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ABSTRACT 

 

The studies presented in this thesis addressed mainly two aspects of Piwi-

interacting RNA (piRNA) biology in the Drosophila germline.  

We investigated the role of the piRNA pathway in embryonic axis specification. 

piRNAs mediate silencing of retrotransposons and the Stellate locus.  Mutations in the 

Drosophila piRNA pathway genes armitage and aubergine disrupt embryonic axis 

specification, triggering defects in microtubule polarization and asymmetric localization 

of mRNA and protein determinants in the developing oocyte.  Mutations in the 

ATR/Chk2 DNA damage signal transduction pathway dramatically suppress these axis 

specification defects, but do not restore retrotransposon or Stellate silencing.  

Furthermore, piRNA pathway mutations lead to germline-specific accumulation of 

γ−H2Av foci characteristic of DNA damage.  We conclude that piRNA based gene 

silencing is not required for axis specification, and that the critical developmental 

function for this pathway is to suppress DNA damage signaling in the germline. 

We have also identified a new member of the piRNA pathway. We show that 

mutations in rhino, which encodes a rapidly evolving Heterochromatin Protein 1 (HP1) 

chromo box protein, lead to germline specific DNA break accumulation, trigger Chk2 

kinase dependent defects in axis specification, and disrupt germline localization of Piwi 

proteins.  Mutations in rhino and the piRNA pathway gene armitage disrupt silencing of 

all major transposon families, but do not alter expression of euchromatic or 

heterochromatic protein coding genes.   Deep sequencing studies show that rhino 

mutations significantly reduce or eliminate anti-sense piRNAs derived from the majority 



of transposable elements in the Drosophila genome, and lead to a dramatic reduction in 

piRNAs derived from major piRNA production clusters on chromosomes 2R and 4.  

Rhino protein localizes to distinct nuclear foci, and associates with the chromosome 2R 

and 4 clusters by chromatin immunoprecipitation.  The Rhino HP1 homologue is 

therefore required for piRNA biogenesis, transposon silencing, and maintenance of 

germline genome integrity.  
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Introduction 

In 1993, Ambros and colleagues showed that the C. elegans lin-4 gene encodes a 

small regulatory RNA with complementarity to the lin-14 transcription unit, which it 

negatively regulates (Lee et al., 1993).  These pioneering studies thus identified the first 

microRNA (miRNA).  Small non-coding RNAs have subsequently emerged as powerful 

experimental tools and critical developmental regulators in animals and plants 

(Baulcombe, 2004; Hannon, 2002; Kloosterman and Plasterk, 2006; Mello and Conte, 

2004).  21 nt small interfering RNAs (siRNAs), now ubiquitously used to experimentally 

manipulate gene expression, are processed from long double-stranded RNA (dsRNA) 

precursors by the Dicer endonucleases.  The resulting 21 nucleotide (nt) double stranded 

RNAs are incorporated into an intermediate RNA-protein complex.  Displacement of one 

of the RNA strands (referred to as the “passenger strand”) then produces the mature RNA 

Induced Silencing Complex (RISC), which contains a single “guide strand” bound to a 

member of the Argonaute protein family.  When the guide strand siRNA is perfectly 

complementary to a target RNA, the Argonaute protein catalyzes sequence-specific 

endonucleolytic cleavage (for review see (Hannon, 2002; Meister and Tuschl, 2004).  In 

vivo, the siRNA pathway destabilizes RNA intermediates generated during the viral life 

cycle, and thus plays an important role in limiting virus infectivity (Wang et al., 2006).  

By contrast, microRNAs are derived from stem loop transcripts encoded by chromosomal 

genes.  Primary stem-loop RNAs (priRNA) are processed in the nucleus by the 

ribonuclease Drosha, producing pre-miRNAs that are exported from the nucleus and 

cleaved in the cytoplasm by a Dicer endonuclease to yield ~22nt mature miRNAs.  These 

miRNAs associate with Argonaute proteins and induce the homology-dependent down-
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regulation of target gene activity.  Imperfect miRNA base pairing to target transcripts 

appears to induce translational silencing, while perfect base pairing triggers RNA 

destruction.  Mutations in the miRNA pathway disrupt development and often lead to 

embryonic lethality (reviewed in (Du and Zamore, 2005; Kloosterman and Plasterk, 

2006). 

 Recent studies have revealed the existence of a new class of 24-30 nt RNAs that 

are generated by a Dicer-independent mechanism and that interact with a subset of 

Argonaute proteins related to Piwi (Aravin et al., 2006; Brennecke et al., 2007; Girard et 

al., 2006; Grivna et al., 2006a; Gunawardane et al., 2007; Houwing et al., 2007; Lau et al., 

2006; Saito et al., 2006; Vagin et al., 2006; Watanabe et al., 2006), which is required for 

female and male fertility in Drosophila (Lin and Spradling, 1997).   In some systems, 

these Piwi-interacting RNAs (piRNAs) are primarily derived from transposons and other 

repeated sequence elements (Brennecke et al., 2007; Gunawardane et al., 2007; Saito et 

al., 2006), leading to their other designation as repeat associated small interfering RNA 

(rasiRNA) (Aravin et al., 2003).  It is now clear that piRNAs can be derived from either 

repeated or complex DNA sequence elements (Aravin et al., 2007; Brennecke et al., 2007; 

Houwing et al., 2007), and that rasiRNAs are a subset of piRNAs.  We therefore use the 

more generic term piRNA in the following discussions.  Genetic studies in mice, 

Drosophila, and zebrafish indicate that piRNAs are critical to germline development 

(Carmell et al., 2007; Chen et al., 2007; Cook et al., 2004; Cox et al., 1998; Cox et al., 

2000; Deng and Lin, 2002; Gillespie and Berg, 1995; Houwing et al., 2007; Kuramochi-

Miyagawa et al., 2004; Pane et al., 2007; Schupbach and Wieschaus, 1991).   However, 

proteins involved in piRNA production have also been implicated in control of gene 
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expression in somatic cells (Grimaud et al., 2006; Pal-Bhadra et al., 2002; Pal-Bhadra et 

al., 2004) and learning and memory (Ashraf et al., 2006), suggesting that piRNAs may 

impact a broad range of biological processes.   

 

piRNA production  

The 24 to 30 nt length of piRNAs is an indication that they are not generated by a 

Dicer, which produces 21 to 22 nt products from double stranded precursors (Bernstein et 

al., 2001).  Recent genetic studies are consistent with the conclusion that piRNA 

production is a Dicer-independent process (Houwing et al., 2007; Vagin et al., 2006).  

Insight into the mechanism of piRNA production has come from studies of their genomic 

origin and of Argonaute binding in Drosophila (Aravin et al., 2006; Brennecke et al., 

2007; Girard et al., 2006; Grivna et al., 2006a; Gunawardane et al., 2007; Houwing et al., 

2007; Lau et al., 2006; Saito et al., 2006; Vagin et al., 2006).  In Drosophila ovaries, the 

vast majority of piRNAs appear to be derived from a limited number of pericentromeric 

and telomeric sites that are enriched for retrotransposon sequences (Brennecke et al., 

2007).  The most abundant piRNAs derive from the antisense strand of retrotransposon 

sequences, and these RNAs preferentially associate with the Argonautes Piwi and 

Aubergine (Aub).  Sense strand piRNAs, by contrast, preferentially associate with 

Argonaute 3 (Ago3) (Brennecke et al., 2007; Gunawardane et al., 2007).  Piwi, Aub and 

Ago3, in complex with piRNAs, can cleave target RNAs between positions 10 and 11 of 

the guide strand (Gunawardane et al., 2007; Saito et al., 2006). Significantly, Drosophila 

piRNAs from opposite strands tend to have a 10 nt overlap.   Furthermore, antisense 

piRNAs bound to Piwi and Aub show a strong bias toward a U at the 5’end, while sense 
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strand piRNAs bound to Ago3 tend to have an A residue at position 10 (Brennecke et al., 

2007; Gunawardane et al., 2007).  Based on these observations, two groups concurrently 

proposed a “ping-pong” model of piRNA production, in which Ago3 bound to sense 

strand piRNAs catalyzes antisense strand cleavage at an A:U base pair that generates the 

5’ end of anti-sense piRNAs (Figure 1) (Brennecke et al., 2007; Gunawardane et al., 

2007).  The 5’ ends of the resulting cleavage products are proposed to associate with Aub 

or Piwi, with nucleolytic processing of the 3’ overhangs generating mature 23 to 30 nt 

anti-sense piRNAs (Figure 1B).  The mature anti-sense piRNA-Argonaute complexes are 

then proposed to bind and cleave sense strand RNAs, silencing gene expression and 

generating the 5’end of sense strand piRNA precursors that associate with Ago3 (Figure 

1D).   Processing of the 3’ overhang produces mature sense strand piRNAs, completing 

the cycle (Figure 1E).  This model is based on studies in Drosophila, but recent findings 

suggest that a similar mechanism may function in mouse (Aravin et al., 2007).    

The proteins that mediate a number of the proposed steps in the “ping-pong” 

model of piRNA production have not been identified, but the results of recent studies 

might help fill some of these gaps.  For example, mutations in the Drosophila zucchini and 

squash genes disrupt piRNA production and lead to a loss of retrotransposon silencing, 

and both of these genes encode putative nucleases (Pane et al., 2007).  Zucchini and 

Squash may therefore process the 3’ end extensions to generate mature piRNAs (Figure 

1).   In addition, the 3’ end of mature piRNAs are methylated (Kirino and Mourelatos, 

2007; Ohara et al., 2007). In Drosophila this reaction is carried out by the Hen1 RNA 

methyltransferase (DmHen1/Pimet), and methylation appears to take place after piRNAs 

bind to Argonautes (Horwich et al., 2007; Saito et al., 2007).  A mutation in Dmhen1 
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reduces the length and steady state level of piRNAs, suggesting that methylation limits the 

extent of 3’ processing and increases the stability of piRNAs (Horwich et al., 2007).  

Methylation could also influence interactions between piRNAs and additional components 

of the piRNA pathway. However, Dmhen1 mutants are viable and fertile, indicating that 

this modification is not essential to piRNA function (Saito et al., 2007).   

Genetic screens in Drosophila have identified several additional factors that are 

required for piRNA production or function.   For example, the armitage and spindle-E 

genes encode putative helicases are required for piRNA production and retrotransposon 

silencing (Aravin et al., 2004; Vagin et al., 2006).  These proteins could unwind duplex 

intermediates formed during piRNA production, target recognition, or cleavage.  By 

contrast, the cutoff gene is required for retrotransposon silencing, but is not needed for 

piRNA production (Chen et al., 2007).  Yeast homologues of Cutoff have been implicated 

in RNA decay (Kim et al., 2004; Xue et al., 2000).  Cutoff could therefore facilitate gene 

silencing by enhancing the activity of piRNA-Argonaute complexes.  
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Figure 1. 
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Figure 1.  Ping-pong model for piRNA production (modified from Brennecke et al., 

2007).  

(A) The Piwi-class Argonaute protein Argonaute 3 (Ago3) binds to sense-strand piRNAs 

(blue) and directs the cleavage of target antisense-strand transcripts (red), producing the 5’ 

end of antisense-strand piRNAs. (B) Aubergine (Aub) and Piwi (not shown) bind to the 

resulting piRNA precursor, which is trimmed to its final length. This might be catalyzed 

by the putative nucleases Squash and Zucchini. (C) Drosophila Hen1 methylates the 

3’ends of piRNAs (3’OMe). (D) Aub–antisense-strand piRNA complexes catalyze the 

cleavage of sense transcripts (blue), producing the 5’ end of sense piRNAs. (E) Ago3 

binds the resulting sense piRNA precursors, which are trimmed and (F) methylated, as 

described for antisense-strand piRNAs.  
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Compartmentalization of the piRNA pathway 

Recently, the Drosophila Tudor domain protein Krimper has been implicated in 

both retrotransposon repression and piRNA production (Lim and Kai, 2007).   This protein 

is a component of nuage, a germline-specific perinuclear structure that has been 

implicated in RNA processing, and krimper mutations block nuage assembly.  

Intriguingly, many piRNA pathway related proteins accumulate in nuage, which is 

prominent in nurse cells.  The Drosophila oocyte develops in a cyst with 15 nurse cells, 

which synthesize RNAs and proteins that are transported through ring canals to the oocyte 

(Spradling, 1993). Nuage was first identified in electron micrographs as an amorphous 

electron dense cloud that surrounds the nurse cell nuclei (Allis et al., 1979; Mahowald, 

1971).  Nuage is enriched for the Piwi class Argonautes Aub and Ago3 (Figure 2A; 

(Brennecke et al., 2007; Harris and Macdonald, 2001),  the helicases Armitage and 

Spindle-E (Cook et al., 2004; Lim and Kai, 2007), the nucleases Zucchini and Squash 

(Pane et al., 2007), Maelstrom and Cutoff (Chen et al., 2007; Findley et al., 2003).  In 

contrast to most piRNA pathway proteins, Drosophila Piwi localizes almost exclusively to 

nurse cell nuclei (Figure 2A; (Brennecke et al., 2007; Cox et al., 2000; Saito et al., 2006).  

These observations suggest that piRNA production and function may be 

compartmentalized (Lim and Kai, 2007).   

piRNA-argonaute complexes appear to be the catalytically active effectors of the 

pathway, and these localization studies thus suggest that Piwi mediates nuclear functions 

for the piRNA pathway, while Ago3 and Aub drive cytoplasmic functions (Figure 2B). 

We speculate that piRNA biogenesis, which is proposed to require sense and 

antisense strand Argonaute complexes, take place in the nuage.  In this model, the sense 



10 
 

strand piRNA precursor transcripts are exported to the nuage, where they are cleaved by 

Aub-antisense piRNA complexes, silencing target gene expression and generating 

precursors of sense strand piRNAs. These sense strand precursors associate with Ago3 and 

are trimmed to mature length.  Ago3-sense strand complexes then catalyze the cleavage of 

the antisense transcripts, producing piRNA precursors that associate with Aub and Piwi.   

Mature Aub complexes then remain in the nuage and function in piRNA 

production and sense strand transcript destruction, while mature Piwi complexes are 

imported into the nucleus and mediate heterochromatin assembly and transcriptional 

silencing, or co-transcriptional RNA destruction.  This model is highly speculative, but 

makes a number of clear predictions and may therefore serve as a useful framework for 

further studies on piRNA biogenesis. 

Genetic studies in Drosophila, mice and zebrafish have provided insight into the 

biological functions of piRNAs, and highlight the significance of these RNAs in germline 

development.   The phenotypes of piRNA pathway mutations in each of these systems are 

outlined below.    
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Figure 2. 
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Figure 2.  Compartmentalization of piRNA production and function.   (A).  Localization 

of Piwi class Argonautes in the Drosophila ovary. Argonautes (red), DNA (Wakabayashi-

Ito et al.).  Argonaute 3 (Ago3) and Aubergine (Aub) localize to the cytoplasm and nuage, 

which is a perinuclear structure rich in RNA processing enzymes. Piwi localizes 

predominantly to germline nuclei.  (B).  Model for compartmentalized production and 

function of piRNAs. Sense and antisense strands of piRNA “master control” regions are 

transcribed (1) and exported from the nucleus (2).  In the nuage, Aub-piRNA complexes 

cleave sense transcripts (3), leading to production of sense strand piRNAs that associate 

with Ago3 (4). Ago3-piRNA complexes cleave antisense transcripts (5), producing 

piRNAs that associate with Aub and Piwi (6).  Aub complexes remain in the nuage and 

cleave sense strand complexes (7). Piwi-piRNA complexes are imported into the nucleus 

where they silence homologous genes in euchromatin and heterochromatin (8).  
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Stem cell division and axis specification in Drosophila females 

Mutations in piRNA pathway genes were first identified in Drosophila through 

screens for mutations that disrupt oogenesis and embryonic axis specification (Gillespie 

and Berg, 1995; Schupbach and Wieschaus, 1991).  Drosophila oogenesis begins with a 

germline stem cell division that produces a cystoblast, which divides four times with 

incomplete cytokinesis to produce 16 interconnected cells that form a single oocyte and 15 

nurse cells (for review see (Spradling, 1993).  The nurse cells provide most of the RNA 

and protein components of the oocyte, which remains transcriptionally silent through most 

of oogenesis.  Embryonic axis specification in Drosophila depends on the asymmetric 

localization of a small number of morphogenetic RNAs in the oocyte.  These RNAs are 

transferred from the nurse cells to the oocyte, where localization is driven by interactions 

with a polarized microtubule cytoskeleton.   Microtubule polarization is controlled by a 

cascade of germline to soma and soma to germline signaling events (reviewed in (Grunert 

and St Johnston, 1996).  Mutations in piRNA pathway genes disrupt both stem cell 

maintenance and oocyte production, and the localization of morphogenetic RNAs in the 

oocyte during axis specification (Chen et al., 2007; Cook et al., 2004; Cox et al., 1998; 

Cox et al., 2000; Gillespie and Berg, 1995; Lin and Spradling, 1997; Pane et al., 2007; 

Schupbach and Wieschaus, 1991). 

The piwi gene encodes the founding member of the Piwi class of Argonautes (Cox 

et al., 1998).  Mutations in piwi lead to severe defects in oogenesis, including loss of 

germline stem cells (Figure 3.A) (Cox et al., 1998; Cox et al., 2000; Lin and Spradling, 

1997).  Clonal studies indicate that stem cell maintenance and division require piwi 

expression in the somatic cells that form the stem cell niche.  Loss of piwi in the germline, 
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by contrast, reduces stem cell division rate, but does not lead to loss of stem cells or block 

oogenesis (Cox et al., 2000). Mutations in other piRNA pathway genes, including zucchini 

and squash, also lead to germline stem cell loss (Chen et al., 2007; Pane et al., 2007).  It is 

unclear if these genes are required in the germline, soma, or both.  The molecular 

functions for Piwi and the piRNA pathway in germline stem cell division and maintenance 

have not been defined.     

