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Abstract

This thesis aims to contribute towards the development of reliable and accurate
damage detection monitoring frameworks, applicable for a range of structural
health and condition monitoring problems. Central to this purpose, is to be able
to detect damage patterns embedded in a system’s vibration signal responses suf-
ficiently early. This will enable a condition-based maintenance and inspection
to be carried out so as to prevent potentially catastrophic events, as related to
each application domain.
Firstly, to obviate reliance on data labels, an inclusive outlier analysis study
is conducted by means of robust multivariate statistical analysis and a range
of other (more common) outlier detection techniques, in both multivariate and
time-series settings. Given the parametric nature of robust multivariate statis-
tical techniques, it has also been possible to characterise outliers according to
their influence on a method’s estimates.
Secondly, novelty detection is explored, in which a set of samples representing
the nominal state of the system, is assumed to be available. This set includes
observations from a system with its dynamics being significantly influenced by
environmental and operational variability.
Finally, this thesis explored the potential of utilising certain robust techniques
as a pre-processing step on damage sensitive features (contaminated with out-
liers) for novelty detection tasks.
Given the large volume of observations, both experimental and computational,
different damage sensitive features were extracted, some of which were specific to
the range of problems / types of damage being investigated. The performance,
in terms of both sensitivity in damage detection and immunity to environmental
and operational variability, was assessed for each damage sensitive feature, in
combination to the outlier and novelty detection technique used.
This thesis has introduced to the condition and structural health monitoring
fields a range of methods from robust statistics with attractive properties, such
as the effective unmasking of outliers.
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Chapter 1

An introduction to SHM and CM

Some of the most well-known examples of advanced engineering systems that are currently
operational include the world’s largest suspension bridge, the Akashi Kaikyo in Japan, and
the most powerful turbofan jet engine, to-date, the GE9X (Figure 1.1). What these two
engineering achievements have in common is their immense physical scales, pushing the
boundaries of what is physically possible, without compromising on performance.
One way towards innovation is to make structures lighter and more cost-efficient. For in-
stance, by simply reducing the safety factor during the design phase. However, this will
lead to an increase in the uncertainty around a system’s operational safety, e.g. the max-
imum permissible load on a given structure. In those cases, the safety factor is therefore
used to account for our lack of knowledge or understanding of many things, including the
environment the system is expected to be operating in.
Reliability is an integral part of innovation, and sophisticated safety-critical systems, like
aircraft engines, need to employ a means of fully automated identification of early devia-
tions from their intended functions. These identification measures need to be applicable
throughout the whole system’s service life, which includes many factors that may influence
the successful implementation for such an automated procedure.
For these and many other reasons, the scientific research fields of Structural Health and
Condition Monitoring, SHM & CM, respectively, were developed many decades ago. How-
ever, many of their challenges still remain largely unsolved, as of today. A major challenge is
the effect of environmental and operational variability (EOV) on the damage identification
(DI) performance of any SHM & CM implementation.
This chapter includes a brief description of the fields of SHM and CM, including how EOV
may influence the ability to perform DI accurately and reliably. Firstly though, an overview
of the three broad classes of maintenance strategies is provided in the next section.
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(a) (b)

Figure 1.1. Photos of two sophisticated engineering examples demanding the highest
possible reliability. (a): General Electric GE9x: World’s most powerful
commercial aircraft jet engine delivering 134,300 lbs of thrust. Photo from [6].
(b): Akashi Kaikyo: World’s largest suspension bridge, designed to resist
typhoons of 180 mph and earthquakes up to 8.5 on the Richter scale. Photo
from [15].

1.1 Maintenance strategies

There are three main maintenance strategies in which to evaluate and ensure the safety of a
system∗. Starting from the simplest and least ideal, i.e. run-to-break, to the most advanced
and suitable for our purposes, i.e. condition-based maintenance.

1.1.1 Run-to-break

As the name suggests, this approach has been used in the past, in systems which were run
until a component broke down. The failed component was then replaced or repaired and
then the system was back online again. At best, this will lead to the system being shut
down for a while. This may be suitable for small machines, in which monitoring may seem
a waste of resources, e.g. a printer device. However, a run-to-break maintenance strategy
for a jet engine is clearly undesirable.

1.1.2 Preventative maintenance

Maintenance is performed immediately before the expected time of failure is reached, for a
given component. Therefore, this provides a safer maintenance solution for safety-critical
systems, for instance, in a jet engine, as long as the expected time of failure can be accu-
rately predicted. Because any maintenance is done regardless of condition, the procedure
inevitably introduces waste as many components could still have been used for longer. This
is also costly as it requires frequent shut-downs for the maintenance to be carried out, e.g.

∗Unless otherwise specified, the word system or systems in this thesis, will be used as general reference
to any type of structural or mechanical system.

2



in a power plant this is not ideal. In components, such as rolling element bearings, where
many factors influence their condition, the uncertainty in time-to-failure is high enough for
this maintenance strategy to be successful.

1.1.3 Condition-based maintenance

Any maintenance is carried out according to the condition of a system and its constituent
subsystems. It normally has dedicated or embedded sensing, capable of evaluating its health
on a continuous basis. The success of this strategy, and hence the suitability for early
DI, is heavily dependent on the correct implementation, i.e. starting from the hardware
(sensors, etc.) to the software level, of the condition-based maintenance (CBM) strategy.
If implemented correctly, the potential economic benefits are substantial, as quantified in a
landmark case study of Swedish paper mill in [19].
Because of the ability to evaluate the health of a system and its working conditions, a
better maintenance plan can be placed, reducing downtime to a minimum, increase safety
and operational efficiency. Many of CBM methodologies have also the potential to be
performed online and at high sample rates, and this is a major advantage is systems where,
for instance, the time-to-failure interval is relatively small.

1.2 The "undamaged" and "damaged" system states

In this thesis, the definition of "damage" and "failure" is the one used in C. Farrar’s and K.
Worden’s book [67]: "Damage will be defined as intentional or unintentional changes to the
material and/or geometric properties of these systems, including changes to the boundary
conditions and system connectivity, which adversely affect the current or future performance
of these systems." While, "failure occurs when the damage progresses to a point where the
system can no longer perform its intended function". Failure is, therefore, to be prevented,
as it leads to undesirable outcomes, e.g. sudden building collapse, machinery breakdown,
etc. This can be achieved by a successful implementation of a CBM strategy.
All man-made systems contain imperfections, and therefore, as time goes by it is only in-
evitable that they will develop major defects that impact their performance negatively, e.g.
surface flaking in bearing races. However, prior to reaching such performance degradation,
a system’s overall dynamic state may be considered as the one that was originally intended
to be used for, i.e. its "undamaged" system state.
Also, when discussing about engine performance monitoring or engine CM, it is important
to note that the above definitions of "damaged" and "undamaged" system states do not ap-
ply. This is because there will not be such actual damage to the engine. Instead, "damage"
and "undamaged" system states will be used to refer to a system in its unintended and
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intended states, respectively, with respect to its characteristics under typical engine opera-
tion. For instance, the air-to-fuel ratio that a given engine was designed to operate with.
Similarly, DI in the engine performance monitoring context, will be referring to the identifi-
cation of such atypical engine operating conditions, e.g. relatively large vibration amplitudes.

1.3 Definitions and some motivations for SHM & CM

When talking about SHM & CM, it is necessary to state their main differences and similar-
ities. Although, both make use of the CBM strategy and share most of the methodologies
for analysis and sensing technologies, SHM refers to the "process of implementing a damage
identification strategy for aerospace, civil or mechanical infrastructure" [67]. On the other
hand, CM is concerned with the detection of damage in rotating or reciprocating machinery
[33], having moving components that may be interacting with each other. Both SHM &
CM are non-destructive in-situ procedures that share similar philosophies for DI, includ-
ing sensing, data transmission and analysis methods. CM is a mature technology and has
played a key role in ensuring the safety of safety-critical equipment, e.g. power plants, for
a few decades now. Both SHM & CM have four levels of hierarchy to perform DI [157], as
shown in Figure 1.2.
There are a number of potential benefits for implementing SHM or CM in a system. Some
of the most important are:

• Identification of damage prior to failure: This is probably the most significant advan-
tage, since it will prevent potential loss of life, expensive repairs and other costs (e.g.
related to downtime). In addition, further maintenance costs can be reduced due to
eliminating routine inspections;

• Gaining insight into system dynamics: The interaction between full-scale in-situ sys-
tems and their environments, e.g. wind speed fluctuations, offer invaluable knowledge
of system dynamics, which cannot be gained in a laboratory setting;

• Objective assessment and quantification of system states: It is important to objectively
assess a system’s state, in a quantifiable way, with reference to its previous state(s).
This is in contrast to the subjective nature of Non-Destructive Evaluation (NDE).
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1st Level: Identification

2nd Level: Localisation

4th Level: Prognosis

3rd Level: Quantification

{Qualitative indication of damage presence.}

{Determine probable location of the damage.}

{Residual life calculation.}

{Estimation of damage extent.}

Figure 1.2. Damage identification hierarchy and description of each level.

1.3.1 Vibration-based SHM & CM

1.3.1.1 Advantages

One way to perform SHM & CM is through vibration measurements. Other ways include,
acoustic emissions and strain-based monitoring (using fibre optic sensors) [67]. Vibration-
based monitoring has been used for DI since the 1980s, and it is currently, one of the
most commonly used diagnostic† measures to carry out SHM & CM [67], [33]. Throughout
the thesis, vibration will refer to the absolute amplitude of acceleration responses. These
responses are measured using an acceleration transducer or accelerometer [33], which is
attached at a specific location on the system, e.g. the housing of a rolling element bearing.
There are several benefits in using vibration measurements in SHM & CM, including:

• Identification of overall system state: Damage is known to influence the system’s dy-
namic properties, i.e. its stiffness and energy dissipation [67]. Any measured vibration
responses (due to internal or external force excitations), will directly reflect changes
in the dynamic properties of the system;

• Making use of advanced signal processing: Acceleration transducers sample data in
the rate of several or even tens of kHz. At these levels of sampling rates there is
an abundance of data points for utilising advanced signal processing analysis, e.g.
adaptive signal decomposition. Also, unlike other kind of signals, e.g. lubricant
analysis, vibration measurements with high sampling rates, enable online monitoring
to be implemented;

†This term refers to the identification of not only the existence but also the type of damage, i.e. locali-
sation (see Figure 1.2).
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• Identification of the type of damage (localisation): Any kind of machinery under
rotating motion, will have well-known operating conditions. Vibration measurements,
will provide a direct measure of the rotational frequency of each component and its
harmonics, which can be used to determine the location of damage;

• Capturing characteristic reference patterns: Any kind of machinery or structure in
its undamaged state will vibrate with a characteristic pattern. Hence, this provides a
reference state in which all future decisions, regarding DI, are to be based upon.

1.3.1.2 International standards and guidelines

For vibration-based CM there are a number of international standards, e.g. ISO-7919
("Evaluation of machine vibration by measurements on rotating shafts") and ISO-10816
series ("Evaluation of machine vibration by measurements on non-rotating parts") [103],
with the latter being probably the most widely adopted in industry. These standards
provide certain vibration acceptance levels (also referred to as measurement quantiles) on
different frequency bands as applied to the type of machinery, measurement locations, etc.
In general, these standards were developed based on extensive experience and collaboration
from specialists all over the world, and therefore, are expected to offer the best possible
diagnostic information for early DI.
On the other hand, there is a limited number of international standards in SHM, especially
for highly-localised DI, e.g. cracks, where the number of sensors is relatively small as
compared to the surface area being monitored [40]. One of those standards, as described in
[40], provides guidelines for sensor selection and placement, as well as, ways for DI on the
whole-structural level by means of dynamic system properties. Such properties include mode
shapes (MS), natural frequencies (NFs) and the modal assurance criterion (MAC). In the
European Union, the Structural Assessment, Monitoring and Control network, developed
several guidelines for SHM spanning several application domains including bridges, buildings
and railway infrastructure [55].
These standards, however, should only be used as general guidelines for the design of a
more intelligent diagnostic system, able to infer damage more reliably and accurately. This
is particularly true in situations where EOV influences the dynamic properties significantly
and unpredictably, for instance, as in the case of offshore wind turbines. As discussed in
[33], using widely-applicable and general features from vibration signals, such as, the root-
mean-square (RMS) of the amplitude (specified in ISO-10816-6), is unlikely to provide early
signs of damage.
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1.3.1.3 The case for a more "intelligent" SHM & CM strategy

This leads to a discussion of some of the most important considerations for implementing
a vibration based SHM & CM. Those are as follows:

• Damage is a local phenomenon, and as demonstrated in many studies using data from
experiments, e.g. in [138], higher-frequency vibration modes (e.g. about 30 − 40 Hz)
are typically more sensitive to damage presence. For example, as discussed in [40], a
crack covering 1% of a beam’s cross-sectional area, results in a resonance frequency
change (for the first mode of vibration) of just 0.1%.
Therefore, and unless damage has progressed significantly, the lower-frequency vibra-
tion modal properties (e.g. NFs) will not be impacted significantly. This implies that
early DI will not be feasible using the lower-frequency modal properties, given that
the transducer is far from the damage location. This is to be expected, for instance,
from a large structure like a bridge, which may span more than a few kilometres in
length [14], while damage can be on the scale of a few centimetres (initially);

• Any significant EOV influence on the system, e.g. freezing temperatures on an aircraft
wing during flight conditions, will alter its dynamic characteristics or modal proper-
ties (damping and stiffness) [169]. Thus, its vibration responses are expected to be
different under EOV influence. Also, EOV influence can be similar in magnitude or
many times greater than that of damage, and this has been reported numerous times
in the literature [169], [20].

Therefore, the implemented vibration-based SHM & CM must be both insensitive to EOV
influence, while at the same time identify any type of damage, even highly-localised ones,
sufficiently early for action to be taken. These two objectives demand a more sophisticated
approach to SHM & CM.

1.3.2 The blind source separation problem in SHM & CM

Both in SHM & CM, the DI problem may be conducted using only system responses. That
is, the only observations are system responses, measured through vibration signals. In
general, system responses are expected to be excited from three different sources:

1. Exogenous forces acting on the system, e.g. aerodynamic forces or crosswinds on a
bridge deck;

2. Endogenous forces due to damage, e.g. impact forces as opening and closing cracks;
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3. Other endogenous forces generated by a number of elements interacting with each
other in the system (applicable mostly in CM applications), e.g. elastic forces due to
contact stiffnesses of gear pairs.

These three different excitation forces will each yield a distinct system vibration response.
When all three forces are present at the same time, the system response will contain a
mixture of all them. Therefore, the main challenge in DI is to determine whether or not
any force generated, as seen on the system’s responses, is due to damage presence or due to
changes from any other sources of excitation.
As mentioned previously, in CM for rotating machinery, apart from the exogenous forces
acting on the system and the endogenous ones due to damage, there will also be a number of
forces generated by the interactions from the different elements or components, e.g. gears.
Due to the fact that it is more desirable to examine the health state of specific components
[25], this poses an additional challenge for detecting damage in CM applications.
For a linear time invariant (LTI) system, e.g. a gearbox or a structure, its impulse response
function (IRF) hi,j , will completely characterise the transfer path between its ith response
xi and the jth excitation force or source sj , with i= j = 1, ...,M independent components.
Thus, in discrete-form, the ith vibration response can be written as the sum of M convoluted
mixtures, as discussed in [22]:

xi =
∑

j

hi,j ∗sj +ε (1.1)

More compactly Equation 1.1 may be written as,

x =H ∗ s+ε (1.2)

where, H ∈ RM×M is an unknown mixing matrix and s = [s1, ...,sM ]T is the sources vector,
while ε ∈ RM is a vector of observation white noise terms. In Figure 1.3, a simplified dia-
gram of a multi-input multi-output (MIMO) system is shown. In order to identify damage

𝐻

Sources System Responses

𝑠1
𝑠2

𝑠𝑀

𝑥1
𝑥2

𝑥𝑀

⋮ ⋮

Hidden Observed

Figure 1.3. A group of hidden excitation forces are combined together to generate a set of
observed mixture vibration responses.
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and distinguish it from the rest of the sources, which implies to find the independent sources
s, H is required. This can be done with a deconvolution procedure. However, since H is
unknown, the problem can be cast formally within the framework of blind source separation
(BSS) [33]. BSS is a methodology for recovering the different independent sources that
excite the system, only from its responses.
In the frequency domain the problem in Equation 1.2 turns into multiplication. This can
then be solved by assuming M independent sources, e.g. using independent component
analysis (ICA), on each of the frequency bins within the Nyquist frequency range [146].
However, there is a particular issue: the indeterminacy of BSS [198], which must be con-
sidered whenever such an approach is followed.
Therefore, given x ∈ RN , i.e. a vector containing time-series acceleration data from an
experiment, the DI problem can be solved by obtaining certain characteristics from it, i.e.
a particular damage sensitive feature (DSF) set. This will enable any DI algorithm to de-
termine whether or not the system is in its damaged or undamaged health states, without
actually recovering the sources of excitation or their contributions [22]. This is true whether
DI is to be performed in CM or SHM applications. This is also the essence of feature ex-
traction in SHM and CM, as it will be covered extensively later on.
It must be noted that damage may not necessarily introduce another source of excitation
in the system, but, may only modify the IRF between any type of excitation force and the
corresponding responses. For instance, in case of a crack in a beam, it will only result in a
localised stiffness reduction. In these cases, one will need to determine whether any changes
in x are the result of changes in s and/or the transfer path H.

1.3.3 Bridges and civil engineering infrastructure

Bridges and other civil engineering infrastructure, e.g. multi-storey buildings, experience
structural deterioration as time goes by, e.g. progressive corrosion of steel reinforcing bars in
concrete structures. These may lead to sudden collapse of a structure, since the load carrying
capacity will be significantly reduced. One of the most recent and unfortunate examples of
structural deterioration and subsequent sudden failure in bridges is the "Morandi" bridge
in Genoa, Italy [127]. After 51 years of service life, this concrete bridge partially collapsed
in 2018, causing loss of life. The collapse is attributed to poor maintenance practises,
lack of redundancy, but also, the inability of certain locations to be manually inspected
and evaluate its structural condition. Due to pitting corrosion of steel tendons, the bridge
collapsed [133]. This is a perfect example in which all three collapse causes (i.e. lack of
redundancy, poor maintenance and inability to inspect) would have been prevented if SHM
was in place. From the year 2000, there have been at least 115 bridge collapses. This is a
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sign of the infrastructure ageing and a major indication that implementing SHM procedures
is immediately needed to prevent further disaster.

1.3.4 Wind turbines, gearboxes and bearings

In the last decade or so, the wind power generation industry has seen an exponential growth.
The installed capacity of offshore wind energy, in particular, has grown from approximately
4 GW in 2011 to more than 18 GW in 2017 [53]. Offshore wind turbines, as the name
suggests, are installed in the sea, thus, operating in harsh environments. Their maintenance,
is therefore, many times higher than that of their onshore counterparts. The operation
and maintenance cost of offshore wind contributes to about one third of the total energy
production cost [161]. Although it has a great potential for contributing to a clean power
generation mix, mainly due to the high wind speed resource at sea, this type of cost is
significantly high for it to scale-up easily in capacity.
Both onshore and offshore wind turbines have mechanical moving parts, one of which is the
gearbox. Located between the blades by an input shaft and the electric generator by an
output shaft, its purpose is to convert the rotational speed from low to high (and the shaft
torque from high to low), i.e. from 5−15 to 1000−1800 rotations per minute (RPM) [2].
A comprehensive survey published in 2019 [53], collected data from 18 different wind turbine
reliability studies, to investigate the failure rates‡ and downtimes§ of each wind turbine sub-
assembly, including shafts, bearings, gearbox, generator, control system and tower. The
gearbox has been found to have a relatively low failure rate (constituted of just 5% in
onshore and 8% in offshore wind of the total failure rates) as compared to the most critical
sub-assembly, which is the electrical system in onshore (27.5%) and the pitch system in
offshore (25%). Nevertheless, the reported downtime of an offshore or an onshore wind
turbine due to gearbox failure is one of the highest ones, as compared to the rest of the
main sub-assemblies (see Figure 1.4).
One of the most frequently failing components in a gearbox is the rolling element bearing
(REB). A study conducted by the National Renewable Energy Laboratory on 750 wind
turbine gearbox damage records between 2009 and 2015 [12], has found that more than
75% of the total gearbox failures occur due to axial cracks on REBs that form within the
high- and intermediate-speed stages. For that reason, the usual practise in wind turbine
gearbox monitoring, is to mount acceleration transducers, as near as possible to those stages
[69].
REBs can be seen in almost every type of rotating machinery in existence. Their failure

‡Calculated as the percentage of the total number of failure occurrences per turbine per unit time.
§Calculated as the percentage of the total time interval that the wind turbine does not produce enough

power due to a certain sub-system failure.
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Figure 1.4. Downtime per failure for each sub-system of five major onshore and offshore
wind turbine sub-systems. One third of total downtime is attributed to
gearbox failures. Figure from [53].

can compromise the overall reliability of a plant, e.g. an industrial gas turbine engine, by
substantially increasing friction forces between rotating parts. REBs usually operate in
harsh environments (high speeds, contaminating environments, etc.), and as in the wind
turbine gearboxes case, they are a frequent cause of failure [33].
REBs consist of two circular races, i.e. the outer and inner races, rolling elements, and the
cage, which separates each element from coming in contact with each other. The rolling
elements are usually made of hardened steel, and are manufactured such that they have an
extremely high surface finish. Due to inevitable manufacturing imperfections though, e.g.
during the grinding and polishing processes, there are radial variations of a few microns in
length [107]. When the bearing elements are in motion, a vibration wave is generated in
the bearing. Rolling elements, outer and inner races all have their characteristic vibration
frequencies (see Chapter 2). For that reason condition monitoring of REBs is considered a
relatively "easier" task than, for instance, SHM on a structure. The rolling-ball bearing is
a common type of REB and is shown in Figure 1.5.

Note that, vibration from REBs will start to become dominant, with a few orders of

Outer race

Rolling element (ball)

Cage

Inner race

Figure 1.5. Rolling element ball bearing diagram, showing the four sub-components.
Figure from [10].
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magnitude above the noise source , e.g. instrumentation noise, when these imperfections
grow and/or when a defect starts to form, e.g. in one of the outer races of the bearing.
In REBs, a typical damage scenario, is material fatigue. Fatigue causes micro-level spalls¶

on the inner and outer races as well as on the rolling ball [177]. Fatigue spalls will appear
suddenly and unexpectedly due to numerous factors, including overloading the bearings from
improper clearances and from other components along the drivetrain failing, as well. For
instance, the exertion of high localised loads from an unbalanced rotating shaft, will increase
the friction force between the races and rolling balls. As such, with insufficient lubrication
film, the shear stresses between the two elements in contact will result in micro-spalling.
Improper maintenance or hard-material contamination of the bearing will accelerate the
spalls formation. Although such damage is not catastrophic, by itself, when spalls grow,
material tends to break off from the surface, e.g. from the outer race. Each time a rolling ball
enters and exits a spall, will cause vibrations. When spalls grow, vibrations may increase
within the drivetrain, which will compromise its performance and reliable operation.
The type of damage that this thesis is concerned with is fatigue spalling on the outer race of
the bearing. This damage mechanism can wear the bearing very quickly [33], and therefore,
needs to be detected at the early stages of damage progression, when the spall is relatively
small and generates distinct periodic impulses. Extending spalls have shown not to generate
impulses when a rolling ball is passing through them, due to their surfaces being smoothed
out with time [149]. Hence, for the identification of this specific type of damage, an early
identification is required. It should be noted here, that this thesis is concerned with DI
and not the diagnostic capability in a drivetrain. However, when monitoring the condition
of mechanical systems such as gearboxes, it is common practise to investigate each part in
isolation to the rest of machine elements, and regardless of the acceleration measurement
location. Hence, diagnostics are inherent in the analysis. The reason behind it, is due to
each source sM having a discrete or characteristic frequency associated with it. It is also one
of the reasons that frequency-domain representations of vibrations in mechanical systems
is a powerful tool to explore, at least, during the initial stages of the analysis.

1.3.5 Gas turbine engines with varying operating conditions

Gas turbine (GT) engines are critical components in both the aerospace and power gener-
ation industries. Their extremely high safety and reliability requirements, as well as high
costs, due to possible overhaul and downtime, has prompted manufacturers to incorporate
advanced CM strategies into their designs. In aircraft engines, the so-called engine health
monitoring (EHM) systems comprise of embedded data acquisition systems and on-board

¶Spalls in REBs is the material removal that can be as small as a few hundred microns
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monitoring for key engine parameters. Hourly sampled data, including vibrations, core
temperatures and pressures, on certain flight regimes are being transmitted to a ground
station for analysis [101]. These low-sampling measurements can be analysed further to
infer system state.
The GT technology has been under tremendous research and development over the last
decade, or so, with the aim to increase its efficiency and sustainability. A 2019 report by
the International Air Transport Association (IATA) [57], stresses the importance of using
sustainable non-hydrocarbon derived alternative fuels for powering aircraft, as part of the
industry’s future environmental goals, as well as, to reduce operating costs for airliners.
Recently large consortia‖, were assembled to develop sustainable alternative fuels (SAFs)
for the aviation industry. A large body of literature exists in the use of SAF for GT engines.
Studies such as [158] and [36], have shown that certain thermochemical properties, e.g. aro-
matic content, of different SAFs have significant impact on GT engine performance and its
operating characteristics. Each SAF having very different flammability characteristics from
each other, may cause a range of issues within combustion including auto-ignition.
Research is also being conducted on operating GT engines on high air-to-fuel mass flow
ratios (AFRs), i.e. lean conditions, mainly to reduce fuel consumption and lower exhaust
gas temperature, which in turn reduces Nitrogen Oxide (NOx) emissions [56]. Apart from
performance requirements, a combustion device must operate safely at all times. Combus-
tion instabilities, such as thermo-acoustic instabilities and lean blow-out (LBO) can occur.
It has been shown in several key studies, e.g. in [136] and [82] that combustion instability
favours lean combustible mixtures.
Thermo-acoustic instabilities is a phenomenon that occurs when dynamic combustion pres-
sure and unsteady heat release rate are in-phase, adding energy to each other, i.e. their
dynamically coupled. This causes self-excited oscillations. In the case of LBO, large ampli-
tude oscillations in heat release rate prior to flame extinction occur. Both phenomena are
undesirable as they will lead to engine structural deterioration inside the hot section very
quickly, and furthermore to failure [113]. Detecting such events early is key in the quest of
maintaining reliable combustor operation while achieving these performance improvements
with SAF and lean conditions. More in-depth analysis and theoretical understanding of
combustion instabilities can be found in [112].

‖For instance, JETSCREEN and HIGFLY. More information on both projects can be found on the
relevant website https://cordis.europa.eu/.
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1.4 SHM & CM via statistical pattern recognition

One way to perform SHM or CM is through the use of "model-based" approaches, by em-
ploying a set of physical laws in order to develop an approximate representation of a system.
After such a model is built, it is then possible to infer whether there is damage in the sys-
tem, by means of calculating the residual between expected dynamic characteristics and
the equivalent from the measured data.
Usually model-based approaches employ Finite Element Method (FEM) models for struc-
tural engineering problems or Computational Fluid Dynamic (CFD) models (based on the
Finite Volume Method) for fluid-flow problems. For CFD, the well-known Navier-Stokes
equations (time-dependent conservations of mass, momentum and energy) are typically
used to analyse the time-varying flow inside a combustion chamber (CC). Such high fidelity
models can capture adequately the variation in velocity, pressure, temperature and density
for laminar flows. In most engineering applications, however, the flow is most often than
not turbulent. This requires a much finer mesh to improve (i.e. to the extend possible that
is dependent on the Reynolds number (Re) [135]) the model’s accuracy in predicting fluid
flow. This comes at the expense of prohibitively high-computation resources. For instance,
there are 1013 degrees-of-freedom (DOF) for a typical Reynolds number of 106, since DOF
≈ Re9/4 [172]. The solution to high Re flows, using CFD, is usually obtained by imple-
menting a suitable turbulence model for a certain flow regime, e.g. k− ϵ. In this case, the
computational effort is reduced considerably as flow quantities such as velocity and pressure
are now time-averaged [129].
It is clear that there are certain and rather strong set of assumptions, that need to be ap-
plied in model-based approaches. Similarly, for the FEM models many assumptions must
also be made. For instance, there is the inherent assumption that material properties are
isotropic throughout [200], which is not at all true for composite materials.
Apart from the above, phenomena such as thermo-acoustic instabilities in CC, consisting of
non-linear interactions between heat transfer modes, chemical reactions and gas dynamics
among other factors, cannot be captured sufficiently by a set of physical laws alone [52].
Also, due to inter-system variability, e.g. no two engines will produce identical vibration
levels, a generic theoretical model developed for detecting unwanted engine scenarios will
be of no practical use.

Another way to perform either SHM or CM is by taking advantage of the exponential
growth in data availability through the use of intelligent data-driven methodologies. The
field of pattern recognition implemented through advanced machine learning algorithms,
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e.g. Gaussian Processes (GP) [150] and Support Vector Machines (SVM) [30], is particu-
larly attractive for the purposes of developing automated DI frameworks. This approach
is the so-called statistical pattern recognition (SPR) approach to SHM & CM and offers
many advantages as compared to the model-based approach. This includes the ability to
incorporate complex non-linear dynamic relationships in a more flexible model such as the
SVM, by making relatively mild assumptions about the data generating mechanism, i.e.
the monitored system.
As a simple example, a statistical hypothesis test can be used to determine whether the
calculated mean values between the previous µX(n−1) and current µX(n) engine measure-
ments arise from the same distribution under a given significance level, formulated as:

H0 : µX(n−1) = µX(n)

H1 : µX(n−1) ̸= µX(n)
(1.3)

where, H0 is the null hypothesis and H1 is the alternative hypothesis. In the latter case,
immediate action may need to be undertaken in order to prevent potential failure as in-
dicated by the data itself. Hence, a major limitation of this approach, is the requirement
for obtaining high-quality data from the system. However, with the SPR approach, any
uncertainty related to any part of the SHM process, e.g. the implemented data acquisition
system and/or EOV, can be incorporated into the learning or statistical model by means
of Bayesian approaches.
The SPR for SHM & CM includes the following four steps, as described in detail in [67]:

1. Operational evaluation: It includes an initial investigation of the benefits of SHM or
CM in a system, its environmental and operational conditions and expected damage
types, e.g. fatigue loading;

2. Sensing, data-acquisition and cleansing: Includes, specification of sensing equipment
and location and data pre-processing, i.e. cleansing and removal of unwanted or
erroneous data. In terms of sensing specification, a typical approach is to instrument
the system using a sparse sensor array, using ambient excitation sources, e.g. traffic
loading on a bridge;

3. Feature extraction: This includes, data transformation, compression or selection and
calculation of certain characteristics that relate, for instance, to the expected damage
type. Suppressing the influence of EOV on the data by means of certain data trans-
formations, e.g. finding a sub-space in which EOV does not seem to alter the data
(at least significantly), may also be examined at this stage.
At this stage, the curse of dimensionality [30] must be taken into consideration. The
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curse of dimensionality is directly related to the loss of generalisation performance for
the statistical model. That is, given unseen data points, the model will make unstable
and/or inaccurate predictions. This will happen, for instance, when the model has a
large number of non-zero coefficients, in relation to the (simpler) underlying problem
that needs to be solved (i.e. overfitting). Also, using highly correlated features tends
to cause similar issues as demonstrated in [181].
To avoid that, feature selection, e.g. by means of dimensionality reduction techniques
is required for the successful implementation of the next step in the SPR process.
That is, both low-dimensional and high-information density∗∗ DSFs are sought;

4. Statistical model development: In the final stage of the SPR process, a decision must
be made whether the system is damaged or not, based on the DSF from the previous
stage. This will be either a feature classification or discrimination approach. Firstly,
a statistical model is learned using the available DSFs (training data). Then, given
unseen data points, converted as DSFs (testing data), decisions about the system state
can be made.
Note that, the above approach assumes that training data are from the system in its
undamaged state (also called semi-supervised learning), and it will be demonstrated
in Chapter 6. However, if we suspect that the training data include both damaged
and undamaged states, then no statistical model development needs to be carried out.
Instead, the discrimination procedure is being done inclusively. That is, the task is
to discover observations in the existing dataset that are "different"†† from the rest,
without any other information. This is the unsupervised learning procedure, which
will be demonstrated in Chapter 5.

This thesis will be dealing with the last two steps of the SPR problem in SHM & CM.

1.4.1 Environmental and operational variability

A key element for the wide adoption of SHM, may lie on the high-robustness or immunity
of the DSFs to EOV influence. This is necessary, in order to prevent any "masking" effects,
e.g. increase in FP rates due to the simultaneous sensitivity to damage and EOV, which is
usually the case. For instance, EOV by means of temperature changes in the ambient air,
can modify the boundary conditions of a structure like a bridge (by thermal expansion),
in addition to its stiffness properties, causing changes in its dynamic characteristics. For
instance, consider the Alamosa Canyon bridge in the US, the authors in [62] have reported

∗∗More information using a smaller number of features for the DSF matrix.
††The term "different" is used rather loosely in this context, because most of the outlier detection methods

will make very distinct assumptions about these "differences".
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a first mode frequency variation of ≈ 5% on a typical daily cycle.
As it has been observed in many other studies, the EOV influence on system dynam-
ics "behaves" in a similar way to the effects of damage [104], as far as vibration signals
are concerned. EOV influence will cause an, otherwise, stationary process to behave in a
non-stationary manner. Such changes can be readily observed in the time-scale of hours.
Whereas, operational changes in machinery, may cause transient non-stationarity events in
its dynamical behaviour, but, the time-scale is only a few seconds. So that when measure-
ments do exist from EOV, its effects can be removed by estimating its trend (given a suitable
set of observations), while operational changes can be accommodated through switching-
state model approaches, e.g. threshold-switching dynamic regression models. Hence, as
discussed in [187], detection of damage can be easily tackled by placing a 3−σ control limit
on the EOV-free signal. On the other hand, when EOV is unmeasured, EOV influence is
assumed to exist in a subspace, far from that of the damage influence. In Chapter 4, ways
to solve the EOV influence are examined from the DSF point-of-view, while in Chapter 6
a new way is being proposed. In this thesis, the methodologies considered do not use any
information regarding EOV or its influence on system dynamics.

1.5 Damage identification requirements

Prior to developing a fully-automated DI procedure, it is necessary to explicitly define its
requirements. These are briefly described as follows:

• Early DI : An essential component in DI is the ability determine sufficiently early
whether or not the system being monitored follows the intended or designed behaviour
at any given point in time. Therefore, each sampled data point at any given time,
or even a sample of data points within a short time-interval (for the case that our
temporal resolution is sufficiently high) needs to be analysed and a decision must be
made for that purpose.

• Handling of non-stationarity: This is probably the most important requirement in
this thesis, since it is also considered the key-enabling technology for the wide and
practical adoption of SHM in industry [67], as well as, the continuous success of CM in
challenging environments. As the underlying statistical properties of data change over
time due to operating in continuously varying and uncertain environments (EOV), the
monitoring system must be either immune or adapt accordingly.

• Unsupervised learning: Identifying damage in a dataset may be conducted inclusively,
where no labels are provided for all the examples, i.e. whether damaged or not. In
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contrary, in semi-supervised learning, a separate training and testing set is provided,
i.e. for statistical model development, as mentioned above. That is, a set of examples
from the undamaged system is provided for training.
A major drawback of semi-supervised learning may be its infeasibility to obtain a
"sufficient" representation of the system in its undamaged state, when such examples
are inadequate.
On the other extreme, binary classification, i.e. supervised learning, will require la-
bels for both damaged and undamaged examples. For the former, examples from the
damaged system are rare and may be impossible to obtain in an SHM & CM context.
Also, there is an infinite number of ways a system may fail.
Therefore, the system state may be inferred directly, i.e. inclusively, using unsuper-
vised learning methods.

• Sensitivity to damage: When specifying the requirements of any DI, it is necessary to
talk about performance in terms of the number of false positive (FP) and false negative
(FN) rates. A high sensitivity to a certain DSF may trigger many false alarms when
there is no presence of damage (high FP rate). However, signalling damage early may
be needed to prevent catastrophic failures. Therefore a compromise needs to be made
between the two and/or a purposely designed set of DSFs computed from the raw
signals.

1.6 Aim of the thesis

The aim of this thesis is to formulate reliable and accurate DI frameworks and demonstrate
their applicability on different datasets / problem cases. This thesis proposes the use of
high-breakdown robust estimators of multivariate location (or mean) and scatter (or co-
variance), robust clustering and non-linear time series, for the identification and analysis of
different types of outliers. To enhance DI, which means to reduce FP and, perhaps more
crucially (for a safety-critical system), FN rates, DSFs were extracted.
Outliers in an existing dataset, may be present due to events related to both damage and
EOV influence on the system dynamics. For that purpose, to distinguish between these
two types of outliers, and thus, detect damage reliably, it is necessary to adopt certain
methodologies.
It is particularly important to distinguish between the two types of outliers, in order to
minimise misclassification rates. For instance, EOV influence tends to mask the effects
of damage on system dynamics, by shifting or enlarging the distribution of data points
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representing the system in its undamaged state. Any attempt to infer damage using distri-
butional properties, e.g. covariance structure, from a single dataset representing a system
under significant EOV influence, is not expected to be fruitful.
As mentioned in Section 1.5, one of the requirements for the fully-automated DI procedure
is to identify damage in its earliest possible stage, while maintaining its high-robustness to
EOV influence.
In terms of detecting damage, this thesis proposes two different methodologies:

1. The first methodology uses a set of DSFs, designed specifically to highlight the type
of damage that is being expected, while at the same time being relatively insensitive
to EOV influence. Their performance, in terms of DI, will be examined in detail and
compared with common DSFs, e.g. natural frequencies;

2. The second methodology aims to investigate the potential of using outlier-free training
sets for novelty detection tasks. These outlier-free training sets are obtained by using
two multivariate and multimodal robust statistical methods. In that way, the influ-
ence of EOV, as seen on more common DSFs, e.g. natural frequencies and spectral
amplitudes, is reduced with minimal any feature engineering.

Given the above methodologies, it is expected that the proposed monitoring strategy will
yield satisfactory results for different sets of problems in both SHM & CM applications. In
general, these two methodologies are the most novel parts of this thesis.
Moreover, this thesis aims to identify the distinct characteristics of the two types of outliers,
i.e. those that arise from damage events and significant EOV influence, by means of subspace
outlier analysis. The aim is to help to draw conclusions that apply to all sets of problems
analysed in this work, and pave the way to find solutions that "filter-out" or distinguish
EOV influence from damage. This task has also not been explored in the literature, in the
field of SHM & CM.
The performance of various robust-based estimators is compared with more commonly used
outlier and novelty detection approaches, which includes one-class SVM and mixture models.

1.7 Organisation of the thesis

This thesis is organised as follows:

• Chapter 2: literature review on the available signal processing methods for analysing
time-series vibration signals and for extracting important features that can be used
further for the identification of damage.
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• Chapter 3: exploratory analysis of eight different datasets. In this chapter, the main
characteristics of each dataset are discussed, including details of the data acquisition
system used. Also, some basic vibration signal analysis, both in time- and frequency-
domains, is conducted to better understand these datasets.

• Chapter 4: analysis and comparison for a range of DSF vectors proposed, in terms of
their sensitivity to damage presence and EOV influence on the system.

• Chapter 5: inclusive outlier detection is performed, using the proposed DSFs from
the previous chapter. A range of methods for estimating "robust" (or outlier-free)
versions of multivariate location and scatter estimates are examined. As well as,
robust clustering and time series analysis is presented and discussed. Moreover, part
of this chapter is dedicated in the diagnosis of estimated outliers that exist in the data.
Finally, a comparison using well-established outlier detection techniques is conducted.

• Chapter 6: proposes one way to obtain an outlier-free data representation for the
undamaged state of the system to be used for training. Two robust methods, which
avoid restricting the distribution of the training set, from a potentially multi-modal
to a single elliptical one, are utilised for the purpose of obtaining an EOV-/outlier-free
training data. This training set, is then used for semi-supervised learning tasks using
three well-known techniques. The performance of this methodology, in terms of DI
accuracy and sensitivity, is compared to the case where EOV influence presence in
apparent on the DSFs.

• Chapter 7: main conclusions of the thesis are discussed, along with possible future
work.

1.8 Summary

In this introductory chapter the following were discussed:

• The concept of SHM and CM, and several examples motivating the use of data-driven
monitoring strategies, i.e. wind turbine gearbox rolling element bearings, alterna-
tive fuels on gas turbine engines for aircraft propulsion, bridges and other large civil
engineering infrastructure;

• In terms of the characteristics for a monitoring system, four different requirements
are specified and will be pursued throughout the thesis;
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• Alongside a brief overview of the SPR framework for data-driven SHM and CM, the
problem of EOV has also been mentioned and is recognised in the literature as a key
issue for the successful implementation of monitoring strategies;

• Both SHM and CM, using vibration measurements, can be defined in terms of the
blind source separation problem;

• The four main advantages of vibration-based DI, as well as, the associated challenges
that such measurements impose on the reliability of the monitoring strategy;

• An overview of the objectives and methodologies of the thesis.
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Chapter 2

Vibration signals, their
transformations and estimation of
common damage-sensitive features

2.1 Stochastic processes and signals

In vibration-based SHM & CM, determining the appropriate set of tools to analyse the dif-
ferent vibration signals, plays an important role in developing a robust monitoring strategy.
This stage is fundamental to the design of DSFs that need to have the appropriate set of
properties: sensitivity to damage and suppression of EOV influence. Therefore, it is first
necessary to determine the characteristics of the signal that is being analysed, as this will
yield the suitability of the methods that can be used.
With that in mind, an appropriate classification of the different vibration signals expected
in SHM & CM contexts will be provided, similar to the one used in [166]. This will lead to
a review of the various techniques available in time, frequency and time-frequency domains.

Vibration signals are obtained as a sequence of real valued signals, observed at succes-
sive and equally spaced time intervals. This may also be referred to as a time series. A
single time series is considered as one particular realisation of a stochastic process∗ X(t),
where −∞< t <∞. Any finite or infinite set of realisations generated by the same stochas-
tic process is called an ensemble {X(t)}.
To describe such a continuous stochastic process, the first and second (central) statisti-
cal moments are usually used [166]. The former is the mean function µx(t) = E[X(t)] =∫∞

−∞xp(x,t)dx, while the latter is the variance function σ2
x(t) = E[(X(t) − µx(t))2], i.e.

σ2
x(t) =

∫∞
−∞(x− µx(t))2p(x,t)dx, where x is any value that the stochastic process X(t)

may take at any given time t. Note that, p(x,t) is the time-dependent evolution of the
∗A random variable that evolves over time.
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probability density function (PDF) of the stochastic process taking any x value.

Vibration signals

Stationary

Random Deterministic

Non-stationary
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Figure 2.1. Classification of vibration signals: as stationary and non-stationary.

The hierarchical classification tree in Figure 2.1, separates signals into the type of stochas-
tic process, i.e. those that are stationary and non-stationary. A description of the most
important signal types is provided below:

• Stationary: Typically, a stationary stochastic process is one whose statistical proper-
ties are said to be in "steady state". That is, its statistical properties remain the same
along −∞ < t < ∞. A weakly stationary, or simply, stationary stochastic process
satisfies the following two assumptions, ∀ t:

1. The PDF is time-invariant, p(x,t) = p(x), so that the first two statistical moments
are constants: µx(t) = µx and σ2

x(t) = σ2
x;

2. Given X(t1) = x1 and X(t2) = x2 the joint PDF p(x1, t1;x2, t2) = p(x1, t1 +
τ ;x2, t2 + τ) for any time lag value τ . That is, the joint PDF for any given
time shift τ remains the same.

For a stationary process, an important measure that describes the degree in which
different pairs of samples can be linearly related to each other for any time shift τ , can
be computed by the auto-covariance function. That is, by generalising the expression
of σ2

x(t), the linear relation of the time series at t1 with itself at t2 is given as [167],

Cxx(τ) = E[(X(t1)−µx)(X(t2)−µx)] = E[(X(t)−µx)(X(t+ τ)−µx)] (2.1)

Note that, almost all physical processes exposed to environmental and operational
changes, as well as component degradation, etc., will exhibit some degree of non-
stationarity. However, given the fact that there is the need to compute time-averaged
quantities, the assumption of stationarity is a necessary condition to do so. This
is because, its statistical properties remain constant across all t. The stationarity
assumption may also be justified by the fact that it typically yields relatively good
estimates, in practise [166];

23



• Non-stationary: Given the above stationarity assumptions, if a time-series does not
satisfy both of them, then the generating process can be automatically classified as
non-stationary. It is relatively difficult to assess if a process is non-stationary, but,
there are a number of statistical tests that are helpful in making such a decision, e.g.
see [29].
Consider for instance, the model x(t) = αx(t− 1) + ε(t) as t ≥ 0 with ε(t) being a
stationary process. This implies that, x(t) will be stationary if |α|< 1. Otherwise, it
is a non-stationary process. Such a signal may be generated by a pure random walk
or an autoregressive (AR) model of order 1, i.e. when α= 1. This is referred to as a
non-mean-reverting process, which drifts away from the expected value of x(t), and
as time goes to infinity its variance does, too [179];

• Random: Its value at any time sample t is a realisation of a stationary stochastic
process, as described previously. Such a type of signal, has no discrete frequency
components (or it has a flat frequency spectrum).

• Deterministic: On the other hand, deterministic signals are entirely composed of
discrete frequency sinusoids [33]. Therefore, their value can be calculated analytically
at any given point in time;

• Continuous: Its spectral components vary continuously with time, and thus, these
signals are usually treated using time-frequency domain methods;

• Transient: These signals exist on finite time-intervals having finite energy, e.g. an
impulse vibration response of a structure due to an impact. Such signals are analysed
as a whole (i.e. not in parts as in continuous non-stationary signals).

