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Abstract 

The innate immune system provides an essential first line of defense against 

infection.  Innate immune cells detect pathogens through several classes of Pattern 

Recognition Receptors (PRR) allowing rapid response to a broad spectrum of infectious 

agents.  Activated receptors initiate signaling cascades that lead to the production of 

cytokines, chemokines and type I interferons all of which are vital for controlling 

pathogen load and coordinating the adaptive immune response.  Detection of nucleic 

acids by the innate immune system has emerged as a mechanism by which infection is 

recognized.  Recognition of DNA is complex, influenced by sequence, structure, covalent 

modification and subcellular localization.   

Interestingly certain synthetic oligodeoxynucleotides comprised of the TTAGGG 

motif inhibit proinflammatory responses in a variety of disease models.  T hese 

suppressive oligodeoxynucleotides (sup ODN) have been shown to directly block TLR9 

signaling as well as prevent STAT1 and STAT4 phosphorylation.  Recently AIM2 has 

been shown to engage ASC and assemble an inflammasome complex leading to the 

caspase-1-dependent maturation of IL-1β and IL-18.  T he AIM2 inflammasome is 

activated in response to cytosolic dsDNA and plays an important role in controlling 

replication of murine cytomegalovirus (MCMV).  In the second chapter of this thesis, a 

novel role for the sup ODN A151 in inhibiting cytosolic nucleic acid sensing pathways is 

described.  Treatment of dendritic cells and macrophages with the A151 abrogated type I 

IFN, TNF-α and ISG induction in response to cytosolic dsDNA.  A151 also reduced INF-

β and TNF-α induction in BMDC and BMDM responding to the herpesviruses HSV-1 

and MCMV but had no effect on the responses to LPS or Sendai virus.  In addition, A151 
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abrogated caspase-1-dependent IL-1β and IL-18 maturation in dendritic cells stimulated 

with dsDNA and MCMV.  A lthough inhibition of interferon-inducing pathways and 

inflammasome assembly was dependent on backbone composition, sequence 

differentially affected these pathways.  While A151 more potently suppressed the AIM2 

inflammasome, a r elated construct C151, proved to be a more potent inhibitor of 

interferon induction.  A151 suppressed inflammasome signaling by binding to AIM2 and 

competing with immune-stimulatory DNA.  The interaction of A151 and AIM2 

prevented recruitment of the adapter ASC and assembly of the macromolecular 

inflammasome complex.  C ollectively, these findings reveal a new route by which 

suppressive ODNs modulate the immune system and unveil novel applications for 

suppressive ODNs in the treatment of infectious and autoimmune diseases. 

The innate immune response to HSV-1 infection is critical for controlling early 

viral replication and coordinating the adaptive immune response.  The cytokines IL-1β 

and IL-18 are important effector molecules in the innate response to HSV-1 in vivo.  

However, the PRRs responsible for the production and maturation of these cytokines 

have not been fully defined.  In the third chapter of this thesis, The TLR2-MyD88 

pathway is shown to be essential for the induction of pro-IL-1β transcription in dendritic 

cells and macrophages responding to HSV-1.  The HSV-1 immediate-early protein ICP0 

has previously been shown to block TLR2 responses and in keeping with this finding, 

ICP0 blocked pro-IL-1β expression.  Following translation, pro-IL-1β exists as an 

inactive precursor that must be proteolytically cleaved by a multiprotein complex known 

as the inflammasome to yield its active form.  Inflammasomes are composed of 

cytoplasmic receptors such as NLRP3 or AIM2, the adapter molecule ASC, and pro-
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caspase-1.  In the present study we found that the NLRP3 inflammasome is important for 

maturation of IL-1β in macrophages and dendritic cells responding to HSV-1.  In contrast 

the related NLRP12 protein controls IL-1β production in neutrophils.  These data indicate 

that sensing of HSV-1 by TLR2 drives pro-IL-1β transcription and infection activates the 

inflammasome to mature this cytokine.  Moreover, these studies reveal cell type-specific 

roles for NLRP3 and NLRP12 in inflammasome assembly. 
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Chapter I 

 

1.1 Introduction 

 

The human immune system can be divided into two main components, the innate 

and the adaptive responses.  The innate immune response is the first line of defense 

against pathogens.  This response is coordinated by a variety of specialized cells 

including monocytes, macrophages, dendritic cells (DCs), neutrophils, eosinophils, 

basophils, natural killer (NK) cells, and NK T cells.  These cells are activated by 

germline-encoded Pattern Recognition Receptors (PRRs).  PRRs bind to molecular 

signatures, often-essential structural or genetic components, which are conserved among 

pathogens.  This allows the innate immune system to respond rapidly to a broad range of 

infectious agents that have breached the skin and mucous membranes.  In contrast, the 

adaptive immune system is slow to mobilize but provides a highly antigen specific 

response. This is accomplished through the somatic recombination of T and B cell 

receptors and provides a mechanism for long-lived specific immunity.   

The innate immune system is essential for controlling pathogen load and 

activating the adaptive immune response.  T he importance of innate immunity is 

highlighted by hereditary deficiencies in this response such as that seen in chronic 

granulomatous disease which leaves the host susceptible to recurrent bouts of infection 

(1).  On the other hand, aberrant or uncontrolled immune responses can cause extensive 

tissue damage, exacerbate septic shock and contribute to the development of autoimmune 

diseases (2).  T hus, a balance between activation and suppression must be struck to 



 2 

ensure an appropriate and effective immune response.  U nderstanding how the innate 

immune system is activated and how this response may be controlled will help in 

designing safe and effective therapeutic interventions.   

 

1.2 Pattern Recognition Receptors 

 

Innate immune cells detect pathogens through distinct classes of germline-

encoded Pattern Recognition Receptors (PRR) including the Toll-like receptors (TLRs), 

the RIG-I-like receptors (RLRs), the NOD-like receptors (NLRs) and the AIM2-like 

receptors (ALRs; also known as the PYHIN family of receptors).  These PRRs respond to 

a variety of conserved pathogen- and danger-associated molecular patterns 

(PAMPs/DAMPs) allowing rapid recognition and response to infectious agents.  

Activated receptors initiate signaling cascades that lead to the production of cytokines, 

chemokines and type I interferons, all of which are vital for controlling pathogen load 

early on and coordinating an effective adaptive immune response.  Though the 

importance of these effectors was first recognized more than half a century ago, only in 

the past decade have we begun to understand the precise molecular pathways that lead to 

their production.  The Toll-like receptors were the first group of PRRs discovered.  TLRs 

mainly recognize PAMPs and DAMPs in the extracellular and endosomal compartments.  

More recently a number of PRRs, including the RLRs, NLRs and ALRs have been 

identified which survey the cytoplasmic and, in some cases, even the nuclear 

compartments.  In the following sections these PRRs will be reviewed in detail with 

particular emphasis given to the sensing of DNA within the cytosol. 
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1.2.1 Toll-like receptors 

 

Of the PRRs, the Toll-like receptors (TLRs) are the most extensively studied.  

TLRs are type 1 transmembrane proteins that traffic between the plasma membrane and 

endosomal vesicles.  Those located on the plasma membrane are usually specific for 

hydrophobic lipids and proteins while those found in the endosome detect nucleic acids.  

This segregation allows innate cells to respond to components of the viral envelope and 

bacterial cell wall at their surface.  In contrast, nucleic acids are detected in the endosome 

where many viruses uncoat their genomes and enter the cytoplasm.  To date, 10 T LRs 

have been identified in humans while 13 have been identified in mice with TLRs 1-9 

common to both.  TLR1, TLR2, TLR4, TLR5 and TLR6 are located on the plasma 

membrane while TLR3, TLR7, TLR8, and TLR9 are endosomal.  TLR2 forms 

heterodimers with either TLR1 or TLR6 and can respond to a variety of lipoproteins, 

peptidoglycan and liptechoic acid (3, 4).  TLR4 is activated by LPS, a crucial component 

of the bacterial cell wall of gram-negative bacteria (5).  T LR5 responds to flagellin a 

component of the flagellum, a highly conserved structure among motile bacteria (6).  

TLR3 recognizes dsRNA while TLR7 and TLR8 recognize ssRNA, species that are often 

associated with viral infection and replication (7).  T LR9 is activated by unmethylated 

CpG DNA motifs that are common in bacterial and viral genomes but underrepresented 

in vertebrate DNA (8).   

All TLRs share a common architecture consisting of extracellular leucine-rich 

repeats and a cytoplasmic Toll/Interleukin-1 Receptor (TIR) domain (9).  These receptors 
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signal as dimers, differentially recruiting the adapter proteins: Myeloid differentiation 

primary response gene 88 (MyD88) and MyD88 adapter-like (Mal also known as TIRAP) 

and/or TIR-domain-containing adapter inducing IFN-β (TRIF) and TRIF-related adapter 

molecule (TRAM).  Adapters initiate signal cascades culminating in the activation of 

nuclear factor kappa b (NF-κB), mitogen-activated protein kinase (MAPK) and interferon 

regulatory factors 1, 3 , 5 and 7 ( IRF-1, 3, -5 and -7) (10). Together, these transcription 

factors not only drive expression of interferons, cytokines and chemokines, but also 

influence cellular proliferation, maturation and survival.  

The specific inflammatory response evoked by PAMPs and DAMPs depends on a 

variety of factors.  F irst, cellular expression of TLRs differs amongst innate cell types.  

Human macrophages are known to express high levels of TLR2 and TLR4 while 

plasmacytoid dendritic cells (PDCs) mainly express TLR7 and TLR9 (9).  E xpression 

patterns also vary between species.  W hile TLR9 is restricted to a f ew cell types in 

humans, it is widely distributed in mice (11).  F urthermore, expression of certain 

downstream signaling molecules fluctuates between innate cell types.  F or example, 

plasmacytoid dendritic cells (PDCs) are unique in that they constitutively express the 

transcription factor IRF7, allowing them to quickly produce high levels of type I IFNs in 

response to viral infection while other cell types such as macrophages may respond in a 

more delayed manner (10, 12).  T hus, the response to identical ligands may differ 

between cell types both in the nature of effector molecules produced and the kinetics of 

the response. 

 

1.2.2 Cytosolic sensors 



 5 

 

All viruses and many bacteria enter the cell’s cytoplasmic compartment during 

their life cycles.  Viruses, such as HSV, gain entry via fusion of their envelope with the 

cell’s outer plasma membrane while other viruses, such as influenza, fuse in the 

endosomal vesicle.  During the process of viral replication the host’s own cellular 

machinery is co-opted to produce a large number of virions.  This process leads to the 

accumulation of viral nucleic acids, which are one of, if not the most common, cytosolic 

PAMP observed in viral infections (13).  The cytosolic PRRs responsible for detecting 

nucleic acids have been intensely investigated over the past few years and our body of 

knowledge has grown rapidly.  Cytosolic nucleic acid sensors can be divided into those 

that respond to RNA (RLRs) and those that respond to DNA (NLRs, ALRs, and others).  

Recent research has revealed that cytosolic DNA receptors lead to the activation of two 

distinct inflammatory pathways.  Activation of the first pathway results in the expression 

of type I interferons, cytokines and chemokines through the activation of IRF-3 and -7 

and NF-κB, respectively (13).  A growing number of receptors have been identified that 

activate this pathway though much debate still exists over the relative and specific 

contributions of each to effector induction.  The second pathway is characterized by the 

assembly of a ‘inflammasome complex’ and results in the caspase-1-dependent activation 

and secretion of IL-1β and IL-18.  Members of the NLR family of receptors were the first 

shown to activate this pathway (14, 15).  In addition, AIM2 a member of the PYHIN 

family, has also been shown to assemble an inflammasome (16, 17).  Our discussion will 

begin with the mechanisms of RNA sensing by RLRs and proceed to DNA sensing by 

NLRs, ALRs and other receptors. 
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1.2.3 Rig-I-like receptors 

 

The RLR family is comprised of three DExD/H box RNA helicases: retinoic acid-

inducible gene (RIG-I), melanoma differentiation-associated gene 5 (MDA-5) and 

laboratory of genetics and physiology-2 (LGP-2) (18-21).  Both RIG-I and MDA-5 are 

comprised of tandem N-terminal caspase activation and recruitment domains (CARDs) 

followed by a DExD/H box RNA helicase domain, which has ATPase activity, and a C-

terminal repressor domain (RD).   Unlike RIG-I and MDA-5, LGP-2 lacks the N-terminal 

CARD domains and contains only the RNA helicase domain.  As such, LGP-2 was 

postulated to act as a n egative regulator of the other RLRs (19, 21).  U nder resting 

conditions, RIG-I resides in the cytoplasm in an inactive form that is autoinhibited by its 

regulatory domain.  Upon binding dsRNA, RIG-I undergoes a conformational change and 

dimerizes in an ATP dependent manner (21).  The activated multimeric form of RIG-I or 

MDA5 interacts with the downstream adapter protein mitochondrial antiviral signaling 

protein (MAVS), also known as VISA, IPS-1, and CARDIF, via CARD-CARD 

interactions.  M AVS is found on t he outer leaflet of the mitochondrial membrane, a 

localization thought to be essential for downstream signaling (22).  Recently, MAVS has 

also been observed on peroxisomes, where it induces an early antiviral response through 

the direct induction of a subset of anti-viral genes via the transcription factor IRF1 (23).   

Upon engagement of RIG-I or MDA5, MAVS activates the IKK-related kinase (TBK1, 

also known as IKKi), which in turn, activates IRF-3 and IRF-7, resulting in the 

transcription of type I interferons (24). MAVS also activates NF-κB through recruitment 
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of TRADD, FADD, caspase-8, and caspase-10 resulting in cytokine and chemokine 

production (25-27). 

The RLRs are critical components of the anti-viral defense pathway in many cell 

types such as conventional dendritic cells as well as stromal cells (28). Initially, it was 

thought that both RIG-I and MDA-5 recognized the synthetic dsRNA, polyinosinic acid 

polyribocytidylic acid (polyI:C). However, studies using RIG-I- and MDA-5-deficient 

mice determined that MDA-5 alone was responsible for interferon production by polyI:C 

stimulation, while RIG-I recognized uncapped, 5’-triphosphorylated ssRNA, a common 

feature in many viral genomes (29).  Importantly, RIG-I is unable to recognize the host’s 

5’-capped ssRNA (30-32).  In addition, RIG-I is capable of recognizing short dsRNA, a 

byproduct of viral replication (33).  MDA-5 distinguishes between viral and host RNA, 

not by its 5’ end, but rather, by the length of the RNA sequence.  Long dsRNA is not 

naturally present in host cells but is produced during infection with certain viruses.  

RIG-I and MDA-5 recognize different classes of RNA viruses. Studies have 

implicated RIG-I in the recognition of vesicular stomatitis virus (VSV), rabies virus, 

Sendai virus (SV), Newcastle disease virus (NDV), respiratory syncytial virus (RSV), 

measles virus, Influenza A and B viruses, hepatitis C virus (HCV), Japanese encephalitis 

virus, and Ebola virus (28, 29, 34-36).  Studies using MDA-5-deficient mice show that it 

recognizes encephalomyocarditis virus (EMCV), Theiler’s murine encephalomyelitis 

virus (TMEV), coxsackie B virus (CVB) and polio (30, 35, 37, 38).  These viruses do not 

contain 5’-triphosphate RNA, but produce long dsRNA during replication, providing 

further evidence that MDA5 discriminates between self and non-self RNA based on 
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sequence length.  R ecent studies have shown some viruses, such as dengue, West Nile 

virus, and reovirus, signal through a combination of both RIG-I and MDA-5 (37, 39, 40).  

As mentioned above, LGP-2 lacks N-terminal CARD domains, and was first 

thought to be a negative regulator of RLR function (19, 21).  Initial studies found that 

overexpression of LGP-2 decreased the capacity of SV and NDV to induce interferon 

production.  E vidence that LGP-2 could associate with RIG-I through mutual RD 

domains led to the theory that LGP-2 directly prevented RIG-I association and activation.  

In addition, interferon signaling was found to be increased in LGP-2-deficient mice in 

response to polyI:C, providing evidence for negative regulation of MDA-5 as well (41).  

In contrast, a second in vivo study using LGP-2 deficient mice and mice harboring a 

inactivated version of LGP-2 showed that this protein acted as a p ositive regulator of 

RIG-I- and MDA-5-mediated signaling after infection.  Thus LGP-2 may, in fact, 

enhance RIG-I- and MDA-5-dependent viral recognition by promoting RNA 

accessibility.  

Another member of the DExD/H box RNA helicase family, DDX3 has been 

implicated in anti-viral defenses. Schroder et al. found that the vaccinia virus protein K7 

inhibited IFN-β induction by binding to DDX3, which led to the discovery that DDX3 

had a positive role in the RLR signaling pathway (42). A recent study reported that 

DDX3 binds to both polyI:C and viral RNA introduced into the cytosol and associates 

with MAVS and TBK-1 to upregulate IFN-β production. These results led the authors to 

speculate that DDX3 may enhance RNA recognition, forming a complex with RIG-I and 

MAVS to induce interferon production (43). Further studies are required to determine 

whether DDX3 is a bona fide RNA sensor or a component of the RLR signaling pathway.   
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1.2.4 Interferon-inducing cytosolic DNA receptors 

 

The detection of cytosolic DNA has emerged as an important mechanism by 

which pathogens are recognized and protective immunity is generated.  However, as 

recently as ten years ago, TLR9 was the only known sensor of foreign DNA.  Early 

studies by Dr. Shizuo Akira and colleagues hinted at the existence of additional sensing 

mechanisms.  One such study demonstrated that TLR9-deficient MEFs, which failed to 

respond to CpG DNA, produced large amounts of IFN in response to transfection with 

synthetic and viral dsDNA (44).  The Medzhitov lab reported similar findings using a 45 

bp interferon stimulatory DNA (ISD) derived from the Listeria monocytogenes genome 

(45).  Recently, a number of cytosolic sensors have been identified and purported to be 

essential for the interferon response to dsDNA.  These include DNA-dependent activator 

of IFN-regulatory factors (DAI), RIG-I via RNA polymerase III, Leucine-rich repeat 

flightless-interacting protein 1 (LRRFIP1), DEAD/H box peptides: DHX9, DHX36 and 

DDX41, cyclic GMP-AMP Synthase (cGAS) and interferon gamma-inducible protein 16 

(IFI16) (16, 17, 46-49).   

Like the cytosolic RNA recognition pathways, cytosolic DNA recognition leads 

ultimately to activation of TBK1 and IRF-3 and the production of type I IFN.  However, 

the signaling pathway(s) linking DNA sensors to TBK1 are poorly characterized.  TBK1 

associates with DDX3, discussed previously, which regulates IFN-β transcription via 

IRF-3 (42, 43).  In addition, TBK1 interacts with the exocyst protein Sec5 in a complex 

that includes the recently identified endoplasmic reticulum (ER) adapter stimulator of 
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interferon genes (STING) (27, 50-52).  In both humans and mice, STING is critical in the 

signaling pathway upstream of TBK1 following HSV-1 infection (27).  STING also 

interacts with the ER translocon components Sec61β and TrapB in a manner essential for 

regulation of cytosolic DNA-induced type I IFN production, although a mechanistic 

understanding of this relationship is not yet known (50).  In unstimulated cells, STING 

localizes to the ER and mitochondria (52, 53).  Following stimulation with cytosolic 

DNA and HSV-1, STING translocates to perinuclear foci, via the Golgi.  One report 

suggests STING localizes partially to endosomes, particularly Sec5 positive structures 

(27), while another report argues that STING localizes to vesicular structures, which are 

not peroxisomes, mitochondria, endosomes or autophagosomes (54).  In contrast, more 

recent evidence suggests STING can signal from the mitochondrial membrane in 

response to certain stimuli (53).  Moreover, an intact mitochondrial membrane potential 

is essential for an optimal response.  Further work is required to determine the precise 

subcellular localization of STING.  What is evident is the essential role of STING in 

cytosolic DNA sensing pathways.  Much less clear is the mechanisms or receptors which 

act upstream of STING.  A growing number of receptors that utilize the STING-TBK1-

IRF-3 pathway have been implicated in cytosolic DNA sensing and will be outlined 

below.  

 

DAI.  DNA-dependent activator of IFN-regulatory factors (DAI) was the first cytosolic 

DNA sensor discovered.  It is composed of two binding domains for left-handed, Z form 

DNA, although the protein can recognize B form DNA a s well (55).  When DAI was 

exogenously expressed in L929 cells, it increased type I IFN production in a dose 
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dependent manner following stimulation by both B and Z form DNA.  Similarly, 

knockdown of DAI impaired type I IFN production in response to the 45 bp ISD motif 

and HSV-1 (55).  The production of type I interferons by fibroblasts in response to 

HCMV was also found to be dependent on DAI (56).  Surprisingly, studies using DAI-

deficient mice found normal immune responses to synthetic and viral dsDNA (57).  