Mutations in most piRNA genes in Drosophila, including aubergine, spindle-E, 

armitage, maelstrom, krimper, zucchini and squash, disrupt the localization of dorsal and 

posterior RNAs (Cook et al., 2004; Gillespie and Berg, 1995; Pane et al., 2007; Schupbach 

and Wieschaus, 1991).  These mutations do not disrupt anterior localization of bicoid 

mRNA or block oocyte development.  Therefore, these genes were initially assumed to 

control the expression of a specific subset of genes that is required for anterior-posterior 

and dorsal-ventral patterning (Cook et al., 2004).  Subsequent studies, however, have 

demonstrated that the dramatic axis specification defects that are associated with piRNA 

mutations are a secondary consequence of DNA damage signaling (Chen et al., 2007; 

Klattenhoff et al., 2007; Pane et al., 2007).  These studies suggest that piRNAs have a 

primary function in maintaining germline DNA integrity. 

The link between piRNAs and DNA damage signaling was suggested by studies of 

Drosophila meiotic DNA repair genes.  Meiotic recombination requires DNA break 

formation by the Spo11 nuclease (Cao et al., 1990), and Schupbach and colleagues  

showed that mutations that disrupt meiotic DNA break repair also disrupt posterior and 

dorsal-ventral axis specification (Abdu et al., 2002; Ghabrial et al., 1998).  Significantly, 

the Drosophila embryonic patterning defects that are linked to repair mutations are 
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dramatically suppressed by mutations in mei-41 and mnk, which encode the ATR and 

Chk2 kinases, respectively, that function in DNA damage signaling, and by mutations in 

mei-W68 (Abdu et al., 2002; Ghabrial et al., 1998), which encodes the fly Spo11 

homologue (McKim and Hayashi-Hagihara, 1998).  Unrepaired meiotic breaks thus 

appear to activate the ATR and Chk2 kinases, which in turn trigger the observed axis 

specification defects.  Recent studies show that the axis specification defects in armitage, 

aubergine, cutoff and squash are also suppressed by mei-41 and/or mnk (Chen et al., 2007; 

Klattenhoff et al., 2007; Pane et al., 2007). Furthermore, armitage, aubergine and spindle-

E mutations lead to a dramatic accumulation of phosphorylated histone H2Av (γ−H2Av) 

foci in germline nuclei (Figure 3.B); and these foci are generally linked to DNA double 

strand breaks (Modesti and Kanaar, 2001).  Significantly, mei-W68 (Spo11) does not 

suppress the patterning defects associated with armitage, or the formation of γ−H2Av foci 

(Klattenhoff et al., 2007).   piRNA mutations, like DNA repair mutations, thus disrupt axis 

specification through activation of the ATR/Chk2 pathway.  However, unlike with DNA 

repair pathway mutations, meiotic breaks are not the source of damage. 

All of the Drosophila piRNA pathway mutations lead to a significant over-

expression of retrotransposons (Aravin et al., 2001; Chen et al., 2007; Kalmykova et al., 

2005; Pane et al., 2007; Sarot et al., 2004; Vagin et al., 2006), and piwi mutants have been 

shown to mobilize at least one class of transposon in the male germline (Kalmykova et al., 

2005).  Retrotransposon mobilization can induce DNA damage (Belgnaoui et al., 2006; 

Gasior et al., 2006), and high rates of transposon insertion in piRNA mutants could 

overwhelm the DNA repair machinery, leading to the breaks that activate ATR and Chk2.   

However, there is no direct evidence for transposon mobilization in the female germline 
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when piRNA pathway components are disrupted, and this pathway could have a more 

direct role in DNA repair, or in establishing chromatin structures that resist damage.  

Drosophila telomeres are composed of retrotransposon repeats, and piRNA mutations 

increase the number of these repeats (Savitsky et al., 2006).  These findings suggest that 

piRNA mutations could lead to a loss of telomere protection, leading to the recognition of 

chromosome ends as DNA breaks.  However, it is currently unclear if the break sites in 

piRNA pathway mutations are random, linked to transposon insertions, or restricted to 

specific chromatin domains, and the precise functions of these RNAs in maintaining 

germline genome integrity remains to be determined. 

The Oskar protein is essential to pole plasm assembly and embryonic patterning, 

and piRNA pathway mutations disrupt osk mRNA and protein localization (Cook et al., 

2004). Translation of osk mRNA is tightly linked to posterior localization, which begins 

during oogenesis stage 9 (Kim-Ha et al., 1995; Markussen et al., 1995; Rongo et al., 

1995).  Mutations in a number of piRNA pathway mutations lead to Oskar protein 

expression during earlier stages of oogenesis, and the mnk (Chk2) mutation does not 

suppress premature osk mRNA translation (Cook et al., 2004; Pane et al., 2007). 

Therefore, premature Osk protein accumulation is not  a consequence of DNA damage 

signaling.   Piwi class Argonaute-piRNA complexes, like siRNA or miRNA-Argonaute 

complexes, can cleave perfectly matched RNA targets in vitro (Gunawardane et al., 2007; 

Lau et al., 2006; Saito et al., 2006).   As noted above, miRNA-Argonaute complexes that 

imperfectly pair with target mRNAs induce translational silencing (Valencia-Sanchez et 

al., 2006).  It is therefore possible that piRNA-Piwi class Argonaute complexes also 

trigger translational silencing of imperfectly matched targets, including mRNAs from 
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single copy genes like oskar.  Consistent with this speculation, a subset of piRNAs 

associate with polysomes in the mouse (Grivna et al., 2006b).   

 

Fertility and Stellate silencing in Drosophila males 

 Most of Drosophila piRNA pathway mutations reduce male fertility (Cox et al., 

1998; Schmidt et al., 1999; Stapleton et al., 2001; Tomari et al., 2004), and this is linked 

to the overexpression of Stellate protein.  The function of Stellate is not known, but it is 

encoded by repeated genes on the X chromosome that are suppressed by the Y-linked 

Suppressor of Stellate locus [Su(Ste)] (Aravin et al., 2001; Livak, 1990).  Su(Ste) consists 

of bi-directionally transcribed repeats that are highly homologous to stellate, and deletion 

of the Su(Ste) locus leads to the massive over-expression of Stellate protein, which 

assembles into crystals in the testes (Bozzetti et al., 1995; Livak, 1984; Palumbo et al., 

1994).  25-27nt piRNAs are produced from the Su(Ste) locus, and mutations in piRNA 

pathway genes lead to Stellate crystal formation (Aravin et al., 2001; Pane et al., 2007; 

Stapleton et al., 2001; Tomari et al., 2004).  piRNAs from the Su(Ste) locus thus silence 

expression of stellate in trans.  It is currently unclear if this reflects transcriptional or post-

transcriptional silencing. Stellate over-expression alone could induce sterility, but defects 

in silencing of other genes could also impact male fertility.  piRNA pathway mutations 

lead to mobilization of at least a subset of transposons in the male germline (Kalmykova et 

al., 2005), and insertional mutations associated with transposon mobilization could also 

reduce male fertility.   
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Male germline development in the mouse 

The mouse genome encodes three Piwi homologues, Miwi, Miwi2 and Mili, and all three 

are expressed at high levels in testes and are required for male fertility (Aravin et al., 

2006; Deng and Lin, 2002; Girard et al., 2006; Grivna et al., 2006a; Kuramochi-

Miyagawa et al., 2001; Sasaki et al., 2003).   Both Mili and Miwi bind piRNAs, and knock 

out mutations in the Mili and Miwi genes block piRNA production (Aravin et al., 2006; 

Girard et al., 2006; Grivna et al., 2006a).  Single null mutations in each of the three genes 

lead to male sterility (Carmell et al., 2007; Deng and Lin, 2002; Kuramochi-Miyagawa et 

al., 2004).  Spermatogenesis in the mouse is a coordinated process that can be divided into 

three phases; mitosis, meiosis and spermiogenesis (de Rooij and Grootegoed, 1998). In the 

first phase, stem cells localized in the basal layer of the epithelium divide mitotically to 

self-renew and generate a population of primary spermatocytes.  In the second phase, the 

primary spermatocytes progress through meiosis to generate haploid round spermatids.  

During leptotene of meiotic prophase I, duplicated chromosomes condense and begin to 

pair.  Pairing is completed and the synaptonemal complex forms during zygotene, and 

crossing over occurs in pachytene.   The homologs begin to separate in diplotene and 

finally resolve in diakinesis.  During the third phase, round spermatids mature and 

elongate and are then released into the lumen of the tubule.  In Mili, Miwi and Miwi2 

mutants, the testes appear normal until about two weeks post partum, which roughly 

corresponds with the first round of meiosis.  However, post-meiotic cells do not form 

(Figure 3.C).  Mutations in Mili and Miwi2 block progression through pachytene, while 

Miwi mutant spermatocytes develop to the round spermatid stage but do not complete 

spermiogenesis  (Carmell et al., 2007; Deng and Lin, 2002; Kuramochi-Miyagawa et al., 



19 
 

2004).  The timing of developmental arrest correlates with the temporal expression of Mili 

and Miwi proteins.  Mili is first detected in male primordial germ cells and is present 

throughout pachytene, whereas Miwi is expressed only from mid-pachytene to the round 

spermatid stage (Deng and Lin, 2002; Kuramochi-Miyagawa et al., 2004).  The temporal 

expression pattern of Miwi2 during spermatogenesis has not been reported. 

Mutations in each of the three genes lead to the degeneration of the male germline, 

while somatic cells appear to remain relatively unaffected (Carmell et al., 2007; Deng and 

Lin, 2002; Kuramochi-Miyagawa et al., 2004); Figure 3.C).  Similar spermatogenesis 

arrest phenotypes have been observed in mutants that disrupt synapsis or DNA repair 

(Baarends et al., 2001; Barchi et al., 2005; Xu et al., 2003). Additionally, high levels of γ-

H2AX staining, indicative of DNA break formation, have been observed Miwi2 mutants 

(Carmell et al., 2007). All of the above suggests that mutations in piwi homologues in the 

mice, like piRNA pathway mutations in Drosophila, lead to DNA damage and activation 

of a DNA damage response, including apoptotic degeneration of germline cells.  

In piRNA pathway mutants in flies, germline DNA damage is associated with the 

massive over-expression of retrotransposon, and most of the piRNAs are linked to 

retrotransposon and repeated sequences (Brennecke et al., 2007; Klattenhoff et al., 2007; 

Vagin et al., 2006).  These observations suggest that germline DNA damage is caused by 

transposon mobilization, although this has not been demonstrated (Klattenhoff et al., 

2007).  By contrast, the piRNAs from adult mouse testes are depleted of repeated and 

retrotransposon sequences (Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006a).  

However, a recent study has identified a pre-pachytene cluster of Mili-interacting piRNAs 

that include a substantial number of repeat and retrotransposon sequences (Aravin et al., 
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2007).  Moreover, Mili and Miwi2 mutations in mice lead to the de-repression of 

retrotransposon transcripts (Aravin et al., 2007; Carmell et al., 2007).  The piRNA 

pathway may therefore have a conserved function in silencing retrotransposons and 

preventing DNA damage in germline.  However, in contrast to flies, the female germline 

is not affected by single mutations in mouse Piwi class Argonaut genes (Carmell et al., 

2007; Deng and Lin, 2002; Kuramochi-Miyagawa et al., 2004).  This could indicate that a 

distinct pathway fulfills this role in the mammalian female germline.  However, the Piwi 

class Argonautes could also act redundantly during oogenesis, and double or triple 

mutants may therefore reveal a role for piRNAs in the mouse female germline.  

 

Sex determination and germline development in zebrafish 

The zebrafish genome encodes two clear Piwi homologues, ziwi and zili. Ziwi 

appears to be an ortholog of the mouse Miwi protein, while Zili is more similar to mouse 

Mili. Only Ziwi, which is expressed specifically in the male and female germline cells, has 

been characterized (Houwing et al., 2007).  Ziwi, like the Drosophila Ago-3 and Aub 

proteins, is primarily cytoplasmic and localizes to perinuclear nuage.  Strikingly, null ziwi 

mutations also result in apoptotic loss of germ cells from the testes (Figure 3.D). Reduced 

levels of ziwi function permit the survival of male germ cells to the adult stage, but lead to 

elevated levels of apoptosis in adult germ cells and to varying levels of infertility.  

piRNAs isolated from zebrafish testes and ovaries show the same molecular  properties as 

piRNAs from other organisms, and many are derived from repetitive sequences.  

Mutations in ziwi also affect sex determination, and all surviving mutant animals are male 

(Houwing et al., 2007).  As a result, the role of ziwi in the female germline could not be 
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assessed.  Other mutations that reduce germ cell number also lead to male development, 

suggesting that the sex determination phenotype is secondary to the loss of germ cells 

(Slanchev et al., 2005). However, a more direct role for piRNAs in sex determination 

cannot be excluded.  
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Figure 3 
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Figure 3.  The piRNA pathway is required for germline development.  (A). piwi is 

required for the self-renewing division of germline stem cells during oogenesis. DAPI 

images of 0-to-1-day old adult ovarioles from wild-type and piwi2 mutant flies. Wild-type 

ovarioles contain a long string of developing egg chambers produced through continuous 

stem cell divsion (Ge). In contrast, piwi mutant ovarioles typically contain only 2 egg 

chambers, derived though stem cell differntiation and loss (Cox et al., 1998). (B). 

Increased DNA damage in the germline cells of aub mutant ovaries. Drosophila ovaries 

immunostained to reveal phosphorylated form of histone H2Av (g-H2Av) (red) and DNA 

(Wakabayashi-Ito et al.).  γ-H2Av accumulates near double-strand break sites. In wild-

type, γ-H2Av foci are restricted to region 2 of the germarium, where meiotic DSBs form.  

In aub mutant ovaries g-H2Av foci accumulate in cells within the germarium and persist 

and increase in intensity only in the germline as cysts bud from the germarium to form egg 

chambers (Klattenhoff et al., 2007).  (C). Miwi2 mutants deplete germ cell lineages in 

mouse testes. Hematoxylin and eosin staining of wild type and Miwi2 mutants adult testes 

shows germline degeneration in Miwi2 mutant mouse testes (Carmell et al., 2007).  (D). 

Ziwi is necessary for the maintenance of the germline. Hematoxylin and eosin staining of 

wild-type and ziwi testis shows ziwi mutants have germ cell-depleted testis (Houwing et 

al., 2007).    
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Conclusion and open questions 

In flies, fish and mice, piRNA pathway mutations lead to germline-specific 

defects, and studies in Drosophila indicate that some of these defects result from DNA 

damage signaling. piRNAs may therefore have a conserved function in preserving 

germline genome integrity.   In flies, piRNA mutations lead to the over-expression of 

retrotransposons, and retrotransposon mobilization could cause the DNA lesions that lead 

to germline DNA damage.  However, piRNA pathway mutations have been linked to the 

mobilization of a single transposon in the Drosophila male germline (Kalmykova et al., 

2005), and there is no direct evidence that the breaks that accumulate in piRNA pathway 

mutations in the female germline are associated with transposition events. piRNAs could 

therefore directly promote repair, induce the assembly of damage resistant chromosome 

structures, or suppress the expression of euchromatic genes that induce DNA breaks.  

The mechanism of piRNA-based gene silencing also remains to be determined. 

Mutations in genes involved in the piRNA pathway in Drosophila have been reported to 

disrupt position effect variegation (PEV), a form of transcription silencing caused by 

heterochromatin spreading from peri-centromeric and telomeric regions (Pal-Bhadra et al., 

2002; Pal-Bhadra et al., 2004).   piRNAs could therefore silence gene expression by 

promoting heterochromatin assembly, which could directly suppress transcription.  

Alternatively, piRNA-Argonaute complexes could associate with heterochromatin and 

catalyze the co-transcriptional destruction of nascent transcripts.  The latter possibility is 

suggested by studies in fission yeast that indicate that siRNA-containing Argonaute 

proteins are recruited to heterochromatic regions, where they degrade transcripts as they 

are produced (Verdel and Moazed, 2005).  However, mouse and Drosophila Piwi class 
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Argonautes are also present in the cytoplasm, and piRNA-Piwi class Argonaut complexes 

could silence gene expression by targeting the destruction of mature mRNA following exit 

from the nucleus.   It is also possible that piRNA-Argonaute function in both the nucleus 

and the cytoplasm during the development of complex multi-cellular organisms.   

The studies presented in this thesis addressed mainly two aspects of Piwi-

interacting RNA (piRNA) biology in the Drosophila germline.  

In Chapter II, we investigated the role of the piRNA pathway in embryonic axis 

specification. piRNAs mediate silencing of retrotransposons and the Stellate locus.  

Mutations in the Drosophila piRNA pathway genes armitage and aubergine disrupt 

embryonic axis specification, triggering defects in microtubule polarization and 

asymmetric localization of mRNA and protein determinants in the developing oocyte.  

Mutations in the ATR/Chk2 DNA damage signal transduction pathway dramatically 

suppress these axis specification defects, but do not restore retrotransposon or Stellate 

silencing.  Furthermore, piRNA pathway mutations lead to germline-specific 

accumulation of γ−H2Av foci characteristic of DNA damage.  We conclude that piRNA 

based gene silencing is not required for axis specification, and that the critical 

developmental function for this pathway is to suppress DNA damage signaling in the 

germline. 

