1, L2, L3), which takes about 4 days and the 

worm-like larva extensively feeds and grows in size. This rapid development of 

the fruit fly allows researchers to obtain results in a short period of time. In 

Drosophila, sophisticated genetic manipulation, such as generating mutants, 

designing RNAi or transgenic constructs is easily done (Fjose et al., 2001). 

Moreover, a wide variety of genetic tools including multiple collections of 

Drosophila mutants, chromosomal deficiencies, genetic markers, and transgenic 

RNAi lines spanning the whole genome are readily available to researchers 

(Grumbling G, 2006). Furthermore, using the GAL4/UAS (Brand and Perrimon, 

1993), the LexA/lexAop (Lai and Lee, 2006), the GAL80 (McGuire et al., 2004), 

and the Q system (Potter et al., 2010) , one can either express or knock down 

genes of interest in a tissue-specific pattern with temporal control. These 

systems allow bypassing early developmental stages, rescuing mutant 

phenotypes as well as determining the cell types and developmental stages at 

which the protein of interest functions. Genome sequencing of Drosophila as well 

as decades of studies on fruit fly genes have shown a high degree of 

conservation between fly and mammalian genes; therefore studying mammalian 

gene homologs in Drosophila provides insight in potential function of genes in 

mammals. The genome of Drosophila melanogaster is simpler than mammalian 

genomes, where genetic redundancy is a common issue. While there are 

multiple isoforms of most genes in mammals, Drosophila has the advantage of 

having a single isoform in most cases. This makes the fruit fly a powerful model 
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organism to study gene function in vivo. Relatively recently, Drosophila has been 

used as a disease model, as many human disease genes have homologs in the 

fruit fly and the disruption of these genes often mimics the phenotypes observed 

in patients.  Specifically, the larval NMJ is becoming a popular model to study the 

pathogenesis of neurodegenerative and neuromuscular diseases such as 

muscular atrophy, myotonic dystrophy and Amyotrophic lateral sclerosis (ALS) 

(Lloyd and Taylor, 2010).  

 
 General anatomy of the Drosophila larval NMJ 
 
 The Drosophila larva consists of 30 skeletal, supercontractile body wall 

muscles per abdominal hemisegment from A1 to A7 (Figure 1.1). These muscles 

are easily identifiable upon dissection of the animal and are aligned in a highly 

stereotypic fashion (Figure 1.1). Each hemisegment of the body wall muscles is 

innervated by approximately 36 motorneurons, whose cell bodies are found in 

the ventral ganglion and whose axons project to the muscles through the 

segmental nerves (Figure 1.2A) (Landgraf et al., 1997; Landgraf and Thor, 2006). 

At the larval stage, motor neuron terminals form varicosities, which are called 

synaptic boutons. These boutons are separated by neurites and form branched 

arbors, which appear as the classic ‘‘beads on a string’’ (Figure 1.2 B and C and 

1.3C) (Prokop, 2006). Depending on their size, shape, neurotransmitter content, 

postsynaptic specializations and electrophysiological properties, synaptic 

boutons are divided into three types; type I, which is further classified into type 1b 

(big) and type 1s (small), type II and type III (Anderson et al., 1988; Atwood et al., 

1993; Gorczyca et al., 1993; Jia et al., 1993; Johansen et al., 1989; Monastirioti 
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et al., 1995). Type I bouton innervations are found in all muscles in roughly one 

motorneuron to one muscle ratio and these boutons release glutamate, the 

primary excitatory neurotransmitter at the larval NMJ. Moreover, larval 

locomotion depends mainly on type I boutons, as they are the main source of 

stimulus input for muscle contraction (Prokop, 2006). The other types of boutons, 

type II and type III, are thought to be modulatory. In addition to glutamate, type II 

synapses contain the biogenic amine octopamine (Monastirioti et al., 1995) and 

type III synapses contain a variety of neuropeptides (Cantera and Nassel, 1992; 

Gorczyca et al., 1993). In my studies, I used the best-studied type I synapses on 

muscles 6-7 of segment A3, as they show a highly stereotypic innervation, 

morphology and synapse number. 

 At the ultrastructural level, a typical type Ib synaptic bouton contains 

mitochondria, endosomes and a significant number of neurotransmitter vesicles 

of 30-40 nm. Many of these vesicles cluster at specialized domains of 

presynaptic membrane, called active zones (Figure 1.3A and B). These active 

zones are the neurotransmitter release sites and they appear as T-bar shaped 

electron dense (presumably due to high protein content) structures using electron 

microscopy (Figure 1.3B) (Atwood et al., 1993; Jia et al., 1993). The readily 

releasable synaptic vesicles containing glutamate are located on these T-bars at 

the active zone. At synapses the presynaptic membrane is tightly apposed to the 

postsynaptic membrane being separated by a synaptic cleft 15-20nm wide 

(Figure 1.3B) (Jia et al., 1993). Active zones are directly apposed to high-density 

glutamate receptor (GluR) clusters, which give an electron dense appearance to 
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this postsynaptic membrane. However, this postsynaptic density (PSD) is not as 

prominent as the PSDs established by central neurons. In addition to PSDs, the 

muscle membrane surrounding the synaptic boutons forms a specialized muscle 

membrane that surrounds individual synaptic boutons forming convoluted 

invaginations and becoming structured as multiple layers. This complex 

postsynaptic structure is called the subsynaptic reticulum (SSR) (Figure 1.3A). 

The SSR membrane folds increase the surface of the postsynaptic muscle 

membrane region. Although glutamate receptors (GluR) are just localized on the 

postsynaptic membrane directly apposed to the active zones (Ataman et al., 

2006b), many molecules such as K+ channels, cell adhesion proteins, signal 

receptors and scaffolding proteins are localized throughout the membrane layers 

of the SSR (Ataman et al., 2006b). Nevertheless, the exact physiological function 

of SSR is not clear.  

 
Anterograde and Retrograde Signaling at the Drosophila Neuromuscular 

Junction 

Synapse formation, development and function depend on effective 

communication between presynaptic and postsynaptic cells. Both developmental 

and activity-dependent plasticity of synapses require bi-directional signaling that 

allows for coordinated development of synaptic structures and functioning of the 

pre- and postsynapse. One direction of communication is anterograde signaling, 

which allows the presynaptic cell to signal to the postsynaptic cell through 

synaptic transmission, the secretion of signaling molecules, and cell adhesion 

proteins (Packard et al., 2003). Another form of communication at synapses is 
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called retrograde signaling, in which the target postsynaptic cell influences the 

presynaptic neuron (Keshishian and Kim, 2004). Both anterograde and 

retrograde trans-synaptic signals activate signal transduction pathways at the 

Drosophila larval NMJ (Packard et al., 2003). WNT/Wingless signaling is the 

primary anterograde pathway involved in synapse development and plasticity at 

the fly NMJ (see next section for details), although this pathway has also some 

influence on retrograde signaling (Korkut and Budnik, 2009; Speese and Budnik, 

2007). On the other hand, retrograde signaling is mediated mainly by TGF-β 

(Transforming Growth Factor- β) signaling. The ligand Glass bottom boat (Gbb) 

is secreted from the postsynaptic muscles and binds to its TGF-β/BMP (Bone 

Morphogenetic Protein) type II receptor, Wishful Thinking (Wit), and type I 

receptor, Thickveins (Tkv) or Saxophone (Sax) on the presynaptic cell membrane 

(Marques, 2005). Binding of Gbb to its receptors on the motorneuron membrane 

activates either a LIM Kinase-1 to stabilize synapses (Eaton and Davis, 2005) or 

a canonical BMP pathway. In this canonical pathway, activation of the receptors 

leads to the phosphorylation of a Smad, the transcription factor Mothers against 

decapentaplegic (Mad). Phosphorylated Mad associates with the co-Smad 

Medea and this complex is translocated into the motorneuron nucleus to regulate 

transcription (Marques, 2005). TGF-β signaling in motorneurons is crucial for 

expansion of the NMJ and disruption of this retrograde pathway results in 

decreased NMJ growth and reduced neurotransmission (Keshishian and Kim, 

2004). A putative E3 ubiquitin ligase, Highwire, has been shown to be a negative 

regulator of the BMP pathway through its binding to Medea (McCabe et al., 
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2004). In addition, Highwire also functions to regulate a MAP kinase kinase 

kinase (MAPKKK) homolog, Wallenda, suggesting that the MAPK pathway plays 

a role in NMJ growth and branching (Collins CA, 2006). 

Relatively recently, a member of the Synaptotagmin family, 

Synaptotagmin-4 (Syt4), has been shown to mediate retrograde signaling at the 

Drosophila embryonic neuromuscular junction (Yoshihara et al., 2005). Syt4 

functions in postsynaptic muscle cells and acts as a calcium sensor on 

postsynaptic vesicles to release an unknown trans-synaptic retrograde signal 

upon high frequency stimulation of the presynaptic cell (Yoshihara et al., 2005). 

This retrograde signaling has been suggested to activate a cyclic adenosine 

monophosphate (cAMP)-dependent protein kinase pathway in the presynapse, 

which stimulates presynaptic growth (Yoshihara et al., 2005). In addition to 

embryonic neuromuscular junctions, it has been suggested that Syt4 also 

localizes to postsynaptic vesicles and regulates retrograde signaling at the larval 

NMJ (Barber et al., 2009). 

 

The WNT Signaling Pathway 

Since this doctoral dissertation revolves around WNT signaling, this 

signaling mechanism is described in more detail below. WNT signaling has 

crucial functions in a variety of developmental processes and adult tissue 

homeostasis in all metazoan organisms studied to date. The cellular events 

controlled by WNTs range from cell proliferation, cell fate decisions and stem cell 

maintenance to providing positional information to cells for tissue polarity 
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(Siegfried and Perrimon, 1994). WNT family proteins are highly conserved 

secreted lipid-modified glycoproteins, that can act as morphogens (Mikels and 

Nusse, 2006). The name “WNT” is an amalgram of Drosophila Wingless, which 

was identified as a segment polarity gene and mouse Int-1, which was identified 

as a proto-oncogene (Nusse and Varmus, 1982; Rijsewijk, 1987). Abnormal 

WNT signaling results in a number of diseases including cancer and 

degenerative diseases in humans (Logan and Nusse, 2004). 

In the nervous system, misregulation of the WNT pathway is linked to 

conditions such as Alzheimer’s disease, Huntington’s disease, schizophrenia and 

bipolar disorder (Caricasole et al., 2005; De Ferrari and Inestrosa, 2000; Gould 

and Manji, 2002; Inestrosa et al., 2002; Johnson and Rajamannan, 2006), which 

suggests that members of this family have a role in postmitotic neurons. Indeed, 

studies of the nervous system have uncovered roles for WNTs in axon 

pathfinding, dendritic development, synaptogenesis, synapse maturation and 

plasticity (Salinas and Zou, 2008; Speese and Budnik, 2007). Particularly 

intriguing are a series of recent studies that implicate WNTs in the development 

of NMJs across species ranging from worms to mammals (Song and Balice-

Gordon, 2008; Speese and Budnik, 2007). These studies are unraveling a role 

for WNTs in neurotransmitter receptor clustering and the organization of 

presynaptic and postsynaptic specializations.  

The WNT family is composed of multiple family members, including 5 in 

worms, 7 in flies, 15 in zebrafish, and 19 in mice and humans. Adding to this 

diversity is the presence of a myriad of typical WNT receptors, known as Frizzled 
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receptors, which include 3 in worms, 5 in flies, 12 in fish and 11 in mammals, as 

well as nonconventional receptors such as Derailed (DRL) — a member of the 

RYK (related toreceptor tyrosine kinase) subfamily of receptor tyrosine kinases 

and ROR2 (receptor tyrosine kinase-like orphan receptor 2). This complexity of 

WNT signaling is further heightened by the activation of at least five different 

WNT transduction pathways, which trigger various cellular processes (Speese 

and Budnik, 2007; Widelitz, 2005) (Figure 1.4). 

Canonical WNT signaling is the best-characterized pathway, in which 

WNT binding to Frizzled receptors activates the scaffolding protein Dishevelled 

(DVL), which disassembles a so-called ‘destruction complex’ formed by glycogen 

synthase kinase 3β (GSK3β), Axin and adenomatous polyposis coli (APC) — a 

complex that normally leads to the degradation of β-catenin (Figure 1.4.A). WNT 

binding to Frizzled disrupts the destruction complex, and this results in 

cytoplasmic stabilization of β-catenin and its import into the nucleus, where it 

regulates gene expression through association with lymphoid enhancer factor/T 

cell factor (LEF/TCF) transcription factors (Wodarz and Nusse, 1998). In this 

pathway, Frizzled collaborates with a co-receptor, LRP5/6 of the low-density 

lipoprotein receptor related protein (LRP) family. This pathway is antagonized by 

the secreted protein Dickkopf1 (DKK1) and secreted Frizzled related proteins 

(SFRPs) (van Amerongen and Nusse, 2009).  

In WNT divergent canonical pathway, DVL binds to microtubules and 

regulates GSK3β-dependent phosphorylation of microtubule- associated proteins 

(MAPs), such as MAP1B, Tau, MAP2 (Ciani et al., 2004; Lucas et al., 1998), and 
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the related Drosophila protein Futsch (Gogel et al., 2006) (Figure 1.4.B). 

Inhibition of GSK3β upon activation of the WNT divergent canonical pathway, 

thus enhances microtubule stability. 

WNT planar cell polarity pathway involves activation of DVL, which turns 

on the small GTPases RHOA or RAC1 and the JUN N-terminal kinase (JNK) to 

regulate actin and microtubule cytoskeletons (van Amerongen and Nusse, 2009) 

(Figure 1.4.C).  

WNT calcium pathway is a fourth signaling pathway, in which DVL 

activation induces an elevation in the levels of intracellular Ca ++ and activation of 

protein kinase C (PKC) and calcium/ calmodulin-dependent protein kinase II 

(CaMKII) (Figure 1.4.D). This results in the nuclear import of the transcription 

factor nuclear-factor of activated T cells (NFAT), which regulates gene 

expression (Li et al., 2005).  

Frizzled nuclear import (FNI) pathway is an alternative transduction 

pathway, in which WNT receptors themselves are internalized, cleaved and 

imported into the nucleus (Speese and Budnik, 2007) (Zhong, 2008) (Figure 

1.4.E). Trafficking of the DFrizzled-2 (DFz2) receptor towards the nucleus 

depends on its binding partner GRIP (7-PDZ-domain glutamate-receptor binding 

protein). This mechanism has been substantiated at the Drosophila NMJ 

(Mathew et al., 2005), as well as during the development of cortical neurons in 

mammals (Lyu et al., 2008). 

The first hint that WNTs function in synapse development emerged from 

studies of the developing cerebellum, which suggested that WNT7a operated in a 
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retrograde manner to enhance presynaptic differentiation (Salinas and Zou, 

2008) (Lucas and Salinas, 1997). A similar retrograde role for WNT3, involving 

the divergent canonical pathway was also demonstrated in sensory neurons and 

motor neurons (Krylova et al., 2002). WNT7b has also been involved in dendrite 

development in the hippocampus, probably through the activation of canonical 

and non-canonical WNT pathways (Salinas and Zou, 2008) (Rosso et al., 2005). 

Recent studies have extended WNT function to the development of the NMJ in 

both vertebrate and invertebrate organisms. 

Although WNTs have been long thought of as regulators of cell fate, they 

are also involved in crucial aspects of synaptic development in the nervous 

system. Particularly compelling are studies of the neuromuscular junction in 

nematodes, insects, fish and mammals. These studies place WNTs as major 

determinants of synapse differentiation and neurotransmitter receptor clustering.  

 

WNT Signaling at the Drosophila Neuromuscular Junction 

The role of WNTs in invertebrate synapses was recognized by the finding that 

Wingless (Wg, also known as WNT-1) and its receptor DFz-2 were present at the 

Drosophila larval NMJ (Packard et al., 2002). Through the use of a temperature 

sensitive wg mutant (wgts), which allowed for a temporal block of Wg secretion, 

thus bypassing early roles of Wg in embryogenesis, as well as various molecular 

manipulations, it was shown that Wg was released by presynaptic boutons, but 

probably not by muscles. Blocking Wg release during larval growth, led to a 

decrease in synaptic bouton number and to changes in bouton morphology, that 
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were rescued by restoring Wg in the motor neurons (Packard et al., 2002). By 

contrast, increasing the levels of Wg in motor neurons led to synaptic bouton 

overgrowth. In wgts mutants, presynaptic boutons had abnormal postsynaptic 

Discs large (DLG), a PSD95 family member, and GluR localization. Most 

strikingly, a subset of boutons (‘ghost boutons’) were filled with synaptic vesicles, 

but were devoid of active zones, postsynaptic specializations and mitochondria, 

which suggests that Wg has central roles during synapse differentiation (Ataman 

et al., 2006a; Packard et al., 2002). The mutants also had disruptions in the 

presynaptic microtubule cytoskeleton, as demonstrated by examining the 

microtubule-associated protein 1b (MAP1b)-related protein Futsch, which has 

been shown to be phosphorylated by GSK3β (Gogel et al., 2006). Interfering with 

DFz2 function in the muscle alone resulted in similar synaptic growth and 

morphology defects (Packard et al., 2002), suggesting that Wg activates both 

anterograde and retrograde signaling (Figure 1.5). 

The search for the transduction cascade activated by Wg at the 

Drosophila NMJ led to the finding of a previously unrecognized alternative WNT 

pathway in larval muscles, the FNI pathway (Mathew et al., 2005) (Figures 1.4 

and  1.5), in which a fragment of the DFz2 receptor itself is cleaved and imported 

into the nucleus. The importance of DFz2 cleavage was demonstrated by dfz2 

mutant rescue experiments, which showed that although expressing a full-length 

DFz2 transgene in muscles rescued the defects in bouton number, expressing a 

transgene lacking the cleavage site did not. Notably, expressing the DFz2-C 

fragment did not bypass the requirement for Wg signaling, raising the possibility 
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that DFz2-C is modified in a Wg-dependent fashion before nuclear import 

(Mathew et al., 2005). The FNI pathway was also shown to depend on the 

Drosophila homologue of GRIP (7-PDZ-domain glutamate-receptor binding 

protein), which interacts directly with the carboxy-terminal PDZ binding sequence 

of DFz2, and which is required to traffic the receptor from the synapse to the 

nucleus (Ataman et al., 2006a) (Figure 1.5). Although in mammals GRIP also 

seems to be crucial for postsynaptic development of neurons in culture 

(Hoogenraad et al., 2005), an association between GRIP and WNT pathways 

has not been as yet established in mammals. A similar mechanism involving 

cleavage and import has been implicated in establishing communication between 

the cell surface and the nucleus by several other receptors, including Notch, 

eGFR (epidermal growth-factor receptor) and the voltage-gated calcium channel 

(Cav1.2) (Baron et al., 2002; Gomez-Ospina et al., 2006; Lin et al., 2001). 

Recently synaptic Wg signaling was also shown to underlie activity- 

dependent remodeling of the NMJ (Ataman et al., 2008). Wg secretion was 

enhanced by activity and this was correlated to rapid activity-dependent NMJ 

growth. Spaced stimulation, by potassium induced depolarization, motor nerve 

stimulation or light activation of neuronally expressed channelrhodopsin-2 

(ChR2) induced the formation of dynamic filopodia-like extensions (synaptopods) 

and ghost boutons, as well as a potentiation of spontaneous neurotransmitter 

release 2 hours after the stimulation began. This was blocked by low extracellular 

calcium and by genetic manipulations that blocked action potentials or 

neurotransmitter release. Live imaging of ghost boutons from live non-dissected 
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preparations demonstrated that they could acquire GluRs and active zones, and 

thus represent synaptic bouton intermediates. Although ghost boutons were also 

observed in non-stimulated larvae, albeit at very low frequency, the activity-

induced formation of ghost boutons required four to five cycles of spaced 

simulation and was blocked by transcriptional and translational inhibitors. This is 

akin to long-term behavioural and physiological plasticity, which also requires 

spaced training and/or stimulation and new protein synthesis (Barco et al., 2006). 

  Given that disrupting the FNI pathway leads to poor bouton proliferation 

and the formation of ghost boutons, it was speculated that this transduction 

pathway might be involved in the acute activity-dependent synaptic growth. 

Indeed, heterozygous wg mutants suppressed the activity-dependent synaptic 

growth, which was rescued by restoring Wg in motor neurons. Importantly, over-

expressing Wg in motor neurons bypassed some of the requirements for spaced 

stimulation in the formation of ghost boutons, whereas wild-type larvae required 

four to five cycles of spaced stimulations, Wg over-expressing larvae required 

only three. As expected, activity also regulated the FNI pathway in the muscle 

cell. Spaced stimulation or chronic increase in activity through the use of 

mutations in potassium-channel subunits, eag Sh increased DFz2-C in the 

nucleus. This increase could be prevented by decreasing wg gene dosage in the 

eag Sh mutant background. Conversely, manipulations that blocked motor 

neuron action potentials or neurotransmitter release decreased levels of DFz2-C 

in the nucleus. 

In the presynaptic compartment, WNT signalling was found to involve the 
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regulation of GSK3β activity, as GSK3β inhibition was required in motor neurons 

for activity-dependent synaptic growth (Figure 1.5). Whereas over-expressing 

GSK3β in motor neurons prevented bouton growth, expressing a GSK3β 

dominant-negative form bypassed activity requirements, as was observed by Wg 

over-expression in motor neurons. Thus, Wg release in an activity-dependent 

manner activates bi-directional pathways in the presynaptic and postsynaptic 

cell, with a divergent canonical pathway being activated in motor neurons and 

presumably regulating the presynaptic cytoskeleton, and the FNI pathway 

activated in muscles presumably to regulate the development of the postsynaptic 

apparatus. The bi-directional activation of alternative pathways represents a 

mechanism to precisely match the development of presynaptic and postsynaptic 

structures, a crucial process during synapse development. Whether such a bi-

directional signaling mechanism could also operate at the vertebrate NMJ is still 

unclear.  

