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SUMMARY

Human rhinovirus (HRV) causes upper respiratory in-
fections and asthma exacerbations. We screened
multiple orthologous RNAi reagents and identified
host proteins that modulate HRV replication. Here,
we show that RNASEK, a transmembrane protein,
was needed for the replication of HRV, influenza A vi-
rus, and dengue virus. RNASEK localizes to the cell
surface and endosomal pathway and closely associ-
ates with the vacuolar ATPase (V-ATPase) proton
pump. RNASEK is required for endocytosis, and its
depletion produces enlarged clathrin-coated pits
(CCPs) at the cell surface. These enlarged CCPs
contain endocytic cargo and are bound by the scis-
sioning GTPase, DNM2. Loss of RNASEK alters the
localization of multiple V-ATPase subunits and
lowers the levels of the ATP6AP1 subunit. Together,
our results show that RNASEK closely associates
with the V-ATPase and is required for its function;
its loss prevents the early events of endocytosis
and the replication of multiple pathogenic viruses.

INTRODUCTION

Human rhinovirus (HRV) causes an estimated 50% of common

colds and is a major precipitant of asthma and chronic obstruc-

tive pulmonary disease flares (Johnston et al., 1995; Seemungal

et al., 2001). The three species of HRV (A, B, and C) are non-en-

veloped members of the picornaviridae family and contain a sin-

gle stranded positive sense RNA genome that encodes for 11

proteins (Simmonds et al., 2010). The serotype-dependent bind-

ing of HRV-A and-B to either of two host receptors, ICAM1 (major

group viruses) or LDLR (or LDLR-related, minor group), triggers

the endocytosis of the viral-receptor complex. Upon entering

acidified endosomes, HRV’s capsid undergoes a conformational

change leading to the formation of a trans-endosomal mem-

brane pore through which the viral genome enters the cytosol.

Having gained access to the host cell’s resources, the viral

genome undergoes translation into a polyprotein, which is pro-

cessed by the viral protease into both structural and non-struc-

tural components. The 50 UTR of the viral genome possesses an

internal ribosomal entry site with specific secondary structure

essential for mediating efficient translation. Once liberated

from the polyprotein, the viral polymerase synthesizes both

anti-sense and sense viral genomes, the latter of which are pack-

aged into the viral capsid assembly to be released upon cell lysis.

To elucidate the role of host proteins in HRV replication, we un-

dertook multiple orthologous RNAi reagent (MORR) genetic

screens, followed by a traditional validation strategy. siRNA

screens have been useful for investigating host-virus interac-

tions; however, they are hampered by prevalent false positives

and false negatives. To offset these shortcomings, we performed

parallel MORR screens and integrated the datasets by repurpos-

ing an existing RNAi analysis program, RIGER (Luo et al., 2008).

RIGER produces a collective phenotypic significance score for

each host factor tested in the screen by collectively assessing

the screening datasets; this determines what the likelihood is

of a gene contributing to the phenotype of interest. To further

limit false positives, we used gene-expression filtering to remove

candidates that were not expressed in the cells used for the

screen. This comprehensive screening effort identified both

known (Cherry et al., 2005, 2006) and multiple previously unap-

preciated factors required by HRV. Among the new HRV

host factors (HRV-HFs), the transmembrane protein, RNASEK

(Economopoulou et al., 2007; Kiritsi et al., 2012), was required

for the replication of multiple HRV serotypes. RNASEK was

also needed for the replication of influenza A (IAV) virus and influ-

enza B virus, flaviviruses (dengue virus [DENV] serotypes 2, 3,

and 4) and the yellow fever vaccine-strain virus (YF17D), as

well as pseudoparticles expressing the vesicular stomatitis virus

(VSV)-g protein.

Here we show that RNASEK localized in part to the cell sur-

face and endosomes and proteomic studies demonstrated it

associates with the V-ATPase. Depletion of RNASEK decreased

clathrin-mediated and non-clathrin-mediated endocytosis and
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resulted in the formation of enlarged clathrin-coated pits (CCPs)

at the cell surface. Endo-lysosomal acidity was increased with

loss of either RNASEK or the V-ATPase, but was lowered with

the coordinated silencing of a second proton pumping complex,

the P-ATPase, uncovering a functional redundancy. RNASEK

was also required for maintaining the levels of both cell-wide

and plasma membrane-associated V-ATPase compartments.

Together these data reveal that RNASEK is required for

V-ATPase function, the early events of endocytosis, and the

replication of multiple pathogenic viruses.

RESULTS

Functional Genomic Screens for HRV-HFs
We screened for HRV-HFs by transfecting arrayed siRNA li-

braries into H1-HeLa cells that endogenously express ICAM1.

After 72 hr, the cells were infected with HRV14 (Figure 1A). At

12 hr after infection, the cells were stained using a monoclonal

antibody directed against HRV14’s V1 CA protein (Che et al.,

1998) and stained for DNA. Cell number and percent infection

were determined for each well. Positive control siRNAs were

against ICAM1 or ATP6V0B (Figure 1B).

This platform was used to screen four RNAi libraries: Silencer

Select (21,584 siRNA pools, Ambion), esiRNA (15,300 siRNA

pools, Sigma), SMARTpool (17,877 siRNA pools, Dharmacon),

and the SMARTpool RefSeq27 Reversion Human 5 subgenomic

replacement siRNA library: (SMART-Rev, 4,506 siRNA pools,

Dharmacon; Figure 1C; Table S1). These libraries were selected

because of their complementary design strategies and collective

broad coverage. A comparison of >1,000 siRNA pools from

the Silencer Select and SMARTpool libraries demonstrated

<5% similar siRNAs showing that the reagents are largely

orthologous.

siRNA pools were designated as HRV-HFs if the percentage of

infected cells was %50% or R150% of the plate mean and cell

number wasR40% of the plate mean. Selected HRV-HF candi-

date pools were validated by independently testing the individual

oligos from each pool (Table S1). To increase utility, the majority

of the validation round candidates did not include enriched

complex genes (i.e., ribosomal subunits) or known HRV-HFs,

but instead were chosen because they had little classification

and no known association with HRV. In the validation datasets,

pools with two or more siRNAs that met the above criteria

were deemed higher confidence because such results are

more likely to be caused by depletion of the intended target

(Echeverri et al., 2006).

