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Abstract

Antenna modelling is an important tool for engineers and researchers in the field of telecom-

munications, as it allows for the design and optimisation of antennas in different scenarios

and for a variety of applications. However, conventional methods of antenna modelling can

be computationally expensive and time-consuming, which can limit the exploration of design

space and lead to the inaccurate or even failed in antenna design and optimisation.

With the rapid development of wireless communication technology, antenna design has

attracted extensive attention. As device for transmitting and receiving electromagnetic (EM)

signals, antenna has a significant impact on the performance of wireless communication sys-

tems. Over the past decade, various new antenna and analysis methods have been proposed.

Generally, the modelling and analysis of antenna are carried out in EM simulation software

such as Computer Simulation Technology (CST) Microwave Studio, High-Frequency Struc-

ture Simulator (HFSS), which can be used to model and simulate various kinds of antennas,

and the corresponding performance such as reflection coefficient, gain, radiation pattern and

impedance of antenna can be directly obtained through simulation. Unfortunately, modern

antenna design is more complicated because of the increasing number of design variables,

complex structures, and environmental factors. Parametric sweep is an important function

of EM simulation software that allows designers to get the information of an antenna under

different conditions, the time cost to run an EM simulation for individual candidate solution

varies from seconds to minutes, or even several hours. An antenna with complex structure

may require thousands of EM simulation to model, the cost in time and computational

resources are impractical and unacceptable for most designers and researchers.
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To address these challenges, machine learning (ML) methods have been developed

and applied to improve the efficiency and accuracy of antenna modelling. These methods

involve using ML algorithms to train models on data, which can then be used to predict the

performance of antennas for a given set of design variables. This thesis employs and combines

different ML-assisted antenna modelling methods to reduce time, cost, and computational

intensity in antenna design and accelerate the design process without compromising accuracy.

First, quick estimation can be performed using the linear regression (LR) method based

on limited data and computational resources to obtain guidance and check the feasibility

of an antenna design. Then one of the ANN-based methods can be selected for antenna

modelling and optimisation according to the antenna design complexity. These methods

can be combined into a systematic antenna design process for modern antenna design. This

set of processes can model and optimise antenna for different applications and scenarios

with broad ranges of design variables. Compared to EM simulation-based and conventional

ML-based antenna design methods. This process can perform accurate antenna modelling

using significantly reduced time and computational resources and eliminate unnecessary

costs in optimisation, fabrication and testing.

In the first part, a concrete embedded antenna is proposed to mitigate the space occupation

and aesthetic problems of indoor dense small cell deployment. The LR method is employed

to fast estimate the relationship between antenna performance (radiation efficiency, gain, and

input impedance) and embedding ambient (embedding depth and concrete dielectric constant)

since the EM simulation-based antenna modelling is time-consuming. The complex mutual

coupling between the antenna and the concrete leads to a limited amount of simulated data,

and LR can model and predict the performance parameters of the antenna with limited data

and a few computing resources. LR can also use limited resources to evaluate the feasibility

of antenna design before implementation and fabrication, which can reduce unnecessary

overhead and identify potential issues in the antenna. The findings of this study are beneficial

to antenna designers for indoor communication concrete embedding antenna design and

deployment, as well as communication-friendly building materials.



ix

In the second part, a heuristic algorithm-enhanced artificial neural network (ANN) is pro-

posed to model concrete embedded antenna. The utilisation of ANN can handle the complex

and non-linear relationship between inputs and outputs, and it can also make a prediction on

antenna performance when new design points are given. A global optimisation algorithm is

used to enhance ANN to eliminate local minima issues, and Bayesian regularisation (BR) is

employed to improve the network prediction accuracy at new design points. The network

accuracy and efficiency are higher than the conventional back-propagation ANN.

The third part proposes a multi-fidelity neural network for antenna modelling and op-

timisation. Two sources of simulated data are involved and combined to perform antenna

modelling with a large amount of cheap and inaccurate models and a small amount of ex-

pensive and accurate models. The correlation between two sources of data can be learned

adaptively by decomposing the correlation into linear and non-linear components. The

feasibility of the approach is validated by three antenna structures, the results show that this

method can make prediction for broad ranges of input parameters with satisfactory accuracy;

then the surrogate model is directly applied in the optimisation algorithm framework to

replace EM simulation to accelerate antenna optimisation procedure.
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Chapter 1

Introduction

1.1 Background

In 1864, British scientist James Maxwell predicted the existence of electromagnetic (EM)

waves and created Maxwell’s equations; thus a complete EM theory system was established.

Then the German physicist Hertz confirmed the existence of EM waves via physical experi-

ments. EM waves are a type of energy that travels through space in the form of oscillating

electric and magnetic field. These waves are one of the fundamental elements of wireless

communications, as EM waves carry information and are capable to be transmitted wirelessly

over long distances. According to the frequency or wavelength, EM waves can be classified

as radio waves, microwaves, infrared light, ultraviolet, visible light, X-rays, and gamma

rays. With the continuous development of science and technology, human understanding of

EM is also changing, and the application of EM waves is gradually proficient. The wireless

communication system is an essential application of EM waves. Wireless communication

refers to the transmission of data, voice, and video over a wireless network without physical

connections between transmitters and receivers. As the carrier in a wireless communication

system, and the EM waves fetch information between terminals, the convenience, mobility,
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and flexibility of EM waves make wireless communication increasingly popular. Currently,

wireless communication systems include a variety of technologies, such as cellular networks,

Wi-Fi, Bluetooth, satellite communication, etc., and these technologies rely on different

operation frequencies and modulation methods to fetch data efficiently and securely. Anten-

nas are essential components in modern communication systems, as they are the interface

between electronic circuitry and EM waves used to transmit and receive signals. Typically, an

antenna system consists of a transceiver, a transmission line, and an antenna. The transmitter

couples the alternating current (AC) signal containing information to the transmission line

and radiates the alternative EM field confined in the transmission line into the free space

through the transmitting antenna. The EM waves propagate in all directions as travelling

waves in free space. At the receiving antenna position, the plane travelling wave will be

received and converted into an AC signal, and finally processed at the receiving terminals.

In the whole process, the antenna is responsible for signal conversion. The signals on the

transmission line are converted into EM waves that can propagate freely, then the received

travelling wave signals are converted into AC signal for back-end processing at the receiving

antennas.

The essence of antenna design is that it can change the form of EM signals (AC on

the transmission line, EM waves in space) through a specific structure to radiate or receive

EM waves. In other words, a slight change in antenna geometries could interfere with the

pattern of EM signal propagation and radiation. For example, in wireless communication,

the receiving antennas are usually far away from the transmitted antennas and distributed in

different spatial orientations. However, the omnidirectional antenna energy radiation manner

does not always meet the actual wireless communication application in practice, antennas

should be carefully designed for specific applications.

Antenna modelling is a process of creating a mathematical representation of an antenna’s

behaviour. The constructed model can be used to simulate antenna performance under

various conditions, such as different frequencies, polarisations, and environmental situations.

Therefore, antenna modelling is the most crucial step for antenna design and development,

and it facilitates antenna optimisation to meet the required specifications.
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One of the advantages of antenna modelling is to predict antenna performance. Antenna

performance can be influenced by various factors, including the antenna’s physical character-

istics and other conditions (polarisation, frequency, and environment); using a mathematical

model that can represent antenna behaviour and performance at a specific frequency range,

the engineer can determine how well the antenna will perform and make any necessary

adjustments to optimise antenna performance. Secondly, antenna modelling can improve

antenna efficiency. The constructed models can be used to analyse the performance of an

existing antenna, using the simulation tools to model the antenna’s behaviour, engineers can

identify potential issues with the antenna (e.g., poor radiation pattern, impedance mismatch,

etc.). With the help of the modelling and analysis results, engineers can discover the root

cause of the issue and develop solutions to improve the antenna’s performance. Third,

antenna modelling can be used to analyse the antenna behaviour at different frequencies

range, the engineers can thus find out the suitable operation frequency for the antenna, then

ensure the wireless communication system meets the required specifications. Also, the

antenna modelling can give an inspection of an antenna’s behaviour and performance with

different fabricated materials, which facilitates the selection of materials as well as balances

the difficulties in fabrication. Last but not least, antenna modelling significantly reduces the

cost of antenna design and optimisation. The modelling results reveal the antenna behaviours

and performance under different conditions and also provide guidance for engineers to

identify areas where cost savings (time, money) can be made, such as size reduction without

compromising the antenna performance.

EM simulation is essential and reliable for antenna modelling since the ability to ac-

curately calculate the antenna performance under different conditions, the EM properties

such as radiation pattern, gain, and impedance can be obtained through EM simulation.

In addition, the EM simulation tools can provide visualised results that demonstrate the

relationship between the antenna performance and input factors (e.g., antenna shape, size,

fabricated materials). EM simulation tools use mathematical models and numerical methods

to compute and simulate the desired performance of an antenna. These tools enable engineers

to modify antenna shape, size, fabricated materials and environmental situations, and analyse
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antenna performance under this wide range of conditions without the need for physical

testing. With the help of EM simulation tools, the numerical results of an antenna under

different conditions can be obtained for constructing mathematical models.

In summary, antenna modelling is an essential process for designing and optimising

antennas for a variety of applications. EM simulation tools enable engineers to analyse the

performance of an antenna under different conditions in a virtual setting, allowing engineers

to modify antenna dimensions and identify mistakes in antenna design without conducting

physical fabrication and testing.

1.2 Problem and Motivation

EM simulation tools such as Computer Simulation Technology (CST) Microwave Studio,

High-Frequency Simulation Software (HFSS) and FEKO, are widely used methods for

antenna modelling that allow designers to obtain antenna performance parameters (e.g.,

reflection coefficient, gain, radiation pattern, and impedance) without expensive and time-

consuming prototype fabrication and testing. EM simulations are based on solving Maxwell’s

equations, which describe the behaviour of EM waves and the interactions between antennas

and surroundings. One of the main advantages of EM simulations is the ability to provide

physical insight into antenna performance, the visualised and numerical simulated results

such as radiation pattern, gain, impedance and bandwidth, etc. With the guidance of these

results, designers can efficiently design and optimise antenna performance for specific

applications. In addition, EM simulations can also evaluate the antenna performance in a

different environment and operating conditions, providing analysis into the impact of factors

such as temperature, humidity, conductivity, and nearby objects. These evaluations can be

crucial for antenna robustness and reliability in real-world environment operation. However,

EM simulation requires a lot of computing resources, time, storage space and advanced

EM knowledge. In addition, conventional EM field analysis methods such as the method of

moments (MoM) and the finite element method (FEM) consume much time due to a large

number of formula calculations.
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With the continuous progress of wireless communication technology, antenna design

has attracted widespread attention in radar systems, MIMO technology and other wireless

devices. As a component for sending and receiving EM signals, the antenna can significantly

affect the signal strength and quality. Over the past few years, various new antennas and

emerging technologies has emerged, such as implantable antenna [1]-[3], liquid antenna

[4] [5], dielectric embedded antenna [6] [7] and material integration antenna [8] [9]. The

increasing number of considered design variable and more complex antenna structure can

lead to a high computational overdue. Moreover, the modern antenna simulation not only

evaluates the radiator itself but the surroundings, such as environmental factors, connectors

and installation fixtures, or system-level tasks. Thus, the EM simulation could be a time-

consuming process.

ML has become increasingly popular in antenna modelling and design in the last decade

since it can learn from antenna simulated and measured data to accelerate the design and

optimisation process. A well-trained ML model can accurately predict antenna performance

in seconds, enabling designers evaluate antenna performance under a wide range of design

space using a relatively short time.

1.3 Thesis Contribution

In this thesis, the ML based antenna modelling methods are investigated and combined

as a systematic process to accelerate antenna design for different scenarios and different

complexity without compromising accuracy. Considering the complexity and fault tolerance

of modern antenna design, a quick estimation that can provide qualitative guidance and check

feasibility of antenna design using small amount of data and computational resources is

needed in the beginning. Then the antenna is modelled using ANN-based methods. Two

different methods based on enhanced ANN are proposed to design antennas accurately with

reduced time cost, different methods are selected according to the complexity of an antenna.

In the first part (Chapter 3), a concrete embedded antenna for indoor communication is

proposed to mitigate the space occupation and aesthetic problems of indoor dense cell
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deployment for the first time. A microstrip antenna with multiple layer configuration

operating at 3.5 GHz is embedded in a concrete wall for indoor communication. The

impact of embedding depth and concrete dielectric constant on antenna radiation efficiency,

gain, and input impedance are investigated. Simple empirical formulas are obtained using LR

method based on EM simulation. The LR model can give a prediction on new design point

in a second, which saves more than 50 hours to evaluate antenna performance variation in

new embedded ambient. The LR model can quickly estimate of antenna input characteristics

with relatively small data and low computational resources, and this method is very suitable

for testing the feasibility of antenna design and optimisation. The results of this work

provide good guidance to antenna designers and architects for concrete embedded antenna

deployment and communication-friendly building material selection.

In the second part (Chapter 4), a heuristic algorithm enhanced ANN is proposed to

model the concrete embedded antenna. The ANN model takes antenna embedded depth

and concrete dielectric constant as inputs and gives antenna radiation efficiency, gain and

input impedance as outputs. The particle swarm optimisation (PSO) is employed to search

the global optimal weights and bias for ANN, then Bayesian regularisation (BR) is used to

train the ANN to overcome the over-fitting issue. The modelling and generalisation errors of

enhanced ANN are 0.002% and 26.63%, respectively, which are better than the conventional

back-propagation neural network (BPNN) (0.13% and 63.83%) and LR method (45.62% and

222.07%). In addition, the model training time cost of the enhanced network is much lower

than BPNN, which is 848 iterations to 3084 iterations, and the time is 172 s to 583 s.

In Chapter 5, a multi-fidelity stacked neural network (MFSNN) is proposed to construct

a surrogate model for antenna modelling and optimisation. Multi-fidelity (MF) modelling

method is combined with ANN for the first time, which can significantly reduce the cost

of gathering initial training data for surrogate model construction, up to 90% time saving

is achieved in training data using EM simulation. Furthermore, the correlation between LF

and HF models can be learned adaptively and accurately by decomposing the correlation

into linear component and non-linear component. Three antenna examples are employed

to test the proposed method. The results indicate that the MFSNN can accurately perform
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antenna modelling with a reduced amount of HF training data points. The maximum training

and testing errors of MFSNN in antenna modelling using reduced amount are 0.034% and

1.64% for antenna 1 (2 design variables, 10% HF data), 0.95% and 8.84% for antenna 2 (8

design variables, 30% HF data), 0.78% and 4.18% for antenna 3 (4 design variables, 10% HF

data). The accuracy of MFSNN in antenna modelling is comparable to conventional ANN

trained using 100% HF, and the MFSNN can save 38%, 66.74% and 56.3% time cost than

EM-simulation based antenna optimisation for Antenna 1, Antenna 2 and Antenna 3; and

save 79.26%, 56.3% and 78.34% time cost than conventional ANN based optimisation for

Antenna 1, Antenna 2 and Antenna 3, without compromising model accuracy.

1.4 Thesis Organisation

The content of this thesis are arranged as follow: Chapter 2 is the literature review. The

numerical method in antenna modelling and analysis is first introduced. Then the reviews of

ML methods, the fundamental conception of three popular ML algorithms - ANN, support

vector machine (SVM), and Gaussian process regression (GPR) are introduced, their appli-

cation on antenna modelling, analysis and optimisation are reviewed. In the last part, the

techniques that can save time and cost are introduced, and the MF framework and design of

experiment (DoE) sampling methods are reviewed. Chapter 3 proposes a concrete embedded

antenna for indoor communication and the LR method is used to model the proposed antenna.