Further evidence that Wg activated a divergent canonical pathway in 

motor neurons was provided by the finding that GSK3β over-expression, like 

mutations in wg, also disrupted the presynaptic microtubule cytoskeleton (Miech 

et al., 2008).  However, it has also been suggested that GSK3β functions through 

AP1 by regulating the JUN N-terminal kinase (JNK) pathway (Franciscovich et 

al., 2008). It was further found that Arrow (also known as LRP5/6) and DVL but 

not the β-catenin homologue Armadillo were present at the NMJ (Miech et al., 

2008). Mutations in arrow mimicked the wg mutant phenotypes at the presynaptic 

terminal. However, Arrow seemed to have both presynaptic and postsynaptic 
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functions as some phenotypes were rescued by expressing an Arrow transgene 

in either presynaptic or postsynaptic cell. Disruption of DVL in neurons, by 

expressing a dominant- negative transgene mimicked the phenotypes resulting 

from disrupting Wg and Arrow. However, no such effect was found on disrupting 

the function of the TCF homologue Pangolin or Armadillo, suggesting that 

presynaptic development is not regulated by the canonical pathway, but rather by 

the divergent canonical pathway (Figure 1.5). However, the involvement of JNK 

(Franciscovich et al., 2008), an enzyme of the planar cell polarity pathway, 

suggests additional complexity on the pathways involved. 

Besides Wg, WNT5 and its atypical receptor Derailed (DRL) also function 

as positive regulators of NMJ development (Liebl et al., 2008) (Figure 1.5). DRL 

is present at the NMJ and drl mutants have a significant reduction in synaptic 

bouton number. In addition, in wnt5 mutants, the density of active zones was 

decreased, although they remained unaffected in drl mutants, suggesting DRL-

independent functions of WNT5. Functional defects in wnt5 mutants included a 

reduction in the amplitude of evoked excitatory junctional currents (eJCs), as well 

as the frequency of spontaneous miniature eJCs (meJCs) similar to the defects 

in gsk3β (Franciscovich et al., 2008). However, both inhibition and 

overexpression of GSK3β led to a reduction in the amplitude of eJCs. WNT5 

seemed to function in part in an anterograde manner, as over-expressing WNT5 

in motor neurons suppressed the drl phenotype and DRL was required in muscle 

for normal NMJ growth. Further, expressing WNT5 in neurons but not in muscles, 

rescued the reduced synaptic bouton number of the wnt5 mutant, and over-
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expressing WNT5 in motor neurons led to synaptic overgrowth. However, the 

active zone phenotype was restored either by neuronal or muscle WNT5 

expression, suggesting a potential retrograde function. Thus, more than one 

WNT pathway can function in parallel to positively regulate synapse 

development. 

 While the signaling cascades activated by WNT proteins have been 

studied in detail, how WNTs are secreted to the extracellular space and 

transported to the target cell membrane is not exactly clear. WNT proteins are 

highly hydrophobic glycoproteins that are posttranslationally lipid-modified at two 

different sites. The first lipid modification is a saturated acyl chain, palmitate; the 

second is a mono-unsaturated acyl chain, palmitoleate (Harterink and 

Korswagen, 2012). These lipid modifications are required for both secretion and 

the signaling activity of the protein (Harterink and Korswagen, 2012). An 

important question in the field has been: how are these hydrophobic WNT 

proteins released to the hydrophilic extracellular space and travel long distances 

to signal target cells? The fact that WNTs are lipid-modified hydrophobic proteins 

suggests that they are associated with lipid membranes. Several potential 

mechanisms have been suggested for the movement of WNTs in the 

extracellular milieu: (1) lateral diffusion through binding to heparan sulfate 

proteoglycans (Baeg et al., 2001); (2) formation of soluble micelles containing 

WNTs (Port and Basler, 2010); (3) travel on extracellular membrane fragments 

called argosomes (Greco et al., 2001); (4) travel on lipoprotein particles 

(Panakova et al., 2005); and (5) planar transcytosis, in which WNTs are 
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repeatedly endocytosed and resecreted through neighbouring cells (Coudreuse 

et al., 2006). However, the exact mechanism and the molecular details that allow 

WNTs to be transported intercellularly have been elusive.  

 It has recently become clear that the trafficking and secretion of WNT 

proteins are highly regulated and specialized processes. The discovery of the 

WNT binding protein Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt) 

revealed the presence of a dedicated secretion machinery, where the type II 

multipass transmembrane protein, Evi, is specifically required for WNT secretion 

in epithelial cells of Drosophila wing imaginal discs and human cultured cells 

(Banziger et al., 2006; Bartscherer et al., 2006; Goodman et al., 2006). 

Moreover, this evolutionarily conserved Evi protein has been shown to be a WNT 

cargo receptor that functions in trafficking WNTs from the Golgi compartment to 

the plasma membrane of the secreting cell. It has been also suggested that Evi is 

recycled from the plasma membrane back to the Golgi through the retromer 

complex (Belenkaya et al., 2008; Franch-Marro et al., 2008; Pan et al., 2008; 

Port et al., 2008; Yang et al., 2008). 

In the second chapter of my thesis, I will present evidence for a previously 

unknown cellular mechanism by which secreted WNT/Wingless signals are 

transported from presynaptic motorneurons to postsynaptic muscle cells, by 

riding on Evi-containing extracellular vesicles. In addition to the function of Evi in 

Wg secretion and extracellular transport, we provide compelling evidence that 

Evi also plays a role in the signal-receiving postsynaptic muscle cell to target 

DGRIP, a DFz2-interacting protein, to postsynaptic sites.  



25

25

A further study led by Dr. Kate Koles, a postdoctoral fellow in the Budnik 

lab, has provided compelling evidence that the Evi-containing extracellular 

vesicles correspond to exosomes, using multiple methods such as mass 

spectrometry, western blot analysis and electron microscopy (Koles et al., 2012). 

Both of these above studies are unique in the sense that they provide a function 

for exosomes in vivo in the nervous system for the first time. 

 

Exosomes 

In pluricellular organisms, intercellular communication takes place through 

secretion of soluble extracellular molecules such as proteins and short peptides, 

which interact with receptors in the target cell. Recently, a novel cell-to-cell 

communication mechanism was identified through the release of membrane 

vesicles to the extracellular space. These extracellular vesicles contain 

numerous proteins including transmembrane proteins, lipids, and nucleic acids 

(Thery, 2011). Although initially they were considered solely as a means to 

discard cellular debris, they are now being recognized as signal carriers, as they 

have been shown to affect the recipient cells, such as the activation of signal 

transduction pathways (Record et al., 2011). There are multiple types of 

membrane vesicles that are secreted from cells, however, the best studied 

among them are the ‘’exosomes’’ (Thery et al., 2009).  

Exosomes were first described about three decades ago (Harding et al., 

1983; Pan et al., 1985; Trams et al., 1981). However, their significance and 

function as vehicles for intercellular signaling has just beginning to emerge over 
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the past few years. Exosomes are 50-100nm membrane-limited vesicles that 

originate from intracellular multivesicular compartments and are secreted to the 

extracellular space through the exocytic fusion of multivesicular bodies (MVBs) 

with the plasma membrane of the cell (Thery et al., 2009). MVBs are well known 

membrane limited compartments, which are intermediates between early 

endosomes or the trans-Golgi network and lysosomes in the degradation 

pathway (Futter et al., 1996). However, it has become increasingly clear that they 

are alternatively directed to the plasma membrane instead of the lysosomes for 

exosome release (Johnstone et al., 1991). It is not yet clear how these distinct 

fates of MVBs are regulated. Moreover, exosomes have been demonstrated to 

be secreted both constitutively and upon induction. Although, the exact 

mechanisms regulating exosome release is unknown (Raposo et al., 1997; 

Savina et al., 2003), some components of the release machinery are beginning 

to be identified (Koles et al., 2012). 

The protein and lipid content of exosomes vary depending on the type of 

cells they are secreted from. The proteins found at exosomes are mostly derived 

from the plasma membrane, endosomes, cytosol, Golgi and even the nucleus of 

the originating cell. However, they rarely derive from mitochodria or endoplasmic 

reticulum. The proteins contained in exosomes include cell adhesion molecules, 

cytoskeletal proteins, membrane trafficking proteins, signaling molecules, 

proteins involved in MVB formation, tetraspanins, heat shock proteins, metabolic 

enzymes and proteins involved in transcription and protein synthesis (Record et 

al., 2011). The lipid composition of exosomes also depends on the cell type. 
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However, a common feature of exosomes regardless of their origin is their 

enrichment with sphingomyelins (Subra et al., 2007). Other lipids found in 

exosomes include cholesterol, phosphatidylcholine, phosphatidylserine, 

phosphatidylethanolamine, lysophosphatidylcholine, and diglyceride (Laulagnier 

et al., 2004). In addition, lipid rafts have been shown to be present in exosomes 

(de Gassart et al., 2003). 

 Exosomes are well studied in immune cells and tumors. The first study 

that demonstrated a function for exosomes reported that B cells of the immune 

system communicate with T cells through exosomes for antigen presentation 

(Raposo et al., 1996b). Exosomes released by B-lymphocytes contain major 

histocompatibility class (MHC) II- antigen peptide complexes and they participate 

on the presentation of these complexes to specific T-cells. Subsequently, 

dendritic cells of the immune system were also demonstrated to secrete 

exosomes to induce antitumor immune responses in mice (Zitvogel et al., 1998). 

These early studies formed the basis for the view of exosomes as signaling 

entities. A key discovery in the field happened in 2007 when exosomes were 

demonstrated to contain mRNA and microRNA. Moreover, RNA transported by 

exosomes was translated in the recipient cells, suggesting that the transported 

RNA was biologically active (Valadi et al., 2007). The specific roles of exosomes 

depend on the original cell type they are secreted from. In contrast to exosomes 

of the immune system, exosomes in the nervous system have been rarely 

studied. A potential role of exosomes in the nervous system emerged when a 

study showed that cultured cortical neurons from rats secrete exosomes to the 



28

28

culture media (Faure et al., 2006). Subsequent studies reported that exosomes 

are released by both embryonic neurons as well as fully differentiated cortical 

and hippocampal neurons in culture (Chivet et al., 2012; Lachenal et al., 2011). 

Furthermore, secretion of exosomes has been shown to be modulated by 

calcium influx and glutamatergic synaptic activity in cultured neurons, suggesting 

an exosome function in synaptic physiology (Lachenal et al., 2011). However, the 

function of exosomes in vivo in the nervous system had remained unclear, until 

our work in 2009, where we demonstrated that larval NMJs are likely to release 

exosomes for the presentation of Wg to postsynaptic DFrizzled2 receptors 

(Korkut et al., 2009). 

In the third chapter of my thesis, I will present evidence for a presynaptic 

control of postsynaptic retrograde signaling through the exosomal transfer of an 

essential retrograde signaling component, Syt4. I will demonstrate that 

retrograde Syt4 function in the postsynaptic muscle is required for activity-

dependent presynaptic growth as well as potentiation of spontaneous 

neurotransmitter release, and that this function depends on exosomal release of 

Syt4 by presynaptic terminals. 

In conclusion, my thesis unravels a novel cellular mechanism for trans-

synaptic communication through release of exosomes from presynaptic 

terminals. First, the extracellular transport of the synaptogenic WNT/Wingless 

signal is aided by exosomes through its binding to Evi. Second, exosomes are 

critical for presynaptic regulation of postsynaptic retrograde signaling through 

Syt4 release. These studies unequivocally show that signaling through exosomes 
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is crucial for both activity-dependent and developmental synaptic plasticity in the 

nervous system. 
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Figure 1.1. (Adapted from (Gorczyca, 2006) Body wall muscles of the 

Drosophila melanogaster larva. Third instar wandering stage (left) and first 

instar (right) larval body wall muscles preparations labeled with FITC-conjugated 

phalloidin. During development, the number of muscles does not increase, but 

the size of each muscle can increase up to 100 fold. Abdominal segments 1-7 

are labeled as A1 to A7. Up is anterior. 
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Figure 1.2. (Adapted from (Gorczyca, 2006) and (Packard et al., 2002) 

Anatomical structure of the Drosophila larval neuromuscular junction. 
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(A) Confocal image of a third instar larval NMJ innervated in muscles 6-7. 

‘’Beads on a string’’-like synaptic boutons are labeled with a presynaptic marker, 

anti- HRP (red) (Gorczyca, 2006).  

(B) Body wall muscle 12 innervated by type Ib, type Is, type II and type III, 

labeles with anti-horseradish peroxidase (anti-HRP) (Gorczyca, 2006). 

(C) Type Ib and type Is boutons stained with antibodies against HRP (green) and 

the scaffolding protein DLG (red), a postsynaptic marker.  
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Figure 1.3. (Adapted from (Gorczyca, 2006) Ultrastructural view of Type 1b 

synaptic boutons. 
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(A) Midline cross section through a type Ib bouton. b = bouton, v = vesicles, mi 

=mitochondria, bl (white arrow) = basal lamina, SSR = subsynaptic reticulum, m 

= muscle. Arrows point to T-bar active zones. Arrowhead denotes an endocytic 

coated pit. (B) High magnification view of a synaptic area, showing a T-bar active 

zone, and a coated pit (p). (C) Longitudinal cross section through a type Ib NMJ 

showing two boutons (b) joined by a neurite process. Calibration bar is 0.8 µm in 

A, 0.3 µm in B, and 2.5 µm in C.  
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Figure 1.4. Adapted from (Korkut and Budnik, 2009) WNT Signaling Pathways. 

(A) Canonical pathway, (B) Divergent canonical pathway, (C) Planar cell polarity 

pathway, (D) WNT calcium pathway, (E) Frizzled nuclear import (FNI) pathway. 
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Figure 1.5. (Adapted from Korkut and Budnik, 2009) Role of WNTs during 

Drosophila larval neuromuscular junction development 

Wingless (Wg) secreted from presynaptic motor neuron endings, binds to 

DFrizzled‑2 (DFz2) and coreceptor Arrow, which are localized presynaptically 

and postsynaptically. In the presynaptic cell, Wg activates a divergent canonical 

pathway, involving DVL (Dishevelled) activation, inhibition of GSK3β (glycogen 

synthase kinase 3β) activity and the regulation of the microtubule cytoskeleton 

through Futsch. In the postsynaptic cell, Wg activates the FNI pathway, which 

involves the cleavage and nuclear import of DFz2. GRIP (7‑PDZ‑domain 
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glutamate‑receptor binding protein) is required for the trafficking of receptors 

from the postsynaptic membrane towards the nucleus. WNT5 is also released 

from the presynaptic boutons and binds to its receptor Derailed (DRL) on the 

postsynaptic membrane to regulate synaptic bouton growth.
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CHAPTER 2 

TRANS-SYNAPTIC TRANSMISSION OF VESICULAR WNT SIGNALS 

THROUGH EVI/WNTLESS 

 

 

 

 

 

 

 

 

 

 

 

The following chapter is reprinted from a Cell article (Korkut, C., Ataman, B., 

Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., and Budnik, V. (2009). 

Trans-synaptic transmission of vesicular WNT signals through Evi/Wntless. Cell 

139, 393-404). 
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ABSTRACT 

WNTs play pivotal roles during development and in the mature nervous 

system.  However, the mechanism by which WNTs traffic between cells has 

remained elusive. Here we demonstrate a mechanism of WNT transmission 

through release of exosome-like vesicles containing the WNT-binding protein 

Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). We show that at the 

Drosophila larval neuromuscular junction (NMJ), presynaptic vesicular release of 

Evi is required for the secretion of the WNT, Wingless (Wg). We also show that 

Evi acts cell- autonomously in the postsynaptic WNT-receiving cell to target 

dGRIP, a Wg-receptor-interacting protein, to postsynaptic sites. Upon Evi loss of 

function, dGRIP is not properly targeted to synaptic sites, interfering with 

postsynaptic WNT signal transduction. These findings uncover a previously 

unknown cellular mechanism by which a secreted WNT is transported across 

synapses by Evi-containing vesicles and reveal trafficking functions of Evi in both 

the WNT-producing and the WNT-receiving cells. 

 

INTRODUCTION 

Members of the WNT family of morphogens orchestrate a myriad of 

developmental processes in all metazoan organisms studied to date (Siegfried 

and Perrimon, 1994). These include the establishment of cell identity during 

pattern formation, control of cell proliferation and migration, and cytoskeletal 

remodeling. WNTs are also known to coordinate major aspects of the nervous 

system from early development to adult function, in which they regulate neural 
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stem cell proliferation, axon pathfinding, synapse differentiation and plasticity, as 

well as learning (Ataman et al., 2008) (Salinas and Zou, 2008) (Speese and 

Budnik, 2007) (Zhao et al., 2005). Not surprisingly, alterations in WNT signaling 

in humans have been linked to a number of cognitive disorders, such as 

schizophrenia and Alzheimer’s disease (De Ferrari and Moon, 2006).  

WNTs activate a variety of intracellular signal transduction pathways that 

regulate gene expression and cytoskeletal organization events (Gordon and 

Nusse, 2006) (Salinas and Zou, 2008). The best understood signaling pathway is 

the canonical WNT pathway, in which WNT ligands bind to the Frizzled (Fz) 

family of serpentine receptors. Receptor activation in turn stabilizes cytoplasmic 

β-catenin, which enters the nucleus and regulates gene expression. In a 

divergent canonical pathway, GSK3- β operates through a nongenomic 

mechanism, by phosphorylating microtubule-associated proteins, thereby 

regulating microtubule stability. Alternative signal transduction mechanisms 

activated by WNT ligands include the planar cell polarity (PCP) pathway and the 

WNT/Ca2+ pathway. Recent studies at the Drosophila neuromuscular junction 

(NMJ) and in the developing mammalian nervous system have uncovered a 

novel transduction mechanism in which WNT receptors themselves are cleaved 

and translocated into the nucleus (Lyu et al., 2008) (Mathew et al., 2005). These 

nonexclusive transduction cascades provide alternative mechanisms for cells to 

regulate diverse processes in different spatiotemporal contexts.  

Whereas considerable progress has been made in elucidating the 

signaling pathways activated by WNTs, much less is known about how WNTs 
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are secreted and transported to distant locales. At the Drosophila imaginal wing 

disc, the WNT-1 homolog Wingless (Wg) is secreted by a discrete row of Wg-

producing cells. Secreted Wg forms a long-range gradient expanding many cell 

diameters away from the source of Wg secretion (Neumann and Cohen, 1997). 

The mechanisms by which Wg is transported from its site of secretion to distant 

target cells have remained poorly understood. WNT proteins are highly 

hydrophobic and tightly associated to cell membranes owing to palmitoyl 

modifications essential for biological activity (Willert et al., 2003). Thus, 

unescorted WNT molecules are not easily diffusible in the extracellular milieu. 

Several mechanisms have been proposed to explain the movement of WNT 

molecules from their site of secretion, including their association with 

glycosaminoglycan-modified proteins at the extracellular matrix (Baeg et al., 

2001), the formation of exosome-like vesicles called argosomes (Greco et al., 

2001), extracellular lipoprotein particles (Panakova et al., 2005), transcytosis 

(Coudreuse et al., 2006), or a combination of the above. However, the exact 

mechanism employed during intercellular WNT transport has remained elusive. 

Recent studies have identified a type II multipass transmembrane protein 

called Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt), which appears to be 

specifically required in vivo for WNT secretion in epithelial cells of flies and 

human cultured cells (Banziger et al., 2006); (Bartscherer et al., 2006); 

(Goodman et al., 2006). In the wing epithelium of Drosophila, Wg cannot be 

secreted from the evi mutant cells, and this leads to the accumulation of Wg 

within these cells. In contrast, the secretion of other morphogens, such as 
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Hedgehog (Hh), remains unaffected, suggesting that Evi is dedicated to the 

secretion of WNT proteins. Further analysis has suggested that Evi functions as 

a WNT cargo receptor during trafficking from the Golgi to the plasma membrane 

and is recycled back to the Golgi through the retromer complex (Belenkaya et al., 

2008); (Franch-Marro et al., 2008); (Pan et al., 2008); (Port et al., 2008); (Yang et 

al., 2008). 

In the nervous system, WNTs are released by pre- or postsynaptic cells 

and function in either a retrograde or anterograde manner (Salinas and Zou, 

2008); (Speese and Budnik, 2007). Similar to other cell types, the mechanisms 

by which WNTs are transported between synaptic compartments are principally 

unexplored. Considering that WNT-1 is released from synapses in an activity-

dependent manner (Ataman et al., 2008), and the substantial short- and long-

term effects of WNT signaling on neurons, elucidating the mechanisms by which 

WNT secretion/transport is regulated in the nervous system remains an important 

problem. 

Here we have addressed this key question by using the glutamatergic 

synapses of the Drosophila larval NMJ, where WNT-1/Wg is secreted from 

motorneurons. We report that Evi is localized at these synapses and its function 

is indispensable for proper Wg secretion and signaling. We also demonstrate a 

novel mechanism for transport of the Wg signal across the synapse through the 

release of Evi-containing exosome-like vesicles. Further, we show that Evi is 

required for the proper trafficking of the Wg receptor DFrizzled-2 (DFz2), through 

actions that involve the DFz2-interacting protein dGRIP, a PDZ protein required 
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for the transport of internalized DFz2 vesicles toward the nucleus (Ataman et al., 

2006a); (Mathew et al., 2005). 

 

RESULTS 

Evi Is Required for Wg Secretion at the Neuromuscular Junction 

Previous studies have suggested that Evi is required for Wg secretion in 

non- neuronal cells (Banziger et al., 2006); (Bartscherer et al., 2006). Because 

Wg is secreted from motorneurons at the fly NMJ (Ataman et al., 2008); (Packard 

et al., 2002), we first examined the distribution of Wg at the NMJ of evi null 

mutants, which survive to the third instar larval stage (Bartscherer et al., 2006). 