The above classification helps in identifying the range of methods applicable for analysing
each type of signal. At the lowest branch of the tree, however, there are two types of signals
that need to be discussed: the cyclo-stationary and Gaussian signal. The former is impor-
tant to the analysis of CM signals, while the latter is fundamental to a range of techniques
used for pattern recognition and machine learning.
The cyclo-stationary signal, is one whose nth order statistic is periodic. For instance, a
white noise process that is modulated by a periodic amplitude is considered an nth-order
cyclo-stationary signal if its mean (where n= 1) or auto-covariance (where n= 2) functions
are periodic [195]. Although such a signal is not necessarily periodic, it is possible that
there is a periodic component buried in it. Most signals generated by rotating machinery,
such as gearboxes, are of the cyclo-stationary type. Methods such as spectral correlation
are useful for analysing them, as will be shown later on.
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Probably the most important stationary stochastic process is the Gaussian Process (GP).
A relatively simple definition for a GP is that the joint PDF between all time samples
t = t1, t2, ... and so on, for the stochastic process X(t), must be a multivariate (or p-
dimensional) Gaussian [150], [99]. A GP is one of the most convenient models that can
be used to describe a physical process. This is partly because it can be fully parametrized
by only two functions, i.e. its mean and covariance. And partly because, many physical
systems, machinery vibrations, can be modelled by a Gaussian. This due to the central
limit theorem (CLT), which states that when adding k independent and non-identically dis-
tributed random variables together, in the limit when k → ∞, the result of the summation
will tend to be Gaussian distributed.
Given a multivariate mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p, a multivariate Gaus-
sian can be used to simulate realisations for the random stochastic process X ∼ N (µ,Σ)
according to:

p(x |µ,Σ) = 1
(2π)p/2 |Σ|−1/2exp

{
−1/2(x−µx)T Σ−1(x−µx)

}
(2.2)

where, x is now a p-dimensional vector, e.g. having p DSFs.
The white noise signal, is an example of a random signal that is generated by a Gaussian
distributed stochastic process, having a mean equal to 0. The white noise signal ε, has a flat
spectrum, i.e. it is constant over all frequencies, while its autocorrelation function is equal
to zero. This random signal is an important one as it is widely used in many techniques
to account for, e.g. prediction errors in an AR model, assuming its sample values are both
identical and independently distributed (iid).

In practise, vibration data from experiments, will be composed of many different types
of signals. For instance, the frequency component of a constant-speed rotating machinery
is deterministic, but, it may also be modulated by the transmission path frequency com-
ponent, which is transient. Random white noise from instrumentation and other sources
are also to be expected. This is explained previously in the BSS analogy in Chapter 1.
Therefore, one will need to relate the expected type of signal to the specific subsystem or
component that is being monitored, e.g. a shaft’s rotation to its periodic signal character-
istic.
A major challenge in dealing with non-stationary signals is that they cannot be easily
predicted. As mentioned previously, their statistical properties may not revert to a finite
value, e.g. an explosive AR time series [75]. The usual approach to this problem is to first
transform a non-stationary time series into a stationary one by means of a mathematical
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operation, e.g. time-differencing. This leads to the so-called ARIMA (Auto-Regressive In-
tegrated Moving Average) models [180]. More details on this later. What is important to
note here, is the fact that when dealing with non-stationary signals (having time-varying
statistical properties), any inferences made at the current time interval will not necessarily
hold true for a future time interval. For that reason, when strong non-stationarity is sus-
pected, e.g. due to significant EOV influence, then a more appropriate set of methods must
be employed. In the following two sections, a number of methods are reviewed for both
stationary and non-stationary signals.

2.2 Signal processing for stationary processes

A number of signal processing methods used extensively in SHM & CM, including Fourier-
based transformations, assume that the stochastic process generating the time series is
stationary. Some of them are discussed in this section.

2.2.1 Statistical measures

Many useful statistical measures can be obtained from a stationary random vibration signal,
in order to aid the DI process. As mentioned previously, a Gaussian type of signal can be
fully characterised by its first two statistical moments. To characterise the asymmetry of a
distribution with respect to the Gaussian, the third statistical moment is used, i.e. skewness.
Similarly, its degree of flatness or impulsivity, is given by the fourth statistical moment, i.e.
kurtosis.
Consider a univariate time series vector x ∈RN sampled atN discrete time intervals, ranging
from n= 1, ...,N . The expression for skewness and kurtosis is given in Equation 2.3, where
l = 3 and l = 4, respectively:

µl =
1/N∑N

n=1

(
x(n)−1/N∑N

n=1x(n)
)l

σl
x

(2.3)

When the centre of gravity of the probability distribution leans towards the right of its
mean, it is negative skewness, while when leaning towards the left of its mean, it is positive
skewness. Note that for the Gaussian PDF (or simply Gaussian), µ4 = 3. So that, any
significant deviation from that value indicates that the distribution of the sampled signal
is no longer Gaussian. Given the wide range of physical processes that can be modelled
or assumed to be sampled from a Gaussian [166], it is expected that any irregularities in
the vibration responses due to damage presence will cause deviations from this assumption.
Therefore, kurtosis and skewness can be used for DI.
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Other measures, including spectral peak, spread and entropy will also be examined as po-
tential DSFs for system-agnostic SHM & CM applications. That is, for systems where there
is no information available about their dynamics and/or their possible damage mechanisms.
These additional measures will be presented and discussed in Chapter 4. These can also be
called as global DSFs, because they provide a single statistic for the system as a whole.
Kurtosis-based measures, such as spectral kurtosis, are considered very effective for DI,
whenever damage manifests itself in the form of impacts, e.g. in CM for REBs [79].

2.2.2 Fourier Transform

Some of the most frequently used methods, both in CM research and practice, are based
on the Fourier Transform (FT) [33]. FT computes the dot product, i.e. the similarity,
between a given family of periodic basis functions and the sampled vibration signal vector
x. In that way, the FT represents the signal, in terms of its magnitude and phase at each
frequency.
In rotating machinery, this decomposition is important because the main purpose is to
identify damage on a sub-assembly/-system level, e.g. gears. Each sub-system, rotating
with a frequency associated with the running speed of the system (i.e. a multiple of it), will
have at least one frequency component with non-zero energy. Thus, it is possible to isolate
that sub-system from the rest of the sub-systems, so that, its state can be examined directly
and more optimally [33]. For the discrete-time vector x ∈ RN , the FT is discrete-time FT
(DFT) of the sequence,

Sx(k) =
N−1∑
n=0

x(n)e−j 2π
N

nk, k = 0, ...,N −1 (2.4)

where, the term k
N is the normalised discrete frequency. The corresponding discretised anal-

ysis frequency for x is related to the sampling frequency fs (in Hz) according to f = k
N fs Hz

or f = k∆f Hz, where ∆f is the frequency bin width (in Hz).
The maximum number of analysis sinusoids is dictated by fs due to the Shannon/Nyquist
sampling criterion, which states that at least two samples are needed to represent a single
sinusoidal cycle [166]. Aliasing (higher frequency components are shown as lower ones)
will result if frequencies above fs/2 are used to represent a signal. For instance, a signal
component with an oscillation of fs/2+f1 appears in the frequency spectrum at the aliased
frequency of fs −f1, due to the DFT mirroring effect around fs/2.
Note that the DFT has high computational complexity of O(N2). In practise, an efficient
way to compute it is through the Fast Fourier Transform (FFT) algorithm. In Matlab, the
fft.m function can be used. It works by decomposing the previous DFT of the sequence of
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length N into two DFT calculations, each of length N/2. It is beyond the scope of the thesis
to discuss the specific details of the FFT. However, an important consideration is that the
FFT works most optimally when the length of the sequence is a power of 2 (reducing the
number of calculations to O(Nlog2N)).
As already discussed in Section 2.1, vibration data obtained from experiments will contain
many different types of signals, including random ones such as white noise. In fact, "ran-
dom" vibration analysis is a term that is used for analysing this type of data.
The main difficulty in dealing with such data using DFT comes from the fact that its bin
width ∆f is a function of its sample rate fs and length N . This implies that certain fre-
quency components in the signal may not be successfully appear in the frequency spectrum,
for instance, when ∆f is large enough and the noise floor is high.
The Power Spectral Density (PSD), on the other hand, is normalised to the bin width. This
prevents any changes to the signal magnitude in the spectrum. The PSD can also be used
to compare different vibration signals, having different ∆f = fs

N characteristics. For those
reasons, the PSD is fundamental to the analysis of random vibration signals.
More specifically, the PSD shows the distribution of power across the Nyquist frequency
range. It is calculated as the DFT of the autocorrelation function [166], or simply,

Px(k) = 1
∆f

|Sx(k)|2, k = 0, ...,N −1 (2.5)

where, the term |Sx(k)|2 is the squared magnitude of the DFT. Given a signal from an
accelerometer, the units of Px are therefore, [m/s2]2/Hz.
By taking the squared magnitude, any phase information will be lost. Unless otherwise
specified, in this thesis, the PSD is calculated using the Matlab function welch.m, which
implements the Welch’s PSD method [166]. In particular, Welch’s PSD takes the average of
k PSD estimates over the positive Nyquist range by dividing the time signal into k segments.
The averaging reduces frequency components from noise sources.

2.2.3 Time series analysis

Time series analysis allows the derivation of a class of models that describe the data generat-
ing process in a compressed and effective manner. These models can be used for predicting
new instances, or simply, their coefficients (derived from data) can be used as DSFs. In
general, they describe the temporal relationship between pairs of observations in the vibra-
tion data vector x. Given the fact that these models are parametric, they are interpretable,
too. Classical time series models are of the autoregressive moving average (ARMA) type,
given as,

x(n) = −
p∑

i=1
aix(n− i)+

q∑
i=1

biε(n− i)+εn, εn ∼ N (0,σ2
ε) (2.6)
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where, p,q are the orders of the autoregressive (AR) and moving average (MA) parts, re-
spectively. The coefficients ai, bi, are, respectively, the derived parameters for the AR and
MA parts, respectively. Thus, when q = 0 Equation 2.6 reduces to an AR(p) model that
uses its p lagged values of x as predictors. And similarly, when p= 0 Equation 2.6 reduces
to an MA(q) model that uses its q lagged error terms (i.e. uncorrelated white noise).
Typically, and unless the error terms are correlated, only an AR process is used for mod-
elling a time series. In that case, a model of order p can be determined via a suitable
information criterion function like the Bayesian Information Criterion (BIC). Additionally,
its partial auto-correlation function [132] can be calculated to verify whether or not any
lagged terms greater than p have negligible values. BIC is used to penalise the sum of
squared error terms for adding more parameters in the AR model. This is consistent with
the model-building principle of parsimony [132].
Model parameters ai are calculated by formulating the problem as a system of Yule-Walker
equations, first, and then solve them recursively, typically using the Levinson-Durbin algo-
rithm [167].
In the multivariate case, {x(n) ∈ Rp;n= 1, ...,N}, cross-correlations between each time se-
ries need to be analysed using vector ARMA (VARMA) types of models. Such models may
have better prediction accuracies than ARMA models, since any linear inter-dependencies
between each time series is evaluated.

2.3 Signal processing for non-stationary processes

The above methodologies, imply that the observations in the time series vector x come
from a stationary process. In FT, for instance, the sinusoidal analysis functions used in the
transformations are constant over the whole time-interval that the dot product is computed.
Hence, FT methods are only meaningful for signals that are composed of purely sinusoidal
components that remain time-invariant.
In many practical cases as in vibration analysis, a time series signal will be time-varying,
e.g. when EOV influence is present or when N is not large enough. A non-stationary time
series has a more complicated structure, and although it may consist of a certain number
of discrete frequencies, the calculated PSD may contain power at other frequencies, too.
Therefore, temporal localisation of the frequency decomposition is required for such signals
to be represented accurately in the frequency-domain. The main premise for time-frequency
or time-scale analysis methods is to expand the feature space from its original time-domain
1-D representation towards a 2-D one.
Since no additional information can be created for a signal [190], a time-frequency domain
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representation, will lead to a DSF matrix that is highly-redundant. This violates the re-
quirement for developing DSFs that have high-information density, which is an important
element for the successful implementation of the SPR paradigm (see Section 1.4). However,
in this expanded feature space, it is expected (although there are no guarantees) that there
will be a much lower-dimensional subspace in which the majority of DSFs can be easily
obtained. This is also true for the EOV influence, which may be isolated into a certain
manifold in this new feature space [190].
Additionally, the methods presented in this section are not restricted to linear stochastic
processes, for instance, as suggested by the AR model. As it will be seen in Chapter 3,
most datasets examined in this thesis are generated from systems with significant non-linear
characteristics. One example is the four-DOF numerical simulation based on the Duffing
stochastic process model, which generates an amplitude-dependent frequency of oscillation.

2.3.1 Classical time-frequency analysis methods

2.3.1.1 Short-time Fourier Transform and Spectral Kurtosis

The Short-Time FT (STFT), extends the classical FT, to simultaneously analyse the signal
in both time- and frequency-domains. This is done by sliding an analysis window w of length
lw and computing the discrete DFT (using FFT) of the signal Sx, within each windowed
segment. To simplify notation, assume lw is a multiple of N and that there is 0 overlapping
samples between each subsequent segment. The result will produce

⌊
N
lw

⌋
DFTs,

Sx(m,k) =
N−1∑
n=0

x(n)w(n−mM)e−j 2π
N

nk, k = 0, ...,N −1 (2.7)

where, Sx(m,k) is the complex-valued two-dimensional representation of x(n), where k is
the kth Fourier coefficient centred around the mth time sample. Note that the spectrogram
is a time-frequency (2D) visualisation plot, which is obtained by computing the STFT mag-
nitude, i.e. |Sx(m,k)|. In Matlab the built-in stft.m function is available.
In many cases involving transients in the signal, the STFT can be combined with the spec-
tral kurtosis (SK) to help identify them. Typically, transients contain a certain degree of
periodicity that needs to be identified from a mixture of different types of signal in a random
vibration time series. The difficulty is that these periodicities may be hidden in the raw
time series.
Note that signals of this type are 1st or 2nd order cyclo-stationary and are thus non-
stationary. As discussed in [147], the periodic and non-periodic signal parts may be de-
coupled and, preferably, analysed separately. SK helps to determine the most impulsive
frequency band. In brief (more details can be found in [149]), SK based on the STFT,
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computes the fourth statistical moment across different frequency bands in the spectrum.
Given the complex-valued function Sx(m,k) from the STFT, SK as a function of frequency:

SKx(k) = ⟨|Sx(m,k)|4⟩m

⟨|Sx(m,k)|2⟩2
m

−2 (2.8)

where, ⟨·⟩ is the averaged operator over the sample index m. Note K(k) is normalised with
−2 to make it zero for a Gaussian random signal. High values (in the order of 10 to 30) are
expected for impulsive signals.
Critical to the above calculation is the fixed analysis window length used for the STFT. As
the uncertainty principle states, the time and frequency resolutions, ∆t and ∆f , respec-
tively, are bounded: ∆f∆t ≥ 1

4π . This limitation, therefore, will have a major impact on
the effectiveness to accurately localise transient events within the time-frequency spectrum.
Note that lw will need to be shorter than the temporal spacing between each generated
impulse (or transient), while also cover most of its length sufficiently.
For these reasons, SKx is usually represented on a 2D plot called the kurtogram, i.e.
SKx(k, lw), to determine a suitable lw. Thus, on its x-axis is the frequency k = 0, ...,N/2
and on its y-axis is the frequency resolution ∆f . Since it is not practical to consider every
lw possible, it is implemented as a 1/3 binary tree filter bank using the fast kurtogram
approach, proposed in [23]. The SK is then calculated on each of the decomposed fre-
quency bands. The decomposition is done using a dyadic filter bank structure. A level r
decomposition, results in 2r frequency bands within the Nyquist range. As suggested by
the corresponding Matlab implementation in [23], the maximum level of decomposition for
computing the kurtogram could be calculated as rmax = log2(N) − 6. As it will be shown
later on, the kurtogram will used to identify the frequency band in which the signal is most
impulsive.

2.3.1.2 Wavelet Transform

As noted above, the analysis of non-stationary signals requires variable time-frequency
resolution. In this case, the window length is large on lower frequencies; offering good
frequency resolution, i.e. small ∆f , on slow-varying signal components. Conversely, the
window length is small on higher frequencies; offering good temporal resolution, i.e. small
∆t, on fast signal amplitude changes. This is achieved by means of the Wavelet Transform
(WT), which utilizes basis functions with varying window lengths [117].
The coefficients of WT wm,k are calculated using the dot product between a set of complex-
valued basis functions ψ∗

m,k and the signal x(n), i.e.

wm,k = ⟨x,ψ∗
m,k⟩ =

∑
n

x(n)ψ∗
m,k(n), m,k ∈ Z (2.9)
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where, ψ(n) is the prototype function (also called the mother wavelet) from a specific family
of wavelets, from which all other kernel functions are derived as dilated and translated
versions of it.
The basis function ψ∗

m,k is, therefore, a function of two parameters (integers): the dilation
m ≈ 1/frequency, which defines also the analysis window length, and its translation k,
which is responsible for shifting it through the sampled data. This means that in WT,
there is no fixed set of basis functions, e.g. sines and cosines as in FT. Instead, the analysis
takes a more flexible approach; ψ(n) can now be chosen from a set of available function
families or designed to better suit the signal x [48].
However, there are certain requirements for a wavelet basis function [48], including:

• Is an oscillatory function, i.e. ∑nψ(n) = 0, ∀n, that is compactly supported;

• Of finite power also, i.e. ∑n |ψ(n)|2 = 0, ∀n;

• And satisfies the admissability condition (requirement for an inverse WT to exist).

For the discretised wavelet ψm,k, a dyadic sampling grid is normally used [196]. That is,
the scale m and translation k take only values of powers of 2. Therefore, at each scale m,
k is run over the samples:

ψm,k(n) = 2
m
2 ψ∗(2mn−k) (2.10)

Note that the redundancy in coefficients (using a continuous WT (CWT)) is greatly reduced
with the above dyadic grid representation of the discrete WT (DWT). A special case now
arises when the basis function used here is orthogonal to its own dilations and translations,
guaranteeing linear independence between the coefficients, i.e.

⟨ψm,k,ψm,p⟩ = δ(k−p) (2.11)

where, the Kronecker delta function δ, is unity only when k ̸= p, and zero, otherwise. The
family of wavelets that is often used for its orthogonality properties is the Daubechies [67].
In practise, the DWT coefficients wm,k, are calculated by convolving the time series sig-
nal with a subsequent set of half-band (containing half of the frequency content) low- and
high-pass filters [117], yielding the low- and high-pass sub-bands, (0,fs/2] and (fs/2,fs]
respectively, at different levels of decomposition. In the DWT, the low-pass sub-band is de-
composed further in the same way after decimation by 2 (half the samples are eliminated,
following the Nyquist criterion), while the high pass sub-band is not analysed any further.
The signal after the first level of decomposition will have twice the frequency resolution
than the original signal, since it has half the number of samples. This procedure is known
as two-channel sub-band coding filter bank [117] and provides an effective way to calculate
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the coefficients of WT by means of conjugate quadrature mirror filters.
Since the DWT does not analyse the high-pass sub-band further, as it does with the low-
pass one, the wavelet packet transform (WPT) (see, for instance, SHM application in [173])
has been developed. In general, it follows the same procedure as the DWT, which offers
a better frequency resolution on the higher frequencies by decomposing the corresponding
sub-band further. The above methodology is also termed as multi-resolution analysis.
In general, the WT achieves a trade-off between frequency and time resolutions. That is,
at higher frequencies (smaller m), there are more sample points corresponding to good time
resolution. On the other hand, at lower frequencies (larger m), there are less sample points
corresponding to good frequency resolution. In most cases, in engineering, such large scale
components occur on large durations, e.g. a constant-speed rotating input shaft in an in-
dustrial gas turbine, hence their temporal resolution is not an issue. On the other hand,
transients such as impacts are only analysed using short scales.

2.3.2 Adaptive time-frequency analysis methods

This section will review a number of methods for adaptive time-frequency analysis. These
methods do not use a fixed set of basis functions (e.g. as in WT), rather they obtain a set
of analysis functions from the data itself.

2.3.2.1 The Hilbert Transform

An alternative method for extracting time-frequency information from a non-stationary
signal, is through the use of the Hilbert Transform (HT). The HT can be used to obtain the
signal’s time-varying spectral characteristics at any given point in time, i.e. its instantaneous
frequency (IF) and instantaneous amplitude (IA) [33]. Perhaps most importantly, it does
that without the need for a fixed basis function. For a non-stationary signal, where its
statistical properties (and frequency characteristics) can vary with time, the estimation of
IF and IA will provide a better temporal and frequency representation of the signal, without
the need to sacrifice accuracy in either time or frequency domains.
The instantaneous properties of the signal are available only when a real-valued signal x(t)
(i.e. given in continuous time t), is converted into a complex-valued signal. In that way,
the phase and magnitude information are accessible. Note that, a complex-valued signal
occupies a three-dimensional space: time, real, and imaginary and can be represented by a
time-varying complex exponential function of the form:

z(t) = |z(t)|ejϕ(t) = x(t)+ jx̂(t) (2.12)
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where, j is the complex operator, ϕ(t) is the time-varying phase angle in rads/s and |z(t)|
is the time-varying amplitude.
HT extracts and ads the phase-quadrature (1/π cycle shift) component jx̂(t) to the x(t),
in order to create the complex-valued signal, also called the "analytic signal", as defined in
Equation 2.12. Formally, the x̂(t) is the HT of the signal and is defined as the convolution
operation:

x̂(t) = x(t)∗ 1
πt

(2.13)

The FT of Equation 2.13, illustrates the HT operation in the frequency-domain:

Sx(f) = −jsgn(f)Sx(f) (2.14)

where, −jsgn(f) = −j for f > 0, −jsgn(f) = j for f < 0 and −jsgn(f) = 0 for f = 0. Hence,
as Equation 2.14 illustrates, the HT is implemented as a finite impulse response (FIR) filter,
which shifts the phase of positive frequency components by −π/2 and of negative frequency
components by +π/2†. Its magnitude, on the other hand, is equal to 1.
The analytic representation of the signal will contain only the positive frequency compo-
nents of x(t), since the negative frequency components cancel out during the HT filtering
operation. In fact, the Matlab built-in function hilbert.m calculates the HT by taking the
FT of x(t), doubling the positive frequency components of the signal and setting the neg-
ative ones equal to 0. The next step is the inverse FT of the signal, in order to get the
complex-valued copy of it, as in Equation 2.13. More details of this algorithm in [121].
Given the complex-valued signal z(t), the IA and IF are simply given as:

IA : |z(t)| =
√
x(t)2 + x̂(t)2

IF : ϕ̇(t) = 1
2π

dϕ(t)
dt

= d

dt

[
tan−1

(
x̂(t)2

x(t)2

)] (2.15)

2.3.2.2 Non-linear systems and the requirement for mono-component signals

The estimation of ϕ̇(t) is only meaningful for mono-component or narrow-band signals,
having "concentrated" frequency characteristics [31]. Strictly speaking, in adaptive signal
processing, a signal is expected to consist of a finite number of K amplitude- and frequency-
modulated mono-components. In continuous time, this is expressed as,

x(t) =
K∑

k=1
Ak(t)cos

[∫
ϕ̇k(t)dt

]
(2.16)

†Note that the positive frequency components are defined between between f = [0,fs/2) and negative
ones when f > fs/2.
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where, for each kth mono-component, both Ak(t) and ωk(t) need to be slowly-varying (i.e.
∀ k), for the HT analysis to be valid [68]. That is, such a signal is guaranteed to have a
positive IF. On the contrary, a fast-varying IF may be negative, which is not meaningful in
physical terms.
For highly non-linear systems with varying frequency components at very different time-
scales, a negative IF calculation is common [68]. Such non-linear processes, exhibit phenom-
ena like jumps and harmonic distortion, as demonstrated in Appendix A using the Duffing
mass-spring-damper solution to a Fourier series expansion.
It is obvious that when dealing with non-linear and non-stationary processes signal pre-
processing is needed prior to HT analysis. One of the first attempts used band-pass filter-
ing, to create a narrow-band signal [31]. However, there are issues associated with this ap-
proach, including the requirement to parametrize the filter. Thus, a more flexible/adaptive
approach, suitable for non-linear and non-stationary systems, is needed.
The next section provides an overview of six different adaptive signal processing / decom-
position techniques, which can be used to obtain mono-component signals for subsequent
HT analysis.

2.3.2.3 EMD-based & iterative decomposition methods

For the purposes of utilising the powerful analysis offered by HT, in their landmark paper
[89] Huang et al. came-up with what is called the empirical mode decomposition (EMD).
This algorithm is used as an extraction tool for intrinsic mode functions (IMFs), which are
mono-component signals. Note that there are two main requirements for a valid IF and IA
representation of any given signal:

1. The number of extrema (maxima and minima) and zero crossings must be equal or
differ at most by one;

2. At any time instant the mean value of the envelope defined by the local maxima and
the envelope defined by the local minimum must equal to zero.

The above requirements can be used as the definition of an IMF, i.e. it is any function
that satisfies them both. The EMD is simply a way of obtaining the IMFs of a signal,
similar to a filter-bank method. However, the basis functions are now derived from the data
itself, which makes it an adaptive method. The EMD follows a sifting procedure, aiming to
decompose a signal into a finite number of IMFs, as described in some detail in Table 2.1.
The Matlab built-in function emd.m is used to implement this method.
Note that, unless otherwise stated, the signal that is being analysed is represented by the
one-dimensional time series vector x ∈ RN . Equivalently, using the discrete-time sampled
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Table 2.1. The sifting algorithm of the EMD.

1. Set k = 0 and r0(n) = x(n). Calculate the extrema of x(n), i.e. ∀ n samples.
2. Interpolate (using cubic spline) between all minima and all maxima, to obtain lower

and upper envelopes, emin(n) and emax(n), respectively.
3. Compute mean envelope, m(n) = (emin(n)+emax(n))/2.
4. Compute the IMF candidate, ck+1(n) = rk(n)−m(n).
5. Is ck+1 an IMF? If yes, then ck+1 is the k+ 1 IMF. Compute residual rk+1(n) =

x(n)−
∑k

i=1 ci(n). Increase sifting number index, i.e. k = k+1 and use rk in step 2.
If no, then repeat step 2-5 by using ck+1.

6. Terminate procedure until the final residual rK(n) is a monotonic function.

one-dimensional representation of x(n) with n= 1, ...,N .
The above sifting algorithm, eliminates riding waves and transforms the waveform of the
signal in each kth sifting iteration to be more symmetric with respect to the zero mean. To
prevent the information loss due to excessive reduction in amplitude and physical meaning,
a stopping criterion ψ is used. One of the most common criteria is the Cauchy, which uses
threshold ρ, such that,

ψ = ||ck+1(n)− ck(n)||22
||ck(n)||22

< ρ, ρ ∈ (0.2,0.3) (2.17)

It is a well known fact that the EMD may produce IMFs with overlapping frequency con-
tent. This issue is known as the "mode mixing" problem of the EMD. This is typical when
the signal contains an intermittency, e.g. white noise or abrupt signal changes. Recall that
in EMD, the local mean m(t) is computed via interpolation, which in most cases is a cubic
spline. However, the splines are unstable when an intermittency is present, and as such
mode mixing and/or splitting does occur [144].
The mode mixing has been demonstrated many times in the literature, including in [118],
when the authors used EMD to decompose a mono-component signal with an added tran-
sient. In general, the mode mixing phenomenon in adaptive signal processing is when an
IMF contains oscillations of disparate scales, or when a component of similar scale is present
in different IMFs [97].
The ensemble empirical mode decomposition (EEMD) [191] addresses this problem by
adding Gaussian white noise to the entire signal. Applying EMD on the noisy signal, will
generate K IMFs {ck(n);k = 1, ...,K}. For an ensemble of M times, the same procedure is
repeated (creating noisy versions of the signal and applying EMD to it). Averaging through
all M members in the ensemble for each of the K IMFs separately, gives the averaged ith

IMF, i.e. c̄i = 1/M∑M
m=1 ci,m.
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The idea behind EEMD was inspired by the fact that the EMD acts as a dyadic filter bank
when applied to a purely white noise signal. This means that the frequency bands are
uniformly populated in the whole time-frequency space. When a signal is added to this
uniformly distributed white noise background, the different frequency components of the
signal are projected onto proper bands of reference, defined by the background noise. If the
background is not white noise, then "mode mixing" occurs.
As each member of the ensemble consists of a different realisation from a Gaussian PDF,
the white noise component will reduce according to σ2

ε/M , where σ2
ε is the noise variance.

This means that as M becomes large, the IMFs of the signal will be the only components
that will persist through the averaging process.
Notice that, EEMD needs specification of σε and M . Moreover, to ensure equal number of
IMFs between each of the M members of the ensemble, the authors in [191] proposed to
use a relatively small number of iterations (for the sifting process). However, enforcing this
type of constraint can result in inadequate signal decomposition.

For a more robust signal decomposition, the improved complete ensemble empirical mode
decomposition with adaptive noise (ICEEMDAN) [49], the the time-varying filter empiri-
cal mode decomposition (TVF-EMD) [109] and the empirical mode decomposition with soft
sifting stopping criterion (EMD-SSSC) [115], were developed. The basic premise of ICEEM-
DAN involves generating M realisations of a white noise term εm ({m= 1, ...,M}) to create
M noisy copies of the original signal x(n). Each mth realisation is decomposed up to its
1st IMF using EMD (Table 2.1). Both the added white noise and the "controlled" EMD de-
composition, diminishes the probability of mode mixing [178]. The procedure is outlined in
Table 2.2. The Matlab implementation is publicly available on one of the authors’ personal
website [3].
Note that the EMD uses a hard stopping criterion, based on a threshold applied on the
standard deviation of two consecutive sifting iterations (Equation 2.17). It has been proven
in many studies, e.g. in [115], that this approach does not decompose the signal into ideal
IMFs, i.e. satisfying the two main requirements set above. This implies that such a stopping
criterion is prone to mode mixing. For this reason, the authors in this paper, have devel-
oped a soft stopping criterion for the EMD. This criterion involves the computation of the
kurtosis (or excess kurtosis) and RMS values for each iteration. Whenever two consecutive
sifting iterations show an increase in both kurtosis and RMS values for the decomposed
IMF, the sifting process stops. Otherwise, it stops until the maximum number of iterations
is reached. The method was applied on DI for REB damage, and have shown promising
results. The Matlab implementation for this algorithm is provided by one of the authors in
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Table 2.2. The sifting algorithm of the ICEEMDAN.

1. Obtain M realisations of x(n): xm(n) = x(n)+β0S[εm(n)]1, where S [·]1 is the EMD
decomposition up to the 1st IMF, m = 1, ...,M and β is a scaling constant for the
noise term ε.

2. Use EMD, to decompose each xm(n) up to the 1st IMF, i.e. c1,m(n).
3. The 1st IMF is the average, i.e. c1(n) = 1/M∑M

m=1 c1,m(n).
4. The first residual is calculated as r1(n) = x(n)− c1(n).
5. Use EMD to decompose r2(n) = r1(n)+β1S [εm(n)]1.
6. The kth IMF is thus, ck(n) = 1/M∑M

m=1S [rk−1(n)+βk−1S [εm(n)]1]1.
7. The kth residual rk = rk−1 − ck(n).
8. For k = 1, ...,K repeat (5)− (7) until the Kth residual is a monotonic function.

[8].
On the other hand, the TVF-EMD is an EMD-based technique that approaches the signal
decomposition problem by constructing a low pass filter, with time-varying cut-off frequency.
This filter is used to separate the signal into its local low and high frequency parts. Subse-
quently, the method successively applies the time-varying filter on the local low frequency
part of the signal, until a stopping criterion is reached. At each iteration, the calculated
local high frequency part will be a locally narrow-band signal, which is amenable to anal-
ysis with the HT (i.e. solving the mode mixing of the EMD). Each local high frequency
component will satisfy the requirements for being an IMF‡. The development of the method
was inspired by the fact that the mean envelope of the EMD algorithm (m(n)), is also a
time-varying filter.
The authors of the TVF-EMD algorithm demonstrated in their paper [109], that a B-spline
polynomial is a special type of low-pass filter, whose cut-off frequency is determined by its
knot spacing. In addition, its order determines the roll-off specification of the filter (or filter
attenuation rate). Note that the most important feature of the TVF-EMD algorithm is the
computation of the time-varying filter. Whereas, the sifting process is the same one as in
Table 2.1 of the original EMD algorithm. Table 2.3 outlines the steps of the time-varying
filter estimation. Some further details are also provided in Appendix B.
Therefore, using the knot spacing of the B-spline filter, the EMD algorithm is carried out as
usual, for each iteration. A stopping criterion that defines whether the decomposed signal
is "sufficiently" narrow-band or needs to be filtered further, is calculated as the ratio of the

‡It should be noted that the method is not restricted to the definition of the IMF, such as requiring
symmetric upper and lower envelopes. Instead, it uses a more flexible definition for the local high-frequency
narrow-band signal. However, to avoid confusion the term IMF will be used for a signal that is sufficiently
narrow-band for a valid HT analysis.
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Table 2.3. The main steps of the time-varying filter calculation used for the TVF-EMD
algorithm.

1. Calculate IF and IA using HT.
2. Find the extrema timings, i.e. time points for all local minima and maxima of IA.
3. Interpolate the two sets of time points, separately.
4. Step(3) allows the calculation of a new set of IFs, which further enables the compu-

tation of the bisecting frequency, which is the frequency that separates the local low
and high frequency parts of the signal.

5. The rate of change for the bisecting frequency is limited by a fixed value (using a
realignment algorithm) to prevent abrupt signal changes (intermittencies) that can
cause mode mixing.

6. The knots of the B-spline approximation filter are calculated as the extrema timings
of the function h(t) = cos

[∫
ϕ̇bis(t)dt

]
, where ϕ̇bis(t) is the bisecting frequency (from

Step(5)).

Loughlin instantaneous bandwidth [116] and the weighted IF average (see Appendix B).
Note that the Matlab implementation of the TVF-EMD can be found in [13].

2.3.2.4 Iterative filtering and VMD-based decomposition methods

Similar to the TVF-EMD, the adaptive local iterative filtering (ALIF) [44], is a technique
that utilises a special type of low-pass filter to replace the mean envelope m(n). In partic-
ular, ALIF computes a moving average filter, whose length is a function of the input signal.
For this reason it is suitable for non-stationary signals. In comparison, moving average
filters with a fixed length assume similar statistics within their averaging window. More
specifically in ALIF, a filter function, is convolved with the signal to generate the moving
average filter. This filter function poses some ideal properties, including smoothness. The
authors used the solution to the Fokker-Planck equation for this filter function, as it satisfies
these properties. The moving average filter is then used to calculate IMFs by using a similar
sifting procedure, as in the EMD algorithm. The method is implemented in Matlab using
the code from the University of L’Aquila’s website [1].
The variational mode decomposition (VMD) technique [63] and its variants (e.g. the mul-
tivariate one [182]), calculate each IMF§ simultaneously, instead of iteratively via an op-
timisation procedure. In particular, if K is the number of expected IMFs in the original
signal, then each IMF ck is assumed to be compact around a centre frequency ωk, whose

§In VMD [63] the term "mode" is used instead of an IMF, which has a slightly different definition. For the
purposes of this thesis, the term IMF will be used for narrow-band and mono-component signals, calculated
from any decomposition method used.
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bandwidth is calculated in the frequency spectrum. Using Lagrange multipliers λ(t), the
optimisation problem can be described as,

L(ck,ωk,λ) = α
K∑

k=1

∣∣∣∣∣∣∣∣ ∂∂t
{[
δ(t)+ j

1
πt

]
∗ ck(t)

}
e−jωkt

∣∣∣∣∣∣∣∣2
2

+
∣∣∣∣∣
∣∣∣∣∣x(t)−

K∑
k=1

ck(t)
∣∣∣∣∣
∣∣∣∣∣
2

2

+ ⟨λ(t),x(t)−
K∑

k=1
ck(t)⟩

(2.18)

where, α is a penalty factor and δ(t) the Dirac delta function. The saddle point of the above
Lagrangian is the solution to minimising the difference between the sum of IMFs ck(t) ∈RK

and the signal x(t). To assess the bandwidth of each candidate IMF, i.e. whether it satisfies
the IMF or narrow-band properties (as discussed previously) the following main steps are
followed:

1. The analytic signal of each ck(t) is calculated using the HT. All negative frequencies
are then discarded (as they do not have physical meaning);

2. Each candidate IMF spectrum ck(t) is shifted to its estimated centre frequency ωk by
multiplying it with a complex exponential tuned to ωk;

3. Then the bandwidth is computed using the L2-norm of the gradient.

Similar to both the EMD and ALIF, a stopping criterion on the standard deviation of the
IMFs is constructed such that the algorithm finishes to update λ(t) when this is below a
certain threshold. The Matlab built-in function vmd.m is used.
One of the issues with the VMD arises from the fact that it convolves the signal’s IMFs with
a complex exponential. A system like a GT engine cannot be assumed to be stationary on
long-time scales, and therefore, VMD may only be applied on smaller time-segments of the
signal (where stationarity may be assumed). Also, given the VMD requires the specification
of K, this poses some restrictions on the kind of problems that SHM & CM deals with. That
is, in most real-world applications, e.g. a GT engine, the number of IMFs cannot be possibly
known due to the complexity of the system that is being monitored. Any misspecification
of K may result in mode mixing.
The successive variational mode decomposition (SVMD) [137] has been recently proposed
to tackle the issues of the VMD. Briefly, this is done by including additional criteria on the
optimisation problem such that it minimizes (or eliminates) the overlap in the frequency
spectrum of each IMF. Note that VMD operates as a spectral separation technique, so that
it also assumes that the IF of each IMF has not overlapped with each other. This may also
be a potential cause of mode mixing in the original VMD, which is expected to be solved
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by SVMD.
Note that, a time-series generated by a non-stationary process can also be modelled directly
using, parametric and non-parametric techniques. One of the first attempts for the former
category was the threshold autoregressive (TAR) model, which assumes piecewise linearity
[180]. Non-parametric ones include the aforementioned GPs. However, since each time-
series may be sampled with a rate in excess of 1 kHz on the time-scale of a few minutes,
modelling the data vector directly will not be possible. That is, to prevent issues including
modelling noise in the data, a set of DSFs need to be calculated first that provides certain
key characteristics for each time-segment of the whole time-series. Hence, the above IMF-
decomposition techniques will provide a way to obtain DSFs, as described in the next
section.

2.4 Common DSFs from vibration responses

This section outlines the identification procedure used for estimating the modal parameters
from structures for SHM purposes. For CM on REBs, the procedure of the envelope analysis
(EA) will be also discussed, as a potential set of DSFs for an automated DI. Both of these
sets of DSFs are commonly used in SHM & CM applications and will be analysed further
in a subsequent chapter of this thesis. In Chapter 4, additional types of DSFs found in the
literature are discussed.

2.4.1 Modal parameters in SHM

In vibration-based SHM it is typical to extract modal parameters, i.e. NFs, MS and damp-
ing ratios (DRs), from structural accelerations. In large and complex structures, e.g. an
offshore wind turbine engine, localised inspection of each of its parts is rather infeasible to
make. Therefore, monitoring its modal parameters is one solution towards DI.
Moreover, they are particularly useful measures to be used beyond the 1st level in the
damage identification hierarchy, i.e. can be used for both localisation and quantification
purposes (see Figure 1.2). In the literature, it is very common to use NFs and MS and
their variants, e.g. displacement of modal curvatures, as DSFs (see recent examples in
[122], [87] and [134]). MS and curvatures, for instance, have much higher sensitivity to
localised events of damage, but, the structure needs to be instrumented with a dense array
of sensors for their estimation [153]. On the other hand, both NFs and DRs can provide a
direct measure of the structure’s health state using a single vibration transducer [35], i.e.
for localised DI. The NF tends to decrease as damage progresses, while DR increases. As
mentioned in Chapter 1 and also as described more in-depth in [67], in order to enhance
damage sensitivity, it is necessary to look for changes in the higher NFs, since damage is a
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local phenomenon.
In comparison to NFs and MS, DRs have not been investigated as extensively as DSFs in
SHM applications. This is mainly due to the difficulties in estimating them. Some recent
studies, e.g. [110], [39] and [128], have studied the DI problem for SHM using estimated
DRs from vibration responses. Although the concept of using DRs for SHM problems is not
new, many issues still remain. For instance, estimation of DRs in the presence of noise and
non-linearity, is both unstable and inaccurate. For instance, in [141] the authors of the Z24
bridge experiment found high uncertainties in DR estimation using the stochastic subspace
identification method. This finding was also reported in other studies, e.g. in [111], where
the authors studied the variation of DR estimates on a structure subjected to wind-induced
structural vibrations and compared it with NF estimation.
However, in structures where a crack is formed in its early stages, a considerable amount of
vibration energy will be dissipated (mostly as frictional dissipation mechanism in the form
of heat), and thus, the DR will increase proportionally, too. The sensitivity to damage
in such subtle changes to the geometrical properties of the structure are expected to have
minimal influence to its NFs (as reported, for instance, in [40]). Since DR is also correlated
with damage, it will be examined as a candidate DSF.

2.4.2 Modal parameters identification via adaptive signal decomposition

The modal parameters (NFs and DRs) estimation or identification (MPI), as it is nor-
mally referred to, may be approached either in time, frequency or time-frequency domains.
Typically, in MPI, the system is excited by an impulse force (e.g. impact hammer test),
which results in the corresponding impulse vibration response [143]. For these applications,
Frequency Response Functions (FRFs) are used for MPI. In practise, for SHM & CM the
system will, in most part, be excited by ambient forcing, e.g. wind-induced vibrations in a
high-rise building or traffic loading in a bridge. Therefore, output-only methods will be dis-
cussed, as more suitable MPI tools for SHM & CM. Table 2.4 groups some of the available
output-only MPI techniques according to their domain, and summarizes each group’s main
merits.
Several damage scenarios that occur in practise, including opening and closing cracks, will
force a structure into a non-linear dynamic region [67]. In these cases, techniques like
ARMA and peak picking may not be applicable for MPI. One of the first approaches for
MPI, applicable to systems that are not necessarily linear or stationary, was achieved using
the WT along with the HT, e.g. in [100], for computing the time-varying nature of DRs
and NFs. Most notably in [192], the authors introduced a methodology for MPI using the
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Table 2.4. Some output-only MPI methods for estimating DRs and NFs.

Domain Techniques Main merits

Time ARMA models, random decre-
ment technique (RDT), stochas-
tic subspace identification (SSI),
proper orthogonal decomposition.

Limited to lightly damped sys-
tems with well-defined spacing be-
tween the modes. Applied to lin-
ear and stationary systems (with
time-invariant modal properties)
and are prone to errors due to
noise in the measurements.

Frequency Peak-picking, Frequency domain
decomposition, Half-power band-
width.

Same as above.

Time-frequency Using adaptive signal decomposi-
tion methods along with an IA
and IF estimation method, e.g.
the HT (see Section 2.3.2).

Applicable to non-linear and non-
stationary processes, but, more
complex to implement, e.g. HT is
prone to end-effects and high fluc-
tuations in IF estimation due to
differentiation of its instantaneous
phase angle.

EMD algorithm, along with the HT and the RDT¶. This methodology was applied for SHM
applications. Other studies, including the one in [42], have used a very similar approach
for DI in bridge. More recently, VMD-based MPI was also employed for structures in [197]
and [26], having a priori knowledge of the expected number of vibration modes.
Note that, for a single DOF linear, lightly-damped and undamaged system without EOV
influence, its NFs and DRs will largely remain constant over time [34]. On the other hand,
a non-linear system (like the Duffing oscillator - see Appendix A) will exhibit amplitude-
dependent modal properties, as already discussed. Therefore, it is important to utilize
these type of methods for MPI in systems that exhibit any degree of non-linearity and non-
stationarity. This is true for systems in both damaged and undamaged states.
In general, the basic premise for MPI using adaptive decomposition techniques, like the
VMD and EMD, is to decompose the vibration acceleration signal x(t) into a set of M
modal vibration responses and K IMFs, including the final residual εK(t),

x(t) =
M∑

m=1
x̃m(t)+

|K−M |∑
k=1

ck(t)+εK(t) (2.19)

¶RDT is a technique that is used to obtain the free decay vibration response from a system that is
excited by ambient vibration forces.
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As can be shown, for a multi-DOF system the analytical expression for its ith free decay
modal vibration response (see Appendix A and Equation A.5) is centred around a single
NF. This is inline with the definition of a mono-component signal, which is a requirement
for HT analysis. To obtain the free decay vibration response of the system, the natural
excitation technique (NExT) [38] is used in this thesis, due to the fact that it produced
more stable MPI results than the RDT. The NExT Matlab implementation is available on
the GitHub repository in [7].
In order to determine the NFs and DRs for a system using any of the above algorithms
(EMD-/VMD-based or ALIF) the following procedure is summarized, as shown in Table 2.5.

Table 2.5. General methodology followed for MPI.

1. Decompose the vibration signal using an adaptive technique, e.g. VMD, into its
K +M constituent signals (M modal vibration responses and K IMFs). If M is
required by the algorithm (and/or known beforehand), as in VMD, then K = 0.

2. Obtain the M +K free decay vibration responses, by applying NExT on all of the
decomposed K+M signals. Let’s denote xf

i (t), with i= 1, ...,M+K being the index
of the decomposed signals.

