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ABSTRACT 
 

During stress, eukaryotes regulate protein synthesis in part through 
formation of cytoplasmic, non-membrane-bound complexes called stress 
granules (SGs). SGs transiently store signaling proteins and stalled 
translational complexes in response to stress stimuli (e.g. oxidative insult, 
DNA damage, temperature shifts and ER dysfunction). The functional 
outcome of SGs is proper translational regulation and signaling, allowing 
cells to overcome stress.  

 
The fatal motor neuron disease Amyotrophic Lateral Sclerosis (ALS) 
develops in an age-related manner and is marked by progressive neuronal 
death, with cytoplasmic protein aggregation, excitotoxicity and increased 
oxidative stress as major hallmarks. Fused in Sarcoma/Translocated in 
Liposarcoma (FUS) is an RNA-binding protein mutated in ALS with roles in 
RNA and DNA processing. Most ALS-associated FUS mutations cause FUS 
to aberrantly localize in the cytoplasm due to a disruption in the nuclear 
localization sequence. Intriguingly, pathological inclusions in human FUS-
ALS cases contain aggregated FUS as well as several SG-associated 
proteins. Further, cytoplasmic mutant FUS incorporates into SGs, which 
increases SG volume and number, delays SG assembly, accelerates SG 
disassembly, and alters SG dynamics.  
 
I posit that mutant FUS association with stress granules is a toxic gain-of-
function in ALS that alters the function of SGs by interaction with SG 
components. Here, I show that mutant FUS incorporates in to SGs via its C-
terminal RGG motifs, the methylation of which is not required for this 
localization. Further, I identify protein interactions specific to full-length 
mutant FUS under stress conditions that are potentially capable of 
interacting with FUS in SGs. Finally, I demonstrate a potential change in the 
protein composition of SGs upon incorporation of mutant FUS. These 
findings advance the field of ALS and SG biology, thereby providing 
groundwork for future investigation. 
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CHAPTER I:  

INTRODUCTION 

 

AMYOTROPHIC LATERAL SCLEROSIS 

Discovery and Clinical Symptoms  

Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s 

disease, was first described in the 19th century as a progressive and fatal 

neurodegenerative disease of the motor system (Charcot and Joffroy, 1869). 

Clinically, ALS is characterized by cumulative neurological deterioration of motor 

neurons. ALS varies in age of onset, site of disease onset, and rate of disease 

progression. The disease presents in one of the following ways: (a) limb onset, 

eventually affecting both the brain stem (upper motor neuron; UMN) and spinal 

cord (lower motor neuron; LMN); (b) bulbar onset, presenting with initial speech 

and swallowing impairments followed by limb features later in the course of the 

disease; (c) primary lateral sclerosis, with exclusive UMN involvement throughout 

disease duration; and (d) progressive muscular atrophy, with exclusive LMN 

involvement throughout disease duration (Traxinger et al., 2013). Patients most 

often present as limb onset (~70%) or bulbar onset (~25%), and a minority 

present with initial trunk or respiratory involvement (~5%) (Kiernan et al., 2011). 

Less typical presentations include weight loss, muscle fasciculation without 

weakness, unintentional laugher or crying, and frontal lobe-based cognitive 

dysfunction (Ferguson and Elman, 2007). Despite the clinical heterogeneity, half 



 

 

2 

of diagnosed patients die from complications of respiratory failure within 30 

months of symptom onset, and ~20% die within 5-10 years. Median survival 

duration of ALS patients is 3–5 years. Bulbar onset, early respiratory 

presentation and older age at onset are associated with reduced survival, 

whereas limb onset disease and younger age at presentation are predictors of 

longer survival (Talbot, 2009). 

 

Incidence and Distribution 

There are 1 to 2 new cases of ALS per 100,000 people, with a total of ~5 

per 100,000 total cases, each year in the United States. To put this math in 

perspective, the rate implies that 500,000 people alive in the U.S. today will 

someday die of ALS (Sreedharan and Brown, 2013). 

The worldwide incidence of ALS is not known (Alappat, 2007), but ALS in 

Europe occurs at a rate 2.16 per 100,000 person-years based on population 

studies. The lifetime risk of ALS is 1:400 for women and 1:350 for men, and the 

peak age of onset is 58–63 years for SALS disease and 47–52 years for FALS 

disease. ALS presentation in people diminishes beyond 80 years of age, in 

contrast to Alzheimer’s disease (Logroscino et al., 2010). 

 

Environmental Risk Factors 

Several environmental risk factors exist for ALS. For example, disease 

manifestation in adulthood may be driven, in part, by early life exposure to 
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infection. Evidence from a Swedish case-control study showed that exposure to 

younger siblings, and thus more frequent viral exposure, put people at a 

significantly increased risk of developing ALS (Fang et al., 2008). 

Other environmental risk factors for ALS during developing years also 

exist, such as repeated exposure to physical impact. Specifically, participation in 

high impact sports increases the likelihood of developing ALS, as retrograde 

studies of Italian and British football players reveal (Chio et al., 2005; Harwood et 

al., 2009; Wicks et al., 2007). Active duty in the armed forces in the United States 

also correlates a higher incidence of ALS (Kasarskis et al., 2009).  

In addition to internal stressors resulting from infection or injury, external 

toxin exposure is also linked to ALS. Cigarette smoking has a dose-dependent 

effect on the development of ALS (Gallo et al., 2009). Another neurotoxin, β-

methyl-amino-L-alanine, was found in high concentrations in the brains of 

patients during a co-epidemic of ALS and Parkinson’s on the island of Guam. 

This crisis was driven by consumption of flying foxes, which feed on cycad seeds 

enriched with the toxic amino acid derivative (Cox and Sacks, 2002). These 

studies therefore suggest a failure of recovery from toxic stress conditions as a 

potential risk factor for developing ALS. 

Genetic Contributions 

Like many other neurodegenerative diseases, the degenerating neurons 

of ALS patients are characterized by the accumulation of protein aggregates 

(Forman et al., 2004). Though the precise mechanisms of ALS pathogenesis are 
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still unknown, evidence implicates the disruption of molecular pathways by many 

genetic factors. As a whole, 90% of ALS cases are sporadic in nature (referred to 

as “SALS”), as patients present with no family history of the disease. The 

remaining 10% of cases are familial in nature (referred to as “FALS”) and present 

with Mendelian genetic inheritance. Currently, an identifiable genetic cause has 

been identified for 20% of SALS cases and 60% of FALS cases. Mutations in 

over 32 genes and genetic loci are now implicated in ALS pathogenesis (Figure 

I.1) (Sreedharan and Brown, 2013). 

The first gene identified as causative in FALS was SOD1 in 1993 (Rosen 

et al., 1993). Mutations in SOD1 account for ~20% of FALS cases. The 

mechanism of SOD1-mediated motor neuron death is not yet understood, but 

current understanding links the mutations to a toxic gain of function of the SOD1 

enzyme rather than a loss of function. Patients with SOD1 mutations exhibit 

increased free radical levels. Further, SOD1 mutations destabilize the SOD1 

protein, resulting in intracellular aggregate formation that inhibits proteasomal 

function, disrupts axonal transport, and activates microglia (Bruijn et al., 1997; 

Bruijn et al., 1998; Rotunno and Bosco, 2013; Rotunno et al., 2014; Williamson 

and Cleveland, 1999; Zetterström et al., 2007). 

Following the SOD1 discovery, genetic association studies and candidate 

gene screening identified rare ALS-related mutations in the alsin, senataxin 

(SETX), dynactin (DCTN1), and VAPB genes (Chance et al., 1998; Hadano et 

al., 2001; Nishimura et al., 2004; Puls et al., 2003; Yang et al., 2001). 
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Figure I.1: Mutations in ALS genes to date. The rate of discovery of genes 
with mutations that cause amyotrophic lateral sclerosis is depicted on the y-axis 
versus year of discovery on the x-axis. Italics indicate that the gene is found in 
sporadic cases (SALS), whereas otherwise genes are familial in nature (FALS). 
Green indicates RNA-binding proteins, and Underline indicates stress granule-
associated proteins. This figure was generated with inspiration from Sreedharan 
and Brown, 2013. 
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In 2006, a major milestone came with the identification of the RNA-binding 

protein, tar-DNA binding protein 43 (TDP-43), as the major component of the 

cytoplasmic protein inclusions in most ALS and FTLD cases (Arai et al., 2006; 

Neumann et al., 2006). Mutations in the TDP-43 gene (TARDBP) were reported 

two years later to cause ~4% of FALS (Kabashi et al., 2008; Sreedharan et al., 

2008). Based on the homology between the TARDBP and the gene encoding the 

RNA-binding protein Fused In Sarcoma (FUS), mutations in the FUS gene were 

subsequently identified in FALS patients in 2009. The FUS protein, also RNA-

binding, was found in cytoplasmic inclusions in ALS patients with FUS mutations 

(Kwiatkowski et al., 2009; Vance et al., 2009) as well as in rare cases of TDP-43-

negative FTLD (Munoz et al., 2009; Neumann et al., 2009a; 2009b). FUS is 

discussed in detail in a subsequent section.  

TDP-43 and FUS were the first of several additional RNA-binding proteins 

discovered to cause ALS and other degenerative diseases (King et al., 2012). 

For example, wild-type TAF15 and EWSR1 are now associated with SALS, as 

they are aberrantly translocated and present as aggregate components in the 

cytoplasm of degenerating neurons (Couthouis et al., 2011; Couthouis et al., 

2012; Neumann et al., 2011; Ticozzi et al., 2011). 

Expanding on the RNA-focused class of FALS proteins, an abnormal 

intronic expansion of a hexanucleotide repeat (GGGGCC) in the C9ORF72 gene 

was identified as a common genetic cause of both FTLD and ALS (DeJesus-

Hernandez et al., 2011b; Gijselinck et al., 2012; Renton et al., 2011). These 
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intronic repeats are intriguingly translated into dipeptide repeat (DPR) proteins, 

leading to widespread neuronal aggregates of DPR proteins in C9orf72 

mutations carriers (Mori et al. 2013 and Ash et al. 2013). In addition, the intronic 

DNA repeat forms G-quadruplexes, a strong binding motif for many RNA-binding 

proteins (Darnell, 2013).  

Mutations in sequences encoding the prion-like domain of hnRNPA1 and 

hnRNPA2/B1 were further discovered to be connected with both FALS and SALS 

(Kim et al., 2013). These prion mutations introduce a steric zipper, which 

promotes self-complementary amyloid fibril formation (Sawaya et al., 2007) and 

accelerates hnRNPA1 and hnRNPA2/B1 misfolding (Kim et al., 2013). Finally, 

hnRNPA3 is mislocalized and forms cytoplasmic inclusions in ALS and FTLD 

cases harboring C9ORF72 repeat expansions (Mori et al., 2013). Collectively, 

these findings implicate RNA-binding proteins as major players in 

neurodegenerative disorders.  

 

Similarities to Frontotemporal Lobar Dementia 

ALS and Frontotemporal Lobar Dementia (FTLD) are related disorders 

with overlapping clinical symptoms, pathology and genetics. FTLD is the second 

most common cause of dementia in people under the age of 65 and is marked by 

cortical degeneration in the frontal and temporal lobes of the brain. Clinically, this 

syndrome is distinguished from Alzheimer’s disease in its initial preservation of 
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memory. FTLD symptoms include progressive alterations in behavior, language 

and personality (Rademakers et al., 2012).  

Intriguingly, 15% of patients initially diagnosed with ALS also meet the 

clinical criteria of FTLD, and 30–50% of the remaining ALS pool present with 

milder cognitive decline during disease progression. Conversely, 15% of initial 

FTLD patients also meet ALS clinical criteria, with ~30% of remaining FTLD 

cases exhibiting minor motor neuron dysfunction.  It is thus highly likely that ALS 

and FTLD lie on the same disease continuum (Lomen Hoerth et al., 2002).  

Clinical overlap between ALS and FTLD is explained by common genetic 

factors. Non-mutated TDP-43 is a major component of the cytoplasmic inclusions 

in most ALS and FTLD cases (Arai et al., 2006; Neumann et al., 2006), while 

inclusions staining positively for endogenous FUS protein are found in rare cases 

of TDP-43-negative FTLD (Munoz et al., 2009) (Neumann et al., 2009b) 

(Neumann et al., 2009a). Moreover, in 2011, hexanucleotide repeat (GGGGCC) 

expansions in an intron of the C9ORF72 gene was identified as a common 

genetic cause of both FTLD and ALS (DeJesus-Hernandez et al., 2011a; 

Gijselinck et al., 2012; Renton et al., 2011), leading to widespread neuronal 

aggregates of dipeptide repeat proteins (Mori et al., 2013; Ash et al., 2013).  

Genetic overlap between ALS and FTLD is not complete, however, as 

some genetic mutations and protein deposits are unique to either FTLD or ALS. 

Progranulin (PGRN) and tau (MAPT) mutations, for instance, cause a purely 

FTLD phenotype. Conversely, mutations in SOD1, TARDBP (TDP-43) or FUS 
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cause a purely ALS phenotype (Seelaar et al., 2010). Interestingly, protein 

inclusions between patients with mutated, ALS-associated FUS and those with 

wild-type, FTLD-associated FUS both contain FUS but have an otherwise distinct 

protein composition (Neumann et al., 2011). This data suggests separate 

disease mechanisms with some common themes.  