We found that secreted Wg levels were substantially reduced at postsynaptic 

muscles in evi mutants (Figures 2.1A, 2.1C, and 2.1E). However, this reduction 

was not limited to the postsynaptic compartment but was also observed in the 

presynaptic boutons as determined by volumetric quantifications of the Wg signal 

inside the presynaptic bouton demarcated by anti-HRP staining (Figures 2.1A, 

2.1C, and 2.1E). A similar decrease was observed when Evi was downregulated 

using Evi-RNAi expressed in neurons using the elav-Gal4 driver (Figures S2.1A 

and S2.1B). These results could indicate that Evi might be required for the 

stability or synthesis of Wg in motorneurons. However, we did not observe any 

changes in Wg levels in the nervous system (Figure 2.1F). Thus, at the NMJ, Evi 

is required for the transport and/or secretion of Wg in presynaptic terminals. A 

prediction of this hypothesis is that Wg should accumulate in the cell bodies or 

axons of motorneurons in evi mutants. We found that there was a substantial 
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increase in Wg immunoreactivity levels in motorneuron cell bodies and 

longitudinal axons within the neuropil (Figures S2.1C–S2.1E).  

The above model was further tested by rescue experiments. Expressing 

an Evi-GFP transgene in the motorneurons of evi mutants, by using the Gal4 

driver C380, completely rescued the low levels of Wg in both the pre- and 

postsynaptic compartments (Figures 2.1B and 2.1E). Notably, however, 

expression of the Evi-GFP transgene in postsynaptic muscles, by using the Gal4 

strain BG487, did not (Figures 2.1D and 2.1E). Thus, Evi is required in 

motorneurons for normal Wg transport and/or secretion.  

We also observed that mutations in evi mimicked synaptic phenotypes 

previously observed in mutations affecting Wg signaling (Ataman et al., 2006a); 

(Mathew et al., 2005); (Packard et al., 2002). As muscle fibers grow in size, the 

Drosophila larval NMJ continuously expands by adding new synaptic boutons. 

This expansion is critically dependent on Wg signaling (Packard et al., 2002). Wg 

appears to be secreted by motorneurons, and suppressing Wg secretion 

substantially reduces synaptic bouton proliferation. Further, in wg mutants many 

boutons are misshapen, and some remain in an undifferentiated state (ghost 

boutons), lacking active zones and postsynaptic apparatus. Conversely, 

increasing Wg secretion by overexpressing Wg in motorneurons enhances 

formation of synaptic boutons. In the presynaptic cell Wg activates a divergent 

canonical pathway that regulates microtubules (Ataman et al., 2008); (Franco et 

al., 2004); (Miech et al., 2008). In the postsynaptic muscle cell Wg initiates an 

atypical pathway in which the DFz2 receptor itself is cleaved and a fragment 
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imported to the nucleus (Ataman et al., 2006a);(Ataman et al., 2008); (Mathew et 

al., 2005). In evi mutants the total number of synaptic boutons was decreased by 

over 50%, without any change in muscle size, and the boutons had an aberrant 

morphology being large and deformed (Figures 2.2A–2.2E and S2.2). In addition, 

evi NMJs had a significantly higher number of ghost boutons (Figures 2.2D, 

arrows and 2.2F). The decrease in bouton number was only partially rescued by 

expressing Evi in either the pre or postsynaptic cell (Figure 2.2E). However, it 

was completely rescued by simultaneously expressing Evi in both cells (Figure 

2.2E). In the case of ghost boutons, expressing the Evi transgene in 

motorneurons or in both motorneurons and muscles completely rescued the 

abnormal increase in ghost boutons in evi mutants (Figure 2.2F). Expressing Evi 

in muscles using the weaker Gal4 driver BG487-Gal4 did not rescue the increase 

in ghost boutons, but this phenotype was completely rescued by using the 

stronger muscle Gal4 driver C57-Gal4 (Figure 2.2F). Thus, although Evi is 

required only in motorneurons for proper Wg transport and/or secretion, Evi is 

needed both in neurons and muscles for normal synaptic growth.  

The similarity in the synaptic phenotypes between evi and wg mutants at 

the NMJ, together with previous evidence suggesting that both proteins establish 

biochemical interactions (Banziger et al., 2006), raised the question of whether 

there were genetic interactions between evi and wg during NMJ growth. This was 

addressed by analysis of transheterozygotes. The number of boutons was 

normal in heterozygotes, but there was a supra-additive reduction in the number 

of boutons in the transheterozygotes (expected decrease in bouton number by 
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simple additivity in wg/+; evi/+ is 14.2% versus 27% observed in wg/+; evi/+ 

transheterozygotes; Figure 2.2G), suggesting that evi and wg genetically interact 

during synaptic bouton proliferation. 

 

Evi Is Localized Both Pre- and Postsynaptically and Is Transferred Trans-

synaptically from the Pre to the Postsynaptic Compartment 

To examine the synaptic localization of Evi, we generated two antibodies 

directed to a predicted either extracellular (Evi-Nex) or intracellular (Evi-Cin) 

region of the Evi protein (Figures 2.3A, S2.3A, and S2.3B). Both antibodies 

strongly labeled the NMJ in similar patterns (Figures 2.3B and 2.3C). This 

immunoreactivity was specific, as it was severely decreased in evi mutants 

(Figures 2.3D and 2.3E).  Immunoreactive Evi label was observed both in pre- 

and postsynaptic compartments at the NMJ, as determined by double labeling 

with anti-HRP, which defines the boundary of the presynaptic compartment. 

However, Evi was particularly enriched at the postsynaptic junctional region 

(Figures 2.3B and 2.3C), the same region occupied by secreted Wg and its 

receptor DFz2 at the NMJ (Packard et al., 2002). In this region Evi 

immunoreactivity was present in a punctate pattern presumably reflecting 

vesicular structures (Figures 2.3B and 2.3C).  

The rescue experiments suggested that Evi functions both pre- and 

postsynaptically during synaptic bouton proliferation, but that it is required solely 

presynaptically for Wg transport and/or secretion. To further determine the 

requirement of Evi in the pre- and postsynaptic side, we expressed Evi-RNAi with 
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the cell-specific Gal4 drivers. Surprisingly, expressing Evi-RNAi in the 

motorneurons (Evi-RNAi-pre) not only led to a reduction in Evi immunoreactivity 

inside presynaptic terminals but also substantially reduced the label at the 

postsynaptic region (Figures 2.3F and 2.3I). The observation that presynaptic 

knockdown of Evi has a trans-synaptic effect on Evi levels in muscle was quite 

unexpected. Such a phenomenon is not observed when knocking down other 

well-known synaptic proteins such as dGRIP (Ataman et al., 2006a) or spectrin 

(Pielage et al., 2005). This observation was also not due to a leaky Gal4 driver, 

as C380-Gal4 expresses Gal4 in motorneurons and not in muscles (Budnik et al., 

1996); (Sanyal et al., 2003). Further, expressing a nuclear LacZ (UAS-LacZNLS) 

with C380-Gal4 resulted in strong labeling of neuronal but not muscle nuclei 

(Figures S2.3D and S2.3E), and expressing myristylated- mRFP (myr-mRFP) 

usingC380-Gal4 did not result in postsynaptic myr-mRFP signal (Figure S2.3C). 

These observations suggest that postsynaptic Evi is at least partly derived from 

the presynaptic motorneurons. The possibility that Evi could be transferred from 

the pre- to the postsynaptic compartment was tested by expressing Evi-GFP in 

motorneurons (Evi-GFP-pre). Notably, GFP was observed both in presynaptic 

boutons as well as at the postsynaptic junctional region (Figure 2.3G), supporting 

the notion that Evi could be transferred from pre- to postsynaptic compartments. 

This transfer was unlikely to result from Evi overexpression, as when the Evi-

GFP transgene was expressed presynaptically in an evi mutant background, at 

levels similar to endogenous levels (Figure S2.3F), a similar distribution of the 

GFP label in the postsynaptic side was observed (Figures 2.3H and S2.3F). This 
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transfer of presynaptic Evi was also clearly observed in vivo in samples 

expressing myr-mRFP and Evi-GFP in motorneurons and imaged live (Figure 

S2.3C).  

Given that Wg is secreted by presynaptic boutons and that Evi is required 

for normal Wg secretion, we next examined if presynaptically derived Evi 

colocalized with endogenous secreted Wg observed at postsynaptic sites. For 

these experiments we expressed Evi-GFP in motorneurons and examined both 

the Wg and Evi-GFP labels at the postsynaptic compartment. We found that 

there was substantial colocalization between Wg and Evi-GFP distal to the 

bouton rim, right outside the HRP label (Figure 2.3J), consistent with the idea 

that secreted Evi vesicles contain Wg. 

 In contrast to the expression of Evi-RNAi in motorneurons, expressing 

Evi-RNAi in the muscles (Evi-RNAi-post), although significantly reducing the 

levels of Evi protein in the postsynaptic compartment, did not change the levels 

of Evi in presynaptic boutons (Figures 2.3K and 2.3I). These results demonstrate 

that Evi is expressed by both motorneurons and muscles, but that there is a 

unidirectional transfer of Evi from presynaptic boutons to the postsynaptic region.  

Considering that Evi is a multipass transmembrane protein, two possible 

scenarios might account for the above transfer of Evi from the pre- to the 

postsynaptic region. One possibility is that an extracellular region of Evi is 

cleaved, as is the case for other membrane receptors (Selkoe et al., 1996) 

(Figure 2.3N). However, this possibility is highly unlikely, as in the Evi-GFP 

transgene the GFP tag is fused to the intracellular C-terminal region of Evi, and 
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thus the transfer must include the intracellular domain. An alternative possibility 

is that the entire Evi protein could be transported in the form of a vesicle from the 

pre- to the postsynaptic compartment (Figure 2.3O), as has been previously 

suggested with argosomes, vesicular structures that can transport Wg from cell 

to cell (Greco et al., 2001). To address this possibility, we took advantage of the 

Evi-Nex antibody, which recognizes an epitope localized at the first extracellular 

loop of Evi (Figure 2.3A; red region in Figures 2.3N and 2.3O), and which is 

separated from the C-terminal GFP tag by seven transmembrane domains. For 

these experiments, we expressed Evi-GFP in motorneurons in an evi null mutant 

background and determined whether the postsynaptic GFP signal colocalized 

with the Evi-Nex and Evi-Cin immunoreactivity. We found that anti-Evi-Nex and 

anti-Evi-Cin immunoreactivities were exactly colocalized with Evi-GFP at the 

postsynaptic region (Figures 2.3L, 2.3M, S2.3G, and S2.3H). Thus, these results 

support the notion that intact Evi is transferred across the synapse likely in a 

vesicle.  

We also examined Drosophila Schneider-2 (S2) cells transfected with the 

Evi-GFP construct. We found that untransfected S2 cells in contact with Evi-

GFP-transfected cells often contained Evi-GFP-positive puncta within their 

cytoplasm (Figure 2.4A, arrowheads). To verify that this was due to transfer of 

Evi-GFP from transfected to nontransfected cells, Evi-untransfected cells were 

separately transfected with mCherry and mixed with the Evi-GFP-transfected 

cells. Again, we found that mCherry-positive (Evi-untransfected) cells had GFP 

puncta within their cytoplasm (Figure 2.4B), suggesting that Evi-transfected cells 
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transferred Evi to nearby cells. We also found that Evi-GFP puncta were 

observed in the medium, suggesting the secretion of Evi vesicles into the 

medium (Figure 2.4A, arrow). To determine if the Evi vesicles that were 

transferred to adjacent cells contained Wg, we cotransfected S2 cells with Evi-

GFP and Wg. We found that the Evi vesicles transferred to adjacent cells or to 

the medium contained Wg (Figures 2.4C and 2.4D, arrowhead). Interestingly, in 

these double transfected cells Wg localized to varicosities within filopodia (arrows 

in Figure 2.4D). These filopodia were also present in untransfected cells as seen 

with phalloidin staining to label endogenous F-actin (Figure S2.4C). Two other 

membrane proteins, DFz2 and rCD2-mRFP, which also become localized to 

filopodia, were not observed to be secreted (Figures S2.4A and S2.4B). We also 

carried out a western blot analysis of the S2 cells and the culture medium. We 

found that indeed the culture medium contained full-length Evi protein, 

suggesting that Evi was secreted to the medium (Figure 2.4E). The above 

observation was directly visualized by time-lapse imaging of the Evi-GFP 

fluorescence. We found that Evi-GFP puncta trafficked within highly dynamic 

filopodia-like structures in the S2 cells and that some of these puncta were 

secreted to the media in a time frame of several minutes (Figure 2.4F). Thus, 

release and transcellular transfer of Evi vesicles to adjacent cells is a common 

biological mechanism utilized by both neuronal and non-neuronal cells. 
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Evi Is Present in Multiple Compartments at the Neuromuscular Junction 

To determine the subcellular localization of Evi within pre- and 

postsynaptic compartments we next carried out immunoelectron microscopy 

studies with the Evi antibodies. For these experiments 1.4 nm gold-conjugated 

secondary antibodies followed by silver intensification were used to mark sites of 

Evi-antibody binding using the pre-embedding technique. Consistent with our 

immunofluorescence studies, Evi was found to be localized in several pre- and 

postsynaptic structures.  

At the postsynaptic junctional region, Evi was found within the subsynaptic 

reticulum (SSR), a system of muscle-derived membrane folds that completely 

surrounds synaptic boutons (Figure 2.5A; the presynaptic bouton highlighted in 

pink overlay). Within the SSR, silver-intensified gold particles were observed in 

close association with the membrane folds (Figure 2.5E, arrows). Notably, gold 

particles were also found inside approximately 200 nm in diameter membranous 

vesicles within the SSR (Figures 2.5A and 2.5B; arrows and insets). In summary, 

at the postsynaptic region, Evi is present in association with SSR membranes 

and with novel postsynaptic vesicles.  

Evi was also associated with the pre- and postsynaptic membrane (Figure 

2.5F, arrows) and sometimes the signal was observed at the synaptic bouton 

cleft (Figure 2.5H, arrow and inset). Within the presynaptic bouton, Evi was 

observed in large multimembrane structures (Figure 2.5G, arrowhead). Thus, Evi 

is present in multiple structures at synapses, including pre-and postsynaptic 

vesicular structures, the SSR, and synaptic membranes.  
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To determine if these vesicles were endocytosed from the muscle surface, 

we next conducted an internalization assay. These experiments were facilitated 

by the finding that the Evi-Nex antibody can bind to surface Evi in vivo (Figure 

S2.3A). For these studies, unfixed and unpermeabilized body wall muscles were 

incubated with the Evi- Nex antibodies in the cold, washed, and brought to room 

temperature for 30 min prior to fixation. Then, samples were permeabilized and 

incubated with the gold-conjugated secondary antibody, followed by preparation 

for electron microscopy (EM). Interestingly we found that the Evi label was found 

at SSR membranes as well as inside the large SSR vesicles (Figure 2.5C, 

arrows and insets), suggesting that at least a subset of these postsynaptic 

vesicles are derived from the endocytosis of postsynaptic surface Evi.  

To verify that Evi was transferred from presynaptic boutons to the 

postsynaptic SSR at the ultrastructural level, GFP-tagged Evi was expressed in 

motorneurons using the C380-Gal4 driver, and the NMJ was examined by 

immunoelectron microscopy using an anti-GFP antibody. We found that the GFP 

label was found not only within synaptic boutons (Figure 2.5D, arrowhead) but 

also throughout the postsynaptic SSR membrane (Figure 2.5D). We also 

expressed Evi-GFP in the motorneurons of evi mutants and immunolabeled Evi 

with the Evi-Cin antibody using the postembedding technique. Again, we found 

the label in the presynaptic compartment (Figure 2.5I, arrowhead), at the 

synaptic bouton cleft (Figure 2.5J, arrowhead), as well as in the postsynaptic 

SSR region (Figures 2.5I and 2.5K, arrows). Thus, Evi is transferred 

transsynaptically as expected from the observations at the light level. 
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Postsynaptic Evi Is Required for the Trafficking of DFz2 through the DFz2-

Interacting Protein dGRIP 

Given that presynaptic Evi alone is not sufficient for normal NMJ 

development, we predicted that Evi was also endogenously expressed in muscle. 

To test this prediction we carried out real-time PCR experiments from body wall 

muscle mRNA. We found that there were significant levels of Evi-mRNA in 

muscles and that these levels were substantially decreased upon expressing Evi-

RNAi (Figure S2.5). What is the cell-autonomous role of Evi in the postsynaptic 

target cell? To address this issue we examined postsynaptic Wg signaling while 

downregulating Evi selectively in the muscle using Evi-RNAi. Previous studies 

suggested that Wg is secreted by presynaptic boutons (Packard et al., 2002) and 

unraveled a novel postsynaptic Wg signal transduction pathway in the 

postsynaptic muscles, the frizzled nuclear import (FNI) pathway (Speese and 

Budnik, 2007), which is also shared by other WNT receptors (Lyu et al., 2008). In 

this pathway, the Wg receptor, DFz2, is internalized from the postsynaptic 

muscle membrane and back-transported from the synapse to the nucleus 

through a mechanism that requires an interaction between the PDZ-binding C-

terminal tail of DFz2 and the PDZ4-5 domain of the 7-PDZ protein dGRIP 

(Ataman et al., 2006a). The entire cytoplasmic domain of DFz2 (DFz2-C) is then 

cleaved and imported into the nucleus (Mathew et al., 2005). 

In muscles expressing Evi-RNAi we found that DFz2 was localized 

normally at the postsynaptic region of the NMJ. However, the postsynaptic levels 

of DFz2 were substantially increased (Figures 2.6A, 2.6B, and 2.6E). In contrast, 
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no such increase in DFz2 levels was observed in the presynaptic cell upon 

expression of Evi-RNAi in motorneurons (normalized presynaptic DFz2 intensity 

in wild-type is 1.0 ± 0.07 versus 0.93 ± 0.07 in Evi-RNAi-pre). The same 

phenotype has been previously observed when the transport of DFz2 from the 

synapse to the nucleus is prevented by interfering with dGRIP function in 

muscles (Ataman et al., 2006a). Interestingly, a similar accumulation of Wg at the 

postsynaptic region was observed upon downregulating Evi in muscle (Figures 

2.6C–2.6E), consistent with the notion that Wg is trafficked with its receptor 

(Gagliardi et al., 2008). To determine if the increase in DFz2 at synapses of Evi-

RNAi-post larvae was due to a defect in the internalization and/or trafficking of 

DFz2, we carried out DFz2 internalization assays. In these experiments we used 

an anti-DFz2-N antibody that binds to the extracellular domain of the receptor in 

vivo, allowing us to follow the fate of internalized DFz2. Dissected third instar 

body wall muscles were incubated with the DFz2-N antibody at 4°C in vivo, and 

after washing the excess antibody, samples were brought to room temperature 

and fixed at 5 and 60 min after the antibody-binding step. To determine the 

fraction of DFz2 that remained at the surface, samples were then incubated with 

Alexa 647-conjugated secondary antibody in the absence of detergent 

permeabilization as previously reported (Ataman et al., 2006a); (Mathew et al., 

2005). To determine the amount of internalized DFz2, the above procedure was 

followed by permeabilization and incubation with a FITC-conjugated secondary 

antibody.  

As in previous studies (Ataman et al., 2006a); (Mathew et al., 2005), in 
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wild-type samples, surface DFz2 was internalized and observed near synaptic 

boutons at 5 min after the antibody-binding step (Figures 2.6G2 and 2.6F). 

However, at 60 min after the antibody-binding step, internalized DFz2 was 

significantly reduced at the NMJ as a result of its trafficking away from the 

synapse (Figures 2.6H2 and 2.6F; (Ataman et al., 2006a); (Mathew et al., 2005)). 

In contrast, upon expressing Evi-RNAi in muscles, no decrease in internalized 

synaptic DFz2 was observed at 60 min (Figures 2.6I2, 2.6J2, and 2.6F). No 

significant changes were observed in surface DFz2 in both genotypes (Figures 

2.6G1–2.6J1 and 2.6F), suggesting that only a small pool of the DFz2-antibody 

complexes become internalized. Thus, similar to alterations in dGRIP, a 

decrease in Evi function in muscles appears to interfere with the trafficking of 

DFz2 away from the synapse. This conclusion was further supported by 

examination of the levels of DFz2-C imported into the muscle nuclei. Previous 

studies show that the C-terminal region of DFz2 is cleaved and imported into the 

nucleus, where it is observed in the form of discrete immunofluorescent puncta 

(Figure 6K; (Mathew et al., 2005)). In evi mutants and upon expressing Evi-RNAi 

in muscles alone, nuclear DFz2-C puncta were almost completely abolished 

(Figures 2.6K–2.6M), in agreement with the model that in the absence of Evi 

function, DFz2 is not properly transported to the muscle nucleus. Furthermore, a 

complete rescue of the DFz2-C nuclear spots to wild-type levels was observed in 

the evi mutant by expressing the Evi transgene in the muscle alone. In contrast, 

expressing Evi in motorneurons provided only a partial rescue of the nuclear 

DFz2-C foci (Figure 2.6M). Therefore, we conclude that muscle Evi is involved in 
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the trafficking of DFz2 to the nucleus.  

Given the substantial similarities between the phenotypes observed upon 

knocking down evi and dgrip in postsynaptic DFz2 trafficking as well as in the 

synaptic morphology and NMJ growth (Ataman et al., 2006a), we next examined 

whether interfering with Evi function could be disrupting the postsynaptic function 

of dGRIP. For these studies we examined the localization of dGRIP in larvae 

expressing Evi-RNAi in muscles. In wild-type, dGRIP is present in small 

trafficking vesicles highly concentrated at postsynaptic sites (Figure 2.7A, arrows; 

(Ataman et al., 2006a)), as well as in Golgi bodies in juxtaposition to the cis-Golgi 

marker Lavalamp (Lva; Figure 2.7A, arrowheads; (Ataman et al., 2006a)). 

Notably, we found that upon knocking down Evi specifically in muscles, dGRIP 

was substantially reduced from postsynaptic sites as well as from Golgi bodies in 

muscle (Figures 2.7B and 2.7C). In addition, dGRIP was localized throughout the 

muscle submembrane region in a diffuse manner (Figures 2.7B and 2.7C). Thus, 

Evi controls dGRIP localization at the postsynaptic muscle region, and in the 

absence of Evi function dGRIP is not normally localized to the Golgi and 

synapses, likely disrupting postsynaptic DFz2 trafficking. A prediction of this 

model is that overexpressing dGRIP in muscles should overcome some of the 

defects arising from the lack of Evi in muscles. To test this model we 

overexpressed dGRIP in muscles while downregulating Evi in these cells. We 

found that the DFz2 accumulation at the postsynaptic region of Evi-RNAi-post 

was completely rescued, and indeed the postsynaptic levels of DFz2 became 

significantly lower than wild-type (Figure 2.7D). In addition, both the number of 
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synaptic boutons and nuclear DFz2-C spots were partially rescued by 

overexpressing dGRIP in evi mutants (Figures 2.7E and 2.7F).  