3. Obtain the analytical signal of xf
i (t): z(t) = xf

i (t) + jH
[
xf

i (t)
]
, where H is the HT

operator.
4. It can be shown that the analytical signal expression for xf

i (t), from Step(3), is equiva-
lent to the expression for the ith mode of vibration (see Equation A.5 in Appendix A),
which is in the form of a real-valued exponential, A(t)e−ζωtcos(ωt). Equating these
two expression, and allowing only for light damping, i.e. ζ ≪ 1, the free decaying
amplitude is given as: ln |z(t)| = −ζωnt+ z0, where, ωn is the NF, ζ the DR and z0
the non-oscillatory part of the response (i.e. a constant).
Computing the slope of ln |z(t)| versus t, i.e. mz, enables the calculation of DR as
ζ = 1√

1+( ωd
mz

)2
.

While, the phase angle is given by the following expression: ϕ(t) ≈ ωdt. So that the
slope of ϕ(t) versus t yields the damped NF ωd.
For both DR and NF a robust linear least-squares fit (see Chapter 5) is used for slope
estimation, in order to reduce the influence of outlying data points on its computa-
tion.

Note that Step(4) is repeated for all M +K decomposed signals to obtain all DRs and
NFs. Apart from VMD, some vibration modes may be shared among any of the M +K

decomposed signals, since M is unknown (for instance, in ICEEMDAN). Therefore, post-
processing of MPI is required to keep only unique vibration modes. Critical to the above
implementation for the stability of DRs and NFs estimates, is the segment length of free
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decay response, which is required by the NExT algorithm. An estimate of the average
segment length is found by first calculating the absolute residual between the actual NF and
the estimated one from the MPI method above. Then, this absolute residual is used as an
objective function to a general optimisation procedure, i.e. particle swarm‖, in order to find
the optimal segment length that minimizes it. Note that the average segment length was
computed on several different segments of the N -dimensional time series vector x.
An important note regarding the use of HT. As it has been reported numerous times in the
literature before, for instance, in N. Huang’s very insightful paper in [90] and in [91], HT has
certain inherent limitations. These include its "end-effects" and the Bedrosian and Nuttall
theorem. The former may be solved by removing a certain part of the edges of the signal,
i.e. after the HT is applied, as it was done in this thesis. The latter limitation imposes
a significant constraint, i.e. the frequency spectra of the amplitude-modulated part of the
signal |z(t)| and the frequency-modulated part ejϕ(t) must not overlap, otherwise, negative
frequencies are expected in IF estimation. Hence, as alternatives the following algorithms
can be used instead [70]: the energy separation algorithm using the Teager energy operator,
the normalised Hilbert Transform, the generalised zero-crossing, the empirical amplitude-
and frequency-modulation decomposition and the direct quadrature.

2.4.3 CM in REBs

In CM for REBs, it is necessary to distinguish between REB vibrations, vibration from
other machine elements within the same drivetrain and noise. The latter, may represent
random, uncorrelated source of vibration with a white noise profile (or iid). While, other
sources of vibration will have their own distinct characteristic frequencies. Distinguishing
between these three vibration sources, will allow successful identification of damage in REBs
(presented as the BSS problem in Chapter 1).
Concerning the outer race damage in the form of spalls, the characteristic frequencies gen-
erated with each impact can be estimated, as shown in one of the earliest works in [126].
Theoretically, the ball passing frequency of the outer race (BPFO) is given by the following
kinematic relationship:

BPFO = nbfshaft

2

(
1− d

D
cosα

)
(2.20)

where, nb is the number of rolling balls, α the bearing contact angle between the ball and
outer race, and d and D are the ball and pitch diameters, respectively. Hence, this charac-
teristic frequency is said to be non-synchronous to the fundamental of the drivetrain fshaft.
At the BPFO, the acceleration transducer will record a sharp impulse, each time a rolling
ball hits the spall. This impulse, being of significantly high frequency, is capable of exciting

‖Particle Swarm optimisation is part of Matlab’s Global Optimisation Toolbox.
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a broadband range of resonances (up to 100kHz as shown in [130]) across the transfer path,
i.e. from the damage location to the acceleration transducer. Sometimes, acceleration trans-
ducers will be tuned such that their resonances are within this excitation frequency range,
in order to increase their sensitivity to the generated impulses [33]. Therefore, determining
the frequency of the impulses, provides diagnostic information and DI capability. As also
discussed in Chapter 1, reference values are available to investigate the damage severity for
each component.
Although there are characteristic frequencies that will point to the specific damage in a
drivetrain, those may be hidden, e.g. when computing the PSD of the raw vibration signal.
Therefore, a certain amount of pre-processing needs be applied on the raw signal, by taking
into consideration the following:

• The impulses generated at the early damage stages, are of low energy, in comparison
to the discrete frequency components generated by other machine elements, e.g. a
rotating shaft and its harmonics, as well as, gear meshes.

• In the kinematic relationship (Equation 2.20), the contact angle α varies by about
1 − 2% in reality [149]. This is called roller slippage, and will change the BPFO,
resulting in spectral leakage. Therefore, it will weaken the diagnostic signal further,
at least for the highest frequency harmonics [50].

• The vibration response will contain amplitude-modulations by the excited resonances.

• White noise will be generated by other sources, e.g. instrumentation.

Modulations in amplitude due to excited resonances, will cause "distortions" in the frequency
spectrum, by forming sidebands. This is beneficial for DI purposes, since the structural
resonances generated by each impact, and modulated in amplitude at each BPFO, will be
amplified by the impulse component of the signal. As illustrated from the simple schematic
in Figure 2.2, the sharp impulses generated with a period of Tbpfo =BPFO−1, correspond
to the modulating signal, while structural resonances with a period of Tωb correspond to the
carrier signal, i.e. "carrying" the impulse signal. In general, when the amplitude or frequency
of a signal is non-constant and varies as a function of time, it is called a modulated signal.
In the first case, it is called amplitude modulation, while in the second case it is frequency
modulation.
In the simplest case, where there is a single sinusoidal modulating signal in the form of
Amsin(2πfmt), with frequency fm and amplitude Am, and a single carrier signal in the
form of Acsin(2πfct), with frequency fc (fc ≫ fm) and amplitude Ac, their combined signal
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Figure 2.2. Simplified diagram of the modulated acceleration signal of a faulty bearing
(showing the carrier and impulse signals separately).

x(t) can be shown (using trigonometric identity of two sinusoids) to comprise the following
three frequency components:

x(t) = [Ac +Amsin(2πfmt)]sin(2πfct)

∴ x(t) =Acsin(2πfct)+ Am

2 sin(2π(fc +fm)t)+ Am

2 sin(2π(fc −fm)t)
(2.21)

A simplified example of a theoretical signal with a single carrier frequency fc = 500Hz and
a single modulating frequency fm = 10Hz is shown in Figure 2.3. In the frequency domain,
the two components around fc (the sidebands) are spaced by fm = 10Hz, apart. In an outer
race damage, the frequency spacing will be the BPFO, while the red line in the time-domain
is the signal envelope with period Tbpfo.
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Figure 2.3. Amplitude-modulations in a theoretical signal with carrier frequency of 500Hz
and modulating frequency of 10Hz.
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2.4.4 DSFs for REBs using envelope analysis

In order to solve the problem of DI for BPFO damage, several methods were proposed in the
literature. Among those methods, Cepstrum and EA [102] are well-known methodologies,
each one having its own distinct characteristics and application domains. In brief, Cepstrum
analysis aims to reveal periodic components in the frequency spectrum through calculating
the spectrum of the logarithm of the energy spectrum. On the other hand, there are certain
advantages associated with EA, such as the flexibility to incorporate different algorithms
into its framework and its proven/robust effectiveness as a demodulation tool. Additionally,
as the REB signal is of cyclo-stationary type, there have been developed and applied many
other techniques to tackle this characteristic specifically. One very promising method for
this application is the spectral correlation density function [24].
Although EA was developed in the 1970s by the authors in [54], it has been the benchmark
technique for most of the CM research studies for REBs [140]. Its main aim was to overcome
the limitations of poor frequency resolution by shifting the analysis of high-frequency carrier
resonances towards a lower-frequency range [126].

x(n)

Obtain the most 

“informative” 

frequency bands

Signal 

enveloping

Analysis of 

signal 

envelope

Pre-whitening

Figure 2.4. The four main steps of the envelope analysis procedure.

The main idea behind EA, as applied to DI on the outer-race, is to isolate the amplitudes
at BPFO, i.e. the impulsive nature of the signal, which is the signal envelope, from the
resonances (i.e. the carrier). As it was shown in Figure 2.3, the signal envelope∗∗ (shown
as red line) represents the extrema of the signal in the time-domain. The first step towards
obtaining the envelope of the signal is to bandpass filter it around the frequency of one of
the excited structural resonances fc. Figure 2.4 shows an overview of the processes involved
in EA, as follows directly from the discrete-time raw acceleration signal x(n). Each step in
EA is described as follows:

1. Pre-whitening: This is a pre-processing step, which becomes important when other
elements are present in the drivetrain, e.g. gears. The vibration energy from REBs
at any damage frequency (not only at BPFO) will be weak, and thus, the generated

∗∗Mathematically, signal envelope is defined as the square root of the squared envelope of the signal.
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impulses will be masked by other more dominant discrete frequency sources. This
is true especially in the very early stages of damage progression when the vibration
signal at BPFO is close to the noise floor. As mentioned previously, there will also be
some variation in the contact between the mating elements of the bearing, also called
roller slippage. Although small, and usually up to about 1−2% as has been observed
in [149], it will cause random fluctuations in the time-period between each generated
impulse. Coupled with cage clearances, the signal generated by the damage will be
(approximately) 2nd order cyclo-stationary signal or "pseudo-cyclo-stationary". Pre-
whitening will be required to separate the random part of the signal (REB impulses)
from the discrete part of the signal (gear meshing frequencies and harmonics, etc.).
There are several techniques to do that, as described in the excellent review paper in
[148]. However, some of the most effective ones for an automated DI, is pre-whitening
by means of obtaining the residual signal from the estimation of the AR model of
the signal. A study by NREL†† [164] found that pre-whitening enhances the signal’s
sensitivity of the acceleration step response when a rolling ball enters a spall. It should
be noted here that the range of order p of the AR model used to pre-whiten the signal
should be chosen carefully. That is, to avoid inclusion of the impulses as part of the
deterministic signal and to enhance the impulsiveness of the residual signal. For the
first requirement, the maximum order pmax should be calculated as:

pmax = min
1≤i≤Nimp

[ 1
BPFO

]
i
fs − c (2.22)

where Nimp is the total number of impulses in the signal and c is a scalar, usually
less than 10 (determined from numerical simulations). So that, pmax is computed by
finding the minimum time period between each impulse from all Nimp impulses.
Given the above range, of possible AR orders p ∈ [1,pmax], the second requirement is
satisfied by choosing the optimal order (among all pmax orders) such that the kurtosis
value is at its maximum:

poptimal = max
1≤i<pmax


N−1

N∑
n=1

(xn − x̄)4

(N−1
N∑

n=1
(xn − x̄)2)2


i

(2.23)

Therefore, the residual signal from the AR model (see Equation 2.6) may now be
computed by fitting an AR model of order poptimal to x(n), first.

2. Obtaining the most "informative" frequency bands: Although pre-whitening
is a first step in enhancing the damage signal, the key step in EA is to identify the

††National Renewable Energy Laboratory
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frequency band that BPFO is most dominant in the spectrum. One of the earliest
approaches [126] is to bandpass filter the signal around one of the impulse resonant
frequencies, which amplifies the BPFO (or any bearing damage signal) and its har-
monic series. This results in filtering out both the low frequencies (gear mesh, shaft
rotations, etc.) and the higher frequencies (where white noise levels are high), within
the whole Nyquist range. In that way, it further enhances the SNR.
Many researchers have tested different combinations for the lower- and upper-pass
cut-off frequencies for the FIR filter. Most notable is the recommendation by [33],
which mentions to obtain a frequency band that corresponds to the biggest dB differ-
ence. This means that a reference signal of the undamaged bearing is required, which
will not necessarily be available. On the other hand, the author in [88] recommends
"paying attention" to higher frequency bands where the energy is high, and specifies
from experience that it is common to filter-out frequencies below 2.5 kHz and above
5 kHz. In addition, an impact hammer test on the bearing case is also common prac-
tise in order to identify the structural resonances and then specify the band for the
filter.
The application of SK (see Equation 2.8), however, has been seen as a more rigorous
way to parametrize the bandpass FIR filter, which also enables an automated DI to be
carried out. Using SK, enables the wide applicability of the EA method on systems
of varying characteristics, e.g. different REB geometric features and shaft speeds.
More specifically, SK has given rise to the kurtogram, which helps in identifying the
bandpass bandwidth automatically as the one that maximizes it.
Moreover, adaptive signal decomposition may be performed to investigate the differ-
ent frequency bands of the system in isolation and identify the ones with the highest
damage indicator, e.g. highest kurtosis. This will be explained in Chapter 4, but, not
in the context of EA.

3. Signal enveloping: The next step is to obtain the envelope of the bandpass filtered
signal. As it was shown, using the HT the analytic representation of the signal can be
obtained. This in turn, can be used to get IA, which is the signal’s envelope. However,
it is important that the identified bandpass frequency, computed in the previous step,
is sufficiently narrow-band, as per the requirements for HT analysis.

4. Analysis of signal envelope: The final step in EA, is to get the frequency spectrum
representation, e.g. using Welch’s PSD, of the signal’s envelope in order to obtain a
"clean" version of the amplitude at BPFO and its harmonics. This step is also called
the envelope spectrum.
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In Appendix E, the EA procedure, as presented above, is studied using a numerical simu-
lation dataset (representing outer-race damage on an REB) and its corresponding envelope
spectrum is also discussed in Chapter 4. Note that, although the amplitude of each impulse
may progress as a function of time, e.g. due to bearing deterioration, it will in theory, re-
main constant within short time intervals. This is because outer-race damage exists within
a specific "load zone" of the bearing. The load zone can be defined as the normal or radial
load applied on the bearing due to the shaft’s mass. As such, the acceleration transducer
will record the same magnitude each time a ball strikes the spall. For that reason, there
are no shaft rotational-speed amplitude modulations, as in the case of diagnosing inner-
race damage. In the latter, due to being rotated with the shaft, there will be sidebands
around the ball passing inner race frequency, which are repeated in its harmonics as can be
shown in a typical power spectrum, e.g. in [28]. Diagnosis in outer-race damage is generally
considered more straightforward than in inner-race, due to the former being located within
a fixed (or nearly fixed) load zone. What is most important, however, as far as bearing
defects are concerned, is to be able to extract the impulsivity of the raw vibration signal.
Using EA is an approach to achieve this.

2.4.5 Vibration DSFs in GT engines

Typically, in vibration-based CM on GT engines and variable-speed rotating machinery, the
set of DSFs that is mostly used for automated DI are the tracked-orders [101], [45]. This is
because, with any of the above mentioned vibration analysis methods, e.g. adaptive signal
decomposition or PSD, vibrations will be a function of the speed the system is rotating,
i.e. its shaft. Such variation in rotating speed will also change the vibration characteristics
of a GT engine, e.g. the fundamental frequency of the main shaft and its harmonic series.
Therefore, by measuring the rotational speed of the system using tachometer probes, it is
possible to normalise the vibration characteristics of the GT engine. This enables to track
each frequency component regardless of the rotational speed. In GT engines, the first four
(fundamental and its first three harmonic series) are used as DSFs due to the fact that
they contain the most energy [176]. In this thesis, the rotational speed of the GT engine is
constant or there is no rotating part, e.g. in a combustor, so that vibration characteristics
are dependent only on the operating conditions (AFRs and SAFs).

2.5 Summary

In this chapter the types of vibration signals and relevant analysis methods were reviewed
for the purpose of identifying a suitable set of analysis tools for different SHM & CM
applications. More specifically, this chapter may be summarized using the following points:
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• Vibration signals can be categorised according to their generated processes, which can
either be stationary or non-stationary, linear or non-linear. For each group, a number
of techniques were discussed.

• Structural vibration signals cannot be assumed to be generated from stationary and
linear processes, e.g. due to EOV influence. Also, a common non-linearity that occurs
in structures is that of amplitude-dependency. For these reasons, adaptive signal
decomposition techniques, are preferred as analysis tools for these types of signals.

• A very sensitive measure, which is correlated with impacts, is that of kurtosis and its
variations, e.g. SK. It can be used whenever damage manifests itself as non-linearities
in the system in the form of impulses, e.g. on an outer-race damage in REBs.

• A methodology has also been presented to identify modal properties of a structure,
i.e. by first decomposing the signal into its vibration modes (plus IMFs) and then
computing the instantaneous properties of the signal through the HT. In that way, a
measure of the DRs and NFs can be provided for further analysis to examine their
potential as DSFs.

• In DI on the REB outer-race, it is crucial to amplify the relatively small vibration
amplitude at the BPFO. This is indeed necessary, because in a broadband vibration
spectrum that may include both high-amplitude noise and other periodic frequency
components, the amplitudes at BPFO may be buried in the raw signal spectrum. EA,
with the aid of the SK (to identify band-pass filter cut-off frequencies), the HT (to
obtain the signal envelope) and an AR model (to remove periodicities in the signal)
seems as a promising technique.

Following the above review, a description of the available datasets will follow to further
understand the specific problems this thesis is dealing with.
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Chapter 3

Datasets description and
exploration

This chapter provides a description of the datasets that are used in this thesis, in order to
demonstrate the different DI methods proposed. The datasets include measurements from
one or more accelerometers, attached on the system that is being monitored. Namely, the
four datasets are:

1. Los Alamos four DOF laboratory experiment (LA-4DOF) (Section 3.1.2)

2. Wind turbine gearbox REB laboratory experiment (WT-REB) (Section 3.2.1)

3. Z24-bridge controlled field experiment (Z24) (Section 3.1.3)

4. Gas turbine engine laboratory experiment (TF-LBO, TS-SAF and TF-SAF) (Sec-
tion 3.2.2)

Additionally, Section 3.1.1 presents a numerical simulation model of a lumped parameter
mass-spring-damper system with linear and non-linear restoring forces, denoted as NSim-
4DOFLin and NSim-4DOFNonLin, respectively. The problem of EOV influence on system
dynamics will also be clearly illustrated, following this exploratory analysis.

3.1 SHM on multi-storey structures and bridges

3.1.1 The 4 DOF numerical simulation model

A bookshelf-type structure is one of the most typical experimental arrangements, used in
numerous SHM studies, e.g. in [105]. This is mainly because it can represent a wide range
of structures of interest, for instance, multi-storey buildings. Given the popularity of the
bookshelf-type structure, a similar numerical simulation model was developed. Its basic
arrangement is described in Appendix A.
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3.1.1.1 NSim-4DOFLin

In expanding the 4-DOF model shown in Appendix A, the influence of an actual air temper-
ature profile is added. This in turn, causes it to become a non-stationary generating process.
In addition, a damage model is added, which significantly alters its dynamic properties:

1. As discussed in Chapter 1, the modal properties of the system are mostly dependent
on temperature variations and gradients. This implies that the relationship between
the nominal spring stiffnesses k̄, and the thermal field T (t), can be modelled as:

k(t) = k̄ −β(T ) k̄ T (t) (3.1)

where, β is a switching function between two values, β− and β+, i.e. it depends
on whether T (t) is below (switching to β− ) or above zero (switching to β+). This
distinction is necessary, given that from past experiments, e.g. on bridges, a notable
increase in NFs has been observed when T ≤ 0 [169]. Therefore, to simulate this
scenario a much higher β− as compared to β+ is specified.
Similar approaches for modelling the influence of temperature on the modal properties
can be found in other recent SHM studies, for instance, in [165]. The raw ambient
temperature measurements from the Z24 dataset are shown in Figure 3.1. Since the
sampling time of those measurements is at 1-hour intervals, Gaussian white noise
was added to the temperature measurements with a standard deviation of 0.001◦C in
order to add short-term variability (given the numerical simulation step size was in
the time-scale of seconds).
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Figure 3.1. Air temperature measurements (see details of Z24 dataset).

2. Damage is modelled with a time-decaying function, of the form αk(t) = e−γk(t). This
can be thought of as a time-varying ratio between the damaged and undamaged
stiffness values. Hence, the rate of damage progression over time can be controlled by
changing the value of γk. Additionally, impacts in the form of short-duration external
force excitations, increasing with the same rate as αk(t), were included.
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Although the NSim-4DOFLin model has linear restoring forces, it will certainly be non-
linear and non-stationary, due to the above two additional influences on its dynamics.
An illustrative numerical simulation example is shown in Figure 3.2 where the DRs (ζ)
show significant fluctuation around their nominal values on periods where T (t) ≤ 0. When
the progressive damage occurs, at t= 1008 hr, the most profound change occurs on the DR
corresponding to the second NF. As expected a similar pattern takes place on the NFs, too.
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Figure 3.2. A numerical simulation of the 4 DOF model. Damage is progressing
exponentially over 8 days (from t= 1008hr).

Note that damage is simulated as: an exponential stiffness decrease, alongside an external
random impulse excitation force, f3(t), that grows at the same exponential rate. The dam-
age is simulated between m2 and m3, i.e. on k3(t). Also, the time-histories of acceleration
of m3 and m4 show a change in magnitude when damage occurs, but, it is indistinguishable
from the changes that occur due to a freezing temperature. The PSD magnitude of the input
force shows equally distributed excitation across the whole spectrum, i.e. from 0 to .14Hz,
as expected from a white noise signal. The main numerical simulation parameters for this
example can be found in Table 3.1.
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Table 3.1. Numerical simulation example 1: main parameters of the four
degree-of-freedom mass-spring-damper model.

Parameter Value

k̄
{
6×105} [kgm/hr2]

c1−4 1×101 [Nhr/m]
m1−4 0.8 [kg]
γk 5×10−3 [1/hr]
β+ 0.002 [◦C−1]
β− 0.05 [◦C−1]
{σF1 ,µF1} {2.5×102,0} [kgm/hr2]

3.1.1.2 NSim-4DOFNonLin

The above presented numerical simulation model provides a good starting point for conduct-
ing a basic investigation of DI using, for instance, modal parameters as DSFs, influenced
by both EOV and progressive damage. In expanding the applicability and testing the effec-
tiveness of DI methodologies it is necessary to account for stronger non-linearities in system
dynamics, as well as a more realistic damage scenario.
As explained in [67] (pages 245-247), under certain environmental and operating conditions
the dynamic response of a structure can transition from linear to non-linear, when damage
is present. An illustrative example is a bilinear spring stiffness coefficient model that is
used as a simplified approximation for breathing crack simulations in beams.
With this in mind, the spring force fs(t), acting on each mass, can be modelled to include
many non-linearities encountered in practical problems. Firstly, the equations of motion
must be re-written (see Appendix A) as:[

ẍ
ẋ

]
=
[
−M−1C 0

I 0

][
ẋ
x

]
+
[
M−1fs,L(t)−M−1fs,R(t)

0

]
+
[
M−1f

0

]
(3.2)

where, the spring forces on the left fs,L(t) and on the right fs,R(t) of each mass are cal-
culated based on the vector of relative displacements ∆x = {−x1(t),x1(t) −x2(t),x2(t) −
x3(t),x3(t) −x4(t)}. Whereas, damping is modelled the same as in NSim-4DOFLin. Each
spring force, either on the left or on the right of each mass was calculated according to the
following piecewise function:

fs(t) =


µk(t)∆x +(k(t)−µk(t))∆x∗ +νk(t)∆x3, ∆x ≥ ∆x∗

k(t)∆x +νk(t)∆x3, 0 ≤ ∆x<∆x∗

αk(t)(k(t)∆x +νk(t)∆x3), −∆x∗ <∆x< 0
αk(t)(µk(t)∆x − (k(t)−µk(t))∆x∗ +νk(t)∆x3), ∆x ≤ ∆x∗

(3.3)
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Figure 3.3. Non-linear spring force profile used for numerical simulations. Damage is
progressing exponentially over 8 days.

where, αk(t) is applied only when ∆x(t) < 0, which indicates when the crack opens, and
although it is defined as a vector here (as a generalisation), it will usually be applied on
a single ∆x(t), unless otherwise specified. Also, ν is the ratio between k̄ and cubic stiff-
ness term, and similarly, µ is the ratio between k̄ and the non-linear region of the spring
force. The displacement threshold, ∆x∗, indicates the transition to the non-linear region.
As shown in the following spring force profile example in Fig. 3.3, the cubic force term,
fcub, is more dominant at higher |∆x|, where the the non-linear region starts at .5 cm,
while ν = 10 and µ = .4. Note the decrease in negative fs(t) value as time (and damage)
progresses according to the time-decaying ratio αk over a certain number of realisations for
a time-period of 8 days. So the negative spring force resistance decreases almost by half
towards the end of this simulation.
As a note here, if the spring force has been modelled with just the cubic term, the problem
would have been equivalent to a Duffing stochastic process (i.e. by replacing the forcing
function with white noise in Equation A.2 in Appendix A). In [84] the authors provided a
solution to modelling this type of system with a TAR (amplitude-dependent time-series)
model. However, the presented model is more involved than the single DOF Duffing stochas-
tic process.
The results from a typical numerical simulation scenario are shown in Figure 3.4. Similar to
the previous numerical simulation example, damage is considered as a progressive stiffness
degradation between m2 and m3, in addition to the external impulse forces acting on m3.
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Figure 3.4. A numerical simulation of the 4 DOF model with non-linear spring forces in
undamaged and damaged states having the same simulation parameters as in
previous simulation.

Unless otherwise specified, the parameters of the simulation are the same as in the previous
example. As can be seen, the left spring force applied on mass 4, fs,L(m3) decreases accord-
ing to the damage ratio, αk, as shown previously in Figure 3.3. In turn, this influences the
acceleration amplitude of m3, although this may not be easily observable on the plot here.
On the other hand, there is no significant visual change in m4 acceleration, instead it follows
the undamaged state very closely. Note the reduction in spring force (and acceleration) due
to damage is only on the negative region. The influence of temperature on acceleration
time-histories is also evident from the plots.
The equations of motion in both numerical simulation examples presented above were solved
with a fixed time-step h= 1×10−4 hr, as a compromise between stability of numerical inte-
gration solutions and computational speed. The fixed step solution is required, for instance,
when an AR time-series model is used, which assumes equally-spaced time-intervals between
the discrete observations. The 5th order explicit Runge-Kutta ordinary differential equation
solver [37] was employed to obtain the solution at each time-step. This was needed due to
the numerical model’s higher stability requirements. Note that the above two numerical
simulations examples will be used as two case studies in investigating DI methodologies.

3.1.2 LA-4DOF

The numerical simulation model presented above, has a very similar arrangement to the
three-storey benchmark laboratory experiment contacted by the Los Alamos National Lab-
oratory. A detailed description of this experiment can be found in the technical report in
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[72]. A notable difference of this experiment, is the way damage and EOV are being simu-
lated. Here the authors considered stiffness drop on one or more of the support columns (as
EOV influence), while damage is considered as impacts (only) of varying amplitudes. On
the other hand, in NSim-4DOFNonLin and NSim-4DOFLin models, damage is simulated
both as a stiffness decrease and force impulses.
The experimental setup, uses an electromagnetic shaker device to exert band-limited white
noise forces, ranging from 20Hz to 150Hz in frequency, with RMS value of approximately
20N , on the base floor of the structure. The sampling frequency was set to 322.6Hz for
both accelerometers and force transducer. The accelerometers are attached opposite to the
shaker and in the middle of each horizontal floor. As the structure is supported on linear
rails, only x-axis motion is considered, as in the NSim-4DOFLin and NSim-4DOFNonLin
models. Each time-history from these sensors was recorded for 25.6 seconds, which results
in a frequency resolution of 0.0391Hz.
In order to simulate the effects of temperature on the system dynamics, the stiffness coef-
ficient of one or more of the support columns was decreased by 50%. The effects of traffic
are also simulated by adding a specific mass of 1.2kg on different floors. On the other
hand, damage is considered as an opening and closing crack and simulated by a suspended
column (on the 3rd floor) that is impacting a bumper. The gap between the bumper and
the suspended column varies in length to simulate damage progression.
As shown in the Table 3.2, the seventeen different system structural states recorded can be
separated into four main groups. In the first group, the system is in its undamaged state
without EOV influence. In the second group, the system is undamaged but influenced by
temperature and added mass, while in the third group the system is damaged at various
progressions (without EOV influence). Finally, in the fourth group the system is damaged
at various progressions with extra mass added on different floors. Note that in any given
state s1 − s17 there are 9 examples measured at different times. Thus, for each of the five
sensor measurements there are 81920 sample points in each state.
For the purposes of this thesis, measurements recorded from the accelerometer located on
the top floor, i.e. furthest away from the base excitation force, will be used. It has been
shown in previous studies on LA-4DOF, e.g. in [74] and in [72], that damage-sensitivity
decreases significantly when considering measurements from the two bottom floors, due to
those sensors being located furthest away from the impact source. Figure 3.5 shows the
overlapped PSDs for s1 state, as calculated on different realisations of this experiment us-
ing a time-interval of 10 seconds for each one. On each realisation, the peaks show three
modes of vibration, at ≈ {30.5,53.7,70.8}Hz, which were consistent with the numerical
results from [72]. Due to the excitation signal being band-pass filtered, by the authors of
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Table 3.2. Structural system states and data groupings for Los Alamos bookshelf frame
laboratory experiment.

State # Description Group
s1 Undamaged. 1
s2 Undamaged with added mass on the base floor.

2

s3 Undamaged with added mass on the 1st floor.
s4 Undamaged with column 1BD stiffness decrease.
s5 Undamaged with columns 1AD + 1BD stiffness decrease.
s6 Undamaged with column 3BD stiffness decrease.
s7 Undamaged with column 3AD + 3BD stiffness decrease.
s8 Undamaged with columns 2AD + 2BD stiffness decrease.
s9 Undamaged with columns 2BD stiffness decrease.
s10 Damaged with progression level 1 (least severe).

3
s11 Damaged with progression level 2.
s12 Damaged with progression level 3.
s13 Damaged with progression level 4.
s14 Damaged with progression level 5 (most severe).
s15 Damaged with progression level 1 + added mass on the base floor.

4s16 Damaged with progression level 1 + added mass on the 1st floor.
s17 Damaged with progression level 4 + added mass on the 1st floor.

this experiment, the lowest vibration mode is not available. As it was shown in Figure 3.2,
the first NF provides the lowest sensitivity of damage as compared to the other three NFs,
and therefore, can be neglected. Additionally, the frequency spectrum of the excitation
force signal shows to be relatively flat over the frequency range of interest, apart from the
amplitude drops at frequencies of the three vibration modes (due to the dynamic coupling
effects).
The sensitivity of the three modes of vibration due to EOV and damage levels is illustrated
in Figure 3.6. In particular, the PSDs show a shift in frequency of the 3rd and 4th modes
with EOV when the system is undamaged. On the other hand, the impact-type of dam-
age causes an energy transfer from the three vibration modes towards higher frequencies.
In other words, an amplitude drop in each of the peaks can be seen, with an increase in
amplitude on higher spectral components. This observation becomes more pronounced as
the damage progresses, i.e. to the highest level s14. Now, by monitoring such changes, e.g.
using a kernel density estimate (KDE) as in Figure 3.6, one can observe that as the damage
progresses, this type of damage skews the PDF. Therefore, deviations from the Gaussian,
e.g. central moments, may be used for DI. This is also a sign of inducing non-linearity in
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Figure 3.5. Power spectral densities of acceleration (left) and force input (right) in 10s
intervals for baseline (s1) system state.

system dynamics.
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Figure 3.6. Power spectral densities (left) and kernel density estimate (right) for five
different system states.

On the other hand, Gaussian assumptions may apply for EOV influence (s5), although the
density is more peaked than s1. Thus, a higher kurtosis value than the baseline. As the
impact-type damage introduces amplitude drop, mainly on the 3rd and 4th NFs, a spectral
window surrounding those components, i.e. between 40Hz and 80Hz can also provide sen-
sitive information for damage. At the same time, the frequency shifts due to EOV may also
play an important role in the development of a reliable DI framework.

3.1.3 Z24

The Z24-bridge experimental campaign is another well-known benchmark study in SHM.
The monitoring of this bridge took place between 11 November 1997 and 11 September
1998. The main aim of this project was to quantify the influence of both EOV and structural
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damage on the dynamical characteristics of the bridge. From 10 August 1998 until the end
of the monitoring period, i.e. a month, the bridge was progressively damaged. Within this
monitoring time span, environmental parameters such as ambient air temperature, wind
speed, humidity and soil temperature were measured with a sampling period of 1 hour,
using 49 different sensors, e.g. thermocouples, at several locations along the bridge. It was
found and confirmed (as previous studies have claimed) that temperature, in particular, had
a profound influence on the stiffness characteristics of the bridge. This is mainly because
it alters the Young’s modulus of concrete, which in turn affects the modal properties of the
structure. This change can be approximated with a bilinear model [152], similar to the
expression used in the NSim-4DOFLin/-4DOFNonLin models in Equation 3.1. A detailed
description of the Z24 experiment can be found in [142].
The bridge’s dynamics were monitored using 16 accelerometers at different locations along
the bridge and orientation axes. Every 1 hour, accelerations were measured with a sampling
frequency of 100Hz. From prior modal experiments on the structure, the first four modes of
vibration were expected in the range of 0−12Hz. An automated modal analysis procedure
was performed based on the stochastic subspace identification algorithm, which is an output-
only MPI algorithm, as discussed in Chapter 2. That is, the bridge was excited by natural
sources only, which in this case it was vehicles passing along the bridge and wind-structure
interactions.
In Figure 3.7 the first four NFs of the bridge are shown for the whole monitoring period.
On the top part of the plot, the four NFs are shown as a function of time, where the marker
colour changes with temperature, i.e. it is dark red when temperature dropped below 0◦C

and dark blue when above. The change in each NF as a function of temperature can be
more readily observed on the bottom subplots in this figure. The bilinear relationship
is evident from those plots. In particular, when it drops below 0◦C the rate of change
increases substantially, where NFs increase. When temperature is above the freezing point,
a decrease of all four NFs is also observed, though this rate is much smaller than in freezing
temperatures.
Note that there are only 3932 samples in the record, which does not correspond to the 7320
samples for the full 305 days of the monitoring period. This is because, there were periods
in which the monitoring system stopped working and data couldn’t be collected [142]. Note
that the temperature profile that was shown previously in Figure 3.1, corresponds to the
same time instances as in the NFs of Figure 3.7.
Damage is introduced in the bridge just after t= 2496 hours, in the form of pier settlements,
initially, using a settlement system. On the latest stages of damage, several tendons were
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Figure 3.7. Natural frequencies as a function of time and ambient air temperature. Top
plot: red colour denotes the time period in which temperatures dropped below
0◦C. Bottom subplots: show the bilinear relationship that exists between
temperature variation and natural frequency.

subsequently ruptured. More details can also be found on the KU Leuven’s Structural
Mechanics website [16].

3.2 CM on rotating machinery & gas turbines

3.2.1 WT-REB

Bearing vibrations in this experimental campaign were collected from a laboratory gearbox
wind turbine test-rig. The main shaft rotational speed is set at 45 Hz, powered by an
electrical induction alternative-current motor. A three-axis accelerometer was attached to
the housing of one of the REBs and data were collected at a sampling rate of 25 kHz. A
single speed reduction gearbox with a 2.8 ratio is also located next to the generator. The
generator is used to provide electrical power on four settings: {0.0,0.1,0.2,0.3} kW . All
major components of the experimental setup are shown in the diagram in Figure 3.8. Note
that Bearing no. 1 was the instrumented REB, from which acceleration measurements were
recorded.
Damage was manufactured on the outer race of Bearing no. 1 by drilling five different groove
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Figure 3.8. Diagram depicting the main elements of the experimental laboratory gearbox
test-rig.

sizes of up to 1mm in width and depth. So that level 5 of damage progression, corresponds
to the largest groove size, while level 1 to the smallest. For each of the four generator loading
conditions and five damage progression levels, 10 seconds of acceleration time-histories were
collected. Note that, this is a controlled experiment, having well-known operating conditions
and damage modes and progression levels. Note that the DI frameworks that this thesis
will be demonstrating in subsequent chapters are applicable to any damage mode, e.g. inner
race, outer race or rolling ball. However, the fact that the focus is on outer race damage
makes the problem more straightforward.
In Figure 3.9 and 3.10, the time- and frequency-domain plots, respectively, are shown for a
small subset of the vertical accelerations recorded. It can be seen from Figure 3.9 on the
top plot that as damage progresses beyond 30 s, i.e. damage levels 3 to 5, the standard
deviation/RMS value increases substantially, in comparison to the first two levels of damage,
i.e. from 10 s to 30 s. Furthermore, the standard deviation/RMS value drops as the load
increases from 0.0 kW (0 − 10 s) to 0.3 kW (30 − 40 s), as indicated in Figure 3.9 on the
bottom plot.
Note that the expected BPFO on this particular speed profile and REB geometry is 233 Hz.
In Figure 3.10 the expected BPFO and its harmonic series (up to 12×BPFO) are shown as
vertical dotted lines, also called cursors. Cursors are typically used to aid the CM process
using visual tools like PSD plots. Some indication of outer race damage may be seen from
the 6th to the 8th BPFO harmonic, on the highest damage level (Damaged L5). However,
on an intermediate damage level (Damage L2), any indication of damage remains hidden.
Also, on the right plot in Figure 3.10, the increase in generator load tends to reduce the
previously seen peaks on the BPFO harmonics (i.e. for Damage L5). This is significant,
because it means that even at the highest level of damage, the indications of damage may
be masked on high loading conditions. This demands more sophisticated DI procedures to
be implemented that maintain their damage sensitivity, regardless of the load.
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Figure 3.9. Concatenated acceleration time-history plot on the vertical acceleration
records on Bearing no. 1: Accelerations on different levels of damage, up to
damage level 5 (50−60s), and the undamaged (0−10s) health state (top
plot); Undamaged state on four generator loading conditions, starting from no
load (0−10s) up to the highest load (30−40s) (bottom plot).

3.2.2 Gas turbine engines

The author of this thesis was actively involved in testing a variety of SAFs∗ and AFRs on
two experimental facilities housing: a small turbo-shaft GT engine, i.e. an aircraft Auxiliary
Power Unit (APU) and a single combustion chamber from turbo-fan GT engine. The author
also worked on designing these experimental tests, including the LabVIEW implementation.
These tests were mainly meant to investigate the impact on engine performance using such
atypical operating conditions, i.e. SAFs and relatively high AFRs. From these tests, three
datasets were collected:

• TF-LBO: Testing the LBO limits of a turbo-fan GT engine on three AFRs by mea-
suring structural accelerations;

• TF-SAF : Investigating the GT engine performance of a smaller turbo-fan GT engine
using 35 SAFs by collecting structural accelerations, pressure, temperature measure-
ments, among others;

• TS-SAF : On the APU GT engine, 2 different AFRs and 2 SAFs were tested, measuring
structural accelerations.

3.2.2.1 TS-SAF

This experimental facility houses a Honeywell GTCP85, which is an APU of turbo-shaft gas
turbine engine type. The operating principle of this type of engine follows a typical Brayton

∗Consisting of various fuel blend mixtures of conventional jet, bio and other sustainable fuels.
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Figure 3.10. Spectrum of power density of vertical acceleration records on Bearing no. 1,
showing only up to 3 kHz, for damage identification purposes. Left plot:
Undamaged and two damage levels, including the highest one, i.e. Damaged
L5, with no load (C0); Right plot: Damage level 5 and two loading
conditions, C0 and C3 (0.3 kW).

cycle. As can be shown in the schematic diagram of the engine in Figure 3.11, the engine
draws ambient air from the inlet at 1 bar through the centrifugal compressor C1, where it
raises its pressure by accelerating the fluid and passing it through a divergent section. The
fluid pressure is further increased across a second centrifugal compressor C2, before being
mixed with fuel into the combustion chamber CC and ignited to add energy into the system
(in the form of heat) at constant pressure. The high temperature and pressure gasses are
then expanded across the turbine, which drives the two compressors, a 32kW generator
G that provides aircraft electrical power and the engine accessories EA, e.g. fuel pumps,
through a speed reduction gearbox. Several gears exist at different ratios to the main shaft
speed, which itself is rotating at a constant speed of ≈ 700 ± 1.6 Hz. For instance, there
is a speed reduction ratio of 9.8 : 1 for the tachometer, 2.6 : 1 with the generator drive and
6.8 : 1 with the output drive shaft.
The air outlet valve, allows the extraction of high temperature, compressed air at ≈ 232◦C

and 338kPa of absolute pressure to be passed to the aircraft cabin and to provide pneumatic
power to start the main engines. This allows the engine to be tested on different operating
modes as the AFR that goes into the combustion chamber can be modified. When the air
outlet valve opens, a decrease in turbine speed will take place if there is no addition of fuel
to compensate for the lost work. The energy loss arises from the decrease in work done
wc2 to the engine’s working fluid as it passes through the second compression stage. The
amount of lost work is proportional to the mass of air outlet mao, and can be expressed as
wc2 = maocpdT , with cp being the heat capacity of the working fluid and dT the temper-
ature differential across the second compression stage. Since the shaft speed must remain
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constant, the fuel flow controller FFC achieves this by means of regulating the pressure in
the fuel line, thus, injecting different mass fuel flow into the combustion chamber.

C1 C2 T
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Air intake

Fuel intake

Rotating 

shaft

Air outlet valve ETC

FFC

Rig ground 
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(Not drawn to scale)

Figure 3.11. Turbo-shaft gas turbine engine schematic depicting main salient features of
the experimental test-rig.

Three Dytran 3225F1 single-axis accelerometers (sensitivity of 10mV/g) were attached on
the experimental-rig’s ground support structure. Those were located as close as possible to
the hot section of the engine, in order to capture the dynamics of combustion processes, from
the point-of-view of structural vibrations. Data were sampled on a National Instruments
9234 module at 51.2 kHz, i.e. its maximum sampling rate. The total time duration for
these experiments was 20 s for each SAF and AFR combination. Note that measurements
were recorded during steady-state engine operation.
In Figure 3.12, the structural acceleration PSDs, recorded using an SAF and a conven-
tional Jet-A fuel on two different AFRs are shown. Two frequency regions of interest
((8.5,10.5) kHz and (20.4,21.1)kHz) are shown, in which the acceleration amplitude was
relatively high. The two AFRs are AFR1 ≈ 136 and AFR2 ≈ 84. As observed on the
plots, there are a few processes, in which the fuel composition causes both frequency and
amplitude changes. For instance, at around 9kHz, with SAF and AFR2, significant am-
plitude drops are observed. Looking at around 10.5kHz, Accelerometer 2 shows the exact
opposite to be happening. At higher frequencies, the two accelerometers show a significant
frequency shift with the fuel change on both AFRs. As this frequency shift is typical across
the whole spectrum it means that engine main shaft speed as the fuel changes from the
conventional Jet-A to the SAF (on the same AFR) decreases, thus, generating less power
output (power output∝ rotational speed).
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Figure 3.12. Power spectral density estimates from vibration measurements (two
accelerometers) on the turbo-shaft gas turbine engine on two different fuels
and AFR.

3.2.3 TF-SAF/-LBO

This experimental test-rig houses an annular-type combustion chamber (TF-SAF0), which
was originally part of a turbo-fan engine manufactured by Rolls Royce for aircraft propul-
sion. In addition, the facility houses a smaller-scale in-house designed and built combustor
(TF-SAF). With these experimental test-rigs a number of SAFs were investigated. In ad-
dition, various AFRs, to test LBO limits were tested (TF-LBO).

1. TF-SAF0 : 25 alternative fuels were tested, using the same data acquisition as in the
TS-SAF experiments. Additionally, four pressure sensors (PCB 106B52) were incor-
porated and were located at several locations across the GT engine. Unfortunately,
instrumentation errors such as unsuitable mounting positions of pressure sensors, and
location of accelerometers meant that measurements were not sensitive to the phys-
ical processes taking place during combustion. However, to alleviate this problem,
the same data acquisition system was transferred to the smaller-scale combustor (TF-
SAF);

2. TF-SAF : 35 alternative fuels were tested, with the sensors being located sufficiently
closer to the combustion chamber this time. This is to measure any subtle differences
in GT engine performance between the SAFs. Measurements of vibration were being
recorded, each for ≈ 60s, having a constant AFR ≈ 90 and exhaust gas temperature
of ≈ 405◦C. Five accelerometers were mounted around the combustor’s cold section,
which means some redundancy was expected. To evaluate this redundancy the pair-
wise correlation of the PSD estimates between each of the 5 sensors was evaluated
across the 35 fuels. It was observed that the calculated correlation coefficient between
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two pairs of fuels was greater than 0.9, so that, So that either Accelerometer 2 or 4
should be removed from further analysis. Table 3.3 shows the calculated correlation
coefficient values for one of the SAFs.

Table 3.3. Calculated correlation coefficients from PSD estimates between pairs of the five
accelerometers for one fuel (similar trends were observed for the rest of the
fuels).

Accelerometer # 1 2 3 4 5

1 1.00 0.97 0.09 0.68 0.72
2 1.00 0.11 0.68 0.73
3 1.00 0.16 0.07
4 1.00 0.94
5 1.00

In terms of variation in acceleration amplitudes across 35 fuels, including conven-
tional kerosene-based ones, some changes were observed across a relatively narrow
frequency band. As seen in PSD plots in Figure 3.13, Acceleration 3 and 5 show
amplitude changes on different frequency ranges. Note that the most variation in
amplitude between the fuels occurs within the frequency band presented in these two
plots;
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Figure 3.13. Power spectral density estimates from vibration measurements (two
accelerometers) on the turbo-fan gas turbine engine combustor on 35
different fuels.

