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Abstract 

      Local protein synthesis is required for long-term memory formation in the 

brain. One protein family, Cytoplasmic Polyadenylation Element binding Protein 

(CPEB) that regulates protein synthesis is found to be important for long-term 

memory formation possibly through regulating local protein synthesis in neurons. 

The well-studied member of this family, CPEB1, mediates both translational 

repression and activation of its target mRNAs by regulating mRNA 

polyadenylation. Mouse with CPEB1 KO shows defect in memory extinction but 

not long-term memory formation. Three more CPEB1 homologs (CPEB2-4) are 

identified in mammalian system. To test if CPEB2-4 may have redundant role in 

replacing CPEB1 in mediating local protein synthesis, the RNA binding specificity 

of these homologs are studied by SELEX. The result shows CPEB2-4 bind to 

RNAs with consensus sequence that is distinct from CPE, the binding site of 

CPEB1. This distinction RNA binding specificity between CPEB1 and CPEB2-4 

suggests CPEB2-4 cannot replace CPEB1 in mediating local protein synthesis.  

For CPEB2-4 have distinct RNA binding specificity compared to CPEB1, they are 

referred as CPEB-like proteins. One of CPEB-like protein, CPEB3, binds GluR2 

mRNA and represses its translation. The subcellular localization of CPEB family 

proteins during glutamate over stimulation is also studied. The CPEB family 

proteins are identified as nucleus/cytoplasm shuttling proteins that depend on 

CRM1 for nuclear export. CPEB-like proteins share similar nuclear export cis-

element that is not present in CPEB1. Over-stimulation of neuron by glutamate 

induces the nuclear accumulation of CPEB family proteins possibly through 



 v 

disrupted nuclear export. This nuclear accumulation of CPEB family protein is 

induced by imbalance of calcium metabolism in the neurons. Biochemical and 

cytological results suggest CPEB4 protein is associated with ER membrane 

peripherally in RNA independent manner. This research provides general 

description of biochemical, cytological properties of CPEB family proteins.   
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CHAPTER I 

 

INTRODUCTION 

 

    The cellular and molecular basis of long-term memory consolidation has been 

one main focus in cognitive science research.  Protein synthesis has long been 

regarded a necessary step in forming new memory.  Research in the past twenty 

years has revealed a tremendous amount of evidence that demonstrates mRNA 

translation activation as a key step in forming new memories; more specifically,  

local protein synthesis at or near the synapse, the contact interface where 

neurons connect to each other and transmit signals. By altering the transmission 

efficiency between synapses, neurons can record the experiences of neuron 

activities.  Long-term changes in synaptic transmission requires the synthesis of 

new proteins, which are delivered to activated synapse to stabilize those 

changes.  Consider the complexity of a neuron; it usually forms thousands of 

synapses with other neurons, and its ability to distinguish stimulated from naïve 

synapses is a major task and an intriguing part of neuroscience.  This chapter will 

focus on the significance of translational control especially the local translation in 

the stabilization of the changes in synaptic transmission and also the putative 

mechanism of targeting macromolecules to activated synapses.  Since many 

translation control mechanisms identified so far in memory consolidation involve 

the general translation machinery, it will be discussed first. 
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Translation machinery 

The translation machinery is the tool to synthesize proteins according to 

genetic code embedded in mRNA.  The basic components of the translation 

machinery include ribosome, a ribozyme that catalyzes the most basic peptide 

bond formation between amino acids through esterification, translation factors, 

the protein subunits that form subcomplexes performing different functions in 

different steps of translation, amino acid charged tRNA and GTP.   

The ribosome in eukaryotic cells has a sedimentation coefficient of 80S 

that can be divided into two subunits, 60S and 40S.  Each subunit is composed 

of ribosomal RNA (rRNA) and ribosomal proteins (rps).  The 40S subunit is 

composed of 18S rRNA and 32 ribosomal proteins.  The 25S, 5.8S and 5S 

rRNAs, combined with 46 ribosomal proteins, form the large 60S subunit.  At the 

interface between the two ribosomal subunits, there is one mRNA binding 

channel and three tRNA binding sites denoted as the A-site, P-site, and E-site.  

The A-site binds amino acid charged tRNA that forms base pairs with the RNA 

codon.  The P-site binds tRNA that is still attached with synthesized polypeptide 

and the E-site contains free tRNA that is ready to be released.  The rRNAs of the 

60S subunit, when devoid of protein, serves as a peptidyl-transferase that 

catalyzes peptide bond formation (Moldave, 1985).  Fewer than half of the 

ribosomal proteins are conserved between prokaryotes and eukaryotes.  These 
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conserved ribosomal proteins help rRNA folding and play supportive roles in 

ribosome function.  

Translation can be divided into four parts: initiation, elongation, termination 

and recycling.  Although translation initiation has long been considered to be the 

major point of translation control, recent developments have revealed new 

insights as to how termination and elongation can also serve as points of 

translation regulation in protein synthesis. 

 

Translation initiation 

The purpose of translation initiation is to put the methionine charged 

initiation tRNA (Met-tRNAi
Met ) to the P-site of the ribosome and to base pair with 

the initiation AUG codon on mRNA.  It involves several translation factors, the 

ribosome, mRNA, GTP, and ATP.  The first step in translation initiation starts with 

ternary complex formation.  Translation factor eukaryotic initiation factor 2 (eIF2), 

GTP, and Met-tRNAi
Met  form the ternary complex (Erickson and Hannig, 1996; 

Kapp and Lorsch, 2004).  eIF2 contains three subunits, eIF2α, eIF2β and eIF2γ.  

eIF2γ is a GTPase and its affinity for Met-tRNAi
Met changes depending on what 

forms of guanidine nucleotide it binds.  At the end of initiation, GTP is converted 

to GDP by the GTPase activity of eIF2γ. The GDP bound form of eIF2γ has a 

lower affinity for Met-tRNAi
Met (Kapp and Lorsch, 2004).  To be able to serve an 

additional round of initiation, GDP- eIF2γ has to be converted to GTP- eIF2γ by 

its guanidine exchange factor (GEF), eIF2B (Nika et al., 2000; Williams et al., 
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2001).  eIF2α is a key factor in controlling translation initiation because when it is 

phosphorylated at serine 51, it becomes a competitive inhibitor of eIF2B and 

blocks the GDP to GTP exchange of eIF2γ and thus inhibits translation initiation 

for most mRNAs (Krishnamoorthy et al., 2001; Sudhakar et al., 2000).  

The phosphorylation status of eIF2α is regulated by eIF2α kinases and 

phosphatases in response to various stimuli.  In yeast, amino acid deprivation 

activates the eIF2α kinase, Gcn2, and represses translation initiation by 

phosphorylating eIF2α.  Gcn2 is activated when uncharged tRNA binds to 

Histidyl-tRNA synthetase (HisRS) domain of Gcn2.  Another eIF2α kinase, PKR-

like ER kinase (PERK), is activated during endoplasmic reticulum (ER) stress 

when there is insufficient protein folding capacity in ER.  Activated PERK 

phosphorylates eIF2α and reduces the general synthesis of proteins including 

membrane proteins that need to be folded in ER to reduce the protein folding 

burden (Harding et al., 1999).  Some mRNAs that contain short upstream open 

reading frames (uORFs) are translationally repressed during normal cell growth 

because of premature dissociation of ribosome before the “real” ORF.  These 

mRNAs will be de-repressed by eIF2α phosphorylation due to poor initiation at 

the uORF (Harding et al., 2000; Hinnebusch, 1993). 

The 80S ribosome has to be dissociated into 60S and 40S subunits before 

serving as a platform for translation initiation. This process is carried out by 3 

initiation factors, eIF1, eIF1A and eIF3 together with the ternary complex 

(Kolupaeva et al., 2005). These initiation factors facilitate subunit dissociation by 
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blocking the interacting face between the two ribosomal subunits.  Together with 

the 40S subunit, these initiation factors recruit the ternary complex and form 43S 

pre-initiation complex (Pestova, 2006). 

Following formation of the pre-initiation complex, the next step is to 

identify the translation initiation codon, AUG.  The most accepted model for the 

ribosome to find the initiation codon is by scanning the mRNA in a 5’-to-3’ 

direction from the 5’end of an mRNA until the first AUG with a “proper context” 

(i.e., surrounding nucleotides).  This strategy requires at least two factors:  first, a 

protein that recognizes the 5’end cap structure, and second, a protein that can 

resolve the RNA secondary structure that impedes the progression of the 

preinitiation complex or conceals the AUG codon in a double strand structure.  

The protein complex that serves both functions is eIF4F (Grifo et al., 1983).  It 

contains eIF4E (a m7G cap binding protein), eIF4A (a DEAD-box RNA helicase) 

and eIF4G (a scaffold protein).  eIF4F is formed before binding the mRNA in 

which eIF4G binds both eIF4E and eIF4A and serves as a scaffold protein.  Cap 

binding activity of eIF4E brings the complex to the 5’end of an mRNA.  

Association of the pre-initiation complex with eIF4F occurs through eIF4G, the 

scaffold protein, by its interaction with eIF3 and forms a 48S complex.  

Interaction between eIF4G and eIF4E is targeted by many translation regulators. 

The eIF4E binding proteins include eIF4G, eIF4E binding protein 1 (4EBP1) 

(Haghighat et al., 1995), 4EBP2 (Rousseau et al., 1996), CUP (Nakamura et al., 

2004; Nelson et al., 2004; Wilhelm et al., 2003), Maskin  (Stebbins-Boaz et al., 
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1999) and neuroguidin (Jung et al., 2006) all contain a 4E binding motif with a 

consensus sequence of YxxxxLφ.  By competing with eIF4G for eIF4E binding, 

these translation regulators disrupt the loading of pre-initiation complex to mRNA 

and repress translation initiation.  

The pre-initiation complex scans along the mRNA until it finds the initiation 

AUG codon with a proper context.  The optimal initiation codon has a sequence 

of GCC(A/G)CCAUGG, in which the -3 and +4 positions (in bold) are more 

significant than the others.  If the AUG is not in this context, the pre-initiation 

complex often moves on to the next optimal codon (Kozak, 1991). The smooth 

scanning is mediated by another protein, eIF1.  In an assay using in vitro 

transcribed mRNA and purified translation initiation factors, it was found that the 

presence of eIF1 prevents the pre-initiation complex from stalling at a partially 

base paired codon or AUG in the wrong context.  This result suggests eIF1 

facilitates the recognition of precise AUG codons for translation initiation 

(Pestova and Kolupaeva, 2002).  Also, this scanning process is facilitated by the 

DEAD-box protein eIF4A when the 5’ leader (sequence between 5’cap and 

initiation codon) of mRNA contains secondary structure.  The amount of ATP 

hydrolyzed by eIF4A is proportional to the levels of mRNA secondary structure 

(Pestova and Kolupaeva, 2002).  

 The last step in translation initiation is reassembling of ribosome subunits.  

This involves the removal of eIF1, eIF1A, eIF3 and eIF2 from 48S before, during 

or after 60S joining.  Release of eIF2 is triggered by the stimulation of intrinsic 
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GTPase activity in eIF2 by eIF5 when the pre-initiation complex lands on bona 

fide AUG codons.  The eIF5 is a GTPase activating protein (GAP) that functions 

optimally when Met-tRNAi
Met  base pairs with AUG in the proper context (Das et 

al., 2001; Paulin et al., 2001).  A precise regulation of GTP hydrolysis by eIF2 is 

controlled by eIF1.  In the absence of eIF1, eIF5 triggers eIF2 GTPase activity 

irrespective of whether the correct initiation start site is recognized (Unbehaun et 

al., 2004).  Following GTP hydrolysis, eIF2-GDP has a low affinity for Met-

tRNAi
Met and results in the release of eIF2 from the 48S complex.  The 

dissociation of eIF1, eIF1A, and eIF3 depends on another GTPase, eIF5B 

(Unbehaun et al., 2004).  Release of eIF1 and eIF3 from 48S happens during 

ribosome subunit joining whereas eIF5B and eIF1A are only released after 80S 

assembly, when the eIF5B bound GTP is hydrolyzed (Fringer et al., 2007).  The 

assembly of the 80S ribosome is a platform for translation elongation.  

  

Translation elongation and termination 

 Translation elongation is a conserved mechanism among living 

organisms.  Three steps are involved in elongation: first, the positioning of an 

amino acid charged tRNA in the A-site; second, formation of the peptide bond; 

third, translocation of the ribosome and release of uncharged tRNA.  Two factors 

are involved in translation elongation in eukaryotes, eEF1 and eEF2.  eEF1 is 

composed of eEF1A, eEF1Bα, eEF1Bβ, and eEF1Bγ.  eEF1A is a GTPase that 

associates with amino acid charged tRNA in the GTP bound form.  After the 
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eEF1-GTP-aa-tRNA localized to the A-site is assembled as 80S, the hydrolysis 

of GTP is stimulated by a region in the 60S subunit called GTP-associated center 

(GAC) (Stark et al., 2002).  GTP hydrolysis releases eEF1A-GDP from the 

ribosome and leaves aa-tRNA in the A site.  The peptide bond formation between 

aa-tRNA in A site and the synthesized peptide in P-site is catalyzed by the 

peptidyl transferase activity of the 60S subunit.  eEF1Bαβγ serves as GEF for 

eEF1A to replace GDP with GTP for another cycle of aa-tRNA placement.  eEF2 

is also a GTPase that induces the translocation of the ribosome along mRNA by 

GTP hydrolysis.  After translocation, tRNA is released from the E site and a new 

cycle of aa-tRNA placement in the A site by eEF1A repeats over and over again 

until the ribosome reaches the termination codon (Taylor D.J., 2007).   

 At the end of translation elongation, the presence of the termination codon 

in the A-site triggers the process of translation termination.  This process is 

mediated by two releasing factors, eRF1 and eRF3 (Zhouravleva et al., 1995).  

The structure of eRF1 mimics tRNA and contains a motif that interacts with 

termination codons, UAG, UGA and UAA (Song et al., 2000).  Together with 

eRF3, a GTPase, they bind the termination codon in the A-site and cause a 

conformational change of pre-termination complex.  Hydrolysis of eRF3 bound 

GTP induces the rapid hydrolysis of the ester bond in peptidyl-tRNA and the 

release of the polypeptide (Alkalaeva et al., 2006).  

In yeast, the translation termination efficiency is affected by a non-

Mendelian dominant phenotype [PSI+].  The [PSI+] phenotype causes the 
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decreased efficiency in translation termination.  Yeast eRF3, Sup35p, is the 

protein that causes [PSI+] (Ter-Avanesyan et al., 1994).  In yeast with [PSI+], 

Sup35p forms the self-perpetuating fibrillar structures that can convert soluble 

forms of Sup35p into fibrillar forms.  Formation of fibrillar structures (amyloids) 

depends on Sup35 N-terminal asparagine/glutamine rich domain.  Being 

incorporated into amyloid excludes Sup35p from function and results in 

translation read through due to inefficient termination (Glover et al., 1997; King et 

al., 1997; Paushkin et al., 1997).  This change in protein function through 

conversion of protein conformation by a preformed fibril mimics the action of the 

prion protein that causes scrapie in lamb and spongiform encephalopathies in 

mammals (Shorter and Lindquist, 2005).  This self-catalyzed conformational 

change has also been suggested to be the mechanism for neural form CPEB 

mediated long-term memory formation in Aplysia (Si et al., 2003b).  

 

Synaptic Plasticity and memory formation 

 The hippocampus plays a central role in long-term memory formation that 

enables storage of daily experiences.  The significance of the hippocampus in 

memory formation has been demonstrated by a patient, anonymously named 

HM, whose temporal lobes were removed by a surgeon as an effort to cure his 

uncontrollable seizure.  The surgery removed part of his temporal lobe bilaterally 

including hippocampus, amygdala and entorhinal cortex.  The procedure resulted 

in the deficit of forming new long term memories (amnesia), although he had no 
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problem in recalling gained memories before surgery and the patient’s 

intelligence and learned skill were intact (Scoville and Milner, 1957).  Other 

patients that have had a similar procedure but limited to hippocampus also have 

amnesia with less severe symptoms, suggesting the hippocampus play a 

significant role in long-term memory formation (Scoville and Milner, 2000).  

Several model systems have been established to study the mechanism of 

long-term memory formation.  One of the approaches is by recording the basic 

signals conveying activity between neurons, synaptic transmission.  An electrical 

pulse generated by one neuron in the form of an action potential (AP) is 

conveyed to another neuron through the synapse.  Alteration of neuron 

transmission efficiency through synapses has been considered to be the cellular 

event for generating a new memory.  The electric stimulation on presynaptic 

compartment induces the release of neurotransmitters and activates ionotrophic 

excitatory receptors in the postsynaptic membrane that results in cation influx 

and a change in electric field (fEPSP, field excitatory post-synaptic potential).  By 

observing the change in fEPSP around synapses, it is possible to monitor 

changes of synaptic activity, or synaptic plasticity.  Stimulation of synapses with 

high frequency electric pulses cause the enhancement of synaptic plasticity, 

long-term potentiation (LTP) (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 

1973).  Since the discovery of the LTP phenomenon, variations in the protocols 

of how neurons are stimulated have developed over time with different 

frequencies, durations, intervals and neuron connection pathways in the 
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hippocampus.  The commonly used pathway is the Schaffer collateral pathway in 

which the axons from hippocampus CA3 region pyramidal neurons wired to 

either apical dendrites or basal dendrites of CA1 neurons.  The synaptic plasticity 

can also be altered by applying low frequency stimulations that result in the 

reduction of synaptic plasticity, long-term depression (LTD).  According to the 

time of LTP or LTD can be sustained, both types of synaptic plasticity changes 

can be divided into early and late phases.  The early phase of synaptic plasticity 

change can be generated with one tetanus stimulation (100Hz for 1s) for E-LTP, 

or one weak low frequency stimulation (paired pulses at 1Hz for 15 min) for E-

LTD; these early phases of synaptic plasticity changes usually last less than 

three hours and descend gradually.  Using stronger stimulation like 4 spaced 

tetanus stimulation and strong low frequency stimulation, L-LTP and L-LTD can 

be induced respectively and can be sustained in the same level over 8 hours.  L-

LTP can also be induced by application of neurotrophic factors, brain derived 

neurotrophic factor (BDNF) and NT-3, on hippocampus slice.  The gene mutation 

that disrupts L-LTP formation usually causes defects in long-term memory (LTM) 

formation as well (Miller et al., 2002), although the gene mutations that enhance 

L-LTP formation do not necessarily also enhance LTM (Banko et al., 2005; 

Costa-Mattioli et al., 2005; Gu et al., 2002).  

There is a temporal requirement for different macromolecules in the 

expression of long-term synaptic plasticity changes.  Inhibition of transcription 

during L-LTP induction reduces the time it can be sustained from 8 hours to three 
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hours, suggesting the synthesis of mRNA contributes to the later stage of L-LTP 

expression.  On the other hand, inhibition of translation blocks the L-LTP 

formation from the beginning when translation inhibitor is applied shortly before 

or during stimulation.  The application of a translation inhibitor after stimulation 

has no effect on L-LTP formation, implying that sustained translational activation 

is not required for the maintenance of L-LTP but protein synthesis is needed for 

consolidation of L-LTP.  For another form of stimulation, theta burst stimulation 

(TBS) that mimics the electric firing frequencies of mouse hippocampal neurons 

during field exploration, the presence of transcription inhibitor also impairs the 

expression of L-LTP (Nguyen and Kandel, 1997).  Although the L-LTP induced 

by neurotrophic factors is independent from transcription activation (Kang and 

Schuman, 1995), but considering both BDNF and NT-3 themselves are 

immediate early genes that transcriptionally activated by synaptic activity 

(Patterson et al., 1992), they actually provide examples that transcription is 

required for L-LTP expression.  These results demonstrate that protein synthesis 

is essential for establishing the early phase of L-LTP and mRNA synthesis is 

required for later phase of L-LTP. 

 

Local protein synthesis in synaptic plasticity and memory formation 

 While the synthesis of new proteins has long been considered to be an 

essential step in generating new memories, evidence was not available until the 

identification of translation inhibitors (Yarmolinsky and Haba, 1959).  Early 
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studies injecting the protein synthesis inhibitor, puromycin, into intracerebral 

chambers had demonstrated the effect of the inhibitor in preventing memory 

formation (Flexner et al., 1963).  The same effect was observed in hippocampal 

L-LTP formation (Krug et al., 1984; Stanton and Sarvey, 1984). This evidence 

provided strong arguments that protein synthesis is required for the 

establishment of extended forms of synaptic plasticity and memory.  

 It was believed that proteins required for enhanced synaptic plasticity in 

neurons were transported to synapses after being synthesized in the cell body, 

the major protein synthesis site in neurons.  With the identification of the protein 

synthesis machinery in the distal dendritic compartment, the idea that protein 

synthesis may happened locally in dendrites began to emerge.  The significance 

of local protein synthesis in mediating L-LTP formation, however, was not proven 

until the work of Kang and Schuman (1996).  They applied BDNF, a neurotrophic 

factor known to enhance synaptic activity by activating protein synthesis (Kang 

and Schuman, 1995), to hippocampal slice and asked if local protein synthesis 

was required for L-LTP formation.  The induction of L-LTP was not affected even 

after severing the cell body from dendrites, which disrupts protein transport from 

the cell body (Kang and Schuman, 1996).  This suggests that proteins required 

for enhanced neurotransmission are synthesized locally, in dendrites. In addition, 

the capacity of dendrites in synthesizing protein has been demonstrated by 

reporter assays using live cell imaging.  Using GFP reporter fused with the 

CaMKIIα 3’UTR that is known to mediate mRNA transport to dendrite, expression 
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of GFP in the dendritic compartment when severed from the cell body can be 

induced by BDNF application (Aakalu et al., 2001).  

