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Abstract 
 

 
 Cartilage Tissue Engineering. Joint pain and functional impairment due to 

cartilage damage from osteoarthritis and other means is a major source of disability 

for adults the world over. Cartilage is an avascular tissue with a very limited capacity 

for self repair. Current medical and surgical approaches to cartilage repair also have 

limited efficacy, and in all cases fail to completely restore a normal, healthy cartilage 

phenotype. Tissue engineering is a relatively new approach to cartilage repair that 

seeks to fabricate a replacement tissue, indistinguishable from healthy, native tissue.  

 

   The basic idea of the tissue engineering approach is to seed tissue 

synthesizing cells into a shapeable, biocompatible/bioabsorbable scaffold that serves 

as a temporary extracellular matrix with a localized source of bioactive molecules to 

direct the development of new tissue.  The challenge of tissue engineering is to 

identify cells, scaffolds, and growth conditions that will be optimal for tissue 

regeneration. The goal of the current studies was to evaluate one aspect of all three of 

the major components of cartilage tissue engineering: cell source, scaffolding 

material and preparation, and controlled growth factor delivery. 

 

 We evaluated the chondrogenic potential of human nasal chondrocytes grown 

in calcium alginate in an in vivo culture system, the potential of computer-aided 

design and injection molding with calcium alginate to reliably reproduce complex 

geometries with high dimensional tolerances, and the potential for the controlled 
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release of TGF-β1 from calcium alginate modified by the covalent addition of a 

recently discovered TGF-β binding peptide. 

 

 We found that adult human nasal chondrocytes show significant chondrogenic 

potential when grown within an alginate scaffold.  We also found that alginate is 

readily amenable to an injection molding process that utilizes precision made molds 

from computer-aided design and solid free form fabrication, allowing for the 

fabrication of tissue engineered constructs with very precise shape fidelity. 

Additionally, we found that calcium alginate could be reliably modified by the 

covalent addition of peptides, and that the addition of a newly discovered TGF-β 

binding peptide delayed the release of pre-loaded TGF-β1. Together these results 

show some of the encouraging prospects for cartilage tissue engineering.    

 

 `Menière’s Syndrome. Menière’s syndrome is an inner ear disorder 

characterized by idiopathic endolymphatic hydrops with associated periodic tinnitus, 

vertigo, and progressive sensorineural hearing loss. It affects approximately 0.2% of 

the population, for whom it can be quite devastating. In addition to progressive 

hearing loss people with Menière’s syndrome are prone to sudden attacks of vertigo 

and tinnitus that are severe enough that they can lead to falls and potentially serious 

injury. People subject to frequent attacks are unable to drive, with obvious 

consequences on standard of living.   
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 In the current studies we evaluated the standard animal model of Menière’s 

syndrome by comparing cochlear turn specific hearing thresholds and the degree of 

hydrops in that turn. A positive correlation between these had previously been 

established in the study of human temporal bones from people with Menière’s 

syndrome, but had not been reported in the animal model.  

 

 We also evaluated the potential of aminoguanidine, a relatively specific 

inhibitor of the inducible isoform of nitric oxide synthase, as a neuroprotective 

therapeutic agent for preservation of hearing in animals with surgically induced 

endolymphatic hydrops. 

 

 We found, for the first time, a partial correlation between cochlear turn 

specific hydrops and hearing thresholds in the most commonly used animal model of 

Menière’s syndrome, helping to validate the utility of this animal model for future 

studies. We also found that aminoguanidine did indeed partially preserve hearing in 

animals with surgically induced Menière’s syndrome. This encouraging result appears 

to be the first report of a medical intervention protective against hearing loss in an 

animal model of Menière’s syndrome, and may help us to understand the etiology 

pathology seen in Menière’s syndrome.  
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Introduction 
 

 Cartilage Structure. Articular cartilage, the tissue that lines all diarthrodial 

joints (freely moving joints), functions as a low friction, wear-resistant tissue that 

bears and distributes load. It is composed of sparsely scattered chondrocytes in a 

dense extracellular matrix (ECM) composed primarily of type II collagen, 

proteoglycans, and water. Other classes of molecules make up a minor, poorly 

defined, component of cartilage; these include proteins, lipids, phospholipids, and 

various other minor collagens. The chondrocytes, the only cellular component of 

cartilage, make up only about 5-10% of the wet weight of cartilage, but their 

metabolism is entirely responsible for maintaining the appropriate composition of the 

ECM. Articular cartilage is endowed with its specialized mechanical properties by the 

highly organized nature of the ECM, which can be structurally and functionally 

divided into four distinct zones: the superficial zone, the middle zone, the deep zone, 

and the zone of calcified cartilage. Each of these zones has a distinct organization and 

function in native cartilage.  

 

The superficial zone is the articulating surface that provides a smooth gliding 

surface and resists sheer. This zone makes up approximately 10-20% of the thickness 

of articular cartilage. It has the highest collagen content of the zones, with densely 

packed fibrils aligned parallel to the articular surface1. The superficial zone has the 

lowest compressive modulus and will deform approximately 25 times more than the 
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middle zone. The chondrocytes in this layer, characterized by an elongated 

appearance, preferentially express proteins that have lubricating and protective 

functions and secrete relatively little proteoglycan8. Among the proteins involved in 

surface lubrication, superficial zone protein (SZP), also known as lubricin, has been 

identified as a functionally important molecule. SZP has an extremely low coefficient 

of friction, and together with hyaluronic acid in the synovial fluid creates an almost 

frictionless articulation. Additionally, the ability to synthesize SZP has been used 

phenotypically to distinguish superficial zone chondrocytes from those in the deeper 

layers9-10.   

 

The middle zone comprises about 40-60% of the articular cartilage volume. 

This zone has a higher compressive modulus that the superficial zone and a less 

organized arrangement of collagen fibrils. The fibrils are thicker, more loosely 

packed, and aligned obliquely to the articular surface. The chondrocytes in this layer 

are more rounded, and do not secrete SZP.  

 

The deep zone makes up about 30% of the cartilage and consists of large 

diameter collagen fibrils oriented perpendicular to the articular surface. This layer 

contains the highest proteoglycan and lowest water concentration, and has the highest 

compressive modulus. The chondrocytes are typically arranged in columnar fashion 

parallel to the collagen fibrils and perpendicular to the joint line. The deep zone is 

partially calcified, and the calcified layer is distinguished histologically by a 
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boundary with non-calcified cartilage called the tidemark. The calcified zone 

represents residue from the secondary center of ossification in the epiphysis of the 

underlying bone. Its chondrocytes frequently exhibit hypertrophy, as is seen in 

endochondral bone formation. These cells can synthesize type-X collagen, can calcify 

their extracellular matrix, and are rich in alkaline phosphatase. When cartilage 

degenerates, as in osteoarthritis, the calcified zone extends further into the deep zone 

and new tidemarks appear. This is of substantial clinical importance, because with 

calcification of the extracellular matrix the unique properties of cartilage, especially 

its ability to recover from deformation, are lost. 

 

Due to the nature of the ECM, cartilage is a highly hydrated tissue, with water 

making up between 70%-80% of its wet weight. The ECM makes up 90% of the dry 

weight of cartilage, and more than half of that weight is made up of proteoglycans. 

Proteoglycans are composed of a large core protein, and covalently bound, sulfated 

glycosaminoglycan (GAG) chains. In cartilage, a typical large proteoglycan has 100 

long chondroitin sulfate chains and 50 much shorter keratin sulfate chains. These 

GAG chains account for approximately 90% of the molecular weight of the 

proteoglycan12. Proteoglycans are entangled and compacted within the collagen 

interfibrillar space, which helps to maintain a porous, permeable solid matrix. The 

charged sulfate groups on proteoglycan GAG chains exhibit electrostatic repulsion, 

and allow substantial hydration. Proteoglycan swelling in cartilage is limited by the 

collagen fibril network, which restricts proteoglycan size to as little as 20% of its 
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potential.1 The hydrated proteoglycans account for the ability of articular cartilage to 

resist compressive loads. The collagen mesh, in turn, allows the tissue to resist 

tension and shear forces.2 

 
 

 Cartilage Damage and Osteoarthritis. Articular cartilage is a remarkably 

durable tissue that provides for almost frictionless motion between the articulating 

surfaces of diarthrodial joints, while protecting the underlying bones from the 

mechanical stresses of normal joint use. The architecture of the ECM and the 

resulting substantial hydration endow cartilage with its ability to cushion the 

underlying subchondral bone during loading. Chondrocytes continually synthesize, 

incorporate and degrade ECM proteins, permitting much of the cartilage matrix to 

undergo turnover and maintenance. Circumstances that impair chondrocyte function 

can disrupt the balance of synthesis and catabolism in favor of cartilage degradation, 

which over time can lead to osteoarthritis (OA).  

 

OA afflicts more than 20 million people in the United States, and is the single 

leading cause of disability in adults.13 Osteoarthritis is increasingly common with 

advancing age. About 10% of adults over the age of 50, 50% of adults over the age 

65, and nearly all people over the age of 75 have some features of osteoarthritis.14-17 

The total annual societal cost for arthritis, has been estimated at over 2% of the 

United States gross domestic product, making the understanding of the 



 xvi

pathophysiology and the search for novel treatments of paramount importance in 

health care science.18 

 

There are three main types of cartilage injury: matrix disruption, partial 

thickness defects, and full thickness defects. Matrix disruption occurs from blunt 

trauma, such as dashboard injuries in automobile accidents. The ECM is damaged, 

but if the injury is not extreme, the remaining viable chondrocytes will increase their 

synthetic activity to repair the tissue. Partial thickness defects demonstrate disruption 

of the cartilage surface, but this does not extend to the subchondral bone. 

Immediately following the injury, nearby cells begin to proliferate, but for reasons 

that remain unclear, cellular attempts to fill the defect cease before it is repaired. It is 

widely speculated that because of entrapment in the relatively rigid ECM 

chondrocytes are unable to sufficiently proliferate or migrate to mount an effective 

wound healing response. Full thickness defects arise from damage that transverses the 

entire cartilage thickness and penetrates the subchondral bone. In this case, the defect 

is filled with a fibrin clot and a classic wound healing response ensues. With this type 

of injury, unlike the others, there is access to a population of progenitor cells from the 

bone marrow which can migrate to fill the defect19. These cells, however, usually 

cause replacement of the fibrin clot with tissue intermediate between hyaline and 

fibrocartilage, making a tissue that is usually quite a bit less stiff and more permeable 

than native cartilage. Consequently this tissue often degrades over a period of 

months20-21 . 
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Whatever the initial etiology, the end-stage of articular cartilage disease, with 

clinical characteristics including joint pain, stiffness, dysfunction, and deformity, as 

well as the radiographic manifestations of joint space narrowing, subchondral 

sclerosis, and osteophyte formation, are easily recognized. However, signs and 

symptoms in earlier stages, when treatment may alter disease course, are more 

elusive. Understanding the basic science of cartilage and the changes that occur in 

OA is imperative to develop novel strategies to diagnose and treat this disorder. 

 

The specialized architecture and limited repair capacity of articular cartilage 

coupled with the high physical demands on this tissue make it exceedingly difficult to 

treat medically. There is currently no regimen, either pharmacologic or surgical, that 

is capable of restoring damaged cartilage to its normal phenotype. The tissue 

engineering approach to cartilage repair attempts to overcome these difficulties by 

delivering ECM producing cells entrapped in a space-filling matrix.  

 

 Tissue Engineering. Tissue engineering is an interdisciplinary science 

that combines basic principles of biology, chemistry, physics, and engineering to 

construct living tissues from their cellular components. A major goal of tissue 

engineering is the medical application of fabricated tissues for the augmentation or 

replacement of congenitally defective, impaired, injured, or otherwise damaged 

human tissue22. There has been significant tissue engineering research covering a 

wide variety of tissues, including: bladder, aorta, skin, breast, muscle, bone, cartilage, 
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and tendon.23-29 Regardless of the tissue of interest, the tissue engineering approach 

always combines three key elements: cells to produce the new tissue, a 

biocompatible/bioabsorbable scaffold to support and localize the cells, and bioactive 

molecules to direct tissue development. 

 
 
 Cells for cartilage repair and tissue engineering. Cell-based therapy is a 

promising approach to cartilage regeneration. Different cell types offer different 

potential advantages and challenges. There has been research looking at the tissue 

engineering potential of primary chondrocytes, chondrocytic cell lines, adult 

mesenchymal stem cells, and embryonic stem cells. The most obvious source for cells 

that can regenerate cartilage is the cartilage itself. Chondrocytes, the cells which 

reside within and maintain and remodel cartilage, are readily harvested, but are 

limited in number, and expansion in standard monolayer culture tends to lead to de-

differentiation, with loss of the chondrocyte phenotype. Additionally, donor site 

morbidity can be a significant issue when harvesting adult chondrocytes.  

 

 Clonal chondrocyte-like cell lines derived from chondrosarcomas or 

immortalization of primary cells with SV40 large T antigen provide an essentially 

limitless supply of cells with no associated harvesting morbidity, but recent 

microarray gene expression profiling indicates that while several popular lines (HCS-

2/8, SW1353, and C-20/A4) do express cartilage markers, they differ significantly 

from primary cells.30-32 Embryonic stem cells have been studied less in this 
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application, but are widely believed to have significant potential. As with all 

applications with embryonic stem cells, technical expertise, availability, and ethical 

issues all provide obstacles. 

 

 Scaffolds for cartilage tissue engineering. The function of a tissue 

engineering scaffold is to provide a temporary structure while cells seeded within this 

biodegradable matrix synthesize new, natural tissue. New tissue regeneration occurs 

during scaffold degradation, with the new tissue taking on the shape and size of the 

original scaffold. Design criteria include controlled biodegradability, suitable 

mechanical strength and surface chemistry, ability to be processed in different shapes 

and sizes, and the ability to regulate cellular activities, such as proliferation and 

differentiation.33 Both natural and synthetic polymers have been fabricated as 

scaffolds for cells in a variety of forms, including fibrous structures, porous sponges, 

woven or non-woven meshes, and hydrogels. 

 

 Hydrogels are cross-linked polymer networks that have the ability to absorb 

large amounts of water, making these materials attractive scaffolds for engineering 

tissues with high water content, such as cartilage. The unique ability of hydrogel 

scaffolds to encapsulate cells rather than promote attachment keeps cells in a 

spherical morphology conducive to maintenance of chondrocyte phenotype. In 

principle, a cell–polymer suspension could be injected into a cartilage defect just 

prior to gelation in situ. This would eliminate a separate cell-seeding step post-
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scaffold fabrication, and potentially minimize the need for invasive surgical 

implantation. However, the technical challenge of maintaining precise polymer/cell 

localization in situ has proven problematic. Alternatively, the cell/polymer suspension 

can be injected into molds of anatomic shapes and then cross-linked to form an 

implantable hydrogel. 

 
 

 Signaling molecules in cartilage regeneration. Signaling molecules, 

including growth factors, cytokines, and non-protein chemical compounds, are 

commonly used to promote tissue growth in cartilage tissue engineering. It is 

bioactive signaling molecules that bind to cell surface receptors, activating 

intracellular pathways that instruct cells to proliferate, differentiate, and synthesize 

extracellular matrix proteins during tissue regeneration. 

 Growth factors shown to have regulatory effects on chondrocytes or stem cells 

for cartilage tissue engineering include members of the TGF-β superfamily, IGFs, 

fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), and the 

epidermal growth factor (EGF) family. Among these growth factors, TGF-βs are the 

most potent inducers of both chondrogenesis in MSCs, and enhancement of cartilage 

ECM synthesis by fully differentiated chondrocytes.34,35-44 

 

 A successful tissue engineering approach to cartilage repair will require 

attention to all three of the major elements of tissue engineering: cell source, scaffold 

design, and delivery of bioactive molecules. 
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Menière’s Syndrome 

 Menière’s syndrome is a disorder of the inner ear which causes episodes of 

vertigo, tinnitus (ringing in the ear), a feeling of fullness or pressure in the ear, and 

fluctuating, progressive sensorineural hearing loss. A typical attack of Menière’s 

syndrome is preceded by fullness in one ear. Hearing fluctuation or changes in 

tinnitus may also precede an attack. A Menière’s episode generally involves severe 

vertigo (spinning), imbalance, nausea and vomiting. The average attack lasts two to 

four hours. Following a severe attack, most people find that they are exhausted and 

must sleep for several hours. There is a large amount of variability in the duration of 

symptoms. Some people experience brief episodes of unsteadiness, and others have 

constant unsteadiness. Menière’s episodes may occur in clusters; that is, several 

attacks may occur within a short period of time. However, years may pass between 

episodes. Between the acute attacks, most people are free of symptoms or note mild 

imbalance and tinnitus.  