3. TF-LBO: Using the same data acquisition system, as previously, three different AFRs
were considered using Jet-A1 fuel by altering the air mass flow rate ≈ {300,360,420} kg/s
and the corresponding fuel mass flow rate ≈ {.56, .66, .75} × 10−3 kg/s. As AFR in-
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creases, it was observed that the overall vibration amplitude level as measured on
each of the five accelerometers rises, too. Without emphasising on particular regions
in the frequency-domain, as in previous datasets, the four statistical moments can
provide adequate insights into the vibration amplitude differences as AFR increases.
As seen in Figure 3.14, both AFRs 1 and 2 have skewness values ≈ 0 and kurtosis
to ≈ 3, which suggests Gaussian-like distributions. On the other hand, AFR3 differs
in distribution shape. In Figure 3.15 the KDE estimates from data on AFR 1 and 3
are shown. Thus, the distribution shape of AFR 3 is bimodal and more dispersed, as
compared to AFR 1, which is Gaussian-like and "peaked".
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Figure 3.14. Four statistical moments calculated on the vibration measurements as
recorded on five accelerometers.
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Figure 3.15. Kernel density estimates calculated on vibration measurements from
Accelerometer 1 on two AFR.
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3.3 Summary

The datasets presented above cover a broad spectrum of challenges in SHM & CM. DI
in this thesis ranges from specific localised damage, for instance, REB outer race defects
to more generic system changes, e.g. structural vibration amplitude changes with SAF
on a GT engine. The latter presents a more ambiguous problem, so that any DSF may
use global characteristics, e.g. central moments. In contrast, for CM on REBs, specific
frequency ranges were analysed to reveal changes due to damage (e.g. on the outer race).
The unique properties of each dataset and the significance behind using it in this thesis, are
summarised below.
For the NSim-4DOFLin and NSim-4DOFNonLin datasets:

• Basis for testing the proposed DI methods.

• Specifically, allows for tuning parameters of the proposed DI methods, e.g. MED filter
coefficients.

• Conduct outlier diagnostics using by using DSFs that are influenced by EOV.

• Perform modal identification of parameters using adaptive signal decomposition meth-
ods and use those for testing the proposed DI methods.

• Experimental air temperature profile was implemented - realistic EOV influence.

• Bilinear spring force profile, simulating a crack - NSim-4DOFNonLin.

For the LA-4DOF dataset:

• Impact-type of damage of progressive severity via a length-adjustable bumper.

• EOV influence on system dynamics has been accounted for by loosening the connec-
tions of the support columns, i.e. stiffness coefficient variation, and added masses to
the structure.

• Simpler EOV influence on system dynamics, and well-controlled impact-type of dam-
age allows testing the sensitivity of the proposed DI methods and DSFs.

• Modal parameter identification and outlier diagnostics, as in NSim-4DOFLin and
NSim-4DOFNonLin datasets.

For the WT-REB dataset:

• As in typical CM problems, the DI problem focuses on certain frequencies related to
the defect. In this case, the outer race fault bearing frequency.
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• The above allows for both detection and diagnosis of damage.

• Challenges in DI as the indicators become increasingly less sensitive due to the increase
in operating load - similar to the "masking" effects caused by EOV influence.

• Allows for benchmarking the proposed DI algorithms against established techniques
used in the industry for CM in REBs, e.g. the envelope analysis technique.

For the Z24 dataset:

• Not impact-based type of damage, but, it progresses in time.

• A set of DSFs, i.e. system’s first four NFs, are provided, which are highly influenced
by EOV.

• Outlier diagnostics using robust methods offer insights into the effects of EOV influ-
ence and damage as measured by changes in NFs.

For the TF-LBO dataset:

• The DI problem is posed as one in which unstable operating conditions of the com-
bustor must be identified. Specifically, air-to-fuel ratio leading to lean blow-out and
flame extinction.

• There are no operating conditions that will influence the DI problem, e.g. no "mask-
ing" effects as in the previous datasets.

• Simpler problem to test DI methods to detect the presence of unstable GT engine
operations as measured by vibration sensors.

For the TF-SAF and TS-SAF datasets:

• In both TF-SAF and TS-SAF datasets, the aim is to identify structural vibrations
that differ significantly from the typical engine condition. For instance, the effects of
a specific alternative fuel on the vibration characteristics.

• As with TF-LBO dataset, there are no "masking" effects to the DI problem.

• For TS-SAF, the engine type is a turbo-shaft one. This is significant because it allows
testing for the proposed DI problem on a different type of GT engine.

Data exploration conducted on these datasets offered an invaluable insight into the design
of suitable DSFs for each problem. The main conclusions from this chapter are:
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• CM on REBs: Rolling slip creates smearing effects in the frequency spectrum, thus,
it weakens the amplitude at the defect frequency. There are many parameters in the
EA procedure; AR model order and band-pass filtering cut-off frequencies using SK.
Thus, the tuning of these parameters needs to be carefully conducted. Kurtosis and its
variants is an important measure that must be included in the DSF vector. Changes
in operating conditions in the form of increasing the generator loads were also shown
to influence the amplitude at the BPFO. Therefore, it needs to be addressed in the
DSF development step;

• CM on GT engines: The observable changes in the probability distribution, e.g. the
bi-modality of the higher AFR in testing the LBO limits and its higher-order statistical
moments enable the separation of the nominal and the extreme vibration behaviour.
For this specific test scenario, Accelerometer 1 showed to be most sensitive to the
AFR ratio changes, as far as the higher-order moments are concerned. For the rest of
the datasets, i.e. TS-SAF and TF-SAF datasets, some significant differences within
certain frequency regions could be observed from the PSD plots, e.g. between ∼
20.5kHz and ∼ 20.9kHz (TS-SAF) and between ∼ 0.5kHz and ∼ 2.2kHz (TF-SAF).
Therefore, spectral characteristics, e.g. spectral means, may also be proved important
for automated DI and DSFs development;

• SHM on structures and bridges: NFs are undoubtedly influenced by damage, as proven
from the Z24 dataset. However, they are also influenced by temperature, as it was
observed in the same experiment. This influence can be modelled with a bilinear
relationship. Hence, temperature change causes non-linear behaviour, although this
occurs on larger time-scales than damage. One way to distinguish between the two is
that damage introduces local changes in the modal properties, whereas environmental
variability is spread along the structure (global change). Non-linearity is also intro-
duced as opening and closing crack, in the LA-4DOF experiment. Kurtosis in this
case is also extremely important, since, as in the WT-REB case, damage is in the form
of impacts; it changes the peakedness of the probability distribution. The structure,
under the influence of a relatively weak ambient excitation force, may assumed to be
linear. This is especially true for short time-scales. Modal properties such as DRs
have also been proven to be valuable DSFs, but, their estimation may be a challenge.

These datasets provide an appropriate testing ground for investigating the capability of
automated DI methodologies under the influence of EOV on the system dynamics. The
next chapter will be concerned with the design of DSFs.
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Chapter 4

Damage-sensitive features for
damage identification

4.1 The importance of DSFs in DI

Deriving a suitable set of DSFs, which is the feature extraction stage in the SPR paradigm
(see Chapter 1), is a key step in the development of an automated and effective DI frame-
work. In particular, DSFs derived from data, need to be immune to EOV influence, such
that to improve the robustness of the SHM & CM strategies.
The methods examined in Chapter 2, and in particular the adaptive signal decomposition
methods, will be used as part of the DSFs derivation process. Given their filter bank proper-
ties, the different modes of vibration can be separated. Thus, in comparison to broadband
signal analysis, e.g. using amplitudes from the PSD (across the whole Nyquist frequency
range) as DSFs, the sensitivity to damage is expected to improve by selecting the most rel-
evant modes. Also, each narrow-band mode / IMF can be interrogated separately from the
rest, which has the potential to unmask any damage presence. Selecting the most relevant
or informative ones, will also eliminate redundancy. Hence, adaptive signal decomposition
techniques can be thought of as dimensionality reduction techniques for time series data.
Unlike other methodologies that investigate the use of deep learning (DL) architectures for
modelling data with temporal dependencies [77], this thesis takes the more traditional ap-
proach of "handcrafting" a set of features. As such, this thesis makes the case that by using
handcrafted features, one can incorporate fundamental information of the physical charac-
teristics of the system that is being monitored. It should, nevertheless, be acknowledged
the fact that there are certain techniques in time-series analysis using DL, e.g. Long Short
Term Memory (LSTM) and bidirectional LSTM Networks, that have shown impressive ac-
curacy in recent literature. For instance, in [43], the authors have explored the possibility
of using the temporal dependencies learned by LSTM (trained on raw input data) to build
a more accurate representation in activity recognition tasks. Whereas, the generalisation

74



capability of a single-layer Feed-forward ANN was transferred to LSTM (as the latter is
prone to overfitting).

4.1.1 DSFs used in the literature

In vibration-based CM for REBs, it is very common to calculate the energy value of each kth

IMF, i.e. ∑N
n=1 ck(n)2 ∀ K IMFs, in order to construct a K-dimensional DSFs matrix, either

using VMD- as in [21], or EMD-based methods as in [175] and [194]. In the latter work, the
authors went one step further to compute the differential entropy of the normalised energy
of each IMF. On the other hand, in [171], the Hilbert marginal spectrum was constructed
using EMD-derived IMFs. This in turn, was used to find the frequency bands that are closer
to the characteristic frequency of three types of REB damage: outer-race (i.e. the BPFO),
inner-race and ball damages. In [25], the authors used the mode mixing problem for DI
purposes in a gearbox. In particular, given that mode mixing occurs when an intermittency
is present in the signal, e.g. an impulse-type of damage, the number of IMFs generated by
the EMD increases (as it is an iterative technique). Therefore, the authors discussed the
possibility of using the number of IMFs as potential DSFs.
For vibration-based structural DI under EOV influence a variety of DSFs were proposed
in the literature. In [59], the authors used the peak amplitudes of the FRFs from a wind
turbine blade. AR models were also used for the LA-4DOF dataset in [159] and [108], while
well-known benchmark studies in SHM use modal-based DSFs (mostly NFs derived from
system identification methods like SSI), e.g. the Z24 [152] and the Wooden Bridge [104]
datasets. NFs as DSFs were also used in other studies utilising different sets of experimental
data, e.g. in [83]. Another common approach, is to track NFs by selecting a subset of the
amplitudes from the power spectrum around the NF-region(s) of interest. In that way,
amplitudes within a specific frequency band, can be used to monitor changes in modal
characteristics as shifts in magnitude, as was done in [187] (although not with vibration
signals). These DSFs, however, are highly sensitive to EOV changes (temperature variation
in this case). Therefore, NFs and DRs, which were estimated using the MPI method as
outlined in Chapter 2, are examined as alternatives for DI in structures.

4.2 Methods for deriving DSFs

4.2.1 Features normalisation

Given the scale differences from the various types of features that can be computed, e.g.
statistical measures such as central moments and information theoretical ones such as en-
tropies, feature normalisation may proved to be important. That is, when a particular
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algorithm, in the statistical model development stage, is not location and scale invariant
this will cause many issues. In the context of robust outlier analysis (see Appendix C), this
property is essential for the effectiveness of this type of models.
Given that the range of a given type of feature may differ significantly from the other(s),
choosing not to normalise the features into similar dynamic range of values, the statisti-
cal model will eventually place more emphasis on the ones that take larger values [168].
Hence, the statistical model will be biased towards the features with the largest dynamic
ranges [30]. An example of feature normalisation in CM is given in [66]. The authors of
this paper have used the normalised PSD amplitudes from a range of different frequency
bands of interest, to monitor the condition of REBs. These normalised PSD amplitudes
were computed by removing the mean and dividing by the standard deviation of all the
amplitudes in the spectrum.
Giving an equal weighting to the features in the DSFs matrix is, therefore, necessary. This
is particularly true when the statistical model relies on distance measures to infer whether
a data point comes from the undamaged or damaged system states. Such distance mea-
sures include the squared multivariate distances or Mahalanobis distances [18], which are
examined in Chapter 5 of this thesis.
As demonstrated in many studies, e.g. in [139], it is common to test different types of fea-
ture normalization methods, in order to find the one that achieves the best performance. In
general, the choice of the specific feature normalization will be dependent on many factors.
One of the most important ones being the choice of the statistical model used to fit our
data, given that this model is not location or scale invariant. For that reason, this thesis is
examining three feature normalisation methods, as shown in Table 4.1.
The first one, being the z-score, which subtracts the mean and divides by the standard de-
viation of the data or feature vector x ∈ RN (i.e. a single feature type such as the kurtosis
values of N data points)∗. However, these two statistics, i.e. the mean µx and standard
deviation σx are influenced by data points that may have "significantly" different values (e.g.
very large values in the absolute sense) than the rest of the data, also called outliers. These
outliers will skew the z-score estimates towards their direction (more details in Chapter 5).
An example of what can be considered an outlier, is the change in NFs seen when T ≤ 0, in
the Z24 dataset (see Chapter 3 for details). If we want to unmask these outliers, the z-score
may be replaced with what is called a robust z-score, where it replaces the sample mean
and standard deviation of a certain feature vector x with its median med(x) and median
absolute deviation (MAD). This converts the whole analysis procedure into a location and

∗Note that N is not necessarily the same as the one used in Chapter 2 to refer to the discrete-time
sample index, i.e. n = 1, ...,N .
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scale invariant one.

Table 4.1. Feature normalisation methods used.

Feature normalisation Description

Z-score Scale each feature vector x so that it has properties of the Gaus-
sian standard distribution, i.e. xs = x−µx

σx
.

Robust z-score Same as above but replace the mean µx and standard deviation
σx with robust estimates of scale and location, calculated with
median and median absolute deviation (MAD), respectively, i.e.
xrs = x−med(x)

MAD .
Yeo-Johnson Power transform that takes into account outliers in the data and

brings the feature vector x closer to a symmetric distribution.
Unlike other power transformations, YJ allows both positive and
negative values in x.

The third feature normalisation method used in this thesis is the Yeo-Johnson (YJ) normal-
isation, which has recently been proposed in [151]. YJ is a power transformation method†,
that seeks to transform the feature vector x as close to a symmetric distribution as possible,
e.g. a Gaussian distribution. At the same time it enables both negative and positive feature
values, something which has not been possible with other power transformation methods.
It involves computing and modifying the four central statistical moments of the feature
vector x. More importantly, YJ accounts for potential outlying data in the feature vector
x, by computing a new set of values for its mean and standard deviation using a re-weighted
maximum likelihood estimation (MLE). The concept is similar to an M-estimator, that is
presented in Appendix B.
In Figure 4.1, the three feature normalisation methods are applied on the first two NFs of
the Z24 dataset. Alongside that normalised DSFs, the χ2

99% ellipses are shown to illustrate
any particular changes to data distribution. It is clear from the plots that, applying YJ
causes a shift in the data distribution, so as to achieve the so-called "central normality"
[151]. This means that the most central part of the data or the majority of the data re-
semble a symmetric distribution, like the Gaussian. In most techniques for outlier analysis,
e.g. Mahalanobis distances, the Gaussian distribution requirement for the data is essential.
In Chapter 5, most techniques used for outlier analysis incorporate a symmetrical distri-
bution assumption for the majority of the data. Note that YJ is implemented as part of
the cellWise: Analyzing Data with Cellwise Outliers software package [4] in R, which was
developed by the Robust Statistics research group at KU Leuven [9].

†There are many other power transformation methods, e.g. Box-Cox transform [98].

77



-4 -2 0 2 4

-20

-10

0

10

-5 0 5 10

-20

-10

0

10

20

-4 -2 0 2 4

-4

-2

0

2

4

6

Figure 4.1. Three feature normalisations applied on the first two NFs of the Z24 dataset.

On the other hand, for novelty detection (ND) tasks (see Chapter 6) feature normalisation
is used in a slightly different way. This is because in ND there is a known dataset available
from the undamaged system state, e.g. the feature vector xun. Therefore, its mean µxun

and standard deviation σxun may be used to normalise any future unseen feature vector x∗

as x̃∗ = x∗ −µxun
σxun

. This a common procedure in ND tasks, e.g. in [186], where the authors
normalised the amplitudes of the PSD of vibration signals in a similar way, prior to using
them as feature vectors to train a Self-Organising Map algorithm. This helps in enhancing
the separability between inlying and outlying data points, which may be present in x∗, as
already demonstrated by the author of this thesis in [123] and [124].

4.2.2 Visualisation, compression & selection of DSFs

Very often, the set of DSFs used in SHM & CM applications is usually a high-dimensional
one, i.e. much greater than 2. For instance, the number of DSFs derived from the EA
procedure, can be equal or even exceed the number of available examples. Therefore, it is
infeasible to visualise these DSFs on a plot. Additional issues with high-dimensional DSFs
include data overfitting and high computational requirements. The latter will occur, for
instance, when inverting a large covariance matrix to calculate thresholds in a Monte Carlo
(MC) simulation approach (see Chapter 5 for details on threshold calculation using MC).
Also, most methods used in Chapter 5 and 6 for outlier detection (OD) and ND, respec-
tively, require that the number of examples be much greater than the number of dimensions
/ features [156].
In terms of selecting the most relevant features for the statistical model development stage,
there are several approaches, as discussed in the review paper in [131]. For instance, in
the forward selection approach, features are added gradually to test their performance and
weights are added to each feature vector, according to a certain loss function minimization
argument. In unsupervised learning, e.g. in OD, where samples are not labelled, this loss
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function may not be possible to be defined. Therefore, it is necessary to resort to dimen-
sionality reduction methods as a means of both obtaining a reduced set number of features
used in the DSFs matrix and for visualising them on a plot. The only drawback is that
the selection process is now being conducted on the basis of the dimensionality reduction
method itself, and not on the specific problem. This will be explained in the next few
paragraphs.

4.2.2.1 PCA & its kernel-based equivalent

One of the fundamental assumptions behind dimensionality reduction techniques is that
most variance in a dataset exists on a lower-dimensional manifold, i.e. lower from the
dimensionality of the original dataset. The variance, is therefore, directly connected to
the "most significant" information that can be extracted from a dataset. A good review of
dimensionality reduction techniques, which compares a large number of them on different
datasets, is given in [183]. The authors of this paper have generously provided a Matlab
Toolbox (link is provided in their paper) that implements all these techniques.
One of the first and most widely-used techniques is principal components analysis (PCA)
[30]. This method works by transforming a data matrix X‡ by projecting them into a new
set of orthogonal axes, i.e. X ∈ RN×p → RN×k, where k ≤ p. The orthogonal set of k axes,
with k= k1, ...,kp, are in decreasing order in terms of the amount of data variance each axis
captures. Ideally, a method like PCA, does capture most of the data variance using the first
few axes (or principal components), so that visualisation can be carried out, too. In PCA,
the orientation of the kth principal component is calculated by solving for the eigenvectors uk

(normalised to have unit length) of the data covariance matrix Σ(X), where the variance
in each kth principal component is given by the kth eigenvalue λk. The projection of X
(assume it has been normalised first using, for instance, a z-score method), is given as the
linear combination of the p× k loadings matrix U = [u1, ...,up]T , i.e. the contribution of
each u (sorted from the largest to the smallest k eigenvalues λk ≥ λk−1 ≥, ...,≥ λ1) on the
kth principal component, or the so-called kth PCA subspace,

Ỹ =XU, Ỹ ∈ RN×k (4.1)

PCA assumes data in X are Gaussian distributed, due to the use of the sample covariance
Σ(X). Additionally, the iid assumption is necessary, so that there exists directions (the
principal components) that diagonalize the covariance matrix.
The fact that the projections Ỹ are linear combinations of the p features in X and their

‡This can be the matrix with p feature vectors, i.e. the DSFs matrix.
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individual contributions to each kth eigenvector, may not be valid for some problems. This
is because, the pairwise relationship between the features in X may exist in non-linear
high-dimensional manifolds, e.g. can be exponentially decaying or higher order polynomials.
Therefore, the estimated principal axes will not be able to describe "sufficiently" the variance
that exists between the feature vectors, which may lead to wrong conclusions about the data
characteristics.
Kernel PCA (kPCA)§ was developed as a generalisation for PCA, such that, it can be
used to extract k linear or non-linear principal components, where k = k1, ...,kN , i.e. up
to N components. Generally, kPCA employs a kernel function k(xn,xm) = ϕ(xn)Tϕ(xm)
with a feature map ϕ(·) such that it projects the original feature space X to a new higher-
or infinite-dimensional feature space, i.e. X → F . In general, kernel methods like kPCA
employ the kernel "trick" in order to compute the non-linear "similarities" between xn and
xm. Given that F may be potentially infinite-dimensional, the kernel "trick" makes it
possible to implicitly map / project the data. Further details on the kernel "trick", the RBF
kernel and the Gram matrix K̃x,x are provided in Appendix B.
It can be shown that by replacing the dot product with a kernel function k(x,x), the
following eigenvalue problem presents itself,

K̃x,xak = λkNak (4.2)

where, ak ∈ RN is the kth eigenvector (it can be shown that the eigenvector is a linear
combination of the mapped features, i.e. ak = ∑N

n=1ak,nϕ(xn)). For an arbitrary data
point x∗ ∈ Rp, its projection onto the kth principal component will be,

yk(x∗) =
N∑

n=1
ak,nk(x∗,xn) (4.3)

The Gram matrix (see Appendix B) is used instead of the kernel matrix for a non-centred
mapped dataset ϕ(x).

4.2.2.2 Dimensionality reduction with outliers - robust PCA

In the presence of outliers, the principal axes computed using either PCA or kPCA, will be
"pulled" towards observations that are sufficiently far from the bulk of the data, since this is
where the variance is maximal. Therefore, it will not be possible to view potential patterns

§An argument for using kPCA has to do with the fact that the feature space is "expanded" up to N non-
linear principal components, as compared to a projection of up to p linear principal components, as in PCA.
The extra "redundancy" in these eigendirections is expected to provide a means to identify data patterns
and at the same time noise (that may be eliminated). In a way, this may be seen as similar to the filter
bank methods, where a univariate time-series signal is decomposed into its spectral contents and noise (see
Chapter 2). In addition, in datasets with just a few features, the dimensionality reduction procedure of the
PCA may result in substantial information loss, since most of its structure may exist over all eigendirections.
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in the data, since these outliers / "extreme values" will dominate the analysis. Therefore,
a robust version of PCA is needed, which can be used to perform dimensionality reduction
on the majority of the data that are not considered as outliers. Then, it is possible to
visualise potential patterns that may exist in the data and obtain DSFs that are free from
such extreme values.
One of the earliest and most straightforward approaches to the robust PCA problem, is to
replace the sample covariance matrix, with a robust covariance estimator, e.g. a minimum
covariance determinant (MCD) (see Chapter 5), so that the eigenvalues are computed as in
the original PCA formulation. Note that, the MCD estimator is limited to problems where
p (the dimensionality of the original dataset) is much less than the number of non-outlying
data points. An important requirement in dimensionality reduction, however, is to be able
to handle problems where p can be equal to the number of examples.
In [95] the authors proposed a robust PCA approach that combines the robustness prop-
erties of the MCD (see Chapter 5 regarding MCD and Appendix C regarding robustness
properties) with projection pursuit (PP), so that it can handle high-dimensional data, while
also being insensitive to outliers. In their formulation, the PP is used as an initial step in
order to reduce the dimensionality of the problem, while the MCD is used to compute
robust estimates of multivariate mean and covariance that can be used in eigenvalue de-
composition. In particular, PP utilizes a robust measure of location and scale, in this case
the univariate MCD, and the Stahel-Donoho outlyingness (SDO) for each observation xn,
so that,

SDO(xn) = max
ν

|νT xn −µMCD(νT xj)|
σMCD(νT xj) (4.4)

where the robust location and scale estimates, µMCD(νT xj) and σMCD(νT xj), respectively,
are computed from all N data points (j = 1, ...,N). SDO computes the outlyingness of xn

by projecting it onto unit length vectors ν ∈Rp and taking the maximum over all directions.
In practise p may be large, so that the algorithm randomly samples up to 250 directions.
It is then possible to calculate the linear projections, using the original PCA method (as
above), for a subset of h data points, whose SDO is the smallest among all N data points.
Then only the k(< p)-projections (or dimensions), whose variance is greatest, are retained.
An improved robust subspace estimation is then obtained by first computing the residual
or orthogonal distances (ODist) between each ith projected example ỹi ∈ Rk with i= 1, ...,h
and data point xi as,

ODisti = ||xi −ỹi|| (4.5)

Subsequently, the k×k covariance matrix is calculated from all h data points, i.e. xi with
i = 1, ...,h, whose ODisti is less than a threshold. This new covariance matrix is used to
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obtain the improved k-dimensional robust subspace. In the last step, the projected data
points onto this new subspace, are used to compute the multivariate mean and covariance
using the MCD estimator. Then, the eigenvalue decomposition is performed to obtain the
p-dimensional robust loadings matrix UrP CA = [u1,rpca, ...,uk,rpca], being a collection of k
orthogonal unit normalised eigenvectors. The robust PCA (rPCA) scores are then computed
using the linear operation,

YrP CA =XUrP CA, {YrP CA = [y1, ...,yN ]T ;yn ∈ Rk} (4.6)

where, X is the DSFs matrix. The rPCA Matlab implementation is provided as part of the
LIBRA toolbox, developed by the Robust Statistics research group at KU Leuven [9].

4.2.3 The minimum entropy deconvolution for impact-type of damage

In the BSS problem, which was presented in Chapter 1, Equations 1.1 and 1.2 described the
process of convolution for an LTI MIMO system. Assume that this system has only a single
excitation force si(n), which generates the corresponding response xj(n) (in discrete-time
n). Note that the response is corrupted by white noise ε(n). The aim of the minimum
entropy deconvolution (MED) technique developed by Wiggins [185], is to construct an
inverse FIR filter fc (with c= 1, ...,C being its coefficients) for the system’s IRF hi,j . Such
a filter can then be used to obtain the output signal yi(n) being as close as possible to the
input excitation si(n). This is illustrated in the diagram in Figure 4.2.

ℎ𝑖,𝑗
𝑠𝑖(𝑛) ƴ𝑥𝑗(𝑛)

Σ

𝜀(𝑛)

𝑓𝑐
𝑦𝑖 𝑛 ≈ 𝑠𝑖(𝑛)𝑥𝑗(𝑛)

Figure 4.2. Block diagram of the inverse filtering process of the MED technique.

More specifically, the inverse filter fc of the MED deconvolves the effect of the transmission
path hi,j from response signal xj(n), by assuming that the source si(n) is an impulse-type
of signal. This will be the case, for instance, when an REB is damaged, generating a signal
that has impulsive character (along with other components, e.g. periodicities). In practise,
this is implemented by finding the maximum of the kurtosis objective function Ok of the
output signal yi(n), by varying the coefficients of the filter fc:

Ok(fc) =
∑N

n=1 yi(n)4[∑N
n=1 yi(n)2

]2 (4.7)

82



where, the number of the coefficients is a user supplied parameter. Note that MED solves
this problem iteratively, where in each iteration it changes the filter values until they reach
certain convergence criteria, as outlined in [33]. The Matlab implementation developed by
the authors in [125] is used. Typically, around 100 coefficients are used, as determined by
trial-and-error using a grid search approach for a variety of problems used in this thesis. Of
course, this is a crude approach and further enhancement of the kurtosis may be obtained
by using it together with a genetic algorithm.
The MED technique, has been applied in CM for enhancing the impulses generated by
damage in REBs [160] and in gearboxes [64]. Although there have been many similar works
in the literature, these two papers, were the first to introduce MED into CM applications.
Most of works in the literature demonstrated considerable improvements in identifying early
impact-type of damage buried in noise and other more dominant sources of energy. More
recently, in [199] an alternative to the MED technique, called multi-point optimal minimum
entropy deconvolution, was implemented for CM in REBs and claimed success.
For vibration-based SHM applications, e.g. DI in opening and closing cracks, the author is
not aware of any studies that implemented MED into their strategies, for unmasking signals
to identify impact-type of damage.

4.3 The framework of deriving vibration-based DSFs

This section outlines the methodology used to derive DSFs from time series acceleration
datasets. Apart from the Z24 dataset¶, all other experimental and numerical data are in
the form of accelerations, sampled in different rates: from 322.6 Hz (the LA-4DOF dataset)
up to 51.2 kHz, and for a few tens of seconds to a few minutes. This yielded time series
vectors in the tens of millions of data points, for each condition, e.g. for AFR3 in the
TF-LBO dataset. Therefore, given that this thesis will not use techniques like DL, that are
designed to handle large sets of sampled time series data (e.g. LSTM networks), and the
fact that such high-sampling rates are not necessary for SHM & CM applications, a data
partitioning procedure was first used.
In particular, the process of extracting DSFs starts with partitioning each univariate vibra-
tion time series into N equal-length segments, with n = 1, ...,N the segment index. Each
time series segment is chosen as a short-time non-overlapping window, e.g. 1-second for
TF-LBO/-SAF & TS-SAF datasets, offering a good trade-off between frequency- and time-
resolutions. For each nth time series segment xn(l), consisting of L data points (l= 1, ...,L),
either: 1. a set of IMFs was calculated or 2. amplitudes from the power spectrum / PSD

¶The NFs of the Z24 dataset were estimated using the SSI method [141], [142].
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were obtained. In the latter case, xn(l) was band-pass filtered within the frequency band
of interest, e.g. for the LA-4DOF dataset [30,70] Hz to cover the first three NFs. Ad-
ditionally, if the number of resulting amplitudes from the PSD was high (e.g. more than
100 - 100-dimensional problem) the data points were typically downsampled. Therefore,
each nth segment, which is a univariate time series of length L samples, is converted into a
p-dimensional set of DSFs versus sample number n. Note that as N gets larger (as conse-
quence of choosing smaller time segment intervals), some algorithms that rely on inverting
N ×N matrices, as in the case of kernel methods (see Appendix B), will increase in com-
putational time considerably. Therefore, the segment length L will be adjusted accordingly
and will be specified explicitly for each dataset, throughout the thesis.
Following the data partitioning stage, three different types of DSFs were derived:

1. Impact-based DSFs: Changes related to the peakedness of the distribution or a system’s
entropy, measured through kurtosis and relative entropy, respectively;

2. Modal-based DSFs: Tracks changes in NFs and DRs, either by estimating these pa-
rameters directly, i.e. using the MPI procedure (see Chapter 2) or by selecting a set
of amplitudes from the PSD;

3. Global-based DSFs: Monitoring is performed using a multiple set of "global" DSFs:
statistical, modal and information-theoretic measures. Each global DSF captures
different aspects of the system’s characteristics, with the purpose of detecting global
changes.

The process that is followed to calculate these types of DSFs is shown schematically in
Figure 4.3. The estimated NFs and DRs, ωn and ζn, respectively, both in RM , are modal-
based DSFs, along with T amplitudes (band-pass filtered within a specific frequency band)
obtained from the power spectrum sn. For impact-based DSFs, the vector pn ∈ RM are the
sample Kurtosis (set l = 4 in Equation 2.3) or differential entropy (see Table 4.2) values,
calculated from each IMF cn(t) ∈ RM that has either been filtered by MED first or used
in its raw version. Whereas, the vector qn ∈ RD2 includes global-based DSFs. So that, for
each dataset considered, a different type of DSFs may be used, as follows:

1. LA-4DOF, NSim-4DOFLin & NSim-4DOFNonLin: 1. Modal-based DSFs sn, ωn, ζn

to monitor changes in vibration modes and 2. impact-based DSFs pn, as damage is
in the form of impacts;

2. WT-REB: 1. Impact-based DSFs pn to monitor impulsive signals due to REB damage
and 2. amplitudes from EA;
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3. TF-SAF/-LBO & TS-SAF: Global-based DSFs (MD2) qn to monitor general GT
engine changes.

Note that using the adaptive decomposition methods, EMD-/VMD-based and ALIF, the
number of IMFs M̃ extracted between each nth segment may differ (apart from the VMD).
To construct the DSF matrix, only M IMFs were selected, according to the decision rule:
1. find the minimum number of M IMFs by considering all N segments (i.e. cn ∈ RM ∀ n=
1, ...,N), 2. select the ones with the maximum value of kurtosis × RMS value. The latter
value has been used to identify both the significant IMFs and, in the case of impact-type
damage, the ones that are most impulsive.

Figure 4.3. Schematic outlining the main components of the framework used to derived
vibration-based DSFs.

In terms of the bandpass filter specification the upper and lower cut-off frequencies, used to
compute sn, varies between each dataset. From Chapter 3, the frequency band of interest
for the LA-4DOF dataset (see Figure 3.6), where the amplitude changes with respect to the
damage level, but, not with respect to the EOV change, is from around 100 Hz and onwards.

85



Due to the relatively low sample rate, sn is a 191 element vector, so no downsampling is
performed. In comparison, for the NSim-4DOFLin/-4DOFNonLin datasets the acceleration
time series is filtered using a low-pass cut-off frequency of 0.12 Hz. As such, tracking
changes in these four NFs, results in sn being a 230 element vector, which may need to be
downsampled for some of the methods used in the next part of the thesis (not all methods
can handle high-dimensional features efficiently).
Moreover, it is expected that using adaptive decomposition methods, the non-linear system
dynamic characteristics will be better represented than, for instance, using amplitudes from
the spectral lines. Note that each nth segment is only a few seconds in length, so that non-
stationarity due to EOV in structures may be negligible. On the other hand, non-linearity
can be expected to cause "significant" changes in the time-scale of a few seconds, given
a high-enough excitation force. For instance, non-linearity in the LA-4DOF dataset takes
place due to impact-type of damage, while for the NSim-4DOFNonLin dataset both impact-
type of damage and non-linear restoring force will cause it to behave non-linearly. However,
for the WT-REB, TF-SAF/-LBO and TS-SAF datasets, both non-stationarity and non-
linearities may be "significant" within each segment, even when its time-scale is only a few
seconds in length. This is due to the abrupt nature of the changes in operating conditions,
e.g. generator loadings.

4.4 Modal-based DSFs for LA-4DOF & NSim-4DOFLin/-
4DOFNonLin datasets

The NFs and DRs of LA-4DOF and NSim-4DOFLin/-4DOFNonLin datasets were estimated
using the MPI procedure in Table 2.5, by following the framework that was shown in
Figure 4.3. Firstly, the estimated ωd (NFs), before and after a locally weighted linear
regression smoothing filter is applied‖, are shown in Figures 4.4 and 4.5.
Although there is some discrepancy between the estimated and actual NFs, this is rather
unimportant for DI applications. What is needed from these DSFs, is high-sensitivity with
respect to damage and its progression levels. As can be seen, VMD and CEEMDAN on
the NSim-4DOFLin, show promising results on the NF estimates, in terms of DI. For the
LA-4DOF dataset, there is some sensitivity due to damage (region G4 until the end), for
instance, the sudden drop in NFs as seen from the plots of the SVMD and VMD methods.
However, EOV influences NFs comparably in both magnitude and patterns observed. In
regions where there is significant change in EOV, e.g. when T ≤ 0 in the NSim-4DOFLin
dataset (sample no between 200 and 300), EOV influence is more dominant than damage. In

‖The estimated parameters from the MPI were "noisy", so that a smoothing filter was applied.
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Figure 4.4. NFs estimates from MPI, for the LA-4DOF dataset. Regions G2 to G3:
undamaged state + EOV changes, regions G3 to G4: damaged state (and its
progression levels) and G4 to the end is the system in its damaged only state.
Segment time interval is equal to 8 seconds.

these cases, it may mask data points representing the damage. In general, as NFs estimates
showed, there will be potentially no significant distinguishing feature that a statistical model
may use to discriminate between damaged and undamaged system states. Note also that
from further testing these sets of DSFs, i.e. using the DI techniques presented in Chapter 5,
it was found that they were unsatisfactory for the purposes of achieving accurate and reliable
system monitoring. Moreover, in both ALIF- and CEEMDAN-based NFs estimates, the
mode mixing phenomenon is readily observed. For instance, in the ALIF-based estimates,
the higher-frequency (around 70 Hz) has been found in three different IMFs. Monitoring
the same vibration mode in more than one DSF is undesirable as it introduces redundancy
in the features (see Chapter 1).
In contrast, the DR estimates, shown in Appendix D in Figures D.1 and D.2 for the same two
datasets, have shown negligible sensitivity to EOV. Unfortunately, apart from the ALIF-
based DR estimates, this is true for damage, too. This is due to the fact that significant
smoothing had to be applied on the DRs estimates using the six decomposition methods,
which rendered them relatively flat. This extensive smoothing was necessary, however, since
the "raw" estimates were particularly noisy as a result of both IF and IA fast variations.
The above analysis, yielded modal-based DSFs that are either sensitive to EOV influence
and damage or insensitive to both of those parameters. In particular, DRs have shown to
be particularly unsuitable as DSFs for DI in these two datasets. Note that similar outcomes
were observed on the NSim-4DOFNonLin dataset, too.
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Figure 4.5. NFs estimates from MPI, for the NSim-4DOFLin dataset. Vertical line shows
the first sample from the damaged state. Segment time interval is 7.5 hours.

The amplitudes from the PSD and their robust z-scores, s ∈RT , for these three datasets, are
shown in Figure 4.6. For the LA-4DOF dataset, the data were band-pass filtered between
100 Hz and 140 Hz, while for the NSim-4DOFLin/-4DOFNonLin datasets, the data were
low-pass filtered below .1 Hz. For the former, the higher frequency region has shown
marginal influence from EOV (e.g. between around sample no. 700 and 800), while for
the latter it is used to track changes in NFs, which consequently show more EOV influence.
However, when the robust z-score is applied to normalise these DSFs, damage is more readily
inferred in all three datasets. This is especially true for the NSim-4DOFLin/-4DOFNonLin
datasets, where damage has been masked by significant EOV influence, although some
influence may still be relatively high, e.g. between around sample no. 400 and 550 when
T ≤ 0.
The amplitudes from the PSD are high-dimensional features that need to be subjected to
dimensionality reduction or downsampling prior to further analysis. Note that, although
it is not important for the purposes of demonstrating the different DSFs, the number of
samples was increased by a factor of more than 3 for these three datasets in Figure 4.6.
This is because a smaller length was used for each segment (e.g. from about 8 seconds to
2.5 seconds for LA-4DOF), which resulted in a higher number of partitions N .

88



Figure 4.6. LA-4DOF dataset: 191 amplitudes from the PSD and corresponding robust
z-scores. NSim-4DOFLin/-4DOFNonLin datasets: 230 amplitudes from the
PSD and their robust z-scores. LA-4DOF is equal to 2 seconds and
NSim-4DOFLin/-4DOFNonLin is equal to 2.5 hours.

4.5 EA-based DSFs for WT-REB dataset

4.5.1 DSFs from the EA procedure on a simulated example

The EA procedure, as presented in Chapter 2, was demonstrated in Appendix E on a
simulated example representing a simplified version of a fixed-rotating machinery. This
included a periodic rotating component and its harmonic series and an REB signal with
and without outer race damage and white noise.
As seen in Appendix E, the procedure yielded the spectral bandwidths that maximised the
SK. Therefore, in order to further enhance the impulsiveness of the signal, an FIR band-
pass filter was specified with these parameters. Then, the HT is used to obtain the analytic
signal representation and its envelope is subsequently calculated as its absolute value. The
envelope spectrum is then calculated, as the PSD of the envelope signal. As can be seen
in Figure 4.7, the deconvolved with MED AR residual signal shows the BPFO and at least
5 harmonics very clearly in the spectrum. In comparison, the envelope of the AR residual
contains no amplitude at BPFO. While, the raw signal that was filtered with the MED
contains the fundamental shaft frequencies and its harmonics, as well as white noise, in
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addition to a weaker BPFO component (masking effect of the DSF). On the other hand,
there seems to be only white noise in the envelope spectrum of the original signal, signifying
the importance of pre-processing in damage detection of REBs. Note the frequency smearing
effect of the 2% in rolling slippage is also evident on the envelope analysis spectrum of the
MED filtered AR residual signal. Hence, these sets of DSFs show particular promise in
early DI, even in the presence of high-amplitude white noise and weak components at
BPFO relative to the rest of the periodicities. What remains to be seen, is its performance
under changing operating conditions.

Figure 4.7. Envelope spectra, shown between 0 and 2.5 kHz on the four signals
considered. The enhancement of the impulses at BPFO is evident when the
signal is both pre-processed with an AR model and MED, i.e. bottom-right
signal. The BPFO cursors are marked as ’:’ in the plots.

4.5.2 DSFs from the EA procedure on the WT-REB dataset

The EA procedure was also applied on the WT-REB dataset in order generate a set of
DSFs. The earliest damage level that could be highlighted was damage level 2 and the
results are shown in Figure 4.8 for the no load (C0) and highest load operating conditions
(C3). In comparison to the "raw" power spectrum in Figure 3.10, no indication of damage,
e.g. amplitudes at BPFO cursors, was shown. Additionally, as indicated in the four plots
in Figure 4.8, the amplitude of the envelope spectrum of the MED filtered AR residual
g(εẍ) is the highest, when looking at the BPFO and its harmonics. This is due to the fact
that MED further enhanced the impulsive character of the signal output, after it has been
pre-whitened with an AR model of order p= 95.
In contrast, applying an AR on the raw vibration signal ẍ, produced only a relatively
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weak amplitude at the BPFO. On the other hand, applying an MED on the raw vibration
signal g(ẍ) (bottom left plot), produced only half of the peak amplitude as compared to
the MED on the AR residual g(εẍ). The impulses generated after applying MED on either
the raw or AR residual signals, increase by approximately 40%. Hence, it can be concluded
that MED is an invaluable technique for identifying damage early in REBs. Note that
the small deviation from the BPFO and its harmonic series as the load increases is due
to the reduction in rotational speed of the main shaft∗∗. Therefore, changes in generator
load impose an additional challenge on DI, as it modifies the spectral characteristics of
the vibration signal (in addition to the statistical characteristics that were seen earlier in
Figure 3.9).
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Figure 4.8. Envelope spectrum of damage level 2 for C0 and C3.

Although the EA procedure is sensitive to changes in operating conditions, incorporating
the MED technique is particularly useful at the earliest damage levels. However, when the
damage has significantly progressed, any pre-processing / filtering on the raw signal will
reduce the amplitudes at the BPFO (see Appendix E).

4.6 Impact-based DSFs for LA-4DOF, NSim-4DOFLin, NSim-
4DOFNonLin & WT-REB datasets

Impact-based DSFs p ∈ RM , both using kurtosis and differential entropy, were derived by
following the framework shown in the diagram in Figure 4.3. The main premise of using

∗∗This can be explained from the fact that at higher generator electrical load demand, the strength of the
magnetic field in the armature increases. This in turn, generates an opposing torque on the shaft, causing
rotational speed reduction.
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differential entropy as DSFs is to quantify for the uncertainty that is being observed in the
vibration responses. In REBs, this quantity will reach its maximum value when the vibra-
tion energy is evenly distributed (as seen from the spectrum), which implies more system
uncertainty. This corresponds to a system in its undamaged state. However, when there is
damage, the vibration energy will be more concentrated around the resonances, which will
make the differential entropy to decrease, which implies more order. In structures, the dif-
ferential entropy will rise when a system changes from linear to non-linear. This is referred
to as Axiom VIII in SHM, which which states that "Damage Increases the Complexity of a
Structure" [67].
These DSFs were, firstly applied on the raw vibration signal for each nth segment. Kurto-
sis has been found to be particularly sensitive to damage for these four datasets, since it
manifests itself in the form of impacts. Figure 4.9 shows the computed kurtosis values µ4

applied on all N partitions of the raw vibration signal. As the plots on all four datasets
demonstrate, the impulsivity of these kurtosis values has been further enhanced by using
the MED filter g(µ4)††. What is most important, is the fact that these DSFs show the
damage progression level on all four datasets from its earliest point of initiation (vertical
red line), while being relatively insensitive to EOV influence. In terms of using differential
entropies, the results did not show such desirable properties as kurtosis.
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Figure 4.9. Kurtosis µ4 and MED filtering on kurtosis g(µ4) on four datasets. Vertical red
line signifies the point of damage initiation, while for the WT-REB dataset
each red line denotes a damage level progression. Segment lengths for:
WT-REB is equal to 2.5 seconds.

Referring to Figure 4.9 the following should also be noted for each dataset:
††Due to the fact that MED filtering results in noisy outputs from the signals, the results shown in

Figure 4.9 are after a locally weighted linear regression smoothing filter was applied.
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• LA-4DOF: Undamaged system: sample no. 0 − 108, undamaged system and EOV
influence: sample no. 109−976, damaged system: sample no. 977−1516 and damaged
system and EOV influence: sample no. 1517−;

• NSim-4DOFLin & NSim-4DOFNonLin: Undamaged system and EOV influence: sam-
ple no. 0−1315 and damaged system and EOV influence: sample no. 1316−;

• WT-REB: Undamaged system: sample no. 0−160, damaged system (level 1): sample
no. 161 − 320, damaged system (level 2): sample no. 321 − 480, damaged system
(level 3): sample no. 481 − 640, damaged system (level 4): sample no. 641 − 800
and damaged system (level 5): sample no. 801−. For each of the six system states
there is a progressive increase in generator load for every 40 samples. For instance,
sample no. 0−40: no generator load (C0), sample no. 41−80: first level of generator
load (C1), sample no. 81 − 120: second level of generator load (C2) and sample no.
121 − 160: third level of generator load (C3). The same pattern repeats for each of
the subsequent five system states.