 

RNA-BINDING PROTEINS IN ALS: LINK TO STRESS GRANULES 

Introduction to Stress Granules 

Eukaryotic cells have evolved sophisticated strategies to combat cellular 

stresses, which include heat shock, chemical toxicity, oxidative stress, and the 

protein misfolding accumulated during aging (Morimoto, 2011). During stress, 

cells must conserve energy to concentrate cellular resources toward restoring 

homeostasis. Under oxidative stress, for example, certain mRNAs, including 

mRNAs encoding stress protective molecules, increase in association with 

ribosomes, while others are blocked from translation (Bozaykut et al., 2014; 

Shenton et al., 2006). Eukaryotes organize mRNA resources and regulate 

protein synthesis, in part, through rapid assembly of cytoplasmic, non-

membrane-bound complexes called stress granules (SGs) (Buchan and Parker, 

2009; Kedersha and Anderson, 2002). Stress granules are aggregate-like 

structures selectively composed of transiently stored proteins and stalled mRNA 

translational complexes that form in response to translational arrest following a 

stress stimulus (e.g. oxidative insult, DNA damage, temperature shifts, ER 
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dysfunction, and viral infection) (Anderson and Kedersha, 2008). When stress 

granule formation is inhibited during stress, either by agents that inhibit 

translation termination or by disruption of cytoskeletal tracks upon which they 

form, cells die more readily (Loschi et al., 2009). Therefore, stress granule 

integrity is important for the cellular survival mechanisms in stress response. 

Stress granule composition includes mRNA-bound, translationally stalled 

48S pre-initiation complexes (e.g. eIF3, eIF4E and eIF4G) as well as proteins 

involved in mRNA stabilization, processing and transport, such as polyA-binding 

protein 1 (PABP1), T cell internal antigen-1 (TIA-1), and Ras-GTPase-activating 

protein SH3-domain-binding protein (G3BP) (Kedersha et al., 1999; 2005; 

Kimball et al., 2003). These proteins are essential to stress granule assembly 

and serve as specific stress granule “nucleators” (Anderson and Kedersha, 

2008). Stress granules also sequester signaling proteins, facilitating cell survival 

during stress (Arimoto et al., 2008).  

Importantly, RNA and RNA-binding proteins localize to stress granules in 

a differentially regulated manner, resulting in a different composition depending 

on the source of stress (Shah et al 2013).  For instance, storage of mRNA in 

stress granules blocks their degradation and allows cells to efficiently and rapidly 

restore synthesis of vital proteins following recovery from cell stress (Lavut and 

Raveh, 2012). Stress granules also regulate mRNA degradation through 

exchange with another RNA granule type called P-bodies, which contain RNA 

degradation machinery like the RNA-induced silencing complex (RISC) and 
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p54/RCK (DDX6). P-bodies physically interact with stress granules to receive 

specific sets of mRNA for their temporally regulated degradation (Jain and 

Parker, 2013). Therefore, stress granule formation appears to be critical to 

reprogram mRNA translation under adverse conditions to facilitate adaptive 

stress responses (Anderson and Kedersha, 2008). 

Conversely, mRNAs encoding for proteins necessary for stress response 

escape sequestration in stress granules and P-bodies and instead enter 

translation via ribosome docking on internal ribosome entry sites (IRES) in a 

limited set of mRNA (Spriggs et al., 2010; Stöhr et al., 2006; Thakor and Holcik, 

2012). While stress conditions stall cap-dependent translation (Clemens et al., 

2000), this cap-independent mechanism allows a group of mRNAs to be actively 

translated despite overall suppression of translation initiation. A limited, 

specialized set of mammalian mRNAs contain cellular IRES elements and utilize 

IRES-dependent translation during stress conditions such as oxidative stress and 

apoptosis (Bushell et al., 2006; Nevins et al., 2003). The balance between 

protein signaling, mRNA translation, mRNA silencing, and mRNA decay 

facilitated by stress granules result in nuanced translational regulation that allows 

cells to overcome stress.  

 

Stress Granule Assembly and Disassembly 

Stress granules assemble under conditions of acute stress when actively-

translating polysomes disassemble. Experimental stressors that induce stress 
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granule formation include oxidative stress induced by arsenite or hydrogen 

peroxide, disruption of the ubiquitin-proteasome system (UPS), thermal stress, 

endoplasmic reticulum stress induced by thapsigargin or tunicamycin, 

mitochondrial stress induced by clotrimazole, DNA damage, viral infection, and 

osmotic shock induced by exposure to sorbitol (Hofmann et al., 2012; Kedersha 

and Anderson, 2007; Lloyd, 2012; Mazroui et al., 2007; Sama et al., 2013). Small 

molecules that inhibit translation initiation also induce stress granules (Kedersha 

et al., 1999). Collectively, these stimuli impair translation initiation via eIF2a-

dependent or eIF2a-independent pathways, ultimately leading to translational 

arrest.  

eIF2a-dependent stress granule assembly occurs when stress stimuli 

activate specific serine/threonine kinases (i.e. heme-regulated initiation factor 2α 

kinase (HRI), protein kinase R (PKR), PKR- like endoplasmic reticulum kinase 

(PERK), general control non-derepressible 2 (GCN)) (Anderson and Kedersha, 

2008). These kinases phosphorylate and inactivate the α-subunit of eIF2 

(Kedersha et al., 1999), which inhibits translation initiation by impairing 

production of the ternary complex (eIF2-GTP-Met-tRNAiMet). The ternary 

complex binds to the 40S small ribosomal subunit to initiate mRNA scanning 

(Aitken and Lorsch, 2012). As a result of the decreased availability of eIFs and 

ternary complexes, translation cannot be initiated. eIF2a-independent stress 

granule assembly occurs when chemicals (e.g. hippuristanol, pateamine A) 

inhibit eIF4A helicase, which is required for ribosome recruitment during 
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translation initiation. Thus, when the eIF4A helicase is impaired, translation 

initiation is stalled regardless of eIF2a inhibition (Bordeleau et al., 2005; 2006; 

Low et al., 2005; Mazroui et al., 2006; Mokas et al., 2009). The result of both 

pathways is ribosome run-off from the transcript, a failure to reload new 

ribosomes, and a stalled 48S pre-initiation complex bound to the 5′ UTR of 

mRNA (Anderson and Kedersha, 2008).  

The next step in stress granule assembly, termed nucleation, is not fully 

understood. However, studies revealed that aggregation-prone RNA-binding 

proteins, such as G3BP, TIA-1 contain prion-like domains and polyglycine-rich 

domains, which confer the ability to reversibly aggregate (Gilks et al., 2004). The 

primary aggregation of these proteins with stalled mRNA transcripts promotes 

protein-protein and protein-mRNA interactions by proteins such as poly-A-binding 

protein (PABP1), YB-1 (YBOX1), and fragile X mental retardation proteins 

(FMRP/FXR1).  From here, additional secondary protein–protein and protein-

RNA interactions accelerate clustering into microscopically visible stress 

granules (Anderson and Kedersha, 2008; Kim, 2006; Tourrière et al., 2003).  

Once formed, stress granules are reversible and do not have all the properties of 

aggregates typically associated with neurodegenerative diseases, as they lack 

insoluble β-sheets (Gilks et al., 2004). 

Additional post-translational modifications may play an important role in 

regulating stress granule assembly or the recruitment of RNA-binding proteins to 

stress granules. One post-translational modification linked to stress granules is 
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arginine methylation by peptidylarginine methyltransferases (PRMTs). The stress 

granule proteins FMRP, Cold Inducible RNA Binding Protein (CIRP) and even 

FUS have RGG motifs that can be methylated, and all have been shown to be 

methylated in stress granules (De Leeuw et al., 2007; Dolzhanskaya et al., 2006; 

Dormann et al., 2012).  In addition to arginine methylation, proteins modified with 

poly(ADP)-ribose accumulate in stress granules. Interestingly, the depletion of 

key poly(ADP)-ribose phosphatases (PARPs) or overexpression of poly(ADP)-

ribose glycohydrolases (PARGs) impairs stress granule formation, suggesting 

that poly(ADP)-ribose modifications are important for proper stress granule 

formation (Leung et al., 2011; Shi, 2012). Possible functional explanations are 

that these molecules act as a molecular scaffold in the coalescence and stability 

of stress granule structure.  

Eventually, stress conditions either resolve or the cell enters into cell 

death pathways. Upon recovery from sub-lethal stress conditions, stress 

granules rapidly disassemble and translation recommences (Kedersha et al., 

1999). The restoration of polysomes from 48S pre-initiation complexes in stress 

granules requires chaperones and can be promoted by staufen overexpression 

(Thomas et al., 2009). Further, disassembly is regulated by the dual specificity 

tyrosine-phosphorylation-regulated kinase 3 (DYRK3). In its inhibited state, 

DYRK3 remains associated with stress granules and prevents their dissolution 

through retention of sequestered mTORC1. Upon activation after stress is 

relieved, the kinase activity of DYRK3 reactivates mTORC1 signaling and 
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subsequent stress granule disassembly (Wippich et al., 2013). The drugs 

cycloheximide and emetine can also dissolve pre-formed stress granules without 

the resolution of stress by stalling ribosomes on translating mRNA during 

elongation, inhibiting ribosome run-off and pushing the dynamic equilibrium of 

stress granules toward disassembly (Kedersha et al., 2000; Kozak et al. 2006).  

 

Stress Granules in Neurodegeneration 

Stress granules occur not only in cultured cells, but also in vivo, as seen in 

Drosophila muscles under osmotic stress (van der Laan et al., 2012) and in 

mouse neurons under oxidative stress (Jamison et al., 2008; Kayali et al., 2005). 

Stress granules also form in the brain tissues of rats after experimentally-induced 

acute traumatic brain injury (Kim et al., 2006). Further, chronic stress-inducing 

states exacerbate stress granule formation, such as the lasting physical damage 

associated with traumatic encephalopathy (Goldstein et al., 2012) or oxidative 

stress associated with aging (Ghezzi and Bonetto, 2003), creating the conditions 

for pathological stress granule dysfunction. Traumatic brain injury, vascular 

damage, oxidative stress, and chronic viral infections are risk factors for ALS and 

FTLD (Barber and Shaw, 2010; De Chiara et al., 2012; Garbuzova-Davis et al., 

2011; Gavett et al., 2011; Piazza et al., 2004). Thus, in circumstances where the 

brain is vulnerable, the potential importance of proper stress granule function 

becomes apparent. 
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Importantly, most RNA binding proteins linked to neurodegenerative 

diseases associate with stress granules in vitro. ALS-causing FUS (Figure I.2), 

ataxin-2, TDP-43, optineurin and angiogenin variants all co-localize with stress 

granules in stressed cells, among others (see Figure I.1) (Bosco et al., 2010; 

Colombrita et al., 2009; Hart and Gitler, 2012; Liu-Yesucevitz et al., 2010a). 

Mutations in genes encoding for stress granule proteins are found not only in 

ALS, but in several degenerative disorders including Alzheimer’s disease (AD), 

Huntington’s disease and inclusion body myopathy (Goggin et al., 2008; Li et al., 

2013; Vanderweyde et al., 2013).  

Potential stress granule pathology from neurodegeneration-causing RNA-

binding proteins may lie in their propensity to aggregate, as biochemical 

fractionation of cellular lysates reveals a gradient in the solubility potential of 

stress granule-associated proteins. For example, stress granule nucleating RNA-

binding proteins such as TIA-1, TTP and G3BP form semi-soluble aggregates 

(Vanderweyde et al., 2012). In contrast, pathological aggregates of tau, β-

amyloid, TDP-43 and FUS are highly insoluble in inclusions within the brain 

tissue of subjects with AD and FUS-ALS (Bosco et al., 2010; Huang et al., 2010; 

Liu-Yesucevitz et al., 2010a; Vanderweyde et al., 2012). Strikingly, stress granule 

proteins, such as TIA-1, eIF3 and PABP1, co-localize with these neuronal 

inclusion in FUS-ALS and AD (Vanderweyde et al., 2012; Woulfe et al., 2010), 

suggesting a common pathway between neurodegeneration and stress granule 

biology. 
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FUSED IN SARCOMA 

Discovery of FUS 

Fused in Sarcoma (FUS), also known as Translocated in Liposarcoma 

(TLS), was discovered in 1993 as the N-terminal portion of an aberrantly fused 

gene pair in human myxoid liposarcomas. In these deep soft tissue cancers, a 

chromosomal translocation in the DNA code results in the fusion of the N-

terminus of the FUS protein to the DNA-binding domain of other transcription 

factor proteins, such as (CHOP) (Crozat et al., 1993; Rabbitts et al., 1993) and 

(ERG) (Ichikawa et al., 1994), resulting in cancer-causing “oncogenes”. Until its 

discovery as a causative gene in ALS, FUS research was centered on its role in 

these cancers and on the mechanisms by which its N-terminus promotes 

oncogenic transformation (Kovar, 2010).  

In 2009, two groups concurrently discovered that mutations in the FUS 

gene cause a subset of FALS, the pathogenesis of which included FUS protein 

depositions in pathological brain and spinal cord tissue inclusions (Kwiatkowski 

et al., 2009; Vance et al., 2009).  Endogenous, or non-mutated, FUS deposits 

were also found in the brain inclusions of a subset of FTLD patients (Munoz et 

al., 2009; Neumann et al., 2009a; 2009b).  