The antenna performance is investigated using full-wave EM simulation. The relationship

between embedding ambient and antenna performance parameters is modelled. Simple

empirical formulas are obtained that can fast predict the antenna’s performance for any given

embedding ambient. In Chapter 4, a heuristic algorithm enhanced ANN is proposed to

model the concrete embedded antenna. The ANN model takes antenna embedded depth and

concrete dielectric constant as inputs and gives antenna radiation efficiency, gain and input

impedance as outputs. In Chapter 5, a MFSNN is proposed to construct surrogate model

for antenna modelling and optimisation. Three antenna examples are employed to test the
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effectiveness of MFSNN, the modelling and optimisation results demonstrate the efficiency

and accuracy of MFSNN. Chapter 6 presents conclusion and future work.



Chapter 2

Literature Review

Overview
In this chapter, the literature reviews related to the ML method and machine learning-assisted

antenna modelling method to support the current work and future work. In the first part, a

brief review of numerical antenna analysis is presented. In the second part, an in-depth review

of ML is given. Its history of development and application scenarios are introduced, then the

three most popular ML methods - ANN, SVM and GPR are introduced, and the principles

of these methods are presented. After that, the ML-assisted antenna modelling method is

introduced. The reason why ML is popular and how ML is combined with antenna research

are illustrated. The application of ML methods including ANN, SVM and GPR on antenna

design and analysis are reviewed, and associated research works are given to demonstrate the

contribution of ML in antenna research. The last part introduces MF modelling approach and

DoE methods that can reduce the cost of antenna design.

2.1 Antenna Numerical Analysis

The antenna is the an essential component in wireless communication systems. Therefore

antenna analysis and design are crucial factors in improving the performance of wireless

communication systems. Antenna modelling aims to characterise the interaction of the EM

field with the antenna via solving Maxwell’s equation [10]. The introduction of computation
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electromagnetics (CEM) makes the practical EM problems analytically calculable, such as

radiation, scattering, and coupling. The CEM was employed in the antenna research field

and greatly affected the development of antenna analysis. With the help of CEM, antennas

with irregular shapes, complex structures, and complex configurations can be designed and

analysed. Various numerical methods of CEM can accurately resolve the antenna problem,

including MoM [11], Finite-difference time-domain (FDTD) [12] - [14] method and FEM

[15] [16]. From the 1980s, commercial CEM software for antenna design, analysis and

simulations emerged, such as HFSS, CST and FEKO, which can be directly used to analyse

and optimise antenna using these EM solvers.

These numerical methods have been successfully applied to antenna design and analysis.

In [18], a lossy circular microstrip antenna was analysed using MoM. In [19], a rectangular

monopole antenna with parasitic loop elements was analysed by MoM; its input impedance,

reflection coefficient, superficial current density distribution and radiation pattern were

calculated, and the results were compared with EM solver simulation results. MoM is

employed to investigate an indoor MIMO system performance for the first time in [20],

and the relationship between array spacing and MIMO channel capacity was demonstrated.

A body-worn UHF antenna system was designed using the FDTD method in [21], and

the complex coupling between antenna and the human body is modelled. In [22], the

FDTD method was employed to demonstrate that using the discontinuity-radiation concept

can make the long dielectric rod antenna efficient; the calculated results agreed well with

the experimental results. The FEM-based EM solver HFSS was employed to analyse a

small UWB microstrip-fed tap monopole antenna in [15]. Similarly, in [16], a print dipole

antenna integrated with an artificial magnetic conductor block was analysed, its radiation

characteristics were simulated, and the direct optimisation was implemented using HFSS

EM solver.

The CEM-based numerical methods and EM simulation provide physical insight into

the antenna, which is regarded as a rigorous way to design and evaluate antenna. However,

with the rapid development of modern wireless communications, antennas are getting more

complex, and the requirements and constraints for designing and optimising are the most
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concerns. The EM simulation will be computationally-intensive once more parameters

and design specifications are considered. A large amount of EM simulations are necessary

to obtain the variation of antenna characteristics with different design parameters so that

the parameter sweeping can continuously evaluate the antenna performance for different

geometries. As a result, the computational cost is the main challenge for antenna design and

optimisation, and the method that can efficiently design and optimise antennas is required to

address the issue.

2.2 Machine Learning

2.2.1 The History of Machine Learning

ML is a multi-disciplinary science covering probability theory, statistics and optimisation

theory, etc. Its fundamental principle is to learn from data and previous experience, then

automatically improve the performance of algorithms to achieve optimal performance [26].

Algorithms, experience and performance are the three essential elements of ML [27]. ML

acquires experience through data, uses algorithms to build up models, then trains and

evaluates models based on data. When the performance of the model meets the design

requirements, the model can be used for testing, and can generate the corresponding output

on the new input set. If the model does not meet the requirements, the model will continue

to evaluate the error and adjust hyper-parameters until the convergence condition is met.

The development process of ML can be roughly divided into three stages [28] [37], the

"Deduction" stage (1950s - 1960s), the "Knowledge" stage (1970s - 1980s) and the Machine

Learning period (1980s - now).

The 1950s to 1960s period was the initial stage of ML. The theoretical basis of this period

was the neural network (NN) model that appeared in the 1940s. At that time, the purpose

of ML was to enable the machine to deduce logically and make the machine intelligent.

Some artificial intelligence (AI) programs can solve and prove some famous mathematical

theorems. The most representative event during ’Deduction’ period was the halma playing
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program by A. Samuel [29]. However, in this period, due to the lack of stored data and

insufficient understanding of ML, the ML system was far away from the criteria of AI.

Then between the 1970s and mid-1980s, in this period, there was a rapid development in

ML. As a result, the ML system at this stage has acquired a large amount of knowledge and

data, and the learning methods and strategies have been continuously improved at the same

time. As a result, an "expert system" has been established based on a large-scale knowledge

reserve [30]. However, faced with the knowledge reserve, the "expert system" is still unable

to generalise the knowledge. Based on that, the "autonomous learning" conception was

proposed.

From the 1980s, ML was booming. In 1986, the famous back-propagation (BP) algorithm

was proposed by D. E. Rumelhart’s team [58], which significantly made the NN algorithm

popular again. Thus, the BP algorithm became one of the most widely used and frequently

used ML algorithms. In the mid-1990s, statistical learning [31] became mainstream, and the

representative algorithms were SVM [32] and kernel methods [33]. At the beginning of the

21st century, due to the increase in knowledge reserve and computer configuration, the ANN

became mainstream again and deep learning [34] was proposed and applied, the ML systems

performance in this stage has been dramatically improved. In addition, ML’s basic theory

and mathematical interpretability have been further strengthened and developed, so ML has

received widespread attention from many fields. Some well-known ML techniques, such as

pattern recognition [35], deep learning, biological information processing [36], etc., emerged

during this phase.

With the rapid development of computer technology, computers at present have the ability

to store and process a massive volume of data, which makes ML systems more accurate and

intelligent. On the other hand, the scope of ML applications is expanding to different areas,

such as autopilot [38], natural language processing [39], face recognition [40], and speech

recognition [41].
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Fig. 2.1 Learning map [25].

2.2.2 The Categories of Machine Learning

The category map of machine learning methods is presented in Fig. 2.1. The ML methods can

be briefly classified into four categories, which are supervised learning [42], semi-supervised

learning [43], unsupervised learning [44] and reinforcement learning [45].

In supervised learning, the input data is called "training data", and each set of training

data has its corresponding identification or results, such as "spam" or "non-spam" in an anti-

spam system, handwritten digit recognition. While building a model, supervised learning

establishes a learning process - the prediction result is compared with actual result in training

data, and continuously adjusts the model parameters until the accuracy of model reaches

the expectation. The common application scenarios of supervised learning are classification

problems and regression problems, and the typical algorithms are Logistic Regression [47]

and back-propagation NN [57].

In unsupervised learning, all the data is not specifically identified, and the model learns

to infer the intrinsic structure of the data. The typical application for unsupervised learning

is clustering, the Apriori algorithm [48] and K-means algorithm [49] are usually used.
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In semi-supervised learning, the input data is partially labelled and partially unlabelled.

The semi-supervised model can be used to make predictions. The model first needs to learn

the internal structure of the data in order to organise the data correctly so that it can make

accurate predictions. The application scenarios include classification and regression. The

algorithms for semi-supervised learning are derivative of commonly used supervised learning

algorithms, such as Graph Inference [50] and Laplacian SVM [51].

In reinforcement learning mode, the input data is used as model feedback. Unlike

supervised learning, the input data is only used as the criteria to check the correction of the

model. In the reinforcement learning procedure, the input data is directly fed back to the

model, which will adjust and update according to the input data. Typical applications of

reinforcement learning contain dynamic systems and robot control. For example, Q-Learning

[52] and Temporal difference learning [53] are extensively used in reinforcement learning.

The three most popular supervised learning algorithms in antenna design and analysis -

ANN, SVM, and GPR, will be reviewed in the following, their basic conception and principle

are introduced.

2.2.3 Artificial Neural Network

Conception and Principle

Artificial neural network (ANN) was proposed in the 1940s by Warren McCulloch and Walter

Pitts [78], and became one of the most popular ML algorithms. The ANN was invented based

on the principle of brain neuroscience. It mimics the information processing and storing

way of the human brain NN, which means this algorithm has the ability of learning and

generalization. ANN is composed of a large number of neurons, which processes information

by adjusting the weights and biases of the interconnection between neurons (as shown in

Fig. 2.2), where x1 to xn are the signals generated by the signal source or other neurons, wi

donates the ith weight, θ is the threshold (also known as bias), thus the relationship between
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Fig. 2.2 Diagram of simple NN with single neuron [78].

input x and output y could be expressed as:

y = f (
n

∑
i=1

wixi −θ), (2.1)

where y stands for the output of neuron, f is the activation function, wi is ith weight of

neural network, xi denotes ith point in input vector, and θ is the threshold of the neuron.

The activation function is used to introduce non-linear factors to the network and compute

the current neuron. Thus, the network could solve more complex problems properly. The

selection of activation functions is essential when ANN is constructed since the ANN

convergence speed and accuracy can be different when using different activation functions.

Here are some commonly used activation function [54] are presented in Fig. 2.3 to Fig. 2.5,

respectively:

• Sigmoid/ logistic function [55]:

g(x) =
1

1+ e−x , (2.2)

• Hyperbolic tangent function [56]:

tanh(x) =
ex − e−x

ex + e−x , (2.3)
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• Rectified liner unit function [56]:

ReLU(x) =

 0, x < 0

x, otherwise
(2.4)
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Fig. 2.3 Sigmoid activation function [55].
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Fig. 2.4 Hyperbolic tangent activation function [56].

ANN Training

In order to train the ANN, a feasible algorithm is required. The BP algorithm [57] [58] is

an extensively used gradient-based algorithm for ANN training. The main feature of BP

NN is forward propagation and error backpropagation. The input signal is processed layer

by layer from the input layer through the hidden layer to the output layer in the forwarding
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Fig. 2.5 ReLU activation function [56].

transmission of the signal. The neurons in each layer are only related to the output of

the previous layer. When the results of the output layer cannot meet the requirement, the

predicted results are backpropagated, and the weights and biases are adjusted according

to the gradient computation until the predicted output of ANN approximates the expected

output. Before using the BPNN for prediction or classification, the network needs to be

trained so that the network can map the relationship between input and output. The training

process of BPNN (shown in Fig. 2.6) can be summarised as the following steps:

(1) Network initialisation

Determine the topology of the network according to the complexity of the problem –

the input neuron and output neuron of the network. It includes the number of input layer

nodes n, the number of hidden layer nodes l, and output layer nodes m. The weights between

the input layer and hidden layer wi j, hidden layer and output layer w jk, and corresponding

biases a and b are initialised. Meanwhile, the relevant network parameters, such as activation

functions and learning rate, are determined. The weights and biases are generally initialised

to random numbers in the range of 0 to 1.

(2) Hidden layer output computation

Use the weight wi j and the bias a between the input layer and the hidden layer to calculate

the output H of the hidden layer:

Hi = f (
n

∑
i=1

wi jxi −a j), j = 1,2, ..., l. (2.5)
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(3) Network output computation

Use the output H of the hidden layer in step 2, plus with the weights, w jk and bias b

between the hidden layer and the output layer, the network output can be calculated as:

Ok =
l

∑
j=1

(H jw jk)−bk,k = 1,2, ...,m. (2.6)

(4) Error back propagation

The difference between the original data Y and the network output O is referred as the

prediction error of the network:

ek = Yk −Ok,k = 1,2, ...,m. (2.7)

(5) Update weights and biases

According to the error e calculated in the previous step, update the weights and biases in

the network.

wi j = wi j +ηH j(1−H j)xi

m

∑
k=1

w jkek, i = 1,2, ...,n; j = 1,2, ..., l (2.8)

w jk = w jk +ηH jek, j = 1,2, ..., l;k = 1,2, ...,m. (2.9)

a j = a j +ηH j(1−H j)xi

m

∑
k=1

w jkek, j = 1,2, ..., l, (2.10)

bk = bk + ek,k = 1,2, ...,m, (2.11)

where the η is the learning rate of neural network, the weights and biases will stop updating

until the termination conditions (e.g. target error, number of epoch) are met.
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Fig. 2.6 Back-propagation neural network example.

Strategies for Improving ANN Performance

Even though the ANN can approximate any continuous function with arbitrary complexity

with arbitrary accuracy [60], the local optimum and over-fitting issues are the main concerns

of the gradient-based algorithms [64].

Gradient descent (GD) search is the most widely used parameter optimisation method. In

this method, some initial values are selected as the initial point and the optimal parameters

are iteratively sought. In each iteration, the gradient of the objective function in the current

point is computed, and then the search direction is determined based on the gradient. For

example, since the negative gradient direction is the fastest descent direction, the algorithm

would search for the optimum along the negative gradient direction. Once the gradient of

the objective function at the current point is zero, the algorithm determines that the local

minimum has been reached, and the update amount will be zero, which indicates that the

iterative update of the parameters is stopped. It is can be observed that if the objective

function has only one local minimum, then the found local minimum is the global minimum.
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However, if there are multiple local minimums for the objective function, the algorithm

cannot guarantee that the found optimal solution is the global minimum. In practice, some

strategies are employed to escape the local minimum to reach the global minimum. The

optimisation such as PSO [64] [65], genetic algorithm (GA), stochastic gradient descent

(SGD) and simulated annealing algorithm (SA) are combined with ANN for escaping the

local minimum and the ANN performance can be significantly improved.

The over-fitting issue is another challenge, it is characterised by decreasing training errors

and increasing testing errors. There are some ways to prevent over-fitting: early stopping

[67], regularisation and dropout. Early stopping is employed to truncate the iteration epoch

to prevent over-fitting, stopping iteration before the model converges on the training data.

In order to obtain a well-performing NN, the algorithm will traverse the entire dataset over

many epochs. If the number of epochs is inadequate, the network may be under-fitting, and

vice versa, the too large number of epochs can lead to over-fitting. Early stopping aims to

solve the problem that the number of epochs needs to be manually set. In the early stopping

strategy, the data set is divided into training and testing sets. The training set is used to

compute gradients, update weights and biases, and the testing is used to estimate network

errors and generalisation capabilities. Once the training error decreases while the testing

error keeps increasing, the training is stopped, and the weights and bias of the smallest testing

error checkpoint are returned.

Regularisation is another commonly used solution to mitigate the over-fitting issue, It

adds a penalty term into the objective function to describe the complexity of the network,

such as the sum of the square of network weights and bias. The commonly used regularisation

methods are L1 regularisation [68] and L2 regularisation [69], the objective functions under

different regularisations are:

EL1 = λ
1
m

m

∑
k=1

ek +(1−λ )∑
i
∥wi∥1, (2.12)

where λ is the regularisation ratio, ek denotes to kth error, m is the total number of

calculated error, wi denotes to the ith weight in network. The L1 normalisation of network
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weights is considered in L1 regularisation, and the L1 regularisation is also known as Lasso

regularisation.

