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Abstract 

In 2008 the Nobel Prize in Physiology or Medicine was awarded to the co-

discoverers of the Human Immunodeficiency Virus Type 1 (HIV-1), the causative 

agent of Acquired Immunodeficiency Syndrome (AIDS).  This award 

acknowledged the enormous worldwide impact of the HIV-1/AIDS pandemic and 

the importance of research aimed at halting its spread.  Since the syndrome was 

first recognized, 25 million people have succumbed to AIDS and over 33 million 

are currently infected with HIV-1 (www.unaids.org).  The most effective strategy 

for ending the pandemic is the creation of a prophylactic vaccine.  Yet, to date, all 

efforts at HIV-1 vaccine design have met with very limited success.  The 

consistent failures of vaccine candidates stem in large part from the 

unprecedented diversity of HIV-1.  

Among the novel theories of vaccine design put forward to address this 

diversity is the targeted vaccine approach.  This proposal is based on the finding 

that mucosal transmission of HIV-1, the most prevalent form, occurs across a 

selective bottleneck such that typically only a single (or a few) variants of the viral 

swarm present in a donor are passed to the recipient.  While the mechanisms 

controlling the selection are largely unknown, the targeted vaccine approach 

postulates that once they are identified, we can utilize this understanding to 

design vaccines specifically targeted to the characteristics shared by the rare, 

mucosally transmissible HIV-1 variants.         
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The studies described in this work were conducted to improve our 

understanding of the factors influencing viral variant selection during mother-to-

child-transmission of HIV-1, a route of mucosal transmission which has globally 

become the leading cause of child infection.  A unique panel was generated, 

consisting of nearly 300 HIV-1 envelope genes cloned from infected mother-

infant pairs.  Extensive characterization of the genotypes, phenotypes and 

phylogeny of these clones was then done to identify attributes differentiating 

early infant from maternal variants.  Low genetic diversity of HIV-1 envelope 

variants was detected in early infant samples, suggesting a bottleneck and active 

selection of variants for transmission.  Transmitted variants did not differ from 

non-transmitted variants in CD4 and CCR5 use.  Infant isolates replicated poorly 

in macrophages; a cell subtype hypothesized to be important in the 

establishment of infection.  The sensitivity of infant envelope variants to 

neutralization by a panel of monoclonal antibodies, heterologous and autologous 

plasmas and HIV-1 entry inhibitors varied.  Most intriguingly, envelopes cloned 

from infants infected during delivery exhibited a faster entry phenotype than 

maternal isolates.  Together, these findings provide further insight into viral 

variant selection during mother-to-child transmission.  Identification of properties 

shared by mucosally transmitted viral variants may allow them to be selectively 

targeted, resulting in improved methods for preventing HIV-1 transmission.  
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CHAPTER I 

Introduction 

Acquired Immunodeficiency Syndrome  

Acquired Immunodeficiency Syndrome (AIDS) is a disease of the human 

immune system that progressively reduces its effectiveness, leaving individuals 

susceptible to opportunistic infections and tumors.  AIDS was first recognized by 

the U.S. Centers for Disease Control and prevention in 1981.  Shortly a novel 

virus, later termed the Human Immunodeficiency Virus Type 1 (HIV-1), was 

recovered (11) and determined to be the causative agent of AIDS.  Since its 

identification HIV-1 has become a pandemic, with cases reported in every part of 

the world.  Over the last 30 years almost 60 million people are estimated to have 

been infected and 25 million have succumbed to AIDS.  In 2009 33.3 million 

people were estimated to be living with HIV-1, with 2.6 million new infected that 

year (83).  The tremendous impact of HIV-1 was underlined in 2008 when its co-

discovers, Françoise Barré-Sinoussi and Luc Montagnier, were awarded the 

Nobel Prize in Physiology or Medicine.    

HIV-1 originated in Sub-Saharan Africa, possibly in southern Cameroon 

(88), early in the 20th century (97, 203) as a zoonotic transmission event from 

chimpanzees (88).  Today the majority of those infected, some 22.5 million, 

reside in Sub-Saharan Africa, where the adult seroprevalence averages 5%.  The 

Caribbean is the next most heavily affected region, with seroprevalence rates of 

1%.  Recently, the disease has been spreading rapidly in Eastern Europe and 
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Central Asia with seroprevalence reaching 0.8% and five countries reporting a 

greater than 25% increase the incidence of HIV-1 since 2001.  With 4.1 million 

people infected South and South-East Asia have the second largest total number 

of infections, but the seroprevalence is only 0.3% and the number of new 

infections is decreasing (83).    

Human Immunodeficiency Virus Type 1 

  HIV-1, the causative agent of AIDS, is a Lentivirus, a genus that typically 

causes clinical disease following variable periods of infection.  Lentiviruses are 

retroviruses, a family that carries their genetic information as RNA.  Following 

infection, the viral RNA is converted to DNA by a reverse transcriptase enzyme 

carried in the virus particle.  This viral DNA is then integrated into the host cell 

DNA by a virally encoded integrase (Fig 1.1).  Following integration, the virus can 

proceed along either the lytic or the latent pathway.  In the first case the virus 

becomes active and replicates, killing the host cell and releasing large numbers 

of new virus particles.  In the second case the cell continues to function, but as 

the integrated viral genome can become activated at any time, latently infected 

cells serve as a lifelong reservoir of HIV-1. 

The mature HIV-1 viral particle consists of a host derived membrane 

displaying the viral envelope protein and enclosing a protein matrix and capsid 

core (Fig 1.2A).  Within the core are viral proteins and two RNA copies of the 

genome.  The HIV-1 genome consists of nine genes (Fig 1.2B).  The nef, vif, and 

vpu genes are regulatory, as are the transactivators tat, rev, and vpr.  The group- 
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Fig 1.1:  HIV-1 life cycle.  Viral entry requires the binding of gp120 to receptors 
(CD4 ) and co-receptors (CCR5  or CXCR4). The viral nucleocapsid enters the 
cytoplasm and moves toward the nuclear pore complex (NPC). The viral RNA is 
retrotranscribed into proviral double-stranded cDNA (dscDNA), which forms a 
pre-integration complex consisting of dscDNA, viral proteins and some host cell 
proteins.  The pre-integration complex is transported into the nucleus through the 
NPC, and the dscDNA is integrated into a host cell chromosome.  After 
integration, the provirus remains quiescent, existing in a permanent post-
integration latent state.  On activation, the viral genome is transcribed and 
translated into regulatory and structural viral proteins.  New virions assemble and 
bud through the cell membrane, maturing through the activity of the viral 
protease.  Adapted by permission from  Macmillan Publishers Ltd: Nature 
Reviews Microbiology, volume 7, 798-812 (November 2009).

    

http://www.nature.com/nrmicro/index.html 

http://www.nature.com/nrmicro/index.html�


4 
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Fig 1.2:  HIV-1 virion and genome organization.  Each panel uses 
separate color coding.  (A) Simplified schematic of an HIV-1 virion.   
(B) Schematic of the HIV-1 genome.  Genes are shown only 
approximately to scale. 

LTR
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specific antigen (gag) gene codes for structural proteins including the matrix and 

capsid.  The vital HIV-1 enzymes integrase, protease and reverse transcriptase 

are encoded by pol.  The envelope gene (env) encodes the envelope 

glycoprotein, which engages the HIV-1 receptor and co-receptors and mediates 

virus entry into and fusion with target cells. 

HIV-1 Envelope 

The HIV-1 envelope is initially expressed as a gp160 glycoprotein 

precursor which is cleaved into the gp120 and gp41 subunits by host enzymes 

(45).  On mature viruses functional envelope proteins are expressed as trimetric 

spikes consisting of three gp120/gp41 subunits (73, 198) (Fig 1.3A).  The gp120 

subunit is exposed on the surface of the viral membrane and binds to the CD4 

HIV-1 receptor on a target cell to initiate viral entry (91).  This results in a 

conformation change (172) which exposes the hereto masked co-receptor 

binding site (184) and allows binding to a co-receptor (4, 49).  The gp41 subunit, 

which is non-covalently bonded to the gp120 (73), is imbedded in the viral 

membrane.  Following co-receptor binding by gp120, gp41 undergoes 

conformational changes which expose an N-terminal hydrophobic peptide.  This 

peptide inserts into the membrane of the target cell and following subsequent 

conformational changes causes fusion of cell and viral membranes (199, 200).  

This fusion is generally thought to occur at the plasma membrane (116), although 

a recent study reported that HIV-1 fusion occurred only in endosomes (125).  

Figure 1.3B provides an overview of env mediated HIV-1 entry.   
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sCD4 T20

Fig 1.3:  HIV-1 entry.  (A) Model of the Env spike with three gp120 
monomers shown in gray, pale green, and pale blue.  The gp41 is shown 
schematically as three pink tubes.  Carbohydrate chains are shown in 
yellow.  The approximate locations of epitopes for four broadly neutralizing 
monoclonal Abs are indicated.  Adapted from Burton D R et al. PNAS 2005 
Oct 18;102(42):14943-8 with permission of the author.  (B) The gp120 
binds to the CD4 receptor on a target cell to initiate viral entry.  This results 
in a conformation change which exposes the hereto masked co-receptor 
binding site, allowing binding to a co-receptor.  Following co-receptor 
binding gp41 undergoes conformational changes which expose an N-
terminal hydrophobic peptide.  This peptide inserts into the membrane of 
the target cell and following subsequent conformational changes causes 
fusion of cell and viral membranes.  The stages of entry at which three 
HIV-1 entry inhibitors are believed to act are indicated.   Adapted from 
Moore J P et al. PNAS 2003 Sep 16;100(19):10598-602 with permission of 
the author. 

©2005 by National Academy of Sciences, USA

Viral membraneA

B

©2003 by National Academy of Sciences, USA
Maraviroc
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HIV-1 is an enveloped virus, whose membrane is host derived.  The env 

spikes are the only HIV-1 proteins found on the viral surface and are therefore 

the primary targets for anti-HIV-1 neutralizing antibodies (96, 196).  However 

HIV-1 env is heavily glycosylated (Fig 1.3A), making it a difficult target for 

neutralization.  Further, HIV-1 is able to modify the number and location of the 

glycans on its envelope (196).  Most of these glycosylation changes occur in the 

variable loops of the env.  These five regions (V1 – V5) are displayed on the 

surface of the gp120, exhibit a relatively flexible structure and despite being 

functionally important, are able to accommodate high levels of variability.  By 

changing the lengths and sequences of its variable loops and modifying the 

number and location of attached glycans over the course of infection, HIV-1 

creates an ever evolving glycan shield (196), constantly generating novel env 

variants resistant to the concurrent host antibodies. 

HIV-1 diversity and subtypes 

HIV-1 and particularly its env gene are characterized by marked genetic 

diversity.  The viral population within a single HIV-1 infected individual, termed a 

quasispecies, can exhibit as much variation in its env as is found among all the 

Influenza virus Hemagglutinin (surface protein) worldwide in a given year (96) 

(Fig 1.4B, E).  Viruses that have altered over 10% of their env sequence arise in 

a single subject over the course of a typical infection (175, 201) (Fig 1.4C).  

Possibly due to distinct transmission events, the HIV-1 pandemic is composed of 

four strains; major (M), outlier, N and P, of which M accounts for more than 90%  
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Fig 1.4:  A comparison of evolutionary distances of HIV-1 envelope sequences 

encoding V2-C5 and influenza HA1 domain of the HA gene through phylogenetic 

analysis. All panels show maximum likelihood trees using a REV model allowing 

for rate variation at different sites, following the strategy described in Korber et al 

Science 2000. The scale bar is the same in a–f for comparisons. (a) Tree based 

on 20 HA1 domain sequences of A/Sydney-like viruses circulating in Canada 

during the first half of the 1997–1998 flu season (Osiowy CK, unpublished 

observations. Accession numbers: AF087700-AF087708 and AF096306-

AF096316). (b) Tree based on 96 HA1 domain sequences of human influenza 

H3N2 viruses. The tree contains all sequences from the Influenza Sequence 

Database, Los Alamos National Laboratory (http://www.flu.lanl.gov), with an 

isolation year of 1996. (c) Tree based on 9 V2-C5 sequences from a single 

asymptomatic individual collected at one time point 73 months post-

seroconversion – this was a subtype B infection, and is typical of intrapatient 

diversity (Shankarappa et al J Virol 1999). (d) Tree based on HIV-1 subtype 

CRF03_AB V2-C5 sequences from 26 individuals from Kaliningrad, representing 

a unique situation where a recombinant form of the virus spread explosively 

through a population of i.v. drug users, and all viruses were very closely related 

to a single common ancestor (Liitsola et al AIDS 1998). These samples were 

collected during 1997–1998, within a year of the introduction of the strain into the 

population. (e) Tree based on HIV-1 V2-C5 env sequences from a subtype B 

epidemic, sampled from 23 individuals residing in Amsterdam in 1990–

1991(Lukashov J Virol 1997). (f) Tree based on HIV-1 V2-C5 sequences 

sampled in 1997 from 193 individuals residing in the Democratic Republic of the 

Congo (DRC), a remarkably diverse set (Vida et al J Virol 2000). 

   

Figure and legend taken from Korber et al, Evolutionary and immunological 

implications of contemporary HIV-1 variation.  Br Med Bull, 2001;58(1):19-42 by 

permission of Oxford University Press.  

http://www.flu.lanl.gov/�
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Fig 1.4                                                        ©2001 by Oxford University Press 
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of infections (69, 150).  Within the M group are 9 distinct subtypes and at least 15 

circulating recombinant forms of these subtypes.  The genome of HIV-1 can differ 

by up to 35% between the subtypes (182) (Fig 1.4F).  This genetic diversity 

among subtypes results in phenotypic differences, including transmission rates 

(14, 161), virulence (9, 85) and reverse transcription rates (79).   

Due to founder events, there is a strong enrichment for specific subtypes 

in different geographic areas (Fig 1.5).  Historically most infections in Western 

Europe and North America were with subtype B (74).  Therefore many of the 

early viral isolates and much of the pathogenesis data were obtained from 

subjects infected with this subtype.  However, worldwide this subtype accounts 

for approximately 12% of those infected (74).  Subtype C, which is most 

prevalent in Sub-Saharan Africa, is the most rapidly expanding HIV-1subtype.   

At least 22 million people are currently infected with subtype C, accounting for 

almost 60% of all HIV-1 infections (83).        

The unprecedented diversity of HIV-1 is thought to be due to the 

combination of its high replication and turn-over rates (143), lack of proof-reading 

mechanism of the HIV-1 reverse transcriptase enzyme (153) and high levels of 

recombination (210).  The synergistic effects of these mechanisms could in 

theory generate every possible mutation in the HIV-1 genome within a single 

infected individual daily (143).  Viruses that survive selective pressures and 

exhibit enhanced replication fitness generate a complex, constantly evolving and  
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Fig 1.5:  Global distribution of HIV-1 subtypes and recombinant forms as 
of 2008.  Image obtained from Taylor et al, N Engl J Med. 2008 April 10; 
358(15): 1590–1602.  ©Massachusetts Medical Society.
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increasing distribution of mutant genomes within both individuals and populations 

(129, 154, 201).   

Within an individual this diversification results in the continuous escape of 

HIV-1 from the host immune response (196) and in the rapid generation of 

mutants resistant to Anti-Retroviral Therapy (ART) (26, 70, 197) which may 

greatly complicate treatment.  On a population level, transmission of ART 

resistant viruses has been widely reported and may reduce treatment efficacy 

(82, 178).  More importantly, diversity has greatly complicated vaccine design 

(16, 188) as, unlike the case with most pathogens, a robust immune response to 

an existing infection may not prevent super-infection with a different variant of the 

virus (5, 6).   

Routes of HIV-1 transmission and the selective bottleneck 

There are three main routes of HIV-1 transmission: sexual, Mother-to-

Child (or vertical), and through contaminated needles or un-screened blood 

products.  The first two forms, which occur across mucosal membranes, are 

collectively termed mucosal transmission and account for the majority HIV-1 

infections (140).  A hallmark of transmission across an intact mucosa is a marked 

restriction in the diversity of founder viruses as compared to the quasispecies of 

a chronically infected subject (1, 40, 58, 87, 168, 202, 204, 206).  Large-scale 

studies utilizing Single Genome Amplification (SGA) and extensive in-silico 

modeling of virus diversification concluded that this genetic bottleneck suggests 

either the transmission or post-transmission amplification of a single donor 
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variant in the majority of recipients (58, 87, 168).  Further, the majority of 

transmitted viruses represent rare variants of the donor population (40, 204, 

206).  This genetic bottleneck may be due to active selection, but the features 

underlying the selection are largely unknown. 

Mother-To-Child Transmission (MTCT) 

Initially, HIV-1 patients were predominately male, but the proportion of 

infected women has been increasing worldwide (83, 156).  Today over 50% of 

those afflicted are young women (83).  In Sub-Saharan Africa, a region with 

historically high rates of MTCT, young women are up to eight times more likely 

than men to be HIV-1 positive (83).  In developed countries access to Highly 

Active Anti-Retroviral Therapy (HAART), antenatal HIV-1 testing, elective 

cesarean session and formula feeding have decreased the incidence of MTCT to 

less than 2% (29, 83, 103).  However, in many regions of the world, limited 

resources and infrastructure continue to restrict treatment options for HIV-1 

infected pregnant women (83). 

In the absence of intervention, more than a third of the children born to 

HIV-1 infected mothers will acquire the virus through MTCT (1, 114).  In 2009, an 

estimated 370,000 infants (more than 1000 a day) were infected, accounting for 

14% of all new HIV-1 transmission (83).  Disease progression in untreated HIV-1 

infants is much more rapid than in adults (2), with a 75% mortality rate by the age 

of 3 (137), accounting for up to 20% of all HIV-1 related deaths (113).  In the 



14 

most heavily affected areas HIV-1 is now the leading cause of child mortality, 

responsible for one third of all deaths among children under the age of five (113).  

 MTCT can occur during gestation (in utero), at delivery (intra partum) and 

through breastfeeding (post partum), with the latter two routes (collectively 

termed peripartum) accounting for the vast majority of infections (2, 99).  Similar 

to sexual transmission of HIV-1, peripartum transmission is thought to occur 

across a selective bottleneck, with only one or two minor variants of the maternal 

quasispecies typically transmitted (2, 40, 204, 206).  These transmitted variants 

likely exhibit advantages in crossing mucosal barriers, infecting target cells, or 

evading immune responses (189).  Both virus specific factors (95, 202, 204) and 

host immune responses (39) have been suggested to play a role in this 

phenomenon, but the exact features controlling the selective bottleneck are 

largely unknown.   

Need for a vaccine 

 Despite intense international efforts to slow the spread of the pandemic 

through education campaigns, testing, needle exchange programs, the 

distribution of condoms and ART prophylaxis, 2.6 million new HIV-1 infections 

were reported in 2009 (83).  Currently, the only effective treatment for HIV-1 is 

HAART.  In the developed world treatment with combinations of drugs and close 

monitoring for the rise of resistant variants has greatly improved the life quality 

and expectancy of those infected.  However, in middle and low income countries 
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only 5.2 out of an estimated 15 million eligible people have access to any form of 

ART (83).   

HIV-1 is most prevalent in Sub-Saharan Africa where, despite international 

aid, the resources and infrastructure are still unequal to providing HAART to the 

majority of those afflicted.  Of the 1.8 million AIDS related deaths reported 

worldwide in 2009, 1.3 occurred in Sub-Saharan Africa.  The consensus is that 

the best long term strategy for stopping the spread of HIV-1 is the development 

of a successful prophylactic vaccine (107, 122, 122).  This approach is 

particularly attractive as, in addition to stopping transmission, it is theorized that 

such a vaccine, when given to previously infected individuals, could prove 

therapeutic, lowering their viral burden and perhaps reducing or eliminating the 

need for HAART (72, 108).  

Vaccine design approaches 

Traditional vaccine approaches rely largely on the induction of neutralizing 

antibodies for protection.  This approach is particularly relevant to blocking 

transmission of retroviruses such as HIV-1 that integrate into the genome of the 

host’s cells.  In order to be fully protective, a putative vaccine would likely need to 

elicit sterilizing immunity by inducing an antibody response capable of 

neutralizing the virus before it could enter cells (20, 118, 122, 130).  To date, 

HIV-1 vaccine candidates have failed to generate broad and effective neutralizing 

antibody responses in human trials (19, 102, 111, 209).  



16 

In the face of this failure, new vaccination models are being explored.  

One approach is the induction of cell-mediated immunity, particularly the 

generation of strong cytotoxic T lymphocyte (CTL) responses against the virus.  

This work is based on the findings that CD8+ T cells are absolutely required for 

control of infection in non-human primate models (10, 173) and that strong and 

effective CTL responses correlate with control of viremia (163, 181).  