 Menière’s syndrome affects roughly 0.2% of the population. It usually starts 

confined to one ear, but it often extends to involve both ears over time so that after 30 

years, more than 50% of patients with Menière’s syndrome have bilateral disease.45  

In almost all cases, a progressive sensorineural hearing loss occurs in the affected 

ears. This tends to follow a typical course, with low-frequency sensorineural loss 



 xxii

initially, progressing to the classic peaked audiogram seen with low and high 

frequency loss, and finally a flat audiogram, as hearing is lost across all frequencies.46 

 The exact cause of an acute attack is unknown, but most researchers believe it 

results from fluctuating pressure of the fluid within the inner ear.47 Within the inner 

ear there is a system of membranes, called the membranous labyrinth which contains 

a fluid called endolymph. The histophathologic hallmark of Menière’s syndrome is 

ballooning of Reisner’s membrane within the membranous labyrinth from excess 

fluid pressure within the endolymph. This process is called endolymphatic hydrops.  

 It is not currently known why people with Menière’s syndrome develop 

endolymphatic hydrops, but it is presumed to be either from blockage of the 

endolymph drainage system, the endolymphatic duct and sac, or by excess 

endolymph production by the stria vascularis. The animal model used for studying 

Menière’s syndrome is endolymph obstruction in the albino guinea pig, created by 

surgical destruction of the endolymphatic duct and sac, leading to an inability of the 

inner ear to drain endolymph. These animals do show a progressive sensorineural 

hearing loss, but it is unknown if they experience tinnitus or vertigo. As with most 

animal models some controversy exists as to how well the symptoms and 

pathogenesis of the target disease are replicated.48  

 There is currently no curative medical treatment for Menière’s syndrome. The 

mainstay of treatment involves medications to palliate the symptoms vertigo. 
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Establishment of treatments to alter the course of the disease will require a better 

understanding of the pathogenesis. 
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FABRICATION OF TISSUE ENGINEERED CARTILAGE 
UTILIZING HUMAN NASAL SEPTAL CHONDROCYTES AND 

INJECTION MOLDING 
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Abstract 
 
 

 Objectives/Hypothesis. The goal of the current study was to evaluate the 

chondrogenic potential of first passage human nasal septal chondrocytes grown in 

injection molded calcium alginate constructs cultured in vivo in athymic mice. 

 

 Method. Molds of an implantable silicon nasal bridge were cast using a 

commercial silastic ERTV mold making kit. Human nasal septal chondrocytes were 

liberated by collagenase digestion, suspended in 2% alginate mixed with CaSO4
 (0.2 

g/ml) and injected into prepared molds. Un-molded constructs were implanted 

subcutaneously in the dorsum of athymic mice, and recovered for biochemical, 

histological, and biomechanical analysis at 2, 4, 6, 12, and 23 weeks. 

 

 Results. Recovered constructs demonstrated reasonably good shape fidelity 

and progressively increasing extracellular matrix deposition, as determined by 

hydroxyproline and glycosaminoglycan content. Consistent with progressively 

developing extracellular matrix, equilibrium compressive modulus also continually 

increased. Safranin-O staining showed progressively increasing proteoglycan 

production. Consistent with a cartilage phenotype, almost all the collagen produced 

was type II collagen, as determined by collagen ELISA. 
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 Conclusions. Preliminary data suggest that first passage human nasal septal 

chondrocytes exhibit good chondrogenic potential in calcium alginate constructs 

cultured in an in vivo system. Because we used first passage cells it was possible to 

make constructs for implantation that were 80 times more massive than the original 

septal biopsy from which the cells were harvested: a necessary feature for clinical 

applications. These results indicate that human nasal septal chondrocytes have 

potential utility as a cell source for the engineering of cartilage replacements.  
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Introduction 

 
 Annually there are over one million surgeries in the United States that involve 

the replacement of either bone or cartilage1. Craniofacial deformities pose a special 

set of difficulties for the reconstructive surgeon. Whatever the cause of the defect, be 

it congenital anomaly or trauma the standard approach to repair is the same. Current 

clinical practice is to effect a repair using either autologous bone and cartilage or any 

of a variety of synthetic materials2-4. Common donor sites for autologous bone to be 

used in a reconstruction include calvarial, iliac, and costal areas5-6. Cartilage is 

commonly harvested from auricular, costal, and septal sites7-9.  

 

 Autologous grafting with bone or cartilage is still the standard of care, and is 

the most common approach10. There are, though, a number of inherent difficulties. 

For any reasonable size defect obtaining sufficient donor site material is associated 

with an often unacceptable level of morbidity11-13. This often makes it necessary to 

have multiple donor sites used for harvest and can require multiple operations. It also 

adds the technical difficulty of needing to combine several different tissue harvests 

into a single unit for reconstruction. Synthetic materials avoid the problems of donor 

site morbidity and tissue availability, but come with their own set of problems. 

Synthetic materials can feel unnatural under the skin, and are somewhat more prone 

to protrusion through the skin and an increased risk for infection15-16. 
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Given the current limitations in available clinical options for the treatment of 

structural craniofacial lesions, the ability to replace damaged or missing tissue with 

an engineered replacement tissue has the potential to be a valuable new treatment 

modality. The tissue engineering approach is to combine a space filling matrix with 

cells and growth factors in a manner that will encourage new tissue growth. Ideally, 

the initially seeded matrix will be reabsorbed at the same rate that new tissue is 

formed, so that ultimately the patient will be left with a tissue replacement in the 

exact shape of the original matrix, but indistinguishable from native tissue. This 

approach has the potential to combine the best aspects of autologous grafting and 

synthetic prosthesis. There is no donor site morbidity, material is abundant, and with 

the reabsorption of the original matrix there should not be the increased risk of 

protrusion or infection seen with synthetic materials.  

 

 Alginate, a linear co-polymer hydrogel of mannuronic acid and guluronic 

acid, has been known for many years to have value for the three dimensional culture 

of chondrocytes. Chondrocytes grown in standard monolayer culture tend to 

dedifferentiate into a fibroblastic phenotype. Chondrocytes grown in three 

dimensional alginate culture have been shown to maintain their chondrocyte 

phenotype, and continue to produce proteoglycans17-20. There are several properties of 

alginate that make it appealing as a tissue engineering matrix in addition to its known 

value for chondrocyte culture. It has already been established to be biocompatible21, 

and because of its ability to crosslink and gel in the presence of divalent cations can 
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be precisely shaped in complex geometries. This has been previously demonstrated 

with acellular constructs22 and using freshly harvested bovine articular 

chondroctyes23.  

 

 An essential component of tissue engineering is the combining of cells with a 

biocompatible matrix. The ideal cell source for tissue engineering of cartilage is still 

unknown. Possible cell sources that have been considered include articular 

chondrocytes, auricular chondrocytes, nasal septal chondrocytes, perichondrial cells, 

and mesenchymal stem cells. Nasal septal chondrocytes are intriguing as a cell source 

for several reasons. They are already primary chondrocytes, so there is no need to 

orchestrate a precise differentiation, and they can be harvested with a minimum of 

donor site morbidity. 

 

 The goal of the current study was to evaluate the chondrogenic potential of 

human nasal septal chondrocytes when used in injection molded calcium alginate 

constructs grown in vivo on the dorsum of athymic mice.  
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Methods And Materials 
 
  

 Chondrocyte Isolation. Chondrocytes were isolated from human nasal septa 

obtained from septoplasty patients at Englewood hospital, Englewood, NJ. A total of 

30 septa were used. Donor age ranged between 16-62 years and had a mean age of 32 

± 6 years. Twenty-one septa were from women and nine from men. Upon surgical 

excision all septa were stored immediately in sterile 50 ml conical tubes (BD 

Biosciences, Bedford, MA) containing 30 mls of sterile Hamm’s F-12 culture media 

(Gibco, Grand Isand, NY) with 100 μg/ml antibiotic/antimycotic (10,000 U/ml 

penicillin G sodium, 10,000 µg/ml streptomycin sulfate, and 25 µg/ml amphotericin 

B, Gibco, Grand Island NY).  Excised nasal septa were then shipped by overnight 

mail to the University of Massachusetts Medical School, where all future work was 

done. Immediately upon arrival at the University of Massachusetts individual septa 

were washed thoroughly two times in phosphate buffered saline (PBS, Sigma-

Aldrich, Irvine, CA) supplemented with antibiotic/antimycotic. Washed septa were 

then cut into approximately 0.5 cm2 slices and again washed thoroughly two times in 

PBS with antibiotic/antimycotic. Cartilage slices were then digested enzymatically in 

0.3 % collagenase (Worthington Biochemical Corp, Freehold, N.J.) for approximately 

10 hours. The resultant digest was filtered through a sterile 100 μm cell strainer (BD 

Biosciences, Bedford, MA,) in order to separate the liberated chondrocytes from any 

remaining undigested cartilage. Recovered cells were washed thoroughly 2 times in 

sterile PBS supplemented with antibiotic/antimycotic, pelleted by centrifugation at 
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7000 rpm and resuspended in sterile Hamm’s F-12 culture media. Resuspended cells 

were counted on a hemocytometer, and cell viability was determined by the trypan 

blue dye exclusion assay (Sigma-Aldrich, Irvine, CA). Individual septa yielded 

between three hundred thousand and 2 million cells. Only tissue digests that 

demonstrated better then 90% cell viability were used in the study.  

 

 Chondrocyte Culture. Isolated chondrocytes were cultured in standard 

monolayer culture in T-225 culture flasks (BD Biosciences, Bedford, MA), at an 

initial plating density of approximately 1,500 cells per cm2. Culture medium was 

comprised of Hamm’s F-12 culture media with 10% heat inactivated fetal bovine 

serum (FBS, Gibco, Grand Island, NY), 50 μg/ml ascorbate (Sigma-Aldrich, Irvine, 

CA, USA), and 1% antibiotic/antimycotic (10,000 U/ml penicillin G sodium, 10,000 

µg/ml streptomycin sulfate, and 25 µg/ml amphotericin B) (Gibco, Grand Island NY, 

USA). Culture medium was changed every second day and the cells were grown until 

near confluence. Nearly confluent cultures were trypsinized (0.05% trypsin-EDTA, 

Gibco, Grand Island, NY), the cells collected and washed twice in PBS with 

antibiotic/antimycotic, resuspended in Hamm’s F-12 for counting, and replated, again 

in T-225 culture flasks at 1,500 cells per cm2.   

 

 Mold Fabrication. Negative molds for injection were made using a 

commercially available Silastic ERTV mold-making kit (Dow Corning, Midland, 

MI). The silastic and catalyst were mixed 10:1 as per the manufacturer’s instructions 
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and poured into the bottom of a beaker to a height of approximately 1 cm. A non-

implantable model of an implantable silicon nasal bridge (Implantech, Ventura, CA) 

was used as a positive structure for the casting of a negative mold. The silicon nasal 

bridge was coated with petroleum jelly to facilitate its release and embedded in the 

catalyzed silastic until halfway submerged. After 24 hours at room temperature the 

solidified silastic and embedded nasal bridge were coated with a thin layer of 

petroleum jelly all across their top surface except for a small area near one edge. A 

second layer of catalyzed silastic was poured on top and allowed to set at room 

temperature. After 24 hours the silicon nasal bridge was removed and the fully cast 

mold was cleaned and autoclave sterilized.  

 

 Alginate Construct Fabrication. Methods for generating chondrocyte-

seeded alginate constructs were based on previous studies documenting generation of 

cartilage by injection molding (Figure 1). Passage 1 human nasal chondrocytes were 

suspended in filter sterilized 2% low viscosity alginate (FMC Biopolymer, Drammen, 

Norway) in PBS at a seeding density of 50 x 106 cells/ml. Immediately prior to 

injection into the mold the alginate/chondrocyte suspension was combined with a 

solution of autoclave sterilized CaSO4 in PBS (0.25g/ml) by thorough mixing through 

a sterile stopcock (David Scott, MA). The CaSO4 solution was combined with the 

alginate/chondrocyte mixture at a ratio of 0.04 mls of CaSO4 per milliliter of alginate. 

The alginate/chondrocyte/CaSO4  mixture was then injected into the mold using a 3 

ml syringe with an 18.5 gauge needle. After 45 minutes a fully gelled construct was 
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un-molded. Molded constructs were implanted subcutaneously in the dorsum of 

athymic mice and harvested at 2, 4, 6, 12, and 23 weeks. Harvested constructs were 

frozen at -20º C in preparation for histological, biochemical, and biomechanical 

testing.   

 

All animals were treated in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals, and the protocol was approved by the Animal Care 

Committee at the University of Massachusetts Medical School and with the approval 

of the institutional review boards of UMass Medical School and Englewood Hospital. 
      
 

 Histological Analysis. Specimens for histology were fixed in 10% phosphate 

buffered formalin for at least 24 hours and then embedded in paraffin. Paraffin 

embedded engineered tissues were sectioned by microtome and placed on glass 

microscope slides. Sections on slides were de-paraffinized and GAG content 

visualized by staining with Safranin-O.  

 

 Biochemical and Molecular Analysis. Chondrogenic potential of the human 

nasal chondrocytes was assessed by several biochemical measures. Cell number was 

determined by DNA quantification. Extracellular matrix accumulation was assessed 

by quantification of glycosaminoglycans as a marker for proteoglycans, 

hydroxyproline as a marker for total collagen, and a collagen ELISA to determine 
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collagen type and quantity. All biochemical assays were well established techniques 

that have been described elsewhere in detail.  

 DNA Qunatification. Samples for biochemical analysis were digested 

overnight at 60º C in 1 ml of papain digest buffer (0.5 mls papain (Sigma-Aldrich, 

Irvine, CA, USA), 176 mg L-Cysteine (Sigma-Aldrich, Irvine, CA, USA), and 100 

mls PBS with EDTA). DNA was quantified by the PicoGreen DNA assay (Molecular 

Probes, CA) according to the manufacturers instructions. Briefly, 5 μl of the papain 

digest was added to 195 μl of the PicoGreen dye solution in a 96-well plate and the 

contents excited at 485 nm and fluorescence read at 535 nm on an HTS 7000+ 

spectrophotometer (Perkin-Elmer, Wellesley, MA). DNA content was then 

determined by linear interpolation with calf thymus DNA standards. All samples and 

standards were measured in duplicate.  

 

 GAG Quantification. Sulfated GAG content was measured using 1,9-

dimethylmethylene blue dye (DMB) at pH 1.5. This pH assures a sufficiently acidic 

environment that the dye binds to the sulfate groups on glycosaminoglycans, but not 

to the carboxyl groups on alginate24. Aliquots of 50 μls of papain digest were 

combined with 950 μls of DMB and optical density was measured at an absorbance of 

525 nm. GAG content was quantified by quadratic interpolation using chondroitin-6-

sulfate from shark cartilage (Sigma-Aldrich, USA) as a standard.  All samples and 

standards were measured in duplicate. 

 



 12

 

 

 Hydroxyproline Quantification. Hydroxyproline content was measured by 

acid hydrolysis of samples of papain digests, as described in detail elswhere25-26. 

Briefly, equal volume aliquots of 6N HCL and papain digest were combined and 

incubated overnight at 115°C. Chloramine T hydrate (Sigma-Aldrich, USA) and p-

dimethylamino-benzaldehyde (Ehrlich’s reagent) (Sigma-Aldrich, USA) were added 

to the hydroxylated samples and absorbance was measured at 560 nm on an HTS 

7000+ spectrophotometer (PE Wellesley, MA). Hydroxyproline content was 

determined by linear interpolation using chondroitin 6-sulfate from shark cartilage 

(Sigma-Aldrich) as a standard. All samples and standards were analyzed in duplicate. 

 

 Collagen Type II ELISA. Collagen type was assessed by ELISA using the 

Native Type II Collagen Detection Kit #6009 (Chondrex Inc, Redmond, WA), 

according to the manufacturer’s instructions. First, the collagen molecules were 

extracted from the engineered samples using methods supplied with the ELISA Kit. 

Briefly, samples were lyophilized, and then incubated overnight at 4°C in 3M 

guanidine/0.05M Tris-HCl buffer at pH 7.5 to extract the proteoglycans. The tissue 

was then homogenized and the collagen digested into soluble monomers by 

successive treatment with pepsin and pancreatic elastase. The supplied 96 well 

ELISA plate was incubated overnight with the capture antibody, washed, and loaded 

with the solubulized collagen from the tissue samples and a supplied collagen 
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standard. After a two hour incubation the plate was washed and incubated with the 

supplied biotinylated detection antibody for another two hours, washed again, then 

incubated with streptavidin peroxidase, washed and incubated with the OPD 

chromagen in a H2O2 buffer. The reaction was stopped with 2.5 N sulfuric acid and 

the plate was read on an HTS 7000+ spectrophotometer at 490 nm. Type II collagen 

was quantified by linear interpolation with the supplied collagen standard.  