In the studies presented in Chapter III we identified a new member of the piRNA 

pathway. We show that mutations in rhino, which encodes a rapidly evolving 

Heterochromatin Protein 1 (HP1) chromo box protein, lead to germline specific DNA 

break accumulation, trigger Chk2 kinase dependent defects in axis specification, and 

disrupt germline localization of Piwi proteins.  Mutations in rhino and the piRNA pathway 
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gene armitage disrupt silencing of all major transposon families, but do not alter 

expression of euchromatic or heterochromatic protein coding genes.   Deep sequencing 

studies show that rhino mutations significantly reduce or eliminate anti-sense piRNAs 

derived from the majority of transposable elements in the Drosophila genome, and lead to 

a dramatic reduction in piRNAs derived from major piRNA production clusters on 

chromosomes 2R and 4.  Rhino protein localizes to distinct nuclear foci, and associates 

with the chromosome 2R and 4 clusters by chromatin immunoprecipitation.  The Rhino 

HP1 homologue is therefore required for piRNA biogenesis, transposon silencing, and 

maintenance of germline genome integrity.  
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CHAPTER II 

Drosophila rasiRNA pathway mutations disrupt embryonic axis specification 

through activation of an ATR/Chk2 DNA damage response 
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Abstract: 

Small repeat associated siRNAs (rasiRNAs) mediate silencing of retrotransposons 

and the Stellate locus.  Mutations in the Drosophila rasiRNA pathway genes armitage and 

aubergine disrupt embryonic axis specification, triggering defects in microtubule 

polarization and asymmetric localization of mRNA and protein determinants in the 

developing oocyte.  Mutations in the ATR/Chk2 DNA damage signal transduction 

pathway dramatically suppress these axis specification defects, but do not restore 

retrotransposon or Stellate silencing.  Furthermore, rasiRNA pathway mutations lead to 

germline-specific accumulation of γ−H2Av foci characteristic of DNA damage.  We 

conclude that rasiRNA based gene silencing is not required for axis specification, and that 

the critical developmental function for this pathway is to suppress DNA damage signaling 

in the germline. 
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Introduction 

RNA interference (Simeone et al.) and related processes utilize short RNAs to 

direct protein complexes to chromatin and RNA, triggering heterochromatin formation, 

transcriptional silencing, translational repression, or RNA destruction (Hannon, 2002; 

Hutvagner and Zamore, 2002; Wassenegger, 2005).  Mutations that disrupt small RNA 

functions affect a remarkable range of processes, including early embryogenesis in mice 

(Bernstein et al., 2003), embryonic morphogenesis in zebrafish (Giraldez et al., 2005), 

chromosome segregation in cultured chicken cells (Fukagawa et al., 2004) and yeast 

(Provost et al., 2002; Volpe et al., 2003), and developmental timing in worms (Grishok et 

al., 2001).   In Drosophila, RNAi related functions are required for stem cell division, 

stem cell maintenance and viral immunity (Forstemann et al., 2005; Hatfield et al., 2005) 

(Galiana-Arnoux et al., 2006; Wang et al., 2006).  However, the full scope of biological 

functions controlled by small RNAs is only beginning to emerge, and the targets for most 

small RNAs have not been identified.   

Mutations in the Drosophila armitage (Jaronczyk et al.), spindle-E (spn-E), and 

aubergine (aub) genes disrupt siRNA-guided RNA cleavage and assembly of the RNA 

induced silencing complex (RISC) in ovary extracts and production of 24 to 30 nt repeat 

associated siRNAs (rasiRNAs), which are linked to retrotransposon and Stellate locus 

silencing (Aravin et al., 2004; Tomari et al., 2004a; Vagin et al., 2006).  Strong loss of 

function mutations in these genes disrupt embryonic axis specification, triggering defects 

in microtubule organization and microtubule-dependent localization of mRNA and protein 

determinants in the developing oocyte (Cook et al., 2004).   By contrast, mutations in 

argonaute-2 (ago-2) and dicer-2 (dcr-2) that disrupt the siRNA pathway, but do not block 
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rasiRNA production, are viable and fertile (Deshpande et al., 2005; Lee et al., 2004; 

Okamura et al., 2004; Tomari et al., 2004b; Vagin et al., 2006).  The rasiRNA pathway 

thus appears to have an essential function in embryonic axis specification; however, the 

critical developmental targets for this pathway have not been defined. 

Mutations in the armi, aub, and spn-E genes lead to premature expression of Oskar 

(Drees et al.) protein during early oogenesis (Cook et al., 2004), suggesting that over-

expression of axis specification genes could lead to the patterning defects associated with 

rasiRNA pathway defects.  However, here we show that the axis specification defects 

associated with armi and aub are dramatically suppressed by null mutations in mei-41 and 

mnk, which encode ATR and Chk2 kinases that function in DNA double strand break 

signaling.  We also show that rasiRNA pathway mutations lead to germline specific 

accumulation of γ−H2Av foci characteristic of DNA double strand breaks (DSBs).  

Significantly, the ATR/Chk2 mutations do not suppress the defects in retrotransposon and 

Stellate silencing.  We therefore conclude that rasiRNA based gene silencing is not 

required for axis specification, and that the critical developmental function for the 

Drosophila rasiRNA pathway is to suppress DNA damage signaling in the germline.  
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Results 

ATR and Chk2 mutations suppress armi and aub axis specification defects 

The armi, spn-E and aub genes are required for production of rasiRNAs, and 

mutations in these genes lead to Stellate over-expression during spermatogenesis and 

premature Osk protein expression during oogenesis (Aravin et al., 2001; Cook et al., 2004; 

Vagin et al., 2006).  These mutations also lead to female sterility and disrupt embryonic 

axis specification, suggesting that rasiRNAs control expression of genes involved in 

patterning the oocyte (Cook et al., 2004). However, mutations in the meiotic DSB repair 

pathway also lead to axis specification defects, and these defects result from activation of 

a damage signaling pathway that includes the ATR and Chk2 kinases (Bartek et al., 2001) 

(Abdu et al., 2002; Ghabrial and Schupbach, 1999).  These findings raised the alternative 

possibility that rasiRNA pathway mutations disrupt axis specification by activating ATR 

and Chk2.  

To genetically test the role of DNA damage signaling in the rasiRNA pathway 

mutant phenotype, we analyzed double mutant combinations with mei-41 or mnk, which 

encode the Drosophila ATR and Chk2 homologues.  We were unable to recover mnk; spn-

E double mutants, and it is unclear if this reflects a significant negative genetic interaction 

between these genes or the presence of background mutations on the mnk or spn-E 

chromosome.  Our analyses thus focused on armi and aub, which we were able to 

combine with both mei-41 and mnk.  If armi and aub mutations block axis specification 

through ATR/Chk2 activation, the patterning defects associated with these mutations will 

be suppressed in the double mutants.  Initial suppression analysis focused on the dorsal 

appendages, which are easily scored eggshell structures that are induced through Gurken 
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(Grk) signaling from the oocyte to the somatic follicle cells during mid-oogenesis 

(Schupbach, 1987).  Appendages do not form in the absence of Grk, a single appendage 

forms with low Grk levels, and two appendages form when signaling is normal (Gonzalez-

Reyes et al., 1995; Roth et al., 1995).  As shown in Table 1, mei41 and mnk dramatically 

suppress the appendage defects associated with armi and aub.  Two appendages are 

present on 100% of the embryos derived from wild type and mei-41 females, and on 94% 

of the embryos derived from mnk single mutants (Table 1).  By contrast, only 3.5% of the 

embryos derived from armi72.1/armi1 mutant females have 2 dorsal appendages.  

Strikingly, 92% of the embryos derived from mnk; armi72.1/armi1 double mutants show 

wild type appendage morphology.  Similarly, 2 appendages are present on 48% of 

embryos derived from aub single mutants, and 98% of the embryos from mnk, aub double 

mutants have 2 appendages.  

Mutations in mei-41 also suppressed the eggshell patterning defects associated 

with armi and aub, although suppression by mei-41 was consistently less dramatic than 

suppression by mnk.  56 % of the embryos from mei-41; armi72.1/armi1 double mutants 

show normal appendages.  The mei-41 mutation was also less effective than mnk in 

suppressing appendage defects associated with homozygous armi1 (data not shown) and 

aub (Table 1).   Therefore, partial suppression of the patterning defects by mei-41 is not 

allele or gene specific.  Chk2 can be activated by both ATR and ATM kinases (Bartek et 

al., 2001; Bartek and Lukas, 2003; Hirao et al., 2002), and the lower level of suppression 

by mei-41/ATR relative to mnk/Chk2 may therefore reflect redundant Chk2 activation by 

the Drosophila ATM homologue.  However, null alleles of the Drosophila atm gene are 

lethal (Oikemus et al., 2004), making direct tests of this hypothesis difficult.  Nonetheless, 
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these initial observations indicated that the axis specification defects associated with 

rasiRNA pathway mutations result from activation of an ATR/Chk2 kinase DNA damage 

signal. 

The axis specification defects associated with repair mutations are suppressed by 

mutations in mei-W68, which encodes the Drosophila homologue of the Spo11 nuclease 

that catalyzes meiotic double strand break formation (McKim and Hayashi-Hagihara, 

1998).  By contrast, mei-W68 has no effect on the dorsal appendage defects associated 

with armi (Table 1).   Meiotic breaks thus do not appear to be the source of damage in 

armi mutations.  
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Table 1 

Maternal Genotype Dorsal Appendage 

(%) 

Phenotyp

e 

Hatch 

Rate 

(%) 

N 

  2 (wild 

type) 

1 

(fused) 

0 

(absent

) 

   

mnkP6 / mnkP6 94.1 2.3 3.6 73.9 827 

mei41D3 / mei41D3 100 0 0 0 920 

meiW681 / 

meiW68K05603 

94.3 4 1.7 67.2 128

1 

armi72.1 / armi1 3.5 67.6 28.9 0 765 

mnkP6 / mnkP6 ; 

armi72.1 / armi1 

91.9 2.5 5.6 0 106

2 

mei41D3 / mei41D3 ; 

armi72.1 / armi1 

56 38.4 5.6 0 575 

meiW681 / 

meiW68K05603 ; 

armi72.1 / armi1 

3.6 37.9 58.5 0 280 

aubHN2 / aubQC42 47.7 40.3 12 0 121

2 

mnkP6, aubHN2 / 

mnkP6, aubQC42 

97.6 2 0.4 0 296 

mei41D3 / mei41D3 ; 

aubHN2/ aubQC42 

85.2 8.6 6.2 0 859 

spn-E1 / spn-E1 16.6 55.4 27.9 0 123 
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mei41D3 / mei41D3 ; 

spn-E1 / spn-E1 

23.9 56.2 19.9 0 233 

spn-D2 / spn-D2 34.8 54 11.2 17.3 124

5 

mnkP6 / mnkP6 ; 

spn-D2 / spn-D2 

98.8 0.5 0.7 45.9 812 

 

Table 1.  mnk and mei-41 mutations suppress D-V patterning defects in rasiRNA mutants. 
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 Localization of axis specification determinants 

During early oogenesis, the TGFα homologue Grk localizes to the posterior of the 

oocyte and signals to the overlying follicle cells, inducing posterior differentiation. During 

mid-oogenesis, Grk signals from the oocyte to the dorsal follicle cells to generate the 

dorsal-ventral axis (Gonzalez-Reyes et al., 1995; Roth et al., 1995).  Mutations in armi 

and aub disrupt Grk protein localization at both stages, leading to posterior and dorsal-

ventral axis specification defects (Cook et al., 2004).  To determine if the DNA damage 

signaling mutations suppress the Grk localization defects in armi and aub mutants, we 

analyzed the distribution of this protein by indirect immunofluorescence and laser 

scanning confocal microscopy (Figure 1).  For these studies, Grk protein levels within 

cross sections of stage 6 oocytes were measured and an average fluorescence intensity 

profile for each genotype was generated (Figure 1B, inset).  In wild type stage 6 oocytes, 

Grk protein accumulates near the posterior cortex (Figure 1A, a).  In armi and aub single 

mutants, by contrast, low levels of Grk protein are uniformly distributed in the oocyte and 

nurse cells (Figure 1A, c and e).  However, Grk shows almost wild type accumulation near 

the posterior cortex of mnk; armi and mnk, aub double mutants oocytes (Figure 1A, d and 

f).  The defects in dorsal-anterior localization of Grk during mid-oogenesis (Figure 1A, c' 

and e') are also restored in the mnk double mutants  (Figure 1A, d' and f').  Weaker 

suppression is observed with mei-41, consistent with our analysis of the dorsal appendages 

(Figure 2).   

To determine if mnk and mei-41 suppress the armi and aub induced defects in 

posterior morphogen localization (Cook et al., 2004), we analyzed the distribution of the 

pole plasm proteins Vasa (Vas) and Osk during mid oogenesis.  Osk localizes to the 
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posterior in only 10% of stage 9 and 10 oocytes from armi females (2 of 23), with no 

detectable localization in the remaining egg chambers (Figure 3c).  By contrast, Osk 

shows wild type posterior accumulation in over 80% of stage 9 and 10 mnk;armi double 

mutants (27 of 33; Figure 3d).  Vas localization to the posterior pole is similarly restored 

in the double mutants (not shown).  mei-41 leads to a less dramatic suppression of the 

posterior patterning defects (not shown).  Osk and Vas localization are also disrupted in 

aub mutants (Figure 3e and data not shown), and localization is restored in double mutants 

with mnk and mei-41 (Figure 3f).  The defects in posterior and dorsal-ventral morphogen 

localization associated with both armi and aub thus require ATR and Chk2, which 

function in DNA damage signal transduction. 
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Figure 1. 
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Figure 1.  mnk suppresses Gurken protein localization defects in rasiRNA mutants.   

A. (a) In wild type stage 6 egg chambers, Gurken (Grk) protein (green) accumulates at the 

posterior cortex (arrowhead).  (a') By stage 9, Grk is localized at the dorsal anterior cortex.  

Actin filaments (red) mark the cell boundaries.  (b-b') In mnkp6 oocytes, Grk localization is 

the same as in wild type.  (c-c') In armi72.1/armi1  egg chambers, only low levels of Grk are 

present, and the protein is dispersed throughout the oocyte-nurse cell complex.  (d-d') 

Posterior and dorsal accumulation of Grk is restored in mnkp6/ mnkp6 ;armi72.1/armi1 

double mutants.  (e) In aubQC42/aubHN2 stage 6 egg chambers, Grk localization is similar to 

that of armi72.1/armi1 oocytes.  (e') At stage 9, Grk is localized correctly in aubQC42/aubHN2, 

but not at wild type levels.  (f-f') In mnkp6, aubQC42/ mnkp6, aubHN2 egg chambers Grk 

localization level is restored. Images were acquired under identical conditions for either 

stage. Projections of 3 serial 0.6 μm optical sections are shown The oocyte nucleus is 

indicated (asterisk). Scale bars are 10 μm and 25 μm for stage 6 and 9 egg chambers, 

respectively. 

B.  Quantification of Gurken localization in stage 6 oocytes.  The average fluorescence 

intensity along a line beginning in the nurse cell cytoplasm and extending through a cross 

section of the oocyte is shown (inset, see Experimental Procedures).  
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Figure 2. 
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Figure 2. Suppression of Gurken protein localization defects by mei-41 and mnk mutants.  

(a) In wild type stage 6 egg chambers, Gurken (Grk) protein (green) is tightly localized at 

the posterior cortex near the oocyte nucleus.  (a') By stage 9, Grk is localized at the dorsal 

anterior cortex near the oocyte nucleus.  Actin filaments (red) mark the cell boundaries.  

(b-b') In armi72.1/armi1 egg chambers, this localization pattern is lost both at stage 6 and 9, 

with Grk dispersed throughout the oocyte.  (c-c') mei-41D3 partially suppresses the 

armi72.1/armi1 phenotype, and increases Grk localization during early and late oogenesis.  

(d) In aubQC42/ aubHN2 stage 6 egg chambers, Grk localization is similar to that of 

armi72.1/armi1 oocytes.  (d') At stage 9, Grk is localized correctly in aubQC42/ aubHN2, but 

not at wild type levels.  (e-e') In mei-41D3; aubQC42/ aubHN2 egg chambers Grk 

localization level is partially restored.  (f-f') In the weak allele spn-D2 Grk is localized 

properly, but not at wild type levels.  (g-g') In mei-41D3; spn-D2 double mutants Grk 

localization is similar to wild type.  (h-h') mnkp6 mutation restores Grk localization to wild 

type levels in spn-D2 mutants.  Images were acquired under identical conditions. 

Projections of 3 serial 0,6 μm optical sections are shown.  The oocyte nucleus is marked 

by an asterisk in all panels.  Posterior is oriented to the right.  Scale bars are 10 μm and 25 

μm for stage 6 and stage 9 egg chambers, respectively.
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Figure 3. 
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Figure 3. Oskar protein localization defects associated with rasiRNA mutations are 

suppressed by mnk.  Egg chambers were fixed and labeled against Oskar (Drees et al.) 

protein (green) and Actin (red).  In stage 9-10 wild type (a) and mnkp6 mutant (b) oocytes, 

Osk localizes tightly to the posterior cortex. In similarly staged armi72.1/armi1  (c) and 

aubQC42/aubHN2 (e) oocytes, Osk fails to localize to the posterior pole.  Osk localization is 

restored in double mutants for mnkp6 and armi72.1/armi1 (d) or aubQC42/aubHN2(f).  Egg 

chambers are oriented with posterior to the right.  Images were acquired under identical 

conditions.  Single optical section are shown. Scale bar is 20 μm.  
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Microtubule organization and Vas phosphorylation 

Specification of the posterior pole is initiated during early oogenesis, when the 

microtubule cytoskeleton reorganizes to form a polarized scaffold in the oocyte-nurse cell 

complex.  While these complexes are in the germarium, a prominent microtubule 

organizing center (MTOC) forms at the anterior pole of the oocyte, and this MTOC 

appears to be required for oocyte differentiation (Figure 4A, a) (Theurkauf et al., 1993).  

After cysts bud from the germarium, a posterior MTOC is established (Figure 4A, a').  