 

Family Characteristics of FUS 

FUS is a member of the “FET” protein family, named after its three core 

members, Fused in Sarcoma (FUS), Ewing sarcoma protein (EWS) and TATA 
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binding protein-associated factor 15 (TAF15). Each protein member, while not 

yet exhaustively characterized, has apparently similar roles in transcription and 

splicing (Tan and Manley, 2009). EWS and TAF15 exhibit the same domain 

structure organization as FUS, including a PY-NLS nuclear localizing signal (Lee 

et al., 2006; Marko et al., 2012; Zakaryan and Gehring, 2006), and each also 

forms fusion oncogenes in a several cancers (Tan and Manley, 2009). TAF15 

and EWSR1 have recently been linked with ALS and FTLD, as they are found 

translocated and aggregated in the cytoplasm of degenerating neurons 

(Couthouis et al., 2011; Couthouis et al., 2012; Neumann et al., 2011; Ticozzi et 

al., 2011).  Though TAF15 and EWS co-accumulate with FUS in neuronal 

cytoplasmic inclusions of FTLD patients (Davidson et al., 2012), this co-

deposition does not occur in ALS. Hence, FTLD may involve dysfunction of the 

entire FET family, while ALS caused by mutant FUS appears specific to FUS 

dysfunction.  

 

Domains and Structure of FUS 

The FUS gene encodes a 526 amino acid protein marked by transcription 

activation and RNA/DNA binding domains (Figure I.2). The N-terminal, prion-like 

transcriptional activation domain is rich in QGSY residues (“QGSY”) and is a 

potent transcriptional activator when fused to the DNA binding domain of other 

transcription factors (Zinszner et al., 1994; Prasad et al. 1994), such as CHOP in 

myxoid liposarcoma (Crozat et al., 1993; Rabbitts et al., 1993). Moreover, the  
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QGSY domain was predicted to contain prion-like patterns via bioinformatics 

approaches. QGSY is also required for in vitro aggregation of FUS into 

filamentous structures (Kato et al., 2012; Sun et al., 2011). 

In addition to transcriptional activation domains, FUS contains multiple 

domains with nucleic acid binding motifs: A glycine-rich domain (Gly), an RNA 

recognition motif (RRM), two arginine–glycine–glycine (RGG) motifs, and a zinc 

finger (ZnF) (Burd and Dreyfuss, 1994) (Figure I.2). Different in vitro studies 

suggested that the RGG1-ZnF-RGG2 region of FUS is most likely the major RNA 

binding domain that binds GU-rich sequences and G-quadruplexes (Bentmann et 

al., 2012; Iko et al., 2004; Lerga et al., 2001). Both the RRM and RGG domains 

are involved in binding RNA, but less is known about the respective roles of 

these domains in vivo (Bentmann et al., 2012; Daigle et al., 2012; Iko et al., 

2004; Lerga et al., 2001). 

Finally, at its very C-terminus FUS features a non-classical nuclear 

localization signal  (NLS), composed of a proline–tyrosine NLS (PY-NLS) 

(Dormann et al., 2010; Zhang and Chook, 2012). Although nuclear pore 

complexes are freely permeable to proteins smaller than ~40 kDa, larger proteins 

like FUS require an active mechanism that includes nuclear transport factors 

such as karyopherins and the small GTPase Ran to control the directionality of 

the transport. Kaps recognize NLS motifs that guide their cargo into the nucleus 

(Strambio-De-Castillia et al., 2010). The FUS NLS is recognized by the nuclear 

import receptor Karyopherin β2 (Transportin), which shuttles PY-NLS-containing 
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proteins from the cytoplasm into the cell nucleus in a RanGTP-dependent 

manner (Lee et al., 2006). Dominant mutations that cause FALS are located 

within the NLS and destroy the effectiveness of this signal, disrupting Transportin 

binding and nuclear import of FUS (Bosco et al., 2010; Dormann et al., 2010; Gal 

et al., 2011; Ito et al., 2011; Kino et al., 2010; Niu et al., 2012; Zhang and Chook, 

2012). The cytoplasmic retention of mutant FUS is a key event in ALS 

pathogenesis because severely mislocalized variants (e.g. P525L and R495X) 

cause an unusually early disease onset and rapid disease progression (Bosco, et 

al., 2010; Dormann and Haass, 2011; Dormann et al., 2010; Niu et al., 2012; 

Zhang and Chook, 2012).   

 

Localized Functions and Interactions of FUS 

FUS functions across several gene expression avenues at the DNA, RNA, 

and protein level. In particular, FUS is associated with key cellular functions such 

as DNA damage repair, RNA processing and local translation, and these 

functions depend on the sub-cellular localization of FUS (Sama et al., 2014).  

At the DNA level, nuclear endogenous FUS binds both single- and double-

stranded DNA, associates with higher order DNA structures such as D-loops and 

G-quadruplexes, and participates in homologous DNA pairing (Akhmedov et al., 

1995; Baechtold et al., 1999; Bertrand et al., 1999; Takahama et al., 2013). FUS 

is a transcriptional factor and regulates the expression of several genes (Yang et 

al., 2014). FUS is also located at telomeres, where it regulates telomere length 
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(Takahama et al., 2009; 2013). Another important nuclear role of FUS is DNA 

damage repair, as it rapidly localizes to sites of laser-induced DNA damage 

(Dutertre et al., 2014; Mastrocola et al., 2013; Rulten et al., 2013; Wang et al., 

2013). 

At the RNA level, FUS is a heteronuclear ribonuclear protein (hnRNP), 

also known as hnRNP P2 (Calvio et al., 1995). Early studies using EMSA 

(electrophoretic mobility shift assays) analyses showed a preference for FUS to 

bind GGUG motifs in RNA (Lerga et al., 2001), though that notion was put into 

question by recent deep-sequencing studies of mRNAs bound by FUS in vivo, 

which have generated mixed findings on RNA motif preference (Colombrita et al., 

2012; Hoell et al., 2012; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; 

Nakaya et al., 2013; Rogelj et al., 2012). Despite the disparity in binding motif, 

these studies show that FUS binds long mRNA introns.  

An important nuclear-based role FUS plays is the regulation of pre-mRNA 

splicing. FUS associates with members of the spliceosome (Meissner et al., 

2003; Yang et al., 1998) and regulates 5’-splicing of E1A pre-mRNA (Hallier et 

al., 1998; Lerga et al., 2001). Indeed, FUS binds hundreds of mRNA introns 

including its own mRNA, thus implicating it in self-regulation (Lagier-Tourenne et 

al., 2012; Ling et al., 2013; Nakaya et al., 2013).  

Roles for FUS that center on RNA continue into the cytoplasm, as FUS is 

capable of shuttling (Zinszner et al., 1997) via Transportin (Dormann et al., 2010) 

and an export mechanism shown to be consistent with that of  Exportin-1 (Kino et 
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al., 2011). FUS transports RNA from the nucleus to the cytoplasm and distant 

regions of the cell (Zinszner et al., 1997) via several motor proteins, including the 

ATP-dependent actin binding myosin motors Myo5A (Yoshimura et al., 2006) and 

Myo6  (Takarada et al., 2009), and the microtubule-dependent kinesin motor 

protein KIF5B (Kanai et al., 2004). The association of FUS with such transport 

machinery may be important for FUS mediated local translation at distal regions 

of the cell, such as dendrites (Fujii et al., 2005; Fujii and Takumi, 2005; Yasuda 

et al., 2013). At dendrites, FUS is believed to facilitate local translation of actin-

associated proteins necessary for spine plasticity, such as Nd1-L (Fujii and 

Takumi, 2005). FUS knockout mice support this notion, as they exhibit abnormal 

spine morphology and attenuated spine density in hippocampal pyramidal 

neurons (Fujii et al., 2005). Moreover, translation of kank-2 (KN motif and ankyrin 

repeat domains 2), a component of actin remodeling, is dependent upon FUS 

expression (Yasuda et al., 2013). Thus, local and temporal FUS localization may 

have a significant impact on cell fate through its roles involved with RNA-binding 

and processing. 

 

Cytoplasmic Mutant FUS Localizes to Stress Granules and Alters Their 

Morphology, Formation and Dynamics 

ALS-associated mutations in the NLS of FUS causes cytoplasmic 

mislocalization and sequestration of FUS into stress granules under conditions of  
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Figure I.3: Mutant FUS localizes to stress granules. (A) In the absence of 
stress, GFP-FUS WT is localized to the nucleus, whereas GFP-FUS R521G and 
R495X (green) mislocalize to the cytoplasm. (B) GFP-FUS R521G and R495X 
co-localize with the stress granule marker TIAR (red), formed in response to 
arsenite stress. This figure was adapted from Bosco et al., 2010. 
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acute stress (Figure I.3) (Bentmann et al., 2012; Bosco et al., 2010; Dormann et 

al., 2010; Ito et al., 2011; Kato et al., 2012). FUS expression is not required for 

stress granule formation (Aulas et al., 2012; Blechingberg et al., 2012). Under 

almost all stressors tested, endogenous or ectopically expressed WT FUS 

remains predominantly nuclear and is thus largely excluded from cytoplasmic 

stress granules, though modest association of WT FUS has been reported under 

over-expression conditions (Andersson et al., 2008; Blechingberg et al., 2012; 

Goodier et al., 2007). To date, only osmotic stress is known to cause 

translocation of endogenous FUS from the nucleus to cytoplasmic stress 

granules (Sama et al., 2013). Mutant FUS expression at endogenous levels does 

not induce spontaneous stress granule formation; rather, additional stress is 

required for stress granule formation and subsequent FUS localization. 

Overexpression of FUS mutants by transient transfection induces stress granule 

formation a priori of additional stress, though the physiological relevance of this 

phenomenon is under debate (Baron et al., 2013; Gal et al., 2011; Ito et al., 

2011; Kino et al., 2011). All ALS-causing FUS mutations that disrupt the NLS that 

have been tested to date localize to stress granules, though to degrees that 

correlate with the extent of mislocalization. In fact, the P525L and R495X 

mutations in FUS, which abolish Transportin binding, cause nearly complete FUS 

localization to the cytoplasm, are associated with a relatively early onset of ALS, 

and localize most robustly to stress granules (Bosco et al., 2010; Dormann et al., 

2010; Zhang and Chook, 2012).  
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Our group recently discovered that mutant FUS association with stress 

granules promotes several morphological and kinetic abnormalities, part of the 

published work that encompasses my study in Chapter II (Baron et al., 2013). 

Namely, under conditions of arsenite stress, we show that mutant FUS delays 

stress granule formation in mammalian cell culture (Appendix IV, Figures 1 and 

2). Once sodium arsenite-induced stress granules are formed, however, those 

containing mutant FUS are more dynamic, larger and more abundant compared 

to stress granules lacking FUS (Appendix IV, Figures 3 and 4). Finally, upon 

removal of stress, stress granules disassemble more rapidly in cells expressing 

cytoplasmic mutant FUS (Appendix IV, Figure I).  The consequent alterations in 

stress granule functional output caused by the cytoplasmic mislocalization of 

mutant FUS likely promotes conditions that favor neurodegeneration in ALS 

(Bosco et al., 2010; Sun et al., 2011), a hypothesis that is therefore the 

foundation of my dissertation.  

 

4. PROJECT SUMMARY 

The fatal motor neuron disease Amyotrophic Lateral Sclerosis (ALS) 

develops in an age-related manner and is marked by progressive neuronal 

death, with cytoplasmic protein aggregation and increased oxidative stress as 

major hallmarks. Fused in Sarcoma/Translocated in Liposarcoma (FUS) is an 

RNA-binding protein mutated in ALS that aberrantly localizes in the cytoplasm 

due to a disruption in the nuclear localization sequence. Pathological inclusions 
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in human FUS-ALS cases contain aggregated FUS as well as several stress 

granule-associated proteins (Woulfe et al., 2010). Further, cytoplasmic mutant 

FUS incorporates into stress granules, which increases their volume and 

number, delays their assembly, accelerates their disassembly, and alters their 

dynamics (Baron et al., 2013).  

I posit in this work that mutant FUS association with stress granules is a 

toxic gain-of-function in ALS that alters the function of stress granules by 

interaction with stress granule components. Here, I show that mutant FUS 

incorporates in to stress granules via its C-terminal RGG motifs, the methylation 

of which is not required for this localization (Appendix IV). Further, I identify 

protein interactions specific to full-length mutant FUS under stress conditions that 

are potentially capable of interacting with FUS in stress granules.  I also identify 

proteins that differentially associate with mutant FUS over WT FUS in stressed 

and unstressed conditions, providing groundwork for an expanded set of 

biological questions. Finally, I demonstrate a potential change in the protein 

composition of stress granules upon incorporation of mutant FUS (Chapter II). 

These findings advance the understanding of pathogenic mechanisms in ALS as 

well as the knowledgebase within the field of stress granule biology.  
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PREFACE TO CHAPTER II 

 

Laura Kaushansky (LK) planned and performed the majority of experiments. Dr. 

John Leszyk (JL) and Dr. Kristin Boggio (KB) performed mass spectrometry runs; 

Dr. Daryl Bosco (DB), Dr. Melissa Rotunno (MR), and Maeve Tischbein (MT) 

contributed to the design and data interpretation for experiments.  