 

 Total collagen from biochemical assessment of hydroxyproline content was 

compared to the ELISA values to estimate the percent of total collagen that was the 

desired type II. This estimate is based on prior reports that show hydroxyproline to 

make up a consistent percentage of collagen from a wide variety of tissues. In many 

studies this percentage has consistently ranged from 12.3%-14.4%26-29

    

 Biomechanical Analysis. Samples of engineered cartilage for mechanical 

testing were cut into regular right cylindrical discs 1 mm in height and 6 mm in 

diameter using a razor blade and a 6 mm diameter dermal biopsy punch. Discs of 

engineered cartilage were placed in a 6 mm diameter well in an electrically insulated 

confining chamber mounted to a servo-controlled Dynastat mechanical spectrometer 

(IMASS, Hingham, MA) interfaced with a computer. Samples in the confining 

chamber were equilibrated in PBS at pH 7.4 (Gibco, Grand Island, NY) and 

compressed between a porous polyethylene platen and the base of the confining 

chamber. Each sample was compressed in ten sequential steps of 3% static strain to a 
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maximum 30% strain. After each strain step the signal detected by the load cell was 

recorded every 0.5 seconds for 100 seconds. Recorded stress relaxation data was fit to 

a poroelastic model of material behavior to determine the engineered tissue’s 

equilibrium modulus.30-31. 

. 
 

 Statistical Analysis. The statistical changes over time in GAG content, 

hydroxyproline content, DNA content, equilibrium modulus, and hydraulic 

permeability were assessed by computing the Pearson product moment correlation 

coefficient. This value was compared to a critical value for the number of samples 

used in order to determine the statistical significance of any observed changes (p 

value). 
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Results 

 Shape Duplication. The injection molding process allowed for the reasonably 

easy and fast duplication of a desired geometry with reasonably good fidelity 

immediately upon un-molding. Chondrocyte/alginate implants continued to show 

reasonably good shape fidelity through 23 weeks of in-vivo culture (Figure 2). There 

was some early loss in overall volume, presumably due to an initial re-absorption of 

the thin peripheral portions of the alginate construct.  

 

 Histology. On staining with Safranin O after two weeks of in vivo culture 

engineered tissue showed significant alginate matrix containing a large number of 

cells with the characteristic, rounded chondrocyte morphology. Staining of GAGs at 

two weeks was extremely faint, indicating very little extracellular matrix production. 

After four weeks of in vivo culture staining with Safranin-O still shows abundant 

alginate and rounded cells, but also shows small, densely staining islands rich in 

proteoglycans. After 6 weeks of in vivo culture staining with Safranin-O showed large 

densely staining proteoglycan rich areas surrounded by now much smaller areas of 

alginate. By 12 weeks of in vivo culture all of the alginate appears to have been 

reabsorbed and the islands of developing matrix have coalesced into solid, normal 

appearing cartilage, with uniform and significant extracellular matrix (Figure 3). 

Tissue samples for 23 week histology were inadvertently damaged by improper 

processing, so are not presented here. 
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 Biochemistry. Biochemical evaluation of the engineered tissue demonstrated 

that GAG, hydroxyproline, and equilibrium modulus all increased significantly with 

time (p < 0.01). At 23 weeks GAG, hydroxyproline, and equilibrium modulus were 

respectively 68%, 54%, and 44% of average native septal values. DNA did not 

change appreciably over time from what was initially seeded (p > 0.05), consistent 

with the observation that proliferation is inhibited at high cell seeding densities 

(Figures 4-7).  

 

 Quantification of collagen type II by ELISA showed that the developing tissue 

was synthesizing almost exclusively type II collagen, consistent with the cartilage 

phenotype. The lack of type I collagen demonstrates consistency with the cartilage 

phenotype and the lack of scar tissue formation. The amount of collagen identified by 

ELISA was consistent with the indirect quantification by hydroxyproline assessment, 

and ranged from 82%-96% of the total collagen depending on the correction factor 

used (Figure 8).  
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Discussion 
 

 
The goal of the current study was to assess the chondrogenic potential of first 

passage human nasal chondrocytes grown in geometrically complex calcium alginate 

constructs cultured in vivo in athymic mice. After subcutaneous implantation the 

implants developed a gross morphology over time that began to resemble native 

cartilage. The chondrocytes remained metabolically active, producing new 

extracellular matrix. Collagen and proteoglycan content, the two major components 

of the extracellular matrix, increased continuously over time. Consistent with this, the 

equilibrium compressive modulus increased continuously, as the developing tissue 

became stiffer. 

 

 The nasal bridges that were duplicated are very thin along the edges, and in 

these areas shape duplication was not as precise as in thicker areas, or as has been 

demonstrated with larger constructs. For clinical applications, where dimensional 

tolerances of constructs would have to be quite precise, this is potentially a serious 

problem. This difficulty with the duplication of small shapes will be addressed in a 

separate publication by introducing computer aided design and solid free form 

fabrication into the molding process. 

 

 Our preliminary data show that adult human nasal chondrocytes represent a 

possible cell source for clinical applications of tissue engineered neo-cartilage with 

several very attractive features. Using injection molding technology and calcium-
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alginate, adult human nasal septal chondrocytes expanded through 1 passage enable 

the production of engineered constructs as large as 8 grams from an initial septal 

biopsy as small as 100 milligrams. The biochemical data on matrix deposition 

presented here show similar initial results to an earlier study by Rotter et al32 using 

human nasal septal chondrocytes seeded onto PGA/PLA discs, cultured briefly in 

vitro, and then in-vivo in athymic mice to twelve weeks. In that study, in contrast to 

the present one, the matrix deposition peaked quickly and then tended to level off or 

decline by 4 weeks. The continual deposition of matrix seen in the current study may 

indicate a stronger chondrogenic potential for nasal septal chondrocytes when grown 

in alginate compared to PGA/PLA. The high variability in DNA content may 

represent technical imprecision, but also may represent a differing tendency for 

proliferation or matrix deposition depending on the age of the donor cartilage. This 

possibility will be examined in future studies. 

 

 There are several outstanding questions from the current study that could 

prove important. With this system matrix deposition was seen to continue for the 

entire length of the study, close to six months. At this time it remains unclear how 

long tissue development would continue with this system, or if the current 

technologies would produce similar results in an in vitro culture system. Future work 

will look to improve the quality of shape duplication by the application of computer 

aided design and solid free form fabrication in the mold making process, and possible 
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modifications of alginate to allow it to serve as a growth factor deliver system. These 

ideas will be explained in detail in the following chapters. 
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Figure 1 

Schematic of injection molding process. Human nasal septal cartilage was digested in 

type II collagenase, grown in monolayer culture, passaged, mixed with calcium 

alginate, injected into a negative mold, unmolded, and implanted subcutaneously into 

the dorsum of an athymic mouse. 
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Figure 2 

Nasal septal biopsy before digestion (A), formed construct immediately after un-

molding (B), and engineered tissue after 12 weeks of in vivo growth (C). 
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Figure 3 

Safranin-O staining of engineered constructs at (A) 2 weeks, (B) 4 weeks, (C) 6 

weeks, and (D) 12 weeks after subcutaneous implantation.  
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Figure 4 

Hydroxyproline content measured after removal from subcutaneous implantation. 

Each data point represents n = 6 ± standard deviation. The correlation coefficient and 

p values indicate levels of significance of change in hydroxyproline with time. 
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Figure 5 

Glycosaminoglycan content measured after removal from subcutaneous implantation. 

Each data point represents n = 6 ± standard deviation. The correlation coefficient and 

p values indicate levels of significance of change in Glycosaminoglycan with time. 
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Figure 6 

DNA content measured after removal from subcutaneous implantation. Each data 

point represents n = 6 ± standard deviation. The correlation coefficient and p values 

indicate levels of significance of change in DNA with time. 
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Figure 7 

Compressive equilibrium modulus of molded constructs after removal from 

subcutaneous implantation. Each data point represents n = 6 ± standard deviation. The 

correlation coefficient and p values indicate levels of significance of change in 

compressive equilibrium modulus with time. 



 40

0 5 10 15 20 25
0

20

40

60

80

100
14.4% HP
12.3% HP
Type II Collagen

Time (Weeks)

C
ol

la
ge

n 
( μ

g/
m

g)

 



 41

Figure 8 

Collagen content measured after removal from subcutaneous implantation. Dashed 

lines represent the predicted total collagen range calculated with hydroxyproline 

content taken to range from 12.3%-14.4% of the total collagen content. The solid line 

is type II collagen as measure by ELISA. Each data point represents n = 6 ± standard 

deviation. 
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CHAPTER 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FABRICATION OF TISSUE ENGINEERED TYMPANIC 
MEMBRANE PATCHES USING COMPUTER-AIDED DESIGN 

AND INJECTION MOLDING 
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Abstract 

 Objectives/Hypothesis. The goal of the current study was to utilize computer 

aided design and injection molding technologies to tissue engineer precisely shaped 

cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte 

seeded calcium alginate gels.  

 

 Methods. Molds were designed on Solid works 2000 and built out of 

acrylonitrile butadiene styrene (ABS) utilizing fused deposition modeling (FDM). 

Tympanic membrane patches were fabricated using bovine articular chondrocytes 

seeded at 50 x 106 cells/ml in 2% calcium alginate gels. Molded patches were 

cultured in vitro for up to ten weeks, and assessed biochemically, morphologically, 

and histologically.    

 

 Results. Un-molded patches demonstrated outstanding dimensional fidelity 

with a volumetric precision of at least 3µls, and maintained their shape well for up to 

ten weeks of in vitro culture. Glycosaminoglycan and collagen content increased 

steadily over ten weeks in culture, demonstrating continual deposition of new 

extracellular matrix, consistent with new tissue development.     

 

 Conclusions.   The use of computer aided design and injection molding 

technologies allows for the fabrication of very small, precisely shaped chondrocyte-

seeded calcium alginate structures that faithfully maintain their shape during in vitro 
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culture. In vitro fabrication of tympanic membrane patches with a precisely controlled 

geometry may have the potential to provide a minimally invasive alternative to 

traditional methods for the repair of chronic tympanic membrane perforations. 
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Introduction 

 Over two million tympanostomy tubes are inserted annually in the United 

States, making this the most commonly performed of all surgical procedures1. In up 

to ten percent of cases the patient treated with tympanostomy tubes is left with a 

permanent perforation of the tympanic membrane that requires surgical repair2. 

Because of the enormous number of chronic tympanic membrane perforations that 

need to be treated surgically every year, any new treatment that can simplify the 

repair process without sacrificing outcome quality has significant potential benefits. 

Current surgical reparative techniques require harvesting autologous tissue such as 

temporalis fascia or tragal cartilage to close the defect3. The tragal cartilage, or so 

called cartilage butterfly technique, is a relatively new and very promising transcanal 

inlay procedure that, in many cases, has several distinct advantages over more 

traditional tympanoplasty. It demonstrates excellent results in closing the tympanic 

membrane, and effectively restores and maintains normal audiometric function 

without requiring removal of contiguous myringosclerosis plaques or the creation a 

tympanomeatal flap. For these reasons the cartilage butterfly approach can sometimes 

be performed with mask anesthesia in an outpatient surgery setting4.   

   

 Any highly effective treatment for chronic tympanic membrane perforations 

that could be performed reliably in an outpatient setting without the need for general 

anesthesia would provide an easier experience for patients and their families as well 

as potentially greatly reduce the cost of treatment. The cartilage butterfly approach to 
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tympanic membrane repair is a positive step in this direction, but is often limited by 

the invasiveness of harvesting the tragal cartilage as well as by the time and 

discomfort associated with shaping the harvested cartilage to make the appropriate 

geometry needed for repair.  

  

 Tissue engineering is an area of science in which investigators strive to repair 

or regenerate damaged or lost tissue. There is currently active investigation into the 

tissue engineering of a wide variety of specific tissues5. The common theme unifying 

the tissue engineering approach is the principle that a wide variety of cell types can be 

coaxed into synthesizing new tissue if they are seeded onto an appropriate three 

dimensional scaffold in an appropriate growth environment6.  Seeding chondrocytes 

into a biocompatible and bioabsorpable three dimensional scaffold, such as alginate 

localizes the cells to a desired area and geometry allowing for new extracellular 

matrix (ECM) production in a desired location and shape7,8. Cartilage regeneration 

occurs as the chondrocytes are cultured in-vitro, seeded in a three dimensional 

polymer scaffold of the desired shape. As new tissue develops the polymer scaffold is 

reabsorbed so that ultimately new tissue is formed in the shape of the polymer in 

which the cells were seeded. 

  

 For many tissue engineering purposes it is desirable to precisely control the 

geometry of the newly generated tissue. The most common approach researchers have 

taken to controlling shape is to press fibrous scaffolds such as polyglycolic acid 
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(PGA) or polylglycolic-co-lactic acid (PLGA) into a rigid mold and then seed this 

scaffold with a cell solution 9. This process works to some degree, but has inherent 

difficulties. It is technically challenging in this process to control the homogeneity of 

both polymer and cell distribution, complicating the ability to reliably produce 

consistent results. Additionally, cell-seeding efficiency tends to be low10 and shape 

generation somewhat operator dependent. To our knowledge there are no reports to 

date of this approach being used to successfully fabricate very small precisely shaped 

constructs. Previously published work demonstrated calcium alginate production of 

complex geometries utilizing injection molding11. In this work silicon maxillofacial 

implants were used as positives to generate negative molds from a commercially 

available silastic mold making kit. Calcium alginate was then injected into the molds 

to duplicate the silicon shapes. The results demonstrated the utility of the process, but 

also some inherent limitations. Complete filling of the molds was difficult, and the 

process was not capable of reliably generating very small constructs. Additionally, in 

order to create an injection mold one needed a structure serving as a positive that 

already possessed the desired geometry.  This study addresses these limitations by 

incorporating computer aided design (CAD), which eliminates the need for the 

existing positive, and solid free form fabrication which allows for the fabrication of 

sophisticated mold elements.  

 

We propose that the cartilage butterfly approach to tympanic membrane repair 

would benefit from using a tissue engineered autologous cartilage patch in lieu of 
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intra-operatively harvesting and shaping tragal cartilage. Our tissue engineering 

approach strives to generate new cartilage in the shape of a butterfly tympanic 

membrane patch from a very small number of autologous chondrocytes harvested 

from an unobtrusive retro-auricular or tragal site using local anesthesia.  

  

 In the current study we have sought to demonstrate the feasibility of a tissue 

engineering approach for tympanic membrane perforation repair by fabricating 

cartilage butterfly patches of three different sizes using bovine articular chondrocytes 

seeded in shaped calcium-alginate constructs. Toward this end we evaluated the 

ability of CAD and injection molding technologies for their ability to reliably 

reproduce very small and precisely shaped cell-seeded calcium alginate gels that 

maintain a complex geometry  during in vitro culture, as well as the chondrogenic 

potential of these gels in a standard in vitro culture system.  

 

To insure precise geometry and dimensional tolerances for the patches we 

utilized an injection molding technology specially adapted for an alginate/cell mixture 

with a mold designed by computer-aided design (CAD), and fabricated by fused 

deposition modeling (FDM), a kind of solid freeform fabrication.

Methods and Materials 

 Chondrocyte Isolation. Bovine articular chondrocytes were isolated from the 

glenohumoral joint of freshly slaughtered calfs. Cartilage slices were excised from the 
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joint and washed thoroughly two times in phosphate buffered saline (PBS) (Sigma-

Aldrich, Irvine, CA, USA) supplemented with antibiotic/antimycotic (10,000 U/ml 

penicllin G sodium, 10,000 µg/ml streptomycin sulfate, and 25 µg/ml amphotericin 

B) (Gibco, Grand Island NY). Cartilage slices were then enzymatically digested in 

0.3% collagenase type II (Worthington Biochemical Corp, Freehold, N.J. USA.) in 

Hamms F-12 media (Sigma-Aldrich, Irvine CA) at 37° for 12-16 hours12. The 

resultant digest was filtered through a sterile 180 um polypropylene filter (Millipore, 

Bedford, MA) to separate the chondrocytes from any undigested cartilage. The 

filtered collagenase solution was centrifuged at 7000 rpm, and the pelleted cells were 

washed thoroughly twice in antibiotic/antimycotic supplemented PBS. Isolated 

chondrocytes were re-suspended in Hamm’s F-12 media supplemented with 

antibiotic/antimycotic, and counted on a hemocytometer. Cell viability was assessed 

by trypan blue dye exclusion assay (Sigma-Aldrich, Irvine, CA). All cells used in 

construct fabrication were taken from digests that demonstrated better than 90% cell 

viability. 

