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Multiple Sclerosis (MS) is an inflammatory disease of the Central Nervous System (CNS)
that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons
and axons. Historically, MS has been thought of as a T cell-mediated autoimmune
disease of CNS white matter. However, recent studies have identified gray matter
lesions in MS patients, suggesting that CNS antigens other than myelin proteins may
be involved during the MS disease process. We have recently found that T cells
targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS
autoimmunity, including the targeting of gray matter and white matter of the brain
and inducing heterogeneous clinical disease courses. In addition to being a target of
T cells, astrocytes play a critical role in propagating the inflammatory response within
the CNS induced NF-κB signaling. Here, we will discuss the pathophysiology of CNS
inflammation mediated by T cell—glial cell interactions and its contributions to CNS
autoimmunity.

Keywords: T cell, autoimmunity, glial fibrillary acidic protein, multiple sclerosis, astrocytes, experimental
autoimmune encephalomyelitis, cerebellum

Myelin-Specific T Cell Responses in MS and EAE

Multiple Sclerosis (MS), an inflammatory T cell-mediated autoimmune disease, is the most
common neurological disease of young adults. MS causes the demyelination of nerve cells
and destroys oligodendrocytes, neurons and axons (Frohman et al., 2006; Lassmann et al.,
2007), with highly variable clinical manifestations. Such clinical manifestations of MS often
include hyperreflexia, ataxia, spasticity and visual defects (Noseworthy et al., 2000; Keegan
and Noseworthy, 2002; Hafler et al., 2005; Frohman et al., 2006; McFarland and Martin,
2007), and in some cases there are sensory defects and partial or complete paralysis. In the
majority of patients, disease manifests as relapsing-remitting cycles of impairment, usually
converting over time to a chronic progressive stage; 10–15% of patients present with disease
that is progressive from onset (Sospedra and Martin, 2005; Frohman et al., 2006; McFarland
and Martin, 2007; Steinman, 2009).

MS is thought to be primarily a CD4 T cell-mediated disease. Susceptibility to MS is
genetically linked to major histocompatibility complex (MHC) genes and genes associated
with T cell activation and homeostasis; however, the strongest genetic linkage occurs with
certain alleles of MHC class II, which suggests a direct relationship between autoreactive

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 August 2015 | Volume 9 | Article 295

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncel.2015.00295
http://journal.frontiersin.org/article/10.3389/fncel.2015.00295/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2015.00295/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2015.00295/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2015.00295/abstract
http://loop.frontiersin.org/people/44959
http://loop.frontiersin.org/people/41771
http://loop.frontiersin.org/people/50783
http://loop.frontiersin.org/people/19742
https://creativecommons.org/licenses/by/4.0/
mailto:eric.huseby@umassmed.edu
mailto:murakami@igm.hokudai.ac.jp
http://dx.doi.org/10.3389/fncel.2015.00295
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Huseby et al. T cell—glia interaction during autoimmunity

CD4+ T cells and MS disease development in humans (Hillert
and Olerup, 1993; Fogdell-Hahn et al., 2000; Sospedra and
Martin, 2005). CD4+ T cells, in particular those that secrete
IL-17, are considered to play an important role in the induction
of central nervous system (CNS) autoimmunity (Korn et al.,
2009). The identification of genes involved in CD4 T-cell
differentiation and activation through genome wide association
studies (GWAS) have further supported a role for CD4 T cells in
the pathogenesis of MS (Patsopoulos et al., 2011).

The ability of myelin-reactive CD4 T cells to cause
experimental autoimmune encephalomyelitis (EAE) further
supports the hypothesis that myelin-reactive CD4 T cells have
a central role in MS disease pathogenesis (Kuchroo et al., 2002;
Sospedra and Martin, 2005; Ercolini and Miller, 2006; Hafler
et al., 2007; Goverman, 2009; Steinman, 2009). MS-like clinical
symptoms can be induced in animals by immunization with CNS
proteins, as well as peptides derived from these CNS proteins,
including myelin basic protein (MBP), proteolipid protein (PLP)
and myelin oligodendrocyte glycoprotein (MOG; Ben-Nun et al.,
2014). In addition, the adoptive transfer of activated CNS
protein-specific CD4 T cells into naïve mice can induce paralytic
diseases, allowing for in vivo study of the migratory behavior of
pathogenic T cells (Jäger et al., 2009; Arima et al., 2012; Odoardi
et al., 2012). However, it is unlikely that CD4 T cells are the
sole mediators of disease pathogenicity, as treatments specifically
targeting these cells limit neither the rate of disease relapses nor
the formation of new lesions. In contrast, therapies that deplete
or inhibit CNS infiltration of all lymphocyte subsets have been
more successful (Lindsey et al., 1994; van Oosten et al., 1996; Rice
et al., 2005).