The identification of dendritic protein synthesis suggests the machinery for 

protein synthesis is available in dendrites. Using transmission electron 

microscopy, polyribosomes were identified at the base of synapses as assessed 

by their dense shadow and alignment in an array (Steward and Levy, 1982). The 

organelles for expressing membrane proteins and secretory proteins, 

endoplasmic reticulum (ER) and structures resembling Golgi complex (spine 

apparatus), also had been identified in synaptic spines (Gardiol et al., 1999).  

The template for translation, mRNA, can also be cloned from isolated dendritic 

compartments in the absence of the cell body (Eberwine et al., 2001; Moccia et 

al., 2003) or identified through preferentially localized to dendrites using 

microarrays (Zhong et al., 2006).  Among the mRNAs identified are those that 

encode cytoskeleton proteins, ion channels, receptor subunits, ribosomal 

proteins, and the translation machinery.  The finding of mRNA encoding 

ribosomal proteins in dendrites is particularly interesting.  It suggests ribosomes 

may be synthesized locally in dendrites. The current data suggest the amount of 

polyribosomes per-synapse is quite low, only 10 percent of synaptic spines 

contain polyribosomes and there is only 1 polyribosome per micrometer length of 

dendrite (Ostroff et al., 2002). Moreover the amount of dendritic polyribosomes 

increases two folds in two hours after L-LTP induction in the mature 

hippocampus (Bourne et al., 2007).  These observations suggest that ribosomes 
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may be assembled locally after ribosomal protein synthesis when L-LTP is 

induced.  

Unstimulated neurons possess low translation activities in the dendritic 

compartment.  This low level of protein synthesis is maintained by miniature 

excitatory postsynaptic currents (mEPSC).  Spontaneous release of 

neurotransmitters through presynaptic vesicle fusion induces the dispersed 

activation of postsynaptic receptors and results in the induction of mEPSC (Fatt 

and Katz, 1952).  Inhibition of mEPSC by NMDAR inhibitor results in increased 

protein synthesis in dendrites and enhanced mEPSC after removing the inhibitor 

(Sutton et al., 2004).  The protein synthesis repression by mEPSC is mediated 

through the eEF2 kinase, a calmodulin dependent protein kinase that is activated 

by low level of calcium influx through NMDAR.  Translation factor eEF2 catalyzes 

the translocation of 80S ribosome along mRNA.  Phosphorylation by eEF2 

kinase inactivates eEF2 activity and results in general translational repression 

(Redpath et al., 1993; Ryazanov et al., 1988).  On the other hand, when 

synapses are activated by action potentials, the increased synaptic activity 

causes an opposite result: eEF2 dephosphorylation and translational activation. 

This kind of translational regulation happens locally and may serve as a way to 

regulate local protein synthesis in response to synaptic requirements (Sutton et 

al., 2007).  The question remains unanswered is: does dephosphorylation of 

eEF2 simply provide a passive environment for translational activation by other 
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translation regulators or is it sufficient for translation activation of repressed 

mRNA?    

One question about local protein synthesis in response to synaptic activity 

is whether the signaling event activated during L-LTP induction causes global 

translation activation of all dendritically localized mRNA or just some selected 

mRNAs that encode proteins important for synaptic plasticity.  Three particularly 

important and highly relevant papers have been published on the topic of 

whether the activation of general translation will be sufficient to induce L-LTP 

when stimulation inducing E-LTP is applied.  Two papers focus on a key 

translation initiation factor, eIF2α.  Phosphorylation of eIF2α on serine 51 by 

eIF2α kinase inhibits cap dependent translation initiation by blocking ternary 

complex formation (Krishnamoorthy et al., 2001; Sudhakar et al., 2000).  Since 

translation in neurons is relatively repressed due to the constant phosphorylation 

of eIF2α, the elimination of eIF2α kinase or mutation of phosphorylation site S51 

may relieve the repression and enable L-LTP formation with lower stimulation. 

However, reducing eIF2α phosphorylation does more than just relieve translation 

repression, it also reduces ATF4 synthesis.  ATF4 is a transcription factor that 

negatively regulates cAMP response element binding protein (CREB), a 

transcription factor that activates gene transcription required for L-LTP and LTM 

(Kandel, 2001).  In Aplysia, the inhibition of the ATF4 homolog CREB2 enhances 

memory by reducing the threshold for inducing long-term memory (Bartsch et al., 

1995; Chen et al., 2003).  ATF4 mRNA contains several short upstream ORFs 
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(uORF).  Translation termination at short uORFs dissociates ribosomes from 

ATF4 mRNA and prevents the translation initiation from the “correct” downstream 

ATF4 ORF.  Phosphorylation of eIF2α reduces translation initiation from uORF 

and activates ATF4 translation (Harding et al., 2000).  Thus, the eIF2α 

phosphorylation not only represses translation initiation, it also contributes to the 

repression of CREB mediated transcription.  

One of the eIF2α kinases, Gcn2, is highly expressed in brains of 

mammals and flies (Berlanga et al., 1999; Santoyo et al., 1997).  The 

hippocampus from Gcn2-/- homologous mutant mouse shows decreased levels of 

eIF2α phosphorylation, decreased ATF4 expression and as expected, a lowered 

threshold for L-LTP formation (Costa-Mattioli et al., 2005).  Another approach 

utilizes the heterozygous eIF2α serine 51 to alanine mutant, eIF2α+/S51A.  The 

phosphorylation level of eIF2α decreases as a result of this point mutation as 

does the ATF4 protein level.  Contextual, spatial memories are also enhanced in 

heterozygous mouse.  More interestingly, the application of an eIF2α 

phosphatase inhibitor that increases eIF2α phosphorylation prevents L-LTP 

formation that depends on ATF4 expression (Costa-Mattioli et al., 2007).  

Another example of how relieving general translation repression may 

enhance L-LTP formation comes from the study of an eIF4E binding protein, 4E-

BP2.  The translation repressor 4E-BP2 binds eIF4E and prevents its interaction 

with eIF4G and thus the recruitment of 60S subunit and translation initiation 

(Haghighat et al., 1995; Mader et al., 1995).  Of the three identified 4E-BPs, 4E-
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BP2 is preferentially expressed in brain (Tsukiyama-Kohara et al., 2001).  The 

4E-BP2 knockout mouse is normal in development and has no defect in normal 

neuron transmission (Banko et al., 2005).  The hippocampus from the 4E-BP2 

KO mouse has a lowered threshold for L-LTP induction; L-LTP can be induced 

by stimulation that only induces E-LTP in wild type mouse.  

All three approaches that eliminate translation repression in neurons 

through different strategies lower the threshold of L-LTP induction.  The lowered 

threshold is partly derived from the reduced expression of ATF4, thus activation 

of CREB when eIF2α phosphorylation level is lowered genetically (Costa-Mattioli 

et al., 2005; Costa-Mattioli et al., 2007).  The elimination of translation repression 

itself is not sufficient to activate L-LTP because the application of a translation 

inhibitor still blocks the formation of L-LTP by low level stimulation in all three 

cases (Banko et al., 2005; Costa-Mattioli et al., 2007).  This observation suggests 

dendritic protein synthesis activation through eliminating general translation 

repressor cannot provide proteins needed for L-LTP formation.  Thus, the 

proteins that are needed for L-LTP formation may be synthesized by different 

pathways, for example, gene specific translational activation.  In this process, a 

specific group of mRNAs may share a common translation regulation 

mechanism. Several translation regulation mechanisms have been found that 

regulate certain groups of mRNAs, including FMRP, miRNAs and CPEB family 

proteins.  
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MicroRNAs (miRNA) are a group of small RNAs ~21 nucleotides in length 

that form incomplete base pairing with target mRNAs and cause translation 

repression.  After been processed from pre-miRNA, miRNA is incorporated into 

RNA-induced silencing complex (RISC).  miRNAs in RISC mediate translation 

repression of its target mRNA by inhibiting translation initiation (Mathonnet et al., 

2007; Pillai et al., 2005), steps post-initiation (Nottrott et al., 2006; Petersen et al., 

2006) and promoting mRNA degradation through deadenylation (Giraldez et al., 

2006).  In Drosophila, RISC mediates the synaptic localization and translation 

repression of CaMKIIα mRNA.  Synaptic activation by neurotransmitter 

administration increases reporter gene expression and is accompanied by the 

degradation of the RISC component, Armitage (Ashraf et al., 2006).  In addition 

to CaMKIIα mRNA, RISC contributes to the translational repression of LimK 

mRNA through miR134.  BDNF application activates LimK expression by 

triggering the degradation of another RISC component, Argonaute (Schratt et al., 

2006).  Because the translational repression activity of RISC depends on the 

miRNA-target interaction, it provides specificity for regulating translation of 

certain mRNAs.  In both studies, the translation activation of mRNAs repressed 

by miRNA/RISC can be achieved through triggering RISC complex degradation 

when inducing long-term synaptic plasticity changes.  

FMRP, the protein encoded by the Fragile X mental retardation (FMR1) 

gene that is mutated in patients with fragile X syndrome (FXS) is an RNA binding 

protein that represses translation of its target mRNAs.  Symptoms of FXS 
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patients include low IQ, defects in learning, autism, childhood seizures, 

macroorchidism, and hyperactivity (Huber, 2006).  These phenotypes may be 

derived from either transcriptional blocking of FMR1 due to trinucleotide CGG 

expansion or a point mutation that inactivates the protein function (O'Donnell and 

Warren, 2002).  FMRP is found to localize both to free mRNP and polyribosome 

fractions in sucrose gradients. A mis-sense mutation is located in second KH 

domain of FMRP, an RNA binding domain that binds to an RNA structure called 

“Kissing complex”.  The in vitro transcribed kissing complex RNA can dissociate 

FMRP from polyribosomal fractions when added to extracts in trans, suggesting 

the association of FMRP with polyribosomes is through the kissing complex 

(Darnell et al., 2005).  FMRP also been shown to associate with its target 

mRNAs through another RNA, BC1, a non-coding RNA ~200 nucleotides in 

length and is highly expressed in neurons (Tiedge et al., 1991).  BC1 inhibits 

translation initiation by blocking eIF4A activity (Lin et al., 2008).  

The FMR1 gene knockout mouse shares some phenotypes of FXS patient 

such as seizure, hyperactivity, and macroorchidism.  FMRP is required for 

balancing metabotropic Glutamate receptor (mGluR) induced LTD, a process 

that depends on translational activation (Huber et al., 2000).  FMRP expression 

is induced by mGluR activation and needed for feedback inhibition of translation 

activation induced by mGluR (Hou et al., 2006). The LTD induced by mGluR 

activation is enhanced in FMR1 knockout mice (Huber et al., 2002). The deletion 

of one of the group1 mGluR, mGluR5, can reverse the phenotype of FMR1 
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knockout mouse, suggesting the unregulated protein synthesis after mGluR 

activation is the main factor that contributes to FXS symptoms (Dolen et al., 

2007).  

Another RNA binding protein that functions as translation regulator is 

cytoplasmic polyadenylation element binding protein 1 (CPEB1).  It regulates 

protein synthesis through binding to the CPE in the 3’UTR of its target mRNAs 

and controls their translation activation or repression through adenylation or 

deadenylation respectively.  Its function in regulating protein synthesis and long-

term memory formation will be discussed in later sections.  

 

Synaptic tagging 

 One Purkinje neuron in the cerebellum forms over 10,000 synapses with 

parallel fibers (axons) derived from granule cells.  Each synapse functions 

independently in encoding information according to neural activities, constitutes 

the basis for memory.  A long term change in neural transmission like L-LTP or L-

LTD demands acquisition of new mRNA and protein by individual synapses.  The 

mechanism for delivering de novo synthesized mRNA or proteins to specific 

synapses that experience neural activity has been one key issue in the search of 

mechanisms for long-term memory.  

 Our current understanding of this delivery mechanism was derived from 

the work of Frey and Morris (1997).  Using two electrodes that activate 

independent Schaffer collateral pathways on same group of CA1 neurons, they 
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found that when one tetanus stimulation (pathway A) that originally induced E-

LTP was executed within a time range before or after four spaced tetanus 

stimulations (pathway B) that induced L-LTP, instead of E-LTP the pathway A 

induced L-LTP (Frey and Morris, 1997). The induction of L-LTP in pathway A was 

not prohibited by either translation or transcription inhibitors while executing 

pathway A, so the ability of pathway A to induce L-LTP was independent from 

activating protein and mRNA synthesis.  Since new protein and mRNA synthesis 

are required for establishing L-LTP, it was conceived that synapse activated by 

pathway A can create a “synaptic tag” that attracts newly synthesized proteins 

and mRNAs induced by pathway B.   

The synaptic tagging phenomenon can be observed not only during 

synaptic plasticity potentiation but also in synaptic plasticity depression or even 

between potentiation and depression, so called “cross tagging” (Sajikumar et al., 

2005).  If a stimulation that normally induces E-LTD is placed before or after a 

stimulation that induces L-LTP, the E-LTD will be converted to L-LTD, and vice 

versa.  This result suggests the molecules that were synthesized when inducing 

L-LTP or L-LTD share similar profiles that can be absorbed by synaptic tags 

created when inducing E-LTP or E-LTD.  Although both type of tags have the 

property of attracting de novo synthesized material, they are generated through 

different signaling pathways.  The generation of synaptic tags when inducing E-

LTP can be blocked by two CaMKII inhibitors, KN62 and auto-inhibitory peptide 

(AIP).  KN62 is a calmodulin inhibitor that blocks the interaction between 
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calmodulin and a CaMKIIα subunit and thus prevents CaMKII activation 

(Tokumitsu et al., 1990).  AIP is a competitive peptide inhibitor that inhibits 

CaMKII autophosphorylation and constitutive activation (Ishida et al., 1998).  The 

formation of a synaptic tag when inducing E-LTD can be blocked by application 

of MAP kinase inhibitors (Sajikumar et al., 2007), suggesting different molecular 

mechanisms of tag formation for synaptic potentiation and depression. How a 

general pool of synthesized mRNAs and proteins can establish two distinct types 

of synaptic plasticity change is still unknown.  One explanation would be that 

each type of synaptic tag only absorbs selective group of material that are 

required for its specific need from a general pool of material synthesized.  

 Synaptic tagging also has spatial restriction.  The CA1 neuron that is 

commonly used for synaptic plasticity examination has two sets of dendrites, 

basal (striatum oriens) and apical (striatum radiatum) dendrites. The stimulations 

that trigger E-LTP and L-LTP, respectively, have to target on the same dendritic 

compartment for the synaptic tagging to work. Suggesting the limited distribution 

of dendritically synthesized proteins that can be absorbed by synaptic tag 

(Sajikumar et al., 2007)(Alarcon et al., 2006).  

The identification of synaptic tagging suggests that the formation of L-LTP 

can be divided into two distinct steps. The creation of a tag that is independent of 

protein and mRNA synthesis to label the synapse as being activated, then the 

activation of protein and mRNA synthesis required for sustaining change of 

synaptic plasticity. Under this assumption, by supplying either proteins or mRNAs 
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that are required for extended forms of plasticity changes from an independent 

mechanism should be able to reduce the level of stimulation needed for creating 

long lasting synaptic plasticity change. As discussed above, the activation of 

general translation machinery and CREB mediated transcription by inhibiting 

ATF4 translation through GCN2 gene targeting or eIF2α S/A mutation both 

reduces the threshold for generating L-LTP. The GCN2 gene targeting mouse 

shows an impairment in long term memory formation, while the eIF2α S51A 

heterozygote mouse has enhanced long term memory (Costa-Mattioli et al., 

2005; Costa-Mattioli et al., 2007).  Also, the transgenic mouse that expresses a 

constitutive active form of CREB, VP16-CREB, has a lower threshold for L-LTP 

induction (Barco et al., 2002).  These gene-manipulated animals have provided 

evidence to support the two step mechanism of L-LTP.  

  

Nuclear experience and mRNA localization 

One essential step in synaptic tagging is the ability of activated synapses 

to recruit newly synthesized proteins and mRNAs for sustained enhancement of 

synaptic plasticity.  Although the mechanism of protein targeting is not available 

at this moment, there are observations that mRNAs can be targeted to synapses. 

The common theme about the cytoplasmic localization of mRNA is that a cis-

element is required for transport. The cis-element is bound by a trans-factor that 

not only mediates localization but also mediates the translation repression until 

mRNA reaches its target site.  This mRNA-protein complex or mRNP often is 
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assembled during pre-mRNA biogenesis while in nucleus as a way to silence 

mRNA from beginning.  Below are two examples that show how the formation of 

mRNP in nucleus is required for mRNA localization.  

Oskar is required for the Drosophila germ line and abdomen development 

by accumulating at the posterior pole of oocyte (Lehmann and Nusslein-Volhard, 

1986).  Oskar mRNA translational activation depends on proper localization to 

the posterior pole, the non-localized mRNA is translationally repressed.  The 

localization of Oskar mRNA is mediated by two groups of factors: the exon 

junction complex (EJC) mediated posterior pole localization and translational 

repression by Bruno mediated oligomerization and recruitment of CUP, an eIF4E 

binding protein.  Oskar RNA in vitro transcribed from cDNA failed to localize to 

the posterior pole after injection when maternal Oskar mRNA was absent. The 

localization was restored when exon1 was retained in the injected RNA, 

suggesting a splicing event was required for localization (Hachet and Ephrussi, 

2004). The EJC is a protein complex that binds to RNA sequences 20-24nt 

upstream of exon junctions in a sequence independent manner following splicing 

(Le Hir et al., 2000).  The core complex contains four proteins, eIF4AIII, 

BARENTSZ, MAGO NASHI and Y14/TSUNAGI (Palacios et al., 2004).  Mutation 

of Y14/Tsunagi or Mago nashi disrupts Oskar mRNA localization (Hachet and 

Ephrussi, 2001; Mohr et al., 2001). This splicing dependent cytoplasmic 

localization mechanism emphasizes the significance of the nuclear experience 

for mRNA localization. Besides splicing, translational repression of Oskar mRNA 
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by Bruno is also important for its localization.  Bruno induces the oligomerization 

of Oskar mRNA by binding to Bruno response elements (BREs) and forming a 

large mRNP complex that is translationally repressed (Chekulaeva et al., 2006; 

Kim-Ha et al., 1995).  Translation repression by Bruno is mediated by CUP, an 

eIF4E binding protein that excludes eIF4G from interacting with the cap binding 

protein eIF4E (Nakamura et al., 2004).  Translation repression is also required 

for the localization of Oskar mRNA because the pioneer round of translation, the 

first round of translation, dissociates the EJC complex from the mRNA (Dostie 

and Dreyfuss, 2002; Lejeune et al., 2002).  The function of the EJC complex in 

mediating mRNA localization may also involve nonsense-mediated mRNA decay 

(NMD) that is described in a later section.   

  

Mechanism for mRNA localization to dendritic compartment  

 Some mRNAs are preferentially localized to dendrite than others, 

suggesting there are machineries involved in recognizing and transporting these 

mRNAs from cell body to dendrite. At least two forms of RNP transportation 

machineries present in neurons, RNA granule and KIF5 containing RNP 

complex. RNA granule is isolated from in vitro cultured neuron about 7 days post 

plating. Using sucrose gradient, RNA granule can be separated from 

polyribosome fraction by its enormous size. When examined under transmissive 

electron microscope, RNA granule is shown contains numerous polyribosomes in 

a tight globular structure. The depolarization of neuron using potassium chloride 
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causes the loosening of structure, an indication of regaining translation capability 

(Krichevsky and Kosik, 2001). The other type of RNA transportation machinery, 

KIF5 associated mRNP, moving along microtubule by kinesin subfamily proteins, 

KIF5. Using cargo binding domain for affinity purification to isolate its putative 

cargo from brain extract, KIF5 proteins form mRNPs that contain at least 42 

proteins and mRNAs including MAP2 and CaMKIIα mRNA (Miki et al., 2005). 

 CaMKII is an important protein kinase that mediates the signaling of 

secondary messenger calcium ion in cell. The mRNA encoding catalytic subunit, 

CaMKIIα, is abundantly present in dendrite (Burgin et al., 1990; Mackler et al., 

1992). Dendritic transport of CaMKIIα mRNA depends on its 3’UTR. The 3’UTR 

truncated CaMKIIα mRNA expressed in mouse brain failed to localize to dendrite 

and is poorly translated. The mouse also shows a severe defect in L-LTP and 

long-term memory. Suggesting that the transport and translation activation of 

CaMKIIα mRNA both depend on cis-elements in its 3’UTR (Miller et al., 2002). 

CaMKIIα mRNA had been identified in both RNA granule and KIF5 containing 

mRNP complex suggest the significant role of these two complexes in its 

dendritic transport (Kanai et al., 2004; Krichevsky and Kosik, 2001). Although it 

was reported that CPEB1 binds CaMKIIα mRNA through two CPEs in the 3’UTR 

(Wu et al., 1998), and CPEB1 was shown to mediate RNA transport (Huang et 

al., 2003), but the significance of CPEB1 in mediating CaMKIIα mRNA transport 

is still unknown and CPEB1 is not identified in either RNA granule or KIF5 

mRNP.  
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Mechanisms of mRNA targeting during L-LTP.  