EL2 = λ
1
m

m

∑
k=1

ek +(1−λ )∑
i
∥wi∥2

2, (2.13)

where λ is the regularisation ratio, ek denotes to kth error, m is the total number of

calculated error, wi denotes to the ith weight in network. Different from L1 regularisa-

tion, L2 regularisation takes the square of Euclidean normalisation of network weights in

regularisation, and the L2 regularisation is also known as Ridge regularisation.

No dropout Dropout

Neuron

Dropped Neuron

Interconnection

Dropped interconnection

Fig. 2.7 Diagram of dropout [70].

Dropout is usually used during the neural network training process. It prevents over-

fitting via adjusting the construction of NN [70]. In a dropout operation, a random number

of neurons in the hidden layer are dropped during the training with a certain probability,

but the dropping is not the actual deletion. Instead, the activation function of these dropped

neurons is set to be zero so that the output of these selected neurons is zero, or these neurons

are disabled from being involved in the computation. By using dropout, at each iteration of

training, the topology of NN would be different. Thus the correlation among networks is

reduced.
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2.2.4 Support Vector Machine

SVM was proposed based on statistical learning theory (SLT) by Vapnik [61] at the 1990s,

which is widely popular in addressing classification problems [74]. Moreover, due to its

excellent generalization capability, the SVM has been extensively applied to many fields

(e.g. pattern recognition, data mining). The mathematical framework of SVM will be briefly

presented as follows.

Linearly separable problem

SVM was first applied to the classification problem. As shown in Fig. 2.8, the solid red

line can classify two different types of samples, and the two dashed lines pass through the

points that are closet to the samples and dashed lines are paralleled to each other, the distance

between two dashed lines is called the classification interval γ . The red line in Fig. 2.8 aims

to separate the two types of samples correctly, and the classification interval γ needs to be

maximised. Assuming that the normal vector of the three lines is w, and the expression

for two dashed lines are wT x+ b = 1 and wT x+ b = −1, for upper side and downside,

respectively. Thus, the equation of the red line can be known as wT x+b = 0. Furthermore,

the classification interval could be obtained as γ = 2
||w|| . In order to maintain the separable

state of the sample, it is necessary to consider constraints according to the specific problem

(yi(wxi + b)− 1 ≥ 0 for the case in Fig. 2.8). The optimisation problem is to find out a

hyperplane with a maximum margin for classification. In other words, the aim is to find the w

and b that satisfy equation (2.14), which makes γ max, which is expressed in equation (2.15). wTxi +b ≥ 1, yi = 1;

wTxi +b ≤−1, yi =−1.
(2.14)

max
2

||w||
,s.t.yi(wxi +b)≥ 1,(i = 1,2, ..., l). (2.15)
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Fig. 2.8 Support vector and margin [73].

Equation (2.15) can be rewritten as:

max
1
2
||w||2,s.t.yi(wxi +b)≥ 1,(i = 1,2, ..., l), (2.16)

Equation (2.16) could be eventually deducted using equation (2.14) and (2.15), and it is the

basic form of SVM.

Linearly inseparable problem

In practice, there may exist the problem that the samples are inseparable. In this case, it

is necessary to map the input vector to a high-dimensional feature space, and the optimal

classification hyperplane will be searched in this feature space. In this step, an appropriate

kernel function is selected to transfer the inseparable problem from the initial space to high-

dimensional feature space so that the problem is converted into a linearly separable problem.

The usage of kernel function substitutes the inner product operation in high-dimensional

space, which is K(xi,x j) = φ(xi) ·φ(x j). The kernel function is responsible for mapping the

input vector between spaces, and its usage can avoid the dimension curse. Fig. 2.9 shows the

kernel mapping between input space and high-dimensional space.

In some cases, the error may occur in sample classification for linearly inseparable

problems. Therefore, the error tolerance should be considered to prevent the problem from
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Fig. 2.9 Mapping between input space and high-dimensional space [73].

becoming unsolvable, and the slack variable ξi is added. In addition, for the misclassified

sample, a penalty term C is added. Thus, the optimisation problem is formulated as follows:

min
w,b

||w||2

2
+C

l

∑
i=1

ξi,s.t.yi[wxi +b]≥ 1−ξi,ξi ≥ (i = 1,2, ..., l). (2.17)

Support Vector Regression (SVR)

Given training data set D = [(x1,y1),(x2,y2), ...,(xm,ym)],xi,yi ∈ Rn, i = 1,2, ..., l, where xi

is the input data and yi the output data. A real-valued function f (x) = wT · φ(x) + b is

being searched in Rn according to the given training dataset, where the φ(x) is the vector

responsible for mapping the input vector into the high-dimensional feature space [74]. The

weight vector and bias are w and b, respectively. In this way, for any given input vector x,

the corresponding output can be inferred from the function f (x).

xO

y
𝑓𝑓 𝑥𝑥 + 𝜖𝜖

𝑓𝑓 𝑥𝑥 − 𝜖𝜖

𝑓𝑓 𝑥𝑥 = 𝜔𝜔T𝑥𝑥 + 𝑏𝑏

Fig. 2.10 Support vector regression diagram [73]
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In the regression problem, the error is calculated as the difference between the model

output f (x) and actual value y. When f (x) = y, the error equals 0. In SVR, the maximum

error tolerance between f (x) and y is assumed to be ε , as shown in Fig. 2.10. In other words,

an interval band with a width of 2ε is constructed using f (x) as the centre. The training

points located in the interval are not penalised, while the points that fall outside the boundary

are penalised. Hence, the regression problem can be formulated as follows:

min
w,b

1
2
||w||2 +C

m

∑
i=1

lε((wT ·φ(x)+b)− yi), (2.18)

where C is regularisation term, lε(·) is ε-insensitive loss function which expressed as:

lε(z) =

 0, |z| ≤ ε;

|z|− ε, otherwise.
(2.19)

In equation (2.18), the φ(xi) is defined by using kernel function K, the Gaussian kernels, or

known as radial basis function (RBF), is commonly used in mapping as [76]:

K(x,x′) = exp(−
(xk − x′k)

2

2σ2 ). (2.20)

The model is trained to find optimal w and b by minimising the equation (2.18). It is

noted that the error tolerance ε can significantly affect the model accuracy and sparsity. A

larger ε can lead to sparser solution [75].

2.2.5 Gaussian Process Regression

Gaussian process [114] (GP) is a collection of random variables, the number of variables in

this collection is finite, and all the variables are jointly Gaussian distributed. As a Gaussian

distribution can be specified by a mean vector and a covariance matrix, a GP can be uniquely

characterised using a mean function and a covariance function as:

f ∼ G P(m(x),k(x,x′)), (2.21)
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where x and x′ are the samples in the design space RN , N is the number of samples. m(x)

and k(x,x′) are the mean function and the co-variance function respectively. The co-variance

matrix stores the correlation between two samples, which is calculated using covariance

functions, some typical covariance functions are presented as following:

• squared exponential (SE) covariance function [71]:

k(x,x′) = σ
2
f exp(−

(xk − x′k)
2

2l2 ), (2.22)

where σ f and l are the hyper-parameters of the co-variance function. σ f is the scale amplitude

parameter, while l is the length-scale parameter.

• Periodic kernel covariance function:

k(x,x′) = σ
2
f exp(−

2sin2(π
(xk−x′k)

p )

2l2 ), (2.23)

where p is the period term, other terms have the same meaning as SE function.

• Local periodic (LP) covariance function [72]:

kLP(x,x′) = kSE(x,x′)× kPER(x,x′). (2.24)

In order to carry out the predictions at the new sample points X∗, the prior of zero mean

is assumed over the training samples and new samples, and the prior distribution could be

notated as:  y

y∗

∼ N (0,

 K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

). (2.25)

With the appropriated estimated hyper-parameters, we can calculated the posterior mean and

the variances of new sample points. The posterior mean is the prediction of the new sample

points and the posterior variance indicate the uncertainty of prediction. Then the predicted

mean m(X∗) and variance σ2(X∗) are given as:

m(X∗) = K(X∗,X)[K(X,X)]−1y, (2.26)
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and

σ
2(X∗) = K(X∗,X∗)−K(X∗,X)[K(X,X)]−1K(X,X∗), (2.27)

where K(X,X) is the co-variance matrix that evaluates the correlation between the points

in training samples, K(X,X∗) is the co-variance matrix between the training point and new

point of interest. X donates the training inputs and y is the training outputs. For computing

the prediction via (3) and (4), the hyper-parameters are estimated by minimising the negative

logarithm maximum likelihood (NLML) as:

log p(y|X,σ f , l) =−1
2
(n log2π + log |K|+ yTXy), (2.28)

where the X is the training inputs and the y is the target output. The GP model is characterised

with optimal mean function and covariance function after training. For any given input data,

the GP model can give corresponding prediction along with the uncertainty of the predicted

result.

2.3 Machine-Learning-Assisted Antenna Surrogate Mod-

elling Methods

With the increasing requirements for antenna performance in practical engineering, the

antenna structure becomes more and more complex. In the antenna design, for the antenna

with regular shapes, the expected antenna geometry can be obtained through the formula

calculation (e.g., transmission line theory formula). However, for the antenna with irregular

shapes and complex structures, it is necessary to build models often within the design space

through full-wave EM simulation. Although the parameter sweep is running to obtain the

optimal design, this process requires hundreds or even thousands of calculations, which is

computationally expensive. On the other hand, as the complexity of the antenna increases, the

relationship between antenna geometry and performance parameters is difficult to characterise

as analytic formulas. Since there are inherent complex non-linear relationships, the numerical

formulas can hardly be characterised.
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Introducing ML methods can significantly reduce the enormous computation overhead

and provide a feasible antenna analysis and design solution. In the past few decades, the

machine-learning-assisted method has been widely used in CEM, antenna, passive device

and circuit design, and many research achievements have been made. Since the 1980s, ML

methods have attempted to solve the problem of EM signal propagation. The combination

of ML methods and antenna design was proposed, and the efficiency and accuracy of ML

methods became the research focus. ML-assisted antenna design is to use full-wave EM

simulation to acquire the dataset, then train ML models with this dataset to capture the

non-linear mapping relationship between antenna performance parameters (e.g., reflection

coefficient, gain and axial ratio, etc.) and design geometries (e.g., patch length, width,

substrate thickness, etc.). Once the ML model is successfully trained, the model can be used

to evaluate the specific performance of a specific antenna. Compared with the full-wave

EM simulation evaluation, the evaluation time cost of ML model (within a second) is much

lower than full-wave EM simulation (usually takes minutes or even hours), and the accuracy

of the ML model is comparable to the full-wave EM simulation. ML methods have been

widely used in antenna research, including antenna modelling, analysis, synthesis, sensitivity

analysis and optimisation.

Three most popular ML methods contains ANN [79] - [98], SVM [99] - [108] and

GPR [114]-[123], the applications of these methods in antenna research are reviewed in the

following.

2.3.1 Artificial Neural Network for Antenna Modelling

ANN is one of the most well-known ML methods and it has been introduced to the EM

field and microwave engineering since the 1990s. In the late 1990s, ANN was introduced to

microstrip analysis [79] and design [80] [81], and the feasibility and efficiency of ANN in

antenna research are approved. In [79], the ANN was attempted to analyse the microstrip

antenna, and it found that, compared to the numerical methods, the ANN can generate an

analysis solution in a very short time. [80] used ANN in circular antenna design, the ANN

was adjusted after testing with different sizes of training data and testing data, and the network
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output agreed well with experiment results (the average error is less than 0.74%). A square-

patch antenna problem is addressed using ANN in [81], the patch length is computed using

ANN under the given substrate dielectric constant, thickness and antenna dominant-mode

resonant frequency and the network parameters were optimised by trial and error way.

The ANN capability in addressing the non-linear and high-dimensional problem was

preliminarily validated. The ANN started being used systematically in antenna synthesis

and analysis (as shown in Fig. 2.9). [82] and [83] used ANN to calculate antenna input

impedance, and the network predictions were comparable to the measured data. The antenna

synthesis model was demonstrated in detail in [84], the antenna synthesis and analysis

problem formulation was given, and a rectangular microstrip antenna was used to verify the

model; different types of neural networks were used, and each synthesis ANN accuracy was

reported above 90%. In [85], synthesis and analysis ANN models are trained with proper

training algorithms, the accuracies were generally improved. In [86], the ANN synthesis

model was first introduced in analysing single-feed circularly polarized microstrip antennas.

A 3-layer ANN synthesis model was built, and different ANN topologies were tested and

compared. The synthesis model’s training and testing errors were reported to be less than 5%,

comparable to the EM simulation and measurement results. A more general work has been

produced in [89], ANN-based synthesis and analysis models for rectangular, circular and

equilateral triangular microstrip patch antennas. The return-loss characteristics of different

microstrip patch antennas have been reported, the average errors were limited within 2%.
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Fig. 2.11 Synthesis and analysis ANN model for antenna design [89]

The training strategies and algorithm can also significantly affect the accuracy and

efficiency. The main drawbacks of the gradient-based algorithm are the slow convergence

ratio and local minima issues. In addition, the over-fitting issue and generalisation capability
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are the main concerns for ANN. For improving the ANN performance, the optimisation

algorithms such as PSO [64] and GA [66] to address the local minima issue.

The utilisation of algorithms gradually becomes an essential aspect of antenna research.

In [87], the Gaussian parametric model cooperated with ANN in the broadband antenna

design problem. The Gaussian parametric model was used in the first step to obtaining

the antenna impedance characteristics. Then these characteristics were taken as the inputs

of ANN. The ANN was used to approximate the non-linear correlation between Gaussian

parameters and antenna parameters, the results showed that this training method is efficient,

accurate and robust. Up to seven training algorithms have been used in [88], the ANNs were

trained to estimate the dimension of rectangular microstrip antennas, the RBF network was

demonstrated to be optimal among other algorithms and the accuracy agreed well with the

simulation results. [96] proposed a hybrid ML model that can map antenna performance

characteristics onto the antenna design geometries. 10 different ML methods were combined

to improve the generalisation capability of the ML model for analysing pin-fed patch antenna,

the feasibility and efficiency were demonstrated, and the hybrid method can efficiently cross-

validate the results. An ANN-based synthesis model for C-shaped antenna analysis using BR

was presented in [98], and high efficiency and accuracy were achieved.

Besides antenna element analysis and design, ANN was also applied to reflectarray

antenna analysis and modelling [90] - [93]. The utilisation of ANN accelerates the design and

analysis of the reflectarray antenna, and high efficiency and accuracy were obtained. Recently,

an ANN-based multi-parameter model [95] was developed to facilitate the procedure of

antenna modelling, and it was shown that the results predicted by ANN agree well with

the EM simulation. A consensus deep neural network [96] was proposed to reduce the

uncertainty of single ANN and accelerate the antenna optimisation. In [97] an efficient

knowledge-based ANN was proposed to design a circularly polarised lens antenna with

multi-objectives.
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2.3.2 Support Vector Machine for Antenna Modelling

The excellent generalisation capability of SVM makes it popular in antenna design. Further-

more, the amount of training data for SVM is small, thus the time cost in the training set

generation by full-wave EM simulation is shrinking.

SVM is quite popular in antenna elements modelling. In [99], different types of millimetre

wave (mmWave) transition structures, the modelling efficiency and accuracy were excellent

compared to the EM simulation results. A SVR-based synthesis and analysis model was built

in [100] in order to efficiently design microstrip lines, the model accuracy and efficiency

were demonstrated to be comparable to ANN. In [101], SVR is introduced to model the

characterisations of rectangular microstrip antenna, the performance parameters, including

resonant frequency, operation bandwidth and input impedance, were modelled, and the results

of SVR were compared with ANN’s. [102] used SVM to accelerate the design procedure

of rectangular patch antenna element and rectangular patch antenna array, the relationship

between antenna geometries and performance values was explored, and the predicted results

agreed with the simulation data. In addition, attempts have been made to model antenna

elements with complex structures. A Bayesian SVR is employed to efficiently and accurately

model planar antenna input characteristics in [103]. In [104], slotted microstrip antennas with

irregular ground plane structures were characterised using SVM. The model can compute the

radiation pattern at a specific resonant frequency. In [105], a broadband SIW cavity-backed

slot antenna that operates at mmWave frequency band was modelled efficiently.