In addition to the work discussed in Chapter II, the following related proteomics 

data is presented in Appendix I: 

Table A1.1 – Enriched proteins identified in full-length FLAGHA-FUS  

FUS-P525L-FL IPs over FLAG control IPs under stress 

conditions. 
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CHAPTER II:  

ASSESSING MUTANT FUS INTERACTIONS IN STRESS GRANULES AND 

THE SUBSEQUENT EFFECTS ON STRESS GRANULE COMPOSITION 

 

INTRODUCTION 

Mutations in the gene encoding fused in sarcoma/ translocated in 

liposarcoma (FUS) cause inherited cases of amyotrophic lateral sclerosis (ALS) 

(Kwiatkowski et al., 2009; Vance et al., 2009). ALS is a fatal neurodegenerative 

disease marked by motor neuron death, progressive muscle weakening and 

paralysis (Bosco and Landers, 2010; Kiernan et al., 2011). Most ALS-linked FUS 

mutations are located within the C-terminal nuclear localization signal (NLS) that 

binds the import factor Transportin, leading to an impairment of FUS import from 

the cytoplasm to the nucleus (Dormann et al., 2010; 2012). FUS is mainly 

nuclear in most cell types (Andersson et al., 2008) but also has nucleo-

cytoplasmic shuttling activity important for mRNA transport (Zinszner et al., 

1997), where it is thought to play a role in local translation at neuronal dendrites 

(Fujii et al., 2005; Fujii and Takumi, 2005; Lagier-Tourenne et al., 2012). 

Disruption of Transportin binding to FUS leads to cytoplasmic accumulation of 

FUS in cultured mammalian cells and in vivo (Dormann et al., 2010; Lanson and 

Pandey, 2012).  

Cytoplasmic mutant FUS, including R521G, R495X and P525L, localizes 

to stress granules upon stress induction (Bentmann et al., 2012; Bosco et al., 
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2010; Daigle et al., 2012; Dormann et al., 2010; 2012; Gal et al., 2011; Ito et al., 

2011; Vance et al., 2013). Stress granules are non-membrane-bound structures 

assembled along the microtubule cytoskeleton and are composed of stalled 

mRNA-protein translational complexes. Formed transiently as a normal response 

to environmental and physiological stress, such as oxidation, heat-shock, viral 

infection and hypoxia, these structures are nucleated by key stress granule 

marker proteins, such as G3BP1 and TIA-1, among other scaffolding networks 

(Anderson and Kedersha, 2008; Ivanov et al., 2011). Stress granules are thought 

to regulate mRNA translation during stress by acting as mRNA storage and 

transfer centers. Indeed, stress granules exchange mRNA with degradation 

machinery in P-bodies (Jain and Parker, 2013). Stress granule also participate in 

cell signaling during stress by controlling kinase activity (Wippich et al., 2013). 

The result is a dynamic balance of mRNA expression, storage and degradation 

driven by stress granules that changes with the surrounding environment and 

facilitates homeostasis (Kedersha and Anderson, 2002).  

Our group recently showed that under conditions of oxidative stress 

induced by sodium arsenite, mutant FUS delays stress granule formation and 

accelerates their disassembly in mammalian cell culture. Further, expression of 

mutant FUS also impairs stress granule abundance, volume and dynamics 

(Appendix IV) (Baron et al., 2013). Finally, we identified the C-terminal RGG 

domains as the main structural features in mutant FUS that direct its assembly 

into stress granules (Figure II.1; adapted from Appendix IV), a discovery that 
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serves as a useful tool and is utilized by us later in this report. Importantly, stress 

granule marker proteins are found within the pathological aggregates of ALS-

FUS and other neurodegenerative disease tissues (Dormann et al., 2010; Fujita 

et al., 2008; Halliday et al., 2012; Kwiatkowski et al., 2009; Liu-Yesucevitz et al., 

2010a; Vance et al., 2013). Thus, we hypothesize that mutant FUS incorporation 

into stress granules impairs stress response and contributes to disease 

progression by disrupting one or more stress granule functions, a notion gaining 

considerable attention in the field (Wolozin, 2012).  

In this study, we aim to identify protein interactions of mutant FUS in 

stress granules as well as changes in the stress granule interactome induced by 

mutant FUS incorporation. Here, we report that full-length mutant FUS P525L 

(heretofore called FUS-P525L-FL) associates with 52 proteins during stress that 

have potential to direct its localization to stress granules.  These hits, discovered 

using mass spectrometry proteomics of stable mammalian cell line 

immunoprecipitation experiments, bind neither wild-type FUS (FUS-WT) nor a 

truncation of mutant FUS that lacks the RGG domains (FUS-∆RGG), which are 

required for FUS localization to stress granules. Further, all but six of these hits 

are RNA-mediated, and more than half are influenced by the integrity of a stress 

granule scaffolding component, poly(ADP)-ribose (PAR). Finally, we show that 

the presence of FUS during stress alters the G3BP1 interactome during stress, a 

finding that supports a broad disruption in stress granule composition caused by 

mutant FUS incorporation. The results shown in this study provides important 
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Figure II.1: The RGG domains modulate the incorporation of FUS into 
arsenite-induced stress granules. (A) Illustration of full length (FL) GFP-FUS 
R521G and constructs lacking the following sequences: Gln-Gly-Ser-Tyr-rich 
(ΔQGSY), Gly-rich (ΔGLY), RNA recognition motif (ΔRRM), and Arg-Gly-Gly- rich 
(RGG) regions (ΔRGG1 and ΔRGG2). (B) Western blot analysis of HeLa cells in 
(B) demonstrates equivalent expression levels for all GFP-FUS R521G 
constructs. (C) Quantitative analysis (see Materials and methods) of (D) reveals 
that constructs lacking RGG domains (ΔRGG1 and ΔRGG2) exhibit impaired 
localization to stress granules. Statistically significant comparisons include FL 
and ΔRGG1 (*P < 0.05), FL and GFP (**P < 0.01), and ΔQGSY and GFP (*P < 
0.05; not shown on graph for clarity) by one-way ANOVA followed by a Dunnett’s 
post-hoc test on n=3 independent experiments. All error bars represent SEMs. 
(continued on the next page) 
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Figure II.1 continued: (D) Confocal images of HeLa cells transfected with GFP-
FUS R521G constructs (green) alone (−) or co- transfected (+) with MBP-M9M, a 
transportin-1 inhibitor. Note the increased cytoplasmic GFP-FUS in M9M(+) cells 
(compare columns 1 and 2). Confocal fluorescence images of arsenite-stressed 
co-transfected cells were used to assess the ability of GFP-FUS R521G 
constructs (green; column 3) to associate with stress granules (G3BP; red; 
column 4). The greatest degree of GFP and G3BP co-localization occurred for 
GFP-FUS R521G-FL compared to GFP control cells. This figure was adapted 
from Baron et al., 2013 (For Materials and Methods for this figure, please see 
Appendix IV). 
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groundwork toward uncovering pathways likely disrupted by ALS-causing FUS 

mutants. 

 

MATERIALS AND METHODS 

FLAGHA-FUS construct design and generation 

FLAGHA-FUS expression cassette vectors were generated as follows: 

pFRT-TO-DEST-FLAGHA-FUS-WT was obtained from Addgene (#26737) and 

converted to FUS-P525L-FL using the following site-directed mutagenesis 

primers: P525L_fwd: CGCAGGGAGAGGCTGTATTAAGCGGCC ; P525L_rev: 

GGCCGCTTAATACAGCCTCTCCCTGCG.  To generate deletion constructs, the 

following primers were designed by joining the up-stream and downstream 

sequences flanking the domain that was deleted in the FUS-P525L-FL 

background: ΔRGG1_fwd: CATTTGCTACTCGCGCTGGTGACTGGAAG; 

ΔRGG1_rev: CTTCCAGTCACCAGCGCGAGTAGCAAATG; ΔRGG2_fwd: 

CCCCTAAACCAGATAAGATGGATTCCAG; ΔRGG2_rev: 

CTGGAATCCATCTTATCTGGTTTAGGGG. The ∆RGG1/2 deletion construct 

was made from the product of the ∆RGG1 reaction using the ∆RGG2 primers. 

The FLAGHA_control construct was made using pFRT-TO-DEST-FLAGHA-FUS-

WT as a template and the following primers to introduce a stop codon adjacent to 

FLAGHA: FLAGHA_fwd: CCGATTACGCTTAGAACCAGATATC; FLAGHA_rev: 

GATATCTGGTTCTAAGCGTAATCGG. All experiments were conducted with the 
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QuikChange II Mutagenesis kit (Stratagene; 200523) according to the 

manufacturer’s instructions.  

Cell line generation 

Isogenic cell lines expressing FLAGHA-FUS variants inducible under 

doxycyline expression were generated using the Flp-In T-REx system (Invitrogen 

R780-07). This system contains a single stably integrated, isogenic FRT site that 

facilitates expression of each FLAGHA-FUS expression cassette at the same 

genomic locus among all lines. Flp-In T-REx 293 cells were co-transfected with 

the Flp recombinase vector (pOG44) and the desired expression vector (pFRT-

TO-DEST containing FLAGHA-FUS) using the Lipofectamine 2000 transfection 

reagent (Invitrogen 11668). Selection for stable integration began 48 h post-

transfection using media supplemented with 100 mg/mL Hygromycin B 

(Invitrogen 10687-010) and 15 mg/mL blasticidin, which yielded isogenic cell 

populations that could induce FLAGHA-FUS at approximately one to two times 

that of endogenous FUS upon doxycycline induction. 

Drug treatments 

The following drug treatment stocks were prepared and stored at freezing 

temperatures: 7.5 mg/mL blasticidin (Invitrogen R210-01) in water (−20°C); 50 

mg/mL doxycycline (Sigma D9891) in water (−80°C), 100 mM sodium arsenite 

(Sigma 71287) in water (−20°C), and 1 mM ADP-HPD (EMD Millipore 118415) 
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(−80˚C). FUS expression in the FlpIn HEK-293 lines was induced with the 

addition of 1 µg/mL doxycycline for 24 h unless otherwise noted.  

Immunofluorescence 

Standard immunofluorescence protocols were employed as described 

previously (Bosco et al., 2010). Briefly, cells were fixed with 4% 

paraformaldehyde for 10 minutes then blocked with PBSAT (1X PBS/1% 

BSA/0.5% Triton-X 100) for 30–60 minutes at ambient temperature. Primary 

antibodies described in each experiment were diluted in PBSAT and applied to 

cells at ambient temperature for 1 h. Primary antibody dilutions were as follows: 

1:2000 for mouse anti-G3BP (BD Transduction Labs, 611126), 1:1000 for rabbit 

anti-G3BP (Proteintech; 130-57-2AP), 1:1000 for mouse anti-FLAG (Sigma 

F1804) and 1:375 rabbit anti-FUS. Rabbit anti-FUS antibodies were generated by 

GenScript against a C-terminal epitope, using the peptide 

CKFGGPRDQGSRHDSEQDNSD. Cells were then incubated with secondary 

antibodies diluted 1:1000–1:2500 in PBSAT for 45 minutes at ambient 

temperature. Secondary antibodies included Dylight 549 conjugated anti-mouse 

IgG (Jackson ImmunoResearch Labs; 715-505-151), Cy3 conjugated anti-mouse 

IgG (Jackson ImmunoResearch Labs; 715-165-151), Cy3 conjugated anti-rabbit 

IgG (Jackson ImmunoResearch Labs; 711-165-152), and Cy5 conjugated anti-

mouse IgG (Jackson ImmunoResearch Labs; 715-175-151). Cells were stained 

with 34 ng/mL DAPI in water, and coverslips were mounted with ProLong Gold 

anti-fade reagent (Invitrogen; P36930). 
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Western blot 

Standard western blotting protocols were employed as described 

previously (Bosco et al., 2010). Primary antibodies described in each experiment 

were diluted as follows: 1:1000 for mouse anti-FLAG (Living Colors; Clontech 

632380), 1:1000 for rabbit anti-G3BP (Proteintech), 1:1000 for mouse anti-TIAR 

(Proteintech), 1:1000 rabbit anti-SMN (Sigma) and 1:1000 for rabbit anti-FUS. 

Rabbit anti-FUS antibodies were generated by GenScript against a C-terminal 

epitope, using the peptide CKFGGPRDQGSRHDSEQDNSD. Blots were 

incubated with primary antibodies overnight at 4°C. Secondary antibodies, 

including anti-mouse IRDye 680 (Licor 926–32220) or IRDye 800 (LiCor 926–

32210) and anti-rabbit IRDye 680 (LiCor 926–32220) or IRDye 800 (Licor 926–

32211), were diluted 1:10000 and incubated with blots for 1–2h at ambient 

temperature. Bands were visualized with an Odyssey Infrared Imager (LiCor 

Model 9120), and densitometry measurements performed with the Odyssey 

Software (LiCor V3.0). 

FLAG formaldehyde-crosslinked immunoprecipitation 

HEK cells were induced to express FLAGHA alone, FLAGHA-tagged 

FUS-P525L-FL, FUS-WT, or FUS-P525L-∆RGG for 24h, followed by stress with 

0.5 mM sodium arsenite for 1h in duplicate plates for all conditions (for a total of 

8 samples). After stress, cells were lysed with IP buffer (25 mM HEPES (Sigma 

H3375), 25 mM KCl (Sigma P9541), 5 mM EDTA (Fisher; E478-500), 1% NP-40 

(MP Biomedicals; 198596), and 10% v/v glycerol ((Acros; 15982–0010) in water; 
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pH 7.0) supplemented with protease inhibitors (Roche 11836170001). Protein 

content was measured using a standard BCA Assay (Thermo Scientific) and 

lysates were treated according to manufacturer’s instructions.  