The mRNA of some immediately early genes (IEG) that transcriptionally 

activated by synaptic activity is transported directly to the vicinity of activated 

synapse after been synthesized. The question of how these mRNAs can be 

delivered to activated synapse where it can be translated is important for 

explaining synaptic tagging and long-term memory formation. Activity regulated 

cytoskeleton binding protein (Arc) is an IEG that transcriptionally activated by 

synaptic activity through NMDAR and AMPAR activation (Link et al., 1995; Lyford 

et al., 1995; Steward and Worley, 2001). Arc protein interacts with endocytosis 

machinery and triggers the removal of AMPA receptor from plasma membrane 

thus results in the scaling down of synaptic activity (Chowdhury et al., 2006; Rial 

Verde et al., 2006; Shepherd et al., 2006). Deletion of the Arc gene in mouse 

causes the inability of maintaining both L-LTP and L-LTD in the hippocampus 

and the impairment of long-term memory formation (Plath et al., 2006). In the 

works done by Steward in 1998, de novo synthesized Arc mRNA was delivered 

to activated synapses in a mechanism that involves both mRNA degradation 

through translation activation and stabilization of mRNA by activated synapses 

(Steward et al., 1998). For specific, two hours after the Arc mRNA was 

transcriptionally induced by an electroconvulsive seizure (ECS) through 

introducing electric current from ear clips, Arc mRNA was transported and 

distributed all over the dendrite. If one of hippocampus in the same brain was 
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followed by a high frequency stimulation (HFS) to activate synapses in certain 

section of dendrite in a region of hippocampus named dentate gyrus, the Arc 

mRNA in the vicinity of activated synapses were stabilized but those that did not 

properly localized were degraded. This mRNA degradation depends on HFS, 

because Arc mRNA in the control hippocampus is more abundant and evenly 

distributed along dendrite. Degradation of the Arc mRNA also depends on mRNA 

translation because the inhibition of protein synthesis stabilizes the Arc mRNA 

that mis-localized (Steward et al., 1998). The mechanism of Arc mRNA 

degradation is not known until the recent finding showed that the Arc mRNA 

stability is regulated by the nonsense-mediated mRNA decay (NMD) (Giorgi et 

al., 2007). NMD is a mRNA integrity monitoring mechanism that induces the 

degradation of aberrantly spliced mRNA that contains intron within open reading 

frame (ORF) in which premature translation termination codons maybe created 

or mRNA that contains exon junction, the site where intron removed by splicing, 

in the 3’UTR (Amrani et al., 2006). Arc gene encodes mRNA with two introns in 

its 3’UTR that make it a substrate for NMD pathway (Giorgi et al., 2007). The 

triggering of NMD pathway is preceded by a pioneer round of translation. 

Removing either an EJC component (eIF4AIII) or a NMD protein (Upf1) by siRNA 

increases the Arc mRNA and protein level in cultured neuron. This result 

confirms the role of NMD in regulating Arc mRNA level through EJC. This 

mechanism of Arc mRNA degradation may also apply to other dendritic mRNAs 

because the same 3’UTR located intron can be identified in many mRNAs 



 30 

through searching database using preset criteria (Giorgi et al., 2007). Since the 

degradation of Arc mRNA by NMD depends on pioneer translation so it is 

consistent with the observation that inhibition of translation stabilized 

mislocalized Arc mRNA (Steward et al., 1998).  

The question remained unanswered is how Arc mRNA may be stabilized 

in the vicinity of activated synapses whether it remained in the dendrite or 

transported into the synaptic spine. It is known that the Arc protein is synthesized 

and shows identical localization just like its mRNA after HFS stimulation, 

suggesting the mRNAs is immobilized nearby activated synapses and translated 

but mRNA is not degraded by NMD pathway. So there must be one mechanism 

induced by HFS that can inactivates NMD while the Arc mRNA is translated. One 

possible candidate is ubiquitin proteasome system (UPS) that known to be 

activated by synaptic stimulation (Bingol and Schuman, 2006). Proteasome 

complex moves from dendrite shaft to synaptic spine upon synaptic activation 

and causes the degradation of the ubiquitylated proteins (Bingol and Schuman, 

2006). It is also been shown that UPS function may play a role in activating LimK 

mRNA translation by BDNF. LimK mRNA in dendrite is bound and translationally 

repressed by miR134 and its associated RISC. Application of BDNF leads to 

LimK expression through degradation of RISC component, argonaute (Schratt et 

al., 2006). The same UPS activity may also degrade EJC component and 

prevent Arc mRNA degradation through NMD.  
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Several candidates have been indicated to play a role in immobilizing Arc 

mRNA.  One of the candidates for immobilizing Arc mRNA is the change of 

synaptic cytoskeleton. Activation of Rho kinase is shown to induce actin bundles 

(F-actin). Destruction of F-actin formation by latrunculin B or Rho kinase inhibitor 

reduces Arc mRNA localization (Huang et al., 2007). Another candidate for Arc 

mRNA localization is constitutively activated CaMKII. CaMKII activity is required 

for synaptic tagging (Sajikumar et al., 2007), disrupting the dendritic translocation 

and translation of its mRNA impaired long-term memory (Miller et al., 2002).  

   

CPEB1-mediated translational regulation in Xenopus oocytes 

 Cytoplasmic Polyadenylation Element binding Protein 1(CPEB1) is an 

RNA binding protein that controls both CPE-containing mRNA translational 

repression and activation.  In immature oocytes, CPEB1 represses mRNA 

translation by interacting with Maskin, a protein that also binds the cap binding 

factor eukaryotic initiation factor 4E, eIF4E (Cao and Richter, 2002; Stebbins-

Boaz et al., 1999).  Maskin binding to eIF4E precludes eIF4G from binding to 

eIF4E, thus the 40S ribosomal subunit is not recruited to the mRNA and initiation 

does not take place.  In oocytes, CPEB1 also forms a complex with symplekin, 

Gld2 (germ line development 2), an unusual poly(A) polymerase, and PARN 

(poly(A) ribonuclease).  This CPEB1 complex helps maintains a short poly(A) tail 

on target mRNAs (Barnard et al., 2004; Kim and Richter, 2006) in the cytoplasm  

During oocyte maturation, the activation of CPEB1 target mRNAs requires the  
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Figure 1 

 

 

 

 

 

Figure.1 CPEB1-mediated mRNA translation regulation in Xenopus oocytes.  

In immature oocytes, CPEB1 represses CPE containing mRNA translation by 

binding to the CPE and recruiting a protein complex that contains Maskin, 

symplekin, CPSF, xGld-2 and PARN. The presence of PARN limits 

polyadenylation and maintains a short poly-A tail in CPE-containing mRNA.  

Maskin prevents translation initiation by binding to eIF4E.  Progesterone 

stimulation of maturation induces CPEB1 phosphorylation by the kinase Aurora 

A, which expels PARN from the complex.  In the absence of PARN, poly(A) tail 

extension by xGld2 recruits ePAB and eIF4G for activating translation initiation.    
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phosphorylation of CPEB1 serine 174 by the kinase Aurora A (Kim and Richter, 

2006; Mendez et al., 2000a); phosphorylation causes the expulsion of PARN 

from the ribonucleoprotein complex, the consequence of which is Gld2-catalyzed 

default polyadenylation.  The elongated poly(A) tail is then bound by an atypical 

poly(A) binding protein called ePAB (embryonic poly(A) binding protein) (Voeltz 

et al., 2001); ePAB also binds eIF4G and helps to displace Maskin from eIF4E 

(Cao and Richter, 2002; Kim and Richter, 2006) and induce translation initiation. 

Maskin is also becomes phosphorylated, which also helps it to dissociate from 

eIF4E (Barnard et al., 2005; Cao et al., 2006). In addition to oocyte maturation in  

Xenopus, CPEB1-mediated mRNA translation is also required for several other 

biological functions.  In early embryonic development of Xenopus, CPEB1-

mediated Cyclin B1 polyadenylation and deadenylation is required for cell cycle 

progression (Groisman et al., 2002). 

In neurons, CPEB1 has been shown to posses multiple functions.  It 

activates the expression of CaMKIIα protein through mRNA polyadenylation in 

response to synaptic activation (Wu et al., 1998).  In addition to regulating mRNA 

translation, CPEB1 also mediates mRNA transport in dendrites by binding, 

directly or indirectly, to the motor proteins: kinesin and dynein (Huang et al., 

2003).  In Aplysia, a neuronal form CPEB1 that contains a poly-glutamine 

sequence is synthesized locally in response to neuronal activity.  Interference of 

Aplysia CPEB1 synthesis with an antisense oligonucleotide prevents formation of 

a specific form of long-term synaptic activity enhancement, long-term facilitation 
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(LTF) (Si et al., 2003a).  In Drosophila, a null mutant for a CPEB family protein, 

Orb2, is embryonic lethal, but it can be rescued by expressing full length Orb2.  

Orb2 also contains a poly-glutamine sequence in the N-terminal region.  Flies 

expressing Orb2 without the poly-glutamine region are normal in learning and 

short-term memory but defective for maintaining long-term memory in courtship 

behavior.  The long-term memory can be only rescued by expressing full length 

Orb2 during or shortly after the training session.  This suggests that the poly-

glutamine sequence is specifically required for long term memory but not other 

general functions (Keleman et al., 2007).  This property of Orb2 in mediating 

long-term memory formation is distinct from what occurs in the CPEB1 KO 

mouse. Although CPEB1 knockout mice have some deficits in weak theta burst 

stimulation induced L-LTP (Alarcon et al., 2004), which use electric frequency 

that mimics live mouse hippocampal neuron firing during spatial exploration, but 

L-LTP by repeated tetanus stimulation and L-LTD is still intact. Also in animal 

behavior tests for spatial memory, CPEB1 KO mice are normal in learning and 

long term memory, but have defect in memory extinction (Berger-Sweeney et al., 

2006).   

Memory extinction is a process of relearning. In contextual fear memory 

paradigm, a foot shock is associated with a novel environment (new cage). After 

training, if the mouse is put back to the same environment, mouse tends to 

freeze due to learned link between pain and new cage. Without further foot 

shock, the duration of mouse freeze decreases every time mouse been put back 
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to the same cage. This process of readjusting to new condition is called memory 

extinction.  

This difference between the CPEB1 KO mouse and the Orb2 poly-

glutamine truncation mutant flies suggests that CPEB1 may not the CPEB family 

proteins that mediates long term memory formation in mammals.  Also it 

emphasizes the significance of poly-glutamine rich region in forming memory. 

One proposed role of poly-glutamine sequence is it causes the aggregation of 

neural form CPEB1 protein or fly Orb2 and transforms these proteins into active 

form for activating translation during L-LTP and long-term memory formation. 

Due to the low conversion rate between soluble form and aggregated form and 

also the self-perpetuating property of aggregated proteins it can sustain synaptic 

activity enhancement in L-LTP and long term memory (Si et al., 2003b). Although 

this is an interesting model for explaining the longevity of synapse activation, 

there are two issues contradict to what is known about the nature of L-LTP and 

memory. First, the maintaining of L-LTP can be disrupted by a introduction of 

PKMζ inhibitor, ZIP peptide (Shema et al., 2007), or by introducing low frequency 

stimulation, depotentiation (Fujii et al., 1991). The stability of prion state will be 

difficult to match the flexibility of synaptic activity. Second, the maintenance of L-

LTP is not blocked by translation inhibitor, suggesting protein synthesis is not 

required for L-LTP maintenance (Frey and Morris, 1997). One alternative 

hypothesis for explaining the role of glutamine/asparagines rich motif in 

mediating L-LTP and memory is that it served as a synaptic tag for attracting 
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proteins and mRNA to activated synapse. All the other CPEB family proteins, 

CPEB2, CPEB3 and CPEB4, all contain short poly-glutamine or 

glutamine/asparagines rich N-terminal region, suggesting that they also might 

mediate memory consolidation in mammals. Among them, CPEB3 and CPEB4 

have been shown to localized to synapse and co-purified with PSD in adult rat.  

(Moldave, 1985) 

In this study, we have characterized the RNA binding specificity, protein 

expression and subcellular localization of CPEB3 and CPEB4 in neurons. 

CPEB3 and CPEB4 have a different RNA binding specificity compared to 

CPEB1. CPEB3 is a translation repressor that binds mRNA coding for AMPA 

receptor subunit, GluR2, and represses its translation. Both CPEB3 and CPEB4 

as well as CPEB1 shuttles between nucleus and cytoplasm. When cytoplasmic 

calcium homeostasis is disturbed under pathological conditions, CPEB family 

proteins are retained in nucleus. These results provide the general description of 

biochemical and cytological properties of CPEB3 and CPEB4 proteins.  
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CHAPTER II 

 

CPEB3 and CPEB4 in Neurons: Analysis of RNA Binding Specificity and 

Translational Control of AMPA Receptor GluR2 mRNA 

 

Introduction 

 

 One widely used mechanism to activate the translation of dormant mRNAs 

is cytoplasmic polyadenylation.  While this process was first described in 

invertebrates, it is also important for vertebrate oocyte development (Hake and 

Richter, 1994; Sheets et al., 1995; Stebbins-Boaz et al., 1996; Tay and Richter, 

2001), cell cycle progression(Groisman et al., 2002), neuronal synaptic plasticity 

(Alarcon et al., 2004), and somatic cell senescence(Groisman et al., 2006).   

CPEB1 is the key protein that controls this process; it binds the 3’ UTR 

cytoplasmic polyadenylation element (CPE; consensus UUUUUAU) of target 

mRNAs (Hake and Richter, 1994).  CPEB1 also interacts with a number of 

proteins that are important for polyadenylation and include i.) cleavage and 

polyadenylation specificity factor (CPSF), which binds the hexanucleotide 

AAUAAA, another cis-element in the RNA essential for polyadenylation, ii.) 

Symplekin, a scaffold protein that helps link CPEB1 to CPSF, and iii.) Gld-2, a 

cytoplasmic poly(A) polymerase (Barnard et al., 2004).  CPEB1 also binds a 
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guanine nucleotide exchange factor (Reverte et al., 2003), an RNA helicase 

(Minshall and Standart, 2004), and an amyloid precursor proteins (Cao et al., 

2005), all of which influence CPEB-dependent polyadenylation.  Polyadenylation 

is initiated when CPEB is phosphorylated by Aurora A, which results in an 

enhanced interaction between CPEB and CPSF and between CPEB and Gld-2 

(Barnard et al., 2004; Mendez et al., 2000a; Mendez et al., 2000b).  These 

events induce Gld-2 to extend the poly(A) tail.  Translation of CPE-containing 

mRNAs is most proximally controlled by Maskin, which simultaneously binds 

CPEB and the cap-binding factor eIF4E.  The association of Maskin with eIF4E 

inhibits assembly of the eIF4F (eIF4E, eIF4G, eIF4A) initiation complex (Richter 

and Sonenberg, 2005; Stebbins-Boaz et al., 1996).  Phosphorylation (Barnard et 

al., 2004) as well as polyadenylation and poly(A) binding protein (PABP) help 

Maskin dissociates from eIF4E, thereby allowing translation initiation to proceed 

(Barnard et al., 2004; Cao and Richter, 2002). 

 In neurons, CPEB promotes the dendritic transport (Huang et al., 2003) 

and polyadenylation-induced translation of CPE-containing mRNAs following 

synaptic stimulation (Du and Richter, 2005; Huang et al., 2002; Wu et al., 1998).  

Because local mRNA translation modulates synaptic efficacy (Bailey et al., 2004; 

Steward and Schuman, 2003), it is not surprising that CPEB knockout mice 

display defects in synaptic plasticity (Alarcon et al., 2004), as do Aplysia neurons 

treated with an antisense oligonucleotide against CPEB mRNA (Si et al., 2003a).  

However, three additional genes encode CPEB-like proteins in vertebrates 
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(Mendez and Richter, 2001) that, at least at the RNA level, are expressed in the 

brain (Theis et al., 2003).  The possibility that these proteins might partially 

compensate for the loss of CPEB caused us to investigate not only their RNA 

binding specificities, but also their involvement in translational control in neurons. 

All CPEB-like proteins in both vertebrates and invertebrates have a similar 

structure in which most of the carboxyl terminal region is composed of two RNA 

recognition motifs (RRM) and two zinc fingers.  At least for CPEB, all of these 

domains are important for binding to the CPE with high affinity (Hake et al., 

1998).  In spite of these structural similarities, however, a sequence comparison 

of the RNA binding regions indicated that CPEB is distinct from CPEBs 2, 3, and 

4 (Mendez et al., 2002).  Indeed, mouse CPEB is more similar to Drosophila 

CPEB (also known as Orb) than it is to mouse CPEB2-4.  This observation 

suggests that CPEB2-4 might bind a sequence other than the CPE.  Using the 

RNA binding region of CPEB4, we now report that SELEX (systematic evolution 

of ligands by exponential enrichment) analysis has identified a new binding 

sequence for these proteins.  RNA gel shifts using this sequence as well as the 

CPE demonstrates that while CPEB binds the CPE and CPEBs2-4 bind the 

SELEX sequence with high affinity (Kd of 100-160 nM), CPEB does not bind the 

SELEX sequence nor do CPEBs3-4 bind the CPE.  While CPEB recognition of 

the CPE does not appear to involve RNA secondary structure, such structure is 

important for CPEB3-4 interaction with the SELEX sequence.  CPEB3-4 are 

expressed in partially overlapping regions in the brain and are found in dendrites; 
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CPEB3 co-localizes with a synaptic marker while CPEB4 does not.  Experiments 

employing reporter RNAs transfected into neurons demonstrate that CPEB3 

represses and then stimulates translation in response to NMDA treatment.  

CPEB3 neither interacts with CPSF nor requires the AAUAAA hexanucleotide for 

translational activation, implying that, in contrast to CPEB, it regulates translation 

in a polyadenylation-independent manner.  The AMPA receptor GluR2 mRNA is 

a target of CPEB3 regulation; not only does CPEB3 bind this RNA in vivo, but an 

RNAi knockdown of CPEB3 in neurons results in elevated translation of GluR2 

mRNA.  Thus, based on RNA binding specificity and functional regulation of 

translation, CPEB2-4 form a class of proteins distinct from CPEB. 

 

 

Materials and methods 

 

Plasmids and protein expression 
E. coli strain BL21(DE3)pLysS (Novagen) was transformed with 

expression plasmids (pET28a) encoding CPEB and the RBDs of CPEB3-4.  The 

cells were cultured to OD600 0.3-0.6 before the addition of 1mM IPTG for 30 mins.  

His-tagged proteins were purified using Ni-NTA agarose resin (QIAGEN) and 

dialyzed against 1XGR buffer (10 mM Hepes, pH7.6, 50 mM KCl, 1mM MgCl2, 

0.1mM ZnCl2, 10% glycerol, 1mM DTT) for 2 hours.  His-CPEB was denatured 

with 6M urea and then renatured by stepwise lowering of the urea concentration 
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in the wash buffer to 2 M urea before elution and dialysis against 1XGR with 2 M 

urea.  The CPEB4RBD used for SELEX was further purified by FPLC (AKTA, 

Amersham Pharmacia Biotech) in a HiLoad 16/60 Superdex 200 column in 

1XGR buffer; protein concentration was determined by BCA protein assay 

reagent (Pierce). 

For other experiments, DH5α cells transformed with plasmids encoding 

MBP fused to CPEB proteins were grown to O.D.600~ 0.6 and then induced with 1 

mM IPTG for 3 hours.  The bacterial pellet was resuspended in buffer A (20 mM 

Hepes pH 7.6, 500 mM NaCl, 1 mM MgCl2, 0.5 mM DTT, 0.1% Triton X-100, 

10% glycerol, 1 mM PMSF) and incubated for 30-40 min. on ice with lysozyme (1 

mg/ml).  The cells were sonicated to loss of viscosity and clarified by 

centrifugation at 12,000 xg for 15 min.  The resulting supernatant was incubated 

with amylose resin (NEB) and washed with 100X volume of buffer A.  The protein 

was eluted with buffer A (100 mM NaCl, no Triton X-100) with 10 mM maltose. 

Gel shift assays typically employed 100 ng of fusion protein. 

 

 SELEX 

For SELEX, three oligonucleotide primers were synthesized:  PO-67, 

GGGAGAATTCCGACCAGAAGN25TATGTGCGTCTACATGGATCCTCA; PO-69, 

TGAGGATCCATGTAGACGCA; PO-71, 

TAATACGACTCACTATAGGTGGGAGAATTCCGACCAGAAG.  To generate 

templates for SELEX library, these three primers were used in a PCR reaction at 
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a ratio of PO-67:PO-69:PO-71=1:1:3. PCR product is then used for in vitro 

transcription with T7 RNA polymerase. Free nucleotides were removed by FPLC 

using HiPrep 26/10 desalting column after in vitro transcription before further 

purification by denaturing TBE PAGE.  For the SELEX, FPLC purified 

CPEB4RBD was mixed with heat denatured RNA library in 1 ml of 1XGR buffer 

containing 160 µg tRNA and 5 mg heparin.  RNA-protein mixtures were kept on 

ice for 10 min and then at RT for 10 min before being filtered through 

nitrocellulose membranes on a porous plate by gentle suction.  The membranes 

were washed with 5ml 1XGR with tRNA (0.5 mg/ml).  The membranes were cut 

into small pieces and mixed with Trizol for RNA extraction as described 

(Invitrogen).  The extracted RNA was used for reverse transcription to generate 

cDNA by Superscript Reverse Transcriptase II (Invitrogen) and PCR amplification 

using PO-69 and PO-71.  The amplified PCR products were used for transcribing 

RNA for next round of SELEX.  To increase the binding specificity of selected 

RNA to CPEB4RBD, the amount of protein used in each cycle was reduced by 

half from 2 µM for the first cycle to 25 nM for the 7th and 8th cycles.  The amount 

of purified RNA library used for each SELEX cycle was 20 µg except the first 

cycle, which was 60 µg. 

 

Electrophoresis mobility shift assay 
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RNA probes used for mobility shift assays were labeled by in vitro 

transcription with α32P-UTP.  Mutants of 1904 RNA were transcribed from PCR 

products using oligo-nucleotides with the T7 promoter sequence alterations at 

specific sites.  For gel shifts, 20 µl reactions in 1XGR buffer included probe RNA 

(various concentrations, ~105 cpm), protein (e.g., CPEB4 RBD), 1µg tRNA, 50 µg 

heparin, and 12 U RNasin.  It was kept on ice for 10 mins and then at RT for 10 

mins, before being resolved by TBE-PAGE. 

 

Immunohistochemistry and RNA transfection in neurons 

The two-month-old male mice were anesthetized and perfused with 4% 

formaldehyde.  The fixed brains were embedded in paraffin, sectioned at 10 µm 

thickness, and treated with antigen retrieval procedure (Tay et al., 2001) prior to 

incubation with the affinity-purified CPEB3 and CPEB4 antibodies.  Hippocampal 

neurons were cultured and immunostained as describe (Huang et al., 2002).  