Moreover DAI-deficient mice had normal responses to a DNA vaccine suggesting that 

DAI may play a cell-type specific or redundant role in sensing cytoplasmic DNA (58). 

 

RNA polymerase III.  Two groups have shown that AT-rich DNA can be transcribed by 

RNA polymerase III into 5'-ppp RNA, which subsequently activates RIG-I (47, 48).  This 

pathway was reported to be involved in type I IFN induction during EBV infections.  The 

RNA Pol III-RIG-I pathway was also reported to be involved in induction of type I IFN 

following HSV-1 or Legionella pneumophila infection (47, 48, 59) .  However, other 

groups have cast doubt on these claims suggesting that RIG-I only detects L. pneumophia 

RNA and not DNA (60).  Moreover the MAVS signal molecule is not required for 

cytosolic DNA signaling in macrophages (61).  Thus, the RNA Pol III-RIG-I pathway 

may play a cell-type specific role, but appears to be redundant in macrophages.  

 

LRRFIP1.  In addition to DAI and RNA Pol III, Leucine-rich repeat flightless-

interacting protein 1 (LRRFIP1) has recently been implicated as a regulator of DNA-

driven innate immune signaling. LRRFIP1 was originally identified due to its role in 

actin organization during drosophila embrogenesis. In a study using Listeria 

monocytogenes to screen for potential cytosolic DNA sensing molecules, knockdown of 
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LRRFIP1 was found to inhibit the type I IFN response (62).  The authors showed that the 

IFN response to VSV was dampened in these cells as well.  Knockdown of LRRFIP1 also 

inhibited IFN production in response to polyI:C, and the synthetic DNA species, 

poly(dG:dC) and poly(dA:dT), implicating LRRFIP1 in the recognition of dsRNA and 

dsDNA.  Surprisingly, this function was independent of RNA Pol III.  In stark contrast to 

other DNA sensors, LRRFIP1 did not activate IRF3, but rather, regulated a novel β-

catenin-dependent coactivator pathway (63). LRRFIP1 bound RNA or DNA and led to 

the phosphorylation of β-catenin, which subsequently translocated to the nucleus where it 

associated with the p300 acetyltransferase at the IFN-β1 promoter, thereby inducing 

transcription.  Further studies are needed in order to determine LRRFIP1’s role in vivo.  

 

DHX9 and DHX36.  DEAH (Asp-Glu-Ala-His) box polypeptides 9 and 36 (DHX9 and 

DHX36), members of the DEAD/H box helicase family, have recently been shown to 

bind CpG-B and CpG-A DNA, respectively, in PDCs.  Activation of DHX9 leads to IRF-

7 activation and IFN-α production, while activation of DHX36 leads to NF-κB activation 

and IL-6 and TNF-α production (64).  Knockdown of DHX9 and DHX36 inhibited 

cytokine production in response to the DNA virus HSV-1, while the response to the RNA 

virus influenza A was unaffected.  

 

DDX41.  DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), another member of 

the DEAD/H helicases family, was recently identified as a sensor of cyclic diguanosine 

monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP), two 

secondary messengers used by certain species of bacteria to regulate metabolism, motility 
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and virulence (65, 66).  Knockdown of DDX41 in mouse and human cells reduced IFN-β 

and IL-6 production in response to c-di-AMP, c-di-GMP, poly(dA:dT) and HSV-1 

infection (49, 67).  Bi nding of DNA to DDX41 was mediated by the DEADc domain. 

DDX41 was then found to associate with STING and TBK1 leading to downstream type I 

IFN and cytokine induction. 

 

cGAS.  Cyclic GMP-AMP Synthase (cGAS) is a member of the nucleotidyltransferase 

family that has recently been described as a c ytosolic sensor of DNA (68).  

Overexpression of cGAS in HEK293T cells led to IRF3 dimerization and IFN-β 

induction in a STING-dependent manner.  In contrast, knockdown of cGAS in L929 cells 

inhibited IFN-β induction in response to transfected DNA and HSV-1 infection.  cGAS, 

activated by dsDNA, catalyzed the synthesis of cGAMP from ATP and GTP which then 

bound to and activated STING leading to IFN-β expression (69).   

 

IFI16.  While analyzing immune responses to a dsDNA region derived from the VACV 

and HSV-1 genomes, Unterholzner et al. identified IFI16, a PYHIN protein family 

member, as a DNA binding receptor that interacted with these dsDNAs (Fig. 1.1) (70).  

Knockdown of IFI16 or p204 (a member of the murine PYHIN family) led to a reduction 

in IFN-β responses to these dsDNAs while responses to the RNA virus SV was 

unaffected.  A lthough IFI16 is primarily nuclear in most cell types, in macrophages, 

IFI16 is also found in cytosol where it co-localizes with transfected dsDNA. Association 

of IFI16 with STING was required for the production of IFN-β in response to these DNA 
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motifs.  Knockdown of IFI16, and its mouse ortholog p204 led to a decrease in IRF3 and 

NF-κB activation and IFN-β gene induction following HSV-1 infection (70).  IFI16 and 

other members of the PYHIN family are discussed in greater detail below.   

 

1.2.5 PYHIN receptors 

 

 The founding member of the PYHIN (pyrin and HIN200 domain-containing) 

family, p202a was first identified over two decades ago.  Since then four PYHIN proteins 

have been reported in humans (IFIX, IFI16, MNDA and AIM2) and six in mice (p202a, 

p202b, p203, p204, MNDAL and AIM2) though seven additional murine members are 

predicted.  PYHIN receptors are differentially expressed in hematopoietic cells and can 

be upregulated by type I a nd II IFN signaling (71).  All contain one or more HIN200 

domains and, with the exception of p202a and b, all have N-terminal pyrin domains.  

These HIN200 domains were later categorized into subtypes, A, B and C, according to 

their sequence similarity.  IFI16, and its murine ortholog p204, have both HIN200A and 

B domains, while AIM2 contains a single HIN200C domain (Fig. 1.2).  E ach HIN200 

domain is comprised of two oligonucleotide/oligosaccharide binding (OB) folds that 

associate with DNA.  These OB folds were first predicted based on modeling of IFI16’s 

HIN200A domain using the human replication protein A (RPA) as a template (72).  This 

study went on to show that IFI16’s HIN200A domain had a higher affinity for ssDNA 

than dsDNA and could wrap and stretch ssDNA.  The crystal structures of the IFI16 and 

AIM2 HIN200 domains revealed that DNA binding was accomplished through 
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electrostatic interactions between the positively charged HIN200 residues and the 

negatively charged dsDNA sugar-phosphate backbone.  This observation explains why 

activation of IFI16 and AIM2 appears to be largely sequence-independent (73).  This 

study suggested unbound AIM2 is maintained in an autoinhibited state by the 

intramolecular association of its HIN200C and pyrin domain, which is liberated by 

binding to dsDNA.  IFI16, MNDA and p204 contain nuclear localization signals and are 

mainly found within the nucleus though IFI16 can be observed within the cytoplasm (17, 

70).  AIM2 and p202 by comparison are localized to the cytoplasm. 

The IFI16 mRNA is spliced into three transcripts that differ according to the 

length of the serine-threonine-proline-rich spacer sequence that separates the HIN200A 

and B domains (74).  Initial biochemical analysis of IFI16 fused to the GAL4DBD 

revealed it could act as a potent transcriptional repressor though the molecular 

mechanisms underlying this function are unknown (75).  Early in vitro experiments found 

IFI16 associated with p53 and pRb and, when overexpressed, could slow cell growth by 

delaying G1 to S phase progression (75).  Transcriptional silencing of IFI16 has been 

implicated in the development of prostate and breast cancer (76, 77).  IFI16 has also been 
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shown to associate with BRCA1.  This interaction was found to enhance genotoxic stress-

induced cell death through p53-mediated apoptosis, suggesting a role for IFI16 in 

mediating DNA damage signaling (76, 78).  In addition IFI16 has been suggested to 

induce apoptosis in endothelial cells by activating NF-κB leading to caspase-2-mediated 

apoptosis independent of p53 (79).  The proapoptotic activity of IFI16 has lead to the 

theory that it may play an etiopathogenetic role in autoimmunity.  Indeed, PBMCs 

isolated from lupus patients have elevated IFI16 mRNA levels and anti-IFI16 antibodies 

are common in Systemic Lupus Erythematosus (SLE), Systemic Slerosis and Sjogren’s 

Syndrome (80, 81).  Thus, a number of genetic and functional studies have linked IFI16 

to autoimmunity and cancer.  However, the specific pathways through which IFI16 

mediates its affects on cellular proliferation and survival are still debated.  

Recently, dsDNA sequences derived from the HSV-1 and VACV genomes were 

shown to bind IFI16, which activated the STING-TBK1-IRF-3 pathway leading to the 

production of type I IFNs.  Knockdown of either IFI16 or its murine ortholog p204 also 

led to a decrease in IRF3 and NF-κB activation following in vitro infection with HSV-1.    

Intriguingly, a recent study has revealed a role for IFI16 in inflammasome assembly in 

response to Kaposi sarcoma-associated herpesvirus (KSHV).  In endothelial cells, IFI16 

in the nucleus can interact with KSHV DNA and the inflammasome adapter molecule 

ASC leading to the activation of caspase-1 and IL-1β secretion (82).  This case of IFI16-

mediated inflammasome signaling may be the exception rather than the rule, as AIM2 

appears to be the main inflammasome-assembling receptor that responds to cytosolic 

dsDNA.  AIM2 was first identified as a putative tumor suppressor in the human 

malignant melanoma cell line UACC903 (83).  Mutations in the aim2 gene have been 
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associated with colorectal tumors, gastric and endometrial cancers suggesting like IFI16, 

AIM2 plays a role in cell cycle progression (84, 85). In support of such a function, 

restoration of AIM2 expression in colorectal cancer cell lines leads to cell cycle arrest 

(86).  Recently, AIM2 was shown to assemble an inflammasome in response to a variety 

pathogens, including MCMV, VACV, Francisella tularensis and Listeria 

monocytogenes.  A IM2 and its role in inflammasome signaling is discussed further 

below.    

 

1.2.6 NOD-like receptors and the Inflammasome 

   

In contrast to type I IFNs and TNF-α, the production of IL-1β and IL-18 is 

controlled at the level of transcription, translation, maturation and secretion.  IL-1β is a 

pleiotrophic cytokine that induces fever, activates monocytes, macrophages and 

neutrophils and drives acute-phase protein synthesis (87).  IL-18 increases natural killer 

(NK) cytolytic activity and IFN-γ production thereby inducing Th1 and Th17 adaptive 

responses (88, 89).  Many cell stimuli including TLR ligands activate the NF-κB-

dependent transcription of the pro-forms of IL-1β and IL-18.  U nlike most other 

cytokines, however, these pro-cytokines lack leader sequences and are retained in the 

cytoplasm rather than loaded into secretory vesicles.  Maturation (i.e., the cleavage) of 

pro-IL-1β and pro-IL-18 is catalyzed by the cysteine protease caspase-1 (formerly known 

as IL-1 converting enzyme).  In resting cells, caspase-1 itself is present as an inactive 

zymogen pro-caspase-1.  A large inflammasome protein complex controls the activity of 

the inflammatory caspase-1.  Several members of the nucleotide-binding oligomerization 
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domain receptor (NLR) family, including NLRP1, NLRP3, NLCR4 (IPAF) and NLRP12 

have been shown to assemble inflammasomes in response to various stimuli.   

The NLR family includes 23 genes in humans and 34 i n mice (90).  T hey are 

composed of a C-terminal LRR-rich domain, a central nucleotide-binding NACHT 

oligomerization domain, and an N-terminal protein–protein interaction pyrin domain 

(PYD) or in the case of NLRC4 an N-terminal caspase activation and recruitment domain 

(CARD).  NLRs associate with the PYD containing adapter molecule apoptosis-

associated speck-like protein (ASC; also termed pycard or TMS1).  ASC links the NLRs 

via its C-terminal CARD domain to the CARD domain of pro-caspase-1.  This close 

association of pro-caspase-1 molecules is then believed to enable self-cleavage into 

active caspase-1.  Active caspase-1 in turn cleaves pro-IL-1β and pro-IL18 into their 

active forms.  

In addition to pro-IL-1β and pro-IL-18, expression of certain NLRs, such as 

NLRP3, is upregulated in an NF-κB-dependent manner (91).  The NLRP3 inflammasome 

is activated by a wide range of PAMPs and DAMPs such as ATP, the pore forming toxin 

nigericin, uric acid, silica, cholesterol and asbestos crystals, the vaccine adjuvant alum, 

chemotherapeutics including gemicitabine and 5-fluorouracil, as well as by fibrillar 

amyloid-β (92-97).  A number of pathogens have been shown to activate NLRP3 

including influenza A virus, adenovirus, Sendai virus, Staphylococcus aureus, Listeria 

monocytogenes and Candida albicans (15, 95, 9 8-100).  In the case of Gram-negative 

bacteria like enterohermorrhagic Escherichia coli and Citrobacter rodentium, caspase-11 

induction via the TLR4-TRIF-IFN-β pathways is also essential for NLRP3 activation 
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(101).  Despite the identification of these triggers, no ligand has been shown to directly 

bind to NLRP3 and the mechanism by which NLRP3 is activated remains unclear.   

Three models of NLRP3 activation have been proposed.  However, no single 

model can yet account for all activating stimuli.  The first posits that disruption of cell 

membrane ionic gradients may activate NLRP3.  T his model is supported by evidence 

that extracellular ATP activates the P2X2 receptor causing potassium efflux that results in 

NLRP3 activation (102, 103).  This may explain how bacterial pore-forming toxins such 

as nigericin activate NLRP3.  In addition, studies using influenza A virus revealed that 

the M2 protein, a proton-specific ion channel, was necessary to trigger NLRP3 activation 

(104).  However certain bacteria are able to activate NLRP3 independently of the P2X2 

receptor suggesting that alternative pathways exist (102).  A second model suggests that 

destabilization or rupture of the lysosomal membrane by crystals, chemotherapeutics or 

bacteria leads to the release of enzymes such as cathepsin B or L that activate NLRP3 

(96, 97).  In support of this theory, pharmalogical inhibition of cathepsin B reduced 

NLRP3 activation by cholesterol crystals (97).  However, another study indicated that 

NLRP3 activation was independent of cathepsin B or L at higher doses of cholesterol and 

had no effect on stimulation with other NLRP3 triggers (105).  The third model proposes 

that reactive oxygen species (ROS) generated by DAMPs, such as silica and cholesterol 

crystals can activate NLRP3 (106, 107).  I ndeed, studies have shown the addition of 

hydrogen peroxide can cause NLRP3 inflammasome activation and inhibition of ROS 

can suppress this activation.  However ROS are created in response to a variety of stimuli 

and not all pathways that induce ROS activate the inflammasome (108).  Finally, a study 

using Mycobacterium kansasii reported a role for all three pathways (109).  Further 
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research on the precise molecular events underlying NLRP3 activation are needed to 

determine if these pathways are, in fact, causal or simply parallel responses and whether 

they are specific to certain stimuli or act cooperatively.     

Unlike NLRP3, NLRC4 can recruit caspase-1 directly through its CARD domain 

and does not necessarily require ASC (110).  However, NLRC4 also signals through an 

ASC-dependent pathway and ASC is required for maximal activity in certain cases.  

NLRC4 is activated by the flagellin peptide, in a manner that depends on NAIP5, and by 

the inner rod component of the bacterial type III secretion system (111).  P athogens 

including Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexeri, 

Legionella pneumophila have been demonstrated to activate NLRC4 (112-115).  NLRP1, 

the first NLR shown to assemble an inflammasome, is activated by anthrax lethal toxin 

derived from Bacillus anthracis (116).   

Recently, NLRP12, also known as Monarch-1 and PYPAF7, was shown to 

assemble an inflammasome in response to Yersinia pestis (117).  In this study, NLRP12-

deficient mice had reduced levels of IL-1β and IL-18 in their serum and were more 

susceptible to Y. Pestis infection.  NLRP12 expression has been observed in both human 

and mouse granulocytes and at lower levels in monocytes and DCs, but is undetectable in 

resting macrophages and lymphocytes (118).  Previous studies have found both pro- and 

anti-inflammatory roles for NLRP12.  One study showed that NLRP12 activated NF-κB 

and mediated caspase-1-dependent cytokine secretion (118) while another group reported 

that NLRP12 suppressed noncanonical NF-κB activation by destabilizing NF-κB 

inducing kinase (NIK) (119-121).  Interestingly, in a model of contact hypersensitivity, 

NLRP12-deficient mice were found to have impaired dendritic cell and neutrophil 
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migration, but no de fect in TNF-α or IL-1β production was observed (122).  Another 

study reported NLRP12 deficiency increased susceptibility to DSS-induced experimental 

colitis and colitis-associated colon cancer (123).  This was attributed to enhanced 

noncanonical NF-κB and MAPK activation in NLRP12-deficient mice.  It is possible that 

NLRP12 affects multiple inflammatory pathways that are tissue or cell-specific, thus, its 

activity may manifest itself differently depending on the disease or pathology examined.  

It is important to note that NLRP12 is highly similar to NLRP3, sharing 58% of its 

nucleotide sequence (124).  In humans, mutations in NLRP12, much like mutations in 

NLRP3, have been shown to cause hereditary periodic fever syndrome (HPFS) 

characterized by high fever, arthralgia, myalgia and sensorineural hearing loss (124).  

These NLRP12-associated HPSFs can be successfully treated with anti-IL-1 therapy, 

suggesting NLRP12 has a similar role to NLRP3 in vivo (124).   

Cytosolic dsDNA triggers ASC-dependent activation of caspase-1 and secretion 

of IL-1β and IL-18.  However, analysis of this response in macrophages lacking members 

of the NLR family revealed normal caspase-1 activation.  S ubsequent studies from 

several groups revealed that this response was instead dependent on the Absent in 

melanoma-2 (AIM2) protein (16, 17, 100, 125, 126). AIM2 recognizes cytosolic dsDNA 

of self and nonself origin via its HIN200C domain.  Upon DNA binding, AIM2 

oligomerizes and associates with ASC via its PYD domain.  ASC then recruits pro-

caspase-1 leading to its activation (Fig. 1.3).  AIM2 is essential for inflammasome 

formation and IL-1β and IL-18 secretion in macrophages and dendritic cells responding 

to infection with MCMV and VACV (16).  AIM2-dependent IL-18 secretion induces 

NK-cell activation and IFN-γ production that is critical for controlling MCMV 
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replication.  AIM2 has also been shown to recognize bacterial pathogens including 

Francisella tularensis and appears to be critical in early control of F. tularensis infection 

in vivo (16).  A IM2 also synergizes with NLRP3 and IPAF to drive IL-1β and IL-18 

secretion in response to Listeria monocytogenes (46). 

 

1.3  Suppressive Oligodeoxynucleotides 

 

Since the inhibitory effects of certain DNA sequences on TLR9 signaling were 

first reported, a variety of different DNA constructs or suppressive oligodeoxynucleotides 

(sup ODNs) that vary in length, sequence and backbone composition have been examined 

in vitro and in vivo.  Studies using dissimilar systems have drawn different, seemingly 

conflicting conclusions.  This confusion is compounded by the fact that certain sup ODNs 

block multiple pathways and cause cell type-specific effects.  In order to facilitate 

characterization, Trieu et al. divided sup ODNs into four groups based on their proposed 

mechanisms of action (127).  Class I consists of short G-rich sup ODNs that inhibit TLR9 

signaling in a sequence-specific manner.  C lass II interfere with STAT1, 3 a nd 4 

signaling.  Class III prevent cellular uptake by competing for surface receptors, and Class 

IV consists of long phosphorothioate constructs that inhibit TLR9 in a largely sequence-

independent manner.  Though this classification system mainly addresses the effects of 

sup ODNs on TLR9 signaling, it provides a useful framework for interpreting how sup 

ODNs interfere with other signal pathways.  As we will see some sup ODNs display 

characteristics of multiple classes.  
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1.3.1  The phosphorothioate backbone 

 

Phosphorothioate (PS) backbones are widely used in stimulatory ODN constructs 

to activate TLR9, as well as in antisense constructs to mediate transient protein 

knockdown.  These constructs differ from phosphodiester (PD) backbones in that one of 

the nonbridging oxygens is replaced with a s ulfur molecule.  This change not only 

imparts resistance to nuclease degradation, but it also increases cellular uptake (128-131).  

In addition PS-modified ODNs are known to bind a variety of proteins that do not  

interact with PD ODNs such as fibroblast growth factor (FGF) and vascular endothelial 

growth factor (VEGF) and have been shown to affect cell growth, morphology and viral 

proliferation independently of sequence (132-138).  Unfortunately, how PS constructs 

mediate their sequence-independent effects is not well understood.    