This asymmetric microtubule array directs Grk to the posterior pole of the oocyte, which 

signals to the overlying somatic follicle cells to induce posterior differentiation (Gonzalez-

Reyes et al., 1995; Roth et al., 1995).  In armi mutants, both the early anterior and later 

posterior MTOCs are much less prominent than in wild type (Cook et al., 2004) (Figure 

4A, b and b', and Figure 5).  By contrast, egg chambers double mutant for armi and mnk 

show near wild type anterior and posterior MTOCs (Figure 4A, c and c').  Restoration of 

normal microtubule organization correlates with suppression of the Grk localization 

defects (Figure 1A, d).  Egg chambers double mutant for armi and mei-41 show a 

phenotype intermediate between the armi mutants and wild type controls, consistent with 

partial suppression of posterior patterning defects later in oogenesis (Figure 5).  The 

microtubule organization defects in aub are also strongly suppressed by mnk, and more 

weakly suppressed by mei-41 (Figure 5).  Mutations in armi and aub thus trigger Chk2 

dependent defects in microtubule organization.  These cytoskeletal defects are likely to 

contribute to the loss of axial patterning later in oogenesis. 

The axis specification defects associated with mutations that disrupt meiotic DSB 

repair are also suppressed by mnk.  To determine if Chk2-dependent disruption of the 
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oocyte cytoskeleton contributes to these defects, we analyzed microtubule organization in 

ovaries mutant for spn-D, which encodes a rad51C homologue required for DSB repair 

(Abdu et al., 2003).  Mutations in spn-D, like mutations in armi and aub, disrupt both the 

prominent MTOC at the anterior of stage 1 egg chambers and the posterior MTOC during 

stages 2 through 6 (Figure 4A, d and d’).  These defects are suppressed in mnk; spn-D 

double mutants (Figure 4A, e and e’), suggesting that DSB repair mutations and rasiRNA 

mutations trigger a common Chk2-dependent pathway that disrupts microtubule 

organization.  

DSB repair mutations induce Chk2 dependent phosphorylation of Vas, a conserved 

RNA helicase required for posterior and dorsal-ventral patterning (Ghabrial and 

Schupbach, 1999; Styhler et al., 1998).  To determine if rasiRNA mutations also trigger 

Chk2-dependent Vas phosphorylation, we probed western blots of armi and mnk; armi 

double mutants for Vas protein. Vas protein levels are also somewhat lower in the armi 

mutant egg chambers, but this may reflect differences in egg chamber stage distribution in 

the isolated ovaries (Figure 4B).  More significantly, a lower electrophoretic mobility 

species is observed in ovaries homozygous for a strong loss of function allele, armi72.1, 

and both species are observed with a weaker allelic combination armi72.1/armi1.  Only the 

faster migrating species is present in mnk; armi72.1/armi1 double mutant extracts.  

Following phosphatase treatment, the lower mobility species present in armi mutant 

extracts disappears and the faster migrating species increases in intensity (not shown), 

indicating that the lower mobility band is a phosphorylated form of Vas.  Mutations in 

armi, like meiotic DSB repair mutations, thus trigger Chk2-dependent phosphorylation of 

Vas.  While the physiological significance of Vas phosphorylation has not been 
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established, these finding support the hypothesis that armi mutations lead to Chk2 kinase 

activation. 
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Figure 4. 
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Figure 4.  mnk suppresses microtubule organization defects and Vasa phosphorylation in 

rasiRNA pathway mutants. A. Microtubules were labeled with an anti-α-tubulin antibody.  

(a) A bright microtubule organizing center (MTOC) is localized to the anterior pole of the 

oocyte in wild type stage 1 egg chambers (arrowhead).  (a') By stage 6, the MTOC is 

localized along the posterior cortex (arrowhead).  In armi72.1/armi1 and spn-D2 egg 

chambers, the anterior MTOC (b and d) and later posterior MTOC (b' and d') are much 

less prominent (arrowheads). (c and e) In mnkp6; armi72.1/armi1and mnkp6; spn-D2 egg 

chambers, anterior MTOC during stage 1 (c and e, arrowheads) and the posterior MTOC 

during stage 6 (c' and e', arrowheads) are restored.  Stage 1 oocytes are outlined.  Images 

were acquired under identical conditions. Projections of 4 serial 0.6 μm optical sections 

are shown. Posterior is oriented to the right.  Scale bar is 10 μm. 

B. Western blot analysis of Vasa (Vas) protein in wild type, armi1, armi72.1, 

armi72.1/armi1and mnkp6; armi72.1/armi1ovary extracts.  Vas from homozygous 

armi72.1ovaries has a reduced electrophoretic mobility relative Vas from wild type ovaries. 

Low mobility and wild type mobility forms of Vas are present in armi72.1/armi1 ovary 

extracts.  Only the faster migrating form is present in mnkp6; armi72.1/armi1 extracts 

(arrow).  
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Figure 5. 
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Figure 5.  Suppression of the microtubule organization defects by  

mei-41 and mnk.  Egg chambers were fixed and labeled with FITC-conjugated  

anti-α-tubulin antibody.  (a) A bright microtubule organizing center (MTOC) is localized 

to the anterior pole of the oocyte in wild type stage 1 egg chambers (arrowhead).  (a') By 

stage 6, the MTOC is localized along the posterior cortex  (arrowhead).  (b', d' and g') In 

armi72.1/armi1, aubQC42/aubHN2 and spn-D2 mutant egg chambers the posterior MTOC 

localization at stage 6 is disrupted (arrowheads), moreover, (b, d and g) the stage 1 

anterior localization of the MTOC is also defective (arrowheads).  (c, c', f, f', h and h') 

mei-41D3 mutation partially suppresses the microtubule organization defects in 

armi72.1/armi1, aubQC42/aubHN2 and spn-D2 egg chambers during stages 1 and 6  

(arrowheads).  (e and e') Microtubule polarization is restored to near wild type levels in  

mnkp6, aubQC42 mnkp6, aubHN2 double mutants (arrowheads).  Stage 1 oocytes are outlined. 

Images were acquired under identical conditions. Projections of 4 serial 0,6 μm optical 

sections are shown. Posterior is oriented to the right. Scale bar is 10 μm. 
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rasiRNA pathway mutations lead to germline γ−H2Av accumulation 

The above observations indicate that the axis specification defects associated with 

armi and aub are mediated by ATR and Chk2 kinases, which are normally activated by 

DNA DSBs.  To determine if armi and aub lead to DSB accumulation, we labeled mutant 

ovaries for the phosphorylated form of the Drosophila histone H2AX variant (γ−H2Av), 

which accumulates on chromosomes near break sites (Modesti and Kanaar, 2001; Redon 

et al., 2002).  Following chromosome breakage, Drosophila H2Av, like H2AX, is 

phosphorylated at a conserved SQ motif within an extended C-terminal tail (Madigan et 

al., 2002; Rogakou et al., 1998).  We therefore used an anti-phosphoprotein antibody 

specific for γ-H2Av (Gong et al., 2005).  In wild type ovaries, γ−H2Av foci are restricted 

to region 2 of the germarium, where meiotic DSBs are formed (Figure 6a) (Jang et al., 

2003).  Consistent with earlier observations, this labeling is significantly reduced in mei-

W68 mutants, which do not initiate meiotic breaks (Figure 6g).  In armi and aub mutants, 

prominent γ−H2Av foci are present in germline cells of the germarium.  Unlike wild type, 

these foci persist and increase in intensity as cysts mature and bud to form stage 2 egg 

chambers (Figure 6c and e). γ−H2Av foci persist in double mutants with mnk, indicating 

that suppression of the patterning defects by mnk is not the result of enhanced DNA repair.  

γ−H2Av foci also persist in egg chambers mutant for a third rasiRNA gene, spn-E (Figure 

7). The pattern of germline specific γ−H2Av accumulation in armi, aub, and spn-E is 

similar to the pattern γ−H2Av accumulation in mutants for the DNA repair gene spn-D, 

although the foci appear to arise at somewhat earlier stages in the rasiRNA mutants 

(Figure 6c, e and i).  Accumulation of γ−H2Av foci in spn-D mutants is suppressed by 

mei-W68, consistent with a function for this gene in meiotic DSB repair (Abdu et al., 
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2002).  By contrast, γ−H2Av foci persist in mei-W68; armi double mutants (Figure 6h).  

We have not yet assayed mei-W68 double mutants with aub or spn-E, but the above 

observation suggests that the γ−H2Av foci in rasiRNA pathway mutations are independent 

of meiotic DSB formation. 
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Figure 6. 

 

 

 



59 
 

Figure 6. γ−H2Av foci accumulate in armi and aub mutant ovaries. The phosphorylated 

form of Histone H2Av (γ−H2Av) accumulates near double strand break sites. (a and b)  In 

wild type and mnkp6 mutants, γ−H2Av foci are restricted to region 2 of the germarium, 

where meiotic DSBs form.  In (c) armi72.1/armi1, (d) mnkp6; armi72.1/armi1, (e) 

aubQC42/aubHN2, and (f) mnkp6, aubQC42/ mnkp6, aubHN2 ovaries, γ−H2Av foci accumulate in 

germline cells within the germarium, and persist and increase in intensity as cysts bud 

from the germarium to form egg chambers.  (i) A similar pattern is observed in ovaries 

mutant for spn-D2, which is required for DSB repair.  (g) Mutations in mei-W68 (mei-

W681/mei-W68k05603), which encodes the Spo11 nuclease that initiates meiotic DSBs, 

suppress formation of γ−H2Av foci in region 2 of the germarium.  (h) However, mei-W68 

does not suppress γ−H2Av focus formation in armi mutants (mei-W681/mei-W68k05603; 

armi72.1/armi1).  (j) A schematic representation of the regions of the germarium and a 

developing egg chamber.  Projections of 6 serial 1μm optical sections are shown. Posterior 

is to the right. Scale bar is 20 μm.   
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Figure 7. 
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Figure 7.  spn-E mutants have increased DNA damage in the germline.  Ovaries from (a) 

wild type and (b) spn-E1 flies were fixed and immunostained with an antibody against 

phosphorylated H2Av (γ−H2Av).  (a) Foci of γ−H2Av are observed in wild type in region 

2 of the germarium and correspond to the DSBs induced during meiotic recombination.  

(b) In spn-E1 mutants, much larger foci also appear in region 2 of the germarium but 

persist in region 3 and the developing egg chambers.  Images were acquired under 

identical conditions. Projections of 6 serial 1 μm optical sections are shown. Posterior is 

oriented to the right.  Scale bar is 10 μm. 
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rasiRNA function 

The observations presented above strongly suggested that the axial patterning 

defects associated with armi and aub are a consequence of DNA damage signaling, and 

that rasiRNA based gene silencing is not directly involved in embryonic patterning.  

However, the mnk and mei-41 mutations could suppress the defects in rasiRNA function 

associated with armi and aub.  We therefore analyzed rasiRNA dependent silencing of 

both the Stellate (Ste) gene during spermatogenesis and the HeT-A retrotransposon during 

oogenesis in single and double mutants.  The Ste gene is repressed during 

spermatogenesis, apparently through mRNA turnover guided by rasiRNAs derived from 

the Suppressor of Stellate locus (Aravin et al., 2001; Gvozdev et al., 2003).  Mutations in 

armi and aub lead to accumulation of full length Ste mRNA and Stellate (Ste) protein 

over-expression, which leads to assembly of Ste crystals in mutant testes (Aravin et al., 

2004; Forstemann et al., 2005; Stapleton et al., 2001; Tomari et al., 2004a) (Figure 8A, b 

and c).  Ste crystals are present in both mnk; armi and mnk, aub double mutant testes 

(Figure 8A, e and f).  Ste over-expression is also linked to male sterility, and mnk; armi 

males are also sterile (data not shown).  

HeT-A is a retrotransposon that contributes to telomere formation in Drosophila 

(Pardue et al., 2005), and HeT-A expression is dramatically de-repressed in armi, aub and 

spn-E mutant ovaries (Aravin et al., 2001; Vagin et al., 2004; Vagin et al., 2006).  HeT-A 

is not expressed at detectable levels on Northern blots of wild type or mnk RNAs.  

However, HeT-A transcripts are abundant in armi and aub mutants (Figure 8C). 

Significantly, HeT-A is also over-expressed in mnk; armi and mnk, aub double mutants 

(Figure 8B and C).  In fact, HeT-A expression is higher in the double mutants, relative to 
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the single mutants. FISH analyses indicate that this reflects increased expression in the 

germline and somatic cells of the ovary, during both early and mid-oogenesis (Figure 8B).  

Therefore, the mnk mutation does not suppress defects in rasiRNA based gene silencing 

during spermatogenesis or oogenesis, leading us to conclude that rasiRNA based silencing 

is not required for axis specification.   
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Figure 8. 
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Figure 8.  The mnk mutation does not suppress defects in rasiRNA function.   

A. Silencing of Stellate locus during spermatogenesis.   Stellate is not expressed in (a) 

wild type or (d) mnkp6 mutant testes.  However, Stellate is over-expressed and the protein 

assembles into crystals in testes from (b) armi72.1/armi1, (c) aubQC42/aubHN2, (e) mnkp6; 

armi72.1/armi1, and (f) mnkp6, aubQC42/ mnkp6, aubHN2 males. DNA (red) was labeled with 

TOTO3 and Stellate protein (green) was detected with anti-Stellate antibody. Projections 

of 5 serial 1μm optical sections are shown. Scale bar is 20 μm.  

B.  FISH analysis of HeT-A retrotransposon silencing.   (a-a') In wild type ovaries, only 

background levels of HeT-A expression are detected.    (b, b' and c, c') By contrast, HeT-A 

is expressed at high levels in the germline and somatic follicle cells of early and mid-

oogenesis stage armi72.1/armi1 and mnkp6; armi72.1/armi1 egg chambers. Panels (a), (b) and 

(c) are projections of 12-15 serial 1.5 μm optical sections.  Panels (a'), (b') and (c’) are 

single optical sections. Posterior is oriented to the right. Scale bar is 20 μm for the left 

panels and 50 μm for the right panels.  

C. Northern blot for HeT-A.  Total ovary RNA samples were resolved on a 1% agarose-

formaldehyde gel, transferred to membrane, and probed for HeT-A transcript.  HeT-A 

transcripts are undetectable in wild type and mnkp6 samples, but are abundant in RNA 

derived from armi1, armi72.1/armi1, mnkp6; armi72.1/armi1, aubQC42/aubHN2 and  

mnkp6, aubQC42/aubHN2 mutant ovaries.  Ribosomal protein 49 (rp49) was used as a loading 

control. 
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Discussion 

Mutations in the Drosophila armi, aub and spn-E genes disrupt oocyte microtubule 

organization and asymmetric localization of mRNAs and proteins that specify the 

posterior pole and dorsal-ventral axis of the oocyte and embryo (Cook et al., 2004).  

Mutations in these genes block homology dependent RNA cleavage and RNA induced 

silencing complex (RISC) assembly in ovary lysates (Tomari et al., 2004a), RNAi based 

gene silencing during early embryogenesis (Kennerdell et al., 2002), rasiRNA production, 

and retrotransposon and Stellate silencing (Aravin et al., 2001; Vagin et al., 2006).  

Mutations in dcr-2 and ago-2 genes, by contrast, block siRNA function (Okamura et al., 

2004; Tomari et al., 2004b) but do not disrupt the rasiRNA pathway or embryonic axis 

specification (Vagin et al., 2006).   The rasiRNA pathway thus appears to be required for 

embryonic axis specification.  However, the function of rasiRNAs in the axis specification 

pathway has not been previously established. 

 Here we show that the cytoskeletal polarization, morphogen localization, and 

eggshell patterning defects associated with armi and aub are efficiently suppressed by mnk 

and mei-41, which encode Chk2 and ATR kinase components of the DNA damage-

signaling pathway (Table 1 and Figures 1-3).  In addition, we show that armi and aub 

mutants accumulate γ−H2Av foci characteristic of DNA DSBs (Figure 4) and trigger 

Chk2-dependent phosphorylation of Vas (Figure 3B) , an RNA helicase required for 

posterior and dorsal-ventral specification (Styhler et al., 1998). Mutations in spn-E also 

disrupt the rasiRNA pathway (Aravin and Tuschl, 2005; Vagin et al., 2006), trigger axis 

specification defects (Cook et al., 2004) and lead to germline-specific accumulation of 

γ−H2Av foci (see Figure7).  Significantly, the mnk  and mei-41 mutations do not suppress 
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Ste or HeT-A over-expression, indicating that axis specification does not directly require 

rasiRNA dependent gene silencing.   Based on these findings, we conclude that the 

rasiRNA pathway suppresses DNA damage signaling in the female germline, and that 

mutations in this pathway disrupt axis specification by activating an ATR/Chk2 kinase 

pathway that blocks microtubule polarization and morphogen localization in the oocyte 

(Figure 9).. 

The cause of DNA damage signaling in armi, aub, and spn-E mutants remains to 

be established.  In wild type ovaries, γ−H2Av foci begin to accumulate in region 2 of the 

germarium (Jang et al., 2003), when the Spo11 nuclease (encoded by the mei-W68 gene) 

initiates meiotic breaks (McKim and Hayashi-Hagihara, 1998).  The axis specification 

defects associated with DNA DSB repair mutations are efficiently suppressed by mei-W68 

mutations, indicating that meiotic breaks are the source of DNA damage in these mutants 

(Abdu et al., 2002; Ghabrial and Schupbach, 1999; Staeva-Vieira et al., 2003).  The axis 

specification defects and γ−H2Av foci formation associated with armi, by contrast, are not 

suppressed by mei-W68 (Table 1, Figure 4). We have not yet analyzed mei-W68 double 

mutants with aub or spn-E, but this observation strongly suggests that meiotic DSBs are 

not the source of DNA damage in rasiRNA pathway mutations.  Retrotransposon silencing 

is disrupted in armi, aub, and spn-E mutants (Aravin et al., 2001; Vagin et al., 2006), and 

transcription of LINE retrotransposons in mammalian cells leads to DNA damage and 

DNA damage signaling (Belgnaoui et al., 2006; Gasior et al., 2006).  Loss of 

retrotransposon silencing could therefore directly induce the DSBs in rasiRNA pathway 

mutants.  However, DNA damage can also lead to loss of retrotransposon silencing 

(Bradshaw and McEntee, 1989; Farkash et al., 2006; Rudin and Thompson, 2001).  
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Mutations in the rasiRNA pathway could therefore disrupt DNA repair, and thus induce 

DNA damage that in turn induces loss of retrotransposon silencing.  Finally, the HeT-A 

retrotransposon is associated with telomeres, and over-expression of this element could 

reflect a loss of telomere protection and damage signaling by chromosome ends in the 

rasiRNA pathway mutants.  The available data do not distinguish between these 

alternatives.   