For FLAG immunoprecipitation (IP) reactions, cells were plated at a 

density of 4 x 10^5 cells/mL in 15 cm plates and induced with doxycycline 24h to 

induce FLAGHA-FUS expression. Prior to IP, cells were washed once in DPBS, 

then crosslinked in the plate with 5 mL 0.5% formaldehyde for 10 minutes at 

ambient temperature. Crosslinking was quenched with 500 µL quenching buffer 

(2.5M glycine in DPBS, pH 7.0) for 5 minutes at ambient temperature. Cells were 

lysed for 15 minutes in 3 mL IP buffer (25 mM HEPES, 25 mM KCl, 5 mM EDTA 

(Fisher; E478-500), 1% NP-40 (MP Biomedicals; 198596), and 10% v/v glycerol 

((Acros; 15982–0010) in water; pH 7.0), then sonicated using a Branson 

Sonifier® cell disrupter equipped with a 3 mm microtip (VWR 33996-163) for 45 s 

at 40% amplitude in 2 s bursts with 10 s intervals. Lysates were cleared by 

centrifugation at 13000 rpm for 15 minutes at 4°C, and total protein concentration 

was determined using a BCA assay (Invitrogen).  Anti-FLAG agarose beads 

(Sigma A2220) were prepared by washing them 3 times in 10X v/v IP buffer. The 

cleared lysate supernatant was added to anti-FLAG agarose beads at a 

concentration of 50 µg total protein per µL bead slurry, and IP reactions were 

performed at 4°C for 2h. Following IP incubation, anti-FLAG beads were washed 

three times with 10x v/v IP buffer supplemented with KCl to a final concentration 

of 250 mM. For experiments testing RNA mediation, beads were treated at this 
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point with 250 µg/mL RNase A (Qiagen 19101) for 1h at 4˚C, then washed as 

before.   

Protein elution under crosslinked conditions was accomplished via boiling 

the beads with 50 µL 1X SDS loading buffer (Boston Bioproducts; BP11R) for 5 

minutes at 95°C. Following boil elution, 10 µL of sample was subjected to 

western blot analysis as described above, and the remaining 40 µL was 

subjected to proteomics analysis as described below. 

FLAG poly(ADP)-ribose-mediated immunoprecipitation (no crosslinking) 

For immunoprecipitation (IP) reactions, cells were plated at a density of 4 

x 10^5 cells/mL in 15 cm plates and induced with doxycycline for 24h to induce 

FUS expression. Prior to IP, cells were washed once in DPBS (Cellgro 21-030-

CV), then cells were lysed for 15 minutes in 3 mL IP buffer (25 mM HEPES 

(Sigma H3375), 25 mM KCl (Sigma P9541), 5 mM EDTA (Fisher; E478-500), 1% 

NP-40 (MP Biomedicals; 198596), and 10% v/v glycerol ((Acros; 15982–0010) in 

water; pH 7.0) supplemented with 1 mM ADP-HPD (EMD Millipore 118415). 

Cells were sonicated using a Branson Sonifier® cell disrupter equipped with a 3 

mm microtip (VWR 33996-163) for 15 s at 40% amplitude in 2 s bursts with 10 s 

intervals. Lysates were cleared by centrifugation at 13000 rpm for 15 minutes at 

4°C, and total protein concentration was determined using a BCA assay (Thermo 

Scientific Pierce 23227).   

For FLAG IPs, anti-FLAG agarose beads (Sigma A2220) were prepared 

by washing them 3 times in 10X v/v IP buffer. The cleared lysate supernatant 
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was added to anti-FLAG agarose beads at a concentration of 50 µg total protein 

per µL bead slurry, and IP reactions were performed at 4°C for 2 h. FLAG IP 

protein elution under uncrosslinked conditions only was accomplished with one 

bed volume of 250 µg/mL 3X FLAG peptide (Sigma-Aldrich F4799) three times 

sequentially for 30 minutes each at ambient temperature and pooled. Gel 

samples were then prepared to a total volume of 50 µL with 6X SDS loading 

buffer (Boston Bioproducts; BP11R) for 5 minutes at 95°C, and 10 µL of sample 

was subjected to western blot analysis as described above. The remaining 40 µL 

was subjected to proteomics analysis, as described below. 

G3BP1 immunoprecipitation: 

For G3BP1 IPs, polyclonal anti-G3BP (Rabbit, Anova H00010146-D01) 

was added to Dynabeads Protein G (Invitrogen 10004D) for 10 minutes at 25˚C 

according to the manufacturer’s instructions. The cleared lysate supernatant was 

added to the anti-G3BP1 beads at a concentration of 50 µg total protein per µL 

beads, and IP reactions were performed at 4°C for 2h. G3BP1 IP protein elution 

was accomplished via boiling the samples with 50 µL 1X SDS loading buffer 

(Boston Bioproducts; BP11R) for 5 minutes at 95°C. Following boil elution, 10 µL 

of sample was subjected to western blot analysis as described above, and the 

remaining 40 µL was subjected to proteomics analysis in n=2 technical 

replicates, as described below. 
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Mass spectrometry sample preparation: 

All samples, regardless of IP source, were processed for mass 

spectrometry using an in-gel digestion method (Schevchenko et al., 2007). 

Briefly, samples were run on a 5% SDS-PAGE gel to 2 cm below the loading 

well, then stained with Coomassie for 1h at room temperature and destained 

overnight in water. Gels were soaked in water for 1h, and bands were cut into 1 

mm cubes and dehydrated in acetonitrile for 10 minutes before reconstitution in 

100 mM ammonium bicarbonate. Disulfide bonds were reduced with 10 mM 

dithiothreitol (DTT) for 1h at 55°C, and cysteine residues were alkylated with 55 

mM iodoacetamide (IAA) for 30 minutes at ambient temperature, protected from 

light. Samples were then digested overnight at 37°C with 150 µL of 13 ng/µL 

Trypsin (Promega (Madison, WI, USA), sequencing grade), followed by 

extraction with 150 µL of 1:2 (vol/vol) 5% formic acid/acetonitrile for 15 minutes at 

37˚C. Finally, samples were lyophilized, and reconstituted for mass spectrometry 

analysis. 

Liquid chromatography tandem mass spectrometry (LC/MS/MS) run 

information: 

Samples were dissolved in 25 µl of 5% Acetonitrile in 0.1% trifluroacetic 

acid prior to injection on LC/MS/MS.  A 4.0 µl aliquot was directly injected onto a 

custom packed 2cm x 100µm C18 Magic 5µ particle trap column. Peptides were 

then eluted and sprayed from a custom packed emitter (75µm x 25cm C18 Magic 

3µm particle) with a linear gradient from 95% solvent A (0.1% formic acid in 
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water) to 35% solvent B (0.1% formic acid in Acetonitrile) in 90 minutes at a flow 

rate of 300 nL/minute on a Waters Nano Acquity UPLC system. Data dependent 

acquisitions were performed on a Q Exactive mass spectrometer (Thermo 

Scientific) according to an experiment where full MS scans from 300-1750 m/z 

were acquired at a resolution of 70,000 followed by 10 MS/MS scans acquired 

under higher-energy collisional dissociation (HCD) fragmentation at a resolution 

of 17,500 with an isolation width of 1.6 Da. Two independent experiments 

(biological replicates) were tested.   

Proteomics data analysis parameters:  

Database searching: All MS/MS samples were analyzed using Mascot 

(Matrix Science, London, UK; version 1.4.1.14). Mascot was set up to search 

Mascot5_Uniprot_Human_All entries (unknown version, 77417 entries) assuming 

the digestion enzyme entry “StrictTrypsin”. Mascot was searched with a fragment 

ion mass tolerance of 0.050 Da and a parent ion tolerance of 10.0 parts per 

million (ppm). Carbamidomethyl of cysteine was specified in Mascot as a fixed 

modification. Gln->pyro-Glu of the N-terminus, oxidation of methionine and acetyl 

of the N-terminus were specified in Mascot as variable modifications.  

Criteria for protein identification: Scaffold (version Scaffold_4.4.3, 

Proteome Software Inc., Portland, OR) was used to validate MS/MS based 

peptide and protein identifications. Peptide identifications were accepted if they 

could be established at greater than 70% probability by the Peptide Prophet 

algorithm (Keller et al., 2002) with Scaffold delta-mass correction. Protein 
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identifications were accepted if they could be established at greater than 90% 

probability and contained at least 2 identified peptides.  Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that 

contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Proteins 

sharing significant peptide evidence were grouped into clusters. Absolute protein 

amounts were calculated and compared between samples as the sum of all 

peptide peak intensities divided by the number of theoretically observable tryptic 

peptides (intensity based absolute quantification, or “iBAQ”) (Schwanhausser et 

al., 2011). 

RESULTS 

1. Inducible cell lines stably express FLAGHA-FUS 

To determine protein interactions of mutant FUS in stress granules, we 

engineered stable HEK-293 cell lines that express doxycycline-inducible 

FLAGHA-tagged FUS constructs, including FUS-WT, cytoplasmic mutant FUS-

P525L-FL, a truncation construct (FUS-P525L-∆RGG), and a FLAGHA control 

construct. FUS-P525L-FL represents the aforementioned stress granule-

localizing FALS mutant (Figure II.2a). All FLAGHA-FUS proteins were expressed 

in these cells lines within 1-to-2 fold relative to one other upon induction with 

doxycycline for 24h, as western blot analysis using an antibody to FLAG 

confirmed. An anti-FUS antibody (see Materials and Methods) also showed that 

induced FLAGHA-FUS proteins were expressed at near-endogenous levels, and  
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the expression of these exogenous proteins did not greatly alter endogenous 

FUS expression levels (Figure II.2b).   

Immunofluorescence of these HEK-293 cells revealed an intense nuclear 

FLAGHA-FUS expression for FUS-WT and contrasting shift to cytoplasmic 

localization for FUS-P525L-FL and FUS-P525L-∆RGG constructs. Additionally, 

FUS-P525L-FL cell lines show robust localization of FLAGHA-FUS to arsenite-

induced stress granules, while FUS-WT and FUS-P525L-∆RGG lines remain 

excluded (Figure II.2c).  FLAGHA-FUS expression throughout continuous 

exposure to doxycycline was not associated with any overt change in cellular  

morphology or proliferation for up to 4 days compared to uninduced cells [data 

not shown]. 

2. Crosslinking stabilizes stress granule interactions of mutant FUS 

Next, we optimized formaldehyde crosslinking conditions to stabilize and 

preserve transient FLAGHA-FUS protein interactions under stress in a manner 

compatible with mass spectrometry analysis (Sutherland et al., 2008). FLAGHA-

tagged FUS-P525L-FL cells were stressed with sodium arsenite and treated with 

varying concentrations of formaldehyde before quenching, lysis and western 

analysis (Figure II.3a and Materials and Methods). FLAGHA-FUS diminished 

from the soluble fraction of lysates starting with minor precipitation at 0.25% 

formaldehyde and nearly complete precipitation into the insoluble fraction at 1% 

formaldehyde. We therefore chose 0.5% formaldehyde as the best condition to 

preserve relevant protein interactions.                                        



 

 

47 

 

 Figure II.3: Under stress, crosslinked FLAGHA-FUS P525L is effectively 
immunoprecipitated, shows enhanced binding under stress to G3BP1, but 
does not increase in TIA1 or SMN binding. (A) FLAGHA-FUS-P525L-FL 
begins to be removed from the soluble fraction during crosslinking starting at 
0.25% formaldehyde, as shown via western of soluble lysate fractions with anti-
FLAG and anti-FUS antibodies. (B) Anti-FLAG immunoprecipitation of arsenite-
stressed FlpIn HEK cells expressing FLAGHA-FUS-P525L-FLwith (SA(+)) and 
without (SA(-)) arsenite stress. Note enriched G3BP1 association under stress 
conditions (bottom row left vs. right). (C) Fold enrichment under arsenite stress of 
indicated proteins with FLAGHA-FUS-P525L-FL, as quantified by western blot 
densitometry measurements from two biological replicate IPs and compared by 
unpaired t-test (*p= <0.05).  (D) Immunofluorescence of FLAGHA-FUS-P525L-FL 
expressing cells under arsenite stress do not show anti-SMN (green) localization 
to stress granules, as visualized by anti-G3BP1 (red).  
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Cross-linked lysates were then subjected to anti-FLAG 

immunoprecipitation to isolate FLAGHA-FUS protein interactions (see Materials 

and Methods). The majority of FLAGHA-FUS was immunoprecipitated from the 

input sample (Figure II.3b, top row). Because we were not able to elute the 

FLAGHA-FUS from the anti-FLAG beads using a FLAG peptide elution, possibly 

due to crosslinking epitope obstruction (data not shown), we boiled the samples 

to elute the protein interactions under crosslinked conditions (Figure II.3b, 

rightmost columns). 