Accumulating evidence strongly suggests that CD8 T cells
also contribute to MS disease. Studies have shown that
CD8 T cells are found in MS plaques—these cells are
often oligoclonal, accumulate over time and can outnumber
CD4 T cells regardless of the stage of activity or disease
(Booss et al., 1983; Traugott et al., 1983; Hauser et al., 1986;
Babbe et al., 2000; Lucchinetti et al., 2000; Frohman et al., 2006;
Lassmann et al., 2007; Huseby et al., 2012). Though the antigen
specificity of CNS infiltrating CD8 T cells remains unclear, a
role for CD8 T cells in MS is further supported by the finding
that particular MHC class I alleles can contribute to disease
susceptibility (Cree et al., 2010; Healy et al., 2010).

Both a pathogenic or protective role for CNS-infiltrating CD8
T cells has been proposed. Myelin-specific CD8 T cells that are
capable of killing neuronal cells in vitro have been isolated from
MS patients (Tsuchida et al., 1994; Dressel et al., 1997; Medana
et al., 2001; Crawford et al., 2004; Zang et al., 2004), which
supports the hypothesis that CD8 T cells play a pathogenic role
in the MS disease process. Further in support of this hypothesis,
CD8 T cells specific for myelin proteins, including MBP, MOG,
and PLP, have been shown to be pathogenic in several animal
models of CNS disease (Huseby et al., 2001a; Sun et al., 2001; Ford
and Evavold, 2005; Friese et al., 2008; Anderson et al., 2012). The
clinical symptoms induced by such CNS-reactive CD8 T cells can
be diverse. For example, mice carrying activated MBP-specific
CD8 T cells succumb to a non-paralytic, acute demyelinating
CNS autoimmunity that is clinically and histologically different

than those of classic CD4-EAE. These atypical-EAE disease
pathologies have similarities to MS patients with upper motor
neuron disease (Huseby et al., 2001a). In contrast, experiments
with MOG- and PLP-specific CD8 T cells resulted in CNS
disease symptoms similar to classical EAE (Sun et al., 2001;
Ford and Evavold, 2005; Friese et al., 2008; Anderson et al.,
2012). These data suggest that myelin-specific CD8 T cells may
contribute to some of the disease heterogeneity observed in MS
patients.

Conversely, other studies have suggested that CD8 T cells
may be suppressive during the MS disease process. CD8 T
cell clones that can lyse myelin-specific CD4 T cells have been
detected in MS patients (Chou et al., 1992; Zhang et al., 1993;
Correale et al., 2000), and longitudinal magnetic resonance
imaging (MRI) analysis has shown a negative correlation between
the percentage of Tc2 cytokine-producing CD8 T cells in
the periphery of MS patients and the development of lesions
(Killestein et al., 2003). Moreover, protective MHC class I
alleles have been identified through GWA studies, suggesting
a relationship between autoreactive regulatory CD8+ T cells
and MS disease development (International Multiple Sclerosis
Genetics Consortium et al., 2011). In animalmodels, early studies
found that polyclonal CD8 T cells can limit disease severity and
relapses of CD4 T cell-mediated EAE (Jiang et al., 1992; Koh et al.,
1992). The ability of CD8 T cells to regulate CNS autoimmune
disease may occur by CD8 T cells targeting activated CD4
T cells through the recognition of peptide displayed on MHC
class I and Ib molecules, as well as by secreting IL-10 and
other anti-inflammatory soluble mediators (Jiang and Chess,
2006; Goverman, 2009; Kim and Cantor, 2011; Ortega et al.,
2013). Thus, different subsets of CD8 T cells, like their CD4
counterparts, likely play pathogenic and immuno-regulatory
roles in MS (Huseby et al., 2012).