An additional prediction is that a population of Evi vesicles should traffic 

with dGRIP vesicles. To determine if this was the case we performed time-lapse 

imaging of muscles expressing both Evi-GFP and dGRIP-mRFP. We found that 

in many instances Evi and dGRIP vesicles colocalized and followed the same 

trajectory. These results demonstrate that Evi, in addition to its important role in 

the Wg-secreting cell, has a critical function in Wg-target cells, as it mediates the 

transport of the downstream Wg signaling component, dGRIP.  

 

DISCUSSION 

Here we show that the multipass transmembrane protein Evi has a critical 

role in trans-synaptic WNT-1/Wg transport through vesicular structures. To our 

knowledge, this is the first report to identify trans-synaptic communication 

through a vesicular structure. Further, our studies identify a mechanism by which 

secreted factors can be transmitted from cell to cell. We propose that presynaptic 

Evi is required for trafficking Wg from the cell body to the presynaptic terminals, 

and across the synaptic cleft, to present Wg to postsynaptic DFz2 receptors 

(Figure 2.7G). On the other hand, postsynaptic Evi is required to transport dGRIP 

to postsynaptic sites. At the postsynaptic region dGRIP interacts with 

postsynaptic DFz2 receptors and participates in the trafficking of DFz2 to the 

nucleus, where its C-terminal tail is cleaved and imported to the nucleus (Figure 

2.7G). Previous studies had implicated Evi only in the secretion of WNTs in 
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WNT-expressing cells (e.g., (Banziger et al., 2006)). However, endogenous Evi 

was also found in WNT-target cells (Port et al., 2008), where it plays an as yet 

unidentified role. Our studies here identify an unprecedented role for Evi in Wg-

receiving cells in trafficking the Wg receptor DFz2 through the regulation of the 

synaptic targeting of the DFz2-interacting protein dGRIP, which was previously 

shown to function in transporting DFz2 receptors from the postsynaptic 

membrane to the muscle nucleus (Ataman et al., 2006a). These studies unravel 

new processes and cellular mechanisms by which Evi functions as an essential 

component of synaptic WNT signaling. 

 

Trans-Synaptic Signaling in the Nervous System: Role of WNTs 

Intercellular communication in the brain is primarily accomplished through 

the exocytosis of neurotransmitter-laden vesicles or by direct current conduction 

through gap junctions. Pre- and postsynaptic partners also release factors 

important for cell survival, synapse development, synapse maintenance, and 

synaptic plasticity (reviewed in (Lu and Figurov, 1997); (Marques, 2005)). Among 

these are neurotrophins such as bone-derived neurotrophic factor (BDNF) and 

nerve growth factor (NGF), members of the bone morphogenetic protein (BMP) 

family, and WNTs. These molecules are released from pre- or postsynaptic 

terminals and they function in retrograde or anterograde manners to influence 

synaptic growth, function, and plasticity. At the Drosophila larval NMJ, continuous 

coordination of synaptic growth in relationship to muscle size requires the release 

of a retrograde signal of the BMP family that acts on BMP receptors in the 
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presynaptic cell (Marques, 2005). This correlated synaptic growth is also 

controlled by the release of Wg, which is thought to act on DFz2 receptors in 

both the pre- and postsynaptic cells where it initiates alternative transduction 

pathways (Ataman et al., 2008); (Franco et al., 2004); (Miech et al., 2008).  

A major gap in our understanding of how WNTs function is the mechanism 

by which they reach their destination once released. Despite the presence of 

charged amino acid residues in the primary sequence of WNTs, WNTs are 

hydrophobic molecules tightly bound to cell membranes due to the addition of 

palmitate moieties during maturation (Willert et al., 2003); (Zhai et al., 2004). This 

hydrophobic nature of WNTs argues against the simple model of passive 

diffusion in the extracellular milieu. The studies presented here suggest that one 

mechanism for this transport is the association of Wg with Evi-containing 

vesicles, which are released from presynaptic boutons and become localized to 

postsynaptic sites. This model is supported by several lines of evidence. (1) 

Downregulating Evi in the presynaptic motorneurons (Evi-RNAi-pre) not only led 

to a reduction in Evi immunoreactivity inside presynaptic terminals but also 

substantially reduced the label at the postsynaptic region. (2) Expressing Evi-

GFP in motorneurons (Evi-GFP-pre) led to the localization of the GFP label in the 

postsynaptic junctional region in the form of puncta that colocalized with both the 

Evi-Cin and Evi-Nex antibodies and that showed substantial colocalization with 

secreted Wg at the postsynapse. (3) Evi-GFP could be transferred from 

transfected to untransfected S2 cells, and S2 cell-culture medium contained full-

length Evi protein, suggesting that Evi was also secreted in cultured cells. In 
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addition, the secreted and transferred Evi vesicles contained Wg. This trans-

synaptic transfer of a synaptogenic signal through specialized vesicles containing 

a dedicated membrane protein is a novel signaling mechanism in the nervous 

system that might be used for a number of secreted signaling factors.  

The release of endosomal vesicles, called exosomes, has been reported 

in a variety of tissues, including cultured neurons (Faure et al., 2006); (Fevrier 

and Raposo, 2004); (van Niel et al., 2006). These exosomes are released by the 

fusion of multivesicular bodies (MVBs) with the plasma membrane and are 

thought to be involved both in the removal of cellular debris as well as in 

intercellular communication. For example, in the immune system integrin- and 

MHC-containing exosomes are used for antigen presentation, and they are able 

to prime T lymphocytes in vivo (van Niel et al., 2006). In cultured cortical 

neurons, the release of exosomes containing the cell adhesion molecule L1, the 

GPI-anchored prion protein, and the GluR2/3 subunit of glutamate receptors has 

been reported in a process that is regulated by membrane depolarization (Faure 

et al., 2006). Our finding that exosome-like vesicles containing a synaptogenic 

factor are released at synapses provides a previously unidentified mechanism for 

trans-synaptic communication.  

The mechanism by which Evi-containing vesicles are released from the 

presynaptic cell is not known, but a few potential possibilities are depicted in 

Figure 3O. For example Evi might be transported within the presynaptic cell in 

MVBs that fuse with the plasma membrane thus releasing the Evi vesicle. In turn, 

after presentation of Wg to DFz2 receptors, the vesicle might fuse with the 
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postsynaptic membrane. Interestingly, we found that Evi in presynaptic terminals 

was present in multimembrane compartments. Similarly, in Wg-secreting wing 

disc epithelial cells, Evi (Franch-Marro et al., 2008) and Wg (van den Heuvel et 

al., 1989) have been shown to be localized within MVBs. We also found that Evi 

label was found in association with postsynaptic SSR membranes and in the 

form of approximately 200 nm vesicles in the SSR. Our internalization assays 

suggest that these vesicles are endocytosed from the postsynaptic membrane. 

 

Cell-Autonomous Role of Evi in Wg-Target Muscles 

Besides its involvement in transporting the Wg signal across the synapse, 

we also found that Evi had a cell-autonomous function in the postsynaptic target 

cell, as revealed by specifically downregulating Evi in muscle. In this case both 

Wg and DFz2 accumulated at the postsynaptic region. In addition, DFz2 did not 

traffic normally from the NMJ and the nuclear import of DFz2-C was largely 

abolished. These findings suggest that Evi, beyond the regulation of WNT 

secretion, organizes further downstream signaling events in the Wg-target cell.  

The phenotypes observed upon downregulating Evi in muscle cells were 

highly reminiscent of those observed upon loss of dGRIP function. Further, 

decreasing Evi levels led to the virtual elimination of synaptic and Golgi dGRIP. 

The evidence relating Evi to dGRIP function is further supported by the findings 

that Evi and dGRIP are often observed trafficking in the same vesicles, and that 

overexpressing dGRIP in either evi mutants or Evi-RNAi-post elicited partial 

rescue of phenotypes resulting from evi loss of function. Thus, Evi appears to be 
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required for the trafficking of dGRIP to synaptic sites where dGRIP binds DFz2 

receptors and functions to traffic them toward the nucleus. The elimination of 

dGRIP from the Golgi complex might arise from a defect in its recycling to the 

Golgi due to its abnormal targeting to synapses. In the absence of postsynaptic 

dGRIP, DFz2 is not trafficked toward the nucleus leading to its accumulation at 

postsynaptic sites. Interestingly, Evi has been demonstrated to be involved in 

trafficking Wg from the Golgi to the plasma membrane in Wg-secreting cells 

(Belenkaya et al., 2008); (Franch-Marro et al., 2008); (Pan et al., 2008); (Port et 

al., 2008); (Yang et al., 2008). Our studies showing that Evi is required for the 

trafficking of dGRIP to postsynaptic sites suggest that Evi might have a role not 

solely in transporting WNTs, but also in trafficking components associated with 

WNT pathways.  

Although this study identifies a pre- and postsynaptic role for Evi, it is clear 

that the roles are not completely independent. For example, we found that 

restoring Evi levels only in the motorneurons of evi mutants was sufficient for a 

complete rescue of the ghost bouton phenotype and resulted in a partial rescue 

in the number of nuclear DFz2C spots. These results were surprising given that 

in the absence of postsynaptic Evi, dGRIP does not traffic normally and thus 

interferes with postsynaptic WNT signaling. A potential explanation is that the 

transferred presynaptic Evi can partially compensate for the lack of Evi in the 

postsynaptic cell.  

In conclusion, our studies identify a mechanism by which the WNT-1/Wg 

signal is transmitted across the synapse, through the use of an Evi vesicle, and 
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find an additional cell-autonomous role of Evi in WNT-receiving cells, the 

synaptic recruitment of dGRIP, which functions in transporting the signal to the 

muscle nucleus. 

 

MATERIALS and METHODS 

Fly Strains 

Flies were reared in standard Drosophila media at 25°C unless otherwise stated. 

(See Supplemental Materials and Methods for fly strains.) RNAi crosses and 

controls were performed at 29°C. The wgts flies were tested at the restrictive 

temperature (25°C).  

 

Cytochemistry  

Third instar larvae were dissected in Ca++-free saline and fixed in either 4% 

paraformaldehyde or non-alcoholic Bouin’s fixative (see Supplemental Materials 

and Methods for antibodies and Hoechst conditions).  

 

Image Quantification  

Confocal images were acquired using a Zeiss Pascal Confocal Microscope. 

Preparations from different genotypes were processed simultaneously and 

imaged using identical confocal acquisition parameters. Fluorescence signal 

intensity was quantified by volumetric measurements of confocal stacks using 

Volocity 4.0 Software (see Supplemental Materials and Methods). Measurements 

were taken from muscles 6 and 7, abdominal segment 3. A Student’s t test was 
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performed for pair-wise comparisons between each genotype and controls. Error 

bars in the histograms represent mean ± standard error of the mean (SEM), 

where *** = p < 0.0001; ** = p < 0.001; * = p < 0.05. 

 

Schneider-2 Cell Cultures 

Schneider-2 (S2) cells were transfected as described in Supplemental Materials 

and Methods. For Evi-GFP transfer experiments, pAc-Evi-EGFP (Bartscherer et 

al., 2006) transfected S2 cells were washed 24 hr after transfection and mixed 

with pAc-mCherry transfected S2 cells. For cotransfection experiments we used 

pAc-Wg (Bartscherer et al., 2006), pAc-Evi-EGFP, pAcrCD2- RFP, and pAc-

DFz2-myc (Mathew et al., 2005). Cells were then grown for 24–48 hr and 

processed for immunocytochemistry.  

 

Live Imaging  

Live imaging of transfected S2 cells and body wall muscles was performed using 

an Improvision Spinning Disk confocal microscope as described in Supplemental 

Materials and Methods.  

 

Western Blots  

Western blots were performed as in (Mendoza-Topaz et al., 2008). For 

examination of Evi in S2 cells and the culture medium, transfected cells were 

washed with fresh medium 24 hr after transfection, and 24 to 48 hr later cells and 

medium were harvested for immunoblotting (Supplemental Materials and 
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Methods).  

 

Immunoelectron Microscopy  

For the pre-embedding technique, third instar body wall muscles were fixed and 

incubated with anti-Evi-Nex (1:100) or anti-GFP (1:300) followed by anti-rabbit 

IgG-1.4 nm nanogold (1:50; Nanoprobes) and intensification using HQ silver 

reagents (Nanoprobes). The EM Internalization assay was performed as above, 

except that 1.4 nm nanogold secondary antibody was used after 

permeabilization. For the post-embedding technique, samples were fixed and 

then embedded in LR White resin followed by antibody staining on grids with 

secondaries conjugated to 18 nm gold (1:75; Jackson). Transmission electron 

microscopy analysis was performed as described by (Torroja et al., 1999). 

 

 

SUPPLEMENTAL MATERIALS and METHODS 

Fly Strains 

The following fly strains were used for these studies: wild type (Canton-S), 

evi2 (Bartscherer et al., 2006) (referred to as evi in the text), wgts (wg IL114; 

(Nusslein-Volhard et al., 1985)), UAS-myr-mRFP (Bloomington Stock Center), 

UAS-Evi- EGFP (Bartscherer et al., 2006), UAS-Evi-RNAi (stock 5215; Vienna 

Drosophila RNAi Center www.vdrc.at/), UAS-dGRIP-mRFP (Ataman et al., 

2006a), UASLacZ- NLS and the Gal4 drivers C380, BG487 and C57 (Budnik et 

al., 1996), Elav-Gal4 (Luo et al., 1994), and Wg-Gal4 (gift of Dr. S. Cohen).  
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Immunocytochemistry and cytochemical staining. 

The following primary antibodies were used: anti-Wg (1:300 (Packard et al., 

2002)), anti-DLGPDZ (1:20,000 (Koh et al., 1999)), anti-Evi-Nex (1:100; see 

below), anti-Evi-Cin (1:100; see below), anti-DFz2-N (1:600 (Packard et al., 

2002)), anti-DFz2-C (1:100 (Mathew et al., 2005)), anti-GFP (1:200; Molecular 

Probes), anti-dGRIP (1: 300 (Ataman et al., 2006a)), anti-Wg monoclonal (1:2, 

clone 4D4; Developmental Studies Hybridoma Bank (DSHB)), anti-elav (1:50; 

clone 9E8A10; DSHB), anti-myc (1:200; Roche), mouse anti-GFP (1:200; 

Molecular Probes), Rabbit anti-GFP (1:300; MBL International), anti-β-gal 

(1:1000; Organon Teknika Corporation), Texas red (TxR) conjugated anti-HRP 

(1:200; Sigma), FITC conjugated anti-HRP (1:800; Sigma). FITC-, TxR-, and 

Alexa 647-conjugated secondary antibodies (Jackson Immunoreasearch) were 

used at 1:200. Rhodamine conjugated Phalloidin (Molecular Probes) was used at 

1:200. Hoechst nuclear stain (33342, Invitrogen) was used at 10 µg/ml for 15 

minutes at room temperature. 

 

Quantification of immunoreactivity levels and morphometric analysis 

Images were acquired using a Zeiss (Oberkochem, Germany) Pascal Confocal 

Microscope with a 63X (1.4 numerical aperture) objective. Preparations from 

different genotypes were processed simultaneously and imaged using identical 

confocal acquisition parameters for comparison. Fluorescence signal intensity 

was quantified by volumetric measurements of confocal stacks using Volocity 4.0 



68

68

Software (Improvision, Waltham, MA). For measurement of pre- and postsynaptic 

intensity, single boutons were selected and analyzed as three- dimensional 

volumes in Volocity. The labeled region around the boutons was segmented by 

intensity thresholding based on the difference in the intensities at the NMJ vs 

background intensity. Fluorescence intensity represents the sum of the 

intensities of each of the voxels that fell above the threshold value. Presynaptic 

intensity was measured by calculating the volume occupied by the label of 

interest that overlapped with the volume occupied by the anti-HRP label 

(presynaptic bouton volume) and measuring the total intensity within that volume. 

To obtain postsynaptic intensity, the volume occupied by the anti-HRP label was 

subtracted from the total volume of the labeled region resulting in the 

postsynaptic volume. The total intensity of the label within the postsynaptic 

volume was computed to obtain the postsynaptic intensity. Both pre and 

postsynaptic intensities were expressed as Vpost- int / Vbouton and normalized to wild 

type controls dissected and processed in the same experimental session. For 

determination of the number of type I boutons and ghost boutons, body wall 

muscle preparations were double stained with anti-HRP and anti-DLG. 

Measurements were taken from muscles 6 and 7, abdominal segment 3. For 

measurements of Wg accumulation in the brains of wild type and evi mutant 

larvae, regions of the brain that included either the motorneuron cell bodies or 

the neuropil were selected from both genotypes and mean intensity of Wg in that 

region were measured. A Student’s t test was performed for pair-wise 

comparisons between each genotype and its simultaneously processed wild type 
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control samples. 

 

Schneider-2 (S2) cell cultures 

Drosophila Schneider (S2) cells were cultured in SFX (Hyclone) medium 

containing 10%FBS, penicillin (100 U/µl) and streptomycin (100 µg/µl) (SFX-

SPS). 3x2ml-wells/sample of 60-80% confluent S2 cells were transfected with 1.0 

µg DNA using Cellfectin and Serum Free Medium (Invitrogen). For Evi- GFP 

transfer experiments, pAc-Evi-EGFP (Bartscherer et al., 2006) transfected S2 

cells were washed 24 hours after transfection and mixed with pAc-mCherry 

transfected S2 cells. For co-transfection experiments, pAc-Wg (Bartscherer et al., 

2006) was used along with pAc-Evi-EGFP. In addition pAc-rCD2-RFP and pAc- 

DFz2-myc (Mathew et al., 2005) constructs were used for transfections. Cells 

were then grown for 24-48 hours and processed for immunocytochemistry.  

 

Live Imaging 

Live imaging of cells was performed on transfected S2 cells grown on 22mm 

coverslips, and then mounted over cell culture medium, and sealed in place with 

dental wax. These slides were then imaged using an Improvision Spinning Disk 

confocal microscope using a 40X Zeiss 1.2 NA objective. Z-stacks were taken 

once every 5 seconds. Live imaging of larval muscles was performed basically as 

in (Ataman et al., 2008). Briefly, larvae were dissected under 0.1mM CaCl2 HL-3 

saline, covered with a coverslip and imaged under the Improvision Spinning Disk 

confocal microscope. Due to two color live imaging, Z-stacks were taken once 
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every 15 seconds. 

 

Western blots 

Larval brains were dissected in ice cold Ca++-free saline and homogenized at 4°C 

in RIPA buffer containing protease inhibitors as previously described (Mendoza-

Topaz et al., 2008). Proteins were separated on an 8% SDS PAGE gels, 

transferred onto nitrocellulose membranes and sequentially immunoblotted with 

anti-Wg (1:3000) and anti-tubulin (1:5000). For examination of Evi in S2 cells and 

the culture medium, the culture medium of S2 cells transfected with pAc-Evi- 

EGFP was changed 24 hours after transfection. Cells were then harvested the 

next day and spun down at 4,000rpm to collect the cellular pellet and the 

supernatant. The supernatant was subsequently centrifuged at 12,000rpm. Cell 

lysates and supernatants were separated on 8% SDS PAGE gels and 

immunoblotted as above with anti-GFP (1:5000; Abcam) and anti-Lamin C 

(1:300; LC28.26, Developmental Studies Hybridoma Bank) antibodies. Signal 

was detected using chemiluminescence reagents (Amersham). 

 

Extraction and Isolation of RNA and cDNA synthesis 

Larvae were homogenized in trizol reagent using a pellet pestle (Kimble-Kontes, 

Vineland, NJ). Total RNA was treated with DNAse and eluted with the RNeasy 

Micro Kit (Qiagen, CA). RNA was quantified by UV spectrophotometry using a 

NanoDrop 2000c spectrophotometer (Thermo scientific). cDNA synthesis was 

performed using a SuperScript III cDNA synthesis kit from 1 µg of eluted total 
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RNA (Invitrogen, CA). Expression of Evi mRNA was analyzed by Real time PCR 

with Taqman Gene expression assays, house keeping: GapDH [assay ID: 

Dm01841185_m1 gpdh], Target: Evi [assay ID:Dm 01802231_g1 wls] using the 

ABI 7000 SDS software, Applied Biosystems and analyzed via the delta-delta Ct 

method. Absence of DNA contamination in total RNA was confirmed by realtime 

qRT-PCR using -RT as a control. 

 

Generation of Evi antibodies 

Affinity purified antibodies anti-Evi-Nex and anti-Evi-Cin, were raised in rabbits 

using the peptides TIDMRLAYRNKGDPDN and SHKQHPTMHHSDETTQSN as 

immunogens (Biosource). 

 

Internalization assay 

The internalization assay was performed as in (Mathew et al., 2003). Wandering 

third instar larvae were dissected in 0.1 mM Ca++ HL-3 saline and incubated in 

saline containing DFz2-N antibody for 2 hr at 4°C. Samples were then washed 

and shifted to room temperature for 5 or 60 min, fixed, and labeled with Alexa 

647-conjugated secondary antibody under nonpermeabilized conditions to label 

surface DFz2. To label internalized DFz2, samples were permeabilized and 

labeled with a FITC-conjugated secondary antibody.  

Immunoelectron microscopy 

For the pre-embedding technique, third instar body wall muscles were dissected 

in 0.1 mM CaCl2 HL-3 saline and fixed using 0.1% Glutaraldehyde in Trump’s 
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fixative with 2mM MgCl2 for 1 hour at room temperature. The samples were then 

washed and incubated with anti-Evi-Nex (1:100) or anti-GFP (1:300) antibody for 

1 hour at room temperature. The secondary antibody was anti-rabbit IgG-1.4 

nmnanogold (1:50; Nanoprobes, NY). The samples were then washed, rinsed 

with deionized water and the signal intensified by using silver enhancement using 

HQ silver reagents (Nanoprobes, NY) in the dark for 4 minutes. Samples were 

then post-fixed for 1 hour at 4°C. Boutons from muscles 6 and 7 at segments A3 

were serially sectioned and photographed at 19,500X and 66,000X using a TEM. 