HRV-HF Pathways and Complexes
The screens identified several pathways and complexes whose

components scored across the four primary screen datasets

(Figure S1A). For the V-ATPase, a strong viral dependency was

seen for both the V1 and V0 subcomplex genes (eight of eight

and four of five genes, respectively, found in two or more

screens; Figure 1D; Table S2). Among the 24 V-ATPase proteins,

there were 9 that did not score as HRV-HFs in any of the screens

(Table S2). In addition to host factors required for HRV replication

(dependency factors (DFs), we also detected complexes and

pathways whose loss enhanced viral infection (competitive fac-

tors [CFs]; Tables S1 and S2).

HRV-HF MORR Screens Have False Positives and False
Negatives
In general, a comparison of candidate lists from similar siRNA

screens shows significant overlap in complexes and pathways

but less agreement in the exact genes detected. Congruous

with this, the HRV-HF screens showed a low percentage of exact

gene overlap in the primary screen datasets (for DFs with%50%

platemean infected cells andR40%platemean number of cells:

Silencer Select 14.7%, esiRNA 17.6%, SMARTpool 14.7%,

SMART-Rev 39.1%; Figure S1B, Table S2). A comparison across

the screens for siRNAs targeting components of the V-ATPase,

80S ribosome, and elongation complex showed estimated false

negative rates ranging from 10% to 40% (Table S2). We note

that the only differences between the individual screen datasets

in this effort are the siRNA libraries, demonstrating that library

characteristics contribute to screen-to-screen variability. We

generated a common candidate list for genes that scored in

two or more of the three largest screens (Silencer Select,

SMARTPool and esiRNA, common HRV-HFs; Figure S1B; Table

S2). To minimize the effects of false positives/OTEs, we per-

formed microarray analysis (Affymetrix GeneChip human 2.0 ST

array) to determine the genes expressed in the H1-HeLa cells

(Figure S1C; Table S3). The microarray probe-set values were

matched to the genes present in the siRNA libraries: 17,070

(80.8%) and 17,168 (79.5%) genes with expression data in the

SMARTpool and Silencer Select screens. The median of the

negative control intron probe set served as a cutoff for gene

expression, producing a list of 12,461 common genes in the

siRNA libraries that are expressed in the H1-HeLa cells.

RIGER Analysis of the MORR HRV-HF Screens
In addition to OTEs, false negatives also occur frequently in RNAi

screens (Adamson et al., 2012). This likely arises from variable

reagent efficacy and toxicity and candidate selection with abso-

lute thresholds. To mitigate this, we used the MORR screening

strategy and adapted a published RNAi informatics program,

RIGER, to quantitatively integrate all the datasets into ranked

lists of either DFs (RIGER4-DF) or CFs (RIGER4-CF; Table S4)

(Luo et al., 2008). The microarray gene-expression data was

then used to identify HRV-HFs not expressed in the H1-HeLa

cells as likely OTEs. We found that among the top 250 RIGER4

DF genes, 36 fell below the intronistic median (14.4%); these

are noted on the candidate list with red fill because they are likely

OTEs (Table S1).

We then compared the RIGER4 and primary dataset rankings

from the individual screens for five test sets (80S Ribosome,

V-ATPase, the elongation complex, MED, and the common

112 HRV-DFs). This was done by determining the area under

the curve (AUC) produced by plotting the percentage of test

genes from the total set that is detected moving from the top

down along the respective gene rankings (Figures 1E and S1D;

Table S4). The AUC analysis shows graphically how well an

siRNA library or RIGER4 analysis detected the expected compo-

nents. The AUC analyses show that the RIGER4 SB and WS

methods performed better in the test cases and provided a

Cell Reports 12, 850–863, August 4, 2015 ª2015 The Authors 851



Figure 1. MORR Screens Identify Factors that Modulate HRV14 Replication

(A) Schematic of the HRV RNAi screen.

(B) H1-HeLa cells were transfected with the indicated negative (non-targeting [NT]) and positive (ATP6V0B, ICAM1) controls for 72 hr and then infected with

HRV14 for 14 hr. Cells were then fixed, permeabilized, and immunostained with anti-HRV14 capsid antibody (green) or stained for DNA (blue). Percent infected

cells ± SD are shown (34).

(C) The results of the HRV screens with the siRNA pools ranked in order of their normalized percent infection (log2 scale). The highlighted genes are selected hits

from that library.

(D) Schematic of the V-ATPase (left) (Marshansky et al., 2014), with components V0 (blue), V1 (yellow), and accessory proteins, including ATP6AP1 (green), that

scored in one or more of the HRV screens (right).

(E) The RIGER4 analyses (weighted sum [WS], second best [SB], and Kolmogorov-Smirnov [KS]) and the individual MORR screen datasets were compared by

assessing their respective levels of enrichment for components of the 80S ribosome. An enrichment score for each screenwas calculated by determining the AUC

(legend continued on next page)
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quantitative estimate for each gene’s significance in HRV repli-

cation. Using the HRV lifecycle as a framework and with the

referenced literature as a guide, 164 (96 DFs and 74 CFs) of

the top 150 of both the DF and CF RIGER4 gene lists expressed

in the HeLa cell were assembled into a schematic model (Fig-

ure 1F; Table S5). To make room, the ribosomal subunits were

excluded. For 136 genes of the top 300 genes, there is insuffi-

cient existing literature to place them in the model. However,

based on the enrichment of multiple complexes and pathways,

we estimate that this model identifies the majority of HRV14’s

dependencies in HeLa cells.

RNASEK Is Required for the Replication of Multiple
Viruses
Among the top HRV-DF candidates from the Silencer Select

screen was RNASEK, a 137 amino acid dual-pass transmem-

brane protein with an undetermined cellular role, whose N- and

C-termini are predicted to lie on the inside of the cell (Figure S1E)

(Economopoulou et al., 2007; Kiritsi et al., 2012). RNASEK was

not screened in the other three libraries and thus was not ranked

by RIGER, demonstrating that RIGER analysis and a traditional

validation approach are complementary. RNASEK is ubiqui-

tously expressed and highly conserved across mammals, with

100% amino acid identity seen between mouse, rabbit, and hu-

man. RNASEKwas previously listed in a siRNA screen candidate

list as a gene required for CME, but was not evaluated further

(Kozik et al., 2013). There are insect RNASEK homologs but no

known yeast homolog.