In mouse, the piwi related Argonauts Miwi and Mili bind piRNAs, 30nt RNAs 

derived primarily from a single strand that appear to be related to rasiRNAs (Aravin et al., 

2006; Girard et al., 2006; Grivna et al., 2006).  Mutations in these genes disrupt 

spermatogenesis and lead to germline apoptosis (Deng and Lin, 2002; Kuramochi-

Miyagawa et al., 2001), which can be induced by DNA damage signaling.  Mammalian 

piRNAs and Drosophila rasiRNAs may therefore serve similar functions in suppressing a 

germline specific DNA damage response.  
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Figure 9. 
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Figure 9.  Model for rasiRNA control of axis specification.  The rasiRNA pathway and 

meiotic DSB repair machinery function independently to suppress DNA damage signaling 

in the female germline.  Mutations that disrupt either pathway activate a common DNA 

damage response, mediated by the ATR and Chk2 kinases.  Chk2 activation blocks axis 

specification by disrupting microtubule organization and phosphorylating Vas, an RNA 

helicase required for axis specification that has been implicated in grk mRNA translation. 
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Experimental Procedures 

Drosophila stocks  

All animals were raised at 25OC on standard food.  Oregon R was used for wild type 

control.  The following alleles were used: mnkP6 (Brodsky et al., 2004; Takada et al., 

2003); armi72.1 and armi1 (Cook et al., 2004); mei41D3, (Hari et al., 1995; Hawley and 

Tartof, 1983); aubQC42, aubHN2 (Schupbach and Wieschaus, 1991);  spn-E1 (Gillespie and 

Berg, 1995);(Gonzalez-Reyes et al., 1997); spn-D2 (Abdu et al., 2003) P[lacW]mei-

W68K05603, mei-W681 (McKim and Hayashi-Hagihara, 1998).  The mnkP6 allele was kindly 

provided by M. Brodsky (Brodsky et al., 2004). All other stocks were obtained from the 

Bloomington Drosophila Stock Center (Consortium, 2003; http://flybase.org/).  Standard 

genetic procedures were used to generate double mutant combinations. 

 

Antibody Production 

Primers annealing to each of the translation start and stop sites of a Stellate cDNA 

(Bozzetti et al., 1995)were designed (Integrated DNA Technologies, Inc.) with attached 

Gateway (Invitrogen) sequences.  The resulting PCR product was used to make a DONR 

clone which in turn was used to subclone into the 6X-His-tagged Gateway vector pDest17, 

yielding a 29kD 6X-His tagged Stellate fusion protein.  The fusion protein was purified on 

a Probond Ni matrix (Invitrogen) under denaturing conditions, isolated by SDS-PAGE and 

used to immunize 2 rabbits (Pocono Rabbit Farm and Laboratory, Inc.) using standard 

protocols for antibody production.  Antiserum was used at 1:1000 for 

immunohistochemistry. 

 

http://flybase.org/
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Immunohistochemistry 

Egg chamber fixation and whole-mount antibody labeling were performed as previously 

described (Theurkauf, 1994).  Microtubules were labeled with FITC-conjugated mouse 

monoclonal anti-α-tubulin (Sigma Chemical Co.) used at 1:200. Osk protein was labeled 

with rabbit polyclonal anti-Osk antibody (Vanzo and Ephrussi, 2002) at 1:1000.  Vas 

protein was labeled with rabbit polyclonal anti-Vas antibody (Liang et al., 1994) at 

1:1000.  Gurken protein was labeled with mouse monoclonal anti-Gurken antibody 

(obtained from the Developmental Studies Hybridoma Bank, University of Iowa) at 1:10.  

Antibody against γ-H2Av was kindly provided by Kim McKim (Gong et al., 2005) and 

egg chambers were labeled as described previously (Belmont et al., 1989).  Rhodamine-

conjugated phalloidin (Molecular Probes) was used at 1:100 to stain F-actin, and TOTO3 

(Molecular Probes) was used at 1:500 (0.2 μM final concentration) to visualize DNA. 

 

Fluorescence in situ Hybridization (FISH) 

An anti-sense HeT-A digoxygenin (DIG)-labeled RNA probe was synthesized in vitro 

from a 500bp PCR-amplified cDNA fragment carrying a T7 promoter (generously 

provided by P. Zamore) using a DIG RNA Labeling Kit following manufacturer’s 

instructions (Roche). Whole mount in situ hybridization was performed as described 

previously  (Cha et al., 2001).  Tyramide signal amplification (TSATM) was performed 

following manufacturer’s instructions (Perkin Elmer).  

 

Northern Blots 
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Fly ovaries were dissected in 1× Robb’s medium (55mM Potassium Acetate, 40mM 

Sodium Acetate, 100mM Sucrose, 10mM Glucose, 1.2mM MgCl2, 1mM CaCl2, and 

100mM HEPES, pH7.4).  Total RNA was isolated from approximately 30 mg of ovaries 

using RNeasy® Mini Kit following manufacturer’s instructions (Qiagen).  Approximately 

20µg of total RNA /sample was resolved electrophoretically on a 

1%Agarose/Formaldehyde gel.  RNA was transferred to a positively charge nylon 

membrane (Roche) by standard capillary transfer.  Following transfer, RNA was fixed to 

the membrane via UV crosslinking (Stratalinker UV Crosslinker 2400).  Following pre-

hybridization, blots were probed with DIG labeled RNA following manufacturer’s 

recommendations (Roche).  rp49 was used as a loading control.  Blots were developed 

using CDP-Star (Tropix) according to manufacturer’s directions.  Images were acquired 

using the Kodak 4000MM Image Station.    

 

Western Blot Analysis 

The Western blot was performed as described (Ghabrial et al., 1998; Ghabrial and 

Schupbach, 1999) using the rabbit polyclonal anti-Vas antibody at 1:5000. 

 

Microscopy 

All tissues were mounted in 90% glycerol / PBS, with 1 mg/ml p-Phenylenediamine 

(Sigma). Samples were analyzed using a Leica TCS-SP inverted laser scanning 

microscope with 63X NA 1.32 PlanApo oil and 40X NA 1.25 Planapo oil objectives.   

Identical imaging conditions were used for each set of wild type and mutant samples.  

Images were processed using Image J software.  
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CHAPTER III 

The Drosophila HP1 homologue Rhino is required for piRNA biogenesis, transposon 

silencing and genome maintenance in the female germline 
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Abstract: 

The Drosophila piRNA pathway silences transposon expression and maintains 

genome integrity during female germline development, but piRNA biogenesis and 

transposon silencing are not well understood.  We show that mutations in rhino, which 

encodes a rapidly evolving Heterochromatin Protein 1 (HP1) chromo box protein, lead to 

germline specific DNA break accumulation, trigger Chk2 kinase dependent defects in axis 

specification, and disrupt germline localization of Piwi proteins.  Mutations in rhino and 

the piRNA pathway gene armitage disrupt silencing transposons, but do not alter 

expression of euchromatic or heterochromatic protein coding genes.   Deep sequencing 

studies show that rhino mutations significantly reduce or eliminate anti-sense piRNAs 

derived from the majority of transposable elements in the Drosophila genome, and lead to 

a dramatic reduction in piRNAs derived from major piRNA production clusters on 

chromosomes 2R and 4.  Rhino protein localizes to distinct nuclear foci, and associates 

with the chromosome 2R and 4 clusters by chromatin immunoprecipitation.  The Rhino 

HP1 homologue is therefore required for piRNA biogenesis, transposon silencing, and 

maintenance of germline genome integrity.  
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Introduction 

Piwi class Argonautes bind to endogenous 24-30 nt non-coding RNAs (piRNAs) 

and are required for germline development in mouse, flies and fish (Aravin et al., 2007).  

In each of these systems, at least a subset of piRNAs are derived from transposons and 

other repeated sequence elements (Brennecke et al., 2007; Gunawardane et al., 2007; Saito 

et al., 2006), and mutations in the Drosophila piRNA pathway genes lead to DNA break 

accumulation and a dramatic loss of silencing for at least a subset of transposable elements 

(Klattenhoff et al., 2007).   These findings suggest that piRNA mutations lead to 

transposon mobilization in the germline, which may overwhelm the DNA repair 

machinery, compromising chromosome integrity and germline development.  However, 

there is no direct evidence that breaks in germline DNA are linked to new transposon 

insertions, and other mechanisms of damage accumulation are possible.   

 Insight into the mechanism of piRNA dependent transposon silencing has come 

from both deep sequencing and genetic studies.   Deep sequencing in Drosophila indicates 

that most piRNAs are derived from a limited number of loci, termed piRNA clusters, that 

are largely localized to pericentromeric and telomeric heterochromatin (Brennecke et al., 

2007).   By contrast, full-length transposons are present throughout the genome.  

Significantly, the flamenco locus defines a piRNA cluster located on the X chromosome, 

and a P-element insertion in this locus disrupts silencing of gypsy elements located 

elsewhere in the genome (Brennecke et al., 2007; Prud'homme et al., 1995) .   These 

findings suggest that piRNAs generated at a heterochromatic cluster can silence 

euchromatic transposons in trans.  piRNA-Argonaute complexes can mediate homology 

dependent target cleavage in vitro (Gunawardane et al., 2007; Saito et al., 2006), 
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suggesting that trans-silencing reflects co-transcriptional or post-transcriptional 

destruction of target transcripts.  However, mutations in the Drosophila piRNA pathway 

have been reported to modify position effect variegation (PEV) in somatic tissues 

(Brower-Toland et al., 2007; Pal-Bhadra et al., 2002; Pal-Bhadra et al., 2004), which is a 

stochastic form of silencing linked to spreading of transcriptionally silent heterochromatin 

from pericentric and telomeric regions.  Piwi has also been found to physically and 

genetically interact with heterochromatin protein-1 (HP1) (Brower-Toland et al., 2007).  

Trans-silencing could therefore reflect piRNA-Piwi protein directed heterochromatin 

assembly and transcriptional repression.   In S. pombe, siRNAs and Argonautes appear to 

recognize nascent transcripts at the centromere, triggering both transcript destruction and 

assembly of centromeric heterochomatin (Verdel and Moazed, 2005) .  It is therefore 

possible that similar hybrid mechanisms drive piRNA based silencing in the germline.   

Biogenesis of piRNAs is independent of Dicer (Houwing et al., 2007; Vagin et al., 

2006), which catalyzes production of miRNAs and siRNAs from double strand precursors 

(reviewed in (Du and Zamore, 2005; Hannon, 2002).   Deep sequencing of small RNAs 

from Drosophila ovaries reveals a subset of sense and anti-sense piRNAs with a 10 base 

overlap.  Within this pool, there is bias toward an A at position 10 of the sense strand 

piRNA and a U at the 5' end of the anti-sense strand piRNA (Brennecke et al., 2007; 

Gunawardane et al., 2007).  Argonautes cleave targets between positions 10 and 11 of the 

guide strand (Gunawardane, 2007; Saito, 2006).  These results thus suggest that piRNAs 

are produced by a ping-pong mechanism in which sense strand piRNAs bound to 

Argonaute proteins generate the 5' end of antisense piRNAs, and anti-sense piRNA-

Argonaute complexes generate the 5' end of sense strand piRNAs (Brennecke et al., 2007; 
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Gunawardane et al., 2007).   However, the mechanism of 3" end generation is not 

understood, and most piRNAs cannot be assigned to "ping-pong" pairs.  In addition, the 

precursor RNAs for piRNA production have not been identified.   

The mechanisms that drive piRNA biogenesis and piRNA dependent silencing 

thus remain to be determined. To gain insight into these critical processes, we have 

exploited forward genetic approaches in Drosophila to identify new components of the 

piRNA pathway.  Mutations in the piRNA pathway produce characteristic defects in 

posterior and dorsal-ventral axis specification, which lead to easily scored changes in 

eggshell shape (Chen et al., 2007; Cook et al., 2004; Pane et al., 2007).  Volpe et al.  

previously reported that mutations in the rhino (rhi) locus, which encodes a member of the 

Heterochromatin Protein 1 (HP1) subfamily of chromo box proteins, produce similar 

defects (Volpe et al., 2001).  The axis specification defects in piRNA mutants are linked to 

DNA break formation in the germline, and are suppressed by mutations that disrupt DNA 

damage signaling (Klattenhoff et al., 2007).  Here, we show that rhino mutations also lead 

to DNA break accumulation in the germline, and that the axis specification defects 

associated with these mutations result from DNA damage signaling.  Whole genome tiling 

array studies show that rhi mutations, and mutations in the piRNA pathway gene armitage 

(armi), lead to dramatic increases in expression of a significant fraction of the 

transposable elements in the Drosophila genome.  By contrast, rhi and armi do not 

significantly alter expression of euchromatic or heterochromatic protein coding genes.  

Deep sequencing of small RNAs demonstrate the rhino mutations lead to a significant 

reduction in piRNA production from a number of piRNA clusters, including major piRNA 

clusters on chromosome 2R and 4, and chromatin immunoprecipitation (ChIP) studies 
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indicate that Rhino protein is physically associated with these loci.  Furthermore, 

mutations in rhino lead to a dramatic reduction in minus strand piRNAs from the majority 

of transposable elements, and a loss of overlapping sense and anti-sense strand piRNAs 

characteristic of ping-pong biogenesis. Interestingly, rhino is one of the fastest evolving 

genes in the Drosophila genome, suggesting a role in host-pathogen competition. Our 

findings demonstrate that Rhi is required for piRNA biogenesis and transposon silencing, 

and strongly suggest that competition with selfish genetic elements drives rhi evolution.  
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Results 

rhino (rhi) mutations trigger Chk2-dependent axis specification defects 

Mutations that disrupt the piRNA pathway lead to female sterility and defects in 

posterior and dorsal-ventral axis specification, which result from activation of DNA 

damage signaling through ATR and Chk2. Mutations in the rhi locus, which encodes an 

HP1 homologue, also lead to female sterility and defects in dorsal-ventral and posterior 

patterning (Volpe et al., 2001). We analyzed double-mutant combinations with mei-41 and 

mnk, which encode ATR and Chk2,  to determine the role of DNA-damage signaling in 

the rhi mutant phenotype.   For these studies, we initially scored defect in dorsal 

appendages.  These eggshell structures are induced through Gurken (Grk) signaling from 

the oocyte to the dorsal somatic follicle cells during midoogenesis (Schupbach, 1987).  

Appendages do not form in the absence of Grk, a single appendage forms with low Grk 

levels, and two appendages form when signaling is normal (Gonzalez-Reyes et al., 1995; 

Roth et al., 1995).  As shown in Table 1, mnk dramatically suppresses the appendage 

defects associated with rhi. Two appendages are present on 100% of the embryos derived 

from wild type and on 93.6% of the embryos derived from mnk single mutants (Table 1).   

By contrast, only 17.2% of the embryos derived from rhiKG/rhi2 mutant females have 2 

dorsal appendages.  However, 80.5% of the embryos derived from mnk rhi double mutants 

show wild type appendage morphology.  Consistent with these observations, rhiKG/rhi2 

disrupt dorsal localization of Grk and posterior localization of Vasa (Vas) during mid-

oogenesis, and localization of both morphogens is restored in mnk rhi double mutants 

(Figure 1). 
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Mutations in mei-41, which encodes ATR, partially suppress the eggshell defects 

associated with rhiKG/rhi2, with 32.9 % of the embryos from mei-41;rhiKG/rhi2 double 

mutants showing normal appendages. mei-41 mutations are also less effective than mnk in 

suppressing appendage defects associated with the piRNA pathway mutants armi and aub 

(Klattenhoff et al., 2007). Chk2 can be activated by both ATM and ATR (Wang et al., 

2006).  We therefore speculated that partial suppression of rhi and armi by mei-41 reflects 

redundant Chk2 activation by both of these kinases.   Caffeine inhibits ATM and to a 

lesser extent ATR (Sarkaria JN et al., 1999). We therefore tested caffeine for the ability to 

suppress the patterning defect in rhi and armi mutants by feeding adults a 2% solution of 

drug mixed with yeast paste (Table 1).   17% of the embryos from rhiKG/rhi2 females have 

wild type appendages, while 88.4 % of the embryos from rhiKG/rhi2 females fed caffeine 

show normal appendages (5 fold increase).   Similarly, 1.8% of embryos from 

armi72.1/armi1 females have 2 appendages, while 10.6% of the embryos from 

armi72.1/armi1 females that were fed caffeine show wild type appendages (6 fold increase).   

Strikingly, 83% of embryos from mei-41; armi double mutants fed caffeine had 2 

appendages. These results suggest that rhi and armi mutations lead to both ATR and ATM 

dependent activation of Chk2. 

Mutations in the meiotic DSB repair pathway also lead to axis specification defects 

that result from activation of a damage signaling pathway that includes the ATR and Chk2 

kinases (Bartek et al., 2001) (Abdu et al., 2002; Ghabrial and Schupbach, 1999).  The axis 

specification defects associated with these mutations are also suppressed by mei-W68, 

which encodes the Drosophila homologue of the Spo11 nuclease that catalyzes meiotic 

double strand break formation (McKim and Hayashi-Hagihara, 1998).  By contrast, mei-
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W68 does not suppress the dorsal appendage defects associated with rhi (Table 1).  

Similarly, the axis specification defects associated with armi are not suppressed by mei-

W68 (Klattenhoff et al., 2007). Activation of DNA damage signaling in rhi and piRNA 

pathway mutants thus appears to be independent of meiotic break formation.   