For the internalization assay, samples were dissected as above and incubated in 

saline containing anti-Evi-Nex for 1 hr at 4°C. Samples were then washed and 

shifted to room temperature for 0 or 60 min and fixed in Trump’s fixative 

containing 0.1% glutaraldehyde and 2 mM MgCl2 for 1 hr at room temperature. 

After washing, samples were incubated with 1.4 nm nanogold conjugated 

antirabbit secondary (1:50; Nanoprobes, NY) prior to processing for TEM as 

above. For the post-embedding technique, samples were fixed in Trump’s fixative 

containing 0.1% glutaraldehyde and 2mM MgCl2 for 2.5 hours, and then 

embedded in LR White resin. Thin sections were captured on nickel grids, 

treated with glycine to quench free aldehyde groups, blocked, and incubated with 

anti-Evi-Cin (1:100), and anti-rabbit IgG antibody conjugated to 18nm gold (1:75; 

Jackson). Samples were then stained and visualized by TEM.  
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Figure 2.1. Wg Localization at the Neuromuscular Junction Is Regulated by 

Presynaptic Evi 

(A-D) Single confocal slices of 3rd instar larval NMJs at muscles 6 or 7, labeled 

with anti-HRP (blue) and anti-Wg (red) in (A) Wild type, (B) an evi mutant 

expressing transgenic Evi in motorneurons to determine if it rescues the Wg 

decrease (evi, Evi-pre), (C) an evi mutant, and (D) an evi mutant expressing 

transgenic Evi in muscles to determine if it rescues the Wg decrease (evi, Evi-

post). Note that Wg levels were decreased at NMJs of evi mutants, and this 

phenotype could be rescued by expression of Evi in motorneurons but not in 

muscles. (E) Normalized Wg levels inside synaptic boutons (black bars; pre-), 

and at the postsynaptic region (white bars; post-) in the indicated genotypes (see 

methods for details on the volumetric quantification). Number of samples is 33 for 

wild type, 11 for evi mutants, 13 for evi, Evi-pre, and 11 for evi, Evi-post. Bars in 
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the histogram represent mean±SEM. ***= p<0.0001; **= p<0.001. (F) Western 

blot of larval brain extracts showing that Wg levels do not change in evi mutants, 

but they are enhanced when Evi is expressed in the presynaptic motorneurons. 

Numbers at the right of the blot represent molecular weigh in KDa. Calibration 

bar is 7 µm. 
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Figure 2.2. Mutations in evi mimic abnormal synaptic phenotypes observed 

in wg mutants

(A-D) Confocal images of 3rd instar larval NMJs at muscles 6 and 7, labeled with 

anti-HRP (red) and anti-DLG (green) in (A, C) wild type, and  (B, D) an evi 

mutant. (A, B)  are low magnification projections of an entire NMJ at muscles 6 
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and 7, while (C, D) are high magnification single confocal slices of NMJ 

branches. In evi mutants the number of synaptic boutons is drastically reduced, 

and boutons have an abnormal shape (arrowheads in C, D). These mutants also 

have an abnormally high number of undifferentiated boutons (ghost boutons; 

arrows in D).  (E-G) Quantification of the number of (E, G) boutons and (F) ghost 

boutons at the 3rd instar larval stage at muscles 6 and 7, abdominal segment A3 

in the indicated genotypes. Number of samples in E and F is 26 for wild type; 12 

for evi mutants, 14 for evi, Evi-pre; 13 for evi, Evi-post-BG487; 15 for evi, Evi-

post-C57; and 13 for evi, Evi-pre + post-C57. Number of samples in G is 13 in 

wild type, 11 in wgts/+, 14 in evi/+, and 10 in wg/+;evi/+.  Bars in the histograms 

represent mean±SEM. ***= p<0.0001; **= p<0.001; *=p<0.05. Calibration bar is 

30 µm for A, B and 13 µm for C, D. 
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Figure 2.3. Evi Is Localized Pre- and Postsynaptically at the Neuromuscular 

Junction, and It Is Transported Trans-Synaptically as an Intact Protein 

(A) Diagram showing the predicted structure of Evi and the protein regions 

(underlined) used for generation of the Evi-Nex and Evi-Cin antibodies. (B-E) 

Single confocal slices of NMJs at muscles 6 or 7 double stained with anti-HRP 

(red) and antibodies to (green) (B, D) Evi-Nex and (C, E) Evi-Cin, in (B, C) wild 

type, (D, E) evi mutant.  Both the Evi-Nex and Evi-Cin antibodies label the NMJ, 

and this immunoreactivity is severely decreased in evi mutants. 

 (F) Confocal slices stained with Evi-Nex (green) and HRP (red) in (F) Evi-RNAi-

pre, (G, H) Single confocal slices of NMJs at muscles 6 or 7 of (G) Evi-GFP-pre 

triple stained with anti-GFP (green), anti-HRP (red) and anti-Dlg (blue) or (H) evi; 
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Evi-GFP-Pre stained with anti-GFP (green),anti-HRP (red). (I) Quantification of 

normalized pre- (black bars) and postsynaptic (white bars) Evi levels in the 

indicated genotypes. Number of samples is 17 for wild type, 10 for Evi-RNAi-pre, 

and 12 for Evi-RNAi-post. (J) Single confocal slices of a bouton at (J1-J3) low 

magnification and (J4-J6) high magnification in Evi-GFP-pre stained with anti-

GFP (green), anti-Wg (red) and anti-HRP (blue) showing that secreted Evi-GFP 

colocalizes with secreted Wg at the postsynaptic region. (L, M) Confocal images 

of NMJs from evi; Evi-GFP-Pre triple stained with GFP (green), anti-HRP (blue) 

and antibodies to red (L2, L3) Evi-Nex or (M2, M3) Evi-Cin. Note that 

postsynaptic GFP is colocalized with both anti-Evi-Nex and anti-Evi-Cin 

suggesting that Evi is transferred trans-synaptically as an intact vesicle (see text 

for details). (N, O) Models on the potential mode of Evi trans-synaptic transfer. 

Note that Evi is fused to GFP at the C-terminal tail, and that the Evi-Nex antibody 

binds to the first extracellular loop (red) of Evi. In (N) an extracellular region of 

Evi is cleaved and transported to the postsynaptic compartment. In (O) Evi is 

transferred as an intact protein through the use of vesicular compartments. 1 (red 

arrows) and 2 (black arrows) represent potential vesicular pathways. In 1, an Evi-

containing vesicle is released from the presynaptic membrane through a 

multivesicular body (MVB), which either fuses with the postsynaptic membrane or 

is taken up as an intact vesicle in an MVB. In 2, a presynaptic Evi vesicle is 

released from the presynaptic membrane and either fuses with the postsynaptic 

membrane or is taken up as an intact vesicle in an MVB. Bars in the histograms 
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represent mean±SEM. ***= p<0.0001; **= p<0.001. Calibration bar is 2 µm for 

panels J1-J3 and 6 µm for the rest of the panels. 
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Figure 2.4. Evi Is Transferred from Cell to Cell and to the Medium 

(A, B) Single confocal slice through a mixture of S2 cells (A) either untransfected 

(outlined by white circles) or transfected with Evi-GFP (green) and (B) either 

transfected with mCherry (red) or Evi-GFP (green). Note that in either case, Evi-

GFP puncta are observed in the Evi-negative cells (arrowheads) and in the 

media (arrow). (C) Evi-GFP and Wg are transferred together into an 

untransfected cell (arrowheads) (D) Wg localizes with Evi into punctuate 

structures within filopodia (arrows), as well as in the medium (arrowhead) (E) 

Western blot of lysates and media from Evi-GFP transfected (+) S2 cells. Note 
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the presence of GFP signal in the growth medium from transfected cells, 

indicating the secretion of Evi to the medium.  (F) time-lapse imaging of an S2 

cell transfected with Evi-GFP and showing the shedding of an Evi-GFP vesicle to 

the medium (arrows). Calibration bar is 3µm for panel 4D and 8 µm for the rest of 

the panels. Time points in 4F are (in minutes). 
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Figure 2.5. Evi Is Localized to Pre- and Postsynaptic Vesicular Structures 

as well as Pre- and Post-Perisynaptic Membranes 
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(A-K) Electron micrographs of synaptic bouton regions in preparations labeled 

with antibodies to Evi-Nex or GFP, followed by 1.4 nm gold-conjugated 

secondary and silver intensification, or antibodies to Evi-Cin labeled with 18 nm 

gold-conjugated secondary. In these micrographs the presynaptic compartment 

has been overlayed in pink. Insets are high magnification views of the structures 

indicated by the arrows. In (A, B, D-H) samples were fixed and permeabilized 

followed by primary and secondary antibody incubation. In (C) samples were 

processed for an internalization assay (see text for details). (I-K) Samples were 

stained post-embedding with anti-Evi-Cin. (A, B) Immunoreactive vesicles found 

at the SSR region. (C) Internalized Evi is found in postsynaptic SSR vesicles. (D, 

K) Localization of label at SSR membranes. (E-H) Evi label at the perisynaptic 

region of pre- and postsynaptic membranes. Arrowheads in (F) mark the active 

zone. (I) Evi localization at a presynaptic multimembrane body. (J) Evi-

immunoreactive gold particles at the presynaptic region and the synaptic cleft. 

Calibration bar is 0.6µm in A, C, D, K; 0.3µm in B, E-H; 0.2µm in the insets of A; 

0.15µm in the inset of B, and 0.1 µm in the inset of C. 
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Figure 2.6. Evi Downregulation in Muscle Results in Postsynaptic Wg and 

DFz2 Accumulation and Alterations in the Frizzled Nuclear Import Wg 

Pathway 

(A-D) Single confocal slices through NMJs at muscles 6 or 7 triple stained with 

antibodies to HRP (red), DLG (blue) and (A, B) DFz2 (green) or (C, D) Wg 

(green) in (A, C) wild type and (B, D) Evi-RNAi-Post. Note that both Wg and 

DFz2 accumulate at the postsynaptic region of NMJs expressing Evi-RNAi-

postsynaptically. (E) Quantification of Wg (black bars) and DFz2 (white bars) 

immunoreactivity levels at the postsynaptic region of the indicated genotypes. 

Number of samples is 10 for wild type, and 10 for Evi-RNAi-post. (F) Intensity of 

surface and internalized DFz2 at 5 and 60 min after the antibody-binding step in 

wild type (black bars) and Evi-RNAi-post (white bars). Number of samples is 13 

and 10 for wild type at 5 and 60 min; 11 and 10 for evi mutants at 5 and 60 min. 

(G-J) Single confocal slices of branches form NMJs subjected to the 
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internalization assay, showing (G1-J1) surface DFz2 (blue) and (G2-J2) 

internalized DFz2 (green) (G, I) at 5 min and (H, J) 60 min after the antibody 

binding step, in (G, H) wild type, and (I, J) Evi-RNAi-post. Note that in Evi-RNAi-

post internalized DFz2 remains at high levels at the NMJ at 60 min. (K, L) 

Confocal slices of muscle nuclei in preparations stained with anti-DFz2-C (green) 

and Hoechst (blue) in (K) wild type and (L) evi mutants showing the drastic 

decrease in intranuclear DFz2-C in the mutants. (M) Normalized number of 

DFz2-C nuclear spots in the indicated genotypes. Number of nuclei quantified is 

159 for wild type, 154 for evi mutants, 115 for Evi-RNAi-post, 163 for evi, Evi-

GFP-post, and 92 for evi, Evi-GFP-pre. Bars in the histograms represent 

mean±SEM. **= p<0.001; *=p<0.05 Calibration bar is 10 µm for panels A-H1-2, I-

L; 5 µm for panels A-D3-4. 
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Figure 2.7. Downregulating Evi in Postsynaptic Muscles Alters the 

Localization of dGRIP and Proposed Function of Evi in the Pre- and 

Postsynaptic Compartment 

(A, B) Single confocal slices through NMJs at muscles 6 or 7 in preparations 

triple labeled with antibodies to HRP (blue), dGRIP (green) and Lavalamp (Lva; 

red) in (A) wild type, and (B) Evi-RNAi-post. Arrows in A point to synaptic dGRIP. 

Arrowheads in A and B point to dGRIP positive and dGRIP negative Golgi bodies 

(marked with lava lamp) respectively. Note the decrease in synaptic and Golgi 

immunoreactivity and the diffuse appearance of dGRIP in the muscle cortex. (C) 

Quantification of dGRIP levels at the postsynaptic junctional region, Golgi bodies, 

and muscle cortex, in wild type (black bars) and Evi-RNAi-post (white bars), 

showing that dGRIP is significantly reduced from postsynaptic sites and Golgi, 

but increased at the muscle cortex in Evi-RNAi-post. Number of samples is 10 for 

wild type and 10 for Evi-RNAi-post. (D) Quantification of postsynaptic DFz2 

levels in wild type, Evi-RNAi-post and Evi-RNAi-post, dGRIP-post. Number of 

samples is 10 for wild type, 10 for Evi-RNAi-Post and 16 for Evi-RNAi-post, 

dGRIP-Post (E) Quantification of bouton number in wild type, evi mutants, and 

evi mutants expressing dGRIP-post. Number of samples is 26 for wild type,12 for 

evi mutants, and 8 for evi mutants expressing dGRIP-post. (F) Quantification of 

DFz2C spots in wild type, evi mutants, and evi mutants expressing dGRIP-post. 

Number of samples is 205 for wild type, 154 for evi mutants, and 136 for evi 

mutants expressing dGRIP-post. (G) Proposed model for Evi function in the pre- 

and postsynaptic compartment (see text for details). Bars in the histograms 
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represent mean±SEM. ***= p<0.0001; **= p<0.001; *=p<0.05. Calibration bar is 6 

µm for A-B1-3, and 3 µm for A-B4-6. 
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Suppl. Figure 2.1. Reduction of postsynaptic Wg by expressing Evi-RNAi in 

neurons and accumulation of Wg in the ventral ganglion of evi mutants. (A, 

B) Single confocal slices through muscles 6 or 7 in preparations double labeled 

with antibodies against HRP (blue) and Wg (red) in (A) wild type, and (B) in 

larvae expressing Evi-RNAi in neurons. (C, D) Single confocal slices through the 

ventral ganglion of (C) wild type and (D) an evi mutant stained with Wg (green) 

and Elav (red). (E) Quantification of Wg levels either in the neuropil or the motor 

neuron region of the indicated genotypes. Number of samples is 8 for wild type 

and 10 for the evi mutant. Calibration bar is 7µm for panels 1A, B and 90µm for 

1C, D. 
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Suppl. Figure 2.2. Muscle surface area in different genotypes used in this 

study. 

Number of samples is 20 for wild type, 13 for evi mutants, 6 for Evi-RNAi-post, 11 

for Evi-RNAi-pre, 6 for Evi-RNAi/+. 
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Suppl. Figure 2.3. Localization of the Evi antibody epitopes to extra- and 

intracellular sites, and in vivo shedding of Evi-containing vesicles. (A,B) 

Single confocal slices of unpermeabilized NMJs at muscles 6 or 7 double stained 

with antibodies against HRP (red) and (A) Evi-Nex (green) or (B) Evi-Cin (green). 

Note that only the Evi-Nex antibody stains the NMJ in unpermeabilized samples, 

consistent with the idea that the Evi-Nex epitope is localized extracellularly and 

the Evi-Cin epitope likely intracellularly. (C) Single confocal slice of an NMJ 

imaged live, in a larva expressing myr-mRFP (red) in motorneurons to label the 

presynaptic compartment and Evi-GFP (green) in motorneurons to show that 

presynaptic Evi-GFP vesicles are shed to the postsynaptic compartment. (D,E) 

Confocal image of a larva expressing LacZ-NLS with the Gal4 driver C380 

showing (D) the ventral ganglion —note the clear nuclear localization, and (E) the 

NMJ —note the lack of signal in muscle nuclei (arrows). (F) Volumetric 
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quantification of Evi signal in either wild type or presynaptic rescue of evi 

mutants. (G-H) Confocal slices and colocalization measurements between 

presynaptically expressed Evi-GFP and (G) anti-Evi-Nex or (H) anti-Evi-Cin. 

Calibration bar is 5 µm for A-B and G-H, 7µm for C and 160µm for D and 13µm 

for E. 
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Suppl. Figure 2.4. S2 cells do not transfer DFz2 or rCD2-mRFP to the 

medium. (A-C) Confocal images of S2 cells transfected with (A) DFz2, (B) rCD2-

mRFP, and (C) untransfected. Note that the transfected cells are not transferring 

transmembrane proteins, as previously observed with Evi-GFP. Also, the 

formation of filopodia is independent of transfection as they are observed in 

untransfected cells as well. Calibration bar is 5µm. 
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Suppl Fig 2.5. Realtime PCR analysis of Evi mRNA levels in body wall 

muscles. 

Normalized Evi mRNA levels in wild type and Evi-RNAi-post. 
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CHAPTER 3 

 

 

REGULATION OF POSTSYNAPTIC RETROGRADE SIGNALING BY 

PRESYNAPTIC EXOSOME RELEASE 

 

 

 

 

 

 

 

 

The following work is under peer review for publication in Neuron (Korkut, C. Li, 

Y., Brewer, C., Koles, K., Ashley, J., Yoshihara, M., and Budnik, V. (2012). 

Regulation of postsynaptic retrograde signaling by presynaptic exosome 

release). 
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ABSTRACT 

Retrograde signals from postsynaptic targets are critical during development and 

plasticity of synaptic connections. These signals serve to adjust the activity of 

presynaptic cells according to postsynaptic cell outputs and to maintain synaptic 

function within a dynamic range. Despite their importance, the mechanisms that 

trigger the release of retrograde signals and the role of presynaptic cells in this 

signaling event are unknown. Here we show that a retrograde signal mediated by 

Synaptotagmin 4 (Syt4) is transmitted to the postsynaptic cell through 

anterograde delivery of Syt4 via exosomes. Thus, by transferring an essential 

component of retrograde signaling through exosomes, presynaptic cells enable 

retrograde signaling. 

 

INTRODUCTION 

The Drosophila neuromuscular junction (NMJ) has proven to be a powerful 

model system to investigate mechanisms underlying retrograde signaling 

(Keshishian and Kim, 2004). Spaced stimulation of Drosophila embryonic and 

larval NMJs results in potentiation of spontaneous (quantal) release (Ataman et 

al., 2008; Yoshihara et al., 2005), through a retrograde signaling mechanism 

requiring postsynaptic function of the vesicle protein, Synaptotagmin-4 (Syt4) 

(Barber et al., 2009; Yoshihara et al., 2005).  

Synaptotagmins are a family of membrane trafficking proteins composed 

of an N-terminal transmembrane domain, a linker sequence, and two C-terminal 

C2 domains (Littleton et al., 1999; Vician et al., 1995). The most abundant 
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isoform in the nervous system, Synaptotagmin 1, is associated with synaptic 

vesicles and has been proposed to function as a Ca++ sensor for 

neurotransmitter release (Brose et al., 1992). Among the multiple Synaptotagmin 

family members, Syt4 occupies an interesting, yet poorly understood position. Its 

expression is regulated by electrical activity (Babity et al., 1997; Vician et al., 

1995), it is present in vesicles containing regulators of synaptic plasticity and 

growth, such as BDNF (Dean et al., 2009), it regulates learning and memory 

(Ferguson et al., 2001), and in humans the syt4 gene is localized to a 

chromosome 18 locus linked to schizophrenia and bipolar disorder (Ferguson et 

al., 2001). 

 At the fly NMJ, spaced stimulation not only results in potentiation of 

spontaneous neurotransmitter release (Ataman et al., 2008; Yoshihara et al., 

2005), but also in structural changes at presynaptic arbors, the rapid formation of 

ghost boutons, nascent boutons which have still not developed postsynaptic 

specializations or recruited postsynaptic proteins (Ataman et al., 2008). However, 

whether this activity-dependent bouton formation also requires Syt4-dependent 

retrograde signaling was unknown.  

Here we demonstrate that retrograde Syt4 function in postsynaptic muscle 

is required for activity-dependent synaptic growth and that this function depends 

on exosomal release of Syt4 by presynaptic terminals. Although Syt4 protein is 

present both in presynaptic terminals and postsynaptic muscles, trapping or 

downregulating endogenous Syt4 in presynaptic motorneurons eliminates its 

localization in postsynaptic muscle cells, suggesting that postsynaptic Syt4 is 
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derived from presynaptic cells. Consistent with this, syt4 transcript is detected in 

motorneurons but not in muscle cells. We provide compelling evidence that Syt4 

is present within presynaptic exosome vesicles, which are transferred to 

postsynaptic cells. This exosomal transfer of Syt4 is required both for activity-

dependent synaptic growth and potentiation of miniature neurotransmitter 

release. Thus, our data suggest a presynaptic control of postsynaptic retrograde 

signaling through the exosomal transfer of an essential retrograde signaling 

component. To our knowledge, this is the first demonstration of exosomal 

transfer of a transmembrane regulator of vesicle release and the involvement of 

exosomes in retrograde signaling.  

 

RESULTS and DISCUSSION 

Postsynaptic depolarization is required for rapid activity-dependent 

synaptic growth 

To determine if similar to the potentiation of miniature release (Barber et 

al., 2009; Yoshihara et al., 2005) the rapid formation of ghost boutons in 

response to spaced stimulation required retrograde signaling, we used an 

optogenetic approach to inhibit responses in the postsynaptic muscle cell. 

