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ABSTRACT 

Lung cancer is the leading cause of cancer-related mortality worldwide. The main 

risk factor associated with lung cancer is cigarette smoking.  Research through the 

years suggests that nicotine in cigarettes promotes lung cancer by activating 

signaling pathways that lead to cell proliferation, cell survival, angiogenesis, and 

metastasis.  Nicotine’s cellular actions are mediated by its cognate receptors, 

nicotinic acetylcholine receptors (nAChRs).  Here, I describe the expression levels 

of all known human nAChR subunit genes in both normal and lung cancer cells.  

Of note, the genes encoding the α5, α3, and β4 subunits (CHRNA5/A3/B4) are 

over-expressed in small cell lung carcinoma (SCLC), the most aggressive form of 

lung cancer.  This over-expression is regulated by ASCL1, a transcription factor 

important in normal lung development and lung carcinogenesis.  The 

CHRNA5/A3/B4 locus has recently been the focus of a series of genetic studies 

showing that polymorphisms in this region confer risk for both nicotine 

dependence and lung cancer.  I show that CHRNA5/A3/B4 depletion results in 

decreased SCLC cell viability.  Furthermore, while nicotine promotes SCLC cell 

viability and tumor growth, blockade of α3β4 nAChRs inhibits SCLC cell viability. 

These results suggest that increased expression and function of nAChRs, 

specifically the α3β4α5 subtype, potentiate the effects of nicotine in SCLC.  This 

dual hit from the carcinogens in tobacco and the cancer-promoting effects of 

nicotine, may provide a possible mechanism for the increased aggressiveness of 

SCLC.  In addition, nAChRs can be activated by the endogenous ligand, 
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acetylcholine, which acts as an autocrine/paracrine growth factor in SCLC.  

Increased function of α3β4α5 nAChRs in SCLC could also potentiate 

acetylcholine’s mitogenic effects.  This mechanism, combined with other known 

autocrine/paracrine growth loops in SCLC, may help explain the ineffectiveness of 

available therapies against SCLC.  In an effort to add to the current arsenal 

against SCLC, I screened a 1280-compund library using a bioluminescence-based 

viability assay I developed for high-throughput applications. Primary screening, 

followed by secondary and tertiary verification, indicate that pharmacologically 

active compounds targeting neuroendocrine markers inhibit SCLC cell viability. 
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INTRODUCTION 
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It’s easy to quit smoking.  I’ve done it hundreds of times. 
- Mark Twain 

 

I.A.Lung Cancer 

More than 1 billion people around the world smoke [1].  Approximately 10 

million cigarettes are sold every minute, resulting in more than 5 million deaths 

per year.  This makes tobacco use the leading cause of preventable deaths 

worldwide.  Roughly 600,000 of these deaths are due to second-hand smoke.  In 

the United States, overall tobacco use has been declining, though over 45 million 

adults still continue to smoke [2].   

 

Based on a recent Surgeon General’s report, the list of diseases linked to 

tobacco use is expanding [3].  Specifically, a causal relationship was described 

between active smoking and cardiovascular diseases, respiratory diseases, 

reproductive disorders, and several types of cancer, including cancers of the 

lung, bladder, cervix, esophagus, kidney, larynx, mouth, pancreas, stomach as 

well as leukemia. This is not surprising given that cigarette smoke contains 4,000 

chemicals, 250 of which are known to be harmful, and at least 50 of which are 

carcinogens.  The most potent of these carcinogens are polycyclic aromatic 

hydrocarbons and nicotine metabolites such as 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN).  These nitrosamines 

form DNA adducts that cause mutations leading to cancer [4]. 
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Smoking is estimated to cause more than 80% of lung cancer cases in 

developed countries [5].  In the United States, 24% of male smokers are 

expected to develop lung cancer in their lifetime, with a 5- to 10-fold increase in 

risk compared to non-smokers. The incidence rate for lung cancer in the country 

is surpassed only by that for prostate cancer in males and breast cancer in 

females [6].  

 

Lung cancer is one of the most common types of cancer, accounting for 

approximately 15% of all cancer cases worldwide [5].  It also remains the leading 

cause of cancer-related mortality around the world, resulting in more than 1 

million deaths per year.  In the United States, lung cancer poses a substantial 

economic burden on the healthcare system, averaging $6,250 monthly in total 

healthcare cost per patient [7].  Annual productivity loss due to the disease is 

approximately $23 billion for males and $14 billion for females [8].  Overall 

prognosis for the disease remains dismal, with 5-year survival rates ranging from 

6-14% for males and 7-18% for females [9]. 

 

Based on histological characteristics, lung cancer is classified into small 

cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC).  SCLC 

is the most aggressive type of lung cancer and has the poorest survival rate [10].  

SCLC arises from pulmonary neuroendocrine cells and can be grouped with 

other tumors that develop from these precursor cells, namely, typical carcinoid 
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tumors, atypical carcinoid tumors, and large cell neuroendocrine carcinomas [11]. 

Pulmonary neuroendocrine cells are either found in isolation throughout the lung 

and airways or in small groups called neuroepithelial bodies, typically found at 

bifurcations of small airways.  Neuroepithelial bodies synthesize 

neurotransmitters and neuropeptides as well as growth factors and vasoactive 

substances [12].  They play a trophic role in lung development and function as 

oxygen sensors and possibly chemo- and mechanoreceptors [13-15]. 

 

NSCLC can be subdivided into adenocarcinomas, squamous cell, and 

large cell lung carcinomas. Adenocarcinomas can be further classified as acinar, 

papillary, bronchioalveolar, solid adenocarcinoma with mucin production, and 

mixed subtypes [9].  Adenocarcinomas develop from small airway epithelial cells 

and alveolar type II cells while squamous cell carcinomas are derived from large 

airway epithelial cells.  Biomarker-guided therapies against NSCLC target 

specific cell types and subtypes [9, 16]. 

 
 
I.B. Nicotinic Acetylcholine Receptors (nAChRs) 
 

nAChRs are a heterogeneous family of ligand-gated cation channels 

activated by the endogenous neurotransmitter acetylcholine (ACh) and 

exogenous chemicals such as nicotine and its metabolites.  nAChRs were the 

first receptors to be characterized at the biochemical, biophysical, molecular, and 

pharmacological levels and have served as prototypes for all other ligand-gated 



 5 

ion channels including those activated by 5-hydroxytryptamine (5-HT3), γ-

aminobutyric acid (GABAA and GABAC), and glycine [17, 18].  Binding of a ligand 

induces a conformational change that causes the channel to open, thereby 

allowing the flow of Na+, K+, and Ca2+ ions down their electrochemical gradients.  

The propensity of nAChRs to flux intracellular calcium levels is important in the 

activation of downstream signaling cascades [19]. 

 

nAChRs can be classified into two main categories: muscle or neuronal 

receptors.  Muscle nAChRs are expressed primarily in skeletal neuromuscular 

junctions and are composed of the α1, β1, δ, and ε or γ subunits [20].  In contrast, 

neuronal nAChRs were originally cloned from neuronal-like cell lines and brain 

cDNA libraries, hence their name, and are expressed throughout the nervous 

system where they increase neuronal excitability and facilitate synaptic 

transmission [20-22].  

 

The structure of nAChRs has been deduced using electron micrographs of 

nAChRs obtained from the electric organs of Torpedo rays, a marine ray that 

uses electrical discharge for defense and to stun prey [23].  nAChRs from these 

organs are highly homologous to vertebrate receptors.  High-resolution x-ray 

crystallography structures of the acetylcholine binding protein (AChBP) from 

mollusks have also been used to study the structure of nAChRs [23-26].  AChBP 

is a protein that resembles nAChRs but does not contain transmembrane and 
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cytoplasmic domains.  Like nAChRs, AChBP binds acetylcholine and is secreted 

into cholinergic synapses.  More refined details of the nAChR structure have also 

been provided by crystal structures of ligand-gated ion channels from 

prokaryotes [27-29].   

 

Neuronal nAChRs form pentameric structures assembled from a family of 

subunits that include α2-α10 and β2-β4 [24, 30-33].  Each nAChR subunit 

consists of an extracellular N-terminus, four transmembrane segments 

(designated M1-M4), a variable intracellular loop (100-200 residues) between M3 

and M4, and an extracellular C-terminus (Figure I-1) [34].  The N-terminus 

contains the ACh-binding domain, with the interface between adjacent subunits 

forming a hydrophobic pocket that contributes to the binding site [35].  The M2 

transmembrane segment of all five subunits forms the conducting pore of the 

channel, with regions in the M1-M2 intracellular loop contributing to cation 

permeability and agonist binding affinities [20, 34, 36].  The α subunits contain 

adjacent cysteines in their large extracellular domain that are important for ligand 

binding, whereas β subunits lack these residues [21].  Unlike other α subunits, 

however, α5 does not contribute to ligand binding.  Though it contains the 

viscinal cysteines, it is missing a key tyrosine residue (Tyr198) [37].  However, 

incorporation of the α5 subunit into a mature receptor alters receptor biophysical 

properties; it enhances receptor assembly and expression, reduces ligand-
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mediated upregulation, facilitates channel closure, and increases calcium 

conductance of the channel [38-40]. 

 

   
Figure I-1. Structure of nAChRs. A. Schematic representation of an individual 
nAChR subunit.  Each subunit consists of an extracellular amino (N) and 
carboxy (C) terminal, four transmembrane domains (M1-M4), and a large 
intracellular loop between M3 and M4. B. Five subunits co-assemble to form 
homomeric or heteromeric nAChR subtypes. White circles in the center of each 
pentamer represent the pore region.  Diamonds represent ligand binding sites. 

 

Much of what is known about the biophysical and pharmacological 

properties of nAChRs is based on studies in heterologous expression systems 

[20].  These systems make use of nAChR mRNA or cRNA injected into Xenopus 

oocytes as well as nAChR cDNA transfected into mammalian cell lines in order to 

express nAChR subunits singly or in combination.  The propensity of nAChR 

subunits to form either homomeric or heteromeric subtypes was determined by 

expressing subunits either singly or in combination.  When expressed alone, α7, 

A. 

B. 
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α8, α9, and α10 are able to form functional receptors that can be blocked by α-

bungarotoxin (α-BTx; Figure I-1B) [41-43]. In contrast, other α subunits require 

the presence of β subunits to form functional receptors [41, 44].  For instance, 

the α2 - α6 subunits can form heteromeric receptors with the β2 - β4.  In addition, 

α9 can form a heteromeric receptor with α10 [45, 46] and α7 can form a 

heteromeric receptor with β2 [47]. Each of these receptor subtypes has distinct 

electrophysiological and pharmacological properties [21, 31, 48, 49].  The 

functional diversity of the nAChR family offers abundant prospects for the design 

of novel therapeutics. 

 

I.C. nAChRs in the Nervous System 

Signaling through neuronal nAChRs underlies several fundamental 

processes in the nervous system both during development and in the adult [21].  

In the central nervous system (CNS), presynaptic nAChRs modulate release of 

many classical neurotransmitters including acetylcholine (ACh), glutamate, γ-

Aminobutyric acid (GABA), and norepinephrine [50].  Postsynaptic nAChRs are 

intimately involved in fast ACh-mediated synaptic transmission in addition to 

activity-dependent gene expression, which is critical for synaptic plasticity [21, 

22, 51, 52].  Within the peripheral nervous system (PNS), nAChRs mediate fast 

excitatory transmission in most, if not all, autonomic ganglia and are involved in 

modulating visceral and somatic sensory transmission [53-58].  
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The importance of nAChR-mediated signaling is reflected in the many 

pathologies in which cholinergic signal transduction is compromised.  Significant 

alterations in nAChR expression and function have been documented in several 

diseases such as Alzheimer’s disease, autosomal dominant nocturnal frontal 

lobe epilepsy, Parkinson’s disease, schizophrenia, Tourette’s disease, and 

megacystis-microcolon-intestinal hypoperistalsis syndrome [59-71].  In addition, 

nAChRs are key players in the development of nicotine addiction [72, 73].   

 

nAChRs in nicotine addiction 

Nicotine is one of the most widely consumed psychoactive drugs in the 

world and is the primary reinforcing chemical in tobacco [74].  Nicotine addiction 

is characterized by heavier smoking, early morning smoking, tolerance and 

withdrawal. Withdrawal involves both mood-oriented (affective) as well as 

physical (somatic) symptoms [75]. Withdrawal symptoms account for the high 

incidence of relapse in people attempting to quit smoking [76].  

 

At the molecular level, nicotine addiction is initiated by the binding of 

nicotine to nAChRs in the mesolimbic dopaminergic (DAergic) pathway, known 

as the reward circuitry of the brain [77-79].  Dopaminergic neurons in this circuitry 

originate in the ventral tegmanetal area (VTA) and project to the nucleus 

accumbens and the prefrontal cortex.  Activation of nAChRs in the VTA causes 

an increase in the firing of DAergic neurons, resulting in an increase of dopamine 
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(DA) release in the nucleus accumbens [80-83]. Elevation of dopamine levels in 

the nucleus accumbens is a phenomenon widely associated with the rewarding 

properties of drugs of abuse [79, 84].  Increase in dopamine levels is critical for 

the onset and maintenance of nicotine dependence and inhibition of dopamine 

elevation via lesions or pharmacological blockade attenuates the rewarding 

effects of nicotine [85] [86]. 

 

Several nAChR subtypes are robustly expressed in mesolimbic 

dopaminergic neurons, both at the level of the soma and at presynaptic 

terminals.  Expression of α4- and β2-containing receptors in the VTA is 

necessary and sufficient for nicotine-mediated DA elevation in the nucleus 

accumbens [87-90].  α4β2* nAChRs are critical for nicotine 

reward/reinforcement, sensitization, and tolerance [88, 90-92].  α5- and β4-

containing nAChRs as well as homomeric α7 nAChRs appear to be involved in 

the physical symptoms of withdrawal as evidenced by diminished somatic signs 

in α5, α7, and β4 KO mice [93-95].  Conversely, affective symptoms are readily 

observable in α5 and α7 KO mice.  Affective symptoms, however, are absent in 

β2 KO mice, suggesting that β2-containing nAChRs may play a role in this 

component of withdrawal [95, 96].  The various roles that nAChR subtypes play 

in the different stages of nicotine addiction emphasize the biochemical and 

functional differences among the nAChR subtypes. 
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I.D. nAChRs In Lung Cancer 
 
 

Though traditionally labeled “neuronal,” it has become evident that 

neuronal nAChRs are expressed in numerous cell types and tissues including 

endothelial cells, gastrointestinal tissue, glia, immune cells, keratinocytes, and 

lung tissue [97-107].  In the lung and airways, nAChR subunit transcripts have 

been detected using RT-PCR, qRT-PCR, and in situ hybridization and have been 

shown to be expressed at varying levels in normal and malignant cells [101, 108-

111].  Protein expression of a variety of these nAChR subunits has also been 

investigated using Western blot analysis while assembly of functional nAChRs on 

the cell surface has been determined using radioligand binding assays and patch 

clamping [101, 112-114].  The near ubiquitous expression of nAChRs in lung 

cells underscores the need to elucidate their functional relevance in normal 

physiology and in disease states.  

 

Through the years, it has become apparent that nAChRs in lung cells act 

as central mediators in the activation of cancer signaling pathways (Figure I-2) 

[115].  As early as 1989, Schuller and Hegedus showed that nicotine stimulates 

proliferation of a neuroendocrine lung cancer cell line, an effect that could be 

abolished by nAChR antagonists [116, 117].  Shortly thereafter, John Minna’s 

group showed that lung cancer cells do express nAChRs and that nicotine 

inhibits apoptosis in these cells [114].  Receptor-mediated effects of nicotine 

were subsequently recapitulated by other nAChR agonists such as cytisine and 
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the tobacco nitrosamines 4-(methlynitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 

and N-nitrosonornicotine (NNN). 

 

 
  

Figure I-2.  Key research findings implicating nAChRs in lung cancer etiology.  
Since the first report that nicotine promotes proliferation of lung cells to the 
recent series of genetic studies implicating nAChRs in lung cancer, mounting 
evidence suggest that nAChRs play a critical role in the pathogenesis of lung 
cancer.  

 

nAChR-mediated signaling begins with the binding of agonists to nAChRs, 

causing a conformational change that leads to the opening of the channel and 

the influx of cations such as Na+ and Ca2+ and the efflux of K+.  The resulting 

membrane depolarization opens the gates of voltage-operated calcium channels 

(VOCCs), leading to additional flow of Ca2+ [115].  Calcium influx triggers the 

secretion of mitogenic factors and activates signaling cascades involved in cell 

proliferation, apoptotic inhibition, metastasis, and angiogenesis – processes that 

are considered hallmarks of cancer (Figure I-3) [115, 118-120]. 
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nAChRs and cell proliferation 

Nicotine exposure alone does not appear to initiate lung cancer [121]. A 

more likely scenario is that nicotine promotes cancer after it has been initiated.  

In NSCLC and their normal cells of origin, nicotine triggers the release of EGF, 

leading to the binding of EGF to its cognate receptor EGFR, and activation of the 

Ras-Raf-MAPK cascade, a signal transduction pathway that leads to cell 

proliferation [122, 123].  Activation of the Ras-Raf-MAPK pathway can be 

abrogated by the α7 nAChR antagonists, α-BTx, and α-cobratoxin (α-Ctx) [124].   

 

Nicotine also induces fibronectin production, which activates the 

extracellular signal-regulated kinase (ERK), the phosphatidylinositol 3-kinase 

(PI3-K), and the mammalian target of rapamycin (mTOR), leading to cell growth 

and survival [125].  In addition, nicotine stimulates the expression of the 

peroxisome proliferator-activated receptor (PPAR-β/δ), an effect that can be 

blocked by α-BTx, α7 small interfering RNAs (siRNAs), and PI3-K and mTOR 

inhibitors [126].   