To determine if rhi nonetheless leads to DSBs in the germline, we labeled mutant 

ovaries for the phosphorylated form of the Drosophila histone H2AX (γ−H2Av), which 

accumulates on chromosomes near break sites (Modesti and Kanaar, 2001; Redon et al., 

2002).  Labeling with an anti-phosphoprotein antibody specific for γ-H2Av (Gong et al., 

2005) reveals foci in region 2 of the germarium, where meiotic DSBs are formed (Figure 

1B) (Jang et al., 2003).  In rhi mutants, by contrast, prominent γ−H2Av foci are present in 

germline cells of the germarium, and these foci persist and increase in intensity as cysts 

mature and bud to form stage 2 egg chambers (Figure 1B).  These findings indicate that 

the axis specification defects in rhi mutants are due to DNA breakage and activation of 

and ATM/ATR/Chk2 damage signaling pathway.   
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Table 1. 

 

Maternal Genotype Dorsal Appendage 
(%)  

Phenotype Hatch 
Rate 
(%) 

N 

  2 (wild 
type) 

1 (fused) 0 
(absent)

    

mnkP6 / mnkP6 93.6 2.5 3.9 72.6 827 

mei41D3 / mei41D3 100 0 0 0 920 

meiW681 / meiW68K05603 94.3 4 1.7 67.2 128
1 

rhi02086 / rhiKG00910 17.2 66.5 16.3 0 700 

mnkP6 rhi02086 / mnkP6 
rhiKG00910 80.5 14.5 5 0 689 

mei41D3 / mei41D3 ; 
rhi02086 / rhiKG00910 32.9 53.3 13.8 0 732 

meiW68K05603 rhi02086 / 
meiW681 rhiKG00910 18.7 58.5 22.8 0 244 

rhi02086 / rhiKG00910 2% 
caffeine 88.4 6.6 5 0 473 

armi72.1 / armi1 
1.8 24.7 73.6 0 227 

armi72.1 / armi1 2% 
caffeine 10.6 29.6 59.8 0 477 

mei41D3 / mei41D3 ; 
armi72.1 / armi1 56 38.4 5.6 0 575 

mei41D3 / mei41D3 ; 
armi72.1 / armi1 2% 

Caffeine 
83.2 11.9 4.9 0 226 

rhi02086 / rhiKG00910; 
GFP-Rhino/Gal4 nos 96.1 3.6 0.3 74 483 
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Table 1.  mnk  and  mei-41 mutations suppress D-V patterning defects in rhi mutants.  

Treatment with 2% caffeine also strongly suppresses D-V patterning defects in rhi 

mutants and to a lesser extent in armi mutants. Two dorsal appendages are normally 

present at the dorsal side of a wild type Drosophila egg.  The mutant phenotypes are 

classified as weakly ventralized, which results in fusion of the dorsal appendages, and 

strongly ventralized, resulting in absence of dorsal appendages.  
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Figure 1. 
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Figure 1. A. mnk mutation restores Gurken and Vasa protein localization in rhi mutants. 

(a) In a stage 9 wild type oocyte, Grk (green) is localized at the dorsal anterior cortex near 

the oocyte nucleus and Vas (blue) is localized at the posterior cortex.  Actin filaments 

(red) mark the cell boundaries (b) In rhiKG/rhi2 egg chambers, this localization pattern is 

lost, with Grk and Vas dispersed throughout the oocyte.  (c) mnkp6 suppresses the 

rhiKG/rhi2 phenotype, and rescues Grk and Vas localization during late oogenesis. Images 

were acquired under identical conditions for either stage. Projections of 2 serial 0,6 μm 

optical sections are shown.  Scale bars for are 20 μm. 

B.  rhi mutants have increased DNA damage in the germline.  Ovaries from (a) wild type 

and (b) rhiKG/rhi2 flies were fixed and immunostained with an antibody against 

phosphorylated H2Av (γ−H2Av). (a) Foci of γ−H2Av are observed in wild type in region 

2a and 2b of the germarium and correspond to the DSBs induced during meiotic 

recombination.  (b) In rhiKG/rhi2 mutants, much larger foci also appear in region 2a of the 

germarium but persist in region 3 and the developing egg chambers. Samples were labeled 

and images were acquired under identical conditions. Projections of 5 serial 1μm optical 

sections are shown. Posterior is oriented to the right. Scale bar is 20 μm.  (c) A schematic 

representation of the regions of the germarium and a developing egg chamber. 
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Rhino is required for transposon silencing in the female germline 

The above observations suggested that rhino could function in the piRNA 

pathway, which is required for silencing of the stellate locus during spermatogenesis and 

transposable elements during female germline development. Over-expression of Stellate 

(Ste) leads to accumulation of Stellate protein crystals in the testes (Bozzetti et al., 1995).  

However, we did not find Stellate crystals in rhi mutant testes (Figure 2).  This finding is 

consistent with the observation that Rhi is expressed at very low levels during 

spermatogenesis (Volpe et al., 2001), and we find that rhino mutant males are fertile (not 

shown).  By contrast, rhino mutant females are sterile and show patterning defects 

characteristic of defects in the piRNA pathway.  We therefore focused our analysis of 

transposon expression during oogenesis.   

The piRNA pathway has been implicated in heterochromatic silencing of protein 

coding genes in somatic cells, as well as transposon silencing in the germline.  We 

therefore initiated a genome wide analysis of both transposon and protein coding gene 

expression using tiling arrays that include heterochromatic and repeated sequences.  For 

these studies, we assayed transcript expression in ovaries from 2 to 4 day old females.  

The dissected ovaries were visually inspected to confirm similar egg chamber stage 

distribution, and analysis of protein coding gene expression indicates that similar stages 

were present in each sample (see below). Mutations in rhino and the piRNA pathway gene 

armi lead to over-expression of a significant fraction of transposons in the Drosophila 

genome, with a subset showing up to 80 fold increases in transcript accumulation (Figure 

3A-B). The telomeric transposon  Het-A shows the greatest fold induction in rhino and 

armi and we have confirmed this dramatic increase in expression by northern blot (Figure 
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4).  Het-A is a LINE element, but genome wide we find that retrotransposons are enriched 

in the pool of highly over-expressed elements (Figure 3F).  

The rhino gene encodes an HP1 homologue, and HP1 is known to function in 

heterochromatic silencing in somatic cells.  In addition, several genes in the piRNA 

pathway has been implicated in position effect variegation (PEV), which reflects changes 

in gene expression that are linked to spreading of heterochromatin from centromeric and 

telomeric regions.   We therefore speculated that rhino and mutations in known piRNA 

pathway genes would lead to over-expression of germline protein coding genes located in 

heterochromatin. However, the expression of protein coding genes, including genes in 

heterochromatin, is not significantly altered by rhino or armi mutations (Figure 3C-D).  

This is visually displayed in plots of expression level of annotated genes in mutant vs. 

control samples, where all points scatter around a line with a slope of 1 (Figure 3C-D).  

Note that linear scales are used in the plots, and none of genes show a change of more that 

25% up or down. These observations indicate that the changes in transposon expression in 

piRNA pathway and rhino mutants are unlikely to reflect changes in general 

heterochromatin structure. Most of the RNA in the ovary samples used in these studies is 

derived from germline cells, and these results may differ from observations in somatic 

cells due to properties of heterochromatin that are specific to the germline.  

These findings demonstrate that the mutations in rhi and the piRNA pathway gene 

armi lead to nearly identical defects in oocyte patterning and transposon expression, 

suggesting a direct role for the Rhino protein in piRNA production or function.  To 

distinguish between these alternatives, we used deep sequencing to assay piRNA 
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production in rhino mutant ovaries and ovaries derived from control females (see 

methods).     
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Figure 2. 
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Figure 2. Stellate locus is properly silenced in rhi mutant testes.  The testes from (A) wild 

type, (B) armi72.1/armi1, (C) rhiKG/rhi2 flies were stained for DNA (red) and Stellate 

protein (green).  (A and C) No Stellate protein is expressed in wild type and rhiKG/rhi2 

testes.  (B) In armi72.1/armi1 mutant testes Stellate protein accumulates and forms 

crystals. Projections of 5 serial 1μm optical sections are shown. Images were acquired 

under identical conditions. Scale bar is 20 μm.  
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Figure 3. 
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Figure 3. rhi is required to silence transposable elements in the female germline.  

(A-D) Scatter plots representing transcript expression levels in mutant vs control ovaries. 

(A-B) transposable element transcripts in the Drosophila genome, significantly over-

expressed subfamilies shown in blue. Each point represents a subfamily. (A) armi vs 

control. (B) rhi vs control. (C-D) coding gene transcripts in the Drosophila genome, 

euchromatic genes shown in red, heterochromatic genes shown in green, armi and rhi 

transcripts shown in black (C) armi vs control. (D) rhi vs control. 

(E-F) Distribution of copy numbers of each transposable element family encoded in the 

Drosophila genome (E) and over-expressed in rhi mutant ovaries (F).  
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Figure 4. 

 



100 
 

Figure 4. HeT-A retrotransposon is over-expressed in rhi mutant ovaries. 

HeT-A transcript can be detected by Northern blot in RNA from armi72.1/armi1, rhiKG/rhi2 

and aubQC42/aubHN2 mutant ovaries, but not from wild type or w1118 ovaries. 



101 
 

Rhino is required for piRNA production  

HP1 and the piRNA pathway have been implicated in PEV and heterochromatin 

formation In somatic tissues (Brower-Toland et al., 2007; Pal-Bhadra et al., 2002; Pal-

Bhadra et al., 2004), and we speculated that the Rhino HP1 homolgue could have a similar 

function in the germline.  Additionally, Rhino could be required for piRNA production.  

We therefore performed small RNA deep sequencing to assay piRNA production in rhi 

mutants. rhi mutations lead to a substantial reduction in piRNA production from a number 

of piRNA clusters (as defined by Brennecke et al., 2007), including major piRNA clusters 

on chromosome 2R and 4 (Figure 5A and C). However, clusters located in chromosomes 3 

and X chromosomes are not noticeably affected in rhi mutants (Figure 5B and D).  

We also find that production of piRNAs from 126 of the 138 transposable element 

families in the Drosophila genome are significantly reduced in rhino mutants, with the 

most pronounced decrease in the anti-sense piRNAs, which are putative effectors in the 

silencing process (examples shown in Figure 6A’-B’).  Figure 6A’D-F shows sense and 

anti-sense piRNAs for HeT-A, a telomeric transposon that is highly over-expressed in rhi 

and other piRNA pathway mutants. We have confirmed that piRNAs for HeT-A decrease 

in rhi mutants by northern blot (Figure 8).  To determine the effect of rhino on piRNA 

production genome wide, we plotted the abundance of sense and antisense piRNAs in 

control vs rhi mutants, for all of the transposon families in Drosophila.   As shown in 

Figure 7, rhi mutations lead to a significant loss of sense and anti-sense strand piRNAs 

from the vast majority of elements.  

Intriguingly, a subset of 12 elements show little change in antisense piRNAs and 

an increase in sense strand piRNAs. As an example we show mdg1 (Figure 6C’).  Some of 
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these elements may be expressed primarily in the soma, and Rhino appears to be restricted 

to the germline (see below). A subset of sense and anti-sense piRNAs show a 10 bp 

overlap and have sense strand A bias at position 10 and an antisense strand bias for a U a 

position 1.  These pairs suggest that piRNA may be produced by a ping-pong mechanism.  

In rhi mutants, most elements show a reduction in these ping-pong pairs (Figure 6A’ and 

B’, B,G and H), including elements that do not show a decrease total piRNA production 

(i.e. mdg1; Figure 6C’, B,G an H).  These observations suggest that ping-pong pairs, 

rather than total piRNAs, have a critical role in transposon silencing.  
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Figure 5 
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Figure 5. rhi is required to produce piRNAs from distinct loci. 

Normalized piRNA read distribution mapping across chromosome arms in cn1; ry506 used 

as control (top panel) and rhi mutant ovaries (bottom panel). Blue bars represent + strand 

and red bars represent - strand. (A) Chromosome 2. (B) Chromosome 3. (C) Chromosome 

4. (D) Chromosome X. 
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Figure 6. 

A’. 
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B’.  
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C’. 
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Figure 6.  piRNA production for Het-A, Burdock and mdg-1 transposons. 

piRNAs mapping to (A’) Het-A, (B’) Burdock and (C’) mdg-1 in ovaries.  

(A) Nucleotide bias for every position across total piRNAs. (B)  Nucleotide bias for every 

position across piRNAs with a 10 nt overlap. (C-D) Total piRNAs mapping across the 

transcript sequence in (C) control and (D) rhi. Blue bars represent sense and red bars 

represent antisense piRNAs. (E-F) Size distribution of piRNAs in (E) control and (F) rhi . 

Blue bars represent sense  and red bars represent antisense piRNAs. (G-H) nt overlap 

between total piRNAs in (G) control and (H) rhi. 
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Figure 7. 

A. 

 

B. 
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Figure 7. Antisense piRNAs for the majority of transposable elements is decreased in rhi 

mutant ovaries. Plots showing abundance of (A) antisense and (B) sense piRNAs in 

control vs rhi mutants, for all of the transposon families in Drosophila. 
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 Figure 8. 
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Figure 8. rhi is required to produce and HeT-A piRNAs.  

HeT-A piRNAs can be detected by Northern blot in RNA from Oregon R, mnk ,rhi/+ , 

armi/+, and mnk rhi/+  ovaries, but not from rhi, armi or mnk rhi ovaries. By contrast, the 

miRNA miR-8 is not affected by any of these mutations. 2SrRNA was used as a loading 

control. 



116 
 

Piwi class protein localization is disrupted in rhino mutants 

The defects in piRNA production in rhi mutants raised the possibility that 

expression of genes involved in biogenesis of these RNAs is reduced.  However, we did 

not observe a significant reduction in the expression of any protein coding genes (Figure 

3C-D), including genes in the piRNA pathway, by whole genome tiling array (data not 

shown).   We have not been able to quantify the amount of Piwi, Aub and Ago3 protein 

mutant ovaries, because the antibodies we generated do not work efficiently in western 

blotting.  However, these antibodies efficiently label the expected germline structures in 

wild type ovaries, and signal is eliminated by mutations in the corresponding gene, 

indicating that these reagents are useful for immunofluorescence analysis of in situ protein 

localization (Figure 9).  Nuclear localization of Piwi  and peri-nuclear localization of Aub 

and Ago3 are disrupted in rhi mutants (Figure 9). Previous studies indicate that mutations 

in spnE  and aub also disrupt piwi family protein localization (Lim and Kai, 2007).  These 

findings provide further evidence that Rhino is a critical component of the piRNA 

biogenesis pathway, and suggest that wild type piRNA production is required for 

localization of piwi proteins to the correct subcellular compartment.  Localization of Vasa, 

a core component of Nuage, is also disrupted by rhi, spnE and aub mutations (Figure 10 

and (Lim and Kai, 2007).  It is interesting to note that mutations in rhi do not eliminate 

piRNAs, and the levels of total piRNA from some transposons do not change or increases 

in these mutants (Figure 6).  Assembly of nuage, which appears to represent an RNA 

processing compartment, thus appears to dependent on a subset of piRNAs that also 

appear to be critical to transposon silencing.   
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Figure 9. 
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Figure 9.  rhi mutation disrupts localization of Piwi class Argonautes in the female 

germline. 

Stage 4-5 (Ago3 and Aub) and stage 2-3 (Piwi) egg chambers of wild type, rhi and armi 

mutants ovaries were immunostained with corresponding antibodies. Projection of 3 serial 

1μm optical sections, scale bar 10 μm. Ago3 and Aub proteins localize to peri-nuclear 

nuage compartment in wild type germline. This localization is disrupted in rhi and armi 

mutants. Piwi protein localizes to the nuclei of both germline and somatic cells in wild 

type egg chambers. Only germline nuclear localization of Piwi is disrupted by mutations 

in armi and rhi.  
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Figure 10. 
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Figure 10. Nuage protein Vas is not localized properly in rhi mutants. 

Vas localizes to nuage compartment around the nucleus of a stage-6 nurse cell in wild type 

(A-B), but fails to localize in rhi (C-D) mutants. Single optical section, scale bar is 10 μm. 
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Rhino protein localization 

 To define the subcellular distribution of Rhino during oogenesis, when this protein is 

required for transposon silencing and piRNA production, we raised anti-Rhino antibodies 

and generated transgenic animals expressing a functional GFP-Rhino protein.   

Immunolocalization with anti-Rhi antiserum and in vivo analysis of GFP-Rhino reveals 

foci within the nuclei of germline cells throughout oogenesis (figure 11A and 13).  To 

determine if the Rhi foci are associated with centromeres or telomeres, we assayed 

colocalization with the centromere and telomere markers.  CID is the Drosophila 

homologue of CENP-A, a centromere-specific histone H3-like protein that is found in the 

inner kinetochore (Blower and Karpen, 2001).  Rhi labeling is associated with a subset of 

CID foci (Figure 11B).  The heterochromatin protein 1/origin recognition complex-

associated protein (HOAP) localizes to Drosophila telomeres (Cenci et al., 2003).  We 

find that the Rhino is associated with a subset of the telomeric HOAP foci (Figure 11C).   

These finding suggest that Rhino associated with a subset of pericentromeric and 

telomeric regions.  Significantly, the rhino mutations disrupt piRNA production from a 

subset of peri-centromeric and telomeric piRNA clusters (Figure 5).   

Interestingly, Rhi localization to foci within germline nuclei is not disrupted by 

mutations in the piRNA pathway genes armi or aub (Figure 12).  By contrast, rhi 

mutations disrupt piRNA production and the localization of Piwi, Aub and Ago3 (Figure 

9).  Taken together, these findings suggest that Rhi functions upstream of the Piwi 

proteins during piRNA biogenesis.  We therefore speculated that Rhino binding may, in 

part, specify the piRNA cluster.  To begin to address this possibility, we performed 

chromatin immunoprecipition studies using anti-GFP antibodies and females expressing 
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the functional GFP-Rhi fusion protein. GFP-Rhi localizes to distinct foci in germline 

nuclei (Figure 13), and rescues the patterning defects and sterility of rhi mutants (Table 1), 

indicating that this is a functional fusion protein. The rhino mutations affect production of 

piRNAs from major clusters located in chromosomes 2 and 4, but do significantly alter 

piRNA production for a major cluster on chromosome X.  We therefore assayed for Rhino 

binding to regions within these three clusters, relative to the euchromatic rp49 gene.   