 

1.3.2  Modulation of innate immunity by Suppressive ODNs 

 

Halpern et al. first reported the inhibitory effects of G-rich phosphorothioate 

DNA on IFN-γ production nearly two decades ago (139).  This initial study found dose-

dependent inhibition of the IFN-γ response in splenocytes challenged with DNA derived 

from E. coli, Con A or PMA with the calcium ionophore A23187.  Inhibition required a 

PS backbone and though the poly(dG) sequence was optimal, the poly(dC) and poly(dT) 

constructs could also block activation.  Potency correlated positively with ODN length, at 

50 µg/ml, a 20 nucleotide poly(dG) sup ODN could achieve 92% inhibition of the IFN-γ 

response while a 10 n ucleotide construct achieved 51% inhibition.  Further studies 
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revealed that these sup ODNs could also block IL-6 and nitric oxide (NO) production by 

BMDM responding to CpG as well as IL-12 and NO production and CD40, CD86 and 

MHC II expression by BMDC (140, 141).  Again, PS constructs composed of any single 

base could inhibit CpG activation.  These effects were largely sequence-independent, but 

relied on long PS backbones (class IV).  It is possible that these sup ODNs also exerted 

class III effects as they did interfere with CpG uptake.  However, the dose required to 

inhibit uptake was higher than that required for suppression, arguing against a major 

contribution from this mechanism (141).  

In 1998, Kreig et al. reported that DNA derived from serotype 12 a denovirus 

stimulated TNF-α and IL-6 secretion from human PBMCs while DNA from serotypes 2 

and 5 were far less active (142).  They found that unlike serotype 12, types 2 and 5 had 

large numbers of clustered or directly repeating CG sequences within their genome.  

Treatment of splenocytes with PS hexameric constructs derived from these regions 

inhibited CpG ODN and E. coli DNA-induced cytokine secretion.  A  follow-up study 

revealed that these sup ODNs could also block CpG stimulation of mouse B cells and the 

authors suggested it did so by interfering with CpG binding to TLR9 (143).  This exciting 

report indicates that selective pressure to evade innate immune activation may have led to 

the enrichment of certain inhibitory motifs in viral genomes.  It is tempting to speculate 

about the role of such adaptations considering that adenovirus serotypes 2 and 5 (which 

contain the anti-inflammatory sequences) can establish latent infection in lymphocytes 

while serotype 12 cannot (144).  Unfortunately, it is hard to infer sequence specificity 

from these studies as the hexameric constructs used differed only in a few base positions 

and all had similar suppressive effects.  M oreover, other work using these sup ODN 
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motifs has shown only a modest role for sequence, again suggesting contributions from a 

class IV mechanism of action (145-147).   

The sup ODN 2114, a 15 bp construct, is one of the most potent, sequence-

specific inhibitors of TLR9 activation (class I) (146, 148).  This construct has been shown 

to block IL-6 and IL-12 production by mouse splenocytes in response to CpG.  I t also 

prevents IL-6 and IL-10 production and proliferation of human B cells and IFN-α and IL-

12 secretion by human PDCs (146).  Ashman et al. performed a series of experiments, in 

which each base in the 2114 construct was mutated, to define the sequence requirements 

for optimal inhibition (148).  This study found the optimal inhibitory motif consisted of a 

CC dinucleotide at the 3’ end, a spacer sequence of five nucleotides followed by at least 

three contiguous G residues (148).  Substitutions in this guanine tract rendered the 2114 

sup ODN inactive.  Some reports indicate a PS backbone is essential for 2114 

suppression while others maintain that the PD backbone version can still mediate 

suppression, but at a significantly reduced potency (127, 146).  Whether this difference is 

the result of increased uptake and retention of the PS version of 2114 leading to a higher 

intracellular concentration or is due to sequence independent contributions from the PS 

backbone (class IV) is unclear.  However, evidence that simply lengthening the backbone 

of the 2114 motif by as few as four or five base pairs can increase its inhibitory potency 

300-600% may indicate a transition from sequence-specific (class I) to a n onspecific 

(class IV) mechanism. 

Building on p revious evidence that mammalian DNA could suppress CpG-

induced immune activation, Gursel et al. reported that DNA derived from telomeres was 

particularly potent compared to whole genome extracts (149).  T his report found that 
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telomeres contained numerous copies of the guanine-rich, hexameric sequence 

TTAGGG.  Although a single repeat was weakly inhibitory, including multiple tandem 

repeats of the TTAGGG sequence produced a construct (TTAGGG)4, also known as 

A151, that potently inhibited IL-6, IL-12 and IFN-γ secretion from spleen cells in 

response to CpG ODN (149).  Much like 2114 the presence of guanine residues was 

thought essential for inhibitory activity.  This was the first example of a specific 

mammalian genomic motif that could suppress immune activation.  Its discovery has lead 

to the hypothesis that this motif, released from dead or dying host cells, may serve to 

suppress pathological immune responses.  Indeed, since this report, the therapeutic 

potential of A151 has been demonstrated in murine models of CpG and collagen-induced 

arthritis, toxic shock, systemic lupus erythematosus, atherosclerosis, silica-induced 

pulmonary inflammation and influenza infection (149-156).  D espite the broad 

applications of A151, there is still debate concerning the precise molecular mechanisms 

underlying its in vivo effects. 

Although the initial study by Gursel et al. claimed A151 synthesized with either 

PS or PD backbones could inhibit CpG-induced cytokine production at equimolar 

concentrations, they showed no da ta.  S ubsequent reports have only found inhibitory 

activity in A151 synthesized with a PS backbone (127, 146).  Moreover, this difference 

cannot be accounted for by variation in cellular uptake.  In addition, no role for sequence 

was reported in a later study, as A151-mediated inhibition was comparable to a poly(dA) 

PS construct of similar length (127).  Initial reports that A151 prevented activation by 

binding to CpG ODNs through the formation of four-stranded helices (G-tetrads) 

stabilized by planar Hoogsteen base pairing between guanine residues has not borne out 
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either (157).  As Duramad et al. demonstrated, despite containing three contiguous 

guanines, A151 does not readily form G-tetrads (146).  Moreover, when other constructs, 

such as 2114, that do form G-tetrads, are tested, it is the single-stranded species that 

mediates inhibition (146).  Thus, one early hypothesis that A151 mediated inhibition by 

binding and sequestering CpG appears to be incorrect.  Instead, A151 likely competes 

with CpG ODN for binding to TLR9 in a manner that depends on its PS backbone more 

so than sequence.  

Importantly, a number of observations suggest that inhibition of TLR9 signaling 

is not the only mechanism or even the main mechanism by which A151 and other sup 

ODN block immune activation in vivo.  For example, Shirota et al. demonstrated that 

A151 prevented Th1 differentiation in wild-type and TLR9-deficient CD4+ cells alike 

(154).  A recent study by Trieu et al. found treatment with 2114 suppressed NF-κB-

dependent responses to Salmonella typhimurium in both wild-type and TLR9-deficient 

macrophages (158).  Moreover, using a panel of sup ODNs, Ashman et al. reported 

optimal sequences for TLR9 inhibition as measured by biological assays did not correlate 

with their relative affinity for the TLR9 ectodomain (148).  Dennis Klinman and 

collaborators have reported one possible alternative A151-mediated mechanism of 

suppression.  Their studies show that A151 inhibits IFN-γ-induced STAT1 

phosphorylation and IL-12-induced STAT3 and STAT4 phosphorylation (class II 

mechanism) thereby preventing differentiation of naïve CD4+ cells into Th1 effectors 

(151, 153, 154) .  A ddition of A151 to splenocytes derived from OVA TCR Tg mice 

significantly inhibited IFN-γ production and Th1 differentiation while enhancing IL-4 in 

response to Ag-pulsed APCs (154).  This effect persisted despite the addition of IL-12 to 
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culture supernatants, suggesting a role in signal transduction downstream of the IL-12 

receptor.  A similar effect on IFN-γ signaling was observed in vivo when mice were 

immunized with OVA in the presence or absence of A151.  The magnitude of inhibition 

was dose-dependent and was not observed in mice treated with the C151 control ODN in 

which A151’s guanine triplet had been replaced with adenine residues.  A151 specifically 

blocked phosphorylation of STAT1, 3 and 4 but had no effect on STAT5 or 6.  Treatment 

with A151 also increased survival in a mouse model of LPS-induced endotoxic shock 

(153).  Though A151 had no effect on TNF-α, IL-12 or IFN-β induced directly by LPS, it 

abrogated subsequent paracrine and autocrine cytokine-induced IFN-γ production.  

Biotinylated A151 was used to pull down STAT1 and STAT4 from spleens cells 

stimulated with IFN-β (153).  The authors theorized that A151 interacts with the Src 

homology domain of STAT3, but no e vidence of a direct interaction was provided.  

Interestingly, the control C151 construct occasionally had an intermediate suppressive 

effect on the incidence and clinical severity of disease in a collagen-induced arthritis 

model (159).  Though not significant, these findings raise the possibility that some of the 

anti-inflammatory effects observed in this model are again due to sequence-independent 

PS backbone effects.   

Other mechanisms of action have also been proposed for sup ODNs.  A recent 

report found that inversion of the cytosine and guanine residues in the CpG motif to a 

GpC configuration also conferred suppressive properties in a model of type I 

hypersensitivity reaction (160).  Interestingly, GpC-mediated suppression was dependent 

on activation of the TLR7-TRIF signaling pathway leading to noncanonical NF-κB 

activation and the induction of TGF-β and indoleamine 2,3-dioxygenase (IDO).  In 
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addition, a PS construct composed of poly(dT) was shown to prevent TLR7-mediated 

signaling, but enhance TLR8 signaling.  This study revealed that administration of 

poly(dT) abolished NF-κB activation in TLR7-expressing HEK 293 cells stimulated with 

the imidazoquinoline derivative Resiquimod (R-848) (161). However, it enhanced R-848-

driven NF-κB activation in TLR8-expressing HEK 293 cells.  Moreover, treatment of 

human PBMCs shifted the cytokine profile from TLR7-mediated IFN-α production, 

towards TLR8-mediated IL-12 and TNF-α production.  Thus, alternative mechanisms to 

TLR9 inhibition have been demonstrated.  These studies have revealed the truly complex 

and cell-type specific effects sup ODNs can generate.  Though the immunoregulatory 

impact of sup ODNs in experimental models is impressive, and the applications appear 

broad, how these effects are mediated is not well understood.  Investigation into the 

precise mechanisms of action of sup ODNs is a priority that may one day make tailored 

therapeutic intervention in human disease possible.   

 

 

1.4 Herpesviruses 

 

Herpesviruses are a family of enveloped DNA viruses that cause widespread disease in 

humans and animals.  All have large dsDNA genomes, replicate within the host nucleus 

and can establish both lytic and latent forms of infection.  The family Herpesviridae is 

divided into three subfamilies the Alphaherpesvirinae, Betaherpesvirinae and 

Gammaherpesvirinae.  The alpha herpesviruses include herpes simplex virus-1 (HSV-1, 

also known as human herpes virus-1; HHV-1), herpes simplex virus-2 (HSV-2; HHV-2) 
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and varicella-zoster virus (VZV; HHV-3).  Alpha herpesviruses are known for their short 

replication cycle as well as their ability to latently infect neurons.  Though they are only 

found naturally in humans, alpha herpesviruses can infect a broad range of hosts.  The 

beta herpesviruses include roseolovirus (HHV-6), pityriasis rosea (HHV-7), human 

cytomelagovirus (HCMV; HHV-5) and murine cytomegalovirus (MCMV).  V iruses of 

the beta subfamily have longer replication cycles than the alphaherpesviruses and 

establish latency in lymphocytes.  In addition, their host range is narrow and often 

species-specific.  T he gamma herpesviruses include Epstein-Barr virus (EBV; HHV-4) 

and Kaposi’s sarcoma-associated herpesvirus (KSHV).  M ost gamma herpesviruses 

establish latency in B cells and, as such, are associated with the development of a number 

of lymphoproliferative disorders.  The discussion below focuses on H SV-1, it’s virion 

structure, infectious pathophysiology and the innate response. 

 

1.4.1  Herpes Simplex Virus type 1 

 

HSV-1, a member of the alpha herpesviridae subfamily, consists of a large linear 

double-stranded DNA genome housed within an icosahedral capsid surrounded by a lipid 

envelope.  T he tegument, which is composed of as many as 20 di fferent proteins, lies 

between the capsid and envelope.  The HSV-1 genome is 152 kb in length and encodes 

upwards of 84 p roteins.  H ost RNA polymerase II transcribes genes from the viral 

genome in three distinct stages resulting in immediate-early (2-4 hrs post-infection), early 

(5-7 hrs), and late (stage dependent) transcripts (162).  T he immediate-early genes are 

involved in host transcription shut-off, immune evasion and regulation of later viral 
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genes.  The early genes function largely to subvert host cellular machinery and replicate 

the genome but include some minor structural proteins.  The late genes encode most of 

the structural components of the virion.  V iral entry is mediated by a group of 

glycoproteins (gC, gD, gH, gL, gB) found on the viral envelope (162).  Upon entry, the 

capsid is transported along microtubules to the nucleus where the viral genome is injected 

through a nuclear pore.  In the nucleus, the viral genome circularizes and enters the lytic 

cycle or establishes latent infection.  During the lytic cycle, the genome replicates and 

viral particles are assembled within the nucleus, then bud outward.  T he final viral 

envelope is obtained by budding into cytoplasmic vesicles within the host cell.  HSV-1 

most commonly enters the latent phase in the sensory neurons of the trigeminal and/or 

olfactory ganglia.  D uring this time the Latency Associated Transcript (LAT) is 

expressed and acts to silence lytic cycle genes.  HSV-1 can be reactivated from its latent 

state by a variety of stimuli and, therefore, represents a lifelong repository. 

 

1.4.2  HSV-1, the pathogen and pathophysiology 

 

HSV-1 is an old and extremely successful pathogen affecting more than one-third 

of the world’s population.  The seroprevalence of HSV-1 increases with age and ranges 

between 65-90% depending on gender and ethnicity (163).  HSV-1 enters the human 

body through the mucosal membranes or lesions in the skin.  Replication takes place 

initially in epithelial cells resulting in localized infection that can be subclinical or 

manifest as vesicular lesions.  HSV-1-infected cells undergo apoptosis or are lysed by 

immune cells and the resulting intradermal cellular debris and inflammatory exudate 
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causes the prototypical vesicles known colloquially as “cold sores”.  In certain 

circumstances, HSV-1 can disseminate and replicate in other anatomical locations 

including the liver, lung and central nervous system causing severe illness (164, 165).  

These life-threatening manifestations are rare and more commonly observed in 

immunocompromised individuals.  The key to HSV-1’s success derives from its ability to 

latently infect neurons.  From this location, it is reactivated by stress, UV-light or trauma 

and transported down axons to the periphery where it re-enters the lytic cycle replicating 

in epithelial cells (166).  B etween outbreaks, HSV-1 is essentially immunologically 

silent.  Even when infectious individuals may display no symptoms resulting in 

horizontal transmission.  In addition to latency HSV-1 has devised a number of strategies 

to evade the immune system.  Certain viral proteins function to inhibit the production of 

IFN, cytokines and chemokines, downregulate MHC presentation and induce apoptosis in 

innate immune cells (166-168).  HHV infected cell polypeptide 0 (ICP0), an immediate-

early protein, disrupts promyelocytic leukemia bodies, inhibits the activity of IRF3 and 

IRF7, and degrades MyD88 (168-170).  Despite this the immune system is usually 

successful in clearing lytic infections and suppressing reactivation. 

 

1.4.3 Role of innate immunity in recognizing HSV-1 

 

Control of HSV-1 infection requires both innate and adaptive arms of the immune 

system.  Production of cytokines, chemokines and Type I IFNs by the innate immune 

system is vital for early viral control.  These effectors directly block viral replication and 

reduce cell-to-cell transmission by inducing enzymes such as PKR and RNAse L.  They 
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also recruit additional leukocytes, increase MHC presentation and activate lymphocytes, 

coordinating the adaptive response that is required for complete viral clearance.  Innate 

immune cells detect HSV-1 infection through several classes of PRRs including the 

TLRs, RLRs and cytosolic DNA sensors.  TLR3, TLR9 and the TLR2/6 heterodimer 

have all been implicated in the immune response to HSV-1.  In plasmacytoid dendritic 

cells, TLR9 is activated by unmethylated CpG motifs in the HSV-1 genomic DNA and is 

chiefly responsible for type I IFN induction at early time points (171).  Interestingly a 

second wave of type I IFN is produced by monocytes, macrophages and conventional 

dendritic cells (CDCs) and is TLR9- and MyD88-independent but requires replication 

competent virus (171).  This second wave is likely due to cytosolic sensors and may 

explain why survival and viral burdens are unchanged in TLR9 knockout mice 

challenged with HSV-1 (172, 173).  Alternatively TLR9 signaling may be more 

important in certain manifestations of HSV-1 induced disease.  A  recent study showed 

TLR9-deficient mice had higher rates of mortality and viral replication when challenged 

intranasally with HSV-1 (174).  Thus, TLR9’s precise role in HSV pathogenesis and the 

relative contributions of other PRRs requires further investigation 

TLR2 is expressed by a wide variety of immune and non-immune cells including 

monocytes, macrophages, microglia, dendritic cells, neutrophils and epithelial cells (175, 

176).  T he TLR2/6 heterodimer recognizes an undefined HSV-1 component, which 

stimulates the production of cytokines and chemokines by microglia (177, 178).  

However, rather than having a protective role, recent studies have shown TLR2 signaling 

in microglia contributes to the immunopathology of HSV-1 encephalitis (HSE) (178).  

TLR3 recognizes double stranded RNA produced during HSV replication (7).  T his 
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appears to be especially important in HSE as patients with TLR3 dominant-negative 

mutations display increased susceptibility (179). 

Double stranded RNA produced during HSV-1 infection has been shown to 

activate RIG-I and MDA5 (171).   Activation of these RNA helicases and recruitment of 

mitochondrial antiviral-signaling protein (MAVS) results in type I IFN production in 

macrophages (171).  As discussed previously, a number of cytosolic DNA receptors have 

also been implicated in the Type I IFN response to HSV-1 including DAI, DDX41, IFI16 

and cGAS.  Our understanding of these cytosolic receptors is rapidly expanding but the 

precise contribution of each to the HSV-1 response is still debated.  Whether they signal 

collaboratively or function in a cell type-specific manner is still unknown.  Interestingly, 

recent research suggests IFI16 detects HSV-1 DNA within the nucleus and, thus, may be 

uniquely positioned to detect viral genome replication (180). 

The importance of IL-1β in the response to HSV-1 has been clearly established 

(177).  However, receptors responsible for inflammasome formation in response to HSV-

1 are poorly understood.  A recent study has suggested HSV-1 may assemble an 

inflammasome through the IFI16 and NLRP3 receptors.  T his paper demonstrated that 

after HSV-1 infection, IFI16 and NLRP3 associated with ASC in human foreskin 

fibroblasts (181).  H owever, this study failed to observe detectable levels of IL-1β 

secretion following HSV-1 infection.  Instead, the authors found that HSV-1 induced the 

rapid degradation of IFI16 and hypothesized that trapping of caspase-1 in actin clusters 

prevented cytokine processing downstream of NLRP3 (181).  Thus, additional studies are 

needed to define the contributions of these receptors to inflammasome formation 

following HSV-1 infection. 
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1.5  Dissertation Objectives 

 

This dissertation has two main focuses.  T he first is to explore the role of 

suppressive oligodeoxynucleotides in cytoplasmic receptor signaling.  The second is to 

define the pathways responsible for IL-1β and IL-18 induction and maturation in 

response to HSV-1 infection. 

 

Objectives: 

 

1.1) Investigate the effects of sup ODNs on cytosolic receptor-mediated signaling.  

Using primary mouse cell lines and human cell lines, we tested the inhibitory 

effects of A151 on TLR4, RIG-I, NLRP3, AIM2 and interferon-inducing 

cytosolic receptors.  We demonstrated that A151 mediates specific inhibition of 

DNA sensing pathways.  U sing Nanostring analysis, we defined the broad 

inhibitory potential of A151 on inflammation. 

1.2) Explore construct potency and define the contributions of sequence and 

backbone.  Using the C151 and A151 and equivalent phosphodiester constructs, 

we explored the effects of backbone chemistry and sequence on inhibition.  We 

found that the phosphorothioate backbone was essential for inhibition.  In 

addition, we discovered differential sequence requirements for maximal inhibition 

of IFN-inducing cytosolic signaling versus inflammasome signaling. 
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1.3) Identify the mechanisms of inhibition.  Using biotinylated A151 and C151, we 

explored the association of these constructs with different cytosolic pattern 

recognition receptors.  We found that sup ODN affinity correlated with inhibitory 

potency, while A151 pulled down more AIM2, C151 pulled down more IFI16.  

Mechanistically, we discovered that A151 prevented ASC recruitment to AIM2 

and assembly of the inflammasome complex. 