RNASEK was needed for replication of HRV14, as well as IAV

A/WSN/33 H1N1 (WSN/33) strain (Figures 2A, S2A, and S2B). To

test the role of RNASEK in non-transformed cells, normal human

fibroblasts were transduced with a lentivirus expressing either a

short hairpin RNA (shRNA) against RNASEK or a scrambled con-

trol (shScr) and then infected with IAV WSN33 (Figure 2B). A

rescue of HRV14 replication was done using cells stably trans-

duced with a FLAG-tagged RNASEK (RNASEK-F) together

with siRNAs directed against either the RNASEK coding

sequence or the 30 UTR (Figures 2C and 2D). RNASEK-F was

used because available commercial anti-RNASEK antibodies

did not perform well. We also attempted to express a RNASEK

mutant reported to be inactive in vitro (Kiritsi et al., 2012); how-

ever, we were unable to express this mutant protein in HeLa

cells. A validationmethodwas usedwhere the nucleotides at po-

sitions 9–11 on the antisense siRNA oligonucleotide are changed

to the cognate bases (C9–11); this detects OTEs due to interac-

tions with microRNA seed sequences (Buehler et al., 2012).

Mutation of the C9–11 positions in either of two effective

siRNAs targeting RNASEK resulted in enhanced viral infectivity

together with decreased target depletion (Figures 2E–2G).

Similar results were obtained using additional HRV serotypes,

1A and 16, which were selected because of their genetic diver-

gence from HRV14 and one another (Figure S2C).

Cells depleted of either RNASEK or ATP6V0B were infected

with either DENV2, 3, or 4, YF17D, the IAV strains, X31 H3N2,

IAV WSN/33, or a pseudotyped Moloney leukemia virus (MLV)

expressing the VSV-g fusion protein (Figures S2D–S2J). For

each virus, depletion of either RNASEKor ATP6V0B lowered viral

replication. No differences were seen when these same trans-

fected cells were infected with either HIV-1-IIIB or MLV pseudo-

typed with the cytomegalovirus (CMV) envelope protein (Figures

S2K and S2L).

RNASEK Is Needed for HRV and IAV Entry
The infectivity data suggested that RNASEK, like ATP6V0B, is

required for viruses that enter cells via the endosomal pathway,

but not for viruses that enter at the cell surface. To determine

where in the viral lifecycle RNASEK is required, translocation

assays were done wherein virus and siRNA-transfected cells

were synchronously released from a chilled incubation state

by the addition of warm media. Confocal images were obtained

at the indicated time points (Figures 2H and 2I). These studies

show that both HRV and IAV are predominantly blocked prior

to entry into the cell when either RNASEK or ATP6V0B is

depleted. When cells were treated with acidic buffer (pH 5), a

portion of the IAV infection was rescued in either the RNASEK-

or ATP6V0B-depleted cells, revealing that surface-bound IAV

could undergo fusion with the host membrane (Figure S3A).

The surface levels of ICAM1 were unchanged with RNASEK

depletion (Figure S3B). In sum, these data show that HRV

and IAV, and by extension DENV, YF17D, and VSV-g pseudo-

particles, cannot effectively enter the cell when RNASEK levels

are lowered.

RNASEK Closely Associates with the V-ATPase
To identify proteins that interact with RNASEK-F, affinity purifi-

cation coupled to mass spectrometry (AP-MS) studies were

done. These experiments identified multiple components of

the V-ATPase, both V0 and V1 subunits, as well as clathrin heavy

chain (CLTC), the clathrin adaptor, AP2, flotillin (FLOT1), and

the transferrin receptor (TfR), as associating with RNASEK (Fig-

ures 2J and S3C; Table S6). Co-immunoprecipitation (co-Ip) ex-

periments using anti-ATP6AP1 antibodies immunoprecipitated

RNASEK-FLAG and did so after a high speed (100,000 3 g)

spin to clarify the lysate of membrane fragments (Figure S3D).

In these experiments, the band containing RNASEK-F was

seen to migrate below the immunoglobulin light chain protein

at just above the 15 kDa size marker. ATP6AP1 (Ac45) is a

type one transmembrane protein required for V-ATPase func-

tion that associates with the V0 subunit (Jansen et al., 1998; Su-

pek et al., 1994). ATP6AP1 also contains a C-terminal endocytic

targeting signal that directs it from the cell surface into the

endosomal pathway (Feng et al., 2008). Confocal imaging also

showed that RNASEK-F partially colocalized with ATP6AP1

(Figure 2K).

generated by plotting the percent fraction (Fraction) of 80S component proteins encountered moving from the lowest to highest p value on the ranked gene lists

(Rank). Numbers represent the percent enrichment of the total gene set at <60% of the ranked gene list.

(F) Based on theRIGER4 screen dataset, a hypothetical model cell was created highlighting the HRV lifecycle, as well as where 164 of the HRV-HFsmight function

based on available evidence (Table S5).

Cell Reports 12, 850–863, August 4, 2015 ª2015 The Authors 853



Figure 2. RNASEK Is Required for HRV and IAV Entry and Partially Associates with the V-ATPase

(A) H1-HeLa cells were transfected with the NT control siRNA or siRNAs targeting either RNASEK or ATP6V0B. Cells were infected with either HRV14 or IAV

WSN33. Cells were stained for DNA (blue) and either an anti-HRV14 capsid antibody or an anti-HA antibody (green). The percentage of infected cells ± SD is

shown (34).

(B) Normal diploid human fibroblasts (WI-38 cells) were stably transduced with the indicated shRNA-expressing retroviruses. Cells were then infected with

WSN33. After 14 hr, the cells were processed and analyzed as in (A).

(C) H1-HeLa cells stably transduced with retroviruses expressing either RNASEK-FLAG (RNASEK-F) or the empty vector control (Vector) were transfected with

either a NT siRNA, a siRNA that targets the coding sequence of the RNASEK mRNA (RNASEK-2), or one against the 30 UTR (RNASEK-5). At 72 hr after trans-

fection, the cells were infected with HRV14 and processed as in (A).

(D) Whole-cell lysates from the cells in (C) were subjected to immunoblotting. RAN, loading control.

(E) RNASEK-F cells were transfectedwith the indicated siRNAs aswell as their respectivelymatchedC911 control siRNAs (-C). At 72 hr after transfection, the cells

were infected with HRV14.

(F) Immunoblots of whole cell lysates from (E). Vector cells are shown for comparison. Actin, loading control.

(G) siRNA sequences used in the experiments in (E) and (F).

(H) H1-HeLa cells were first transfected with the indicated siRNAs for 72 hr and then incubated with HRV14 on ice. Warmmedia were added at time 0. Cells were

fixed at the indicated time points, stained with anti-HRV14 antibody (yellow), and confocally imaged. Quantitation of viral entry is provided at right (normalized

mean intensity ± SD) for R15 cells from each of n = 3 experiments (363). Scale bar represents 10 mM.