Unfortunately, the failure of Merck’s STEP clinical trial (www.HVTN.org), which 

sought to prevent infection without generating antibodies, indicates that induction 

of cell-mediated immunity alone, while beneficial, is insufficient for full protection.       

  Other approaches focus on overcoming HIV-1’s diversity through 

identification of common neutralization epitopes on the env of many different 

primary isolates (28, 81, 131).  A similar approach is to determine consensus or 

ancestral envelope sequences, synthesize them and use them as vaccine 

antigens (57).  To date, all approaches have failed to provide broad protection.  

However, vaccine candidates generally utilize envelope antigens from the highly 

diverse quasispecies of chronically infected patients, yet mucosal transmission, 

which accounts for the majority of HIV-1 infection, is thought to occur across a 

strongly selective bottleneck.  It is hypothesized that once the factors controlling 

this selection are identified, they can be used to rationally design vaccines or 

other therapies targeted to preferentially transmitted variants of the donor 

quasispecies (1, 113), minimizing the overwhelming diversity of HIV-1.  While the 

factors controlling this selection are largely unknown, they are likely driven by 

http://www.hvtn.org/�
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viral envelope properties that affect cellular tropism, viral entry kinetics, and 

neutralization sensitivity.   

HIV-1 envelope correlates of transmission 

Changes in both the genotype and phenotype of env between donor and 

recipient during mucosal transmission have been reported.  Shorter, less 

glycosylated env appear to be preferentially transmitted during sexual (25, 166) 

and vertical transmission (204) of subtypes A and C, although such differences 

do not occur in subtype B (25).  Mucosally transmitted envelopes are almost 

uniformly CCR5 tropic (8, 35, 174), whereas chronically infected individuals can 

exhibit a mixture of CCR5, CXCR4, and R5X4 dual tropic env clones.  During 

MTCT, HIV-1 specific maternal antibodies (Abs) are present in the infant and it 

has been reported that envelope variants resistant to neutralization by maternal 

antibodies are preferentially transmitted (39, 204).  Chronic and recently 

transmitted envelope clones from the same subject differ in their fusion efficiency 

(48).  It has also been reported that the envelopes cloned from recently infected 

infants confer higher rates of replicative fitness than do those obtained from their 

mothers (95).     

Research framework and objectives 

The work reviewed above frames my project.  Mucosal HIV-1 transmission 

does not appear to be simply a random or stochastic process, but likely proceeds 

across a selective bottleneck.  While the factors controlling this selection are 

largely unknown, they are likely driven by viral envelope properties that affect 
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cellular tropism, viral entry kinetics and neutralization sensitivity.  The following 

body of work attempts to define the genotypic and phenotypic factors controlling 

selection during vertical transmission.   

I selected MTCT as a model for mucosal transmission because unlike 

sexual transmission, the donor-recipient relationship is unambiguous and the 

timing of infection can be accurately determined without requiring prolonged 

monitoring of uninfected subjects needed in studies that enroll discordant 

couples.  Additionally, while various strategies can potentially decrease the rates 

of sexual transmission (83), it is currently not logistically feasible to provide 

effective means to decrease the rates of MTCT to all the infected mothers in 

parts of the world where they are most urgently needed.  A prophylactic vaccine 

remains the only viable approach for significantly reducing the rates of MTCT.  

Identification of the factors controlling the selective bottleneck during mucosal 

transmission may allow rational design of vaccines targeted to preferentially 

transmitted HIV-1 envelope variants.       

To investigate the genotypic and phenotypic correlates of HIV-1 MTCT, I 

generated two novel panels of HIV-1 env from the peripheral blood of subtype B 

and C infected mother-infant pairs.  Using multiple phylogeny analysis 

techniques I confirmed that all infants in this cohort were infected across a 

selective bottleneck.  I then analyzed the length, glycosylation, and co-receptor 

tropism of these clones and found that subtype C infant clones were shorter and 

less glycosylated than maternal.  I constructed pseudo and replication competent 
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viruses expressing these envelopes and determined their ability to infect and 

replicate in primary cells, finding that enhanced macrophage tropism did not 

correlate with transmission and that subtype B viruses exhibited very low levels 

of macrophage infectivity.  I investigated the ability of the env variants to utilize 

differing levels of CD4 and CCR5 for infection and found that the ability to utilize 

lower levels did not correlate with transmission.  I compared the sensitivity of 

pseudoviruses expressing maternal and infant envelope clones to neutralization 

by a panel of human neutralizing monoclonal antibodies (the binding epitopes of 

the four antibodies used are shown in Fig 1.3) and heterologous seropositive and 

autologous plasmas, and did not detect significant differences, which implies that 

neutralization resistance is unlikely to be a major factor controlling the selective 

bottleneck.  All clones were sensitive to the three HIV-1 entry inhibitors tested 

(the stages of HIV-1 entry blocked by these inhibitors are shown in Figure 1.3).  

Infant clone sensitivity to Maraviroc implies that this CCR5 antagonist will make a 

useful addition to the arsenal of HIV-1 MTCT prevention therapies.  Most 

interestingly, when I compared the entry kinetics of corresponding maternal and 

infant clones I found that peripartum transmitted infant env clones exhibited a 

faster entry phenotype than maternal.   

Together, the results presented in the body of this work provide a better 

understanding of the characteristics of transmitted variants and shed light on the 

factors controlling the selective bottleneck during vertical transmission of HIV-1, 

bringing us closer to the rational design of targeted vaccines.   
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CHAPTER II 

Materials and Methods 

Study populations   

Plasma samples were obtained from 5 HIV-1 subtype B infected women 

and their infants (Table 3.1).  Maternal samples were obtained at or within a 

month of delivery.  None of the infants were breastfed and all were infected 

during delivery, based on the absence of HIV-1 in cord blood or day of delivery 

samples (17).  Infant samples were obtained within nine weeks of delivery and 

represent the first time point at which HIV-1 was detected in the infants by viral 

isolation or the detection of nucleic acids.  All women provided individual 

informed consent according to guidelines of the Human Subjects Committee at 

the University of Massachusetts Medical School. 

PBMC samples were obtained from 5 HIV-1 subtype C infected women 

and their infants (Table 5.1).  Maternal samples were obtained at delivery.  Infant 

samples were obtained within six weeks of delivery and include both in-utero and 

peripartum transmission.  The Human Research Ethics Committee (Medical) at 

the University of the Witwatersrand, Johannesburg approved my use of these 

samples for the current study.  This study was exempt from review by the 

University of Massachusetts Medical School Committee for the Protection of 

Human Subjects in Research in accordance with federal regulation 

45CFR46.101 (b) (4).  

PCR amplification of envelope (gp160) clones  
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Viral RNA was extracted from 50 to 200µl of plasma using the Roche High 

Pure Viral RNA Kit (Roche Pharmaceuticals, Basel, Switzerland).  Eluted RNA 

was treated with 1µl of RNAsin Plus RNase inhibitor (Promega Biosciences, San 

Luis Obispo, CA), then aliquoted and stored at - 80°C.  As plasma was not 

available for subtype C patients, proviral DNA was extracted from 3x105 to 2x106 

PBMC using the DNeasy Blood & Tissue kit (Qiagen, Valencia, CA), then 

aliquoted and stored at - 80°C. 

Full length HIV-1 gp160 was amplified directly from the viral RNA or pro-

viral DNA by endpoint dilution nested RT-PCR or PCR.  The amplicons were 

approximately 2950 base pairs long (Table 2.1) and contained the 3rd and a 

portion of the 2nd exon of tat, a short piece of nef, and full length vpu and rev 

genes (Fig. 1.2B).  I did this because in cis expression of rev is vital to the 

efficient expression of env (unpublished observations).   

To identify the endpoint dilutions, RT-PCR was performed in octuplet on 

two fold serial dilutions of each viral RNA extract until a dilution where not more 

than three of eight wells showed product was reached.  For the subtype C panel 

generation a more stringent cutoff of not more than two of eight wells showing 

product was used in accordance with the Single Genome Amplification (SGA) 

protocol developed by Salazar-Gonzalez et al (168).   

Subtype B outer and inner primer pairs were the same as reported by Wei, 

et al (196) and are summarized in Table 2.1.  RT-PCR was performed using the 

Superscript One Step RT-PCR for Long Templates kit (Invitrogen Life  
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Table 2.1:  Primers used for gp160 amplification 

Name Purpose 
Binding 
locationf Sequence    

OSa B outer sense 5852-5876 TAG AGC CCT GGA AGC ATC CAG GAA G   

OAa B outer anti-sense 8912-8935 TTG CTA CTT GTG ATT GCT CCA TGT   

ISa B inner sense 5957-5982 

 
GAT CAA GCT TTA GGC ATC TCC TAT GGC AGG  
AAG AAG 

IAa B inner anti-sense 8881-8903 

 
AGC TGG ATC CGT CTC GAG ATA CTG CTC CCA  
CCC  

BOMc C outer sense 5852-5875 TAG AGC CCT GGA AYC ATC CAG GAA   
env Mb C outer anti-sense 9069-9096 TAG CCC TTC CAG TCC CCC CTT TTC TTT TA  
BIMd C inner sense 5954-5982 GGC TTA GGC ATT TCC TAT GGC AGG AAG AA  
OAa C inner anti-sense 8912-8935 TTG CTA CTT GTG ATT GCT CCA TGT   

OFM19e cDNA generation  9604-9632 GCA CTC AAG GCA AGC TTT ATT GAG GCT TA  
Vif1e SGA outer sense 4900-4923 GGG TTT ATT ACA GGG ACA GCA GAG   

OFM19e SGA outer anti-sense 9604-9632 GCA CTC AAG GCA AGC TTT ATT GAG GCT TA  
EnvAe SGA inner sense 5954-5982 GGC TTA GGC ATC TCC TAT GGC AGG AAG AA  
EnvNe SGA inner anti-sense 9145-9171 CTG CCA ATC AGG GAA GTA GCC TTG TGT 

aWei et al (195).  bGao et al (56).  cModification of OS. dModification of IS.  eSalazar-
Gonzalez et al (167).  Primer OFM19 used for cDNA generation and as SGA outer anti-
sense. fLocations are based on the HXB2 sequence.     
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Technologies, Carlsbad, CA).  Conditions for the outer PCR were as follows: 

45°C for 30 min, 94°C for 2 min, 40 cycles of 94°C for 15 sec, 52°C for 30 sec, 

68°C for 3 min, with a final extension at 72°C for 10 min.  Inner PCR was 

performed using the Platinum Taq DNA Polymerase HighFidelity kit 

(InvitrogenLife Technologies, Carlsbad, CA).  Conditions for the inner PCR were 

as follows: 94°C for 2 min, 40 cycles of 94°C for 15 sec, 55°C for 30 sec, 68°C 

for 3 min, with a final extension at 72°C for 10 min.  

Subtype C outer primer pair was env M (56) and BOM (TAG AGC CCT 

GGA AYC ATC CAG GAA) a modification of outer sense primer used by Wei, et 

al (196).  The inner pair was the outer anti-sense used by Wei, et al (196), and 

BIM (GGC TTA GGC ATT TCC TAT GGC AGG AAG AA) a modification of inner 

sense primer used by Wei, et al.  The sequences, purposes and binding 

locations of the primers are summarized in Table 2.1.  PCR was performed using 

the Platinum Taq DNA Polymerase HighFidelity kit (Invitrogen Life Technologies, 

Carlsbad, CA).  Conditions for the outer PCR were as follows: 94°C for 2 min, 35 

cycles of 94°C for 15 sec, 58°C for 30 sec, 68°C for 3 min, with a final extension 

at 72°C for 10 min.  Inner PCR conditions: 94°C for 2 min, 35 cycles of 94°C for 

15 sec, 52°C for 30 sec, 68°C for 3 min, with a final extension at 72°C for 10 min.   

The env amplicons were sub-cloned into the mammalian expression 

vector pcDNA3.1/V5-His TOPO TA (Invitrogen Life Technologies, Carlsbad, CA), 

using the manufacturer’s instructions.  Colonies containing full length inserts in 

the correct orientation were identified by a PCR screen using GoTaq Green 
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Master Mix (Promega Bioscienses, San Luis Obispo, CA) and the 5’ primer pair 

T7 and env-572 (TAG GCC AGT AGT ATC AAC TCA ACT) and the 3’ pair BGH 

and env-587 (AAT CTC CTA CAG TAT TGG AGT CAG) for subtype B, or env-

581 (CTC TGG AAA ACT CAT TTG CAC CAC) for subtype C.  Conditions for  

both reactions were as follows: 95°C for 5 min, 25 cycles of 95°C for 1 min, 50°C 

for 1min, 72°C for 1 min, with a final extension at 72°C for 5 min.   

Identification of functional clones 

The functionality of cloned env was determined using an adaptation of a 

cell-cell fusion assay (145).  293T cells (61) were seeded overnight into 24 well 

plates and the following morning transfected with plasmids containing the env 

clones.  Following an eight hour incubation, HeLa cells expressing high levels of 

CD4 and CCR5 (TZMBL (37)) were added to the 293T cell monolayers and 

incubated overnight.  Next morning the wells were scored for the presence of 

syncytia resulting from the interaction of functional env expressed by the 

transfected 293T cells with HIV-1 receptors and co-receptors on the TZMbl cells.  

10 to 20 functional env clones were obtained from most subjects, with each clone 

originating from an independent endpoint dilution PCR (Tables 3.1 and 5.1). 

Single genome amplification (SGA)   

SGA was performed as described by Salazar-Gonzalez et al (168).  

Briefly, viral RNA extracted as above was reverse transcribed to single-stranded 

cDNA using primer OFM19.  The cDNA was diluted in 96 well plates such that 

less than 30% of the reactions yielded amplified product.  Nested PCR was then 
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carried out using primers Vif1 and OFM19 for the outer step, and EnvA and EnvN 

for the inner.  The sequences, purposes and binding locations of the primers are 

summarized in Table 2.1.  All correctly sized products were purified and 

sequenced.  

DNA sequencing, phylogenetic analysis and clone selection   

The V1-V5 regions of subtype B and the gp120 of subtype C viable 

molecular env clones were sequenced using BigDye Terminator chemistry.  

Sequences were assembled using the Vector NTI software (Invitrogen Life 

Technologies, Carlsbad, CA).  Env sequences from each subject were aligned 

using ClustalW in the software package in BioEdit 

(www.mbio.ncsu.edu/BioEdit/BioEdit.html) and trees were constructed using the 

neighbor joining method (167) implemented in Mega (www.megasoftware.net)  

using Kimura’s correction (90) and 1000 iterations of Bootstrap analysis, and the 

maximum likelihood method with 500 iterations of Bootstrap analysis 

implemented in PhyML (www.hiv.lanl.gov).  Phylogeny was confirmed using the 

Highlighter software program (www.hiv.lanl.gov).  Potential N-Linked 

glycosylation sites (PNGS) were identified using the N-Glycosite program 

(www.hiv.lanl.gov).  Frequency of residues at a position was determined in the 

JProfileGrid application (www.profilegrid.org).  The V3 loop charge was 

determined by comparing the number of positively charged (Aspartic Acid and 

Glutamic Acid) to negatively charged (Lysine and Arginine) residues.       

http://www.mbio.ncsu.edu/BioEdit/BioEdit.html�
http://www.megasoftware.net/�
http://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter.html�
http://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter.html�
http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html�
http://www.profilegrid.org/�
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At least two infant and three to five maternal clones were selected from 

each transmission pair for in-depth analysis.  These included representative 

clones from each infant variant and at least three maternal variants chosen to 

sample the breadth of their quasispecies, with clones selected from branches 

both close to and distant from the infants.  Full-length gp160 sequences of both 

DNA strands were obtained for the selected clones.  Additional infant clones 

were sequenced as necessary to obtain a consensus transmitted sequence for 

each infant.   

Pseudovirus production and titration 

Pseudoviruses were made by co-transfecting exponentially dividing 293T 

cells with a 1:2 ratio of env and pSG3∆env backbone (NIH AIDS Research and 

Reference Reagent Program (195, 196)) using Polyethylenimine (PEI) 

(Polysciences, Warrington, PA) as the transfection reagent.  PEI is a highly 

efficient transfection reagent that does not require the addition of cell targeting or 

membrane-disruption agents (15).  It also forms a more stable interaction with 

DNA than calcium phosphate, resulting in higher transfection efficiency.   

Pseudoviral titers were determined using single round infection of TZMbl 

cells (aka JC53BL (37)) essentially as described (128) except that β-

galactosidase staining rather than luminescence was used as the readout.  To 

use this readout, following the final 24-hour incubation step, the plates were fixed 

with ice-cold gluteraldehyde, washed with PBS and developed with X-gal in 

yellow PBS.  Blue stained cells and cell-clusters were enumerated mechanically 
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on an ELISPOT reader using the Immunospot 4.0.16 software (Cellular 

Technologies, Ltd., Cleveland, OH).  Titrations were performed at least twice for 

each pseudovirus and the titers expressed as spot forming units per ml (sfu/ml).  

Unless otherwise indicated, all experiments were carried out using these 

pseudoviruses, with 200 sfu as the inoculum dose. 

Construction of replication competent fluorescently tagged HIV-1  

 A fluorescently tagged, replication competent HIV-1 backbone was 

obtained from Dr. Matthias Dittmar (Centre for Infectious Disease, Institute of Cell 

and Molecular Science, Barts and The London School of Medicine and 

Dentistry).  Plasmids encoding selected infant and maternal envs in this 

backbone were generated as described (135).  Briefly, I used the plasmid 

TN6G∆, which encodes the full length NL4.3 HIV-1 clone with the nef gene 

replaced by EGFP, and has unique restriction sites (BstEII and NcoI) in the env 

gene available for inserting heterologous envs.  The complementary restriction 

sites were introduced into selected infant and maternal env clones and used for 

directional sub-cloning into TN6G∆.  Live, fluorescently tagged virus was 

produced using essentially the same protocol as for the pseudovirus described 

above. 

Cell line, macrophage and peripheral blood lymphocytes titration and 

infection 

Receptor and co-receptor requirements of pseudoviruses were 

determined by titration on HeLa cells engineered to express various levels of the 
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CD4 receptor and CCR5 and CXCR4 co-receptors (151).  Titrations were 

performed as described (145) utilizing anti-p24 immunostaining as the infectivity 

readout.  To determine macrophage infectivity, elutriated monocytes (obtained 

from the Molecular Virology Core of UMass CFAR) were re-suspended in 

medium containing macrophage colony stimulating factor and cultured for seven 

days before use for pseudoviral infections essentially as described (145).  Each 

pseudovirus was tested in duplicate in 3 independent assays.  To normalize 

between different pseudoviral preparations, all titers were expressed as a ratio of 

the titer on the cell line or macrophage culture divided by the titer on TZMbl cells. 

For infection of peripheral blood lymphocytes (PBLs), fresh PBLs were 

maintained in RPMI 1640 medium supplemented with 10% FBS, stimulated with 

phytohemagglutinin (5µg/ml) for 2 days and interleukin-2 (10U/ml) for a further 2 

days prior to infection.  Infections with live virus (consisting of my env sub-cloned 

into TN6G∆) were performed at an MOI of 0.01 or 0.001 as indicated (based on 

TZMbl or PBL titers as appropriate) and carried for seven days before being read 

for HIV-1 positive cells by anti-p24 immunostaining. 

Neutralization assays 

Neutralization assays using human monoclonal antibodies, pooled HIV-1 

positive patient plasma, autologous maternal plasma, or entry inhibitors were 

performed as previously described (109, 110, 117, 128, 176) using 200 sfu of 

pseudovirus to infect TZMbl cells and measuring residual infection using the β-

galactosidase readout.  To determine the activity of CCR5 antagonists, the assay 
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was modified such that cell monolayers were incubated with serial dilutions of the 

inhibitors for one hour before the addition of virus.  Following the addition of 

virus, plates were incubated overnight and the media was replaced with fresh un-

supplemented media.  Pseudoviral stocks expressing well-characterized env 

from the NIH AIDS Research and Reference Reagent Program Standard 

Reference Panels of Subtype B or C HIV-1 Env Clones (109, 110, 117, 128, 176) 

were used in every experiment and showed low intra-assay variation and values 

similar to those reported (109, 110) (Fig 4.4).  Monoclonal neutralizing Abs 

(NAbs) b12, 2G12, 4E5 and 2F5 were obtained from the NIH AIDS Research and 

Reference Reagent Program; an additional aliquot of b12 was generously 

provided by Dr. Dennis Burton of The Scripps Research Institute.  The maximum 

b12 and 2G12 antibody concentration used in neutralization assays was 20µg/ml, 

while 4E10 and 2F5 were used at 50µg/ml in subtype B neutralization assays 

and at 20µg/ml in subtype C assays.  HIV-1 entry inhibitors soluble CD4 (sCD4, 

Progenics Pharmaceuticals, Tarrytown, NY), Enfuvirtide (T20, generously 

provided by Roche, Palo Alto, CA), and Maraviroc (obtained through the NIH 

AIDS Research and Reference Reagent Program) were also evaluated in these 

assays.  All plasma was heat inactivated at 56°C for 30 minutes before use.  