The SVM is also popular in modelling reflectarray unit cells. [106] used the SVM

framework to characterise an array antenna cell unit, the radiation pattern was efficiently

characterised and the result was compared with the MoM computed result, efficiency and

accuracy were both demonstrated. In [107], the SVM was used to compute the reflection

coefficient matrix of a dual-polarised reflectarray unit cell. The SVM models were built for

different incident angles, for given design geometries, the models could accurately predict

the real part, imaginary part and magnitude of the reflection coefficient. Three different types

of space communication reflectarray antennas were accurately modelled in [108], and the

cross-polar optimisation was implemented with SVM to significantly reduce the computation



32 Literature Review

time without compromising accuracy. A multi-frequency optimisation method based on

SVM was proposed in [109], a very large shaped-beam reflectarray was fast modelled with

high accuracy, then the antenna was optimised based on different frequency points. In [110],

SVR is used to design a triple-band antenna, the model achieved an comparable accuracy

to EM simulation using significantly reduced time. In [111], surrogate model based on

SVR are constructed to investigate the impact of use of angles of incidence on reflectarray

design; this method provides faster analysis manner without compromising accuracy. A

graphene reconfigurable reflectarray is modelled using SVR in [112], the SVR accuracy

is demonstrated to be better than RBF network and comparable to EM simulation. An

SVR-enabled optimisation strategy is proposed in [113] to improve the cross-polarisation

performance of reflectarray, and the over 9dB reduction in the maximum cross-polarisation

level is achieved.

2.3.3 Gaussian Process Regression for Antenna Modelling

From the past decade, the GPR has received extensive attention in antenna research. Unlike

ANN and SVM, the GPR can provide the uncertainty of the predicted results when given new

inputs. GPR requires fewer training data patterns to train and has excellent generalisation

capability, and these characteristics make it popular in the antenna research field. GPR was

introduced to model the input characteristics of circularly polarised wave (CPW) fed slot

antenna [114], planar dual-band microstrip patch antenna [115] [118], ultra-wideband (UWB)

antenna [116] and compact microstrip antenna [122], the results showed the high accuracy

that was comparable to EM simulation and numerically computed results. [119] investigate

the relationship between substrate ground size and gain pattern of microstrip antennas using

GPR. In [117], a two-stage method based on GPR to efficiently and accurately modelling

and optimise antenna was proposed. Similarly, a multistage training strategy based on GPR

was proposed in [121] and applied to antenna modelling and optimisation. GPR was used to

construct an accurate surrogate model that can substitute EM simulation computation in [120]

and [123], the time cost in optimising antenna structure was significantly reduced. Recently,

a multi-branch method based on GPR is proposed in [124] to balance exploitation and
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exploration in antenna design. A two-stage modelling with domain confinement is proposed

in [125], and significantly reduced CPU cost is obtained compared to the conventional GPR

method. An expedited variable-resolution method based on GPR is proposed in [126], and

up to 76% time saving is obtained compared to conventional ML methods.

2.3.4 Summary

ML-assisted antenna modelling is a rapidly growing field with the potential to revolutionise

the way antennas are designed and optimised. This approach has several advantages over

traditional methods such as MoM, FTDT and FEM, including the ability to handle complex

and non-linear relationships, optimise multiple performance metrics simultaneously, and

make a prediction with limited data. However, despite these advantages, several challenges

and limitations should be addressed to fully realised the potential of ML in antenna modelling.

One of the critical challenges is the shortage in ML algorithm interpretability. The

numerical methods provide detailed information about the behaviour of an antenna and

parameterise the specific performance using equations. While the ML surrogate model

only provides the prediction of antenna performance of an antenna corresponding to the

specific geometry, it is challenging to understand why ML surrogate models give certain

predictions and to make necessary adjustments to the design. In addition, there also be a lack

of transparency in the ML algorithm used in antenna modelling. The utilisation of black-box

techniques makes it difficult to understand the underlying processes and parameters used by

the algorithm. Thus, the accuracy of ML surrogate model is difficult to verify and validate.

The most essential limitation to using ML in antenna modelling is the large amount of

data required to train an accurate ML surrogate. Antenna simulation and experimental data

are scarce due to the computational intensity of EM simulation, so considerable dataset

acquisition can be time-consuming and expensive, which can lead to inaccurate surrogate

models, as the models that constructed using limited data cannot accurately represent the

behaviour of antennas in all scenarios.
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2.4 Efficient Model Construction Techniques

2.4.1 Multi-fidelity Modelling Method

Multi-fidelity (MF) modelling method can significantly reduce the cost of collecting initial

training data for surrogate model construction by leveraging both low-fidelity (LF) and

high-fidelity (HF) data [127] [128]. LF data is inaccurate and easy to obtain, its quantity is

sufficient. HF data is accurate and expensive to obtain, and the amount is small. The MF

method was first mentioned in [127] as "multi-level", the conception of autoregressive was

proposed. In [128], the surrogate modelling and optimisation in the MF framework were

demonstrated in detail, the methodology based on GPR was explained and its effectiveness

was tested. [127] and [128] provided solid theoretical foundations for its application. The MF

method can address both low-dimensional and high-dimensional problems with linear or non-

linear correlations, and it was later applied to various fields, such as aerospace [129] [130],

electromagnetism [131]-[133] and fluid mechanics [134] [135], etc., and its effectiveness

and performance were extensively recognised. In some other work, the MF method was

researched from a mathematical aspect [136]-[138].

The MF modelling approach is popular in antenna design since it can significantly

accelerate data generation speed using EM simulation. Although the conventional antenna

design depends on the data generated via HF EM simulation, the time consumption is high,

so the dataset size is limited. The MF modelling framework generates the EM simulation

data using different EM models.

In antenna research, MF modelling is conceived by reducing the mesh density of the

antenna model in the EM solver platform. In addition, other options that could create an LF

model are possibly including:

• Modelling metals with the perfect electric conductor (PEC);

• Ignoring dielectric dispersion and losses;

• Neglecting the metallisation thickness of patches and strips.

• Using discrete port instead of waveguide port.
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The possible simplifications accelerate the LF model’s simulation time, resulting in a 10

- 30 times faster simulation period than the HF model. As a result, the accuracy of the LF

model is inadequate. However, it should be able to generally characterise the features, such

as the trend and shape of antenna performance that the HF model presents.

The combination of GPR and multi-fidelity modelling is popular in antenna design. The

MF modelling method is introduced and combined with GPR in [139], the MF approach is

demonstrated to be efficient in antenna design without compromising accuracy. In [140],

the correlation between LF and HF was exploited, and co-Kriging was used to learn this

correlation to efficiently and accurately model the antenna. In [117], a two-stage modelling

method based on the MF framework and GPR was proposed. In the first stage, the LF

data is used to build the GP model, and its output is then used as an auxiliary dataset. The

auxiliary and HF data were used together to train the GP model at the second stage. The final

model can give accurate predictions for antenna performance and can be used in place of EM

simulation for antenna optimisation. [141] and [142] used MF framework in multi-objective

antenna optimisation, the efficiency was promoted without the loss of accuracy. Recently,

a concept of variable-resolution approach has been proposed based on the MF approach to

efficiently build a surrogate model and accelerate the antenna design process [126] [143],

remarkable CPU resources are saved compared to the situation while using conventional

modelling methods.

One advantage of MF-based ML antenna modelling method is that it allows for combining

data from different simulation models and experimental data to create a more comprehensive

and accurate dataset. As a result, the MF framework can improve the accuracy of the ML

models by reducing the required data and improving the generalisation of ML models. In

addition, MF based ML models facilitate a faster optimisation of antenna designs. With

a more efficient model, it becomes possible to explore a larger design space in reducing

time, leading to better designs in a relatively shorter time. However, the complexity of

creating an effective MF model is high since the construction of the MF model requires a

thorough understanding of the sources of data and the interdependencies between them. In

addition, the data selection, weight and combination can affect the modelling accuracy and
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efficiency. Another limitation of the MF modelling method is the risk of error propagation

when using LF data. Although the accuracy of the ML model depends on the accuracy of

training data, when LF data is used to approximate HF data, the errors between LF and

HF data can propagate and impact the model accuracy, which may lead to unreliable and

inaccurate models.

2.4.2 Design of Experiment Sampling Methods

The quality of sampling candidates can significantly affect the surrogate accuracy and

generalisation capability. The conventional DoE method, such as Fractional factorial design,

central composite design, and Monte Carlo sampling (MCS), can only arrange the sample at

a specific corner or even at the repeated place [146], thus the sampling could not traverse

the parameter space, the surrogate model cannot accurately model the target antenna. Latin

Hypercube Sampling (LHS) is a commonly used sampling strategy in antenna modelling to

explore the parameter space of the antenna design efficiently. The utilisation of LHS reduces

the number of EM simulations required to achieve accuracy, and it helps to identify the most

critical design parameters that have the most significant impact on antenna performance,

enabling better optimisation manner of antenna design.

To address this issue, a sampling method that can globally fill the design space [147] is

needed to promote the quality of the model.Latin hypercube sampling (LHS) is a popular

sampling strategy for computationally demanding modelling because it can extract a relatively

small sample from a large amount of information that contains variate uncertainty, characters

and sensitivity [148]. LHS tends to sample in the whole parameter space, the whole space is

stratified with equal probability and the data is randomly sampled in each interval without

replacement [149]. LHS is extensively used to further reduce the number of sample points

for model construction [117] [140] [141] [142] [144] [145], a multi-zone LHS is proposed

in [152], which can effectively allocate samples with uniformity.

In [150] and [151], the heuristic Latin hypercube sampling (HLHS) is proposed, which

aims to address the issue that the optimal variables of practical antenna design have a low

probability located at the extreme edge of parameter space. It can further reduce the number
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Fig. 2.12 Heuristic Latin hypercube sampling [150]

of sampled points. In this method, K-means clustering [49] is employed to improve the

uniformity of sampling and further reduce the sampled points for EM simulation. A two-step

sample is considered, LHS is firstly used to fill up the design space, then K-means clustering

is applied to the previously sampled points to get a smaller amount of sample points, as

shown in Fig. 2.12, where blue dots are generated by LHS and red dots are final samples.

However, the sample boundary will shrink as the number of dimensions increases, as shown

in Fig. 2.13, indicating poor uniformity and randomness of samples, leading to inaccurate

surrogate construction.

2.5 Summary

ML-based antenna modelling methods have gained popularity in the last decade due to

their ability to analyse complex datasets and generate accurate predictions. ML is a data-

driven approach that can handle complex and large datasets, and ML can help to identify

the correlation between different design parameters that conventional methods would miss.

An essential advantage is that the ML method can reduce the time cost and computational

resource requirement, accelerating the process of antenna design. However, ML model

requires a large amount of data to train to ensure the model’s accuracy and generalisation

capability, and training with large dataset requires a significant amount of computational
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Fig. 2.13 Heuristic Latin hypercube sampling at high dimension

resources. Furthermore, the model may not accurately predict the antenna performance once

the training data does not represent the actual operating conditions or with low uniformity.

In addition, the antenna design with a large number of considered design parameters can

be computationally expensive, and the data generation and model training can also be

time-consuming, particularly for complex antenna designs. Currently, combinations of

various algorithms are considered in most current research, including ML, evolutionary, and

differential algorithms, to achieve efficiency and accuracy in antenna design.

DoE is a statistical approach that can be used to efficiently and effectively explore the

design space in antenna design. An appropriate sampling method reduces the number of

simulations required to achieve accurate results, and it helps identify the most critical design

parameters that impact antenna performance. In addition, DoE can reveal the correlations

between design parameters, and the candidates’ distribution reflects the sampling quality.

However, some limitations arise that a priori knowledge of the design space may not always

be available or definable. Another potential issue is the number of dimensions in the design

space, too few sample points can result in a sparse representation in the design space, which

is the culprit of inaccurate model construction. While too much sample can lead to a high
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computational budget. Last but not least, DoE cannot guarantee that the sampled points are

optimal for model construction, the sampling depends on the initial point and the algorithm

used to optimise the design.

The MF approach uses data from varying levels of fidelity to improve the overall perfor-

mance of models or systems. As a result, MF allows faster and more efficient exploration of

the design space and vastly reduces the time cost and computational intensity in simulation

and data generation. In this case, sufficient data can be obtained using the MF approach.

However, the insufficient accuracy of LF models can lead to inaccurate models and subopti-

mal designs. The transformation from HF to LF should keep consistent to ensure data quality.

Another limitation is the risk of error propagation caused by LF data usage, which impacts

model accuracy and system design.



Chapter 3

Empirical Formulas for Performance

Prediction of Concrete Embedded

Antenna

Overview
Ultra-dense small cell deployment is regarded as the most promising way to meet the

traffic demand, the deploying small cells densely in buildings is anticipated to improve

throughput in the fifth-generation (5G) wireless networks [153]. Particularly the communica-

tion capacity crunch problem is manifest in the indoor environment since a large amount of

business takes place indoors. Network densification is a promising technology to address

the above problem, and deploying small cells densely in buildings is anticipated to improve

the throughput of 5G cellular communication [154]. However, deploying small cells with a

number of antennas or antenna arrays will occupy large space which affects the usage of a

building. Moreover, indoor small cells may cause aesthetic problems to house appearance. A

feasible solution to mitigate these negative effects is to integrate antennas with the building

materials, for example, embedding antennas into concrete walls.

So far, most research on concrete embedded antennas are focused on data and power

transmission in wireless sensor network embedded in concrete to perform structural health

monitoring [155] [156]. A compact and robust patch antenna for wireless monitoring
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radiation efficiency, gain, input resistance and input reactance are difficult to compute due to

the complex coupling between the antenna and concrete.

In Fig. 3.1, the considered antenna was designed in [163] and optimised to operate at

3.5 GHz, which is the indoor communication frequency for 5G networks. The antenna

is completely embedded into the concrete slab. For the antenna unit, a microstrip patch

is etched on a Rogers RT5880, with relative permittivity of 2.2 and tanδ = 0.0009. Two

protective facesheets of Roger 3003 (εr = 3 and tanδ = 0.001) are employed to the top and

bottom of the antenna structure. A porous honeycomb structure is added above the antenna,

by doing this, the direct contact between metallisation and concrete can be avoided. Thus the

antenna could preserve its electrical and mechanical robustness in the embedding ambient.

The electrical properties and thickness for each layer of the antenna are shown in Table 3.1,

and the dimensional parameter of the patch is provided in Table 3.2. The total size of the

antenna system results in 60 × 60 × 11.5 mm3, and assuming that the concrete slab with

nominal relative permittivity of εr = 4, tanδ = 0.03 and permeability µ = 1. The comparisons

of the antenna reflection coefficient before and after embedding are plotted in Fig. 3.3,

which shows that the existence of concrete reduces the amplitude of the antenna reflection

coefficient. Considering the concrete dielectric constant, the antenna reflection coefficients

with different given concrete dielectric constants are presented in Fig. 3.4. It is observed that

the larger dielectric constant results in reduced S11 amplitude and shifting centre frequency

of the antenna.

Table 3.1 Electrical properties and thickness for each layer of antenna

Layer Material Dielectric constant tanδ Thickness (mm)
Upper facesheet Roger 3003 3 0.001 d1 = 0.25

Honeycomb Air 1 0 d2 = 10
Substrate Roger 5880 2.2 0.0009 d3 = 1

Lower facesheet Roger 3003 3 0.001 d4 = 0.25

Table 3.2 Dimensional parameters of the proposed antenna

Parameter A W L x y w l
Value(mm) 60 33.85 28.39 8 2.69 3.12 23.805



44 Empirical Formulas for Performance Prediction of Concrete Embedded Antenna

μ, εr, tanδ

d

200 mm

1
0
0
0
 m

m

concrete

slab

embedded 

antenna

h
o
n
ey

co
m

b

p
at

ch
 a

n
te

n
n
a

lo
w

er
 s

h
ee

t

to
p
 s

h
ee

t

d1

d2

d3

d4

A

A
W

L

x y

l

g
ro

u
n
d

Fig. 3.1 Overview of system model geometry.