(I) As in (H), but cells were incubated with IAV A/Puerto Rico/8/34 H1N1 (PR8) and stained with anti-NP antibody (green). Nuclei are outlined in blue and the cell

peripheries in white.

(J) Proteins interacting with RNASEK-F using AP-MS. Proteins shown were identified from multiple peptides in two or more experiments (Table S6).

(legend continued on next page)
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RNASEK Is Needed for Endocytosis
RNASEK associates and co-localizes with the V-ATPase,

FLOT1, and TfR and is required for the entry of HRV and IAV

and is highly conserved across species. We tested whether

RNASEK was needed for the endocytosis of transferrin, high

molecular weight (hmw) dextran, or cholera B toxin (CTb). The

depletion of RNASEK inhibited the entry of transferrin via cla-

thrin-mediated endocytosis (CME), similar to what was observed

with targeting ATP6V0B (Figure 3A) (Kozik et al., 2013). The

silencing of either RNASEK or ATP6V0B also decreased the

entry of dextran by macropinocytosis (Figure 3B). However,

only the loss of RNASEK decreased the entry of CTb, suggesting

that non-CME was the predominant mode of CTb entry in this

setting (Figures 3C and S3E; Supplemental Information). There-

fore, while the loss of either RNASEK or ATP6V0B produced

comparable effects with both transferrin and dextran, only RNA-

SEK depletion inhibited the endocytosis of CTb, demonstrating

that these factors have both similar and unique functional roles.

Loss of RNASEK or the V-ATPase Increases Endo-
lysosomal Acidity
Reducing endosomal acidity inhibits HRV entry (Fuchs and

Blaas, 2012). RNASEK interacts with the acidifying complex, V-

ATPase. We depleted RNASEK and looked for an effect on

endo-lysosomal acidity using acidophilic dyes: Lysotracker red

(LTRed), Lysotracker green 26 (LTG-26), or Lysosensor green

153 (LSG-153). We used the LSG-153 dye because its signal in-

creases with increasing acidity, while LTRed becomes fluores-

cent at a threshold and does not thereafter increase with

decreasing pH. Surprisingly, lowering the levels of either RNA-

SEK or ATP6V0B resulted in increased intracellular acidity,

which was sensitive to the small molecule, bafilomycin A1

(BAF; Figures 4A and S4A); this phenotype was rescued in the

setting of a siRNA-resistant RNASEK-F (Figure S4B). Similar re-

sults were obtained using normal fibroblasts transduced with

shRNASEK (Figures 4B and 4C). Reducing RNASEK levels, or

those of two V-ATPase subunits, in RAB7-GFP-expressing or

RAB7-red fluorescent protein (RFP)-expressing cells, expanded

the RAB7 compartment, which co-localized with the acidic dye

signal (Figures 4D–4F). A subunit, ATP13A2, of an additional

BAF-sensitive acidifying complex, the P-ATPase, co-localized

with the LTRed signal seen with RNASEK or ATP6V0B depletion

(Figure 5A) (Dehay et al., 2012b). shRNA-mediated depletion of

ATP13A2 also increased intracellular acidity, as shown previ-

ously (Dehay et al., 2012b). However, decreasing the levels of

either RNASEK or ATP6V0B together with ATP13A2 did not in-

crease late endosomal acidity and also prevented the increased

acidity seen after addition of Torin, a small molecule that induces

autophagy and endo-lysosomal acidity (Figures 5B and S4C).

This result shows that the loss of both the V-ATPase and the

P-ATPase prevents the increased acidity observed with the in-

duction of autophagy by Torin. Unlike what we observed with

RNASEK or the V-ATPase, diminishment of ATP13A2 alone did

not decrease HRV infection (Figure S4D). These data show that

while the V-ATPase and P-ATPase are functionally redundant

for late endosomal and lysosomal acidification the V-ATPase

and RNASEK are uniquely required for viral entry and infection.

RNASEK Depletion Produces Enlarged CCPs
V-ATPasedepletionorBAF treatmenthasbeen shown toproduce

enlarged CCPs in the setting of a block to CME, possibly due to a

mislocalization of cholesterol (Kozik et al., 2013). The effect of

RNASEKdepletion onCCPs and cholesterol was evaluated using

confocal imaging of cells immunostained for the CCP adaptor

protein, CALM. As seen in previous studies (Kozik et al., 2013),

lowering the levels of a V-ATPase subunit produced enlarged

CCPs (Figure 5C); these data also show that decreasing RNASEK

levels increased both the staining intensity and the number of

CALM-containing CCPs; this phenotype was rescued by the

expression of a siRNA-resistant RNASEK-F transgene (Figures

S4E and S4F). However, no alteration in cholesterol distribution

was seen in cells depleted of RNASEKor any of several V-ATPase

components, and the addition of exogenous cholesterol did not

rescue the block to transferrin entry seen under these conditions

(Figures S5A–S5C). Indeed, exogenous cholesterol decreased

transferrinuptake.Theadditionof theproton ionophore,Nigericin,

rapidly reduced acidity (<10 min), increased CALM staining, and

inhibited transferrin entry as expected and did so without altering

the distribution of cholesterol (Figures S5D–S5F). Imaging of the

adherent cell surface revealed that either RNASEK or ATP6V0B

depletion resulted in a portion of the cell-associated endocytic

cargo (HRV14 or transferrin) being trapped within enlarged

CCPs (Figures 5D–5F). Consistent with the increased CALM

signal observed with RNASEK or ATP6V0B depletion, we also

observed an increase in the number and depth of CCPs at a point

prior to scission (tethered CCPs) using transmission electron mi-

croscopy (TEM; Figures 5G–5I). Similar results were obtained us-

ing super-resolution microscopy (Deltavision Localization Micro-

scopy [DLM] system), with both the intensity and size of CALM-

and CLTC-containing CCPs increasing with either RNASEK or

ATPV0B depletion (Figures 6A–6D, S5G, and S5H).