Consistent with the piRNA profiles, Rhi is enriched at the 2R and 4th chromosome 

clusters, but shows only background binding to the X chromosome cluster (Figure 11D).  

These findings support the hypothesis that Rhi acts at the chromatin level to stimulate 

piRNA production from a set of piRNA clusters. 
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Figure 11. 
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Figure 11. Rhi localization 

(A) Wild type ovaries immunostained with anti-Rhi antiserum show Rhi localizes 

predominantly to germline nuclei. Scale bar is 25 μm (B) Wild type ovaries 

immunostained with anti-Rhi antiserum and anti-CID antibody show that Rhi localizes to 

peri-centromeric regions in stage 3 nurse cell nuclei. Scale bar is 10μm (C) Wild type 

ovaries immunostained with anti-Rhi antiserum and anti-HOAP antibody show that Rhi 

partially co-localizes with HOAP in a stage 5 nurse cell nuclei. Arrow points to Rhi foci 

that do not co-localize with HOAP signal and arrowhead points to co-localized focus. 

Scale bar is 5 μm. Single optical sections for all panels.  

(D) Chromatin Immunoprecipitation from GFP-Rhi expressing flies with anti-GFP 

antibody. Bars represent enrichment relative to rp49. 1A and 1B are different primer pairs 

for Cluster 1 located in chromosome 2R. 2A and 2B are different primer pairs for Cluster 

2 located in chromosome X. 3A, 3B and 3C are different primer pairs for Cluster 3 located 

in chromosome 4. Rhi protein binds strongly to Cluster located in 2R and less dramatically 

to Cluster located in 4, but not to the Cluster in X. 
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Figure 12. 
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Figure 12. Rhi localization to the chromatin is independent of piRNAs. 

Rhino localization appears similar in wild type (A-B), armi (C-D) and aub (E-F) stage 2 to 

stage 4 egg chambers. Projections of 5 serial 1μm optical sections are shown. Images were 

acquired under identical conditions. Scale bar is 20 μm.  
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Figure 13. 
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Figure 13. GFP-Rhi localization. 

Endogenous Rhi detected with anti-Rhi antiserum and GFP-Rhi transgene show similar 

localization pattern in the germline nuclei of stage 4-5 egg chambers.
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Discussion 

The piRNA pathway is required for germline development in invertebrate and 

vertebrate systems.  In Drosophila, the defects in germline development are linked to a 

loss of transposon silencing and accumulation of DNA break in germline nuclei.  Deep 

sequencing studies suggest that Piwi proteins bound to piRNA catalyze cleavage of 

precursor RNAs, producing the 5' end of piRNA from the opposite strand (Brennecke et 

al., 2007; Gunawardane et al., 2007).   However, the precursor RNAs have not been 

directly identified, the mechanism of 3'end generation is not understood, and the vast 

majority of piRNA cannot be assigned to "ping-pong" pairs.  Transposons are over-

represented in heterochromatic regions and piRNA pathway mutations modify position 

effect variagation in some somatic cells, suggesting that piRNAs may lead to 

transcriptional silencing of target transposons in the germline by promoting assembly of 

silent heterochromatin.  By contrast, the Piwi proteins Aub and Ago3 localize to the 

cytoplasm and Piwi protein-piRNA complexes can catalyze homology dependent target 

RNA cleavage in vitro.  These finding are consistent with post-transcriptional or co-

transcriptional silencing mechanisms.   The mechanisms that drive piRNA biogenesis and 

piRNA-dependent transposon silencing thus remain to be resolved.    

Here we show that the HP1 homologue Rhino is a component of the piRNA 

biogenesis pathway.  We also use whole genome tiling arrays to show that rhi and armi 

mutants lose transposon silencing but do not change the expression of protein coding 

genes in heterochromatin.  These findings suggest that Rhino may specify chromatin 

domains that are required for piRNA biogenesis. 
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Mutations in the rhino locus lead to female sterility and disrupt posterior and 

dorsal-ventral patterning of the oocyte (Volpe et al., 2001).  Mutations in the piRNA 

pathway lead to similar defects, and the axis specification defects associated with these 

mutations result from accumulation of DNA breaks in germline nuclei and the activation 

of a DNA-damage signaling pathway.  We show that rhino mutations also lead to 

accumulation of DNA lesions.  We also demonstrate that the patterning defects associated 

with rhi are dramatically suppressed by a null mutation in mnk, which encodes that 

Drosophila homologue of Chk2, a conserved kinase that functions in DNA damage 

signaling.  The patterning defects associated with rhi are also suppressed by mutations in 

mei-41, which encodes the Drosophila ATR kinase homologue, and by caffeine, which 

inhibits ATM kinase and, to a lesser extent, ATR.  ATR and ATM function upstream of 

Chk2 in the DNA damage signaling pathway and are activated preferentially by single 

stranded DNA and double strand break, respectively.  Suppression by mei-41 and caffeine 

thus suggests that the rhi mutation lead to both types of DNA lesions.   We speculate that 

this results from mobilization of both retrotransposons, which form segments of single 

stranded DNA during integration, and transposable DNA elements, which generate double 

strand breaks during excision.   

Based on these phenotypic observations, we speculated that Rhi may function in 

piRNA function or biogenesis.  Analysis of gene expression using whole genome tiling 

arrays demonstrate that rhi disrupts silencing of transposons, and deep sequencing studies 

show that this is linked to a substantial reduction in piRNAs from these elements, with a 

particularly effect on anti-sense piRNAs.    Intriguingly, rhi mutations do not lead to a 

uniform reduction in piRNA accumulation, but specifically affect piRNA production from 
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a number of clusters that are scattered throughout the genome.  For example, piRNA 

production from clusters on chromosomes 2R and 4 is significantly reduced.  However, 

piRNA production from the X chromosome is not significantly reduced.   Consistent with 

these findings, ChIP studies suggest that Rhino binds to the clusters on 2R and 4, but not 

in the X chromosome.  The ChIP studies are very limited, however, and a full 

understanding of the relationship between Rhino binding and piRNA production will 

require genome-wide studies.  

Both sense and anti-sense RNAs are impacted by rhi, but reductions in anti-sense 

piRNA are more frequently observed, and the loss of these RNAs is linked to up-

regulation of sense strand transcripts.  Rhino appears to bind the piRNA clusters, and 

could therefore directly or indirectly activate transcription of precursors for the anti-sense 

piRNAs. Since piRNA biogenesis appears to be driven by a cycle of cleavage by sense 

and anti-sense piRNAs, loss of the anti-sense precursor would therefore lead to a 

breakdown in production of piRNAs from both strands. Current piRNA production 

models propose that piRNAs are derived from long precursor RNAs made at the clusters, 

and this model predicts that rhi will block production of these precursors.   However, the 

hypothesized long piRNA precursors have not been identified, and it is therefore not 

feasible at this point to directly assay for loss of these precursors in rhino mutants.  

Alternatively, Rhino could recruit piRNA-processing machinery to chromatin, and thus 

promote co-transcriptional cleavage of precursor transcripts.  The reduction in nuclear 

localization of Piwi protein in rhi mutants is consistent with this possibility.  However, 

mutations in several piRNA pathway genes reduce Piwi localization to the nucleus, 
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making interpretation of the localization defect in rhi difficult.  The precise role of Rhino 

in piRNA biogenesis thus remains to be determined.   

All three domains of Rhino protein (chromo, chromo shadow and hinge) show 

evidence of rapid positive selection, and Rhino is the only HP1 paralog in Drosophila that 

displays this evolutionary behavior (Vermaak et al., 2005).  Based on these observations, 

Vermaak et al. (2005) proposed that "…rhino is involved in a genetic conflict that affects 

the germline, belying the notion that heterochromatin is simply a passive recipient of  

“junk DNA” in eukaryotic genomes.”  Our findings indicate that Rhino is involved in the 

conflict between the drive for transposon propagation and the need to maintain germline 

DNA integrity, and suggest that heterochromatic loci that produce piRNAs may have a 

key role in this battle.  The rapid pace of rhino evolution makes identification of 

homologues in other species difficult, but the conserved role for piRNAs in germline 

development suggests that HP1 variants may have critical roles in the conflict between 

selfish elements and genome integrity in humans.  
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Experimental Procedures 

Drosophila stocks  

All animals were raised at 25OC on standard food.  Oregon R was used for wild type, w1118 

and cn1; ry506 were used as control when noted.  The following alleles were used: mnkP6 

(Brodsky et al., 2004; Takada et al., 2003); rhiKG00910 (rhiKG) and rhi02086 (rhi2) (volpe 

2001); armi72.1 and armi1 (Cook et al., 2004); mei41D3, (Hari et al., 1995; Hawley and 

Tartof, 1983); P[lacW]mei-W68K05603, mei-W681 (McKim and Hayashi-Hagihara, 1998).  

The mnkP6 allele was kindly provided by M. Brodsky  (Brodsky et al., 2004). All other 

stocks were obtained from the Bloomington Drosophila Stock Center (Consortium, 2003; 

http://flybase.org/).  Standard genetic procedures were used to generate double mutant 

combinations.  

 

Antibody Production 

Rhino antibody 

Primers annealing to each of the translation start and stop sites of a rhino cDNA (DGRC 

clone RE36324) were designed (Integrated DNA Technologies, Inc.) with attached 

Gateway (Invitrogen) sequences.  The resulting PCR product was used to make a Rhi-

DONR construct which in turn was used to subclone into the 6X-His-tagged Gateway 

vector pDest17 (Invitrogen), yielding a 6X-His tagged Rhino fusion protein.  The fusion 

protein was purified over a Probond Ni matrix (Invitrogen) under denaturing conditions, 

isolated by SDS-PAGE and used to immunize 2 Guinea pigs (Pocono Rabbit Farm and 

Laboratory, Inc.) using standard protocols for antibody production. Anti-Rhi antibody was 

http://flybase.org/
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affinity purified on fusion protein coupled to CNBr activated Sepharose 4B (Pharmacia) 

as described elsewhere (Harlow and Lane, 1999). 

Piwi, Aub and Ago3 antibodies 

Rabbit polyclonal antisera directed against the N-terminal 14-16 AA of Piwi, Aub and 

Ago3 (Brennecke et al., 2007) were raised by the Pocono Rabbit Farm and Laboratory, 

Inc. using their proprietary Quick Draw 49 Day protocol.  Antisera were affinity purified 

over epoxy-activated Sepharose 6B (Pharmacia) columns coupled to their respective free 

peptides as described (Harlow and Lane, 1999).   

HOAP antibody 

A full length HOAP cDNA was cloned into the pQE31 6X his-tagged expression vector 

(Qiagen) and over-expressed in E. coli BL21(DE3) cells.  The resulting fusion protein was 

purified on a Probond Ni matrix under denaturing conditions (Invitrogen). The purified 

protein was injected into rabbits and serum was produced by standard protocol at Pocono 

Rabbit Farm and Laboratory, Inc. 

 

Immunohistochemistry 

Egg chamber fixation and whole-mount antibody labeling were performed as previously 

described (Theurkauf, 1994). Vas protein was labeled with rabbit polyclonal anti-Vas 

antibody (Liang et al., 1994) at 1:1000.  Gurken protein was labeled with mouse 

monoclonal anti-Gurken antibody (obtained from the Developmental Studies Hybridoma 

Bank, University of Iowa) at 1:10. Rhi protein was labeled with a guinea pig polyclonal 

anti-Rhi antiserum developed by our group (see above) at 1:2000. Piwi, Aub and Ago3 

were labeled with rabbit polyclonal anti-Piwi, anti-Aub and anti-Ago3 antibodies 
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developed for this study (see above) at 1:1000.  Antibody against γ-H2Av was kindly 

provided by Kim McKim (Gong et al., 2005) and egg chambers were labeled as described 

previously (Belmont et al., 1989). CID was labeled with an affinity purified chicken anti-

CID antibody provided by Gary Karpen at 1:100 (Blower and Karpen, 2001). HOAP was 

labeled with a polylonal rabbit anti-Hoap antibody generated by our group (see above) at 

1:1000. 

 Rhodamine-conjugated phalloidin (Molecular Probes) was used at 1:100 to stain F-actin, 

and TOTO3 (Molecular Probes) was used at 1:500 (0.2 μM final concentration) to 

visualize DNA.  

 

GFP-Rhino transgenic animals  

GFP-Rhi transgene was generated by recombining the Rhi-DONR (see above) construct 

with a modified pCasper vector containing the GFP sequence and Gateway cloning 

cassette B (invitrogene). The resulting vector contained GFP fused in frame to the N-

terminus of Rhino under the control of the Gal4 promoter. Transgenic animals were 

generated using standard embryo microinjection techniques at Genetic Services, Inc. 

   

Microscopy 

All tissues were mounted in 90% glycerol / PBS, with 1 mg/ml p-Phenylenediamine 

(Sigma). Samples were analyzed using a Leica TCS-SP inverted laser scanning 

microscope with 63X NA 1.32 PlanApo oil and 40X NA 1.25 Planapo oil objectives.   

Identical imaging conditions were used for each set of wild type and mutant samples.  

Images were processed using Image J software.  
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Northern Blot 

Fly ovaries were dissected in 1× Robb’s medium (55mM Potassium Acetate, 40mM 

Sodium Acetate, 100mM Sucrose, 10mM Glucose, 1.2mM MgCl2, 1mM CaCl2, and 

100mM HEPES, pH7.4).  Total RNA was isolated from approximately 30 mg of ovaries 

using RNeasy® Mini Kit following manufacturer’s instructions (Qiagen).  Total RNA was 

quantified and 20μg total RNA of each sample were resolved electrophoretically on a 

1%Agarose/Formaldehyde gel.  RNA was transferred to a positively charge nylon 

membrane (Roche) by the use of standard capillary transfer. Following transfer, RNA was 

fixed to the membrane via UV crosslinking (Stratalinker UV Crosslinker 2400).  Loading 

and transfer steps were controlled by staining the membrane with methylene Blue (data 

not shown).  Following pre-hybridization, Northern analysis was performed using the DIG 

RNA labeling kit following manufacturer’s recommendations (Roche).  Blots were 

developed using CDP-Star (Tropix) according to manufacturer’s directions.  Images were 

acquired using the Kodak 4000MM Image Station.    

 

Small RNA Northern blot 

Total RNA was isolated from manually dissected ovaries from 2-4 day flies using 

mirVana (Ambion, Austin, TX, USA) according to the manufacturer’s instructions. The 

RNA was quantified by absorbance at 260 nm. 10 μg of total RNA was resolved by 15% 

denaturing urea-polyacrylamide gel (National Diagnostics, Atlanta, GA, USA). 5´-32P-

radiolabeled synthetic RNA oligonucleotides were used as size markers. After 

electrophoresis, the gel was transferred to Hybond N+ (Amersham-Pharmacia, Little 

Chalfont, UK) in 0.5x TBE by semi-dry transfer (Transblot SD, Bio-Rad) at 20 V for 1 h. 
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The RNA was crosslinked to the membrane by UV irradiation (1200 µjoules/cm; 

Stratalinker, Stratagene, La Jolla, CA, USA) and pre-hybridized in Church buffer for 2 h 

at 37°C. 25 pmol of DNA (IDT, Coralville, IA, USA) probe was 5´-32P-radiolabeled with 

polynucleotide kinase (New England Biolabs, Beverly, MA, USA) and 330 μCi γ-32P-

ATP (7,000 μCi/mmol; New England Nuclear, Boston, MA, USA) and purified with a 

Sephadex G-25 spin column (Roche, Basel, Switzerland). To detect 2S rRNA, 1/50 of the 

32P-radiolabeled probe was diluted with unlabeled 2S rRNA probe. The 32P-radiolabeled 

probes were hybridized in Church buffer for 2–12 h. After hybridization, membranes were 

washed three times with 1x SSC/0.1% (w/v) sodium dodecyl sulfate (SDS) for 30 min. 

Membranes were analyzed by phosophorimagery (Fuji, Tokyo, Japan). To strip probes, 

membranes were boiled in 0.1% (w/v) SDS for 10 min, then re-exposed to confirm probe 

removal. 

Probes for Northern hybridization 

Small RNA detected  Sequence (5′ to 3′)

HeT-A piRNA  GGCGTTACGCATCTTGTTATT

miR-8  GACATCTTTACCTGACAGTATTA

2S rRNA  TACAACCCTCAACCATATGTAGTCCAAGCA 

 

Total RNA isolation and tiling array hybridization 

Total RNA was isolated from manually dissected ovaries from 2-4 day old w1118, 

rhiKG/rhi2 and armi72.1/armi1 flies using RNeasy (Qiagen) according to the 

manufacturer’s instructions. The RNA was quantified by absorbance at 260 nm. Double-

stranded cDNA was prepared using GeneChip® WT Amplified Double-Stranded cDNA 
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Synthesis Kit (Affymetrix). DNA was labeled using GeneChip® WT Double-Stranded 

DNA Terminal Labeling Kit (Affymetrix). Labeled DNA was hybridized to GeneChip® 

Drosophila Tiling 2.0R Arrays (Affymetrix) in triplicate using GeneChip® Hybridization, 

Wash, and Stain Kit (Affymetrix) at the University of Massachusetts Medical School 

genomic core facility. 