3.2 Empirical Analysis for Performance Parameters

In this section, the performance of the concrete embedded antenna is fitted using the LR

method. The impact of the embedding ambient on antenna multi-parameters has been fitted

based on the full-wave EM simulation results of the antenna. The embedding depth and the

concrete dielectric constant on antenna radiation efficiency, gain, input resistance and input

reactance are investigated. Some of the simple formulas are individually obtained using

LR. The results in this section provide fundamental knowledge and guidance to antenna

designers and architects for concrete embedding deployment and communication-friendly

building materials selection. In order to develop mathematical expression to estimate the

antenna performance as a function of embedding depth and dielectric constant, the continuous

parameters (embedding depth and dielectric constant) are considered, and dimensions are

fixed.

Radiation efficiency is one of the most important parameters of antenna performance.

The scale of antenna loss characterises it, thus it is able to indicate the feasibility of the

antenna system in the concrete structure and reflect the amount of power that the antenna

system can radiate in the concrete structure. After being buried or embedded, the antenna’s
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Fig. 3.2 Schematic of antenna unit.

efficiency is particularly affected due to the interaction with concrete, which can lead to the

variation of gain. Gain is an essential concern of antenna performance and it characterises

the strength of an antenna to transmit and receive the signal in a specific direction, which

directly determines the quality of wireless communication. Inappropriate embedding can

severely degrade an antenna’s radiation efficiency and gain. Fig. 3.5 and Fig. 3.6 show the

simulation results of radiation efficiency ηrad and gain G vary against embedding depth d

and concrete dielectric constant εr, respectively. It is noted that the increase of d makes ηrad

and G decrease in a fluctuation, while the increasing εr leads to the decline of ηrad and G.

The input impedance of an antenna is normally determined by antenna configuration,

operation frequency and ambient environment. Here we consider the effects of embedding

depth and dielectric constant of concrete on the input impedance of the antenna. The input

impedance Zin consists of input resistance Rin and input reactance Xin, which can be written

as:

Zin = Rin + jXin. (3.1)

The variations of Rin and Xin are shown in Fig. 3.7 and Fig. 3.8, respectively. Both Rin

and Xin appear to be a damped oscillation with the increase of embedded depth. In addition,

the increasing dielectric constant of concrete εr leads to decreasing amplitude in the input

resistance Rin but increasing Xin.
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Fig. 3.3 Simulated |S11| of the antenna in freespace and inside concrete slab of 1000 × 1000
× 200 mm3, with nominal εr = 4 and tanδ = 0.03.

In order to obtain a fast and straightforward prediction of the performances of concrete

embedded antenna, empirical formulas are fitted out from the above-simulated results, where

the embedding depth d is measured in meters, and the dielectric constant of concrete εr is

a dimensionless parameter. Since the radiation efficiency ηrad decreases in a fluctuation

with the increase of the embedding depth, the relationship between ηrad and d is formulated

as a linear decreasing function superposed with a damping sinusoidal function, and ηrad is

measure in percentage (%):

ηrad = A1(εr)expB1(εr)d +sin[C1(εr)d]+D1(εr)[d +E1(εr)]. (3.2)

Also, gain G could be formulated in the same form as ηrad because of the linear relation-

ship G = D×ηrad, and G is measured in dBi and given as:

G = A2(εr)expB2(εr)d +sin[C2(εr)d]+D2(εr)[d +E2(εr)]. (3.3)

In formula (3.2), A1, B1, C1, D1 and E1 are undetermined coefficients which are functions

of εr. By LR, formulas of ηrad for the different dielectric constants of concrete are listed in
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Fig. 3.4 Simulated |S11| with different concrete permittivity (εr = 4, 6, 9) for the antenna in
the frequency band of interest.

Table 3.3 Formulas of radiation efficiency for different dielectric constants

εr Regression formulation
4 ηrad = 11.79e−27.52d sin(297.70d)−152.00 · (d −0.30)
5 ηrad = 12.97e−26.33d sin(338.10d)−149.00 · (d −0.27)
6 ηrad = 14.59e−25.98d sin(372.60d)−146.20 · (d −0.26)
7 ηrad = 16.06e−24.30d sin(404.10d)−145.20 · (d −0.25)
8 ηrad = 17.35e−23.79d sin(433.20d)−143.50 · (d −0.24)
9 ηrad = 18.15e−22.37d sin(461.10d)−142.40 · (d −0.23)

Table 3.3. After a careful inspection of the results in Table 3.3, the coefficient in formula

(3.2) can be formulated as a linear function of the dielectric constant of concrete. The LR for

the five coefficients in (3.2) are shown in Fig. 3.9, which demonstrate the high accuracy of

the linear fitting. The fitted formulas fort the five coefficients in (3.2) are listed in Table 3.4.

Substituting the results in Table 3.4 into (3.2), the empirical formula of ηrad as a function of

the embedding depth d and the dielectric constant of concrete εr can be written as:

ηrad = (1.33εr +6.52)exp(εr−31.56)d +sin[(32.39εr +173.90)d]

+ (1.87εr −158.50)[d +(1.30×10−2
εr −0.34)](%).

(3.4)
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Fig. 3.5 Simulated radiation efficiency ηrad against embedded depth and concrete dielectric
constant.

Table 3.4 Linear fitting formulas for coefficients in equation (3.2)

ε Formulation
A1 A1 = 1.33εr +6.52
B1 B1 = εr −31.56
C1 C1 = 32.39εr +173.90
D1 D1 = 1.87εr −158.50
E1 E1 = 1.30×10−2εr −0.34

Using the same procedure, the formula of antenna gain G as a function the embedding

depth d and the dielectric constant of concrete εr is written as (measured in dBi):

G = (0.533εr −0.89)exp(1.47εr−32.75)d +sin[(22.09εr +250.80)d]

+ (−1.43εr −9.98)[d +(0.05εr −0.54)](dBi).
(3.5)

As the input resistance and the input reactance oscillated damply with the embedding

depth, they can be modelled by a sinusoidal function with attenuated amplitude and both are

measured in Ohm (Ω):

Rin = A3(εr)+B3(εr)expC3(εr)d cos[D3(εr)d +E3(εr)], (3.6)
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Fig. 3.6 Simulated gain G against embedded depth and concrete dielectric constant.

Xin = A4(εr)+B4(εr)expC4(εr)d cos[D4(εr)d +E4(εr)]. (3.7)

Following the same fitting procedure, the formulas of the input resistance Rin and the

Xin for different dielectric constants are listed in Table 3.5 and Table 3.6. Coefficients in

formulas (3.8) and (3.9) can be determined by linear fitting from results in Table 3.5 and

Table 3.6, via the same procedure as for radiation efficiency. The final empirical formulas of

Rin and Xin as function of the embedding depth d and the dielectric constant of concrete εr

are:

Rin = (−2.23εr +40.13)+(0.42εr +10.60)exp(−0.20εr−18.58)d cos[(29.67εr +174.90)d

+(−0.04εr +6.56)],
(3.8)

Xin = (0.76εr −6.16)+(0.65εr +10.52)exp(−0.36εr−17.94)d cos[(29.35εr +175.50)d

+(−0.02εr +8.13)].
(3.9)
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Fig. 3.7 Simulated input resistance Rin against embedded depth and concrete dielectric
constant.

Table 3.5 Formulas of resistance for different dielectric constants

ε Regression formulation
4 Rin = 32.01+12.14e−19.34d cos(289.4d +6.417)
5 Rin = 28.43+12.68e−19.68d cos(324.5d +6.343)
6 Rin = 26.64+13.21e−19.77d cos(356.3d +6.327)
7 Rin = 23.98+16.74e−20.05d cos(385.5d +6.274)
8 Rin = 22.22+14.05e−20.18d cos(412.8d +6.243)
9 Rin = 20.68+14.15e−20.42d cos(438.3d +6.215)

The fitted result of antenna gain G and input reactance Xin are presented in Fig. 3.10 and

Fig. 3.11, respectively. The gain of the proposed antenna decrease in a fluctuating manner

with the increasing of embedding depth d, since a larger d introduces more absorption loss

by the concrete. The fluctuation is caused by the interference of multiple reflection inside the

concrete slab. The local maximum of gain occurs once the multiple reflection is in phase. It

is worth noting that the fluctuation period is approximately equal to half-wavelength in the

concrete. The Xin oscillates with gradually decaying amplitudes as d increases, as it is shown

in Fig. 3.8. The concrete slab can be modelled as a lossy transmission line, so the variation

of Xin against d is similar to the reactance fluctuation along a transmission line.
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Fig. 3.8 Simulated input reactance Xin against embedded depth and concrete dielectric
constant.

Table 3.6 Formulas of reactance for different dielectric constants

ε Regression formulation
4 Xin =−2.97+13.04e−1.92d cos(28.86d +8.04)
5 Xin =−1.99+13.71e−1.98d cos(32.35d +8.02)
6 Xin =−1.12+14.48e−2.02d cos(35.51d +8.01)
7 Xin =−0.43+15.18e−2.07d cos(38.42d +7.98)
8 Xin = 0.06+15.65e−2.09d cos(41.06d +7.95)
9 Xin = 0.37+15.89e−2.11d cos(43.62d +7.93)

3.3 Discussion

It can be observed from the fitted results that the radiation efficiency and gain of the proposed

concrete embedded antenna decrease in a fluctuating manner with increasing embedded

depth since deeper embedded depth introduces more absorption loss by the concrete. The

interference of multiple reflections inside the concrete slab causes the fluctuation. The local

maximum of gain occurs when the multiple reflections are in phase. It is worth noting that the

fluctuation period is approximately equal to half-wavelength in the concrete. The wavelength
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Fig. 3.9 Linear regression for the five coefficient in formula (3.2).

in concrete is calculated by equation (3.10):

λ =
λ0√

εr
, (3.10)

where λ0 is the wavelength in free space. In addition, the radiation efficiency and gain

decrease with increasing dielectric constant of concrete, which indicates concrete with lower

dielectric constant is beneficial to radiation. The fitted result of gain is shown in Fig. 3.10,

which is helpful for selecting optimal embedded depth and dielectric constant to achieve

peak gain.

The input impedance oscillates with gradually decaying amplitude as embedded depth

increases, and the fitted result of reactance is shown in Fig. 3.11. The concrete slab can be

modelled as a lossy transmission line, so the variation of input impedance against embedded

depth is similar to the impedance fluctuation along transmission line. Reflection coefficient

of the antenna is determined by input impedance through the following equation:

Γ =
Zin −Z0

Zin +Z0
, (3.11)
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Fig. 3.10 Fitted gain G against embedding depth and concrete dielectric constant.

Fig. 3.11 Fitted input reactance Xin against embedding depth and concrete dielectric constant

where Z0 is the characteristic impedance of feed line. With the empirical formulas fitted out

in last section, reflection coefficient can be easily and fast predicted.

Comparisons between the fitted and simulated results are shown in Fig. 3.12, in which

the fitted results agree with simulated results well. The fitted formulas can characterise

the antenna’s radiation efficiency, gain, input resistance and input reactance using given

embedding depth and concrete dielectric constant. In order to validate the formulas, a new

dataset is used. The considered embedding depth d is sampled with step width of 0.004
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Fig. 3.12 Modelling results comparison between regression results and CST response.

meters in the range from 0.001 meter to 0.189 meter, and the concrete dielectric constant is

set to be 4.5. The generalisation result is shown in Fig. 3.13.

Table 3.7 Regression model errors1 for different antenna performance parameter

Objectives ηrad G Rin Xin
Modelling 78.69% 49.32% 29.11% 25.34%

Generalisation 414.6% 124.45% 314.69% 34.52%
1 Measured in NMSE

In addition, the LR model saves considerable time in estimating variations in antenna

performance parameters. The EM simulation-based method takes more than an hour to

run an individual simulation, so evaluating new design points can be time-consuming. In

the generalisation capability test stage, the LR method saves more than 50 hours to predict

the variations of desired performance parameters under different embedding ambient, even

though the generalisation accuracy is not good.

LR is easy to understand and interpret, the coefficients of the equation provide information

about the variation of a specific antenna parameter as considered design variable changing.

The LR method requires a small amount of data and low computational resources to train.

Fitted formulas can quickly estimate the relationship between desired antenna performance
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Fig. 3.13 Generalisation results comparison between regression results and CST response.

parameters and design variables using a limited dataset and small computational resources.

However, LR’s modeling accuracy needs to be improved, and the formulas show limited

generalisation capability when the new design point is given. In addition, the LR model

has limited power in handling multiple input variables, as well as multiple outputs (antenna

performance parameters).

3.4 Summary

A sandwiched microstrip antenna is embedded into a concrete wall for indoor wireless

communication. Antenna performances are investigated with varying embedded depth and

dielectric constant of concrete. It is found that the radiation efficiency and gain decrease in

fluctuation with increasing embedded depth, and the input impedance displays a damped

periodical oscillation with embedded depth. Larger concrete dielectric constant leads to

smaller radiation efficiency and gain. Both embedded depth and dielectric constant have a

significant effect on antenna performance. LR method is used to fit out simple empirical

formulas for fast performance prediction of concrete embedded antenna. The LR models give

predicted curves that can reveal the variation of antenna specific performance parameters
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under different embedding ambients. Considerable time saving is achieved when the estima-

tion of antenna performance on new design points is needed. Even though the modelling and

generalisation accuracy could be much better, the results in this work are helpful for concrete

embedded antenna deployment and communication-friendly building materials selection. In

addition, this method can also helpful to check the feasibility of modern antenna design for

other applications and scenarios.



Chapter 4

Heuristic Algorithm Enhanced Artificial

Neural Network Based Antenna

Performance Modelling

Overview

ANN has already been recognised as a feasible tool for microwave modelling and

simulation in recent years [164], which can learn and solve complex and non-linear problems

relatively quickly. To a certain extent, ANN could be used as a surrogate model that

substitutes the computationally intensive EM simulation solver. By far, ANN has been

successfully applied to various antenna applications, such as antenna optimisation [95] [121]

and antenna analysis and synthesis [86]. In [165], the ANN-based models were presented

to compute the resonant frequency of the antenna with lower error. Generally, the gradient-

based training algorithm, such as the BP algorithm, is used in the ANN training process.

However, the slow convergence ratio and local optimum issues are the main drawbacks of

gradient-based algorithm [166]. As a result, the optimisation algorithm such as particle

swarm optimisation (PSO) [167] and genetic algorithm (GA) [168] are combined with ANN

and can significantly improve the performance of ANN. On the other hand, the over-fitting

issue and generalisation capability are the main concerns for the ANN model. In order to
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improve the accuracy of ANN, the early-stopping strategy and Bayesian Regularisation (BR)

[169] are introduced to address these issues, which prevents training from occurring and

effectively improves the generalisation capability of the network.

In the present work, ANN is utilised to compute and predict the performance of a concrete

embedded antenna for indoor communications. A hybrid ANN model with PSO, BP and BR

(PSO-BRNN) and a classic backpropagation NN (BPNN) are developed for the computation

and prediction. The performance of PSO-BRNN in terms of modelling and generalisation

errors is compared with the LR method and BPNN.

4.1 Antenna System Model

A structurally integrated antenna with a multi-layer configuration mentioned in Chapter 3 is

selected because of its excellent mechanical and electrical performance. The antenna is fully

embedded in a solid concrete slab, as shown in Fig. 4.1, and the concrete has a dimension

of 1000mm×1000mm×200mm. The embedding depth d of the antenna is measured as

the distance between the top concrete-air interface and the top surface of the antenna. The

effect embedding depth d and concrete dielectric constant εr on antenna performance will

be investigated. Thus other electrical property, such as loss tangent, is fixed to 0.03 (tanσ =

0.03). The proposed antenna is optimised to operate at 3.5 GHz, and its geometries are kept

intact. The antenna unit is sandwiched among a lower facesheet (LF), a honeycomb structure,

and an upper facesheet (UF) for better electrical and mechanical characteristics in the concrete

wall. The complex relationship between antenna embedding ambient (embedding depth and

concrete dielectric constant) and antenna performance parameters (radiation efficiency, gain,

input resistance and reactance) using ANN.