RNASEK Modulates CCP-Associated V-ATPase
Location and Levels
CCPs form via the sequential assembly of multiple factors (Fig-

ure 7A) (Kirchhausen et al., 2014). An endocytic signal, i.e., a

ligand binding to its receptor, triggers themembrane association

of FCHo1/2 and the adaptor proteins, EPS15, AP2, and CALM,

which bind to one another and recruit clathrin, which surrounds

the developing CCP. DNM2 is then recruited and mediates scis-

sion and vesicle formation. To investigate the enlarged CCPs

occurring with either RNASEK or V-ATPase depletion, we evalu-

ated for the above factors, aswell as for RNASEK, ATP6AP1, and

ATP6V0B. Confocal imaging of the cell membrane-coverslip

interface, as well the middle of the cell, showed that loss of

RNASEK decreased the signals of three V-ATPase subunits

(K) RNASEK-F cells were immunostained with the indicated antibodies. The fraction of colocalization of RNASEK-Flag (green) with ATP6AP1 (red) ± SD averaged

across n = 4 independent experiments is provided;R 15 cells per condition per experiment were evaluated. The value represents theMander’s coefficient for the

flag channel and therefore is the percent of RNASEK-Flag that is colocalized with ATP6AP1.

Scale bar represents 10 mM. 363. Results throughout are the mean of n R 3 independent experiments ± SD. *p % 0.05 (Student’s t test).
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(ATP6AP1, ATPV0D1, and ATP6V0B), similar to what was seen

with loss of ATP6V0B (Figures 7B, S6A, and S6B).

While CCPs are smaller (60–100 nM) than the limits of resolu-

tion of confocal microscopy (>250 nM), we reasoned that immu-

nofluorescence (IF) signals would nonetheless be proportional to

the changes seen with TEM and super-resolution microscopy.

Furthermore, using IF we could efficiently characterize the rela-

tive levels of CCP-associated proteins using a panel of anti-

bodies. Therefore, we created 3D reconstructions of confocal

images of the CCPs projecting into the cell from the cell mem-

brane-coverslip interface. Consistent with published work on

the V-ATPase (Kozik et al., 2013), an increase in CCP size was

seen at the bottom surface (attached to the coverslip) of the

Figure 3. RNASEK Is Required for Endocy-

tosis

(A) H1-HeLa cells were transfected with the indi-

cated siRNAs and then incubated with transferrin-

FITC (green). At the indicated time points, cells

were washed with stripping buffer, fixed, stained

for transferrin receptor (TfR, red), then confocally

imaged. The ratios of internalized transferrin to

surface TfR at the indicated times are at the right.

Nuclear DNA (blue).

(B) As in (A), but cells were incubated with high

molecular weight Dextran conjugated to Alexa-

flour 586 (red) for 20 min prior to a brief trypsin

treatment and fixation.

(C) As in (A), but cells were incubated with Cholera

toxin B-FITC (green) for 20 min prior to a brief

trypsin treatment and fixation.

Results throughout are the mean n = 3 experi-

ments ± SD. DIC images are shown below. 363;

scale bar represents 10 mM. Results throughout

are the mean of R15 cells per condition from

three independent experiments ± SD. *p % 0.05

(Student’s t test).

cells when either RNASEK or ATP6AP1

were diminished (Figures 7C, 7D, S6C,

and S6D). Similar results were obtained

when we imaged the top surface of these

cells (Figures S6E and S6F). A compari-

son of the relative size of the structures

seen with the TEM (CCPs) and confocal

images (CALM signals; Figure S6G)

shows that the relative differences in the

CALM signals seen in the confocal IF

images are in keeping with the relative dif-

ferences seen with the CCPs with TEM.

While the confocal images need to be

interpreted with their limited resolution in

mind, they nonetheless permitted us to

look at the relative presence of multiple

CCP-associated proteins using immu-

nostaining. The confocal images also

showed that both RNASEK and ATP6AP1

are present just below themembrane sur-

face with many of their signals originating

near the inner membrane at the base of

the CCPs (Feng et al., 2008; Jansen et al., 2012). Moreover,

58% ± 10% of RNASEK and 46% ± 14% of ATP6AP1 colocalize

with the corresponding factor, and >40% of each of these pro-

teins colocalized with CALM, with colocalization defined as the

percentage of directly overlapping pixels (Figures 7C, 7D, and

S6H). The image analysis software used does not permit

blending of colocalized signals in the merged 3D images, result-

ing in one of the two signal channels shrouding the other.

Depletion of RNASEK reduced the size of the ATP6AP1 signal,

and the converse was also seen; however, while the reduced

RNASEK signal remained at the CCP’s base, the remaining

ATP6AP1 moved away from the inner membrane leaflet and

further up the associated CCP (Figure 7E). Similar results were
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seenwithATP6V0B (Figures7FandS7A).Thesedatasuggest that

both RNASEK and ATP6AP1 reciprocally regulate the others’

levels and distribution at the plasma membrane, with RNASEK

also being needed to position ATP6AP1 or ATP6V0B at the

base of the CCP. Immunoblots of lysates from separate aliquots

of these same cells revealed that loss of RNASEK or ATP6V0B

decreased the total cellular levels of ATP6AP1 and to a lesser

extent ATPV0D1, but not ATPV0A1, showing that RNASEK is

necessary formaintainingcellwide levelsofATP6AP1 (Figure7G).

Loss of ATP6AP1 was found to strongly inhibit HRV replication in

the screens as well as in follow-up assays (Figure 7H; Table S1).

Depletion of cholesterol, as determined by lower Filipin staining,

decreased the magnitude of the CALM signals (Figure S7B). The

reduced magnitude of the CALM signals with loss of cholesterol

is consistent with studies showing that lower cholesterol caused

flattening of CCPs as viewed by TEM (Subtil et al., 1999), arguing

against low cholesterol being the cause of the enlarged CCPs

seen with the loss of V-ATPase or RNASEK (Kozik et al., 2013).

Figure 4. Depletion of Either RNASEK or the V-ATPase Increases Endo-lysosomal Size and Acidity

(A) H1-HeLa cells were transfected with the indicated siRNAs then incubated with lysotracker red (LTRed) in the presence or absence of bafilomycin A1 (BAF).

(B) Normal diploid human fibroblasts (WI-38 cells) were stably transduced with the indicated shRNAs and incubated with LTRed.

(C) Cells in (B) were infected with IAV WSN33 then stained with anti-HA.

(D) H1-HeLa cells stably transduced with RAB7-RFP (red) were transfected with the indicated siRNAs and then incubated with Lysosensor green 189 (LSG-189,

green), and the cells were imaged live.

(E) Quantitation of the size or acidity (intensity) of the RAB7-RFP-containing late endosomes and lysosomes from cells in (D). 363; scale bar represents 10 mM.