Sero-negative plasma was used as a negative control and showed no 

neutralization activity at a 1:15 dilution.  Pseudovirus expressing murine leukemia 

virus (MLV) env was used as a non-specific neutralization control (152, 186) and 

generally failed to be inhibited by the highest concentration of plasma used.  
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Autologous maternal plasmas exhibited significant levels of non-specific activity.  

Therefore the autologous neutralization assays were performed using purified 

Immunoglobulin G.   

For all antibodies and inhibitors, the 50% inhibitory concentration (IC50) 

relative to untreated control infections was determined by subtracting the 

background foci counts of un-infected wells from both the averaged counts of 

triplicate antibody dilution wells and the averaged counts from octuplet cell-only 

and uninhibited-virus control wells.  Percentage inhibition values were then 

calculated using the formula: 
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 Graphs were prepared by plotting log10 Antibody Concentration vs. 

Percentage Inhibition for each antibody/virus combination using the sigmoid fit 

function of the OriginPro 7.5 SRO v7 software package (139).  EC50 values 

calculated by the OriginPro software were used as final IC50 determinations. 

Autologous neutralization using purified Immunoglobulin G 

Immunoglobulin G (IgG) was purified from plasmas showing high non-

specific activity using the NAb Protein Spin Kit (Thermo Scientific, Rockford, IL) 

according to the manufacturer’s protocol.  Elution fractions one and two were 

pooled and dialyzed in culture media using the Slide-A-Lyzer Dialysis Kit, 10K 

MWCO (Pierce Biotechnology, Rockford, IL).  The amount of IgG in the dialyzed 

extracts and the original maternal plasma was quantified using the Human IgG 



31 

ELISA Kit (ZeptoMetrix Corporation, Baffalo, NY).  Autologous neutralizations 

were set up at an initial IgG concentration of 0.5mg/ml.    

Measuring entry by determining the ratio of viral titers at 24 and 48 hours 

TZMbl titrations of pseudoviruses expressing env clones comprising a 

mother-infant pair were set up in duplicate plates.  The plates were developed at 

24 and 48 hours post-infection using the β-galactosidase readout and counted on 

an automated ELISPOT reader.  The natural log of the difference between the 24 

and 48-hour titers was determined for each clone.  

Measuring T20 escape kinetics 

This assay was used to examine the entire entry process.  To preserve 

possible differences in rates of entry due to variability in the interactions of the 

env with receptors and co-receptors virus was not pre-bound to the cells.  TZMbl 

monolayers were pre-seeded overnight in 96 well plates.  Next morning the 

culture medium was removed and monolayers were infected with 200 sfu of 

pseudovirus.  At 30 minutes post infection a set of triplicate wells received 50µl of 

20µg/ml T20 fusion inhibitor and was incubated for a further 48 hours.  Similarly, 

additional triplicate wells were treated with T20 at 60, 90, 120 and 240 minutes.  

Infections were allowed to continue un-inhibited in two additional wells per time 

point to serve as maximal infection controls.  Care was taken to maintain 37°C 

throughout the assay so as to avoid any inhibitions due to temperature 

fluctuation.  The plates were developed using the β-galactosidase readout.  For 
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each virus the percentage of the mean of each test triplicate relative to the mean 

of the untreated control from the same time point was calculated. 

Measuring HIV-1 entry in PBL 

Clones from mother-infant pairs M1003-P1189, M1002-P1031 and 

M1001-P1024, where transmission occurred in the absence of anti-retroviral 

therapy (Table 3.1), were selected for further analysis of their entry phenotype.  I 

examined all infant clones from P1189 and P1024, and one clone from each 

variant of P1031.  From each of these pairs, I chose the maternal clone with the 

highest and lowest 24 to 48-hour titer ratio.  Pseudoviral stocks expressing these 

clones were treated with deoxyribonuclease I to remove carryover plasmid DNA 

from the transfection process, aliquoted and frozen.  Because subsequent 

infections were performed in PBL instead of TZMbl, the reverse transcription 

(RT) activity of the treated viral aliquots in counts per minute (CPM) was 

determined using an exogenous RT assay and used to calculate the viral dose.   

1x105 PBL stimulated with phytohemagglutinin and interleukin-2 as above, 

were infected with 1x106 CPM of pseudovirus in a total volume of 100µl of ice-

cold culture media supplemented with 30µg/ml DEAE-Dextran (Sigma-Aldrich, 

St. Louis, Missouri).  The virus was pre-bound to the cells by centrifugation at 

2,500 RPM for 90 minutes at 4°C.  Unbound virus was then removed, the cells 

washed in ice-cold media, infection synchronized by addition 100µl of 37°C 

culture media and the plates put into a 37°C incubator.  At desired time points, 

infected cells were removed from the wells, lysed, and total DNA extracted using 
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the DNAzol reagent (Invitrogen, Carlsbad, California) according to the 

manufacturer’s instructions. 

To compare rates of entry the number of copies of the HIV-1 negative 

strand strong stop (NSSS) cDNA in 5µl of extracted DNA was quantified by 

TaqMan real time PCR.  NSSS is the earliest HIV-1 reverse transcription product.  

An overview of HIV-1 reverse transcription and the locations of the primers and 

probe for detecting the NSSS are show in Figure 2.1.  NSSS was amplified using 

HIV-1 LTR specific primers C1/f (TAG ACC AGA TCT GAG CCT GGG A) and 

AA55 (CTG CTA GAG ATT TTC CAC ACT GAC).  Amplification was performed 

in 20µl reactions containing 10µl TaqMan Fast Universal PCR Mix (2X) No  

AmpErase UNG (Applied Biosystems, Foster City, CA), 20µM primer mix, 100µM 

fluorogenic probe 2nr4nr (5’ 6-FAM 3’ TAMRA, AGC CTC AAT AAA GCT TGC 

CTT GAG TGC) and 5µl of cellular DNA extract.  The reactions were conducted 

using the 7500 Fast Real Time PCR System (Applied Biosystems, Foster City, 

CA) (provided as a service by the Molecular Biology Core of UMass CFAR), 

utilizing the default cycling parameters of 95°C for 20 sec followed by 45 cycles 

95°C for 3 sec and 60°C for 30 sec.  Samples were run in duplicate and 

concurrently run CCR5 housekeeping gene values were used to normalize 

between extractions.  For each viral stock tested, background levels were 

determined in parallel infection with heat-inactivated virus and subtracted from 

the live infection signal. 

Statistical analyses   
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C1/f AA55

Fig  2.1:  Detection of very early HIV-1 reverse transcription 
products.  A simplified schematic of HIV-1 reverse transcription.  
Green line = viral RNA.  Green triangle = primer binding site for 
cellular tRNA.  Red line = negative strand strong stop cDNA.  Purple 
line = cDNA.  Dashed green line represents degradation of the RNA 
strand of the RNA:DNA duplex.  Binding locations of the primers and 
probe designed to detect the negative strand strong stop cDNA are 
indicated by black arrows and a black line respectively.

Viral RNA

Negative strand priming elongation generates 
negative strand strong stop DNA. 

Template switch and negative strand elongation 

Template switch and positive strand elongation 

Linear cDNA
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Pairwise differences between maternal and infant values were evaluated 

using the Mixed Model ANOVA (177) with mother-infant pairs included as 

random effects.  The analyses were performed using the Proc Mixed procedure 

(171) in the SAS statistical Software package (SAS Inc, NC, USA).  The ratios of  

24 to 48 hour titers did not follow a Gaussian distribution.  Therefore, for 

statistical analysis, I log transformed the data for better conformation to 

normality.   

To analyze T20 escape kinetics, curves characterizing the viral titer as a 

function of time were developed by fitting second order polynomial regressions 

using General Linear Mixed Models (121), and pairwise comparisons of infant 

and maternal slopes were performed using Mixed Model ANOVA with mother-

infant pairs included as random effects.  Goodness of fit for the models was 

evaluated using the deviance (-2 times log likelihood of the model).  Differences 

in model parameters between generations were evaluated using the pseudo F 

tests for the model term.  The distributional characteristics of the outcome 

(percent infected) were evaluated two ways, graphically by visual inspection of 

frequency histograms and by the Kolmogorov-Smirnov goodness of fit test for 

normality (32), both using residuals from fitted models.   

Significance was reported when p ≤ 0.05. 

Nucleotide sequence accession numbers   

Nucleotide sequences of gp160 clones are available under GenBank 

accession numbers HM368224 - HM368258 for the subtype B panel. 
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CHAPTER III 

Subtype B cohort and genotype analysis  

Introduction 

 Studies in multiple cohorts, across several subtypes, have demonstrated 

that a marked restriction in the diversity of founder viruses in blood and plasma 

occurs during mucosal HIV-1 transmission across both sexual (87, 168) and 

vertical (2, 40, 202) routes.  This restricted diversity suggests either the 

transmission or post-transmission amplification of a single donor variant in the 

majority of recipients (2, 40, 67, 204).  Identification of properties shared by 

mucosally transmitted viral variants may guide the development of improved 

methods to prevent transmission of HIV-1.   

 While the mucosal sites of initial viral replication are not easily accessible, 

early infection of CD4+ T cells and rapid systemic dissemination of the virus 

allows identification of founder viruses using blood samples (58, 87, 168).  In this 

chapter, I describe a cohort of subtype B infected mother-infant pairs from whose 

peripheral blood I generated a panel of vertically transmitted and non-transmitted 

full-length env clones.   In order to test the hypothesis that transmission of viral 

variants is not simply a random or stochastic process, but is driven by viral 

envelope properties that affect neutralization sensitivity, cellular tropism and viral 

entry kinetics, I examine the genotypes and phylogeny of this panel, and select a 

subset of representative env clones for expression on pseudotyped and live 

viruses.  
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I found that the infant quasispecies were more homogeneous than 

maternal and genetically most similar to minor variants of the maternal blood 

quasispecies, suggesting they were indeed transmitted across a selective 

bottleneck.  In the following chapter I describe my extensive characterization of 

the phenotypes of the selected clones and identify functional correlates of HIV-1 

subtype B vertical transmission. 
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Results 

Envelope panel generation 

To begin investigating the mechanisms influencing viral variant selection 

during MTCT, I amplified full-length env genes from the plasma RNA samples of 

mothers who transmitted HIV-1 to their infants.  Infant samples were collected 

within two months and maternal samples within one month of transmission 

(Table 3.1).  I generated at least ten functional env clones from each infant and a 

minimum of twelve from each mother.  Figure 3.1 provides a flow chart overview 

of how the panel of env clones was generated.  Each clone was obtained from an 

independent, limiting dilution RT-PCR reaction (Fig 3.2), transformed into a 

mammalian expression vector and colonies containing full length inserts in the 

correct orientation indentified by a PCR screen (Fig 3.3).  

Development of a viability screening assay 

To facilitate testing the env clones for functionality, I developed a high-

throughput screen by adapting the cell-cell fusion assay used by Peters et al 

(145).  In this assay, transfection of 293T cells with functional env clones results 

in formation of distinct syncytia after TZMbl cells are added to the 293T cell 

cultures.  Figure 3.4 shows representative wells 18 hours after the addition of 

TZMbl cells to mock transfected 293T cells (Fig 3.4A and C) and to 293T cells 

transfected with a functional env (Fig 3.4B and D).  This assay can screen up to 

48 env clones with less than three hours of total setup time, eliminating non-

functional clones prior to sequencing.  Over 87% of clones tested proved viable. 
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Table 3.1: Subtype B cohort summary 

Subjecta Sample 
Timingb 

Plasma 
Viral Load 
(copies/ml) 

CD4 CD8 CD4:CD8 
No. of 
env 

clones 

No. of 
pseudo 
viruses 

ART 
status 

M1003 0 14,158 466 932 0.50 12 4 None 
P1189 31 311,538 2872 1975 1.45 10 2 None 
M1002 28 ND 872 1225 0.71 25 5 None 

P1031 54 685,169 2147 927 2.32 11 3 None 

M1001 2 26,000 534 726 0.74 19 4 None 

P1024 51 750,000 3312 4504 0.74 11 2 None 

M1007 -8 ND 870 1176 0.74 22 4 ZDV 

P1046 66 1,229,730 2573 1693 1.52 22 4 ZDV 

M1006 -33 260,541 134 403 0.33 20 5 ZDV 

P1049 30 647,919 ND ND ND 10 2 ZDV 
aM, Mother; P, Infant.  ZVD, Zidovudine.  ND, No data.  bTiming of samples used for 
cloning in days after delivery; negative numbers indicate days before delivery. 
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Plasma RNA extraction  

Envelope amplification at endpoint dilution (Fig 3.2) 

Transformation of purified amplicons into the 
3.1 TOPO TA mammalian expression vector

PCR screen to identify full length inserts in 
correct orientation (Fig 3.3)

Identification of functional env clones (Fig 3.4)

Sequencing through the V1-V5 region (Fig 3.5A)

Phylogeny analysis to select representative 
clones (Fig 3.6)

Full length gp160 sequencing of 
representative clones (Fig 3.5B)

Expression of representative clones on 
pseudoviruses (Fig 4.1)

Fig 3.1:  Flow chart of env clone panel generation.  
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1:2, 88% 1:4, 88% 1:8, 63% 1:16, 63% 1:32, 38% 1:64, 0%

Fig 3.2:  Determination of endpoint dilution.  A representative gel of the 
inner products of nested RT-PCR run in octuplet on serial two fold 
dilutions of plasma RNA.  Triangles indicate one kilobase ladders, arrow 
indicates expected location of 3 kilobase gp160 products.  Octuplets are 
separated by white lines, with the template dilution and percent of 
successful amplifications given below.  Endpoint dilutions are those at 
which not more than three of eight wells show product.  In the above gel 
a 1:32 dilution achieved the endpoint.  
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Fig 3.3: Screening transformed colonies for full length inserts in correct 
orientation by PCR.  Each column is an individual colony from a 
transformation plate.  Triangle indicates one kilobase ladder.  Upper arrow 
indicates expected size of product from a reaction utilizing a forward 
primer binding in the vector and a reverse primer in the insert.  Lower 
arrow indicates expected size of product from a reaction utilizing a 
reverse primer binding in the vector and a forward primer in the insert.  
Products in both the upper and lower rows indicate that a full-length insert 
in the correct orientation is present in that colony.  
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A B

Fig 3.4: Functionality of env clones was determined using cell-cell fusion 
as the readout.  HeLa cells expressing high levels of CD4 and CCR5 were 
added to monolayers of 293T cells mock-transfected (A, C) or transfected 
with functional env (B, D). Wells in (C) and (D) were stained to enhance 
the appearance of syncytia. 

C D
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Clone sequencing and phylogeny analysis   

Utilizing the above assay, I identified 162 functional maternal and infant 

env clones.  I sequenced these clones from the start of the first to the end of the 

fifth variable loop (V1-V5), thus encompassing most of the expected diversity of 

the clones and constructed a neighbor-joining tree based on their alignment (Fig 

3.5A).  For one patient (P1031) three clones were sequenced through V1-V3 only 

and are not included in the tree.  The resulting tree revealed clear 

epidemiological linkages within each mother-infant pair, with no evidence of 

cross-pair or other contamination.  Comparison to subtype reference sequences 

(Fig 3.5A) confirmed that all subjects were infected with subtype B. 

To determine why some full-length clones were non-functional, I 

determined the V1-V5 sequences of 14 env clones that failed to induce syncytia 

during viability screening.  Five of these clones exhibited mutations within V1-V5 

consistent with loss of function.  Two clones exhibited deletions of over 200 

nucleotides, both resulting in a frame shift.  A third clone exhibited a similarly 

large deletion with no frame shift.  Two other clones were non-viable due to 

single nucleotide insertions causing frame shifts.  The V1-V5 region spans 

approximately 1/3 of the HIV-1 gp160.  Provided that deleterious mutations occur 

randomly throughout the env, approximately 1/3 of the non-viable clones 

examined would be expected to exhibit such mutations within V1-V5, as was the 

case. 
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Fig 3.5: Evolutionary relationships of HIV-1 env
clones.  (A) V1-V5 nucleotide sequences of 
cloned env and subtype reference sequences.  
▲= infant, O = maternal sequence.  (B) Full 
length HIV-1 env nucleotide sequences.  M = 
maternal, P = infant.  Evolutionary history was 
inferred using the Neighbor-Joining method.  The 
percentage of replicate trees in which the 
associated sequences clustered together >70% of 
the time in the bootstrap test (1000 replicates) are 
shown to the left of branches in (B).  The 
evolutionary distances were computed using the 
Kimura 2-parameter method.  All positions 
containing gaps and missing data were eliminated 
from the dataset.  Horizontal scale bars represent 
(A) 5%, or (B) 1% genetic distance.
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The phylogeny of each mother-infant pair was extensively analyzed and 

the information used to determine the number of maternal variants transmitted to 

the infants and to select representative clones for phenotype analysis.  Single 

maternal variants were transmitted to infants P1189, P1049 and P1046, two 

variants to infant P1031 and two or three to infant P1024 (Fig 3.5A).  Of the three 

variants detected in P1024, two arose from very closely related viruses, or 

through post-transmission diversification (Fig 3.6A and B).  From each of the two 

distantly related infant variants a clone was selected for in-depth analysis (Fig 

3.6A).  The four maternal clones selected for phenotypic analysis from M1001 

were chosen to sample the breadth of the subject’s quasispecies, with two clones 

taken from variants similar to those found in the infant and two from more 

distantly related variants (Fig 3.6A and C).  

Following this criteria, at least two infant and four maternal clones were 

selected from each pair.  A total of 35 env clones were chosen for in-depth 

analysis.  Full-length envelope sequences were obtained for the selected clones 

(Fig 3.5B).  Additional sequences were obtained as necessary to determine the 

consensus gp160 sequence for each infant.  The consensus sequence of clones 

amplified shortly following transmission from a subject infected with a single 

donor variant represents the sequence of the transmitted virus (67).  Of the 13 

infant clones selected, four were identical to their infant’s gp160 consensus.  

Eight clones differed from the consensus by two amino acids or less, one differed  
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Fig 3.6: Evolutionary relationship 
of HIV-1 env clones from subjects 
M1001 and P1024.  (A) Gap 
stripped maximum likelihood tree of 
V1-V5 nucleotide sequences.  (B) 
Highlighter alignment of P1024 
non-gap-striped V1-V5 nucleotide 
sequences.  Sequences belonging 
to the same variant are indicated 
by colored arrows.  Pink and blue 
variants arose from transmission of 
two very closely related maternal 
viruses, or by post-transmission 
diversification.  The brown variant 
arose from transmission of a 
distinct maternal virus.  (C)
Maternal non-gap striped V1-V5 
amino-acid sequences aligned to 
infant consensus.  Green bar = 
silent mutation, red = non-silent, 
grey = deletion.  Clones selected 
for phenotypic analysis are circled 
in blue.

gapsGCAT
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by three, and one (P1024 H2) differed by six.  Thus the selected infant clones 

were very similar or identical to the presumed sequence of the maternal 

transmitted variant.   

The relationship between maternal and infant quasispecies was further 

analyzed utilizing an adaptation of the algorithm described by Haaland et al (67).  

The number of amino acids differing between each infant V1-V5 sequence and 

the most closely related maternal sequence were determined, as were the 

number of maternal sequences differing from an infant variant by less than three 

amino acids in V1-V5 (Table 3.2).  A maternal sequence differing from an infant 

variant by less than three amino acids likely gave rise to that variant.  If such 

sequences represent less than 5% of the maternal quasispecies, a minor 

maternal variant was likely transmitted to the infant (67).  Infant P1024 was 

apparently infected with two or three minor variants of the maternal quasispecies, 

infant P1049 with a single major variant, infant P1031 with two minor variants, 

while infants P1189 and P1046 each received a single minor variant.  The infant 

quasispecies were more homogeneous than maternal, with the mean diversity, 

measured by number of base substitutions per site within each subject ranging 

from 0.1 to 0.3% among infants and 0.6 to 4.6% among mothers (Fig 3.7). 