 

Deep sequencing of small RNAs 

Total RNA was isolated from manually dissected ovaries from cn1;ry506 and rhiKG/rhi2 2-4 

day flies using mirVana (Ambion, Austin, TX, USA) according to the manufacturer’s 

instructions. The RNA was quantified by absorbance at 260 nm. To deplete 2S rRNA, 

100µg total RNA was incubated with 200 pmole of DNA oligonucleotides 

(5′AGTCTTACAACCCTCAACCATATGTAGTCC 

AAGCAGCACT-3′) complementary to 2S rRNA sequences in 20µl reaction at 95°C for 

2min, then gradually decrease temperature over one hour to room temperature. 2S rRNA 

was digested with 2 units of RNase H (Invitrogen, Carlsbad, CA, USA) in 30 µl reaction 

containing 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, and 10mM DTT. After 

2S rRNA depletion, 18-29nt small RNA was purified with 15% denaturing urea-

polyacrylamide gel (National Diagnostics, Atlanta, GA, USA). Half of purified RNA was 

oxidized with 25 mM NaIO4 in borax/boric acid buffer (60 mM borax, 60 mM boric acid, 

pH 8.6) for 30 min at room temperature followed by ethanol precipitation. The other half 

was subject to the same treatment except that NaIO4 was omitted.  100pmole of 3´ 

preadenylated adapter (5´-rAppTCGTATGCCGTCTTCTGCTTGT/ddC/-3´) was ligated to 

oxidized or un-oxidized small RNAs with Mutant Rnl2_1-249_K227Q (17-23B) (Addgene, 
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Cambridge, MA, USA) at 4°C for 12 hrs in 20 µl reaction containing 50mM Tris-HCl (pH 

7.5), 10mM MgCl2, 10mM DTT, 60μg/mL BSA, 10% (v/v) DMSO, and 40 units of RNasin 

(Promega, Madison, WI, USA). 3´ ligated product was purified with 15% denaturing urea-

polyacrylamide gel (National Diagnostics, Atlanta, GA, USA), and then ligated to 100 

pmole of 5´ adapter (5´-rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrC-

3´) with T4 RNA ligase (Ambion, Austin, TX, USA) at room temperature for 6 hrs in 20 µl 

reaction containing 50 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 

and 10% DMSO. The ligated product was purified with 10% denaturing urea-

polyacrylamide gel (National Diagnostics, Atlanta, GA, USA). Half of ligated product was 

used to synthesize cDNA with Superscript III (Invitrogen, Carlsbad, CA, USA) and reverse 

transcription primer (5´CAAGCAGAAGACGGCATACGA-3´), and half was used as –RT 

control.  Small RNA library was amplified with forward primer (5´AATGATACGGCG 

ACCACCGACAGGTTCAGAGTTCTACAGTCCGA-3´) and reverse primer 

(5´CAAGCAGAAGACGGCATACGA-3´), and then purified with % NuSieve GTG 

agarose gel (Lonza). Purified libraries were submitted for illumina-solexa high-throughput 

sequencing at the University of Massachusetts Medical School deep sequencing core 

facility.  

 

Statistical Analysis of tiling array and deep sequencing data 

Tiling array analysis 

Since transposons account for more than 10% of the probes on the tiling array, a special 

normalization workflow has been taken to avoid over-normalization of signals.  

Coordinates and raw signal values for Drosophila tiling 2.0R array probes were extracted 
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from Affymetrix Tiling Array Software.   Then probes mapped to transposon regions were 

identifed. The remaining non-transposon probes were quantile-normalized across wild 

type and mutant replicates based on the assumption that the overall signal distribution of 

these probes should remain the same across the different strains. Then the signals for 

transposon probes were calculated by looking up the normalized values of non-transposon 

probes at same raw signal level. To summarize the signal for each transposon element, 

probes mapped to any copy of the element were grouped together and Hodges-Lehmann 

estimator (Hollander, M. and Wolfe, D.A. Nonparametric Statistical Methods, 2nd edition. 

John Wiley and Sons, Inc. 1999) was used to calculate the pseudomedian of their 

normalized signals. We used pseudomedian as it is less sensitive to the large number of 

outlier probes (probes with value of 1) in the tiling array experiments. Differentially 

expressed transposon elements were identified by contrasting their pseudomedian values 

in mutant replicates against wild type replicates. To correct for multiple testing, False 

Discovery Rates (FDRs) were calculated from t-test P-values.  FDR<0.02 were used to 

call significantly changed transposons. Similarly, expression values of mRNAs were 

summarized by calculating the pseudomedian of probes mapped to each of the RefSeq 

mRNA transcripts. Differentially expressed transcripts were identified using FDR<0.02 

cutoff. 

Deep sequencing analysis 

The extracted inserts were mapped to the female Drosophila melanogaster genome 

(Flybase Release R5.5, excluding chromosome YHet). Only the inserts that are perfectly 

matched to a genomic sequence were collected, using an internally developed suffix tree-

based software. The annotated genes and transposons were downloaded from Flybase 



141 
 

(R5.5). The transposon consensus sequence downloaded from Flybase was blasted against 

the female genome, with e-value cutoff 10-10. For a set of sequences (possibly of various 

lengths), the frequency of each nucleotide at each position was computed as a foreground 

count matrix. The background frequencies at each position were computed by averaging 

over all possible k-mers (k=23~29) in transposon sequences, strand-specifically (either 

sense or antisense), weighted by the length distribution of each foreground set. A binomial 

testing was performed for each nucleotide at each position in the foreground matrix, using 

the corresponding element in the background matrix as the probability parameter. The 

significance level of testing used was α=5×10-7. This stringency corrects for multiple 

testing. Only the nucleotides significantly above background were displayed, with the Y 

values being the relative frequency of foreground minus background. This background 

correction is important in determining whether a certain A or U-bias is biologically 

meaningful. Transposon sequences are generally AU-rich. Within each set of sequences 

mapped to transposons, the nearest sequence on the opposite strand was chosen and the 

length of 5’ overlaps were computed.  The histogram of the overlaps was generated using 

the average normalized reads of the two partners of the pairing as the abundance. For each 

blast-hit transposon copy, all the ungapped segments of the consensus-hit sequence 

alignment were collected and were used for coordinate conversion. The genomic 

coordinate of any insert that overlaps with an ungapped segment of a blast hit was 

converted relative to the consensus sequence. Overlaps of an insert to multiple segments 

were corrected to avoid double-counting, as well as multiple hits on the same genomic 

position caused by repetitive sequences. An advantage of coordinate conversion over 

direct sequence matching to the consensus sequence is that it allows consistency in the 
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small RNAs included in different analyses, i.e.  the same set of the small RNAs mapped to 

transposon regions in the genome are included in the set mapped on the consensus 

sequence. The total reads of PiRNA (23-29nt) normalized by number of times mapped to 

the genome were calculated using 5kb non-overlap window. 

  
Chromatin Immunoprecipitation and qPCR 

30 wild type ovaries were dissected and treated for subsequent ChIP analysis as previously 

described (Austin et al., 1999) with modifications. ChIP and input DNA fragments were 

PCR amplified in triplicate and quantitated using the ABI prism 7500 sequence detection 

system and SYBR Green PCR master mix (Applied Biosystems). Using primers C1A-F 

(CGTCCCAGCCTACCTAGTCA),C1AR(ACTTCCCGGTG 

AAGACTCCT), C1B-F (GCAGATGAGCTGAAACGAAA),C1BR(TCGCAGTCGT 

GTAATCCAAA),  C2A-F(GCCTACGCAGAGGCCTAAGT),C2AR(CAGATGT 

GGTCCAGTTGTGC),  C2BF(CTGCTTTGTGCTTGGAGATG),C2BR(TCTG 

CACAGATTCTGAAATTGA A), C3A-F(CGGATGTGTTGAGGTGAGTG), C3A-

R(CGGCTGCTCTCAAATTTCTT), C3B-F(TGGAGACTGCAGCAAGAAAA), C3B-

R(GCCTAGCGACACATACACCA), C3C-F(TCTTTGGCCATGGCTATCTC), C3C-

R(GATTCCAAGCACGTTTCGTT).   A ratio of ChIP DNA to input DNA was calculated 

for all samples, and fold enrichment was determined relative to rp49. 
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CHAPTER IV 

 

Perspectives and Open Questions 
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Protecting the genome of their germline is one of the most crucial tasks that 

organisms confront. Transposable elements are genetic parasites that can mobilize, 

causing DNA damage. To protect themselves from transposable elements, organisms need 

a system that can silence various elements and respond to their rapid evolution. The 

piRNA pathway is responsible for silencing transposable elements in the Drosophila 

germline. piRNAs bind to the piwi class of Argonaute proteins, which are conserved 

proteins required for germline development in flies, fish and mice. 

 

Source of DNA damage in the germline of piRNA mutants 

This thesis is focused on piRNA function and production in the Drosophila female 

germline. In the studies presented in Chapter II,  I determined that the piRNA pathway is 

not directly responsible for patterning Drosophila embryos. The patterning defects in 

these mutants are caused by activation of a DNA damage response.  Although we 

demonstrated that there was increased phosphorilation of histone H2Av in mutant 

germline nuclei, which is generally accepted as a consequence of DNA damage, we did 

not directly show the presence of DNA double stranded breaks or other DNA lesions.  

Work is currently underway in the laboratory to address this point. Using pulse field gel 

elctrophoresis and comet assays (Fairbairn et al., 1995) our group has now determined that 

the DNA is indeed fragmented in ovaries from armi and aub mutants, probably as a result 

of DNA double strand breaks.  The cause of DNA damage in piRNA mutants, however, is 

not known. The simplest explanation is that DNA damage is caused by insertion of de-

repressed transposable elements. This hypothesis has been very quickly accepted as a 

cause-effect relationship by the field, without any direct conclusive data. To date there is 



148 
 

no direct evidence of transposon mobilization in the ovary and only one retrotransposon 

has been shown to mobilize in mutant testes. If the DNA double stranded breaks are 

caused by transposable elements integrating into the genome, one would expect to find 

sequences corresponding to such elements in the DNA closest to the break. Cloning 

strategies to try to isolate the DNA adjacent to the breaks using DNA end-labeling have 

been attempted by our group with no success. PCR strategies to determine if there are new 

transposon insertion sites in the mutants are currently being performed and it appears that 

there is indeed increased transposition in the mutant ovaries.  

Hybrid dysgenesis is an event that occurs in Drosophila when a transposon, carried 

by a male that has established control over that element, is introduced into a female that 

does not carry the element (Bucheton, 1990). Transposon mobilizes in the progeny cause 

sterility and a variety of abnormalities in the germline, including axial patterning defects 

(Engels and Preston, 1979).  It has been established that the molecular basis of this 

phenomenon is the inability to silence the transposable element in the germline of the 

progeny (Pelisson, 1981; Rubin et al., 1982). Over several generations the progeny that 

survive become resistant and acquire the ability to silence the transposable element 

(Pelisson and Bregliano, 1987). The piRNA pathway has been involved in this process of 

acquired resistant (Brennecke, unpublished observations). It would be interesting to 

determine if the pattering defects associated with hybrid dysgenesis are due to activation 

of the DNA-damage signaling pathway. This would be hard to address genetically, but 

treatment with caffeine could be used to inactivate ATM and ATR. Furthermore, if γ-

H2Av staining in the germline is increased, as observed in piRNA mutants, it would 

indicate that transposon overexpression can lead to break formation in the germline. 
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Downstream target of mnk that mediate patterning defects 

 in piRNA mutant oocytes 

The downstream targets of mnk that cause the disruption of the microtubule 

network and result in oocyte patterning defects also remain to be defined. We determined 

that mnk is genetically required for the axis specification defects, but have not directly 

demonstrated that the Chk2 kinase is activated in the mutants. Chk2 protein is expressed at 

low levels during oogenesis and the antibodies that are available do not show any strong 

signal at this stage. Our group has generated a human Chk2 transgene (huChk2) that can 

rescue the mnk phenotype in response to DNA damage, suggesting that these proteins are 

functionally conserved. As shown in figure 1 of Appendix 1, we expressed the huChk2 

transgene in mutant and wild type ovaries and stained with an antibody raised against the 

active (phosphorylated) form of huChk2.  We observed that activated huChk2 was present 

in mutant oocytes but not in wild type. Chk2 kinase is therefore active and in the right 

location to directly modify components of the microtubule network.  

However, we do not know the downstream targets of Chk2.  During oogenesis, the 

nurse cells centrioles migrate into the oocyte and become clustered at the posterior pole 

(Mahowald and Strassheim, 1970). It is possible that this material organizes the 

microtubule network between stages 3 and 6.  I have found that, in armi mutants, the 

centrioles partially migrate into the oocyte but fail to cluster at the posterior pole 

(Appendix 1, figure 2).  In Drosophila embryos, DNA damage results in Chk2-dependent 

centrosome inactivation, and centrioles lie at the center of centrosomes.  I speculatue that 

Chk2 has the same centrosome targets in oocytes and embryos.  The embryos provide a 
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much better system to address Chk2 targets at the centrosome, suing both genetic and 

biochemical approaches.  Analysis of Chk2-depenendent centrosome inactivation in the 

embryo may provides significant insight into Chk2-dependent defects in axis specification 

during oogenesis. 

  

Function of Rhino in the piRNA pathway 

In the studies presented in Chapter III, I demonstrate that the HP1 homologue 

Rhino is required for piRNA production and transposon silencing in the Drosophila 

female germline. Our ChIP results suggest that Rhi binds to only a subset of piRNA 

production clusters. We show that Rhi specifically binds to piRNA production clusters in 

chromosomes 2R and 4 and that production of piRNAs from these loci is severely affected 

in rhi mutants. By contrast, we did not detect binding of Rhi to the cluster located in 

chromosome X, and piRNAs mapping to that clusters are not noticeably affected in rhi 

mutants. Rhi is predominantly expressed in the germline and thus it could be binding to 

only the clusters that have a specific function in this tissue.  Further experiments, 

including ChIP on ChIP or ChIP-deep sequencing, would give us a more comprehensive 

view of all the sites where Rhi binds in the genome and perhaps suggest whether or not its 

function is limited to piRNA production.  

Defining the sites where Rhi binds in the genome will also open the question of 

what recruits Rhi to those regions. It will be interesting to determine if Rhi is recruited to 

the chromatin by mechanisms similar to HP1.  However, the rapid pace of evolution of the 

chromo and chromo shadow domains in Rhino suggests that Rhino does not bind to a very 

conserved protein, such as a histone (Vermaak et al., 2005). Furthermore, studies in 
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Drosophila cell lines suggest that Rhi might define a distinct heterochromatic domain, as 

it only partially co-localizes with HP1 and methylated H3K9 (Vermaak et al., 2005). 

Initial studies from our group suggest that this might also be the case in the germline.  

The mechanism by which Rhi functions to promote piRNA biogenesis remains to 

be elucidated. We hypothesize that it could direct transcription of piRNA precursors from 

the clusters. However, precursor transcripts from these loci have not been detected, 

suggesting that they are perhaps very transient. For example, piRNAs could be processed 

directly from nascent transcripts. Alternatively, Rhi could have no effect on transcription 

and rather be involved in recruiting factors that would process transcripts originating from 

these loci.  This hypothesis can be tested by directing Rhi to specific loci.  For example, a 

GAL4 DNA binding domain-Rhi chimera could be expressed in flies with target 

transgenes carrying GAL4 binding sites, as has been done for HP1 (Seum et al., 2001). If 

Rhi is responsible for defining piRNA production clusters and directing piRNA processing 

machinery to these loci, piRNAs should be produced from the target transgenes. 

Furthermore these piRNAs should be capable of silencing GFP genes inserted in other 

places in the genome in trans.  
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APPENDIX 1 

 

Studies to determine Chk2 activation and downstream targets of the DNA-damage 

signaling pathway in armi mutants 

 

 

huChk2 transgene is activated in armi mutant oocytes 

Mnk protein is expressed at low levels during oogenesis and the antibodies that are 

available do not show any strong signal at this stage. Our group has generated a human 

Chk2 transgene (huChk2) that can rescue the mnk embryonic phenotype in response to 

DNA damage, suggesting that these proteins are functionally conserved.  We expressed 

the huChk2 transgene in armi mutant and armi heterozygous ovaries and stained with an 

antibody raised against the active (phosphorylated) form of huChk2 (P-T68, Tsvetkov L. 

et al. J Biol Chem 2003).  We observed that activated huChk2 was present only in mutant 

oocytes but not in wild type. 
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Figure 1. 

 

Figure 1. huChk2 transgene is activated in armi mutant oocytes 

A full length human Chk2 transgene was expressed in armi heterozygous and 

homozygous flies. An antibody against the active for of Chk2 only labels the oocyte in 

homozygous but not heterozygous egg chambers. 

 



155 
 

GFP-PACT fails to localize in armi oocytes 

During oogenesis the nurse cells centrioles migrate into the oocyte and become clustered 

at the posterior pole (Mahowald and Strassheim, 1970). It is possible that this material 

organizes the redistribution of the microtubule network between stages 3 and 6. We used a 

transgene expressing the Pericentrin/AKAP450 centrosomal targeting (PACT) domain of 

the Drosophila pericentrin-like protein fused to GFP (GFP-PACT) (Martinez-Campos, et 

al., 2004) to detect centrioles in egg chambers from heterozygous and homozygous armi 

mutant ovaries. We observe that in armi mutants the centrioles partially migrate into the 

oocyte and fail to cluster at the posterior pole (figure 2).  
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Figure2. 

  

Figure 2. GFP-PACT fails to localize to the posterior pole of the oocyte at stage 5 in armi 

mutant egg chambers. 

GFP-PACT localizes forming a tight aggregate at the posterior pole in armi heterozygous 

oocytes (arrow), but fails to localize in armi homozygous and is detected in dispersed foci 

at the anterior of the oocyte (arrowhead). Images were acquired using identical conditions. 
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huChk2 transgene  

Full length of human Chk2 was amplified from plasmid pGEX2TKcs-huChk2 by PCR. 

The DNA fragment was sequenced and cloned via KpnI and XbaI sites into pUASP (2). 

The resultant plasmid, pUASp-Chk2 was introduced into the Drosophila germline by P-

element-mediated transformation (3). Fly stocks were constructed carrying pUASP-Chk2 

insertions and the maternal nos-GAL4-VP16 driver for expression in the ovary or early 

embryos (4). 
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