Specifically, while preparations bathed in normal Ca++
- saline (1.5 mM) were 

being stimulated, they were simultaneously hyperpolarized by expressing the 

light-gated Cl- channel, Halorhodopsin (NpHR) (Zhang et al., 2007a), specifically 

in muscles using the C57-Gal4 driver (Budnik et al., 1996). Illuminating resting 

preparations by expressing NpHR in muscle resulted in rapid and robust 
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hyperpolarization of the muscle membrane potential (Fig. 3.1A). This 

hyperpolarization was sufficient to induce a ~50% decrease in the amplitude of 

evoked excitatory junctional potentials (EJPs; Fig. 3.1B, C) and over a 10-fold 

increase in evoked EJP failures (Fig. 3.1D). Spaced stimulation of wild type 

NMJs (lacking NpHR) in the presence or absence of light elicited a 3-4-fold 

increase in the number of ghost boutons (Fig. 3.1E), which were labeled by the 

presynaptic membrane marker, anti-HRP (Jan and Jan, 1982), but lacked 

postsynaptic Discs-Large (DLG) immunoreactivity (Fig. 3.1F, G). Similarly, 

spaced stimulation of NMJs expressing NpHR in muscles in the absence of light, 

resulted in a significant increase in the number of ghost boutons (Fig. 3.1E). In 

contrast, activation of light-induced NpHR gating in larval muscles, completely 

blocked this effect (Fig. 3.1E). Thus, postsynaptic depolarization is required for 

the formation of presynaptic ghost boutons in response to spaced stimulation, 

establishing that ghost bouton formation requires a retrograde signal. 

 

Syt4 is required either pre- or postsynaptically for activity-induced ghost 

bouton formation and mEJP potentiation 

 To determine if Syt4 was required for the retrograde signal involved in 

activity-dependent ghost bouton formation, we conducted the above experiments 

in syt4 null mutants over a deficiency of the syt4 locus. Consistent with a 

requirement for Syt4 in mediating the formation of activity-dependent ghost 

boutons, syt4 mutants prevented the formation of such boutons upon spaced 

stimulation (Fig. 3.1E). If Syt4 was part of a retrograde signaling mechanism that 
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regulates nascent bouton formation, then expressing Syt4 in postsynaptic 

muscles in a syt4 mutant background should rescue the block in ghost bouton 

formation upon spaced stimulation. This prediction was tested by expressing a 

wild type Syt4 transgene in either muscles or neurons using the cell-specific Gal4 

drivers, Mhc (Myosin heavy chain)-Gal4 (for muscles) and elav-Gal4 (for 

neurons). Surprisingly, expressing Syt4 in either muscles or neurons completely 

rescued the ability of NMJs to respond to spaced stimulation by forming ghost 

boutons (Fig. 3.1E).  

 Previous studies at the larval NMJ suggested that the potentiation of 

miniature EJP (mEJP) frequency upon spaced stimulation was due to a Syt4-

mediated retrograde signal, based on the observation that postsynaptic 

expression of Syt4 in a syt4 null mutant background, could rescue the lack of 

mEJP frequency potentiation upon stimulation (Barber et al., 2009). However, the 

ability of presynaptically expressed Syt4 to rescue this syt4 mutant phenotype 

was not tested in those studies. Given that syt4 mutants were unable to form 

ghost boutons upon spaced stimulation and this phenotype could be rescued 

either by pre- or postsynaptic Syt4 expression, we determined if mEJP frequency 

potentiation could be rescued by expressing Syt4 in neurons of syt4 mutants. 

Recording from body wall muscles after spaced stimulation (Ataman et al., 2008) 

demonstrated over a 2-fold increase in mEJP frequency in wild-type larvae (Fig. 

3.1H).  This response was significantly reduced but not eliminated in syt4 

mutants (Fig. 3.1H). Nevertheless, expressing Syt4 in the neurons of syt4 

mutants completely rescued this phenotype (Fig. 3.1H). Thus, Syt4 is required 



102

102

either pre- or postsynaptically for activity-dependent ghost bouton formation and 

mEJP frequency potentiation at the larval NMJ, raising questions about the 

retrograde role of Syt4 in controlling the above presynaptic phenotypes. 

 

Syt4 is transferred trans-synaptically from presynaptic boutons to 

postsynaptic muscle compartments 

To further ascertain the site of Syt4 function, we first determined its 

localization at the NMJ. As previously reported (Adolfsen et al., 2004), antibodies 

to Syt4 revealed a localization both in pre- and postsynaptic compartments of the 

NMJ, as determined by double labeling with anti-HRP antibodies a neuronal 

membrane marker that is used to determine the boundary between pre-synaptic 

boutons and postsynaptic muscles (Fig. 3.2A). The Syt4 immunoreactive signal 

was specific, as it was virtually eliminated in syt4 null mutants (Fig. 3.2B). 

Notably, expressing a Syt4 transgene exclusively in the neurons of syt4 null 

mutants, rescued both the presynaptic and postsynaptic localization of Syt4 (Fig. 

3.2C). As the neuronal Gal4 driver does not express any Gal4 in muscles, this 

observation raises the possibility that presynaptic Syt4 might be transferred to 

the postsynaptic region, and that postsynaptic Syt4 might at least be partly 

derived from presynaptic boutons. Consistent with this observation, expressing a 

C-terminally Myc-tagged Syt4 (Syt4-C-Myc) transgene in motor neurons of wild 

type animals using the OK6-Gal4 driver (Aberle et al., 2002) mimicked the 

endogenous localization of Syt4 in both presynaptic boutons and the 

postsynaptic muscle region (Fig. 3.2D). The same postsynaptic localization of 



103

103

Syt4-C-Myc was observed when expressing the transgene using either the 

neuronal Gal4 drivers elav-Gal4 (Lin et al., 1994) or C380-Gal4 (Budnik et al., 

1996) (Suppl Fig. 3.1). Like the wild type, untagged transgene, Syt4-C-Myc 

completely rescued the mutant syt4 mutant phenotype upon spaced stimulation 

(Fig. 3.2G), suggesting that the tagged transgene is functional. These 

observations suggest that endogenous Syt4 might be transferred from synaptic 

boutons to muscles.  

The hypothesis that at least a fraction of postsynaptic Syt4 protein is 

derived from presynaptic boutons was tested by downregulating endogenous 

presynaptic Syt4 by expressing Syt4-RNAi in neurons. In agreement with the 

above model, downregulating presynaptic Syt4 resulted in near elimination of the 

Syt4 signal, not only in presynaptic boutons, but also from the postsynaptic 

muscle region (Fig. 3.2E, H). Thus, the transfer of Syt4-C-Myc from neurons to 

muscles is not just the result of overexpressing the transgene in neurons, but 

likely an endogenous process. Further, although Syt4-RNAi was highly efficient 

in decreasing the Syt4 signal from motorneurons and muscles when expressed 

in motorneurons, expressing Syt4-RNAi in muscles, using the strong C57-Gal4 

driver, did not decrease Syt4 levels either in the pre- or postsynaptic 

compartment (Fig. 3.2F, H). These results support the idea that at least an 

important fraction, if not all postsynaptic Syt4 is derived from presynaptic 

neurons. 

Given that downregulating Syt4 in neurons but not in muscles decreased 

postsynaptic Syt4 signal (Fig. 3.2H), we determined which of the above cell types 
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contained syt4 transcripts. Reverse transcription (RT)-PCR using equal amounts 

of total RNA derived from either the nervous system or body wall muscles, 

revealed the presence of a strong syt4 band in the nervous system (Fig. 3.2I). 

However, virtually no syt4 transcript was in the muscles of wild type controls or 

larvae expressing Syt4-RNAi in muscles (Fig. 3.2I). This is again consistent with 

the possibility that muscle Syt4 might be exclusively derived from the transfer of 

neuronal Syt4 by synaptic boutons. 

 

Syt4 and Evi exist in a complex and are transferred together from pre- to 

postsynaptic cells 

Syt4 is a transmembrane protein (Adolfsen et al., 2004; Sudhof and Rizo, 

1996), and thus its transfer from pre- to postsynaptic cells is not possible through 

classical vesicle exocytosis. However, we have previously observed the 

intercellular transfer of a transmembrane protein through exosome-like vesicles 

at the NMJ (Koles et al., 2012; Korkut et al., 2009), a process also observed in 

the immune system (Raposo et al., 1996a; Thery et al., 2009). In particular, the 

release and extracellular trafficking of hydrophobic WNT-1 molecules at the NMJ 

appears to be mediated by WNT binding to a multipass transmembrane protein, 

Evi/Wls, which is released to the extracellular space in the form of exosome-like 

vesicles (Koles et al., 2012; Korkut et al., 2009). Exosomes are vesicles 

generated by the inward budding of endosomal limiting membrane into 

multivesicular bodies (MVBs). MVBs can either fuse with lysosomes to dispose of 
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obsolete cellular material or with the plasma membrane to release vesicle-

associated signaling components (Simons and Raposo, 2009). 

The similar transfer of transmembrane Evi and Syt4 across cells raised 

the possibility that both molecules could shuttle together in the same exosome-

like vesicle. To address this possibility, we first determined if Evi and Syt4 

colocalized at the NMJ. Neuronally expressed Evi-GFP exactly colocalizes with 

endogenous Evi at the NMJ (Fig. 3.3A). Given that antibodies to Syt4 and Evi 

were raised in the same species, we therefore expressed Evi-GFP in 

motorneurons and examined the colocalization of the GFP label with 

endogenous Syt4. Although colocalization of GFP and Syt4 signal was not 

complete, many of the postsynaptic GFP positive puncta also contained 

endogenous Syt4 signal (Fig. 3.3B; arrows), suggesting that some of the Evi 

vesicles contain Syt4. Further, when both transgenic Syt4-C-Myc and Evi-GFP 

were overexpressed in neurons, both proteins became trapped inside synaptic 

boutons, where they colocalized with the endosomal marker, hepatocyte growth 

factor (HGF)1-regulated tyrosine kinase substrate (Hrs) (Komada et al., 1997) 

(Fig. 3.3C, D). Most importantly, labeling the NMJs of animals overexpressing 

both Syt4 and Evi, using Syt4 antibodies, which should label both endogenous 

and transgenically expressed Syt4, revealed that the entire Syt4 protein pool 

accumulated in Hrs positive endosomes, and that no detectable Syt4 signal was 

observed at the postsynaptic region (Fig. 3.3E). Taken together, the fact that syt4 

transcript is virtually absent in muscles, the ability of Syt4-RNAi expressed in 

neurons to eliminate Syt4 protein in muscles, and the observation that trapping 
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Syt4 within presynaptic endosomes completely eliminates postsynaptic Syt4 

immunoreactivity, provide compelling evidence that Syt4 protein is synthesized in 

neurons and not in muscles of larvae. It also suggests a mechanism similar to 

the trans-synaptic trafficking of Evi, through the release of exosomes (Koles et 

al., 2012; Korkut et al., 2009). 

The colocalization of Evi and Syt4 in a subset of postsynaptic puncta, as 

well as their similar transfer across cells, suggested that the proteins might exist 

within a protein complex. To test this, we first coexpressed Sy4-C-Myc and Evi-

GFP in the neurons of larvae to immunoprecipitate Syt4-Myc from body wall 

muscle and CNS extracts using anti-Myc antibodies. We found that Myc 

antibodies specifically immunoprecipitated Evi-GFP in vivo (Fig. 3.3F). We were 

also able to co-immunoprecipitate Evi-GFP and endogenous Syt4 from body wall 

muscle and CNS extracts of larvae expressing Evi-GFP in neurons, by using a 

chicken anti-Syt4 antibody (Fig. 3.3G). Because the IgY heavy chain of the 

chicken antibody runs at approximately the same molecular mass as Syt4, 

masking the Syt4 band (Fig. 3.3G, asterisk), we also immunoprecipitated Syt4-C-

Myc in larvae expressing Syt-C-Myc in neurons using the chicken Syt4 antibody, 

which allowed us to probe the blot with a mouse secondary antibody against anti-

Myc, demonstrating that the Syt4 antibody immunoprecipitated tagged Syt4 (Fig. 

3.3I). Finally, we were also able to immunoprecipitate untagged Syt4 and Evi-

GFP when expressed in S2 cells (Fig. 3.3H). Thus, Syt4 and Evi colocalize, are 

present in the same complex, and both proteins are transferred from presynaptic 

boutons to postsynaptic muscles, likely in the same exosome. 



107

107

The trans-cellular transfer of Syt4 is through exosomes 

Specific transfer of Evi-exosomes from cell to cell has been demonstrated 

in non-neuronal S2 cells (Koles et al., 2012; Korkut et al., 2009). To determine if 

similar transfer of Syt4 could be observed across S2 cells, S2 cells were 

separately transfected with either Sy4-C-V5 or mCherry. Then, Syt4-C-V5 and 

mCherry S2 cells were co-incubated in the same culture dish. We observed that 

Syt4-C-V5 puncta, likely exosomes, were transferred to mCherry S2 cells (Fig. 

3.4A, B), consistent with our observations at the NMJ. Similarly, when S2 cells 

were co-transfected with Evi-GFP and untagged Syt4, exosomes were observed 

to be transferred to untransfected cells (Fig. 3.4C). The transferred exosomes 

contained Evi-GFP, and a subset of these also contained Syt4 (Fig. 3.4C).   

To corroborate that exosomes contained Syt4, we generated a stable S2 

cell line expressing Syt4-C-HA. Then, exosomes from this cell line were purified 

by differential centrifugation and immunolabeled with antibodies to HA, followed 

by nanogold conjugated secondary antibody and silver intensification for 

examination at the electron microscopy (EM) level. We found that a population of 

exosomes contained Syt4 (Fig. 3.4E; see Suppl Fig. 3.2 for control). 

In conclusion, we show that Syt4 protein functions in postsynaptic muscles 

to mediate activity-dependent presynaptic growth and potentiation of 

miniaturerelease. However, to mediate this function Syt4 needs to be transferred 

from presynaptic terminals to postsynaptic muscle sites. We present evidence 

that, most likely, the entire pool of postsynaptic Syt4 is derived from presynaptic 

cells. We also show that like the WNT binding protein, Evi, Syt4 is packaged in 
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exosomes, which provides a mechanism for the unusual transfer of 

transmembrane proteins across cells. Taken together, our studies support a 

novel mechanism for the presynaptic control of a retrograde signal, through the 

presynaptic release of exosomes containing Syt4. 
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MATERIALS and METHODS 

Fly Strains 

Flies were reared at 25°C except for RNAi knockdown experiments, where the fly 

crosses were kept at 29°C. The following fly strains were used: wild type 

(Canton-S); syt4BA1 (Adolfsen et al., 2004); rn16 (deficiency of the Syt4 locus) 

(Agnel M, 1989); UAS-Syt4-RNAi (transformant ID 33317; Vienna Drosophila 

RNAi Center); UAS-Evi-EGFP (Bartscherer et al., 2006); UAS-Syt4-C-Myc (see 

below); UAS-eNpHR3.0-EYFP (see below) and the Gal4 drivers C155 (Lin and 

Goodman, 1994), C380, C57 (Budnik et al., 1996), OK6 (Aberle et al., 2002). 

 

Immunocytochemistry 

Third instar larval body wall muscles were dissected in ice cold Ca++ free saline 

(Jan and Jan, 1976b) and fixed using either 4% Paraformaldehyde or 

nonalcoholic Bouin’s fixative (Budnik et al., 2006). The following primary 

antibodies were used: anti-Syt4 (1:1000, (Adolfsen et al., 2004)); anti-c-Myc 

(1:500, Roche); anti-GFP (1:200, Molecular Probes); anti-DLGPDZ (1:20,000, 

(Koh et al., 1999)); anti-Evi-Cin (1:100, (Korkut et al., 2009)); anti-FL-Hrs 

(1:1000, (Lloyd TE, 2002)); anti-V5 (1:500, Invitrogen); anti-HRP-DyLight488 

(1:400) and anti-HRP-Cy5 (1:200, Jackson ImmunoResearch); anti-HRP-

DyLight594 (1:400, Jackson ImmunoResearch); anti-HRP-TxRed (1:200, Sigma). 

The following fluorescent secondary antibodies from Jackson ImmunoResearch 

were used: anti-rabbit-DyLight594 (1:400), antirabbit- FITC (1:200); anti-rabbit-
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TxRed (1:200); anti-mouse-FITC (1:200); antimouse- TxRed (1:200); anti-

guineapig-TxRed (1:200). We also used anti-mouse- Alexa647 (1:200, Molecular 

Probes).  

 

Image Acquisition, Fluorescence Intensity Quantification and 

Morphometric Analysis 

Confocal images were acquired using a Zeiss LSM5 Pascal confocal microscope 

with a Zeiss 63X Plan-Apochromat (1.4 numerical aperture) DIC oil immersion 

objective at 3X digital zoom. Fluorescence signal intensity was quantified by 

volumetric measurements of confocal stacks using Volocity 5 Software 

(Improvision) as described in (Korkut et al., 2009). Briefly, control and 

experimental samples were imaged at identical settings and the presynaptic 

intensity was measured by normalizing total intensity inside the presynaptic 

volume to the volume of the presynaptic terminals. Similarly, the postsynaptic 

intensity was measured by subtracting the presynaptic volume from the total and 

measuring the intensity in this subtracted region, followed by normalizing it to the 

presynaptic volume. For ghost bouton quantification, body wall muscle 

preparations were double stained with anti-HRP and anti-DLG, to identify HRP 

positive boutons devoid of DLG label. Measurements were taken from muscles 6 

and 7, abdominal segment 3.  

 

Statistical analysis  

Unpaired two-tailed Student’s t-tests were run for comparisons of experiments 
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where a single experimental sample was processed in parallel with a wild type 

control. In cases where multiple experimental groups were compared to a single 

control, a one-way ANOVA was performed, with Dunnet post-hoc test. Error bars 

in all graphs represent ±SEM. 

 

Spaced Stimulation   

Spaced K+ stimulation was performed as described previously (Ataman et al., 

2008). Briefly, third instar larvae were dissected in ice-cold normal HL3 saline 

containing 0.1mM Ca++, with the nervous system remaining intact. Osmotically 

balanced high K+ (90mM K+) HL3 containing 1.5mM Ca++ was applied to the 

larval samples as 3X2 min, 4 min and 6 min pulses separated by 15 min 

incubation in normal HL3 saline. Control larvae were dissected and incubated the 

same way except with normal HL3 instead of high K+ HL3. After the last 

incubation, the larvae were fixed with 4% paraformaldehyde fixative for 15 min 

followed by immunostaining with selected antibodies. For Halorhodopsin 

experiments, larvae expressing NpHR in muscle and control larvae were fed with 

100µM all trans-retinal (Sigma) and treated as described above with the 

exception of illuminating at 540-580 nm (Zeiss HBO 100 mercury lamp focused 

through a 10X Plan-Neofluor objective, and a Zeiss 3 BP565/30 Filter) on the 

larvae during the high K+ HL3 stimulations. As a control experiment, NpHR 

expressing larvae underwent spaced K+ stimulation in complete darkness. 
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Electrophysiology 

Spaced stimulation and sham stimulation was performed as above, and then 

samples were prepared for electrophysiology as in (Ashley et al., 2005). Briefly, 

larvae were bathed in 0.5mM Ca++ HL3 saline (Stewart et al., 1994), and impaled 

with a 15-20MΩ electrode (filled with 3M potassium chloride). Only samples with 

resting potentials between -60 and -63 mV were used for quantification. The 

signal was collected through an Axoclamp2B (Molecular Devices) and digitally 

recorded with Pulse software (HEKA instruments). Miniature EJP events were 

analyzed using Minianalysis software (Synaptosoft). All data was quantitated 

using Origin software (Originlab), or KaleidaGraph (Synergy).  

Recording from samples expressing NpHR was performed as follows. 

Samples were dissected in 0.3mM Ca++ HL3 saline, and then perfused with 

0.5mM Ca++ HL3 saline, and impaled with a 15-20MΩ electrode as above. 

Evoked responses were triggered by 1msec suprathreshold stimulations (<5 V) 

of the segmental nerve, which was drawn into a 10µm suction electrode. After 2 

minutes of evoked responses, the fluorescent shutter on the microscope was 

opened, exposing the preparation to 560nm light. The sample was continually 

recorded throughout the 2-minute exposure to the 560nm light pulse. Evoked 

signals were then analyzed using Minianalysis. As there were several pulses per 

animal that elicited no response, the number of failed responses per animal was 

divided by the total number of stimulations per animal and multiplied by 100 to 

give the percentage of failures. 

 



113

113

S2 Cell Culture 

Drosophila Schneider (S2) cells were cultured at 25 °C in SFX insect medium 

(HyClone) containing 10% FBS (HyClone), penicillin (50 U/ml) and streptomycin 

(50 µg/ml) (Sigma). Cells were maintained in Nunclon TM Δ Surface T-flasks 

(Thermo Scientific). For immunocytochemistry or coimmunoprecipitation4 

experiments, cells were plated on 6-well Nunclon plates (Thermo Scientific) and 

when cells reached 60-80% confluency, they were transfected with 0.5 µg DNA 

using Effectene transfection kit (Qiagen). The following plasmids were used: pAc- 

Evi-EGFP (Bartscherer et al., 2006), pAc-Gal4, pUAST-Syt4 (Barber et al., 

2009); pUAST-Syt4-C-Myc (see below); pAc-Syt4-V5 (see below); pAc-mCherry 

(Korkut et al., 2009). Cells were grown for 24- 48 hours and then processed for 

either immunocytochemistry or coimmunoprecipitation experiments. For 

exosome isolation and subsequent immunoelectron microscopy experiments, the 

following stable S2 cell lines with copper incucible promoters were used: Evi-

EGFP (in pMK33 vector) (Koles et al., 2012), Syt4-C-HA (in pMT-puro vector) 

(see below). The Evi-EGFP stable cell line was maintained under 0.5 mg/ml 

hygromycin (Invitrogen) selection and the Syt4-C-HA stable cell line was 

maintained under 0.005 mg/ml puromycin (Invitrogen) selection.  

 

Exosome Preparation 

Exosomes were prepared as in (Lässer et al., 2012) with slight modifications. 