 

Carcinogenic nitrosamines such as NNK and NNN also promote cell 

proliferation by activating distinct signaling pathways.  NNK has a higher affinity 

for α7 nAChRs while NNN has a higher affinity for heteromeric nAChRs [127].  In 

SCLC, NNK evokes calcium influx and activates the Raf-MAPK pathway 

activation, resulting in the phosphorylation of c-myc [128, 129].  Tobacco 
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nitrosamines can therefore promote lung cancer through direct genotoxic effects 

or via nAChR-mediated mechanisms [130, 131].   

 

nAChRs and cell survival 

Nicotine confers resistance to the apoptotic effects of chemotherapeutic 

drugs, opioids, oxidative stress, and UV radiation [132-134].  The pro-survival 

effects of nicotine appear to involve the PI3-K-Akt pathway [135].  In non-

immortalized human airway epithelial cells, nicotine causes site-specific 

phosphorylation of Akt [136].  Akt is a known physiological kinase of Bcl-2 family 

members.  Consistent with this, nicotine exposure activates Bcl-2, a key anti-

apoptotic molecule while inactivating the pro-apoptotic proteins, Bad and Bax 

[132, 137, 138].  Similarly, NNK inhibits apoptosis by activating Bcl-2, an effect 

that can be blocked by inhibitors of PKC and ERK1/2 and by c-myc silencing 

[139].  Akt activation also leads to the upregulation of the X-linked inhibitor of 

apoptosis protein (XIAP) and survivin, both inhibitors of apoptosis [140], as well 

as β-adrenergic receptor and NF-κB activation [141, 142]. 

 

nAChRs and migration/invasion 
 
Nicotine exposure results in downregulation of the epithelial markers E-cadherin, 

β-catenin, and the tight-junction protein zonula occludens (ZO-1), with 

concomitant upregulation of the mesenchymal proteins, fibronectin and vimentin 

[143, 144]. This epithelial-mesenchymal transition (EMT) is a phenomenon 
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associated with increased cell mobility and invasion, key events in the process of 

metastasis.  Nicotine treatment, either though intraperitoneal injections or 

through dermal patches, promotes metastasis in immunocompetent mice [144].  

Additionally, NNK exposure leads to increased invasion and migration of lung 

cancer cells via ERK-dependent phosphorylation of calpains [145].  

Pharmacological inhibition of ERK or gene silencing of calpains abolishes this 

response. The pro-metastatic effects of nicotine and its metabolites may 

contribute to the aggressiveness of SCLC, a lung cancer type highly associated 

with cigarette smoking [10]. 

 

nAChRs and angiogenesis 

Angiogenesis, the process of forming new blood vessels, involves 1) 

activation of endothelial cells by angiogenic stimuli such as hypoxia and cytokine 

release, 2) degradation of the basement membrane by matrix 

metalloproteinases, and 3) proliferation and migration of endothelial cells towards 

the angiogenic stimuli, via a vascular endothelial growth factor (VEGF)-

dependent mechanism [146-149].  Vascular endothelial cells express nAChRs as 

well as other components of the ACh signaling machinery [97, 102].  In these 

cells, ACh also acts in an autocrine or paracrine fashion and modulates 

vascularization and remodeling [150, 151].  Nicotine and its metabolite cotinine 

can induce endothelial cell tube migration by stimulating VEGF expression in 

lung cancer cells, an effect that can be reduced by α-BTx, MLA, and 
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mecamylamine [151-154].  Inhibition of the MAPK and PI3-K pathways prevents 

nicotine-induced neovascularization [151]. Nicotine, in combination with estradiol, 

also enhances growth of lung cancer xenografts via increased VEGF secretion 

and angiogenesis [155].  Finally, nicotine stimulates accumulation of hypoxia-

inducible factor-1α (HIF-1α), a master regulator of angiogenesis [156].  

 

Autocrine/Paracrine Growth Loops 

Lung cancers secrete ACh and utilize the same ACh signaling 

components as normal lung cells [157, 158].  In these cells, ACh acts as an 

autocrine or paracrine growth factor that activates a feedback loop leading to cell 

proliferation. The non-selective nAChR antagonist mecamylamine inhibits lung 

cancer growth, suggesting that the ACh machinery can be exploited in the 

rationale design of therapeutics against lung cancer [159, 160].  Possible 

pathway points that can be targeted include ACh synthesis, ACh secretion, 

receptor activation, choline uptake, and downstream pathways [160-164]. 

Several other neurotransmitters and neuropeptides act as autocrine or paracrine 

growth factors in lung cancer including bombesin/gastrin-releasing peptide, 

bradykinin, catecholamines, cholecystokinin, galanin, litorin, neuromedin, 

neurotensin, ranatensin, serotonin, and vasopressin [165].  Bombesin and 

serotonin release has been shown to be dependent on protein kinase C (PKC) 

activation [119].   Interruption of these autocrine or paracrine growth signals may 

also serve as a viable therapeutic approach against SCLC. 
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Figure I-3.  Working model of nAChR-mediated cancer signaling.  nAChR 
agonists such as Ach, nicotine, and tobacco nitrosamines bind to and activate 
homomeric (red) or heteromeric (multicolored) nAChRs.  nAChR activation 
leads to the opening of the channel and the flow of Na+, K+, and Ca2+ ions down 
their electrochemical gradients.  Subsequent membrane depolarization opens 
voltage-operated calcium channels (VOCCs) and further increases intracellular 
calcium levels.  Calcium influx activates downstream signal transduction 
pathways leading to lung cancer cell survival, proliferation, migrations/invasion, 
and angiogenesis.  Calcium influx also triggers the release of neurotransmitters 
and neuropeptides that act as autocrine or paracrine growth factors.  Pathway 
components in red indicate those identified in SCLC and its precursor cells; 
those in green have been identified in NSCLC and its precursor cells; and those 
in purple have been identified in both types of lung cancer cells and their 
corresponding cells of origin.  
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I.E.  The CHRNA5/A3/B4 Lung Cancer Susceptibility Locus 
 

Recent advances in genetic technology have paved the way for large-

scale genome-wide association studies (GWAS), which involve screening 

hundreds of thousands of single nucleotide polymorphisms (SNPs) across 

thousands of subjects [166].  Such studies have implicated variants in the 

chromosome 15q24-25 region in the development of nicotine dependence and 

lung cancer.  This genomic locus, spanning 203 kb, contains the genes encoding 

the α5, α3, and β4 nAChR subunits (Figure I-4) [167, 168]. 

 

 
 
Figure I-4.  The human CHRNA5/A3/B4 gene cluster. The CHRNA5 gene is 
transcribed in the opposite direction as CHRNA3 and CHRNB4 (colored 
arrows). Blue boxes represent exons and red boxes represent untranslated 
regions.  Horizontal black lines indicate introns and horizontal gray lines 
indicate intragenic regions.  The boundaries for each gene are labeled with 
corresponding Genbank annotations. The non-synonymous D398N 
polymorphism (rs16969968) associated with nicotine dependence and lung 
cancer is indicated by an arrow under exon 5 of the CHRNA5 gene. 
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Expression patterns of the CHRNA5/A3/B4 genes 

Admixtures of the nAChR subunits encoded by the 15q24-25 locus form 

the predominant nicotinic receptor subtypes expressed in the PNS [169-173] as 

well as at key sites in the CNS [174, 175].  In the PNS, α3 subunit expression is 

seen in the dorsal root ganglia [176], facial motoneurons [177], retina [178, 179], 

adrenal, otic, and spenopalatine ganglia [171], the superior cervical ganglion 

(SCG), and trigeminal sensory neurons [172, 180].  In the CNS, the α3 subunit is 

expressed in the brainstem [181], cerebellum [182, 183], cortex [183, 184], 

hippocampus [99, 183-186], interpeduncular nucleus [174, 185, 187], medial 

habenula [174, 176], pineal gland [176], spinal cord [188, 189], substantia nigra 

[190], thalamus [186, 187], and the VTA [187, 191]. 

 

Outside of neurons, the α3 subunit is expressed in human oral 

keratinocytes [192-194] where its mRNA and protein expression levels are 

increased following exposure to nicotine [193-195].  α3-containing nAChRs are 

also expressed in bronchial epithelia [97, 101], the gastrointestinal tract [196, 

197], lymphocytes [198], oligodendrocyte type-2 astrocyte (O2A) progenitors 

[199], polymorphonuclear cells [198], and vascular endothelial cells [97, 102]. 

 

Similar to the α3 subunit, the α5 subunit is most highly expressed in the 

PNS, but is also expressed in several key regions of the CNS [191, 200].  In the 

PNS, α5 is expressed in most autonomic ganglia [180, 196] and the retina [178].  
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Centrally, α5 is expressed in the cerebellum and thalamus [196] but is also 

detected in the brainstem, cortex, habenula, hippocampus, interpeduncular 

nucleus, other midbrain nuclei, and the spinal cord [99, 174, 188-190, 201, 202].   

 

Outside the nervous system, α5 subunit expression has been detected in 

the gastrointestinal tract, thymus and testis [196, 197].  Furthermore, the α5 

subunit is expressed in many of the same cell types as the α3 and β4 subunits 

including bronchial epithelium [97, 101], O2A progenitors [199], oral epithelium 

[193, 194], vascular endothelial cells [97, 102], and a variety of immune cells 

[203]. 

 

The β4 subunit gene is widely expressed in the PNS, with relatively high 

expression in trigeminal sensory neurons [172, 180] as well as sympathetic 

neurons and the superior cervical, dorsal root, spenopalatine and otic ganglia 

[171, 176, 204].  The β4 subunit is also expressed in the adrenal medulla [205] 

with lower expression in the retina [178].  In the CNS, β4 expression is 

particularly high in the interpeduncular nucleus, medial habenula, olfactory bulb, 

and pineal gland [174, 185, 206] with lower expression in the cortex, cerebellum, 

hippocampus, midbrain, spinal cord, and thalamic nuclei, [99, 182, 187-190, 

207]. 
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Significant overlap of β4 expression with α3 and α5 expression is also 

observed outside the nervous system, β4 is expressed in multiple cell types of 

the bronchial epithelium [97, 101], intestines [196, 197], O2A progenitors, oral 

keratinocytes [193, 194], polymorphonuclear cells [198], and vascular endothelial 

cells [102],  [199].  Finally, as discussed in detail in Chapter II, β4 is co-

expressed with α3 and α5 in the lung and is upregulated in lung cancer [208-

210]. 

 

Transcriptional regulation of the CHRNA5/A3/B4 genes 

The co-expression of the CHRNA5/A3/B4 genes coupled with their 

genomic clustering hinted early on that they may share common regulatory 

mechanisms in addition to specific regulation of each gene.  Further support for 

this idea comes from several observations.  First, nucleotide sequencing of the 

individual gene promoters revealed that they each lack classical CAAT and TATA 

boxes [168].  Instead, the promoters are GC-rich and contain several binding 

sites for the transcription factors, Sp1 and Sp3 (Figure I-5).  Both Sp factors 

positively regulate transcription of each of the clustered subunit genes through 

multiple binding sites in each individual promoter [211-221].  Chromatin 

Immunoprecipitation (ChIP) experiments demonstrated Sp1 binding activity in the 

context of native chromatin for all three promoters [222, 223].  It is likely that Sp1 

is involved in tethering the basal transcription machinery to the TATA-less 

nAChR subunit gene promoters [224].  Second, in addition to the Sp factors, the 
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CHRNA3/A5/B4 promoter regions can directly interact with and be trans-

activated by the more spatially restricted regulatory factors Sox10 and SCIP/Tst-

1/Oct-6 [225-227].  Third, the mRNA levels of the CHRNA3/A5/B4 genes are 

coordinately up-regulated during neural development [228-230] and coordinately 

down-regulated following denervation [231].  Perhaps the most compelling 

evidence for a coordinated regulatory scheme comes from the Deneris lab, which 

showed that two transcriptional regulatory elements, termed β4 3’ enhancer and 

conserved noncoding region 4 (CNR4), play key roles in directing expression of 

the clustered nAChR genes in a tissue-specific manner. The β4 3’ enhancer is 

critical for expression in the adrenal gland and CNR4 is critical for expression in 

the pineal gland and SCG [232].  CNR4 is likely to play an important role in 

directing nAChR gene expression in the brain as well [232].  In addition to these 

shared regulatory features, the CHRNA3/A5/B4 genes are subject to gene-

specific regulation. 

 

In vitro experiments have shown that the paired-like homeodomain 

transcription factor, PHOX2A, regulates transcription at the α3 promoter [223].  

PHOX2A does not appear to bind directly to DNA, however, as the DNA-binding 

domain does not need to be completely intact for PHOX2A to regulate 

transcription [223].  Co-immunoprecipitation experiments demonstrate a physical 

interaction between Sp1 and PHOX2A, suggesting that PHOX2A is tethered to 
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the α3 promoter through its interaction with Sp1, similar to the interactions of Sp1 

with homeodomain transcription factors observed in other systems [233]. 

 

The POU domain factor SCIP/Tst-1/Oct-6 has been shown to positively 

regulate transcription from the α3 promoter in a cell-type-specific manner [227].  

Similar to PHOX2A, the POU domain factor SCIP/Tst-1/Oct-6 does not require 

DNA binding for transactivation of the α3 promoter [227].  Deletion analysis of the 

SCIP/Tst-1/Oct-6 transcription factor demonstrated that only the POU domain is 

needed for transactivation.  This transactivation does not depend on the 

presence of an Sp1 motif in the promoter region and is likely occurring through 

protein-protein interactions with other transcriptional machinery [225].  The 

transcription factor Brn-3a also trans-activates the α3 promoter, while the other 

members of the Brn-3 family, Brn-3b and 3c, modestly repress α3 promoter 

activity [234].  The positive regulation by Brn-3a is thought to be a result of 

protein-protein interaction as the α3 promoter lacks an obvious octamer or 

octamer-related binding site for Brn-3 factors [234]. 

 

The β4 3’ enhancer lies upstream of the α3 promoter in a region that 

overlaps with a 3’-untranslated exon of the β4 gene [235].  This enhancer 

element consists of two identical 37-base pair repeats separated by a 6-base pair 

spacer.  The β4 3’ enhancer acts in a cell-type-specific manner and enhances 

transcription from the α3 promoter in neuronal cultures [236].  The enhancer 
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contains several E-twenty six (ETS) factor-binding sites, mutation of which 

dramatically decreases, but does not completely abolish, α3 promoter activity.  

The ETS-domain binding factor, Pet-1, has been shown to activate reporter gene 

transcription in a manner that is both cell type - and β43’ enhancer - dependent 

[237].  Taken together, these studies suggest that Pet-1 interacts directly with the 

α3 promoter to activate transcription, though it likely requires additional cell-type-

specific co-factors.   

 

In vivo experiments using transgenic mice show that a larger DNA 

fragment between the α3 and β4 genes, containing both the β4 3´ enhancer and 

the α3 promoter, is capable of directing expression of a reporter gene to several 

areas of endogenous α3 expression in the brain [238, 239].  Surprisingly 

however, this DNA fragment did not direct reporter gene expression anywhere in 

the peripheral nervous system, in which the α3 gene is highly expressed, 

suggesting that elements in this fragment may be acting as repressors or that 

other sequences are necessary for peripheral expression. 

 

The presence of an intronic repressor element in the fifth intron of α3 has 

been reported [240].  The sequence of this α3 intron 5 repressor (α3I5) is highly 

conserved and is capable of bidirectional repressor activity in vitro.  Notably, cell-

type-specific repression of promoter activity was observed to be more potent in 

non-neuronal cell lines than in neuronal cell lines [240].  These data suggest that 
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this segment of DNA and the factors with which it interacts function to restrict 

expression of α3 to neuronal cell types.  The protein-DNA interactions that 

mediate this effect have yet to be elucidated.  The mechanisms regulating α3 

expression in non-neuronal cells remain largely obscure.  In Chapter II, we show 

that the transcription factor, achaete-scute complex homolog-1 (ASCL1), 

regulates the expression of α3 and β4 and modestly of α5 in lung cancer cells 

[208]. 

 

The α5 promoter region has been described in several genomic contexts 

including those in rodents and humans.  Transcription of α5 occurs in the 

opposite direction as α3 and β4, suggesting that in addition to transcription 

factors that regulate the entire cluster, distinct mechanisms may govern α5 

expression.  However, apart from the regulatory factors described above, little is 

known about these mechanisms. SCIP/Tst-1/Oct-6 does not appear to regulate 

α5 though it regulates α3 and β4.  No other transcription factors regulating α5 

expression have been reported, underscoring the need for more research efforts 

in this area. 

 

In addition to Sp1/2, Sox10 and SCIP/Tst-1/Oct-6, the β4 promoter is 

positively regulated by c-Jun [217].  Trans-activation by all of these factors is 

abolished when the Sp-binding site on the β4 promoter (referred to as the CA 

box) is mutated.  Conversely, synergistic activation of the β4 promoter is 
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observed when Sp1 is supplied in concert with Sox10, Sp3 or c-Jun [217, 218].  

Co-immunoprecipitation experiments demonstrated that all of these factors 

physically interact [241] and ChIP experiments confirmed that these interactions 

occur in the context of native chromatin [222].  These findings suggest the 

existence of a positively-acting multi-subunit transcriptional regulatory complex 

that assembles on the β4 promoter.  This is consistent with the hypothesis that 

Sp1 is critical for transcription at the β4 promoter and likely nucleates the 

regulatory complex that drives expression of the β4 gene. 