Similarly, for each decomposed IMF the kurtosis values were computed for each of the N
segments. The most promising results, in terms of damage-sensitivity and EOV influence
immunity, for the LA-4DOF dataset, are shown in Figure 4.10. Most remarkably, using
MED filtering applied on the kurtosis values for each IMF, the differences between damaged
and undamaged system states have been made evident from the plots (no statistical model
may need to be applied further to discriminate between the two states). This is especially
true for the VMD-based methods, while for the TVF-EMD, the two IMFs are shown to
be gradually diverging from each other as damage progresses. Also, for TVF-EMD the
minimum number of IMFs was two, while for VMD-based it was three.
Therefore, instead of using a univariate DSF, e.g. g(µ4) from the raw vibration signal, it is
possible to compute kurtosis values for each IMF separately. As it is shown, for instance, on
the SVMD plot in Figure 4.10, each IMF has a slightly different pattern - showing different
aspects of our data. What is more, using multivariate DSFs will offer diagnostic capability,
i.e. to gain insights from each dataset, as it is demonstrated in Chapter 5.
The two VMD-based methods have also shown particularly promising results on the WT-
REB, too. In comparison to the EA method, these sets of DSFs are able to identify the
earliest signs of damage (damage level 1), as seen in Figure 4.11. At that damage level, the
impulses at BPFO are relatively weak, relative to the overall vibration signal. Therefore,
a subsequent increase in load, i.e. load C2 and C3, weaken them further, which in turn
causes negligible rise in g(µ4). Moreover, in the SVMD method, the IMF 2 shows steady
increase in its g(µ4) value as the damage progresses, with insignificant influence due to load
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Figure 4.10. Impact-based (kurtosis) DSFs on each IMF decomposed signal of three
different adaptive decomposition methods on LA-4DOF dataset.

changes. Hence, using this multivariate set of DSFs, instead of the univariate g(µ4) on the
raw vibration signal, the monitoring strategy will benefit, since different data characteristics
are obtained. In this case, it will be the subspace of the three different IMFs considered
using these two VMD-based methods.

4.7 Global-based DSFs for TS-SAF, TF-LBO/-SAF datasets

A total of 26 DSFs were computed for each of the N partitions (with a time-interval of 2
seconds for each nth segment) obtained from the TS-SAF, TF-LBO and TF-SAF datasets.
In particular, the dimension of the DSFs matrix for TF-LBO is 117×26, for the TS-SAF is
36×26 and for the TF-SAF is 665×26. The multidimensional set of features MD2 combine
different dataset characteristics, whereby some of them may be irrelevant to the DI problem.
This issue can be addressed using a dimensionality reduction approach, for instance, using
PCA to obtain uncorrelated DSFs, thus, eliminating redundancy further in the process of
DI. The main purpose of MD2 DSFs is to enable monitoring of system changes, which are
largely highly-unpredictable and unknown. This is in contrast to impact-based DSFs, in
which a specific type of damage (impacts or impulses) is expected. Following, the procedure
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Figure 4.11. Impact-based (kurtosis) DSFs on each IMF decomposed signal of two
different adaptive decomposition methods on WT-REB dataset. Vertical red
lines denote the damage level progression.

outlined in Figure 4.3, the MD− 2 DSFs comprise of 26 different features, are shown in
Table 4.2.

Table 4.2. The MD2 set of global-based DSFs.

Feature Formula

Mean band power µf = 1/m∑mSx(m).
Spectral entropy Es = −

∑
m

Sx(m)∑
m

Sx(m) ln( Sx(m)∑
m

Sx(m)), with m the spectral
bin and Sx(m) the PSD amplitude (Equation 2.5).

Spectral centre s̃µ =
∑

m
fmSx(m)∑

m
Sx(m) , fm :mth bin frequency.

Spectral spread s̃2 =
√∑

m
(fm−s̃µ)2Sx(m)∑

m
Sx(m) .

lth-order spectral moment s̃l =
√∑

m
(fm−s̃µ)lSx(m)

s̃l
2
∑

m
Sx(m) .

Spectral crest s̃cst = maxm(Sx(m))/(∑mSx(m)).
Spectral peak s̃pk = maxm(Sx(m)).
Differential entropy E∆ = −

∑
n pk(x)∆x ln(pk(x))∆x − ln(∆x).

lth-order central moment See Equation 2.3, i.e. l = 2,3,4.
ARMA coefficients See Equation 2.6.
Max. log squared difference max∆log,x2 = log((x2

n(t)−xn(t+1))2), t= 1, ...,T −1
Mean Teager-Kaiser energy mean(ψ̃) = (x2

n(t)−xn(t+1)xn(t−1)), t= 2, ...,T −1.
Sum of sequential variation log j̃sv =

√∑
t(xn(t)−xn(t−1))2, ∀ t= 2, ...,T .

To calculate the differential entropy E∆ the method from [30] is used. In particular, different
quantisation or discretisation approaches of the data need to be considered, e.g. choice of
appropriate bin width, which will result in different values of E∆. In this thesis, the differ-
ential entropy is calculated by first discretising the data xn(t) into equal sized bins, using
an automated algorithm (histcounts.m function in Matlab). Given the bin size ∆x, and the
empirical probabilities for each nth bin pn(x), the expression for computing the differential
entropy E∆ is given in Table 4.2. For the spectral entropy Es the frequency bin width is
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determined in the power spectrum calculation.
The range of p and q parameters for the ARMA model has been selected based on an initial
visual examination of the partial and autocorrelation functions, which provided an approxi-
mation on the number of lags for an AR and MA process (more details in [132]). The order
of the ARMA model is selected via the minimum of the Bayesian Information Criterion
(BIC), i.e. minp∈{0,1,...,12},q∈{0,1}

[
−2ln L̂(θ|x)+ ln(N)(p+ q)

]
. Note that L̂(θ|x) is the op-

timised log-likelihood estimate of the ARMA model coefficients vector θ = {p1, ...,p12, q1}.
Since an ARMA model assumes stationarity in the data generating process, a unit root test
(kpsstest.m Matlab function) is used for testing for stationarity. If a time-series xn(t) is
found to be non-stationary using the KPSS test [106]‡‡, a first-order differentiation takes
place before the number of ARMA coefficients are selected using the BIC value.
The different characteristics that each MD2 feature computes are as follows:

• Spectral entropy: signal complexity in the power spectrum;

• Mean band power: concentration of energy in the power spectrum;

• Spectral spread: signal variation in the power spectrum;

• lth spectral moment: for l= 3 this is spectral skewness representing symmetry around
the mean band power, and l = 4 is spectral kurtosis representing peakedness of the
power spectrum;

• Spectral crest: a measure of the peakedness of the power spectrum;

• Spectral peak: amplitude of the peak power;

• Differential entropy: as discussed previously;

• ARMA coefficients: measures temporal dependencies between the samples;

• mean Teager-Kaiser energy: computes the mean variation in signal energy using three
adjacent sample sequences. Note that Teager-Kaiser takes into account changes in
frequency and amplitude of the signal, such that any changes from either of those will
lead to an increase in its value;

• Sum of sequential variation: computes the sum of variations between two adjacent
signal sequences.

‡‡That is, by assessing the null hypothesis with a significance value of 0.05 that the series is stationary
over a range of lags
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The last two features, i.e. the mean Teager-Kaiser energy and the sum of sequential variation
are commonly used features to track temporal changes in electroencephalogram signals, e.g.
in [41]. For the purpose of improving the spectrum-based DSFs, e.g. spectral moments,
it is first necessary to investigate the regions in which any prominent changes (either in
amplitude increase or decrease or shift in frequency peaks) occur.
For the TF-SAF dataset, the main variation in PSD amplitudes is observed in frequencies
approximately below 2.5 kHz (see Figure 3.13). For the TS-SAF dataset, variations due
to changes in operating conditions are mainly concentrated in two frequency regions in the
PSD. That is, the first region is between 8.5 kHz and 10.5 kHz and the second region is
between 20 kHz and 21 kHz (see Figure 3.12). On the TF-LBO dataset, there are specific
peaks in the PSD where the change in AFR is evident. As seen in Figure 4.12, there are two
prominent common peaks, i.e. at 0.26 kHz and 0.67 kHz, which increase in amplitude with
the AFR. A third peak is also noticeable for AFR 2 at 8.1 kHz and for AFR 3 at 8.7 kHz.
Note that above 10 kHz there was no observable change in the PSD. Two frequency regions
can then be defined: the first being below 1 kHz and the second being between 8 kHz and
9 kHz.
To simplify the analysis, the following frequency regions are considered for computing the
MD2 DSFs:

• TS-SAF: 8 kHz ≤ frequency region ≤ 21 kHz.

• TF-LBO: 0 kHz ≤ frequency region ≤ 9 kHz.
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Figure 4.12. PSD estimates (zoomed in up to 10 kHz) for TF-LBO dataset.

In Figure 4.13, the variation of MD2 DSFs with respect to the sample no., for each of
the three datasets is shown. Each DSF was normalised using the z-score and its robust
equivalent, which is necessary due to the wide range of scales of MD2 DSFs. In order to
gain an insight into the results that these plots are showing it is first necessary to account
for the following:

• TF-SAF: Conventional jet fuel: 0−37, SAF fuels: 38−;
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• TS-SAF: SAF @ AFR 1: sample no. 0−9, SAF @ AFR 2: sample no. 10−18, Jet-A
@ AFR 1: sample no. 19−27 and Jet-A @ AFR 2: sample no. 28−;

• TF-LBO: AFR 1: sample no. 0−40, AFR 2 : sample no. 41−80 and AFR 3: sample
no. 81−.

Figure 4.13. Multidimensional feature set MD2 on TF-LBO (segment time interval is 10
seconds), TF-SAF (segment time interval is 2 seconds) and TS-SAF (segment
time interval is 2 seconds) datasets.

Moreover, the following data classification / labelling has been used (it will be used later
on in the subsequent chapters to quantify performance in DI):

• TF-SAF: Conventional jet fuel may be used to represent the undamaged§§ engine
state, while the rest are labelled as the damaged ones. This means that 2 out of a
total of 35 engine states may represent the undamaged states;

• TS-SAF: Jet-A @ AFR 1 can be considered as the only undamaged state out of a
total of four engine conditions;

§§Recall that damaged and undamaged for the GT engine datasets refer to abnormal and normal condi-
tions, respectively. As explained in Chapter 1, this is to maintain consistency throughout the thesis when
referring to the various system states across the various datasets.
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• TF-LBO: AFR 1 and AFR 2 are considered as the undamaged states due to the fact
that no LBO is taking place on these two engine states.

Returning to the plots in Figure 4.9, the AFR 3 engine condition on the TF-LBO dataset,
shows significant differences from the other two conditions. And this is more clearly illus-
trated using the robust z-score method, whereby the spectral peak s̃pk, the mean of the
Teager-Kaiser energy mean(ψ̃) and the mean band power s̃µ are the most discriminatory
DSFs, as the AFR changes from AFR 2 to AFR 3. Such findings are consistent with the
previous analysis using the four statistical moments in Figure 3.14. The ARMA coefficient
θ6 is also seen as an important one to infer changes between AFR 1 and AFR 2, where the
flame is still stable (LBO limit is not reached). Note that the number of ARMA model
coefficients, as decided from the BIC criterion, were 11 or 12 for the AR and 0 or 1 for the
MA, i.e. for all datasets. For consistency, a zero was added to the matrix if the number of
coefficients was not equal among the observations.
For the TS-SAF dataset, it may be shown that AFR changes result in more significant vari-
ations in the DSFs than the change from jet to SAF fuel. Looking at the robust z-scores,
in particular, the spectral kurtosis s̃4 shows to be particularly strong feature to discrimi-
nate between the other three engine states. The ARMA coefficient θ11 is also an important
feature that can distinguish between Jet-A AFR 1 and AFR 2 conditions. Similarly, the
variation in the the sample kurtosis µ4 for the TF-SAF dataset, may be used to monitor
changes in the fuel mixture.

4.8 Summary

In this chapter three different types of DSFs were examined and analysed on the datasets
described in Chapter 3: impact-, modal- and global-based DSFs. Each one has its own
particular characteristics that are suitable for different problems. Impact-based DSFs target
damage that manifests in the form of impacts, while modal-based DSFs can be used to track
changes in NFs, DRs and certain frequency bands. On the other hand, when no particular
information is available a set of DSFs, integrating features from both frequency- and time-
domains seems to be an attractive choice to identify changes that occur globally within the
system being monitored. More specifically, the following can be deducted from this chapter:

• For the LA-4DOF, NSim-4DOFLin/-4DOFNonLin and WT-REB datasets, the impact-
based DSFs, and especially the kurtosis value, together with the MED filtering of each
IMF separately, provides a satisfactory discrimination among damaged and undam-
aged system states;

99



• In comparison to the rest of the adaptive decomposition methods, the IMFs decom-
posed using the SVMD, seems to be the most well suited for the impact-based DSFs in
the three aforementioned datasets, when combined with kurtosis features. Generally,
the combination between the type of DSF and IMF extraction method is an important
one;

• As mentioned, the MED filtering is, in general, a particularly valuable pre-processing
step to enhance impulses in a signal, so much so, that in some cases considered, e.g.
the LA-4DOF dataset, the discrimination between the two system states increases
dramatically. However, this means that it also enhances impulses in the signal from
the undamaged system state, and thus, careful tuning is required. For instance, the
length of the MED filter must be adjusted accordingly;

• Modal parameters (NFs and DRs) estimates for the LA-4DOF and NSim-4DOFLin/-
4DOFNonLin datasets were extensively pre-processed using smoothing filters. Apart
from the NFs estimates for the NSim-4DOFLin/-4DOFNonLin dataset (which were
also influenced by EOV change), all other MPI estimates did not show promising
outcomes for DI. It may be the case that the MPI methodology needs significant
improvement to produce more reliable estimates. For instance, estimates that are not
as noisy, perhaps using a different method to calculate the IA and IF estimates, as
mentioned in Chapter 2;

• Tracking modal characteristics was also done using DSFs as the amplitudes from the
PSD, within a specific frequency band of choice. These DSFs are especially effective
for early DI, when the band-pass filter is parametrised to keep only the frequencies
that are suitable, i.e. where modal characteristics are not altered by EOV changes,
but, at the same time are affected by damage;

• For the GT engine datasets, one or more DSFs from the MD2 feature set, shows
sensitivity to changes in the operating conditions. In TS-SAF and TF-SAF datasets,
kurtosis-based features (s̃4 and µ4) look promising for detecting change in engine
conditions. This is true for all three different experiments conducted. It can also be
said that, changes in the AFR cause higher vibration-based changes, as compared to
the fuel mixture change.
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Chapter 5

Inclusive outlier analysis

The framework of unsupervised learning is particularly attractive for DI in SHM & CM ap-
plications. This is because there might be no prior information regarding the distributional
properties of either the damaged or undamaged system states. Consequently, within this
framework, the techniques that can be used to discriminate between the two system states,
draw their own assumptions regarding these distributional properties. Engineering judge-
ment and insight to the problem that is being analysed, e.g. understanding of the physical
processes taking place in a damaged bearing, are required to interpret the outcomes of such
analysis.
This chapter discusses the use of inclusive outlier analysis, which means that the dataset
cannot be assumed to have come from the undamaged state only. Instead, both damaged
and undamaged states may be expected to be present in the dataset. Given that there are
no labels attached to the observations in the dataset, a discriminatory technique like the
Mahalanobis distance can be used to identify any outliers presence. In an ideal situation,
any outliers identified, will correspond to the damaged state only, i.e. DI =OD.
Therefore, this chapter demonstrates how techniques from robust statistics can provide a
principled way of identifying outliers, along with their diagnostic capabilities, for the wide
range of datasets considered in this thesis. The performance of these techniques is compared
to the more mainstream methods of subspace, linear models and statistical/probabilistic
outlier analysis that have been used extensively in SHM & CM problems [71].

5.1 An introduction to outlier analysis

In the statistical and machine learning literature an outlier, according to [85], "...is an ob-
servation which deviates so much from the other observations as to arouse suspicions that it
was generated by a different mechanism." Therefore, using this definition, an outlying data
point is one that was generated by a different probability distribution than the one that
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generated the majority of the data points. Hence, outliers are universally considered as
the minority observations that do not fit the bulk of the data, and which may be in sparse
regions and far away from the data cloud.
Novelty detection (ND) or one-class classification (see Chapter 6) is the task of recognising,
with a given probability, whether a data point is generated by the reference or "normal"
data distribution. Therefore, this framework utilizes any available knowledge regarding the
"normal" data distribution to classify a new data point. In outlier detection (OD) or unsu-
pervised learning, there is no knowledge about the distributional properties of either of the
two classes. Therefore, the task reduces to determining data points that deviate significantly
from the majority of the data distribution. Regardless of the approach taken or algorithm
choice, a model of the "normal" data distribution class needs to be determined, from which
any deviations of subsequent observations will be inferred from.
The problem of outlier detection is an ill-defined one, since setting up an outlier threshold,
i.e. deciding what constitutes a significant deviation, becomes only relevant with regards to
the problem that is being analysed, as discussed in great detail in [18]. For instance, when
does an inherent imperfection becomes an issue, in order to flag the system as damaged? In
addition, what reference can we use to draw our decisions from. And also, given the usually
small subsets describing such a reference condition, how can we guarantee its validity as
an adequate representation of the "normal" model? Maybe such an assumed model is not
necessarily appropriate, given the varied environment a system is interacting with and the
relatively limited number of available observations. Fortunately, this thesis is concerned
with controlled experimental observations. Therefore, the [although incomplete due to the
finiteness of the observations] defined "normal" system state, is well-known a priori and in-
ferences can and need to be drawn from it. This is true for all datasets, apart from TF-SAF
and TS-SAF, where the conditions of "normal" system state are not defined.

Given multidimensional samples x ∈ RN×p, for each nth sample (or segment - see Chap-
ter 4 for details) with dimensionality p, an outlier score will be calculated. This outlier
score quantifies the level of outlyingness for each xn, either as a probability of fit to a par-
ticular distribution or a distance measure from it. When a binary decision (outlier/inlier)
is required to be made, the outlier score is compared to a pre-defined threshold γ.
In the context of SHM & CM, an ideal threshold or an optimal decision boundary γ is defined
as the one that perfectly separates the data points from the two system states: damaged
and undamaged. In the robust statistics literature, the notion of α-outliers is used as a
starting point to guide the OD procedure, as discussed in [27]. Essentially, a robust statis-
tical model assumes that the minority of the observations with proportion 1 −α, are the
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outliers, since those have low probability of being generated by the majority data points
(with proportion α)∗. Thus, a statistical model is used to describe patterns in the data,
from which the majority of the samples (the inliers) are assumed to be generated from it.
In the Mahalanobis distance d2

msd model, the distribution is assumed to be a p-dimensional
Gaussian N (µ,Σ), and where each xn is assumed to be drawn independently (iid). Using
this model, an outlier may be one that,

out(α,N (µ,Σ)) =
{

xn : d2
msd = (xn −µ)Σ−1(xn −µ)T > γ(= χ2

p,1−α)
}

(5.1)

The Mahalanobis distance, is one of the simplest algorithms to use, but, can perform sur-
prisingly well for detecting outliers at the extremes of the Gaussian. It is a distribution-
dependent method [18] that relies on linear correlations between each pairwise combination
of the p features in x, through its covariance matrix Σ. The outlyingness of each sample is
determined as the distance to the multivariate mean µ.
Note that γ in Equation 5.1 can be calculated by considering the fact that when p variables
are drawn independently from a Gaussian, the sum of their squared values is approximately
χ2-distributed with p DOF. Therefore, the χ2 cumulative probability distribution tables are
used to determine the outliers within a level of significance, dictated by α.
A threshold can also be estimated using asymptotic frameworks. One such framework uses
Monte Carlo-type simulation to compute, the α-quantile of all the extreme values calcu-
lated. It starts by constructing an N×p matrix, where each element is an independent draw
from a zero-mean unit-standard Gaussian. It then computes the d2

msd of all N elements and
the one with the largest d2

msd is stored. This is repeated for a large number of times (in this
thesis is normally ≈ 1 × 105) and the α-quantile (e.g. the 99%) of all these extreme values
is taken as the threshold. Such methodology was first introduced in SHM in [189], which
demonstrated successfully the use of extreme-value statistics in setting up OD thresholds.

In outlier analysis there is a diverse range of methodologies (see [18]), some of which were
developed specifically for OD (direct methods), e.g. isolation Forest (iForest) and others
were adapted for it (indirect methods), e.g. one-class SVM (ocSVM). The method choice
in both OD approaches is critical: on the one hand, direct methods place no assumptions
on the inliers’ underlying distribution G, but, assume certain properties on the outliers’
underlying distribution A. Whereas, indirect methods place assumptions only on G.

∗In robust statistics, α is the ratio of expected uncontaminated observations to the total observations in
the dataset. For instance, a value of .99 means that only the 1% of observations are expected to be outliers.
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5.2 Outliers influence and robust covariance

As demonstrated previously, methods like PCA and the Mahalanobis distance, rely on the
sample covariance Σ, which in turn, is not robust to outliers. Given a certain proportion of
outliers in a dataset, such non-robust methods, may be influenced in two ways [156]:

1. Masking effects: certain outliers that are significantly different or extreme from the
majority of the samples, may mask other samples that may also be considered as
outliers. For instance, samples representing a progressive level of damage may hide
samples representing an earlier damage. Samples representing significant EOV influ-
ence may mask other samples from damage (as discussed in Chapter 1). For instance,
the orthogonal axes computed from PCA will be "pulled" towards the most outlying
/ extreme samples;

2. Swamping effects: identify inlying samples as outliers, due to model estimates, e.g.
covariance, being shifted due to extreme values.

For the successful implementation of SHM & CM methods, the problem of OD needs to be
the same as DI, where outliers are only the samples representing the damaged system state.
However, given the EOV influence on the system dynamics, this is particularly challenging.
As an illustration, Figure 5.1 shows the masking effect of outliers on the covariance matrix.
This 2D dataset is the first two NFs from the Z24 dataset, whereby the selected samples
are chosen as the NF values that showed minimal fluctuation from their mean values with
respect to the sample no, i.e. sample no. 1700 − 2100 (see Figure 3.1). Whereas, the full
dataset includes all 3932 samples.

Figure 5.1. The first two NFs of the Z24 dataset, showing the effects of outliers on the
sample covariance matrix and potential ways to improve DI using the MCD
estimator.

On the left plot, the selected samples are used to compute the 99% error ellipse from the
inverse cumulative χ2 distribution with 2 degrees-of-freedom. Given that these selected
samples do not contain data from where the EOV influence was significant, the simple Ma-
halanobis distance may be used to identify the samples representing damage. For instance,
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this error ellipse may be used as a suitable threshold for that purpose.
While, for the middle plot the full dataset is now used to compute the covariance matrix Σ,
which is then used to draw the corresponding error ellipse. As can be seen, the EOV influ-
ence has expanded the covariance matrix Σ and has shifted the multivariate centre of the
ellipse towards those samples. This is due to the fact that the determinant of the covariance
matrix Σ becomes larger due to the outliers presence. Using the MCD estimator, however,
a new multivariate centre and scatter matrix ΣMCD is estimated using only the α = 75%
of the samples that satisfy certain criteria (further details on the MCD estimator below).
As such, drawing the 99% ellipse of the MCD estimator, it will consider samples from both
EOV influence and damage state as outliers. The error ellipse of the MCD encompasses
only those observations that are representative of the bulk of the data.
Moreover, outliers will have an influence on the ordinary least-squares (OLS) fit, too. Out-
lying observations with large residual values will shift the OLS slope, due to the quadratic
error term that needs to be minimized. Hence, one of the earliest attempts has been to
apply a weighting function, depending on the squared distances from the line fitted on the
majority of the data (e.g. α = 75% samples). As seen in the right plot in Figure 5.1, the
OLS fit with a Bisquare function approaches the fit of the OLS in which the selected samples
are only included. This is an example of an M -estimator (see Appendix B) with Tukey’s
Bisquare function. Although it may be feasible to use an M -estimator and the Bisquare
function, it does have its limitations, as will be discussed below.
For DI, methods like the Mahalanobis distances, will lead to undesirable outcomes, whenever
large outlying observations are present in the dataset. This is because these methods are
based on the sample means and covariance matrices. Therefore, this thesis aims to utilize
robust methodologies throughout the whole analysis; from pre-processing up to statistical
model building for DI.

5.3 Overview of robust statistics and its applications in DI

Robust statistics were initially developed to treat outliers, not as points for further analysis,
but, as unwanted noise that influences the accuracy of the statistical model representing the
data [92]. In the last decade or so, methodologies such as rPCA and its associated outlier
maps [95] provided unprecedented opportunities for outlier diagnosis, offering more insights
into their behaviour with respect to the assumed statistical model. The essence of robust
statistics, is to eliminate or minimize the influence of outliers on the model’s estimates, e.g.
µ,Σ.
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Robust statistics is a mathematically well-grounded framework that is essential for mod-
elling datasets with outliers. From an engineering point-of-view the maturity of these meth-
ods and its strong theoretical proofs are important, in order to increase confidence for our
results and to gain further insight from them †.
All robust estimators are based on the Tukey-Huber model [119]. This model formalizes
the departure from an elliptical and symmetric distribution assumption. This model is a
mixture of two distributions,

F = αG +(1−α)A (5.2)

where, outliers are drawn from A. Note that A may be any distribution. If G is assumed
to be Gaussian then the model will be able to accommodate other elliptical and symmet-
ric distributions, like the Student-t distribution. Note that the above model places only
assumptions on G. The data distribution F may be called approximately Gaussian with
the assumption failing at its tails [119]. In this case, there exists a single elliptical region
in the multivariate or univariate space in which the outliers exist at the extremes of this
distribution. Robust statistical estimators, typically require the specification of α. This in
turn, enables them to compute a subset of h samples or the h-subset, which is the set of
samples that were found to be inlying according to the assumed underlying distribution G.
Note that h = ⌊αN⌋ and is lower-bounded h > ⌊0.5N⌋, i.e. the majority of the samples.
Note that to avoid the determinant of the estimated robust scatter becoming equal to 0,
h > p if a selection of h ≈ ⌊0.5N⌋ is to be made. A general recommendation is to have
N > 5p, which ensures good generalisation of the estimates, too [154].

Robust statistics have not been widely used as a potential solution to the DI problem
in SHM & CM applications. In the last decade or so, only a limited number of papers
were published, and those will be reviewed. In one of the first works [61], the authors used
the MCD and the minimum volume enclosing ellipsoid robust scatter and centre estimators
for the purpose of identifying damage on several experimental datasets, including the Z24
dataset. The authors showed that these two robust estimators were relatively more sensi-
tive to changes in the nominal system state, i.e. due to both EOV influence and damage,
than the Mahalanobis distances is. Similarly, the authors in [80] used the rPCA method to
identify damage from vibration data on a wind turbine blade, claiming greater sensitivity
to damage, as compared to PCA. Several other robust estimators of multivariate centre and

†In contrast, more recent frameworks, such as DL, model highly complex interactions between each of
the features and time instances and this poses great challenges for justifying their inferences for instance,
as more layers are added in the network and/or why a particular activation function works better than
the others. Hence, the dilemma is between enhancing interpretability versus enhancing statistical model
flexibility/applicability by increasing complexity
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scatter were evaluated in [193] for the purposes of DI. The authors in that paper used cross-
PSD DSFs (i.e. between pairs of sensors) from a composite structure having embedded fibre
Bragg gratings. Very recently [65], a robust version of multidimensional scaling technique
has been used as a solution to DI using a high-dimensional dataset containing outlying
observations. Moreover, the diagnostic capabilities of robust estimators, and in particular
the least-trimmed squares (LTS) regression model, were used in [60]. The authors showed
on 2D plots of standardised LTS residual versus robust MCD distances, that damage is
classified as a different outlier than EOV influence does.

5.4 Methods

This section reviews the different robust estimator methods that will be used throughout the
thesis for DI. The problem of DI will be approached using three different types of analysis:

• Extreme value analysis via robust statistics: Calculation of multivariate squared dis-
tances using high-breakdown robust estimators of multivariate centre and scatter.
Outliers are identified as samples at the extremes;

• Robust time series analysis: Residuals estimation using a robust time series model.
Outliers are identified as samples that do not adhere to the laws of the time series
model, having residuals above the confidence interval set;

• Exploratory analysis and outlier diagnosis: Explore differences between the undam-
aged and damaged system states using robust clustering and subspace analysis. In
particular, the variation of samples obtained from the undamaged system state under
significant EOV influence will be investigated.

Additionally, the relative benefits of each method considered in this chapter and their
applicability to different dataset types can be briefly summarised below:

• Classical Mahalanobis Squared Distance: As mentioned previously, it is a distribution-
dependent method, which can be used to compute multivariate distances for each data
point. It has a zero breakdown value, so that, it cannot be used for outlier detection
reliably, e.g. when there is a large proportion of outlier samples and when their
squared distances are extreme as compared to the rest of the samples. This is because
both the multivariate mean and covariance matrix will be influenced significantly in
such cases.

• Minimum Covariance Determinant: High-breakdown estimator (up to 50%) that can
be used to estimate a robust scatter matrix. For outlier detection, it performs very well
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on datasets where the inlying samples come from a unimodal ellipsoidal distribution.
Its outlier fraction can be adjusted accordingly.

• Deterministic Minimum Covariance Determinant: Tackles the issue of obtaining an
initial estimate of the inlying samples by utilising six different scatter estimators. This
is important in high-dimensional datasets, where outliers may be "hidden" more easily.
Unimodal assumption for the inlying samples is also assumed.

• Orthogonalised Gnanadesikan-Kettenring: Must be used in datasets when the ex-
pected outlier proportion is comparable or close to 50% of the total number of sam-
ples. This is because it has a non-adjustable outlier fraction parameter. Rather, it is
always set at its breakdown point. Also, for high dimensional datasets, e.g. when the
number of variables is close to 100, the algorithm is not very efficient and alternatives
must be considered, e.g. the previous two algorithms. However, when there is a high
number of samples for a moderate-dimensional problem, the algorithm is more effi-
cient than the Minimum Covariance Determinant. As with the previous two robust
estimators, this algorithm also assumes unimodal elliptical distribution for the inlying
samples.

• Kernel Minimum Regularised Covariance Determinant: Unlike the three aforemen-
tioned robust estimators, this algorithm estimates a "kernelised" scatter matrix. This
means that, the algorithm can estimate a robust scatter matrix by considering both
non-ellipsoidal and multi-modal shape for the inlying samples. This is true when a
non-linear kernel matrix, e.g. the radial basis function, is used for the estimation.
Especially useful for datasets with a high number of features and small number of
samples as the kernel matrix is N ×N .

• Deterministic MM : As with S-estimators, this algorithm is based on loss functions to
calculate the scatter matrix of the inlying samples, i.e. the h-subset. This allows the
algorithm to be applied in datasets where the number of outlier samples far exceed
the inlying ones. The formulation is not based on computing different versions of the
determinant of the covariance matrix. Therefore, there are no issues of it exploding
or imploding. This is also discussed in Appendix C.

• Robust Principal Component Analysis: Together with its outlier map, it can be used
to compute the type of outliers that exist in a high-dimensional dataset. Therefore,
it is especially useful for classifying the outliers in datasets that have a large number
of dimensions. Also, it can be used for dimensionality reduction in datasets with
a large proportion (up to 50%) of extreme values. However, since it is based on the
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Minimum Covariance Determinant algorithm, it is limited to unimodal and ellipsoidal
distribution datasets (for the h-subset).

• Robust clustering via data trimming - tclust: Can be used to estimate K clusters
that are ellipsoidal in shape. These clusters may also be contaminated by outliers, so
instead of using methods like Gaussian Mixture Models, tclust can be used to reliably
estimate the multivariate means and boundaries of each cluster. Also, its flexibility in
defining the ellipsoidal shape makes it a better alternative than other robust cluster
methods, e.g. trimmed k-means.

• Non-linear Least Trimmed Squares: This is a robust time series modelling algorithm,
which enables additional non-linearities, e.g. trends to be modelled. It can be applied
on each DSF separately, in order to compute outliers that do not adhere to the time
series model estimate. The benefit of using such method is that it does not place any
assumptions on the multivariate distribution of the inlying samples in the features
space. Its computational performance won’t be affected by the number of dimensions
as it models each DSF separately from the rest.

• One-class Support Vector Machine: This algorithm estimates the inlying distribution
as the data points that are further from the origin. Kernels, such as the radial basis
function, can be used to model non-linear relationships between the chosen DSFs. As
it is based on a different formulation than the multivariate and time series robust
methods, it offers an alternative method that can be used for benchmarking and
comparison. It also has high computational efficiency in high-dimensional datasets.
It is also highly sensitive to its hyper-parameters, e.g. the kernel scale.

• Isolation Forest: The Isolation Forest algorithm does not place any assumptions on
the inlying data distribution, like all the aforementioned methods do. It only assumes
that outliers are far fewer and exist in less dense regions than the inliers. It is highly
applicable for datasets, where no particular information for the dataset is known
beforehand, e.g. the proportion of outliers and/or the distributional properties of the
inliers. Additionally, it is straightforward to implement, unlike the one-class Support
Vector Machines that require significant hyper-parameter tuning.

5.4.1 Extreme value analysis via robust statistics

5.4.1.1 Minimum Covariance Determinant

The main idea behind the MCD [94] is to obtain a subset of h samples, in which the
determinant of the scatter matrix is minimal. This means that h out of N samples will
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be enclosed within a symmetrical unimodal ellipse, with its multivariate centre µMCD and
scatter ΣMCD being the robust MCD estimates.
The MCD yields maximal breakdown point α∗ (see Appendix C), such that h = [(N +
p+ 1)/2]. As it is usually the case with high-breakdown robust estimators, the MCD
lacks statistical efficiency, as compared to the classical estimates. For that reason, its two
estimates are weighted as shown in Equation 5.3,[

µMCD

ΣMCD

]
=
[ ∑N

n=1wMCD xn /
∑N

n=1wMCD

c1 1
N

∑N
n=1wMCD(xn −µMCD)(xn −µMCD)T

]
(5.3)

where, wMCD = 1 if d2
MCD(µMCD,ΣMCD) ≤ χ2

p,99% and wMCD = 0, otherwise, c1 is a con-
sistency factor. Notice that the weighting function wMCD may serve as a binary decision
for OD / DI using the χ2

p,99% threshold. In this case, the use of χ2 assumes that the h
samples are drawn from a Gaussian. Note that wMCD can be any other function of choice
with similar robustness properties, including a bounded IF. Although it is not a smooth IF
function, this is the most widely used and tested in the literature, and is readily available
in all current software implementations.
The MCD is in practise implemented using the Fast-MCD algorithm (FMCD) [155], since
it would otherwise require evaluating all

(N
h

)
subsets, making it a computationally intensive

procedure for large N . Briefly, FMCD works as follows:

1. Randomly draws a number of subsets (≈ 500) of length p+1 (there is a higher prob-
ability to obtain an outlier-free subset, as compared to drawing h subsets).

2. Compute estimates of multivariate location and scatter for the subsets.

3. Apply C-steps (see Appendix B) to improve these estimates. Such that, at the current
step k a smaller or equal scatter determinant will be found, as compared to the
previous step: |Σk | ≤ |Σk−1 |.

4. The solution converges when |Σk | = |Σk−1 | or |Σk | = 0.

The solution of the FMCD is only locally optimal, but, still retains all the robustness proper-
ties of the original MCD, i.e. of bounded IF, affine equivariance and high-breakdown point.
The FMCD formed the basis for the development of a number of methods that this thesis
will be investigating for DI: rPCA, Deterministic MCD (DetMCD) and Kernel Minimum
Regularised Covariance Determinant (kMRCD). Matlab implementations are available on
the KU Leuven’s website [9], which includes the popular LIBRA‡ toolbox.

‡LIBRA: a MATLAB Library for Robust Analysis.
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Table 5.1. The main steps of the DetMCD algorithm.

1. Compute robust z-scores by subtracting each column of x by its median and divide
by its Qn to get Z ∈ RN×p.

2. Get k = 6 different scatter estimates Sk(Z), including Spearman’s correlation coef-
ficient, the Gnanadesikan-Kettenring robust correlation (see Equation 5.6) and the
covariance matrix of the N/2 observations with the smallest L1-norm.

3. Each Sk(Z) estimate goes through a "refinement" step to ensure potential errors, e.g.
small eigenvalues, are avoided.

4. C-steps are applied on each refined estimate Šk(Z), to obtain the h-subset with the
smallest determinant, and therefore, compute the multivariate estimates of scatter
and location, Šh,k(Z) and µ̌h,k(Z), respectively.

5. Among the k = 6 estimates choose the one, say Sk∗ that has the lowest determinant,
so that the raw DetMCD estimates are SDetMCD = Šh,k∗(Z) and sDetMCD = µ̌h,k∗(Z).

6. As in the MCD, a weighting step is added on the raw estimates to get ΣDetMCD,
µDetMCD.

5.4.1.2 Deterministic MCD

In FMCD, drawing many random subsets, results in a high probability to obtain at least
one that is outlier-free. In cases when p > 10 and α ≈ 0.5, drawing many random subsets
(≈ 500) may not be sufficient to obtain an outlier-free subset. Therefore, there may be
a better alternative to guide this search for the h-subset, by means of using k = 6 initial
scatter estimates Sk. Each Sk represents different scatter estimates with certain robustness
properties, in order to reduce or eliminate the influence of outliers on its estimation. The
steps of the DetMCD algorithm [96] are briefly described in Table 5.1. Step 1 ensures the
algorithm’s scale and location invariance (the method is not affine equivariant). The Matlab
function detmcd.m that implements this algorithm is included in the LIBRA toolbox [9].

5.4.1.3 Kernel Minimum Regularised Covariance Determinant

The Kernel Minimum Regularised Covariance Determinant (kMRCD) [163] has been re-
cently proposed as a methodology that combines the computational capabilities of the Min-
imum Regularised Covariance Determinant (MRCD) and the concept of kernel functions
(see Appendix B for both MRCD and discussion on kernel matrices) to obtain:

• a regularised version of the scatter matrix for a dataset with p > h, which it can be
inverted without its determinant becoming equal to zero (as in the MCD formulation);

• a flexible decision boundary to define the inliers’ region, which is not restricted to the
elliptical distribution assumption that is typically placed on G.
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For an h-subset, where k= 1, ...,h are the h selected indices from n= 1, ...,N , a matrix of cen-
tred feature mappings may be defined as Φh =

[
ϕ(x1)−µh(ϕ(x))F , ...,ϕ(xh)−µh(ϕ(x))F

]T
.

Each ϕ(xk) is a feature map, so that X (data space) → F (feature space), where F is an m-
dimensional space with m> p. Also, µh(ϕ(x))F is the m-dimensional multivariate location
vector, given as µh(ϕ(x))F = 1/h∑h

k=1ϕ(xk).
As in the MRCD formulation, a regularised scatter is defined as a convex combination of be-
tween the original scatter and the target matrices, given a scalar parameter of regularisation
ρ. The equivalent regularised scatter using kernels can be provided as,

Σh
reg(ϕ(x)) = 1−p

h−1ΦT
h Φh +ρIm×m (5.4)

where, Im×m(= T ) is the identity matrix in F . Since, F may be a potentially infinite
dimensional space, i.e. m→ ∞, the solution to the problem needs to be redefined as,

ΣkMRCD = argmin
h

(|Kh
reg|) = argmin

h
(|(1−ρ)Kh +(h−1)ρIh×h|) (5.5)

where, the kernel matrix of the h-subset Kh = ΦhΦT
h . The question now arises, whether

the two problems, as described in Equations 5.4 and 5.5, are equivalent. It turns out that
they are, since |Kh

reg| = ck|Σh
reg |, where ck is a constant, so that the optimisation as defined

in Equation 5.5 can be carried out. Note that, the Mahalanobis distance computed by the
kMRCD for the kth data observation, d2

kMRCD(ϕ(xk),µh(ϕ(x)),Kh
reg)k requires invertibility

of the N ×N kernel matrix, instead of the m×m scatter Σh
reg.

As with the DetMCD, kMRCD begins by computing four initial estimates of multivariate
location and scatter that are robust to different types of outliers in the data. So that, it ini-
tially obtains four h-subsets, h̃ = h̃1, ..., h̃4, before proceeding to the "kernelized" equivalent
of the refinement step of the DetMCD. Briefly, the main steps of the kMRCD algorithm are
as shown, in the diagram in Figure 5.2.
For each of the four initially estimated h-subsets, i.e. h̃ = {h̃1, ..., h̃4}, compute C-steps as
follows:

1. Calculate K h̃
reg = (1−ρ)K h̃ +(h̃−1)ρIh̃×h̃, for each h̃;

2. Compute N Mahalanobis distances ∀n, d2
kMRCD;

3. Redefine each h̃ using the h-indices with the smallest d2
kMRCD;

4. Repeat the previous steps until convergence.

Note that the dataset x is firstly, robustly standardised using the univariate MCD formu-
lation. Then, the value of ρ is determined using the eigenvalues of the kernel matrix Kh,
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Figure 5.2. kMRCD diagram of the algorithm’s main steps.

satisfying κ(ρ) ≤ 50, where the expression is provided analytically in the paper. The method
is only location and scale invariant, while it maintains the high-breakdown point, bounded
IF of the original MCD. The kMRCD Matlab function kMRCD.m and its associated files,
are provided on KU Leuven’s website [9].

5.4.1.4 Orthogonalised Gnanadesikan-Kettenring estimator

The Orthogonalised Gnanadesikan-Kettenring (OGK) [120] estimator is only scale and
location invariant (not affine equivariant as MCD). However, its high-breakdown point
(α∗ → 0.5) makes the method an interesting alternative to use.
The algorithm is based on a robust correlation matrix between pairs of features in x,

Uij = 1
4
[
σ̃(xi +xj)2 − σ̃(xi −xj)2

]
, ∀ i ̸= j (5.6)

where, σ̃ is any univariate robust scale estimate, e.g. Qn and MAD. In the case of MAD

the algorithm reaches its highest breakdown α∗ = 0.5. The eigenvalues and eigenvectors V
of U are then computed, so that for each nth observation the data are projected as,

yn = V TA−1 xn (5.7)

where, A= diag(σ̃(x1), ...,(σ̃(xp)). Using these projections, the OGK multivariate location
and scatter estimates (µOGK , ΣOGK) can be expressed as,

µOGK(x) = (AV )ν

ΣOGK(X) = (AV )L(AV )T
(5.8)
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where, L = diag(σ̃(y1), ...,(σ̃(yp)) are the univariate robust variances of matrix Y , which
contains each nth data point yn ∈ Rp in its rows. The corresponding univariate robust
location estimates are ν = (µ̃(y1), ..., µ̃(yp)), e.g. medians.
OGK follows a weighting step, as in FMCD, to improve its efficiency, where it utilizes
the computed estimates, d2

OGK = dMSD(x,µOGK ,ΣOGK). The Matlab robustcov.m built-in
function includes the OGK as an option.

5.4.1.5 Deterministic MM-estimator

A Deterministic MM (DetMM) robust estimator [93] is an MM-estimator [119] of multi-
variate location and scatter (µMM ,ΣMM ), whereby six different scatter estimates, as in
DetMCD, are used to obtain initial h-subsets, instead of random sampling, as in FMCD.
The steps 1-3, as outlined in Table 5.1, are similar for the DetMM algorithm.
MM-estimators are more statistically efficient (when G is assumed to be Gaussian dis-
tributed) extensions of S-estimators of multivariate location and scatter (µS ,ΣS). In par-
ticular, S-estimators solve the following optimisation problem,

argmin |ΣS | s.t.
1
N

N∑
n=1

ρ

(√
(xn −µS)Σ−1

S (xn −µS)
)

= b (5.9)

where, the loss function ρ(d2
S) is selected to be: symmetric, twice continuously differentiable,

with ρ(0) = 0, strictly increasing in a finite interval [0,k(> 0)] and a constant when [k,∞). A
typical choice of ρ that satisfies these conditions and achieves close to .5 breakdown point, is
Tukey’s Bisquare function, which was demonstrated in the context of regression, previously
in Figure 5.1. As in the MCD method, the optimisation problem is non-convex, with several
local minima. As such, random sampling is usually performed through iterative solutions
(as in FMCD) until convergence of the objective function in Equation 5.9. This is done
through the FastS algorithm that follows similar steps as in FMCD.
An MM-estimator, inherits the high-breakdown point of the S-estimator, but, utilizes two
loss functions, ρ0,ρ1. If ρ0 = ρ1, then the method is an S-estimator. More specifically, the
basic procedure to compute µMM ,ΣMM pairs is outlined in the following steps,

1. For a specific loss function ρ0(d2(x,µS ,ΣS)) (as in Equation 5.9), calculate S-estimate
pairs µS ,ΣS .

2. Compute a scale value σρ0 = |ΣS |−2p.

3. For a different loss function ρ1 (having better efficiency than ρ0), solve the following
optimisation problem to obtain an estimate for the scatter matrix S̃ and µMM :
1/N∑N

n=1 ρ1
([

(xn −µ)S̃−1(xn −µ)
]
/σρ0

)
∀µ ∈ Rp and ∀S̃ ∈ Rp s.t. |S̃| = 1.
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4. The scatter matrix of MM-estimator is ΣMM = σ2
ρ0S̃.

Note that DetMM is a high-breakdown, near-affine equivariant and permutation invariant
(since it eliminates the initial random sampling) robust estimator, which is more statistically
efficient than the FMCD.
The DetMM Matlab function detMM.m is provided on KU Leuven’s Robust Statistics
website [9]. The implementation is based on the MM-estimator function MMmult.m, which
is part of the Flexible Statistics and Data Analysis (FSDA) Matlab toolbox, developed by
the Robust Statistics Academy at the University of Parma [5].

5.4.2 Exploratory analysis and outlier diagnosis

5.4.2.1 rPCA and its outlier map

The rPCA algorithm was presented in Chapter 4. Its main objective is to project only the
non-outlying data points on a new subspace, which in turn makes the rest of the data (the
outliers) more distinguishable. Simple distance measures, e.g. Mahalanobis distances, can
then be used to identify these outliers as points that are outside the χ2 error ellipse.
Let, λ1

rP CA, ...,λ
k
rP CA be the collection of k eigenvalues of the MCD scatter matrix. A use-

ful measure known as score distance (SD) for each data point can be computed SD(xn) =√∑k
j=1 y

2
n,j/λj , i.e. measuring the squared robust distance of xn projection to the centre of

all the N projections.
Note that rPCA has the same properties of PCA, i.e. it is a location and orthogonal equivari-
ance technique, meaning that any kind of rotation and/or shift of transformation applied on
the original dataset, it will cause the corresponding rotation of the loadings matrix and/or
robust location shift, so that SD will not be affected.