4.2 Artificial Neural Network

ANN is developed in the last few decades and has been extensively applied in the engineering

and science field due to its ability to learn the relationship between inputs and outputs in a
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Fig. 4.1 Antenna model geometry. The parameters of antenna unit are A=60 mm, W=33.85
mm, L=28.39 mm, x=8 mm, y=2.69 mm, w=3.12 mm, and l=23.805 mm.

fast and flexible way. An ANN normally consists of three components, the input layer and

output layer in the first and the last layer, and the rest is hidden layer(s). Each neuron j in the

ith hidden layer sums up all inputs x j by multiplying weights wi j.

y j = f (∑
i

wi jx j)+bi, (4.1)

where f (.) is the activation function (e. g. sigmoid function, hyperbolic tangent, Relu

and radial basis function etc.), which can introduce non-linear factor to solve problem that

linear models cannot solve. wi j stands for the jth weight in the ith layer. x j denotes jth input

sample in input vector, bi is bias vector in ith layer.

4.2.1 ANN Architecture

In this work, ANN is utilised to compute and predict the concrete embedded antenna’s

performance proposed in Chapter 3. The PSO is employed to search the global optimal

weights and biases for ANN for faster and more efficient computation and prediction. The BR
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is used in the model training stage in order to overcome over-fitting issue. For comparison, a

conventional BPNN based on a GD algorithm is developed as the reference, and its network

parameters (topology, learning rate) are the same as PSO-BRNN for a reasonable comparison.

…
 …

d

εr

ηrad

G

Rin

Xin

Input

Output
Bias

Bias

Hidden layer

Fig. 4.2 Architecture of neural network model

For the concerned input variables, the antenna embedding depth d and concrete dielectric

constant εr are selected, while the antenna’s radiation efficiency ηrad, gain G, input resistance

Rin and input reactance Xin are considered as outputs. The suggested network architecture

consists of the hidden layer (the number of neurons and layer are adjusted), two input neurons

(for d and εr) and four output neurons (for ηrad, G, Rin and Xin), the diagram of ANN is

shown in Fig. 4.2. The number of hidden layers and neuron are adjusted, all the neurons are

fully connected to the output layer that gives the desired values of antenna performance. The

activation function used in the hidden layer is tangent sigmoid (equation (4.2)), while the

simple linear function is used in the output layer.

y = tansig(x) =
2

1+ exp−2x −1. (4.2)

Given a data set D = [x j,y j]
T , which consists of inputs vector x j and outputs vector

y j, a supervised non-linear regression task is going to be solved by ANN. The relationship
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between the inputs vector and the outputs vector could be written as:

y j = f (x j), (4.3)

where the corresponding inputs vector and outputs vector of ANN model are:

x j = [d,εr]
T, (4.4)

y j = [ηrad,G,Rin,Xin]
T. (4.5)

4.2.2 ANN Construction and Data Preparing

The range of inputs is 0.001 meters to 0.189 meters with a step width of 0.001 meters for

the embedding depth d, and 4 to 9 with a step width of 1 for the concrete dielectric constant

εr. The data set for ANN training is generated via the same CST model in Chapter 3 and is

shown in Fig. 4.2, every single variable with a length of 1134. For balancing the scale of

all variables and obtaining accurate prediction, all the obtained data have been normalised

between 0 and 1 using equation (4.6), since it can avoid the error caused by a different order

of magnitude.

Xnorm =
x j −min(x j)

max(x j)−min(x j)
. (4.6)

The data set D is used for ANN training stage. Due to the utilisation of BR, there is

no validation data involved in model training. All the ANN training and optimisations are

performed suing MATLAB 2020b on an Intel Xeon W2135 3.70 GHz machine with 32 GB

RAM.
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4.3 ANN Training

4.3.1 PSO and ANN

The conventional ANN utilises the gradient-based method to train generally, and the conver-

gence of ANN strongly depends on the initial guess of weights and bias. OThe BP algorithm

is a well-known training method for neural networks, it is based on the GD algorithm. Hence,

the initial point of weights and bias is essential for the BP training. If the weights and bias are

not initialised properly, the results are likely to get stuck in a local optimum and consequently,

the solution is not the best.

PSO is a random search algorithm based on group cooperation developed by emulating

birds’ foraging behavior. An effective evolutionary algorithm can find the global maximum

or minimum of the objective function. In this work, the mean square error (MSE) of the

neural network is considered as the evaluated fitness in PSO, which is calculated as:

E =
1
N

N

∑
1

k

∑
1
(ŷ j − y j)

2, (4.7)

where ŷ j is the network outputs vector, y j is the outputs vector of data set D. N is the total

number of data, k is the total number of output. In the present work, the N and k are 1134 and

4, respectively. Equation (4.13) is the objective function that needs to be optimised in PSO.

Since the neural network learning process is mainly to update the weights and biases, thus

the location of the particles in PSO corresponds to the values of all weights and biases in the

network. E is taken as the fitness function of the PSO algorithm. All the weights and biases

are randomly initialised in the range of 0 to 1, and then these values are adjusted by the PSO

algorithm until the global minimum of the fitness function is found. In each iteration, the

fitness function of each particle is calculated. The corresponding position Pi and velocity Vi

are updated according to the calculated value of the fitness function, personal best pbest and

global best gbest, the updated regulations for particles are:

Vi = ωVi + c1φ1(pbest −Pi)+ c2φ2(gbest −Pi), (4.8)
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Pi = Pi +Vi, (4.9)

where c1 and c2 are acceleration coefficients, φ1 and φ2 are random and positive number with

uniform distribution ranged between 0 and 1, pbest is the personal best position of particle,

and gbest is the global optimum position of particle. ω is the inertial weight, the linear decline

weight (LDW) strategy is used to manipulate ω for the optimum solution search. The larger

ω facilitates global searching, while the smaller ω is beneficial to precise local searching.

The LDW strategy is expressed as:

ω = ωmax −
t × (ωmax −ωmin)

tmax
, (4.10)

where ωmax is the maximum inertial weight, ωmin is the minimum inertial weights, t is

current iteration, and tmax is the maximum iteration of PSO.

In the beginning, the ANN is built with a specific topology. Thus the dimension of a

particle can be determined. For this work, the dimension of each particle equals the total

number of weights and biases in the network. All the weights and biases in this network

are going to be optimised by the PSO algorithm. 500 particles are employed and the

computation iterates 700 times for searching the global optimum solution. Firstly, the number

of the particle is selected. The particle positions and velocities are randomly initialised,

and each particle i is characterised by its position vector Xi and velocity Vi. The position

boundary [−Xmax, Xmax], velocity boundary [−Vmax, Vmax], inertial weight range [wmin,

wmax], acceleration coefficients c1 and c2, and the maximum iteration are defined, and these

parameters are presented in Table 4.1.

In each iteration of PSO, the value of the fitness function of an individual particle is

calculated, and the velocity and position of all particles are updated using the regulation in

equation (4.8) and equation (4.9). Once the optimisation criteria meet, the PSO iteration

terminates. gbest stores the global optimum solution for the network weights and bias, then

the gbest is reshaped and assigned according to the topology of network which is prepared to

be trained.
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Table 4.1 PSO parameters

Parameter Value
Number of particle 700
Position boundary [-1,1]
Velocity boundary [-0.8,0.8]

Inertial weight [0.2,1]
Learning factor c1 2
Learning factor c2 2
Maximum iteration 1000

4.3.2 Bayesian Regularisation and ANN

BR is used to mitigate the potential over-fitting issue that may occur in the ANN training

process. The over-fitting and over-training can lead to the loss of regression accuracy and gen-

eralisation of the network.To overcome the over-fitting problem, the BR adds regularisation

term to the objective function as:

F = βED +αEw, (4.11)

where the F is the objective function after introducing BR, ED is the sum of squared errors

of the network, Ew = 1
m ∑

m
i=1 w2

i is the sum squared errors of the weights in the network, m is

the total number of weights. α and β are the hyper-parameters that need to be estimated and

tuned in the training process. Network weights w are regarded as random variables and its

density function is written as:

P(w|D,α,β ,M) =
P(D|w,β ,M)P(w|α,M)

P(D|α,β ,M)
, (4.12)

where D represents the dataset, and M is the ANN topology information (dimension of

inputs and outputs, number of hidden layers and neuron in hidden layer); P(w|D,α,β ,M) is

the posterior distribution of ANN weights, P(D|w,β ,M) is the likelihood function represents

the training data occurrence probability with given weights, P(w|α,M) is the prior density

of weights before data is fed. The BR algorithm is explained in detail in [169]. In general,

all the noise in data is assumed to be Gaussian additive noise. With this assumption, the
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Fig. 4.3 The training process of PSO-BRNN.

probability density function of weights in equation (4.11) could be estimated. Then the

hyper-parameters α and β are determined by solving the the Hessian matrix of F at the

minimum point. Gauss-Newton approximation is used to solve Hessian matrix while the

Levenburg-Marquardt (LM) training algorithm is employed to search the minimum point, the

training process terminates once the training goal is met. The flow chart of BR is presented

in Fig. 4.3, and the summary of the major step for particle swarm optimisation and Bayesian

regularisation enhanced neural network (PSO-BRNN) training is shown in Fig. 4.4.



66
Heuristic Algorithm Enhanced Artificial Neural Network Based Antenna Performance

Modelling

StartCode weights and bias as 
particles

Determine the number of 
initial weights and bias

Initialise weights and bias in 
ANN

ANN training error as fitness 
value

Find pbest and gbest

Update the particle velocities 
and positions using (4.8) (4.9)

Calculate the fitness of 
particles using ANN 

feedforward computation 

Update pbest and gbest

Minimum 
fitness?

No

Initialise particles with 
random positions and 

velocities

Yes

Calculate the training 
errors ED

Calculate fitness value using 
ANN feedforward 

computation 

Evaluate errors

NoTraining goal 
meets?

End
Yes

Obtain optimal weights and 
bias from PSO (in gbest)

Update ANN weights and 
bias using gradient 
descent algorithm

Calculate MSE of weights Ew

Fig. 4.4 The training process of PSO-BRNN.

4.4 Results

PSO is used for the ANN learning process, and weights and biases are adjusted to reach the

minimum error between the ANN response and actual values. The training performance of

PSO is compared with a BPNN, and the convergence and regression accuracy comparisons

are exhibited. Fig. 4.5 compares PSO and BP algorithms in terms of convergence rate. It

can be observed that PSO performs better than the BP algorithm. PSO converges faster than

BP algorithm, and the iteration is terminated with a lower mean square error (MSE). The

normalised mean square error (NMSE) is calculated in equation (4.13). The training error
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Fig. 4.5 Comparison of convergence between PSO and BP algorithm.

and time cost are illustrated in Table 4.2. It shows that the error of PSO-BRNN is much lower

than BPNN, with 0.002% to 0.13%. In addition, by applying the PSO and BR, the iteration

times of convergence are lower than BPNN, thus the result in the reduction of training time

of PSO-BRNN (172 seconds) than BPNN (583 seconds).

NMSE =
1
N

NLF

∑
n=1

|ŷ− y|2, (4.13)

Fig. 4.6 presents the antenna performance prediction results of PSO-BRNN and BPNN

with the actual values as reference. It can be observed that the learning accuracy of PSO-

BRNN is better than the BPNN, the BPNN cannot map the fluctuation as detailed as PSO-

BRNN while the embedding depth increases. This problem is caused by the local minima

issue, once a network is trained with GD-based algorithm, the local minima is likely to

be considered the best result by the network, so the training terminates. Therefore the

error between network estimation and the actual value cannot be further minimised, then

the weights and biases in the network stop adjusting and maintain in a plateau. While the

PSO-BRNN is trained with optimum initialisation of weights and bias, it can map the slight

fluctuation of the antenna performance, indicating the learning ability of PSO-BRNN is

better.
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Fig. 4.6 Training performance comparison between BRNN and BPNN

The generalisation capability is essential for networks, and the network performance is

mainly measured by its generalisation capability. For testing the generalisation capability of

the trained ANN model, data other than that used in the training process is introduced, which

is the testing dataset. The selected embedding depth d and concrete dielectric constant εr are

exclusive from the dataset D, the d is sampled with a step width of 0.004 meters and ranged

from 0.001 meters to 0.189 meters and the εr is 4.5. The outputs of different networks are

obtained and depicted in Fig. 4.7. The generalisation errors for PSO-BRNN, BPNN, and LR

is presented in Table 4.3. Although, it can be observed that the PSO-BRNN performs better

Table 4.2 Training errors of antenna modelling with different methods

Algorithm NMSE1 2 (%) Iteraion Time (s)
PSO-BRNN 0.002% 848 172

BPNN 0.13% 3084 583
LR 45.62% N/A N/A

1 Measured in NMSE
2 Average NMSE is considered
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Fig. 4.7 Generalisation capability comparison between BRNN and BPNN

generalisation capability on new design points than BPNN and LR, most of the features of

actual data can be captured by PSO-BRNN.

Table 4.3 Generalisation errors of antenna modelling with different methods

Algorithm NMSE1 2 (%)
PSO-BRNN 26.63%

BPNN 63.83%
LR 222.07%

1 Measured in NMSE
2 Average NMSE is considered

4.5 Discussion

Compared to the LR-based method in Chapter 3, the non-linear relationships between inputs

(embedded depth and concrete dielectric constant) and outputs (radiation efficiency, gain,
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input resistance and input reactance) can be captured simultaneously using ANN rather

than constructing a single model for individual performance parameter, which demonstrates

that ANN-based model has good ability in handling antenna design with variate tasks.

The combination of the PSO algorithm and BR method can improve the efficiency and

accuracy in the training stage, even though the data amount is small. The utilisation of PSO

prevents ANN trapping in local minima, and BR helps ANN adjust hyper-parameters to

mitigate the over-fitting issue. However, compared to LR, the ANN-based model requires

computational resources to generate data and training models. In addition, ANN-based model

may show limited ability in modelling the antennas if training data is expensive to obtain.

The results reflect an issue in data that a larger amount of data is needed to improve the

overall performance, but the training data is expensive to be obtained due to the complex

coupling between the antenna and concrete. In this case, a more efficient method to address

the issue is needed to ensure the amount of training data and time cost.

4.6 Summary

In this work, the ANN-based method has been presented to predict the performance of a

concrete embedded antenna. A hybrid ANN (PSO-BRNN) is trained to predict the perfor-

mance of the concrete embedded antenna, and the training and generalisation errors are

compared to the BPNN. The PSO algorithm is utilised to search for the global optimum

weights and bias for ANN, and the BR algorithm is employed to overcome the over-fitting

issue of ANN. Compared to LR and BPNN, PSO-BRNN exhibits an accurate manner in

computation and prediction with a reduction in NMSE, and PSO-BRNN is more efficient

than BPNN since it uses less iteration times to train. The generalisation capacity of different

networks is tested with the new design points, the outputs of PSO-BRNN reveals an excellent

generalisation capability, and its learning ability excels BPNN and LR. The results indicate

that the PSO-BRNN is an effective method for the concrete embedded antenna performance

prediction for indoor communication.



Chapter 5

Efficient Antenna Modelling Using

Multi-Fidelity Stacked Neural Network

Overview
The computational EM-based simulation is an accurate and reliable way to evaluate antenna.

However, with the rapid development of modern wireless communications, the structure of an-

tennas is getting more complex, which leads to more requirements and constraints for design

and optimisation. In this premise, the full-wave EM simulation solver is computationally-

intensive once the more complex antenna structures and the increasing number of design

variables are considered. The conventional antenna optimisation routine posts a challenge

since a large number of evaluations of antennas are required to search for the optimal antenna

design, especially the global optimisation using meta-heuristics algorithm (e.g., PSO [63],

GA [66]) is extremely computationally expensive.