 

Two additional transcription factors have been shown to interact with the 

β4 promoter, Purα and heterogeneous nuclear ribonucleoprotein K (hnRNP K) 

[242, 243].  These proteins interact with another motif, the CT box, located 

directly upstream of the CA box.  hnRNP K is capable of repressing Sp factor-

mediated trans-activation of the β4 promoter [243] and also physically interacts 

with Sox10 [241].  Similar to hnRNP K, Purα physically interacts with Sox10 

[241].  Moreover, Pur! and hnRNP K themselves physically interact [241].  These 

proteins may participate in the multi-subunit complex described above to 

modulate expression of the β4 gene in the appropriate cellular context.  In vitro 

binding experiments demonstrated that each factor binds preferentially to the 

opposing single strand elements of the CT box, suggesting that some local DNA 

helix unwinding may occur [244].  Interestingly, Purα and hnRNP K have been 

shown to function together to negatively impact transcription of genes in other 
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systems and the same may be occurring at the β4 promoter [245].  In vivo 

experiments have also shown that a 2.3-kb fragment of the β4 promoter, 

containing the CA and CT boxes, is capable of directing reporter gene 

expression to brain regions that endogenously express β4, further supporting the 

importance of these elements in regulating β4 gene expression [246]. 

Figure I-5.  Transcriptional regulation of the CHRNA5/A3/B4 gene cluster.  A. 
Protein-DNA interactions at the CHRNA5/A3/B4 locus.  Colored circles indicate 
known transcription factors while circles with a question mark indicate 
transcription factors that have yet to be identified.  Regulation by the ASCL1 
transcription factor is described in Chapter II.  B.  Positive (red arrows) and 
negative (blue arrows) regulation of the CHRNA5/A3/B4 genes.  The β4 3’ 
enhancer, the β4 promoter region (SacI – HindIII fragment), and the distal 
CNR4 regions contain positive regulatory elements. The fifth intron of the 
CHRNA5 gene (A3I5) contains a repressor element. 
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 Function of the CHRNA5/A3/B4 genes 

Knockout (KO) mouse models have been generated to determine the 

function of the clustered nAChR subunits.  Mice that do not express the α3 

subunit usually die within a week of birth due to multi-organ dysfunction [247].  

α3 KO mice develop enlarged bladders causing bladder infection, dribbling 

urination, and urinary stones – a phenotype resembling that of a rare human 

condition called megacystis-microcolon-intestinal hypoperistalsis syndrome [247].  

Consistently, patients with this disease do not appear to express α3 mRNA [60].  

α3 KO mice also display extreme pupil dilation and lack of pupil contraction in 

response to light.  Retinal wave activities have altered spatiotemporal properties 

delaying the refinement of retinal ganglion cell dendrites [247, 248].  Bladder 

contraction in response to nicotine is also lost.  Lastly, electrophysiological 

characterization shows that nicotine-induced whole-cell currents are abolished in 

the SCG of α3 KO mice. 

 

In contrast to the α3 KO mice, α5 and β4 KO mice are both viable and 

lack any gross abnormalities [247, 249, 250].  α5 KO mice do exhibit abnormal 

cardiac parasympathetic ganglionic transmission and are less sensitive to acute 

nicotine treatment.  Loss of α5 selectively affects axonal nAChRs in the SCG 

while leaving somatodendritic receptors unaffected [251].  Similarly, ganglionic 

transmission is impaired in β4 KO mice, attenuating ileal and bladder contractile 

responses to nicotinic agonists.  Nicotine-induced whole cell currents in the SCG 
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of β4 KO mice are also reduced but still present, suggesting that compensation 

from another subunit (i.e., β2) may be occurring [252].  Consistent with this 

notion, nicotine-induced currents in the SCG are abolished in double β2-β4 KO 

mice.  Moreover, double β2-β4 KO mice exhibit similar bladder and pupil 

dysfunction as α3 KO mice.  Taken together, these studies indicate that the 

clustered nAChR subunits are essential for normal ganglionic function and that 

compensation by β2 can occur with the loss of β4. 

 

In addition to their PNS-specific phenotypes, α3, α5 and β4 KO mice also 

exhibit CNS-centric abnormalities compared to WT mice.  For example, α3, α5 

and β4 KO animals are resistant to nicotine-induced seizures compared to their 

respective WT littermates and are not as sensitive to nicotine-induced inhibition 

of locomotion [253, 254].  β4 KO mice also appear less anxious compared to WT 

mice in two specific anxiety assays suggesting a role for β4* nAChRs in 

modulating anxiogenic stimuli [255].  These mice also have a lower core body 

temperature which is less responsive to modulation by acute nicotine infusion 

[256]. 

 

Risk alleles in nicotine addiction and lung cancer 

Genetic association between the CHRNA5/A3/B4 genes and nicotine 

dependence was first reported in an association study that compared nicotine-

dependent smokers versus those without symptoms of dependence [257].  
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Multiple SNPs were correlated with nicotine dependence, including rs16969968, 

located in the CHRNA5 coding region (Figure I-4).  This polymorphism changes 

an amino acid from aspartic acid to asparagine at position 398 (D398) in the 

major cytoplasmic loop of the α5 subunit.  This highly conserved aspartate 

residue is invariant across species such as frogs, chickens, rodents, cattle, and 

nonhuman primates [258].  Follow-up studies showed that one copy of the risk 

allele confers a 1.3-fold increase in risk for developing nicotine dependence, 

whereas subjects homozygous for the risk allele have almost a 2-fold increase in 

risk [259].  Since then, many groups have found rs16969968 and several other 

SNPs to be associated with different smoking behaviors using a variety of 

approaches and target populations [258-266]. 

 

Analogous large-scale genetic studies in lung cancer yielded results 

converging on the same variants in chromosome 15q24-25 [267-269].  This locus 

was found to account for 14% of lung cancer cases in a European population 

[267] and for 18% of cases in an Icelandic population [268].  rs16969968 was 

again found to be among the SNPs with the strongest disease association [269].  

Consistently, a candidate gene study showed that the rs16969968 risk allele is 

associated with increased risk for lung adenocarcinomas in an Italian population 

[270].  Another (synonymous) SNP highly associated with lung cancer is 

rs1051730, found in the coding region of CHRNA3 [267, 268]. 
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Because the chromosome 15 region is associated with both nicotine 

dependence and lung cancer, it raises the question of whether lung cancer is 

directly influenced by the genetic variants or merely the consequence of smoking 

behaviors.  Genetic evidence for the two lines of reasoning exist.  Increased lung 

cancer risk in non-smokers supports the view that the polymorphisms have a 

direct effect on lung cancer [271].  Additionally, the polymorphisms were not 

associated with other smoking-related cancers such as head and neck cancers 

including those of the oral cavity, larynx, pharynx, and esophagus [271].  

Association with lung cancer also persists even after accounting for cigarette 

consumption [167, 272, 273].  However, one study argues that cigarette 

consumption per se might not be a proper measure as individuals who smoke the 

same number of cigarettes per day exhibit varying levels of carcinogen and toxin 

exposure [274].  In fact, carriers of some risk variants ingest more tobacco toxins, 

possibly by inhaling more frequently and more deeply while smoking.  

Additionally, the CHRNA5/A3/B4 genes have also been linked to other smoking-

related disorders such as chronic obstructive pulmonary disease (COPD), 

peripheral arterial disease, and alcoholism [268, 275, 276].   

 

To distinguish between the two possibilities, direct evaluation of the 

biological function of specific SNPs needed to be performed.  A reasonable 

candidate for initial studies was the rs16969968 SNP, as it encodes a non-

synonymous SNP in CHRNA5.  Indeed, heterologous expression of the α5 cDNA 



 32 

containing this SNP, along with α4 and β2, was carried out in HEK293T cells 

[258].  In this study, agonist-induced changes in intracellular calcium were 

measured using an aequorin-based luminescence assay.  α4β2α5 nAChRs with 

the asparagine variant exhibited lower maximal response to the nAChR agonist, 

epibatidine, indicating that the α5 risk allele is associated with reduced function 

of α4β2α5 nAChRs.  This work provides direct evidence that a variant associated 

with nicotine dependence and lung cancer alters biological function.   

 

Additional mechanistic evidence for the role of nAChR variants in nicotine 

dependence is provided by work showing that rs3841324, a SNP found in the 

non-coding region of α5, is associated with altered α5 mRNA levels in the brain 

[277].  rs3841324 is characterized by an insertion/deletion located upstream of 

the α5 coding region.  In this study, individuals homozygous for the minor allele 

(deletion) exhibit a 2.9-fold increase in CHRNA5 mRNA levels.  rs3841324 is in 

high linkage disequilibrium with other SNPs in this region.   Consistently, these 

SNPs are also associated with altered CHRNA5 mRNA expression. 

 

Combined analyses of the above biological mechanisms demonstrate that 

the risk allele of rs16969968 primarily occurs on a low CHRNA5 expression 

background [277].  Moreover, a combination of low mRNA expression and the 

presence of the non-risk allele confer protection for both nicotine dependence 

and lung cancer.  In normal lung tissue, rs16969968 also correlated with 
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CHRNA5 mRNA levels (i.e., an inverse relationship was observed between risk 

allele dosage and mRNA levels) [270].  The same study showed a 30-fold 

upregulation of CHRNA5 mRNA levels in lung adenocarcinoma compared to 

normal lung tissue.  In contrast, no differences in expression between cancer and 

normal samples were observed for the other genes in chromosome 15 outside 

the CHRNA5/A3/B4 gene cluster.  Taken together, the aforementioned studies 

offer two mechanistic bases for the association of nAChR variants with nicotine 

dependence and lung cancer: altered receptor function and aberrant gene 

expression.  

 

In this dissertation, the overarching goal is to elucidate the mechanisms 

underlying the role that α5α3β4 nAChRs play in lung cancer, with particular 

emphasis on SCLC, the most aggressive type of lung cancer.  Here we show that 

the CHRNA5/A3/B4 genes are over-expressed in SCLC and are regulated by 

ASCL1, a transcription factor of the Notch signaling pathway that directs the 

neuroendocrine phenotype of SCLC.  We then show that genetic depletion or 

pharmacological blockade of CHRNA5/A3/B4 depletion inhibits SCLC cell 

viability.  Consistently, silencing of CHRNA5 in vivo inhibits tumor growth.  

Finally, we show that the neuroendocrine phenotype of SCLC allows its targeting 

by pharmacologically active compounds. 
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Chapter II:   

EXPRESSION AND REGULATION OF THE CHRNA5/A3/B4 GENE CLUSTER 
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The most exciting phrase to hear in science, the one that heralds the most 
discoveries, is not "Eureka!" but "That's funny..." 

- Isaac Asimov 
 

II.A.Introduction 

Lung cancer is the leading cause of cancer-related mortality across the 

globe [5].  Cigarette smoking and second-hand smoke are the major etiologic 

factors associated with lung cancer, accounting for nearly 90% of all lung cancer 

deaths.  Given that 25% of adults smoke, a considerable number of people are 

presently at risk for the disease. 

 

Lung cancer is classified into two main histological types: small cell lung 

carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC).  The latter can 

be further divided into large cell carcinoma, adenocarcinoma and squamous cell 

carcinoma.  SCLC, a neuroendocrine tumor, is the most aggressive among the 

various types of lung cancer and has the poorest prognosis, with a 5-year 

survival rate of 15% [10].  This can reach as low as 2% for patients diagnosed 

with late-stage disease.  Though most patients respond to initial cycles of 

chemotherapy, they eventually become chemoresistant. 

 

Nearly all SCLC patients (>95%) have a history of cigarette smoking [10].  

This strong etiologic link is not surprising given the fact that tobacco contains at 

least 55 carcinogens, the most potent of which are nicotine-derived nitrosamines 

such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [131].  Increasing 
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evidence also suggest that nicotine itself may directly contribute to 

carcinogenesis by inducing cell proliferation, transformation, apoptotic inhibition, 

and angiogenesis [115].  

 

Nicotine and NNK are both exogenous ligands of nicotinic acetylcholine 

receptors (nAChRs) [127].  nAChRs are transmembrane ligand-gated ion 

channels that have been extensively studied with respect to their role in 

fundamental physiological processes such as muscle contraction, attention, 

arousal, anxiety and learning and memory [278].  They are key players in the 

nicotine reward pathway, making them attractive drug targets for smoking 

cessation therapies [83, 84, 88, 279]. 

 

nAChRs have traditionally been referred to as either “muscle” or 

“neuronal” based on their expression patterns and subunit composition. Muscle 

nAChRs are made up of α1 subunits combined with β1, γ, δ, or ε subunits.  Here 

we focus on neuronal nAChRs, pentameric proteins made up of homomeric or 

heteromeric combinations of α and β subunits that include α2 – α10 and β2 – β4 

[278].  The precise combination of subunits determines the pharmacological and 

biophysical properties of the receptor [20, 32].  While the complete repertoire of 

native nAChRs has not been fully elucidated, it is clear that a staggering diversity 

of receptor subtypes and functions may exist [32].   
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The neuronal nAChRs have also been found in non-neuronal tissues [105, 

107, 203].  In particular, they are expressed in normal as well as lung cancer 

cells [209, 210].  The two most well-characterized nAChRs in this system are the 

homomeric α7 and the heteromeric α4β2 subtypes [280].  Recently, however, a 

series of genome-wide association studies pointed to a possible role for the 

nAChR α3β4α5 subytpe in the etiology of lung cancer [267-269, 281].  These 

studies identified a lung cancer susceptibility locus in the long arm of 

chromosome 15 (15q24/15q25.1), a genomic region containing the genes 

encoding the α5, α3, and β4 subunits (CHRNA5/A3/B4).  Single nucleotide 

polymorphisms found in the gene cluster were also found in independent studies 

to be associated with nicotine addiction [282-288].  It is not yet clear how variants 

in this locus may modulate the function of mature nAChRs but these studies do 

prompt further investigation on the role of these nAChR subunits in lung cancer. 

 

To address this gap in knowledge, we first examined the expression 

profile of these genes as well as all other neuronal nAChR genes in lung cancer 

cell lines and patient samples.  Here we describe the over-expression of the 

clustered nAChR genes in SCLC.  Furthermore, we identified a transcription 

factor, ASCL1, that regulates the CHRNA3/A5/B4 gene cluster in this tumor type.  

ASCL1 (termed Mash1 in rodents, hASH1 in humans) is a basic helix-loop-helix 

transcription factor that binds to DNA recognition motifs known as E-boxes [289].  

It is over-expressed in SCLC and other neuroendocrine tumors.  ASCL1 
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expression appears to be important for SCLC tumor initiation while its knockdown 

causes cell cycle arrest and apoptosis [290, 291].  In addition, transgenic mice 

that constitutively express ASCL1 and the SV40 Large T antigen develop 

aggressive lung tumors with neuroendocrine features [292].  Over-expression of 

ASCL1 in SCLC may thus lead to corresponding over-expression of the clustered 

nAChR genes, providing a mechanism by which nicotine’s effects may be 

potentiated in SCLC, contributing to its increased tumorigenicity. 

 

II.B.Materials and Methods 

Cell lines. Cell lines were obtained from the American Type Culture Collection 

(ATCC).  The SCLC cell lines used were DMS-53, DMS-114, NCI-H69, NCI-H82, 

NCI-128, NCI-146, NCI-H209 and NCI-446.  The NSCLC cell lines used were the 

large cell lung carcinoma cell lines NCI-H460, NCI-H661, NCI-1581 and NCI-

H1915; the lung adenocarcinoma cell lines A549, NCI-H838, NCI-H1395, NCI-

H1734 and NCI-H1793; and the squamous cell lung carcinoma cell lines NCI-

H520, NCI-H1869, NCI-H2170, SK-MES-1 and SW-900.  The normal lung cell 

lines used were BEAS-2B, HBE4-E6/E7, LL-24 and WI-38.  Cell lines were 

maintained in ATCC-recommended media at 37oC and 8% CO2. 

 

Patient samples.  Tissue samples were obtained from the UMass Cancer Center 

Tissue Bank and the Cooperative Human Tissue Network.  Approval from the 

University of Massachusetts Medical School Institutional Review Board was 
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obtained prior to sample collection. To date, a total of 123 cancer and normal 

lung tissues have been collected consisting of 53 normal, 7 SCLC and 63 

NSCLC tissues including 19 adenocarcinomas, 32 squamous cell lung 

carcinomas and 12 large cell lung carcinomas (Table II-1).  Samples were either 

snap-frozen surgically resected tissues or fresh pleural effusions.  Available 

normal attached tissues or age and sex-matched normal tissues were used as 

controls. 