(F) H1-HeLa cells stably transduced with a RAB7-GFP (green) lentivirus were transfected with the indicated siRNAs then incubated with LTRed and confocally

imaged. The fraction of RAB7-GFP colocalizing with LTRed ± SD frommultiple cells in frommultiple fields is shown graphically below.363; scale bars represent

10 mM. Results throughout are the mean of R15 cells per condition from n = 3 experiments ± SD. *p % 0.05 (Student’s t test).
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Figure 5. The V-ATPase and P-ATPase Function Redundantly to Regulate Endo-lysosomal Acidity and Depletion of RNASEK Enlarges CCPs

(A) H1-HeLa cells were stably transduced with ATP13A2-GFP, transfected with the indicated siRNAs, and then incubated with LTRed and confocally imaged.

Numbers represent the fraction of ATP13A2-GFP colocalizing with LTRed ± SD. 363; scale bar represents 10 mM.

(B) H1-HeLa cells stably transduced with lentiviruses expressing either a negative control (shScramble) or one against ATP13A2 (shATP13A2) were transfected

with the indicated siRNAs. Cells were then treated with either Torin or the DMSO control for 3 hr and then incubated with LTRed.363; scale bar represents 10 mM.

(C) H1-HeLa cells transfected with the indicated siRNAs then stained for CALM (red) and confocally imaged at the interface of the cell membrane and glass

coverslip (bottom surface). 363; scale bar represents 10 mM. Quantitation is at the right.

(D) As in (C), but cells were incubated with HRV14 on ice. Warmmedia were added, and cells were then fixed and immunostained with anti-HRV14 antibody (red)

and anti-CALM antibody (green) and then confocally imaged.

(E) Confocal images of cells in (D) at the cell interface with the glass coverslip. The CALM-containing CCPs (green) are shown extending from the inner cell

membrane leaflet (top of the image) into the cytosol. The depth of each stacked image is 2 mm.

(F) H1-HeLa cells were transfected with the indicated siRNAs then incubated with transferrin-FITC (green). Cells were then immunostained for CALM (red) and

confocally imaged at the interface of the cell and glass coverslip. The column of matching images at the right shows representative CALM-containing CCPs (red)

that are extending from the cell membrane (top) into the cytosol. Quantitation is at the right.

(G) H1-HeLa cells were transfected with the indicated siRNAs and then processed and imaged using TEM. Representative electron micrographs of the mem-

brane-associated tethered CCPs are shown for each condition.

(H) Quantification of the tethered CCPs (connected to the plasma membrane) seen in cells in (G). The values are the number of tethered CCPs from 50 cells

evaluated for each condition, n = 3 independent experiments.

(I) Measurement of the tethered CCPs’ depth (long axis from the plasmamembrane to the base of the CCP). The values are the depth in nM (average ± SD) of the

tethered CCPs from (H).

Images are representative of N = 3 independent experiments. *p % 0.05 (Student’s t test).
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We further characterized the CCPs. Depletion of RNASEK or

ATP6V0B did not alter the relative levels of CCP-associated

EPS15 or AP2 (Figures S7C and S7D). As expected, CLTC

strongly co-localized with CALM (Figure S7E). Finally, we

immunostained for DNM2 and detected equivalent levels pre-

sent at the CCP after RNASEK or ATP6V0B depletion (Figures

S7F and S7G). Therefore, these studies indicate that RNASEK

regulates the levels of the V-ATPase at the cell membrane

and in the endosomal pathway and suggest that RNASEK is

required for V-ATPase function, the loss of which decreases

endocytosis.

DISCUSSION

To obtain a systems level view of HRV’s host factor depen-

dencies, we undertook parallel genetic screens using MORR.

We chose to use MORR to take advantage of the best that

each of the large-scale RNAi resources has to offer and to offset

the caveats of RNAi screening. The HRV-HF candidates from the

primary screens were further evaluated using both traditional

validation and phenotypic quantitation with RIGER to minimize

false positives and false negatives. This effort identified both

known and previously unappreciated HRV-HFs. A published

Drosophila screen using a picornavirus reported 65 ribosomal

subunits that were needed for viral replication; a comparison

showed that depletion of the human homologs of 55 of these

genes lowered infectivity in one or more of the screens (Table

S7) (Cherry et al., 2005). Apart from the ribosome, an additional

Figure 6. Super-Resolution Imaging of

CCPs with RNASEK or ATPV0B Depletion

(A) DLM super-resolution microscopy images

showing CALM staining at the adherent surface of

HeLa cells transfected with the indicated siRNAs.

Top row shows a representative field and the

bottom row shows a zoomed area (white box).

(B) Intensity profiles from the DLM super-resolu-

tion images of 60 individual CCPs identified by

CALM immunostaining for each of the indicated

conditions. These results are representative of a

total of 120 individual CCPs analyzed across three

independent experiments.

(C) DLM super-resolution images showing clathrin

heavy chain (CLTC) immunostaining as in (A).

(D) Intensity profiles from the DLM super-resolu-

tion imaging of 68 individual CCPs identified by

CLTC staining for each of the indicated siRNA-

transfection conditions. These results are repre-

sentative of a total of 138 individual CCPs analyzed

across three independent experiments.

Additional parameters are in the Supplemental

Information.

16 of 38 (42%) of the corresponding hu-

man homologs from the Drosophila-

based screen also scored in one or

more of our screens; this comparison

suggests that high-confidence candi-

dates that are unique to the MORR

screens also play roles in HRV replication,

revealing the need for screens using human cells and pathogens.

The top candidates in this quantitatively integrated HRV-HF

dataset likely represent the majority of the factors needed by

HRV in vitro, thus providing a comprehensive resource for picor-

navirus research (Figure 1F).

From among the HRV-HFs, we further investigated RNASEK,

whose loss inhibited multiple HRV serotypes, IAV and DENV.

Decreasing the levels of RNASEK resulted in (1) halting viral

infection at the cell surface, (2) a decrease in CME and non-

CME, and (3) the appearance of enlarged CCPs. RNASEK was

detected in CCPs and immunostaining of an exogenously

expressed RNASEK-F protein demonstrated an endosomal

pattern. Proteomics revealed that RNASEK associated with mul-

tiple V-ATPase proteins. RNASEK also associated with compo-

nents of CCPs (Table S5); this is in line with confocal images of

both RNASEK and ATP6AP1 partially colocalizing with one

another and with CCPs at the cell membrane.

Many of the phenotypes seen with loss of RNASEK resemble

those seen with V-ATPase depletion. Confocal imaging showed

that RNASEK was necessary to maintain the levels of some

V-ATPase components at both the cell membrane and the

cell interior; a closer evaluation also revealed that these

V-ATPase components moved away from the cell surface to

a more distal portion of the CCP. In the case of ATP6AP1,

loss of RNASEK also resulted in lower cellular levels. In turn,

lowering ATP6AP1 levels also decreased the levels of RNASEK.