Gray Matter Lesions in MS and EAE

MS has traditionally been thought of as a disease that targets
myelin proteins within the white matter of the CNS. Recent
findings indicate, however, that this may not always be the
case. Using advanced MRI techniques, multiple investigators
have identified gray matter lesions in MS patients that appear
at the earliest stages of disease and accumulate over time
(Lucchinetti et al., 2000, 2011; Peterson et al., 2001; Bo
et al., 2003; Frohman et al., 2006; Calabrese et al., 2007;
Lassmann et al., 2007; Fisher et al., 2008; Ontaneda et al.,
2012). The presence of T cells within gray matter lesions
of MS patients suggests that T cells reactive to antigens
other than myelin proteins may contribute to MS disease
progression. One potential cellular target of gray matter
disease is astrocytes, which reside within the white and gray
matter of the CNS. Astrocytes normally express low levels of
MHC, however levels increase during inflammation (Wong
et al., 1984; Ransohoff and Estes, 1991; De Keyser et al.,
2010).

Autoreactive T cells must avoid negative selection within
the thymus and be exported to the peripheral T cell repertoire
in order to contribute to the CNS autoimmune disease
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process. Though myelin proteins, the prototypical targets of
encephalogenic CD4 T cells, are primarily expressed behind the
blood-brain barrier, some myelin peptide epitopes are expressed
and presented in the thymus. Developing T cells that are reactive
to these ligands can be subject to thymic deletion or be skewed
towards low avidity or suppressive responses. These findings
have lead to a differential avidity model for the development of
encephalogenic T cells: strong avidity T cells targeting myelin
epitopes that are presented in the thymus undergo negative
selection whereas weak avidity T cells that target these same
epitopes or strong avidity T cells that target myelin epitopes
that are only expressed within the CNS are exported into the
mature T cell repertoire and can induce autoimmunity (Liu
et al., 1995; Harrington et al., 1998; Targoni and Lehmann,
1998; Huseby et al., 1999, 2001b; Klein et al., 2000; Kuchroo
et al., 2002). The expectation is that T cells which target
astrocytes or other CNS cell types will follow similar rules
for development as those identified for T cells that target
myelin.

Two proteins predominately expressed in astrocytes, Glial
fibrillary acidic protein (GFAP) and S100β, have been studied
as targets for autoreactive T cells. GFAP, an intermediate
filament protein, is an archetypal astrocyte-specific antigen that
is expressed throughout the gray matter and white matter of
the brain and spinal cord (Middeldorp and Hol, 2011). GFAP is
also expressed in some peripheral tissues including the thymus,
intestine and pancreas, though expression levels are lower in
these tissue types (Zelenika et al., 1995). In MS lesions, the
expression level of GFAP increases and peptides derived from
GFAP are presented by MHC class I and class II molecules
(Nait-Oumesmar et al., 2007; Fissolo et al., 2009; Linker et al.,
2009). S100β, a calcium binding protein, is also expressed within
astroglia present within the gray and white matter of the CNS
(Zimmer et al., 1995). Although both proteins are also expressed
outside of the CNS, including at a low level within the thymus,
T cell responses to these proteins indicate that immune tolerance
towards these antigens is incomplete.

The adoptive transfer of CD4+ T cells reactive to GFAP or
to S100β into rodents induces a strong inflammatory response
within the spinal cord and throughout the entire CNS, including
the cerebral cortex and the retina of the eye, with particularly
severe inflammation observed in the gray matter (Kojima et al.,
1994, 1997). These experiments demonstrate that T cell responses
to non-myelin antigens are capable of being pathogenic in
models of CNS autoimmunity. Compellingly, CD4+ S100β-
specific T cells have been isolated from MS patients, as well as
from healthy controls, indicating astrocyte-specific T cells are
present in the mature T cell repertoire and may contribute to the
disease process (Schmidt et al., 1997).

GFAP-Specific CD8 T Cells can Induce
Relapsing/Remitting CNS Autoimmunity

The observation that CD8 T cells are present within gray matter
lesions of MS patients (Peterson et al., 2001; Bo et al., 2003;
Calabrese et al., 2007; Lassmann et al., 2007; Fisher et al., 2008;
Lucchinetti et al., 2011; Ontaneda et al., 2012) inspired us to

study astrocyte-specific CD8 T cells. We chose the astrocyte
protein GFAP as the target antigen because GFAP expression and
GFAP-peptide presentation by MHC class I and II molecules are
increased withinMS lesions (Nait-Oumesmar et al., 2007; Fissolo
et al., 2009; Linker et al., 2009). Furthermore, although GFAP-
specific T cells isolated from MS patients have not been studied,
GFAP-specific CD8 T cells have been isolated from patients with
type 1 diabetes, indicating that human T cells with this reactivity
pattern populate the peripheral T cell repertoire (Standifer et al.,
2006). CD8 T cells that target astrocytes and neurons have also
been suggested in Rasmussen encephalitis (Schwab et al., 2009).