In Chapter 4, ANN was applied to a concrete embedded antenna modelling problem.

The results show that the ML method could efficiently and accurately model an antenna.

The trained model could substitute the EM simulation to calculate the antenna performance.

However, a large amount of training data is required to ensure the accuracy of the ANN

surrogate model. Inadequate training data can lead to the inaccurate surrogate and over-fitting

issues. Since the training data is usually generated by HF EM simulation, the time cost

of obtaining adequate training data is high. In this case, GPR becomes popular in antenna
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design because it can give accurate predictions using fewer training patterns and provide

uncertainties on new design points. However, once the antennas with a complex situation

such as an increasing number of design variables, integration and environmental factors, the

time cost of obtaining training data using EM simulation is still high.

MF modelling method can significantly reduce the cost of gathering initial training data

for surrogate model construction by leveraging both LF and HF data [128]. In EM simulation,

the fidelity is generally defined according to the mesh size: HF models are generated by the

highly accurate and computationally expensive simulations with fine-discretisation; while

the LF models obtained by simulations with coarse mesh size are less accurate, but their

evaluations are very fast. By exploiting the correlation between LF and HF model, sufficient

LF data can be utilised along with a small amount of HF data to accurately build up a

surrogate model. The combination of GPR and MF modelling is popular in antenna design

and improve antenna modelling efficiency without compromising accuracy [117] [121] [140]

[150].

Compared to GPR, ANN can be flexibly interfered with (e.g., add and drop neurons or

layers, train from checkpoints) and transferred. By applying techniques such as regularisation

and dropout, ANN can obtain comparable efficiency and accuracy as GPR. The combination

of a multi-fidelity approach and the deep neural network has been applied to fluid mechanics

[170] and partial differential equation (PDE) solving [171]. The results indicate that the

multi-fidelity-based neural network has excellent expressive capability and can mitigate

the over-fitting issue while a small amount of training data is used. However, to the best

of our knowledge, MF-based NN applied in antenna modelling and optimisation has not

been reported yet. On the other hand, the MF-based GPR framework in current antenna

modelling and optimisation works is based on a linear autoregressive scheme, which assumes

the correlation between LF and HF data is linear. However, the correlation between different

fidelities can go beyond linearity if the ranges of input parameters are large [172]. In this

work, MFSNN is proposed to construct a surrogate model for antenna optimisation. The

specific contributions of this work include:



5.1 Overview of Multi-Fidelity Neural Network 73

• MF based stacked neural network is introduced in antenna modelling, which signifi-

cantly reduces the HF training datasets required for ANN surrogate model construction.

• Both linear and non-linear correction between LF and HF models are considered in

order to adaptively exploit the multi-fidelity information fusion in antenna modelling, which

improves the accuracy of the proposed surrogate model.

• Accurate global surrogate models for broad ranges of input parameters are constructed

by the proposed neural network efficiently, which can be applied in the global optimisation

framework directly.

5.1 Overview of Multi-Fidelity Neural Network

A surrogate composed of three full-connected independent neural networks is presented in

Fig. 5.1, which are a low-fidelity neural network (LFNN), a non-linear HF neural network

(HFNN1) and a linear HF neural network (HFNN2). The MF modelling method is applied

to the neural network construction, which aims to exploit the relationship between LF and

HF data. The LFNN (xL, xL, θ ) is used to approximate LF data, where (xL, xL) donates LF

training dataset and θ is the corresponding hyper-parameters. The relationship between LF

and HF data could be expressed as:

ŷH = F(x, ŷL), (5.1)

where F(.) is an unknown function that is used in reveal the correlation between different

fidelities, ŷL and ŷH are predicted results of LFNN and HFNN respectively, x is the input of

surrogate. Considered the potential correlation between LF and HF data, F(.) is decomposed

into non-linear component and linear component, which are denoted as HFNN1 and HFNN2,

respectively, as shown in Fig. 5.1. The training dataset HFNN1 and HFNN2 is denoted

as ([xH, ŷL], yH), in which ŷL is the predicted LF response for the input of xH . The hyper-

parameters of HFNN1 and HFNN2 are ϕ1 and ϕ2 respectively. HFNN1 and HFNN2 are

trained parallelly and the final output of the entire network is sum of the two HFNN’s outputs,

in this way the correlation between LF and HF data can be learned adaptively.
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In the training process, the bias and weights of the neural network are adjusted by

minimising the cost functions and optimising the hyper-parameters. In our stacked ANN

framework, each network has individual cost function, which are shown as following:

ftotal = fLFNN + fHFNN +λ ∑ω
2
i, j, (5.2)

where

fLFNN =
1

NLF

NLF

∑
n=1

|ŷLF − yL|2, (5.3)

fHFNN = fHFNN1 + fHFNN2 , (5.4)

fHFNNt =
1

NHF

NHF

∑
n=1

|ŷHFNNt − yH|2, t = 1,2. (5.5)

The total cost of the whole network is measured as the sum of individual costs and

regularisation item cost. λ is the L2 regularisation ratio for weights wi, j of HFNN1. L2 regu-

larisation is an extensive strategy to prevent the potential over-fitting issue, especially when

the amount of training data is small. The network is trained using the Adam algorithm, and

the limited memory BFGS (L-BFGS) algorithm is employed for searching optimum locally.

In order to start from good initial point, the Xavier’s initialisation method is introduced [173]

[174]. Xavier’s initialisation balances the variance of inputs and outputs, which is expressed

as:

wi, j,bi, j ∼U(−

√
6

nin +nout
,

√
6

nin +nout
), (5.6)

where the wi, j and bi, j are the weights and bias of the whole network, nin and nout are the

dimensionalities of input and output, respectively.

The method starts with obtaining the training data using EM simulation with different

fidelities. The LFNN is firstly constructed using LF simulated results, then its prediction on

the input of the HF dataset is stacked with HF data input xH, plus with the HF output yH to
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construct and train the HFNN. The whole network is then utilised to approximate the HF

data and make a prediction on new design points.
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Fig. 5.1 Schematic of multi-fidelity based stacked neural network for antenna modelling.

In order to model the antenna, firstly, the design variables of the target antenna that can

significantly affect the antenna performance are considered. Then the antenna is constructed

using CST studio. The antenna should be carefully adjusted and could work appropriately in

the frequency of interest. In addition, the LF antenna model is created using the simplification

options mentioned in Section 2.4.1, and the trend and shape of full-wave EM simulation

results should be generally similar to the results of the HF antenna model.

In the second stage, the design space of the antenna is defined by the lower bound (LB)

and upper bound (UB) of individual antenna design variables, and the constraint conditions

are possibly taken into consideration depending on the antenna’s physical characteristics. In

order to accurately model an antenna with a relatively small amount of samples, some DoE

sampling techniques are used to arrange space-filling samples within the design space. Thus

the sample could uniformly cover the design space. The testing data could be obtained using

DoE as well.

In the data acquisition stage, import the antenna geometries that are sampled by DoE

techniques into CST studio, the parameter sweep is implemented on both the HF model
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and LF model, and the corresponding performance parameter of interest (e.g. reflection

coefficient, gain and axis ratio etc.) could be obtained at each simulation iteration.

In the training stage, firstly, the LF data is used to build up the LFNN, and then the inputs

of HF data are fed to get the response which can be treated as ‘residual’. The model in step

1 is stacked with a composite network containing a linear and non-linear neural network.

The HF inputs are stacked with residuals to train the HFNNs. Three networks are trained

at the same time, and the weights and biases of the three networks are trained and updated

simultaneously.

5.2 Surrogate Based Antenna Modelling

In this section, three antenna cases (a slot dipole antenna, a dual-frequency slot antenna

and an ultra-wideband monopole antenna) are employed to examine the effectiveness of the

MFSNN. The implementation environment of MFSNN is Python 3.7, TensorFlow r1.15 GPU

version, CUDA 10.0 and cuDNN 7.4. The deep neural network is run on a Dell PowerEdge

C4140 GPU node with Intel Xeon Gold 6138 2.00 GHz and 384 GB RAM, and an Nvidia

Tesla V100 graphic unit (32 GB) is employed for GPU acceleration. All the EM models

are modelled and simulated using CST Microwave Studio (2021 version) on the DELL

workstation with Intel Xeon W2135 3.70 GHz and 32 GB RAM.

w
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h

LW
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GND

GND

Fig. 5.2 Geometry of CPW-fed slot dipole antenna (Antenna 1).
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5.2.1 CPW-fed Slot Dipole Antenna (Antenna 1)

A 50 Ω coplanar waveguide (CPW) line fed slot dipole antenna [117] with the infinite ground

is shown in Fig. 5.2. The considered design variable for this antenna is x = [W,L], and the

lower bound and upper bound are [5,28] mm and [10,50] mm, respectively. Other parameters

are fixed, where the feed line width w = 0.5 mm, feed lines gap s = 4.0 mm, substrate

thickness h = 1.6 mm and substrate dielectric constant εr = 4.4. The frequency band of

interest is 2 - 2.7 GHz, and the modelling interest is the real part and imaginary part of the

reflection coefficient (Re{S11} and Im{S11}) within the frequency band of interest.

138 geometries are selected using LHS within the design space, along with 10 uniformly

sampled frequency points to form the training data. The testing data contains 100 new

geometries that are selected using LHS within the design space as well, and 71 equally-

spaced points are sampled with each geometry.

The LF and HF antenna models are constructed and simulated using CST Microwave

Studio. The HF model is obtained by simulation with fine mesh density in CST, while the LF

model is simulated with coarse mesh (reducing the number of cells), relaxed steady-state

criteria (reducing the simulation duration), simplified excitation port (e.g. discrete port

instead of waveguide port), and simplified material (e.g. perfect conductor and dielectric

without loss). The HF model for Antenna 1 with fine mesh density and high accuracy is

constructed with 130,000 mesh cells, and the simulation time is 87 s. In contrast, the LF

model is constructed with 5,000 mesh cells, and the simulation time is 7 s. The responses of

the HF and LF model for one sample are presented in Fig. 5.3. It can be observed that the LF

model has a similar trend as the HF model, even though the LF model is not accurate enough.
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Fig. 5.3 Response of Re(S11) and Im(S11) against frequency for Antenna 1.
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Fig. 5.4 Antenna 1 modelling results using 10% HF data.

The training data is simulated as both LF and HF models to construct the surrogate model,

while the testing data is only simulated as the HF model for testing the generalisation ability

of the proposed stacked neural network. The surrogate modelling is repeatedly implemented

using different proportions of HF data, the proportion is defined as nHF
n × 100%, n is the

number of total geometries used in the training data which is 138 in this example, and nHF

is the number of geometries that are simulated using HF simulation. The percentage of HF

data in the training dataset varies from 70% to 10%. For example, if the percentage of HF

data is 10%, we use 124 LF datasets to train LFNN, and 14 HF datasets to train HFNN1 and

HFNN2. The training and testing errors are listed in Table 5.1, where the 100% proportion

of HF data is set as a reference which means all the 200 training datasets are generated by

HF simulation and are used to train a conventional ANN. The training and testing results of

the surrogate model using 10% HF data are shown in Fig. 5.4. Since the simulation time of

the LF model is only about one-twentieth of the HF model, a large amount of LF data is used

to train LFNN to predict the variation trend of the reflection coefficient. After that, a small

amount of HF data is used to train HFNN to compensate for the discrepancy between LF and

HF models. Table 5.1 and Fig. 5.4 show that even if the amount of HF data is only 10% of
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Table 5.1 Training and testing errors of Antenna 1 modelling with different HF data
proportion

Proportion (%) Tr1[Re] Tr[Im] Te1[Re] Te[Im]
100 0.001%2 0.002% 0.22% 0.27%
70 0.004% 0.003% 0.75% 0.81%
60 0.008% 0.009% 0.74% 0.82%
50 0.016% 0.011% 0.78% 0.84%
40 0.013% 0.019% 0.75% 0.81%
30 0.019% 0.017% 0.75% 0.82%
20 0.016% 0.015% 0.75% 0.82%
10 0.034% 0.018% 1.64% 1.10%

1 Tr stands for training, Te stands for testing.
2 Normalised mean square error in percentage.

LF data, the prediction error on the testing dataset is about 1.5%. The proposed MFSNN has

dramatically reduced the demand for HF training datasets, which can be served as a good

global surrogate model since it exhibits high accuracy in a wide range of design variables.

5.2.2 Dual-Frequency Slot Antenna (Antenna 2)

A dual-frequency slot antenna [175] composed by an annular slot and a cross fed by microstrip

line is presented in Fig. 5.5. The considered design vector is X = [L1,L2,R,dp,Wp,Ls,Lt ,Wt ]
T,

where L1 and L2 are the lengths of the two rectangular slots forming the cross slot, R is

the radius of the annular slot, dp and Wp are the depth and width of the pair of notches

on the annular slot, Ls is the length of the stub of the microstrip line, Lt and Wt are the

length and width of the impedance transformer. The LB and UB of the variation range of

the design vector are [22,18,12,1,1,−2,10.5,0.3] mm and [34,32,18,6,6,5,22.8,2.8] mm,

respectively. Other parameters are substrate thickness h = 1.45 mm, dielectric constant of

substrate εr = 4.2, width of the feeding line Wf = 2.96 mm. The frequency band of interest is

1 - 7 GHz.

For training purposes, 700 geometries are sampled within the design space using LHS

with 50 uniformly sampled frequency points per geometry. The testing dataset is composed

of 100 new geometries obtained using LHS, with 121 equally-spaced frequency points per

geometry. The HF model for Antenna 2 is constructed with 370,818 mesh cells in CST, and
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its simulation costs 324s. While the LF model is constructed in 16,770 mesh cells whose

simulation time is 12 s. The simplifications in the LF model are the same as those in Antenna

1, and we can see that the simulation time of the LF model is 27 times shorter than that of the

HF model. The antenna responses of different fidelities are shown in Fig. 5.6.

The modelling process is similar to Antenna 1. The proportion of HF data in the training

dataset varies from 70% to 30%, and the corresponding training and testing errors are listed

in Table II. The training and testing results of the surrogate model on Antenna 2 using 30%

HF data are shown in Fig. 5.7. In this example, the dimension of the design space is high

and the variation range of each design variable is large. Table 5.2 and Fig. 5.7 indicate that

when the percentage of HF data is 30%, the testing errors on new geometries are less than

9%. So the proposed MFSNN framework can construct an accurate global surrogate model

for complex antenna structures with just a small amount of HF data.
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Fig. 5.5 Structure of dual-frequency slot antenna (Antenna 2).
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Fig. 5.6 Response of Re(S11) and Im(S11) against frequency for Antenna 2.
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Table 5.2 Training and testing errors of Antenna 2 modelling with different HF data
proportion

Proportion (%) Tr1[Re] Tr[Im] Te1[Re] Te[Im]
100 0.001%1 0.001% 1.33% 1.51%
70 0.019% 0.017% 2.13% 2.67%
60 0.030% 0.025% 2.93% 3.15%
50 0.040% 0.032% 3.55% 4.01%
40 0.069% 0.048% 6.81% 7.27%
30 0.095% 0.088% 8.84% 8.26%

1 Tr stands for training, Te stands for testing.
2 Normalised mean square error in percentage.
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Fig. 5.7 Antenna 2 modelling results using 30% HF data.

5.2.3 Wideband Monopole Antenna (Antenna 3)

The antenna structure is shown in Fig. 5.8, in which an elliptical monopole is fed by a

50 Ω coplanar waveguide (CPW) line with the chambered ground. The design variable

is X = [Rx,Ry,Gx,Gy], whose LB and UB are [5,5,6,6] mm and [15.5,15.5,11,11] mm,

respectively. Other dimensions are fixed (substrate dielectric constant εr = 4.2, substrate

thickness h = 1.6 mm, H1 = 7 mm, w1 = 3 mm, w0 = 1.6 mm, and the width W and length

L of the dielectric substrate are 31 mm and 44.3 mm). The frequency band of interest is 3
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- 10 GHz, and the modelling interests are the real part and imaginary part of the reflection

coefficient (Re{S11} and Im{S11}) within the frequency band of interest.