 I compared maternal gp160 sequences to their infant’s consensus to 

determine how closely clones selected for their similarity to infant env 

approached the transmitted sequence.  Clones most closely related to the infants 

were; M1003 P16 which differed from the infant consensus by three amino acids,  
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Table 3.2: Relationship of maternal and infant V1- V5 sequences 
Infant Sequences 

analyzeda Differencesb Less than 3 
differencesc 

Variant 
transmitted 

P1189 12 1 1 Minor 

P1031 25 
3 0 Minor 

11 0 Minor 

P1024 19 

5 0 Minor 

3 0 Minor 

3 0 Minor 

P1046 22 1 1 Minor 

P1049 20 2 4 Major 
aNumber of maternal sequences analyzed. 
bNumber of amino acids that differ between an infant variant consensus sequence 
and the most closely related maternal sequence. 
cNumber of maternal sequences differing from the infant variant consensus by less 
than 3 amino acids. 
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Fig 3.7: Infant quasispecies are more 
homogeneous than maternal.  The percent 
of base substitutions per site over the V1-
V5 region for each subject was computed 
using the Kimura 2-parameter method in 
the MEGA4 software program.
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M1001 J7 which differed by four amino acids, M1007 T1 which differed by three 

amino acids, M1006 X1 which differed by three amino acids, and M1002 J4 

which differed by 15 amino acids.  This list excludes silent mutations.  No 

maternal sequence was identical to the consensus of an infant variant.  I also 

compared each maternal sequence to each sequence amplified from her infant.  I 

did not detect any maternal sequence identical to any infant sequence.   

Single Genome Amplification (SGA) 

SGA is becoming the standard for quasispecies analysis in HIV-1 infected 

subjects (168).  This technique differs from endpoint dilution in that amplicons are 

directly sequenced without first being cloned into bacteria.  This avoids 

occasional point mutations that may arise due to the relatively low fidelity of 

bacterial Taq.  SGA thus results in a slightly more accurate representation of a 

subject’s quasispecies than endpoint dilution.  However, as un-transformed env 

can’t be tested for functionality, numerous non-viable clones are sequenced 

when SGA is utilized.  Further, if SGA generated clones are to be used in 

phenotypic assays, they must be transformed into bacteria and re-sequenced to 

confirm that they are identical to the original sequences.  Thus, there are more 

practical limitations to large-scale SGA as compared to endpoint dilution when 

generating clone panels for functional assays.  To compare the accuracy of these 

two techniques, for two randomly selected infants (P1189 and P1049) 10 to 20 

additional clones were amplified using SGA.  When the consensus gp160 

sequences generated by SGA were compared to those obtained by endpoint  
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A

B Fig 3.8: Comparison of 
gp160 nucleotide 
sequences obtained by 
endpoint dilution and 
SGA.  All gp160 
sequences obtained for 
infants (A) P1189 and (B) 
P1049 were aligned 
against their respective 
SGA consensus 
sequences.  Sequences 
obtained by SGA are 
named SGA_#.  Color 
bars indicate differences 
from consensus.  
A:Green, T:Red, 
G:Orange, C:Light blue, 
Gaps:Grey. 
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dilution PCR they proved identical (Fig 3.8).  

V1-V5 length and glycosylation 

Changes in envelope length and glycosylation levels are reported to 

correlate with mucosal transmission of some subtypes of HIV-1 (25, 166, 204).  I 

did not find such correlations in my panel.  In pairs M1001-P1024 and M1007-

P1046 the median V1-V5 length of infant sequences was greater than maternal, 

while in pairs M1002-P1031, M1006-P1049 and M1003-P1189 the medians were 

similar (Table 3.3).  The median number of V1-V5 PNGS was smaller in the 

infant sequences than in the maternal in pair M1002-P1031, greater in pair 

M1001-P1024, and equal in pairs M1007-P1046, M1006-P1049 and M1003-

P1189 (Table 3.3). 

Co-receptor tropism   

The V3 loop charge and glycosylation are predictive of co-receptor tropism 

(12, 27).  Examination of these factors did not reveal any CXCR4 tropic variants 

in my panel and only one mother (M1006) was predicted to harbor CCR5/CXCR4 

dual tropic variants.  Only CCR5 (R5) tropic maternal variants were transmitted to 

the infants (Table 3.3).  In vitro co-receptor tropism analysis, using the HIJ HeLa 

cell line which expresses CD4 and CXCR4 but no CCR5 (151), confirmed these 

predictions (Table 3.3). 

Search for genotypic correlates of transmission 

I next examined both the V1-V5 and full-length gp160 sequence 

alignments of clones from each mother-infant pair for genetic correlates of  
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Table 3.3:  Genotypic analyses of V1-V5 sequences 
Subjecta V1-V5 

lengthb 
V1-V5 
PNGSc 

V3  
charge 

V3  
glycan 

V3 crown 
motifd 

Tropisme 

M1003 335 24(23-25) +3 Yes APGR CCR5 
P1189 335 25(25-25) +3 Yes APGR CCR5 
M1002 329(329-333) 21(20-24) +3 Yes GPGR CCR5 
P1031 329(329-330) 19(19-20) +3 Yes GPGR CCR5 
M1001 345(342-347) 23(22-25) +2 Yes GPGG, GPGR CCR5 
P1024 346(345-346) 24(23-24) +2 Yes GPGR CCR5 
M1007 328(328-335) 23(22-24) +4 Yes GPGR CCR5 
P1046 335 23(21-23) +4 Yes GPGR CCR5 
M1006 332(320-349) 24(17-26) +3 +4 +5 Yes, No QPGR, QPGG CCR5, CCR5/CXCR4 
P1049 332 24(24-24) +3 Yes QPGR CCR5 

aM, Mother; P, Infant.  bMedian length of the env V1-V5 region as median (min-max).  
cMedian number of potential N-linked glycosylation sites in the V1-V5 region as median 
(min-max).  dDominant variant presented first.  eTropism determined in-vitro. 
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transmission.  I performed the comparisons both visually using Highlighter and 

statistically, comparing the frequencies of amino acids expressed at each 

position.  Within each transmission pair, I found mutations unique to the infants.  

However, these differences appeared subject specific as other infants did not 

exhibit similar mutations at the same positions.  A search of the Los Alamos HIV-

1 sequence database failed to find enrichment for these mutations among 

recently infected infants from other mother-infant cohorts.  These mutations were 

also not detected in my subtype C mother-infant cohort described in chapter V.   
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Discussion 

Studies in multiple cohorts, across several subtypes and routes of 

transmission have reported a marked restriction in the diversity of founder 

viruses following mucosal HIV-1 infection (1, 40, 58, 87, 168, 202, 204, 206).  

This restricted diversity suggests either the transmission or post-transmission 

amplification of a single donor variant in the majority of recipients (2).  It is widely 

suggested that this genetic bottleneck is due to active selection, including both 

virus specific factors (95, 202, 204) and host immune responses (39), although 

purely stochastic transmission has also been reported (22, 187).  If the genetic 

bottleneck is indeed selective, identification of the mechanisms underlying the 

selection could inform design of therapies for blocking mucosal transmission of 

HIV-1.  

In agreement with most previous studies, I determined that a genetic 

bottleneck occurred during MTCT of HIV-1 in my cohort.  Phylogenetic analyses 

of V1-V5 sequences from 162 full-length viable env clones amplified from 5 

mother-infant pairs showed that infant quasispecies were more homogeneous 

than maternal.  The highest sequence diversity seen in the infants, 0.3%, fits well 

with the model of Keele et al (87), which indicates that the maximum diversity 

expected within an individual shortly after infection with a single virus is 0.6%.  

Indeed, three of five infants were likely infected with single variants of the 

maternal blood quasispecies and one with two maternal variants.  The final infant 

harbored three variants of which two were very closely related.  These closely 
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related variants could have arisen through post-transmission diversification 

following a single transmission event.   

To investigate whether the genetic bottleneck was selective, I determined 

what portion of each maternal quasispecies was closely related to the V1-V5 

consensus of each variant identified in her infant.  As, on average, I amplified 20 

maternal env clones from each transmission pair, a unique maternal sequence 

represent approximately 5% of the maternal quasispecies.  Thus, if 20 unique 

maternal sequences are amplified, stochastically each represents a major variant 

of an extremely diverse quasispecies.  Of the seven or eight infant variants 

identified in my cohort, one was very similar to four identical maternal sequences, 

and thus likely arose from the transmission of that major maternal variant.  The 

remaining infant variants were not closely related to any of, on average, 13 

(range 8 to 16) unique variants identified in the corresponding mothers, and thus 

likely arose through the transmission of minor variants of the maternal 

quasispecies.  This enrichment for infant sequences different from those most 

prevalent in mother is unlikely to be due simply to a random, stochastic process.  

My data are therefore in agreement with studies reporting a selective bottleneck 

during MTCT of HIV-1 (40, 92, 202).  

A limitation of this analysis is that half or more of each maternal 

quasispecies consisted of unique sequences and that generally identical 

sequences are not detected in a mother and her infant.  This is most likely due to 

the breadth of maternal quasispecies and can only be addressed by greatly 
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increased sampling.  However, the generation and Sangar sequencing of 

sufficient clones to fully characterize the quasispecies of a chronically infected 

subject is not practical.  More accurate exploration of the relationships between 

maternal and infant quasispecies will require Deep Sequencing approaches.  

To investigate the viral envelope properties underlying this phenomenon, I 

selected 35 representative clones and further examined their genotypes.  I did 

not identify any maternal gp160 sequence that was identical to any amplified 

from the corresponding infant’s quasispecies, nor to that infant’s consensus.  The 

most closely related maternal sequences differed from the infant consensus by at 

least 3 non-silent mutations.  In this work, I looked for env dependent correlates 

of viral variant selection during MTCT.  There are several reports of single amino 

acid changes in env sequences causing considerable phenotypic differences.  

These include the correlation of asparagine at 283 with enhanced macrophage 

tropism (41, 43, 148) and the natural polymorphism F673L providing intrinsic 

resistance to neutralization by the monoclonal NAb 4E10 (62, 133).  Additionally, 

linear sequences may not be predictive of the env conformation.  As no maternal 

gp160 sequence was identical to her infant’s consensus, I did not consider any to 

be representative of the transmitted virus.  Therefore, both in this and all 

subsequent chapters I compare infant and maternal genotypes and phenotypes 

without further segregating the maternal clones into those that are closely and 

distantly related to the infants’.   
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 Several groups have reported selection for shorter, less glycosylated env 

during mucosal transmission of non-B HIV-1 subtypes (25, 166, 204).  

Phylogenetic analysis determined that all subjects in my cohort were infected 

with subtype B, the dominant subtype in the USA (74), where my subjects were 

recruited.  In agreement with a previous report (74) my data indicate that env 

length and glycosylation heterogeneity do not play a major role in viral variant 

selection during mucosal transmission of HIV-1subtype B.   

The great majority of env sampled shortly following mucosal transmission 

exclusively utilize the CCR5 co-receptor for entry (8, 35, 174).  My finding that all 

infant clones in my panel exhibited CCR5 tropism is in agreement with co-

receptor tropism being a selective factor during MTCT.  I performed exhaustive 

comparisons of my maternal and infant sequences for additional genetic 

correlates of selection during MTCT.  Within each mother-infant pair, I found 

numerous positions at which all infant clones differed from the majority, or often 

all, of the maternal sequences, but these mutations were subject specific.  Aside 

from enrichment for CCR5 tropism, genotypic correlates of selection during 

subtype B MTCT have not been reported.   

To confirm the accuracy of the infant consensus sequences, which, when 

sampled shortly following transmission, represent the sequence of the 

transmitter-founder virus (67), SGA was performed on two randomly selected 

infants.  Using SGA, I amplified at least 10 clones de novo from each infant and 

found that the consensus gp160 SGA and endpoint dilution generated 
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sequences were identical.  This fits with a recent report that standard PCR and 

SGA provide similar measures of viral diversity provided a sufficient number of 

templates is analyzed (84).  If the primary interest is in the consensus transmitted 

sequence very shortly following infection, accurate results can be obtained by 

endpoint dilution more cost-effectively than by SGA.     

During the construction of my env panel I adapted an assay developed to 

monitor cell fusion into a rapid, high-throughput screen to determine the 

functionality of cloned env.  Sequencing of non-functional env identified 

mutations underlying the loss of functionality, while no functional clone ever 

exhibited frame-shifts or large deletions or insertions.   Thus, the assay allows 

rapid, inexpensive identification of functional env without requiring sequencing or 

pseudoviral production.  This allowed me to considerably streamline my env 

panel generation.   

In summary, in this chapter I described the creation of a unique panel of 

vertically transmitted and non-transmitted env clones and determined that aside 

from CCR5 tropism there are no obvious genetic correlates of subtype B MTCT. 
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CHAPTER IV 

Subtype B phenotype analysis 

Introduction 

In chapter III I described the generation of a panel of envelope clones from 

a subtype B infected mother-infant cohort.  I determined that vertical transmission 

in my cohort occurred across a selective bottleneck.  Such selection is frequently 

reported, but its genotypic correlates have not been identified.  I likewise failed to 

detect mutations enriched for in the infants compared to their mothers that were 

not subject specific.  I therefore proceeded to investigate the phenotypes of my 

selected env clones in order to identify functional differences between maternal 

and infant isolates.   

I was encouraged in this approach by reports that infant env clones are 

more viable than maternal in competition assays (95), and have been reported as 

more resistant to neutralization by autologous maternal plasma (39, 204).  

However, no mechanisms or genetic correlates underlying the enhanced viability 

of infant clones have been reported, rendering this information of limited utility to 

informing the design of therapies for preventing transmission.  The enhanced 

resistance of infant clones to neutralization by maternal plasma is due to subject 

specific mutations, is not seen in every mother-infant pair tested (204), and does 

not appear to play a selective role during sexual transmission (36), implying that 

it is not the sole factor controlling selection during mucosal transmission.  I 

therefore investigated the receptor and co-receptor levels required for infection 
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by my maternal and infant viruses, their ability to replicate in T cells and 

macrophages, their sensitivity to neutralization by a panel of human monoclonal 

neutralizing antibodies, pooled heterologous seropositive and autologous 

maternal plasmas, their sensitivity to inhibition by three HIV-1 entry inhibitors, 

and their entry kinetics.       
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Results 

Pseudovirus generation 

To investigate the phenotypes of the cloned env they were expressed on 

pseudoviruses.  These pseudoviral particles have no functional genomic copy of 

env, rendering them capable of only one round of infection.  Figure 4.1 provides 

a graphical overview of the pseudoviral generation process.  The pseudoviruses 

were titered on TZMbl cells (aka JC53BL, Fig 4.2B), a HeLa line expressing HIV-

1 Tat inducible β-galactosidase and Luciferase genes.  In assays utilizing non-

TZMbl HeLa cell lines or primary cells, anti-p24 immunostaining was used as the 

infectivity readout (Fig 4.2A, Fig 4.3A).      

Receptor and co-receptor requirements 

The HIV-1 receptor (CD4) and co-receptor (CCR5) requirements of the 

selected env clones were analyzed by titrating pseudoviruses on cell lines 

expressing varying levels of CD4 and CCR5 (Fig 4.2).  All viruses infected each 

cell line and there was no significant pairwise difference between the infant and 

maternal titers on any cell line.  All clones achieved largest titers on TZMbl cells, 

which express the highest levels of CD4 and CCR5.  Titers decreased with 

decreasing levels of CD4 or CCR5, but were more sensitive to changes in CD4. 

Replication in primary macrophages and PBL   

I used two different approaches to evaluate whether macrophage 

infectivity plays a role in viral variant selection during MTCT.  First, I investigated 

the ability of pseudoviruses expressing the env clones to mediate infection of  
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293T cell

Fig 4.1:  Pseudovirus generation.  Cloned env in a mammalian 
expression vector lacking an HIV-1 packaging signal and plasmids 
encoding the full length HIV-1 genome containing a non-functional 
copy of the env gene are co-transfected into 293T cells.  Following 
expression of both plasmids, pseudovirus displaying the cloned env
and containing no functional genomic copy of env are released.  

293T cell 293T cell
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Fig 4.3: Macrophage infectivity.  Pseudoviruses expressing cloned env
were titered on primary macrophage cultures.  (A) Anti-p24 
immunostaining of infected macrophages.   Infected cell appear blue.  (B) 
Macrophage infectivity is expressed as the percentage of the TZMbl titer 
achieved on macrophages.  Data is representative of three independent 
assays performed in duplicate.  ▲= infant, O = maternal.  Controls:  ♦ = 
JRFL (macrophage tropic), X = JRCSF (non-macrophage topic). 
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primary macrophage cultures in a single round infection (Fig 4.3).  All infant 

viruses exhibited low or no infectivity in monocyte derived macrophages (MDM), 

and only a single maternal clone (M1002 G1) attained a high level of infection as 

compared to the JRCSF (non-macrophage tropic) and JRFL (macrophage tropic) 

controls (Fig 4.3B).   

Macrophage infectivity was further investigated by infecting matched 

donor MDM and peripheral blood lymphocytes (PBL) with green fluorescent 

protein tagged recombinant env clones from two randomly selected mother-infant 

pairs.  No fluorescence was detected in macrophage cultures throughout two 

weeks of infection while high levels of fluorescence were detected in each PBL 

infection (Table 4.1).  Measurement of HIV-1 p24 in the supernatants collected 

from cultures over the course of infection showed a steady decline from the input 

levels of p24 in macrophage infections, while PBL infections showed an increase 

(Table 4.1).  Altogether, these data demonstrate robust replication in PBL but 

uniformly poor replication in macrophages. 

Adaptation of neutralization assays to utilize β-galactosidase as the 

readout 

The TZMbl cell line used in standardized neutralization assays (109, 110, 

117, 128, 176) contains β-galactosidase and Luciferase readout genes.  The β-

galactosidase readout is typically used when viral stocks are titered, with infected 

cells counted manually through a microscope.  Using this method allows direct 

visualization of infected cells rather than detecting RLUs in the supernatant of a  
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Table 4.1:  Maternal and infant viruses replicate well in PBL but poorly in 
MDM 
 Fluorescencea p24 ELISA 

Clone ID MDM PBL 
MDM PBL 

Increaseb Day 3c Day 6c Increaseb Day 3c Day 6c 

M1003 P16 +/- ++ No 172 89 Yes 1,295 5,397 
M1003 D6 +/- + No 109 44 Yes 1,510 3,057 
M1003 O1 +/- +++ No 200 187 Yes 6,978 30,000 
M1003 Q4 +/- + No 200 105 Yes 4,627 22,105 
P1189  F3 +/- + No 200 178 No 4,395 3,511 
M1007 Z8 +/- + No 3 4 Yes 309 1,114 
M1007 Q8 +/- + No 0 0 Yes 246 1,991 
M1007 Y7 +/- + No 3 0 Yes 460 2,269 
P1046 W2 +/- ++ No 2 0 Yes 417 6,744 
P1046 C4 +/- + No 17 5 Yes 655 1,302 
P1046 J1 +/- ++ No 14 0 Yes 593 2,495 
P1046 K1 +/- + No 11 0 Yes 586 1,325 
aQualitative readout: +/-  = background florescence levels similar to that in a mock-
infected cultures, +++ = florescence levels similar to those in cultures infected with the 
TN6G∆ (NL4.3 delta nef EGFP) positive control, ++ = florescence levels approximately 
50% of that in positive control cultures, + = florescence levels approximately 25% of that 
in positive control cultures.  bIncrease in p24 antigen levels above input over the course 
of the experiment.  cp24 in pg/ml on days 3 and 6 post-infection.  Infections with clones 
from the M1003-P1189 transmission pair (above dashed line) were carried out at an MIO 
of 0.01, while those from the transmission pair M1007-P1046 (below dashed line were) 
done at an MOI of 0.001. 
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lysed monolayer.  The β-galactosidase readout leaves the TZMbl monolayers 

intact making trouble shooting easier, and allows long-term storage and re-

reading of plates.  X-gal and yellow PBS (which comprise the β-galactosidase 

substrate) are also significantly less expensive than luminometer substrates.  

These reasons make the β-galactosidase readout an attractive alternative to 

Luciferase in standardized neutralization assays, but manually counting infected 

cells in hundreds of wells is not feasible.  I determined that following 

development with β-galactosidase, the infected cells can be detected and 

accurately counted using an automated ELISOPT reader (Fig 4.4).  In several 

side-by-side neutralization assays I found the IC50 values obtained utilizing the 

Luciferase readout were similar to those determined when using β-galactosidase 

(Fig 4.4C).  The difference in IC50 between the two readouts was of the same 

magnitude as that between repeat assays using the same readout out. 