Table II-1.  Clinical characteristics of lung cancer patient samples 
Specimen ID Histology Sex Age Stage Smoking 

History 
143C SCLC M 54 Extensive + 
985T SCLC M 71 T1N0M0 + 
1662T SCLC M 59 Extensive + 
1090251A2 SCLC M 57 NA* NA 
08-02-A280a SCLC M 61 T2N2MX NA 
06-11-A306aa SCLC F 72 NA NA 
MAD09-131T SCLC M 53 T2N0MX + 
350T Large Cell M 51 T2N0MX + 
808T Large Cell F 45 T2N1M0 + 
849T Large Cell M 74 T3N1M0 + 
1722T Large Cell F 74 T2N0MX NA 
MAD02-1005T Large Cell M 76 T2N0MX + 
MAD05-467T Large Cell F 61 T1N0MX + 
MAD07-597T Large Cell M 73 T1N0MX +  
MAD07-661T Large Cell M 71 T1N2MX + 
MAD07-809T Large Cell F  70 T2N0MX + 
MAD08-469T Large Cell M 61 T2N0MX + 
MAD08-638T Large Cell M 44 T2N1MX + 
Z4312A1E Large Cell M NA T2N2MX NA 
343T Adenocarcinoma M 62 T1N0MX + 
363T Adenocarcinoma F 56 T1N2MX + 
423T Adenocarcinoma M 64 NA + 
457T Adenocarcinoma M 64 T4N1MX + 
43089A1C Adenocarcinoma F 81 NA NA 
43464A1C Adenocarcinoma F 59 NA + 
43471A1C Adenocarcinoma F 26 T3N2MX - 
44833A1A Adenocarcinoma F 82 NA + 
45139A1D Adenocarcinoma F 61 NA + 
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45151A3CA Adenocarcinoma NA NA NA NA 
45514A1A Adenocarcinoma NA NA NA NA 
45607A1BA Adenocarcinoma M 78 NA + 
46127A1BA Adenocarcinoma M 77 NA + 
46244A1A Adenocarcinoma F 66 T4N1MX NA 
46598A1A Adenocarcinoma M 67 NA + 
1081210A1 Adenocarcinoma NA NA NA NA 
1090694A1 Adenocarcinoma F 66 NA NA 
08-04-A123A Adenocarcinoma M 67 NA NA 
Z4364A1A Adenocarcinoma F NA T2N1MX NA 
258T Squamous F 74 T1N0MX + 
318T Squamous M 81 T2N1MX + 
43312T Squamous F 76 NA NA 
43751T Squamous NA NA T2N1MX NA 
43057A1I Squamous M 68 NA + 
45843A1F Squamous M 41 NA NA 
46215A1F Squamous F 75 NA NA 
46830A1A Squamous NA NA NA NA 
1082331B2 Squamous F 69 NA NA 
1090147A2 Squamous M 72 NA NA 
3081395A3 Squamous F 51 NA NA 
3081583A5 Squamous F 70 NA NA 
3090415A2 Squamous M 56 T2N0MX NA 
08-01-A310A Squamous M  61 NA NA 
08-02-A290A Squamous F 58 T2N0MX NA 
08-05-A023B Squamous F 75 NA NA 
08-07-A078A Squamous F 65 T2N0MX NA 
08-08-A097B Squamous M 58 T2N1MX NA 
08-09-A190A Squamous M 58 NA NA 
08-11-A001B Squamous M 63 T1N1MX NA 
08-12-A011A Squamous M 74 T1N0MX NA 
09-03-A012B Squamous M 70 T1N2MX NA 
09-04-A019A Squamous M 75 NA NA 
MAD06-482T Squamous M 65 T1NXMX + 
MAD06-552T Squamous M 73 T1NXMX + 
MAD06-597T Squamous F 73 T1N0MX + 
MAD06-603T Squamous F 71 T1N0MX + 
MAD06-625T Squamous M 74 T2N1MX + 
Z3770A1A Squamous NA NA T3N0MX NA 
Z4129A1D Squamous M NA T2N1MX NA 
Z4363A1A Squamous M NA T2N1MX NA 
Z4640A1A Squamous F NA T2N0MX NA 
* NA – information not available 
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Quantitative RT-PCR. Total RNA was isolated from the cell lines and patient 

tissues using a RiboPure Kit (Ambion).  cDNAs were generated using a 

RETROscript Kit (Ambion).  Quantitative RT-PCR was performed using an 

Applied Biosystems 7500 Real-Time System and TaqMan assays for nAChR α2-

α7, α9-α10 and β2-β4 (Applied Biosystems, see Table II-2).  α8 gene expression 

was not analyzed because its expression has only been observed in avian 

species.  Samples containing no reverse transcriptase were used as negative 

controls. Relative gene expression was calculated using the 2-ΔΔCt method. The 

housekeeping gene β2-microglobulin was used as the endogenous control. 

 
Table II-2. TaqMan assays used to measure mRNA expression of nAChRs 

Target Gene TaqMan Assay 
CHRNA2 Hs00181237_m1 
CHRNA3 Hs00609519_m1 
CHRNA4 Hs00181247_m1 
CHRNA5 Hs00181248_m1 
CHRNA6 Hs00610231_m1 
CHRNA7 Hs01063373_m1 
CHRNA9 Hs00214034_m1 
CHRNA10 Hs00220710_m1 
CHRNB2 Hs00181267_m1 
CHRNB3 Hs00181269_m1 
CHRNB4 Hs00609523_m1 
β2-microglobulin Hs00187842_m1 
 

ASCL1 knockdown.  Knockdown of ASCL1 expression was performed in a SCLC 

cell line, DMS-53 and a NSCLC cell line, A549.  To control for off-target effects, 

three different siRNAs against ASCL1 were used namely s1656, s1657, and 

s1658 (Applied Biosystems).  Transient transfections were performed using 

Lipofectamine™2000 (Invitrogen).  Knockdown levels were determined using 
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quantitative RT-PCR.  A negative control siRNA (Applied Biosystems) that does 

not target any known human, mouse, or rat gene was used to normalize gene 

expression.  Untransfected samples were also analyzed for baseline gene 

expression.  Corresponding changes in nAChR α3, α5, and β4 gene expression 

was measured using quantitative RT-PCR with β2 microglobulin as endogenous 

control.  To determine specificity, gene expression of β2 was also measured.  

GAPDH levels were measured as a negative control.  Samples were analyzed in 

triplicate and at least two independent experiments were done for each siRNA. 

 

Western Blot Analysis.  Western blot analysis was performed using standard 

procedures to determine ASCL1 knockdown levels. Briefly, 50 µg of DMS-53 

lysates were loaded into 10% SDS-PAGE gels then transferred to nitrocellulose 

membranes.  Membranes were incubated with ASCL1 and β2-microglobulin 

antibodies followed by goat anti-rabbit secondary antibodies (Santa Cruz 

Biotechnology). Bands were visualized using a SuperSignal West Dura Extended 

Duration Substrate chemiluminescence kit (Pierce) and a VersaDoc Imaging 

System (Bio-Rad).   

 

3[H]-Epibatidine Binding.  Radioligand binding assays were performed in 

collaboration with Dr. Scott Roger’s laboratory (University of Utah School of 

Medicine).  SCLC cells that were transiently transfected with ASCL1 siRNA 

s1656 were harvested.  Membrane fractions were collected by centrifugation for 
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20 minutes at 20,000 x g at 4oC.  Pellets were resuspended and homogenized in 

50 mM Tris on ice.  Samples were divided into equal portions; to one set was 

added 500 µM nicotine (Sigma-Aldrich) to block all nAChRs.  Readings from 

these samples would therefore represent non-specific epibatidine binding  and 

serve as background control.  After 30 min, 3[H]-epibatidine (Perkin-Elmer) was 

added to both the nicotine-blocked and unblocked samples at a final 

concentration of 5 nM.  Membranes were incubated in a 25oC water bath for 4 

hours to ensure equilibrium was achieved.  Bound ligand was separated from 

free ligand by vacuum filtration through GF/C filters (Whatman International) 

Filters were washed with 50 mM Tris (pH 7.4).  Filters were dried completely, 

submerged in scintillation fluid and counted for retained 3[H] on a Beckman 

scintillation counter. Specific binding was calculated by averaging the total 

binding minus the background (nicotine-blocked) binding.  

 

Statistical analysis.  The mean relative expression values of each gene in the 

different samples were calculated and subjected to statistical analysis using the 

GraphPad Prism software.  Student’s t-test or one-way analysis of variance 

(ANOVA) followed by Tukey’s multiple comparison post-test was performed as 

appropriate. 
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III.C.Results 

Overexpression of the CHRNA5/A3/B4 genes in small cell lung carcinoma  

Quantitative RT-PCR was performed to compare mRNA expression of all 

known human neuronal nAChR genes across normal and lung cancer cell lines.  

Cell lines derived from each of the major lung cancer types (i.e., SCLC, large cell 

lung carcinoma, adenocarcinoma and squamous cell carcinoma) were used in 

this analysis.  Differential expression of the nAChR genes was observed across 

the different cell lines as depicted in the following heat map (Figure II-1).   

Figure II-1. Differential expression of nAChR genes across different lung 
cancer and normal cell lines. Quantitative RT-PCR was performed to 
determine mRNA levels of all human nAChR subunits.   Red boxes indicate 
high gene expression while green boxes indicate low to no gene expression.  
Samples were analyzed in triplicate. 

  

Gene expression in cancer cells relative to normal cells was then 

calculated using the 2-ΔΔCt method [293].  Two of the clustered nAChR genes, 

those encoding the α3 and β4 subunits, were significantly over-expressed in 
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SCLC lines compared to normal lung cell lines (Figure II-2).  Interestingly, 

expression of the α5 subunit gene was high in all the cell lines studied, including 

normal lung cell lines, with no significant differences in α5 expression observed 

in any of the cell lines.  Conversely, the α3 and β4 subunits had low expression 

in large cell, adenocarcinoma and squamous cell carcinoma lines, similar to that 

in normal lung cell lines.  

 
Figure II-2. Over-expression of the nAChR α3 and β4 genes across different 
cell lines.  The 2-ΔΔCt method was used to compared expression levels of the 
CHRNA5/A3/B4 genes in cancer cell lines compared to normal lung cell lines. 
The line within each box represents the median fold change relative to normal.  
The upper and lower edges of each box represent the 75th and 25th percentiles 
whereas the upper and lower bars represent the maximum and minimum 
values, respectively.  * p < 0.05, *** p < 0.001; n=3; ANOVA-Tukey. 
 

With respect to the non-clustered nAChR subunit genes, the α4, α7, α10, 

and β2 genes were also significantly over-expressed in SCLC compared to 

normal lung cell lines (Figure II-3, see following page).  In addition, the α7 gene 

was significantly over-expressed in large cell carcinoma cell lines. 
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Figure II-3. Differential expression of the nAChR α2, α4, α6, α7, α9, α10, β2, 
and β3 genes across different lung cell lines. The 2-ΔΔCt method was used to 
compared expression levels of nAChR genes in cancer cell lines compared to 
normal lung cell lines. The line within each box represents the median fold 
change relative to normal.  The upper and lower edges of each box represent 
the 75th and 25th percentiles whereas the upper and lower bars represent the 
maximum and minimum values, respectively.  * p < 0.05, ** p < 0.01, *** p < 
0.001; n=3; ANOVA-Tukey.  

 

Using a more physiologically relevant approach, we analyzed mRNA 

expression of the same set of genes in normal and lung cancer patient samples.  

The samples were from patients with SCLC, large cell lung carcinoma, 

adenocarcinoma and squamous cell carcinoma.  Expression of all of the nAChR 

subunit genes was low in normal lung tissue.  In comparison, all three of the 

clustered nAChR genes were significantly over-expressed in SCLC (Figure II-4).  

The α5 subunit gene was also significantly over-expressed in all NSCLC samples 
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(Figure II-4B) while the β4 subunit gene was significantly over-expressed in 

adenocarcinoma and squamous cell carcinomas (Figure II-4C). 

 
 

Figure II-4. Over-expression of the nAChR α3, α5, and β4 genes in lung 
cancer patient samples. The 2-ΔΔCt method was used to compared expression 
levels of nAChR genes in cancer cell lines compared to normal lung cell lines. 
The line within each box represents the median fold change relative to 
normal.  The upper and lower edges of each box represent the 75th and 25th 
percentiles whereas the upper and lower bars represent the maximum and 
minimum values, respectively. ** = p < 0.01, *** = p < 0.001; n =3; ANOVA-
Tukey. 

 
 

In SCLC samples, the nAChR α9 and β2 subunit genes were significantly 

over-expressed compared to normal lung tissue (Figure II-5E and G).  With 

respect to non-small cell lung cancer, the β2 subunit gene was significantly over-

expressed in adenocarcinoma and squamous cell carcinoma (Figure II-5G). In 

contrast, nAChR α2 subunit gene expression was significantly lower in all lung 

cancer tissues compared to normal lung tissue (Figure II-5A).  
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Figure II-5. Differential expression of the nAChR α2, α4, α6, α7, α9, α10, β2, 
and β3 genes across different lung cancer patient samples. . The 2-ΔΔCt method 
was used to compared expression levels of nAChR genes in cancer cell lines 
compared to normal lung cell lines. The line within each box represents the 
median fold change relative to normal.  The upper and lower edges of each box 
represent the 75th and 25th percentiles whereas the upper and lower bars 
represent the maximum and minimum values, respectively * = p < 0.05, ** = p < 
0.01, *** = p < 0.001; n=3; ANOVA-Tukey. 

 
 

E-boxes are present in the promoters of the clustered nicotinic receptor genes 

The high expression of the α3, α5, and β4 genes in SCLC as well as their 

genomic clustering suggests that they may be coordinately regulated [168].  As 

an initial approach to identifying regulatory factors of this gene locus, we 

analyzed the promoter region of each gene for potential transcription factor 

binding sites.  A number of putative binding sites for basic helix-loop-helix 

transcription factors were identified (Figure II-6).   
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Figure II-6.  The CHRNA5/A3/B4 gene cluster contains putative ASCL1 binding 
sites.  E-boxes (yellow), containing the consensus sequence CANNTG, are 
present in the promoter regions of the α5, α3, and β4 genes (orange, blue, and 
green boxes, respectively).  Straight arrows indicate the directions of 
transcription while bent arrows indicate major transcription initiation sites.  

 

These sites are referred to as E-boxes and have the core sequence 5'-

CANNTG-3'.  The α3 gene promoter contains two E-boxes with the sequences 

CAGGTG and CACCTG.  The α5 gene promoter contains four E-boxes with the 

sequences CAAATG, CAGCTG, CACCTG, and CACATG while the β4 gene 

promoter contains five E-boxes with the sequences CATTTG, CACATG, 

CAGCTG, and two CAGGTGs.  With the exception of one E-box in the β4 

promoter, all E-boxes are located upstream of reported major transcription 

initiation sites [196, 219, 294]. 
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ASCL1 regulates expression of the clustered nicotinic receptor genes 

Although there is a large family of basic helix-loop-helix transcription 

factors, we focused on ASCL1 because of its critical role in SCLC, as described 

above.  To determine whether ASCL1 regulates expression of nicotinic receptor 

genes, knockdown experiments were done in SCLC cell lines using small 

interfering RNAs (siRNAs) against ASCL1.  To control for off-target effects, three 

distinct siRNAs were used.  The most potent siRNA, s1656, reduced ASCL1 

mRNA expression by approximately 87% leading to an 89% decrease in α3 gene 

expression, a 45% decrease in α5 gene expression and a 78% decrease in β4 

gene expression (Figure II-7A, left).  The second siRNA, s1657, reduced ASCL1 

mRNA expression by 64% leading to a 77% decrease in α3 gene expression, an 

18% decrease in α5 gene expression and a 66% decrease in β4 gene 

expression (Figure II-7A, middle).  The third siRNA, s1658, reduced ASCL1 

mRNA expression by 65% leading to a 78% decrease in α3 gene expression, a 

17% decrease in α5 gene expression and a 41% decrease in β4 gene 

expression (Figure II-7A, right).  Decreases in α5 expression were not found to 

be statistically significant.  In addition, ASCL1 knockdown did not significantly 

affect the expression of the genes encoding the α7 and β2 subunit genes, two 

other nAChR subunits implicated in lung cancer, indicating specificity of α3 and 

β4 subunit gene regulation by ASCL1.  ASCL1 knockdown also did not affect the 

expression of the housekeeping gene, GAPDH (data not shown).  Furthermore, 

knockdown of ASCL1 in a non-small cell lung carcinoma cell line, A549, did not 
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reduce expression of the α3, α5, and β4 subunit genes (Figure II-7B).  

Expression of the β2 subunit gene, however, appears to increase in this cell line 

upon ASCL1 knockdown.  

 
 
Figure II-7.  Knockdown of ASCL1 leads to a decrease in CHRNA3/B4 gene 
expression in SCLC but not NSCLC.  ASCL1 knockdown was achieved in 
SCLC (A) and NSCLC (B) cells using three different siRNAs: s1656, s1657, 
and s1658.  Changes in gene expression were determined using quantitative 
RT-PCR.  Samples treated with a negative control siRNA (white boxes) were 
used as calibrator (i.e., expression levels for these samples was set at 1).  
Error bars indicate SEMs. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, 
compared to negative control; n = 4; ANOVA-Tukey. 

 

Western blot analysis confirmed that ASCL1 knockdown was achieved at 

the protein level using all three siRNAs (Figure II-8A).  Furthermore, 3[H]-

epibatidine-binding assays show that ASCL1 knockdown leads to a decrease in 

the total amount of nAChR binding sites on the cell membrane (Figure II-8B).  
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Figure II-8.  Total nAChR binding sites decrease upon ASCL1 knockdown. A. 
Western blot analysis shows decrease in ASCL1 protein expression upon 
treatment with ASCL1 s1656, s1657, and s1658 siRNAs (top, middle, and 
bottom panels, respectively). Lane 1: No ASCL1 primary antibody; Lane 2: 
Untreated SCLC cells; Lane 3: Negative control siRNA-treated cells; and Lane 
4: ASCL1 siRNA-treated cells. β2-microglobulin (β2M) was used as loading 
control. B. A radioligand-binding assay was performed using epibatidine, a 
nAChR ligand, to determine total nAChR levels at the cell surface upon ASCL1 
siRNA treatment. Error bars indicate SEMs. * = p < 0.05, n=3, Student’s t-test. 

 

III.C.Discussion 

Our observation that the nAChR α3, α5 and β4 subunit genes are over-

expressed in SCLC is particularly intriguing in light of the recent genome wide 

association studies implicating the CHNRA5/A3/B4 gene locus in lung cancer 

susceptibility [267-269, 281].  Over-expression of the clustered nAChR genes in 

lung cancer cells supports the notion that these genes play a role independent of 

A B 
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the nicotine addiction pathway.  Extrapolating on data gained from work in the 

nervous system and our own observations, the possible nAChR subtypes that 

can form in SCLC include α3β2, α3β4, α3β4α5, and α3β2β4α5 [22].  These 

subtypes are believed to be involved in ganglionic neurotransmission in the 

peripheral nervous system [295].  A thorough investigation of functional nAChR 

subtypes in lung cancer has yet to be done but there is evidence that specific 

subtypes mediate distinct processes. For example, α3-containing nAChR 

subtypes have been implicated in nicotine-mediated activation of the Akt pathway 

[136] whereas the α7 subtype is thought to mediate nicotine-induced 

angiogenesis and NNK-induced apoptotic inhibition [136, 296].  α7 nAChRs also 

have high calcium permeability and binding of NNK results in calcium influx, 

which triggers signaling pathways that result in cell proliferation, increased cell 

migration, apoptotic inhibition, and angiogenesis [280].     These two examples 

indicate the need to identify all of the precise nAChR subtypes in lung cancer 

cells as this may be important for design of targeted therapeutics given the 

unique pharmacological and functional properties of each nAChR subtype. 