These data demonstrate that RNASEK interacts with ATP6AP1

and that they reciprocally control each other’s levels at the cell
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membrane and cell interior. A similar relationship was seen

between RNASEK and ATP6V0B. In contrast, loss of these

factors increased the RAB7 compartment, arguing that their

loss does not simply dissipate the detectable levels of all endo-

somal proteins. We conclude that RNASEK is required for the

correct localization and cellular levels of certain V-ATPase

subunits, explaining its important role in endocytosis and viral

replication.

We found that RNASEK is needed for both CME and clathrin-

independent endocytosis; this is one difference observed be-

tween depletion of the V-ATPase components and RNASEK

and as such suggests that RNASEK may act upstream of a

Figure 7. RNASEK Is Needed for V-ATPase Function and Characterization of the RNASEK- or V-ATPase Depletion-Induced CCPs

(A) Schematic model depicting the assembly of factors that form a CCP and direct its evolution into a CCV.

(B) H1-HeLa cells were transfected with NT, RNASEK, or ATP6V0B siRNAs (top of each column in white) and then stained with the indicated antibodies (green)

and confocally imaged at the interface between the cell and the coverslip.363; scale bar represents 10 mM. Quantification is shown in Figure S6B (bottom slice).

(C and D) RNASEK-F cells were transfected with the indicated siRNAs (top left of each column) and then stained with the indicated antibodies (bottom right of

each row). 3D reconstructions were created of confocal images progressing from the cell-coverslip interface to a height of �2 microns. The dimensions of the

white box are 63 63 2 mM. The fractions of colocalization are shown ± SD, with colocalization defined as the fraction of directly overlapping pixels. This software

does not permit blending of colocalized signals in themerged images, resulting in one of the two signal channels shrouding the other. Images are representative of

n = 3 independent experiments.

(E and F) H1-HeLa cells were transfected with the indicated siRNAs (top left) and then stained with the indicated antibodies (bottom right). 3D reconstructions

were created of confocal images as in (C). Imaging software was used to colorize the resultant structures in a gradedmanner commensurate with elevation above

the cell-coverslip interface with purple at the bottom and red at the top as represented by a bar showing a heat map at the right of each panel.

(G) RNASEK-F or vector cells were transfected with the indicated siRNAs. Cell lysates were probed with the indicated antibodies.

(H) H1-HeLa cells were transfected with siRNAs directed against the V-ATPase subunits shown or a NT control. The cells were then infected with HRV14. Results

throughout are the mean of n = 3 experiments ± SD. *p % 0.05 (Student’s t test).
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common membrane scission event or alternatively may some-

how alter the environment at or adjacent to the plasma mem-

brane. IAV is also thought to enter cells via redundant CME

and non-CME mechanisms; therefore, the need for RNASEK in

IAV entry is in keeping with these data. DNM2 is required for

CME and caveloae-mediated endocytosis. We saw that with

RNASEK depletion DNM2 was present at relatively the same

levels at the CCPs, suggesting that its actions after arrival are

somehow reduced with loss of RNASEK.

Surprisingly, decreasing RNASEK or V-ATPase levels

increased both the acidity and size of the RAB7-containing

compartment. In spite of this level of acidification, endocytosis

and HRV replication were inhibited. Loss of the P-ATPase,

together with either RNASEK or ATP6V0B, decreased

basal and autophagy-related acidification. Therefore, the two

ATPases and RNASEK are functionally redundant for acidifica-

tion of the endo-lysosomal compartment. However, why all

three must be present to correctly modulate the size and

acidity of endo-lysosomes remains to be determined. In

respect to endocytosis, including the progression of CCPs to

endosomes, RNASEK and the V-ATPase possess non-redun-

dant roles with the P-ATPase, revealing that the critical task

of forming and acidifying nascent endosomes depends on

both factors.

The enlarged CCPs seen in the setting of RNASEK or

V-ATPase loss possessed DNM2. Together with the lack of viral

entry and the endocytic cargo detected in the enlarged CCPs,

these data reveal that the enlarged CCPs are somehow hindered

in undergoing scission to become CCVs. This is consistent with

our TEM and super-resolution microscopy data, which showed

an increase in the number and size of CCPs that were associ-

ated with the plasma membrane. Loss of RNASEK also resulted

in decreased CCP-associated ATP6AP1 and ATP6V0B, in addi-

tion to the migration of these factors away the CCP-membrane

junction. Why does the loss of RNASEK or the V-ATPase block

endocytosis and perturb CCPs? Possible mechanisms may

involve RNASEK and V-ATPase interacting with additional com-

ponents to aid DNM2 in endosomal scission. A precedent for

this is seen in Drosophila retina development, where the proteo-

lipid V0 portion of the V-ATPase interacts with SNAREs to

facilitate synaptic vesicle exocytosis (Hiesinger et al., 2005).

However, one issue with this scenario is that the V-ATPase com-

ponents were not detected in all of the CCPs, and one cannot

rule out that RNASEK and the V-ATPase subunits are not simply

trafficking along the endocytic pathway toward their definitive

destination. This last possibility suggests a more downstream

role for RNASEK and the V-ATPase, one in which they generate

a proton gradient and perhaps also act as pH sensors to stimu-

late CCV generation and endocytic flux (Marshansky, 2007).

Support for this notion comes from the production of enlarged

CCPs seen shortly after addition of the proton ionophore

Nigericin. Additional studies are needed to address these possi-

bilities and to elucidate the mechanism by which RNASEK and

the V-ATPase control the early events of endocytosis and viral

replication.

EXPERIMENTAL PROCEDURES

Cell Lines

HeLa H1 cells (#CRL-1958) and WI-38 cells were from ATCC (#CCL-75). HeLa

T4 cells were fromNIHAIDSReagent Repository. Cells were cultured in DMEM

(Sigma) with 5% fetal bovine serum (GIBCO).

Viruses

HRV1A and HRV14 were from ATCC. The HIV-1 IIIB strain is from the NIH AIDS

Repository. DENV serotype 2 New Guinea C is from ATCC. DENV serotypes 3

and 4 are primary isolates from Thailand and were kind gifts from Dr. G.C.