An outlier map is a 2D plot of ODist (see Equation 4.5 for its definition) versus SD, where
it is possible to classify the outlier type, as well as, the regular observations. To determine
outliers, a typical χ2 cut-off value is used for the SD direction, while for OD a scaled version
of it is used.
Since most of the methods in robust multivariate analysis are parametric and highly inter-
pretable, they offer the capability to classify each outlier, according to the model/method
being used. There are three main classes of outliers, where all share one property, i.e. lo-
cated away from the data majority, but they differ on their influence on the statistic being
estimated, e.g. the slope of the ordinary least squares regression.

• Good leverage points have similar statistical properties as the data majority. In rPCA
they lie close to the subspace on which the data majority is projected on. In regression,
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these points will have the same slope as the data majority. In general, these points
help in defining a model for the non-outlying samples.

• Bad leverage points have different statistical properties as the data majority, so that
they may become "hidden" or "disguised" as inliers when non-robust methods are being
used. The influence of such outliers on the estimation has been discussed previously
using the masking and swamping effects. In general, these points may shift the statistic
being estimated towards them, i.e. far away from the data majority. In rPCA, they
have both large orthogonal and score distances.

• Vertical/orthogonal outliers are outliers that can be hidden when non-robust methods
are computed, as observed in [60] in the context of SHM. In rPCA they are located
far away from the projected rPCA subspace (large orthogonal distance). At the same
time, they may be located within the data majority cloud in the projected rPCA
subspace. This implies that they remain hidden, while they may have some influence
on the definition of the principal components.

The rPCA outlier map in which the orthogonal and score distances are plotted against
each other are typical tools used for diagnosing outliers, as shown in [154]. Additionally,
departure from normality may be seen on a distance-distance (DD) [155] plot. That is, a
DD-plot shows the Robust Mahalanobis distances against the classical ones d2

msd, since the
latter assumes all the samples are Gaussian-distributed due to the MLE-derived estimates.

5.4.2.2 Robust clustering via data trimming

Generally, the aim of clustering analysis is to partition the p-dimensional samples in x
into k disjoint clusters, where in each kth cluster the samples representing it have common
characteristics [30]. This may be used in the estimation of statistical parameters, such as
k multivariate centres and scatter matrices. The possibility of outlying observations also
needs to be accounted for in cluster analysis.
Note that the estimation of a robust multivariate scatter and its location imply the following:

• (C1): A single elliptical and symmetrical distribution is sufficient for the inclusion of
the inlying samples;

• (C2): Linear interdependency between each feature.

Clustering analysis aims to address (C1), in part, where there may be several elliptical
distributions in the p-dimensional space. This is important because it will allow outly-
ing observations that lie between these elliptical distributions (also called as "bridge" data
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points) to be detected, as those that exist in sparse regions. In that way, G can be mod-
elled as a multi-modal one, rather than a single ellipse that encompasses the non-outlying
observations.
In the context of SHM / CM this is interesting; EOV influence on the dynamics can cer-
tainly be a source of multi-modality, as seen in the Z24 dataset. In this case, multiple
elliptical regions in the p-dimensional (or feature) space may be used in order to provide a
more accurate description for its undamaged state. Note that this places no assumptions
on the outliers, other than, they exist in sparse regions in the feature space of x.
In [78] the authors presented a robust clustering methodology that tackles both the prob-
lem of OD, as well as, the estimation of a number of elliptical distributions in the feature
space, called clusters from now on. Similar methodologies were presented in [51], using a
trimmed k-means approach for robustly defining multiple clusters alongside a proportion of
outliers. However, trimmed k-means, inherits properties of the original methodology, one
of which is the assumption of spherical cluster shapes of roughly equal sizes. This limits
its applicability and OD capabilities. As discussed in the paper [78], apart from the spher-
ical assumption, another major difficulty in dealing with cluster analysis in the presence of
outliers, i.e. robust cluster analysis, is the heterogeneity of the clusters. That is, the Maha-
lanobis distances computed by members of one cluster, may be at different scales than the
ones of another cluster, imposing difficulties in formulating a global optimisation problem,
in the first place.
One of the earliest methods that dealt with the variation in cluster scales, has been to
normalise the covariances of each cluster in order to have a determinant of unity. In the
paper, however, the authors proposed to place a restriction on the ratio of the largest to
the smallest covariance eigenvalues, the so-called eigenvalue-ratio (ER) restriction, in order
to get more "informative" clusters.
Let the total number of clusters be K, and H = {h1, ...,hK} be a collection of h-subsets so
that hk is the subset of inlying samples assigned to the kth cluster. Using the spurious-outlier
model [76], the authors suggest to optimise the following likelihood function, K∏

k=1

∏
n∈hk

πkg(xn |µk,Σk)

∏
n/∈H

g̃n(xn)

 (5.10)

where, the second term in the bracket includes only the ⌊(1 −α)N⌋ outliers and may be
drawn from any probability density function g̃n ∈ Rp. Whereas, the non-outlying obser-
vations xn are treated as iid draws from an elliptical and symmetric probability density
function g(·), with its multivariate location and covariance matrix, µk,Σk, being different
for each cluster. To some extend, the Tukey-Huber model presented in Equation 5.2, is of
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a similar form, whereby it places some restrictions on the distribution properties for the
non-outlying observations and no such restriction on the outliers’ distribution. Also, each
cluster is multiplied by a coefficient πk, so that ∑k πk = 1. Note that if Σk = σ2I, with
I being the identity matrix, the solution reduces to the trimmed k-means method. Also,
when k = 1, i.e. a single cluster expectation, the problem is equivalent to the one being
solved by the FMCD.
The solution to Equation 5.10, solves an Expectation-Maximization (EM) problem to get
MLE estimates for µk and Σk [30]. In order to clarify, the method places no restrictions on
the outlying part of the model, it is therefore, not considered in any part of the procedure.
The EM problem is combined with C-steps, in order to impose the necessary restrictions
on the ER, and progress iteratively to find the optimal solution, among all p×K candidate
eigenvalues λ. For a user defined constant cER ≥ 1, the following restriction is formulated,

maxm=1,...,p,k=1,...,K λk,p

minm=1,...,p,k=1,...,K λk,p
≤ cER (5.11)

The scalar constant cER places the necessary restrictions on each kth cluster covariance.
When cER = 1 the method is similar to the trimmed k-means with equal weights on each
cluster, and is the most restrictive scenario. On the other hand for a large constant, cER >

50, the problem is rather unrestricted, leaving more freedom to handle the variation in
scattering between each cluster. The method is implemented in Matlab tclust.m function as
part of the FSDA toolbox [5]. Among the user defined parameters, perhaps the three most
important are: the expected amount of contamination (1 −α), cER value and the number
of clusters K.

5.4.3 Robust time series analysis

It is important to note that temporal relationships do exist in x, since all features were
derived from time series vibration data taken on fixed-window time-intervals. Up to now,
all presented methods dealt with the problem of detecting point outliers [18], in the multi-
variate context. Although these multivariate outlier analysis methods, e.g. MCD, take into
consideration the relationship of the p-features, they completely disregard any relationship
for each pth feature individually with respect to its sample number.
Recently, in [154], the authors presented a time series analysis methodology, which gener-
alizes to non-linear problems, too. The method combines an alternate least squares (ALS)
approach, alongside a least trimmed squares (LTS) methodology (implemented via the Fast
LTS algorithm), in order to solve a non-linear LTS (NLTS) univariate time series modelling
problem via robust fitting.
A brief explanation of the method will be attempted here. Note that, this thesis deals with
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sample numbers n= 1, ...,N , due to the preceding stage of DSF extraction (see Chapter 4).
Therefore, given a univariate time series at sample number n, xn, a NLTS robust estimator
for a general model f(θ,n), where θ is the vector containing its parameters, can be cast as
the following optimisation problem,

θNLT S = argmin
θ

h∑
j=1

[xn −f(θ,n)]2j (5.12)

where, the term [·]2j is the jth smallest squared residual. This includes up to h most "central"
residuals, which is equivalent to the h-subset for the multivariate robust estimators of scatter
and centre.
In general, conventional time series, e.g. AR analysis models, may yield erroneous results
when structural changes occur. These structural changes may be point outliers and/or
collective outliers, which can be grouped with respect to the sample number, and/or level
shifts. Therefore, apart from OD, both the time of occurrence of a level shift as well as its
amplitude are important considerations for a generalised (and flexible) time series analysis
approach. Similar to the multivariate analysis, a robust fit is obtained using the h samples,
which yields the optimal parameters vector θopt for the considered model, i.e. f(θopt,n),
whereby it minimizes the objective function in Equation 5.12. Using this model, it is possible
to compute a T-scaled score (similar to a z-score method), as,

[xn −f(θopt,n)]/σ̃2(xi,f(θopt,n),h) (5.13)

where, σ̃(xi,f(θopt,n),h) is the scale of the squared residual between the time series model
f(θopt,n) and the ith feature as a function of sample number xi(n). A confidence interval
of 99% is typically used.
The method assumes a model of the form xn = f(θ,n) + εn, where θ is a d-dimensional
vector, which includes all d parameters of the model f(·). In general, an LTS estimator
would have been used for a time series model that is linear in its parameters. However,
f(·) is non-linear in its parameters (although some may be zero), and in particular, when
expanded, it yields the following expression,

xn =
A∑

a=0
αan

a +
[

B∑
b=1

(βb,1cos(2πbn)+βb,2sin(2πbn))
](

1+
C∑

c=1
γcn

c

)
+ δ1I(n≥ δ2)+εn

(5.14)
where, εn is a stationary stochastic process with finite variance σ2, which may be modelled
as εn ∼ N (0,σ2). The first term is a polynomial trend of order A, whereas the second term
is a seasonal component, with a polynomial-type of variation of order C. The level shift am-
plitude δ1 switches between 1 and 0 using the indicator function I(·), which depends on the
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Table 5.2. Confusion matrix for outlier detection.

Predicted undamaged Predicted damaged

Actual undamaged True Negative False Positive
Actual damaged False Negative True Positive

level shift location δ2. The above model is non-linear in its parameters, i.e. βb,1,βb,2,γc, δ2,
so that only a non-linear time series model can be used to compute the parameter estimates
vector θ. The NLTS estimator fits the parameters θNLT S to the model given in Equa-
tion 5.14, by (1) using ALS to alternate between two linear LS fits and (2) obtaining the
h-subset using C-steps (see above MCD estimator). The procedure is initialised by setting
γc = 0, ∀ c = 1, ...,C, which converts the problem in Equation 5.14 into a linear one (in its
parameters α,βb,1,βb,2, δ1) and applying LS fit on a small subset of the data with at least
p− 1 observations. The Matlab function LTSts.m is part of the FSDA toolbox [5], and
implements the NLTS method. Its user defined parameters include A,B,C,δ2, the fraction
of outliers expected 1−α, which determines the h-subset length.

5.5 Evaluation of OD method performance & benchmarking

In a practical scenario, it is not possible to evaluate the performance of an OD method
within the framework of unsupervised learning, simply because there are no labels avail-
able. Thankfully, every dataset used in this thesis is labelled, which makes it possible
to quantify the performance of the different methods. This is usually done by striking a
compromise between false positive and negative rates, depending on the application. For
instance, in a life-threatening situation, in which a single true outlier matters, it is more
preferred to have more false alarms (false positives), than it is to have any misses (false
negatives). The confusion matrix, as shown in Table 5.2 is helpful in finding out, to which
extend, observations from the actual system states (damaged and undamaged), are being
classified correctly. Note that, the damaged state is the positive class.
To better summarize the evaluation of a binary classifier’s performance, different measures
such as precision and recall can be computed as in Table 5.3. Those two metrics are com-
monly used on datasets where positive class/damaged/outliers observations are rare. These
metrics are a function of the threshold γ being used. F1-score uses the harmonic mean to
strike a balance between Precision and Recall, since they may be inversely proportional,
as α takes different values. If we choose to increase Recall, on its own, we are creating a
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Table 5.3. Performance measures for outlier detection.

Measure Description Formula

Precision (α) number of true outliers predicted to the total outliers
predicted.

T P
T P +F P

Recall (α) number of true outliers predicted to the total of true
outliers.

T P
T P +F N

F1-score (α) Precision and Recall harmonic mean. T P
T P +.5(F P +F N)

conservative monitoring system, as we minimise FN at the expense of higher FP. On the
other hand, if even a small amount of FP is undesirable, and FN is unimportant, then
Precision can be used on its own. However, since both of these two measures are important
in SHM and CM, then F1-score will be used as performance measure. Note that in heavily
imbalanced datasets, TN (see Table 5.2) is not regarded as important, in terms of outlier
detector performance. Hence F1-score should be used alongside other measures, too.
In cases where the dataset is not skewed towards the undamaged examples, the False Pos-
itive Rate, i.e. FPR(α) = FP/(FP +TN), can be plotted against Recall to generate the
Receiver Operating Characteristic (ROC) curve. The ROC(γ) is a monotonically increasing
curve, and a random classifier has performance along its diagonal. The area under the curve
(AUC) of the ROC AROC is computed to provide a single measure of the effectiveness of
the classifier to distinguish between the two classes. In the upper limit, when AROC = 1,
an OD method with its threshold γ, discriminates all the undamaged examples from the
damaged ones.
One final important consideration relates to benchmarking of the above robust methods’
performance with respect to DI. That is, how their performance, mostly in terms of discrim-
inating between the two system states, measures against more commonly used OD methods.
For that purpose, two widely-used OD methods will be employed for OD: 1. ocSVM and
2. iForest. Note that these two methods are not restricted to representing the decision
boundary as a unimodal ellipse, which may or may not offer benefits for DI. Therefore,
their performance will be explored further. In Appendix B these two methods are discussed
in some extend, including ways to setup thresholds, which is different from robust methods.

5.6 Results & discussion

In this section, the results for DI using the framework of inclusive outlier analysis are
presented for all datasets considered. Given the wide range of problems and methods
considered, an attempt has been made to include only those results that showed promise
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with regards to DI and/or provided useful insights on the datasets. From the three types of
analysis approaches, which were discussed previously, a range of different conclusions will
be drawn, independently.
It is important to note that the various methods used to produce the results in this section
have their own merits and thus, they may be suitable for different range of problems.
Therefore, it is not the main purpose of the analysis to draw direct comparisons between the
methods, e.g. between OGK and kMRCD. What is most important, is to demonstrate how
robust statistics may be used as an alternative method for DI and general data exploration
in SHM and CM problems. This implies that comparison between robust and non-robust
techniques, e.g. rPCA and PCA, will need to be made explicitly.

5.6.1 Important notes regarding the results

Details related to the implementation of each method used in this chapter are as follows:

• ocSVM: In ocSVM, the hyperparameters of the RBF kernel (see Appendix B) were
selected empirically and/or using the following metric:

√
median||xi −xj ||. This

corresponds to the median of the pairwise distances.

• iForest: Given the iForest has no hyperparameters, as ocSVM does, no tuning of
the algorithm was performed. However, the number of the ensemble iTrees, was
chosen as ≈ 1000, which provided fast implementation for the algorithm, balanced
with satisfactory results;

• tclust: The restriction factor cER (see Equation 5.11) is chosen by trial-and-error for
each dataset. In most datasets, cER > 100, which represents an unrestricted problem
(see previous explanation on tclust algorithm).

• NLTS: In NLTS, the values of each of its parameters A,B,C,δ2 (see Equation 5.14)
were chosen according to the dataset being investigated. Additionally, the confidence
interval for its fitted line, is chosen as a typical one 97.5%, unless otherwise specified.

Details of the thresholds used for each method in this chapter are as follows:

• MC: Most datasets are high-dimensional, and therefore, MC threshold estimation us-
ing 1×105 simulations required significant computational resources. For that reason,
the Sheffield Advanced Research Computer [11], which is one of The University of
Sheffield’s High Performance Computing systems has been used to derive the MC
thresholds of all robust estimators, apart from kMRCD. In particular, the following
main specifications were used in a parallel computational environment: 5 G per CPU
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core of real memory, 8 CPU cores of symmetric multiprocessing, which yielded a to-
tal computational time of close to 2 hours. Note that for kMRCD, since its scatter
matrix is of N ×N , derivation of a MC is still impractical using the Sheffield’s High
Performance Computing: taking more than 8 hours with a similar set of specifications
to complete the 1×105 simulations;

• χ2-based: A threshold on the χ2 CDF with a confidence interval equivalent to the
proportion of inliers α is used. This is because a χ2 distribution assumption may
be approximated for the inliers, but, not for the outliers. While, if we suspect that
outliers may also be elliptically distributed (which is typically not the case), a typical
confidence interval, e.g. 99%, may be used;

• kMRCD: A threshold on kMRCD is computed based on the following empirical ap-
proximation: higher-dimensional SMDs, e.g. infinite-dimensional for an RBF kernel,
are better approximated with a log-normal distribution, rather than a χ2 one. Sim-
ilarly, a confidence interval equivalent to the proportion of inliers α may be used.
A sample x∗ will be flagged as an outlier if its SMD computed from the kMRCD
estimates logSMDkMRCD(x∗) exceeds a certain confidence interval (e.g. α) of the
standard normal distribution,

log[SMDkMRCD(x∗)]−µmcd(log[SMDkMRCD(x∗)])
σmcd(log[SMDkMRCD(x∗)]) > z(α) (5.15)

where, µmcd and σmcd are the univariate robust MCD mean and scale estimates,
respectively;

• iForest: As Equation B.8 shows, the expected path length from an ensemble of ≈ 1000
iTrees is computed. This in turn is used to compute the iForest outlier scores, which
classifies outliers as samples that exceed a confidence interval, which in this case is α;

• ocSVM: As Equation B.7 shows, the bias term ρ of a projected sample x∗ provides
the threshold value for the expected outlying samples in the dataset.

5.6.2 TF-LBO dataset

The TF-LBO dataset, has some important characteristics that need to be considered. Its
three states: AFR 1, 2 and 3 yield different vibration responses for the combustor. This
implies that, the identification of LBO (AFR 3 state) from two different reference states
is not as straightforward. This is similar to DI in structures, whereby EOV influences the
undamaged state, to the point that outliers from that state cause masking / swamping of
the damaged state.
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The results in Figures 5.3 to 5.5, show the squared Mahalanobis distances (SMDs) computed
using five robust estimators. As a comparison, the SMDs from the sample covariance and
multivariate mean are computed. The results may be summarised as follows:

1. As the parameter α changes from 0.55 to 0.8 in Figures 5.3 and 5.4, respectively, we
notice the effects of masking. Outlying samples from AFR 1 and 2 are clearly shown
on the plots of the SMDs computed using FMCD and DetMCD estimators. As the α
value increases, more samples are expected to be inlying, thus, forcing samples from
AFR 3 into its inlier region;

2. Given a suitable α value (= 0.67), since AFR 3 occupies 1/3 of the total number of
samples, the SMDs reject AFR 3 samples as being members of the inlying region.
At the same time, the SMDs with α = 0.67 calculate the robust scatter and mean
estimates by excluding less points from AFR 1 and 2 system states, as compared to
when α= 0.55;

3. LBO identification from the SMDs calculated using the sample covariance and mul-
tivariate mean (d2

msd), will be unsuccessful due to masking effects from AFR 1 and 2
outlying samples;

4. Notice from Figures 5.3 to 5.5, the SMDs computed using OGK robust estimator
are invariant to α. This is because its estimates µOGK and ΣOGK are based on the
univariate robust scale estimates of Qn or MAD (see Equation 5.8). This implies that
the α value of OGK robust estimator is always close to 0.5. This explains the high
rejection rates seen in the plots, which are comparable to when α = 0.55 for other
robust estimators, e.g. FMCD, as seen in Figure 5.3;

5. Notice that due to the variation in α the thresholds γp,α and γkMRCD,α change ac-
cordingly.

In order to gain an insight into some of the most important characteristics of robust esti-
mators, a number of two-dimensional plots were produced. This was done by selecting two
features from the MD2 DSFs matrix, in which AFR 1 and 2 appeared as two disjointed
sets of samples. This means that, from the point-of-view of these two features, one may
have justifiably assumed that these two sets of samples could have been generated by two
different distributions. At the same time, with these two features, samples from AFR 3
were shown as furthest away from both AFR 1 and 2.
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Figure 5.3. TF-LBO: squared Mahalanobis distances (on log-scale) from five robust
estimators using α= 0.55. The first sample from the damaged state is shown
by the vertical line, while the horizontal lines are the two thresholds. For
comparison the Mahalanobis distances (on log-scale) using the sample mean
and covariance are shown (d2

msd).

Figure 5.4. Same plots as Figure 5.3 but with α= 0.8.
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Figure 5.5. Same plots as Figure 5.3 but with α= 0.67.

The plots in Figure 5.6 show the two-dimensional features space overlapped by the χ2
p,α

ellipsoids of three robust estimators: OGK, FMCD and DetMM. Whereas, in Figure 5.7
the same feature space is overlapped with the contour plots from the SMDs computed using
the kMRCD. As a comparison, the χ2

p,α ellipse calculated from classical SMDs (cMahal) is
shown. Note that these ellipses are equivalent to the decision boundary or the threshold
that was shown previously in the SMDs plots. In summary, the following can be deducted
from these two figures:

1. On the cMahal plot, the sample covariance matrix is calculated using the samples
from all three system states (AFR 1,2 and 3). This caused the corresponding ellipse
to expand towards AFR 3 samples that are furthest away. This is an example of
a swamping effect, where outlying samples (AFR 3) shifted the ellipse such that a
proportion of inlying samples (AFR 1 and 2) are being rejected as belonging to the
reference states;

2. On the same plot, the first threshold is based on a typical confidence level, e.g. 99%,
on the χ2-distribution with DOF p= 2. Thus, its ellipse encompasses the 99% of the
samples from all three system states. Using such a threshold, AFR 1 samples will be
identified as outliers, while AFR 3 (the actual outliers) will be inlying. The second
threshold, is based on the same χ2 distribution assumption, but, with a confidence
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level of 67%(= α). Thus, a rejection of 33% of the most outlying samples is made
using the same centroid as the 99% ellipse. Using this ellipse, it will incorrectly
identify samples from AFR 1 and 2 as outliers (swamping effects);

Figure 5.6. TF-LBO: a two-dimensional problem (selected two features from the MD2
DSF matrix) to illustrate the workings of OGK, FMCD and DetMM robust
estimators using ellipses on the χ2 CDF and sensitivity to α value.

3. The next three plots in Figure 5.6 show the sensitivity of the parameter α on the
FMCD and estimators. The ellipses were computed using the same χ2-distribution
assumption with varying values of α, where for these robust estimators, it also implies
different values for scatter and location. While, for the OGK estimator, as explained
previously, its estimates are not a function of α, but, depend on the univariate robust
scale estimate method used. On the other hand, DetMM is particularly sensitive
to α: a small change from .67 to .65 results in a very different ellipsoid shape that
encompasses only the samples from AFR 1 and 2 and rejects AFR 3. Similarly, for
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the FMCD ellipse, as α decreases from 0.8 to 0.67, it correctly encloses only AFR
1 and 2. However, as α → 0.5, which is the breakdown point, it will begin rejecting
samples from AFR 1 and 2, as well. That is, similar estimates as with the OGK
method. Therefore, correct / suitable specification of α is critical for the performance
of robust SMDs: too tight will result in rejection of sample points from the reference
state, while too loose will result in masking and/or swamping effects;

4. The previous plots in Figure 5.5 showed that DetMM correctly identified all samples
using the correct specification of α. However, in the two-dimensional problem shown
in Figure 5.6, this is not the case: an α value of .67 showed that this was not suitable -
a further decrease to .65 was required to reach the same result. This may be explained
by the fact that in the two-dimensional problem only two features from the DSF matrix
were used. Thus, certain features that were in the original DSF matrix also played
a major role in helping to identify the correct reference states (AFR 1 and 2), whilst
rejecting the true outliers (AFR 3);

5. In Figure 5.7, the contours of the SMDs computed using the kMRCD with three
different α values show the critical importance of that parameter. For α= 0.8, kMRCD
encompasses samples from AFR 3, as well, while for α= 0.55 it incorrectly rejects AFR
1 samples from the inlying set. On the other hand, with α= 0.67 it includes all data
points from AFR 1 and 2, while some samples from AFR 3 have high SMDs. Note
that, the ellipse defined for both FMCD (α= 0.67) and OGK estimators in Figure 5.6,
it may be shown that it will result in a higher number of FP rate (incorrectly rejecting
both AFR 1 and 2 samples as inlying), as compared to kMRCD (α= 0.67). This is an
advantage of kMRCD since it employs an RBF kernel (to project the data), so that
it may encompass all samples from AFR 1 and 2 using a (more flexible) non-linear
decision boundary.

The classification of outliers is also an important part of this analysis. As described pre-
viously, this is done by plotting the orthogonal and score distances against each other, i.e.
the outlier map of rPCA. In Figure 5.8, the outlier map of rPCA with k = 2 (the number
of principal components) and α= 0.67 is shown. As seen, the majority of the samples from
AFR 3 are classified as bad leverage points, which implies that these samples will influence
non-robust estimates such as the sample covariance matrix, as observed previously. On
the other hand, rPCA correctly identifies almost all samples from AFR 1 and 2 as regular
points. This observation, may further strengthen the previous argument made in point (4),
regarding the influence of certain DSFs on the diagnostic performance of outliers. That
is, by including all features from the MD2 DSFs matrix, AFR 1 and 2 are more "easily"
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Figure 5.7. TF-LBO: same as in Figure 5.6 but kMRCD workings are illustrated using the
contours of its computed SMDs.

distinguishable from AFR 3.
Moreover, an NLTS time series model was built as a quadratic regression model (A = 2).
Each time series model was fitted on each feature vector from the MD2 DSFs matrix, in-
dividually. The fitted estimates ŷ, the actual inliers x and estimated outliers (using the
default-univariate threshold) xo(γuv), are shown on eight different features in Figure 5.9.
In each time series model the fitted quadratic curve (with three coefficients) is tracking well
the changes from AFR 1 and 2 (e.g. in Feature 1). At the same time, the rather abrupt
changes in amplitudes of these features associated with AFR 3 state, are correctly identified
as outliers. The AROC metric of each NLTS model is ≈ .99. Not that a quadratic time series
model in Features 3, 4, 5 and 7 is not required: a simple linear regression model (A = 1)
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Figure 5.8. TF-LBO: outlier map of rPCA (on log-scale) and the MD2 DSFs as a function
of sample no., rescaled in range [0,1] to aid in visualisation. Thresholds on the
SD and ODist, γsd and γodist, respectively, were calculated as already
explained.

should have been sufficient to identify the outliers.

Figure 5.9. TF-LBO: NLTS fitted line ŷ with A= 2 and α= 0.67. Showing also actual
inlier samples x and estimated outliers xo(γuv), which were computed using
the default-univariate threshold. Time series samples are the eight different
features from the MD2 DSFs matrix.

The two benchmark methods: ocSVM and iForest, were also applied in this dataset. In
iForest the outlier detection accuracy suffered: AROC = 0.77, while for the ocSVM the same
metric was 0.98. Note that for the latter method, this value was achieved by first computing
the robust z-scores of each MD2 feature. This increased the outlier scores computed from
AFR 3 samples, while at the same time it reduced the outlier scores of the rest of the sam-
ples, especially for AFR 1 state. In Figure 5.10 the outlier scores computed using ocSVM
with α = 0.67, ν = 0.5 and γrbf = 1.2 are shown. Note that, when no pre-processing was
applied its performance fell considerably, almost as close to a random classifier (≈ 0.5). This
highlights the importance of utilising methods, e.g. FMCD and DetMM, that have robust
properties, like affine equivariance: see Appendix C for a discussion on robust properties of
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estimators.

Figure 5.10. TF-LBO: outlier scores calculated using ocSVM with α= 0.67, ν = 0.5 and
γrbf = 1.2. The first sample from the damaged state is shown by the vertical
line, while the horizontal lines are the two thresholds.

5.6.3 NSim-4DOFLin & -4DOFNonLin datasets

Using these two simulation-based datasets, the amplitudes of the PSD were calculated on
each segment time interval of 8 hours. Subsequently, a downsampling by two was performed
to obtain the final matrix with dimensions 479×115. Due to the high-dimensionality of the
problem, rPCA was employed and its first 10 principal components were chosen to form the
final modal-based DSFs matrix. Note that the implementation of rPCA limits the maximum
number of obtainable components to 10. However, in these two datasets the cumulative
variance of the first 10 components was ≈ 95%. This implies that a projection onto these
10 axes of rPCA, contains almost (95%) all available information from the dataset.
The particular choice of the time interval for each segment, the downsampling used and
the low-pass filtering of ≤ 0.1 Hz provided sufficient monitoring of the variation in NFs.
That is, both as a function EOV influence (temperature changes) and damage. This is
because, understanding EOV influence is equally important as rejecting it, for instance, by
using impact-based DSFs (see Chapter 4 for details on impact-based DSFs and how EOV
influence may be rejected). Due to the simplicity of the dataset, e.g. no experimental errors,
and noise contamination, it is possible to explore EOV influence more optimally, as well as,
find way for its rejection.
For brevity, the analysis of the results will be focused on the NSim-4DOFNonLin dataset.
This is for two main reasons: 1. it represents a more realistic case due to its non-linear
restoring forces, and 2. no particular further insights could be gained by analysing its linear
counterpart, i.e. the NSim-4DOFLin dataset§.
In Figure 5.11, 10 time series models using NLTS with A= 2 were fitted on each of the 10
features separately. What is most interesting in these plots, is the fact that on the last 3

§SMDs for NSim-4DOFLin may be shown in Figure D.6 (Appendix D)

131



Figure 5.11. NSim-4DOFNonLin: NLTS fitted line ŷ with A= 2 and α= 0.75. Showing
also actual inlier samples x and estimated outliers xo(γuv), which were
computed using the default-univariate threshold. Each time series is one of
the 10 principal components of rPCA, obtained from PSD amplitudes.

features, Features 8 − 10, the EOV influence is almost non-existent. This is an important
observation, which highlights some of the important attributes of working on the subspace
of the feature space, which is spanned by a few principal components. In this subspace,
which exists in a linear manifold of rPCA space, samples representing EOV influence and/or
damage may be isolated. This possibility has been explored in the SHM literature in the
past [58], [169], for obtaining DSFs as the minor components of PCA, i.e. the components
with the least variance. These components showed immunity to EOV influence, while being
sensitive to damage.
As the NLTS fitted lines ŷ suggest on the last three rPCA axes, there is a negligible amount
of outliers prior to damage. As the highest variance is expected in the first principal
components, Feature 1 shows to be influenced by both EOV (sample no ≈ 200 − 300) and
damage. Thus, we may choose to isolate EOV on Feature 1 and damage on Features 8 to
10. Similar observations can be made by looking at Figure 5.12. In particular, the first
two principal components of PCA (middle plot) show that most of the samples representing
damaged and undamaged states (T > 0) are overlapped. At the same time, samples from
EOV influence (undamaged with T ≤ 0) are weighted heavily in these two axes of PCA. In
Appendix D, in Figure D.3 the first 10 principal components of PCA show that there is no
axes in which either damage or EOV influence may be isolated. This is another example of
masking effects, where larger EOV influence variation hides smaller / subtler changes due
to damage. Also, in kPCA all three system states are completely overlapped on its first two
principal components. This may suggest a few things: 1. more principal axes are required
in kPCA to discriminate between the system states, and 2. better tuning of its kernel width
is required to reveal such differences. On the right plot, the first 10 principal components
from PCA show that the amplitude of these features will be greater for EOV influence than
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with damage, which makes DI a challenge.

Figure 5.12. NSim-4DOFNonLin: score plots of the first two principal components of
PCA (middle plot) and kPCA (left plot). On the right are the 10 principal
components of PCA, computed from the PSD amplitudes.

The influence of outliers, and in particular, the masking effects of this dataset can be clearly
seen on the two-dimensional plots, as it was done in a previous dataset: TF-LBO. In this
dataset, however, we can select the features from the DSF matrix that are least immune
to EOV influence, but, show some indications of damage. As it was shown in Figure 5.11,
this can be done by selecting the minor components of rPCA, which in this case are the
last three axes: Feature 8−10. On the other hand, in Feature 3 and 4 we observed a large
EOV influence, while damage was not discernible from these plots.
In Figure 5.13 the following remarks can be made, using Features 3 and 4:

1. The SMDs computed using kMRCD show as extreme values most of the samples from
the undamaged condition with significant EOV influence (T ≤ 0). While, samples
representing the damaged state are considered as the "inlying" ones.;

2. Similar observations can be made for the FMCD, which draws a tight ellipse (using the
χ2 assumption with α= 0.75 as the confidence level) around the samples representing
the damaged state and the undamaged state at T > 0;

3. Due to its non-ellipsoidal assumption, kMRCD is able to identify more samples from
the damaged state as outliers, in comparison to FMCD;

4. The SMDs of the FMCD and kMRCD methods, show the masking effects very clearly,
whereby it is not possible to admit a threshold and discriminate all (or the majority)
of the samples from damaged and undamaged states.

While, in Figure 5.14 the following remarks can be made, using Features 8 and 9:
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Figure 5.13. NSim-4DOFNonLin: two rPCA component scores (Features 3 and 4 in
Figure 5.11) showing (on the top) the SMD contours of the kMRCD method
and (on the bottom right) the χ2 ellipse computed from FMCD method. The
two bottom left plots show the corresponding SMDs, where the vertical line
is the first sample from the damage state.
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Figure 5.14. NSim-4DOFNonLin: top two plots of rPCA components (immune to EOV
influence) overlapped with χ2 ellipses computed using robust and non-robust
estimates with varying confidence levels (α values). Bottom plots are the
SMDs computed on the same features using DetMM and cMahal estimators.

1. As can be seen, these two-dimensional features have high immunity to EOV influ-
ence and high sensitivity to damage. Using these two features as DSFs, the classical
Mahalanobis distance will have no problem in identifying damage at an early point
using the χ2 threshold. This is especially true when the threshold is computed using
the correct amount of expected outliers, i.e. α = 0.85. While some samples from the
damaged state are within its inlier region, the error rate will be sufficiently small;

2. In the same figure, the SMDs and ellipse (although it is skewed differently) of the
DetMM estimator indicate similar performance as with the classical Mahalanobis
technique.

Note also that a robust z-score, computed on the 10 rPCA components, using iForest have
produced similar outcomes. This is because, a robust z-score highlights the true outlying
samples by normalising all samples accordingly. To maintain clarity of the results, the
outlier scores of iForest are shown in Figure D.4 (Appendix D).
From the outlier map in Figure 5.15, we observe that EOV influence exists orthogonal
to the 10-dimensional subspace of rPCA. On the other hand, samples from the damaged
state are lying on that 10-dimensional subspace but are further away from regular samples
(undamaged, T > 0). As such the former are classified as orthogonal outliers, while the
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Figure 5.15. NSim-4DOFNonLin: the left plot is the rPCA outlier map on a log scale (10
rPCA components). On the top right, the score plot of rPCA’s computed on
its first two components. On the bottom right, the DSFs, i.e. the PSD
amplitudes, unit-normalised.

latter are good leverage points. By observing the 10 principal components of PCA (see
Appendix D in Figure D.3), it is clear that these orthogonal outliers had a major influence
in defining the principal axes, since variance is maximised in these directions.
As a comparison, the 10 DSFs computed using the PSD amplitudes of rPCA and PCA
are compared in terms of AROC performance in Figure 5.16. As it is shown, all estimators
including cMahal have better AROC metrics when the 10 rPCA components are used as
DSFs. Note that all robust estimators, apart from DetMM are specified with α = 0.75.
Surprisingly, the DetMM estimator, has shown considerable improvement in performance
when the specified outliers fraction 1−α exceeds its theoretical maximum breakdown value
α∗ of 0.5. In general, as α → 0.5, the determinant of the scatter matrix becomes smaller,
forming a tighter ellipsoid around the inliers. The fact that the DetMM estimator yielded
superior performance (more precisely, in terms of AROC), has to do with the fact that its
contamination factor can be higher than the 50% maximum breakdown point. This is also
observed in the WT-REB dataset, where this is explained further.
A more conservative threshold may be specified using the MC simulation that was discussed
previously, with a confidence interval set at α value. As shown in Figure 5.17, the MC
threshold γmc

α results in a decrease in FP rates for the robust estimators, as compared to
the χ2-based threshold. On the other hand, for cMahal it will result in a considerable
increase in FN rate. For kMRCD, the MC threshold was impractical to calculate due to
the high-computational resources required, as explained previously.
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Figure 5.16. NSim-4DOFNonLin: ROC curves (on log− log scales) for the computed
SMDs from five robust estimators and cMahal using two different DSFs: the
first 10 principal components from rPCA (right) and PCA (left).

Figure 5.17. NSim-4DOFNonLin: SMDs computed using the robust and non-robust
estimators. Three vertical lines are different thresholds set on the α
confidence interval: MC threshold (γmc

α ), on log-normal (γkMRCD,α) and on
the χ2 distribution with p DOF (χ2

p,α).
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5.6.4 LA-4DOF dataset

In LA-4DOF dataset the impact-based DSFs are used, i.e. for each nth segment (of time
interval equal to 8 seconds) as the kurtosis values of each decomposed IMF from an adap-
tive decomposition technique, such as VMD. These kurtosis values were then filtered using
the MED technique, as it is discussed in Chapter 4. Although the details of the analysis
are not presented here (for clarity), it was found that the SMDs calculated using DSFs
from SVMD produced the most satisfactory results, in terms of DI (AROC). Therefore, and
unless otherwise specified, the IMFs used to compute the impact-based DSFs are derived
using the SVMD method.
In Figure 5.18 the impact of specifying the correct α value is again examined on the DD
plots. These plots are the SMDs of the five robust estimators against the SMD from the
sample covariance and mean. The most important information that can be gained from
these plots is that they highlight deviation from the MLE estimates (sample mean and
covariance). Where the distance from the diagonal line may be used as a reference point
for that deviation. As Figure 5.18 shows as α decreases from .75 to ≈ 0.5, more points
deviate from the Gaussian distribution assumption (furthest away from the diagonal). This
is because robust estimators place no assumptions on the estimated outliers x̂o. On the
other hand, the samples that are estimated as inliers x̂i (samples that are below the thresh-
old lines γ) remain close to the diagonal line, especially, for DetMM, DetMCD and FMCD
estimators when α = 0.75. Note that for kMRCD inliers will not generally be expected to
be lying along or close to the diagonal since its estimated inliers are not expected to follow
an elliptical distribution assumption as the other robust estimators do. And for OGK, there
is no change with α, since it does not depend on it.
The comparison in performance, in terms of AROC of the calculated SMDs from all five
robust estimators and the classical Mahalanobis, is shown in Figure 5.19 for two α values.
When α is selected arbitrarily, e.g. α = 0.75, all robust estimators will have better perfor-
mance than using the sample covariance and mean (cMahal). On the other hand, when
α is chosen appropriately to the expected outlier proportion, AROC → 1. As discussed in
NSim-4DOFNonLin dataset, DetMM performs well when its value decreases below the the-
oretical breakdown limit of α∗ (in this dataset α= 0.2).
Figure 5.20 shows the computed SMDs of the five robust estimators with α= 0.51 and their
non-robust equivalent. As the plots show, an MC threshold is most appropriate for the
robust estimators¶. For kMRCD its threshold has been calculated differently, as mentioned

¶An MC threshold is computed using the dimensions of the training matrix, so that it is parameterised
for the given dataset, instead of using a fixed threshold on the χ2. Also, since the extreme values are
computed using the robust estimates, it is also parameterised to fit each robust estimator.
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Figure 5.18. LA-4DOF: DD plots (on log-scales) of the SMDs computed from the five
robust estimators on two α values. The detected outliers x̂o and inliers x̂i,
are shown as the points above and below the threshold lines, respectively.
The diagonal line shift (with respect to the 45 degrees angle) shows deviation
from the Gaussian distribution.

Figure 5.19. LA-4DOF: ROC curves (on log− log scales) for the computed SMDs from
five robust estimators on two different α values and cMahal. DetMM is
showing considerable performance improvement when α < 0.5. Impact-based
DSFs (kurtosis) are used.
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Figure 5.20. LA-4DOF: SMDs computed from five robust estimators and sample
covariance and mean values. Four different thresholds. Three on α confidence
interval: MC threshold (γmc

α ), on log-normal (γkMRCD,α) and on the χ2

distribution with p DOF (χ2
p,α). One on the χ2 distribution with 99%

confidence interval: χ2
p,99%.

previously. As expected the 99% threshold from the χ2 distribution is more conservative
than the one computed with α = 51%. Note that, like the χ2-based threshold, the MC
threshold also implies that the estimated inlying samples are drawn from a Gaussian dis-
tribution. However, since the extreme values are computed using the robust estimators,
its value is different for each one, i.e. more suitable for each one, too. As the outlier map
in Figure 5.21 shows, samples representing the damaged state may be classified as bad
leverage points (using this set of imapct-based DSFs). These points are expected to have
significant influence on non-robust estimators, e.g. PCA, skewing the estimates towards
their directions. Therefore, utilising a robust estimator, e.g. rPCA has the potential to
minimize their influence on these estimates.
As it was shown previously in NSim-4DOFNonLin dataset, PSD amplitudes provide an op-
portunity to explore further methods towards achieving accurate and reliable DI. For that
purpose, the first 10 rPCA components of the PSD amplitudes were also used as DSFs.
For visualisation, the PSD amplitudes were shown in the previous chapter in Figure 4.6.
However, a segment time interval of 8 seconds (instead of 2.5 seconds - as in Figure 4.6)
provided better (more than 3 times) frequency resolution, producing 333 amplitudes. A
band-pass filter was applied between 20 and 100 Hz so that EOV influence was also present
in the data. Note that its NFs are ≈ {30.5,53.7,70.8}Hz and that damage is most profound
above ≈ 80 Hz (see Figure 3.6).
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Figure 5.21. LA-4DOF: on the top right: the rPCA outlier map (on a log scale), on the
bottom right: the impact-based DSFs (kurtosis) and on the left: the rPCA
score plot - first two principal components.

Figure 5.22. LA-4DOF: NLTS fitted line ŷ with A= 2 and α= 0.51. Showing also actual
inlier samples x and estimated outliers xo(γuv), which were computed using
the default-univariate threshold. Each time series is one of the 10 principal
components of rPCA, obtained from PSD amplitudes.
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Figure 5.23. LA-4DOF: using as DSFs the first two rPCA components. On the top plot,
the samples are z-score normalised, while at the bottom the same samples are
robust z-score normalised. Ellipses on the χ2 distribution from DetMM and
the sample covariance and mean are overlapped.

In Figure 5.22 10 NLTS time series models are shown as quadratic univariate regression
models (A = 2). Each model is fitted on the first 10 rPCA components, while they have
all been robust z-score normalised. As seen in Feature 1, the samples representing damage
have been isolated from undamaged samples having significant EOV influence. Therefore,
utilising a simple model, e.g. A = 2, it is possible to reliably identify damage at an early
stage.
Note that, using a different scale, in this case a robust z-score has been critical in isolating
damage samples in a single feature with rPCA. In particular, subtracting the median and
dividing by the MAD scale in each of the 10 columns of the DSFs matrix, has amplified the
samples (the rows of the DSFs matrix) where amplitude is high. On the left of Figure 5.23,
the first two DSFs (Feature 1 and 2) are shown with a z-score scale. On the right, these two
DSFs are normalised using a robust z-score. As it was seen in Figure 5.22, the amplitude of
the samples representing damage in Feature 1 are much larger than the rest of the samples.
As such, on the right plot they lie far from the rest (the undamaged samples). DetMM
forms a tight ellipse around the undamaged samples, while cMahal is "expanded" towards
the "damaged" samples.

5.6.5 WT-REB dataset

As in the LA-4DOF dataset, impact-based DSFs (kurtosis) using the IMFs from the SVMD
method were used for DI. The SVMD was, once more, chosen on the basis of the AROC

metric by direct comparison with the rest of the adaptive decomposition methods. As
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Figure 5.24. WT-REB: squared Mahalanobis distances (on log-scale) from five robust
estimators using α= 0.51, apart from DetMM whose α= 0.2. The first
sample from each level of damage is shown by the vertical line, while the
horizontal lines are the thresholds. For comparison the Mahalanobis distances
(on log-scale) using the sample mean and covariance are shown (d2

msd).

Figure 5.24 shows, DetMM estimator identifies damage as early as level 1 (sample no 160),
which could not be achieved using the EA method. In particular, as it was demonstrated
previously in Chapter 4 and seen also in Figure 3.10, the loading condition results in both
a shift and an amplitude decrease of BPFO and its harmonics. This in turn, reduces the
diagnostic capability of EA dramatically. Using these impact-based DSFs, however, the
loading condition has negligible effect from damage level 2 and onwards (sample no. 320−),
where damage signals are rather significant at BPFO. On the other hand, the weaker damage
signal of damage level 1, decreases to the noise floor when the load increases (or equivalently,
is being masked by EOV influence).
Note that the particular performance of the DetMM is attributed to the fact that it is
possible to reduce α → 0, as discussed previously. In this dataset, where the number of
outliers far exceed the number of inliers, i.e. outlier percentage is ≈ 83%, a method like
the DetMM makes it possible to perform DI more robustly than the rest of the methods.
The formulation of DetMM is not based on the estimation of the determinant of a subset of
the samples. But rather, DetMM uses loss functions that allow the outlier fraction to fall
below 50% without any issues, e.g. the determinant becoming zero (see also AppendixC).
Additionally, techniques like kMRCD also performed well in this dataset, owing to its non-
ellipsoidal shape assumption for the inliers.
The rPCA outlier map and score plot (of the first two principal components) for this dataset
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Figure 5.25. WT-REB: on the left: the rPCA score plot - first two principal components.
On the top right: the rPCA outlier map (on a log scale), on the bottom
right: the impact-based DSFs (kurtosis).