Shaking cultures of stable S2 cell line of pMT-puro-Syt4-C-HA were induced for 

24 hours with 0.7 mM Cu2SO4 before exosome isolation. Cells (3-4X106) were 
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pelleted by centrifugation at 600 g for 10 min. The supernatant was then cleared 

of larger debris by centrifugation at 16,500 g for 20 min. The supernatant was 

passed through a 0.22 µm filter and exosomes were pelleted at 120,000 g for 75 

min. The resulting exosome pellet was resuspended in minimal volume of 100 

mM Tris pH 7.4 and kept at -80 °C until further use or fixed overnight in 2% 

paraformaldehyde for subsequent immunoelectron microscopy. 

 

Immunoelectron Microscopy of Exosomes 

Exosomes were fixed in 2% paraformaldehyde at 4 °C overnight and 5µl was 

spotted onto formvar coated Nickel grids (200 mesh). Exosomes were allowed to 

adhere to the grids for 20 min at room temperature. Next, grids were rinsed in 2X 

3 min washes of 0.1M Tris pH 7.4 and free aldehyde groups were quenched by 

4X 3 min incubations in 50 mM glycine (in 0.1M Tris pH 7.4). The grids were 

subsequently blocked in 0.1M Tris pH 7.4 containing 5% BSA (w/v) with 0.05% 

(w/v) saponin for 10 min. Prior to antibody incubation step the grids were rinsed 

once briefly in 0.1M Tris pH 7.4 containing 0.5% BSA (w/v). Rat anti-HA (1:400, 

Roche) was used in blocking buffer (0.1M Tris pH 7.4 containing 5% BSA (w/v) 

and 0.2% (w/v) acetylated BSA-c (Aurion)) for both permeabilized and 

nonpermeabilized exosomes. After 1 hr of incubation at room temperature, grids 

were washed for 6X 3 min in wash buffer (0.1M Tris pH 7.4 containing 0.1% BSA 

(w/v) and 0.2% (w/v) acetylated BSA-c). After washing, the grids were blocked 

for 6X 3 min in blocking buffer (0.1M Tris pH 7.4 containing 0.5% BSA (w/v) and 

0.2% (w/v) acetylated BSA-c). Secondary nanogold (1.4 nm) conjugated goat 
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anti-rat (1:60, Nanoprobes) in blocking buffer (0.1M Tris pH 7.4 containing 0.5% 

BSA (w/v) and 0.2% (w/v) acetylated BSA-c) for 1 hr. Grids were then rinsed for 

8X 2 min in 0.1M Tris pH7.4 and the antibody complexes were crosslinked with 

1% glutaraldehyde (in 0.1M Tris pH 7.4) for 1 min. The grids were washed for 

additional 8X 2 min in water and the nanogold particles were silver enhanced for 

8-10 min using the HQ Silver (Nanoprobes) silver enhancement kit. The grids 

were washed for 8X 2 min in water and negatively stained as described in (Koles 

et al., 2012). 

 

Immunoprecipitation and Western Blotting 

For Syt4-C-myc and Evi-EGFP co-immunoprecipitation, 20 third instar larvae for 

each genotype were dissected in ice cold Ca ++ free saline and body wall 

muscles together with the nervous system were homogenized in lysis buffer 

(20mM HEPES, 100mM KCl, 0.05% TritonX-100, 5% Glycerol, 2.5mM EDTA, 

1mM Dithiothreitol, with protease inhibitors). Lysates were then precleared with 

Protein G beads (GE life sciences) and then incubated with 2 µg anti-c-myc 

(Roche) together with Protein G beads for 2 hrs at 4°C. After incubation, the 

beads were washed with ice cold PBS with 0.05% Triton X-100 and boiled with 

2X SDS loading buffer for 5 minutes at 95°C and then separated by 8% 

SDSPAGE gel. Subsequently, they were transferred to a nitrocellulose 

membrane (Bio-Rad). The blot was probed with the following antibodies: rabbit 

anti-GFP (1:5000, Abcam Ab290, preabsorbed with S2 cell powder); mouse anti-

c-myc (1:5000, Roche); anti-rabbit-HRP light chain (1:2000, Jackson 
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ImmunoResearch); anti-mouse-HRP (1:5000, Sigma). For endogenous Syt4 and 

Evi-EGFP co-immunoprecipitation, 50 third instar larvae for each genotype were 

dissected, such that only body wall muscles and the nervous system remained, 

and homogenized in lysis buffer as stated above. The lysates were precleared 

with Protein G beads and then incubated with ~5 µg chicken anti-Syt4leghorn 

antibody (see below) overnight at 4°C. Then, samples were incubated with 4 µg 

anti-chicken antibody (Abcam, Ab8922) for 2 hrs and then with Protein G beads 

for an additional 1hr at 4°C. The samples were then washed with PBS with 

0.05% Triton x-100, boiled with 2X loading buffer for 5 minutes at 95°C and then 

separated by 8% SDS-PAGE gel. Subsequently, they were transferred to a 

nitrocellulose membrane (Bio-Rad). The blot was probed with the following 

antibodies: anti-GFP (1:5000, Abcam Ab290, preabsorbed with S2 cell powder); 

chicken anti-Syt4egghead (1:2000, preabsorbed with S2 cell powder); anti-chicken- 

HRP (1:10000, Jackson ImmunoResearch); anti-rabbit-HRP light chain (1:2000, 

Jackson ImmunoResearch). For co-immunoprecipitation of S2 cell extracts, S2 

cells were transfected with pUAST-Syt4-C-myc or pUAST-Syt4, together with 

pAc-Evi-EGFP and pAc-Gal4, harvested and lysed as above. The IP were 

performed either with anti-c-myc (Roche) or chicken anti-Syt4leghorn antibody as 

stated above. 

 

RT-PCR 

Total RNA was extracted by homogenizing dissected larval body wall muscles 

(without CNS) or larval brains in Trizol (Invitrogen) at 4 °C using a BBX24B Bullet 
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Blender Blue homogenizer (Next Advance Inc.) and then treating with DNase and 

eluting with the RNeasy Micro Kit (Qiagen). RNA concentrations were measured 

using a NanoDrop 2000c Spectrophotometer (Thermo scientific). cDNA was 

synthesized using a SuperScript III Kit (Invitrogen) from 500 ng of total RNA, 

primed with random hexamers. Reverse transcription reactions were then diluted 

to 1:12.5 and were amplified by PCR (35 cycles) with the following syt4 primers. 

Forward: ATCCCAGATGCCAGCGTCAT; reverse: 

AATCGGGGAGGTGGACTGGT. Both of these primers were designed to 

hybridize with exon junctions, to avoid false signals from genomic DNA. For the 

GAPDH control experiment, the reverse transcription reactions were diluted to 

1:50 and were amplified using the forward ACTCGACTCACGGTCGTTTC and 

reverse GCCGAGATGATGACCTTCTT primers. 

 

Generation of Syt4 Antibodies 

Anti-Syt4 polyclonal antibodies were raised by New England peptide by 

immunizing chickens with the peptides: KYSEEGDGPAQHAEQC and 

SKEIQPRSLKIRAC. Affinity purification of IgY isolates against 

KYSEEGDGPAQHAEQC sequence resulted in the anti-Syt4leghorn and 

SKEIQPRSLKIRAC sequence resulted in anti-Syt4egghead. 

 

Molecular Biology 

To generate pUAST-Syt4-C-Myc, Syt4 cDNA was PCR amplified from pUAST-

Syt4 (Barber et al., 2009) using a forward primer containing an EcoRI site and a 
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reverse primer containing a NotI site. The PCR product was then ligated into a 

pUAST-5Myc plasmid, which was constructed by PCR amplifying 5 tandem Myc 

tags (1xMyc repeat = 

TCTGAGCAGAAGCTGATCTCCGAGGAGGACCTGAACGGA/ 

SEQKLISEEDLNG) with primers containing 5’ KpnI and a 3’ stop codon followed 

by an XbaI site. This 5Myc-stop PCR fragment was ligated into the KpnI-XbaI 

sites of pUAST yielding pUAST-5Myc-stop. To construct the pAc-Syt4-C-V5, 

Syt4 cDNA was PCR amplified from pUAST-Syt4 (Barber et al., 2009) using a 

forward primer containing an EcoRI site and a reverse primer containing an XhoI 

site. The PCR product was then ligated into a pAc5.1/V5-His plasmid (Invitrogen) 

to obtain a Cterminally V5 tagged Syt4. Syt4-HA was PCR amplified from 

pUAST-attB-Syt4- C-HA (see below) using a forward primer with an EcoRV site 

and a reverse primer with a NotI site. The PCR product was then ligated into 

pMT-puro plasmid (Addgene, ID: 17923). To make the original pUAST-attB-Syt4-

HA, Syt4 cDNA was PCR amplified from pUAST-Syt4 (Barber et al., 2009) using 

a forward primer containing a NotI site and a reverse primer containing an AgeI 

site. The PCR product was then ligated into the pUAST-attB plasmid (from Dr. 

Konrad Basler). Subsequently, a synthetic oligonucleotide coding for three 

tandem HA tags- YPYDVPDYASGYPYDVPDYAGSYPYDVPDYAS (GS are 

linker amino acids) was ligated into the AgeI site of pUAST-attB-Syt4. To clone 

UAS-eNpHR3.0- EYFP, the pLenti-CaMKIIa-eNpHR3.0-EYFP vector (Zhang et 

al., 2010) was obtained from Dr. Carl Deisseroth, and the eNPHR3.0-EYFP was 

PCR amplified using the following primers: F-eNpHR3.0 
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(ATAATAGAATTCaacATGACAGAGACCCTGCCTCC) and R-EYFP 

(ATAATATCTAGATCATTACACCTCGTTCTCGT). The resultant PCR product 

was cloned into pWalium10 (GU931386) (TRIP Facility, Harvard) using EcoRI 

and XbaI restriction enzymes. UAS-eNpHR3.0-EYFP flies were prepared by 

targeting the construct to the attP2 site on the third chromosome (Genetivision).  
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Figure 3.1.  Retrograde control of synaptic growth and miniature release: 

role of Syt4.  

(A) Rapid hyperpolarization of muscle membrane potential (upper trace) upon 

560 nm illumination as shown in the bottom trace, in a 3rd instar larva expressing 

NpHR in muscle. 

(B) Quantification of nerve-evoked EJP amplitude in wild type and postsynaptic 

NpHR-expressing larvae, showing that NpHR gating inhibits evoked potentials. N 

(from left to right) = 5, 5, 7, 7.  

(C) Representative nerve-evoked EJP traces in control and upon activating 

NpHR in muscles. 

(D) Percentage of undetected EJP (failures) in control and upon activating NpHR 

in muscles, showing that NpHR activation induces a 10-fold increase in failures. 

N (from left to right) =5, 7. 
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(E) Number of ghost boutons normalized to unstimulated controls induced after 

spaced stimulation of controls, animals expressing NpHR in muscles, and syt4 

mutants, showing that NpHR activation in muscles or a mutation in syt4 

suppresses activity-dependent nascent bouton formation and that the mutant 

phenotype can be rescued by expressing a wild type Syt4 transgene in either 

neurons or muscles. N (from left to right)= 14, 15, 11, 12, 27, 20, 16, 15, 28, 25, 

15, 15, 15, 13. 

(F, G) Representative NMJs from 3rd instar larval muscles 6 and 7 (A3) labeled 

with antibodies to HRP and DLG in unstimulated wild type (F) and (G) after 

spaced stimulation, showing the induction of nascent boutons (arrows) after 

stimulation. Insets are high magnification views of NMJ branches. Calibration bar 

is 25 µm for F, G and 13 µm for the insets. 

 (H) Quantification of mEJP frequency normalized to unstimulated controls. N 

(from left to right) = 27, 30, 24, 26, 21, 23, 21, 21. 

***=p<0.001; **=p<0.01; *=p<0.05. Bars in plots represent mean±SEM.  
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Figure 3.2. Syt4 is transferred from presynaptic boutons to postsynaptic 

muscle compartments. 

 (A-F) Confocal micrographs of 3rd instar larval NMJ branches at muscles 6 or 7 

(A3) shown at low (left two columns) or high (right two columns) magnification 

labeled with antibodies to HRP and (A-C, E, F) anti-Syt4 or (D) anti-Myc. (A) wild 

type control showing the presence of endogenous Syt4 both inside synaptic 

boutons and at the postsynaptic muscle region;  

(B) syt4 null mutant, showing virtual absence of Syt4 immunoreactivity; (C) syt4 

null mutant expressing a wild type Syt4 transgene in neurons, showing the 

presence of transgenic Syt4 in both synaptic boutons and the postsynaptic 

muscle region, suggesting that Syt4 is transferred from the pre- to the 

postsynaptic compartment;  

(D) a larva expressing Syt4-C-Myc in neurons, showing that Syt4-C-Myc is 

transferred to the postsynaptic region;  
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(E) a larva expressing Syt4-RNAi in neurons, showing that both pre- and 

postsynaptic Syt4 are virtually eliminated, and suggesting that endogenous 

postsynaptic Syt4 protein is derived from presynaptic boutons; (F) a larva 

expressing Syt4-RNAi in muscles shows no change in Syt4 levels. Calibration 

bar is 6 µm for A-F left two columns and 2.5 µm for A-F right two columns. 

(G) Normalized number of ghost boutons in unstimulated and stimulated wild 

type controls, as well as in unstimulated and stimulated syt4 mutants expressing 

the Syt4-C-Myc transgene in neurons, showing that this transgene can rescue 

the mutant phenotype.  

(H) Quantification of Syt4 immunoreactivity levels normalized to control levels, 

showing that presynaptic Syt4 downregulation severely decreases Syt4 in both 

presynaptic boutons and postsynaptic muscles. In contrast, expressing Syt4-

RNAi in muscle does not significantly alter Syt4 protein levels in either site. 

(I) RT-PCR from larval CNS and muscles, showing that Syt4 mRNA can be 

detected in neurons but not in muscles with GAPDH mRNA levels shown as 

controls. 

***=p<0.0001. Bars in plots represent mean±SEM.   
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Figure 3.3. Syt4 and Evi colocalize in compartments at the NMJ and exist in 

a protein complex in vivo. 
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(A-E) Confocal images of 3rd instar larval NMJs at muscles 6 or 7 in larvae 

expressing (A, B) Evi-GFP in neurons and (C-E) both Evi-GFP and Syt4-C-Myc 

in neurons, labeled with antibodies to  

(A) GFP and Evi, showing that transgenic Evi-GFP exactly colocalizes with 

endogenous Evi;  

(B) GFP and Syt4, showing that Evi and Syt4 partially colocalize in synaptic 

compartments, particularly in postsynaptic puncta (arrows);  

(C) GFP, Myc and HRP, showing that when both Evi and Syt4 are 

overexpressed, they become trapped within an internal compartment in synaptic 

boutons, and that neither of the proteins is transferred to the postsynaptic region;  

(D) GFP, Myc and the endosomal marker, HRS, showing that Evi and Syt4 

become trapped within a bouton endosome when co-overexpressed; (E) GFP, 

Syt4 (labeling both endogenous and transgenic Syt4), and HRP, showing that 

trapping Syt4 in presynaptic endosomes eliminates endogenous Syt4 signal in 

postsynaptic muscles, providing additional evidence that endogenous 

postsynaptic Syt4 is derived from synaptic boutons.  

(F) Co-immunoprecipitation of Evi-GFP by Myc antibodies in body wall muscle 

extracts obtained from larvae expressing both Evi-GFP and Syt4-C-Myc in 

neurons, showing that Evi and Syt4 exist in a protein complex. (G) Co-

immunoprecipitation of endogenous Syt4 and neuronally expressed Evi-GFP 

from body wall muscle extracts by using a Syt4 antibody raised in chicken. Note 

that the Syt4 band is partially occluded by chicken IgY (asterisk). 
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(H) Co-immunoprecipitation of Evi-GFP and untagged Syt4 by Syt4 antibody in 

S2 cells cotransfected with Evi-GFP and untagged Syt4. Asterisk marks chicken 

IgY heavy chain. 

(I) Immunoprecipitation of Syt4-C-Myc by chicken Syt4 antibody in body wall 

muscle and CNS extract from larvae expressing Syt4-C-Myc in neurons, 

demonstrated by probing the blot with anti-Myc antibody.  Numbers at the right of 

the blots correspond to molecular weight in kDa. 
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Figure 3.4. Trans-cellular transfer of Syt4 in S2 cells and localization of 

Syt4 in purified S2 cell exosomes. 

(A-C) Confocal images of S2 cells labeled with (A, B) V5 antibodies and mCherry 

fluorescence in co-cultures of Syt4-C-V5 S2- and mCherry S2 cells. In (A) both a 

Syt4-C-V5 transfected and a mCherry transfected cell are observed. Note that V5 

positive puncta are observed inside the mCherry cell, suggesting that Syt4-C-V5 

is transferred transcellularly. In (B) a mCherry cell from the co-culture in (A) is 

shown, demonstrating the presence of transferred Syt4-C-V5 puncta. (C) Shows 

the transfer of Evi-GFP and or Syt4 containing exosomes to an untransfected cell 

from S2 cells co-expressing Evi-GFP and untagged Syt4. 

(D) Electron micrographs of the purified exosome fraction from the culture 

medium of Syt4-C-HA transfected S2 cells, labeled with primary antibody to HA, 

followed by nanogold-conjugated secondary antibody and silver intensification. 

Calibration bar is 12 µm for A-C and 170 nm for D.
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Suppl. Figure 3.1. Syt4-C-Myc transfer from synaptic boutons using 

different neuronal Gal4 drivers. 

Neuromuscular junctions double labeled with anti-Myc and anti-HRP antibodies 

in larvae expressing Syt4-C-Myc with (A) the pan-neuronal driver, Elav-Gal4, and 

(B) the motorneuron driver C380-Gal4. Calibration bar is 5 µm. 
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Suppl. Figure 3.2. Control for the exosome immunoelectron microscopy. 

Micrograph of purified exosomes from Evi-GFP-S2 cell medium labeled with anti- 

HA primary antibody and a nanogold-conjugated secondary followed by silver 

intensification. Note the absence of signal in the entire field. Calibration bar is 

250 nm. 
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Nervous system function relies on proper communication between pre- 

and postsynaptic cells. The primary means of intercellular communication in the 

nervous system is accomplished via the exocytosis of neurotransmitter vesicles 

or by electrical current flow through gap junctions. In addition, secreted signaling 

factors are crucial for normal synapse development, synapse maintenance and 

synaptic plasticity (Lu and Figurov, 1997; Marques, 2005). The coordinated 

development and functioning of the pre- and postsynapse require bi-directional 

signaling mechanisms. Signaling molecules act in an anterograde, retrograde or 

autocrine fashion to coordinate proper matching of pre- and postsynaptic 

function. At the Drosophila larval neuromuscular junction, WNT-1/Wingless is 

released from the motor neuron terminals in an activity-dependent manner and is 

critical for normal differentiation of both the pre- and postsynapse (Ataman et al., 

2008; Packard et al., 2002). While the intracellular signal transduction pathways 

activated by WNT signals are well studied, the tightly regulated secretion and 

extracellular transport of highly hydrophobic WNT signals, until now, were not 

fully understood, not only at synapses but also during pattern formation in the 

embryo and in metamorphosing organisms (Hausmann et al., 2007). In the 

second chapter of my thesis, we identified a cellular mechanism by which 

Wingless (Wg) is secreted from presynaptic terminals and transported 

extracellularly in order to reach its receptor, DFrizzled-2 (DFz2), on the 

postsynaptic muscle cell membrane. Our study shows that the multipass 

transmembrane protein Evi/Wls/Srt, a WNT binding partner, is required for the 

secretion of Wg from motor neuron terminals and its navigation in the 
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extracellular space (Korkut et al., 2009). In this process, Evi functions to traffic 

Wg, intracellularly, from motor neuron cell bodies to presynaptic terminals, and 

extracellularly across the synapse, via exosomes, for presentation to its receptor 

on postsynaptic muscle membranes. This is a novel mechanism for trans-

synaptic transfer of signals through exosomes. To my knowledge, this is the first 

instance in which exosomal communication across cells has been demonstrated 

in an intact living organism, and in particular during the trans-cellular 

transmission of a WNT signal. Additionally, we identified a function for Evi in the 

Wg-responsive postsynaptic muscle cell, where it is involved in the proper 

targeting of DFz2 receptors to the postsynaptic cell membrane through its 

interaction with the PDZ protein DGRIP. While previous studies had 

demonstrated that Evi is expressed in both the Wg-secreting and Wg-receiving 

cells (Port et al., 2008), the role of Evi in the signal-receiving cell had not been 

addressed.  

 In the third chapter of my thesis, I demonstrated that presynaptic cells can 

actually control the release of postsynaptic retrograde signals through the 

delivery of Synaptotagmin-4 (Syt4) (Korkut et al., 2012), a crucial component of 

the retrograde signaling machinery (Yoshihara et al., 2005), to postsynaptic 

muscle cells via presynaptic exosome release. We demonstrated that activity-

dependent synaptic growth and potentiation of spontaneous neurotransmitter 

release require retrograde signaling depending on Syt4. We also showed that 

postsynaptic Syt4 protein is not likely generated in the postsynaptic muscle cell, 

but it is actually derived from presynaptic motor neuron terminals; presynaptic 
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terminals release Syt4-containing exosomes and muscle cells uptake these 

exosomes. We propose a mechanism by which the presynaptic cell regulates 

postsynaptic retrograde signaling through exosome release, thereby coordinating 

communication between the pre- and postsynaptic cell. 

 

A Model for the Extracellular Movement of Hydrophobic WNT Signals 

While the production, secretion and extracellular transport of WNT 

proteins are thought to be tightly regulated processes, little is known about the 

molecular and cellular mechanisms involved. The discovery that WNT proteins 

are lipid modified through acylation by palmitoyl and palmitoleoyl groups, most 

likely by the acyltransferase Porcupine in the endoplasmic reticulum, revealed 

that WNTs are in fact highly hydrophobic molecules that are probably membrane-

associated (Kadowaki et al., 1996; Takada et al., 2006; Willert et al., 2003; Zhai 

et al., 2004). In contrast to prior belief, the hydrophobic nature of WNTs argues 

against a simple model of passive diffusion in the extracellular milieu. Porcupine 

had been the only known component in the WNT secretory pathway until 

Evi/Wls/Srt was identified simultaneously by three independent groups as a 

protein dedicated for WNT secretion (Banziger et al., 2006; Bartscherer et al., 

2006; Goodman et al., 2006). The evolutionarily conserved multipass 

transmembrane protein Evi was shown to be required for trafficking WNTs from 

the trans-golgi network (TGN) to the plasma membrane of secreting cells for their 

release (Belenkaya et al., 2008; Franch-Marro et al., 2008; Pan et al., 2008; Port 

et al., 2008; Yang et al., 2008). Given that WNT secretion and its extracellular 
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transport are crucial, yet unclear processes, our findings described in Chapter 2 

are highly significant. We propose a mechanism by which hydrophobic Wg can 

still travel in the extracellular space in association with membranous structures 

through its binding to Evi. This mechanism allows Wg to easily spread in the 

extracellular space upon its release.  