Perng (Tainan University). Pseudotyped viruses were created by co-transfect-

ing pCG-VSV-g or a plasmid expressing the CMV envelope together with pCG-

Gag-Pol and MLV-GFP. IAV A/WSN/33 (WSN/33, H1N1 a kind gift of Dr. Peter

Palese, Mount Sinai School of Medicine), A/Puerto Rico/8/34 H1N1 (PR8), and

A/Aichi/68 (H3N2, X31, Charles River Labs) were propagated and tittered as

previously described (Brass et al., 2009). IAV-infected cells were fixed 14 hr

after infection using 4% paraformaldehyde (PFA, Sigma) in Dulbecco’s PBS

(D-PBS, Invitrogen). IAV-infected cells were immunostained for HA expression

using either an anti-HAmonoclonal (WSN/33Wistar Institute; John et al., 2013)

or anti-NP antibodies (H3N2, Millipore clone H16-L10-4R5 anti-IAV virus

antibody). Pseudoparticles were produced using the noted envelopes as

previously described (Feeley et al., 2011).

Antibodies

For the screens, we used the primary antibody anti-HRV14 V1 capsid antibody

mab17 (kind gift of M.A. Poritz) and the secondary antibody goat anti-mouse

Alex-Flour 488 (Invitrogen).

Immunoblotting

Cell lysates were made with Laemmli buffer and resolved by SDS/PAGE, then

transferred to Immobilon-P membrane (Millipore), and probed with the indi-

cated antibodies in Table 1.

Plasmids

pQCXIP-RNASEK-FLAG (RNASEK-F) was constructed using the pQCXIP

retroviral vector (Clontech) and AgeI and BamHI sites, translation without

FLAG tag (which is on the C terminus): MASLLCCGPKLAACGIVLSAWGVIM

LIMLGIFFNVHSAVLIEDVPFTEKDFENGPQNIYNLYEQVSYNCFIAAGLYLLLG

GFSFCQVRLNKRKEYMVR, transcript Refseq: NM_001004333.4. The human

RAB7-GFP and -RFP constructs were made by cloning the cDNA in frame with

the respective fluorescent protein at the C terminus and expressed from the

lentiviral vector pLVX-puromycin (Clontech), which contains a puromycin

resistance cassette. pLKO.5 shRNASEK was designed using the siRNA

sequence for RNASEK from the Silencer Select siRNA library with a modified

mir25 loop; the sequences for the oligonucleotides are 50-CCGGTAGAACAT

ATACAACCTTTACCTCTCAACACGGTAAAGGTTGTATATGTTCTTTTTTTG-30

and 50-AATTCAAAAAAAGAACATATACAACCTTTACCGTGTTGAGAGGTAAA

GGTTGTATATGTTCTA-30.

Table 1. Antibodies for Immunoblotting Experiments

Primary Antibody Supplier (Catalog No.) Dilutions

FLAG M2 Sigma (F1804) WB (1:1,000)

b-Actin Sigma (A2228) WB (1:5,000)

RAN Sigma (R4777) WB (1:2,000)

ATP6V0A1 Sigma (AV46581) WB (1:1,000)

ATP6AP1 Abcam (176609) WB (1:200)

ATP6V0D1 Abnova (H00009114-M01) WB (1:1,000)

Secondary antibodies are as follows: anti-rabbit horseradish peroxidase

(HRP)-conjugated antibody (catalog number 111-035-003; Jackson

ImmunoResearch) WB (1:10,000) and anti-mouse horseradish peroxi-

dase (HRP)-conjugated antibody (catalog number 115-035-003; Jackson

ImmunoResearch) WB (1:10,000). WB, western blot.
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The oligo nucleotides were annealed then cloned into pLKO.5

(pLKO_TRC005; The RNAi Consortium) after digestion with AgeI and EcoRI re-

striction enzymes. Pseudotyped viruseswere produced using pCG-VSV-g and

ps.PAX2 vectors. pEGFP-N1 ATP13A2 (kanamycin resistant) and pLKO.1

shATP13A2 (sh403, 50-CCGGGCCCATCAACTTCAAGTTCTAGTCGAGTAGA

ACTTGAAGTTGATGGGCTTTTTG-30) were the kind gifts of B. Dehay and C.

Kubisch (Dehay et al., 2012a, 2012b).

Endocytosis Assays

Reagents were CTb-FITC Sigma C1655, hmw dextran AF647 (Life Technolo-

gies; anionic fixable), transferrin AF488 (Life Technologies T13342), soluble

cholesterol (12.5 mg/ml, Sigma, C4951; Kozik et al., 2013), bafilomycin A1

(100 nM with vol/vol matched DMSO control, Sigma, B1793), Nigericin

(5 mM, Sigma N7143), and Filipin (25 mg/ml, Sigma F9765 and F4767). In brief,

cells were plated out the day before in 24-well plates with a rat tail-coated

collagen-coated coverslip (BD). At time zero, we removed the media from

the well and added the substrate-containing solution. We then returned the

plate to the incubator and removed and processed the coverslips at the indi-

cated times post-addition; these time points were selected after time course

optimization experiments. For the CTb and dextran assays, we allowed the

samples to incubate for 20 min at 37�C after addition of the substrate-contain-

ingmedia and thenwashed them twicewith room temperature PBS and added

0.5 ml of room temperature 0.25% trypsin. We let it sit for 1 minute, removed

trypsin, washed it with cold complete media twice, fixed with cold 0.4%

formalin in PBS, and washed it once with PBS. For transferrin, we used a pub-

lished protocol (Tacheva-Grigorova et al., 2013): we removed the media and

washed with cold PBS twice and then incubated for 2 min in cold stripping

buffer (150 mM NaCl, 20 mM HEPES, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2
[pH 5.5]) twice and then washed with cold PBS and fixed with cold formalin

in PBS. The stripping buffer removes the surface bound transferrin but does

not remove the receptor so that it can be stained for below. With the transferrin

entry assay, we co-stained with an antibody against TfR (Purified Mouse

Anti-human CD71, BD PharMingen, cat: 555534) as previously described

(Tacheva-Grigorova et al., 2013). Cholesterol was depleted from cells as pre-

viously described (Subtil et al., 1999) using 10 mMMbCD (Sigma) for 10 min at

37�C. Cholesterol was added to cells using MbCD complexed with cholesterol

(Sigma) for 10 min at 37�C.

Viral Entry Assays

Quantification of viral entry was done by measuring the mean intensity of viral

staining in each cell as delineated by the corresponding DIC image. The inten-

sity of the background for each image was subtracted from the cell’s mean in-

tensity value. Greater or equal to 15 cells were analyzed per condition across

each of three independent experiments. The average and SD for the intensity

of the cells for each condition was calculated and normalized to the NT nega-

tive control condition.
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