 

As nAChRs are the cognate receptors for nicotine and NNK, their 

activation is likely the first step in signal transduction cascades involving these 

ligands.  Persistent activation of cancer-promoting pathways has been shown to 

result from nicotine and NNK exposure and may facilitate SCLC development 

[128, 297].  While these pathways remain to be completely elucidated, they 
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appear to involve the mitogen activated kinases ERK1 and ERK2, protein kinase 

C (PKC), the serine/threonine kinase RAF1 and the transcription factors FOS, 

JUN and MYC [280].  In addition, exposure to nicotine has also been shown to 

reduce the efficacy of anti-cancer agents by inhibiting apoptosis [114].  

Pharmacological approaches suggest that these effects are mediated at least in 

part by homomeric α7 nAChRs [280] but the role of other nAChR subtypes 

cannot be ruled out due to the lack of specificity of currently available 

pharmacological agents. 

 

That nAChRs may function in SCLC is not totally unexpected given their 

important role in the nervous system.  SCLC is believed to develop from 

pulmonary neuroendocrine cells.  As the name suggests, these cells share 

properties with neurons such as the expression of ion channels and 

neuropeptides and have been referred to as paraneurons [298]. 

 

From a regulatory standpoint, the over-expression of the clustered nAChR 

genes also yields some interesting insights.  Several laboratories have previously 

identified regulatory features shared by these genes [211, 212, 214, 215, 219, 

221, 232, 242, 243].  Based on these studies, it is believed that expression of the 

clustered nAChR genes results from interactions between ubiquitously expressed 

and cell-type-specific transcription factors with cis-acting regulatory elements 

located within or near the cluster.  To date, only one cell-type-specific factor, 
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Sox10, has been identified and shown to regulate nAChR gene expression [218, 

226].  Sox10 activates the promoters of the clustered genes in neuronal cell lines 

but not in non-neuronal cells.  However, we have observed that Sox10 is not 

expressed in any of the lung cancer cell lines we used in this study (data not 

shown).  This suggests that other transcription factors must be involved in the 

expression of nAChR genes in lung cancer.  As mentioned above, the 

transcription factor ASCL1 is an interesting candidate given its role in SCLC 

[289-292].  ASCL1 is also known to activate neuroendocrine differentiation 

markers while suppressing putative tumor suppressor genes [299].  In addition, 

ASCL1 is required for the proper development of peripheral sympathoadrenal 

tissues, the same tissues where the clustered nAChR genes are abundantly 

expressed [300]. 

 

The knockdown experiments presented here indicate that ASCL1 robustly 

regulates the expression of the α3 and β4 genes while α5 gene expression was, 

at most, modestly affected.  These regulatory differences are likely due to the 

fact that each gene has its own promoter.  Hence, although the three genes 

share common regulatory elements, each gene may have additional mechanisms 

that allow fine-tuning of its specific expression.  Moreover, the α5 gene is 

transcribed in the opposite direction as the α3 and β4 genes raising the 

possibility that transcription factors that bind to the α3 and β4 promoters may be 

differentially utilized by the α5 promoter and vice versa.  Nevertheless, the effect 
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of ASCL1 on nAChR subunit gene expression in SCLC appears to be specific for 

the clustered subunit genes, as expression of the α7 and β2 genes was not 

affected by ASCL1 knockdown.  In contrast, ASCL1 knockdown does not reduce 

the expression of the clustered subunit genes in NSCLC whereas it increases the 

expression of the β2 gene, suggesting cell-type specificity of ASCL1 regulation. 

 

Control of nAChR gene expression by ASCL1 may provide a mechanism 

for the role of nicotine in lung cancer.  Nicotine has been shown to induce cellular 

processes that may lead to the development of cancer including activation of cell 

proliferation and survival pathways [280].  Acetylcholine, the endogenous ligand 

for nAChRs, is also thought to act as an autocrine growth factor in lung cancer 

cells [301].  Over-expression of their cognate receptors via transcriptional control 

by ASCL1 may thereby potentiate the effects of these ligands, providing a 

mechanism by which cigarette smoking can promote the growth and 

aggressiveness of SCLC. 
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I have had my results for a long time:  but I do not yet know how I am to arrive at 
them. 

- Carl Friedrich Gauss 
 
III.A.Introduction 
 

Lung cancer is the most frequent cause of cancer deaths, causing over a 

million deaths annually [5].  Clinically and histopathologically, lung cancer is 

divided into two groups: non-small cell lung carcinoma (NSCLC) and small cell 

lung carcinoma (SCLC).  NSCLC consists of a heterogenous group of tumors 

that account for 80% of lung cancer cases [302].  SCLC is a highly malignant 

form of lung cancer, thought to arise from primitive neuroendocrine cells [303]. 

Though SCLC is more rare, it is characterized by unfavorable prognostic factors 

such as early and widespread metastases, chemoresistance, and relapses [304]. 

 

Tobacco use is the major risk factor associated with lung cancer.  

Research through the years has forged connections between nicotine in tobacco 

and various cancer-related events such as cell proliferation, apoptotic inhibition, 

angiogenesis, and metastasis [115, 305].  Nicotine acts through its cognate 

receptors, nicotinic acetylcholine receptors (nAChRs), for which acetylcholine is 

the endogenous ligand.  nAChRs are pentameric, ligand-gated ion channels 

assembled from homozygous or heterozygous combinations of α and β subunits 

[306].  To date, eleven genes have been identified encoding human nAChR 

subunits (α2-α10 and β2-β4).   
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Linkage and association studies have implicated the genes encoding the 

α3, α5, and β4 nAChR subunits in lung cancer etiology [167, 267, 269].  These 

genes encode nAChR subunits that frequently co-assemble.  The three genes lie 

in a cluster in chromosome 15q25 and harbor single nucleotide polymorphisms 

(SNPs) that increase risk for developing both nicotine dependence and lung 

cancer.  Of particular interest is a non-synonymous SNP (rs16969968) in the 

CHRNA5 gene that decreases protein function in heterologous systems [258, 

307].  It is unclear if the genetic association with lung cancer is simply a reflection 

of higher levels of nicotine dependence in carriers of risk alleles and 

consequently greater exposure to tobacco carcinogens [274].  A case for direct 

association, however, is supported by studies showing increased risk in never-

smokers and in smoking populations after adjustment for smoking behaviors 

[272, 308].  Furthermore, the polymorphism is not associated with other smoking-

related cancers such as head and neck cancers (e.g., cancers of the mouth, 

larynx, pharynx, and esophagus) [267].  

 

We sought to address this quandary by directly investigating the role of 

the CHRNA5/A3/B4 genes in lung cancer.  We have previously shown that these 

genes are expressed at aberrantly high levels in SCLC [309].  Here, we 

demonstrate that CHRNA5/A3/B4 depletion leads to a decrease in SCLC cell 

viability.  In addition, we show that nicotine treatment increases cell viability while 

treatment with α-conotoxin AuIB, a selective antagonist of α3β4 nAChRs [310], 
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decreases cell viability.  Using a xenograft tumor model, we also show that 

nicotine promotes tumor growth while CHRNA5 silencing inhibits tumor growth in 

vivo.   

 

III.B.Materials and Methods 

siRNA knockdown.  Cells were seeded in black, clear bottom 96-well assay 

plates and allowed to grow overnight.  Cells were transiently transfected using 

Lipofectamine 2000 (Invitrogen) in Opti-MEM (Invitrogen) with 10 nM of a 

Silencer Select Negative Control #1 or CHRNA3 (s3043, s3044, s3045), 

CHRNA5 (s3049, s3050, s3051), and CHRNB4 (s3064, s3065, s3066) siRNAs 

(Applied Biosystems).  After 48 hours, cells were harvested and subjected to a 

bioluminescence-based cell viability assay (described in detail in Chapter IV.B).  

To determine knockdown efficiency, cells were seeded in parallel onto 6-well 

cluster plates and transfected as above.  After 48 hours, cells were harvested 

and total RNA was isolated using an RNeasy Mini Kit (Qiagen).  RNA was 

reverse-transcribed using RETROscript reagents (Applied Biosystems).  

Samples without reverse transcriptase were used as negative controls. 

CHRNA5/A3/B4 transcripts were amplified using Applied Biosystems TaqMan 

assays (Hs00181248_m1, Hs00609519_m1, and Hs00609523_m1, respectively) 

and the PRISM 7500 real-time PCR system (Applied Biosystems).  Gene 

expression was quantified using the 2-ΔΔCt method [293].  β2-microglobulin 
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(Hs00187842_m1) was used as the endogenous control to normalize gene 

expression levels. 

 

Drug Treatment.  DMS-53 cells were seeded onto black, clear bottom 96-well 

assay plates and allowed to grow overnight.  Cells were then treated daily for one 

week with the 1 µM nicotine (Sigma-Aldrich) or 2 µM α-conotoxin AuIB (a gift 

from J. Michael McIntosh, University of Utah School of Medicine). Cells were 

then harvested and subjected to a bioluminescence-based cell viability assay.    

 

CHRNA5 Gene Sequencing.  DMS-53 cells were grown in a 10-cm plate and 

harvested.  Genomic DNA was isolated from the cells using a Qiagen DNeasy 

Kit.  A region of CHRNA5 containing the rs16969968 SNP was then amplified 

using the following primers: Forward - 5’-CCATCATCTTCAAAAGTCATACCTC-

3’ and Reverse - 5’-AGTTCACCCACTGCCCTCAC-3’.  PCR was carried out with 

Phusion High-Fidelity DNA polymerase (Finnzymes/Thermo-Scientific) using the 

following thermal cycling parameters: 98oC for 3 min; 35 cycles of 98oC for 10 

sec, 67oC for 30 sec, 72oC for 25 sec; and 72oC for 3 min. PCR products were 

then purified using a Qiaquick PCR purification kit (Quiagen) and sent out for 

direct sequencing (Genewiz).  Sequences were analyzed using Sequence 

Scanner Software (Applied Biosystems). 
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shRNA knockdown.  Two lentiviral pGIPZ CHRNA5 shRNAmir constructs (Open 

Biosystems; CHRNA5 A Clone ID: V3LHS_367770; CHRNA5 B Clone ID: 

V3LHS_367772) were used to transfect HEK293T cells for viral packaging using 

the Trans-Lentiviral Packaging System (Open Biosystems). A non-silencing 

shRNAmir (Open Biosystems) was used as a negative control (this control is 

processed by the endogenous RNA interference pathway but the processed 

siRNA does not target any RNA in the mammalian genome).  Viral particles were 

harvested and used to transduce SCLC cells in the presence of 4 µg/ml 

polybrene (Sigma).  To select for cells stably expressing the shRNAmirs, cells 

were treated with 6 µg/ml puromycin dihydrochloride for 5 days. 

 

Xenograft Tumor Model. All animal experiments were conducted in accordance 

with the guidelines for care and use of laboratory animals provided by the 

National Research Council [311] as well as with an approved animal protocol 

from the Institutional Animal Care and Use Committee of the University of 

Massachusetts Medical School (Assurance Number A-3306-01).  DMS-53 cells 

supplemented with Matrigel (BD Biosciences) were implanted subcutaneously 

onto the hind flanks of 6-week old athymic nude mice (Charles River 

Laboratories). After 60 days, tumors were harvested and weighed.  Tumor size 

was determined by measuring the length and width of tumors at the longest axes 

using a digital caliper. To measure CHRNA5 knockdown levels, total RNA was 
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isolated from representative samples and quantitative RT-PCR was performed as 

described above. 

  

Chronic Nicotine Treatment via Minipumps.  Athymic nude mice carrying tumor 

xenografts were implanted subcutaneously with osmotic minimpumps (Alzet).  

Mice were anesthetized using ketamine/xylazine before minipump implantation.  

Minipumps delivered either saline or 24 mg/kg/day of nicotine (Sigma-Aldrich) at 

a rate of 0.25 µl per hour and last for about a month.  After one month, tumors 

were harvested, measured for size, and weighed.  

 

III.C.Results 

To determine the role of CHRNA5/A3/B4 in SCLC, we silenced the expression of 

these three genes in the SCLC cell line, DMS-53. Three distinct siRNAs against 

each gene in the cluster were used. Treatment with CHRNA3 a, b, and c resulted 

in 97%, 97%, and 93% decrease in mRNA levels, respectively; treatment with 

CHRNA5 a, b, and c resulted in 71%, 93%, and 77% decrease in mRNA levels, 

respectively; and treatment with CHRNB4 a, b, and c resulted in 96%, 91%, and 

95% decrease in mRNA levels, respectively (Figure III-2A).  Using a 

bioluminescence-based viability assay, we found that all siRNAs that yielded 

>90% knockdown also significantly decreased SCLC cell viability (Figure III-2B).  

Interestingly, the two siRNAs that yielded the least knockdown levels, CHRNA5 a 



 64 

and c, did not significantly affect cell viability, suggesting that certain CHRNA5 

depletion levels may need to be reached to obtain an observable phenotype. 

  

 
 

Figure III-1.  CHRA5/A3/B4 depletion decreases viability of SCLC cells.  
SCLC cells were treated with negative control or CHRNA5/A3/B4 siRNAs. A. 
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qRT-PCR was performed to determine mRNA levels upon knockdown.  B. A 
cell viability assay was performed to determine the effect of siRNA treatment 
on SCLC cell viability (*** = p value < 0.01; n = 3 for quantitative RT-PCR, n = 
5 for viability assay; ANOVA-Tukey. 
 
 

Using the same bioluminescence-based assay, we then tested the effect 

of nAChR ligands on SCLC cell viability.  Nicotine treatment increased SCLC cell 

viability (Figure III-2).  Notably, treatment with the α3β4 nAChR-selective 

antagonist, α-conotoxin AuIB, showed the opposite effect (i.e., blocking α3β4-

containing nAChRs decreased SCLC cell viability). 

 

 
Figure III-2.  Exposure to nAChR ligands regulates SCLC cell viability.  DMS-
53 cells were treated daily for 1 week with 1 µM nicotine (nAChR agonist) or 2 
µM a-conotoxin AuIB (α3β4 nAChR antagonist).  Cell viability was then 
measured.  Values were normalized to those of saline-treated samples.  
Asterisks indicate statistical significance compared to saline controls (* = p 
value < 0.05, ** = p value < 0.01; n = 5; one way ANOVA followed by Tukey’s 
multiple comparison post-test). 
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For in vivo propagation of tumors, we utilized the tumor xenograft model.  

We focused on CHRNA5 as it harbors the non-synonymous SNP, rs16969968.  

To determine the rs16969968 allele status of the SCLC cell line, DMS-53, used 

in the xenograft assays, we directly sequenced the CHRNA5 region containing 

this SNP.  The following chromatograms show that this cell line is heterozygous 

at this locus. 

 

 

Figure III-1.  Forward and reverse sequence chromatograms of the 
rs16060068 locus. Genomic DNA was isolated from the SCLC cell line, DMS-
53.  The CHRNA5 exon 5 region containing the rs16969968 SNP was PCR 
amplified and sequenced.  Arrows indicate the double A/G (T/C) peaks, 
indicating heterozygosity at this locus. 
 

 
 
This cell line was used to stably express two distinct CHRNA5 shRNAmirs via 

lentiviral delivery. Cells were then implanted subcutaneously into 

immunodeficient mice and allowed to grow.  The cells were supplemented with 
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Matrigel to provide the complex extracellular environment found in many tumors.  

After tumors were harvested, CHRNA5 knockdown levels were determined. 

 

  

Figure III-4. CHRNA5 depletion inhibits growth of tumor xenografts. DMS-53 
cells stably expressing CHRNA5 shRNAmirs were subcutaneously injected 
into the hind flanks of immunocompromised mice A. CHRNA5 shRNAmir A 
and B knockdown levels in harvested tumors.  B.  Representative tumor 
images. C-D. Tumor sizes and weights, respectively. * = p < 0.05, ** = p < 
0.01; n = 9 for non-silencing, n = 5 for CHRNA5 shRNAmir A, n = 9 for 
CHRNA5 shRNAmir B; ANOVA –Tukey. 

 



 68 

Treatment with CHRNA5 shRNAmir A resulted in a 59% decrease in mRNA 

levels while treatment with CHRNA5 shRNAmir B resulted in a 66% decrease in 

mRNA levels (Figure III-4A).  CHRNA5 knockdown led to a decrease in tumor 

size and weight (Figure III-4B-D), suggesting that CHRNA5 is important for SCLC 

tumor growth.  In addition, while all cells treated with the non-silencing shRNAmir 

formed tumors, two out of the nine samples treated with CHRNA5 shRNAmir B 

did not form tumors, suggesting that CHRNA5 may also impact rates of tumor 

incidence. 

 

Finally, we tested the effect of chronic nicotine treatment on the growth of SCLC 

tumors in vivo.  We used osmotic minipumps to deliver nicotine as these devices 

allow continuous dosing of drugs, while eliminating repeated injections and 

minimizing animal handling.  This treatment paradigm has not been previously 

used to test the effect of nicotine on tumor growth.  As shown in Figure III-5, 

chronic nicotine exposure promotes the growth of tumors compared to saline-

treated mice. 
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Figure III-5. Chronic nicotine exposure increases SCLC tumor growth. A. 
SCLC cells were injected subcutaneously onto the hind flanks of athymic 
nude mice. Mice were then implanted with osmotic minipumps to deliver 
either saline (top panel) or 24 mg/kg/day of nicotine (bottom panel).  After 4 
weeks, tumors were harvested and tumor size (B) and weights (C) were 
measured.  ** = p < 0.01; n = 4; Student’s t-test.   