The training datasets comprise 200 geometries selected using LHS within the design

space, with 50 uniformly sampled frequency points per geometry. In addition, the testing

data contains 100 new geometries obtained by LHS, with 121 equally-spaced frequency

points for each geometry.

The LF and HF antenna models are constructed and simulated using CST Microwave

Studio. The HF model is obtained by simulation with fine mesh density in CST, while the

LF model is simulated with coarse mesh, the LF and HF model response of Re{S11} and

Re{S11} are presented in Fig. 5.9. The HF model is constructed using 274,220 mesh cells

and the simulation time is 213 s, while LF model is constructed in 12,354 mesh cells and

taken 10 s to simulate.

For model training, 200 antenna geometries are sampled from the design space using

LHS, with 50 frequency points with each antenna geometry. Thus the design vector is written

as x = [Rx,Ry,Gx,Gy, f ]T. In order to test the accuracy of antenna modelling, 100 antenna

geometries are sampled using LHS from design space and excluded from the training dataset.

Each geometry is concatenated with 121 equally spaced frequency points, and the testing

dataset is generated using HF model simulation. Similar to the above examples, the HF data

is fed to MFNN in different proportions, from 70% to 10%, and the modelling results using

10% is shown in Fig. 5.10. The modelling performance for this example is presented in Table

5.3.

Gy
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h εr
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Fig. 5.8 Structure of the wideband CPW-fed monopole antenna (Antenna 3).
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Fig. 5.9 Response of Re(S11) and Im(S11) against frequency for Antenna 3.

Table 5.3 Training and testing errors of Antenna 3 modelling with different HF data
proportion

Proportion (%) Tr1[Re] Tr[Im] Te1[Re] Te[Im]
100 0.001%2 0.002% 0.11% 0.15%
70 0.06% 0.04% 0.61% 0.57%
60 0.13% 0.15% 0.92% 0.88%
50 0.22% 0.28% 1.32% 1.67%
40 0.33% 0.35% 1.84% 1.94%
30 0.41% 0.39% 2.34% 2.63%
20 0.52% 0.46% 2.73% 2.81%
10 0.78% 0.62% 3.39% 4.18%

1 Tr stands for training, Te stands for testing.
2 Normalised mean square error in percentage.

5.3 Discussion

To investigate the effect of decomposition in HF data approximation, the Antenna 2 modelling

result using 30% HF data (210 geometries are evaluated as HF model) by different manners

are presented in Fig. 5.11. Fig. 5.11 (a) shows the prediction results of a single conventional

ANN trained by only 210 HF datasets. Due to insufficient training data, the conventional

ANN cannot extract the features from the training data and the generalisation ability is

limited, thus giving inaccurate prediction. For the result in Fig. 5.11 (b), both LFNN and

HFNN are employed in modelling. However, only linear network (HFNN2) is used in HFNN.

The accuracy for this situation is poor, which indicates that the correlation between LF and
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Fig. 5.10 Antenna 3 modelling results using 10% HF data.

HF models goes beyond linearity, especially for higher frequency band, since coarse mesh

leads to large error at higher frequency where the discrepancy between LF and HF models is

complex. Fig. 5.11 (c) gives the modelling results of LFNN connected with the non-linear

network (HFNN1). Compared to the results in Fig. 5.11 (b), the surrogate model in this case

obtains higher accuracy except deteriorating in a few details, it appears this NN has learned

most of the features of the data. The modelling results of the proposed MFSNN are shown in

Fig. 5.11 (d), in which the prediction results agree well with the actual HF results. Compared

to Fig. 5.11 (a), the MFSNN model yields accurate prediction with a small amount of HF

data since it learns prior knowledge from sufficient LF data; compared to Fig. 5.11 (b) and

(c), the MFSNN gains the highest prediction accuracy since it decomposes the correlation

between LF and HF models into linear and non-linear components so that the correlation can

be learned adaptively.

5.4 Application on antenna optimisations

In this section, the aforementioned MFSNN surrogate model is applied to antenna opti-

misation to validate the accuracy and efficiency of the proposed modelling method. The

three antennas discussed above are employed to demonstrate the optimisation process. The
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Fig. 5.11 Testing results for Antenna 2 modelling with 30% HF data using (a) conventional
ANN; (b) LFNN + HFNN2; (c) LFNN + HFNN1; (d) LFNN + HFNN1 + HFNN2.

objective is to minimise the maximum S11 within the frequency band of interest (2-2.7 GHz

for Antenna 1; 2.35-2.45 GHz and 5.75-5.85 GHz for Antenna 2; 3.1-10.6 GHz for Antenna

3). The PSO algorithm is utilised to search the optimum candidate in the design space. For

comparison, the optimisation is implemented based on three methods. In method 1, the

non-surrogate (NS) method is used, and each candidate in PSO is evaluated by HF full-wave

simulation. In method 2, the surrogate model is constructed by the conventional ANN which

is trained by sufficient HF data. In method 3, the surrogate model is constructed by the

proposed MFSNN and trained by sufficient LF data along with a small amount of HF data.

The proportion of HF data is 10% for Antenna 1, 30% for Antenna 2, and 10% for Antenna

3. In methods 2 and 3, the candidates in PSO are evaluated by the corresponding surrogate

model.

The antenna optimisation results are shown in Fig. 5.12, in which the HF full-wave

responses of the initial design and optimized designs for the three methods are provided.

It can be seen that all the three methods can obtain the optimized design which fulfils the

objective. Although the proposed MFSNN introduces some modelling errors due to the
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Fig. 5.12 Antenna optimisation results of the three methods along with the responses of
initial design for (a) Antenna 1, (b) Antenna 2, and (c) Antenna 3. The objectives are drawn
with red solid line.

limited HF training data, it is accurate enough to surrogate the full-wave simulation in a wide

design space for optimisation application.

The comparisons of the cost of the three methods are shown in Table 5.4, in which the

maximum S11 in the frequency band of interest, the number of iterations in PSO and the

amount of full-wave simulations are given. The maximum S11 are below -10 dB and the

required PSO iterations for meeting the design specification are similar for all three methods

of each antenna. In the non-surrogate method, every candidate in each iteration has to call HF

full-wave simulation to evaluate the objective function, so the computational cost is very high.

In contrast, the cost of candidate evaluation in surrogate-based optimisation can be neglected

since it is just a fast-forward pass of the NN in our model. However, the construction of

conventional ANN requires a large number of HF training data to ensure its prediction



5.4 Application on antenna optimisations 87

Table 5.4 Comparisons of the three optimisation methods

Antenna Method max|S11|2 Optimisation cost3 EM simulation 4

1
NS1 -32.87 dB 5 48(H)
ANN -44.84 dB 4 138 (H)

MFSNN -38.28 dB 5 14 (H) + 124 (L)

2
NS1 -11.94 dB 10 1000(H)
ANN -10.16 dB 9 700 (H)

MFSNN -11.39 dB 11 210 (H) + 490 (L)

3
NS1 -12.64 dB 5 150(H)
ANN -12.50 dB 4 200 (H)

MFSNN -13.80 dB 7 20 (H) + 180 (L)
1 NS stands for non-surrogate method.
2 maximum value of |S11| at frequency band of interest: 2 to 2.7 GHz for Antenna 1, and 2.35 to
2.45 GHz and 5.75 to 5.85 GHz for Antenna 2, and 3.1 to 10.6 GHz for Antenna 3, optimisation
objective is max |S11| ≤ -10 dB.
3 Number of iterations of PSO.
4 It counts the total required amount of EM simulations in surrogate model construction stage and
optimisation stage; where (H) refers to EM simulation of HF models, (L) is for LF models.

Table 5.5 Time cost of different method in antenna optimisation

Antenna NS2 ANN MFSNN
1 4,176 s 12,006 s (D3) + 475 s (T3) 2,086 s (D) + 503 s (T)
2 324,000 s 226,800 s (D) + 19,800 s (T) 73,920 s (D) + 33,840 s (T)
3 31,950 s 42,600 s (D) + 2,820 s (T) 6,060 s (D) + 3,780 s (T)

1 NS stands for non-surrogate method.
2 (D) refers to data generation using EM simulation, (T) refers to surrogate model training.

accuracy. Although the ANN method eliminates the full-wave simulation in optimisation

stage, it heavily relies on HF EM simulation in the construction stage, so its full-wave

simulation cost is comparable to or even larger (for Antenna 1) than the non-surrogate method.

The proposed MFSNN has significantly reduced the requirement of HF EM simulations in

model construction by learning the prior from LF data and exploiting the correlation between

LF and HF models, and it can be applied in the global optimisation framework directly to

replace the computationally expensive full-wave simulation and accelerate the optimisation

procedure. The time cost details of three methods in example antennas optimisation are given

in Table 5.5, it can be observed that the MFSNN saves significant time cost than NS and

ANN methods. For Antenna 1, MFSNN saves 38% time cost than NS method and 79.26%
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than ANN method; Antenna 2, MFSNN saves 66.74% time cost than NS method and 56.3%

than ANN; 69.2% and 78.34% time cost saving are achieved rather than using NS and ANN

for Antenna 3.

5.5 Summary

A stacked neural network based on the MF framework is introduced for antenna modelling

and optimisation, which can construct an accurate surrogate model in a wide design space

with just a small amount of HF training data. Furthermore, the correlation between LF and HF

models can be learned adaptively and accurately by decomposing the correlation into linear

component and non-linear component. Two antenna examples are used to demonstrate the

model construction and the modelling errors are discussed in different cases. Furthermore,

the application of antenna optimisation is presented and the performances of different

optimisation methods are compared. Last, the MFSNN-based surrogate model presented

in this paper can be efficiently applied in but not limited to optimisation, robust design and

sensitivity analysis. More application scenarios are future research topics.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The ML-assisted antenna modelling methods in the thesis were mainly investigated with three

works. In the first part, the LR method is employed to model a concrete embedding antenna

under indoor communication scenario. The simulated data is obtained using full-wave EM

simulation, including antenna radiation efficiency, gain, input resistance and input reactance

under different embedding depths and concrete dielectric constants. Four empirical formulas

are fitted based on the simulated data, each performance parameter is characterised as a 2-

dimensional equation with embedding depth and concrete dielectric constant as independent

variables. The regression models can give an accurate prediction of the antenna performance,

but the generalisation capability still needs to be improved. The linear regression model

costs low computational resources in antenna modelling because of its simplicity, and it

can provide a quick estimation of antenna behaviour. This method is relatively easy to

apply to wide range of antennas. However, the LR model has limited capability in solving

complex antenna modelling tasks, and only one antenna performance is considered in a

model. Another potential limitation is that the model accuracy heavily depends on the quality

and representativeness of the training data, once training data is not representative of the

antenna’s operating conditions or includes outliers or errors, the regression model can be

inaccurate and unreliable. In conclusion, LR method is a useful tool for modelling antenna
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behaviour, particularly for simple antenna design and where a quick performance estimate is

needed. The training data should be carefully inspected and processed. Otherwise the model

will be inaccurate and unreliable.

The second part introduces a heuristic algorithm-enhanced ANN method to efficiently

model the concrete embedded antenna in the indoor communication scenario. Considering

the limitation of linear regression in antenna modelling, the ANN algorithm is employed

in modelling. Four considered antenna performance parameters (radiation efficiency, gain,

input resistance and input reactance) can be simultaneously predicted based on given inputs

(embedding depth and concrete dielectric constant), which accelerates the modelling process,

and the ANN model is easily implemented. Since the complex coupling between antenna

and concrete, the size of training data is limited, which can lead to the over-fitting issue. The

utilisation of BR prevents this issue. In addition, the PSO algorithm is used to address the

local minima issue. The PSO-BRNN performs better than conventional BPNN and linear

regression in modelling accuracy (1.79% to 3.92% and 8.7%) and generalisation capability.

However, the data size requirement is more considerable than LR, so more computational

resources are needed in the data acquisition stage. The ANN-based model, which heavily

relies on HF EM simulation, is suitable for the antenna design with an intermediate number

of design variables and not particularly complex structures.

In the third part, MFSNN is introduced in antenna modelling and optimisation. Con-

sidering the computational and time cost of EM simulation in Chapter 3 and Chapter 4, an

efficient modelling method is needed to address the data acquisition budget for ensuring the

accuracy of the surrogate model. The utilisation of the MF approach significantly reduces the

time cost in training data acquisition and also ensures the amount of training data surrogate

model construction. Different types of antenna (single-band, dual-band, and ultra-wide

band antenna) are employed to validate the effectiveness of the MFSNN surrogate model.

The training and testing accuracy of MFSNN surrogate model are improved by correctly

exploiting the correlation between LF and HF models. A large amount of LF data and a

small amount of HF data are sufficient for training MFSNN. The network accuracy indicates

that the MFSNN has higher efficiency in antenna modelling and optimisation than EM-based
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simulation and conventional ANN method, up to 70% time cost is saved, and the accuracy

is comparable to the conventional ANN with 100% HF data. The MFSNN performs well

in antenna optimisation. It can optimise the antenna based on the design specification at a

lower cost than EM simulation-based method and conventional ANN method. However, a

sampling method with high uniformity is needed to address the high randomness and low

uniformity issues in LHS, which can improve the representativeness and quality of training

data. Then the surrogate model testing accuracy can be further improved.

6.2 Future Work

This thesis investigates te ML-assisted antenna modelling methods for accelerating the

antenna design, analysis and optimisation process. However, there are some of the issues

that can be addressed to improve future research.

The process of ML-assisted antenna modelling briefly includes:

1. Problem formulation: considered variables and desired performance parameters.

2. Define antenna design space and simple candidates within design space.

3. Collect data from running EM simulation (CST, HFSS, FEKO) of considered antennas.

4. Preprocessing dataset: (a)dataset examination (errors and outliers); (b)training set and

testing set; (c) data tagging (inputs and outputs); (d) data normalisation.

5. Build an ML model and apply training algorithms, and evaluate the accuracy of model

according to the error between model outputs and actual values based on specific evaluation

criteria.

6. Surrogate model applications (antenna optimisation, sensitivity analysis, tolerance

analysis, etc.).

According to the process, some improvements should be made in future research in order

to achieve better performance:

• A sampling method with higher uniformity is needed to address the high randomness

and low uniformity issue of LHS, the sampling quality can significantly affect the surrogate

accuracy and generalisation capability. In addition, the aforementioned shrinking issue in
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sampling candidates as the dimension grows should be addressed. Otherwise the surrogate

can not model antenna behaviours in a wide range of design space.

• Network topology selection and optimisation. The current research on ANN-based

antenna design are uses trial-and-error method to construct a network. However, an inap-

propriate network structure may lead to under-fitting, over-fitting, extended training times.

Therefore, an algorithm is required to construct ANNs correctly to address the mentioned

issues.

• Adaptively learning rate tuning during training. The error of ANN will decrease once

the hyper-parameter and network structure are properly set. However, for the situation where

the error remains unchanged, the learning rate should be adjusted to avoid the waste of

computational resources and time. Meanwhile, a self-correction mechanism is needed to

address the increasing error once the learning rate is adjusted.

• A multi-objective antenna optimisation should be considered, exploring different trade-

offs between objectives and select the best design can satisfy all requirements. Practical

antenna optimisation should consider multiple conflicting objectives that need to be optimised

simultaneously.

• A transfer learning based on the MF modelling approach is considered in future work to

improve the surrogate model’s generalization capability. The constructed model is expected

to model and optimise the identical type antennas (dual-band, triple-band, etc.) based on

the prior knowledge from the pre-train stage. Meanwhile, the MF modelling approach can

reduce the time and computational budget in large dataset generation.
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