(Figure 5.25), reveals that damage levels 4,5 are further away from the other 3 damage levels
and the undamaged system state. As the outlier map shows, these final two damage levels
may be classified as bad leverage points. At the same time, regular points are damage
levels 1 and 2, along with the undamaged state, while part of damage level 3 is classified
as good leverage points and the rest as regular points. Therefore, when damage occurs,
the first two levels of damage will lie very close to the undamaged state (and may not be
identified easily). The samples at the next damage level will then proceed to become good
leverage points (with minimal influence on non-robust estimators) and finally end-up as a
bad leverage points (with significant influence on non-robust estimators).
In line with the above observations, using only two out of the three impact-based DSFs, it is
possible to visualise some of the workings of robust estimators, in Figure 5.26. In particular,
given the flexibility of the kMRCD technique, it is able to define a decision boundary such
that damage level 3 is detected reliably. On the other hand, the χ2 ellipse defined by a
method that assumes a unimodal elliptical distribution for the inliers, e.g. the FMCD will
consider a large proportion of damage level 3 as inliers. On the right plot, clustering analysis
using tclust technique (applied on all three DSFs) shows that the undamaged state and the
first two damage levels may be considered as coming from the same cluster x̂o. On the
other hand, damage level 3 and 4 form their own cluster, i.e. Cluster 1, while Cluster 2 is
comprised of damage level 5 and a small fraction of damage level 4. This is similar to the
outlier map, which showed that the undamaged state and the first two damage levels were
classified as regular points, while the rest were classified as outliers.
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Figure 5.26. WT-REB: on top left: the χ2 ellipse computed from FMCD method and the
SMD contours computed using kMRCD, both with α= 0.51. Bottom plots
are the SMDs computed on the same two features using kMRCD and FMCD
estimators, with the threshold set on the χ2 distribution with confidence
interval on α. On the right, the cluster assignments (K = 2) computed from
tclust algorithm on the full 3D feature space of impact-based DSFs. The 2D
plots are the first two impact-based DSFs.

5.6.6 Z24 dataset

The four NFs of the Z24 dataset are used for DI without any further processing, e.g. filter-
ing operations with a deconvolution technique like MED. Given that this is a dataset from
a field experiment it is interesting to explore EOV influence and damage as they influence
its first four NFs. The rPCA outlier map in Figure 5.27 shows the fact that samples rep-
resenting the undamaged state with significant EOV influence, i.e. when T ≤ 0, will have
the greatest influence on non-robust estimates. Therefore, any estimates will be skewed
towards them, thus, masking samples representing damage that are orthogonal outliers and
their influence will not be as significant. As the rPCA score plot shows on the first two
principal components, the undamaged state is sparser than the other two states. Hence,
techniques that rely on sparseness properties for the outlying samples will, in most part,
detect outliers as points from the undamaged state with T ≤ 0. As the outlier scores of the
iForest algorithm show in Figure 5.28, when T ≤ 0 their value increases considerably, i.e.
greater than samples representing damage.
Figure 5.29 shows (on NF 2 and 3) the results from the clustering analysis that was carried
out on all four NFs. The purpose of clustering analysis is to determine how samples from
the different system states can be grouped together. Cluster 2 comprises mostly of samples
representing damage, while the outlying samples x̂o are mostly samples representing the
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Figure 5.27. Z24: on the left: the rPCA score plot - first two principal components. On
the top right: the rPCA outlier map (on a log scale), on the bottom right:
the four NFs.

Figure 5.28. Z24: iForest outlier scores on Z24 dataset. Vertical line is the first sample of
damage. Horizontal line is the threshold.
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Figure 5.29. Z24: On the right are the clustering results using tclust algorithm (K = 2),
while on the left are the labelled samples shown on the second and third NFs.

undamaged state, having significant EOV influence. Hence, in line with the previous ob-
servation made: most methods consider EOV influence samples as outliers. As it is shown
also in clustering analysis, these samples do not seem to be members of a single cluster as
they exist in lower-density regions in this four-dimensional space of features. Therefore,
they are shared between different clusters: in this case x̂o and Cluster 1 has samples from
the undamaged state when EOV influence is significant T ≤ 0.

5.6.7 TS-SAF & TF-SAF datasets

In these two datasets: TS-SAF and TF-SAF a number of alternative fuel mixtures and AFRs
were tested on two different engines, as described in Chapter 3. The purpose is to identify
operating conditions in which engine performance, in terms of vibration characteristics, has
shown significant deviation from the rest (or the majority conditions). In both datasets,
the global-based MD2 DSFs were calculated on each nth segment of the acceleration data
gathered from a single sensor. Note that the segment time interval for TF-SAF has remained
unchanged from the previous results that were presented in Chapter 4, which is 2 seconds.
While, the segment time interval for TS-SAF has decreased to 0.5 seconds, which increased
the number of samples N by 4 times. This was deemed necessary if we were to draw some
inferences from this dataset, e.g. identify groups.
Figure 5.30 shows the clusters that were identified using the tclust algorithm, with K = 1
and α = 0.75 (on a plot with the first two DSFs from MD2 - x1 and x2). The outlying
cluster x̂o comprises of samples representing SAF @ AFR 1. The next set of results, in
Figure 5.31 show the identification of outliers using the first two rPCA components (for
visualisation purposes). On the plot at the top, the sample covariance matrix is expanded
towards SAF @ AFR 1 samples. On the plot in the middle, FMCD (α= 0.75) identifies as
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Figure 5.30. TS-SAF: On the right are the clustering results using tclust algorithm
(K = 1), while on the left are the labelled samples shown on the first two
features from the MD2 DSFs matrix.

Figure 5.31. TS-SAF: On the left are the SMDs computed using kMRCD, FMCD and
cMahal methods on the first two rPCA components. Vertical lines are the
thresholds. On the right are the corresponding χ2-based ellipses and SMDs
contours (for kMRCD) on the same rPCA components.
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Figure 5.32. TF-SAF: on the left are the first two rPCA components of the MD2 DSFs
matrix. On the top right are the SMDs contours computed by the KMRCD
method with α= 0.75. And on the bottom right are the clustering analysis
results computed from the tclust algorithm with K = 1 and α= 0.75.

outliers the same condition as the tclust algorithm, i.e. SAF @ AFR 1. On the other hand,
kMRCD (α = 0.75) encompasses in its 2D rPCA space all conditions apart from Jet-A @
AFR 2. Therefore, these two robust estimators are in disagreement, with regards to the
inlying samples. Note that both SAF @ AFR 1 and Jet-A @ AFR 2 samples, may be
considered as deviant conditions as they are far away from the most central part of the
data. Nevertheless, given that tclust operates in the full dimensional feature space of MD2,
it is more justifiable to classify SAF @ AFR 1 as the outlier / damage engine state.
Clustering analysis with K = 1 was also performed on the TF-SAF dataset, and the results
are shown in Figure 5.32. Also, in the same figure the contours of the computed SMDs
from kMRCD are shown, while α = 0.75 is used for both techniques. The most important
finding in this dataset is that the samples representing Jet-A @ AFR 2 are very distinct (in
the sense of both clustering analysis and kMRCD) from the rest‖. Additionally, the engine
condition SAF 5, which is an alternative fuel mixture from a sustainable source, was also
found to be an outlier in this dataset.

‖Note that without further details on the dataset, e.g. fuel mixture compositions and actual AFR values,
it has been impossible to draw further inferences from TF-SAF and TS-SAF datasets.
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Figure 5.33. AROC metric as calculated on four different datasets for: five robust
estimators of scatter and location, the classical Mahalanobis distance, ocSVM
and iForest.

5.7 Summary

The results from inclusive outlier analysis were presented and analysed in this chapter. As
each dataset represents a different problem overall, having certain distinct characteristics
(e.g. high-dimensionality and specific set of DSFs), the analysis presented for each one
varied. It should be noted that the AROC of robust estimators of scatter and location, was
overall higher on most of the datasets. The AROC metric is shown in Figure 5.33 for the
following datasets and associated DSFs: impact-based DSFs for WT-REB and LA-4DOF,
global-based DSFs for TF-LBO, while for NSim-4DOFNonLin the first 10 rPCA components
are used. Some general findings from this chapter can be made as follows:

• For all the aforementioned case studies and methods analysed in this chapter, among
the most critical factors for improving DI performance, has been undoubtedly the
choice of DSFs including feature normalisation and dimensionality reduction. With
regards to the latter, it has been demonstrated that non-robust estimators like PCA
are susceptible to outlier influence, i.e. masking and swamping effects. Such outliers
may be samples representing the undamaged state at T ≤ 0, where significant EOV
influence on the system dynamics has been observed. These outliers will mask samples
representing damage, since the latter are generally of weaker amplitude;

• With regards to the WT-REB dataset, although the choice of DSFs considerably
improved DI performance, there have been two main challenges that needed to be
overcome: 1. the under-representation of the undamaged state, and 2. the four
different loading conditions that had a profound influence on the signals. These chal-
lenges, were mostly overcome, using a high-breakdown estimator like the DetMM with
α ≈ 0.2. As it was shown, identification of damage level 1 was possible, something
that has not been achieved using the benchmark EA method. At the same time, from
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damage level 2 and onwards the outliers are all correctly identified, with minimal in-
fluence from the loading condition. In general, DetMM with α < 0.5 may be used in
such cases where the outlier fraction is greater than the inlier one;

• For robust estimators of scale and location, the parameter value α has been shown to
be particularly influential for their definition of the correct inlier region;

• Using a robust subspace method, like rPCA, it has been possible to isolate damage
on a few principal components;

• The computation of SMDs using a kernel matrix, as it is done with the kMRCD
method, has been proven particularly helpful in cases where the decision boundary
couldn’t be established by a single ellipsoidal shape;

• A threshold value on χ2 distribution with a confidence interval equal to the α value
has been shown to be particularly suitable. Also, an MC threshold based on α was
shown to be appropriate in most of the datasets;

• The fitted NLTS models considered were mostly simple quadratic regression models,
where each one was fitted on a single rPCA component. Damage was then identified
on the component that showed most sensitivity to damage (and immunity to EOV
influence) - exceeding the 97.5% confidence interval of the fitted line;

• The tclust algorithm has been shown to be suitable for DI in problems where the
dimensionality of the dataset exceeds two features. Additionally, when K > 1 suitable
clusters may also be determined from the samples.
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Chapter 6

Novelty detection and robust
pre-processing

6.1 Overview of novelty detection and its applications for DI

In the previous chapter (Chapter 5), the identification of outliers (or damage) has been
performed inclusively, i.e. as samples that deviate from the majority. This led to the un-
supervised learning framework for DI, whereby there has been no pre-defined undamaged
class samples.
In this chapter, the problem of DI is conducted as a semi-supervised learning framework,
where samples are available (and known) a priori, from a system in its undamaged state.
The task for this kind of problems, is essentially the estimation of the data distribution
through the extracted features for that class only. Subsequently, this leads to the forma-
tion of the decision boundary. Samples that lie outside the decision boundary are outliers:
ideally those will be the damaged samples only.
The field of ND [145] is well-studied and has been applied in SHM widely using the SPR
paradigm [67], as outlined in Chapter 1. In ND, a statistical model is developed from sam-
ples obtained when the system is in its "normal" or "undamaged" state. This is also called
the model of normality, and in order to develop such model the undamaged state may be
well-defined in the dataset, i.e. samples must be in abundance (see Appendix C). In con-
trast, samples from the damaged state are generally rare, and in the SHM & CM contexts
are typically not available: hence the importance of ND. It should be noted, however, that
fitting a specific kind of model assumption to the undamaged samples, e.g. a Gaussian
distribution, may be proven problematic / unrealistic [169].
In the literature of SHM & CM there have been numerous examples of utilising a wide
range of methods for ND. A basic overview of ND and some details regarding the methods
commonly used is provided in Appendix C. For instance [188], the authors used transmis-
sibility ratios from acceleration responses as features to detect damage. For modelling the
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undamaged system state, the authors used KDE and auto-associate Neural Networks (for
comparison). In [188] and [170], extreme value statistics were employed to model the tails
using one of the three theoretical distributions. Instead of assuming the whole undamaged
state samples arise from a Gaussian, it has been shown that modelling only the tails pro-
vided much more accurate thresholds. This methodology was employed on a system that is
initially linear in its undamaged state and transitions to non-linear in this damaged state,
at a given operational and environmental load condition. More recently, in [83] the authors
presented a neural network-based model, which was trained to estimate the relationship
between system NFs from the undamaged state and air temperature variation. The latter,
were the inputs to the model. This provided a way to mitigate the influence of EOV on the
vibration responses. On the other hand, in [73] assumed no such knowledge/information
from EOV. A model of normality was developed using only the NFs from the Z24 dataset
when the bridge was in its undamaged state. The model of normality was a mixture of
Gaussian distributions, whereby it provided the clusters for each undamaged system state
(high EOV influence, low EOV influence, etc.). For DI the SMDs of a test set were com-
puted utilising the developed clusters.
Apart from SHM studies, the ND framework has been used for a wide range of other prob-
lems of engineering nature, for instance, in CM for GT engines. In [86], the authors used
data from vibrations to train an ocSVM model using the vibration tracked orders. Also,
in [46] the ocSVM model was used to detect the impending combustion instability in an
industrial combustor using pressure measurements and high-speed imaging as input DSFs.
These methodologies were extended in a later paper by the same author in [47] to calibrate
the novelty scores of the ocSVM into conditional probabilities.

As it was observed in the preceding chapters of this thesis, EOV influence, e.g. the influence
of NFs from air temperature changes in the Z24 dataset, poses challenges for reliable DI. As
it has been proven already, a suitable set of DSFs, e.g. impact-based DSFs, can provide a
significant increase in reliability for DI. This is due to the fact that the monitoring system
becomes less influenced by EOV influence, while it is more sensitive to the damage type.
However, the wide applicability and computation of certain DSFs, like NFs, makes it neces-
sary to seek ways to improve DI reliability in different ways. As it was mentioned previously
in one of the papers [83]: to model the NFs responses as a function of EOV changes. In
some cases, this may be impractical since it will require a range of sensors to be installed
to measure several (not only temperature) sources of possible EOV influence. Also, this
requires long-term monitoring of a system, to collect significant trends. In this chapter, a
different approach is proposed that utilise robust statistical methods as pre-processors to
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the ND problem.
In summary, the main task in ND is to infer the model of normality L(θ) using avail-
able samples from the undamaged state, i.e. [xn ∈ Rp;n = 1, ...,Ntrain], where θ are its
hyper-parameters. Novelty (or outlier) scores z(x∗) are then computed on test data in-
stances [x∗

i ∈ Rp; i= 1, ...,Ntest]. Note that n is the segment number as it was presented in
Chapter 4.

6.2 Robust pre-processing

This chapter proposes to apply two of the methods that were used in Chapter 5: tclust and
NLTS, for the purpose of robust pre-processing samples from the undamaged system state.
In particular, the main objectives of this chapter can be summarised in the following three
points:

• Reduce the effects of EOV on the derived DSFs that represent the undamaged state,
by removing any points that are outlying in the training set. In that way, it is expected
that the "clean" training set will represent the undamaged state more effectively than
the one contaminated with outliers / EOV influence;

• In a multivariate scenario, both tclust and NLTS, avoid the use of the single (elliptical)
distribution assumption as other methods do, e.g. FMCD and OGK. This is beneficial
since it enables the definition of a multimodal decision boundary for the training set.
For tclust, a number of K clusters will be defined and for NLTS the outlier removal
is done on each pth dimension separately. Note that the elliptical distribution, albeit
a multi-modal one, for the robust pre-processed samples in the training set still holds
true;

• As the definition of outliers is different for NLTS and tclust, the performance of using
these two methods to obtain a training set of observations that is "outlier-free" or "free
from EOV influence" will also be assessed.

Specifically, both ocSVM (with RBF kernel) and iForest algorithms will be trained from
samples that are found to be inliers according to either tclust or NLTS. Each combination
of methods will then be compared to the case when all available samples (i.e. including
EOV influence) are used for training. Additionally, a Gaussian Mixture Model (GMM) is
used as an alternative method, providing also a probabilistic treatment of the ND problem.
A GMM has been used widely for ND tasks [145], and will also be used alongside tclust
and NLTS. Some basic theory of the GMM is provided below.
The primary way to examine the feasibility of robust pre-processing techniques, in terms
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of improving ND, is through the use of AROC metric. This is due to the fact that this
metric is not dependent on a fixed threshold, which means that an overall assessment of the
separability (obtained from each method) between undamaged and damaged health states
can be carried out. A percentage change of the AROC curve from the reference case study,
i.e. the one with no pre-processing applied, is mainly used to test this feasibility.

6.3 Novelty detection algorithms

6.3.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) belongs to the probabilistic approaches for ND (see
Appendix C for the classification of methods). Unlike methods such as KDE, a GMM
is parametric, in the sense that it assumes that the model of normality, is generated by
a mixture of Gaussian distributions. This Gaussian mixture has a set of parameters θ =
θ1, ...,θK , where θk = [µk,Σk], i.e. the kth multivariate mean and covariance, that need to be
estimated from training samples. Note that K is the total number of Gaussian distributions
in the mixture.
More formally, given a set of p-dimensional samples xi, a GMM is defined as a linear
combination of the mixture component weights πk (∑K

k=1πk = 1) and a p-variate Gaussian
probability density function,

p(xi) =
K∑

k=1
πkp(xi |θk) (6.1)

Assuming i.i.d conditions hold, the likelihood function of all i= 1, ..., I observations is,

p(x) =
I∏

i=1

K∑
k=1

πkp(xi |θk) (6.2)

To solve Equation 6.2 the EM algorithm is used [30]. In short, the EM algorithm is an
iterative procedure for computing, relatively efficiently, the MLE for θ, given a known
number of K Gaussian densities.
Following the EM procedure, the optimal likelihoods of each kth Gaussian density, given
all the Ntrain samples in xn, are obtained. Hence, given all K likelihoods and K weights
πk, the unconditional probability of observing a data point drawn from the testing set x∗

i

(i = 1, ...,Ntest), is given using Equation 6.2 (where θ are now the optimised ones). Note
that p(x) is a density, which may not have a direct probabilistic interpretation for setting
up a threshold. For this reason, a threshold on

∫
p(x)dx (its CDF), is sometimes applied

[145].
For robust pre-processing, the number of Gaussian mixtures K in GMM will be selected to
be equal to the number of clusters in tclust. Additionally, the "full" covariance structure
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parametrisation will be used for each Gaussian mixture, unless otherwise specified. This will
allow more flexibility, e.g. determine interdependencies between each feature pair, albeit
having more parameters θ to optimise.

6.3.2 Isolation Forest

The iForest algorithm that was presented in Chapter 5, worked for unsupervised learning
tasks (see Appendix B for further details on the iForest method). In ND, however, its
implementation will differ, given the fact that there is a separate training and testing phase.
Therefore, in iForest the following methodology is proposed to identify outliers:

• Given Ntrain samples from the training set (undamaged state only), the same proce-
dure that was used in Chapter 5 can also be used in ND to compute the expected
path length E

[
Ĥ(x̃)

]
from an ensemble of D ≈ 1000 iTrees;

• Based on this expected path length, outlier scores from the training set can be calcu-
lated, as in Equation B.8;

• Similarly, given Ntest samples from the testing set, a new expected path length is
calculated and outlier scores are, once more, obtained using Equation B.8;

• The decision as to whether a sample from the testing set is an outlier is based on
the outlier scores computed from the training set. That is, given undamaged state
samples in the training set, a threshold (e.g. 99%) can be set on the maximum
outlier score. However, this approach usually results in a high rate of FN, so that
a threshold can be set on the outlier scores, computed from the training set, which
are three scaled median absolute deviations (MAD) from their median value. Any
outlier scores computed from the testing set that exceed this threshold are classified
as outliers;

6.3.3 One-class Support Vector Machines

As discussed in Chapter 5, ocSVM determines the maximum margin from the origin. The
origin in this case is where the outliers lie, whereas the rest of the feature space belongs to
the inliers. Using the decision function in Equation B.7 an unseen / test sample x∗ may
be classified as inlier or outlier, according to the decision boundary constructed using the
training set. This decision boundary is defined by the training data points that are on the
outer most part in the features space, i.e. they become the training data support or support
vectors. In the current implementation, when an outlier score for a given sample is negative,
this sample will be considered as an outlier, and vice versa. So that, a threshold value of
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0 is applied on the outlier scores of the ocSVM to distinguish between inliers and outliers.
Additionally, since the fraction of damaged state samples are zero in the training set, the
bias term ρ is not shifted, as it was done in inclusive OD in Chapter 5. Note also that, as it
was done in the previous chapter, the parameter γrbf is cross-validated, in terms of AROC

curve, using 15−20% of the training data.

6.4 Results & discussion

In this section, the results of performing ND for DI are presented and discussed. Specifically,
three datasets have been used: Z24, LA-4DOF and NSim-4DOFNonLin datasets, using a
set of DSFs that both damage and EOV influence were apparent. For the Z24, its first four
NFs are used, while for the other two datasets PSD amplitudes were extracted as DSFs.
These PSD amplitudes were in frequency ranges that were affected by EOV and damage.

6.4.1 Z24 dataset

The first dataset that will be used to implement the proposed ND strategy is the Z24 dataset,
as was presented in the previous chapters. To give equal weighting to each feature in the
DSFs matrix (the first four NFs) of the Z24 dataset, each one was normalised according
to the robust z-score method (presented in Chapter 4). The normalised DSFs for this
problem are shown in Figure 6.1. Also, in the same figure, the training and testing sets are
labelled as follows: xtrn is used to compute the model parameters and xtst is used to test
the classification performance, in terms of AROC metric. The results from the three ND
methods using this dataset are: 85% for GMM, 90% for ocSVM and 91% for iForest. In
Appendix D, the outlier scores of these three methods are shown in Figure D.7.

Figure 6.1. Z24: Training and testing sets, xtrn and xtst, respectively. Vertical line is the
first sample of the damage state.

In order to visualise the workings of these methods, two features were purposely selected
from the DSFs matrix: the first and third NFs. Applying NLTS and tclust with α = 0.85,
resulted in the AROC results shown in Figure 6.2. We can observe that all three ND
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techniques can generally improve AROC value for ocSVM as compared to the case where
no robust pre-processing (either NLTS or tclust) was applied, i.e. α = 1. Whereas, for
iForest and GMM the performance remains almost unchanged. Note that, with regards
to the NLTS, a different threshold was applied to the current default one. In the current
default implementation, the threshold is the confidence interval of the predicted fitted line
(see Chapter 5) applied on each of the p features individually (as you will expect from a
univariate method). However, it is necessary to maintain equal number of dimensions in
the DSFs matrix. Therefore, an outlier in one of the dimensions automatically becomes an
outlier in all dimensions, so that all p features share the same outliers (even if in one of
those is an inlier). For that reason, however, this method tends to remove a large proportion
of samples from the training set, and is sometimes unsuitable for problems with a small
number of training samples.

Figure 6.2. Z24: AROC metric for the case where robust pre-processing is applied with
NLTS and tclust with α= 0.85, and compared to the case where no robust
pre-processing is applied α= 1.

The corresponding results of applying tclust with α= 0.85 on the first and third NFs of the
Z24 dataset are shown in Figure 6.3. As can be observed, most of the training samples that
tclust has removed x̂o,trn, are samples with significant EOV influence, i.e. when T ≤ 0.
This result is also shown on a 2D plot in Figure 6.4. However, it was not the removal of
samples from EOV influence that increased the value of AROC , but, rather the removal
of samples around the undamaged state at T > 0. In particular, the samples from the
undamaged (T > 0) that are overlapping with the samples from the damaged state. It can
be shown that this, effectively, yields a more "concentrated" training set xtrn (belonging
to the undamaged state), which is less overlapped with the damaged state. Note that, we
assumed knowledge of the number of clusters for the tclust method, which implies that
the number of clusters selected for GMM is also 2. Also, the support vectors (SVs) of the
ocSVM method are generally selected to be sparse, so that ν = 0.01 for this problem. This
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Figure 6.3. Z24: Training and testing sets, xtrn and xtst, respectively (first and third
NFs). Vertical line is the first sample of the damage state. Outliers removed
from the training set x̂o,trn using tclust are also shown.

is required for preventing overfitting problems, typically associated with drawing complex
decision boundaries in the context of ocSVM.

Figure 6.4. Z24: The corresponding 2D results shown in Figure 6.3 analytically.

The main parameters of this study are also shown in Table 6.1.

6.4.2 LA-4DOF dataset

In this dataset, a time interval of 4 seconds is utilised to segment each acceleration time
series. In each of the 1224 segments extracted, 84 amplitudes from the PSD between 25−130
Hz were taken as DSFs. Within this region, as it was shown in Chapter 3, both damage
and EOV influence are apparent. This resulted in a 1224 × 84 DSFs matrix, where 45%
of those were used for training purposes, since half of the total number of samples (612)

159



Table 6.1. Parameters for ND in Z24 dataset.

Parameter Value/description

Inlier fraction, α 0.85
DSFs robust z-scores of 4 NFs
NLTS parameters A= 2 (the rest are equal to 0)
tclust number of clusters, K 2
ocSVM parameters, ν and γrbf ν = 0.01, γrbf : computed using holdout
xtrn ratio 0.6
GMM number of clusters, K 2

belong to the damaged state∗. Note that, methods such as GMM, with many parameters
to optimise, especially when K > 1, require a large number of samples for training [145].
As it was found out, GMM couldn’t be used in this dataset since the number of samples
available for training was small, with respect to the DSFs matrix dimensionality. The main
parameters used for this study are shown in Table 6.2.

Table 6.2. Parameters for ND in LA-4DOF dataset.

Parameter Value/description

Inlier fraction, α 0.9
DSFs z-scores of 84 PSD amplitudes: 25−130 Hz
NLTS parameters A= 2 (the rest are equal to 0)
tclust number of clusters, K 2
ocSVM parameters, ν and γrbf ν = 0.05, γrbf : computed using holdout
xtrn ratio 0.45

One of the most critical factors in achieving high accuracy in this dataset is the use of an
appropriate feature normalisation method. As it has been discussed in Chapter 4, scaling
the testing set samples with respect to the training set’s standard deviation and mean, is
a common methodology in ND tasks. This has increased the performance (AROC value) of
around .25 to .81 for ocSVM. On the other hand, the corresponding performance of iForest
remains invariant to the choice of feature normalisation, i.e. it has remained .89.
The results from robust pre-processing using NLTS resulted in a significant rejection of
training samples (i.e. the outliers), which has impacted negatively the performance of

∗A further decrease in the segment time interval, e.g. 0.5 seconds, would have resulted in a much higher
number of samples, but, at the expense of very poor frequency resolution.

160



both ocSVM and iForest. Therefore, only the tclust algorithm was used for robust pre-
processing with α = 0.9. This α value was chosen arbitrarily small, to avoid removing a
large percentage of the training samples. The DSFs after tclust was applied on the training
samples are shown in Figure 6.5. The AROC values after applying tclust on the training
data are: .80 for ocSVM and .90 for iForest. Therefore, some marginal improvement for
iForest, while for ocSVM the performance decreased slightly.

Figure 6.5. LA-4DOF: Training and testing sets, xtrn and xtst, respectively (84 PSD
amplitudes)). Vertical line is the first sample of the damage state. Outliers
removed from the training set x̂o,trn using tclust are also shown.

The outlier scores of these two methods are also shown on the top of Figure 6.6, while on
the bottom are the histograms of the training and testing sets, illustrating the placement
of the threshold line. In both of these methods the outlier scores are high (in absolute
terms) for the majority of the samples in the testing set xtst. These are samples that were
predicted as the outliers x̂o (red dots in the outlier score plots). For ocSVM, everything
below 0 is considered an outlier, while for iForest this threshold is set according based on
the deviation from the median of the threshold computed on the training set (as mentioned
above).

6.4.3 NSim-4DOFNonLin dataset

In this dataset, the number of segments was increased to 1391, where the time interval for
each segment is now 2.5 hours. As in LA-4DOF the amplitudes from the PSD were ex-
tracted. In this dataset, however, the amplitudes from the whole Nyquist frequency range
were obtained, which produced a DSFs matrix of 1391 × 230. For visualisation purposes,
PCA was applied and the first two principal components were extracted as features. It has
been observed that, when tclust is applied on this two-dimensional dataset an improvement
in AROC performance could be achieved. The results by using two different values of α for
tclust are shown in Figure 6.7. In comparison to the case where no robust pre-processing
was applied (α= 1), AROC was increased for iForest and GMM when α= 0.9, but, decreased
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Figure 6.6. LA-4DOF: on the top are the outlier scores computed by ocSVM and iForest
algorithms and on the bottom the corresponding histograms on xtrn and xtst

samples, showing also the thresholds applied. Red dots x̂o are the estimated
outliers for each method.

when α= 0.75. However, the opposite happened for ocSVM.
From Figure 6.8, the effect of increasing the value of α on the dataset is clearly shown.
At α= 0.75 value the samples that represent the undamaged state when T ≤ 0 are mostly
eliminated from the training set xtrn. On the other hand, when α = 0.9 only the samples
from the same state that are furthest away from the cluster are removed. In this case, tclust
with K = 1 considers a single cluster of data points to be the undamaged state at T > 0
and all the rest are outliers.
Note that, both ocSVM and iForest could result in very high AROC values using the un-
compressed set of DSFs, i.e. all 230 PSD amplitudes. Note that there is generally not any
indication of damage by looking at the DSFs, as shown in Figure 6.9. However, after dam-
age initiation the outlier scores computed from iForest increase significantly, whereas, they
quickly fall below zero for ocSVM. Note that some marginal improvement in performance
of less than 1% could also be achieved when tclust is applied as robust pre-processor to the
whole (230) PSD features space.

6.5 Summary

To summarize, in this chapter robust pre-processing, was used as a way to define a training
set that is free from EOV influence. This "uncontaminated" training set was expected to
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Figure 6.7. NSim-4DOFNonLin: AROC metric for the case where robust pre-processing is
applied with tclust on α= 0.75 and α= 0.9, and compared to the case where
no robust pre-processing is applied α= 1.

improve the performance of three ND methods: ocSVM, iForest and GMM. Two robust
statistical methods were used: the robust clustering algorithm tclust and the non-linear
version of least trimmed squares NLTS.
Using three different datasets, the following conclusions can be drawn from this analysis:

• When training samples, i.e. from the undamaged state, are overlapping with samples
from damaged state (in the test set), robust pre-processing by means of either tclust
or NLTS can provide a better separation between them. This was observed when
significant EOV influence was present;

• The amount of outlier removal from the training set, as dictated by the specification
of the α value must not be too excessive so as to cause performance reduction, as
observed by decreasing α from 0.9 to 0.75;

• In particular, tclust will remove scattered samples in the feature space that are mostly
samples representing significant EOV influence, which is of particular benefit to SHM
studies;

• Note that, for each ND method (ocSVM, iForest and GMM) the performance varied
with respect to α value chosen, for robust pre-processing;

• Finally, it was observed that tclust requires significant computational resources when
the dimensionality of the problem is high, e.g. greater than a 100, which limits its
applicability slightly.
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Figure 6.8. NSim-4DOFNonLin: Illustration of the outliers removed using two α values:
0.75 and 0.9.
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Figure 6.9. NSim-4DOFNonLin: on the top two plots are the outlier scores computed
using ocSVM and iForest, while in the middle are the corresponding
histograms. On the bottom are the 230 PSD amplitudes used as DSFs.
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Chapter 7

Conclusions

This thesis employed a data-driven approach to the problem of damage identification on
a number of structural health and condition monitoring applications, each one having a
distinct set of characteristics. The main focus of this work is on key areas related to the
development of monitoring frameworks that maximise reliability and accuracy.
First and foremost, data representations or features, were calculated from large volumes
of experimental observations. These features have attractive properties for data-driven
structural health and condition monitoring applications, e.g. immunity of environmental
influence on system dynamics. A number of features were proposed in Chapter 4, and
explored for outlier and novelty detection tasks in Chapters 5 and 6. Secondly, the particular
difficulty and scarcity in obtaining labelled sets of data, i.e. the ground truth, for conducting
a novelty detection task for damage identification, has been approached by an inclusive
outlier detection framework. This has been done with the aid of robust statistical techniques,
which some of them were used to improve novelty detection tasks. This has been done by
defining a training set that is free from outlying samples, which includes environmental
influence.

7.1 Vibration-based features for SHM and CM

In the first part of the thesis, in Chapters 2 and 3, certain data attributes were computed
from large volumes of vibration time-series measurements. These attributes, called damage
sensitive features (DSFs), were classified into: global-based, modal-based and impact-based
DSFs. The latter, being the most "optimal" one for detecting the specific damage mode on
three different datasets: rolling element bearing (WT-REB) outer race fault, four-degree
of freedom numerical simulation (NSim-4DOF) and four-degree of freedom Los Alamos
benchmark study (LA-4DOF). On the other hand, global-based DSFs measure general sys-
tem attributes as: general changes in the vibration signal characteristics. These sets of
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DSFs are typically necessary when no system or damage information is available. On the
other hand, modal-based DSFs are used for benchmarking, as they are the most common
attributes used in SHM applications.
Impact-based DSFs were, mainly, calculated as the kurtosis values (relative entropies were
also explored) of a small subset of decomposed intrinsic mode functions (IMFs). The IMFs
that were selected were those with the highest kurtosis and root-mean-square values. These
IMFs were decomposed using six different adaptive decomposition methods, for comparison
purposes. The final part, after obtaining the kurtosis values of a small segment (a few
seconds of < 10), was to apply a filtering algorithm, i.e. the minimum entropy deconvo-
lution (MED), designed to enhance signal impulses. A particular combination stood-out
as the one that improved the identification of damage: the kurtosis values of a subset of
IMFs decomposed using Successive Variational Mode Decomposition (SVMD). Note that
smoothing-out (using averaging filters) the MED filtered DSFs was necessary due to the
sharp spikes that resulted from its application. The final result was a set of DSFs that was
highly damage sensitive, for instance, could detect an early outer race fault, something that
could not be achieved using other well-known techniques, e.g. envelope analysis (presented
in Chapter 2). The fact that these sets of DSFs could also be applied to a variety of prob-
lems, in which damage manifests itself in the form of impacts, has also been demonstrated
on both the NSim-4DOFNonLin and LA-4DOF datasets.
Global-based DSFs have been used for analysing vibration signals in gas turbine engine
experimental datasets. A particular subset of these DSFs, which are kurtosis-derived ones,
enabled the early detection of engine conditions changes (air-to-fuel ratios and fuel mix-
tures).
Modal-based DSFs (PSD amplitudes), on the other hand, were useful in identifying damage
early, while minimizing influence from changes in environmental and operational conditions.
This is true, when, for instance, in the LA-4DOF dataset, a high-pass filter was applied in or-
der to include only those power spectrum amplitudes on frequencies > 100 Hz. This means
that natural frequencies, which are sensitive to both damage and environmental changes,
are excluded from the analysis. For modal-based DSFs, a system identification procedure
was also investigated, in order to estimate damping ratios and natural frequencies using de-
composed IMFs from adaptive decomposition techniques. In general, these estimates were
both unsatisfactory and relatively insensitive to damage, and so, these particular sets of
DSFs were not used for further analysis.
In general, impact-based DSFs have very low dimensionality (< 5), which makes them a
much more attractive choice, than, for instance, power spectrum amplitudes (> 100). For
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the latter, dimensionality reduction needs to be performed prior to statistical model devel-
opment, e.g. in Gaussian Mixture Models when the number of samples is comparable to
the number of dimensions.

7.2 Robust statistics for damage identification

In the first part of exploring damage identification techniques, inclusive outlier analysis was
presented in Chapter 5. Given the particular difficulty in obtaining labelled datasets in sys-
tems that operate in harsh environments, e.g. gas turbine engines and offshore wind power
plants, conducting inclusive outlier analysis is the only way towards damage identification.
Some of the findings from this methodology, as presented in Chapter 5 are discussed below.
One of the most important aspects of inclusive outlier analysis, was the derivation of a
suitable set of DSFs, which can target the specific type of damage for a given problem (i.e.
impacts in the case studies analysed). This has been proven to be critical for reliable and
robust damage identification.
Apart from the choice of DSFs, in the WT-REB outer race fault dataset, a high-breakdown
robust estimator (DetMM), demonstrated excellent performance in outlier detection. Specif-
ically, as the fraction of damage observations is higher than the undamaged ones in this
dataset, DetMM estimates of robust covariance and multivariate mean were challenging to
obtain. However, by specifying the fraction of inliers around 0.2 in DetMM, it has been
possible to detect the earliest possible damage level. While, for the next levels of dam-
age progression, the influence of the operational loads was, mainly, negligible. Such results,
could not be achieved using other techniques, e.g. the benchmark envelope analysis method.
Using a robust version of PCA, i.e. rPCA, it has been demonstrated that damage may be
isolated from EOV influence in a few principal components. This is an important result
for SHM purposes: it shows that when DSFs are influenced by EOV, such as modal-based
DSFs, a technique like rPCA may be used to improve damage identification. As it was also
demonstrated, in PCA it was not possible to isolate EOV influence or damage in a few
principal components, as it was done in rPCA. This is because when significant EOV influ-
ence is present, PCA will have its principal components in the direction of these samples,
effectively masking samples from damage. This effect was also demonstrated in Chapter 5.
Among the methodologies used, kernel minimum regularised covariance determinant (kM-
RCD), which is the latest advancement of the well-known minimum covariance determinant
(MCD) method, offered consistently good detectability of outliers. This is true given a
radial basis function (RBF) kernel is specified.
It should also be noted that, the fraction of outliers specified for the robust statistical tech-
niques, is of particularly critical importance. Although in most practical cases this will
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certainly be unknown (i.e. the fraction of damaged samples expected), it is anticipated
that the analyst will need to experiment with this parameter in order to better explore the
datasets and draw conclusions from them.

7.3 Diagnosis of outliers in SHM and CM

Apart from its robustness properties, as a dimensionality reduction technique, rPCA enabled
the diagnosis of outliers, as demonstrated on several datasets in Chapter 5. This was
made possible by constructing the outlier map of rPCA, in which the calculated score and
orthogonal distances can be explored (on a 2-D plot). In terms of significant EOV influence
on the system’s dynamics, e.g. when temperature falls below zero degrees Celsius, outlying
observations were seen as having large orthogonal distances for NSim-4DOFNonLin dataset.
On the other hand, for the Z24 dataset, orthogonal outliers were samples from its damaged
state. Generally, it is important to note that the choice of DSFs influenced the outliers
classification. For instance, it has been observed in the LA-4DOF and TF-LBO that when
damage (or significantly different condition in the engine’s case) is very apparent from the
dataset, it will be classified as a bad leverage point.

7.4 Enhancing novelty detection by outlier exclusion

In Chapter 6, two techniques that were presented in the previous chapter, are used as
"robust" pre-processors on DSFs that show influence from EOV. These techniques are the
NLTS and tclust, and are used as outlier-removal tools for obtaining an "outlier-free" training
set using for novelty detection tasks. In particular, it was found that when a moderate
amount of outliers are removed and when those outliers are overlapped with the samples
related to damage, then identification performance increases, albeit by a small percentage.
However, this performance change differs from the technique used for novelty detection
and care should be taken to avoid excessive training samples removal, as this will degrade
performance.

7.5 Future work

Some of the findings and assumptions made in this thesis, can be used to further guide
future research into the development of damage identification frameworks. In particular,
future work may focus on the following:

• The interaction between robust pre-processing methods and other novelty detection
algorithms, including how their parameters (α, γrbf , etc.) can be simultaneously
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optimised to achieve higher AROC values. On this point, more techniques should be
tested, e.g. kMRCD as robust pre-processing;

• The outlier map of rPCA should be further utilised to understand the classification
of condition related to EOV influence and damage. This implies that more datasets
and DSFs should be examined in order to draw valid conclusions regarding the three
possible outlier classifications: orthogonal outliers, bad or good leverage points. Ulti-
mately, this should be used to further develop techniques to understand and mitigate
EOV influence;

• The choice of intrinsic mode functions (IMFs) has been made according to the maxi-
mum root-mean-square and kurtosis values. From the analysis, it was found that the
choice of IMFs (both the number and which ones to use) plays an important role in
enhancing damage sensitivity, and at the same time EOV influence. Further work can
be carried out for a more "informed" or "targetted" decision with regards to which
IMFs are more important for the damage identification task;

• The application of the deconvolution filtering technique, in order to enhance signal
impulsivity, requires the application of a smoothing filter as a final step for spike
removal. In order to improve damage sensitivity, so that any change in the signal
impulsivity is not smoothed out by the smoothing filtering operation, it may be nec-
essary to employ alternatives for signal impulsivity enhancement. Although in this
thesis, many other methods were tested to act as alternatives to MED, e.g. the max-
imum correlated kurtosis deconvolution, their performance was poor as compared to
the MED. A range of other filtering algorithms do exist, albeit there is a need for
setting their parameters correctly;

• As with the filtering procedures, many adaptive decomposition methods have partic-
ularly high sensitivity to the specification of their parameters. In particular, methods
like the adaptive local iterative filtering (ALIF), are not straightforward to tune at
all, and thus, most of the times some of the decomposed IMFs may be redundant
(e.g. mode mixing issues) or being trivial in their values (i.e. close to zero). On the
other hand, methods such as SVMD are more stable and can be tuned much more
easily, i.e. their filtering operation is not as sensitive to their parameter(s). Hence,
more work may be conducted on the outcome of deriving DSFs from methods like
ALIF, in which their parameters have been optimised. This is a difficult endeavour,
however, given that these algorithms have just been developed, there is little or no
guidance as to how to achieve maximal performance and the fact that there might be
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significant characteristic differences between time segments from a monitored system.
The latter, implies that optimal parameters will need to be calculated for each time
segment, which is both impractical and undesirable for monitoring applications, as
it will possibly introduce significant time lag. Note that a time lag in the time-scale
of seconds may not be critical, while a time lag in the time-scale of hours may have
undesirable consequences;

• The unsatisfactory results from the attempt to estimate damping ratios (DRs) and
natural frequencies (NFs) using adaptive decomposition methods, may be caused from
a range of different factors. Apart from the parameters’ tuning that was mentioned
above, the differences in the number of IMFs, have proven to be of critical importance
to the estimation of DRs and NFs. This can be shown by looking at the results in
Chapter 4, in which only the VMD gave satisfactory estimates, since it allows the
user to specify the number of modes. However, the high sensitivity of EOV influence,
coupled with relatively low sensitivity, in these parameters makes them undesirable
as DSFs. Although this is the case, in the NSim-4DOFNonLin dataset results the
estimated DRs look promising enough using VMD, and thus, more research may be
carried out to understand these sets of results resulting from this system identifica-
tion exercise. Note that, an attempt was made to "optimise" the parameters of the
Natural Excitation Technique (NExT) using general purpose optimisation algorithms,
e.g. using particle swarm optimisation. However, as previously mentioned, given the
potential significant characteristic differences between each time segment, this optimi-
sation on one a single segment may yield unsatisfactory results. Therefore, new ways
will need to be proposed towards better system identification using this combination
of techniques;

• In this thesis, a comprehensive set of results was provided for inclusive outlier analysis,
including five different robust multivariate location and scatter estimates, robust time-
series analysis (via NLTS), robust clustering analysis (via tclust) and robust subspace
analysis (via rPCA). In clustering analysis, one may provide a means to construct
classifiers, i.e. by specifying the number of clusters as equal to two. In the ideal case,
cluster 1 will be EOV influence, cluster 2 will be regular observations / undamaged
system system and cluster 0 will be outliers / damage events. Therefore, having
such groupings / labelling multi-class classification could be constructed and further
analysis can be done on unseen data points to demonstrate the validity of such an
approach for damage detection.
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Appendix A

Numerical model for SHM
applications

A.1 A four degree-of-freedom model

A four DOF numerical simulation model is used to investigate SHM methodologies. It
represents a bookshelf-type structure, which is a very common setup in SHM studies. In
a bookshelf-type structure, lateral excitation forces are acting on it, causing it to bend.
Since the structure is in shear, the shear building assumption applies. The dynamics of
such structural arrangement can be conveniently modelled as a lumped mass-spring-damper
system. The main assumptions underlying the model are as follows:

1. No rotation of the floors is allowed. ∗

2. Floors are rigid and at 90 degree angle to the support columns. ∗

3. No mass contribution from support columns, i.e. total mass is concentrated at the
levels of each floor.

4. The base is assumed to be mounted on ball bearings, and thus, it can have different
stiffness and damping coefficient values from the rest of the floors.

5. Equivalent stiffness and damping coefficient values between each of the support columns.

6. Purely lateral excitation force is acting on the system that can be, for instance, Gaus-
sian white noise F1 ∼ N (µF1 , σ

2
F1

). Hence, stationary random excitation input is
assumed (assuming uniform excitation over the whole frequency spectrum).

The schematic diagram of the four DOF lumped mass-spring-damper numerical simulation
model is shown in Figure A.1. Damage can be simulated as a stiffness reduction between
any two given masses.

∗Requirement for shear building model.
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m1(t) m2(t) m3(t) m4(t)

k1(t) k2(t) k3(t) k4(t)

c1 c2 c3 c4

f1(t) x1(t) x2(t) x3(t) x4(t)

Figure A.1. The four DOF numerical model used for generating the simulated data under
different damage scenarios and EOV influence.

In state-space form, the numerical model can be written as:[
ẍ
ẋ

]
=
[
−M−1C −M−1K

I 0

][
ẋ
x

]
+
[
M−1f

0

]
(A.1)

where, M , C, K, are the mass, damping and stiffness matrices, respectively, while f =
{f1,0,0,0} is the force excitation vector. The composition of the state-space matrices allows
the calculation of the natural frequencies ωn (and mode shapes) of the system. And, since
damping is non-zero, the damping ratios ζ and damped natural frequencies ωd can also
be found through the geometric relationships in the complex plane. Analysis using this
numerical simulation model can therefore be performed by using one or more of the system
states, x, ẋ, ẍ in time- and/or in frequency-domain or any of its modal properties.