 

 

III.D.  Discussion 

Our findings that CHRNA5/A3/B4 depletion inhibits SCLC cell viability provide 

mechanistic support to the correlative link between these genes and lung cancer 

susceptibility.  It suggests that the clustered genes perform a vital function in the 

maintenance of SCLC cell viability.  That the CHRNA5/A3/B4 genes play a role in 
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lung cancer, outside of their role in nicotine addiction, attests to the pleiotropic 

function of these genes. 

 

Consistent with our genetic approach, we found that pharmacological activation 

and blockade of α5α3β4 nAChRs modulates SCLC cell viability. Treatment with 

nicotine promotes SCLC cell viability, in line with previous findings on the 

proliferative effect of nicotine on SCLC cells [116, 117, 134].  This result 

suggests the presence of functional nAChRs in DMS-53 cells and confirms its 

suitability for the experiments described in this study.  This result also verifies the 

reliability of our bioluminescence viability assay as a tool for studying the effects 

of genetic and pharmacological agents against SCLC.   

 

To perform the converse experiment, we utilized the α3β4-selective 

ligand, α-conotoxin AuIB.  α-conotoxins are derived from the venom of 

carnivorous cone snails, which have proved to be a valuable source for disulfide-

bonded peptides that target nAChRs in a highly subtype-selective manner.  α-

conotoxin AuIB, in particular, was isolated from the snail-eating cone Conus 

aurilicus and blocks α3β4 nAChRs with > 100-fold higher potency than other 

nAChR subtypes [310].  Treatment with α-conotoxin AuIB leads to decreased 

viability of DMS-53 cells, indicating that functional α3β4 nAChRs are present in 

SCLC cells and are important for maintenance of SCLC cell viability.  The 

unavailability of selective α5α3β4 nAChR ligands limits our ability to determine 
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the role of this subtype in SCLC cell viability.  Nevertheless, the co-expression of 

CHRNA5/A3/B4 in DMS-53 cells and the proclivity of α3β4 nAChRs to form 

mature receptors with α5, suggests that the observed reduction in cell viability is 

due in part to blockade of α5α3β4 nAChRs. 

 

We next turned to the xenograft tumor model, one of the most commonly 

used mouse models for studying cancer, for a more physiologically relevant 

approach.  The key advantages of this model include 1) the use of actual human 

cells, containing the genetic and epigenetic peculiarities of human samples; 2) 

availability of results within a couple of months; and 3) its relative ease and 

simplicity [312].  We focused on CHRNA5 given the presence in its coding region 

of the only non-synonymous SNP associated with both nicotine dependence and 

lung cancer.  CHRNA5 knockdown in this cell line decreased tumor growth and 

incidence, indicating the importance of CHRNA5 in these processes. 

 

Sequence analysis revealed the heterozygous nature of rs16969968 in 

DMS-53 cells.  Since CHRNA5 shRNAmirs decrease levels of total CHRNA5 

mRNA, our results illustrate the effect of decreasing both allelic versions.  Hence, 

we cannot infer from our data whether the reduction in tumor growth is the effect 

of a reduction in a specific allele or the effect of a global loss of CHRNA5.   
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It is also worth noting that the knockdown levels achieved using the 

shRNAmirs were not as robust as those seen using the siRNAs.  However, 

shRNAmirs are stably expressed due to their integration into the genome.  This 

relatively low but stable knockdown appears to be sufficient to yield a 

measurable phenotype. 

 

In conclusion, our results indicate a role for the CHNRA5/A3/B4 genes in SCLC 

and supports the hypothesis that allelic variations in these genes are directly 

associated with lung cancer susceptibility.  The added association with nicotine 

dependence suggests a mechanism for exacerbation of risk (a double whammy 

effect), possibly providing an explanation for the tight linkage between tobacco 

use and SCLC [10].  Moreover, association with other diseases such as 

alcoholism, COPD, and peripheral arterial disease [268, 275, 276] suggests 

pleiotropy at this locus and warrants further investigation into the role of the 

CHRNA5/A3/B4 genes in other pathological states.  Finally, inhibition of cell 

viability and tumor growth by genetic and pharmacological disruption of 

CHNRA5/A3/B4 suggests the utility of these genes as therapeutic targets for 

SCLC.   
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CHAPTER IV:  

HIGH-THROUGHPUT SCREEN IDENTIFIES PHARMACOLOGICAL AGENTS 

THAT TARGET NEUROTRANSMITTER SIGNALING IN SCLC 
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We have two options, medically and emotionally: give up or fight like hell. 
- Lance Armstrong 

IV.A.Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide, 

resulting in over 1.3 million deaths per year [5]. In the United States, lung cancer 

incidence rates are second only to rates for breast cancer in females and 

prostate cancer in males [6].  Tobacco use is the major risk factor associated 

with lung cancer.  Histopathological classification divides lung cancer into two 

main types:  small cell lung carcinoma (SCLC) and non-small cell lung carcinoma 

(NSCLC).  NSCLC can be further subdivided into adenocarcinoma, squamous 

cell, and large cell lung carcinoma. 

 

SCLC is the most aggressive type of lung cancer, as demonstrated by its 

rapid doubling time and early development of widespread metastases [313].  In 

fact, SCLC is so aggressive that by the time it is diagnosed, metastasis has 

usually already occurred such that surgical resection of tumors is rarely an 

option. Hence, chemotherapy and radiation are the treatments of choice for these 

patients.  Most patients exhibit robust initial response to treatment but eventually 

become chemoresistant [304].  Relapses occur almost without exception and 

five-year survival rates range from 31% (for patients diagnosed at Stage I) to 2% 

(for patients diagnosed at Stage IV) [6].  Advances made in the past three 

decades have resulted in only a slight improvement in treatment outcome for 
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SCLC [314].  Identification of novel SCLC therapies is therefore of prime 

importance. 

 

Cell viability assays are indispensable tools in drug discovery efforts.  

Measurement of cell viability is a simple and rapid approach for determining a 

cell population’s response to endogenous factors such as hormones and growth 

factors as well as external stimuli such as drugs and environmental stress [315].  

A classic approach for measuring cell viability involves the use of vital dyes (e.g., 

trypan blue) for probing membrane integrity.  This method, however, is tedious 

and prone to experimenter bias [315].  Another traditional method relies on the 

reduction of tetrazolium salts such as MTT (3-(4,5-dimethylthiazolyl-2)-2,5-

diphenyltetrazolium bromide), resulting in the formation of colored products that 

can be quantified via spectrophotometry [316].  However, such assays have 

limited sensitivity, narrow dynamic ranges, and are subject to variability [315]. 

 

Bioluminescence-based assays are a favored approach due to their broad 

linearity and robustness to library compounds and complex biological samples 

[317].  These assays exploit the ability of luciferase to catalyze oxidation of a 

luciferin substrate, a reaction that generates light as a by-product [317].  Light 

generated by this reaction has the highest quantum efficiency of any known 

chemiluminescent reaction [318].  Combined with low bioluminescence signals in 

mammalian cells, this approach allows for highly sensitive assays. 
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Here, we developed a cell viability assay employing bioluminescence to 

screen for pharmacological compounds against SCLC.  From a library of 1,280 

pharmacologically active compounds, we identified several classes of drugs that 

target classic cancer signaling pathways as well as neuroendocrine markers in 

SCLC. 

 

IV.B.Materials and Methods 

Animals.  All animal experiments were conducted in accordance with the 

guidelines for care and use of laboratory animals provided by the National 

Research Council [311] as well as with an approved animal protocol from the 

Institutional Animal Care and Use Committee of the University of Massachusetts 

Medical School (Assurance Number A-3306-01).  Specifically, mice were 

exposed to 2% isofluorane before being imaged.  During imaging, mice lay on a 

temperature-regulated stage and were continually exposed to isofluorane. 

 

Cell culture.  DMS-53 and DMS-114 SCLC cell lines were acquired from the 

American Type Culture Collection (ATCC) and grown in RPMI 1640 containing L-

glutamine and 25 mM HEPES (Cellgro), supplemented with 10% fetal bovine 

serum (PAA).  HEK293T cells were acquired from Open Biosystems and grown 

in Dulbecco’s Modified Eagle’s Medium containing L-glutamine and 4.5 g/L 

glucose (Cellgro), supplemented with 10% fetal bovine serum.  Cells were 
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maintained at 37°C and 8% CO2.  Cell line authentication is performed by the 

American Type Culture Collection using cytochrome oxidase subunit I (COI) 

analysis for interspecies identification and STR analysis (DNA profiling) for 

intraspecies identification. 

 

Cloning and viral production.  A luciferase cassette was subcloned from pGL3-

Basic (Promega) into the multiple cloning site of the lentiviral expression vector 

pLEX-MCS (Open Biosystems) using SpeI and MluI (New England Biolabs) 

restriction sites. The construct, pLEX-lucSM, was transfected into HEK293T cells 

for viral packaging using the Trans-Lentiviral Packaging System (Open 

Biosystems).  Viral particles were harvested and used to transduce DMS-53 or 

DMS-114 cells in the presence of 4 µg/ml polybrene (Sigma).  To select for cells 

stably expressing luciferase (designated DMS-53 luc+ and DMS-114 luc+), cells 

were treated with 6 µg/ml puromycin dihydrochloride for 5 days. 

 

Luciferase assays.  Cells were lysed using 50 µl Reporter Lysis Buffer (Promega) 

and placed on a shaker at room temperature for 5 minutes.  To snap-freeze, cells 

were placed at -80°C for 15 minutes.  Cells were then allowed to thaw and 

equilibrate to room temperature for 15 minutes.  Plates were returned to the 

shaker for another 5 minutes before placing into a luminometer (Bio-Rad 

Lumimark).  The luminometer was set to dispense 50 µl of the luciferase 

substrate (Promega Luciferase Assay Reagent).  Integration time was set for 10 
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seconds with a 2-second lag time.  Non-luciferase expressing cells were used as 

negative controls, where indicated. 

 

MTT assay.  Cells were seeded from 0 - 1x106 cells/well in black, clear bottom 

96-well assay plates and allowed to grow overnight.  Cells were then treated with 

10 µl MTT Reagent (ATCC) and incubated for 4 hours.  After ensuring that purple 

precipitates where visible, 100 µl of Detergent Reagent (ATCC) was added.  

Samples were allowed to incubate at room temperature for another 2 hours.  

Absorbance readings at 570 nm were taken using a SpectraMax M2 microplate 

reader (Molecular Devices). 

 

Bioluminescence imaging.  For imaging of luciferase-expressing cells in vitro, 

cells were seeded onto black, clear bottom 96-well assay plates (Costar).  Before 

imaging, cell culture media were removed.  The firefly luciferase substrate D-

luciferin (Gold Biotechnology) was added at a final concentration of 150 µg/ml 

per well.  After 15 minutes of incubation, cells were imaged using a Xenogen 

IVIS 100 imager (Caliper Life Sciences), which makes use of a supercooled 

charge-coupled device (CCD) camera to detect light-emitting cells. For in vivo 

work, male athymic nude mice were obtained from Charles River Laboratories.  

For xenograft assays, cells were implanted subcutaneously onto the hind flanks 

of 6-week old mice.  For the lung colonization model, cells were injected into tail 

veins of 6-week old mice.  Mice were injected intraperitoneally with 150 mg/kg D-
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luciferin 15 minutes prior to imaging. Quantification was performed using the 

acquisition and analysis software Living Image (Caliper Life Sciences). 

 

Pharmacological treatments.  All drugs were purchased from Sigma.  For pre-

validation of the bioluminescence assay, 1x104 DMS-53 luc+ and DMS-114 luc+ 

cells were seeded in black, clear bottom 96-well assay plates and allowed to 

grow overnight.  Cells were treated with 0, 2, and 4 µM K252c (staurosporine 

aglycone) for 0, 12, and 24 hours or 0, 25, and 50 µM cis-diammineplatinum (II) 

chloride (cisplatin) for 0, 12, and 24 hours. Cells were then harvested and 

subjected to luciferase assays. 

 

RNA interference.  Cells were seeded in black, clear bottom 96-well assay plates 

and allowed to grow overnight.  Cells were transfected with 5-10 nM of a Silencer 

Select Negative Control #1 or glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) siRNA (Applied Biosystems) using Lipofectamine 2000 (Invitrogen) in 

Opti-MEM (Invitrogen).  Samples treated only with Lipofectamine 2000 were also 

used as controls.  After 48 hours, cells were harvested and subjected to 

luciferase assays.  To determine knockdown efficiency, cells were seeded in 

parallel onto 6-well cluster plates and transfected as above.  After 48 hours, cells 

were harvested and total RNA was isolated using an RNeasy Mini Kit (Qiagen).  

RNA was reverse-transcribed using RETROscript reagents (Applied 

Biosystems).  Samples without reverse transcriptase were used as negative 
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controls. GAPDH amplicons were generated using GAPDH TaqMan assays 

(Applied Biosystems) and the PRISM 7500 real-time PCR system (Applied 

Biosystems).  GAPDH levels were quantified using the 2-ΔΔCt method [293].  β2-

microglobulin was used as the endogenous control to normalize gene expression 

levels. 

 

Large-scale compound screen.  For primary screening, 5 x 104 DMS-53+ cells 

were seeded in black, clear bottom 96-well assay plates and allowed to grow 

overnight.  The following day, compounds from the Library of Pharmacologically 

Active Compounds, LOPAC1280, (Sigma) were added to each well at a final 

concentration of 50 µM in 1% dimethyl sulfoxide (DMSO).  For each plate, one 

column of cells (n=8 wells) was treated for 24 hours with equal concentrations of 

cisplatin as positive control and another column was treated with 1% DMSO as 

negative control.  Tolerance of cells for 1% DMSO was confirmed prior to 

screening (Appendix I).  Media aspiration and addition of compounds, lysis 

buffer, and luciferase substrate were performed with a Te-Mo (Tecan) automated 

system at the University of Massachusetts Medical School Small Molecule 

Screening Facility.  Luciferase readouts were taken using a Victor plate reader 

(Perkin Elmer).  For secondary screening, selected hits from the primary screen 

were retested using DMS-53 luc+ cells and further confirmed using DMS-114 

luc+ cells. For tertiary verification, DMS-53 luc+ cells were treated with increasing 

doses (0, 25, 50, and 100 µM) of the representative drugs cortexolone 



 81 

maleate/ST-148 (Sigma) and fluoxetine hydrochloride (Sigma) for 24 hours, 

followed by luciferase assays. 

 

Analysis.  Assay quality was measured using three statistical parameters [319].  

Signal-to-background ratios (S/B) were calculated using the equation: S/B = µmax 

/µmin.  Signal-to-noise ratios (S/N) were calculated using the equation: S/N = (µmax 

– µmin)/σmin of treated controls.  For S/B and S/N, values > 2 are considered 

acceptable.  Z’-factor values were calculated using the equation Z’ factor = 1 – 

(3σmax + 3σmin)/|µmax – µmin|.  For all equations, µ represents means and 

σ represent standard deviations (SD).  For Z’-factor interpretation, we used the 

scale developed by Zhang and colleagues [320], wherein a score of 1.0 is 

considered ideal; scores between 0.5 and 1.0 represent excellent assays; scores 

between 0 and 0.5 represent marginal assays; and scores less than 0 represent 

assays that are essentially impossible to use for screening purposes. 

 

IV.C.Results 

Dose-dependent luciferase expression 

A lentiviral delivery approach was used to stably integrate a luciferase 

gene into the genome of two SCLC cell lines.  Serial dilutions of these cells were 

then prepared to determine assay sensitivity.  DMS-53 luc+ cells could be 

detected above background from as few as 10 cells using luminometry (Figure 

IV-1A).  
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Figure IV-1. Establishment of luciferase-expressing SCLC cell lines for in vitro and 
in vivo assays. A-B. Serial dilutions of DMS-53 luc+ and DMS-114 luc+ cells were 
prepared. Wells containing medium alone or 1x106 DMS-53 and DMS-114 non-
luciferase expressing cells were used as negative controls (0 cells). Cell viability 
was measured using a luminometer. C. A traditional MTT assay was performed for 
comparison of sensitivity and dynamic range. Cell viability was measured using a 
spectrophotometer. D-F. Cell viability was measured using a Xenogen IVIS 100 
imager.  Colors represent clusters of CCD pixels while color scale represents 
luminescence intensity from lowest (violet) to highest (red).  Instrument gain was 
set at min=5x107 photons/sec to max=5x108 photons/sec for DMS-53 luc+ in vitro 
(D) and at min=25x106 photons/sec to max=25x107 photons/sec for DMS-114 luc+ 
in vitro (E). For in vivo imaging (F), mice were injected subcutaneously with DMS-
53 luc+ (upper left) or DMS-114 luc+ (upper right) cells.  For the lung colonization 
model, DMS-53 luc+ (lower left) or DMS-114 luc+ (lower right) cells were injected 
into the tail vein of mice. Instrument gain was set at min=1x105 photons/sec to 
max=1x107 photons/sec for the xenograft model and at min=1x103 photons/sec to 
max=1x104 photons/sec for the lung colonization model. Columns represent mean 
values and error bars represent standard error of mean; n=5 for luminometry, n=8 
for spectrophotometry; n=4 for bioluminescence imaging. RLU - relative light units.   
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Background readings were taken from wells containing medium alone or 

wells containing 1x106 DMS-53 cells that do not express luciferase.  The linear 

range of detection for DMS-53 luc + cells was between 1x101 to 1x105 cells.  

DMS-114 luc+ cells could be detected above background from as few as 100 

cells (Figure IV-1B).  The linear range of detection for these cells was between 

1x102 to 1x105 cells.  For comparison, serial dilutions of DMS-53 luc+ cells were 

subjected to a traditional MTT assay (Figure IV-1C).  This approach required as 

many as 1x104 cells to achieve absorbance values distinguishable from 

background.  In addition, the linear range of detection for the MTT assay was 

only between 1 x104 and 1x105 cells/well.  Importantly, the MTT assay required at 

least 6 hours to run versus 45 minutes for the bioluminescence assay. 