 

Mold Design and fabrication . An injection mold for fabricating tissue 

engineered tympanic membrane patches was designed using SolidWorks 2000 

(Computer-Aided Products, Peabody, MA) and fabricated out of acrylonitrile 

butadiene styrene (ABS) using fused deposition modeling (FDM), on a Stratysys 

Inc.’s Prodigy (Stratysys Inc, Eden Prairie, MN). The mold was designed with a part-

line along an axis of symmetry to avoid undercuts, and had two alignment pins at one 
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end to ensure proper marriage of the two halves (Fig 1). The mold was designed with 

an injection port at one end and off-gassing slits at the far end of each individual 

patch to insure proper filling of the mold cavity (Fig 1). The injected mold makes two 

copies each of three different sizes of “butterfly” tympanic membrane patches. Same 

size patches are molded in parallel and the different sizes in series (Fig 1). The 

butterfly shape patch was modeled after the target shape of surgically carved tragal 

cartilage, (two circular flanges flanking a central connector). In the injected mold the 

patches sit on top of two inserts that can be pushed out from the back to facilitate 

removal from the mold (Fig 1). All three patches are 2 mm long across their major 

axis and have flanges with outer diameters ranging from 2 mm-3 mm. The thickness 

of the flanges is roughly 0.40 mm.  

 

Construct Fabrication and Handling . Methods for generating chondrocyte-

seeded alginate patches were based on previous studies documenting generation of 

cartilage by injection molding11. Chondrocytes isolated from enzymatic digestion of 

bovine articular cartilage were suspended in filter sterilized 2% low viscosity alginate 

(Pronvoa, Norway) in PBS at a seeding density of 50 x 106 cells/ml. Immediately 

prior to injection into the mold the alginate/cell suspension was mixed thoroughly, 

using a sterile stopcock, with autoclave sterilized CaSO4 in PBS (0.25g/ml). The 

alginate/chondrocyte/ CaSO4  mixture was injected into the mold using a 3 ml syringe 

with an 18.5 gauge needle.  Over time the Ca++ in the alginate/chondrocyte/CaSO4 

solution continually cross-links individual alginate strands, leading to a progressively 
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stiffer and stiffer gel. The injected molds were allowed to stand for one hour, after 

which fully formed solid gelled patches were removed. (Fig. 2) The individual 

patches were cultured in vitro for up to 10 weeks in Hamm’s F-12 media 

supplemented with antibiotic/antimycotic), 10% heat inactivated fetal bovine serum 

(FBS), and ascorbate (50 µg/ml). (Fig 4) All patches were cultured in 6 well culture 

dishes, with different size patches isolated from each other. A maximum of six 

patches were cultured in any individual well. Cultured patches were covered with 8 

mls of culture medium which was changed every second day.  

 

Histological Evaluation of Constructs . At 0 and 10 weeks samples were 

removed from culture and frozen for histological and biochemical evaluation.  

Specimens for histology were fixed in 10% unbuffered formalin supplemented to be 

0.1M in CaCl2 for at least 24 hours and then embedded in paraffin, sectioned by 

microtome, and stained with Safranin-O.  

 

Biochemical Evaluation of Constructs . In parallel with histological studies, 

samples were removed from culture at 2, 4, 6, and 10 weeks for biochemical 

evaluation. Cell number in the constructs was evaluated by quantifying the amount of 

DNA. Extracellular matrix accumulation in the constructs was evaluated by 

quantifying the amount of sulfated glycosaminoglycans (GAGs) as a marker of 

proteoglycans, and hydroxyproline as a marker of collagen content. All biochemical 

analysis used standard methods that have been described elsewhere in detail. Briefly, 
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all samples were digested in 1 ml of a papain digest buffer (0.1M sodium phosphate, 

10 mmol sodium EDTA (BDH), 10 mmol cysteine hydrochloride (Sigma), and 3.8 

U/ml papain (Sigma) at 60° for 24 hours. DNA content of samples was measured by 

quantitating the amount of fluorescence (358/458 nm) due to bound Hoechst 33258 

dye. Measured fluorescence from the samples was compared to a standard curve 

created with calf thymus DNA13. Sulfated GAG content was measured using 1,9- 

dimethylmethylene blue dye at pH 1.5, and quantitating the absorbances at 595 nm, 

using C-6-S from shark cartilage (Sigma) as a standard14.  Hydroxyproline content 

was measured by acid hydrolysis of samples of papain digests, addition of 

Chloramine T and pdimethylamino-benzaldehyde, and quantitating the absorbance at 

560 nm15. 

 

Mass Evaluation of Constructs . In order to determine if the mold was 

faithfully reproducing the shape of the patches, we compared the masses of the three 

different size patches immediately after un-molding to the expected mass for each 

size patch. Each measured mass used for comparison was the average mass of thirty 

individually weighed patches. Expected masses were determined based upon the 

designed patch volumes and a measured density of the cross-linked alginate gel. Each 

sample was weighed to 0.0001g using a microbalance (Ohaus, Pine Brook, NJ) and 

the weights were recorded. 
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Statistical Analysis. Mean differences in GAG, hydroxyproline, and DNA 

content at 2, 4, 6, and 10 weeks were analyzed by a one factor ANOVA with tukey 

post-hoc multiple comparisons. 
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                                                       Results 

 The ABS mold faithfully reproduces the computer generated design, yielding 

tympanic membrane patches which can be separated and removed from the mold. The 

average masses of the three different size patches immediately after un-molding were 

30.2 ± 3.1 mg, 21.6 ± 2.2 mg, and 10.6 ± 2.2 mg (90%, 89%, and 88% of expected 

values) (Fig 3). For each size patch this represents a volume discrepancy of 3 µl or 

less, demonstrating an excellent ability to accurately duplicate small shapes. The 

gross morphology of the patches was maintained through 10 weeks of in-vitro 

culture, and over time the patches gradually became more opaque, grossly consistent 

with developing extracellular matrix. This is most apparent between 6 and 10 weeks 

(Fig 4).  

 

Immediately after un-molding the samples show good shape fidelity, and air 

bubbles generated from mixing alginate with CaSO4 can be seen (Fig 5). At 10 weeks 

samples still show excellent shape retention, with Safranin-O staining throughout, 

indicating relatively uniform deposition of proteoglycans, an important component of 

the cartilage extracellular matrix. The periphery of the samples contained a thin (10-

20 µm) layer that did not stain with Safranin-O.  

 

GAG and hydroxyproline content increased significantly between each 

measured time point (p<0.002). DNA content showed no statistically measurable 

difference over time. At 2, 4, 6, and 10  weeks GAG content was 1.1 ± 0.56 µg/mg , 
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2.02 ± 0.91 µg/mg, 3.83 ± 1.60 µg/mg, and 9.33 ± 2.3µg/mg. (Fig. 6) These values 

are roughly 2%, 3%, 6% and 13% respectively of native values. At 2, 4, 6, and 10 

weeks hydroxyproline content was 0.07 ± 0.03 µg/mg, 0.14 ± 0.05 µg/mg, 0.67 ± 

0.27µg/mg. and 0.94 ± 0.27 µg/mg. (Fig. 8) These values are approximately 1%, 2%, 

10%, and 15% respectively of native values measured as an internal control. 

Increasing GAG and hydroxyproline content indicate that the chondrocytes were alive 

and metabolically active. DNA content over time remained consistent with the DNA 

content initially loaded, indicating that the chondrocytes did not proliferate in the 

course of this culture. (Fig. 6)  
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Discussion 

The goal of the present study was to assess the potential of CAD and injection 

molding technologies to generate chondrocyte seeded calcium alginate gels in the 

shape of cartilage butterfly tympanic membrane patches, and to then assess the 

chondrogenic potential of those constructs to determine their potential suitability for 

therapeutic application in the treatment of chronic tympanic membrane perforations.  

 

Alginate, an anionic copolymer of manuronic and guluronic acids, has been 

used for many years for in vitro culture systems, and in more recent years has gained 

interest as a scaffold for tissue engineering16. Because of the relatively low aqueous 

solubility of the alginate cross-linking solution used in this study, CaSO4 (0.209 

g/ml), the amount of the cross-linking agent, free Ca++, available at equilibrium is 

scant enough that cross-linking of alginate occurs slowly enough that the 

alginate/cell/ CaSO  mixture 
4 can be injected into a mold as a liquid, but in a 

reasonably short time forms a stiff enough gel to be un-molded as a solid.   

 

The most commonly used scaffold in tissue engineering has been polyglycolic 

acid (PGA), which has demonstrated the ability to facilitate new tissue development, 

but has provoked a severe inflammatory reaction when implanted in 

immunocompetent animals17. An appealing element of alginate as a tissue 

engineering scaffold is that it allows for new tissue development  in a three 
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dimensional matrix while, unlike PGA, seems  to provoke little or no immune 

response in immunocompetent hosts17.  

 

The tympanic membrane patches fabricated in this study demonstrated good 

dimensional fidelity, with volumetric precision to within 3 µl of design specifications 

for all size patches, indicating excellent potential for making very small precisely 

shaped cell-seeded constructs. Increasing GAG and hydroxyproline content indicate 

that the chondrocytes were alive and metabolically active, continually producing new 

extracellular matrix. The DNA data indicate that the chondrocytes did not proliferate, 

which is consistent with metabolic energy being conserved for extracellular matrix 

development, as was desired. These biochemical data are reasonably consistent with 

reports on similar in vitro cartilage development, and are consistent with the 

development of new cartilage18.  Chondrogenic potential of the cultured constructs 

was further demonstrated by progressive staining with Safranin-O during in vitro 

culture. Good cross-sectional morphology was difficult to see on histology due to the 

technical challenge in preparing the constructs. Upon removal from the mold the 

alginate gel is still quite soft and subject to deformation during the imbedding 

process, particularly at the very thin outer flanges.    

 

The increasing trend in matrix components shows that tissue development was 

continuing with time in culture. Also, while ECM development, which strongly 

correlates with the developing tissue’s mechanical properties, is for some cartilage 
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tissue engineering applications perhaps the most crucial indication of tissue utility, 

that is not necessarily the case here. Using a cartilage tympanic membrane patch is 

fundamentally different from trying to create load bearing, structural cartilage. For 

this application, it is unclear, as of now, how crucial the mechanical properties of the 

new tissue will be, but by ten weeks of in vitro culture the patches had solidified 

sufficiently that they could be picked up and handled with forceps.   
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Conclusion 

 We have demonstrated the ability to tissue engineer cartilage implants with 

the precise shape necessary for repair of non-healing perforated tympanic membranes 

caused by long term use of tympanostomy tubes. Determination of how well these 

constructs work for the clinical repair of non-healing tympanic membrane 

perforations will require an in vivo study using an animal model of non-healing 

tympanic membrane perforations. In future studies we will also compare tissue 

engineered cartilage patches with patches made from other tissue engineered tissues. 

The clinical use of a tissue engineered patch for repair of tympanic membranes has 

the potential to allow repair of small tympanic membrane perforations to be 

accomplished at an office visit, with no need for general anesthesia in select cases. 

Moving the routine repair of non-healing tympanic membrane perforations due to 

long term tympanostomy tube use from the operating room to the office has the 

potential to greatly reduce the time and stress of treatment for patients and 

additionally to greatly reduce the cost of providing treatment. To accomplish the 

long-term goal of this work, though, much work needs to be done in the animal model 

in order to optimize the formulation and design of the implants. In addition, future 

work utilizing alternative cell types may facilitate an “off-the-shelf”, one-step 

tympanic membrane patch. 
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Figure 1.  

CAD rendering of the mold generated in SolidWorks 2000 Unexploded (A),  and 

Exploded (B). 
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Figure 2.  

ABS mold filled with alginate seeded with 50 x 106 chondrocytes/ml immediately 

before un-molding (A), and molded patches immediately prior to culture (B). 
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Figure 3.  

Calculated and expected masses of small medium, and large tympanic membrane 

patches immediately after un-molding. 
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Figure 4.  

Gross morphology at 2 weeks (A), 4 weeks (B), 6 weeks (C), and 10 weeks (D) in 

culture. 
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Figure 5.  

Safranin O staining of a small tympanic membrane patch to detect cartilage 

proteoglycans immediately after un-molding (A at 40x magnification and C at 200x 

magnification), and a large tympanic membrane patch after 10 weeks in culture (B at 

40x magnification and D at 200x magnification). Bar = 500 µm. 
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Figure 6.  

Glycosaminoglycan (GAG) content (A), hydroxyproline content (B), and DNA 

content (C) of tympanic membrane patches at times in culture up to 10 weeks. All 

data are represented as mean ± SD for n = 24 samples.  
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CHAPTER 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PEPTIDE MODIFIED ALGINATE HYDROGELS: A POTENTIAL 
VEHICLE FOR THE CONTROLLED RELEASE OF TGF-β1 IN A 

TISSUE ENGINEERING SCAFFOLD 
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Abstract 
 
 
 Objectives/Hypothesis. The goal of the current study was twofold: first, to 

evaluate the efficiency of carbodiimide chemistry for adding a novel growth factor 

binding peptide to sodium alginate; second, to compare the TGF-β1 release 

characteristics from peptide-modified alginate and control alginate. 

 
 Methods. A novel growth factor binding peptide was covalently bonded to 

sodium alginate using standard carbodiimide chemistry to form amide linkages 

between the N-terminal region of the peptide and the free carboxylate moieties on the 

alginate backbone. The efficiency of the reaction was determined using the BCA 

Protein Assay. Control and peptide-modified alginate were loaded with 30 ng/ml 

TGF-β1 and stored in PBS at 37ºC. TGF –β1 release from experimental and control 

constructs was quantified by ELISA over 16 days  

 
 Results. Carbodiimide addition of the novel growth factor binding peptide 

proceeded at 60% efficiency, consistent with previously published reports on 

carbodiimide addition of peptides to sodium alginate. The peptide-modified alginate 

displayed different release characteristics than control alginate, delaying a burst 

release of growth factor by approximately three days.  

 

 Conclusions. Carbodiimide chemistry can reliably add a variety of growth 

factors to calcium alginate in a predictable manner. Peptide modification of alginate 
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resulted in altered release characteristics for TGF-β1. This may have been due to 

specific binding to the peptide or alterations in the properties of the alginate construct. 
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Introduction 
 

Osteoarthritis effects as many as twenty-one million people in the United 

States, and is responsible for over 50% of all hip replacements. This alone results in 

annual medical costs exceeding fifteen billion dollars1. There are over one million 

surgical procedures annually in the United States that involve the replacement of bone 

or cartilage2. Given this enormous societal cost and the debilitating nature of severe 

joint pain, medical science has striven for decades to find ways to encourage cartilage 

regeneration and repair. This work is difficult because of the inherently poor ability of 

cartilage for self repair. Because cartilage is an avascular tissue, partial thickness 

injuries that do not extend down to the level of the subchondral bone are incapable of 

spontaneous healing. Without a vascular supply, cells, growth factors and cytokines 

cannot be recruited to the site of injury to aid in repair as happens in most other 

tissues. 

 

 For severely damaged articular cartilage with debilitating joint pain the only 

currently available treatment is prosthetic joint replacement. While this does provide 

symptomatic relief, prosthetic joints have a limited life span and cannot fully replicate 

cartilage’s resistance to compression and ability to evenly distribute load3. Thus, the 

ability to repair native cartilage, or replace damaged or diseased cartilage with an 

engineered replacement would be of tremendous benefit in the treatment of joint 

disease. The tissue engineering approach to repairing cartilage acknowledges that 

tissue repair will require a space filling matrix, cells, and appropriate biologics. 
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Alginate, a copolymer of mannuronic and guluronic acids, is a hydrogel that has been 

used extensively for three dimensional chondrocyte culture, and more recently as a 

tissue engineering scaffold, effectively serving as synthetic extracellular matrix 

(ECM)4-7. A primary goal of tissue engineering is to be able to take a very small 

amount of tissue, and transform it into a much greater amount of tissue that can be 

used for therapeutic purposes. This is accomplished by liberation and expansion of 

the cells from donor tissue, followed by seeding into a polymer scaffold. The idea in 

using a scaffold is to provide an environment that essentially replaces the function of 

the ECM. Namely, it allows cells to organize in a three dimensional structure, 

provides mechanical stability, provides for localization of cells, and provides a 

hydrated space for the diffusion of nutrients and cellular metabolites8-9. 

 

 Alginate has been used for decades for the three dimensional culture of 

chondrocytes, where it has been shown to maintain the chondrocyte phenotype, which 

is lost in standard monolayer culture10-13. Alginate has been previously shown to have 

utility as a tissue engineering scaffold for fabricating chondrocyte seeded structures 

with complex geometries that have outstanding structural fidelity in in vitro culture14. 

Alginate is also intriguing as a tissue engineering scaffold for its chemical properties. 

As a hydrogel, it is subject to solution chemistry, making it easier to modify than 

rigid polymers. As a copolymer of two acids it has abundant free carboxylic acid 

moieties that are highly reactive and naturally subject to condensation reactions. This 
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makes it possible to conceive numerous peptide modifications of alginate to regulate 

such important functions as cell adhesion and growth factor delivery. 