Other neuronal cultures were UV irradiated in a Stratagene 1800 Crosslinker, 

fixed, and stained with Syto-RNAselect (Molecular Probes) 

Hippocampal neurons cultured for 9-10 days in Neurobasal medium with 

B27 supplement (Invitrogen) at a cell density of 30,000-40,000/cm2 were co-

transfected (TransMessenger Transfection reagent, Qiagen) for three hours with 

~12 pmol of Ms2CP-CPEB RNA, 1.7 pmol of firefly luciferase RNA appended 

with various 3’UTRs, and 1 pmol of Renilla luciferase RNA.  The transfected 

neurons were stimulated with 50 µM NMDA for three hours before lysis in 100 µl 
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of buffer for dual luciferase assay (Promega).  To quantify the amount of firefly 

and Renilla luciferase RNAs, total RNA was extracted from transfected neurons, 

reverse transcribed, and subjected to real-time PCR amplification (Huang et al., 

2003).  The specific primers used were: firefly sense, 5'-

GAGATGTATTACGCAAAGTAC and antisense  5'-

CCAGTATGACCTTTATTGAGC; Renilla sense, 5'-

GTTGTGTTCAAGCAGCCTGG and antisense 5'-

CCAGTGAGTAAAGGTGACAG. 

 

Lentivirus infection of cultured neurons 

To knock down rat CPEB3 (rCPEB3), the coding region of rCPEB3 was 

RT-PCR amplified from total RNA isolated from rat hippocampal neurons and 

cloned to pcDNA3.1+ plasmid.  Five shRNA sequences designed against the 

mRNA were cloned into the lentiviral vector pLL3.7-Syn (gift of M. Sheng); one 

that was particularly efficacious when tested in transfected 293T-17 cells 

corresponded to nucleotides 2320-2337 (CCGTACGTGCTGGATGAT) of 

rCPEB3.  This particular construct was used to produce lentivirus using the 

viralpower packaging system (Invitrogen) according to the manufacturer’s 

protocol.  Generally, hippocampal neurons (4 DIV) were infected with the virus 

(1-2 MOI) for 24 hrs.  The infected neurons were cultured for another 3-4 days 

prior to RNA isolation or protein extraction. 
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Oocyte injection and immunoprecipitation 

Twenty-five ng RNA encoding myc-tagged CPEB, CPEB3 or chimeric 

CPEB was injected to Xenopus oocytes that were cultured for 14 hrs before 

stimulation with progesterone.  For immunoprecipitation, 40 injected oocytes 

were homogenized in 200 µl of IP buffer (20 mM Hepes, pH7.6, 150 mM NaCl, 1 

mM MgCl2, 0.5 mM DTT, 0.1% Triton X-100, 100 µg/ml RNaseA) and centrifuged 

at 12K xg for 5 min at 4oC.  The supernatant was incubated with myc antibody for 

1 hr and then immunoprecipitated with Dynabeads conjugated with antibody 

raised against mouse IgG.  After several washes, the co-immunoprecipitated 

proteins were eluted and analyzed on western blots. For UV-crosslinking and 

immunoprecipitation, 3 plates of hippocampal neurons (~6-7 million cells, 21 DIV) 

were each covered with 200 µl of IP buffer and UV-irradiated on ice for 30 

minutes.  The cells were collected and centrifuged at 1000 xg for 5 min. to 

remove nuclei.  One twentieth of resulting supernatant was saved for total RNA 

isolation.  The remaining solution was equally divided for IgG and CPEB3 

antibody immunoprecipitation using Dynabeads conjugated with antibody against 

rabbit IgG.  After 2 hr incubation, the beads were washed 4X with RIPA buffer 

and 1X with genomic DNA lysis buffer (50 mM Tris, pH7.4, 10 mM EDTA, 500 

mM NaCl, 2.5 mM DTT, 0.5mM spermidine, 1% Triton X-100).  Approximately 

300 µl of proteinase K solution (1 mg/ml in genomic DNA lysis buffer and 0.4 U/µl 

RNase inhibitor) was added to the total lysate and beads and incubated at 37C 

for 30 minutes.  The digested mixtures were used for RNA isolation and 
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subsequent RT-PCR.  The primer sequences are Map2 sense: 5’-

GACAATTGGGTACCTTGCAAC and antisense: 5’-GGAGAAGGCCAGCTGTAG, 

NF sense: 5’-GAGATGTATTACGCAAAGTACC and antisense: 5’-

CCAGTATGACCTTTATTGAGC, GluR2 sense: 5’-

CAGAGCTCAGTCTTAGGCAG and antisense: 5’-

GTTTGTCTCCTTGGAGTACG. 

 

RNA structure probing and footprinting 
 

 Methods for RNA alkaline hydrolysis, RNase T1 digestion, and lead 

acetate mediated RNA cleavage have been described(Darnell et al., 2005).  5’ 

end-labeled RNA was suspended in HEPES-SBB buffer (25 mM HEPES pH7.6, 

200 mM KOAc, 5 mM Mg(OAc)2), heat denatured and cooled on ice, and 

digested in the presence of 20 µg tRNA with 0.035 unit RNase V1 at 37oC for 5 

mins.  The methods for RNA footprinting have been described(Hartmuth et al., 

1999; Lee et al., 2003).  The entire GluR2 3’UTR may be found in accession 

number NM_017261. 

 

Results 

 

All CPEB-like proteins have a carboxyl terminal RNA binding domain 

(RBD), which is comprised of two RRMs and two zinc fingers, and an amino 

terminal domain that in the case of CPEB, stimulates polyadenylation-induced 
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translation once it is phosphorylated on T171 (in the mouse protein, S174 in 

Xenopus) by Aurora A.  Although there is no significant identity among the amino 

terminal domains of the CPEB proteins within a species (e.g., the mouse) or 

between species (e.g., mouse and fly), there is strong identity among the RNA 

binding domains.  For example, mouse CPEB and mouse CPEB2 are 45% 

identical in this region.  However, mouse CPEB2, CPEB3, and CPEB4 are >95% 

identical.  Interestingly, mouse CPEB has a higher identity to fly CPEB (also 

known as Orb) than it does mouse CPEB2-4.  Moreover, fly CPEB2 is more 

similar to mouse CPEB2-4 than it is to fly CPEB (Fig. 1A).  These comparisons 

imply that CPEB2-4 might interact with a different sequence than CPEB.  Such a 

possibility was further suggested by experiments in injected Xenopus oocytes.  

While mRNA encoding CPEB or CPEB3 had no effect on progesterone-

induced oocyte maturation, mRNA encoding a chimeric protein composed of the 

regulatory domain of CPEB3 fused to the RNA binding domain of CPEB inhibited 

maturation (Fig. 1B left, the right shows western blots of the resulting proteins).  

We infer that the chimeric protein acted as a repressor of translation of CPE-

containing mRNAs required for maturation because it could not respond to 

progesterone stimulation; CPEB3 did not repress translation because it could not 

bind these mRNAs (see below). 
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Figure.1 
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Fig. 1.  Structural features and comparison of CPEB-like proteins.  A.  All CPEB-

like proteins have an amino terminal region and a carboxy region containing two 

RNA recognition motifs (RRM) and two zinc fingers (Zif).  CPEB T171, which is 

not conserved in CPEB2-4, must be phosphorylated for polyadenylation to occur.  

Among the amino terminal regions of the CPEB proteins, there is little identity 

(NS, not significant).  Among the RNA binding domains, there is considerable 

identity.  However, mouse CPEB (designated CPEB1 for convenience) is closer 

to Drosophila CPEB (Orb) than it is to mouse CPEB2; in addition, Drosophila 

CPEB2 (Orb2) is more similar to mouse CPEB2 than it is to Orb.  Mouse CPEBs 

2-4 are nearly identical in the RNA binding domains.  B.  Xenopus oocytes were 

injected with water or RNA encoding myc-CPEB or CPEB3, or myc fused with 

the amino domain of CPEB3 and the RBD of CPEB.  The oocytes were 

incubated with progesterone and scored for oocyte maturation as assessed by 

germinal vesicle breakdown (GVBD).  A western blot probed with myc antibody 

shows the level of the myc fusion proteins in oocytes.  
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SELEX identifies CPEB2-4 binding sequences 

 To determine whether the RNA binding domains (RBDs) of CPEB2-4 

indeed interact with sequences other than the CPE, a SELEX experiment was 

performed.  The RNA binding domain of CPEB4 was mixed with in vitro 

synthesized RNA derived from an oligonucleotide library composed of a 

randomized 25-mer flanked by constant regions for PCR; the mixture was 

subjected to 8 rounds of binding and elution.  After the final elution, the RNA was 

cloned and the sequences of 50 plasmid inserts were determined, some of which 

are shown in Fig. 2A.  In vitro gel shifts confirmed that CPEB4 RBD bound all 

cloned RNAs tested (Fig. 2B).  Two point mutations that disrupted the CPEB4 

zinc fingers abrogated binding to a selected RNA, 1904 (Fig. 2C), indicating the 

importance of this domain for RNA interaction, which is consistent with a 

previous finding that the zinc fingers are important for CPEB to bind the CPE  

(UUUUAU derived from Xenopus mos)(de Moor and Richter, 1999; Hake et al., 

1998).  Further analysis showed that while CPEB3 and 4 bound the 1904 

sequence, CPEB did not.  Moreover, CPEB did bind CPE-containing RNA, as 

expected, but CPEB3 and 4 did not (Fig. 2D).  When analyzed kinetically, the 

binding constant (Kd) of CPEB for the CPE was 130 nM (Hake et al., 1998); 

CPEB did not interact with 1904.  In contrast, while the CPEB3 and CPEB4 

RBDs (>95% identical, Fig. 1) did not bind the CPE, the Kds for the 1904 

sequence were 166 nM and 100 nM, respectively.  Thus, CPEB and CPEB2-4 

have different RNA binding specificities. 
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Figure.2 
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Fig. 2.  Analysis of CPEB and CPEB4 interaction with RNA.  A.  The CPEB4 

RBD was mixed with RNA transcribed in vitro from oligonucleotides containing a 

randomized 25-mer central domain flanked by constant regions used for 

transcription and PCR.  The RNA-protein complexes were collected on filters, 

eluted, and the cycle repeated for 8 rounds before cloning.  Representatives of 

50 clones excluding the constant regions are shown.  B.  Several SELEX RNAs 

were in vitro transcribed in the presence of α-32P UTP and used for gel shifts with 

the 500 nM CPEB4 RBD.  C.  The CPEB4 RBD, wildtype or mutated in the zinc 

fingers (ZF) was used in gel shifts with SELEX sequence 1904.  D.  RNA gel 

shifts were performed with CPEB, CPEB3, or CPEB4 with CPE-containing RNA 

or the 1904 sequence.  E.  A kinetic analysis of CPEB3 and 4 RBD interactions 

with the 1904 sequence or the CPE was used to calculate equilibrium 

dissociation constants (Kd).  Similar experiments were performed with CPEB 

binding to the 1904; the binding of CPEB to the CPE was taken from Hake et al., 

(1998).  F.  Various regions of the RBDs of CPEB and CPEB3 were fused to 

maltose binding protein (MBP), expressed in bacteria, and used for RNA gel 

shifts and UV crosslinks with the CPE or the 1904 sequence.  The bottom panels 

show that equal amounts of the MBP fusion proteins were used on all 

experiments. 
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To identify the origin of these different RNA binding specificities, chimeric 

molecules composed of RRM1, RRM2, and the zinc fingers (Zif) from CPEB and 

CPEB3 were fused to maltose binding protein (MBP) and subjected to RNA gel 

shifts and UV crosslinking analysis with the CPE and the 1904 SELEX sequence 

(Fig. 2F).  Although the entire CPEB RBD was the most efficient at binding the 

CPE, RRM1 was essential for this binding (gel shift and UV crosslink).  Similarly, 

the entire CPEB3 RBD was the most efficient at binding the 1904 sequence 

(compare gel shift and UV crosslink), but in this case, both RRMs were important 

for binding.  Exchange of the zinc fingers had no effect on RNA binding.  Thus, 

while certain domains within CPEB (RRM1) and CPEB3 (RRMs 1 and 2) are 

important for binding specificity, the zinc fingers of both proteins(Hake et al., 

1998), while important for RNA interaction, do not confer specificity. 

 

CPEB3-4 RBD recognizes RNA secondary structure 

 One of the goals of the SELEX experiments was to identify endogenous 

mRNAs that are bound by the CPEB3-4 RBD.  To make a search more specific, 

we delineated the nucleotides necessary for binding.  Using 1904 as a substrate, 

mutations in several regions of the 25-mer destroyed or reduced RNA binding 

(Fig. 3A).  Surprisingly, deletion of the 3’ but not 5’ constant region destroyed 

binding; the 25-mer alone was not bound by the RBD (Fig. 3A).  Using the mfold 

program (Zuker, 2003), the 5’ constant region deleted RNA M14 is predicted to 
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fold into a secondary structure with poly U in the loop; similar structures were 

predicted for most of the other selected RNAs (Fig. 3B and data not shown).  To 

assess whether such a possible structure (ΔG of -21.3 kcal/mol) could be 

important for CPEB4 binding, three bases were mutated in the bottom stem 

(CAC for GUG), which completely abrogated CPEB4 binding (Fig. 3B).  

Compensatory changes in the complementary sequence (denoted REV for 

reverse, GUG for CAU) restored binding by CPEB4, however, substitution of the 

GUG for CAU alone did not restore binding.  These results suggest that RNA 

secondary structure could be necessary for CPEB4 binding. 

To further assess this hypothesis, 5’ end-labeled RNA was cleaved with 

the single strand specific lead acetate (Darnell et al., 2005), and RNase V1, 

which cleaves double stranded regions (Lockard and Kumar, 1981).  These 

samples were resolved on a sequencing gel and compared to parallel lanes 

containing untreated RNA, RNA partially hydrolyzed with NaOH, and RNA 

cleaved with RNase T1 to locate the guanosines (Fig. 3C).  Lane 4 shows that 

the uridine residues predicted to reside in a loop structure (panel B) were 

susceptible to lead cleavage, which was reduced by inclusion of MgCl2, a 

competitor of the lead ion (lanes 5,6).  These uridine regions were also resistant 

to RNase V1 cleavage, further demonstrating that they are not base-paired with 

other residues.  To determine the region of the RNA bound by the CPEB4 RBD, 

RNA footprinting was performed.  Increasing amounts of CPEB4 RBD was mixed  

 



 55 

Figure.3 
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Fig. 3.  The CPEB4 RBD recognizes RNA secondary structure.  A.  Nucleotide 

changes were introduced into the 1904 sequence and the resulting RNAs were 

used for gel shifts with the CPEB4 RBD; the relative amount of binding is 

indicated.  B.  Compensatory mutagenesis of M14 and gel shift. The mfold 

generated secondary structure of M14, right panel. The blue line denotes the 

nucleotides derived from the 3’ constant sequence.  Black box indicates the part 

of stem been used in mutagenesis study. Mutated sequences are coded in red. 

Gel shifts with these RNAs using CPEB4 RBD is shown at right.  C.  Structure 

mapping and RNA footprinting. 32P 5’ end-labeled RNA was untreated (lane 1) or 

alkaline hydrolysis (lane 2), digested with RNase T1 (lane 3), subjected to lead 

acetate cleavage in the absence or presence of MgCl2 (lane 4-6, left panel), or 

digested with the double stranded specific nuclease RNase V1 (lane 7, left 

panel).  For footprinting, RNA samples were either without protein (lane 4, right 

panel) or mixed with 0.25, 0.5, 1, 2, 4 µM CPEB4 RBD and treated with hydroxyl 

radical (lane 5-9, right panel).  The products were then analyzed on a sequencing 

gel. Sequence been protected from hydroxyl radical cleavage is marked by black 

bar.  D.  Predicted RNA secondary structure and nucleotides protected from 

hydroxyl radical cleavage by CPEB4 RBD are indicated by red box. 
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with 5’ end-labeled RNA; the RNA was then cleaved by the hydroxyl radical 

generated from a mixture of Fe/EDTA (Wang and Padgett, 1989).  Compared to 

a sample digested with hydroxyl radical only (no protein) (lane 4), CPEB4 

protected two regions of the RNA, one was the single stranded uridines together 

with the 5’ proximal stem while the other was an adjacent double stranded region 

(lane 9).  The binding of CPEB4 to the 5’ proximal stem is consistent with the 

compensatory mutagenesis result and further suggests the significance of RNA 

structure for CPEB4 binding.  Two other SELEX clones gave similar RNA 

footprinting patterns (data not shown). Fig. 3D depicts a revised secondary 

structure of the minimal RNA required for CPEB4 RBD binding based on the data 

in panels B and C.  The residues protected by the CPEB4 RBD are also 

indicated. 

 

CPEB3 and 4 in the brain 

 Western blotting shows that while CPEB3 and 4 are present in many 

tissues including the brain (Fig. 4A).  Immunohistochemistry demonstrates that 

while both proteins were evident in the hippocampus and granule cells of the  

cerebellum, only CPEB4 was detected in Purkinje cells of the cerebellum.  In 

contrast, only CPEB3 was detected in mitral cells of the olfactory bulb and 

interneurons of the cerebellum (Fig. 4B).  In hippocampal neurons cultured in  
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Figure.4 

 

 

Fig. 4.  CPEB3 and 4 in the brain.  A.  Western blots of several rat tissues probed for 

CPEB3 and 4.  The blot also shows that the antibodies for CPEB3 or CPEB4 do not 

cross react with CPEB4 or CPEB3 respectively and do not recognize CPEB.  B.  

Immunohistochemistry for CPEB3 and 4 in rat hippocampus, cerebellum, and olfactory 

bulb. The arrows point to specific regions of immuno-reactivity in interneurons (IN) and 

Purkinje cells (PC) of the cerebellum and Mitral cells (MC) of the olfactory bulb. 
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Figure.5 

 

 

 

 

Fig. 5.  Localization of CPEB3 and 4 in neurons.  A. Co-staining of CPEB3 or 4 

with synaptophysin in cultured hippocampal neurons 21 days in vitro (D.I.V.).  

CPEB4 is also co-stained with the RNA marker Syto-RNAselect after UV-

crosslinking and fixing.   B.  Detection of transfected GFP-CPEB3 and GFP-

CPEB4 proteins in dendrites of hippocampal neurons co-stained with MAP2. 
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vitro and stained for Map2 to identify dendrites (not shown), CPEB3 often co-

localized with synaptophysin, a synaptic marker (Fig. 5A).   While CPEB4 

appeared to be adjacent to synaptophysin immunoreactivity, both proteins were 

strongly detected in the post-synaptic density (PSD) fraction (Fig. 5B).  CPEB4, 

the only one tested, co-localized with RNA as assessed by Syto-RNA select 

staining (Fig. 5A).  Finally, both CPEB3 and 4, when fused to GFP, were 

detected in dendrites, often as puncta (Fig. 5C).  Taken together, these data 

show that CPEB3 and 4 are expressed in only partially overlapping regions of the 

brain; within hippocampal neurons, where both are expressed, they appear to be 

synaptic. 

 

CPEB-like proteins and translation 

 To investigate whether the CPEB3 could be involved in translational 

control, we employed a tethered function assay in hippocampal neurons that 

were transfected with several sets of reporter RNAs (Fig. 6A).  They encoded the 

dimeric MS2 coat protein (MS2CP) fused to CPEB3 or mutant CPEB3 proteins 

that lacked the amino or carboxy terminal regions, or as a control, MS2CP fused 

to GFP.  These RNAs were mixed with RNA encoding firefly luciferase that 

contained or lacked the stem loops recognized by MS2CP.  The mix also 

contained RNA encoding Renilla luciferase, which served as an internal control.  

In transfected neurons, MS2CP-CPEB3 and MS2CP-GFP were synthesized (Fig. 

6B, left) and gel shifted a probe containing the MS2CP stem-loops (Fig. 6B.  
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Figure.6 
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Fig. 6.  Translational repression in neurons.  A.  Hippocampal neurons were 

transfected with mRNAs encoding 1.)  Dimeric MS2 coat proteins (MS2CP) fused 

to CPEB3 or amino or carboxy terminal truncations of this protein, or MS2CP 

fused to GFP, and 2.) firefly luciferase whose 3’ UTR contained or lacked the 

MS2 stem-loop, and 3.) Renilla luciferase.  B.  Western blot showing the 

expression of the fusion proteins in transfected neurons.  The right panel shows 

an RNA gel shift of transfected proteins binding to RNA containing the MS2 

stem-loops.  C.  The ratio of firefly/Renilla luciferase activity in neurons 

(normalized to the MS2CP-GFP control) transfected with the RNAs noted in part 

A.  Neurons were transfected with mRNA encoding myc-CPEB3 in place of the 

MS2CP fusions.  All the firefly luciferase RNAs contained the MS2 stem-loop in 

the 3’ UTR.  D.  Luciferase values calculated as those in part C from neurons 

transfected with RNA encoding firefly luciferase that containing or lacking the 

MS2 stem-loop that were treated with NMDA.  E.  Semi-quantitative RT-PCR of 

luciferase RNA containing or lacking the MS2 stem loops following RNA 

transfection into neurons; some of the neurons were treated with NMDA.  F.  

Xenopus oocytes were injected with mRNAs encoding fusions between myc and 

CPEB or CPEB2-4.  The CPEB proteins were then immunoprecipitated with myc 

antibody and probed for myc, to note level of expression, and the 100 kDa 

subunit of CPSF. 
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right).  Fig. 6C shows that relative to MS2CP-GFP, MS2CP-CPEB3 and MS2CP-

CPEB3 amino terminus reduced firefly luciferase expression by ~30-40%, which 

was statistically significant (p<0.01).  This reduction was not due to a general 

repression since the substitution of the MS2CP moiety with myc had no affect on 

translation.  Moreover, removal of the MS2 stem-loop from firefly luciferase 

abrogated the NMDA-induced translation  

 To assess whether CPEB3 can stimulate translation and if so, whether it 

requires AAUAAA, a firefly luciferase containing or lacking this sequence was 

transfected into neurons together with MS2CP-CPEB3 as before and then 

stimulated with NMDA.  MS2CP-CPEB3 enhanced translation by 20-30% 

irrespective of whether the AAUAAA was present (Fig. 6D).  The MS2 stem loops 

were required for MS2CP-CPEB3 translation.  This change in translation 

occurred even though the luciferase RNA levels were unchanged (panel E).  In 

injected Xenopus oocytes, CPEB was co-immunoprecipitated with CPSF, as 

shown previously(Mendez et al., 2000b), but CPEB 2-4 were not (panel F).  