 

An additional advantage of using bioluminescent cell lines is their direct 

applicability to in vivo bioluminescence imaging.  To confirm the utility of the 

luciferase-expressing cells for bioluminescence imaging, the Xenogen IVIS 100 

imaging system was used, wherein the number of emitted photons is proportional 

to the number of bioluminescent cells.  In vitro, the linear range of detection for 

DMS-53 luc+ was between 1x104 and 1x106 cells, yielding bioluminescence 

signals between 3x107 to 4x109 photons/sec (Figure IV-1D).  In comparison, the 

linear range of detection for DMS-114 luc+ was between 1x104 and 1x105 cells, 

yielding bioluminescence signals between 2x107 and 3x108 photons/sec (Figure 

IV-1E).  No luminescence signals could be detected in wells containing 1x106 
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DMS-53 or DMS-114 cells that did not express luciferase.  In vivo, DMS-53 luc+ 

and DMS-114 luc+ cells were used in a xenograft tumor model and a lung 

colonization model (Figure IV-1F). For the xenograft model, 1x106 DMS-53 luc+ 

and DMS-114 luc+ cells were detectable 15 minutes after injection of a luciferase 

substrate (upper left and right panels, respectively). Similarly, in the lung 

colonization model, 1x106 DMS-53 luc+ and DMS-114 luc+ cells were detectable 

in the lung area after injection of a luciferase substrate (lower left and right 

panels respectively). Mice that were implanted with cells that do not express 

luciferase did not yield luminescence signals (data not shown). 

 

Response of bioluminescent cells to pharmacological and genetic agents 

To test the hypothesis that luciferase expression reflects cell viability, we 

measured the responsiveness of the engineered SCLC cell lines to treatment 

with a known apoptosis-inducing agent, staurosporine.  DMS-53 luc+ and DMS-

114 luc+ cells were treated with staurosporine at varying doses (0, 2 and 4 µM) 

and time points (12 and 24 hours).  As shown in Figure IV-2A and IV-2B, 

luciferase activity of DMS-53 luc+ and DMS-114 luc+ cells decreased with 

increasing staurosporine concentration.  Correspondingly, luciferase activity for 

both cell lines decreased with increased exposure time (Figure IV-2C and IV-2D). 

A similar strategy was employed to determine whether the engineered cells 

would also be responsive to a known chemotherapeutic agent, cisplatin.  DMS-

53 luc+ and DMS-114 luc+ cells were treated with cisplatin at varying doses (0, 
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25 and 50 µM) and time points (12 and 24 hours).  An inverse relationship was 

observed between luciferase activity and cisplatin concentration (Figure IV-2E 

and IV-2F).  Similarly, luciferase activity decreased for both cell lines with 

increased exposure time (Figure IV-2G and IV-2H). 
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Figure IV-2.  Bioluminescent SCLC cell lines respond to pharmacological agents 
in a dose- and time-dependent manner.  DMS-53 luc+ and DMS-114 luc+ cells 
were treated with 0, 2, and 4 µM staurosporine, an apoptotic drug, for 24 hours 
(A,B) or with 4 µM staurosporine for 0, 12, and 24 hours (C,D).  DMS-53 luc+ 
and DMS-114 luc+ cells were treated with 0, 25, and 50 µM cisplatin, a 
chemotherapeutic drug, for 24 hours (E,F) and 50 µM cisplatin for 0, 12, and 24 
hours (G,H).    Luciferase assays were then performed to measure cell viability. 
Data points represent mean values and error bars represent standard error of 
means (n=5).  RLU – relative light units. 
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 Finally, to test whether the viability of the engineered SCLC cells can be 

modulated by genetic manipulation, DMS-53 cells were treated with a siRNA 

against GAPDH, a known housekeeping gene.  siRNA treatment caused a 91% 

decrease in GAPDH expression (Figure IV-3A).  GAPDH knockdown resulted in 

decreased luciferase activity (Figure IV-3B).  Taken together, these results 

indicate that the bioluminescence viability assay is a feasible assay for screening 

anti-SCLC therapies. 

 

          
 Figure IV-3.  Bioluminescent cells respond to GAPDH depletion.  A. DMS-53 
luc+ cells were treated with a siRNA against the housekeeping gene, GAPDH.  
GAPDH levels after knockdown were measured using quantitative RT-PCR.  
Approximately 91% knockdown was achieved for DMS-53 luc+.  Negative 
controls included untreated cells and cells treated with a negative control siRNA 
B. Cell viability upon GAPDH silencing was measured. *** = p < 0.001, n=3 for 
quantitative RT-PCR, n=4 for viability assay; ANOVA-Tukey. 
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High-throughput screening (HTS) of compound library 

The bioluminescence viability assay protocol was modified for 

implementation in a high-throughput setting using the DMS-53 luc+ cell line.  

Assay quality was first verified using three different statistical parameters:  S/B 

ratio, S/N ratio, and Z’-factors (see Materials and Methods).  An S/B ratio of 3.1 

and an S/N ratio of 18.6 were obtained.  Both values lie within acceptable range 

(> 2-fold).  A Z’-factor value of 0.7 was also obtained, indicating that the assay 

was excellent for screening. 

 

The assay was then used to evaluate a library of 1,280 compounds.  In 

the primary screen, numerous compounds reduced cell viability (Figure IV-4).  

Compounds that reduced cell viability at an efficiency greater than or equal to 

cisplatin (~77% reduction) were considered positive hits.  A total of 237 hits were 

identified, comprising a diverse class of compounds (Table IV-1).  The classes 

with the most number of hits ("15) included compounds directed at 

phosphorylation, dopamine signaling and serotonin signaling. 

 

Because phosphorylation is generally involved in a variety of physiological 

and pathological processes, we focused secondary screening on hits from the 

dopamine and serotonin classes of compounds.  We retested these compounds 

first using DMS-53 luc+ cells.  Of the 27 dopamine compounds, 24 were 



 89 

confirmed during secondary screening and of the 15 serotonin compounds, 12 

were confirmed. 

Table IV-1. Classes of compounds that inhibit SCLC cell viability 
Class Number of Hits 

Adenosine 4 
Adrenoreceptor 10 
Angiogenesis 1 
Antibiotic 2 
Apoptosis 6 
Benzodiazepine 1 
Biochemistry 9 
Ca2+ Channel 10 
Cannabinoid 2 
Cell Cycle 5 
Cell Stress 2 
Cholinergic 7 
Cytokines and Growth Factors 1 
Cytoskeleton 4 
DNA Metabolism 3 
Dopamine 27 
GABA 5 
Gene Regulation 1 
Glutamate 5 
G-protein 4 
Histamine 6 
Hormone 7 
Immune System 3 
Intracellular Calcium 4 
Ion Channels 2 
Ion Pump 5 
K+ Channel 5 
Leukotriene 5 
Lipid 4 
Lipid Signaling 2 
Multi-drug Resistance 2 
Neurodegeneration 1 
Neurotransmission 7 
Nitric Oxide 4 
Opioid 5 
P2 Receptor 1 
Phosphatase 1 
Phosphorylation 39 
Serotonin 15 
Sphingolipid 1 
Tachykinin 3 
Transcription 3 
Vanilloid 2 
 Total = 237 
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Figure IV-4.  237 compounds inhibit SCLC cell viability.  DMS-53 luc+ cells were treated with compounds 
from the LOPAC1280 library.  Luciferase assays were then performed to measure the effect of the compounds 
on cell viability.  Luciferase values were normalized to the mean luciferase values of the negative control, 
DMSO (dotted line). The solid red line indicates the mean value for the positive control, cisplatin.  
Compounds that resulted in inhibition greater than or equal to that of cisplatin were considered hits. 
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To ensure that reductions in viability caused by the various compounds 

were not specific for DMS-53 luc+ cells, the confirmed compounds were retested 

using DMS-114 luc+ cells.  Of the 24 confirmed dopamine compounds, 22 

caused reduction of viability in both DMS-53 luc+ and DMS-114 luc+ cells.  Of 

the 12 confirmed serotonin compounds, all 12 reduced viability of DMS-53 luc+ 

and DMS-114 luc+ cells.  Table IV-2 lists the compounds that were effective in 

reducing viability of both cell lines along with their specific pharmacological 

actions. 

 

Finally, for tertiary verification, we performed dose-response assays of two 

representative compounds, one from each class.  As shown in Figure IV-5A, 

treatment of DMS-53 luc+ cells with increasing doses of cortexolone maleate, a 

D2 dopamine receptor antagonist, resulted in corresponding decreases in cell 

viability.  Similarly, increasing concentrations of fluoxetine hydrochloride, a 

serotonin uptake inhibitor, resulted in corresponding decreases in cell viability 

(Figure IV-5B). 
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Table IV-2. Pharmacological agents that target neurotransmitter signaling in SCLC 
Class Name Action Selectivity 

BP 897 Agonist D3 
Chlorprothixene hydrochloride Antagonist D2 
Cortexolone maleate* Antagonist D2 
(±)-Butaclamol hydrochloride Antagonist D2>D1 
R(+)-6-Bromo-APB hydrobromide Agonist D1 
BTCP hydrochloride Blocker Reuptake 
Chlorpromazine hydrochloride Antagonist - 
R(-)-N-Allylnorapomorphine hydrobromide Agonist - 
Dihydroergocristine methanesulfonate Agonist - 
R(-)-Propylnorapomorphine hydrochloride Agonist D2 
R(-)-2,10,11-Trihydroxyaporphine hybrobromide Agonist D2 
GBR-12909 dihydrochloride Inhibitor Reuptake 
R(-)-2,10,11-Trihydroxy-N-propylnoraporphine 
hydrobromide 

Agonist D2 

Fluspirilene Antagonist D2/D1 
cis-(Z)-Flupenthixol dihydrochloride Antagonist - 
Fluphenazine dihydrochloride Antagonist D1/D2 
GBR-12935 dihydrochloride Inhibitor Reuptake 
(±)-Octoclothepin maleate Antagonist D2 
Perphenazine Antagonist D2 
Pimozide Antagonist D2 
Prochlorperazine dimaleate Antagonist - 

Dopamine 

Thiothixene hydrochloride Antagonist D1/D2 
Amperozide hydrochloride Ligand - 
Paroxetine hydrochloride hemihydrate Inhibitor Reuptake 
CGS-12066A maleate Agonist 5-HT1B 
S-(+)-Fluoxetine hydrochloride Inhibitor Reuptake 
Fluoxetine hydrochloride* Inhibitor Reuptake 
SB 228357 Antagonist 5-HT2B/2C 
Metergoline Antagonist 5-HT2/5-

HT1D 
GR 127935 hydrochloride hydrate Antagonist 5-HT1B/1D 
Sertraline hydrochloride Inhibitor Reuptake 
Parthenolide Inhibitor - 
Ritanserin Antagonist 5-HT2/5-

HT1C 

Serotonin 

SB 224289 hydrochloride Antagonist 5-HT1B 
* Representative drugs tested for tertiary verification 
- Unknown selectivity 
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Figure IV-5.  SCLC cells respond to cortexolone maleate and fluoxetine 
hydrochloride in a dose-dependent manner. DMS-53 luc+ cells were treated 
with 0, 25, 50, and 100 µM cortexolone maleate (A) or fluoxetine hydrochloride 
(C,D) for 24 hours. Luciferase assays were then performed to measure cell 
viability. Data points represent mean values and error bars represent standard 
error of means (n=8).  RLU – relative light units. 

 

 

DISCUSSION 

With the aim of uncovering novel therapeutic strategies against SCLC, we 

developed a bioluminescence-based cell viability assay for high-throughput 

screening of compound libraries.  Phenotypic assays such as the one described 

here expedite primary screening of large numbers of chemicals, while limiting the 

use of animals in research.  In this study, we used two cell lines, DMS-53 luc+ 

and DMS-114 luc+, that were originally derived from mediastinal biopsies of 
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SCLC patients who had not received prior therapy, allowing delineation of 

specific effects of novel compounds [321].  

 

We demonstrated broad dynamic range of detection for both cell lines.  

Increased sensitivity of the bioluminescence assay was also observed compared 

to a traditional MTT-based cell viability assay.  Moreover, a direct relationship 

between luminescence signals and cell number was observed for both cell lines 

using two approaches, luminometry and bioluminescence imaging. The use of 

live animal bioluminescence imaging provides a more physiologically relevant 

context and allows for non-invasive, longitudinal monitoring of animals, again 

avoiding the use of large numbers of animals for research.  These advantages 

notwithstanding, cell-based assays remain indispensable for large-scale screens. 

 

Prior to performing a large-scale screen, we assessed the responsiveness 

of the two engineered cell lines to standard pharmacological and genetic agents.  

Staurosporine, a member of the K252 family of compounds known to inhibit 

protein kinases [322], was used to show sensitivity of the engineered cells to an 

apoptosis-inducing drug.  Cisplatin, a platinum-containing, broad activity anti-

neoplastic and alkylating agent [323], was used to demonstrate the sensitivity of 

cells to a classic chemotherapeutic agent.  Finally, RNA interference using 

siRNAs against GAPDH, a gene involved in vital metabolic functions [324], 

illustrated the utility of these cells for studies involving genetic treatments.  
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The assay was then implemented in a large-scale screen of the 

LOPAC1280 compound library. This library contains 1,280 pharmacologically 

active compounds.  This annotated collection of small molecule modulators and 

FDA-approved drugs impacts most cellular processes and covers all major drug 

target classes.  The LOPAC screen serves as an excellent starting point for 

validating high-throughput assays.  Moreover, it potentially allows the 

identification of drugs that have available human dosage and toxicity information 

as well as the discovery of lead structures for drug development.  Our primary 

screen identified several classes of drugs that reduced SCLC cell viability (Table 

IV-1).  Of these, many have been implicated in fundamental processes 

associated with the etiology of cancer, such as angiogenesis, calcium signaling, 

cell cycle progression, and protein phosphorylation [120].   

 

Interestingly, our screen identified several drug classes that impact 

neuroendocrine pathways known to be involved in SCLC pathogenesis.  SCLC 

cells are characterized by neuroendocrine features such as the expression of ion 

channels, neuropeptides, and neurotransmitters and, as a consequence, are 

electrically excitable [325]. Here, we identified drugs that target adrenoreceptors, 

calcium channels, cholinergic receptors, dopamine signaling, GABA signaling, 

glutamate signaling, K+ channels, Na+ channels, opioid signaling and serotonin 

signaling [326]. 
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We focused the follow-up screen on compounds that target dopamine and 

serotonin signaling as they yielded the highest number of hits.  We did not 

pursue compounds in the protein phosphorylation class given the ubiquitous role 

protein phosphorylation plays in both normal and disease states.  The secondary 

screening results essentially overlapped with those of the primary screen, 

indicating the reliability of the assay.  Furthermore, the dose-dependent reduction 

in cell viability induced by the D2 dopamine receptor antagonist, cortexolone 

maleate, and the serotonin reuptake inhibitor, fluoxetine hydrocholoride, is 

consistent with the critical role of neurotransmitter signaling in the pathogenesis 

of SCLC [327]. 

 

Dopamine signaling has previously been implicated in SCLC [328].  In 

particular, the D2 receptor agonist, bromocriptine, has been shown to have an 

anti-proliferative effect on SCLC cells in vitro and inhibits growth of SCLC tumor 

xenografts [329].  Unexpectedly, we observed that cortexolone maleate, which 

blocks the D2 dopamine receptor, also has an anti-proliferative effect.  In 

addition, serotonin has been shown to act as a mitogenic signal in SCLC, 

activating an autocrine growth loop in these cells [330, 331].  However, we found 

that the serotonin reuptake inhibitor, fluoxetine hydrochloride, known to increase 

serotonin levels, inhibits SCLC growth.  Another serotonin reuptake inhibitor, 

imipramine, has previously been shown to inhibit the development of SCLC 

[128]. Taken together, these findings suggest that SCLC growth may rely on the 
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maintenance of specific levels of neurotransmitters rather than their simple 

absence or presence or alternatively posit functional selectivity of 

neurotransmitter receptors in SCLC. 

 

In conclusion, we have described a bioluminescence-based assay for drug 

discovery in the field of SCLC therapeutics.  Such an assay has not been 

previously applied to SCLC, a disease with very poor prognosis and limited 

treatment outcomes.  The simplicity and speed of the workflow we developed not 

only allows for routine laboratory use but also lends itself to high-throughput 

applications and adaptability to automation.  We have validated this assay 

against a library of pharmacologically active compounds.  That positive hits 

included compounds targeting classic cancer signaling pathways suggests 

internal consistency.  Compounds that target neurotransmission also emerged 

from the screen, reflecting the neuroendocrine nature of SCLC and underscoring 

the role of neurotransmitter signaling in this disease. In particular, perturbation of 

dopamine and serotonin signaling inhibits SCLC cell viability, suggesting the 

utility of these classes of drugs as therapeutic agents against SCLC. 
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CHAPTER V: 

DISCUSSION 
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That theory is worthless.  It isn't even wrong!  
-Wolfgang Pauli 

 

The cloning of nAChRs from brain cDNA libraries in the mid-1980s was a 

watershed event as it opened the window not only to a molecular understanding 

of cholinergic signaling but also to a structural appreciation of how members of 

the superfamily of ligand-gated ion channels function.  As the cloning frenzy 

subsided, tremendous effort was put forth to characterize the pharmacological 

and biophysical properties of nAChRs.  As a result, nAChRs are among the most 

well understood allosteric membrane proteins from a structural and functional 

point of view.  Following the cloning of nAChR subunits, development of novel 

nAChR ligands – agonists, antagonists, and allosteric modulators - for CNS 

disorders became a focus for many drug companies.  Varenicline (Chantix), a 

partial agonist of α4-containing nAChRs, is a product of this endeavor and is now 

a clinically approved drug for smoking cessation [332].  Several other nAChR-

targeted drugs for Alzheimer’s disease, anxiety, depression, pain, schizophrenia, 

and ulcerative colitis are now in clinical trials [333]. 