 

2.1) Define the signal pathway(s) responsible for HSV-1 induction of pro-IL-1β and 

pro-IL-18.  We found that the TLR2-MyD88 signaling pathway was essential for 

pro-IL-1β expression in macrophages and DCs.  In contrast, pro-IL-18 expression 

was dependent on synergy between MyD88 and STING pathways. 

2.2)  Define the receptor responsible for inflammasome assembly in response to HSV-1 

infection.  Primary mouse cells deficient in NLRP3, NLRP12, ASC and caspase-1 

were used to explore inflammasome formation.  We demonstrated that NLRP3 is 

responsible for IL-1β maturation in dendritic cells and macrophages.  However, 

neutrophils relied on NLRP12 for maturation of IL-1β. 
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Chapter II  
 

Suppressive oligodeoxynucleotides inhibit cytosolic DNA sensing pathways 

 

Abstract 

 

Synthetic oligodeoxynucleotides comprised of the immunosuppressive motif 

TTAGGG block TLR9 signaling, prevent STAT1 and STAT4 phosphorylation and 

attenuate a variety of inflammatory responses in vivo.  Here, we demonstrate that such 

suppressive oligodeoxynucleotides (sup ODN) also abrogate activation of cytosolic 

deoxyribonucleic acid sensing pathways.  Pretreatment of dendritic cells and 

macrophages with the suppressive ODN-A151 abrogated type I IFN, TNF-α and ISG 

induction in response to cytosolic dsDNA.  A151 also reduced IFN-β and TNF-α 

induction in BMDC and BMDM in response to the herpesviruses HSV-1 and MCMV, 

but had no effect on the responses to LPS or Sendai virus.  In addition, A151 abrogated 

caspase-1-dependent IL-1β and IL-18 maturation in dendritic cells stimulated with 

dsDNA and MCMV.  Although inhibition of IFN-inducing pathways and inflammasome 

assembly was dependent on backbone composition, the nucleotide content differentially 

affected these pathways.  While A151 more potently suppressed the AIM2 

inflammasome, a related construct, C151 proved to be a more potent inhibitor of IFN 

induction.  A151 suppressed inflammasome signaling by binding to AIM2 and competing 

with immune-stimulatory DNA.  T he interaction of A151 and AIM2 prevented 

recruitment of the adapter ASC and assembly of the macromolecular inflammasome 

complex.  Collectively, these findings reveal a n ovel mechanism by which suppressive 
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ODNs modulate the immune system and unveil novel applications for suppressive ODNs 

in the treatment of infectious and autoimmune diseases. 

 

Introduction 

 

The innate immune system provides an essential first line of defense against 

infection.  Innate immune cells detect pathogens through distinct classes of Pattern 

Recognition Receptors (PRR) including the Toll-like receptors (TLRs), the C-type lectin 

receptors (CLRs), the RIG-like helicases (RLRs), the NOD-like receptors (NLRs) and the 

PYHIN receptors.  T hese PRRs respond to conserved pathogen and danger-associated 

molecular patterns (PAMPs/DAMPs) allowing rapid recognition and response to 

infectious agents.  A ctivated receptors initiate signaling cascades that lead to the 

production of cytokines, chemokines and type I interferons, all of which are vital for 

controlling pathogen loads directly and coordinating adaptive immune responses.  

Unrestricted or improper activation of the innate immune system can have dire 

consequences.  Uncontrolled inflammation can cause extensive tissue damage, exacerbate 

septic shock and contribute to the development of autoimmune diseases (182, 183).  

Thus, a balance between activation and suppression must be struck to ensure an 

appropriate and effective innate response.   

Detection of DNA by the innate immune system is an important mechanism by 

which pathogens are recognized in order to activate protective immunity.  Recognition of 

DNA is complex and can be influenced by a variety of factors including sequence, 

secondary structure, subcellular localization and covalent modification.  Hypomethylated 
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CpG motifs found in bacteria and certain viruses are detected in the endosomal 

compartment by TLR9 (8, 184).  In contrast, a number of DNA sensors have been 

implicated in cytosolic dsDNA sensing including Gamma-interferon-inducible protein-16 

(IFI16) and Absent in melanoma-2 (AIM2): two members of the PYHIN protein family, 

DDX41; a member of the DEXDc helicase family and cGAS; a r ecently identified 

nucleotidyltransferase (16, 17, 46-48, 55). 

IFI16 was first identified as a potential intracellular DNA sensor in a screen using 

a 70 bp DNA motif derived from the Vaccinia virus (VACV) genome to affinity purify 

binding partners. Unterholzner et al. found that IFN-β induction by this VACV 70mer 

was independent of TLR, DAI and Pol III signaling but was attenuated following IFI16 

knockdown (70).  Further analysis revealed IFI16 also mediated IFN-β induction 

following transfection with a 60bp m otif derived from the HSV genome as well as by 

HSV-1 infection.  Similarly, targeting the IFI16 murine ortholog p204 attenuated IFN-β 

and TNF-α production in response to these dsDNA motifs and in HSV-1 infection, 

suggesting a role in both IRF3 and NF-κB-dependent inflammatory pathways.  IFI16 

mediated this response by engaging the crucial signaling component STING leading to 

the activation of TBK1 and nuclear translocation of IRF3 and p65 (70).  Both IFI16 and 

p204 contain a DNA-binding HIN200A and HIN200B domain as well as a pyrin (PYD) 

domain (71, 72).  In macrophages, cytosolic IFI16 may be exposed to HSV-1 genomic 

DNA following proteasomal degredation of the HSV-1 capsid (185).  Recently IFI16 has 

also been shown to sense HSV-1 DNA within the nucleus and signal via STING through 

an unknown intermediate (186).  In contrast to IFI16, another member of the PYHIN 

family, AIM2 signals via assembly of an inflammasome. 
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The inflammasome is a large complex that provides a platform for the activation 

of caspase-1, an enzyme that cleaves the immature interleukins pro-IL-1β and pro-IL-18 

into their active forms.  There are distinct types of inflammasomes, differentiated by their 

protein constituents and activating receptors.  In many cases, an inflammasome contains a 

nucleotide binding and oligomerization leucine-rich repeat (NLR) protein.  In addition, 

our lab and others have recently reported that the cytosolic PYHIN family member, 

Absent in melanoma-2 (AIM2), directly binds to cytosolic bacterial and viral double-

stranded DNA leading to the formation of an AIM2 inflammasome complex (16, 17, 125, 

126).  The AIM2 inflammasome is activated in response to infection by bacteria such as 

Listeria monocytogenes as well as the viral pathogen murine cytomegalovirus (MCMV) 

where it p lays an essential role in controlling early viral replication (16).  AIM2 is 

composed of a DNA-binding HIN200C domain and a PYD domain, which recruits 

caspase-1 via the adapter molecule apoptotic speck protein with CARD domain (ASC) 

(17, 46, 125, 126, 187).  

Certain DNA sequences such as the TTAGGG repeat commonly found in 

mammalian telomeric DNA have been shown to suppress innate immune activation.  The 

therapeutic potential of these suppressive oligodeoxynucleotides (sup ODN) have been 

demonstrated in murine models of inflammatory arthritis, toxic shock, systemic lupus 

erythematosus, atherosclerosis and silica-induced pulmonary inflammation (151-153, 

155, 188).  Given the known roles for type I IFN and the pro-inflammatory cytokines, IL-

1β and IL-18, in the development of many of these diseases, we set out to examine the 

effect of sup ODNs on cytosolic innate immune sensors (189).  Synthetic sup ODNs were 

first thought to prevent TLR9 activation by binding to unmethylated CpG DNA (149).  
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However, other studies suggest rather than interacting with CpG ODNs, they likely 

compete for binding to TLR9 (148).  Interestingly, the potency of these sup ODNs was 

found to be strongly affected by sequence, a phenomenon not explained by their relative 

avidity to the TLR9 ectodomain (148).  In addition, Shirota et al. have shown that sup 

ODNs prevent Th1 differentiation in wild-type and TLR9-deficient CD4+ cells alike, 

suggesting that their biological activity may be independent of their interaction with 

TLR9 and, instead, involves as yet undefined receptor(s) (154).  H ere we demonstrate 

that treatment with the sup ODN A151, a ssDNA construct composed of four repeats of 

the hexanucleotide TTAGGG motif, blocks cytosolic DNA-driven IFN and inflammatory 

cytokine production.  A 151 specifically inhibited the AIM2 inflammasome and had no 

effect on NLRP3-mediated inflammasome activation, RIG-I or LPS signaling.  T he 

inhibitory effect of A151 was dependent on both its phosphorothioate (PS) backbone and 

sequence.  S ubstitution of the guanine triplet in A151 for adenine residues (C151) 

reduced the potency of AIM2 inflammasome suppression by 94% (Table 2.1).  Our data 

indicate that A151 functions as an inhibitor by competing with stimulatory DNA ligands 

for AIM2 binding.  Intriguingly, C151 proved to be a more potent inhibitor of interferon-

inducing pathways.  In support of a competitive model of inhibition, IFI16 bound more 

strongly to the C151 construct.  Interaction with members of the IFI20X/IFI16 (PYHIN) 

receptor family may account for many of the previously unexplained anti-inflammatory 

effects of sup ODNs.  Collectively, these observations suggest a novel mechanism for sup 

ODN-mediated inhibition of the innate immune system. 
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Table 2.1 : Oligodeoxyribonucleotide Construct Sequences 
      
      
                      
Name              Sequence    

 
A151  5'-TTAGGGTTAGGGTTAGGGTTAGGG-3'  

 
C151  5'-TTCAAATTCAAATTCAAATTCAAA-3'  

 
2114  5'-TCCTGGAGGGGAAGT-3'   

 
4348  5'-TCGTATCCTGGAGGGGAAG-3'   

 
1826  5'-TCCATGACGTTCCTGACGTT-3'   

 
10104  5'-TCGTCGTTTCGTCGTTTTGTCGTT-3'  

 
2336  5'-GGGgacgacgtcgtcgGGGGG-3'   

      

 
* Capitalized nucleotides are connected by phosphorothioate linkages 
lower case nucleotides have 5'-phosphdiester linkages 
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Results 

 

A151 has broad anti-inflammatory activities against cytosolic DNA sensing 

pathways.  

 A number of studies have explored the effects of the sup ODN A151 on type I IFN 

and cytokine production following LPS and CpG ODN stimulation (149, 151, 153) .  

However, these studies often have a l imited scope, only reporting A151’s effects on a  

handful of inflammatory molecules.  T o examine its immunosuppressive potential, we 

measured the response of bone marrow-derived dendritic cells (BMDC) to A151 

treatment alone and explored whether it affected induction of innate response genes 

following stimulation with synthetic dsDNA poly(dA:dT) and LPS.  T otal RNA was 

isolated from cells and mRNA levels of a panel of cytokines, chemokines, PRRs and 

signal transduction molecules were measured by multiplex gene expression analysis 

using nCounter (Nanostring) technology (Fig. 2.1 and Table 2.2).  Nanostring analysis 

utilizes fluorescently coded probes that hybridize directly to target mRNA, allowing each 

individual mRNA to be counted without the need for amplification (190).  This allows 

the detection of many targets simultaneously in a highly sensitive manner particularly 

when examining mRNAs present at low levels.  This analysis revealed, resting BMDC 

expressed particularly high mRNA levels of TLR2 and TLR4 as well as a number of 

other receptors including TLR3, TLR7, TLR8, AIM2, IFI204, NLRP3, RIG-I and MDA-

5.  Molecules involved in signal transduction such as NF-κB, IκBα, MyD88, IRF2, IRF5, 

STAT3 and STAT1 and the cysteine protease caspase-1 were also expressed at basal 

levels.  Untreated BMDC displayed very low levels of Type I IFN expression.  Treatment 
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Table 2.2 : Nanostring Normalized mRNA Counts  
Gene   Stimulation   
 Media A151 LPS LPS + A151 p(dA:dT) p(dA:dT) + A151 
       
Cyokines, chemokines and their receptors    
Ifna4 3 3 14 14 463 15 
Ifnb1 5 2 125 121 11674 121 
Ifng 2 2 3 1 4 2 
Il-1a 2299 3845 90032 85988 22190 3824 
Il-1b 513 1190 96483 97982 9166 1610 
Il-4 1 2 10 5 7 2 
Il-6 12 31 27868 25706 3602 72 
Il-10 1 1 18 19 1 1 
Il-12a 2 3 73 78 4 1 
Il-12b 7 17 9342 8241 360 22 
Il-13 1 1 4 10 4 1 
Il-15 37 49 283 254 157 49 
Il-18 2293 1977 3796 3353 1698 1494 
Il-21 2 1 1 2 1 1 
Il-23a 2 3 417 478 43 1 
Il-33 8 8 30 31 42 11 
Il-1ra 18886 20912 74120 69265 49214 22396 
ccl4 729 567 59040 55448 31622 1012 
ccl5 733 709 41138 36889 6854 758 
cxcl1 33 37 13628 12750 756 40 
cxcl10 26 36 8505 6490 29161 1336 
ccr1 2534 2204 1397 1147 2389 2358 
ccr2 169 181 22 13 96 128 
cxcl2 158 213 29228 28712 3783 294 
cxcl6 440 502 2680 2314 598 413 
cxcl9 5 7 182 166 453 23 
tgfb1 8108 8788 10811 10902 8657 7987 
tgfb2 13 15 22 27 33 13 
tnfa 671 1112 30224 29787 15646 1705 
       
PRRs, downstream signaling components    
aim2 439 452 417 387 1058 412 
IrakM 612 761 3917 3668 559 586 
nlrc4 413 455 650 631 358 402 
nlrc5 77 70 227 176 338 93 
nlrp12 1 1 3 7 6 4 
nlrp3 373 482 5471 5323 1232 498 
nlrp6 4 9 7 6 7 4 
Ifi204 99 110 1079 762 1910 251 
Ifi205 8 10 1903 1520 1541 70 
Ifi47 107 117 2374 1477 2716 380 
Ifit1 11 20 6927 5165 17556 558 
Ifit2 24 15 1573 1129 5953 248 
casp1 1014 1022 1454 1354 1654 956 
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 Media A151 LPS LPS + A151 p(dA:dT) p(dA:dT) + A151 
mnda 28 24 1412 1180 894 136 
mndal 257 315 12079 11466 5305 515 
myd88 883 908 1696 1494 1648 1012 
lgp2 166 186 892 683 1042 313 
tlr1 25 42 82 131 15 30 
tlr11 6 6 4 4 6 4 
tlr2 3386 5074 17166 16029 11960 5878 
tlr3 148 157 182 132 353 155 
tlr4 4290 3557 1062 918 3292 2934 
tlr5 5 3 3 4 1 3 
tlr7 1044 952 2299 2332 1100 1021 
tlr8 1663 1368 931 838 1530 1164 
tlr9 33 31 30 18 50 30 
rig-i 203 182 1519 1127 1968 423 
mda5 264 273 6257 4983 4781 409 
IkBa 3773 5889 16694 17159 12996 5520 
unc93b 2894 2907 2336 2339 2957 2950 
md2 606 589 808 697 485 552 
pstpip1 155 163 80 64 148 130 
rybp 184 194 348 286 247 178 
viperin 50 41 10291 6942 26101 1202 
yaf2 573 476 413 364 457 395 
zbp1 49 43 728 523 868 110 
       
Transcription factors      
Irf1 492 578 4671 3850 9365 1398 
Irf2 959 977 803 659 1445 911 
Irf5 944 1129 928 940 1580 1077 
Irf7 31 26 988 625 1814 316 
nfkb1 932 1147 5666 5262 1772 973 
nfkb2 1384 1977 10479 10426 2600 1965 
stat1 524 447 1452 1039 2253 770 
stat3 1256 1140 1226 1102 1281 983 
eya4 21 35 8 13 24 24 
       
Proinflammatory enzymes     
arg1 12 26 22 13 28 29 
arg2 123 126 806 734 168 99 
cox2 114 53 22628 20632 911 92 
nos2 7 7 226 202 39 10 
oas2 29 26 268 172 398 93 
mmp2 223 229 472 486 247 202 
trex1 530 617 6935 6281 7037 1924 
adar 590 575 1799 1394 1681 725 
samhd1 2132 2288 1693 1415 5494 2122 
       
Cell adhesion and activation markers    
cd18 683 720 633 612 555 562 
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 Media A151 LPS LPS + A151 p(dA:dT) p(dA:dT) + A151 
cd40 100 105 3018 2967 497 110 
cd80 363 357 466 438 560 255 
cd86 217 229 440 402 625 267 
Icam1 1900 2698 9348 9528 4851 3112 
       
Anti-inflammatory signaling components    
socs1 168 142 737 812 1108 304 
socs3 516 720 3807 3924 2200 961 
duba 866 923 1295 1193 994 809 
dusp6 624 591 514 477 446 464 
a20 433 750 12997 13020 6293 766 
prdm1 90 123 292 332 343 112 
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Table 2.3 : Nanostring mRNA Fold Induction Compared to Media 
Gene      Stimulation    
 A151 / Media LPS / Media p(dA:dT) / Media   
Ifnb1 0.4 24.2 2253.6   
Ifit1 1.8 607.1 1538.7   
cxcl10 1.4 328.1 1125.0   
viperin 0.8 206.8 524.4   
Il6 2.5 2240.2 289.6   
Ifit2 0.6 66.0 249.6   
Ifi205 1.2 229.3 185.6   
Ifna4 1.1 4.4 148.8   
cxcl9 1.3 35.2 87.4   
Irf7 0.8 31.7 58.3   
Il12b 2.3 1286.7 49.6   
ccl4 0.8 81.0 43.4   
mnda 0.8 50.4 31.9   
Ifi47 1.1 22.2 25.4   
cxcl2 1.4 185.4 24.0   
tnfa 1.7 45.0 23.3   
cxcl1 1.1 410.7 22.8   
Il23a 1.6 201.4 20.6   
mndal 1.2 47.0 20.6   
Ifi204 1.1 11.0 19.4   
Irf1 1.2 9.5 19.1   
mda5 1.0 23.7 18.1   
Il-1b 2.3 188.0 17.9   
zbp1 0.9 14.9 17.8   
a20 1.7 30.0 14.5   
oas2 0.9 9.2 13.7   
trex1 1.2 13.1 13.3   
rig-i 0.9 7.5 9.7   
Il-1a 1.7 39.2 9.7   
ccl5 1.0 56.1 9.3   
cox2 0.5 198.4 8.0   
Il-4 2.2 9.2 7.0   
socs1 0.8 4.4 6.6   
lgp2 1.1 5.4 6.3   
nlrp12 1.1 3.1 5.9   
nos2 0.9 31.1 5.4   
Il-33 1.0 3.6 5.0   
cd40 1.1 30.3 5.0   
nlrc5 0.9 3.0 4.4   
stat1 0.9 2.8 4.3   
socs3 1.4 7.4 4.3   
Il15 1.3 7.6 4.2   
prdm1 1.4 3.2 3.8   
tlr2 1.5 5.1 3.5   
Il13 1.1 4.1 3.5   
IkBa 1.6 4.4 3.4   
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 A151 / Media LPS / Media p(dA:dT) / Media   
nlrp3 1.3 14.7 3.3   
cd86 1.1 2.0 2.9   
adar 1.0 3.0 2.8   
Il1ra 1.1 3.9 2.6   
samhd1 1.1 0.8 2.6   
Icam1 1.4 4.9 2.6   
tgfb2 1.1 1.7 2.4   
aim2 1.0 1.0 2.4   
tlr3 1.1 1.2 2.4   
arg1 2.1 1.8 2.3   
nfkb1 1.2 6.1 1.9   
nfkb2 1.4 7.6 1.9   
myd88 1.0 1.9 1.9   
Ifng 1.1 1.5 1.8   
Il12a 1.6 35.4 1.8   
nlrp6 2.2 1.8 1.8   
Irf5 1.2 1.0 1.7   
casp1 1.0 1.4 1.6   
cd80 1.0 1.3 1.5   
tlr9 0.9 0.9 1.5   
Irf2 1.0 0.8 1.5   
arg2 1.0 6.5 1.4   
cxcl6 1.1 6.1 1.4   
rybp 1.1 1.9 1.3   
eya4 1.7 0.4 1.2   
Il-10 1.1 17.3 1.2   
duba 1.1 1.5 1.1   
mmp2 1.0 2.1 1.1   
tgfb1 1.1 1.3 1.1   
tlr7 0.9 2.2 1.1   
unc93b 1.0 0.8 1.0   
stat3 0.9 1.0 1.0   
tlr11 0.9 0.7 1.0   
pstpip1 1.1 0.5 1.0   
ccr1 0.9 0.6 0.9   
tlr8 0.8 0.6 0.9   
IrakM 1.2 6.4 0.9   
nlrc4 1.1 1.6 0.9   
cd18 1.1 0.9 0.8   
md2 1.0 1.3 0.8   
yaf2 0.8 0.7 0.8   
tlr4 0.8 0.2 0.8   
Il-18 0.9 1.7 0.7   
dusp6 0.9 0.8 0.7   
Il21 0.5 0.5 0.6   
tlr1 1.7 3.3 0.6   
ccr2 1.1 0.1 0.6   
tlr5 0.7 0.6 0.2   
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Table 2.4 : Nanostring mRNA Fold Reduction by A151 Treatment 
Gene  Stimulation  
 LPS / (LPS + A151) p(dA:dT) / p(dA:dT) + A151  
Ifnb1 1.0 96.3  
Il6 1.1 50.0  
Ifit1 1.3 31.5  
ccl4 1.1 31.2  
Ifna4 1.0 30.0  
Il23a 0.9 29.1  
Ifit2 1.4 24.0  
Ifi205 1.3 22.1  
cxcl10 1.3 21.8  
viperin 1.5 21.7  
cxcl9 1.1 19.9  
cxcl1 1.1 18.7  
Il12b 1.1 16.3  
cxcl2 1.0 12.9  
mda5 1.3 11.7  
mndal 1.1 10.3  
cox2 1.1 9.9  
tnfa 1.0 9.2  
ccl5 1.1 9.0  
a20 1.0 8.2  
zbp1 1.4 7.9  
Ifi204 1.4 7.6  
Ifi47 1.6 7.1  
Irf1 1.2 6.7  
mnda 1.2 6.6  
Il-1a 1.0 5.8  
Irf7 1.6 5.7  
Il-1b 1.0 5.7  
Il12a 0.9 4.9  
Il13 0.4 4.9  
rig-i 1.3 4.6  
cd40 1.0 4.5  
oas2 1.6 4.3  
nos2 1.1 3.8  
Il-33 1.0 3.8  
trex1 1.1 3.7  
socs1 0.9 3.7  
nlrc5 1.3 3.7  
lgp2 1.3 3.3  
Il-4 1.8 3.3  
Il15 1.1 3.2  
prdm1 0.9 3.1  
stat1 1.4 2.9  
samhd1 1.2 2.6  
aim2 1.1 2.6  
tgfb2 0.8 2.5  
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 LPS / (LPS + A151) p(dA:dT) / p(dA:dT) + A151  
nlrp3 1.0 2.5  
IkBa 1.0 2.4  
cd86 1.1 2.3  
adar 1.3 2.3  
socs3 1.0 2.3  
tlr3 1.4 2.3  
Il1ra 1.1 2.2  
cd80 1.1 2.2  
tlr2 1.1 2.0  
nlrp6 1.2 2.0  
nfkb1 1.1 1.8  
casp1 1.1 1.7  
arg2 1.1 1.7  
tlr9 1.7 1.7  
nlrp12 0.4 1.7  
Ifng 3.0 1.7  
Il21 0.5 1.6  
myd88 1.1 1.6  
Irf2 1.2 1.6  
Icam1 1.0 1.6  
Irf5 1.0 1.5  
cxcl6 1.2 1.4  
rybp 1.2 1.4  
tlr11 1.0 1.4  
nfkb2 1.0 1.3  
tlr8 1.1 1.3  
stat3 1.1 1.3  
duba 1.1 1.2  
mmp2 1.0 1.2  
yaf2 1.1 1.2  
Il-18 1.1 1.1  
pstpip1 1.2 1.1  
tlr4 1.2 1.1  
tgfb1 1.0 1.1  
tlr7 1.0 1.1  
eya4 0.7 1.0  
ccr1 1.2 1.0  
unc93b 1.0 1.0  
cd18 1.0 1.0  
arg1 1.8 1.0  
dusp6 1.1 1.0  
IrakM 1.1 1.0  
nlrc4 1.0 0.9  
md2 1.2 0.9  
Il-10 0.9 0.8  
ccr2 1.8 0.8  
tlr1 0.6 0.5  
tlr5 0.8 0.4  
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with A151 alone had very little effect on the transcriptional profile of BMDC (Fig. 2.1 