Finally, luciferase mRNA was appended with a 3’ UTR containing the 1904 

SELEX sequence and analyzed for translation when co-transfected with myc-

CPEB3 or, as a control, β-galactosidase. CPEB3 reduced translation of the 

reporter RNA by ~25%.  While NMDA had no effect on luciferase activity when β-

galactosidase was co-transfected, it stimulated luciferase activity by nearly 25% 

when CPEB3 was co-transfected (panel G).  These data, as well as those in Fig. 

1B, suggest that while CPEB3 repressed and then activated translation in 
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response to NMDA, it probably does not do so by changing poly(A) tail length 

because it does not require the cis-acting AAUAAA and does not bind CPSF.   

 

CPEB3 controls GluR2 mRNA translation 

 Because RNA secondary structure appears to be important for 

binding by CPEB3, BLAST searches for endogenous RNAs based on SELEX 

sequence alone would not be fruitful.  Consequently, we considered several 

neuronal RNAs whose translation might be regulated and whose 3’ UTR could 

contain a stem-loop structure similar to that shown in Fig. 3B.  The mRNA 

encoding the AMPA receptor GluR2 is dendritically localized and may be subject 

to translational control (Kacharmina et al., 2000); the mfold program also predicts 

several stem-loop structures that resemble what predicted to form in the 1904 

SELEX sequence (data not shown).  To assess whether CPEB3 might bind this 

mRNA, the 3’ UTRs of GluR2 and Arc (a control) mRNAs were subjected to UV 

crosslinking in vitro with the RBDs of CPEB and CPEB3 fused to MBP.  Fig. 7A 

shows that the RBD of CPEB3, but not of CPEB, strongly crosslinked to the 3’ 

UTR of GluR2 but not of Arc, suggesting that GluR2 RNA could be a direct 

binding substrate of CPEB3.  To identify the region of GluR2 3’ UTR bound by 

CPEB3, a deletion series was constructed and used for in vitro crosslinking to 

CPEB3 RBD (Fig. 7B).  With the exception of nucleotides 1-474, CPEB3 RBD 

bound to multiple regions throughout the length of the 3’ UTR.  Additional 

deletions were constructed that were used for RNA gel shifts (Fig. 7C).  Again,  
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Figure.7 
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Fig. 7.  CPEB binds the GluR2 3’ UTR.  A. Maltose binding fusion proteins 

containing the RBD of CPEB or CPEB3 were expressed in bacteria and used for 

in vitro UV crosslinking with the 32P labeled 3’ UTRs of Arc and GluR2 mRNAs. 

Proteins are resolved in SDS-PAGE following RNase A treatment and then 

autoradiographed.   B.  Serial deletions of the GluR2 3’ UTR from either 5’ end or 

3’ end were used for UV crosslilnking using His-tagged CPEB3 RBD (left).  C. 

Different regions of GluR2 3’ UTR were in vitro transcribed and labeled with 32P 

and then used for RNA gel shift reactions with CPEB3 RBD. D. RNA fragments 

from GluR2 3’UTR, L4 and S4, were used in a competition assay using either 

cold 1904 RNA or binding mutant 1904-M1 as competitor. E. Structure mapping 

of GluR2 3’UTR fragment, S4. 5’end 32P labeled S4 RNA is either untreated (lane 

1), alkaline hydrolysis (lane 2), or RNase T1 digested (lane 3) as size marker.  

Labeled RNA cleaved with 100 mM lead acetate in the absence or presence of 

10 mM, 100 mM MgCl2 (lane4-6, left panel). Labeled RNA digested with V1 (lane 

7, left panel). Sequence corresponding to uridine rich region is shown. F. RNA 

footprinting of S4.  5’ end labeled S4 RNA was cleaved by hydroxyl radical in the 

absence or presence of 0.25, 0.5, 1.0, 2.0, 4.0 µM CPEB3 RBD(lane 4-8). 

Lane1-3 is the same as in panel E.  
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CPEB3 bound to multiple regions of the 3’ UTR.  The binding to one of the 

regions that was chosen, L4, was specific since the shift was competed away 

when the 1904 SELEX sequence was added to the mix but not when 1904-M1 

was added.  Moreover, a 202 base fragment (S4) derived from the L4 RNA was 

bound by CPEB3, which again was competed by the 1904 sequence but not by 

the 1904-M1 sequence (Fig. 7D). The S4 RNA was used for structure mapping 

as in Fig. 3.  Multiple regions were cleaved by lead acetate, including one 

containing multiple uridine residues (Fig. 7E, lane 4).  This region was not 

cleaved by the double strand specific RNase V1 (lane 7).  Sequences including 

these single stranded uridines were protected by CPEB3 RBD from cleavage by 

the hydroxyl radical (Fig. 7F, lanes 4-8).  Thus, the CPEB3 RBD may interact 

with a sequence and structure in GluR2 similar to the sequence and structure 

identified by SELEX.  We also note that S4 contains a CPE-like sequence, which 

interacts with CPEB in vitro (data not shown). 

To determine whether CPEB3 binds GluR2 mRNA in vivo, living cultures 

of hippocampal neurons were irradiated with UV light, which was followed by cell 

homogenization in detergent-containing buffer to reduce nonspecific adsorption 

followed by immunoprecipitation with CPEB3 antibody or IgG.  The precipitates 

were then deproteinized and subjected to RT-PCR for Arc, Map2, neurofilament 

(NF), or GluR2 RNAs.  While all the RNAs were clearly amplified from input 

material, only GluR2 RNA was amplified from the CPEB3 co-immunoprecipitate.   
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Figure. 8 
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Fig. 8.  CPEB3 controls of GluR2 mRNA translation.  A.  Living cultures of 

hippocampal neurons were irradiated with UV light, homogenized, and subjected 

to immuoprecipitation with CPEB3 antibody or IgG in the presence of SDS-

containing buffer.  The precipitated RNA was extracted after proteinase K 

digestion and subjected to RT-PCR for Arc, Map2, neurofilament (NF) or GluR2 

mRNAs.  B.  Endogenous CPEB3 knock down by RNAi. Cultured hippocampal 

neurons were infected with a control lentivirus or one expressing a short hairpin 

RNA against CPEB3 under the control of the U6 promoter.  Extracts were then 

prepared from the cells and analyzed for levels of CPEB3, GluR2, αCaMKII and 

synaptophysin.  From other cultures, the RNA was extracted and analyzed for 

GluR2 mRNA by real-time PCR.  The bottom panel shows the level of GluR2 in 

WT and CPEB KO hippocampus.  αTubulin served as a loading control. 
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No RNAs were amplified from the control IgG immunoprecipitate (Fig. 8A).  Thus, 

GluR2 mRNA is an in vivo substrate of CPEB3. 

 We next performed RNAi knockdown experiments to examine whether 

CPEB3 regulates GluR2 mRNA translation in neurons.  Hippocampal neurons 

cultured four days were infected with lentivirus containing or lacking a short 

hairpin sequence for CPEB3 under the control of the U6 promoter.  After a further 

four days of culture, the cells were harvested and the extracted protein was 

probed on western blots.  In two independent experiments, CPEB3 protein was 

reduced by 80-99% (Fig. 8B).  In contrast, GluR2 levels increased by three fold 

while αCaMKII and synaptophysin were unaffected.  Because the CPEB3 

knockdown had little effect on the level of GluR2 RNA level (Fig. 8B), we infer 

that the translation of GluR2 mRNA is under negative regulation by CPEB3.  It is 

possible that GluR2 mRNA localization could also be affected.  Finally, we note 

that GluR2 levels were identical in wild type and CPEB knockout hippocampus, 

indicating that the expression of GluR2 RNA is controlled by CPEB3 and not 

CPEB. 

 

 

Discussion 

 

 In this study, we demonstrate that in contrast to CPEB, CPEB proteins 2-4 

do not avidly bind the CPE, but instead strongly interact with a U-rich loop within 
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a stem-loop structure.  While the zinc fingers are necessary for RNA binding, it is 

RRMs 1 and 2 that confer the binding specificity.  These results imply that 

CPEB2-4 cannot functionally substitute for CPEB since they interact with RNAs 

with different binding specificities.  There could, however, be RNAs that are 

bound by CPEB and CPEB2-4. CPEB3 represses translation of a reporter RNAs 

in transfected neurons and stimulate translation in response to NMDA.  While the 

mechanism of translational control by CPEB3 is not yet known, it does not bind 

CPSF nor does it require an AAUAAA cis element, implying that unlike CPEB, it 

does not promote cytoplasmic polyadenylation.  Most importantly, CPEB3 

interacts with GluR2 mRNA in vivo and a knockdown of CPEB3 in neurons 

stimulates the translation of this mRNA.  Thus, CPEB3 is a sequence-specific 

translational repressor that governs the synthesis of the AMPA receptor GluR2. 

 Unlike CPEB, the CPEB3-4 RBD recognizes a secondary structure and 

interacts with uridines that are single stranded as well as double stranded stem.  

Although we did not test CPEB2, but with the high identity between CPEB2-4 

RBDs it is likely they all share the same binding specificity. While the zinc fingers 

of the RBD are necessary for stable RNA binding, they do not confer binding 

specificity.  In other proteins, zinc finger domains have been shown to bind 

double stranded RNA (Mendez-Vidal et al., 2002; Yang et al., 1999), and we 

would hypothesize that this could also be the case with the CPEB 2-4 RBD.  

 CPEBs 2-4 are functionally distinct from CPEB and may also be distinct 

from one another.  While they bind the same cis element, the fact that CPEB3 
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and 4 reside in only partially overlapping regions (i.e., both are in the 

hippocampus but only CPEB4 is in Purkinje cells of the cerebellum and only 

CPEB3 is in mitral cells of the olfactory bulb) indicates that they may interact with 

at least some unique RNAs in vivo. In addition, the large amino terminal regions 

of the CPEB2-4 proteins are only 33-43% identical.  This relatively low identity 

suggests that these proteins could respond to different signaling pathways and/or 

interact with different sets of proteins to modify their activities such as translation 

repression, stimulation, or RNA transport. 

 

Translational control of GluR2 mRNA 

 The use of SELEX to identify CPEB2-4 binding sites in RNA was not 

particularly useful for recognizing endogenous RNA targets since secondary 

structure was important for RNA-protein interactions.  Consequently, we 

examined a number of neuronal mRNAs that might form similar secondary 

structures as determined by the mfold program; the mRNA encoding the AMPA 

receptor GluR2 was able to do so and was immunoprecipitated with CPEB3 

following UV irradiation of living neurons.  An RNAi knockdown of CPEB3 

stimulated GluR2 levels while having little effect on GluR2 mRNA, indicating that 

CPEB3 is a specific translational repressor protein.  The molecular mechanism 

by which CPEB3 modulates translation is unknown; perhaps it interacts with an 

eIF4E-binding protein such as Maskin, competes with eIF4E for binding to the 

cap (Cho et al., 2005), or modulates ribosomal subunit joining (Ostareck et al., 
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2001).  Irrespective of how CPEB3 controls translation, the observation that 

GluR2 is an endogenous target has important implications for AMPA receptor 

regulation.  For example, GluR1 mRNA is present in dendrites (Miyashiro et al., 

1994) and is regulated at least in part at the translational level (Ju et al., 2004; 

Kacharmina et al., 2000; Sutton et al., 2007). Most of the AMPAR subunit GluR2 

contains an amino acid substitution that derived from RNA editing that changes 

the ion permeability AMPAR. The presence of edited form of GluR2 in AMPAR 

contributes to the exclusion of calcium entry and only permeable to monovalent 

ions like sodium ions when AMPAR is activated (Burnashev et al., 1992; Sommer 

et al., 1991). So the translational repression of GluR2 by CPEB3 will creates an 

AMPAR that is permeable to calcium ions. AMPA receptors are also controlled at 

the protein localization level since they are trafficked to the membrane in 

response to activity (Malinow and Malenka, 2002).  Thus, both cell soma and 

local synthesis of GluR1 and GluR2 could contribute to the formation of 

functional AMPA receptors. 

 

Translational control and synaptic plasticity 

 Intense interest has focused on local (dendritic) mRNA translation since it 

was shown nearly a decade ago to be important for maintaining long-term 

changes in synaptic strength (Kang and Schuman, 1996).  Although many 

studies have confirmed and extended these results (Klann and Dever, 2004; 

Sutton and Schuman, 2005), in some ways local translation remains enigmatic.  
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For example, while it has become almost axiomatic that activity-induced 

synthesis of new proteins helps distinguish experienced from naïve synapses 

(Steward and Schuman, 2001), a demonstration that specific proteins involved 

has not emerged.  The synthesis of several proteins increases upon synaptic 

stimulation, but only ~2-4 fold (Kelleher et al., 2004; Schratt et al., 2004).  Such 

increases could certainly be physiologically significant, especially if they are 

concentrated at particular synapses.  Moreover, relatively modest changes in 

many proteins could be essential for plasticity.  Alternatively, perhaps the 

synthesis of less abundant proteins, while substantially stimulated by synaptic 

activity, is obscured by the general but low-level increase.  Such a possibility is 

particularly intriguing since it is known to occur in other cells.  In Xenopus 

oocytes, progesterone stimulation of M-phase progression is accompanied by a 

~2-fold increase in general protein synthesis.  In contrast, proteins such as Mos 

and cyclin B1, which are necessary for M-phase progression, increase from 

nearly undetectable levels to easily observed amounts when assayed by, for 

example, western blots.  However, because these proteins are relatively rare 

compared to the bulk of the newly made proteins, they are not readily detected 

by metabolic labeling unless they are specifically immunoprecipitated.  Thus, 

critically important proteins could be synthesized at synapses, but because they 

are not abundant, they are difficult to detect.  In contrast to specific protein 

synthesis, the productive capture of certain newly made proteins by stimulated 
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synapses may be responsible for regulating synaptic efficacy (Frey and Morris, 

1997; Kelleher et al., 2004).   

While one way to investigate the relationship between protein synthesis 

and plasticity is obviously to identify mRNAs that are translated in response to 

activity, an alternative approach is to first identify translational control proteins in 

the brain and then determine which mRNAs are bound and/or regulated by them.  

For example, a number of CPE-containing RNAs have now been identified that 

undergo activity-dependent polyadenylation (Du and Richter, 2005; Wu et al., 

1998), presumably because they are bound by CPEB.  In this study, we have 

identified CPEB3 and CPEB4 as components of postsynaptic density (PSD) and 

one mRNA bound by and under the translation control of CPEB3.  By defining 

the precise binding site in GluR2 mRNA, we may be able to deduce additional 

RNAs that are regulated by this and the other CPEB-like proteins. 
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CHAPTER III 

 

CPEB Family Protein CPEB4 Nuclear Retention is Mediated by ER calcium 

Depletion 

 

INTRODUCTION 

 

 Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are RNA 

binding proteins that are divided into two subfamilies; CPEB1 and CPEB-like 

proteins including CPEB2-4, according to their RNA binding specificity (Huang et 

al., 2006). The best-studied family member CPEB1 mediates both translational 

repression and activation of CPE containing RNA. CPEB1 functions through a 

protein complex that contains various proteins involved in translation initiation 

and RNA metabolism (Barnard et al., 2004; Kim and Richter, 2006; Stebbins-

Boaz et al., 1999). CPEB1 mediated translational activation is involved in several 

biological functions. In Xenopus, CPEB1 mediated translation activation is 

required for oocyte maturation in response to progesterone stimulation as well as 

early embryonic cell cycle progression. In early mouse oocyte development, 

CPEB1 regulates synaptonemal complex protein synthesis, which is required for 

sister chromatin alignment, meiotic recombination and progression through the 

pachytene stage(Tay and Richter, 2001). Mouse embryonic fibroblast cell (MEF) 

that normally senescence after several passages in culture become immortalized 
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when CPEB1 is removed by gene targeting (Groisman et al., 2006). The 

involvement of CPEB family proteins in regulating germ cell and early embryo 

development is also confirmed in lower metazoans like C.elegans and 

Drosophila. In C.elegans, CPEB1 homologs CPB1 and Fog-1 both control the 

development of sperm but are involved in different stages. Fog-1 is required for 

germ cells developing into sperm while CPB-1 is required for meiosis of 

spermatocytes (Luitjens et al., 2000; Thompson et al., 2005).  

 CPEB1 also plays several roles in neuron function. A CPEB1 knockout 

mouse shows defects in both theta-burst induced long term potentiation, LTP 

(Alarcon et al., 2004) and the extinction of hippocampus dependent memories 

(Berger-Sweeney et al., 2006). CPEB1 may mediate these brain functions 

through CPE containing RNA transport along dendrites (Huang et al., 2003) and 

activity dependent translational activation of CaMKIIα (Wu et al., 1998) and other 

mRNAs (Du and Richter, 2005). CPEB family proteins from two lower metazoans 

provide strong evidence that CPEB family proteins are involved in long term 

memory formation. In Aplysia, a neuronal form CPEB1 that contains a poly-

glutamine sequence was synthesized locally in response to neuron activity. 

Interference of CPEB1 protein synthesis using antisense-oligos specific for 

CPEB1 prevents formation of a specific form of long-term synaptic activity 

enhancement, LTF(Si et al., 2003a). In Drosophila, CPEB family protein Orb2 

null mutant is embryonic lethal, but the viability can be rescued by expressing N-

terminal poly-glutamine truncated Orb2 protein. Flies expressing a poly-
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glutamine deleted version of Orb2 fail to maintain long-term memory in courtship 

behavior. Expressing full length Orb2 during or shortly after training is sufficient 

to support long term formation suggesting that Orb2 is required for long term 

memory consolidation (Keleman et al., 2007). These combined results provide 

evidence that the polyglutamine sequence is required specifically for long-term 

memory formation.  

Ischemia occurs when glucose and oxygen supply to the brain is disrupted 

in the events of stroke, cardiac arrest or hypotension (Plum, 1983). Reduced 

ATP production in the absence of blood supply causes the depolarization of 

neurons and accumulation of glutamate in the extracellular space due to 

reversed uptake(Rossi et al., 2000). Accumulation of extracellular glutamate is 

the major factor for neuron death in transient ischemia(Choi and Rothman, 

1990). Calcium influx through the NMDA receptor plays a major role in 

excitotoxicity (Tymianski et al., 1993a; Tymianski et al., 1993b). Besides NMDA 

receptor, other types of glutamate receptor also is involved in neuron 

degeneration induced by ischemia. In a transient ischemia model, brief (15 

minutes) disruption of blood flow causes delayed degeneration of certain 

neurons, such as pyramidal neurons in the CA1 region of the hippocampus, 

Purkinje cells in the cerebellum and spiny neurons in the dorsolateral striatum 

(Pulsinelli et al., 1982). CA1 pyramidal neuron cell death is induced by an 

increase in calcium permeable AMPA receptor (Liu et al., 2004).  
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 ER (Endoplasmic Reticulum) is the major calcium reservoir in a cell that 

controls both calcium signaling and proper folding of newly synthesized 

membrane and secretory proteins. ER forms a continuous network extending 

throughout the cell. Cytosolic calcium levels in a resting cell are maintained in the 

range of around 100 nM, whereas in ER, it can reach 700µM (Demaurex and 

Frieden, 2003). This steep gradient is achieved by the energy coupled calcium 

transport by SERCA (Sacoplasmic/Endoplasmic Reticulum Calcium ATPase). 

Responding to cellular signaling, ER releases calcium through two types of 

calcium channels, IP3R (Inositol-1,4,5 trisphosphate receptor) and RYR 

(Ryanodine receptor) (Berridge, 1998). A high concentration of calcium is 

important for proper ER function. Proteins synthesized through translocation into 

the ER lumen have to be properly folded by the assistance of chaperone proteins 

before being processed and transported to the Golgi. Many chaperone proteins 

contain calcium binding motifs and calcium binding is required for their function 

(Brostrom and Brostrom, 2003; Corbett et al., 2000). Chaperone proteins like 

GRP78 and calreticulin also served as calcium buffers, because they contain 

multiple high capacity but low affinity calcium binding sites with affinity similar to 

ER calcium levels (Corbett and Michalak, 2000). Depletion of ER calcium 

prevents protein folding and subsequent secretion (Lodish and Kong, 1990). Cell 

response to ER stress differently according to stress level; low level of stress 

induces UPR (Unfolded Protein Response) that restores ER folding balance but 
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high level of ER stress for extended period of time will induces cell 

apoptosis(Ron and Walter, 2007).   

 In this study, we demonstrate that all CPEB family proteins shuttle 

between the nucleus and cytoplasm and identify a nuclear export sequence that 

is conserved between CPEB2-4. Nuclear export of all CPEB family proteins is 

inhibited by excessive NMDA administration in cultured neurons. This change in 

subcellular localization of CPEB4 by NMDAR stimulation is reproducible in 

animal models of ischemia. When neurons are treated with an ER calcium 

depletion drug, thapsigargin, CPEB4 becomes localized the nucleus. These 

results suggest CPEB4 nuclear retention is mediated by the deficiency of calcium 

in the ER.  

 

 

Materials and Methods 

 

Hippocampal neuron culture.  

The culture of primary rat hippocampal neurons was performed according 

to the procedure of Banker (Banker and Goslin, 1988). The plating density of 

hippocampal neurons was 1.8 x 104 cells/cm2, cultured in Neurobasal media 

(Invitrogen) containing B27 supplement (B27 media) and glutamine (1mg/ml).  