To validate that our methods preserved transient stress granule 

interactions, we subjected FLAGHA-tagged FUS-P525L-FL immunoprecipitation 

products to western analysis of several stress granule marker proteins (Figure 

II.3b, bottom rows). Under stress conditions, FUS-P525L-FL pulled down ~3X 

more G3BP1 than in unstressed conditions, a result consistent with the 

preservation of mutant FUS stress granule interactions. Conversely, FUS-P525L-

FL did not show enhanced binding to a known binding partner, SMN, under 

stress granule-inducing conditions (Figure II.3c). This result is in line with the 

observation that SMN does not localize to stress granules in our system (Figure 

II.3d). Finally, FUS-P525L-FL did not exhibit enriched binding under stress with 

another stress granule maker protein, TIA-1 (Figure II.3b, third row, and Figure 

II.3c), compared to that of G3BP1 (Figure II.3b, fourth row, and Figure II.3d). 

This observation supports the notion that crosslinking conditions were not overly 
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promiscuous, but rather likely preserved nearby stress granule interactions of 

FUS-P525L-FL.  

3. Proteomics reveal binding partners enriched in full-length mutant FUS 

IPs under stress 

With IPs established, we next sought to identify FUS-P525L-FL stress 

granule interactions. To assess the full complement of proteins associated with 

FUS-P525L-FL in stress granules, we performed comprehensive mass 

spectrometry analyses of FLAGHA-tagged samples subjected to formaldehyde 

crosslinking and FLAG IP from cells expressing FUS-P525L-FL, FUS-P525L-

∆RGG, FUS-WT, and FLAGHA control (to control for nonspecific interactions).  

Of the 223 proteins identified that were enriched 4-fold over FLAGHA 

control IPs under stress conditions (Appendix I), 146 proteins were enriched in 

the FUS-P525L-FL IPs at least 4-fold over FUS-WT IPs. These proteins 

represent the population of interactions available to cytoplasmic FUS-P525L-FL 

for possible localization to stress granules.  Remarkably, 52 of these FUS-

P525L-FL-enriched proteins were also at least 4-fold enriched compared to FUS-

P525L-∆RGG IPs and present in biological replicate experiments (Table II.1).  

Since mutant FUS lacking RGG domains fails to localize to stress granules 

(Figure II.1), and since WT FUS does not localize to stress granules under 

arsenite stress (Figure I.3) (Bosco et al., 2010), these enriched proteins 

represent possible stress granule-associated protein interactions for mutant FUS.  
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Table II.1: Associations of full-length mutant FUS under stress conditions. 
For each protein hit, binding bias under stress (SA), RNA and PAR conditions 
are shown (middle columns). Hits fall into seven distinct categories based on 
DAVID and GeneCard literature searches, as shown in the “Pathway” column. 
Finally, literature information on FUS binding and stress granule involvement is 
shown (left columns). 
 
 
 
 

Table II.1 is displayed across the next four pages for visual clarity. 
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Among the most abundant stress granule-relevant hits, enriched 

exclusively in FUS-P525L-FL IPs, were proteins known to localize to stress 

granules: YBOX1, PABP4, G3BP1/2, ATXN2L/ATXN2, FMP1/FXR1/FXR2. Of 

the 27 known stress granule proteins found within the hits, several are essential 

for stress granule formation and are known as stress granule “nucleators” (e.g., 

G3BP1/G3BP2, ATXN2/ATXN2L, YBOX1) (Aulas et al., 2015; Kaehler et al., 

2012;  Somasekharan et al., 2015; Tourrière et al., 2003). Notably absent are the 

stress granule nucleators TIA-1 and HuR. The most highly enriched known stress 

granule component was G3BP1, though a set of known peripheral G3BP1 

complexes (such as Caprin1 and USP10) were also detected at lower 

abundance than G3BP1 (see Appendix I Table AI.1). Additionally, 39% of FUS-

P525L-FL associated proteins were not significantly enriched between stressed 

compared to unstressed conditions (Figure II.4a, right), implying that mutant 

FUS binds them regardless of stress. A similar percentage of FUS-P525L-FL hits 

(38%) are enriched at least 2-fold in arsenite stress compared to unstressed 

conditions. These proteins include G3BP1/G3BP2, helicase DDX1, translation 

initiation factor EIF4E, YTH domain-containing protein, and transcriptional 

activator Pur-alpha (PURA), all known stress granule proteins. In addition to 

known stress granule proteins, 17 proteins bound to FUS-P525L-FL have not yet 

been identified in stress granules and therefore represent a potentially novel set 

of stress granule-associated proteins. These include the RNA helicases DDX19A  
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Figure II.4: The FLAGHA-FUS-P525L-FL interactome with and without 
arsenite stress. (A) (Left) Heatmap showing fold enrichment of each indicated 
protein in stressed FLAGHA-FUS P525L-FL IPs relative to its level in a FLAGHA 
peptide control IP (∆ (FLAG)), FLAGHA-FUS-P525L-∆RGG1/2 IP (∆ (∆RGG)), 
and FLAGHA-FUS-WT IP (∆ (WT)). Heatmap log2 color scale is shown on the 
right. All proteins shown were at least 4-fold enriched in FLAGHA-FUS IPs 
compared to FLAGHA control IPs, which translates into a log2 value of 2. Many 
hits are completely absent from FLAG control IPs, are shown as “Exclusive” in 
the heatmap; ATXN2 is an example of this case. (Center) Bar graph showing % 
iBAQ abundance of each protein in FLAGHA-FUS-P525L-FL IPs in unstressed 
(SA(-); green), arsenite-stressed (SA(+); purple), or arsenite-stressed and RNase 
A-treated (orange) conditions. % abundance for each hit is calculated relative to 
iBAQ values of the FLAGHA-FUS protein within the same IP. Note that FLAGHA-
FUS iBAQ values encompass not only the exogenously-expressed FLAGHA-
FUS peptides identified in mass spec, but also endogenous FUS-specific 
peptides. Therefore, the FLAGHA-FUS iBAQ could also contain endogenous 
FUS detection. For all iBAQ values, please see Appendix I. (Right) Enriched 
proteins are divided into sections based on their relative enrichment during each 
condition. (B) Protein hits in A divided into distinct categories based on DAVID 
and GeneCards literature information, also listed in Table II.1. 
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and DHX57, Ubiquitin-associated protein 2-like (UBP2L), FAM98, and dynactin 

subunit 2 (DCTN2).  

Associations of FUS-P525L-FL could be organized into 7 readily definable 

categories (Table II.1 and Figure II.4b). Intriguingly, the most populated 

categories include mRNA degradation and stress granule dynamics, each with 9 

hits. Of the mRNA degradation proteins, two are proteins that are thought to be 

specific for P-bodies (YTHD3, DDX6) (Richter, 2007),  three are 

key members of the nonsense-mediated decay (NMD) pathway (RENT1, MOV10 

and ERF3A) (Gardner, 2010), and four are members of the RNA-induced 

silencing complex (RISC), including two Mushashi homologues (MSI1/MSI2), 

Argonaut-2 (AGO2) and Pumilio-1 (PUM1) (Jain and Parker, 2013). Of the 

remaining hits, the most highly enriched fall into categories associated with 

mRNA stability, such as nuclease-sensitive element binding protein 1 (YBOX1) 

and insulin-like growth factors IF2B1/2/3, and mRNA translation, such as poly(A)-

binding protein 4 (PABP4) and eukaryotic initiation factor 4H (EIF4H). These 

interactions represent diverse areas of cellular function potentially impacted by 

mutant FUS localization to stress granules. 

4. Indirect interactions of mutant FUS under stress reveal a role for RNA 

and poly(ADP)-ribose on FUS stress granule interactions. 

FUS is a RNA-binding protein that binds over 900 mRNA transcripts in the 

cytoplasm (Hoell et al., 2011). Hence, we assessed the requirement for RNA on 

mutant FUS interactions under stress. Cells expressing FLAGHA-tagged FUS-
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P525L-FL under stress conditions were crosslinked, precipitated with anti-FLAG, 

and subsequently treated with RNase A prior to elution and mass spec analysis. 

Figure II.4a and Table II.1 reveals that all but six interactions of full-length 

mutant FUS hits are at least partially RNA-mediated, with 16 out of the 52 hits 

completely disappearing under RNase conditions. The remaining 30 hits are 

partially RNA-mediated in that they remain associated with FUS within 10-40% of 

RNase(-) conditions. The six interactions that remain under RNase(+) conditions 

within 50% of RNase(-) conditions include the ND-associated proteins Ataxin2 

and FMRP. Also present in direct FUS interactions are the proteasome inhibitor 

PSMF1, NMD component eukaryotic release factor 3 (ERF3A), and RISC factor 

Ago2, all implicated in important degradation pathways (Gardner, 2010; Li et al., 

2014; Rand et al., 2005). These results implicate RNA binding as a major factor 

in mutant FUS localization to stress granules and identify potentially important 

RNA-independent interactions of mutant FUS during stress. 

Next, we examined the role of poly(ADP)-ribose (PAR) in mutant FUS 

interactions during stress. Proteins modified with PAR accumulate in stress 

granules, and the depletion of key PAR phosphatases (PARPs), which 

polymerize PAR structures, or overexpression of PAR glycohydrolases (PARGs), 

which hydrolyze the glycosidic bond between ADP-ribose units, impairs stress 

granule formation (Leung et al., 2011; Schreiber et al., 2006; Shi, 2012). These 

findings suggest that PAR modifications are important for proper stress granule 

formation. A functional theory on the role of PAR in stress granules is that these 
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molecules act as molecular scaffolds in the coalescence and stability of stress 

granule structure, not unlike RNA oligomerization (Ivanov et al., 2011). In order to 

assess the dependence of mutant FUS stress granule interactions on PAR, FlpIn 

HEK cells expressing full-length FLAGHA-FUS P525L were stressed and lysed 

under uncrosslinked conditions in the presence of a PARG inhibitor, ADP-HPD 

(Leung et al., 2011), then subjected to uncrosslinked anti-FLAG 

immunoprecipitation and mass spectrometry proteomics. ADP-HPD inhibits 

PARG activity, thereby preventing PAR de-polymerization and preserving PAR 

structures. We therefore expect to preserve stress granule structures using this 

inhibitor.  Figure II.5a confirms the success of 3X FLAG peptide elution under 

uncrosslinked conditions, though a reduced amount of G3BP1 was pulled down 

by FUS-P525L-FL compared to crosslinked conditions. Nonetheless, Table II.1 

and Table II.2 reveal that 28 out of 53 full-length mutant FUS interactions (52%) 

are at least 5-fold enriched under ADP-HPD(+) conditions, where PAR is 

theoretically preserved. Stress granule nucleators, such as G3BP2 and PABP4, 

are included in this list, as are 6 out of the 9 proteins that fall under the category 

of mRNA degradation, such as MOV10 and RENT1. Further, two out of the five 

hits that were RNA-mediated, LARP4 and AGO2, are also mediated by PAR. The 

remaining three RNA-independent hits, ERF3A, PSMF1 and FMRP, were not 

enriched under ADP-HPD(+) conditions, suggesting that they are not mediated 

by PAR. These data suggest a role for PAR in stabilizing mutant FUS 

interactions under stress, possibly through stress granule preservation.  
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Figure II.5: PARG inhibition does not enhance G3BP1 binding via FLAGHA-
FUS P525L IP, but does enhance FLAGHA-FUS binding via G3BP1 IP and 
mildly delays stress granule disassembly following arsenite stress. (A) 
Immunoprecipitation of arsenite-stressed FlpIn HEK cells with (+) and without 
FLAG-FUS P525L induction and ADP-HPD treatment reveals complete FLAG IP 
and efficient peptide elution. (B) FlpIn HEK cells treated with ADP-HPD were 
stressed for 1h prior to disassembly, after which cells were removed from 
arsenite conditions for 45-60 minutes, then processed for anti-G3BP 
immunofluorescence (red). (C) Quantification for B reveals significantly increased 
SG(+) cells via unpaired t-test (n=2, 300 cells each; * = p< 0.05). (D) 
Immunoprecipitation of G3BP under conditions of ADP-HPD treatment displays 
enhanced binding to FLAGHA-FUS P525L. Westerns in A and D were each 
detected with anti-G3BP and anti-FLAG antibodies. 
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Table II.2: PAR-mediated FLAGHA-FUS-P525L-FL interactions enriched 
under uncrosslinked conditions. iBAQ values for each protein are indicated 
(see Materials and Methods). Fold change values of ADP-HPD(+) IP (PARG 
inhibitor present) relative to the ADP-HPD(-) IP (PARG inhibitor absent) are 
shown, with infinity symbols (∞) indicating exclusive detection in the ADP-HPD(+) 
IP. Results reflect n=1 biological replicate. 
 
 

 

Table II.2 is displayed across the next two pages for visual clarity. 
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5. Mutant FUS alters the G3BP1 interactome under stress. 

Next, we investigated the effect of mutant FUS incorporation into stress 

granules on the G3BP1 interactome during stress. We noted that under PARG-

inhibiting conditions, FlpIn HEK cells show significantly delayed stress granule 

disassembly (Figure II.5b).  Thus, after many unsuccessful attempts at G3BP1 

IP under crosslinked conditions (data not shown), we utilized the PARG inhibitor 

ADP-HPD based on the notion that PAR mediates stress granule stability (Leung 

et al., 2011). Arsenite-stressed FlpIn HEK cells, induced and uninduced for full-

length P525L expression, were stressed with arsenite and subjected to 

uncrosslinked G3BP1 IP in the presence of the PARG inhibitor, ADP-HPD.  

Figure II.5c confirms the success of G3BP1 IP under uncrosslinked conditions. 