and Table 2.2).  In keeping with previous reports, A151 treatment did not induce anti-

inflammatory molecules such as IL-10, TGF-β or SOCS3 (146).  By comparison, 

treatment with the synthetic dsDNA ligand poly(dA:dT) drastically increased mRNA 

levels of inflammatory cytokines, type I IFNs and ISGs as well as other immune 

mediators and regulators.  IFN-β, the most highly induced gene, was upregulated more 

than 2000-fold and IL-6 more than 250-fold (Fig. 2.1 and Table 2.3).  Importantly, 

treatment with A151 greatly attenuated the response to poly(dA:dT) (Fig. 2.1 and Table 

2.4).  G enes such as IFN-β and IL-6, which were among the most highly induced by 

poly(dA:dT), were also the most potently suppressed by A151.  Like poly(dA:dT), LPS 

stimulated increased mRNA levels of a variety of cytokines and Type I IFN.  IL-6, the 

most highly induced mRNA by LPS, was increased over 2000-fold (Table 2.3).  In 

contrast to A151’s effects on poly(dA:dT) signaling, A151 did not mitigate LPS-induced 

responses (Fig. 2.1 and Table 2.4).  Thus, A151 appears to have very little effect on the 

expression profile of resting cells and cells treated with LPS, but potently and broadly 

inhibits activation by poly(dA:dT). 

 

A151 and C151 inhibit IFN-β and TNF-α production in response to HSV-1 and 

MCMV.  

 To define the specificity of A151-mediated suppression, BMDC and bone marrow-

derived macrophages (BMDM) were exposed to the herpesviruses HSV-1 or MCMV and 

IFN-β expression was measured by qRT-PCR (Fig. 2.2a,b).  P re-treatment with A151 

reduced IFN-β induction in response to HSV-1 and MCMV in BMDC and BMDM.  
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Interestingly pre-treatment with the C151 construct, in which the guanine residues of 

A151 had been replaced with adenine residues, had a nearly identical suppressive effect.  

In contrast, the IFN-β response to LPS and Sendai virus, a paramyxovirus that activates 

the RIG-I pathway, was unchanged by these constructs (Fig. 2.2a,b).  Similarly, BMDC 

pretreated with A151 and C151 reduced TNF-α mRNA induction in response to HSV-1 

and MCMV, but had no effect on TNF-α induction in responses to LPS or Sendai virus 

(Fig 2.2c).  These data suggests A151- and C151-mediated inhibition of IRF3- and NF-

κB-dependent gene induction is specific to challenge with poly(dA:dT) and the 

herpesviruses HSV-1 and MCMV.   

 

Both sequence and backbone composition affect inhibitory activity of sup ODN on 

interferon-inducing pathways. 

 There is some conflict in the literature regarding the role of sequence in mediating 

A151’s inhibitory effects.  Initial reports suggested the guanine residues found within 

A151’s TTAGGG motif played a role in suppression of CpG-induced TLR9 signaling 

(149).  H owever, other groups demonstrated that inhibition is largely independent of 

sequence and, instead, relies on the presence of a phosphorothioate backbone (PS) (146).  

To further explore the role of sequence in suppression, a dose response experiment was 

performed to establish how potently sup ODN inhibited poly(dA:dT) signaling.  

Surprisingly, we found the C151 construct more potently suppressed IFN-β secretion 

than did A151 (Fig 2.3a,b).  In BMDC, C151 was approximately 10-times more potent 

than A151, although at higher concentrations these constructs were equally efficacious.  

The dose requirements for inhibition also varied between macrophages and dendritic 
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cells.  At a concentration of 3 µM, inhibition of the IFN-β response was near maximal for 

both A151 and C151.  This explains why no differences in suppression were observed in 

earlier experiments.  To assess the effects of the PS backbone on IFN-β secretion BMDM  

and BMDC were treated with A151, C151 and a phosphodiester (PD) version of C151 

(referred to as C151(PD)), followed by transfection with poly(dA:dT) (Fig 2.3c,d).  

Unlike the two PS constructs, C151(PD) failed to block the IFN-β response.  Thus, while 

a PS backbone is essential for suppression, sequence plays a role only when lower doses 

of sup ODN are employed.  In addition to the A151 construct, a number of sup ODN 

have been developed to block TLR9 signaling selectively.  A shman et al. extensively 

documented the sequence requirements for optimal inhibition of TLR9 activation and 

identified a sequence designated 4348 as one of the most potent TLR9 suppressing 

constructs (148).  We explored the relative potency of 4348 on  poly(dA:dT)-induced 

IFN-β secretion using a concentration of 1 µM in BMDC and 0.5 µM in BMDM that 

provided strong suppression, but allowed observation of sequence specific effects.  The 

4348 construct mediated suppression comparable to A151 at a similar dose, but did not 

prove to be as potent as C151 (Fig 2.3e,f).   

 

A151 blocks AIM2 inflammasome activation in response to cytosolic dsDNA. 

 We next investigated the inhibitory potential of the sup ODN A151 on activation of 

the inflammasome.  BMDC were first stimulated with LPS to drive high levels of pro-IL-

1β and pro-IL-18 expression.  Cells were then treated with A151 for one hour before 

exposure to a panel of inflammasome ligands.  Pre-treatment with A151 had no effect on 

IL-1β production in response to the NLRP3 ligands silica, nigericin or ATP, whereas the 
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3 }IM and IL-IfJ sec,·etion wa.o; measured by ELISA. E. Bl\•IOC or F. BMDM were tre.att.d with 
300 ng of poly(dA:dT) c.omple:<ed with lipofectamine 2000. Cells were untreated or pretreated 
with A lSI. C IS I or 4348 at 3 ~m and IL-l p secretion was me-.asured by ELISA 
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response to the AIM2 ligand poly(dA:dT) was significantly reduced (Fig. 2.4a).  T his 

pattern of AIM2-specific inhibition was also observed in BMDM and the human THP1 

monocytic cell line (Fig. 2.4b, c respectively).  A151 also suppressed IL-18 secretion in 

response to poly(dA:dT), but not nigericin in BMDC (Fig. 2.4d).  Western blot analyses 

confirmed the reduction of cleaved IL-1β in the supernatants of A151-treated BMDC 

challenged with poly(dA:dT) (Fig. 2.4e).  Furthermore, these blots revealed a decrease in 

caspase-1 cleavage.  T he reduced levels of the active caspase-1 p10 and p20 s ubunits 

following A151 treatment suggests dampened caspase-1 activity.  Importantly, exposure 

to A151 did not diminish levels of pro-IL-1β and pro-caspase-1 in cellular lysates, 

suggesting A151 treatment blocked the activity of the AIM2 inflammasome rather than 

affecting expression of the caspase-1 or its substrate.  S ecretion of the alarmin high 

mobility group box 1 (HMGB1) also requires caspase-1 activation (191, 192) and, much 

like IL-1β and IL-18, HMGB1 release into the supernatant was suppressed by A151 (Fig. 

2.4e).  In contrast to A151, treatment with C151 led to a more modest reduction in IL-1β 

and IL-18.  At 3µM, C151 occasionally reached statistical significance, however its 

inhibitory effect was difficult to visualize by western blot (Fig. 2.4e,f).   

 

Both sequence and backbone composition effect inhibition of AIM2 inflammasome 

signaling. 

 To determine the inhibitory kinetics of A151 and C151 on AIM2 signaling a 

titration experiment was conducted.  BMDC were pre-treated with increasing 

concentrations of A151 and C151 followed by transfection with poly(dA:dT) and 

subsequent IL-1β and IL-18 secretion was measured by ELISA.  This experiment  
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Figure 2.4: A l SI pre\'ents AIM21nflammsome acti\'ntlon In n spon.se to cytosolic dsDNA A, 
BtviDCs or B. BtviDT\•Is were primed with LPS (200 ng/ml; LPS pl'ime alone is control) and chal
lenged with silic.a (500 ..,.glml). nigeriein ( I 0 }LM). ATP (5 mM) Ol' 300 ng of poly(dA:dT) c.om
plexed with lipofoc.ramine. 2000 (untreated). Cells were pretreated with A 151 or Cl 51 (3 ~un) as 
indicated and Il- l p secretion into the Sllpernatant was me.asmed by ELISA. C, Tl IP Is were 
difltrent iated overnight with PMA (0.5 ~M). treated a.o; descl'ibed above and IL-l~ wa.o; measured 
by ELISA. D, BMDCs were treated as described and I L-IS wa.o; measured by ELISA. E. lmnm
noblouing of Il- l p, c.aspase- 1 and I JMGB I in the supernatant.; and lys.ates from BMDCs. F. 
BtviDC we•·e tre.ate.d as above and Il- l p secretion into the Sllpernatant was analyze.d by ELISA. 
Data are. presente.d as mean rL SO f•·o•n three biological replicates repre~o;e.ntative of three e:<peri
ments. • p < 0.01, •• p<O.OOI. ••• p<O.OOO I 
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revealed that both A151 and C151 were capable of inhibiting AIM2 inflammasome 

activation (Fig. 2.5a,b).  Interestingly, A151 with a half-maximal effective concentration 

(EC50) of 0.360µm was approximately 20 t imes more potent than C151 (EC50 = 

6.16µm).  To determine whether the PS backbone affected A151-mediated inhibition, this 

sup ODN was synthesized with a phosphodiester backbone A151(PD) and tested in 

BMDC and BMDM.  P retreatment with A151(PD) had no significant effect on IL-1β 

release following poly(dA:dT) challenge in either line (Fig. 2.5c,d).  As we had observed 

for IFN-inducing pathways, a PS backbone was essential for inhibition of AIM2 

signaling.  However, whereas C151 was a more potent inhibitor of the IFN-β response, 

A151 proved to more potently suppress AIM2 signaling.  

 Until now we had only tested constructs previously shown to have inhibitory 

properties.  To explore whether the increased inhibitory potency of A151 was due to its 

specific sequence, or a more general property of guanosine rich PS ODNs, we tested the 

inhibitory potential of one class A and two class B stimulatory CpG ODNs.  The class A 

ODN 2336 has a backbone composed of PS linkages on e ither end and 11 interior PD 

bonds.  The two class B ODN, 1826 and 10104, are composed entirely of PS linkages.  

These ODN contain CpG motifs and, when used alone, activate TLR9 leading to DC 

maturation and the secretion of cytokines (11, 193).  However, much like A151, pre-

treatment with 1826 a nd 10104 inhibited IL-1β secretion by BMDC following 

poly(dA:dT) challenge.  By comparison, the partial PS construct, 2336 had no inhibitory 

effect, despite having a similar guanosine content to A151 (Fig. 2.5e).  These findings 

underscored the importance of the PS backbone in AIM2 inhibition and revealed a 

correlation between total guanosine content and potency in PS constructs. 
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A151 prevents AIM2 inflammasome mediated pyroptosis. 

 In addition to cytokine processing, AIM2 activation leads to a form of programmed 

cell death known as pyroptosis (16, 194).  Pyroptosis is distinct from apoptosis, in that it 

is caspase-1-dependent, leads to rapid plasma-membrane rupture and the release of pro-

inflammatory cytokines; making this form of cell death inherently inflammatory.  Using a 

luminescent cell viability assay, we quantified the survival of BMDC and BMDM 

following poly(dA:dT) challenge.  After 16 hour s of exposure, we observed 70% cell 

death in BMDC and 93% in BMDM.  Similarly to its affects on IL-1β and IL-18 

secretion, A151 potently inhibited pyroptotic cell death in both macrophages and 

dendritic cells (Fig. 2.6a,b).  In BMDM, A151 was able to restore nearly 100% viability 

at dose of 1 µM though it was less effective in BMDC.  Interestingly, C151 had no effect 

in BMDC, but was able to inhibit cell death in BMDM, though at a reduced potency and 

efficacy compared to A151.  In keeping with its effects on c ytokine production 

suppression of pyroptotic cell death was dependent on the PS backbone in both lines (Fig. 

2.6c,d). 

 

A151 prevents IL-1β cleavage in AIM2-reconstituted HEK293T cells.  

 The human HEK293T cell line has proven to be a useful tool for studying 

inflammasome activation.  T ransient transfection of plasmids encoding Aim2, Asc, 

caspase-1 and pro-IL-1β leads to the formation of a functional AIM2 inflammasome 

complex and subsequent IL-1β cleavage (16).  Moreover HEK293T are devoid of 

endogenous TLR expression, allowing us to examine the effects of A151 in a system free 

of TLR signaling (195).  Exposure of AIM2-reconstituted HEK293T cells to 1 µM A151  
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drastically reduced IL-1β cleavage while C151 had no e ffect (Fig. 2.7a).  S uppression 

was not observed when IL-1β cleavage was driven by caspase-1 overexpression alone, 

indicating that A151 inhibits inflammasome activation at a step prior to caspase-1 

activation.  To determine whether the potency of inhibition in this reconstitution assay 

were similar to our primary lines, a dose response experiment was performed.  This 

experiment corroborated our previous findings, demonstrating that while both constructs 

could mediate inhibition at higher doses, A151 was more potent compared to C151 (Fig. 

2.7b).    

 

A151 blocks AIM2 activation in BMDC challenged with MCMV and Listeria. 

 Our lab has previously shown that AIM2 is essential for inflammasome activation 

in response to the viral pathogen MCMV (16).  Secretion of IL-1β by BMDC challenged 

with MCMV was markedly reduced by A151 pretreatment (Fig. 2.8a).  A  number of 

inflammasome receptors including NLRP3, NLRC4 and AIM2 have been implicated in 

the IL-1β response to L. monocytogenes (16, 95, 102, 196, 197).  A151 treatment reduced 

IL-1β production in BMDC responding to L. monocytogenes, a reduction proportional to 

that observed in AIM2-deficient cells (Fig. 2.8b) (16).  C ollectively, these findings 

suggest that A151 blocks AIM2-mediated inflammasome signaling in response to the 

pure dsDNA ligand poly(dA:dT) as well as pathogens such as MCMV and L. 

monocytogenes.  
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A151 prevents ASC dimerization. 

 We next wanted to understand the molecular basis for the suppressive effect of 

A151 on AIM2 inflammasome activation. We therefore examined the ability of A151 to 

modulate AIM2-ASC inflammasome complex assembly. To do s o BMDM were 

challenged with poly(dA:dT) and whole cell lysates were cross-linked and fractionated 

by sequential centrifugation.  F ollowing exposure to poly(dA:dT), we observed an 

increase in the presence of ASC dimers in the macromolecular pellet; a finding consistent 

with inflammasome activation (Figure 2.9a) (101).  P retreatment with A151 reduced 

ASC dimer formation to levels observed in media controls whereas C151 led to a modest 

decrease and A151-PD had no effect.  Consistent with these observations, A151-treated 

cells retained ASC in its soluble, monomeric form, suggesting that A151 blocks 

recruitment of ASC to AIM2, preventing inflammasome assembly.  

 

A151 blocks inflammasome assembly in an AIM2-citrine reporter cell line. 

 A defining feature of inflammasome signaling is the formation of a large, 

multiprotein complex in the cytosol composed of an NLR or ALR sensor, ASC, and 

caspase-1.  This complex can be as large as 2 µm in size and offers a unique opportunity 

to analyze signaling by tracking the localization of inflammasome components in living 

cells (194).  T o visualize the formation of the AIM2 inflammasome, we employed an 

immortalized murine macrophage cell line stably expressing AIM2-citrine and monitored 

inflammasome assembly in live cells.  In resting macrophages, the AIM2-citrine fusion 

protein was diffusely cytoplasmic.  However, stimulation with poly(dA:dT) caused nearly 

50% of these cells to form fluorescent punctate structures or ‘specks’ indicative of AIM2 
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inflammasome formation (Figure 2.9b).  Pre-treatment with A151 strongly inhibited the 

formation of AIM2-citrine specks in our poly(dA:dT)-treated reporter line.  Instead, the 

AIM2-citirine protein remained dispersed throughout the cytoplasm.  In keeping with 

previous data, C151 demonstrated a more modest inhibitory effect only partially 

preventing speck formation.  A similar pattern of inhibition was observed using 

macrophages expressing an ASC-citrine construct (Figure 2.9c).   T hese results are 

consistent with our cytokine data and suggest that A151 mediates inhibition by blocking 

the ability of AIM2 to engage downstream signaling components necessary for 

aggregation. 

 

A151 binds to AIM2.  

A151 has been shown to exert its suppressive effects by association with signal 

transduction molecules such as STAT1 and STAT4 (149, 153).  AIM2 binds stimulatory 

dsDNA via its C-terminal HIN200 domain thus releasing it from a resting, autoinhibited 

conformation and allowing inflammasome formation (73).  To determine whether our sup 

ODN can interact with endogenous AIM2, immortalized murine macrophages were 

treated with with biotinylated A151 or biotiylated C151 for one hour, lysed and incubated 

with streptavidin beads.  These pull-down studies revealed that A151, and to a far less 

extent, C151 were capable of interacting with AIM2. (Fig. 2.10a)  A second pull down 

with biotinylated A151 was performed in the presence of an increasing concentration of 

poly(dA:dT).  The inclusion of poly(dA:dT) during the binding step led to a proportional 

decrease in AIM2 recovery, suggesting A151 competes with poly(dA:dT) for AIM2 (Fig 

2.10b).  
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A151 and C151 bind to IFI16.  