The nucleoside analog cytosine arabinoside (Ara-C) was added at DIV3 in a 

concentration of 1 µM to prevent glial cell proliferation.  
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Lentiviral vector construction and virus production.  

Lentivirus expressing CPEB3 and CPEB4 were constructed by inserting myc-

CPEB3 and myc-CPEB4 into the BamHI and XhoI sites of pFugw vector 

(Addgene). For virus production, 10 µg of virus transfer vector that express 

various CPEBs, 7.5 µg gag-pol expressing vector, psPAX2 (from Addgene) and 5 

µg vsv-G expressing vector, pMD2.G (from Addgene) were co-transfected into 

1X107 HEK293T cells plated in 10 cm culture dishes using Lipofectamine 

2000(Invitrogen).  Three hours after transfection, the culture medium was 

replaced with Neurobasal medium containing B27 supplement (B27 media).  

Sixty hours after transfection, the medium was collected and filtered through a 

0.45 µm filter to remove unattached cells. The virus titer in this filtered B27 

medium was calculated by serial dilutions to find the minimum amount of virus 

that can infect 90% of neurons plated at 1.8 x 104 cells/cm as assayed by 

immunocytochemistry for myc-tagged fusion proteins expressing.  

 

Antibodies and immunohistochemistry.   

CPEB4 antibody production has been described previously (Huang YH, 

2006), anti-HA (16B12) and anti-myc (9E10) monoclonal antibodies were 

produced as ascites fluid (Covance), anti-KDEL and anti-C/EBP homology 

protein (CHOP) antibodies were purchased from Santa Cruz Biotechnology, anti-

PDI antibody was from BD bioscience. TUNEL assay kit was purchased from 

MBL international (cat# JM-K404-60). For CPEB4 immunostaining, cells were 
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fixed in 2% paraformaldehyde/PBS/4% sucrose for 20 min and then blocked in 

10% BSA for 20 min before overnight incubation with affinity purified CPEB4 

antibody at 4oC. Secondary antibody (Alexa 595 conjugated goat anti-rabbit and 

Alexa 488 conjugated goat anti-mouse), application and washing were done as 

directed in the manufacturer’s manual (Molecular Probe).   

 

Middle Cerebral Artery Occlusion (MCAO) and Oxygen Glucose Deprivation 

(OGD).   

MCAO was done as described before (van Leyen K, 2006), except that 

MCAO was extended for 90 min and followed by 24 hours reperfusion before 

mouse euthanasia. OGD was performed by placing DIV14 hippocampal neuron 

cultures in oxygen and glucose deprived MEM media and incubated in chamber 

with air mixture of 10% carbon dioxide and 90% nitrogen for 1 hour. The cells 

were then moved to normal neurobasal medium with B27 in normal culture 

incubator for various times before fixation. Hippocampal neurons depleted of 

CPEB3 and CPEB4 by lentivirus expressing shRNA were infected four days 

before OGD treatment.  

 

In vitro nuclear import assay 

  HeLa cells grown on Lab-Tek Chamber Slides were permeabilized by 

incubating cells in digitonin (40mg/ml) in TB buffer (20 mM HEPES, pH7.4, 110 

mM KOAc, 2 mM Mg(OAc)2, 2 mM DTT, 1 mM EGTA and protease inhibitor) for 
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5 min. on ice. Cell was then washed with TB buffer with BSA (10 mg/ml) twice. 

After the second wash, import reaction mixture was added (2ul 100 mg/ml BSA, 

8ul HeLa cytosol with ATP regeneration system, 2ul GST-CPEB4RBD and 8ul 

TB buffer). ATP regeneration system contains 1 mM ATP, 5 mM 

phosphocreatine and 20 unit/ml creatine phosphokinase. Permeabilized HeLa 

cell was incubated in nuclear import reaction for 20 min. in 25 oC, then reaction 

buffer was removed and cell washed with cold TB buffer before fixation with 4% 

paraformaldehyde/PBS for 10 mins. Fixed cell were stained with anti-GST 

antibody to detect nuclear import substrate.  

        

Pharmacological treatment of primary neuron culture 

 Glutamate receptor agonist, glutamate (100 µM), NMDA (100 µM), AMPA 

(300 µM), DHPG (100 µM) were freshly prepared and applied to DIV16 

hippocampal neurons for 60 minutes before fixation and immunostaining. Drugs 

that inhibited NMDA mediated CPEB4 nuclear localization were added 20 min. 

before application of NMDA. The drugs used: APV (2-amino-5-phosphonovaleric 

acid, 20 µM), Ant-AIP-II (Calbiochem, 10 µM), EGTA (2mM). BAPTA-AM 

(Calbiochem, 50 µM) was added to neuron culture for 20 minutes and then 

washed and replaced with culture media for 40 min. Thapsigargin (Calbiochem, 2 

mM stock) and Tunicamycin (Calbiochem, 5 mg/ml 1000X stock) were made 

fresh in DMSO and added to neuron culture.  
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Plasmid constructions  

CPEB4 internal serial deletion was done by PCR using pcDNA-

mycCPEB4 as template and various primer sets in PCR reactions using Pfu 

Turbo for amplification. Primers used to generate different deletion mutants are: 

for D1, C4-D1-R, CCCGTAATCCCCCATATGGGAT and C4-D1-F, 

GGTCAGGAAGCTGGAATACTG, for D2, C4-D2-R, 

TGGACTTGGGGAAAGCTGCTG and C4-D2-F, 

AATAATGGTGCTCTCTTGTTTC, for D3, C4-D3-R, 

AGCTGAAGCGCCAGGGACCCCTC and C4-D3-F, 

CCTTTGAAGAAAAATTTCGC, for D4, C4-D4-R, TGAGATTGAGTTCAGGGGTG 

and C4-D4-F, GGGTCACCTCACTGCTTCAC, for D5, C4-D5-R, 

CAGACCACTATGAAGAGGTTG and C4-D5-F, 

ATCAAGGATAAACCAGTGCAG, for D6, C4-D6-R, 

GGTTGGACTTGATACACACAG and C4-D6-F, ATAGATAAACGGGTGGAGGT, 

for D7, C4-D7-R, CTCTCCATGCTGCAGCTGAAC and C4-D7-F, 

TAAAGGATAACTGCAGTGCTC. PCR products were passed through a DyeEx 

column (Qiagen) to remove free nucleotide before digested by DpnI to remove 

template plasmid then ligated overnight in the presence of T4 PNK 

(Polynucleotide Kinase) by T4 DNA ligase. Selected clones were verified by 

sequencing. N-EGFP (NLS-MS2-EGFP) plasmid was constructed by inserting 

BamHI-NotI (NotI site filled in by T4 DNA polymerase) fragment from pG14-MS2-

GFP into pEGFP-N3 (Clontech) digested by (EcoRI site filled in by T4 DNA 
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polymerase).  For minimal NES domain determination, various primers were 

used in PCR reactions to amplify different regions of CPEB4 and inserted 

between PstI and KpnI sites of pNLS-MS2-EGFP. Primers used to amplify 

various regions are: for N-EGFP-268, C4-218PstI, 

GGCCCTGCAGTCAATAATGGTGCTCTCTTG and C4-486KpnI, 

GGCCGGTACCTTCCACTCTCTCCCCATTCTG; for N-EGFP-145: C4-486KpnI, 

GGCCGGTACCTTCCACTCTCTCCCCATTCTG and C4-341PstI, 

GGCCCTGCAGTCGGTGGAATAACACCCCTGAAC; for N-EGFP-110: C4-

486KpnI, GGCCGGTACCTTCCACTCTCTCCCCATTCTG and C4-376PstN, 

GGGCCCCTGCAGGAACGCCCCAGGACGTTTG; for N-EGFP-83: C4-

424KpnC, GGGCCCGGTACCGTTTAGACGACCTTTAATGG and C4-341PstI, 

GGCCCTGCAGTCGGTGGAATAACACCCCTGAAC; for N-EGFP-48: C4-

424KpnC, GGGCCCGGTACCGTTTAGACGACCTTTAATGG and C4-376PstN, 

GGGCCCCTGCAGGAACGCCCCAGGACGTTTG. NESm of CPEB4 were 

generated by site directed mutagenesis using primers, L387-391AF, 

CGTTTGACATGCACTCAGCAGAGAGCTCAGCAATTGACATAATGAGAGC 

and L387-391AR, 

GCTCTCATTATGTCAATTGCTGAGCTCTCTGCTGAGTGCATGTCAAACG, in a 

50 µl PCR reaction contained 2.5 units PfuTurbo (Stratagene) a reaction as 

directed by user manual. PCR cycling condition for both serial internal deletion 

and site directed mutagenesis is the same as described below: 95oC for 30 sec. 
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followed by 16 cycles of 95 oC for 30 sec.--55 oC for 1min--68 oC for 12 min. then 

ended in 68 oC for 5 min.  

 

 

Results 

 

NMDA induces nuclear localization of CPEB4 

In cultured hippocampal neurons, CPEB4 is mainly detected in the 

cytoplasm and in dendrites; it is also found in the purified PSD (post synaptic 

density) from adult rat brain and PSD of hippocampal neurons cultured for 25 

days in vitro (DIV25) (Huang et al., 2006) but not in DIV16 neurons. The deposits 

of CPEB4 protein to the PSD in a late stage neuron (DIV25) suggests it may be a 

synaptic activity dependent mechanism. To assess whether synaptic activity 

caused CPEB4 localization to synapses, neurons cultured in the presence of 

tetrodotoxin (TTX), to silence spontaneous neural activity, were treated with 0.1 

mM NMDA for 40 minutes. Compared to control, dendritic CPEB4 levels were 

reduced (Fig.1C), while in the cell body CPEB4 was strongly detected in the 

nucleus (Fig. 1A).  NMDA targets NMDAR, a subtype of ionotrophic glutamate 

receptor. The application of NMDAR antagonist, APV, prevented nuclear 

localization of CPEB4 (Fig. 1A).  To examine whether NMDA indeed caused 

CPEB4 to localize to the nucleus instead of associating with the nuclear 

membrane, optical sectioning by confocal microscope was employed.  As shown  
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Figure.1 
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Figure 1. Stimulation of NMDA receptor causes CPEB4 nuclear localization.  A.  

DIV16 hippocampal neurons incubated in TTX for 24 hours were treated with 

buffer alone, NMDA, or APV for 5 minutes prior to NMDA application 

(TTX+NMDA+APV) for 40 mins and then fixed and immunostained with affinity-

purified CPEB4 antibody. DAPI shows nuclear DNA staining. The cells were 

examined by fluorescence microscopy.  B.  DIV16 hippocampal neurons, 

untreated or treated with NMDA for 40 min were fixed, immunostained with 

CPEB4 and MAP2 antibodies, and analyzed by confocal microscopy.  C. CPEB4 

level in dendrites from control or NMDA treated DIV16 neurons are quantified. D. 

TTX treated DIV16 hippocampal neurons were treated with DHPG with APV, 

AMPA with APV, glutamate, or NMDA for 40 min before being immunostained 

with CPEB4 antibody.  E.  TTX treated DIV16 hippocampal neurons were first 

incubated with EGTA or AIPII for 20 minutes then subjected to NMDA and AMPA 

treatment for 40 minutes; the cells were then fixed and stained with CPEB4 

antibody. Size bar=10µm.  
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in Fig. 1B, before NMDA treatment, CPEB4 protein was mainly cytoplasmic; the 

application of NMDA caused accumulation of CPEB4 protein in the nucleus, and 

reach similar level as in cytoplasm. The dendritic CPEB4 protein level also 

reduced in the presence of NMDA (Fig. 1C), suggesting CPEB4 maybe degraded 

or transported retrogradely to the nucleus. To test if other subtypes of glutamate 

receptors can also cause the same effect, AMPA, an agonist for another type of 

ionotrophic glutamate receptor, AMPAR and DHPG, an agonist of metabotrophic 

glutamate receptor mGluR were used to treat hippocampal neurons. While  

DHPG did not cause CPEB4 nuclear translocation, AMPA did (Fig. 1D). NMDAR 

activation by ligand binding causes calcium influx and induces downstream 

signaling event through CaMKII (calcium/calmodulin-dependent protein Kinase II) 

(Hudmon and Schulman, 2002). To examine if extracellular calcium is important 

for NMDA and AMPA induced CPEB4 nuclear translocation, we applied the 

calcium chelator EGTA to remove extracellular Ca2+ before NMDA or AMPA 

application. This treatment caused CPEB4 to remain predominantly cytoplasmic 

(Fig. 1E).  Finally, to assess whether the NMDA/calcium induces CPEB4 nuclear 

localization via CaMKII, a membrane-permeable CaMKII inhibitory peptide, Ant-

AIPII (Ishida et al., 1998; Watterson et al., 2001) was applied to neurons 20 

minutes before NMDA application.  As shown in Fig. 1E, Ant-AIPII reduced 

NMDA-induced CPEB4 nuclear translocation.  These data indicate that 

extracellular calcium and CaMKII are part of an NMDA-induced signaling 

pathway that causes CPEB4 nuclear localization. 
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CPEB family proteins are nucleus-cytoplasm shuttling proteins 

CPEB4 accumulation in the nucleus could either be due to active transport 

of cytoplasmic CPEB4 into the nucleus or inhibition of nuclear export if CPEB4 is 

a nucleus/cytoplasm shuttling protein. To distinguish between these two 

possibilities, neurons were treated with leptomycin B (LMB), a potent nuclear 

export receptor CRM1 inhibitor. LMB forms a covalent link with CRM1 and 

disrupts its interaction with cargo proteins destined for export (Kudo et al., 1999; 

Nishi et al., 1994; Petosa et al., 2004).  Application of LMB to cultured neurons 

resulted in accumulation of CPEB4 in the nucleus suggesting that CPEB4 is a 

nucleus/cytoplasm shuttling protein (Fig. 2A).  

In mammals, there are four members of the CPEB family proteins, 

designated CPEB1-4.  Among them, CPEB1, CPEB3 and CPEB4 are known to 

be expressed in hippocampal neurons (Huang et al., 2006; Theis et al., 2003; Wu 

et al., 1998). To test if all neural CPEB family proteins are nucleus/cytoplasm 

shuttling proteins and are accumulated in nuclei when treated with NMDA, 

lentiviruses expressing CPEB1, CPEB3 and CPEB4 were used to infect DIV14 

hippocampal neurons and subsequently subjected to either LMB or NMDA 

treatment. As expected, these CPEB family proteins all accumulated in the 

nucleus when nuclear export was blocked by LMB, suggesting they are all 

nucleus/cytoplasm shuttling proteins. The NMDA treatment also caused these 

proteins to accumulate in nuclei, further support the notion that nuclear  
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Figure.2 
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Figure 2. CPEB family proteins are nucleus/cytoplasm shuttling proteins.  A. 

DIV16 neurons infected with lentivirus expressing HA-CPEB1, myc-CPEB3 and 

myc-CPEB4 for 2 days were treated with 50nM LMB for 1 hour and then 

immunostained with HA or myc antibodies. B.  DIV16 hippocampal neurons were 

infected with lentivirus expressing HA-CPEB1, myc-CPEB3 or myc-CPEB4 for 48 

hours prior to 1 hour NMDA stimulation. The neurons were then fixed and 

immunostained using anti-HA or anti-myc antibodies respectively. C.  NIH3T3 

cells were treated with digitonin and the permeabilized cells were incubated with 

ATP regenerating system, purified recombinant GST-CPEB4RBD fusion protein 

and with or without HeLa cell cytosol.  After 40 min, the cells were fixed and 

stained with GST antibody. Size bar= 10µm. 
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accumulation is a common feature for CPEB family proteins in neurons following 

NMDA stimulation.  

The nucleus/cytoplasm shuttling of large molecules (> ~50 kDa) requires 

active transport through nuclear pores, usually through phylogenetically 

conserved transport machinery.  To assess whether CPEB4 utilizes general 

nuclear import/export factors, its RNA binding domain (RBD -the region most 

similar among the four CPEB family proteins) was fused to GST (final protein 

size of 55kDa), expressed in E. coli, and added to a HeLa cells that were 

permeabilized with digitonin.  Such treatment renders the cells incapable of 

active nuclear import because of depletion of cytosolic import factors. Protein 

import can be restored, however, if the permeabilized cells are supplemented 

with cytosol.  In this system the GST-CPEB4 RBD was transported to the 

nucleus, only in the presence of HeLa cell cytosol (Fig. 2C).  Similar results were 

obtained when the permeabilized HeLa cells were supplemented with 

hippocampal neuron cytosol (data not shown).  Thus, CPEB4 nuclear import very 

likely uses the general import machinery. 

 

Identification of CPEB4 nuclear import/export cis-elements 

Proteins transported in or out of nucleus usually contain protein 

sequences that can be recognized by nuclear import/export receptors. The 

sequence mediates protein import is called the NLS (nuclear import sequence) 

and the one for nuclear export is called the NES (nuclear export sequence). To  
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Figure.3 
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Figure 3. Identification of the CPEB4 nucleus/cytoplasm shuttling cis-elements.  

A.  This panel depicts the CPEB4 internal deletion constructs.  The peptides 

deleted ranged from 69 to 132 residues. The boxes indicate the parts of the 

protein that were deleted and the grey boxes indicate the known functional 

domains of CPEB4.  The bar in N-terminus is myc epitope tag.  RRM1 and 

RRM2 refer to RNA recognition motifs 1 and 2; ZF refers to two zinc fingers.  B.  

NIH3T3 cells were transfected with plasmid DNA encoding the proteins shown in 

panel A; 12 hours post transfection, the cells were treated with LMB for 1 hr prior 

to fixation.  Antibody against myc epitope was used for the immunostaining.  

Exogenous protein expression was monitored by immunoblotting. 

Immunoblotting for α−tubulin was used as a loading control. Size bar=10µm. 
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identify these sequences in CPEB4, plasmids encoding serial deletions of 

CPEB4 were generated (Fig. 3A) and transfected into NIH3T3 cells, which 

because of their flattened morphology, are particularly amenable for using 

immunocytochemistry for localizing protein to the nucleus.  A CPEB4 truncation 

mutant that lacked the NLS would be expected to be statically cytoplasmic with 

or without LMB treatment; protein with NES deleted should reside in the nucleus 

whether the cells are treated with LMB or not. Although the entire CPEB4 protein 

was sequentially deleted (Fig. 3A), none of the mutants remained cytoplasmic 

when cells were treated with LMB.  Thus, CPEB4 likely has two or more NLSs.  

However, CPEB4 truncation mutant 4, lacking residues 351-463, was nuclear in 

the absence or presence of LMB, indicating the region truncated contains the 

NES (Fig. 3B).  The lower right panel of Fig. 3B shows the expression levels of 

the CPEB4 truncation mutants.  While the expression level of truncation 

constructs D2 and D5 were substantially lower than the other mutants, they still 

could be detected by immunocytochemistry.  

Using Multalin program (Corpet, 1988) that compares protein sequences 

similarity, peptide sequences corresponding to the deleted region in D4 were 

extracted from CPEB 2, 3, and 4 from human, mouse, Xenopus, Zebra fish, or 

Drosophila (in this case, a single CPEB4-like protein is called Orb2) and 

compared. Part of this alignment (Fig. 4A) shows that a segment of CPEB4 

(residues 383-397) within the deleted peptide is highly conserved among all the 

protein sequences examined. Leucine residues, denoted in bold, are often found  
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Figure.4 
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Figure 4. Identification of CPEB4 nuclear export signal.  A.  Alignment of the 

human CPEB4 protein sequence from residues 383 to 397 with homologous 

regions from zebrafish CPEB4 and human and Xenopus CPEB2 and CPEB3 as 

well as Drosophila Orb2. Two arrows point to conserved leucine residues that 

have been mutated to alanine in the LL-AA mutant (panel B).  B.  NIH3T3 cells 

were transfected with DNA encoding myc-tagged wild type or LL-AA mutant 

CPEB4 proteins for 12 hours, treated with LMB for 1 hour and then fixed and 

immunostained for the myc-tagged protein.  C.  Fusion proteins used to identify 

the minimal CPEB4 NES domain.  Various regions of the CPEB4 coding region 

that contain the NES were fused to the SV40 T NLS, the MS2 coat protein, and 

EGFP.  The dark bar indicates the leucine residues indicated in panel A.  D.  

Immunostaining of NIH3T3 cells transfected with DNA encoding the fusion 

proteins noted in panel C.  The left panel shows that the NLS-eGFP-MS2 protein, 

without any CPEB4 sequence, was nuclear. Size bar=10µm. 
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in NESs.  The mutation of both leucine residues to alanine caused the 

accumulation of CPEB4 in the nucleus of transfected 3T3 cells irrespective of 

whether they were treated with LMB.  Thus, these leucine residues are essential 

for CPEB4 nuclear export. To further identify the minimal region of the CPEB4 

NES, various segments of CPEB4 protein containing the identified NES were 

fused to EGFP-MS2 protein that also contained a SV40 T NLS (N-EGFP, Fig. 

4C).  As expected, the control N-EGFP lacking a CPEB4 NES was nuclear in 

transfected 3T3 cells (Fig. 4D, left panel).  Upon fusion with the CPEB4 NES-  

containing fragment, three of the fusion proteins, N-EGFP-268, N-EGFP-145, 

and N- EGFP-83, became localized to the cytoplasm in the absence of LMB but 

to the nucleus in the presence of LMB.  However, two proteins lacking CPEB4 

residues 341-367 was evenly distributed to both nuclear and cytoplasmic 

compartments, suggesting a lack of NES function.  From these results, we 

conclude that CPEB4 residues 341 to 424 constitute a minimal NES motif.  

    

Brain ischemia causes CPEB4 nuclear localization  

Glutamate plays dual roles in the brain; at normal physiological levels it 

induces excitatory synaptic activation and cause the change in synaptic plasticity.  