 

Despite all this progress, one major challenge that remains in the field is 

deciphering the native nAChR subtypes responsible for the myriad functions that 

nAChRs play both in and out of the nervous system.  Identification of these 

subtypes is complicated by the existence of several subunits (i.e., eleven human 

subunits), the numerous ways these subunits can combine (i.e., various 
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homomeric and heteromeric receptors), and the different stoichiometries for each 

subtype (e.g., (α4)2(β2)3 vs. (α4)3(β2)2) [334]. Nevertheless, delineating the role 

of specific subtypes is critical to the understanding the function of nAChRs in 

general and is essential in drug discovery efforts for subtype-selective drugs.    

 

For years, the α4β2 and α7 nAChR subtypes have been the focus of most 

studies in the nAChR field for the reasons that follow.  First, the α4β2 subtype is 

highly expressed in the brain and binds with the highest affinity to nicotine and 

other common nAChR agonists [335].  It is also the subunit most strongly 

upregulated by nicotine exposure [336].  Specifically, chronic nicotine treatment 

increases the number of α4β2 nAChRs in rodent brain, consistent with increased 

α4β2 expression in post-mortem brains of human smokers.  The α7 subtype is 

also highly expressed in the brain, where it undergoes rapid activation and 

desensitization in response to agonists [175]. In addition, the availability of an 

irreversible and highly selective ligand for α7, αBgtx, has facilitated studies with 

this receptor.   

 

A major advance towards understanding the role of other nAChR subtypes 

is the discovery of allelic variations in the genes encoding the α5, α3, and β4 

nAChR subunits that increase risk for nicotine dependence and lung cancer (see 

Chapter I). That polymorphisms in these genes influence risk for these and other 

disorders suggests a pleiotropic role for nAChRs in different cell types [167].  It is 
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quite compelling that results of both hypothesis-free GWAS and hypothesis-

driven candidate-gene studies converged on this gene cluster and that these 

results have been replicated many times over by independent groups using 

different tools and different populations.  

 

In Chapter II, we describe the over-expression of CHNRA5/A3/B4 in 

SCLC.  The high expression of nAChR subunit genes in SCLC is consistent with 

the neuroendocrine phenotype of these cells. Pulmonary neuroendocrine cells 

fare believed to be the precursor cells of SCLC [11].   They exist either as solitary 

cells in the tracheobronchial tract or as clusters called neuroepithelial bodies in 

the intrapulmonary airways.  These cells are normally found in the fetal or 

neonatal lung, where they play a role in lung morphogenesis [337].  They act as 

chemoreceptors that sense oxygen and carbon dioxide levels and respond by 

releasing secretory substances.  The existence of pulmonary neuroendocrine 

cells in the adult suggests a recapitulation of embryonic processes, a common 

theme in carcinogenesis [338]. 

 

Intriguingly, the over-expression of the CHRNA5/A3/B4 genes is also 

consistent with the paraneoplastic syndromes commonly associated with SCLC.  

These syndromes are usually neuroendocrine or neurological in nature; the 

former is caused by ectopic production of bioactive substances such as 

hormones and the latter is due to the production of autoimmune antibodies [339]. 
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Antibodies against nAChRs in the autonomic ganglia are thought to cause 

autonomic neuropathies that accompany SCLC [340].  Speculatively, the over-

expression of α5, α3, and β4 nAChRs in SCLC cells triggers the production of 

these autoimmune antibodies.  The consequent immune-mediated tissue 

destruction is, in fact, associated with favorable prognostic outcomes [339], 

possibly due to the concurrent clearance of cancer cells expressing the 

autoantigens. 

 

As also described in Chapter II, the over-expression of the 

CHRNA5/A3/B4 genes is regulated in part by ASCL1.  Our work on 

CHRNA5/A3/B4 regulation is the first report of a transcription factor regulating 

expression of nAChRs in cancer cells.  It also provides a link between nAChR 

signaling and the Notch pathway, a signaling pathway involved in normal 

morphogenesis as well as malignant transformation [341]. Notch receptors are 

activated by multiple alternative ligands (e.g., Delta, Jagged).  Ligand binding 

leads to the proteolytic cleavage of the intracellular domain of the receptor, which 

in turn, translocates to the nucleus and forms part of a transcriptional machinery 

that regulates target genes.  One of the best-described Notch target is the 

transcriptional repressor, Hes (and Hes-related proteins) [341].  Hes represses 

the expression of ASCL1, such that cells that express Hes do not express 

ASCL1, and vice-versa.  For instance, neuroendocrine cells in the lungs express 

ASCL1, while non-neuroendocrine cells express Hes-1. Similarly, SCLC cells 



 103 

express ASCL1 but lack Hes-1 expression, while the opposite is true for NSCLC 

cells [342].   

 

The use of genetically engineered mouse models has further shed light on 

the role of ASCL1 in lung development. mASH1 mutant mice lack 

neuroendocrine cells and die within 12 hours of birth from hypoventilation [343].  

In contrast, Hes-1 null mice exhibit precocious neuroendocrine differentiation 

[344]. Transgenic expression of ASCL1 in non-neuroendocrine cells of the 

airways, along with SV40 large T antigen, induces lung tumors with a NSCLC-

neuroendocrine phenotype [345].  Constitutive expression of ASCL1 alone leads 

to extensive cell proliferation in the airways without neuroendocrine 

differentiation, suggesting that ASCL1 expression with concomitant loss of p53 

and Rb (due to the T antigen) promotes the development of neuroendocrine lung 

tumors.   

 

Analysis of ASCL1 transcriptional targets hints at mechanisms by which 

ASCL1 functions in lung cancer.  One study using pancreatic neuroendocrine 

tumors described components of the Wnt signaling pathway as targets for 

ASCL1 [346].  Another group using embryonic brain reported ASCL1 regulation 

of a large number of genes involved in cell cycle regulation [347].  In SCLC cells, 

the stem cell markers CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1) 

were identified as ASCL1 targets, advocating the involvement of ASCL1 in tumor 



 104 

initation [348].  Another group describes ASCL1 repression of E-cadherin, 

suggesting a role for ASCL1 in epithelial-mesenchymal transition [349].  Our 

findings add CHRNA5/A3/B4 to the list of ASCL1 responder genes.  We propose 

a mechanism by which upregulation of ASCL1 in SCLC cells causes a 

corresponding upregulation of α5α3β4 nAChRs, leading to the potentiation of the 

tumorigenic effects of nicotine and acetylcholine. 

 

Importantly, the over-expression of CHRNA5/A3/B4 in SCLC supports the 

hypothesis that these genes play a direct role in lung cancer.  As described in 

Chapter III, their function involves maintenance of SCLC cell viability and 

modulation of tumor growth and incidence.  We envisage a mechanism wherein 

α5α3β4 nAChRs act as upstream mediators of nicotine and/or acetylcholine-

activated cancer signaling pathways (Figure V-1).  A number of such signaling 

pathways have been described, including the proliferative Ras-Raf-MAPK 

pathway and the anti-apoptotic PI3K-Akt-Bad pathway.  Investigation of the 

specific pathways mediated by α5α3β4 nAChRs should expound on the role of 

this subtype in SCLC. 

 

SCLC remains one of the deadliest types of cancers, for which no major 

advancements in terms of therapy have been made in the last three decades 

[314].  In terms of SCLC research, part of the reason may involve the difficulty in 

obtaining human SCLC tumor samples.  Not only is SCLC less common than 
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other types of lung cancer, SCLC patients also present with metastasis at the 

diagnosis, precluding surgical resection of tumors.  From a biological standpoint, 

the neuroendocrine phenotype of SCLC may be a huge factor in the 

aggressiveness and chemoresistant nature of the deisease.  The numerous 

neurotransmitters and neuropeptides produced by SCLC triggers its own 

proliferative state. Furthermore, the anti-apoptotic pathways evoked by nicotine 

and/or acetylcholine may interfere with the actions of chemotherapeutic drugs. 

Results from our high-throughput screen suggest that targeting these 

neuroendocrine pathways directly may be a viable therapeutic approach for 

SCLC. 

 

Future Directions 

One of the major limitations in the nAChR field is the absence of high 

quality antibodies for use in immunoassays. A recent evaluation of nAChR 

antibodies showed that several supposedly subunit-specific antibodies against 

nAChRs immunoreact with both wild-type and subunit knockout mice [350].  This 

precludes the use of these reagents for immunodetection methods and calls into 

question previously published work that made use of these antibodies.  In terms 

of our own research, the lack of this valuable tool hindered us from performing 

Western blot or immunostaining experiments to determine protein expression of 

nAChR subunits in normal and lung cancer cells. Future development of high 

quality antibodies against nAChRs would allow immunodetection experiments to 
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be carried out.  Furthermore, these antibodies would be useful in co-

immunoprecipitation experiments for identification of nAChR subtypes.  

 

We were able to circumvent this problem by using the epibatidine 

radioligand assay to determine the effect of ASCL1 knockdown on the total 

nAChR levels on the cell membrane.  Though this results shows that ASCL1 

knockdown decreases total nAChR protein levels, it would be interesting to 

measure the effect of ASCL1 knockdown specifically on α3β4 nAChR levels.  

Development of radiolabeled α-conotoxin AuIB would facilitate such an 

experiment.  Currently, there are no available α5α3β4 nAChR-selective ligands, 

though it is hoped that cone snail venoms or chemical entities being developed 

by pharmaceutical companies may someday provide this tool. 

 

We have demonstrated that ASCL1 regulates expression of 

CHRNA5/A3/B4 but we have not shown whether this regulation is via direct 

binding to the E-boxes found in the CHRNA5/A3/B4 promoter regions.  Our 

preliminary work using chromatin immunoprecipitation (ChIP) assays suggests 

that ASCL1 directly binds to one of the E-boxes in the CHRNA3 promoter (see 

Appendix II).  This work can be extended to include the other E-boxes in the 

locus.  Additionally, site-directed mutagenesis of the E-boxes should identify 

functional binding sites for ASCL1.  We have also initiated ASCL1 transactivation 

experiments showing that forced expression of ASCL1 activates the CHRNA3 
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promoter, while ASCL1 knockdown decreases the activity of the promoter 

(Appendix III).  This work can be extended to include the CHRNA5 and CHRNB4 

promoters as well.  Co-immunoprecipitation experiments with known 

transactivators of CHRNA5/A3/B4 would also identify ASCL1 binding partners 

and elucidate the transcriptional machinery regulating CHRNA5/A3/B4 

expression in SCLC.   

 

Though we observed robust regulation of CHRNA3 and CHRNB4 by ASCL1, we 

only observed a modest regulation of CHRNA5.  That CHRNA5 is transcribed in 

the opposite direction as CHRNA3 and CHRNB4 may offer one possible 

explanation.  A unique set of transcription factors may govern CHRNA5 

expression from that direction.  The presence of E-boxes in the CHRNA5 

promoter suggests other basic helix-loop-helix transcription factors may play a 

role.  One candidate for future studies is N-myc, often amplified in SCLC but not 

in NSCLC [351].  

 

With regards to our functional work, we have shown that the 

CHRNA5/A3/B4 genes are necessary for maintenance of SCLC cell viability, an 

important observation on its own.  However, we have not shown whether the 

decrease in cell viability observed upon CHRNA5/A3/B4 knockdown is due to a 

decrease in cell proliferation or an increase in cell death.  We have begun to set 

up experiments to address this question.  BrdU labeling will be performed to 
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determine the effect of CHRNA5/A3/B4 knockdown on cell proliferation.  Western 

blot analysis will also be utilized to interrogate the MAPK proliferative pathway.  

Levels of phosphorylated versions of MAPK pathway components will be 

determined upon CHRNA5/A3/B4 knockdown.  Experiments to determine the 

effect of CHRNA5/A3/B4 knockdown on cell death would be performed in 

parallel. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assays will be performed to determine effect of CHRNA5/A3/B4 knockdown on 

apoptosis.  The PI3K-Akt apoptotic pathway will also be interrogated using 

Western blot analysis.  

 

Nicotine and acetylcholine signaling mediate other cancer-related 

processes and the effect of CHRNA5/A3/B4 knockdown on these processes 

should also be investigated.  For example, soft agar assays can be performed to 

determine the effect of CHRNA5/A3/B4 knockdown on anchorage-independent 

growth.  Our preliminary work suggests that CHRNA3 knockdown decreases 

both the number and size of colonies that form in soft agars (Appendix IV).  This 

work can be extended to CHRNA5 and CHRNB4.  Other in vitro assays include 

endothelial tube formation assays for angiogenesis or Boyden chamber assays 

for migration/invasion. 

 

Our in vivo work utilizing the xenograft tumor model showed inhibition of 

tumor growth and incidence with CHRNA5 silencing.  To date, we have not 
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observed significant decreases in tumor growth upon CHRNA3 and CHRNB4 

knockdown.  The lack of a proper tumor microenvironment may obscure the 

effects of CHRNA3 and CHRNB4 knockdown.  The use of an orthotopic model 

(i.e., via intrathoracic injections) may be a useful future approach.  The lung 

colonization model may also be used to allow tumor cells to reach the lung via 

tail vein injections.  Though primarily used as a metastasis assay, this model may 

provide the proper microenvironment for SCLC cells.  

 

The functional assays described here mostly involve loss-of-function 

experiments.  Corresponding gain-of-function experiments should be performed.  

Similar cell viability and xenograft assays can be performed using transient and 

stable expression of CHRNA5/A3/B4 expression constructs, respectively, into 

SCLC cells.  One possible problem with over-expression experiments is that 

CHRNA5/A3/B4 expression may already be at saturation levels, such that further 

increases in expression may not yield additional measurable phenotypes.  

Another approach would be to develop knock-in mouse models expressing the 

rs16969968 SNP, with and without the risk allele.  These can then be used to 

determine susceptibility to lung cancer in the presence and absence of nicotine.  

Such an experiment would demonstrate whether the risk allele confers lung 

cancer susceptibility independent of nicotine exposure. 
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Finally, we have developed and validated a bioluminescence-based viability 

assay for large-scale screening of compounds against SCLC.  However, this 

project is only at its inception.  Further validation of other positive hits in the 

screen will be performed.  Interesting hits will be further investigated using both 

in vitro and in vivo assays.  Chemical modification of compounds of interest to 

improve activity and/or other clinically relevant properties may also be worth 

pursuing.  This assay can also be applied to even larger libraries of compounds 

or for large-scale RNA interference screens. Ultimately, the goal of these 

experiments is to enhance currently available therapeutics against SCLC. 
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APPENDIX I 
 

DMSO Treatment 
 
 

 
Figure A-I. DMSO tolerance of DMS-53 luc+ cells.  Cells were treated either 
with 0.5% or 1% DMSO in complete medium for 24 hours.  Cells in medium 
alone served as untreated controls.  No significant difference in cell viability 
was observed after DMSO treatment. 
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APPENDIX II 
 

Chromatin Immunoprecipitation 
 
 

 
 
 

Figure A-II. ASCL1 binds to the CHRNA3 promoter.  Chromatin 
immunoprecipitation (ChIP) assay shows enrichment of the CHRNA3 promoter 
in samples immunoprecipitated with an ASCL1 antibody.  ChIP assays were 
performed using the ChIP-IT Express kit (Activ Motif).  Specifically, DMS-53 
cells were subjected to formaldehyde-crosslinking followed by sonication to 
obtain DNA fragments with an average size of 500bp.  Chromatin samples 
were then incubated with an ASCL1 ChIP-grade antibody (Santa Cruz 
Biotechnology) overnight at 4oC.  RNA Polymerase II antibodies and normal 
IgG were used as positive and negative controls for immunoprecipitation.  A no-
antibody control was also performed.  Protein G-coated magnetic beads were 
co-incubated with the samples for pull-down of chromatin-antibody complexes.  
Beads were collected using a magnetic bar and washed several times followed 
by chromatin elution.  Reverse-crosslinking and Proteinase K digestion was 
performed in preparation for PCR.  To amplify the promoter region of CHRNA3, 
the forward primer 5’-GGAAACCTGGGACAGAAACTGA-3’ and the reverse 
primer 5’-GGCGGCGTCTTGACAGAT-3’ were used. Input DNA was used as a 
positive control template while water was used as a no-template control. I - 
Input; R - RNA polmerase II; A - ASCL1; NI - Normal IgG; NA - No antibody; W 
- Water.  
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APPENDIX III 
 

Luciferase Reporter Assay 
 
 

 
 

Figure A-III. Luciferase reporter assay shows decrease in CHRNA3 promoter 
activity upon ASCL1 knockdown and increase in CHRNA3 promoter activity 
upon ASCL1 over-expression. The CHRNA3  promoter region was subcloned 
upstream of a luciferase reporter gene of the parent vector, pGL3-Basic 
(Promega).  For knockdown experiments, reporter plasmids were transfected 
into DMS-53 cells along with an ASCL1 siRNA (s1656, Applied Biosystems) 
using Lipofectamine 2000 (Invitrogen).  For transactivation experiments, 
reporter plasmids were co-transfected with the ASCL1 gene subcloned into the 
expression vector, pcDNA3.1 (Invitrogen).  A β-galactosidase expression vector 
was co-transfected in each sample for normalization.  Cells were harvested 48 
hours after transfection and assayed for luciferase (Luciferase Assay System, 
Promega) and β-galactosidase (Galacto-Star System, Applied Biosystems) 
activity in a Lumimark microplate luminometer (Bio-Rad).  ** = p < 0.01, *** = p 
< 0.001 compared to No Promoter sample; n = 4; ANOVA-Tukey. 
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APPENDIX IV 
 

Soft Agar Assay 
 

 

 

 
 

Figure A-IV.  CHRNA3 knockdown decreases number and size of colonies in 
soft agar assay. DMS-53 cells treated with a non-silencing or CHRNA3 
shRNAmir were grown in soft agar plates at 37oC for 21 days.  Colonies were 
visualized by staining with 0.005% crystal violet and counted using the 
Labworks 4.5 software (UVP Bioimaging Systems).  
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