Interestingly, we noted a 1.8-fold increase in FLAGHA-FUS present in the G3BP 

elution under ADP-HPD(+) conditions compared to ADP-HPD(-) conditions 

(Figure II.5c; representative of two experiments). This data is in agreement with 

crosslinked FLAGHA-FUS experiments that show G3BP enrichment under stress 

and suggests that stress granules are at least partially stabilized under PARG 

inhibiting conditions.  

Table II.3 shows the proteins identified by mass spec analysis that were 

enriched at least 10-fold in induced conditions expressing FUS-P525L-FL over 

uninduced conditions (i.e. lacking FUS-P525L0-FL expression) for the ADP-

HPD(+) G3BP1 IP. These hits are also at least 10-fold enriched over those found  
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Table II.3: G3BP1 IP interactions that are at least 3-fold enriched upon 
FLAGHA-FUS-P525L-FL expression. (Data reflects interactions found from 
a G3BP1 IP.) iBAQ values for each protein are indicated. Fold change values of 
G3BP1 interactions from FLAGHA-FUS FlpIn HEK cells in the induced presence 
(P525L(+)) or uninduced absence (P525L(-))are shown, with infinity symbols (∞) 
indicating exclusive detection in the P525L(+) IP. None of these proteins was 
found in FLAGHA-FUS-WT IPs (Appendix I), ruling out non-specific nuclear 
FUS-mediated interactions during lysis. 
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in FUS-WT IPs (Appendix I), suggesting that they are not non-specific hits, nor 

are they contaminated by potential endogenous FUS interactions.  

Interesting proteins enriched in G3BP1 IP under FUS-P525L-FL(+) 

conditions include several cytoskeletal motor-associated proteins, such as dynein 

intermediate chain 2 (DC1I2), dynein light chain roadblock type2 (DLRB2), and 

dynactin subunit 3 (DCTN3). These hits may explain our previous findings that 

mutant FUS expression delays stress granule assembly and accelerates 

disassembly (Appendix IV; Baron et al., 2013). Also present is PARP9, a PAR-

polymerizing protein, a hit that may contribute to the larger stress granule volume 

found in mutant FUS-expressing cells by way of increased PAR production 

(Baron et al., 2013). In addition to proteins that are enriched in G3BP1 binding in 

the presence of FUS-P525L-FL, 30 proteins are at least 4-fold diminished in 

association under FUS-P525L-FL(+) conditions and are absent from FUS-P525L-

FL IPs (Table II.4). These include the kinesin-like proteins KIF14 and KIFC1, 

once again pointing to a possible loss of important stress granule assembly and 

disassembly interactions for stress granules in the presence of mutant FUS. 

Together, these data reveal the disruption of G3BP1 interactions due to mutant 

FUS expression, likely resulting in an altered stress granule composition. 
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Table II.4: G3BP1 IP interactions that are at least 3-fold diminished upon 
FLAGHA-FUS-P525L-FL expression. (Data reflects interactions found from 
a G3BP1 IP.) iBAQ values for each protein are indicated. Fold change values of 
G3BP1 interactions from FLAGHA-FUS FlpIn HEK cells in the induced presence 
(P525L(+)) or uninduced absence (P525L(-))are shown, with infinity symbols (∞) 
indicating exclusive detection in the P525L(+) IP. None of these proteins was 
found in FLAGHA-FUS-WT or P525L-FL IPs (Appendix I), ruling out non-specific 
FUS-mediated interactions during lysis. 
 
 
 

Table II.4 is displayed on the next page for visual clarity. 
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DISCUSSION 

Characterization of the ALS-linked mutant FUS interactome in stressed 

human cells was a starting point to explore the hypothesis that mutant FUS-

induced changes in stress granule dynamics, morphology and function. In this 

study, I investigated this gain of function theory for mutant FUS in ALS 

pathogenesis by utilizing the knowledge that the RGG domain recruit FUS to 

stress granules (Figure II.1) and developing several stable FLAGHA-tagged FUS 

mammalian cell culture models (Figure II.2) to assess the interactions of mutant 

FUS under stress. Upon characterization of these cell lines under arsenite stress 

using stringent crosslinked immunoprecipitation conditions (Figure II.3) and 

mass spectrometry, I identified 52 proteins capable of recruiting FUS-P525L-FL 

to stress granules (Figure II.4), most of which are RNA-mediated and rely on the 

apparent integrity of poly(ADP)-ribose (Table II.1 and Table II.3). These proteins 

are associated with multiple processes, such as mRNA degradation, mRNA 

stability, and cytoskeletal motor function. Further, FUS binding events were 

accompanied by interactome changes in a key stress granule nucleating protein, 

G3BP1 (Figure II.5 and Table II.4). These data suggest a broader alteration in 

stress granule composition not limited to FUS binders. Together, this work 

narrows down an array of cellular pathways that may be negatively influenced by 

the incorporation of FUS into stress granules.  

 How might the interactions of mutant FUS impact stress response? Our 

results show that mutant FUS interacts with proteins in several functional 
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categories. I will focus the discussion below on three categories that contain 

highly enriched proteins to provide a basis for future investigations.  

 

mRNA degradation: 

One important class of proteins enriched in our results is mRNA 

degradation. The RNA interference (RNAi) pathway is a major pathway that 

controls mRNA translation and stability by a mechanism involving the microRNA 

(miRNA)-associated RISC complex, which is enriched in P-bodies along with the 

helicase DDX6 (Jain and Parker, 2013). DDX6 interacts with proteins of the RISC 

complex, including AGO2, another mRNA degradation hit in our study, and 

participates in the miRNA pathway (Chu and Rana, 2006). Although a mild 

association of DDX6 and stress granules has been demonstrated recently 

(Wilczynska et al., 2005), this association occurs at low levels compared to P-

bodies. In fact, DDX6 has often been used as a P-body marker (Kedersha and 

Anderson, 2007). Importantly, the accumulation of P-body structures is impaired 

in the absence of DDX6, showing that DDX6 is an essential component for P-

body function (Andrei et al., 2005). Mutant FUS does not localize to P-bodies 

(Bosco et al., 2010), thus making its strong interaction with DDX6 a potentially 

interesting case of inappropriate sequestration of stress response factors by 

mutant FUS are normally not enriched in stress granules. This notion awaits 

further investigation, including, but not limited to, immunofluorescence 

interrogation of DDX6 localization in the presence of mutant FUS. 
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Another regulator in mRNA decay, the helicase MOV10 (Liu et al., 2012), 

was also among the most enriched hits for mutant FUS (Table II.1). MOV10 

displays widespread binding to 3′ untranslated regions (3′ UTRs) of mRNAs and 

interacts with RENT1 (a.k.a. UPF1), the key factor in nonsense-mediated decay 

(NMD) (REF). Importantly, several NMD-targeted transcripts promote cellular 

adaptation in response to environmental stress, and NMD also degrades 

oxidatively-damaged RNA (Gardner, 2010). Knockdown of MOV10 results in 

increased mRNA half-lives of MOV10-bound as well as RENT1-regulated 

transcripts, revealing an important role for MOV10 in nonsense-mediated decay 

(Gregersen et al., 2014). Mutant FUS binds MOV10 regardless of stress in our 

study, but in an RNA-dependent manner. That mutant FUS binds a large set of 

3’UTRs in the cytoplasm (Colombrita et al., 2012; Farg et al., 2012) begs the 

question of whether it disrupts the close interaction necessary between RENT1 

and MOV10 in regulating these important stress-specific transcripts and warrants 

future study. This association may not only prevent important mRNA 

degradation, but these mRNAs being aberrantly sequestered into stress granule 

by mutant FUS may factor into the larger volume of stress granules seen in our 

studies (Baron et al., 2013). 

Mutant FUS could not only disrupt the 3’UTR-centered MOV10-RENT1 

NMD pathway, but it may also alter the regulation of NMD at exon junctions. This 

is made clear with the evidence gathered in this study that mutant FUS binds the 

eukaryotic release factor ERF3A without RNA or poly(ADP)-ribose (PAR) 
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mediation. In fact, ERF3A is the most “direct” interaction of all the hits and is 

present regardless of stress (Table II.1 and Table II.2).  When the translation 

complex pauses at a premature termination codon in mRNA that is upstream of 

an exon junction complex, ERF3 physically binds to and recruits RENT1 

(Czaplinski et al., 1998; Gehring et al., 2003; Lykke-Andersen et al., 2000). 

Subsequently, SMG-1 is recruited to complete the formation of the SURF 

complex, which then binds to related RENT proteins in the exon junction complex 

to facilitate the NMD pathway (Gardner, 2010). A disproportionate percentage of 

reported NMD-regulated transcripts are involved in stress response pathways, a 

phenomenon that is conserved (Gardner, 2008; Mendell et al., 2004; Rodríguez-

Gabriel et al., 2006). For example, stress-induced phosphorylation of eIF2α leads 

to a stimulation in the translation of the transcription factor ATF-4, a strong NMD 

target (Gardner, 2008). ATF-4 manages oxidative and ER stress through 

transcriptional up-regulation of protein chaperones and other stress response 

genes (Gardner, 2008; Genestra, 2007; Harding et al., 2002; Liu et al., 2008). 

Although necessary for survival to stress, ATF-4 is harmful to cellular survival 

when highly expressed in unstressed cells (Gardner, 2008), emphasizing the 

need to tightly regulate its expression through rapid degradation by NMD. Thus, 

the NMD pathway is a particularly interesting avenue to pursue regarding the role 

of mutant FUS in stress impairment in ALS, with a particular focus on ERF3A, as 

it has the potential to result in inappropriate stress response via NMD (Gardner, 

2010).  
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mRNA stability: 

While mRNA degradation plays a key role in post-transcriptional gene 

regulation during stress, mRNA stability is also required to strike a balance for 

homeostasis recovery. As shown in our results, mutant FUS binds nine proteins 

involved in mRNA stability during stress. Indeed, the highest enriched in our 

study are members of the insulin growth factor binding protein (IF2B1/2/3). A 

major function of IGF2B1 is the control of target mRNA translation, where it 

hinders translation of β-actin mRNA via binding to the Zipcode in the 3’-UTR, a 

function that is abolished by IFG2B phosphorylation by Src signaling (Hüttelmaier 

et al., 2005). IGF2BP1 also promotes mRNA stabilization of master regulating 

proteins, preventing their degradation by binding within a complex to a sequence 

in the open reading frame, termed the coding region determinant (CRD). Under 

stress conditions, IG2B1 knockdown induces a selective destabilization of target 

mRNAs, whereas over-expression increased mRNA stability (Stöhr et al., 2006). 

Members of the CRD complex, nuclease sensitive element binding protein 1 

(“YB-1” or YBOX1), and hnRNP Q (SYNCRIP) (Weidensdorfer et al., 2008), are 

among the most enriched hits for mutant FUS under stressed and unstressed 

conditions (Figure II.3). These findings indicate that the stabilization of mRNAs 

during cellular stress requires specific protein-mRNA interactions. This, in 

addition to the fact that FUS is capable of the strong association of mutant FUS 

with IG2B1 and its binding partners, provides evidence for the notion that mutant 

FUS may interfere with the stability of mRNAs important to stress response. 
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Cytoskeletal motor function: 

Recently, several publications have described the importance of molecular 

motors in stress granule dynamics. A report by Loschi et al. identified the 

subunits of two molecular microtubule motors, dynein and kinesin, that localize to 

stress granules and function cooperatively in both stress granule assembly and 

disassembly (Loschi et al., 2009). Kinesins are the main molecular motors that 

drive cargoes along the microtubules in the anterograde direction and cooperate 

with dynein complexes, understood to drive retrograde microtubule-based 

transport (Bartoli et al., 2011; Tsai and Tsui, 2009). As seen in the published 

work related to Chapter II (see Appendix IV), mutant FUS association with 

stress granules delays stress granule assembly and hastens its disassembly. 

Therefore, it is likely that FUS physically interferes with the motors necessary for 

stress granule formation and disassembly. Several proteins with the potential to 

impair stress granule assembly and disassembly bind to full-length mutant FUS 

according to our data (Table II.1).  

Relating to cytoskeletal motors, our work shows that expression of mutant 

FUS in the cytoplasm during stress alters the protein interaction network of the 

stress granule nucleator, G3BP1 (Table II.4). Of particular interest is the marked 

increase in association with three retrograde transport motor proteins, dynein 

light chain roadblock protein 2 (DLRB2), dynactin subunit 3 (DCTN3), and the 

dynein 1 intermediate chain 2 (DC1I2), a motor known to impact stress granule 
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dynamics (Bartoli et al., 2011; Lo et al., 2007; Wanschers et al., 2008). The 

binding of cargo to intermediate and light dynein chains is modulated by the 

multiprotein dynactin complex, where DCTN3 usually works in concert with 

DCTN2 (Bartoli et al., 2011). Importantly, mutant FUS IPs are enriched in DCTN2 

just as G3BP1 IPs are enriched in DCTN3 in presence of mutant FUS. This 

pairing suggesting a possible association G3BP1 and mutant FUS mediated by 

dynactin that may alter stress granule assembly and disassembly.  

We also noted in our results that mutant FUS did not show an enrichment 

in binding to the stress granule marker proteins TIA-1 and HuR. These results 

are intriguing, as Tsai, et al. show showed that in arsenite-stressed culture, TIA-1 

is biochemically co-localized with DLC2A in stress granules of mouse neurites. 