Sensitivity of envelope clones to neutralization by monoclonal antibodies  

Using the β-galactosidase readout, I tested the neutralization sensitivity 

profile of my pseudoviruses to a panel of well-established human monoclonal 

NAbs to determine the frequency of resistance conferring mutations in naïve 

subjects.  The NAbs tested were b12 (CD4 binding site), 2G12 (carbohydrate-

dependent) and the gp41 Membrane Proximal External Repeat (MPER) specific 

NAbs 2F5 and 4E10.  Figure 1.3A shows the locations of the binding sites of 

these antibodies on the env spike.   
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Fig 4.4: Use of β-galactosidase readout for neutralization assays.  (A)
Representative picture of an infected and (B) mock infected TZMbl 
monolayer obtained by an automated ELISPOT reader.  (C) Comparison of 
neutralization readouts.  The sensitivity of a pseudovirus expressing the 
SVPC3 env clone to neutralization by four broadly neutralizing monoclonal 
antibodies was determined using both readouts.  The IC50  reported by Li et 
al (109) for this clone is included for comparison.  
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No infant or maternal clone was resistant to 2F5 (Fig 4.5A).  The only 

clone resistant to 4E10 (P1046 J1, Fig 4.5A) exhibited the rare, natural 

polymorphism, F673L, associated with resistance (63, 133).  All clones from 

three of five infants were resistant to 20µg of 2G12 (Fig 4.5A) and exhibited 

mutations eliminating one of 5 PNGS implicated in 2G12 binding (170).  In infant 

P1024, the mutation was N386D, in P1049 it was N392K, and in P1046 it was 

T292I.  Most maternal clones from these pairs exhibited similar levels of 2G12 

resistance and displayed the corresponding mutations.  Infants P1031, P1046, 

and P1049 had some clones resistant to 20µg of b12 , but each had one 

sensitive clone (Fig 4.5A).  A similar pattern of sensitive and resistant clones was 

seen in the corresponding mothers.  When pairwise analyses were performed, I 

did not detect any trends for differential neutralization sensitivity between infant 

and maternal variants. 

Sensitivity of envelope clones to neutralization by pooled seropositive 

plasma 

 The neutralization sensitivity profile of the pseudoviruses to pooled 

heterologous plasma with high NAb activity was next determined (Fig 4.5B).  

Sensitivity varied over a 4-fold range within transmission pairs, but all infant and 

maternal viruses were sensitive to neutralization at plasma reciprocal dilutions 

ranging from 109 to 1588.  When a pairwise analysis was performed, no trends 

for differential neutralization sensitivity between infant and maternal variants 

were detected across the five pairs.      
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Fig 4.5:  Infant and maternal env
are similarly sensitive to 
neutralization and inhibition.  
Sensitivity of infant and maternal 
clones to (A) NAbs, (B) pooled 
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Sensitivity of infant envelope clones to entry inhibitors   

The sensitivity of infant clones to three HIV-1 entry inhibitors was 

evaluated (Fig 4.5C).  The inhibitors used were sCD4, T20 (fusion inhibitor) and 

Maraviroc (CCR5 antagonist).  The stages of entry at which these inhibitors act 

are indicated in Figure 1.3B.  No clone was resistant to any inhibitor and infant 

env exhibited IC50 ranges similar to the maternal.  No significant with-pair 

differences in sensitivity to these inhibitors were observed between maternal and 

infant viruses.  

Sensitivity of envelope clones to neutralization by autologous IgG  

Preliminary experiments indicated that maternal plasmas exhibited high levels of 

non-specific activity.  Therefore, I used purified IgG in autologous neutralization 

assays.  None of the purified IgG showed non-specific activity against the MLV 

control.  The sensitivity of at least three clones, including an infant and a 

maternal, to neutralization by autologous maternal IgG was determined for each 

transmission pair.  Maternal IgGs achieved an IC50 of 0.5mg/ml or less against 5 

of 7 infant and 5 of 6 maternal clones tested (Fig 4.6).  The amount of IgG 

recovered from plasma of mother M1003 allowed a maximum concentration of 

only 192µg/ml, but this was sufficient to reach an IC50 against 1 of 2 infant and 1 

of 2 maternal clones tested.  Statistical analysis did not indicate significant within-

pair differences between infant and maternal clones. 

Entry kinetics in TZMbl cells  
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Fig 4.6: No difference in sensitivity to neutralization by autologous 
maternal IgG between infant and maternal clones.  Comparison of 
neutralization IC50 between pseudoviruses expressing env clones from 
infants and mothers within each transmission pair.  Infections were carried 
out in TZMbl cells using 200 sfu as the inoculum dose.  Lines indicate 
maximum concentration of IgG.  M1003 plasma achieved an IC50 of 
221µg/ml against one of two infant clones tested, just above the 192µg/ml 
cutoff.  Values are an average of triplicate infections performed in a single 
assay.  Within-pair differences in neutralization sensitivity did not exceed 
the expected three fold variability of the assay. ▲= infant, O = maternal.  
All infant clones were assayed except for P1031 where the clone most 
similar to the consensus of each variant  was selected, and P1046 where 
the clones most similar to, and most distant from, the consensus were 
chosen.  For each mother, the clones most similar to, and most distant 
from, the infant consensus were assayed.  If the amount of IgG was 
insufficient to assay all clones, the maternal clone most distant from the 
infant consensus was eliminated.  
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The entry phenotypes of infant and maternal clones were initially 

investigated by comparing the differences in titers on TZMbl cells 24 and 48 

hours post infection.  In 4 of 5 transmission pairs, all infant values were higher 

than any maternal.  In all 5 pairs, the mean infant values were higher than the 

mean maternal (Fig. 4.7A,B).  When pairwise analysis was performed, these 

differences proved significant (p < 0.001).  Maternal and infant clones achieved 

similar titers by 48 hours (Fig. 4.7C) indicating that the observed differences were 

due to infant clones achieving a greater fraction of their maximum titers by 24 

hours rather than to differences between maximum titers.   

 To further evaluate potential differences in entry phenotype, a 100% 

inhibitory dose of T20 was added to infected TZMbl cells at various times post 

infection and the rate of escape from this entry inhibitor determined.  When the 

infant and maternal values were compared within each transmission pair, the 

infant env escaped from inhibition faster than the maternal in 3 of 5 pairs, while in 

two pairs the rates of escape appeared similar (Fig. 4.8).  To analyze T20 escape 

kinetics, curves characterizing the viral titer as a function of time were developed 

by fitting second order polynomial regressions using General Linear Mixed 

Models (121).  Pairwise analysis determined that the slopes of infant curves were 

significantly steeper than the corresponding maternal (p < 0.001).  Figure 4.8F 

shows the aggregate infant and maternal curves. 

I next investigated if these differences could be replicated in PBL, a 

physiologically relevant cell type.  As these primary cells do not contain readout  



76 

A B

Fig 4.7:  Infant env clones exhibit more rapid entry than maternal.  
Pseudovirus titers on TZMbl cells were determined at 24 and 48 hours post 
infection, and the percent of the max 48 hour titer achieved by 24 hours 
was plotted.  Points are averages from two independent experiments 
performed in triplicate.  (A) Data are presented by transmission pair.  Solid 
lines indicate means. (B) Aggregate infant and maternal data.  Error bars 
represent one standard error of the mean. (C) Average 24 and 48 hour 
titers in SFU/ml.  Mixed Model ANOVA with mother-infant paring included 
as a random effect indicated that infant means were significantly higher 
than the corresponding maternal values (p < 0.001). ▲= infant, O = 
maternal.
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Fig 4.8:  Infant env clones escape T20 inhibition more rapidly than maternal.  
Percent of pseudoviruses escaping inhibition by T20 as compared to an un-inhibited 
control was determined for each time-point for each env clone.  Infections were 
carried out in TZMbl cells using 200 sfu as the inoculum dose.  (A – E) Mean 
maternal and infant titers over time plotted by mother-infant pair.  All clones were 
assayed in triplicate in two independent experiments.  (F) Infant and maternal kinetic 
curves were derived using mixed model ANOVA for a polynomial time function with 
first and second order terms, with mother-infant pairings included as random effects.  
Infant curves were significantly steeper than the corresponding maternal p < 0.001.  
Plotted are the aggregate infant and maternal curves. ▲= infant, ● = maternal.
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genes, infection was assessed by quantifying a very early HIV-1 reverse 

transcription product, NSSS, using TaqMan PCR.  All infections were performed 

with the same viral dose.  Across all experiments and time-points, on average, 

cultures infected with infant clones contained more copies of HIV-1 NSSS than 

those infected with maternal clones (Fig 4.9).  Pairwise analysis indicated that in 

experiments performed on two different donor PBL, from 4 through 8 hours post 

infection the mean infant signal was significantly higher than the corresponding 

maternal (p = 0.046).  Altogether, these data suggest that infant viruses exhibit 

more rapid entry than maternal. 
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Fig 4.9:  Infant env clones proceed through reverse transcription faster 
than maternal.  PBL cultures were infected with 100µl of media 
containing 1x106 CPM  of pseudoviral RT activity, and the number of 
copies of HIV-1 NSSS in replicate cultures were quantified at several 
time-points post infection.  The copies of NSSS were normalized to the 
CCR5 housekeeping gene, background from mock-infections was 
subtracted, and the final value was plotted as copies of NSST per 
million PBL.  Error bars represent one standard error of the mean.  
Across the four time points examined, mean infant values are 
significantly higher than maternal (p =0.046).  ▲= infant, ● = maternal.  
Symbols connected by solid lines represent averages from two 
independent experiments conducted on the same batch of PBL.  
Symbols connected by dashed lines represent one experiment 
conducted on PBLs from a second donor. Clones assayed were 
selected from mother-infant pairs where transmission occurred in the 
absence of anti-retroviral therapy (Table 3.1), including all infant clones 
from P1189 and P1024, and one clone from each variant of P1031 
(clones H2 and C1).  From each mother, I chose the clones with the 
fastest and slowest entry (Fig. 4.7).  These were M1003 P16 and Q4, 
M1001 J7 and C2, and M1002 G1 and T6.
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Discussion 

Efficient HIV-1 infection usually requires the expression of relatively high 

levels of the CD4 receptor and CCR5 co-receptor on the surface of target cells 

(3, 151).  As the levels of CD4 and CCR5 on mucosal and submucosal cell 

subsets can be much lower than on CD4+ memory T cells (105), the ability of an 

HIV-1 variant to efficiently infect cells displaying limiting levels of CD4 or CCR5 

may be a selective factor in MTCT.  Titration on cell lines expressing different 

levels of CD4 and CCR5 demonstrated the ability of all clones in my panel to 

infect target cells regardless of the receptor and co-receptor levels displayed.  On 

each cell line tested, maternal and infant clones achieved similar titers both 

overall and within each transmission pair.  Additionally, I did not observe any 

systematic differences in the sensitivity of maternal and infant env to inhibition by 

sCD4 or the CCR5 binding inhibitor Maraviroc.  My findings are consistent with a 

recent report that sexual transmission of HIV-1 does not appear to select for 

viruses that can preferentially utilize lower levels of CD4 or CCR5 (3). 

 CCR5 co-receptor usage has traditionally been equated with macrophage 

tropism.  Peters et al have clarified that not all R5 viruses are macrophage-tropic 

(147).  My data, showing that only 1 of 35 plasma-derived env clones achieved 

greater than 1% of their TZMbl titers on MDM, are in agreement with a study 

demonstrating that peripheral blood viruses frequently exhibit low levels of 

macrophage infectivity (148).  Inability of all clones tested to replicate in MDM is 

in agreement with findings that R5 tropic transmitted variants replicate poorly in 
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macrophages but well in other cell types (80, 169).  Finally, these data support 

recent models which suggest that cell subtypes other than macrophages are the 

first to encounter HIV-1 during mucosal transmission (34, 169). 

 The only clone that efficiently infected macrophages, M1002 G1, differs 

from the rest of the M1002 clones by a 5 amino acid deletion in the V1 loop, 

which results in the loss of a PNGS, and a T402N substitution which results in 

the loss of a PNGS in the V4 loop.  Loss of PNGS in the V1/V2 and V4 regions of 

HIV and SIV can enhance macrophage tropism and infection of cells expressing 

low levels of CD4 (42, 47, 93, 155).  In addition to these mutations, M1002 G1 

exhibits a further 15 substitutions and four insertions not found in any other env 

selected from this subject.  However, none of these mutations occur within CD4 

contact residues, the V3 loop, or any other epitope reported to correlate with 

macrophage tropism. 

 Enhanced macrophage tropism has been correlated with ability to achieve 

high titers on CD4 low cell lines such as RC49 (148), and increased sensitivity to 

reagents that block env:CD4 interactions such as sCD4 (146) and b12 (42).  My 

results are in agreement with these findings.  Clone M1002 G2 attained the 

highest titer on the RC49 cell line, was the most sensitive to inhibition by sCD4 

and was highly sensitive to neutralization by b12.  More efficient CCR5 

engagement has also been reported to contribute to enhanced macrophage 

tropism (60, 65).  Compared to other clones, M1002 G2 achieved moderate titers 

on CCR5 low cells and exhibited average Maraviroc sensitivity.  Thus the 



82 

enhanced macrophage infectivity of M1002 G2 appears to reflect more efficient 

utilization of CD4 rather than CCR5. 

I adapted the β-galactosidase readout to neutralization assays.  Utilizing 

this method leaves cell monolayers intact and visualizes infected cells directly 

instead of measuring RLUs in lysed cell supernatant.  This facilitates trouble-

shooting and allows long-term storage and re-reading of plates.  X-gal and yellow 

PBS (the β-galactosidase substrate) are significantly less expensive than 

luminometer substrates, and the fixed plates can be shipped of-site for counting, 

circumventing the need to purchase an ELISPOT or Luminescence reader.   

 I utilized this readout when screening my env clones to determine the 

frequency of resistance to a panel of well-characterized monoclonal NAbs.  I 

found that sensitivity to these NAbs varied both between and within mother-infant 

pairs, but the sensitivity of infant clones to neutralization did not appear to 

correlate with MTCT.  Within each transmission pair, the mean infant env 

sensitivity to each NAb generally fell near the center of maternal variation, 

although this was due both to the transmission of env with near mean maternal 

sensitivity and to the simultaneous transmission of env from near both ends of 

the maternal sensitivity range.   

No clone was resistant to 2F5 and only one was resistant to 4E10.  

Resistance to 50µg/ml of 4E10 is very rare across all subtypes of HIV-1 (13), but 

Aldrovandi and colleagues have detected resistant clones in both mothers and 

their infants (133).  The only clone in my panel resistant to 50µg/ml of 4E10 came 
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from infant P1046 and exhibits the F673L natural polymorphism reported by 

Aldrovandi and others (63) to provide intrinsic resistance to 4E10.  The lack of 

any clones resistant to 2F5 compares with a large study by Binley et al (13) who 

found that this NAb neutralized 79% of subtype B isolates.  Keele et al (87) has 

demonstrated significantly higher IC50 values for 2F5 and 4E10 among sexually 

transmitted viruses as compared to the chronic viruses in the donor, although 

such were not seen by others (164).  I did not see such differences in sensitivity 

to MPER targeted NAbs between infant and maternal clones in my panel. 

 Sequence analysis determined that all instances of increased resistance 

to 2G12 correlated with loss of one of 5 PNGS that make up the 2G12 epitope.  

Differences in sensitivity to the monoclonal NAb b12 could not be fully explained 

by differences in its contact residues (18).  However, sensitivity to this NAb 

corelates with numerous context dependent residues outside the presumed 

epitope (146).  Therefore, uniform genotypic changes were not observed in all 

clones exhibiting enhanced resistance to b12.   

54% and 57% of my env clones were neutralized by 20µg of 2G12 and 

b12 respectively, which is slightly less than the 72% of subtype B viruses 

reported neutralized by these NAbs in a study by Binley et al (13).  This 

difference is likely due to the general similarity in neutralization sensitivity of env 

within a transmission pair.  Thus instead of screening single clones from each of 

32 unrelated subjects, as was done by Binley et al (13), I have only 5 unrelated 
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clones.  With such a small n random variation plays a larger role, making the 

exact reproduction of results from a much larger cohort unlikely.   

 I also determined that pooled sero-positive plasma could neutralize all 

clones to levels at least one (threefold) dilution beyond that of a Murine Leukemia 

Virus non-specific toxicity control.  The sensitivity to heterologous plasma varied 

both between and within mother-infant pairs, but did not correlate with 

transmission, implying that infant variants are not inherently resistant to 

neutralization by heterologous Abs.  Infant and maternal clones did not differ 

significantly in sensitivity to autologous maternal IgG. 

 The effect of maternal NAbs on MTCT is unclear, with two studies 

reporting that neutralization escape variants are transmitted (39, 204), while a 

third found that infant and maternal viruses were similarly sensitive to 

neutralization by autologous maternal sera (75).  Wu et al found that in 9 of 11 

transmission pairs infant env exhibited lower mean IC50s to their mothers’ plasma 

than the maternal isolates (204), while Dickover et al reported this phenomena in 

5 of 7 pairs (39), indicating that infant env are not always more resistant than 

maternal.  Further, in both studies, in a number of transmission pairs where lower 

mean IC50s were reported for infant clones the differences from the maternal 

mean IC50s were less than three fold.  Due to the dilution scheme, my 

neutralization assay has an inherent 3 fold inter-assay variability, similar to that 

reported by Binley et al who extensively assessed the reproducibility of this 

neutralization assay within and between runs (13).  As the limiting amounts of 
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maternal plasma precluded repeat experiments, I may have failed to detect small 

differences in sensitivity between maternal and infant clones.  Together, my 

results and those reported in the literature indicate that while resistance to 

maternal NAbs may play a role in viral variant selection during MTCT it is unlikely 

to be a major selective factor.    

 CCR5 antagonists are a potent new class of entry inhibitors.  As generally 

only R5 variants are vertically transmitted, CCR5 antagonists may be highly 

relevant to blocking MTCT; however their effectiveness against infant isolates 

has not been well characterized.  I determined the sensitivity of my infant clones 

to three entry inhibitors, including the only CCR5 antagonist approved for therapy 

(Maraviroc).  No infant clone was resistant to any inhibitor and I saw no 

significant differences in sensitivity between maternal and infant env.  The latter 

is in contrast to a sexual transmission study by Keele et al (87), who 

demonstrated significantly higher IC50 values for T1249, a fusion inhibitor with a 

mechanism of action similar to T20, among viruses from acutely infected as 

compared to chronically infected subjects. 

 An important finding was that in three different assay systems infant env 

appear to be more efficient in entry than maternal.  I developed the first system to 

rapidly screen pseudoviruses for env mediated differences in entry by comparing 

the fraction of the maximal titer achieved by 24 hours in a single round infection 

of TZMbl cells.  In the second system I compared rates of escape from T20, an 

inhibitor whose epitope becomes exposed in the final stage of HIV-1 entry.    
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Experiments in PBL showed that infection with pseudoviruses displaying infant 

env results in a more rapid buildup of an HIV-1 early reverse transcription 

product.   

 Escape from membrane impermeable inhibitors of the 6-helix bundle 

formation such as T20 has previously been interpreted as viral fusion at the 

plasma membrane (55).  It has recently been reported that HIV-1 may enter cells 

via endocytosis following receptor and co-receptor interactions rather than by 

fussing at the plasma membrane (30, 125).  Virions endocytosed at early stages 

of entry will escape inhibition by T20.  This may explain why the differences 

between maternal and infant clones observed in the T20 escape experiment, 

while statistically significant, are less extensive than in those seen in other 

assays.   

My observations of more rapid entry exhibited by infant env could reflect 

differences in viral binding, fusion, or the rate of endocytosis between maternal 

and infant clones.  Studies have reported that chronic and recently transmitted 

HIV-1 from the same subject (48) and clones from progressors and long-term 

non-progressors (104) differ in their entry kinetics.  It was also reported that the 

V1-V5 regions of HIV-1 from MTCT viruses confer higher rates of replicative 

fitness than do maternal env (95).   

A faster entry phenotype could confer a selective advantage for 

transmission or early post transmission amplification.  Identification of the 

mechanistic and structural basis of this phenomenon may be useful in the design 
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of therapies such as targeted vaccines to prevent MTCT.  My assays operate 

across different time windows and may be emphasizing different aspects of 

entry, making it difficult to directly compare the entry rates of individual env 

clones.  Further investigation will be required to identify the stages of entry at 

which the reported differences occur.  It is also important to determine if sexually 

transmitted viral variants will exhibit a similar enhanced entry phenotype.    

 In summary, the ability to utilize low receptor and co-receptor levels does 

not appear to play a major role in the selective bottleneck during vertical 

transmission of HIV-1 subtype B.  Both the maternal and infant viruses infected 

macrophages poorly.  Maternal and infant clones were equally sensitive to four 

monoclonal NAbs, autologous IgG, and pooled heterologous plasma, implying 

that inherent neutralization resistance is unlikely to be a major factor controlling 

the selective bottleneck.  All infant clones were sensitive to HIV-1 entry inhibitors, 

including Maraviroc, in ranges similar to their mothers’ suggesting that CCR5 

antagonists could be useful additions to the therapies for the prevention of 

MTCT.  Most interestingly, infant clones exhibited faster entry kinetics than 

maternal clones.  Expanding these findings to other cohorts and identifying the 

mechanistic and structural bases of this phenomenon may be useful in the 

design of therapies such as targeted vaccines to prevent HIV-1 transmission. 
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CHAPTER V 

Subtype C cohort and genotype analysis 

Introduction 

In the preceding chapters I investigated the genotypic and phenotypic 

correlates of viral variant selection during MTCT of HIV-1 subtype B.  Historically 

most infections in Western Europe and North America were with this subtype 

(74).  Therefore, many of the early viral isolates and much of the pathogenesis 

data were obtained from subjects infected with subtype B.  However, worldwide 

this subtype accounts for approximately 12% of those infected (74).  Shortly after 

the realization that several HIV-1 subtypes exist, it was hypothesized that they 

may exhibit distinct biological properties.  Subsequent investigations have 

confirmed this, finding inter-subtype differences in transmission rates (14, 161), 

virulence (9, 85), reverse transcription rates (79), variability at protease cleavage 

sites (33) and frequency of co-receptor switch over time (23).   