 

 The necessity of growth factors and other biologically active molecules for 

orchestrating tissue development in tissue engineering applications has long been 

accepted. Numerous growth factors have been investigated for the engineering of 

articular cartilage, including the TGF-β superfamily, IGFs, FGFs, PDGF, EGFs, 

VEGF, and numerous others15-24. From this increasingly dizzying array, TGF-β1 

stands out for a number of reasons. TGF-β is the most studied growth factor for 

chondrogenesis, and TGF-β1 is the most abundant naturally occurring isoform in 

articular cartilage25.  TGF-β1 has consistently been shown to be a potent stimulatory 

of chondrogenic differentiation, and extracellular matrix production26-31. How best to 

deliver TGF-β to chondrocytes in tissue engineered constructs is not known. While in 

principal this can be done in a number of ways, the key element, if it is to be 

effective, is that the growth factor must be supplied in a controlled manner. 

 

 One of the major carriers of TGF-β endogenously is the homotetrameric 

glycoprotein, α2-Macroglobulin (α M). α2 2M functions as broad spectrum proteinase 

inhibitor in plasma and other extracellular spaces. It functions in this manner by 

presenting multiple peptide bonds in its so called “bait” region to proteinases. When 

these peptide bonds are cleaved by an attacking proteinase it causes a conformational 

change in the entire α2M protein, trapping the attacking proteinase32-33. Recently a 
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linear 16 amino acid sequence has been isolated from the bait region of α2M that 

appears able to bind a wide variety of growth factors, including TGF-β134. 

Modification of alginate by biochemical addition of this peptide could potentially 

allow for the controlled release of TGF-β1 from calcium alginate constructs. In the 

current study we will attempt to modify alginate by covalent addition of this TFG-β 

binding peptide, and characterize the subsequent release of TGF-β1 from this 

modified alginate compared to control alginate. 
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Methods and Materials 
 
 

Custom Peptide Synthesis . Medium viscosity alginate was purchased from 

FMC Biopolymer (Drammen Norway), and the modified TGF-β binding peptide, 

glycine, glycine, glycine, glycine, tryptophan, aspartic acid, leucine, valine, valine, 

valine, asparagine, serine, alanine, glycine, valine, alanine, glutamic acid, valine, 

glycine, valine, tyrosine, tyrosine, abbreviated as, 

GGGGWDLVVVNSAGVAEVGVYY, was purchased as a custom synthesis order 

from New England Peptide Inc. (Gardner, MA). The N-terminal GGGG sequence 

was added to the known TGF-β binding peptide as a known linking sequence used 

with alginate, and the C-Terminal YY sequence was added to aid in peptide detection 

by the BCA Protein Assay Kit. All other reagents were purchased through Sigma 

Aldrich in Irvine, CA. 

 
Fabrication of Peptide Modified Alginate . The TGF-β binding peptide 

sequence, GGGGWDLVVVNSAGVAEVGVYY, was covalently bonded to alginate 

utilizing aqueous carbodiimide chemistry as has been previously described for 

fabricating alginate gels modified with other peptide sequences33. 

Briefly, in what is essentially a protected nucleophilic acyl substitution reaction, the 

carbodiimide approach to peptide bonding was used to form amide linkages between 

the N-terminus of the binding peptide and the carboxylate moieties on the 

mannuronic acid and guluronic acid residues of the alginate backbone. Medium 

viscosity alginate (FMC Biopolymer, Drammen, Norway) was suspended in 100 mM 
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MES (2-N-Morpholino ethane sulfonic acid) buffer with 300 mM NaCl at pH 6.5 to 

make a 1% alginate solution. EDAC (l-ethyl-dimethylaminopropyl carbodiimide) and 

Sulfo-NHS ((N-hydroxy-sulfosuccinimide) were added to the alginate solution at 

molar ratios of 5% and 2.5% of the guluronate content of the alginate respectively. 

Finally, the TGF-β binding peptide was added as 49.2 mg in 1 mg/ml MES buffer. 

The reaction was allowed to proceed at room temperature for approximately 20 hours 

and then the solution was transferred to 3500 MWCO dialysis tubing in a 4 liter 

solution of ddH2O and NaCl. The dialysis bath was changed every 8 hours for three 

days, with the NaCl concentration being progressively lowered with each change. The 

peptide was dialyzed against pure water for the last 24 hours. The final contents of the 

dialysis tube was transferred to 50 ml conical tubes, frozen at -86ºC and lyophilized 

for approximately 48 hours, until dry. Unmodified alginate to be used as a control 

was processed exactly in parallel with the one exception that no peptide was added. 

The lyophilized alginates were resuspended as a 2% solution in PBS. 

 
Reaction Efficiency .  The efficiency of covalent addition of peptide addition 

to alginate was assessed using the BCA Protein Assay kit, (Pierce, Rockford, Il), 

according to the manufacturers instructions. Briefly, 25 μl of the of the peptide 

modified alginate in a 2% solution of PBS was combined with 200 μl of the BCA 

working reagent in a 96 well microplate. The plate was covered and mixed on a plate 

shaker for 30 seconds, and then incubated at 37ºC for 30 minutes.  After incubation 

the plate was cooled to room temperature and absorbance was measured at 562 nm on 

an HTS 7000+ spectrophotometer (PE Wellesley, MA). Peptide content of the 
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modified alginate was determined by linear interpolation using 2% control alginate 

with varying concentrations of peptide directly added as a standard. All samples and 

standards were analyzed in triplicate, and the results averaged. 

 
TGF-β1 Loaded Alginate Preparation . TGF-β1 (PeproTech) stock solution 

(50 μg/ml) was diluted 10:1, and 12 μl of the diluted stock solutions was combined 

with a separate 2 ml aliquot of a 2% solution of low viscosity alginate (FMC 

Biopolymer, Drammen, Norway) in PBS, making the concentration of TGF-β1 

loaded alginate, 30 ng/ml. The alginate was then combined with a sterile solution of 

CaSO4 (0.25g/ml) by thorough mixing through a sterile stopcock (David Scott, MA). 

The CaSO4 solution was used at 0.04 milliliters per milliliter of alginate. The 

alginate/TGF-β1/CaSO4 solution was then injected between two sterile glass 

electrophoresis plates with a 1 mm spacer, and allowed to gel for 30 minutes. 

Uniform alginate discs were cut from the gelled alginate with a 6mm dermal biopsy 

punch. Discs were collected and placed in an 8 well culture dish at 1.0 mg per well, 

covered with 9 mls of sterile PBS per well, sealed, and stored at 37ºC. Control 

alginate was prepared in parallel, without the addition of the TGF-β1 binding peptide.    

 
In Vitro Release Studies . The in vitro release of TGF-β1 was analyzed for 

two conditions: peptide modified and control alginate at an initial loading 

concentration of 30 ng/ml. At each time point (days 0, 0.5, 1, 1.5, 2, 3, 4, 8, 12 and 

16), the total fluid was collected for analysis, and replaced with fresh PBS. 
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Cumulative release of TGF-β1 over 16 days was determined by ELISA. Each 

condition was run in duplicate and the results averaged. 

 
 

TGF-β1 Elisa . TGF-β1 content was determined using the TGF-β1 Emax 

ImmunoAssay System (Promega, Maddison, WI), according to the manufacturer’s 

instructions. Briefly, 10 μl of the provided TGF-β1 capture antibody was combined 

with 10 mls of carbonate coating buffer (025M NaHCO , 0.025 NaCO3 3), mixed 

thoroughly, and added at 100 μl per well to a 96 well polystyrene ELISA plate 

(Corning Life Sciences, Lowell, MA). This plate was sealed and incubated statically 

at 4ºC overnight. The plate was allowed to return to room temperature, emptied, and 

270 μl of the supplied TGF-β1 blocking buffer was added to each well, statically 

incubated at 37ºC for 35 minutes, then washed once in prepared TBST wash buffer 

(20mM Tris-HCl (pH 7.6), 150mM NaCl, 0.05% Tween 20). Serial dilutions of the 

provided TGF-β1 standard was added at 100 μl per well to make a standard curve 

with a range from 0-1000 pg/ml. Samples were added at 100 μl per well, and the 

plates were incubated for 90 minutes on a plate shaker at room temperature. The 

provided anti-TGF-β1 antibody, diluted 1000:1 in the sample buffer, was added at 

100μl per well, the plate was incubated on plate shaker at room temperature for two 

hours, then washed 5 times with TBST wash buffer. TGF-β1 HRP Conjugate diluted 

1:100 was added at 100μl/well, incubated on a plate shaker for 2 hours at room 

temperature, and washed 5 times with TBST wash buffer. The provided TMB One 

Solution was added at 100 μl per well, and statically incubated at room temperature 
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for 15 minutes. The reaction was stopped by adding 1N hydrochloric acid at 100 μl 

per well. The plate was read on an HTS 7000+ spectrophotometer (Perkin-Elmer, 

Wellesley, MA) plate reader at 450 nm, and TGF-β1 was calculated by linear 

interpolation with the provided TGF-β1 standard. All samples and standards were 

analyzed in duplicate and the results averaged. 

 
 

Statistical Analysis . The results are displayed as the mean ± a standard 

deviation. Statistical difference between means at each time point was evaluated by 

an unpaired two-tailed t-test. The threshold for statistical significance was taken to be 

p < 0.05.  
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Results 
 
 

Carbodiimide Efficiency.  The efficiency of covalent peptide addition to 

alginate was determined by the BCA Protein Assay Kit and linear interpolation of 

prepared standards of alginate with known amounts of added peptide. The calculated 

efficiency of the reaction was 60%, which is consistent with prior report of the 

efficiency of the carbodiimide process using alginate and different peptides34. (Figure 

1) This consistency substantiates that hydrogel polymers, such as alginate, that are 

subject to solution chemistry and have abundant free carboxylate moieties that are 

readily and predictably modified by carbodiimide chemistry.  

 
 

TGF-β1in vitro release . The in vitro release of TGF-β1 from peptide-

modified and control alginate was determined using a commercially available TGF-

β1 ELISA kit. The releasate was analyzed at 0, 0.5, 1, 1.5, 2, 3, 4, 8, 12, and 16 days. 

The release of TGF-β1 was affected by incorporation into the peptide-modified 

alginate compared to control alginate. The release profile from the control alginate 

was notable for an early burst, with 42% of the originally loaded TGF-β1 being 

released within the first 12 hours. After this there was a fairly slow, but steady release 

of TGF-β1 of about 2 ng per day. The peptide-modified alginate also demonstrated a 

burst release pattern, but the burst was delayed until day 3. Then again, as with the 

unmodified control alginate, there was a fairly slow and steady release of TGF-β1 

through 16 days.  At the end of 16 days more than 90% of the originally loaded TGF-

β1 from both peptide-modified and control alginate had been released. The difference 
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between the mean release of TGF-β1 from peptide-modified and control alginate was 

only statistically significant (p < 0.001) through 3 days.  
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Discussion 
 

 The goal of the current study was to evaluate the efficiency of carbodiimide 

chemistry to covalently add a newly discovered growth factor binding peptide to 

sodium alginate, and to then characterize the effect that peptide had on the release of 

TGF-β1 from gelled 2% calcium alginate constructs in vitro. 

 

The carbodiimide chemistry achieved an efficiency of 60%, which is remarkably 

consistent with published results for the covalent addition of other peptides to 

alginate. For a polymer scaffold to effectively serve as a temporary synthetic ECM in 

tissue engineering applications it will have to do more than simply provide a rigid 

framework. The ability to easily and reproducibly add a wide variety of peptides to 

alginate in principal should allow it to more precisely fulfill its intended role. 

Alginate gels with attached peptides can begin to take on the regulation of cell 

adhesion and the sequestration and controlled release of growth factors and other 

biologically active molecules.  

 

The peptide-modified alginate showed different release kinetics compared to control 

alginate, principally in delaying a burst release of TGF-β1 from within the first 12 

hours, to between 48 and 72 hours. These results are encouraging, as any ability to 

control the timing and dose of growth factor delivery has enormous potential utility 

for tissue engineering applications. Further work will need to be done to fully 

characterize the system in this study. Control alginate in the next phase will use a 
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“dummy” peptide with no growth factor binding properties to establish that the 

peptide itself does not alter the alginate gel in some way as to alter release kinetics. 

The concentration of TGF-β1 and growth factor binding peptide in future studies will 

be varied in order to evaluate whether or not the reported specific binding of TGF-β1 

is retained after covalent addition to alginate, and if so, what the affinity is. With a 

known affinity, fabricating constructs with appropriate peptide density and TGF-β1 

concentration, it might be possible to control the rate of TGF-β1 release.  
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Figure 1 
 
Characterization of efficiency of carbodiimide peptide linkage to sodium alginate.  

Using standard carbodiimide chemistry 60% of the added peptide was successfully 

incorporated, via peptide linkages, to the alginate backbone.  
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Figure 2 
 
Cumulative release of TGF-β1 from peptide-modified and control alginate. All points 

represent mean ± a standard deviation. Means at all time points were compared by an 

unpaired two-tailed t-test. There was significantly more TGF-β1 released in the 

control alginate (p < 0.001) until day three. 
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Figure 3 
 
Daily release of TGF-β1 from peptide-modified and control alginate. A burst release 

of TGF-β1 can be seen at day 0.5 in the control and at day 3 in the peptide-modified 

alginate. 
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Abstract 
 
  

 Hypothesis. Histological analysis of hydropic and normal guinea pig cochleae 

was undertaken to assess potential correlation between the magnitude of 

endolymphatic hydrops and hearing loss.  We hypothesize that a greater correlation 

than previously reported may be found by looking at well developed hydrops and 

high frequency range hearing. 

 

 Background. Surgically induced endolymphatic hydrops in guinea pigs is the 

most widely used animal model for the study of human Menière’s syndrome 

(endolymphatic hydrops, tinnitus, and progressive sensorineural hearing loss). A 

strong correlation between magnitude of hydrops and severity of hearing loss has 

been reported in the human condition, but not in animal models.   

 

Methods . Nine guinea pigs were operated on to destroy the endolymphatic 

sac of the right ear, with left ears remaining as internal controls. Hearing was assessed 

from 2 kHz to 32 kHz by auditory brain stem response for 6 to 25 weeks post surgery. 

Histological morphometry post sacrifice was used to quantify both turn-specific, and 

weighted, overall hydrops These measures were correlated with hearing loss in each 

animal at all tested frequencies.  
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 Results. A statistically significant relationship between the magnitude of 

hydrops and the severity of hearing loss was found for 2 kHz and 16 kHz. These 

frequencies correlated with both turn-specific hydrops and overall hydrops.  

 

Conclusions. There may be a greater correlation between hydrops and hearing 

loss in guinea pigs with surgically induced hydrops than previously reported. This 

helps to validate the model and highlights the necessity of treatment modalities aimed 

at reducing hydrops. 
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Introduction 

 
Since its introduction by Kimura and Schuknecht in 1965, surgical induction 

of endolymphatic hydrops in the guinea pig has become the standard model for the 

study of Menière’s syndrome.1 This procedure works by blocking the resorption of 

endolymph, and has been readily adopted because it reliably produces both 

histological hydrops and hearing loss. There remain, though, issues regarding the 

model’s utility. At this time it is not clear that the characteristic vestibular symptoms 

of Menière’s syndrome are reproduced in the animal model, or even whether the basic 

physiology of hydrops production is the same as in the human condition. 

Endolymphatic hydrops is a state of excess endolymph in the scala media, so it can 

occur due to insufficient resorption of endolymph, excess production of endolymph, 

or some combination of the two. At this time it is unknown what causes hydrops in 

Menière’s syndrome, so it remains a challenge to understand how best to model the 

human condition. In contrast to the surgical model there are “over production” 

models that have been developed that like the surgical model produce both 

histological hydrops and hearing loss. These include the introduction of cholera toxin 

into the inner ear and various techniques for the induction of inner ear autoimmune 

disease.2-4 Because the mechanism of hydrops production is different in 

overproduction models than in the surgical model it is possible that the 

pathophysiology of hearing loss is also different. At this time it is still unclear 

whether one of these models better replicates the auditory and cochlear pathology 

seen in Menière’s syndrome, so it is important to continue the work of characterizing 
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all animal models as thoroughly as possible. Since surgical induction is still by far the 

most common method for producing experimental endolymphatic hydrops it is 

particularly important to characterize the pathology in this model so that its relevance 

to Menière’s syndrome can be fully appreciated.   