These results, in concert with ours, suggests a possible loss of G3BP association 

to TIA-1, interrupted by mutant FUS binding (Tsai et al., 2009), which may lead to 

the impaired stress granule assembly, disassembly and altered dynamics. 

Cytoskeletal motor defects by mutant FUS may be broadly applicable to 

ALS pathogenesis. In fact, deceleration in dynein-mediated retrograde axonal 

transport occurs before all other pathology in mouse models of ALS, as 

visualization of a fluorescent tetanus toxin in SOD1G93A mice showed compared 

to WT mice (Bilsland et al., 2010). In addition, a 2003 study detected mutations in 

the gene encoding the dynactin subunit DCTN1 that cause lower motor neuron 

disease (Puls et al., 2003). Postnatal transgenic overexpression of DCTN2 in 

mouse motor neurons also causes neurodegeneration that is due to the selective 
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impairment of retrograde transport (LaMonte et al., 2002). These findings 

strongly support the view that dysfunction of dynein-mediated axonal transport 

can cause neurodegeneration, emphasizing the need for future work regarding 

the role of mutant FUS in this system. 

Regardless of stress, mutant FUS expression in the cytoplasm may tip the 

motor-based balance of other neurodegeneration-related proteins it interacts 

with. A final important example lies in motor-associated mRNA granules in 

neurons. A 2004 report revealed that mouse neuronal dendrites contain a large 

mRNP granule, transported by kinesin and bidirectionally directed with an 

unidentified opposite motor (Kanai et al., 2004). This granule contains 42 

proteins, and after stringent RNase conditions authors could still detect an 

insoluble, stabilized ‘core’ containing the purine-rich single stranded DNA-binding 

proteins α and β (PURA and PURB), Staufen, FMRP, FXR1, FXR2, SYNCRIP, 

and kinesin 5 (KIF5). Nearly all of these proteins are present in high abundance 

in our full-length mutant FUS IPs (Table II.1).  They also detected mRNA 

encoding for α-calcium/calmodulin-dependent protein kinase II (α-CaMKII) and 

activity-regulated cytoskeletal-associated protein (ARC) in these stabilized 

granules, suggesting a role for them in local translation of motor proteins. 

Importantly, the authors also discovered endogenous FUS within these granules, 

though in a soluble fashion and at such low levels that they were unable to detect 

it in granules via immunofluorescence; instead, endogenous FUS was grossly 

nuclear (Kanai et al., 2004). These results suggest that while endogenous FUS 
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plays an important transport-associated role in the cytoplasm, it does so with 

nuanced, attenuated levels. The vast presence of mutant FUS in the cytoplasm, 

unable to retreat to the nucleus, therefore likely interferes with the balance of the 

remaining mRNP granule proteins as they function along in dendritic 

microtubules (Ling et al., 2004). This impediment of mutant FUS localization may 

also recruit its binding partner DCTN2, disrupting a balanced bidirectional 

transport. These imbalanced interactions persist under stress conditions, as we 

show (Table II.1), thus providing a potential transport-based mechanism for 

mutant FUS toxicity in stress granules. 

In conclusion, the interactions we have identified that are able to interact 

with mutant FUS in stress granules fall into distinct categories applicable to 

stress-related ALS pathogenesis. Future work is necessary to elucidate the most 

important factors involved. 
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CHAPTER 4:  

CONCLUSION 

 

Amyotrophic lateral sclerosis is a vicious neurodegenerative disease that 

will manifest itself in 500,000 people living today in the USA at some point in their 

lives. The disease is debilitating and costly for patients and families, and there is 

only one barely effective FDA approved treatment that exists, Riluzole. Despite 

the urgent need for an effective treatment and the public support for ALS 

research, there is still no known mechanism for ALS. Nonetheless, there has 

been significant progress in our understanding of ALS pathogenesis thanks to 

the advances in deep sequencing and genetic exploration of the 10% of ALS 

cases inherited in families. In only twenty years, well over half of familial ALS 

(FALS) cases have been linked to specific genetic mutations (Sreedharan and 

Brown, 2013).  

Fused in sarcoma (FUS) is a key gene mutated in FALS and explains 5% 

of these cases. Since 2009, investigation into the normal functions of FUS and its 

pathogenesis in ALS has grown rapidly. FUS is being discovered as a 

multifunctional protein involved in an array of key cellular functions such as 

transcriptional regulation, DNA damage repair, RNA processing, translation and 

stress response (Dormann and Haass, 2013; Ling et al., 2013). Because most 

FUS mutations cause its mislocalization from the nucleus to the cytoplasm, it 

remains unclear if its loss of function or gain-of-toxic function in the nucleus or 



 

 

81 

cytoplasm drives ALS pathogenesis. Perplexingly, several reports exist that show 

a defect in both cellular compartments. For instance, ALS-linked mutant FUS 

variants fail to effectively function in DNA damage response, a finding that 

supports a loss of function mechanism (Mastrocola et al., 2013; Rulten et al., 

2013; Wang et al., 2013). Conversely, mislocalized mutant FUS binds a distinct 

set of ~900 mRNA compared to endogenous FUS (Hoell et al., 2011). More so, 

mutant FUS preferentially binds the 3’UTR of its targets in the cytoplasm, while 

WT FUS instead binds intronic regions in the nucleus (Hoell et al., 2011), 

implicating irregular splicing in hundreds of genes. These results implicate 

mutant FUS in a broad range of cellular pathways. 

FUS is also a ubiquitously expressed protein (Åman et al., 1996). Why, 

therefore, does it exclusively cause disease in the central nervous system? The 

answer may lie in the fact that neurons cannot divide and must be preserved for 

a lifetime, whereas other cell types can be replaced as damage occurs. ALS also 

occurs later in life, which implicates a time-dependent factor involved in disease 

development. An intriguing idea regarding vulnerable cell populations like 

neurons is that FUS may require a “two-hit” mode of disease progression, with 

another insult necessary to drive toxicity in the brain (Dormann and Haass, 

2011). With this in mind, the relevance of stress granules in ALS pathogenesis 

becomes clear. The discovery that ALS-linked mutant FUS associates with stress 

granules (Bosco et al., 2010) has been reproduced several times over 

(Bentmann et al., 2012; Daigle et al., 2012; Dormann et al., 2010; 2012; Gal et 
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al., 2011; Ito et al., 2011; Vance et al., 2013) and is made even more interesting 

by the fact that stress granule marker proteins are present within the pathological 

brain tissue aggregates of neurodegenerative disease tissues (Wolozin, 2012). 

The effects of mutant FUS on stress granule function are in the early stages of 

investigation, but our lab has made the discovery that mutant FUS incorporation 

in stress granules alters several of their characteristics, such as size, number, 

and assembly rate (Appendix V and Baron et al., 2013).  

Here, I have investigated a gain of function hypothesis for mutant FUS in 

ALS pathogenesis that centers on stress granules. To this end, I contributed to 

the work by Baron, et al. discussed above (Baron et al., 2013) and determined 

the structural requirements of mutant FUS localization to stress granules 

(Appendix IV). I also developed several stable epitope-tagged mutant FUS 

mammalian cell culture models to assess the interactions of mutant FUS under 

stress (Chapter II). The structure-function results reveal the C-terminal RGG 

motifs as the key regions directing FUS to stress granules, a process that does 

not depend on post-translational arginine methylation (Appendix IV). Upon 

further characterization using the stable cell lines model, I identified several 

proteins capable of bringing FUS to stress granules (Figure II.3), most of which 

are RNA-mediated and rely on the apparent integrity of poly(ADP)-ribose (Table 

II.1). These proteins are associated with multiple processes, such as mRNA 

degradation, mRNA stability, and cytoskeletal motor function. These binding 

events were accompanied by interactome changes in a key stress granule 



 

 

83 

nucleating protein, G3BP1, suggesting a broader alteration in stress granule 

composition not limited to FUS binders. Together, this work narrows down an 

array of cellular pathways and therapeutic targets that may be useful in the 

treatment of ALS.  
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APPENDIX I: CHAPTER II PROTEOMICS DATASET 

The following table contains the proteomics hits that were enriched at least 4X 

above controls in FLAGHA-FUS immunoprecipitation experiments from Chapter 

II.   

 

 

Table AI.1 is presented across the next 8 pages for visual clarity. It is 

recommended to view this table at 200% zoom if viewing on a computer. 

 

 

Table AI.1 –Proteins identified in FLAGHA-FUS IPs that are 4-fold enriched over 
FLAGHA control IPs under stress conditions. Shown are iBAQ values for 
replicate proteomics analysis experiments from IPs of FLAGHA-tagged FUS-
P525L-FL (P525L), FUS-P525L-∆RGG (∆RGG), FUS-WT (WT), and FLAGHA 
control (FLAG) lysates under arsenite stress (SA(+)) or unstressed (SA(-)) 
conditions. iBAQ values for FLAGHA-FUS from each IP is shown in the first row 
(see Figure II.4a, center). 
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APPENDIX II:  

NEURONAL PROTEOMICS METHODS 

PREFACE 

In an effort to identify FUS interactions during stress in primary cortical neurons 

(PCNs), I designed and generated several entry and lentiviral plasmids for the 

transduction of V5-FUS and FLAGHA-FUS constructs. I was able to express 

mutant FUS in PCNs starting on day in vitro (DIV) 4 at an efficiency of 40% of the 

total population (data not shown). Within each transduced cell, expression of 

exogenous FUS was ~2X that of endogenous FUS based on 

immunofluorescence microscopy quantitation (data not shown). 

 Unfortunately, high background from the immunoprecipitation and a failure 

of peptide elution approaches caused the mass spectrometry data to be largely 

uninterpretable (data not shown). Nonetheless, the success of the neuronal 

transductions will serve as a useful protocol for future research in the Bosco lab. 

Therefore, I have detailed the protocol for lentivirus design and generation as 

well as transduction steps in PCNs.  
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MATERIALS AND METHODS 

Primary cortical neuron harvesting and maintenance: 

Primary cortical neurons were harvested on embryonic day 14  (E14) at a 

density of 1.8 x 10^5 cells/mL on 10 cm plates coated with 15 µg/mL poly-L-

ornithine with 12 mm coverslips. Media was Neurobasal (Invitrogen 21103049) 

supplemented with 5% Glutamax (Invitrogen 35050-061), penicillin/streptomycin 

(Invitrogen 15140122), and B27 supplement (Invitrogen 17504044). Neurons 

were maintained every three days by exchanging half the media with fresh media 

and supplement. 

Lentivirus design and generation: 

Entry vectors with V5-FUS expression vectors were generated as follows: 

Expression cassettes of V5-FUS were cloned into pLenti-CMV-TO-DEST 

lentiviral expression vector (Addgene 670-1) using the Gateway LR Clonase II 

reaction as per manufacturer’s instructions (Invitrogen 11791020). Lentivirus was 

generated via calcium phosphate co-transfection of the following vectors into 

HEK-293T cells: CMVrh.8, VSV-G (both courtesy of Dr. Miguel Esteves), and the 

pLenti-CMV-TO-DEST vector containing the V5-FUS expression cassette of 

interest. Media was changed to Opti-MEM (Invitrogen 31985070) 16h post-

transfection, and media was collected, filtered in a 0.45 µM syringe filter (Fisher 

09-754-21), and concentrated via ultracentrifugation at 28,000 RPM for 2 h. The 

pellet from centrifugation was resuspended in 75 µL Opti-MEM and stored at -

80˚C until transduction. 



 

 

95 

Lentiviral transduction: 

DIV4 primary cortical neurons, plated at a density of 1.8 x 10^5 cells/mL 

on 10 cm plates, were treated with 10 µL concentrated lentivirus and left on the 

cells for 24h, after which media was diluted one-fold with fresh Neurobasal media 

+B27 supplement. Cells transduced for ten days, after which they were 

processed for IF and IP on DIV14. 

Immunofluorescence: 

Coverslips were processed as previous IF methods in Chapter II using the 

following antibody dilutions: 1:1000 mouse anti-V5 (Invitrogen R96025), 1:200 

mouse anti-NeuN (Millipore MAB377), 1:1000 rabbit anti-G3BP (Proteintech 

13057-2-AP), 1:1000 rabbit anti-FUS (Bethyl Laboratories A300-293A). 
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APPENDIX III:  

SAMA, ET AL. 2013 

The following chapter is a manuscript published in the Journal of Cellular 
Physiology (Publisher: John Wiley and Sons; License #3397800087634).  

My contributions to this manuscript included execution, analysis and manuscript 
preparation of Figure 6, intellectual input, and experimental design strategies 
used herein.  
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APPENDIX IV: BARON, ET AL. 2013 

The following chapter is a manuscript published in Molecular Neurodegeneration 

(Publisher: John Wiley and Sons; License #3397800087634). Laura Kaushansky 

(LK) planned and performed experiments for Figure 5, which appears as Figure 

II.1 in Chapter II, and Figure 6.  

Desiree Baron (DB) and Catherine Ward (CW) planned and performed the 

remainder of experiments. DB, Alexandre Quaresma (AJQ) and Jeffrey 

Nickerson (JAN) planned, performed and analyzed data for FRAP; Ru-ju Chian 

(RJC) cloned deletion constructs for structure-function analyses; Reddy Sama 

(RS) and Kristin Boggio (KB) contributed to the design and data interpretation for 

experiments; DB, LK and Daryl A. Bosco (DAB) wrote the paper. All authors read 

and approved the final manuscript.  
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