A number of receptors have been implicated in IFN-β induction in response to 

HSV-1 infection, including IFI16, DAI, DHX9, DHX36, RNA Pol III, DDX41 and the 

newly discovered cGAS.  The association of AIM2 with A151 suggests other members of 

the PYHIN family may also associate with A151.  Unterholzner et al. have previously 

demonstrated that IFN-β induction and NF-κB activation in response to cytosolic DNA 

and HSV-1 infection is dependent on the PYHIN protein IFI16 (70).  IFI16 is 

alternatively spliced into three isoforms that differ in the length of the linker region 

between HIN200A and HIN200B.  Using biotinylated A151 and C151 we were able to 

pull down IFI16 from THP1 lysates (Fig. 2.10c).  Interestingly, while A151 associated 

with a larger, approximately 95kDa isoform of IFI16, C151 interacted more strongly with 

the smaller 85kDa isoform.   
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Discussion 

  

Numerous studies have examined the inhibition of TLR9 activation by sup ODN.  

However, until now no s tudies have explored the effects of sup ODN on c ytosolic 

sensing pathways.  This work identifies DNA species capable of broadly inhibiting 

cytosolic dsDNA responses and explores the role of DNA backbone chemistry and 

sequence in mediating suppression.  Our data show that A151 added to the media of 

primary murine dendritic cells and macrophages prevents DNA induced IRF3- and NF-

κB-dependent gene induction in response to cytosolic dsDNA as well as infection with 

HSV-1 and MCMV.  As described previously, A151 did not inhibit LPS-driven cytokine 

production (153), nor did it affect IFN-β induction by Sendai virus, a member of the 

paramyxovirus subfamily that activates the RIG-I pathway.  Notably, Nanostring analysis 

revealed A151 treatment had little effect on the expression profile of resting cells nor did 

it increase expression of anti-inflammatory mediators following stimulation. This 

suggests that it does not induce an anti-inflammatory state but rather blocks activation of 

dsDNA sensing pathways (Fig. 2.11).  

A151 proved to be effective inhibitor of AIM2 inflammasome signaling as well.  

Treatment with A151 prevented AIM2-mediated caspase-1 activation, IL-1β, IL-18 and 

HMGB1 secretion and pyroptotic cell death in response to dsDNA challenge.  Previously, 

Sato et al. uncovered a role for A151 in the inhibition of silica-induced inflammation 

(152).  However, A151 had no effect on secretion of IL-1β or IL-18 in response to the 

NLRP3 ligands silica, nigericin, or ATP.  Silica treatment leads to significant host cell 

death in vitro and we theorize that the inhibitory effects observed in vivo were due to 
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A151’s effect on c ytosolic sensing of host DNA released from dead and dying cells, 

rather than a direct effect on NLRP3 activation.  In addition to A151’s effects on AIM2 

activation by poly(dA:dT), it inhibited IL-1β cleavage in BMDC challenged with the 

viral pathogen MCMV, which has been shown to be entirely dependent on AIM2 (16).  

Moreover, A151 partially blocked the response to the bacterial pathogen L. 

monocytogenes.   

Dose-response experiments gave insight into the kinetics of inhibition and the role 

of sequence and backbone composition.  Multiple studies by Pisetsky and collaborators 

using single base ODN constructs have demonstrated that nucleotide composition affects 

TLR9 suppression (140, 141, 198).  Studies of A151 have found that its guanine residues 

are crucial for inhibition of TLR9, STAT1 and STAT4 signaling (149, 153, 154) .  

Despite this, the role of sequence in A151-mediated inhibition is controversial.  W e 

believe that sequence-specific effects are often lost or minimized at higher 

concentrations, which has led to the misinterpretation that sequence is unimportant.  For 

example, Trieu et al. reported TLR9 responses were inhibited by long ODN with PO 

backbones independent of sequence however they demonstrated differences in construct 

potency at concentrations below 1 µM (127).  

Our experiments revealed that both A151 and C151 inhibit IFN-inducing 

pathways and AIM2 activation at higher concentrations.  However, treatment of cells 

with lower concentrations revealed stark differences in construct potency.  A s we 

demonstrated, A151 proved to be 20-times more potent than C151 in blocking AIM2 

activation in BMDC.  In contrast, the C151 construct was approximately 10-times more 

potent than A151 at inhibiting IFN-induction in the same line.  Differences in inhibitory 
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kinetics were also observed between BMDM and BMDC cell lines.  Consistent with sup 

ODN effects on T LR9 activation, conversion of either construct to a PD backbone 

completely abolished inhibitory activity (127). 

Mechanistically, A151 prevented ASC dimerization in macrophages and 

decreased the formation of cytoplasmic inflammasome specks in both AIM2- and ASC-

citrine reporter lines (Fig. 2.11).  Interestingly, in pull down experiments, A151 bound to 

AIM2 more readily than C151 suggesting a possible explanation for the observed 

differences in suppressive potency.  In keeping with this theory, C151 pulled down more 

IFI16 than did A151.  In addition, these experiments indicated that a PS backbone was 

essential for the interaction between IFI16 or AIM2 and sup ODN.  Results were similar 

whether biotinylated sup ODN was added to the media or directly to lysates suggesting 

sequence affects affinity rather than cellular uptake.  Moreover, the inclusion of 

increasing amounts of poly(dA:dT) with A151 during the binding step led to a 

proportional decrease in AIM2 recovery indicating an affinity-driven competition with 

this stimulatory ligand.  Finally, in addition to pulling down cytosolic receptors, the 

downstream signaling molecule STING also associates with IFN-activating ODNs, such 

as the AT-rich motif isolated from the Plasmodium falciparum genome (224).  However, 

neither A151 nor C151 pulled down this essential signaling adapter.  Thus, we propose a 

mechanism whereby A151 and C151 compete with stimulatory dsDNA for binding to 

AIM2 and IFI16 but do not promote activation of downstream signaling events.   

Interestingly, Unterholzner et al. observed the inhibitory effects of single-stranded 

phosphorothioate DNA on IFI16 while initially identifying it as an innate immune sensor 

(70).  T hey found that both single-stranded and double-stranded forms of their VACV 
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70mer bound to IFI16 but that the single-stranded form acted as a competitive antagonist, 

inhibiting the dsVACV 70mer from inducing IFN-β.  W e have extended these 

observations to other members of the PYHIN family and begun to explore the effects of 

sequence on inhibitory potency.  Ashman et al. had previously shown the 4348 construct 

to be a significantly more potent TLR9 inhibitor than A151’s ‘TTAGGG’ motif.  

However 4348 and A151 inhibited poly(dA:dT) stimulation of IFN responses comparably 

and both were less potent than C151.  Likewise, the class B stimulatory ODNs and A151 

inhibited AIM2 activation similarly, while the class A stimulatory ODN had no effect.  

This suggests that while a PS backbone is essential for inhibition, total guanine content 

rather than a specific sequence may influence binding kinetics.  Importantly the class B 

stimulatory constructs maintained their ability activate TLR9-mediate signaling.  The 

inhibition observed was specific for AIM2-mediated inflammasome signaling in response 

to stimulation with poly(dA:dT). 

PS modified constructs are quickly taken up by macrophages and dendritic cells 

via both scavenger receptor-mediated endocytosis and pinocytosis (138).  Multiple wash 

steps following A151 or C151 pre-treatment had no e ffect on the construct’s ability to 

inhibit IL-1β production.  T his suggests the transfection of poly(dA:dT) using 

lipofectamine did not influence the uptake of A151 and C151.  Likewise inhibition was 

observed following MCMV or Listeria infection, stimuli that do not require 

lipofectamine transfection.  Importantly, both the PS backbone and high guanosine 

content have been shown to increase construct aggregation.  Aggregation of A151 could 

potentially lead to differences in cellular uptake, localization, and receptor avidity 

compared to C151; which might account for A151’s more potent inhibitory effect on 
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AIM2.  Further studies are needed to determine whether these constructs aggregate and 

how this interaction effects inhibition.  

Recently, a crystal structure of the AIM2 HIN200C domain complexed to double-

stranded DNA was reported (73).  T his study indicated that dsDNA recognition was 

accomplished largely through electrostatic interactions between the HIN domain and the 

DNA’s sugar-phosphate backbone and was therefore independent of sequence.  One 

explanation for the sequence dependence of single-stranded sup ODN is that a single-

stranded DNA species may theoretically allow HIN200 residues greater access to its 

nucleotide bases than a double-stranded construct.  Indeed, the interaction between 

dsDNA and AIM2 was reported to be highly flexible, allowing tilting and sliding (73).  In 

addition to improved access of ssDNA, this inherent flexibility may allow additional 

residues to participate in the binding of ssDNA.  Thus, while data suggests the PS 

backbone of sup ODN is essential for a strong interaction with members of the PYHIN 

family it is tempting to speculate that nucleotide residues affect minor contributions to 

the association thereby influencing relative affinity.   In addition to describing the 

residues responsible for dsDNA binding, docking studies indicate that AIM2’s PYD 

domain interacts with its HIN200 domain leading to autoinhibition at rest (73).  T his 

interaction is released upon binding of dsDNA to the HIN domain, freeing the PYD 

domain to recruit ASC.  Studies defining the residues responsible for the interaction of 

A151 and AIM2 and how the interaction effects AIM2’s conformation will help elucidate 

the mechanism by which A151 associates with, but does not activate AIM2, while 

dsDNA both associates and activates.  
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Alternative splicing of the spacer region between IFI16’s HIN200 domains leads 

to the production of three isoforms (74).  Interestingly, we found that A151 and C151 

associated with different isoforms of IFI16.  The functional significance of these isoforms 

remains unknown, however, it is conceivable that differences observed in inhibitory 

potency are the result of the selective interaction of A151 and C151 with different IFI16 

isoforms.  Further analysis, for example mass spectrometry of pulled down proteins, is 

needed confirm the specificity of this interaction.  

Administration of A151 has been used in murine models of shock, lupus, 

inflammatory arthritis, and atherosclerosis.  A growing body of evidence suggests 

cytoplasmic DNA sensing contributes to the pathogenesis of many of these same 

diseases.  T he identification of A151 as an inhibitor of the AIM2 and IFI16 signaling 

pathways adds to our understanding of how this sup ODN modulates the immune 

response.  We theorize that the interaction of sup ODN with members of the PYHIN 

family may explain the robust and global anti-inflammatory effects observed in these 

disease models.  These observations invite further investigation into the potential effects 

of sup ODN on ot her members of the PYHIN family as well as other cytosolic DNA 

sensors.   

 
 
 
 
 
 
 
 
 
 
 
 



 81 

 
 
 
 

 

CYTOSOL 

dsONA 

~ 

A151 --

NUCLEUS 

e • 8C"IIve ll·1fl 

•• 

~·" 'J .. 
AIM2 

~ AIM2 
( ::--=s "- ~151 

IFI16 ---- ~----~---

AIM2 

00 IFN~gene 
~ 

IFI16 

~ 
~ 

MITOCHONDRION 

figurt> 2.11: Sch.-mati<' model uf A I 5 I and C I 5 1-mc:diatl'd inhibition uf cytuplumic rt><'f'pton AJM2 
binds to dsDNA vin its HfN200 domain which induces a conformational change. AfM2's PYD domain 
recruits ASC which in hlrn rccruits pro-caspase·l. This c lose assoc.iation ofpro-ca.<ipase-1 molecules 
enables self-cleavage into active rospase-1. Active-caspase-1 in tum cleaves pro-l~IP and pro-Il lS into 
their active fumlS. The A 151 construct bound to AIM2 but prevmted recruitment of the downstream 
adaptor molecule ASC and subsequent inRammasome complex assembly. [f l l6 binds to dsDNA and 
signals via SiiNG which activates 1"BKI leading to the phosphorylation of IRF3. Phosphorylatod IRF3 
translocates to the nucleus and activates transcription of Type I JF'N and JSG. The CIS I construct bound to 
IF J16 but prevented recruitment of STING and subscquent lf'N induction 



 82 

Preface to Chapter III 
 
The chapters of this dissertation have appeared in the following publications/manuscripts: 
 
John J. Kaminski, Stefan A. Schattgen, David M. Knipe and Katherine A. Fitzgerald. 
2013. Cell type-specific activation of the NLRP3 and NLRP12 inflammasomes in 
response to HSV-1. Unsubmitted. 
 
John Kaminski performed all experiments, Stefan Schattgen contributed to Fig 3.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 83 

Chapter III 
 

Cell type-specific activation of the NLRP3 and NLRP12 inflammasomes 

in response to HSV-1  

 

Abstract 

  

The innate immune system responds to HSV-1 infection by producing an array of 

cytokines, chemokines and type I interferons critical for controlling viral replication and 

coordinating an adaptive response.  The cytokines IL-1β and IL-18 are important effector 

molecules in the innate response to HSV-1 in vivo.  H owever, the pattern recognition 

receptors responsible for the production and maturation of these cytokines have not been 

fully defined.  We show here that HSV-1 induces IL-1β transcription in dendritic cells 

and macrophages in a TLR2-MyD88-dependent manner.  Following translation, IL-1β 

and IL-18 exist as inactive precursors that must be proteolytically cleaved by a 

multiprotein complex known as the ‘inflammasome’ to yield their active forms.  

Currently six receptors, NLRP1, NLRP3, NLRC4 (IPAF), NLRP12, AIM2 and IFI16 

have been reported to assemble inflammasomes.  In the present study, we found that the 

NLRP3 inflammasome is responsible for maturation of IL-1β in macrophages and 

dendritic cells in response to HSV-1 while NLRP12 regulates IL-1β production in 

neutrophils.   
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Introduction 

 

Herpes simplex virus 1 (HSV-1) is a common and highly contagious viral 

infection that affects populations worldwide (199).  The early innate immune response to 

HSV-1 infection is essential for controlling HSV-1 viral load and triggering an effective 

adaptive immune response (200).  Innate immune cells detect infection through several 

classes of pattern recognition receptors (PRRs).  A large number of PRRs have been 

implicated in the response to HSV-1 including TLR2, TLR3, TLR9, RIG-I, MDA-5, 

DAI, IFI16, DDX41, cGAS and NLRP3.  Upon activation, these receptors initiate signal 

cascades that lead to the production of cytokines, chemokines and Type I interferons - 

effector molecules that recruit and activate leukocytes and establish an antiviral 

environment.  Recent studies have identified IL-1β and IL-18 as key mediators of 

resistance to HSV-1 infection.  Mice genetically deficient in IL-1β are unable to mount 

robust immune responses to HSV-1 infection which leads to viral dissemination and 

lethal encephalitis (177).  IL-18 treatment has also been shown to reduce viral titers and 

increase survival in HSV-1 challenged mice (201).  Moreover IL-18-deficient mice are 

more susceptible to lethal encephalitis likely due to an impaired NK cell response.  

Despite the importance of IL-1β and IL-18 in the response to HSV-1 infection, the PRRs 

and downstream signal pathways responsible for the production of these cytokines 

remain poorly defined. 

 IL-1β and IL-18 are secreted via an unconventional mechanism that differs from 

the classical vesicle-mediated pathway employed by many other effector molecules such 

as TNF-α (202).  This nonclassical pathway involves the coordinated action of two PRR.  
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The first drives NF-κB-dependent transcription and translation of pro-IL-1β and pro-IL-

18.  Following synthesis, these immature interleukins, which lack leader sequences, are 

maintained in the cytosol (203).  A second signal is then required to mediate assembly of 

a multi-protein complex termed the inflammasome (204).  The inflammasome provides a 

platform for the activation of the zymogen caspase-1, an enzyme that, in its active form, 

cleaves pro-IL-1β and pro-IL-18 into mature cytokines (205, 206).  Activation of 

inflammasome receptors results in either direct engagement of caspase-1 or recruitment 

through the adapter molecule apoptotic speck protein with CARD domain (ASC) that in 

turn recruits caspase-1.  Thus, four members of the nucleotide-binding domain leucine-

rich repeat (NLR) superfamily have been shown to assemble inflammasomes.  T hese 

include NACHT, LRR and PYD domain-containing proteins 1, 3 and 12 (NLRP1, 

NLRP3 and NLRP12) and NACHT, LRR and CARD domain-containing protein 4 

(NLRC4 or IPAF) (15, 95, 98-100, 110-117).  NLRP3, the prototypical NLR, is primarily 

known to respond to crystalline/particulate substances such as silica, alum, asbestos and 

β-amyloid protein, but has recently been shown to be important in detecting influenza 

and adenovirus (100, 104).  By comparison the precise function of NLRP12 remains 

controversial.  Studies have ascribed seemingly conflicting roles to NLRP12 in the 

inflammatory response. Wang et al. found that NLRP12 can activate the transcription 

factor NF-κB and caspase-1-mediated IL-1β processing, thus acting in a pro-

inflammatory capacity.  Elsewhere, NLRP12 is described as antagonizing noncanonical 

NF-κB activity as well as TLR and TNFR signaling (120).  NLRP12 is expressed at high 

basal levels in granulocytes (118).  Recently NLRP12 was shown to assemble an 

inflammasome in response to Yersinia pestis (117).  
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In addition to members of the NLR family, our lab and others have recently 

reported the ability of the PYHIN protein absent in melanoma-2 (AIM2) to produce an 

inflammasome in response to bacterial and viral double-stranded DNA (16, 17).  AIM2 

dependent IL-18 secretion was found to be critical for controlling MCMV replication in 

mice through the activation of NK cell-dependent IFN-γ production.  Another member of 

the PYHIN family, interferon gamma-inducible protein 16, (IFI16) has recently been 

shown to assemble an inflammasome in response to KSHV infection (82).  Interestingly, 

while other inflammasome assembling receptors are localized to the cytosol, IFI16 is 

thought to bind stimulatory DNA in the nucleus and then relocate to the perinuclear 

region before assembling an inflammasome structure.  However, this function remains 

controversial as other studies have found IFI16 heterdimerizes with NLRP3 and AIM2 to 

suppresses activation of the inflammasome (207).  Thus the precise role of IFI16 remains 

to be determined.   

As with many viruses, HSV-1 has evolved a number of strategies to evade the 

host innate immune response.  Viral proteins such as ICP27 inhibit Type I IFN signaling 

while ICP34.5 stimulates dephosphorylation of eIF2α relieving PKR-mediated 

translational block (208, 209).  One such anti-inflammatory protein, ICP0, an immediate-

early HSV-1 gene, is a member of the RING finger family of proteins.  It is responsible 

for transactivation of viral genes through ubiquitination of cellular proteins thereby 

targeting them for degradation (210).  In this manner, it reduces the cell’s antiviral 

response by dissolving nuclear promyelocytic leukemia protein (PML) bodies, degrading 

MyD88, and inhibiting the transcription factors IRF3 and IRF7 (169).  While the wild-

type KOS strain of HSV-1 was a poor inducer of pro-IL-1β, the 7134 strain of HSV-1, 
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deficient in Infected Cell Polypeptide 0 (ICP0) strongly induced expression.  In order to 

visualize pro-IL-1β expression and maturation, we utilized this 7134 strain.   

In the present study, Nanostring technology was used to characterize the basal 

expression levels of a panel of cytokines, chemokines and innate immune receptors in 

BMDC.  The same panel was then used to examine mRNA induction in wild-type, 

STING- and MyD88-deficient cells following HSV-1 challenge.  This analysis revealed 

that the MyD88 adapter was required for pro-IL-1β induction following HSV-1 

challenge.  In contrast IL-18 induction required contributions from both MyD88- and 

STING-mediated signaling.  Using TLR2- and TLR9-deficient cells, we found the TLR2-

MyD88 pathway was necessary for pro-IL-1β induction.  W e go on t o show that the 

NLRP3 inflammasome is required for IL-1β production in macrophages and dendritic 

cells.  In contrast, we found that neutrophils relied on t he related NLRP12 protein to 

secrete mature IL-1β in response to HSV-1.  

 

Results 

 

Characterization of the innate immune response to HSV-1 in dendritic cells 

TLR2, TLR3 and TLR9 have all been implicated in the innate response to HSV-1.  

Additionally, a growing list of cytoplasmic receptors, have been shown to mediate 

cytokine and Type I IFN production.  Evidence suggests that certain receptors, such as 

TLR9, may be important for pro-inflammatory responses in specific cell subtypes such as 

plasmacytoid dendritic cells while TLR2 and various cytoplasmic receptors play a 

significant role in conventional dendritic cells and macrophages (178, 211).  To define 
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the relative contributions of these receptors to the inflammatory response, we harvested 

bone marrow from wild-type and mice deficient in MyD88 and STING, two crucial 

signaling components downstream of TLRs and cytosolic receptors.  Using BMDC, we 

compared the mRNA levels of a panel of Type I IFN, cytokines, chemokines, and PRRs 

before and after HSV-1 infection by multiplex gene expression analysis using nCounter 

(Nanostring) technology (Fig. 3.1).  As we had observed previously, resting BMDC 

expressed particularly high mRNA levels of TLR2 and TLR4.  Other receptors such as 

TLR1, TLR9, TLR3, MDA-5, NLRP3, AIM2 and IFI16 were expressed at lower levels 

basally but were induced following HSV-1 infection (Fig. 3.1 and Table 3.1).  Studies 

have found that TLR signaling not only primes, but also ‘licenses’ the inflammasome by 

enhancing expression of inflammasome assembling receptors such as NLRP3 (91).  