Under pathological conditions such as ischemia and chronic neuronal 

degeneration that is associated with Alzheimer’s disease, Parkinson’s disease, 

and Huntington’s disease, elevated levels of extracellular glutamate causes 

neuron degeneration through neuron excitotoxicity. To examine whether the 
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CPEB4 nuclear localization can be induced by glutamate released under normal 

physiological condition, brain sections from rat stimulated with HFS (high 

frequency stimulation) for 90 min was probed with anti-CPEB4 antibody. HFS 

stimulates the expression of immediate early gene, Arc (activity regulated 

cytoskeleton-association protein), in granular cells of dentate gyrus, a 

demonstration of robust NMDAR activation(Steward et al., 1998). Under this 

treatment, CPEB4 protein remained in the cytoplasm of granular cells of dentate 

gyrus suggesting CPEB4 nuclear localization is not mediated by physiological 

levels of glutamate released by synaptic transmission (data not shown).  

The inability of HFS to stimulate CPEB4 nuclear localization suggested 

that CPEB4 nuclear accumulation might be induced by pathological levels of 

glutamate as occurs in ischemia. One of the mouse models for studying ischemia 

is Middle Cerebral Artery Occlusion (MCAO) that induces focal deprivation of 

blood flow by inserting a nylon suture into the middle cerebral artery for 90 min 

and then suture removed and brain reperfused for 24 hours before sacrifice and 

sectioning. In mice treated in such a way, the side of the brain that had been 

affected by MCAO (Ipsilateral), a clear infarction can be seen that caused not 

only neuron death (TUNEL assay) but also a dramatic decrease in CPEB4 

staining. In the cortex proximal to the severely affected area, like motor cortex 

(Ipsi-MC) and insular cortex (Ipsi-IC), CPEB4 staining was enriched in the  
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Figure.5 
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Figure 5. Ischemia causes CPEB4 protein to become concentrated in the 

nucleus.  A.  Frozen section of the brain taken from mouse that had a middle 

cerebral artery occlusion (MCAO) was fixed and stained for CPEB4.  DAPI 

staining shows nuclei.  The images were taken from the motor cortex (MC) or 

insular cortex (IC); ipsilateral (Ipsi) and contralateral sides (Con) of these regions 

are shown.  B.  DIV14 hippocampal neurons were incubated in medium without 

glucose in an atmosphere deprived of oxygen for 1 hour (OGD 1 hr), which was 

followed by recovery in normal culture media in atmosphere containing oxygen 

for 3hrs (OGD 1hr rec 3 hr).  Control refers to cells without OGD treatment.  The 

images show CPEB4 staining, TUNEL staining, CPEB4/TUNEL/DAPI staining to 

show the location of nuclei. Size bar=20µm. 
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nucleus but not in the same regions of cortex in the unaffected side, Con-MC and 

Con-IC (Fig.5A).   

Ischemia causes not only a shortage of oxygen supply but also the 

deprivation of glucose to the part of brain affected. One cell culture model for 

ischemia is oxygen glucose deprivation (OGD), where a neuron culture was 

placed under conditions that lack either glucose or oxygen to mimic the 

environment when the brain suffers ischemia. Hippocampal neurons cultured 21 

days in vitro (D.I.V.) was subjected to OGD treatment for one hour and then 

replaced in normal culture conditions for 3 hours before fixation and staining 

for CPEB4 protein and TUNEL assay for cell apoptosis. Three hours after OGD 

treatment, CPEB4 protein is undetectable in some neurons and some neurons 

underwent apoptosis as detected by TUNEL assay. An interesting observation is 

that only those neurons that show very low CPEB4 protein level are labeled by 

TUNEL assay, suggesting low CPEB4 protein level may be a criterion for neuron 

apoptosis.    

 

CPEB4 nuclear localization induced by ER calcium depletion.  

Ischemic brain shows signs of ER calcium depletion. Transient ischemia 

induces protein aggregation in the ER, possibly due to failing folding capacity in 

lower calcium level (Hu et al., 2000). When examining a possible role of 

intracellular calcium in mediating CPEB4 nuclear translocation, a membrane 

permeable calcium chelator, BAPTA-AM was used to immobilize free calcium  
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Figure.6 
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Figure 6. Thapsigargin induced CPEB4 nuclear localization in cultured 

hippocampal neurons. A. DIV16 hippocampal neurons that had been treated with 

TTX for 24 hours were incubated with BAPTA-AM for 20 min and then media 

replaced to remove extracellular BAPTA-AM. Neurons then treated with either 

DMSO or NMDA for 40 min before fixation and immunostaining for CPEB4. B. 

DIV16 hippocampal neurons were treated with DMSO as control, or Thapsigargin 

(TG) for 30 min or 1 hour. At the end of treatment, neurons were fixed and 

stained with CPEB4 antibody and DAPI. C. DIV16 Hippocampal neurons were 

treated with Tunicamycin for 1 hour, 4 hours or 6 hours before fixation and 

immunostained with CPEB4 or CHOP antibodies. D. DIV16 hippocampal 

neurons were treated with 4, 8 or 16µM Thapsigargin for I hour before fixation 

and immnuostaining for CPEB4 proteins. DAPI staining shows nuclear location. 

Size bar=10µm. 
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inside the ER. Twenty minutes after BAPTA-AM addition, neurons were placed in 

fresh media for additional 40 minutes. After the membrane permeable moiety of 

BAPTA-AM is cleaved by cytosolic esterases, the remaining BAPTA becomes 

trapped intracellularly. Since the dissociation constant of BAPTA against calcium 

is near to cytosolic calcium level, BAPTA has no effect in affecting cytosolic 

calcium level. On the other hand, BAPTA targets free calcium in the ER because 

of its high calcium level (~700µM) (Demaurex and Frieden, 2003). This chelating 

of ER calcium caused an increase of neurons with CPEB4 accumulated in the 

nucleus (Fig. 6A). ER is the organelle for secretory and membrane protein folding 

and further processing before translocation to Golgi complex. A high ER calcium  

level is essential for the function of ER chaperone proteins that help the folding of 

ER proteins (Brostrom and Brostrom, 2003; Lodish and Kong, 1990). A reduction 

in ER calcium levels diminishes the chaperone protein activity and causes the 

accumulation of unfolded protein in the ER lumen that will result in the induction 

of the ER stress response (Paschen, 2003). To understand if CPEB4 nuclear 

localization is a downstream response of ER stress signaling, ER stress inducers 

thapsigargin (TG) and tunicamycin (TM), were used to activate unfolded protein 

response (UPR), in cultured neurons and changes in the subcellular localization 

of CPEB4 were monitored. In neurons treated by TG, CPEB4 protein began to 

accumulate in nucleus 30 minutes after drug application and became mainly 

nuclear localized in 1 hour (Fig.6B). However, this same effect was not observed 

when neurons were treated with TM although an UPR response marker protein, 
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C/EBP homology protein (CHOP) expression was detected in the nucleus of TM 

treated neurons, an indication that UPR is properly induced (Fig.6C). The inability 

of TM to induce CPEB4 nuclear accumulation indicates that this nuclear retention 

of CPEB4 is not a downstream event of ER stress, but instead it is induced by 

ER calcium depletion. To determine the minimal concentration of TG to induce 

CPEB4 nuclear retention, various concentrations of TG were used to treat 

neuron cells for 1 hour. At 4µM, cytoplasmic CPEB4 aggregated but no nuclear 

retention was observed. When TG concentration was increased to 8µM, CPEB4 

became retained in the nucleus or evenly distributed between the nucleus and 

cytoplasm. After 1 hour treatment in 16µM TG, most neurons show strong 

nuclear CPEB4 staining (Fig.6D). These data suggest the retention of CPEB4 in 

the nucleus is triggered by ER calcium depletion but not a downstream event of 

ER stress.  

 

 

 

Discussion 

 

CPEB family proteins as nucleus/cytoplasm shuttle proteins.  

The most studied member of the CPEB family proteins, CPEB1, controls 

polyadenylation of CPE-containing mRNAs in the cytoplasm. All reports about 

CPEB1 focus on its functions in the cytoplasm. The finding that the CPEB 
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proteins are nucleus/cytoplasm shuttling proteins suggests new functions for 

these proteins involving nuclear RNA metabolism. Many of the CPEB1 

interacting proteins, such as CPSF and symplekin, are also involved in nuclear 

pre-mRNA polyadenylation (Hofmann et al., 2002; Mandel et al., 2006); thus, it is 

possible that CPEB1 may also be involved in the regulation of nuclear 

polyadenylation. Another possible role for CPEB proteins is RNA nuclear export. 

CPEB4 truncation mutants that have part of their RNA binding domains removed 

retain their shuttling activity, suggesting CPEB4 is actively transported across the 

nuclear membrane instead of passively exported by way of tethering to RNA.  

  The failure to identify a nuclear import signal (NLS) in CPEB4 protein 

using serial deletions suggests there is more than one NLS. One putative NLS 

could be located in a RNA binding domain because recombinant CPEB4 RNA 

binding domain alone is sufficient to induce nuclear import in the presence of 

HeLa cell cytosol in an in vitro import assay. One example of proteins with 

multiple NLS is CyclinB1. Two NLSs have been identified in Cyclin B1 (Hagting 

et al., 1999; Moore et al., 1999). The N-terminal region (1-161 a.a.) of cyclin B1 

mediates nuclear import in an in vitro import assay without transporting factors 

and the other sequence 121-397 a.a. binds to importin β directly.  

 

CPEB4 is retained in the nucleus following ischemia  

 The CPEB4 staining of brain sections from a mouse ischemia model 

shows clear nuclear localization of CPEB4 in penumbra. Penumbra represents 
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the area of brain that sustained secondary damage caused by the diffusion of 

glutamate and potassium ions from the site of immediate impact; it is also a 

target of treatment that aims to reduce brain injury caused by stroke. Several 

proteins have been shown to translocate to the nucleus upon ischemia. One of 

the proteins, apoptosis inducing factor (AIF), resides in mitochondria and 

functions as an oxido-reductase in cells but translocates to the nucleus and 

induces chromatin condensation when apoptosis or necrosis is induced (Daugas 

et al., 2000; Susin et al., 1999). During ischemia and OGD, nuclear translocation 

of AIF is considered to be one of the mechanisms that cause neuron death (Cao 

et al., 2003; Plesnila et al., 2004; Zhao et al., 2004; Zhu et al., 2003). HGF 

(Hepatocyte growth factor), which protects neuron from ischemia induced cell 

death when perfused into brain, also prevents the translocation of AIF to the 

nucleus (Niimura et al., 2006).  

 

Excessive NMDAR activation and ER calcium depletion  

 Both over stimulation of NMDAR and depletion of ER calcium induce 

CPEB4 nuclear retention. The relationship between excessive NMDAR 

stimulation and ER calcium depletion is not clear. It had been shown that ER 

stress is induced in ischemic tissue as demonstrated by accumulation of 

misfolded proteins(Hu et al., 2000) and induction of UPR pathway (Morimoto et 

al., 2007), a signaling pathway induced by decreased ER folding capacity or 

increased protein synthesis in ER. Although it has been speculated that calcium 
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depletion may be responsible for ER stress after ischemia, no clear evidence has 

been provided yet. In our results, both ER calcium depletion and NMDA 

application caused CPEB4 nuclear accumulation, but whether calcium influx 

following NMDAR activation causes ER calcium depletion is unknown. It has 

been reported that activation of NMDAR may induce the release of calcium from 

ER through a mechanism called Calcium Induced Calcium Release, CICR 

(Emptage et al., 1999; (Rose and Konnerth, 2001). In neurons, the ER forms an 

extended structure that reaches synaptic spines (Svoboda and Mainen, 1999). 

ER membrane contains two types of calcium releasing channels, inositol-1,4,5-

trisphosphate receptor and ryanodine receptor. The ryanodine receptor is the 

only calcium release channel in ER that resides in synaptic spines. Another 

report also suggests that the ryanodine receptor may cause ER calcium release 

because ryanodine receptor inhibitor, dantrolene, protects neurons from NMDA 

mediated excitotoxicity (Frandsen and Schousboe, 1992).  

  

Mechanism for ER calcium depletion induced CEPB4 nuclear retention.   

The accumulation of CPEB4 in the nucleus in the presence of TG but not 

TM excludes ER stress as a possible mechanism for inducing CPEB4 nuclear 

accumulation. The retention of CPEB4 in the nucleus after BAPTA-AM incubation 

suggests ER calcium depletion play a role in inhibiting CPEB4 nuclear export. 

The question is: how does ER calcium depletion induce CPEB4 retention in the 

nucleus? Recent advances in ER calcium homeostasis may provide a possible 
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answer. The Store Operated Calcium Entry (SOCE), for replenishing ER calcium 

levels after depletion has been recently established. SOCE involves two protein 

families: the stromal interacting molecule (Stim) family and plasma membrane 

calcium channels, Orai. Stim proteins are located in the ER membrane and serve 

as ER lumen calcium level sensors (Roos et al., 2005; Zhang et al., 2005). Orai 

channel proteins interact with aggregated stim proteins and induce calcium influx 

when ER calcium is depleted (Feske et al., 2006; Luik et al., 2006; Mercer et al., 

2006; Peinelt et al., 2006; Prakriya et al., 2006). The influxed cytoplasmic 

calcium is then transported into the ER by SERCA. It will be of great interest to 

determine whether SOCE triggers CPEB4 retention in the nucleus upon ER 

calcium depletion and NMDA stimulation.  
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CHAPTER IV 

APPENDIX 

 

Preliminary data 

Part I 

CPEB4 phosphorylation through CaMKII activity and localization 

to activated synapses 

 

Result 

 

CPEB4 protein phosphorylation through CaMKII activity  

CPEB4 protein is dephosphorylated when cultured neurons were 

stimulated by 100 uM NMDA for 40 min. To identify a possible phosphatase that 

mediates this dephosphorylation, protein phosphatase inhibitors were used to 

treat neurons before NMDA stimulation. In Figure 1A, when cultured neurons 

were treated with calyculin A, a protein phosphatase I (PPI) inhibitor, CPEB4 

became hyper-phosphorylated. The treatment of two protein phosphatase PP2B 

inhibitors, cyclosporin A and FK506, had no effect on CPEB4 mobility. The 

protein phosphates PP2A inhibitor, Okadaic Acid, also did not prevent CPEB4 

dephosphorylation (data not shown). These data suggest that CPEB4 protein 

phosphorylation status is dynamically regulated by an unknown protein kinase 
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Figure 1. 

 

 

Figure 1. CPEB4 phosphorylation controlled by CaMKII and PP1.  A. DIV16 

hippocampal neuron cells were not treated (control) or treated with Calyculin A, 

Cyclosporin A or FK506 for 20 minutes before stimulation by NMDA for 40 min. 

Cells were harvested and immunoblotted for CPEB4 protein. B. DIV 16 

hippocampal neuron cells were not treated or treated with NMDA or Calyculin A 

for 40 min before harvest and lysed in RIPA buffer before λPPase incubation in 

37o C for 30 min. Samples were used in immunoblot and probe for CPEB4. C. 

DIV 16 hippocampal neuron cells were treated with U0126, PD98059, 

PD169316, LY294002 or AIPII for 20 min before application of Calyculin A for 40 

min and samples were used in immunoblot and probe for CPEB4.  
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Figure 2.  

 

 

Figure 2. Inhibition of PPI induces the aggregation of CPEB4. AIPII and 

LY294002 were added 20 minutes before application of Calyculin A. Forty 

minutes after adding Calyculin A, neurons were fixed and used for 

immunostaining for CPEB4 protein.  
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and PPI. Inhibition of PPI causes the unregulated phosphorylation of CPEB4 

protein.  

To identify the protein kinase that phosphorylates CPEB4 in the absence 

of PPI activity, several protein kinase inhibitors were used to treat cultured 

neuron in the presence of calyculin A. The application of AKT inhibitor, MEK1 

inhibitor U0126 and PD98059, PI3K inhibitor LY294002 and p38 MAPK inhibitor 

PD169316 did not prevent CPEB4 protein phosphorylation, indicating that these 

kinases do not mediate CPEB4 hyper-phosphorylation when PPI is inhibited by 

calyculin A.  However, the presence of CaMKII inhibitor (AIPII) in the culture 

medium prevented the hyper-phosphorylation of CPEB4 protein when PPI was 

inhibited (Fig.1B). These data provide clear evidence that CPEB4 protein 

phosphorylation status is regulated dynamically by PPI and CaMKII in 

hippocampal neurons.  However, there is no evidence to indicate whether 

CPEB4 is directly phosphorylated by CaMKII or through another kinase. Also it is 

not known if PPI directly dephosphorylates CPEB4 or by inactivating CaMKII 

activity.  PPI had been shown to inactivate CaMKII through dephosphorylating 

CaMKII (Strack et al., 1997) so it is possible CaMKII become activated in the 

absence of PP1 activity. 

 

CPEB4 hyper-phosphorylation correlated with CPEB4 aggregation 

 To understand the effect of hyper-phosphorylation on CPEB4 distribution 

in neuron, the cellular localization pattern of CPEB4 was verified by treating 
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neurons with calyculin A followed by immunostaining for CPEB4. As shown in 

Fig. 2, the application of calyculin A induced CPEB4 aggregation and the 

inhibition of CaMKII activity by AIPII before calyculin A treatment reduced the 

aggregation. The calyculin A treatment also induced CPEB4 hyper-

phosphorylation, suggesting the aggregation maybe due to CPEB4 hyper-

phosphorylation.  

 

Localization of CPEB4 to activated synapses 

CaMKII is activated during synaptic activation and required for synaptic 

tagging and L-LTP.  To determine how CPEB4 cellular localization responds to 

synaptic stimulation, CPEB4 distribution in HFS stimulated hippocampus was 

examined by immunofluorescence. By Immunostaining for CPEB4 in brain slices 

that have been stimulated by ECS and followed by HFS in one of two 

hippocampi, CPEB4 protein was found to be enriched in a region of dentate 

gyrus that received HFS (Fig. 3C). The other dentate gyrus that did not receive 

HFS showed an even distribution of CPEB4 in molecular layer (Fig. 3D). The 

region where CPEB4 was accumulated (Fig. 3B) correlates well with the region 

where Arc mRNA was localized after HFS (Fig. 3A). The fluorescence intensity of 

CPEB4 staining is scanned and plotted against the range from granule cell layer 

(cell body) to the end of molecular layer (dendrite), showing a region of CPEB4 

enrichment (Fig. 3E arrow). These data suggest CPEB4 colocalized with Arc 

mRNA in the vicinity of activated synapses. The mechanism for this CPEB4 
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localization is unknown, although it is possible that CaMKII maybe involved. 

CaMKII is required for synaptic tagging in L-LTP (Sajikumar et al., 2007), the 

mechanism that attracts newly synthesized mRNA and proteins. Also as shown 

above, CaMKII activity causes CPEB4 hyper-phosphorylation, a same 

phenomenon that has been detected in vivo from purified PSD (Huang et al., 

2006). 

 

 

Figure.3  

 

Figure 3.  Localization of CPEB4 to the vicinity of activated synapses. A. In situ 

hybridization of Arc mRNA on hippocampus sections from rat that stimulated by 

ECS and then HFS for 30 minutes in perforant pathway that targets middle 

molecular layer. B. Immunofluorescence of CPEB4 using brain section from the 

same rat as A. C. Immunofluorescence of CPEB4 of brain section from collateral 

side of A that only treated by ECS. D. Ipsilateral side of C that treated by ECS 
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then HFS for 30 minutes. E. The graph representing the fluorescence intensity of 

CPEB4 from the base of granule cell to the end of molecular layer from sections 

in C and D. 

 

Discussion 

Significance of CPEB4 phosphorylation 

 Calmodulin dependent protein Kinase II (CaMKII) is a major signaling 

molecule in postsynaptic density that mediates NMDA receptor dependent 

signaling events and is required for synaptic tagging (Sajikumar et al., 2007) and 

long-term memory formation (Miller et al., 2002). Transient calcium influx through 

NMDA receptor transforms CaMKII into a constitutive active form that sustains its 

own kinase activity through autophosphorylation on T286 (Rosenberg et al., 

2005). Protein phosphatase I (PPI) inhibits CaMKII activity by dephosphorylation 

of  CaMKII on T286 when the calcium level is low. When the majority of PSD 

CaMKII becomes autophosphorylated, PP1 activity is inhibited by substrate 

saturation (Bradshaw et al., 2003). This combination of CaMKII 

autophosphorylation and inhibition of PP1 activity results in an ultra-sensitive 

molecular switch that switch CaMKII activity on or off dependent on calcium level 

(Lisman and Zhabotinsky, 2001).  

On immunoblots of purified PSD fractions from adult rat brain, CPEB4 is 

found as two distinct bands representing two different phosphorylation states, 

which is consistent with the results shown above (Huang et al., 2006).  Because 
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CPEB4 can be hyper-phosphorylated by CaMKII when PP1 activity is inhibited, it 

is likely that the hyper-phosphorylated form of CPEB4 in PSD may be a result of 

constitutively active CaMKII activity. In support of this hypothesis, the CPEB1 

phosphorylation state and activity in neuron cells has been found to be regulated 

by CaMKII-PP1 in response to synaptic activity (Atkins et al., 2005).  

Although the function of CPEB4 phosphorylation through CaMKII activity 

is unknown, besides causing protein aggregation it may also required for the 

activity of CPEB4 protein. Phosphorylation of CPEB1 by CaMKII may be required 

for translation activation of CPE containing mRNA (Atkins et al., 2004). 

Phosphorylation of CPEB4 by CaMKII could change CPEB4 function in 

translational regulation. 

 Deletion of the Arc gene causes a loss of long-term memory and L-LTP in 

knockout mice.  The localization of Arc mRNA have been shown to be dependent 

on NMDAR and AMPAR activity (Steward and Worley, 2001), mRNA degradation 

through EJC mediated NMD (Giorgi et al., 2007) and synaptic cytoskeleton 

alteration (Huang et al., 2007). Arc mRNA has been identified in KIF5 containing 

mRNP suggesting its transport depends on motor protein (Kanai et al., 2004). 