 

While many of the morphological changes in the hydropic cochlea have been 

described, the mechanism for hearing loss in surgically induced hydrops remains 

controversial. It has been noted that distortion of the scala media secondary to 

hydrops is associated with loss of hair cells in the upper two turns of the cochlea in 

both human Menière’s syndrome and surgically induced hydrops.5-6 Since high 

frequency hearing is ultimately affected, though, these same studies imply a poor 

relationship between hair cell loss and degree of hearing loss. In this regard the model 

fits the disease well, but does not explain the phenomenon.  

 

The chief morphological feature of Menière’s syndrome is the distention of 

Reisner’s membrane. While it is widely known that this distention does not occur 

uniformly throughout the cochlea, there remains no good explanation as to why one 

part of Reisner’s membrane might distort differently than another. It has also been 

noted that in both the human condition and the animal model hearing loss follows a 

distinctive pattern: the so called “peak audiogram”, followed finally by a uniform 

hearing loss. That is to say, hearing is lost initially in the low frequencies, then the 

high frequencies, followed lastly by the mid frequencies.7-8 Because of the tonotopic 
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tuning of the cochlea and the fact that neither hearing loss nor Reisner’s membrane 

distension occur uniformly, it is natural to question whether or not there is a 

correlation between the two phenomena. Several studies have looked for a 

quantitative relationship between the degree of hydrops that develops and the severity 

of hearing loss in the animal model, but on the whole have found little or no direct 

correlation.4, 9-10 This is important because in a very thorough study by Fraysse et al. a 

strong correlation between the magnitude of hydrops and hearing loss was established 

in a study of audiograms and archived temporal bones from patients with diagnosed 

Menière’s syndrome.11  

  

Comparisons between previous studies correlating a mathematically 

quantified measure of hydrops and hearing loss in animal models with Fraysse et al.’s 

human findings are difficult for several reasons. Researchers comparing hydrops and 

hearing loss in animals have used the guinea pig, but no studies attempting to 

quantitatively correlate hydrops and hearing loss to date have looked at any hearing 

frequencies beyond 8 kHz. Because guinea pigs can hear up to around 50 kHz, none 

of these studies has looked into the higher ranges for evidence of hearing loss (12). 

Interestingly, in Frassye et al.’s study the only area where there was not a strong 

correlation was in the low (0.25 kHz) frequency range. Hence, the possibility exists 

that animal studies that exclude the high frequency will miss a correlation between 

hearing loss and hydrops. Also, almost without exception previous studies have only 

looked at hydrops very early in its course of development. Fraysse et al. examined 
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temporal bones from patients with long-standing hydrops. For these reasons a 

thorough histological analysis of well developed surgically induced hydrops in the 

guinea pig was undertaken with an effort to fully characterize the pattern and 

magnitude of hydrops via detailed measurements and determine the correlation to 

hearing loss severity across a more representative length of the guinea pig dynamic 

range (2 kHz-32 kKz). In addition, this study is designed to better describe the 

distribution and severity of hydrops across the four turns of the guinea pig cochlea in 

order to document the relative turn specific severity of hydrops and any correlation to 

magnitude and frequency of hearing loss. 
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Methods and Materials 

 

Materials . The experiment was carried out using 9 female albino guinea pigs 

(Duncan-Hartley strain) each initially weighing 250-300 grams obtained from the 

Charles River Breeding Labs (Wilmington, MA). Guinea pigs were anesthetized by 

administration of pentobarbital (16.67mg/kg, IP), xylazine (3.46mg/kg. IM), and 

ketamine (17.28mg/kg, IM). Body temperature was maintained with an electric 

heating pad (Harvard Apparatus, Holliston, MA). All animals were treated in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the 

protocol was approved by the Animal Care Committee at the University of 

Massachusetts Medical School. 

 
Measurement of Hearing Thresholds . All hearing thresholds were obtained 

using Intelligent Hearing Systems’ Auditory Brainstem Response (ABR) system, 

version 3.6x (Intelligent Hearing Systems, Miami, Fl) A custom made sound source 

was used that is described in detail elsewhere (14). Briefly, the sound source was fit 

securely into the external auditory canal of the guinea pig. The sound source 

consisted of a Radio Shack 40-1377 ‘Super Tweeter’ high-frequency dynamic 

speaker, a brass ear bar to direct sound into the ear canal, and a coupler to attach the 

ear bar to the speaker. Subdermal needle electrodes were placed at the midline scalp 

and retroauricularly. Electrical activity was amplified 100,000 times and was filtered 

(0.1-3 kHz) with a bioamplifier. The signal was digitized by an MII signal averaging 

system and an IBM PC clone. Each response was the average of 1024 sweeps 
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presented at a rate of 19.3 Hz and was stored on the PC clone. Threshold of hearing 

was determined to plus or minus 5 dB SPL for frequencies of 2 kHz, 4kHz, 8kHz, 

16kHz, and 32kHz. Examples of audiograms are shown in FIGURES 1 and 2. 

 

 Induction of hydrops. Guinea pigs were anesthetized as described earlier and 

right-side unilateral endolymphatic hydrops was induced as described by Kimura and 

Schuknecht (1). Briefly, the endolymphatic sac and duct were entered through a 

posterior cranial fossa approach, and a small surgical drill was used to enter and 

obliterate the endolymphatic sac and duct, the remains of which were packed with 

bone wax. All right ears were operated on and all left ears were kept as internal 

controls. Post-operatively sulfonamide antibiotics and one dose of liquid Tylenol 

were included in the drinking water of all animals. 

 

Histology Processing . All animals were sacrificed between 16 and 25 weeks 

post surgery. Animals were deeply anesthetized by administration of pentobarbital 

(33.33mg/kg, IP), xylazine (6.9mg/kg. IM), and ketamine (34.57mg/kg, IM). 

Following induction of deep anesthesia, animals were transcardially perfused with 

normal saline supplemented with heparin (10 units/liter) and sodium nitrite 

(69mg/liter), followed by transcardial perfusion with 10% buffered formalin. Fully 

fixed animals were decapitated and their temporal bones dissected out en-bloc. The 

bullae were opened and the temporal bones were stored fully submerged in 10% 

buffered formalin. After all animals had been sacrificed the temporal bones were sent 
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to the University of Minnesota temporal bone lab where they were decalcified and 

embedded in celloidin. After hardening the specimens were cut into 14 µm sections 

along the mid-modiolar plane. Every 5th slide was mounted and stained with 

Hematoxylin and Eosin for histologic analysis. 

 
Histological Analysis . Quantification of hydrops requires some measure of 

the relative volume of scala media in a hydropic ear compared to a normal ear. The 

most widely used methods for making this determination involve using histological 

morphometry. Two approaches researchers have taken are to either use a ratio of the 

measured length of Reisner’s membrane in a hydropic cochlea to the straight distance 

between its normal lateral and medial attachment points,4 or to directly measure the 

scala media area.11 We chose to take scala media measurements because this more 

directly relates to scala media volume, the true measure of hydrops. 

 
Sections were photographed with a Spot Jr. digital camera (Micro Video 

Instruments, Avon MA) connected to a Nikon TE300 microscope. All image analysis 

was done with MetaView 4.0 (Universal Imaging Corporation, Downington, PA). 

Representative images are shown in FIGURES 3 and 4. Hydrops was determined by a 

modified version of a technique described by Klis et al.10 Every slide where it was 

possible to measure the area of both the scala media (SM) and the scala vestibuli (SV) 

on both sides of the modiolus was studied. In order to determine a relative measure of 

the degree of hydrops in the operated versus the control ear we first calculated a value 
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we refer to as the proportion scala media (PSM). This is simply the proportion of the 

combined SM and SV space that is made up by SM.  In formula: 

 
                                  PSM =                                         SM area SM area + SV area 

SM area  

 
We used this proportional measurement, as suggested by Klis et al. in order to 

compensate for any slight deviations in the plane of section between animals.  The 

measurements taken on each slide were summed to give a measure of the total PSM 

for each cochlear turn. We then calculated a relative measure of hydrops in the 

operated versus the control ear that we refer to as the hydropic ratio (HR). This was 

calculated for each turn by dividing each turn’s total PSM in the right ear by the total 

PSM for the same turn from the left ear.  In formula: 

          
                                   HR = 

Total left ear PSM  
Total right ear PSM  

 
A hydropic ratio of 1 for a given turn would indicate that no hydrops had developed 

in that turn. Likewise, a hydropic ratio of 3 would indicate a 3-fold increase in 

volume in the scala media of a turn in the operated ear compared to the control ear. 

This differs from the technique of Klis et al. in that they took as a measure of hydrops 

the average of 2 representative measurements from each ear. Each measurement they 

used was from the most hydropic turn from a slide that clearly showed all four turns. 

With this technique one develops an overall measure of hydrops, but not one that is 

turn specific. For guinea pig 31 in our study histology for the left ear was inadequate 

to make measurements, so in lieu of measurements from that ear we used an average 

of the area measurements from the left ears of the other eight animals. By taking 
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measurements at all turns our technique allows for generation of both a turn specific 

hydropic ratio and an overall measure of hydrops. The overall measure of hydrops 

was made by averaging all the measurements for each turn in a single animal and then 

normalizing that value to the percentage of the total length of the cochlea made up by 

that turn and then adding the weighted values for each turn. As an alternative method 

we also divided the sum of the measurements taken in the right ear by the sum of the 

measurements taken in the left ear. Because of the different number of sections in 

different turns this inherently weights the measurements. The results were 

indistinguishable.  

 
Determination of cochlear frequency position . To determine if the degree 

of hearing loss at a particular frequency was correlated with the degree of hydrops in 

the turn where that frequency is localized we needed to determine the location on the 

basilar membrane characteristic for the frequencies we tested. This information can 

be obtained from the cochlear frequency-position mapping done by Greenwood.14-15 

Greenwood developed a function that relates characteristic frequencies to a specific 

location along the basilar membrane. This function is CF=A(10ax/L-K), where A, a, 

and K are species specific constants, L is the cochlear length in millimeters, and x is 

the distance in millimeters from the apex of the cochlea. Current accepted values for 

the species specific constants for the guinea pig are: A=350, a=2.1, K=0.85, and 

L=18.5 (15). Since we were starting with known frequencies and wanted to know 

where they would be localized in the cochlea we rearranged the Greenwood function 

to calculate a characteristic location given a specific frequency. The rearranged 
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function is: X=((L)Log(CF + AK)-(L)LogA)/a). Solving for x for the frequencies we 

tested yielded the data in TABLE 1.  

 
We compared these lengths to the distances to the center of each cochlear 

turn. The distance from the base of the cochlea to the midpoint of each turn in the 

scala tympani of guinea pigs has been previously determined by Alec Salt.16 His 

measurements, though, were taken along a different line through the cochlea than 

Greenwood’s. Because of this difference Salt took the full length of the cochlea to be 

16.4 mm rather than the 18.5 mm determined by Greenwood. To compensate for this 

we converted the distance from the base reported by Salt to a percentage of the whole 

cochlear length, which we then multiplied by 18.5. This yields the distance from the 

base to the center of each turn along the basilar membrane. These data are shown in 

TALBE 2. Because the frequencies we tested did not for the most part fall precisely 

mid-turn we used these numbers as a guide to estimate which turns would be most 

involved for each frequency. These data are shown in TABLE 3. 

 
 Hearing thresholds and histological HRs were determined for nine animals. 

Hearing loss at frequencies characteristic of each cochlear turn was correlated with 

HR for each cochlear turn. Additionally a weighted overall measure of hydrops was 

correlated with hearing loss at all 5 tested frequencies. Results of the HR for each turn 

for all animals and the average HR of all animals at each turn are shown in TABLES 

4 and 5. The HR revealed that both apical and basilar turns were found to demonstrate 

the most significant deviations from normal (TABLE 5).  
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The relationship between hearing loss and HR was determined by calculating 

a correlation coefficient between these variables. This was calculated for the 

relationship between hearing loss at all tested frequencies and the HR for each 

individual turn and a weighted overall measure of hydrops. The weighted measure 

was determined by normalizing each turns HR to that turns volume percentage of the 

cochlea. The only statistically significant correlations were found for HR with 2 kHz 

and 16 kHz. These showed a statistically significant relationship to hearing loss in 

both the cochlear turn specific measurements and in the measurement of overall 

hydrops. Interestingly, though, the significant correlation found in the turn specific 

measurements did not arise in the turns most characteristic for those frequencies.    

 

Statistical data summarizing our findings for the correlation between the HR 

in each individual turn and hearing loss are shown in TABLE 6. Only statistically 

significant relationships are shown with a p value. Statistical data summarizing our 

findings for the correlation between weighted whole cochlear hydrops and hearing 

loss are shown in TABLE 7. Again, p values are only given for statistically 

significant results. FIGURES 8 and 9 show representative graphs of significant 

correlations between turn specific HRs and hearing loss and  weighted overall HRs 

and hearing loss respectively. 

 Our histological analysis provides a more thorough estimate of actual scala 

media volume than has been previously reported in animal studies utilizing 

histological techniques. To assess the efficacy of our technique we compared the 
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overall HR ratio calculated using our technique to the overall HR calculated using the 

technique of Klis et al. We then performed a correlation coefficient between the two 

HRs to see if they were statistically different. We could only do this for an overall 

measure of hydrops because Klis et al.’s method does not give turn specific data. 

Guinea pig 31 was not included in the comparison because we had inadequate 

histology in the left ear to duplicate the Klis method. The HRs are shown in TALBLE 

8 and the correlation coefficient in FIGURE 7. These results show no statistical 

difference in the determination of overall hydrops, indicating that our more thorough 

histological analysis offers no advantage in estimating the overall degree of hydrops. 

It does, though, still have the advantage of being able to provide turn specific data on 

hydrops. 
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Discussion 

 
We report for the first time a statistically significant correlation between the 

degree of hydrops and the degree of hearing loss in both low and high frequency 

ranges of guinea pigs with advanced surgically induced endolymphatic hydrops. 

Early reports of surgically induced endolymphatic hydrops as a model for Menière’s 

syndrome report the qualitative relationship between the development of hydrops and 

hearing loss, but offer no statistical analysis.17-18 In 1980 Fraysse et al. reported a 

relationship between hearing loss and a quantitative measure of hydrops from a 

retrospective temporal bone study of humans with Menière’s syndrome. They 

reported a statistically significant correlation between overall degree of hydrops and 

hearing loss at all but the lowest frequencies. Further, they also reported a statistically 

significant relationship between the degree of hydrops in each cochlear turn and the 

hearing loss at the frequency characteristic for that turn for all cochlear turns with the 

exception of posterior middle (0.25 kHz). Since that time there have been a number of 

studies that correlated electrophysiologic measures of hearing with a quantification of 

hydrops in a variety of animal models of Menière’s syndrome.  Taken as a whole this 

work has shown only a weak correlation between the degree of hydrops and the 

amount of hearing loss that develops. 

 

In 1990 Klis et al. reported a statistically significant correlation between 

overall hydrops and decrease in low frequency cochlear microphonics at 29 Hz in 

guinea pigs with surgically induced endolymphatic hydrops.  They quantified hydrops 
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using a histologic approach using two slides per animal, with the most hydropic turn 

on a particular slide taken as a measure of the overall hydrops. They also looked at 

the relationship between degree of hydrops and the summating potential at 2 kHz and 

the action potential at 8 kHz, but found no correlation. We modified their technique 

by taking a measure of hydrops in all sections, and using the aggregate values as a 

measure of turn specific hydrops. This provides a far more extensive histologic 

analysis on which to base our estimates of hydrops. 

 

Klis et al. speculate that the inconsistencies in finding a correlation may be 

due to differing electrophysiologic measures being more or less sensitive to various 

pathologies. While this may be true, it is also worth noting that hearing loss 

associated with endolymphatic hydrops follows a particular clinical course, with loss 

first developing in the lower frequencies, but ultimately progressing across the 

dynamic range. Klis et al. report on data that was pooled from animals sacrificed 2 

and 4 weeks post surgery. This is very early in the development of hydrops, so it is 

possible that a relationship between hearing loss and hydrops may have developed at 

the higher frequencies if the pathology had progressed. Also the guinea pig hearing 

range extends to about 50 kHz, so at a highest frequency of 8 kHz, Klis et al. have not 

reported on the high frequency range. 

 

 In 2000 Bouman et al. reported on the relationship between a histologically 

quantified measure of hydrops and the summating potential at 2 kHz, 4 kHz, and 8 
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kHz in guinea pigs that had hydrops induced by an autoimmune protocol (4). They 

report no statistically significant relationship at any frequency. The measure of 

hydrops they used was an average of measurements taken from the basilar and 

suprabasilar turns in two slides. The middle of the basilar turn has a characteristic 

frequency of about 16 kHz and the suprabasilar turn of about 4 kHz, but they did not 

present this data separately. It is also important to remember that one should be 

careful about comparing these results to those of animals with surgically induced 

endolymphatic hydrops. It is not clear that the pathophysiology of hearing loss will be 

the same. Of particular note is that by six weeks past inoculation the animals in this 

study no longer appear hydropic. This is in striking contrast to surgically induced 

hydrops, which continues in time with progressive hydrops. 