It is likely that these differences, together with the up to 35% heterogeneity 

in genotypes between subtypes (182) will affect vaccine design (59).  Historically, 

subtype B is the best studied and is therefore often used as a model, but may be 

poorly representative of the pandemic as a whole.  For example, in all major non-

B subtypes, shorter and less glycosylated env are typically passed from the 

donor to the recipient during mucosal transmission (25, 166, 204), but this 

correlation is not found during transmission of subtype B (74).  It was therefore 
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important to determine if my novel finding of enhanced entry by infant env clones 

extends to non-B subtypes.    

Subtype C is the most rapidly expanding HIV-1 subtype.   At least 22 

million people are currently infected with this subtype, accounting for almost 60% 

of all HIV-1 infections (83).  Subtype C is most prevalent in Sub-Saharan Africa 

where the majority of MTCT takes place (83) and thus accounts for the vast 

majority of new MTCT.  I therefore focused on subtype C as the most relevant to 

further investigation into the correlates of viral variant selection during vertical 

transmission of HIV-1.  To this end, I generated a panel of vertically transmitted 

and non-transmitted full-length env clones from a cohort of subtype C infected 

mother-infant pairs.   

It has been reported that a larger portion of subtype C MTCT may occur 

in-utero than in other subtypes (161).  There are indications that viral variant 

selection during in-utero transmission may be influenced by different factors than 

during peripartum transmission (2, 39, 40, 99, 100, 138, 202).  I therefore 

included both in-utero and peripartum infected infants in my cohort to better 

represent the routes of transmission leading to the majority of new infant 

infections.    

I generated 126 full-length, viable env clones from five subtype C infected 

mother-infant pairs.  Examination of the env genotypes confirmed the presence 

of a selective bottleneck during both in-utero and peripartum transmission.  In 

contrast to the subtype B findings, I determined infant variants were shorter and 
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less glycosylated than maternal.  I then utilized extensive phylogeny analysis to 

select a subset of representative env clones for in-depth phenotype analysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

Results 

Phylogeny of envelope sequences  

Following the scheme developed during clade B panel generation (Fig 3.1) 

full length env genes were amplified from HIV-1 subtype C infected mother and 

infant pro-viral DNA samples collected within 6 weeks of transmission (Table 

5.1).  At least seven clones were generated from each subject except CM5.  A 

total of 126 functional clones, 76% of those screened for viability, were obtained.  

These clones were sequenced from the HXB2 gp160 nucleotide position 31 

through 1563.  This includes the entire gp120 (with the exception of the N-

terminal half of the env signal sequence) and the first 30 amino acids of gp41. 

These gp120 sequences were aligned and a neighbor-joining tree 

constructed (Fig 5.1).  The tree revealed clear epidemiological linkage within 

each mother-infant pair, with no evidence of cross-pair or other contamination.  

Subtype reference sequences included in the tree confirmed that all subjects 

were infected with subtype C.  Maximum likelihood trees and Highlighter 

alignments of non-gap stripped sequences were used for additional in-depth 

phylogeny analysis and to select representative clones for phenotype analysis.  

Utilizing criteria similar to that described for subtype B, two to three env clones 

from each infant and three to four from each mother were selected for in-depth 

analysis (Table 5.1, Fig 5.1).  The exceptions to this were subject CM5 from 

whom only one sample was successfully amplified, and the pair C4.  In this pair 

all infant env and the closely related maternal variants exhibited very low titers  
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Table 5.1:  Subtype C cohort summary  

Subject 
Ida 

Sample 
Timingb 

No. of 
env 

clones 

No. of 
pseudo 
viruses 

ART 
status 

Mode of 
transmission 

CM1 0 16 4 SD NVP 
In-Utero 

CP1 2 7 3 DD NVP 
CM2 0 17 4 SD NVP 

In-Utero 
CP2 2 11 3 DD NVP 
CM5 0 1 1 SD NVP 

Peripartum 
CP5 29 12 2 DD NVP 
CM3 0 23 4 SD NVP 

Peripartum 
CP3 46 11 3 DD NVP 
CM4 0 16 3 SD NVP 

Peripartum 
CP4 30 12 2 DD NVP 

 aCM, Mother; CP, Infant.  bDays after delivery.  
SD NVP = Single dose nevirapine administered to mother 
during labor.  DD NVP = Nevarapine administered to 
mothers crossed the placenta and an aditional dose was 
given to the infants in the first day of life.  
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 AY713419 AE
 AY173952 B

 AF484518 D
 AF457079 A

 AY371122 AG
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Fig 5.1:  Evolutionary 
relationships of gp120 
sequences from env clones and 
subtype reference sequences.  
Evolutionary history was 
inferred using the Neighbor-
Joining method with 1000 
iterations of the bootstrap test.  
The evolutionary distances were 
computed using the Kimura 2-
parameter method.  All positions 
containing gaps and missing 
data were eliminated from the 
dataset.  Horizontal scale bar 
represents 2% genetic distance.  
Filled symbols represent infant 
and empty symbols maternal 
clones.  Squares indicate clones 
selected for further analysis. 
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when expressed on pseudoviruses, precluding their phenotype analysis.  

Therefore three CM4 clones distantly related to infants (Fig 5.1) were used in 

virological assays.  In all 29 clones were selected and sequenced through the 

entire gp160 (Fig 5.2). 

Visual inspection of phylogenetic trees and Highlighter alignments of each 

mother-infant pair demonstrated probable transmission of a single maternal 

variant to infants CP1 and CP3, two variants to infants CP5 and CP4, and four to 

infant CP2.  The relationship between maternal and infant gp120 sequences was 

further analyzed based on the paradigm described by Haaland et al (67) (Table 

5.2).  A maternal sequence differing from an infant variant by less than five amino 

acids in the gp120 likely gave rise to that variant.  If such sequences represent 

less than 5% of the maternal quasispecies, a minor maternal variant was likely 

transmitted to the infant (67).  Infants CP1 and CP3 were apparently infected with 

a single minor variant of the maternal quasispecies, infant CP4 with two minor 

variants, and infant CP2 with three minor and one major variant (Table 5.2).  

Infant CP5 was infected with two maternal variants.  As only a single clone was 

amplified from mother CM5, the maternal quasispecies was not sufficiently 

sampled for the algorithm to be fully reliable in this case.  However, 

stochastically, the amplified CM5 clone likely represents the most prevalent 

maternal variant and both CP5 clones differ from this sequence by more than 20 

amino acids.  Therefore it is likely that CP5 was infected by two minor maternal 

variants.  
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Fig 5.2: Evolutionary relationships of full length HIV-1 gp160 
sequences from 29 env clones.  CM = maternal, CP = infant.  
Evolutionary history was inferred using the Neighbor-Joining method.  
The percentage of replicate trees in which the associated sequences 
clustered together >70% of the time in the bootstrap test (1000 
replicates) are shown to the left of branches.  The evolutionary 
distances were computed using the Kimura 2-parameter method.  All 
positions containing gaps and missing data were eliminated from the 
dataset.  The horizontal scale bar represents 1% genetic distance.
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Table 5.2:  Relationship of maternal and infant gp120 sequences 

Infant Sequences 
analyzeda Differencesb Less than 5 

differencesc 
Variant 

transmitted      

     CP1 16 >20 0 Minor 
     

CP2 17 

15 0 Minor 
     0 1 Major 
     11 0 Minor 
     >20 0 Minor 
     

CP5 1d >20 0 Minor 
     >20 0 Minor 
     CP3 23 12 0 Minor 
     

CP4 16 7 0 Minor 
     12 0 Minor 
     aNumber of maternal sequences analyzed.  bNumber of amino acids that differ between 

an infant variant consensus sequence and the most closely related maternal sequence. 
cNumber of maternal sequences differing from the infant variant consensus by less than 
5 amino acids.  d Only a single maternal variant was amplified from CM5.  
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Infant sequences were more homogeneous than maternal, with the mean 

diversity in gp120, measured by number of base substitutions per site within 

each subject, ranging from 0.3-1.7% among in-utero infected infants, 0.1-0.4% 

among peripartum infected infants, and 3.5-6.1% among mothers (Fig 5.3).  

Detailed examination of the infant showing 1.7% sequence diversity (CP2) 

indicated that its quasispecies was composed of four distinct variants (Fig 5.4A).  

Diversification within each infant variant was minimal, there was little evidence of 

recombination between variants and two variants clustered with maternal 

sequences in a phylogenetic tree (Fig 5.4B).  Taken together, these data imply 

that the infant variants likely arose from the transmission of four distinct maternal 

variants rather than post-transmission diversification.   

 I attempted to determine which of the selected maternal viruses could 

have been transmitted to their infants by comparing the full length maternal 

gp160 sequences to the consensus sequence of each of their infant’s variants.  

As the most closely related maternal sequences differed from their infants’ 

consensus by at least 10 amino acids, I deemed that none of the selected 

maternal clones were likely to have been the direct ancestors of the infant 

variants.  These findings are graphically summarized in the gp160 tree (Fig 5.2) 

where except for the in-utero transmission pair C2 all maternal sequences cluster 

in branches distinct from their infants with bootstrap values > 90%. 
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Fig 5.3:  Infant quasispecies are more homogeneous 
than maternal.  The percent of base substitutions per 
site over the gp120 region for each subject were 
computed using the Kimura 2-parameter method in the 
MEGA4 software program.  ND = not determined.
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Fig 5.4: Subject CP2 
quasispecies consists of four 
variants.  (A) Highlighter 
analysis of infant CP2 gp120.  
Green bars represent silent 
and red bars non-silent 
mutations.  Gray bars 
represent deletions. (B)
Maximum likelihood tree of all 
gp120 sequences amplified 
from the C2 transmission pair.

A

B

 



100 

gp120 length and glycosylation  

Changes in env length and glycosylation have been reported to correlate 

with mucosal transmission of HIV-1 (25, 166), including MTCT (204).  Shorter 

env that display fewer PNGS appear to be enriched during transmission non-B 

subtypes.  I investigated this correlation in my panel and found that in four 

mother-infant pairs the infant env were both shorter and less glycosylated than 

the maternal (Fig 5.5).  When pairwise comparisons of infant and maternal 

values were made, these differences proved significant across all pairs 

(p<0.001).  Pair C5 was excluded from the analysis because the single env clone 

amplified from CM5 did not provide sufficient information on the diversity of the 

maternal quasispecies.      

Co-receptor tropism    

I established the probable co-receptor usage of the 126 env clones in-

silico by examining the V3 loop charge (12), glycosylation (27) and crown motif 

(44) (Table 5.3).  Charge analysis indicated that 5 of 16 clones from subject CM1 

were dual-tropic.  However the V3 loops of all these clones exhibited a PNGS in 

a position that correlates with CCR5 usage (27) and the V3 loop crown motif 

change from GPGQ to GPGR, which is associated with a shift to X4 tropism (44), 

was not present in any clone.  When tested in-vitro no clone from this or any 

subject exhibited significant utilization of X4 (Table 5.3).  Thus all clones in the 

panel exclusively utilized the CCR5 co-receptor. 
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A

B

Fig 5.5:  Infant env are shorter and less glycosylated than maternal clones.  
(A) Length of and (B) PNGS in, the gp120 regions of env quasispecies in 
each subject.  Horizontal lines indicate mean values within each subject.  (C)
Comparison of aggregate length and (D) PNGS, in maternal and infant 
sequences.  Mixed Model ANOVA with mother-infant parings included as 
random effects determined that infant clones are shorter and exhibit fewer 
PNGS than corresponding maternal env p < 0.001.
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Table 5.3:  Co-receptor tropism  

Subject IDa V3 charge V3 glycan V3 crown motifb In-vitro tropism 

CM1 +3,+4,+5 Yes GPGQ CCR5 
CP1 +4 Yes GPGQ CCR5 
CM2 +3,+4,+5 Yes GPGQ CCR5 
CP2 +4,+5 Yes GPGQ CCR5 
CM5 +4 Yes GPGQ CCR5 
CP5 +4 Yes GPGQ CCR5 
CM3 +3 Yes GPGQ CCR5 
CP3 +3 Yes GPGQ, GLGQ CCR5 
CM4 +3 Yes GPGQ CCR5 
CM4 +3 Yes GPGQ CCR5 

aM, Mother; P, Infant.  bDominant variant presented first.  
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Discussion 

In this chapter I increased my env panel by 126 subtype C clones and 

confirmed that viral variant selection during MTCT is not random or stochastic, 

but is driven by viral envelope properties during transmission of the subtype 

currently responsible for the vast majority of MTCT.  The env were amplified from 

pro-viral DNA; as the infants were sampled very shortly post infection, it is likely 

that the amplified env are similar to those found in plasma.  Phylogenetic 

analyses showed that infant env sequences were more homogeneous than 

maternal.  The highest sequence diversity seen among four of five infants was 

0.4%, which fits well with the expected maximum diversity of 0.6% within an 

individual shortly after infection with a single virus (87).  An in-utero infected 

infant (CP2) exhibited 1.7% diversity which, although still much lower than that 

exhibited by the corresponding mother, falls beyond the range predicted by the 

model.  However, transmission of multiple variants is more common during in-

utero MTCT than other forms of mucosal HIV-1 transmission (40, 160).  A 

detailed examination of CP2’s quasispecies identified four distinct viral variants.  

Very little diversification was observed within each variant, there was little 

evidence of recombination between the variants and two variants clearly had 

maternal ancestors.  This pattern best fits a model of very recent infection with 

four maternal variants rather than post transmission diversification.   This finding 

is consistent with reports that the majority of in-utero transmission occurs very 
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late in gestation (51, 100) and often results in transmission of multiple maternal 

variants (40).     

Based on the examination of gp120 sequences, of the four variants 

transmitted to CP2, only one was closely related to a maternal variant.  Between 

them, the remaining four infants in this cohort were infected with a total of six 

maternal viruses.  As the consensus of each of the infant variants differed by at 

least 7 amino acids from the most closely related sequence amplified from the 

mothers, the transmitted viruses represent a small fraction of the maternal 

quasispecies.  Together these data support previous findings suggesting a 

selective bottleneck during MTCT (92, 202), including during in-utero 

transmission (40).   

My data show that, unlike the case with the subtype B infected cohort, env 

cloned from infants infected with subtype C are significantly shorter and less 

glycosylated than the corresponding maternal quasispecies.  These results are in 

agreement with previous reports on subtype C sexual (38) and vertical (207) 

transmission, and similar patterns are seen during mucosal transmission of other 

non-B subtypes (25, 166, 204).  While the mechanisms underlying this selection 

are currently unknown, their apparent absence during subtype B transmission 

implies they are likely not the major factor influencing viral variant selection 

during MTCT.   

When I examined the co-receptor tropism of my env clones I determined 

that all of them were CCR5 tropic, which is consistent with the near exclusive use 
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of CCR5 by recently mucosally transmitted viruses regardless of subtype (8, 35, 

174).  The absence of CXCR4 or dual tropic viruses among the mothers is 

consistent with the co-receptor switch being significantly rarer among subtype C 

viruses than is the case with other subtypes (23).  

Having extensively characterized the genotypes and phylogeny of my 

subtype C env, I selected 29 representative clones for use in virologic assays to 

determine if the characteristics of infant env I reported for subtype B are present 

in the non-B subtype responsible for the majority mucosal transmission. 
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CHAPTER VI 

Subtype C phenotype analysis 

Introduction 

In chapter IV I characterized a panel of subtype B env clones generated 

from a paired mother-infant cohort.  I observed that infant variants appeared to 

exhibit a more rapid entry phenotype than the corresponding maternal clones.  

Two limitations to this novel finding were the small size of the cohort, and that all 

subjects were infected with subtype B.  In addition to extensive sequence 

heterogeneity, numerous biological differences have been reported between HIV-

1 subtypes (9, 14, 23, 33, 79, 85, 161).  Therefore, care must be taken when 

extrapolating findings based on a single subtype to the pandemic as a whole. 

As it is primarily found in the developed countries of Western Europe and 

North America, subtype B MTCT has become very rare.  Conversely, while 

subtype C is most prevalent worldwide, it is primarily found in developing 

countries of sub-Saharan Africa and is responsible for the majority of MTCT.  

Therefore, I added this highly relevant subtype in my MTCT cohort.  In chapter V 

I described the generation of the subtype C env panel, the analyses I performed 

to confirm that the infant clones were transmitted across a selective bottleneck, 

and how I selected 29 representative clones to use in virologic assays.   

In this chapter I report the results of the functional analyses.  Maternal and 

infant clones were similarly sensitive to neutralization with heterologous Abs and 

inhibition with HIV-1 entry inhibitors.  However all were resistant to two 
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monoclonal NAbs that potently neutralized subtype B clones.  Most interestingly, 

I found that the enhanced entry phenotype exhibited by env cloned from subtype 

B intra-partum infected infants was also shown by clones obtained from subtype 

C peripartum infected infants.   
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Results 

Sensitivity of env to neutralization by monoclonal antibodies  

Pseudoviruses expressing the selected env were generated and titrated 

as described in chapter IV (Fig 4.1 and 4.4).  Using a standardized assay (117, 

128), I tested the neutralization sensitivity profile of my pseudoviruses to a panel 

of well-characterized human monoclonal NAbs to determine the frequency of 

resistance in naïve subjects.  The NAbs tested were b12, 2G12, 2F5 and 4E10 

(binding epitopes for the four NAb are shown in Fig 1.3A).  Due to their low titer, 

clones from infant CP2 were not used in these assays.  The corresponding 

maternal clones were used only to estimate the variability of the data and are not 

included in Figures 6.1 – 6.3.  All clones (including those from CM2) proved 

resistant to 20µg/ml of 2F5 and 2G12, while most were also resistant to 20µg/ml 

of b12 (Fig 6.1).  All clones were sensitive to 4E10, with maternal and infant 

clones in each pair exhibiting similar mean IC50, although maternal IC50 values 

spanned a greater range.  

The PNGS most important for 2G12 binding to subtype B env are 295, 

332, 339 and 392, with those at 386 and 448 playing an indirect role (170).  Most 

of my clones lacked a PNGS at 295, 332, 392 or a combination of these sites, 

while several also lacked a site at 386, 339, or 448, consistent with their 

resistance to this Nab.  However, the maternal clone CM1 H5 and all three 

clones selected from infant CP1 displayed all six of these PNGS but were 

nevertheless insensitive to 20µg/ml of 2G12.  Further analysis determined that all 
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Fig 6.1:  Infant and maternal env are similarly 
sensitive to 20µg/ml of monoclonal neutralizing 
Abs.  200 sfu of pseudoviruses expressing the 
cloned env were used to infect TZMbl cells in the 
presence of the indicated inhibitors.  Values are 
an average of triplicate infections performed in a 
single same experiment.  Lines indicate infant and 
maternal means.  ▲ = infant, O = maternal.
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four clones lacked a PNGS at 442 which is suggested to be part of the 2G12 

epitope in subtype C, but not subtype B env (64).  

 The 2F5 epitope is ELDKWA (132), with DKW thought to be the critical 

recognition determinant (13, 62, 211).  The resistance of subtype C viruses to the 

NAb 2F5 is thought to be due primarily to the substitution K665S in the middle of 

DKW (13, 62).  All clones from four of my mother-infant pairs displayed this 

substitution, while the transmission pair C2 exhibited the DKW motif.  However 

the full 2F5 epitope sequence in all clones from this pair was ALDKWK 

explaining their loss of sensitivity. 

Sensitivity of env clones to pooled seropositive plasma  

The neutralization sensitivity profile of the pseudoviruses to pooled 

heterologous plasma from subtype B infected subjects with high NAb activity was 

next determined.  In 3 of 4 pairs, the mean infant IC50 values in plasma reciprocal 

dilutions were lower than the corresponding maternal, indicating greater 

resistance (Fig 6.2).  In pair C5, the infant and maternal means were similar, but 

considering the range of maternal values in other pairs, the single CM5 clone 

may be poorly representative of this subject’s quasispecies.  Pairwise differences 

between infant and maternal clones were not significant (p = 0.068). 