But the mechanism of how these events lead to specific localization of Arc mRNA 

is still not clear. In the preliminary results shown above, PP1 and CaMKII 

regulate the phosphorylation status of CPEB4, directly or indirectly. In addition, 

the hyper-phosphorylation of CPEB4 correlates with the aggregation of the 

protein, suggesting a change of protein conformation although the aggregation of 
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CPEB4 maybe due to other proteins that also affected by PP1 inhibition. The 

aggregation of CPEB4 protein upon hyper-phosphorylation needs to be studied 

by in vitro assay using purified CPEB4 protein and CaMKII to examine: first, if 

CPEB4 is phosphorylated by CaMKII; second, if phosphorylation by CaMKII 

causes CPEB4 protein aggregation. Nevertheless, the activity of CaMKII induces 

the CPEB4 aggregation in neurons. The CPEB4 domain that required for this 

aggregation may be determined by expressing truncated version of CPEB4 in 

neuron by lentivirus infection. The possible candidate will be the N-terminal 

glutamine/asparagine rich domain that may function like N-terminal prion domain 

in Sup35.  

 The interesting observation in these preliminary data is the localization of 

CPEB4 protein in a similar region as Arc mRNA in the part of dendrite where 

synapses have been stimulated. This suggests CPEB4 is one of the proteins that 

been captured by synaptic tag. The mechanism of how CPEB4 captured by 

synaptic tag will provide an example to the mechanism of synaptic tagging. The 

aggregated CPEB4 may either cause dissociation from motor protein or 

increases its interaction with synaptic cytoskeleton proteins and retains CPEB4 in 

synaptic spine. 

The interaction between Arc mRNA and CPEB4 is not proven yet, due to 

the poor immunoprecipitation efficiency of CPEB4 antibody. Lentivirus may be 

used to express epitope tagged version of CPEB4 in neurons for efficient IP to 

bring down CPEB4 mRNP complex to verify if CPEB4 binds Arc mRNA in 
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neuron. The identification of CPEB4 localization mechanism may help 

understand how synaptic tag function in capturing newly synthesized mRNA and 

proteins that contributes the establishment of L-LTP and long term memory.    

 

 

 

 

Part II  

Association of CPEB4 with endoplasmic reticulum and the role 

of CPEB4 in ER stress response 

 

Result 

 

CPEB4 association with ER 

CPEB4 immunostaining in immature hippocampal neurons usually enriched in 

one side of nucleus that resembles the staining of ER marker proteins like protein 

disulfide isomerase (PDI). This ER localization correlates with the observation 

that CPEB4 subcellular localization is regulated by ER calcium level. To test this 

possibility, antibody against ER lumen resident protein, PDI, is used in 

immunostaining together with CPEB4 antibody in both NIH3T3 cells and 

hippocampal neurons. As shown in Fig. 1A, in NIH3T3 cells, most of CPEB4  
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Figure.1 
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Figure 1. CPEB4 associates with endoplasmic reticulum.  A.  NIH3T3 cells and 

DIV2 hippocampal neurons were immunostained for CPEB4 PDI, followed by 

fixation and examination by confocal microscopy. B. Percentage of CPEB4 co-

localize with PDI from NIH3T3 and neuron. C. Immunoblot of fractions collected 

from discontinuous sucrose density centrifugation were probed with CPEB4, 

GM130, PDI or synaptophysin (Synapt) antibodies. D. Homogenized mouse 

brain was centrifuged at 4000g for 10 mins and supernatant (S4) was collected 

and treated with either 0.5M NaCl on ice or RNaseA in 37 oC for 30 mins before 

centrifuge at 1X105 g for 1 hour to obtain pellet (P100) and supernatant (S100). 

Same portion of protein samples were used in immunoblotting with CPEB4 

antibody. E. Protein samples of S100 and P100 from S4 with or without 0.5M 

NaCl treatment are separated by SDS-PAGE and probed with CPEB4, GRP78 or 

PDI antibodies. Size bar=10µm.  
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staining matches with PDI staining, suggesting that a majority of CPEB4 protein 

is colocalized with ER lumen protein PDI in NIH3T3 cell (~80% CPEB4 staining 

overlaps with PDI). In hippocampal neurons, CPEB4 was co-localized with PDI at 

a much lower level (~28% overlaps) (Fig.1B).  The co-localization is usually 

happened in places with more intense CPEB4 staining. When another ER marker 

antibody, anti-KDEL that recognize C-terminal ER retention sequence of ER 

resident proteins, was used for immunostaining with CPEB4 antibody, CPEB4 

did not colocalized with this ER marker. Suggesting PDI/CPEB4 and KDEL-

containing protein may reside in different sub-compartments of ER.  

The localization of CPEB4 on ER membranes was also supported by 

membrane floatation assay, a method for isolating membrane bound ribosome 

and their associated mRNA from free ribosomes (Mechler, 1987). Mouse brain 

was homogenized in sucrose containing buffer. The sucrose concentration of the 

lysate was then adjusted to 2.05 M and layered on top of a layer of 2.5 M 

sucrose and topped with layers of 1.9M and 1.2M sucrose consecutively. After 

ultra-centrifugation for 5 hours, macromolecules will distribute according to their 

buoyant density. The buoyant density is determined by the ratio between protein 

and lipid content in an organelle. Organelle with high lipid/protein ratio has lower 

buoyant density. The organelles that have lower buoyant density, also named 

microsomes, will shift up to the junction between layers of 1.2M and 1.9M 

sucrose. The cytosolic proteins and free ribosome with higher buoyant density 
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will remain in layers of 2.05M sucrose and the nuclei will present in layer of 2.5M 

sucrose. Using immunoblotting, CPEB4 was detected in both microsome fraction 

(between 1.2M and 1.9M Sucrose) and soluble protein fraction (2.05M and 2.5M 

sucrose). Since GM130, a Golgi complex marker, also showed biphasic 

distribution suggesting there are some membrane structures remain in soluble 

fraction. In the same experiment, the continuous distribution of PDI, an ER 

marker, and synaptophysin, a protein associates with synaptic vesicles, suggests 

a heterogeneous population of both organelles. This heterogeneity may derive 

from incomplete dissociation of organelle from cytoskeleton or been enclosed in 

other membrane structures. It is known many of the synaptic vesicles are 

localized to presynaptic compartment that forms synaptoneurosome together 

with postsynaptic compartment when neurons are homogenized. The presence 

of PSD that is highly enriched in receptors and cytoskeletons will certainly 

increase the buoyant density of synaptoneurosome (Fig.1C). It is also possible 

that CPEB4 may be enclosed in membrane structure as a soluble protein when 

neurons were homogenized and not actually associates with membrane.  

The identification of CPEB4 in the microsome fraction further supports the 

hypothesis that CPEB4 is associated with the ER membrane. CPEB4 is an RNA 

binding protein and its homolog, CPEB3, controls the translation of a membrane 

protein, GluR2 (Huang et al., 2006), so it is possible the localization of CPEB4 to 

ER compartment is through translation mediated ER membrane docking. To test 

if RNA is required for CPEB4 docking on ER membrane, RNaseA is used to 
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degrade cytosolic mRNA. The treatment of RNaseA did not dissociate CPEB4 

from membrane suggesting that CPEB4 localization to ER is not through RNA 

binding (Fig. 1D). In the same experiment, when 0.5M NaCl is added in buffer, 

CPEB4 will be dissociated from ER compartment, suggesting CPEB4 associates 

with ER membrane directly or through other proteins (Fig. 1D). It should be noted  

 

Figure.2 
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Figure 2. CPEB4 is necessary for survival of cultured hippocampal neurons in ER 

calcium depletion.  A.  Immunoblots of lysates from cells infected with lentiviruses 

expressing shRNAs against CPEB4 (KD2, KD3 and G5) and CPEB3 (C3).  

Immunoblots of lysates from cells in which lentivirus expressing no shRNA (V), or 

no virus (-) are also shown.  DIV5 hippocampal neurons were infected for 4 days 

before lysed in SDS sample buffer.  The blots were probed for CPEB3 and 

CPEB4. The α-tubulin level is used as a loading control. Anti-GFP antibody 

probing is used to assess the level of lentivirus infection. B.  Percentage of 

hippocampal neurons died of apoptosis after infected with various shRNA-

expressing lentiviruses.  DIV5 neurons were fixed 4, 5, and 7 days after infection.  

The apoptosis rate was calculated by determining the ratio of TUNEL positive 

cells versus total cells (DAPI positive) in each of 5 fields counted from neurons 

infected with different shRNA expressing lentiviruses. C. DIV10 hippocampal 

neurons infected with either ineffective shRNA clone (G5) or CPEB4 targeting 

shRNA expressing lentivirus were treated with 2uM Thapsigargin (TG) for 8 

hours and cell are fixed and stained with DAPI to quantify the ratio of nuclear 

condensation.   
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that ER lumen resident proteins like GRP78 and PDI remained in the ER after 

salt extraction suggests that CPEB4 associates with ER membrane peripherally 

(Fig.1E). 

 

CPEB3 and CPEB4 are required for neuron survival after calcium depletion 

The change in subcellular localization of CPEB4 in response to ER calcium 

depletion suggests that CPEB4 may play a role in the cellular response 

to calcium depletion. To test this possibility, we attempted to knockdown CPEB4 

by shRNA introduced by lentivirus (Rubinson et al., 2003). When assayed by 

immunoblotting,  CPEB4  was shown to diminish 4 days post infection by shRNA  

clone, KD2 (Fig.2A). A positive control, lentivirus shRNA against CPEB3, C3,  

also showed strong repression on CPEB3 protein expression 4 days post  

infection as reported (Huang et al., 2006). Reduction in CPEB4 protein level 

makes cell susceptible to cell death (Fig.2B). In the presence of thapsigargin, 

knockdown CPEB4 induced elevated neuron apoptosis (Fig.2C).  Suggesting 

CPEB4 is involved in neuron protection to cellular stress imposed by ER calcium 

depletion. 

Discussion 

 

CPEB4 associates with ER membrane 

 The identification of CPEB4 localization on ER membrane provides a hint 

about the cellular function of CPEB4. Localization of an RNA binding protein to 
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ER membrane may not a big surprise especially when it binds mRNA coding for 

membrane proteins like, GluR2. Because SRP complex will brings this mRNP 

complex to ER translocation site. But the fact that CPEB4 localizing to ER 

membrane is independent from mRNA integrity makes the story more interesting. 

It suggests CPEB4 ER localization is not by associating with mRNA destined to 

ER but by its own biochemical property. So it is possible that CPEB4 may 

function as RNA transporter that brings mRNA to ER membrane before 

translation initiation. There are some examples about mRNA association with ER 

as a means for either transport across cell (Aronov et al., 2007; Deshler et al., 

1997) or for efficient response to signaling (Stephens et al., 2005). Consider 

CPEB4 also localizes to postsynaptic density in mature neuron (Huang et al., 

2006), suggesting a possible role of CPEB4 in regulating local synthesis of 

synaptic membrane proteins.   

   

Role of CPEB4 in cell survival through ER calcium depletion 

 The findings of CPEB4 association with ER membrane as well as its 

involvement in protecting cells from ER calcium depletion agent, TG, support the 

hypothesis that CPEB4 serves as a ER stress reliever. Although the mechanism 

is unknown, the nuclear localization of CPEB4 protein as well as other family 

members could be utilized by cell as a strategy to protect neuron from ER stress 

induced by calcium depletion. One of CPEB3 targets has been identified is 

GluR2. As a membrane protein, GluR2 is translated and folded through ER. The 
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decreased calcium level will weaken ER folding ability. By restricting GluR2 

mRNA in nucleus will eliminate the possibility for GluR2 been translated and 

causes more ER stress. So the retention of CPEB family proteins in nucleus may 

be a strategy that cell utilizes when ER is been stressed by calcium depletion. 

And this will add another ER stress response pathway to already known IRE1, 

PERK and ATF6. This hypothesis also predicts that many of CPEB family protein 

targets are mRNAs encoding secretory or membrane proteins. This view is 

supported by the localization of CPEB4 in ER membrane. One caveat to this 

hypothesis is that the concentration that used to induce ER calcium depletion in 

neuron survival assay (2µM) is below the concentration that induces CPEB4 

nuclear localization (8µM). TG in 2µM did not induce CPEB4 nuclear localization 

although it causes the aggregation of CPEB4. More experiments will be needed 

to address the mechanism for CPEB4 mediated neuron protection upon neuron 

ER calcium depletion.  
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PART III 

 

Quantification results of Chapter III cytological data 

 
Fig.1A 
 
 Nuclear Cyto/Nucl Cytoplasmic Total Cell Number 
TTX 2.25±1.95 1.55±0.51 96.2±2.12 465 
TTX+NMDA 88.49±4.38 3.66±2.12 7.85±2.54 419 
TTX+NMDA+APV 0.47±0.81 0.93±1.61 98.6±2.42 373 

 
Fig.1B 

 Nuclear Cyto/Nucl Cytoplasmic Total Cell Number 
TTX+NMDA 88.49±4.38 3.66±2.12 7.85±2.54 419 
TTX+AMPA+APV 56.89±12.98 2.28±2.97 40.83±10.41 350 
TTX+DHPG+APV 0±0 1.71±0.2 98.29±0.2 410 
TTX+Glutamate 99.57±0.74 0±0 0.43±0.74 238 

 
Fig.1E 

 Nucleus Cyto/Nucl Cytoplasm Total Cell Number 
TTX+NMDA 88.49±4.38 3.66±2.12 7.85±2.54 419 
TTX+NMDA+AIPII 22.19±20.93 4.92±1.84 77.89±22.68 347 
TTX+NMDA+EGTA 0±0 0±0 100±0 443 
TTX+AMPA 94.54±1.82 0±0 5.46±1.82 466 
TTX+AMPA+EGTA 0±0 0±0 100±0 274 

 
 
 
Fig.2B 

  Nucleus Cyto/Nucl Cytoplasm Total Cell Number 
TTX 1.08±1.04 0.86±1.07 98.06±1.92 376 
NMDA 90.87±1.72 1.56±1.36 7.57±0.60 426 CPEB1 
LMB 94.36±1.09 5.64±1.09 0±0 282 
TTX 0±0 1.84±1.69 98.16±1.69 139 
NMDA 66.78±4.85 11.82±2.68 21.4±6.85 145 CPEB3 
LMB 0±0 90.97±5.57 9.03±5.57 200 
TTX 0.35±0.61 2.15±1.78 97.5±2.39 273 
NMDA 95.58±1.83 0±0 4.42±1.83 193 CPEB4 
LMB 0.99±0.87 92.23±9.26 6.79±8.94 199 
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Fig.3B 
 

 
 
 
 
 
 
 
 
Fig.4B 

  Nucleus Cyto/Nucl Cytoplasm Total Cell Number 
no LMB 0.53±0.93 0.49±0.85 98.97±0.89 183 C4a 
LMB 94.43±2.14 5.12±1.4 0.44±0.77 193 

NESm no LMB 86.53±5.19 13.47±5.19 0±0 233 
 
 
 
 
 
 
 
 
 

 
 
  Nucleus Cyto/Nucl Cytoplasm Total Cell Number 

no LMB 0.53±0.93 0.49±0.85 98.97±0.89 183 C4a 
LMB 94.43±2.14 5.12±1.4 0.44±0.77 193 
no LMB 0±0   0±0 100±0 180 D1 
LMB 96.94±3.75 3.06±3.75 0±0 166 
no LMB 0±0 0±0 100±0 152 D2 
LMB 95.52±1.63 4.48±1.63 0±0 176 
no LMB 0±0 0±0 100±0 185 D3 
LMB 84.1±10.53 15.9±10.53 0±0 176 
no LMB 96.91±2.38 3.09±2.38 0±0 255 D4 
LMB 89.07±2.41 9.7±2.41 1.23±1.1 218 
no LMB 0±0 2.61±3.36 97.39±3.36 227 D5 
LMB 96.81±3.35 3.19±3.35 0±0 244 
no LMB 0±0 0±0 100±0 200 D6 
LMB 93.43±4.11 6.57±4.11 0±0 223 
no LMB 0±0 0.63±1.1 99.37±1.1 275 D7 
LMB 78.31±1.94 21.68±1.94 0±0 223 

NESm no LMB 86.53±5.19 13.47±5.19 0±0 233 
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Fig.4D 

   Nucleus Cyto/Nucl Cytoplasm Total Cell Number 
no LMB 1.32±1.15 1.16±1.01 97.51±0.96 160 N-EGFP-218 
LMB 8.94±6.97 84.45±8.34 6.61±2.13 168 
no LMB 0.39±0.67 0.77±1.34 98.84±2.14 223 N-EGFP-145 
LMB 92.55±2.46 7.45±2.46 0±0 211 
no LMB 38.69±1.01 61.31±1.01 0±0 271 N-EGFP-110 
LMB 70.83±8.76 29.17±8.67 0±0 260 
no LMB 0±0 0.72±1.25 99.28±1.25 213 N-EGFP-83 
LMB 78.91±5.05 20.74±4.78 0.35±0.6 234 
no LMB 54.08±7.16 45.92±7.16 0±0 314 N-EGFP-48 
LMB 67.72±3.8 32.28±3.8 0±0 290 

 
 
Fig.5B 
 Nucleus Cyto/Nucl Cytoplasm Total Cell number 
Control 0±0 1.41±1.4 98.59±1.4 351 
OGD 1hr-rec3hr 24.04±4.27 52.01±5.82 23.95±2.44 289 
 
Fig.6A 

 Nuclear Nuc/Cyto Cytoplasmic Total Cell Number 
Control 0±0 1.19±0.43 98.81±0.43 430 
BAPTA-AM 59.77±14.94 4.10±1.51 36.13±13.45 511 

 
 
Fig.6C 
 Nuclear Cyto/Nucl Cytoplasm Total Cell Number 
Control 0.28±0.41 0.28±0.49 99.48±0.45 417 
TM 4 hours 0±0 0.32±0.56 99.68±0.56 352 
TM 6 hours 0±0 0±0 100±0 342 
 
 
 
Fig.6D 

 Nucleus Cyto/Nucl Cytoplasm Total Cell Number 
TG-0 0.00±0 1.19±0.43 98.81±0.43 332 
TG-4 0.30±0.52 0.00±0 99.70±0.52 294 
TG-8 0.00±0 0.28±0.49 99.72±0.49 338 
TG-16 96.36±5.59 3.08±5.34 0.56±0.49 348 
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 Example of protein staining 
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CHAPTER V 

 

CONCLUSION 

 

 Works presented in this thesis provide three major insights into our 

understanding of CPEB protein function. First, the work about CPEB family 

protein RNA binding specificities help clear up confusion of whether CPEB2-4 

can replace CPEB1 function in mediating local protein synthesis in CPEB1 

knockout mice. Local protein synthesis in dendritic compartment has been 

considered to be an essential part of L-LTP formation. CPEB1 as a protein that 

regulates polyadenylation mediated translational activation had been considered 

as a possible candidate for local protein synthesis regulation in dendrite. CPEB1 

knockout mouse only shows defect in TBS mediated L-LTP and memory 

extinction related to hippocampus mediated spatial memory.  The distinct RNA 

binding specificities between CPEB1 and CPEB2-4 suggest their function is not 

redundant. Although it is possible that one RNA may be contains both CPE and 

CPEB2-4 binding sequence. In the other hand, the finding that Drosophila CPEB 

homolog, Orb2, is required for long-term courtship memory formation has shifted 

the attention to other CPEB family proteins. It should be brought to attention that 

Orb2 belongs to CPEB-like protein subfamily together with CPEB2-4 according to 

sequence alignment of RNA binding domains. The interesting finding that Orb2 

poly-glutamine motif is required for long term memory and is dispensable for fly 



 138 

survival makes poly-glutamine domain an important indication of whether any 

CPEB protein may be involved in long-term memory formation. Two yeast prion 

proteins, Sup35 and Ure2, both contain glutamine/asparagines rich domains that 

is required for their prion phenotype, suggesting asparagine also play a role in 

mediates prion formation. CPEB family proteins, CPEB2, CPEB3 and CPEB4, all 

contain glutamine/asparagine rich motif, which make them likely the candidates 

for mediating long-term memory formation in mammal.  

 Second, identification of CPEB family proteins as nucleus/cytoplasm 

shuttle proteins opens a new field for CPEB family protein research. All the 

researches about CPEB1 function up to date focus on the cytoplasmic functions 

of CPEB1, including RNA transport and translational regulation of CPE 

containing RNA. The finding of CPEB family protein traveling between nucleus 

and cytoplasm suggesting CPEB family proteins may involved in RNA 

metabolisms inside of nucleus. RNA goes through multiple processing steps in 

nucleus before exported to cytoplasm. It will be exciting to find out if CPEB family 

proteins are involved in any of the steps.  

Third, the finding that CPEB family proteins subcellular localization is 

subject to regulation by ER calcium homeostasis suggest a role of CPEB3-4 

proteins in ER stress regulation in neuron cell. Although the preliminary result 

shows knockdown of CPEB3 and CPEB4 might attenuate neuron ER stress 

response, the effect has to be evaluated in other cell types as well. Also CPEB1 

protein has been reported to be a component of stress granule and the over-
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expression of CPEB1 induces stress granule formation (Wilczynska et al., 2005), 

these evidences favor the idea that CPEB family protein may be involved cell 

stress responses. This finding provides another new direction in CPEB research. 

It will be important to find out the mechanism of how ER calcium depletion 

causes CPEB family protein localizes to nuclear and how CPEB4 help neuron 

cell survive through ER stress imposed by calcium depletion.  

    The identification of cytoplasmic polyadenylation in 1989 have opened the 

door for the gene specific translation regulation (McGrew et al., 1989). The works 

presented in this thesis only provide some insights into the broad spectrums of 

CPEB family proteins functions. The questions raised in this work certainly 

overwhelmed the answers provided and they will serve as platforms for further 

research by coming enthusiastic fellows. .  
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