 

Our results show more correlation than previously reported, but still do not 

duplicate the results of Fraysse et al. Why there might be a difference at different 

frequencies remains to be explained, but it is of note that a statistically significant 

relationship was found in the high frequency range, which has previously not been 

reported on. The report by Fraysse et al. was in human temporal bones, and 

correlating the human to an animal model is fraught with difficulties. However, their 

findings of a correlation between hydrops and hearing loss magnitude are to some 

degree recapitulated now in the animal model. The reasons for this are likely 

multifactorial, and include the analysis of cases of advanced hydrops, detailed 

compilation of HR from the whole cochlea, as well as the measurement of hearing 
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changes in the high end of the guinea pig dynamic range. The explanation for why we 

found a correlation at 2000 Hz and 16,000 Hz only is speculative. It possibly relates 

to the manner in which pressure and anatomic changes impart injury or homeostatic 

changes to those particular portions of the cochlea. Whether the mechanism for 

hearing loss in hydrops is pressure related or due to direct mechanical changes 

imparted throughout the cochlea, though remains to be determined.   

 

Our own study could perhaps have given more insight into these relationships 

if we had looked at lower frequencies, or used a better electrophysiological measure, 

such as compound action potentials. Nonetheless, the finding of greater correlation 

between hydrops and hearing loss than previously reported in animal studies has 

possible significance. Beyond working toward validating the common animal model 

this data perhaps sheds some light on appropriate treatment for human patients with 

Menière’s syndrome.  If in fact there is a reasonable correlation between hearing loss 

and the severity of hydrops, regardless of what the pathophysiology might be, this 

reinforces the need to vigilantly apply treatment modalities aimed at reducing 

hydrops. 
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Figure 1: 

Representative audiogram at 16,000 Hz (right ear) from a normal hearing animal 

before surgical obliteration of the endolymphatic duct and sac. Threshold was 

estimated at 35 dB SPL. 
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Figure 2 

Representative audiogram at 16,000 Hz (right ear) 22 weeks after surgical obliteration 

of the right endolymphatic duct and sac in the guinea pig presented in Figure 1. 

Threshold was estimated at 70 dB SPL, with an overall threshold shift of 35 dB SPL.. 
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Figure 3 
 
Morphometric analysis of a control (left) ear from guinea pig 35, showing measured 

scala media and scala vestibule areas (200x).
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Figure 4 

Morphometric analysis of the operated (right) ear from guinea pig 35, showing 

measured scala media and scala vestibule areas. Note dilatation of scala media 

indicating severe hydrops (200x). 
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Frequency Distance from the apex 
2000 Hz 7.2 mm 
4000 Hz 9.6 mm 
8000 Hz 12.1 mm 
16000 Hz 14.7 mm 
32,000 Hz 17.3 mm 
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Table 1 
Tested hearing frequencies and their corresponding distance from the apex of the 
cochlea 
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Distance from the 
base measured in 
the scala tympani 

Distanced from the 
apex on the basilar 

membrane 
Percentage from 

the apex Turn 
basilar 2.1 mm 0.88 16.1 mm 

supra-basilar 7.5 mm 0.54 10.0 mm 
sub-apical 11.6 mm 0.29 5.3 mm 

apical 15.1 mm 0.07 1.3 mm 
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Table 2 
 
Conversion of distance from the base to distance from the apex, compensating for 

cochlear path. 
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Frequency Representative turn 
2,000 Hz Turn 3 or Turn 2 
4,000 Hz Turn 2 
8,000 Hz Turn 2 or Turn 1 
16,000 Hz Turn 1 or Turn 2 
32,000 Hz Turn 1 
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Table 3  
Estimated correlation between tested frequency and cochlear turn 
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animal basilar turn 
suprabasilar 

turn subapical turn apical turn 
Gp 17 3.57 2.07 2.39 1.78 
Gp 31 3.53 3.70 3.47 2.36 
Gp 33 1.09 1.04 1.31 2.29 
GP 34 1.75 1.15 1.55 2.60 
Gp 35 4.5 3.31 3.34 2.96 
Gp 36 7.36 4.53 4.32 2.29 
Gp 37 5.76 3.91 3.69 2.72 
Gp 42 1.30 0.86 0.93 1.25 
Gp 51 1.61 1.93 3.52 2.91 
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Table 4 
HR for all animals at all turns 
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turn average hydropic ratio 
Basilar 3.39 

Suprabasilar 2.50 
Subapical 2.72 

Apical 3.35 
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Table 5 
Cochlear turn versus average hydropic ratio (HR) 
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Turn Frequency R2 p 
1 2000 Hz 0.7003 0.0025<p<0.005 
1 4000 Hz 0.3293  
1 8000 Hz 0.0385  
1 16,000 Hz 0.3690  
1 32,000 Hz 0.2204  
2 2000 Hz 0.6731 0.01<p<0.020 
2 4000 Hz 0.2788  
2 8000 Hz 0.0172  
2 16,000 Hz 0.4286 0.025<p<0.05 
2 32,000 Hz 0.1555  
3 2000 Hz 0.4450 0.025<p<0.05 
3 4000 Hz 0.2535  
3 8000 Hz 0.0164  
3 16,000 Hz 0.5459 0.01<p<0.02 
3 32,000 Hz 0.154  
4 2000 Hz 0.1769  
4 4000 Hz 0.0281  
4 8000 Hz 0.0296  
4 16,000 Hz 0.0459  
4 32,000 Hz 0.00003  
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Table 6 
 
Statistical data summarizing the correlation between the HR in each individual turn 

and hearing loss at the frequencies represented at those turns. Only statistically 

significant relationships are shown with a p value. 
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Frequency R2 p 
2000 Hz 0.7433 0.005<p<0.01 
4000 Hz 0.3265  
8000 Hz 0.0293  

16,000 Hz 0.6590 0.025<p<0.05 
32,000 Hz 0.2046  
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Table 7 
 
Whole cochlea hydrops correlations with frequency. 
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Figure 5 
 
Statistically significant correlation between the HR in the basilar turn and hearing 
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Figure 6 
 
Statistically significant correlation between a weighted overall measure of HR and 

hearing loss at 2 kHz 
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Animal HR (Klis) HR (Hott) 
gp17 2.81 3.52 
gp33 1.22 2.36 
gp34 1.63 1.63 
gp35 3.84 3.40 
gp36 5.62 7.06 
gp37 4.63 8.44 
gp42 1.11 1.00 
gp51 2.18 3.70 
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Table 8  
 
Comparison of overall HR calculated by counting all possible cochlear areas (Hott)  
and 2 representative areas per ear (Klis) 
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Figure 7 
 
Correlation of  Hott HR to Klis HR, showing no statistical difference between the two 
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CHAPTER 5 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

AMINOGUANIDINE ADMINISTRATION AND HEARING 
PRESERVATION IN EXPERIMENTAL ENDOLYMPHATIC 

HYDROPS IN THE ALBINO GUINEA PIG  
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Abstract 
 
 
 Objectives/Hypothesis. The goal of the current study was to evaluate the 

pharmacologic potential of aminoguanidine, a relatively specific inhibitor of the 

inducible isoform of nitric oxide synthase (iNOS), to protect against hearing loss in 

guinea pigs with surgically induced endolymphatic hydrops, the standard animal 

model for Menière’s syndrome.  

 

 Methods. Right sided endolymphatic hydrops was surgically induced in 20 

guinea pigs. Half were administered aminoguanidine in their drinking water for 22 

weeks. Hearing thresholds were measured by auditory brainstem response (ABR) 

approximately every 2 weeks, and thresholds in treated and untreated animals were 

compared at 2 kHz, 4 kHz, 8 kHz, 16 kHz, and 32 kHz.  

 
 
 Results. Hearing was preserved in all unoperated ears and declined in all 

operated ears, though this was not statistically significant at 4 kHz and 8 kHz in the 

aminoguanidine treated group. Overall there was a statistically significant 

preservation of hearing in the treated verse the control group at all tested frequencies 

by 16 weeks.  

 

 Conclusions. Aminoguanidine appears to provide a neuroprotective effect in 

the hydropic cochlea that prevents hearing loss in animals with surgically induced 
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endolymphatic hydrops. These results are encouraging, and merit additional study to 

investigate the possibility of a hearing protective therapeutic intervention in humans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 159

Introduction 
 
 

 Menière’s syndrome is a disorder that is characterized by idiopathic 

endolymphatic hydrops, with associated progressive sensorineural hearing loss and 

periodic tinnitus and vertigo. The reported incidence of Menière’s syndrome in 

Europe and the United states has ranged from 7.5-157 per 100,0001-2. Menière’s 

syndrome most commonly presents in patients 40-60 years of age with a slight 

increased incidence in women compared to men3. It typically presents initially with 

symptoms affecting a single ear, but can progress to involve the contralateral ear as 

well. Reports of the frequency of progression to the contralateral ear have varied 

widely, ranging from 2-78%4. It has been proposed that this unusually large range is 

probably related to differing diagnostic criteria and length of follow up, with the true 

value being closer to the higher end of the range5.   

 

 Endolymphatic hydrops, somewhat analogous to edema of the inner ear, is a 

condition characterized by expansion of the scala media by excess endolymph. In 

principal this can be due to either an overproduction of endolymph or a lack of 

resorption of endolymph. However, it is not currently known whether overproduction, 

insufficient resorption, or a combination of these mechanisms is responsible for the 

findings in Menière’s syndrome7. Further, while there is a well established 

association between endolymphatic hydrops and the clinical symptoms of Menière’s 

syndrome, the mechanism by which this occurs is still a matter of speculation. The 
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continued lack of understanding of the pathogenesis of Menière’s syndrome is in part 

due to a lack of understanding the basic mechanisms involved, but also, I suspect, 

reflects that the pathogenesis of the ubiquitous endolymphatic hydrops is likely 

multifactorial. 

 

 Recent studies have demonstrated a selective destruction of type II ganglion 

cells in the cochlea of guinea pigs with surgically induced endolymphatic hydrops, 

with a nearly complete sparing type I ganglion cells8. Exactly why this occurs is 

unknown, but one reasonable speculation is that because of their different anatomic 

associations type II ganglion cells are more susceptible to neurotoxic damage. While 

Type 1 ganglion cells are completely enveloped by the afferent nerve ending of the 

calyx, type II ganglion cells are bathed in perilymph at their basal and lateral surfaces, 

and thus are far more vulnerable to neurotoxic damage from the surrounding 

environment. It has also been reported that the inducible isoform of nitric oxide 

synthase (iNOS) is found in high levels in the hydropic cochlea, but not in the normal 

cochlea9-10. We postulate that excessive nitric oxide may be the neurotoxic culprit 

responsible for much of the damage in the hydropic cochlea. To test this theory we 

administered aminoguanidine, a relatively specific inhibitor if iNOS11-13, to a cohort 

of guinea pigs with surgically induced endolymphatic hydrops. In this animal model 

of Menière’s syndrome there is a characteristic sensorineural hearing loss that takes 

place. We hypothesize that if nitric oxide is indeed part of the pathology leading to 

hearing loss in Menière’s syndrome, then inhibiting the formation of nitric oxide 
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should be protective against hearing loss, even in the presence of hydrops. To test this 

theory we used auditory brain stem response (ABR) to monitor hearing thresholds 

along a range of frequencies in aminoguanidine treated guinea pigs with surgically 

induced endolymphatic hydrops, the standard animal model for Menière’s syndrome. 

To date we are not aware of any studies demonstrating pharmacological hearing 

protection in Menière’s syndrome. 
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Methods and Materials 

 

 Materials. The study was carried out using 20 albino guinea pigs (Duncan 

Hartley strain) each initially weighing 250-300 grams. All guinea pigs obtained from 

the Charles River Breeding Labs (Wilmington, MA). Prior to hearing tests, guinea 

pigs were anesthetized by administration of pentobarbital (16.67mg/kg, IP), xylazine 

(3.46mg/kg. IM), and ketamine (17.28mg/kg, IM). Body temperature was maintained 

with an electric heating pad (Harvard Apparatus, Holliston, MA). Aminoguanidine 

was purchased from Sigma Aldrich (Irvine, Ca). All animals were treated in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the 

protocol was approved by the Animal Care Committee at the University of 

Massachusetts Medical School. 

 

Induction of hydrops . Guinea pigs were anesthetized as described earlier and 

right-side unilateral endolymphatic hydrops was induced in the usual manner as 

described by Kimura and Schuknecht14. Briefly, the endolymphatic sac and duct were 

entered through a posterior cranial fossa approach, and a small surgical drill was used 

to enter and obliterate the endolymphatic sac and duct, the remains of which were 

packed with bone wax. All right ears were operated on and all left ears were kept as 

internal controls. Post-operatively sulfonamide antibiotics and one dose of liquid 

Tylenol were included in the drinking water of all animals. 
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Hearing Tests . All hearing thresholds were obtained using Intelligent Hearing 

Systems’ Auditory Brainstem Response (ABR) system, version 3.6x (Intelligent 

Hearing Systems, Miami, Fl). Sound was introduced through a custom made sound 

source described in detail elsewhere15. Briefly, the sound source, which consisted of a 

Radio Shack 40-1377 ‘Super Tweeter’ high-frequency dynamic speaker, a brass ear 

bar to direct sound into the ear canal, and a coupler to attach the ear bar to the 

speaker, was fit securely into the external auditory canal of the guinea pig. Grass 

subdermal needle electrodes were placed at the midline scalp and retroauricularly. 

Electrical activity was amplified 100,000 times and was filtered (0.1-3 kHz) with a 

bioamplifier. The signal was digitized by an MII signal averaging system and an IBM 

PC clone. Each response was the average of 1024 sweeps presented at a rate of 19.3 

Hz and was stored on the PC clone. Threshold of hearing was determined to plus or 

minus 5 dB SPL for frequencies of 2 kHz, 4kHz, 8kHz, 16kHz, and 32kHz. 

 
Aminoguanidine Administration . Twenty female guinea pigs were operated 

on to surgically induce right-sided unilateral endolymphatic hydrops. Ten of these 

animals were treated with aminoguanidine in their drinking water for twenty-two 

weeks. The remaining ten animals were left as untreated controls. The 

aminoguanidine in the drinking water was added at 2.0 grams per liter, and the 

animals were allowed free access to the water. All animals were caged individually, 

and hearing tests in both ears on all animals were performed approximately every 2 

weeks.   
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Statistical Analysis . Difference in mean hearing thresholds between 

experimental and control groups for each measured frequency at each time point was 

analyzed by one way analysis of variance (ANOVA) with Tukey post hoc multiple 

comparisons. 

 

 Statistical significance between mean starting and ending hearing thresholds 

in treated and control animals in both ears was determined by paired sample t test.  
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Results 
 
 

Aminoguanidine Tolerance . All animals appeared to tolerate 

aminoguanidine well, without obvious ill effect. After 22 weeks there was no 

significant difference in weights between the treated and untreated animals (Figure 1). 

This is consistent with previous reports of the use of aminoguanidine in experimental 

animals in which there have been no reported effects on weight, renal, or 

cardiovascular health.13, 16-17

 
 

Hearing Thresholds . Hearing thresholds for all animals were determined at 

2kHz, 4kHz, 8kHz, 16kHz, and 32kHz from start to twenty-two weeks. Hearing was 

unaltered over time in all unoperated ears (Figures 2-3). Hearing thresholds increased 

in all operated ears (Figure 4-5), though this did not reach statistical significance at 4 

kHz and 8 kHz in aminoguanidine treated animals. There was a statistically 

significant prevention of hearing loss in the operated ears of treated verse control 

animals at all frequencies by 16 weeks (Figures 6-10).   
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Discussion 
 
 
 Excessive production of nitric oxide related to increased levels of iNOS has 

been shown to be cytotoxic in many tissues and neurotoxic in the central nervous 

system18. We have hypothesized that the characteristic sensorineural hearing loss seen 

in Menière’s syndrome may be related to a neurotoxic injury from elevated levels of 

nitric oxide in the inner ear. The goal of the current study was to evaluate the 

potential of aminoguanidine, a relatively specific iNOS inhibitor, as a pharmacologic 

neuroprotective agent for the preservation of hearing in albino guinea pigs with 

surgically induced endolymphatic hydrops, the standard animal model for Menière’s 

syndrome.  

 

 In the current study the aminoguanidine treated animals had statistically 

significant protection against hearing loss. We interpret these results to indicate that 

neuroprotection by pharmacological inhibition of iNOS was partially protective 

against hearing loss in the standard animal model of Menière’s syndrome.  