A.2 The Duffing model

The expression in Equation A.2, can be viewed as a simple mass-spring-damping system
excited by a sinusoidal forcing function and whose spring constant, i.e. k+βx2, varies as a
function of the displacement, x, of the mass,

d2x

dt2
+ c

dx

dt
+(k+βx(t)2)x(t) = γcos(ωt+ϕ) (A.2)

where, γ is the amplitude of the forcing function, c is the energy dissipation constant, β
and k are the restoring force coefficients to the equilibrium position, ω is the frequency of
oscillation and ϕ the phase.
The above expression suggests that the system’s frequency of oscillation will not be a con-
stant one within a single period. In particular, it exhibits amplitude-dependent frequency
of oscillation, since it depends on the input excitation force amplitude. This concept is also
termed as intra-wave frequency modulation [91].
Note that, for a perfectly linear process, β = 0, whereas if β → 0 perturbation methods can
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be performed to linearise the process and provide a sufficient approximation to the physical
characteristics of this system [184]. However, for a highly non-linear generating process,
β ̸= 0, and the system will exhibit non-linear characteristics (especially when β ≫ 0), which
in this case it will be in the form of jump phenomena. That is, as the forcing frequency
ω varies, the system’s amplitude response will reach its bifurcation points†, and a sudden
jump upwards or downwards in its value will take place.
In terms of signal processing, this non-linearity causes several challenges. Let’s assume a
steady-state periodic solution to the 2nd order differential equation, which can be expanded
using a Fourier-series‡ of the form:

x(t) =
∞∑

i=1

[
X̃icos(iωt)+ X́isin(iωt)

]
; (A.3)

Expanding the above up to the first harmonic, and considering only the cosine terms, it
can be shown that a third-order harmonic, i.e. cos(3ωt), appears in the solution:

X̃1ω
2cos(ωt)+ X̃1csin(ωt)+ X̃1kcos(ωt)+ X̃3

1β

[1
4

{3
4cos(ωt)+cos(3ωt)

}]
= γcos(ωt+ϕ)

(A.4)
That is, the cubic restoring force result in cosine waves at integer multiples of the input
frequency ω to appear in the solution. This is referred to as harmonic distortion [81], and
it is a well-known phenomenon in non-linear systems.
The higher-order harmonic terms appearing in the solution, in order to approximate the
non-sinusoidal waveforms, do not provide a physical interpretation of the system. This is
simply because such frequency components are not generated by the physical process, but,
are rather a way to simulate the non-linearities present, which are only valid mathematically.
Obtaining a FT of the above (e.g. PSD or FFT), will yield spectrum with the fundamental
frequency at ω, and many multiples of it.

A.3 The ith modal vibration response from a multi-DOF lin-
ear system

Through modal expansion, a multi-DOF linear system, can be decomposed into M modes
of vibration, where the orthogonality properties of the ith mode shape vector ψi are being
utilised, for the purposes of deriving the decoupled ith free acceleration response of the
generalised modal coordinate qi(t):

qi(t) = F0ψpiωn,i

mi

√
1− ζ2

i

e−ζiωm,itcos(ωd,it+ϕi +π/2) (A.5)

†The point in a bifurcation diagram where system switches from stable to unstable.
‡Admitting a solution of the form of Fourier series expansion allows any signal to be approximated using

orthogonal basis functions and in an infinite number of ways.
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where, F0 is the excitation force applied on the pth DOF, ψpi is the pth element of ψi, ωm,i

is the mth modal NF, ωd,i is the modal damped frequency, ζi is the modal DR, ζi is the
modal mass and θi is the phase lag of the ith mode of vibration. As can be seen from
Equation A.5, each modal response is centred around a specific NF ωm,i.
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Appendix B

Methods & Algorithms

B.1 One-class support vector machines

SVM are also called maximum margin classifiers, because their main purpose is to find a
linear decision hyperplane that maximizes its smallest perpendicular distance to any of the
observations inX, i.e. the margin. Support Vector Machines (SVM) were initially developed
as a binary class classification method, offering the flexibility of an ANN, while overcoming
its pitfalls. Using a kernel function to expand the original data space X into a higher
dimensional feature space F , is related to adding more layers to an ANN. Therefore, an
algorithm can be adapted to match the characteristics of the data, as mentioned previously
in kPCA and kMRCD methods. In ocSVM, a quadratic convex optimisation problem is
solved, which guarantees a global optimal solution to the problem of placing a linear decision
hyperplane, represented with the equation. An attempt will be made to explain the binary
version of SVM, before, proceeding to the ocSVM objective.
As with linear discriminant models, a p− 1 linear decision hyperplane of the form y(xn) =
wT xn +β can be contemplated, such that tny(xn) ≥ 0, ∀n = 1, ...,N , with tn ∈ {−1,1}.
Since, the perpendicular distance of a point xn to the linear decision surface is y(xn)/||w||,
there exists a combination of w and β in which the margin is maximized,

argmax
w,β

{||w||−1 min
n

[tny(xn)]}, ∀n= 1, ...,N (B.1)

The optimisation argument in Equation B.1 can be simplified further by adopting a nor-
malised constraint, tny(xn) ≥ 1, ∀n = 1, ...,N , so that given two points as y(x−) = −1 and
y(x+) = 1,

argmax
w,β

{||w||−1w[ϕ(x+)−ϕ(x−)]}, ∀n= 1, ...,N

∴ argmax
w,β

0.5{||w||−1}
(B.2)

Note that a feature map ϕ(·) can be used as the general case, i.e. where kernel functions
are considered in order to find a linear decision hyperplane in F that separates the two
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classes. Converting Equation B.2 into a quadratic programming optimisation, an equivalent
representation can be given as,

argmin
w,β

0.5{||w||2} (B.3)

Using Lagrange multipliers a, the dual representation of the maximum margin binary clas-
sifier is given in terms of the kernel function between two data points xn,xm k(xn,xm),

L(a) =
n=1∑
N

an −0.5
N∑

n=1

N∑
m=1

anamtntmk(xn,xm) (B.4)

This means that the kernel trick can be applied, which is beneficial in cases where the
feature space is much larger than N . For a new data point x∗, the trained model will
classify it using the following rule: y(x∗) =∑N

n=1antnk(x∗,xn)+β.
An important property of SVM is that they satisfy the Karush-Kuhn-Tucker conditions of
the optimisation problem in Equation B.4 [30]. In brief, for each ith data point has either
ai = 0 or tiy(xi) = 1, which means that points that have ai > 0 will satisfy tiy(xi) = 1, so
these are the support vectors and only these observations are used for classifying new data
points, while the rest are excluded, yielding a sparse representation. Given a set of indices
of the support vectors s= 1, ...,S β can be computed using the constraint tsy(xs) = 1.
However, it cannot be expected that data points in X will all be classified correctly, even
if a kernel function is obtained that finds a non-linear decision boundary to separate them.
Therefore, introducing a penalty term C(> 0) and slack variables ξ(≥ 0) where ξ/||w||
corresponds to the perpendicular distance from the calculated decision boundary (to get
the maximum margin), the primal optimisation problem can be re-written as,

argmin
w,β

0.5{||w||2 +C
N∑

n=1
ξn}

s.t. : tn(wTϕ(xn)+β) ≥ 1− ξn, ∀n=,1...,N
(B.5)

Note that the Lagrange optimisation problem, presented in Equation B.4 is identical to the
separable case, while the constraints slightly different.
The ocSVM formulation by Schölkopf et al. [162], trains a one-class classifier considering
that points in X are all of the same class. In other words, it estimates a decision boundary
using the support vectors from X to define the positive class, while the origin is considered as
the only member of the negative class. Therefore, ocSVM finds the maximum margin from
the origin, which holds true only for an RBF kernel [32]. Let β= 1−ρ, gives wTϕ(x∗)−ρ= 0,
where ρ is the bias term, the primal objective to be solved is,

argmin
w,β

0.5{||w||2 + 1
νN

N∑
n=1

ξn −ρ}

s.t. : tn(wTϕ(xn) ≥ ρ− ξn, ∀n=,1...,N
(B.6)
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where, ν is both an upper bound on the outlier fraction and a lower bound of support
vectors, so that it can be tuned accordingly. The decision of ocSVM for a new data point
x∗ is such that,

y(x∗) = ρ−
N∑

n=1
ank(x∗,xn) (B.7)

Matlab’s built-in implementation fitcsvm.m allows to define the fraction of outliers by mod-
ifying the bias term to exclude the percentage of outlying data points, as specified by the
user.

B.2 Isolation forests

In iForest [114], the aim is to find feature-axes parallel partitions in the data space X to
isolate each observation recursively, from the rest of the data, one at a time. Data are
split using: 1. randomly chosen splitting points in the data space and 2. randomly chosen
features from X. The method is therefore, not dependent on any distance measure nor on
density estimation assumptions for points in G to infer whether observations are outliers
or not (as in ocSVM). Instead, the following two assumptions are (needed) to be made
regarding the observations that are found to be outliers, according to iForest:

• outliers exist in sparse regions in the space of X ;

• and, they are far fewer than the non-outlying observations.

As such, an iForest is one of the simplest methods to implement and to tune and the
least computationally expensive to run, while most of the times works surprisingly well
in practise. The method identifies outliers, as those observations that have the shortest
sequences of data splits in an isolation tree (iTree). For an outlying observation, an iTree’s
branch height will be smaller (i.e. smaller splitting operations), than the height of the rest
of the non-outliers. The branch height of the iTree, is then considered as an outlier score
for the iForest formulation. By isolating its observation from the rest of the data, it means
that an iTree has at most (can be terminated prematurely) N leaf nodes. However, the
outliers are normally found in the first few data splits (or dimensions).
The procedure that each iTree follows is:
For i= 1 to D:

1. Select the pth feature from X, randomly;

2. Sub-sample xp, to get x̃p ∈ Rm<N ;

3. Split the data using random partitioning between the range min(x̃p) and max(x̃p);
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4. Repeat steps 1-3 until all observations are isolated, if an early leaf node termination
is not specified.

In iForest, a multiple number of iTrees are created, say D ≈ 1000, to average out the final
outcome. As the number of created iTrees increases, the prediction outcome, or equivalently,
the averaged iTree height has less variance. Let ĥi(x̃) be the heights of the ith iTree for all
x̃, an outlier score for each data point in X, can be calculated using an ensemble of iTrees,
i.e. E

[
Ĥ(x̃)

]
, with Ĥ(x̃) = ĥi(x̃), ..., ĥD(x̃),

s(X,Ĥ(x̃)) = 2−E[Ĥ(x̃)]
c(N) (B.8)

where, c(N) depends on the data length N . For instance, if s → 1 then indicates outliers
with high probability and when s ≤ 0.5 are considered as non-outlying points. iForest is
implemented as a built-in Matlab function iforest.m. The hyperparameters are: ensemble
size D and sub-sampling size m. A threshold can be set on the expected fraction of outliers
that exist in X.

B.3 Time-varying filtering based EMD

Recall that a B-spline approximation gn
m(t), can be constructed for a signal x(t), given a

knot spacing m and order n through convolution with a pre-filter pn
m whose cut-off frequency

is determined by m:
gn

m(t) = [pn
m ∗x]↓m ∗ bn

m(t) (B.9)

where, bn
m(t) is a post-filter required for approximation reconstruction, after it is being dec-

imated with the pre-filter pn
m by a factor of m. The above is a special type of low-pass

filtering, with a cut-off frequency determined by knot spacing m. Hence, Step 1 of the
procedure is to obtain the knot spacing that can be used to calculate ϕ̇bis(t). This is done
as shown Table B.1.
Note that abrupt changes in the bisecting frequency may result in mode mixing. Therefore,
the authors proposed a realignment algorithm. This algorithm limits the rate of change of
the cut-off frequency within two adjacent maxima by a fixed value. This methodology ap-
plies only for signals that do not possess "strong" frequency modulations, i.e. fast-changing
ones.
After realigning the bisecting frequency, the extrema timings of the oscillation of the instan-
taneous phase of the signal, i.e. cos

[∫
ϕ̇bis(t)dt

]
, where ϕ̇bis(t), are calculated. These are

the knots of the B-spline approximation filter. The next step involves the utilization of the
instantaneous parameters found (see Table B.1), to define the stopping criterion. This de-
termines whether the signal is "sufficiently" narrow-band or needs to be filtered further, and
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Table B.1. Step 1 in TVF-EMD: calculating the local cut-off frequency.

1. Compute IF ϕ(t) and IA |z(t)| using HT.
2. Find the local extrema of |z(t)|.
3. Let z(t) being a signal of two components, i.e. z(t) = α1(t)ejϕ1(t) +α2(t)ejϕ2(t). It

can be shown that, |z(t)|2 =α2
1(t)+α2

2(t)+2α1(t)α2(t)cos[ϕ1(t)−ϕ2(t)] and a similar
expression for ϕ̇(t) = f(ϕ̇1(t), ϕ̇2(t), α̇1(t), α̇2(t),ϕ1(t),ϕ2(t),α1(t),α2(t), |z(t)|2). The
goal is to compute the bisecting frequency between ϕ1(t) and ϕ2(t). Assuming both
a1(t) and a2(t) are locally narrow-band (vary slowly), the local extrema are dictated
(approximately) by the term cos[ϕ1(t)−ϕ2(t)].

4. Compute α1(t), α2(t) and subsequently ϕ̇1(t), ϕ̇2(t) by using the assumption in
Step(3) and an interpolation approximation to simplify things.

5. Then the bisecting frequency is simply the average of ϕ̇1(t) and ϕ̇2(t).

is calculated as the ratio of the Loughlin instantaneous bandwidth [116] and the weighted
IF average, i.e.

ψ(t) =

√
α̇1(t)2+α̇2(t)2

α1(t)2+α2(t)2 + α2
1(t)α2

2(t)(ϕ̇1(t)−ϕ̇2(t))2

(α2
1(t)+α2

2(t))2

α2
1(t)ϕ̇1(t)+α2

2(t)ϕ̇2(t)
α2

1(t)+α2
2(t)

(B.10)

where, the Loughlin bandwidth is in the numerator and the weighted IF average is at the
denominator. It can be observed that as the term |ϕ̇1(t) − ϕ̇2(t)| increases, there will be
greater separation between the two components in the signal. In this case, the Loughlin
bandwidth is greater. This bandwidth measure can be seen as the standard deviation in
the weighted IF average at any given time. In general, the above stopping criterion means
that when ψ(t) decreases, the bandwidth of the signal will decrease, too. Given a threshold
ξ a signal is considered narrow-band (locally) if ψ(t) ≤ ξ.

B.4 M-estimators

This type of estimators are generalisations of the maximum likelihood estimate (MLE).
Therefore, θr,M will be "nearly optimal" for the assumed two-mixture model F , in Equa-
tion 5.2. Let X be iid and F a symmetric and elliptical distribution, then the likelihood
expression may be written as a function hd for computing N multivariate distances,

p(X|θ) = |Σ|−N/2
N∏

n=1
hd((xn −µ)Σ−1(xn −µ)T ) (B.11)

where |Σ| is the determinant of Σ. Differentiating the above expression, with respect to θ,
yields the MLE estimates,

θr,M =
[ ∑N

n=1w1(d2
rmsd)xn /

∑N
n=1w1(d2

rmsd)
1/N∑N

n=1w2(d2
rmsd)(xn −µr,M )(xn −µr,M )T

]
=
[
µr,M

Σr,M

]
(B.12)
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where, w1(d2
rmsd) and w2(d2

rmsd) are functions of the robust distances (using the new esti-
mates (µr,M , Σr,M )), thus, they poses certain robustness properties including a bounded IF.
Typical functions include the Bisquare, as demonstrated on a toy dataset, for a regression
problem, previously.

B.5 Self-adaptive noise cancellation

As part of the EA procedure, a pre-whitening step is usually required in order to remove
periodicities in the signal. One such approach is to apply a self-adaptive noise cancellation
(SANC) procedure [33]. SANC separates two uncorrelated components from a signal, using
another (reference) signal that is related to the corresponding part of the original signal
by a transfer function. As such, the reference signal can be subtracted from the original
signal. This is the basic adaptive noise cancellation procedure. In the case of DI in REBs,
SANC first delays the original signal, where the delay is larger than the correlation length
of the random component of the signal (bearing vibration). Therefore, the transfer function
between the deterministic part of the signal (gears, etc.) and its delayed version is calculated
and then subtracted from the original signal, leaving only the bearing vibration components
and other noise sources.

B.6 Minimum Regularised Covariance Determinant

A short description of the MRCD will be provided, as it established the basis for the
development of the kMRCD, which is described in Chapter 5. In MRCD, the scatter
matrix of an h-subset is a convex combination of scatter and target matrices, given a
scalar parameter. A "...predetermined and well-conditioned symmetric and positive definite"
target matrix T , is combined with a scatter matrix Sh(z) of an h-subset of a robustly
standardised (e.g. subtract median and divide by MAD) dataset zn ∈ RN×p by using a
scalar regularisation parameter ρ to get the regularised scatter,

Σh
reg(z) = ρT +(1−ρ)c1S

h(z), 0 ≤ ρ≤ 1 (B.13)

where, c1 is a consistency scalar constant. Note that for a robustly standardised dataset, T
can be chosen as the identity matrix Ip×p, depending on whether the features in the original
dataset X are correlated. The problem of finding an h-subset, out of all H-subsets, can be
expressed as the following optimisation procedure,

ΣMRCD(z) = argmin
h∈H

{|Σh
reg(z)|} (B.14)

To reach the above objective, C-steps (see Chapter 5 for a description) are being employed.
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B.7 Kernels and the kernel "trick"

The kernel "trick" has been used in Support Vector Machines (SVM), but, the concept has
far reaching potential. This is because whenever a dot product is required to be computed
between two p-dimensional data points, xT

n xm, a kernel can be used to replace it. Given
any xn and xm ∈ X a function k(·, ·) is called a kernel on X such that X → F using a
feature map ϕ,

k(xn,xm) = ϕ(xn)Tϕ(xm) (B.15)

The above computation is being carried out in X and produces a scalar value. That is,
xn and xm are not explicitly transformed in F , in which ϕ(x) ∈ Rd>p. By maintaining the
same complexity as in the original dot product computation, it makes subsequent operations
feasible. This is especially true when d → ∞ using a specific type of kernel called radial
basis function (RBF),

k(xn,xm) = exp(−γrbf ||xn −xm||2) (B.16)

where, γrbf is the kernel bandwidth, which determines the significance in the relationship
between xn and xm. At the two extremes, when k(xn,xm) → 1 means that the two data
points are very similar (i.e. approaching the mean of the Gaussian), while when k(xn,xm) →
0 the two data points are almost unrelated (i.e. at the tails of the Gaussian). For the RBF
kernel, this exponential-type of similarity is given by the Euclidean distance between the
two points, and its importance can be tuned via γrbf , i.e. it is a hyperparameter. By taking
Taylor’s expansion of the term that contains the dot product exp(−2xT

n xm) the RBF kernel
can be shown be equivalent to an infinite sum over polynomial kernels.
Now, given N data points, in the p-dimensional space X , a kernel function with a feature
map ϕ can be used to construct an N ×N kernel matrix Kx,x, which contains all N kernel
calculations for any ϕ(x),

Kx,x =

k(x1,x1) · · · k(x1,xN )
... . . . ...

k(xN ,x1) · · · k(xN ,xN )

≥ 0 (B.17)

The condition Kx,x ≥ 0 is called Mercer’s condition and is a requirement for Kx,x in order
to be a valid kernel matrix, along with the fact that it needs to be a symmetric matrix.
The RBF kernel is considered to be the most important kernel choices, and will be used
throughout the thesis, i.e. whenever a kernel method such as the kMRCD or kPCA is used.
Note that it is usually the case that ∑N

i ϕ(xi) ̸= 0, so that the Gram matrix needs to be
used instead of the kernel matrix, i.e.

K̃x,x = Kx,x −1N Kx,x −Kx,x1N +1N Kx,x1N (B.18)

where, 1N is the N ×N matrix with all elements equal to 1/N .
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B.8 C-steps for robust estimators

C-steps are core components of the FMCD algorithm, and are used to obtain the h samples
with the smallest robust squared distances, and therefore the smallest |ΣMCD |. In summary
the C-steps algorithm of the MCD proceeds as follows,

1. Randomly draw a subset of length p+1

2. Compute multivariate mean and scatter, µ0, Σ0 (if |Σ0 | = 0, add more observations
incrementally).

3. Calculate Mahalanobis distances d2
msd(xn,µ0,Σ0), ∀n= 1, ...,N .

4. Sort observation indices by d2
msd and select the h observations with the smallest value.

5. Using the h observations compute a new multivariate mean and scatter, µ1, Σ1. It is
guaranteed that |Σ1 | ≤ |Σ0 |.

6. Repeat steps 2−5, M times until |ΣM | = |ΣM−1 |
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Appendix C

Robust estimators properties &
the framework of novelty detection

C.1 Properties of robust estimators and robustness criteria

To evaluate the performance of a robust estimator three different criteria are used: the
influence function (IF), maximum bias curve (mbC) and associated breakdown point (α∗),
and statistical efficiency.
The IF is defined as the measure of influence of an infinitesimal amount of contamination
on the robust estimator, as a function of its variation in the feature space. Let θ̂(G) be
an estimated statistic of the probability distribution G, the distortion of θ̂ given slight
deviations from G, as α → 1 (see Equation 5.2, can be computed as the change of θ̂ with
respect to the variation of point x in p-dimensional space,

IF (x; θ̂,G) = lim
α→1

θ̂(αG +(1−α)δx)− θ̂(G)
(1−α) (C.1)

where, δx is the point-mass probability for x. A robust estimator needs to have both a
smooth and bounded IF, in order to ensure the estimate of θ̂ is stable and changes only
slightly with shifts in x. This is also referred to as local shift insensitivity.
Realistically, a proportion of outliers may exist in the data so that α < 1. Hence, the
calculation of the IF is a special case of point-mass contamination. The mbC, on the other
hand, examines the amount of contamination, and more specifically, the worst possible one
for θ̂ at the assumed distribution G,

mbC(α; θ̂,G) = sup
G

||θ̂(αG +(1−α)δx)− θ̂(G)|| (C.2)

where, for a robust estimator mbC is bounded when α< 1. For instance, the OLS regression
(see Figure 5.1) has an unbounded mbC for any α ̸= 1. On the other hand, the univariate
median has a bounded mbC until α = 0.5, where the estimates of θ̂(G) becomes no longer
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valid or it breaks down, i.e. mbC → ∞.
To quantify this limit, the breakdown point α∗ is defined as convenient measure for inves-
tigating different robust estimators. The value of α∗ for the classical Mahalanobis distance
is 0, while the highest possible that can be obtained by any robust estimator is 0.5. For
instance, in calculating the scatter matrix of G, ΣG = (xn −µG)(xn −µG)T , with eigenvalues
λ1 ≥ ...≥ λp, α∗ is defined as the minimum fraction of outliers (m/N) that may cause any
λi → ∞ or its determinant to become 0, i.e. explosion or implosion of ΣG. Based on the
previous mbC definition,

h(θ̂,G) = min
G

{
m/N ;mbC(α; θ̂,G) = ∞

}
(C.3)

The increase in α∗ for an estimator leads to a proportional decrease in statistical efficiency.
Generally, any robust estimator will be less efficient than a standard estimator given the
assumptions of the latter hold true for G. A typical example is the MLE for a Gaussian-
distributed G, which implies the least variance (or uncertainty) than any other estimator.
On the other extreme of the spectrum, the univariate median has the highest α∗ possible,
while when compared to the standard mean, its efficiency is much less, given that G is
elliptically and symmetrically distributed.
Important properties of robust estimators include affine equivariance. This is usually an
important consideration for multivariate analysis (i.e. where each column of X is related),
since the data matrix X may be subjected to linear transformations, e.g. rescaling and
rotations. Given a p× p nonsingular matrix A and a vector b of length p, so that X =
xn(n= 1, ...,N) is linearly transformed as Axn +b, a robust estimator is affine equivariant
if and only if the following two expressions hold true,

µ(Axn +b) =Aµ(xn)+ b

Σ(Axn +b) =AΣ(xn)AT
(C.4)

The above ensures that the robust multivariate distance equivalence of the Mahalanobis,
i.e. the robust distance measure, d2

rmsd = (xn −µr)Σ−1
r (xn −µr)T , where µr and Σr were

calculated using a robust estimator, is affine invariant. This implies that the outlyingness of
xn from G, will not be influenced by linear transformations of the matrix columns/features.
In contrary, methods, including PCA and Deep Neural Networks (DNN), are not affine
equivariant and thus, it is common practise to run the analysis multiple times, using different
linear transformations, to investigate the sensitivity of the results.

C.2 An overview of novelty detection

Many applications ranging from medical diagnostics to system network intrusion, have ben-
efited greatly from novelty detection, in terms of improving their safety and reliability. A
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relatively recent review paper [145] classifies all available novelty detection techniques into
five categories, as summarised in Table C.1.

Table C.1. The five types of novelty detection.

Class Brief description
Probabilistic Density estimates of the undamaged condition; defining a

novelty threshold at low density regions.
Distance-based Analysis of clusters of data by assuming that the undam-

aged condition is tightly concentrated in space and that the
opposite class is far from its nearest neighbours.

Reconstruction-based Measures the distance between an unseen data point and
the output of a model trained using undamaged class.

Domain-based Calculates the location of the boundary that describe class
data in the feature space, without making assumptions
about their distribution a priori.

Information content-based The information content, e.g. entropy, of the data provides a
measure of uncertainty. This measure will drop significantly
if an unseen data point from class A is removed from the
data set.

In machine learning an unknown function f(x) is to be approximated by learning certain
patterns from a training data set {(xn,yn) ;n= 1, ...,N}. In the general case, each xn is a
d-dimensional vector, while a label yn is the target variable. In SHM and CM, xn are plen-
tiful, whereas the system’s health state, i.e. yn is not. This is an inverse problem, in which
we are working from the output to find an approximation for the underlying generating
mechanism behind it. The schematic diagram in Figure C.1, illustrates the components of
a generic machine learning procedure [17].
In the most ideal of cases, a small fraction of training data are provided with their corre-
sponding labels from the system’s undamaged state, i.e. one-class classification problems.
The hypothesis set, H, contains several candidate formulas, h ∈ H, that are chosen by the
learning algorithm, C, to best represent the training data. From every possible candidate
formula, h(x), the learning algorithm chooses the one that closely approximates f(x). This
is the final hypothesis function, g(x), that will closely approximate the unknown function, if
most of the data patterns are successfully identified. The goal is to get the final hypothesis
function, so that accurate predictions for any unseen observation x∗ can be made. The
hypothesis set, H, and learning algorithm, C, comprise the learning model L.
The simplest hypothesis set that one can consider is the perceptron. The perceptron can
be used for classification tasks when the training data are linearly separable. For reference
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Learning model ℒ

Unknown function 𝑓(𝒙)

Training data 
(𝒙1, 𝑦1), … , (𝒙𝑁, 𝑦𝑁)

Learning 
algorithm 

𝒞

Hypothesis set 
ℋ

Final hypothesis 
𝑔(𝒙) ≈ 𝑓(𝒙)

Figure C.1. Machine learning general framework diagram.

purposes, a short description of the perceptron will be presented at this point. Consider
a D-dimensional training data matrix X = [x1, ...,xN ], where each row contains an exper-
imental observation, and its corresponding labels vector y = [y1, ...,yN ]. This data set can
be used to train the perceptron to obtain an accurate hypothesis function. A candidate
hypothesis of the perceptron for the N th data point, xN , is given as:

h(xN ) = sgn(wT xN −β) (C.5)

where, β is a bias term and w is a D-dimensional weight vector. The above equation implies
that the hypothesis for xN will take the following values:

h(xN ) =
{

+1, if wT xN −β ≥ 0
−1, if wT xN −β < 0

(C.6)

It is possible at this stage that the initial guess of both β and w will classify wrongly the
observations, i.e. sgn(wT xN −β) ̸= yN . For that reason, β and w are updated (using a
learning strategy C) until all points are classified correctly (as they are linearly separable).
This is the simplest example of classification. More advanced methods, such as support
vector machines (SVM), can be used to classify non linearly separable data by finding the
maximum in-between separation boundary, as described in Chapter 2. In the case of SVM ,
H, consists of a set of non-linear candidate formulas that are selected by its accompanied,
C, which is a quadratic program (QP ).
The machine learning procedure that is followed to estimate g is called the training phase,
while the procedure that is used to make predictions using g is called the testing phase.
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Regarding the first, it can be seen that prior to obtaining g, the training data are passed
through a stage called feature extraction. The purpose of this stage is to transform the data
into a format, which can improve the capability of L to learn the patterns in the training
data. For instance, by separating better the observations corresponding to different labels.
This new format, is called features and is assembled into an N ×D feature matrix. Its rows
correspond to the N observations and its columns to the D features. An example of feature
extraction that can be considered is by taking the Fourier Transform of each observation
in X. In general, feature extraction comprises three sequential stages: pre-processing,
feature transformation and selection. In brief, pre-processing refers to data normalisation
or re-scaling, whereas feature selection, as the name suggests, is the process of choosing
low-dimensional informative features.
As a final step, the final hypothesis is evaluated for its generalisation capability at the
performance evaluation stage. Generalisation, is one of the most important measures for
assessing model performance in machine learning. This is because it measures the ability
to “learn” the patterns rather than “memorising” the data. Memorisation refers to a well-
known problem encountered in statistical modelling, where the noise in the training data is
learned along with its underlying function. As an example, consider learning a sinusoidal
function with a high Signal-to-Noise Ratio (SNR). We can find a polynomial function
that describes this function by adding higher order terms. As the order increases the sum
of squared errors between the polynomial and the noisy sinusoidal function diminishes.
However, this increase in the number of polynomial coefficients results in over fitting and
is a direct consequence of the curse of dimensionality (the dimensionality increases as more
coefficients are added to the polynomial), as described by Bishop [30]. It is expected that
during the performance evaluation stage, this complex polynomial function will diverge
from the actual sinusoidal function, giving a very large prediction error, when an unseen
data point x∗ presents itself. That is why feature selection is necessary. The performance
evaluation stage is conducted by separating the observations in a training, a validation
and a testing data set. For instance, 75% for the first two and the rest are used for the
testing phase. Using the validation data set, the final hypothesis obtained from L (using
the training data set), is tested. It is possible that during validation, the error obtained
using g(x) to estimate the corresponding labels y, can be found to be unacceptable. In this
case, a new g(x) is obtained, either by choosing different features or changing the hypothesis
set H (i.e. the method). The procedure then goes to the testing phase if the validation
results look promising. In the testing phase, the performance of L is checked for a second
time, since over fitting is possible to occur when validation is performed many times. Cross-
validation is another important performance evaluation approach that does not require a

188



separate validation data set. This is advantageous in cases when the observations are very
limited, as in most of the SHM and CM applications, and an accurate learning model must
be obtained.
The ability of the learning model to find g(x) ≈ f(x), is highly dependent on the amount
and quality of the training data, as well as, our tolerance for errors. If the data are too
noisy or do not represent well the system characteristics, e.g. inadequate sensor readings,
then a suboptimal hypothesis function will be selected by C. The following example will
aim to provide a simple explanation as to the extend in which a learning model can learn
the experimental patterns well. Consider a simple experiment with two possible events: E1
and E2. The theoretical probability of the first happening is µ (and the second is µ−1). If
µ were known, the future output of the experiment would have been calculated. However,
these two probabilities are unknown, and instead we are only given N observations that
we can use to calculate the fraction of E1 happening in this experiment, which is ν. The
law of large numbers tells us that when N → ∞, then ν → µ within a tolerance ϵ that we
can specify. As described in [17], Hoeffding’s Inequality is of fundamental importance to
machine learning:

P[|ν−µ|> ϵ] ≤ 2e−2ϵ2N (C.7)

In other words, the probability that the absolute value of the difference between the em-
pirical and theoretical probabilities being greater than a given tolerance, is dependent only
upon the number of training data observations N and the squared tolerance value ϵ. If the
requirements are very stringent then learning might be proved infeasible even if N is very
large. The number of observations for training is an important parameter, and later it will
be shown that an attempt has been made to increase N artificially.
At this stage, it is important to distinguish the three main approaches of machine learning.
This serves as a starting point for discussing the methods that will be presented in subse-
quent sections. The first is called supervised learning, because each observation is always
given a corresponding label or value (by a supervisor). Its task is to match the character-
istics of the observations to this label or value by obtaining the final hypothesis to closely
approximate the unknown generating function. If the task is to match the observation
to some categorical variables, e.g. “good”, “very good”, etc., then this is a classification
problem. If instead, the observations need to be matched to some other continuous values,
e.g. to relate the temperature to the power output of an engine, then the problem is called
regression.
In most real-life problems, however, only a certain proportion of labels is known before-
hand or not known at all even. In these problems, the frameworks of unsupervised or
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semi-supervised learning are used. The former, being the most challenging one, utilises
the features extracted to learn the topologies of the distribution of the data in the D-
dimensional space. Therefore, clusters can be defined and unseen data are assigned in one
of these clusters per their similarities, e.g. Euclidean distances. Although this is an ambigu-
ous approach to obtaining the final hypothesis, its practical usefulness is high and there is
currently a lot of research in this area. On the other hand, the fundamental problem that
concerns semi-supervised learning approaches, is the prediction of labels through finding
similarities between unlabelled and labelled observations. Given that two data points are
found to be “similar” in the D-dimensional space, the labels will be “propagated” on neigh-
bouring data points until convergence. This strategy relies on the assumption that common
characteristics between two labelled and unlabelled observations can be used as a measure
of their similarity, and can be grouped together. Thus, having a good metric for measuring
the similarity is critical in this machine learning approach.
The final machine learning approach is called Reinforcement learning and is mainly con-
cerned in finding the optimal way for decision making for any dynamic system that interacts
with its environment. The machine learning procedure shown in fig. C.1 is still applicable,
however, the learning process is performed sequentially, i.e. a function of time. In addition,
there are no labels provided, but, there is a feedback input to learning model L regarding
the progress that the system is making in reaching the final hypothesis. In this case, the
final hypothesis is the objective that needs to be reached following several sequential steps of
trial-and-error. The fundamental property of Reinforcement learning is that current system
states at t, directly influence the next step t+ 1. Given that states are observable (or par-
tially observable), the problem can be viewed as a Markov Decision Process, as described
in more detail by Sutton and Barto [174]. Therefore, this approach differs significantly
from the other three machine learning approaches, since training data observations are not
assumed to be independent identically distributed. Therefore, only the first three machine
learning approaches are applicable to obtain the final hypothesis in this work.
It is the final hypothesis that will be used, in this work, to monitor a system’s state. This
is where the strength of a well-trained learning model, L, lies. Although a learning model
lacks transparency, it can capture the complex physics of the system very well, while offering
the flexibility to analyse the problem on different parameters. At the same time, they are
simpler to analyse, as only the inputs and outputs can be “seen”. Using such model, it is
possible to use it to identify optimal engine parameters that meet certain performance re-
quirements, e.g. increase in thermal efficiency and safety, as discussed previously. Moreover,
a sensitivity analysis can be conducted by using the learning model as a tool to investigate
key parameters that affect its performance.
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In novelty detection, the model is designed using training data X from the nominal or
design-intended system state. For an unseen observation x∗, a prediction is made using the
final hypothesis and compared to a novelty threshold q, to give the following:

g(x∗) =
{
> q, system state is novel
≤ q, system state is nominal

(C.8)

It is apparent that the value of q is equally important as the prediction g(x∗) in providing
accurate predictions of the system’s state. For convenience from now on, the novel system
state will be referred to as class A and the nominal state as class N . The reader might be
wondering whether it is possible to use a supervised learning approach, where each observa-
tion can be labelled as either class A or N to solve this problem. When implementing such
a system in practise, information regarding the former class is usually very rare or even not
available at all, whereas there can be a lot of observations from class N . More importantly,
even if some observations are available for training, class A observations will tend to be
very different from each other as the system is inherently complex. Therefore, the only
assumption that can be made is about the distribution of class N given the training data
X, because this class is usually very well-understood, as discussed also in [176]. One of the
key concepts in novelty detection is the prognostic capability that it offers in detecting a
potential unwanted scenario that might lead to component damage. Thus, the essence of
novelty detection is to identify the deviations from the nominal system state by means of
monitoring some suitable precursors. This prognostic capability depends on: the sensitivity
of the measured signal and the sensitivity of the model. However, a high sensitivity in both
will cause too many false alarms (predicting an observation as class A, while being class
N ), and a trade-off needs to be made between the two. This trade-off can be provided by
setting an appropriate value of the novelty threshold q.
In regression, the model is designed by capturing the relationship between the dependent
and independent parameters. The relationships that are captured, e.g. with an artificial
neural network (ANN), are non-linear in the coefficients, which distinguishes it from the
simple polynomial fitting. In the context of gas turbine engine analysis, a learning model
for regression makes no assumptions, thus, it can capture non-linear characteristics such as
combustion instabilities, and might outperform CFD-based models in obtaining realistic
results. Moreover, using Bayesian machine learning the uncertainty in prediction can be
calculated. Accounting for uncertainty in dynamic noisy environments, enables better de-
cisions to be made and can provide a better insight into the dynamics of the system. Using
Bayes rule, we can do inference about a certain hypothesis H (for instance, it can be the
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learning model’s parameters), from the data:

P[H| data] = P[data| H] P[H]
P[data] (C.9)

The improvement of the learning model can also be achieved using data fusion methods.
These methods combine several measurements together to increase the prediction accuracy
of the model. It is particularly suited for online novelty detection, because measurements
from different sensors are already available.
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Appendix D

Additional results
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Figure D.1. LA-4DOF: Damping ratio estimates from system identification (Chapter 4).
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Figure D.2. NSim-4DOFLin: Damping ratio estimates from system identification
(Chapter 4).
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Figure D.3. NSim-4DOFNonLin: The first 10 PCA components of the PSD amplitudes
(Chapter 5).

Figure D.4. iForest outlier scores on NSim-4DOFNonLin and LA-4DOF datasets
(Chapter 5).

Figure D.5. NSim-4DOFNonLin: Clustering analysis using tclust (Chapter 5).
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Figure D.6. NSim-4DOFNonLin: SMDs computed using robust estimators on the first 10
rPCA components of PSD amplitudes as DSFs (Chapter 5).

Figure D.7. Z24: outlier scores and corresponding histograms - no robust pre-processing
has been applied (Chapter 6).
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Appendix E

A simulated scenario for CM
applications & demonstration of
the envelope analysis procedure

E.1 Outer race damage using a simulated example

A simulated example, representing a fixed-speed rotating machinery consisting a shaft and
a bearing with and without an outer race damage, is used to examine the EA procedure.
Damage is present only on the outer race of an REB, and includes vibrations from the main
shaft and its five harmonics, in the form of constant-amplitude sinusoidal signals. Damage,
is considered as an amplitude modulated signal (having half-Gaussian envelope), as shown
in Figure E.1, with a specific modulation frequency fn,imp = 3kHz.

20 40 60 80 100 120 140 160 180 200 220

-0.5

0

0.5

Figure E.1. Simulated damage signal - single impulse amplitude modulated.

The time-domain (shown for only 0.1s) and frequency-domain (power spectra with a fre-
quency resolution of 3 Hz) plots from three different simulation scenarios are shown in
Figure E.2.
The differences of the three simulations are:
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Figure E.2. Overall acceleration from three simulation scenarios shown in time- and
frequency-domains (zoomed in from 1.9 to 2 seconds and 0 to 5 kHz):
Undamaged rolling element bearing with low SNR (left plots), Onset of
damage with low SNR (middle plots) and Late damage with high SNR (right
plots).

• Undamaged bearing and low SNR (Sim A): Undamaged system with noise added to
the overall signal equal to 0.6 m/s2.

• Onset of damage and low SNR (Sim B): System at an early stage of damage, having
same noise as in Sim A and amplitude peak impulses equal to 1.1 m/s2.

• Late damage and high SNR (Sim C): System on a late stage of damage, i.e. having
amplitude impulses 10 times larger than in Sim B, while the overall noise level has
been reduced by 10 times, as well.

The main parameters, common to all three simulation scenarios, are shown in Table E.1.
The frequency smearing is evident on the power spectra, due to the bearing rolling slip of
2 %. This, of course, implies that the impulse train produced using the prototype impulse
signal, presented in Figure E.1, will have unequal spacing between each impulse. The
standard deviation of the BPFO, calculated with 2 % rolling slip, is 8.3 Hz. Thus, when
referring to the value of the BPFO, from now on, only its mean value will be meaningful,
i.e. ≈ 415 Hz, as calculated with Equation 2.20.
The acceleration impulses increase in amplitude as time progresses; sign of deterioration
of the bearing. In the ideal scenario (Sim C), there is also a high SNR and the impulses
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Table E.1. Main parameters for rolling element bearing simulation.

Parameter Symbol Value Unit
Sampling rate fs 50 kHz
Number of rolling elements nb 18 −
Simulation time span tspan 2 s
Pitch diameter D 250 mm
Rolling ball diameter d 20 mm
Shaft rotational speed fshaft 50 Hz
Contact angle αrb 15 degrees
Impulse resonance frequency fn,imp 3 kHz
Rolling slip βrb 2 %

are of high amplitude, as compared to Sim B. This means that damage can be more easily
detected in Sim C, which is also evident by looking at the time-domain plots. In Sim B,
it can be observed that the dB scale and the cursors placed at the mean of BPFO in the
power spectrum, help in revealing and identifying the characteristic damage frequency. The
sidebands (due to amplitude modulation) around the impulse resonance of 3 kHz clearly
indicate that damage exists on the outer race as the spacing is exactly 1×BPFO, 2×BPFO,
and so on. However, as shown in the spectrum, the fundamental shaft rotation and its
five harmonics are also present in the lower frequency regions, and whose spectra are non-
synchronous to the BPFO. Hence, there is a need to eliminate those additional frequency
components from the spectrum and at the same time amplify the signal of the bearing fault,
to prevent potential masking effects, e.g. from additional white noise added to the system,
in order to successfully identify damage at its early stages.

E.2 Envelope analysis on the simulated example

As part of the EA procedure (see Chapter 2), a pre-whitening step is required for removing
periodic components in a signal, e.g. gear-pairs. One approach that has been used in the
literature is the SANC algorithm (see Appendix B for a brief explanation of this algorithm).
However, the success of this procedure is influenced heavily on the choice of its parameters,
namely filter length/order, and delay of the samples.
Instead, with the aid of an AR model and by assuming an underlying stationary process
within a short time-scale, e.g. of 2 seconds, the deterministic part of the vibration signal was
estimated. Subsequently, subtracting it from the original signal, yields the residual signal
εẍ. The coefficients of an AR model can be computed using the well-known Yule-Walker
equations by means of the Levinson-Durbin recursion algorithms. This is, in practise, done
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using MATLAB built-in function lpc.m to obtain the coefficients and then filter the signal
using the function fftfilt.m to obtain the residuals. The number of coefficients, or the order
p of the AR model / FIR filter, is chosen such that the kurtosis value of the AR residual
signal is maximized, as in Equation 2.23. This yields p= 110, since pmax ≈ 120, in order to
avoid including the BPFO impulses as part of the AR model, as explained in Chapter 2.
The AR residual signal contains both white noise and the impulses at BPFO. To further
enhance the impulsiveness of the signal, another FIR filter is designed as in [160], i.e. the
MED filter (see Chapter 4 for further details on this technique). The PSD plots, shown in
Figure E.3, illustrate the importance of the MED (shown as the function g(.) in the plots).
In particular, MED amplifies the vibration impulses at BPFO and harmonics, which in
turn reduces the importance of other components, e.g. the shaft rotation and harmonics.
The MED is applied to both the pre-processed AR residual signal, i.e. g(εẍ) and the "raw"
vibration signal, i.e. g(ẍ). Clearly, applying MED on the AR residual g(εẍ) both the
impulsiveness at BPFO can be revealed and the discrete frequencies, not related to REB
damage, will be reduced.

Figure E.3. Power spectra of pre-processed acceleration signal: AR residual (left), MED
applied on the raw signal (middle) and MED applied on the AR residual
(right). It particularly shows the reduction of discrete low frequency
components not associated with BPFO when MED is applied and the
enhancement of impulses at BPFO when the AR residual is considered
instead of the raw signal.

In the next stage of the analysis, the SK is computed for the pre-processed signal g(εẍ)
and the corresponding kurtogram is shown in Figure E.4. For comparison purposes, the
kurtogram is also shown for the raw signal ẍ, its AR residual εẍ and its deconvolved (using
MED) version g(εẍ). Interestingly, for g(εẍ) the calculated SK suggests an optimal filter
band of [0,12.5] kHz using 2k=1 spectral bands, i.e. level of decomposition k = 1. It is
possible that the highest SK value is calculated when including the full harmonic series of
the BPFO and not only the frequency band around the impulse resonance of 3 kHz, as it
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was originally expected. On the other hand, the maximum value of SK for both ẍ) and εẍ

is calculated on a narrow range of [21.827,21.875] kHz using 2k=10 spectral bands, while
for εẍ the corresponding spectral band is [0,8.333] kHz at decomposition level k = 2.6.

Figure E.4. Kurtogram up to level k = 10 calculated on four signals: the raw acceleration
signal (top-left), the AR residual (top-right), the signal pre-processed by
MED only (bottom-left) and the AR residual signal pre-processed by MED
(bottom-right). The maximum SK calculated on the four signals shows us
same frequency bandwidths between ẍ and εẍ, but, different ones between the
other two signals.

E.3 Outer race damage on the WT-REB at damage level 5
a simulated example

Note that at significant damage levels, the EA will reduce the amplitudes of the envelope
spectrum at BPFO, as shown in Figure E.5.
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Figure E.5. Envelope spectrum of damage level 5.
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