Sensitivity of env clones to HIV-1 entry inhibitors   

The sensitivity of the clone panel to three HIV-1 entry inhibitors was next 

evaluated.  The inhibitors used were sCD4, T20 and Maraviroc (the steps of  
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Fig 6.2:  Infant env may be slightly more resistant to neutralization 
by pooled seropositive plasma than corresponding maternal clones.  
(A) Data presented by transmission pair.  Values are an average of 
triplicate infections run in the same experiment. 200 sfu of 
pseudoviruses expressing the cloned env were used to infect TZMbl 
cells. Lines indicate infant and maternal means.  ▲= infant, O = 
maternal.  (B) Aggregate infant and maternal data.  Points indicate 
means and the error bars represent one standard error of the mean.  
Mixed Model ANOVA with mother-infant paring included as a 
random effect did not detect significant pairwise differences in 
sensitivity between infant and maternal clones  p = 0.068. 
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entry targeted by these inhibitors are summarized in Fig 1.3B).  None of the 

clones proved resistant to any inhibitor.  In all 4 pairs examined, the mean infant 

sensitivity to sCD4 was greater than maternal (Fig 6.3A and B), but these 

differences did not achieve significance (p = 0.055).  Infant and maternal T20 

IC50 values spanned similar ranges, and the mean infant and maternal values did 

not differ significantly within pairs (Fig 6.3B, p > 0.1).  Likewise, pairwise 

differences in infant and maternal sensitivity to Maraviroc did not approach 

significance (Fig 6.3 B, p > 0.1).     

Entry kinetics 

The entry phenotypes of infant and maternal clones were initially 

investigated by comparing the percent of the maximum 48 titers achieved on 

TZMbl cells 48-hours post infection.  The titers of all clones from infant CP2 were 

below the limits of detection of the assay.  When pairwise comparisons were 

made, significant differences in rates of entry between infant and maternal clones 

were not detected (Fig 6.4A and B).  I examined the data further and determined 

that both infant (Fig 6.4C) and maternal (Fig 6.4D) values appeared to fall into 

two groups based on the mode of transmission.  Clones from peripartum infected 

infants exhibited higher values than any clone transmitted in-utero.  The mean 

portion of the maximum titer at 24 hours achieved by peripartum transmitted 

clones was 3.15 fold higher than the mean of in-utero transmitted clones, and 

this difference was significant (p = 0.0021).  A similar pattern held for maternal 

clones, with the mean percent of maximum titer achieved by 24 hours by 
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Fig 6.3:  Infant env may be more sensitive to inhibition by sCD4 than 
maternal clones.  Values are an average of triplicate infections run in the 
same experiment. 200 sfu of pseudoviruses expressing the cloned env
were used to infect TZMbl cells.  (A) Sensitivity of infant and maternal 
clones to sCD4 by transmission pair.  Lines indicate infant and maternal 
means.  (B) Aggregate infant and maternal data on sensitivity to HIV-1 
entry inhibitors. Points indicate means and the error bars represent one 
standard error of the mean.  Mixed Model ANOVA with mother-infant paring 
included as a random effect indicated a trend for greater sensitivity to sCD4 
by infant clones than the corresponding maternal env p = 0.055.  Maraviroc 
IC50 is in ng/ml, sCD4 in µg/ml, and T20 in µg/ml.  ▲= infant, ● = maternal.
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C

Fig 6.4:  Peripartum transmitted env clones exhibit more rapid entry than in-utero
transmitted variants.  Pseudovirus titers on TZMbl cells were determined at 24 and 48 
hours post infection, and the percent of the max 48 hour titers achieved by 24 hours 
were plotted.  Points are averages from triplicate infections in two independent 
experiments.  (A) All data presented by transmission pair.  Triangles represent infant and 
circles maternal clones, with env from peripartum transmission pairs designated by 
empty symbols; those from in-utero pairs are filled.  Horizontal lines indicate means.  In 
(B – D) triangles indicate infant and circles maternal means.  Error bars represent one 
standard error of the mean.  (B) Aggregate infant and maternal data.  (C) Peripartum 
transmitted infant env clones exhibit more rapid entry than in-utero transmitted infant 
variants p = 0.0021.  (D) Maternal clones from peripartum transmission pairs exhibit 
more rapid entry than clones from mothers whose infants were infected in-utero although 
the difference does not achieve significance.  (E) Average 24 and 48 hour titers in 
SFU/ml.
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peripartum transmitters being 1.8 fold higher than the mean for mothers whose 

infants were infected in-utero, although this difference did not achieve 

significance. 

There are indications that viral variant selection during in-utero 

transmission is influenced by different factors than peripartum (39).  In-utero 

transmission is thought to occur through mother-to-fetus microtransfusions or 

placental infection, while peripartum transmission occurs primarily through 

exposure of the infant’s mucous membranes to maternal blood or secretions 

(100).  During delivery, transmission of a single minor maternal variant is typically 

observed (2, 40, 202), whereas transmission of single or multiple major maternal 

is more likely in-utero (2, 99, 138). 

In light of possible differences in the selective bottleneck during different 

routes of MTCT, I re-analyzed the entry phenotype data after segregating it by 

mode of transmission (Fig 6.5).  I found that peripartum infected infants achieved 

a significantly higher portion of their maximum titer by 24 hours post infection 

than the corresponding maternal clones (p = 0.0177).  When clones from in-utero 

transmission pairs were examined, no significant difference between infant and 

maternal titers ratios were observed.  Regardless of the route of transmission, 

maternal and infant clones exhibited similar titers at 48 hours, indicating that the 

observed differences in the portion of the maximum titer achieved by 24 hours 

were not due to differences between maximum infant and maternal titers (Fig 

6.4E). 
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Fig 6.5:  Peripartum but not in-utero transmitted infant env exhibit a 
more rapid entry phenotype than maternal clones. Pseudovirus titers on 
TZMbl cells were determined at 24 and 48 hours post infection, and the 
mean percent of the max 48 hour titer achieved by 24 hours was plotted 
for each category. Higher values indicate  that a larger fraction of final 
titer was achieved by 24 hours.  Points indicate means and error bars 
represent one standard error of the mean.  Mixed Model ANOVA with 
mother-infant paring included as a random effect indicated that env
from peripartum infected infants exhibited more rapid entry than 
corresponding maternal clones p = 0.0177.  ▲= infant, ● = maternal. 
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Discussion 

In order to extend my previous findings to a non-B cohort, I generated a 

panel of pseudoviruses expressing subtype C env.  I screened these clones to 

determine the frequency resistance to a panel of well-characterized monoclonal 

NAbs.  In agreement with previous reports (13, 62), all subtype C env clones 

were resistant to the NAbs 2F5 and 2G12, and most where resistant to b12.  

Likewise in agreement with previous reports (13, 62), only the 4E10 NAb 

exhibited broad and potent activity against subtype C isolates, neutralizing all 

clones tested at an IC50 of less than 15 µg/ml. 

It is speculated that the absence of a PNGS at amino acid position 295 in 

the gp160 could be responsible for the loss of sensitivity to 2G12 exhibited by 

subtype C viruses, as 83% of subtype C sequences in the Los Alamos database 

lacked this PNGS (62, 170).  Only 66% of my sequences lacked this PNGS, 

implying that loss of glycosylation at this position alone is insufficient to explain 

the near universal resistance of subtype C env to 2G12.  Consistent with my 

findings, introduction of a PNGS at 295 into subtype C viruses lacking 

glycosylation at this position did not render them sensitive to 2G12 (64).  In my 

panel, most of the clones displaying a PNGS at 295 lacked one or more of the 

five other PNGS implicated in 2G12 binding.  However, four clones were 

resistant to 20µg/ml of 2G12 while exhibiting all six glycans believed to form the 

2G12 epitope on subtype B env.  These clones lacked a PNGS at 442 which is 
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not part of the subtype B 2G12 epitope, but is suggested by Gray at al (64) to 

contribute to the formation of the epitope on subtype C viruses. 

 The prototypical epitope of 2F5, a monoclonal NAb isolated from an HIV-1 

subtype B infected subject, is ELDKWA (132).  The subtype C consensus for 

these positions is ALDSWA.  As the DKW motif was shown to be critical for 2F5 

recognition (13, 62, 211), it is thought that the near universal resistance of 

subtype C viruses to 2F5 is due primarily to the substitution K665S (13, 62) 

which occurs in 75% of subtype C clones.  Consistent with this proposal, every 

clone in four of five mother-infant pairs in my subtype C cohort displayed this 

substitution.  Clones from the fifth pair exhibited the ALDKWK sequence 

demonstrating that mutations in the 2F5 epitope outside of the critical recognition 

motif are sufficient to render viruses insensitive to 20µg/ml of 2F5.      

 The NAb b12 is reported to neutralize less than 50% of subtype C 

isolates at 50µg/ml (13, 62), which compares with my finding that only 39% of the 

env tested exhibited an IC50 of less than 20µg/ml.   

The sensitivity of the env clones to neutralization by pooled heterologous 

plasma from subtype B infected subjects varied across a narrow range, with most 

clones being relatively resistant to this subtype mismatched reagent.  Within 3 of 

4 transmission pairs infant clones were on average slightly more resistant to 

heterologous neutralization than maternal but these differences did not achieve 

significance.  Together these data imply that infant variants are likely not 



119 

inherently more resistant to neutralization by heterologous Abs than maternal 

env.   

 CCR5 antagonists such as Maraviroc are a potent new class of entry 

inhibitors.  Unlike HIV-1 subtype B, where following transmission of R5 variants 

X4 or R5/X4 variants emerge in up to 50% of subjects over the course of an 

infection (21), subtype C viruses generally continue to exclusively utilize the 

CCR5 co-receptor (23).  As generally only R5 tropic variants are vertically 

transmitted regardless of subtype, Maraviroc may be highly relevant to blocking 

MTCT, particularly of subtype C.  However, the sensitivity of infant variants to this 

entry inhibitor has not been well characterized (158).  I determined the sensitivity 

of my env clones to three HIV-1 entry inhibitors, including Maraviroc.  No clone 

was resistant to any inhibitor.  A trend for increased sensitivity to sCD4 by infant 

clones was observed across the four transmission pairs tested but did not 

achieve significance.  Sensitivity to T20 and Maraviroc was similar between 

infant and corresponding maternal env.   

In agreement with my findings from subtype B intra-partum transmission, I 

observed that env clones from infants infected peripartum with HIV-1 subtype C 

exhibited a significantly faster entry phenotype than the corresponding maternal 

clones.     

 In summary, infant variants proved insensitive to neutralization by 2F5 and 

2G12, and highly resistant to b12, implying that the proposed use of 

combinations of these NAb as a prophylaxis for blocking MTCT would not be 
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practical for the subtype responsible for the majority of vertical transmission.  The 

insensitivity of clones displaying the DKW motif to 2F5 implies that mutations in 

the 2F5 epitope outside of the critical recognition motif are sufficient for 

resistance.  The insensitivity of four of my env clones to 2G12 while displaying all 

the PNGSs implicated in 2G12 epitope formation among subtype B viruses 

supports the findings of Gray et al (64) that different glycosylation sites are 

required to form the 2G12 epitope on subtype C viruses and confirms their 

identification of 442 as one such site.   

Maternal and infant clones did not differ significantly in sensitivity to 

pooled heterologous plasma, implying that inherent neutralization resistance to 

heterologous Abs is unlikely to be a major factor controlling the selective 

bottleneck.  All infant clones were sensitive to Maraviroc, indicating that this 

CCR5 antagonist could be a useful addition to the arsenal of inhibitors used to 

prevent vertical transmission of HIV-1.  Most interestingly, peripartum transmitted 

infant env clones exhibited a faster entry phenotype than maternal.  Identification 

of the mechanistic and structural basis of this phenomenon may prove useful in 

the design of therapies for the prevention of MTCT. 

 

 

 

 

 



121 

CHAPTER VII 

Summary of findings and future directions 

In the body of this work, I investigated the genotypic and phenotypic 

properties of infant and maternal env clones to identify the correlates of viral 

variant selection during MTCT of HIV-1.  I used the Mother-to-Child model of 

HIV-1 mucosal transmission because the donor-recipient relationships are 

unambiguous and samples can be obtained shortly following transmission 

without the years of monitoring required in some sexual transmission studies.  I 

generated a unique panel consisting of nearly 300 infant and maternal HIV-1 env 

clones from ten vertical transmission pairs infected with HIV-1subtypes B and C.  

The former is the best studied subtype of HIV-1 while the later is currently 

responsible for the vast majority of MTCT.  In addition to working with two HIV-1 

subtypes I looked at both peripartum and in-utero routes of vertical transmission. 

I first confirmed that MTCT appears to occur across a selective bottleneck 

regardless of HIV-1 subtype or route of transmission.  I then showed that no 

single genotype appeared to explain this selection.  Specifically, I found that 

enrichment for shorter and less glycosylated env occurred during both routes of 

subtype C MTCT.  To date, this is the only genotype linked to viral variant 

selection during HIV-1 transmission, yet it does not play a selective role during 

subtype B transmission, as reported both in this work and previous studies.  

Therefore, enrichment for shorter, less glycosylated infant env appears to be just 

one of several possible adaptations that render env variants more transmissible.   
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I next proceeded to investigate the phenotypic properties of my env clones 

that could play a role in transmission or establishment of infection.  I showed that 

neither the ability to utilize low levels of the HIV-1 receptor and co-receptor, nor 

enhanced macrophage infectivity plays a major role in this selection.  I further 

demonstrated that most env amplified from peripheral blood infect macrophages 

poorly.  Thus, transmitted variants do not appear to be more adapted for infecting 

mucosal subsets expressing low levels of HIV-1 receptor and co-receptor. 

I then investigated if transmitted env are more resistant to neutralization 

than maternal.  My failure to find significant differences in sensitivity between 

maternal and infant clones to four broadly neutralizing monoclonal Abs and 

autologous and heterologous plasmas suggests that neutralization resistance is 

unlikely to a major factor controlling the selective bottleneck during HIV-1 MTCT.  

Further, these neutralization assays demonstrated that resistance to moderate 

levels of four monoclonal NAbs derived from subtype B infected patients is 

common in naïve subjects, particularly those infected with subtype C.  Therefore, 

prophylactic treatment with cocktails of these NAbs is unlikely to be useful in 

blocking MTCT of the HIV-1 subtype responsible for the majority of vertical 

transmission.   

I subsequently determined the sensitivity of my env panel to inhibitors 

targeting three different stages of HIV-1 entry.  The similar sensitivity to sCD4 

and Maraviroc exhibited by infant and maternal clones paralleled their use of 

similar levels of CD4 and CCR5 for efficient entry.  Together, these data indicate 
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that the affinity of Env for the HIV-1 receptor and CCR5 co-receptor are unlikely 

to play a major role in viral variant selection during MTCT.  The sensitivity to 

ng/ml amounts of Maraviroc exhibited by infant clones implies that this CCR5 

antagonist will make a useful addition to the arsenal of HIV-1 MTCT prevention 

therapies.  Maternal and infant clones exhibited similar sensitivity to T20.  Guided 

by the prevalent models of HIV-1 entry and lack of resistance to this inhibitor, I 

utilized T20 to investigate the entry kinetics of my env clones (Fig. 4.8). 

Most intriguingly, in both HIV-1 subtypes tested, peripartum transmitted 

infant env clones exhibited a faster entry phenotype than maternal.  Studies of 

Simian and Simian-Human Immunodeficiency Virus infection in non-human 

primates have shed light on the events immediately following exposure through 

the first days before viremia, a critical spatial and temporal window that is difficult 

to study in humans.  They report that virus crosses the mucosa in a matter of 

hours (78) to establish a small founder population of infected cells in the 

submucosa (123, 208).  There, low levels of viral propagation proceed over the 

first week of infection, until this local expansion produces sufficient progeny for 

systemic dissemination and establishment of a self propagating infection in 

secondary lymphoid organs (123).  Immediately following systemic 

dissemination, numerous lymphatic tissues become permanent viral reservoirs 

(68, 159) and largely irreversible CD4 T-cell depletion occurs.   

The faster entry phenotype of infant env reported in this work could confer 

a selective advantage during this local propagation phase of infection.  HIV-1 
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susceptible cells are relatively rare in the submucosal, with the initial rounds of 

viral replication thought to occur in resting CD4+ T cells lacking conventional 

markers of activation, which includes low levels of CCR5 expression (208).  HIV-

1 infected cells down regulate their CD4 expression, and in this work I 

demonstrated that low levels of CD4 and CCR5 on target cells greatly reduce 

HIV-1 infectivity.  Co-infection of previously infected resting CD4+ T cells may 

therefore be infrequent.  Thus, if viruses with distinct entry rates are initially 

transmitted, over several rounds of infection the more rapidly entering viruses 

may out-compete the others for the relatively rare target cells in the submucosa 

and be the only ones to proceed past the local propagation stage to establish 

viremia.  Identification of the mechanistic and structural basis of enhanced entry 

may therefore be useful in the design of therapies and vaccines to either prevent 

MTCT, or to better target the transmitted virus during the first days of infection 

before systemic dissemination and irreversible CD4+ T-cell depletion can occur.   

In light of a recent report that HIV-1 entry may be endocytosis dependent 

(30, 125, 126), determining if differences in the rates of endocytic uptake of 

maternal and infant clones could underlie the enhanced entry phenotype is an 

interesting avenue to explore.  In Appendix II, I demonstrate that my envelope 

clones exhibit a dose-response curve to an endocytosis inhibitor.  Distinguishing 

possible differences in endocytic uptake between maternal and infant clones will 

require a more robust assay system, likely utilizing single particle tracking.   
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An interesting preliminary observation is that all env cloned from subtype 

B infected subjects and from subtype C in-utero transmission pairs exhibit similar 

entry phenotypes while all env cloned from subtype C peripartum transmitted 

pairs appears to mediate more rapid entry (Fig 7.1).  Further, the more rapid 

entry exhibited by subtype C peripartum transmitted infant env was not observed 

in the in-utero transmission pair.  While the size of the cohort and lack of subtype 

B in-utero transmitters precludes definitive interpretation of these data, the 

results highlight the importance of taking both the HIV-1 subtype and route of 

transmission into account when generalizing the findings from a given model 

system to the pandemic as a whole. 

Genetic and functional differences between subtypes B and C transmitted 

env variants indicate multiple mechanisms of selection.  For example, while 

subtype C env adapted for transmission or early post-transmission diversification 

at least in part by modulating their length and glycosylation, other, not yet 

identified, genetic mechanisms must underlie subtype B selection.  Therefore, 

while one end result of selection in both HIV-1 subtypes is the generation of env 

variants exhibiting enhanced entry kinetics, it is probable that distinct genotypic 

changes underlie this phenotype in each subtype.   

Further investigation in a larger cohort, preferably including additional HIV-

1 subtypes, is necessary to confirm the novel report of enhanced entry exhibited 

by recently transmitted env clones and to extend these findings to other routes of 

mucosal transmission.  If similar selection for more rapid entry occurs during  
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Fig 7.1:  Pseudoviruses expressing env cloned from subtype C
infectedperipartum transmission pairs exhibit a more rapid entry 
phenotype than those from subtype C in-utero transmission pairs or 
subtype B infected subjects. Pseudovirus titers on TZMbl cells were 
determined at 24 and 48 hours post infection, and the percent of the 
max 48 hour titers achieved by 24 hours were plotted. Points 
indicate means and error bars represent one standard error of the 
mean.
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sexual transmission, understanding the mechanisms underlying this phenotype 

could inform the design of therapies for blocking HIV-1 infection.   
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APPENDIX I 

Antigenicity of maternal and infant envelope proteins 

Introduction 

 The high incidence of MTCT of HIV-1 in resource-limited countries (83) 

emphasizes the urgent need for effective preventative strategies (113).  While in 

developed countries HAART combined with formula feeding have decreased the 

incidence of MTCT to less than 2% (29, 83, 127), the most effective and widely 

available intervention for blocking MTCT in the developing world is a single dose 

of nevirapine administered to the mother at the start of labor and to the baby at 

birth.  This treatment decrease rates of MTCT by up to half, through blocking the 

majority of intra-partum transmission (66, 136), but does not prevent 

transmission through breastfeeding. 

The majority of MTCT takes place in sub-Saharan Africa where 

abstinence from breast feeding is frequently not a viable option.  In addition to 

numerous cultural and financial factors and the lack of clean water, the infants 

require maternal milk-born antibodies for protection from numerous endemic 

diseases (53).  Therefore, while prolonged breastfeeding by HIV-1 positive 

mothers doubles the risk of MTCT as compared to formula fed infants (106, 124, 

134), the mortality rates are similar between the two groups due to a higher 

frequency of diarrheal diseases in the formula fed infants (134).  In many areas 

of the world, reducing vertical HIV-1 transmission during breastfeeding without 

further jeopardizing infant health is one of the most urgent healthcare dilemmas.  
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The most efficient solution to preventing MTCT is a prophylactic vaccine regimen 

started at birth (113), possibly combined with a short course of antiretroviral 

drugs to provide protection until the vaccine induced immune response attains 

protective levels.  This strategy may also result in long-term protection, 

preventing the children from acquiring HIV-1 when they become sexually active 

as adults.   