 

 There are some limitations of this study that will need to be addressed in 

future work. The amount of treated water consumed by guinea pigs was not 

measured, leaving it unclear how much aminoguanidine was administered. Further 

study in this area should attempt to quantify a dose response. Also, it will be 

important to look for histologic and immunohistochemical correlations to hearing 

protection in the cochlea of treated animals to help substantiate the mechanism by 
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which aminoguanidine is protective. Ultimately, if these promising results continue, 

this work may suggest a possible therapeutic treatment for humans. While it is 

premature to consider human trials with aminoguanidine for hearing preservation in 

Menière’s syndrome, it is worth noting that the hurdle to beginning human trials is 

not as onerous as it might be, as aminoguanidine has already been used in FDA 

approved human studies19.  
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Guinea Pig Weights (mean ± sd) 
Treated Initial 273 grams ± 28 grams 
Treated Final 1027 grams ± 128 grams 
Control Initial 285 grams ± 18 grams 
Control Final 1018 grams ± 115 grams 
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Figure 1 
 
Beginning and ending mean guinea pig weights in grams ± sd.  
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Mean Difference in Starting and Ending Hearing  

Thresholds in Untreated Animals in Non-Hydropic Ears 
Frequency Initial (dB SPL) Final (dB SPL) Difference (dB SPL)  

***2 kHz 35.4 ± 3.1 37.1 ± 2.3 +1.9 
***4 kHz 36.2 ± 2.1 35.1 ± 4.2 - 0.9 
***8 kHz 18.7 ± 4.2 20.3 ± 3.3 +1.6 
***16 kHz 20.1 ± 5.2 18. 1± 4.5 -2.0 
***32 kHz 21.6 ± 4.4 25. 3 ± 5.3 +3.7 
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Figure 2 
 
Difference between initial and final mean hearing thresholds in the unoperated, 

control ear of untreated animals. *** signifies lack of statistical significance, with 

p>0.05.  
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Mean Difference in Starting and Ending Hearing  

Thresholds in Treated Animals in Non-Hydropic Ears 
Frequency Initial (dB SPL) Final (dB SPL) Difference (dB SPL)  

***2 kHz 33.4 ± 3.9 35.1 ± 4.1 +1.7 
***4 kHz 31.2 ± 9.4 36.3 ± 6.2 +5.1 
***8 kHz 20.2 ± 3.7 16.4 ± 5.0 -3.8 
***16 kHz 16.0 ± 8.3 19. 3± 5.1 +3.3 
***32 kHz 20.9 ± 4.4 23. 1 ± 7.1 +2.2 
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Figure 3 
 
Difference between initial and final mean hearing thresholds in the unoperated, 

control ear of treated animals. *** signifies lack of statistical significance, with 

p>0.05.
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Mean Difference in Starting and Ending Hearing  
Thresholds in Untreated Animals in Hydropic Ears 

Frequency Initial (dB SPL) Final (dB SPL) Difference (dB SPL)  
2 kHz 38.8 ± 3.8 61.3 ± 2.3 +21.5 p<0.01 
4 kHz 35.6 ± 3.2 57.5 ± 4.2 +21.9 p<0.01 
8 kHz 16.3 ± 4.4 42.5 ± 3.3 +26.2 p<0.01 
16 kHz 18.8 ± 4.5 52.5 ± 8.2 +33.7 p<0.01 
32 kHz 20.6 ± 5.6 45.0 ± 4.5 +24.4 p<0.01 
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Figure 4 
 
Difference between initial and final mean hearing thresholds in the operated ear of 

untreated animals. 
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Mean Difference in Starting and Ending Hearing  
Thresholds in treated Animals in Hydropic Ears 

Frequency Initial (dB SPL) Final (dB SPL) Difference (dB SPL)  
2 kHz 37.5 ± 3.3 45.0 ± 6.3 +7.5 p<0.05 
4 kHz 36.9 ± 3.7 42.5 ± 5.3 +5.6 *** 
8 kHz 19.6 ± 7.5 24.4 ± 6.1 +4.8 *** 
16 kHz 20.5 ± 4.9 32.5 ± 6.9 +12 p<0.05 
32 kHz 23.8 ± 3.3 31.3 ± 2.1 +7.5 p<0.05 
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Figure 5 
 
Difference between initial and final mean hearing thresholds in the operated ear of 

treated animals. *** signifies lack of statistical significance, with p>0.05. 
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Figure 6 
 
Mean hearing thresholds at 2 kHz in aminoguanidine (AG) treated and untreated 

controls (CT). The difference between the means was statistically significant from 16 

weeks on (p < 0.05). 
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Average Thresholds at 4 kHz
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Figure 7 
 
Mean hearing thresholds at 4 kHz in aminoguanidine (AG) treated and untreated 

controls (CT). The difference between the means was statistically significant from 16 

weeks on (p < 0.05). 
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Average Thresholds at 8 kHz
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Figure 8 
 
 
Mean hearing thresholds at 8 kHz in aminoguanidine (AG) treated and untreated 

controls (CT). The difference between the means was statistically significant from 16 

weeks on (p < 0.05). 
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Average Thresholds at 16 kHz
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Figure 9 
 
Mean hearing thresholds at 16 kHz in aminoguanidine (AG) treated and untreated 

controls (CT). The difference between the means was statistically significant from 16 

weeks on (p < 0.05). 
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Average Thresholds at 32 kHz
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Figure 10 
 
Mean hearing thresholds at 32 kHz in aminoguanidine (AG) treated and untreated 

controls (CT). The difference between the means was statistically significant from 16 

weeks on (p < 0.05). 
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Discussion 

  

 The goals of the cartilage tissue engineering research presented here were 

three-fold: first, to establish the chondrogenic potential of adult human nasal septal 

chondrocytes; second, to demonstrate the formation of small calcium alginate 

constructs in complex geometries with high dimensional tolerances utilizing 

computer-aided design and an injection molding process; and finally, to establish that 

calcium alginate can be reliably modified by the efficient covalent addition of 

peptides, and that by adding a TGF-β binding peptide we could alter the release 

characteristics of pre-loaded TGF-β1 from a molded alginate gel.  

 

 The data presented in this thesis are encouraging with regards to all the stated 

goals. As such, the work of this thesis helps to highlight the exciting potential of 

cartilage tissue engineering. We have shown that adult human nasal septal 

chondrocytes have substantial chondrogenic potential when grown within an alginate 

scaffold.  We have shown that alginate is a versatile polymer for cartilage tissue 

engineering purposes, amenable to both precise shaping and modification by covalent 

addition of peptides, which, in principle, could serve any number of biologically 

important functions.  

 

 Even in light of these encouraging results, though, perhaps this work should 

also serve as a somewhat sober reminder that the field of tissue engineering is still in 
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its infancy. While the work presented here is encouraging, it is by no means 

definitive. Truly definitive work in cartilage tissue engineering should not only 

demonstrate a clinically useful method for engineering a replacement cartilage 

indistinguishable from healthy native cartilage, but should also show that the 

engineered cartilage performs in humans like healthy native cartilage for many years.  

 

 Our results are indeed encouraging, but they stem from looking at one cell 

source with one scaffold in one set of growth conditions. Seen in the context of the 

veritable panoply of well studied scaffolds, numerous cell sources, and abundant 

culture conditions, it is not possible to know how our results would compare to the 

innumerable rich opportunities that remain uninvestigated. This is part of both the 

excitement and the frustration of working in an emerging field.  

  

 A critical appraisal of the tissue engineering literature reveals the existence of 

many novel and promising biologically-based approaches for the induction of 

articular cartilage repair, the vast majority of which are still at an experimental phase 

of development. There are, however, no prospective, double-blinded clinical trials 

showing the efficacy of cartilage tissue engineering. The tissue engineering 

approaches to articular cartilage repair thus far pursued have been principally of an 

empirical nature and still very much at an experimental stage of development. From a 

clinical standpoint, where only definitive solutions count, results achieved to date are 

far from satisfactory with respect to repair tissue quality and durability. Success in the 
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future depends upon our now following a rational, rigorous approach to the problem, 

based on biological principles at the molecular, cellular and physiological levels.  

  

 Although it has been suggested many times that the problems of tissue 

engineering should be thought of as a recapitulation of embryological differentiation, 

this is probably not a particularly good idea.1-3 Both the cellular microenvironments 

and tissue macroenvironments encountered in adult organisms are fundamentally 

different from those encountered in embryological environments. Apart from the 

signaling molecules, which are most probably the same, every other component is 

different, including the existence of an active immune system in fully-developed 

organisms. Thus, while the control available with in vitro systems is appealing, the 

attempt to engineer complete constructs, consisting of a matrix, cells, and bioactive 

signaling molecules in vitro, with the thought that terminal differentiation will occur 

after in situ implantation, may be overly optimistic, especially when we consider the 

mammalian body’s own limited tissue engineering capacity, as exemplified by scar 

formation.  

 

 Future tissue engineering studies will need to tackle an often overlooked 

issue; namely, tissue integration. A tissue engineered construct must be accepted by, 

and become integrated with, tissue neighboring its destined site without triggering the 

immunological responses that would result in its resorption. Following resorption, it 

would inevitably be replaced by a scar-like or fiber-rich tissue bearing little 
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resemblance to the articular cartilage we all aspire to make. If the engineered 

constructs are reabsorbed and exchanged following their implantation, then the great 

pains we have gone to in order to created the conditions conducive to cartilage 

development and growth will be in vain. Additionally, as we move forward in the 

next generation of cartilage tissue engineering experiments we will need to pay more 

attention to recreation of the zonal organization in native collagen. To date 

engineered cartilage has been homogeneous, but if an engineered construct is to fill a 

full thickness defect, or even replace an entire articular surface it should be 

engineered to replicate the zonal architecture in native cartilage. This will require 

continued enhancement of our understanding of the differing molecular biology and 

gene expression of chondrocytes in different cartilage zones.  

 

 Part of the great challenge in moving forward in tissue engineering is the 

incredible complexity that arises when considering that a successful application will 

need to consider appropriate use of cells, polymers, and growth factors. Each of these 

individually is legitimately an enormous puzzle. When one starts to consider 

combining these issues, the magnitude of the problem increases exponentially. 

Certainly, the same matrix may not be appropriate for use with all tissues, and of 

course, different cell types may behave differently in different matrices. Best results 

may be achieved with three or more matrices in a single construct, but the more we 

start combining elements the more difficult a rigorous analysis becomes.  
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 The potential and promise of tissue engineering to change the face of 

medicine is enormous. After all, in its ideal form it promises nothing less than the 

replacement of damaged or unhealthy tissue with a replacement, indistinguishable 

from healthy native tissue. Do you have osteoarthritis? Stop taking 

antiinflammatories, we will make you new, healthy, gleaming articular cartilage, like 

you had in your youth. Do you have hepatic cirrhosis? No need to wait for a 

transplant, we can make you a new liver. Do you have diabetes? Close the dialysis 

centers, we can make you new kidneys. Let’s face it, to the degree that science can be 

sexy, this is awfully sexy stuff.  

 

 Given its revolutionary potential, it should come as no surprise that tissue 

engineering makes good press. When I was working on my thesis research, I 

appeared on the evening news (in the background) for ABC, CBS, NBC, the BBC, 

and the Discovery Channel. For the year 2000 change of the millennium edition, 

Time Magazine predicted “tissue engineer” as the number one occupation for the 

twenty first century. There was a period of time when the work of our lab was so 

often in the news when people in pain and need would contact the lab on a nearly 

daily basis, asking if we could help. They would volunteer to have new tissues 

implanted, without really understanding what we were doing. From the evening news, 

to the popular press, to the general public, tissue engineering has captured our 

imagination. 
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 For those who work in this field, though, we must always remember that the 

devil is in the details, and we must remain cautious, and skeptical. The project that 

truly caught the attention of the world was the work of Vacanti et al in which an 

engineered cartilage human ear was grown on the back of an athymic mouse.4 The 

press coverage was enormous, and forever changed the public perception of tissue 

engineering in medicine. And it probably does not even bear saying, but the public, 

whether they supported or decried the work, did not really understand what was done. 

This project like much of the work of tissue engineering was proof of principal. It 

demonstrated in broad strokes what the future might hold. As the field has continued 

to grow the real, slow, incremental work of advancing this new science has begun. 

And the truth is that from a basic science standpoint we are at the very beginning of 

understanding how a new tissue might be engineered. What is the best matrix to use? 

What is the best cell source to use? How should growth factors be delivered? Should 

we use gene therapy or encapsulate the needed growth factors in a polymer scaffold? 

Many researchers around the world, certainly more than ever before in history, are 

working toward answering these questions, but still it would be terribly premature to 

claim sure answers. No one has yet cured diabetes, osteoarthritis, or any other ailment 

by applying engineered tissues, so for some the blush of tissue engineering has begun 

to fade. In my opinion, this perception is really for the best. Too much publicity is not 

necessarily a good thing. 
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 Tissue engineering is a field still in its infancy, and perhaps it is having some 

growing pains. Much of the work to date has painted with a broad brush. It has been 

empirical in nature, and largely about proof of principal. As the field is now maturing 

the time has come to get down to the detailed work of molecular biology, physiology, 

engineering, and gene therapy. It is time to begin the slow process of answering the 

detailed questions that will allow for the incremental progress of science, and I 

believe that is what we are now seeing in tissue engineering. Certainly the promise of 

tissue engineering will always fire the imagination of those who work in this field, 

but on a daily basis the question should not be “when can we make a tissue that 

serves all the functions of native tissue?”, but rather “what gene is being expressed?”, 

“how can I make this matrix stiffer?”, “what is the Kd of this ligand”. It is through the 

rigorous application of science to an endless number of small detailed questions that 

we will ultimately pool the data to answer the big picture questions that have 

captivated so many. 

 

 Tissue engineering has also begun to come up against the harsh realities of 

clinical medicine. This science is part of medical science, which is to say that the 

ultimate goal must be to produce useful products to improve human health. In some 

cases this calls into question the value of the project as a whole. While there is 

something aesthetically and intellectually appealing about creating, de novo, a new 

articular surface for a knee devastated by osteoarthritis, to make this a realistic project 

we also need to show that it is the best treatment we can offer. Meaning, if we can 
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make an artificial knee that provides relief from pain and adequate mobility, do we 

really need to be making new cartilage? As a reality check, we should recognize that 

making replacement tissues will almost certainly be substantially more expensive 

than making synthetic replacements. Making tissues requires the use of cells and 

bioactive molecules, which by necessity requires manufacturing in a sterile 

environment. Medical devices, on the other hand, containing no biological elements, 

are manufactured in a clean environment and the final product is subsequently 

sterilized. This difference in processing alone can increase costs by an order of 

magnitude.5 Add to this the complexity and cost of using living cells and large 

quantities of growth factors, and it is clear that any tissue engineered product will 

need to be clearly superior to any synthetic product to have any hope of becoming 

part of mainstream medical practice.  

 

 At this time, the existence of so many new and encouraging biological 

approaches to cartilage repair still justifies the future investment of time and money 

in this research area, particularly given the extremely high socio-economic 

importance of therapeutic strategies in the prevention and treatment of common joint 

diseases. Reaching the stage where we are ready for clinical trials, even for very small 

applications, will have to come in the not too distant future in order to continue the 

scientific appraisal of current therapies and future novel approaches.   
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 One of my own projects, the tissue engineered tympanic membrane patch, was 

funded for initial animal testing by the world’s largest ENT company, Gyrus ENT. 

The results were good, excellent in fact, but in the end the project stalled, as so many 

others of its kind recently have, as the reality of the difficulty and cost of production 

became clearer. Still, I remain enthusiastic about tissue engineering. For the benefit of 

the field, though, I believe it is high time that we take tissue engineering off the 

evening news and leave it in the lab where it belongs. It is only there that the slow 

incremental work of science can happen. And slowly, as the small contributions from 

many labs around the world enter the scientific arena, we will begin to uncover 

answers. Will we every truly be able to make new cartilage, a new liver, or any other 

tissue one can imagine? Maybe, but truthfully, I think it is time we stopped asking 

that question, if only for a short time. That question belongs to the era when tissue 

engineering was a grand idea, the era when simple experiments fired the imagination 

with amazing possibilities. I believe that time has passed. Tissue engineering is still a 

new field, but now it is maturing, it is growing up. The work is worth doing. It is 

valid science, and its researchers are doing their small part to increase knowledge. 

And as with all such endeavors it is unclear where our work will ultimately lead until 

we arrive. After all, the role of serendipity in good science, from the work of 

Alexander Flemming to the work of Craig Mello, cannot be overlooked. Pursing 

tissue engineering with detail minded, rigorous science will produce interesting and 

valuable results. We will learn about principles of molecular biology, and the detailed 

nature of many tissues. And perhaps, one day, we really will replace our old tissues 
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like we replace our old car parts. The field of tissue engineering is just getting started, 

just finding its feet. And I for one look forward to seeing how this story unfolds.    
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