Is the larval NMJ a good system to study extracellular WNT spread? At 

the NMJ, presynaptic boutons are surrounded by the subsynaptic reticulum 

(SSR), a specialized structure formed by a folded and multilayered extension of 

the postsynaptic muscle membrane. Although at the active zones, the sites of 

neurotransmitter release, the pre- and postsynaptic membranes are only 

separated by a 20 nm cleft and directly apposed to each other, the same is not 

true for the periactive bouton region of the membrane. Further, postsynaptic 

DFz2 receptors are located deep into SSR cisternae, and thus far away from the 

sites of Wg release. Our immuno-electron miscroscopy (immuno-EM) analysis of 

Evi localization shows that Evi is excluded from active zones (Korkut et al., 

2009), and Evi-containing-vesicles are seen within SSR cisternae (Koles et al., 

2012). Thus, Wg is required to travel a relatively long distance to bind to DFz2. 

Given this topology, it is likely that problems faced by the spread of Wg in the 

embryo are similar to those encountered at the NMJ. 

We suggest that the membranous structures to which Wg and Evi are 

localized and transported extracellularly are most likely vesicles. This is the most 

parsimonious explanation to our observations that Wg is associated with a 

transmembrane protein, Evi, outside the secreting cells; that Evi is released most 
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likely as an intact protein; and that Evi is required for Wg secretion to the 

extracellular space. In the study described in Chapter 2, we proposed two 

potential models by which extracellular vesicles could be released from 

presynaptic terminals: (1) out-budding and scission of the plasma membrane to 

form an extracellular vesicle, or (2) fusion of a multivesicular body (MVB) with the 

plasma membrane, resulting in the release of exosome-like vesicles to the 

extracellular space. MVBs are formed by the inward budding of an endosomal 

limiting membrane to form intraluminal vesicles, which are released to the 

extracellular space upon fusion of the outer membrane of MVBs with the plasma 

membrane (Thery et al., 2009). The extracellular vesicles thus formed have been 

referred to as exosomes (Thery, 2011), and they serve both as intercellular 

signaling structures or for the disposal of obsolete cellular material (Record et al., 

2011); and see below). The most likely nature of the Evi/Wg vesicles was 

unraveled in studies described below (Koles et al., 2012).  

 

Evi-Vesicles are Exosomes 

Various types of membrane vesicles have been shown to be released by 

cells into the extracellular environment. These extracellular vesicles have distinct 

structural and biochemical features (Thery et al., 2009). Both healthy and 

dying/apoptotic cells generate membrane-bound vesicles that are released to the 

extracellular milieu. However, vesicles from healthy and dying cells have different 

properties. For example, apoptotic vesicles are much larger and heterogenous in 

size; highly electron dense and they contain distinct proteins such as histones 
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(Thery et al., 2001). Even if released by healthy cells, extracellular vesicles differ 

in their size, shape, sedimentation coefficient, density on a sucrose gradient, 

protein and lipid composition, intracellular origin, and most importantly, their 

function. While some vesicles, such as microvesicles and ectosomes, originate 

from the plasma membrane of secreting cells, exosomes originate from 

endosomal MVBs. Among extracellular vesicles, exosomes are by far the best 

characterized, mostly due to their crucial function in antigen presentation during 

immune responses by T-cells (Thery et al., 2009). However, most, if not all cell 

types including cultured neurons secrete exosomes. Indeed, exosomes are found 

in all fluids so far examined, including milk, tears, seminal fluid, and blood 

(Simpson et al., 2008). The ability of exosomes to signal cellular processes is 

attracting considerable attention from the clinical perspective, as they could serve 

as important vectors to interfere with disease (Simpson et al., 2009). 

In Chapter 2 of this thesis we demonstrated that Evi localizes to large 

multi-membrane structures inside presynaptic boutons. Similarly, Evi and Wg 

were found at MVBs in Wg-secreting cells of the Drosophila wing imaginal disc 

(Franch-Marro et al., 2008; Pfeiffer et al., 2002). Recently, I contributed to a 

study by the Budnik lab, where we further investigated the nature of Evi vesicles 

(Koles et al., 2012). Using electron microscopy, this study demonstrated that 

most synaptic boutons contain MVBs and that some MVBs are closely 

associated with the presynaptic cell membrane. Some MVBs appeared to be 

fusing with the presynaptic plasma membrane and releasing vesicular structures 

(Koles et al., 2012). Further, immuno-EM experiments showed that Evi is 
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localized within these MVBs and that Evi-labeled vesicles originating from 

presynaptic boutons could be found at the postsynaptic SSR.  

Our studies also demonstrated that Evi is released to the culture medium 

and transferred to neighboring cells in Drosophila Schneider-2 (S2) cells (Korkut 

et al., 2009). In our recent study, Evi was found in S2 cell MVBs by using 

immuno-EM (Koles et al., 2012). The finding that Evi localizes to MVB both at the 

NMJ and in S2 cells and that Evi is secreted to the extracellular space in both 

systems, suggested that S2 cells constituted a good system to biochemically 

isolate exosomes and to determine if these secreted vesicles contained Evi. 

Exosomes were isolated from the supernatant of Evi-expressing S2 cells using 

an established protocol that involves differential centrifugation and density 

separation on a sucrose gradient (Koles et al., 2012; Thery et al., 2006). In these 

studies, Evi was found to be enriched over 100-fold in the exosome fraction 

compared to the cell lysate. Similarly, Wg was also enriched in this fraction. 

Typical protein markers of exosomes include tetraspanins, Alix and Tsg101. 

Therefore, as a positive control, Drosophila Alix and a tetraspanin family member 

Late Bloomer (Lbm) were also examined and demonstrated to be enriched in the 

exosome fraction compared with the cell lysate (Koles et al., 2012). Electron 

microscopy analysis of the purified exosome preparation also confirmed that they 

were in fact exosomes, as the unique shape and size matched exactly with the 

reported ‘’saucer-like’’ cup-shaped morphology of exosomes. Immuno-EM of the 

isolated exosome fraction, using an antibody against the extracellular domain of 

Evi, demonstrated that Evi was present in exosomes. All together, these findings 
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strongly suggest that Wg and Evi are released to the extracellular space on 

exosomes. 

A role for exosomes in neuronal communication is just beginning to be 

recognized. In 2006, cultured cortical neurons were demonstrated to secrete 

exosomes to the culture media (Faure et al., 2006). Subsequent studies reported 

that exosome secretion was modulated by calcium influx and glutamatergic 

synaptic activity in cultured neurons, suggesting an exosome function in synaptic 

physiology (Lachenal et al., 2011). However, the function of exosomes in vivo 

had remained unclear. Our studies demonstrated that larval NMJs are likely to 

release exosomes for the presentation of hydrophobic Wg to postsynaptic DFz2 

receptors (Koles et al., 2012; Korkut et al., 2009).  

In 2008, a study from the Budnik lab showed that Wg is secreted from 

motor neuron terminals in an activity-dependent manner and that Wg signaling 

functions downstream of synaptic activity to induce structural and functional 

changes at the NMJ, in particular, the formation of new synaptic boutons 

(Ataman et al., 2008). Taken these findings into account, exosome release in 

vivo at the NMJ is likely to be modulated by synaptic activity. To investigate 

whether the release of exosomes from motor neuron terminals are regulated by 

synaptic activity, one could, for example, examine the level of exosome secretion 

before and after stimulation paradigms such as in (Ataman et al., 2008). 

Furthermore, to determine whether presynaptic exosome release is required for 

activity-dependent synapse formation, one could specifically disrupt the secretion 

of exosomes from the presynaptic terminals without affecting the classical 
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secretory pathway (see next section) and examine the NMJs to see whether new 

synapses form upon spaced stimulation. 

 

Mechanisms for Evi-exosome Release at the NMJ 

The mechanism for Evi-exosome release has been recently investigated 

using a dsRNA assay in cultured S2 cells (Koles et al., 2012). In this approach, 

the supernatant of dsRNA-treated Evi-expressing-S2 cells was applied to 

untransfected cells, searching for genes that when downregulated resulted in the 

absence of Evi-exosomes within untreated cells. Evi was then tested for its 

reduction in the culture medium from S2 cells treated with dsRNA against the 

candidate genes by Western blot. Then, the corresponding RNAi was expressed 

in the neurons of larvae simultaneously expressing Evi-GFP in motorneurons to 

determine if Evi-GFP transfer to the postsynaptic region of the NMJ was inhibited 

in vivo (Koles et al., 2012). The downregulation of several genes including the 

small GTPase Rab11 and Syntaxin1A (Syx1A) resulted in a significant reduction 

in the release of Evi exosomes from S2 cells without interrupting the classical 

secretory pathway. These results were confirmed in vivo as motor neuron-

specific interference of either Rab11 or Syx1A showed a significant reduction in 

Evi and Wg transfer to the postsynaptic cell. This study also demonstrated that 

the Rab11 effector and Syx1A-binding protein, Myosin 5 (Myo5), was required for 

Evi exosome release at the NMJ (Koles et al., 2012).  

Rab family of proteins is composed of numerous members that regulate 

various steps of intracellular vesicle trafficking processes in a highly specific 



140

140

manner (Zhang et al., 2007b). There are three Rab proteins, Rab11, Rab 27 and 

Rab35 that had been previously implicated in exosome release. Rab11 had been 

demonstrated to be involved in exosome secretion through docking and fusion of 

MVBs with the plasma membrane of a K562 myelogenous leukemia cell line 

(Savina et al., 2005). On the other hand, in HeLa cells, Rab27, but not Rab11, 

and in oligodendroglial cells, Rab35, played a role in exosome release (Hsu et 

al., 2010; Ostrowski et al., 2010). At the larval NMJ, downregulating Rab11, but 

not Rab27 or Rab35, prevented exosome release in vivo (Koles et al., 2012). 

These findings suggest that different cell types may employ distinct Rab proteins 

for exosome secretion. Also, it would be worthwhile to study in vivo functions of 

Rab27 and Rab35 in exosome release, as the above studies used only cultured 

cells.  

Membrane fusion events depend on the formation of a SNARE complex 

that consists of a vesicle-associated, v-SNARE, and a target membrane-

associated t-SNARE. Syntaxin 1A, a t-SNARE, has been known to be involved in 

synaptic vesicle exocytosis at the active zone (Schulze et al., 1995). Although 

Syx1A and Rab3 function in synaptic vesicle fusion, Syx1A and Rab11 are 

required for exosome release at the NMJ, consistent with the idea that Rabs 

function to target different types of vesicles to distinct membrane regions 

(Hutagalung and Novick, 2011). Interestingly, mass spectrometry analysis from 

exosomes derived from Drosophila S2 cells demonstrated the presence of Syx1A 

in exosomes (Koppen et al., 2011). It would be interesting to identify a v-SNARE 

anchored to the limiting membrane of MVBs that interacts with Syx1A. 
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The unconventional Myosin, Myo5, is a Syx1A binding protein and 

functions in anterograde transport of cargo to the cell periphery. Myo5 is also a 

Rab11 effector and disrupting its function in motor neurons results in a reduction 

in Evi-exosome release at the NMJ. Due to its role in the transport of vesicles 

along actin filaments, it is possible that Myo5 is involved in trafficking of MVBs to 

the presynaptic cell membrane at the NMJ. Moreover, it can be speculated that 

Myo5 could mediate the tethering of MVBs to the plasma membrane through its 

interaction with Syx1A. While the study by (Koles et al., 2012) focused on the 

role of only three proteins Rab11, Syx1A and Myo5 in exosome release, it is 

likely that numerous other candidate proteins exist. Liquid chromatography-

tandem mass spectrometry of exosomes from S2 cells identified various classes 

of proteins such as cytoskeletal proteins, scaffolding proteins, G-proteins, vesicle 

trafficking and fusion proteins including a v-SNARE, Synaptobrevin. Studying 

candidate proteins from the mass spectrometry analysis in vivo can potentially 

provide insight in the mechanisms of exosome release and function. 

Another emerging mechanism of exosome formation and trafficking is 

through the ESCRT complex (Endosomal Sorting Complex Required for 

Transport) and an adaptor protein, Alix. Exosomes are generated by inward 

budding of MBV limiting membrane. The four protein complexes composing the 

ESCRT are required for the sequential sorting of cargo proteins to MVBs and 

lysosomes. Subsequently, Alix mediates the inward budding of the MVB limiting 

membrane (Matsuo et al., 2004). While knocking down the ESCRT-0 complex 

component, Hrs (Hepatocyte Growth Factor-Regulated Tyrosine Kinase 
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Substrate), results in a significant reduction in exosome release from dendritic 

cells (Tamai et al., 2010), ESCRT- and Alix-independent exosome biogenesis 

mechanisms have also been identified (Fang et al., 2007; Trajkovic et al., 2008). 

Unpublished results from the Budnik lab suggest that Evi-exosome release is 

likely an ESCRT- and Alix-independent process as down regulation of some of 

these components (Hrs, Vps28, and Vps4) and Alix did not interfere with Evi-

exosome secretion from S2 cells. These findings demonstrate that there are a 

variety of exosome populations and biogenesis mechanisms in different cell 

types. 

The sorting of proteins into intraluminal vesicles of the MVB is thought to 

be a highly regulated, yet unclear process. There is some evidence that the 

ESCRT machinery that is localized on the limiting membrane of MVBs 

recognizes ubiquitinated proteins and sorts them into the vesicles (Record et al., 

2011). The sorting of proteins for degradation by lysosomes is generally 

accomplished through ubiquitination of their cytoplasmic domains and 

subsequent recognition by the ESCRT. However, some proteins such as the 

transferring receptor (TfR) are sorted into intraluminal MVBs vesicles 

independent of ubiquitination (Marsh and van Meer, 2008). Moreover, a recent 

study demonstrated that targeting MHC II proteins to exosomes is completely 

independent of ubiquitination (Buschow et al., 2009). It has been suggested that 

the MVB sorting mechanism involving ubiquitination leads to lysosomal 

degradation, while the unbiquitination-independent pathway results in plasma 

membrane targeting of MVBs (Buschow et al., 2009). Although there is still much 
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to be uncovered, the mechanisms underlying distinct fates of MVBs are 

beginning to emerge. A recent study demonstrated that the sorting of proteins 

into exosome-generating MVBs depends on raft-based microdomains that 

contain high concentration of sphingolipid ceramide (Trajkovic et al., 2008). 

Moreover, an independent study showed that the sorting of MHC II into 

exosomes, rather than to lysosomes, correlated with its integration into 

detergent-resistant membranes of the MVB (Buschow et al., 2009). Therefore, it 

can be speculated that the targeting of proteins to exosomes depends on their 

incorporation into selected lipids within the MVB membrane.  

 

Fate of Exosomes in Target Cells 

Upon contact with their target cell membranes, exosomes have three 

possible routes: (1) direct fusion with the plasma membrane of the recipient cell, 

(2) endocytosis of the intact exosome and subsequent degradation by the 

recipient cell and (3) endocytosis of the intact exosome followed by fusion with 

the endosomal membrane of the recipient cell. While, the first and third routes 

allow the contents of the exosome vesicles to be exposed or delivered to the 

cytoplasm of the target cell, the second route does not expose the recipient cell 

to exosome contents. The physiological significance is that the first and third 

routes allow for the modulation of recipient cell function by delivering biologically 

active molecules such as signal transduction proteins and genetic material. The 

fate of exosomes in the recipient cell appears to depend on the cell type and 

phagocytic capabilities of the target cell (Record et al., 2011). Since miRNAs 
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have been found to be delivered by exosomes and to regulate gene expression 

in recipient cells, it is believed that exosomes have the ability to release their 

contents into the target cells (Valadi et al., 2007), supporting the use of route 1 

and 3 in their transfer to the target cells. At the Drosophila NMJ, Wg is localized 

to the outer surface of exosomes, as the Wg binding domain in Evi projects to 

this side. Therefore, Wg becomes available for binding to its receptor, DFz2, on 

the target muscle membrane. However, the fate of exosomes after Wg interacts 

with postsynaptic DFz2 is not known. Nevertheless, we have shown that 

presynatically driven Evi is found inside the target muscle cell by immuno-EM, 

suggesting that the exosome is internalized. However, whether the sole function 

of all Evi-exosomes is to present Wg to DFz2 receptors, to carry additional 

signals to the postsynaptic cell, or to be targeted for degradation is not known.  

In Chapter 3, we have demonstrated that the retrograde signaling 

component, Syt4, is delivered to the postsynaptic cell from the presynaptic 

terminals in exosomes. Syt4 has an N-terminal transmembrane domain, a linker 

sequence, and two C-terminal C2 domains (Sudhof, 2002). The functional C2 

domains of Syt4 are located inside the exosomes. Therefore, for Syt4 to function 

in the muscle cells upon its delivery, the lumen of Syt4 exosomes should be 

exposed to the muscle cytoplasm. One way to determine if this is the case, would 

be to take advantage of the GRASP system (Feinberg et al., 2008), where GFP 

protein is split into two complementary fragments, spGFP1-10 and spGFP11. 

These individual fragments have high affinity for each other and are non-

fluorescent unless they are reconstituted. Using the Gal4 and LexA systems, 
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Syt4 tagged with spGFP11 on its C-terminus could be expressed in the motor 

neurons while the other GFP fragment spGFP1-10 could be expressed in the 

cytoplasm of the muscle cell simultaneously. If the functional C-terminus of Syt4 

were exposed to the cytoplasm of the target muscle cell, we would expect the 

two fragments of GFP to be reconstituted and fluoresce. A drawback of this 

approach is the possibility that the two complementary fragments of GFP are not 

brought close enough proximity to reconstitute. In addition, fluorescence from the 

reconstituted GFP signal may be weak to detect over autofluorescence. These 

limitations could be overcome using an approach that involves amplification in 

the exosome-receiving muscle cell. A Syt4-Gal4 fusion protein could be 

constructed so that if Gal4 is exposed to the muscle cytoplasm upon its transfer 

from the motor neuron terminals in exosomes, Gal4 gets cleaved and 

translocated into the nucleus where it induces reporter gene expression under 

UAS control. To achieve this, a specific cleavage site such as TEV (Tobacco 

Etch Virus) protease site, could be inserted between Syt4 and Gal4. This fusion 

construct could be expressed in motor neurons while the target muscle cell 

expresses the TEV protease that recognizes the specific cleavage site (Harder et 

al., 2008). Reporter gene expression in the muscle cells mean the lumen of Syt4-

exosomes is exposed to the cytoplasm of the target muscle cells. 

 

 

 

 



146

146

Presynaptic Exosomes Regulate Postsynaptic Retrograde Signaling 

through Syt4 

Syt4 has been shown to play a postsynaptic role in retrograde signaling to 

regulate synaptic plasticity at the Drosophila NMJ. syt4 null mutants failed to 

exhibit an increased spontaneous release (miniature frequency) upon high 

frequency stimulation. This defect was rescued by expressing a wild type Syt4 

transgene in the postsynaptic muscle cell (Barber et al., 2009; Yoshihara et al., 

2005). In addition to Syt4, postsynaptic Ca++ was demonstrated to be required for 

enhanced miniature release upon high frequency stimulation (Yoshihara et al., 

2005). In chapter 3, we used a spaced stimulation paradigm that was also shown 

to increase spontaneous release at the larval NMJ (Ataman et al., 2008). In 

addition, the spaced stimulation paradigm induces structural changes such as 

rapid formation of ghost boutons, nascent boutons which have still not developed 

postsynaptic specializations or recruited postsynaptic proteins (Ataman et al., 

2008). Our results identified a role for Syt4 in activity-dependent structural and 

functional changes at larval NMJ synapses. Interestingly, we show that 

expressing a full length Syt4 in presynaptic motorneurons is sufficient to rescue 

syt4 null defects in ghost bouton formation upon spaced stimulation. We have 

also demonstrated that activity-dependent changes in synapses depend on 

retrograde signaling from the postsynaptic muscle cell. The findings that syt4 

transcript is virtually absent in muscles, the ability of Syt4-RNAi expressed in 

neurons to eliminate Syt4 protein in muscles, the observation that trapping Syt4 

within presynaptic endosomes completely eliminates postsynaptic Syt4 
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immunoreactivity, and the localization of Syt4 on exosomes originating from the 

presynapse suggest a model where the postsynaptic Syt4 functions in retrograde 

signaling however it originally comes from the presynaptic motor neuron 

terminals. Because we have separate evidences that both Syt4 and retrograde 

signaling is involved on activity-dependent changes at synapses, it would be 

important to connect these two pieces of evidence and show that Syt4-

dependent retrograde signaling plays a role in structural and functional changes 

at synapses upon activity. To achieve this, one can block postsynaptic 

depolarization in syt4 null animals expressing a full length Syt4 transgene in the 

presynaptic cell and observe ghost bouton formation and potentiation of 

spontaneous release. The disruption in activity-dependent changes at synapses 

would be consistent with the model that presynaptic Syt4 transfers to the 

postsynaptic cell to function in a retrograde manner. 

 In conclusion, the studies in this dissertation have uncovered crucial 

cellular and molecular mechanisms relevant to synapse development and 

plasticity. The identification of a novel communication mechanism through 

exosome vesicles using Drosophila NMJ as a model system has advanced our 

understanding of nervous system communication. Since fundamental synaptic 

mechanisms are conserved between the fly NMJ synapses and mammalian 

excitatory synapses, it is likely that the mechanisms explained in this thesis are 

also essential for mammalian synapse function. 
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