We have recently found that C57BL/6 mice carry CD8 T cells
reactive to GFAP264–272 presented by H2-Db. We constructed
TCR Tg mice expressing the GFAP-specific CD8 T cell clone,
BG1 (BG1 mice), to follow the fate of naïve GFAP-specific
T cells. To determine if BG1 mice maintain quiescence to GFAP
over their lifetime, a cohort of WT, Rag1−/− and Gfap−/−

BG1 mice were analyzed for clinical signs of CNS disease
as they aged. We observed that BG1 mice do not maintain
ignorance of GFAP: ∼50% of WT BG1 mice and 100% of
Rag−/− BG1 mice succumb to spontaneous clinical signs of
CNS autoimmunity by 6 months of age. The majority of
diseased BG1 mice develop balancing defects, lethargy, uneven
gait and ataxia—such symptoms are referred to as atypical
disease (Sasaki et al., 2014)—whereas some diseased mice also
succumb to mild ascending flaccid paralysis—such symptoms
are referred to as classical EAE (Stromnes and Goverman,
2006). The atypical disease symptoms that develop in BG1 mice
reflect the locations within the CNS that is targeted; BG1 mice
develop lesions showing prominent glial responses within the
cerebellum, mid-brain and spinal cord early in a spontaneous
disease course that includes both white matter and gray matter
(Figure 1).

The BG1 CD8 effector T cell populations that target the CNS
during spontaneous CNS disease phenotypically resemble anti-
viral tissue-resident memory (TRM) cells that populate peripheral
tissues following viral challenges (Schenkel andMasopust, 2014).
Functionally, only low frequencies of CD8 T cells within the
CNS are capable of producing IFNγ, IL-17 or granzyme B
(GZB), indicating that many of the BG1 CD8 T cells present
within the brain are not classic effector CD8 T cells. These data
suggest that BG1 CD8 T cells that spontaneously enter into
the brain interact with astrocytes to induce their differentiation
into auto-reactive TRM, without gaining inflammatory cytokine
expression or cytotoxic effector functions. Nevertheless, these
auto-reactive TRM CD8 T cells can induce severe inflammation,
glial responses and clinical disease symptoms. In contrast
to CNS disease induced by auto-reactive TRM CD8 T cells,
disease induced by classic IFNγ-producing pro-inflammatory
CD8 T cells demonstrates severe ataxia and lethargy within 7
days, a disease pattern highly similar to those induced by in vitro
or Vac-activated MBP-specific CD8 T cells (Huseby et al., 2001a;
Sasaki et al., 2014). These differences in CNS disease pathologies
suggest that different auto-reactive CD8 T cell lineages induce
distinct CNS disease phenotypes, thereby contributing to MS
disease heterogeneity. This hypothesis is consistent with studies
of encephalogenic CD4 T cells. Through the observation of
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FIGURE 1 | Stimulation of non-immune cells including
endothelial cells and astrocytes with IL-17, TNFα, IFNγ, and IL-6
from T cells induces a synergistic effect on the production of
inflammatory chemokines such as CCL20 and IL-6. An imaginary
figure is shown. The synergistic effect requires the simultaneous

activation of two transcription factors, NF-κB and STATs, in
non-immune cells. Various soluble factors, including neurotransmitters
from activated neurons, augment the inflammation amplifier by
activating or sustaining the activation of NF-κB and STATs. Mean ± SD
are shown. ***p < 0.001.

CD4 T cells responding to different neuroantigens and different
priming protocols, it has been demonstrated that the effector
lineage and activation status of CD4 T cells within the CNS
influence the location of lesions within the CNS, the severity
of the acute disease as well as the overall clinical outcome
(Kawakami et al., 2004; Jäger et al., 2009; Pierson et al., 2012).