Indeed, NLRP3 expression was increased nearly 20-fold by HSV-1 challenge and this 

induction was MyD88-dependent.  Interestingly, our analysis revealed important 

differences in the contributions of MyD88 and STING signal pathways to Type I IFN and 

cytokine responses.  In wild-type BMDC, IFN-β and IFN-α were strongly induced by 

HSV-1 infection.  However, this Type I IFN response was completely lost in STING-

deficient cells, while MyD88 deficiency had no effect (Fig 3.1 and Table 3.2).  Not 

surprisingly, STING-deficient cells also demonstrated impaired induction of various IFN-

stimulated genes including IFI204, IFI205, AIM2, LGP2, MDA-5, RIG-I, IRF7, TREX1 

and viperin.  Interestingly, STING was also important for the induction of caspase-1, 

NLRP12 and NLRP6 following HSV-1 infection.  In contrast, MyD88 proved to be more 

important for the induction of cytokines including TNF-α, pro-IL-1β, IL-1α and the IL- 

 



 89 

 

untreated HSV 

aim2 
11- 18 
nlrc5 
tlr9 
tlr3 
dub a 
11- 10 
mnda 
lfi204 
mda5 
lgp2 
lrf7 
nlrp3 
a20 
tnfa 
trex1 
casp1 
s ta!1 
tlr2 
tlr4 
tlr7 
tlr8 
viperin 
cxcl1 0 
rig-i 
ll1ra 
lfi205 
socs1 
zbp1 
cox2 
116 
ll- 1a 
ll- 1b 
cxcl1 
ll12b 
tlr1 
nlrc4 
lfna4 
!IrS 
nlrp6 
nlrp12 
tlr11 
1121 
ll12a 
1123a 
nos2 
lfnb1 

0 5 10 15 

Value 

Figurt 3.1: Type I IFN, ISG and cytokine rt.sponu.s to liSV~I depend on STING and My088 
signaling Mou.:H!'-Bl\•IDCs from C57BI/6, STING- and tvlyDSS-delicicnt mic.e. were left 
untre.ate.d or stimulate.d with JISV (f\•10 1• 1 0) tOr 4 hrs. RNA was extracte.d and subjected to 
nCounte.r Nanostring analysis. Ge.ne expression profiles are-displaye.d as a heat map 
(log I 0 transfOnncd). 



 90 

Table 3.1 : Nanostring Normalized mRNA Counts  
   Stimulation   
   Media     HSV   
Gene C57Bl/6 STING-/- MyD88-/- C57Bl/6 STING-/- MyD88-/- 
       
Cyokines, chemokines and their receptors    
Ifna4 1 10 11 101 10 109 
Ifnb1 4 2 4 1390 3 830 
Il-1a 11 7 10 2541 1459 69 
Il-1b 22 28 5 8697 5458 27 
Il1ra 71 51 32 38844 904 4305 
Il6 4 13 8 5981 705 341 
Il-10 247 227 271 3221 406 507 
Il12a 3 3 7 164 46 112 
Il12b 1 6 2 700 930 25 
Il-18 163 104 107 2045 126 976 
Il21 8 6 1 59 3 40 
Il23a 1 1 1 14 6 8 
cxcl1 9 9 2 288 5330 28 
cxcl10 46 22 17 117437 804 84494 
tnfa 104 103 30 12913 12145 3004 
       
PRRs, downstream signaling components    
aim2 175 141 137 1319 106 1161 
Ifi204 254 92 129 17878 437 11149 
Ifi205 14 4 6 33916 374 12545 
Irf7 175 35 164 16182 154 9994 
lgp2 145 133 172 7205 226 4898 
mda5 335 252 244 24102 485 13827 
mnda 226 67 105 19925 922 11583 
nlrc4 115 176 38 119 204 146 
nlrc5 126 125 103 2766 123 2001 
nlrp12 3 6 7 40 7 21 
nlrp3 320 310 220 5561 5342 1282 
nlrp6 1 15 8 51 4 24 
rig-i 64 18 56 67293 2119 18620 
tlr1 127 89 60 744 540 93 
tlr11 9 8 5 59 7 42 
tlr2 1349 1212 441 3918 5242 3953 
tlr3 118 86 89 3794 47 2949 
tlr4 1510 1499 1199 1446 542 1492 
tlr5 3 9 4 125 11 78 
tlr7 863 796 724 1469 408 1332 
tlr8 2497 2535 1976 3779 781 2439 
tlr9 286 225 238 1469 99 1176 
casp1 632 532 440 8608 1061 4127 
viperin 106 33 78 218056 710 153290 
zbp1 52 20 29 8052 53 5879 
       
Transcription factors      
stat1 411 346 323 8568 632 7554 
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   Media     HSV   
 C57Bl/6 STING-/- MyD88-/- C57Bl/6 STING-/- MyD88-/- 
       
Proinflammatory enzymes     
cox2 7 21 5 8763 1396 91 
trex1 612 503 407 11055 1383 6069 
nos2 11 7 5 5164 31 396 
       
Anti-inflammatory signaling components    
socs1 8 11 12 7215 543 3790 
duba 469 493 359 1772 781 1201 
a20 159 157 69 8020 2384 1159 
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Table 3.2 : Nanostring mRNA Fold Induction Compared to Media 
      
   HSV infected / Media     
Gene C567Bl/6 STING-/- MyD88-/-   
cxcl10 2546.7 36.2 4979.7   
Ifi205 2500.7 101.1 2033.2   
viperin 2061.2 21.3 1967.8   
Il6 1469.9 54.5 40.2   
cox2 1292.3 65.7 16.9   
rig-i 1055.7 114.6 335.3   
socs1 886.7 49.0 307.1   
Il12b 700.3 167.6 16.2   
Il1ra 550.8 17.8 132.9   
nos2 475.9 4.2 85.7   
Il-1b 400.8 196.7 5.9   
Ifnb1 341.6 1.5 215.2   
Il-1a 234.2 197.2 6.9   
zbp1 156.2 2.6 200.6   
tnfa 123.6 118.3 99.9   
Irf7 92.5 4.4 60.8   
mnda 88.0 13.8 110.4   
Ifna4 74.3 1.0 10.1   
mda5 71.9 1.9 56.6   
Ifi204 70.5 4.8 86.6   
Il12a 60.5 16.7 16.1   
a20 50.5 15.2 16.7   
lgp2 49.6 1.7 28.5   
tlr5 46.3 1.2 20.3   
nlrp6 37.7 0.2 2.8   
tlr3 32.2 0.5 33.2   
cxcl1 30.4 576.4 18.5   
nlrc5 21.9 1.0 19.4   
stat1 20.8 1.8 23.4   
trex1 18.1 2.7 14.9   
nlrp3 17.4 17.2 5.8   
nlrp12 14.9 1.1 3.1   
Il23a 13.9 6.4 10.8   
casp1 13.6 2.0 9.4   
Il-10 13.0 1.8 1.9   
Il-18 12.6 1.2 9.1   
aim2 7.5 0.8 8.5   
Il21 7.2 0.5 52.3   
tlr11 6.2 0.9 9.0   
tlr1 5.8 6.1 1.5   
tlr9 5.1 0.4 5.0   
duba 3.8 1.6 3.3   
tlr2 2.9 4.3 9.0   
tlr7 1.7 0.5 1.8   
tlr8 1.5 0.3 1.2   
nlrc4 1.0 1.2 3.9   
tlr4 1.0 0.4 1.2   
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12 p40 s ubunit (IL-12B) (Fig. 3.1 and Table 3.2).  In addition, maximal induction of 

cytokines such as IL-6, pro-IL-18 and IL-10 required both signal pathways to be intact.  

Thus, HSV-1 infection activates both TLR-MyD88 and cytosolic receptor-STING 

pathways that function both independently and synergistically. 

 

HSV-1 induces transcription of pro-IL-1β in a TLR2-MyD88-dependent manner  

Having broadly defined the inflammatory pathways activated by HSV-1, we 

focused our investigation on t he mechanism of pro-IL-1β induction.  We began by 

comparing the ability of the wild-type KOS HSV-1 strain and the 7134 s train to drive 

pro-IL-1β transcription.  In keeping with ICP0’s role as an inhibitor of the inflammatory 

response, the wild-type KOS strain induced very little pro-IL-1β while infection with the 

ICP0 knockout strain, 7134 led to a 200-fold increase in pro-IL-1β mRNA in BMDM 

(Fig. 3.2a).  Treatment of the 7134 strain with UV-irradiation further increased the pro-

IL-1β mRNA levels, indicating that replication was not required for pro-IL-1β 

production.  We next examined the expression of pro-IL-1β in BMDM and BMDC 

deficient in MyD88.  Induction of pro-IL-1β by HSV-1 and LPS was abrogated in 

MyD88 knockout lines (Fig 3.2b,c).  This confirmed our Nanostring analysis, indicating 

that TLR recognition of HSV-1 was responsible for pro-IL-1β induction.  The MyD88 

adapter molecule is important for TLR2 and TLR9 signaling, but unnecessary for TLR3-

driven responses.  T o determine if TLR2 or TLR9 were responsible for pro-IL-1β 

induction, the response of BMDMs and BMDCs derived from TLR2-, TLR9- and 

TLR2/9-deficient mice was examined.  T ranscription of pro-IL-1β was completely 

abrogated in TLR2 and TLR2/9, but not TLR9 knockouts (Fig. 3.2d,e).  Interestingly,  
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augmenting the TLR2-driven response in macrophages.  We also examined TNF-α loss 

of TLR9 in BMDMs led to a partial reduction in IL-1β transcription.  N evertheless, 

induction remained entirely dependent on TLR2, suggesting a limited role for TLR9 in 

expression in TLR2, TLR9 and TLR2/9 knockouts and found that like pro-IL-1β, 

induction was dependent on T LR2 (Fig 3.2f).  These findings demonstrate TLR2’s 

central role in dendritic cell and macrophage-dependent cytokine and chemokine 

responses to HSV-1 (178). Thus the TLR2-MyD88 signaling pathway is necessary for 

HSV-1-driven ‘priming’ of the inflammasome in dendritic cells and macrophages 

through the production of pro-IL-1β and ‘licensing’ via the upregulation of 

inflammasome receptors. 

 

HSV-1 induces IL-1β secretion in PEC, BMDM and BMDC 

Secretion of mature IL-1β depends on both transcription and translation of the 

pro-forms of this cytokine as well as activation via inflammasome signaling.  Although a 

number of studies have demonstrated that IL-1β and IL-18 are important for the anti-viral 

responses in vivo, how HSV-1 activates the inflammasome is not well understood (88, 

177).  An early study found the McIntyre strain of HSV-1 could induce caspase-1 

activation and cleavage of IL-1β in THP-1 cells but failed to implicate a specific receptor 

in inflammasome assembly (100).  A recent report by Johnson et al. suggested HSV-1 

infection induces the transient recruitment of NLRP3 and IFI16 to inflammasome 

complexes (181).  A lthough the authors were able to visualize IL-1β cleavage in the 

cellular lysates following HSV-1 infection they could not detect it in the supernatants and 

suggested that HSV-1 is able to block IL-1β secretion through multiple mechanisms 
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(181).  Other studies using human macrophages have also failed to detect IL-1β secretion 

following HSV-1 challenge (212).  Using an LPS prime prior to HSV-1 challenge enable 

detection of IL-1β secretion into the supernatant (Fig 3.3a,b).  Both the wild-type KOS 

HSV-1 strain and the 7134 strain were able to induce IL-1β secretion, however the 7134 

strain produced approximately twice as much (Fig. 3.3a).  HSV-1 infection, in general, 

did not induce high levels of IL-1β secretion compared to ATP or poly(dA:dT) controls; 

therefore, we chose to use the 7134 s train moving forward in order to compare 

differences in IL-1β production in inflammasome-deficient cell lines.  Levels of IL-1β 

secretion increased as the 7134 HSV MOI was raised (Fig. 3.3b).  In addition, maturation 

of IL-1β was blocked by the chemical caspase-1 inhibitor z-VAD-FMK, suggesting 

secretion was indeed caspase-dependent (Fig 3.3c).    

 

IL-1β maturation is mediated by NLRP3 in dendritic cells and macrophages 

To date, two PRRs have been shown to assemble inflammasomes and mediate IL-

1β and IL-18 cleavage in response to viral infection.  T hese include NLRP3, that has 

been shown to respond to influenza A virus and adenovirus, and AIM2, that responds to 

murine cytomegalovirus and vaccinia virus.  R athinam et al. previously demonstrated 

that AIM2 is not involved in inflammasome assembly in response to HSV-1 (16).  To 

evaluate the contribution of NLRs to inflammasome activation, BMDMs and BMDCs 

derived from NLRP3, NLRP12, ASC and capase-1-deficient mice were primed with LPS 

then challenged with the 7134 s train of HSV-1.  We found that while wild-type 

macrophages and DCs were able to secrete IL-1β in response to HSV-1, those lacking 

NLRP3, ASC and caspase-1 were unable to respond (Figure 3.3d,e).  Importantly,  
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NLRP3-deficient cells were still able to respond normally to poly(dA:dT), a synthetic 

DNA species that activates AIM2 (Fig. 3.3f).  To confirm this finding, protein was 

extracted from the supernatants and IL-1β was visualized by Western blot (Fig. 3.3f,g).  

In keeping with our ELISA results, NLRP3-deficient BMDC demonstrated reduced 

production of mature IL-1β in response to HSV-1.  In contrast, NLRP12-deficient 

BMDCs showed no defect in IL-1β production (Fig. 3.3g).  

 

IL-1β maturation is mediated by NLRP12 in neutrophils 

During early stages of HSV-1 infection, neutrophils infiltrate areas of viral 

replication in large numbers (213).  To examine the role of these PRRs in neutrophils, we 

elicited a neutrophil-enriched peritoneal exudate.  Although neutrophil migration in 

NLRP12-deficient mice was found to be impaired in a murine model of contact 

hypersensitivity (122), no defect in neutrophil recruitment to the peritoneum was 

observed following thioglycollate injection.  Compared to dendritic cells and 

macrophages, neutrophils express high basal levels of NLRP12 that is increased 

following stimulation with HSV-1 (Fig 3.4a).  In contrast to the macrophage and 

dendritic lines tested, neutrophils relied on NLRP12 to secrete IL-1β in response to HSV-

1 (Fig. 3.4b).  Unlike IL-1β, secretion of TNF-α was not reduced by the loss of NRLP12, 

indicating a specific deficit in inflammasome function rather than a general loss of 

responsiveness (Fig. 3.4c).   These results were confirmed by Western blot (Fig. 3.3c).  

The smear observed in the media control, ASC-deficient lane is an artifact not observed 

in subsequent Western blots.  Unlike other cell types tested, thioglycollate-elicited 

neutrophils did not require priming with LPS.  Exposure to HSV-1 alone was sufficient to 
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induce IL-1β secretion.  IL-1β release was also abolished in ASC-deficient mice, 

suggesting that NLRP12 utilizes ASC to assemble an inflammasome (Fig 3.4d) (214). 

 

Discussion 

 

 The cytokines IL-1β and IL-18 play a crucial role in the immune response to 

HSV-1.  Mice genetically deficient in IL-1β fail to mount a robust immune response to 

HSV-1, which leads to increased viral load, dissemination and death (177).  Similarly, 

genetic deficiency in IL-18 increases susceptibility to HSV-1 infection while 

administration of IL-18 is protective (88, 201).  In this study, we characterized the 

receptors and pathways responsible for the induction and maturation of IL-1β and IL-18 

in dendritic cells, macrophages and neutrophils in response to HSV-1.  We began by 

examining the basal expression levels of cytokines, chemokines and PRRs and their 

induction following HSV-1 infection.  The receptors expressed at rest may be of 

particular importance during HSV-1 infection as IL-1β production in vitro has been 

reported to be early and brief, perhaps due to subversion of cellular machinery at later 

time points (181, 215).  We found BMDC expressed high basal levels of TLR2 and 

NLRP3 mRNA, which was further increased following HSV-1 infection.  Dendritic cells 

and macrophages employed the TLR2-MyD88 pathway to drive expression of pro-IL-1β 

following HSV-1 infection.  W hile expression of pro-IL-1β was negligible following 

challenge with the wild-type KOS HSV-1 strain, it was robustly induced by the ICP0-

deficient 7134 strain.  This finding agrees with a previous report demonstrating that ICP0 

inhibits TLR2-mediated inflammatory cytokine production (168).  Interestingly, in 
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contrast to pro-IL-1β, expression of pro-IL-18 was dependent on both MyD88 and 

STING dependent pathways.   

Although a number of studies have failed to detect IL-1β secretion by 

macrophages or fibroblasts infected with HSV-1, we found that with prior LPS 

stimulation, HSV-1 challenge generated sufficient IL-1β production by cultured 

macrophages and DCs to allow detection in cellular supernatants (181, 212).  Moreover, 

secretion was dependent on c aspase activity as it was blocked by the chemical pan-

caspase inhibitor z-VAD-FMK.  Secretion of cleaved IL-1β into supernatant was evident 

by Western blot.  However, the secretion of active caspase-1 subunits was not observed.  

In a recent study, NLRP3 and IFI16 were found to associate with ASC 4 hours after 

HSV-1 infection (181).  However, at later time points, this association was lost.  The 

authors found that HSV-1 induced the degradation of IFI16 in an ICP0-dependent 

manner.  By comparison, NLRP3 was not degraded, but after early time points no longer 

colocalized with caspase-1 (181).  Thus, the authors hypothesized that HSV-1 had 

evolved mechanisms to degrade IFI16 and sequester caspase-1 in actin clusters in order 

to inhibit inflammasome activation.  This may explain why they were unable to detect 

secretion of active IL-1β into the supernatants (181).  Importantly, our LPS priming 

strategy induced high levels of pro-IL-1β expression allowing the visualization of IL-1β 

secretion in the supernatants.  However, sequestration of caspase-1 may account for our 

inability to detect secretion of the active caspase-1 subunits.   

Our findings suggest HSV-1 induces secretion of active IL-1β through activation 

of the NLRP3 inflammasome receptor in dendritic cells and macrophages.  Loss of 

NLRP3, the adapter ASC, or capase-1 led to a reduced IL-1β response.  Notably, 
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NLRP3-deficient BMDC and BMDC still produced small amounts of IL-1β in response 

to HSV-1 perhaps indicating other receptors such as IFI16 may contribute to IL-1β 

production as was suggested by Johnson et al (181).  Whether IFI16 is a bona fide 

inflammasome assembling receptor is still under debate.  E vidence for this function is 

often circumstantial and based on colocalization of IFI16 with ASC, an interaction which 

others have suggested, in fact, interferes with the activity of NLRP3 and AIM2 

inflammasomes (82, 207).  In addition, IFI16 has been shown to be important for Type I 

IFN induction in response to HSV-1 and treatment with IFN strongly augments the 

cytokine response to HSV-1 (70, 216).  T hus IFI16 may potentiate cytokine responses 

indirectly by inducing IFN rather than by direct inflammasome assembly.   

In contrast to dendritic cells and macrophages, IL-1β secretion in neutrophils was 

dependent on NLRP12.  Neutrophils are the first infiltrating leukocytes observed at sites 

of HSV-1 infection.  A lthough neutrophils are historically thought of as anti-bacterial, 

recent evidence suggests they play an important role in the antiviral response (217, 218).  

Vladimer et al. recently reported a role for the NLRP12 inflammasome in recognizing the 

bacterial pathogen Yersinia pestis (117).  In this study, NLRP12 was important for IL-1β 

and IL-18 release from neutrophils and macrophages.  Moreover, the IL-18 produced by 

NLRP12 stimulated IFN-γ production that proved to be essential for limiting Y. Pestis 

infection.  We found NLRP12 mRNA expression was low in resting BMDC, but could be 

induced following HSV-1 stimulation.  H owever, NLRP3 was constitutively expressed 

and, following HSV-1 challenge, induced to levels more than a hundred-fold higher than 

NLRP12.  By comparison we found NLRP12 expression was high basally in neutrophils.  

While both NLRP3 and NLRP12 can be activated by HSV-1, the kinetics of IL-1β 
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secretion are known to be rapid and brief and evidence suggests HSV-1 has mechanisms 

for degrading receptors and sequestering caspase-1 (181).  Thus, inflammasome 

formation may rely heavily on whichever receptor is constitutively expressed at the time 

of HSV-1 infection.  Importantly, the neutrophil-rich peritoneal exudate utilized in these 

experiments did contain small numbers of other inflammatory cells including 

macrophages and B cells.  It is possible these resident and infiltrating inflammatory cells 

contributed to the observed phenotype.  Additional experiments using negative selection 

to further purify the neutrophils are necessary to confirm the specific role of NLRP12 in 

inflammasome formation in neutrophils.   