HIV-1 is a retrovirus that integrates into the genome of the host’s cells.  In 

order to be fully protective, a putative vaccine would likely need to effect 

sterilizing immunity by inducing an antibody response capable of neutralizing the 

virus before it enters cells (20, 118, 122, 130).  The failure of Merck’s STEP 

clinical trial (www.HVTN.org) indicates that induction of cell-mediated immunity 

alone, while beneficial (7, 10, 173), is insufficient for full protection.  To date, only 

one HIV-1 human vaccine trial has shown any protective efficacy (162).  While 

the exact correlates of protection in this study are unknown, the vaccine 

combined antigens from two previous trials, both of which induced neutralizing 

antibody responses (149, 165).   

The unprecedented diversity, mutation rate and immune escape 

mechanisms of HIV-1 have contributed to the failure of vaccine candidates to 

generate broad and effective neutralizing antibody responses in human trials (19, 

52, 111).  Additionally, the rare, broadly neutralizing, monoclonal Abs isolated 

from infected subjects and utilized in successful passive immunization trials could 

not be induced by vaccines (71).   

http://www.hvtn.org/�


130 

One approach to overcoming HIV-1’s diversity is identification of common 

neutralization epitopes on the env of many different primary isolates (28, 81, 

131).  However, these efforts have failed to produce a vaccine capable of eliciting 

a potent neutralizing response against multiple heterologous primary HIV-1 

isolates.  Another approach is to use a polyvalent vaccine consisting of multiple 

primary env antigens to induce a broad antibody response (24).  While this 

usually results in a broader response than that generated against a single 

epitope, in humans the levels of the response are generally too low to afford 

protection.  To increase the potency of polyvalent vaccines, the heterologous 

prime-boost method was developed (89, 157).  The only human trial of an HIV-1 

vaccine that showed protective efficacy utilized the polyvalent, heterologous 

prime-boost approach (162).  

Despite the increased breadth of neutralization commonly induced by 

polyvalent the approach, identification of relevant antigens is vital to the design of 

effective vaccines.  MTCT occurs in the presence of maternal NAbs.  Infant 

viruses isolated shortly after transmission are reportedly more resistant to 

neutralization by autologous maternal plasma than the concurrent maternal 

viruses (39, 204).  Maternal antibodies cross the placenta, peaking at delivery.  In 

the infant they may act as the sort of NAb prophylaxis shown to be protective in 

macaque vertical transmission models (50, 77).  Thus, escape from autologous 

maternal NAbs may be one of the factors underlying the selective bottleneck 

observed during MTCT.     
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The body of my dissertation describes and summarizes numerous 

additional differences between infant and maternal clones.  Therefore, infant 

rather than maternal HIV-1 env antigens may be most relevant to the design of 

vaccines for blocking MTCT.  However, the antigenicity of infant isolates has not 

been examined in detail nor compared with that of maternal env.   

To address this deficiency, we set up collaboration with Dr. Shan Lu, an 

expert in the field of HIV-1 vaccine development.  Dr. Lu’s lab has established a 

simple and effective implementation of the heterologous prime-boost strategy, 

the DNA prime-protein boost.  In this approach, immunizations with a DNA 

plasmid encoding antigenic genes are followed by immunizations with the 

purified proteins products of the antigenic genes (190, 193).  This approach is 

amiable to both single antigen (190) and polyvalent vaccines (193).  Utilizing this 

methodology the Lu lab has demonstrated protection against primary HIV-1 

isolates in macaques (141) and elicited broad neutralizing antibody responses in 

a human clinical trial (192).     

Together, we assessed the antigenicity and immunogenicity of select 

infant and maternal env clones from my cohort.  
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Results 

Antigen selection 

Utilizing previously determined sequence, neutralization and inhibition 

information, two pairs of maternal and infant env clones were selected from my 

clade B env panel to serve as immunogens in a DNA prime-protein boost vaccine 

regimen (Table A1.1).  All selected env expressed the GPGR V3 crown motif 

(Table 3.3) and exhibited well-conserved CD4 binding sites and neutralization 

domains (Table A1.1).  To investigate the effects of resistance on 

immunogenicity, clones that were relatively sensitive (P1031 H2 and M1002 T6) 

or resistant (P1046 C4 and M1007 Q6) to the monoclonal NAbs b12 and 2G12, 

and to sCD4 were selected (Table A1.1).  

Production of vaccine components and rabbit immunization 

In the Lu lab, gp120 subunits were PCR amplified from the selected env, 

cloned into a vaccine vector and the ability of the resultant constructs to properly 

express gp120 proteins was determined as previously described (191).  To 

investigate the immunogenicity of the selected gp120 clones, the Lu lab 

immunized four groups of New Zealand White rabbits using a DNA prime-protein 

boost regimen.  Each rabbit received three biweekly DNA immunizations and a 

protein boost one and two months following the last DNA prime (Table A1.2).  

Serum samples were obtained from the rabbits prior to the start of the regimen 

and on the day of, and two weeks following, each immunization.  
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Table A1.1:  Neutralization and inhibition sensitivity of selected env 

Clone ID 
NAb IC50 (µg/ml) Plasma  

IC50
a  

sCD4 IC50  
(µg/ml) 2F5 2G12 4E10 B12 

P1031 H2 6.9 0.5 0.6 <0.01 116 4.05 
M1002 T6 1.1 0.9 3.1 0.5 663 2.98 
P1046 C4 4.1 >20 4.8 >20 938 13.07 
M1007 Q6 5.5 >20 7.4 >20 311 15.92 

aIC50 in reciprocal dilutions of pooled heterologous plasma from HIV-1 positive donors 
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Table A1.2:  Rabbit immunization groups  
Group No. of 

Rabbits 
gp120  

Immunogen 
DNA prime Protein boost 

Route Dose No. Route Dose No. 
A 2 M1002-T6 Gene gun 36 µg 3 IM 100 µg 2 
B 2 P1046-C4 Gene gun 36 µg 3 IM 100 µg 2 
C 2 P1031-H2 Gene gun 36 µg 3 IM 100 µg 2 
D 2 M1007-Q6 Gene gun 36 µg 3 IM 100 µg 2 

IM, Intra Muscular.  Rabbit immunizations were performed by the Lu lab. 
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Antigenicity and immunogenicity assessment 

To determine if the vaccine constructs expressing the selected gp120 

clones could function as effective antigens, the induction of gp120-specific 

binding antibody responses in the immunized rabbits was assessed.  Following 

the DNA prime, high titers of gp120-specific antibodies against the autologous 

antigens were detected by ELISA in all immunized rabbits (Fig A1.1A).  Across 

all immunization groups, these titers were enhanced by the protein boost (Fig 

A1.1A).  The gp120-specific antibody responses in immunized rabbit sera were 

also assessed by Western blot analysis using the sera as the detection antibody 

against gp120 in the cell lysate and culture supernatant from 293T cell cultures 

transiently transfected by each of the four vaccine constructs.  Sera from each 

immunization group were able to bind the gp120 proteins.  Sera from rabbit R679 

(immunized with the M1007-Q6 construct), which recognized gp120 generated 

by each of the four vaccine constructs (Fig A1.1B), is representative of all 4 

immunization groups.    

 We next assessed the breadth and potency of the vaccine induced gp120-

specific neutralizing antibody responses.  Sera collected two weeks after the final 

protein injection were used by both our labs to neutralize panels of HIV-1 clade B 

env pseudotyped viruses.  The panel used by the Lu lab included env from two 

relatively neutralization sensitive viruses, each of the four clones used as 

immunogens and five unrelated primary isolates (Table A1.3).  Sera obtained 

prior to the start of the immunization regimen did not exhibit any gp120-specific  
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Fig A1.1: Induction of gp120 specific binding antibody responses.  
(A) gp120-specific antibody titers in sera of immunized rabbits 
measured by ELISA against the autologous gp120 antigens.  
Samples were obtained two weeks after the last of three DNA 
immunizations (grey) or the final protein boost (black).  Values 
shown are means of titers from each pair of rabbits with one 
standard deviation error bars.  (B)  Western blot of culture 
supernatants (S) and cell lysates (L) from 293T cells transiently 
transfected with the vaccine constructs.  Sera obtained from a 
rabbit (R679) immunized with the M1007-Q6 construct two weeks 
after completion of the immunization regimen was used as the 
detection antibody and is representative of all four immunization 
groups.  This work was performed in the Lu lab. 
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Table A1.3:  Induction of NAb by the immunization regimens 

Rabbits 

Immunogens relatively 
sensitive to b12, 2G12 

and sCD4 

Immunogens relatively 
resistant to b12, 2G12 and 

sCD4 

M1002-T6 P1031-H2 M1007-Q6 P1046-C4 

R663 R664 R670 R671 R678 R679 R668 R669 
Sensitive 
viruses 

SF162 1132 340 2764 514 172 1112 622 172 
NL4-3     21 61 63 21 

Vaccine 
constructs 

M1007-Q6    11 20  12  
P1046-C4     55 11 27  
M1002-T6     25    
P1031-H2     17    

Other 
primary 
isolates 

SS1196.1 49 51 49  49 135 257  
6535.3   11  15 21 13  

QH0692.42 74 52 10  46 50 120  
p6B33 20        

p6LN40   12  21 12 14  
Murine Leukemia Virus         

NAb titers > 1000 101 to 1000 10 to 100 < 10 
Data presented was generated by the Lu lab and is consistent with the results from our 
lab. 
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neutralization and none of the post immunization sera neutralized an MLV 

pseudotyped virus used as a non-specific toxicity control (Table A1.3).  Sera from 

each immunized rabbit exhibited neutralizing responses against the highly 

sensitive SF162 virus.  Neutralization activity against other viruses varied 

considerably both within and between immunization groups, but the responses 

from rabbits immunized with the M1007-Q6 and P1046-C4 constructs were 

markedly broader than those immunized with P1031-H2 and M1002-T6 (Table 

A1.3).  When the frequencies of the positive and negative NAb responses in 

rabbits immunized by each pair of constructs were compared, positive responses 

proved twice as frequent in those immunized with the resistant clones (p = 0.005) 

(Table A1.4). 
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Table A1.4:  Frequencies of NAb responses in paired immunization groups 
Rabbits vaccinated with:  Positive 

responses 
Negative       

responses 

Immunogens relatively sensitive to 
b12, 2G12 and sCD4 14 (32%) 30 (68%) 

Immunogens relatively resistant to 
b12, 2G12 and sCD4 27 (61%) 17 (39%) 

Data is presented as number of positive or negative responses (percent total).            
Chi square test: p = 0.005.  Table was generated by the Lu lab. 
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Discussion 

In collaboration with the Lu lab, we selected two pairs of maternal and 

infant env clones from my clade B panel to serve as immunogens in a DNA 

prime-protein boost vaccine regimen.  One pair of selected maternal and infant 

env was relatively more resistant than the other to the monoclonal Nabs b12 and 

2G12 and to sCD4.  All clones exhibited well-conserved CD4 binding sites and 

the prototypical clade B V3 crown motif.   

We initially assessed the induction of binding antibody responses in the 

immunized rabbits by ELISA and found that all produced high titers of gp120-

specific antibodies against the autologous antigens by the end of the DNA prime 

stage.  The levels achieved by the four groups differed by less than one log, 

indicating that the four clones were similarly antigenic.  Protein boost increased 

these titers by approximately a log, in agreement with previous heterologous 

prime-boost studies (190, 193).  We confirmed these finding using a Western-blot 

assay, detecting gp120-specific antibodies in sera from each immunization 

group.  In addition to autologous responses, rabbit sera contained antibodies 

capable of recognizing heterologous env.  Sera from a representative rabbit 

recognized env antigens encoded by each of the four vaccine constructs,   

validating the ability of the polyvalent vaccine approach to induce a broad Ab 

response against heterologous primary HIV-1 isolates.   

 While binding antibodies can play a protective role through induction of 

mechanisms such as Antibody-Dependent Cell-Mediated Cytotoxicity (98, 144, 
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185), neutralizing antibodies are essential to provide the sterilizing protection 

required for a fully effective vaccine.  Apparently successful induction of binding 

antibodies to a well characterized neutralization epitope may fail to show any 

neutralization activity (112).  We therefore assessed the breadth and potency of 

the gp120-specific neutralizing antibody responses induced by our vaccine 

regimen against a panel of HIV-1 clade B env pseudotyped viruses.  By the end 

of the immunization regimen, all rabbit sera could neutralize the highly sensitive 

SF162 virus and at least one other heterologous virus.  Further, each of the 11 

viruses in the panel could be neutralized by sera from at least one rabbit.  

Vaccine constructs consisting of several env clones have been shown to 

generate a broader response than each subunit alone (193).  Presumably a 

vaccine consisting of all four antigens used in this study would reliably neutralize 

all viruses in this panel. 

Interestingly, we observed significantly broader and more potent 

neutralization responses from rabbits immunized with the more b12, 2G12 and 

sCD4 resistant env clones.  Conversely, major differences in antigenicity and 

immunogenicity between maternal and infant clones were not detected within or 

between the two groups.   

Together, this preliminary data confirms the ability of the polyvalent 

vaccine approach, implemented via a heterologous prime-boost regimen, to 

induce broad and potent neutralizing antibody responses, and hints that the 

neutralization sensitivity of the env immunogens may affect the quality of the 
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response.  To further investigate this relationship we are collaborating with the Lu 

lab to immunize rabbits with vaccine constructs expressing immunogens from my 

clade C env panel.  
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Appendix II 

Role of endocytosis in HIV-1 entry 

Introduction 

In order for mammalian viruses to initiate infection, they must penetrate the 

plasma membrane of the target cell.  For enveloped viruses this requires the 

fusion of the viral and cell membranes.  Endocytosis is an obligatory part of the 

entry process for pH dependent viruses, such as influenza (142) and vesicular 

stomatitis virus (119), whose fusion proteins are activated by the acidic pH of 

endosomes (119, 179).  Conversely, pH independent viruses, which undergo 

fusion upon receptor binding without the need for an acidic activation step, are 

generally thought to fuse at the plasma membrane (101).   

HIV-1 is a pH independent (120, 180) enveloped virus.  Its entry process 

begins with the binding of the gp120 subunit of the envelope protein (Env) to the 

CD4 receptor on the target cell.  This results in a conformation change which 

exposes the hereto masked co-receptor binding site and allows Env binding to 

one of a number of chemokine receptors.  Co-receptor binding results in major 

conformational changes in the gp41 subunit of the Env, exposing an N-terminal 

hydrophobic peptide which inserts into the membrane of the target cell.  

Subsequent conformational changes in the gp41 subunit pull the cell and viral 

membranes together, resulting in the formation of a fusion pore, its expansion, 

and viral entry.  An overview of this model of the entry is shown in Figure 1.3B.  
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Since the HIV-1 Env does not require acidification for activation (120, 

180), unlike the case with pH dependent viruses, no clear requirement for 

endocytosis was apparent for HIV-1 entry.  Therefore, HIV-1 was thought to 

undergo fusion at the plasma membrane (116).  While endocytosis of HIV-1 has 

been observed, this was generally not considered to be a functional route of 

entry.  Based on experiments were the inhibition of endosomal, lysosomal and 

proteasomal function increased the infectivity of HIV-1, the internalized virions 

were believed to be trapped in the endocytic vesicles and degraded by the 

lysosome (54, 194).  In contrast to these findings, a study which used cells 

transfected with inducible dominant negative dynamin, a molecule essential for a 

clathrin-mediated endocytosis (31, 76), reported that endocytosis contributes to 

the productive entry of HIV-1 (30). 

The role of endocytosis in HIV-1 entry was recently re-visited in an elegant 

study utilizing real-time single particle tracking of labeled viruses (125).  The 

authors reported that complete HIV-1 fusion occurred only in endosomes while 

fusion at the membrane did not proceed past the lipid mixing step.  They further 

reported that, in concurrence with a previous study (30), this endocytosis was 

dynamin dependent.  These findings, which imply that pH independence does 

not necessarily remove the need for endocytosis, parallel reports of endocytosis 

utilization for entry by other pH independent viruses (86, 94). 

Understanding the mechanism of HIV-1 entry is basic to the rational 

design of therapies for preventing transmission.  For example, HIV-1 fusion 
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inhibitors such as T20 and C34 are not membrane permeable.  If HIV-1 fuses in 

endosomes rather than at the plasma membrane their potency would likely be 

attenuated.  Likewise, elucidation of the mechanisms underlying the enhanced 

entry kinetics of infant env clones reported in this manuscript requires the 

understanding of HIV-1 entry.  Additional work is required to interpret the 

seemingly contradictory data and determine the significance of endocytosis for 

HIV-1 entry.  To this end, I designed a system to test the effect of inhibition of 

dynamin-dependent endocytosis on the infectivity of primary isolates of HIV-1 

env.      
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Results 

As a pilot study into the requirement of dynamin-dependent endocytosis 

for HIV-1 entry, I investigated the effect of Dynasore, a well characterized 

reversible inhibitor of dynamin-dependent endocytosis (115), on HIV-1 infectivity.  

Oligomerization of dynamin is essential for clathrin-dependent coated vesicle 

budding during endocytosis (31, 76).  This self-assembly of dynamin structures 

utilizes GTP hydrolysis (46) and Dynasore, which is a membrane-permeable 

small molecule, inhibits dynamin oligomerization by interfering with its GTPase 

activity (115).  Treatment of cells with Dynasore reduces transferrin uptake, a 

commonly used monitor of endocytosis, in a dose dependent manner (115).  

Treatment with 80µM Dynasore blocks endocytosis at levels similar to that 

obtained by the over-expression of dominant-negative dynamin (31), which 

reduces transferrin uptake into HeLa cells by over 90% percent (115). 

I determined the effect of Dynasore on HIV-1 infectivity by pre-treating 

TZMbl cell monolayers with serial dilutions of Dynasore and infecting them with 

pseudoviruses expressing the clade B HIV-1 env described in the body of this 

work.  Parallel infections with pseudoviruses expressing the Vesicular Stomatitis 

Virus glycoprotein (VSV-G) served as a positive control for dynamin-dependent 

endocytosis (125, 183).  As prolonged inhibition of endocytosis is toxic to cells, 

150 minutes following infection the monolayers were washed and the media 

replaced.  To prevent further infection with virus that had not yet been 

endocytosed, the fresh media was supplemented with a 100% inhibitory dose of 
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the T20 fusion inhibitor.  Following a 48 hour incubation, the monolayers were 

fixed and infected cells visualized using the β-galactosidase readout.  For every 

clone tested, a parallel control infection was performed in the absence of 

Dynasore.       

 All HIV-1 env clones tested (n = 24) exhibited dose-response curves and 

IC50 values to Dynasore similar to those shown by the VSV-G pseudotyped 

control (Fig A2.1A).  Treatment with 80µM Dynasore on average reduced HIV-1 

infectivity by 88% as compared to un-inhibited controls; pseudoviruses displaying 

VSV-G were similarly inhibited (Fig A2.1B).  
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Fig A2.1: Viruses pseudotyped with HIV-1 env and VSV-G exhibit similar 
sensitivity to Dynasore.  (A) Dose-response curves to Dynasore exhibited 
by VSV-G and a representative HIV-1 env clone.  IC50 values are included 
in the legend.   Solid line = VSV-G, dashed = HIV-1 env.  (B) Reduction in 
pseudoviral titers by 80µM Dynasore as a percentage of un-inhibited 
control.  Error bar represents one standard deviation from the mean.  Data 
is pooled from three independent assays performed in duplicate (n = 24).  
The VSV-G control was run in duplicate in a single assay. Infections were 
performed in TZMbl cells.
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Discussion 

 The finding that pH independent HIV-1 requires dynamin-dependent 

endocytosis for entry (125) may be paradigm changing, but the mechanisms 

underlying this phenomena and its in-vivo significance are unclear.  A recent 

study did not find dose-dependent inhibition of HIV-1 by Dynasore and failed to 

observe significant inhibition even at the 80µM concentration during infection of 

human T cells (205), highlighting the urgent need to revisit the HIV-1 entry 

process.    

I designed a system to investigate the dependence of pseudoviruses 

displaying primary HIV-1 env on dynamin-dependent endocytosis for infectivity.  I 

utilized Dynasore to inhibit dynamin-dependent endocytosis and found that 

primary HIV-1 env exhibited dose-response relationships similar to those of 

pseudoviruses expressing the endocytosis dependent VSV-G.  At 80µM of 

Dynasore, which reduces endocytosis by over 90% (115), the infectivity of HIV-1 

env pseudotyped viruses decreased by an average of 88%.  This preliminary 

data suggests that primary HIV-1 isolates may utilize dynamin-dependent 

endocytosis for entry.  While further work is necessary to determine the 

mechanisms underlying this observation, the well characterized env panels 

described in this work may prove useful tools in this regard.   
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