In both WT and Rag1−/− BG1 mice, spontaneous clinical
symptoms begin as episodic bouts of functional impairment,
with many mice displaying severe CNS dysfunction and then
remitting to unobservable clinical symptoms. Rag1−/− BG1
mice, however, develop more severe bouts of disease, and have
more relapses than WT BG1 mice, with the majority progressing
to a chronic disease stage. The observed differences in the
frequency and severity of spontaneous disease between WT
BG1 and Rag1−/− BG1 mice suggests that GFAP-specific CD8
T cells are subject to extrinsic sources of immune regulation.
To genetically map the lymphocytes that regulate GFAP-
specific CD8 T cells, IAbβ−/− (MHC II-deficient) and µMT−/−

(B cell-deficient) BG1 mice were generated. Spontaneous CNS
disease in IAbβ−/− BG1 mice was similar in frequency and
severity to WT BG1 mice. In contrast, µMT−/− BG1 mice were
found to be highly susceptible to spontaneous CNS disease,
with ∼80% of µMT−/− BG1 mice developing chronic clinical
disease, a fundamentally distinct disease course as compared
to the relapsing-remitting disease most often observed in WT
BG1 and Rag−/− BG1 mice (Sasaki et al., 2014). Thus, GFAP-
specific CD8 T cell-mediated spontaneous relapsing-remitting

and chronic disease is associated with the infiltration of tissue
resident memory-like CD8 T cells into the CNS parenchyma and
is regulated by polyclonal B cells. How B cells regulate CD8 T
cell CNS autoimmunity, inflammation and disease remission is
currently unknown.

Does the Inflammation Amplifier Regulate
Relapsing/Remitting CNS Disease?

In addition to immune cells, we have demonstrated that non-
immune cells, including vascular endothelial cells and glial cells,
play critical roles in the induction of chronic inflammatory
diseases such as EAE. Glial cells of the CNS can secrete large
quantities of chemokines, growth factors and IL-6 in response
to inflammatory stimuli, all of which can activate the NF-κB and
STAT signaling pathways (Ogura et al., 2008; Atsumi et al., 2014).
This induction of inflammation, mediated by IL-17, TNFα, IFNγ,
IL-6 or various neurotransmitters, is synergistically enhanced
when both the NF-κB and STAT signaling pathways are induced
in glial cells. We termed this synergistic effect the inflammation
amplifier (Atsumi et al., 2014). Importantly, clinical symptoms
of EAE, and several additional chronic inflammatory diseases,
are significantly improved in mice unable to activate the
inflammation amplifier (Ogura et al., 2008; Arima et al., 2012;
Lee et al., 2012; Murakami et al., 2013; Harada et al., 2015). These
findings indicate that the inflammation amplifier has a central
role in chronic inflammatory diseases.
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The inflammation amplifier is regulated by the production of
several neurotransmitters, including norepinephrine and ATP.
These findings led us to hypothesize that the inflammation
amplifier may link the onset and severity of CNS diseases
to mental and physical stress. Indeed, regional neural activity
created by gravity of the Earth on the soleus muscles
enhances chemokine expressions within the CNS, resulting in
inflammation occurring around the dorsal vessels of the fifth
lumbar cord, during early stages of EAE. CNS inflammation
and the upregulation of chemokine expression can similarly
be induced artificially using electric stimulation of peripheral
muscles, formally demonstrating that neuronal activity can
regulate the inflammation amplifier in vivo (Arima et al., 2012).
These phenomena have been termed the ‘‘gateway reflex’’ as these
neural stimulations can create ‘‘gateways’’ for immune cells to
enter into the CNS (Kamimura et al., 2013; Sabharwal et al.,
2014).

Future Studies

The inflammation amplifier can be turned on or off in
response to acute inflammation, as well as to mental and
physical stress. Thus, the temporal regulation of NF-κB and
STAT signaling pathways in glial cells may regulate episodic
cycles of relapsing/remitting clinical disease in MS patients.
Mechanistically, one way this may occur is by recruiting
or limiting immune cell migration through the ‘‘gateway’’
present within the spinal cord and potentially through other
sites within the brain. Clarifying these mechanisms, and
identifying how different immune cell lineages and subsets
respond to and regulate the inflammation amplifier, will
provide insights into the pathogenesis of relapsing/remitting
CNS diseases, and identify drug-targetable molecular
pathways that can be exploited to minimize MS disease
relapses.
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