Previous studies have shown that IL-1β and IL-18 are important in the response to 

HSV-1.  This dissertation demonstrates that the TLR2-MyD88 signaling pathway is 

responsible for IL-1β expression and that MyD88 and STING act cooperatively to induce 

IL-18.  Johnson et al. observed the association of NLRP3 and ASC and the cytoplasmic 

accumulation of cleaved IL-1β following HSV-1 infection.  I showed herein that LPS 

priming of cells prior to HSV-1 challenge results in secretion of mature IL-1β into the 

supernatant.  M oreover, I demonstrated that NLRP3-deficient macrophages and DCs 

secrete significantly lower amounts of IL-1β.  In addition, I have provided evidence that 

NLRP12 is important for IL-1β secretion in neutrophils.  The inhibitory effects of the 

ICP0 protein on IL-1β secretion and our inability to observe caspase-1 secretion into the 

supernatants indicate that HSV-1 has evolved multiple strategies to curtail IL-1β 

production.  These studies provide a methodology for further investigation into 

inflammasome signaling in response to HSV-1, as well as the subversion of this pathway.  
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Chapter IV  Materials and Methods 

 

Reagents and Plasmid Constructs 

ATP, LPS, nigericin and poly(dA:dT) were from Sigma-Aldrich (St. Louis, MO).  

A151 (5’-TTAGGGTTAGGGTTAGGGTTAGGG-3’), C151 (5’-

TTCAAATTCAAATTCAAATTCAAA-3’), 4348 (5’-TCGTATCCTGGAGGGGAAG-

3’), 1826 ( 5’-TCCATGACGTTCCTGACGTT-3’), 10104 (5’-

TCGTCGTTTCGTCGTTTTGTCGTT-3’), 2336 (5’-GGGgacgacgtccgtGGGGGG-3’) 

constructs were synthesized by IDT technologies (Coralville, IA) (219-221).  Residues 

with phosphorothioate linkages are capitalized.  A 3’-biotin tag was added to the sup 

ODN sequence for pulldowns.  mCMV (Smith strain) was a gift from R. Welsh (UMASS 

Medical School, MA), L. monocytogenes (clinical isolate 10403s) was from V. 

Boyartchuk (UMASS Medical School, MA).  HSV-1 (KOS and 7134) was a gift from D. 

Knipe (Harvard Medical School, MA).  Sendai virus (SV, Cantrell strain) was purchased 

from Charles River Laboratories (Wilmington, MA).  Lipofectamine 2000 was from 

Invitrogen (Carlsbad, CA).  Genejuice was from Novagen (Madison, WI).  ZVAD-FMK 

was from Calbiochem (San Diego, CA). AIM2, pro-IL-1β, ASC and caspase-1 were as 

described (16, 17). 

 

Mice 

C57BL/6 mice were from Jackson Laboratories (Bar Harbor, ME).  Caspase-1 

deficient mice were a gift from M. Starnbach (Harvard Medical School, MA).  ASC-, 

NLRP3- and NLRP12-deficient mice were generated by Millennium Pharmaceuticals 
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(Cambridge, MA) and were backcrossed 8-11 generations to C57BL/6 background.  

MyD88-, TLR2-, TLR9- and TLR2/9-deficient mice were a gift from S. Akira (Nippon 

Medical School, Japan).  All experiments were conducted with mice maintained under 

specific pathogen-free conditions in the animal facilities at the UMASS Medical School 

and were carried out in accordance with the guidelines set forth by the Institutional 

Animal Care and Use Committee. 

 

Cell Culture, Stimulation and ELISA 

HEK293T cells (5 x 104 cells/well) in 96-well plates were co-transfected in 

triplicate using GeneJuice (4 µl/ml) with plasmids encoding pro-IL-1β and the indicated 

expression plasmids (total DNA, 200 ng).  Cultures were incubated for two hours then 

exposed to sup ODN (3 µM) or left untreated; 24hrs later supernatants were collected and 

cells were lysed using a 1% NP-40 lysis buffer.  PEC, BMDM and BMDC were 

generated as described (17, 222).  Peritoneal exudate neutrophils were harvested 4 hrs 

after i.p. injection of 1 ml of thioglycolate, as described (117).  Cells were plated at 2x105 

per well for ELISA, 2-5x106 per well for immunoblotting.  Cells were treated with LPS 

(200 ng/ml) for 2 hrs prior to the addition sup ODN or CpG ODN then incubated for an 

additional hour before secondary stimulation.  ATP (5 mM) or Nigericin (10 µM) were 

added one hour before harvesting supernantants and lysates.  P oly(dA:dT) was 

transfected using Lipofectamine 2000 a t a concentration of 0.5 µg/ml, 6 hrs before 

harvesting.  Cells were infected with MCMV and HSV-1 at an MOI of 10.  Cells were 

exposed to Sendai virus at 200 HAU/ml.  Cells were challenged with L. monocytogenes 

at an MOI of 5 for 1 hr.  Cells were then washed twice and media containing gentamicin 
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(100 µg/ml) was added.  A ll infections were incubated for 16 hrs before harvest. 

Supernatants from cell culture experiments were assayed for IL-1β (BD Biosciences, 

Franklin Lakes, NJ) and IL-18 (R&D Systems Piscataway, NJ) by sandwich ELISA. 

 

Nanostring and RT-QPCR experiments 

Cells were treated as described above and RNA was purified using an RNeasy Mini Kit 

(QIAGEN).  T otal RNA was hybridized to a custom gene expression CodeSet and 

analyzed on a n nCounter Digital Analyzer.  Counts were normalized to internal and 

endogenous controls per Nanostring Technologies’ specifications.  A  pseudocount was 

ascribed to all values such that the smallest value in the dataset was equal to 1.  Values 

were log-transformed and displayed via heat map (Euclidean clustering) generated using 

the ggplot package within the open source R software environment.  c DNA was 

synthesized from total RNA and quantitative RT-PCR analysis was performed as 

previously described (223).   G ene expression is shown as a ratio of gene copy number 

per 100 copies of β-Actin + SD. 

 

Western Blotting 

Supernatants were harvested and precipitated by methanol chloroform extraction.  

Cells were washed twice with PBS and lysed using a 1% NP-40 buffer.  Immunoblotting 

was performed as described (16).  Anti-Flag antibody (M2) was from Sigma, anti-murine 

caspase-1 p10 (sc-514) from Santa Cruz Biotechnology Inc. (Santa Cruz, CA), anti-

murine caspase-1 p20 (5B10) from eBioscience, anti-murine IL-1β from R&D Systems 
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(Minneapolis, MN), and anti-mouse HMGB1 (3E8) was from BioLegend (San Diego, 

CA).    

 

ASC Oligomerization Assay 

 ASC oligomerization assay was performed as described with minor modifications 

(101). In brief, BMDM (1 x 107 cells/condition) were primed with LPS (200 ng/ml) for 2 

hrs prior to the addition of A151 or C151 (3 µM).  After 30 minutes, 25 µM of zVAD-

FMK was added followed 30 minutes later by poly(dA:dT) transfection (0.5 µg/ml) using 

Lipofectamine 2000.  Cells were washed and lysed with 1% NP-40 lysis buffer 3 hrs after 

poly(dA:dT) challenge.  Lysates were cleared by centrifugation at 300 g.  

Macromolecular structures were then pelleted by centrifugation at 4,500 x g, resuspended 

in 50 µl CHAPS buffer, and cross-linked with disuccinimidyl suberate (2 µM) (Pierce 

Thermo Scientific, Rockford, IL).  Supernatants from this step were saved and labeled 

‘lysate’ in ASC blots.  The pellet was washed, resuspended in Laemmli buffer, incubated 

overnight with shaking at 4 oC, then boiled and electrophoresed on a 12% SDS-

acrylamide gel as the ‘cross-linked’ fraction.  Blots were probed with anti-ASC antibody 

(N-15-R, Santa Cruz Biotechnology).      

 

Confocal Microscopy 

Confocal microscopy was performed using a Leica SP2 AOBS confocal laser 

scanning microscope.  Immortalized murine macrophages stably expressing AIM2- or 

ASC-citrine constructs were plated at 2 x  106 cells/ml on glass bottom 35 mM culture 

dishes (MatTek corportation, Ashland, MA) and allowed to adhere.  A151 or C151 was 
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added one hour prior to transfection with poly(dA:dT) or exposure to nigericin.  T wo 

hours after poly(dA:dT) challenge or 30 minutes after nigericin exposure cultures were 

photographed.  The total number of fluorescent cells was recorded in more than twenty 

independent fields representing more than 1000 cells and divided into those displaying 

diffuse cytoplasmic staining and those exhibiting speck formation.  Little variability in 

the percent of cell exhibiting speck formation was observed between experiments.  

Graphs quantifying speck formation were calculated by combining data from three 

independent experiments.   

 

Pull-down Assay  

Immortalized murine macrophages (5 x 106 cells/condition) were lysed in an ice-

cold high salt lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris HCl, pH 7.9, 100 mM 

EDTA, 10% glycerol, 10 mM NaF, dithiothreitol (DTT) and protease inhibitor cocktail as 

described previously (224).  Cell debris was removed by centrifugation and total lysate 

was incubated with 6 µg of 3’-biotinylated A151 and pre-washed streptavidin-agarose 

beads (50% w/v) for 2 hrs at 4 oC. For competition assays, an increasing amount of 

poly(dA:dT) was mixed with biotinylated A151 before addition to the lysate.  Bead 

pellets were washed, boiled in Laemmli buffer, and electrophoresed on a 12% SDS-

polyacrylamide gel.  Blots were probed with polyclonal anti-mouse AIM2 antibody from 

Genentech (4G9, San Francisco, CA) and anti-mouse β-actin (AC-74, Sigma).       

 

Statistical Analysis  
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One-way analysis of variance followed by the Bonferroni post-test was performed 

using Prism 4 Software (GraphPad, San Diego, CA).  P values of <0.05 were considered 

significant.   
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Chapter V Discussion and Perspectives 
 

 
Cells of the innate and adaptive immune systems utilize a v ariety of PRRs to 

recognize DNA.  Endosomal nucleic acid receptors such as TLR7, TLR8, and TLR9 are 

crucial for host defense, yet can have deleterious functions in immune-mediated diseases.  

TLR9 responds to ssDNA containing unmethylated CpG motifs (225).  In humans TLR9 

expression is limited to plamacytoid dendritic cells and B cells while it i s more widely 

expressed in mice.  As our understanding of TLR9 has expanded, harnessing TLR-driven 

cellular responses to modulate inflammation and immunity has become reality.  S hort 

synthetic oligodeoxynucleotides (ODN) containing CpG motifs have remarkable 

immunostimulatory properties such as driving cytokine and IFN production, enhancing 

APC functional, and lymphocyte maturation (8).  T hese CpG ODNs have tantalizing 

immunotherapeutic potential.  By virtue of their stimulatory properties they can be used 

to enhance vaccine responses, as anti-cancer agents, and to reduce the transmission of 

HIV (193, 226, 227) .  Interestingly, these CpG ODN have been reported to suppress 

pathological immunity as evidenced by their beneficial effects on allergic diseases such 

as asthma, and autoimmune diseases such as diabetes (228-230).  How CpG treatment 

can reduce certain inflammatory disease and exacerbate others is still poorly understood 

(231).  It has been suggested that these seemingly paradoxical effects are due to TLR9-

dependent induction of the immunosuppressive enzyme IDO and the stimulation of 

regulatory T cell responses however their mechanisms of action may be more complex 

than previously thought (230, 232).  

In concert with the establishment of synthetic stimulatory CpG ODNs, a number 

of groups have developed suppressive ODN (sup ODN) sequences that compete with 
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CpG motifs thereby blocking TLR9 activation.  D r. Klinman and collaborators have 

pioneered the use of the telomere-derived suppressive A151 construct (149).  O ther 

groups have transformed CpG ODNs into suppressive constructs by altering their 

sequence, for example by replacing the cytosine residue with a guanine (GpG) or 

reversing the two residues (GpC) (150, 160).  That these constructs were first recognized 

for their ability to prevent TLR9 activation has led many to explain their in vivo effects in 

this context.  However more recent studies show the potency of inhibition by sup ODNs 

is strongly affected by sequence - a phenomenon not explained by their relative avidity to 

the TLR9 ectodomain (148).  In addition suppression of Th1 differentiation is observed 

even in TLR9-deficient CD4+ T cells suggesting that their biological activity may have 

more complex mechanisms of action than simply blocking TLR9 (154).  Indeed, recent 

evidence suggests certain GpC motifs can activate TLR7, the well-studied 2114 construct 

may prevent TLR2 activation and A151 can bind directly to STAT1 and STAT4 thereby 

interfering with Type I IFN and cytokine signaling (153, 158, 160 ).  Despite our 

incomplete understanding of their mechanisms of action, the anti-inflammatory range and 

therapeutic value of sup ODNs is promising. Administration of A151 has been shown to 

be beneficial in murine models of CpG and collagen-induced arthritis, toxic shock, 

systemic lupus erythematosus, atherosclerosis, silica-induced pulmonary inflammation 

and influenza infection (149-156).  Likewise GpG has been used to suppress 

experimental autoimmune encephalomyelitis and lupus nephritis (150, 233).  

In recent years, a number of cytosolic DNA sensors have been discovered 

including IFI16, AIM2, DDX41 and cGAS (16, 49, 68, 70).  In the second chapter of this 

dissertation we explored the role of suppressive oligodeoxynucleotides in inhibiting 
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cytosolic DNA sensing pathways.  Using the synthetic dsDNA ligand poly(dA:dT) and 

pathogens including HSV-1, MCMV and Listeria monocytogenes we found suppressive 

ODNs were able to block dsDNA-specific cytosolic receptors while having no effect on 

TLR4, RIG-I or NLRP3 mediated signaling.  Moreover backbone chemistry was found to 

be of central importance to inhibition as only phosphorothioate (PS) DNA was able to 

bind to receptors and suppress Type I IFN and cytokine production.  Interestingly while 

the guanine-rich A151 construct more potently inhibited AIM2 signaling, the C151 

construct was a more potent inhibitor of type I IFN and ISG.  In support of an affinity-

based model of competitive inhibition, the potency of these constructs correlated with 

their relative affinity for the AIM2 and IFI16 receptors.  Using a number of different 

constructs we noticed that while total guanine or adenine content affected inhibitory 

potency the specific sequence did not appear to be of great importance.  For example, 

class B stimulatory ODNs 1826 and 10104 inhibited AIM2 with a similar potency to 

A151.  T his off target mechanism of action may contribute to many of the anti-

inflammatory effects of suppressive and stimulatory ODN alike.   

Evidence that PS backbone ssDNA constructs, even those containing stimulatory 

CpG motifs, can mediate inhibition of cytosolic receptor signaling has not been 

previously reported and is an important concept.  Particularly in light of the numerous 

clinical trials in all phases of development using CpG ODN c onstructs (234).  With 

widespread use as vaccine adjuvants it is possible CpG ODN-mediated suppression of 

cytosolic sensing pathways may enhance susceptibility to certain pathogenic infections.  

This was evinced in a study by Trieu et al. which demonstrated that treatment with the 

suppressive 2114 construct increased bacterial loads of the intracellular pathogen 



 113 

Salmonella typhimurium by suppressing NF-κB-dependent cytokine responses in a 

TLR9-independent manner (158).  In addition to CpG ODN, antisense PS constructs are 

widely employed in the laboratory to silence expression of target proteins and have 

recently found traction as therapies in the clinic.  F ormivirsen - a 21bp PS antisense 

construct - has already been approved by the FDA for the treatment of cytomegalovirus 

retinitis in immunocompromised patients (235).  However numerous studies report 

unexplained, non-sequence specific effects of antisense constructs (236, 237).  For 

example, treatment of human leukemia HL-60 cells with PS but not PD antisense 

constructs has also been reported to inhibit proliferation and induce cell death in a 

manner that is independent of sequence (131).  It is tempting to speculate that interactions 

between these constructs and members of the PYHIN family, such as IFI16 and p204, 

known to regulate cell cycle progression and survival, may underlie many of these 

previously unexplained biological effects (80). 

In addition to describing the role of backbone chemistry in ODN potency and 

affinity for PRRs, this thesis has begun to define the contributions of nucleotide content 

to inhibition.  Our findings indicate that by altering sequences and refining the dose of 

these constructs it ma y be possible to selectively block specific pathways allowing 

examination of the relative contributions of different cytosolic receptors to the 

inflammatory response.  Alternatively, antisense sequences or dosing strategies could be 

chosen to minimize off target effects.  However, more work, defining the dissociation 

constants of these sup ODN, is needed to further explore the contributions of sequence to 

inhibitory potency.  F inally, we have preliminary evidence that indicates suppressive 
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ODN can interfere with signaling mediated by other cytoplasmic receptors such as 

DDX41 and cGAS suggesting additional anti-inflammatory mechanisms exist.   

The cytokines IL-1β and IL-18 play a crucial role in the immune response to 

HSV-1.  Mice lacking IL-1β or IL-18 are unable to control viral dissemination and are 

susceptible to lethal encephalitis (177, 201).  In the third chapter of this dissertation the 

innate pathways responsible for both inducing the pro-forms and ultimately maturing 

these cytokines were investigated.  The TLR2-MyD88 signal axis was found to be 

essential for induction of pro-IL-1β in macrophages and CDCs.  Induction of pro-IL-1β 

was blocked by the viral ICP0, a protein that has been shown to induce degradation of 

MyD88 (168).  In contrast, optimal pro-IL-18 induction required both MyD88 and 

STING suggesting both TLR and cytosolic receptor pathways synergistically control 

expression of this cytokine.  Consistent with the need to both ‘prime’ and ‘license’ the 

inflammasome, infection with HSV-1 also stimulated MyD88-dependent expression of 

NLRP3 in dendritic cells.  Where other attempts to detect IL-1β production have failed, 

our LPS prime, HSV-1 challenge strategy results in secretion of mature IL-1β (181, 212).  

In macrophages and DCs secretion of IL-1β was dependent on NLRP3.  Although we did 

not identify a specific ligand for NLRP3, inactivation of HSV-1 by UV-irradiation 

prevented IL-1β production indicating replication competent virus is required for 

activation.  In spite of priming with LPS to produce high levels of pro-IL-1β, treatment 

with the wild-type KOS strain of HSV-1 induced lower amounts of IL-1β secretion than 

the ICP0-deficient 7134 strain.  It is possible that ICP0 also plays a direct role in blocking 

inflammasome signaling through the degradation of inflammasome components as has 

been reported for IFI16 (181).  Alternatively, it may indirectly influence cytokine 
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production by inhibiting Type I IFN signaling, which is known to signal in a paracrine 

and autocrine manner to induce ISGs and amplify cytokine secretion (238).  Additional 

studies beyond the scope of this dissertation are required to further investigate the 

functional interaction between the viral protein ICP0 and NLRP3 signaling.   

This study also reveals a role for NLRP12 in inflammasome signaling in 

neutrophils, another cell type that plays a critical role in the acute immune response 

against HSV-1.  N eutrophils rapidly infiltrate sites of HSV-1 infection and have been 

shown adhere to infected cells and phagocytose antibody coated herpes virions (239-

241).  Depletion of neutrophils in the bloodstream before corneal infection with HSV-1 

caused increased viral replication and dissemination rendering mice significantly more 

susceptible to lethal encephalitis (242).  Inflammasome signaling and IL-1β production 

have been shown to be important for neutrophil recruitment and neutrophil extracellular 

trap (NET) formation in cases of bacterial infection and sterile inflammation (243-245).  

Although other serine proteases have been implicated in IL-1β processing (89), we 

demonstrate here that IL-1β secretion in neutrophils responding to HSV-1 is largely 

dependent on the NLRP12 and ASC.   

Inhibition of IL-1β signaling is a potential therapeutic strategy in a variety of 

inflammatory disorders including coronary artery disease and inflammatory arthritis and 

is beneficial in some manifestations of HSV-1 infection (215, 246).  Anakinra, a 

recombinant IL-1 receptor antagonist is used in the treatment of rheumatoid arthritis but 

can lead to pain at the injection site and increased risk of infection (247).  As 

demonstrated, different innate cell types rely on different receptors to assemble 

inflammasomes in response to HSV-1.  T hus, rather than general inhibition of IL-1β 
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signaling, targeted therapy directed against specific receptors may reduce excessive 

immune responses without impairing the ability to fight infection.  For this reason a more 

comprehensive understanding of the cell type specific mechanisms responsible for IL-1β 

and IL-18 production is essential for the development of novel and balanced therapeutic 

interventions.   
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