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Abstract  

Evolution is the single cohesive logical framework in which all biological 

processes may exist simultaneously. Incremental changes in phenotype over 

imperceptibly large timescales have given rise to the enormous diversity of life we 

witness on earth both presently and through the natural record. The basic unit of 

evolution is mutation, and by perturbing biological processes, mutations may alter the 

fitness of an individual. However, the fitness effect of a mutation is difficult to infer from 

historical record, and complex to obtain experimentally in an efficient and accurate 

manner. 

 

We have recently developed a high throughput method to iteratively mutagenize 

regions of essential genes in yeast and subsequently analyze individual mutant fitness 

termed Exceedingly Methodical and Parallel Investigation of Randomized Individual 

Codons (EMPIRIC). Utilizing this technique as exemplified in Chapters II and III, it is 

possible to determine the fitness effects of all possible point mutations in parallel through 

growth competition followed by a high throughput sequencing readout. We have 

employed this technique to determine the distribution of fitness effects in a nine amino 

acid region of the Hsp90 gene of S. cerevisiae under elevated temperature, and found the 

bimodal distribution of fitness effects to be remarkably consistent with near-neutral 

theory. Comparing the measured fitness effects of mutants to the natural record, 

phylogenetic alignments appear to be a poor predictor of experimental fitness. 
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In Chapter IV, to further interrogate the properties of this region, library 

competition under conditions of elevated temperature and salinity were performed to 

study the potential of protein adaptation. Strikingly, whereas both optimal and elevated 

temperatures produced no statistically significant beneficial mutations, under conditions 

of elevated salinity, adaptive mutations appear with fitness advantages up to 8% greater 

than wild type. Of particular interest, mutations conferring fitness benefits under 

conditions of elevated salinity almost always experience a fitness defect in other 

experimental conditions, indicating these mutations are environmentally specialized. 

Applying the experimental fitness measurements to long standing theoretical predictions 

of adaptation, our results are remarkably consistent with Fisher’s Geometric Model of 

protein evolution.  

 

Epistasis between mutations can have profound effects on evolutionary 

trajectories. Although the importance of epistasis has been realized since the early 1900s, 

the interdependence of mutations is difficult to study in vivo due to the stochastic and 

constant nature of background mutations. In Chapter V, utilizing the EMPIRIC 

methodology allows us to study the distribution of fitness effects in the context of mutant 

genetic backgrounds with minimal influence from unintended background mutations. By 

analyzing intragenic epistatic interactions, we uncovered a complex interplay between 

solvent shielded structural residues and solvent exposed hydrophobic surface in the 

amino acid 582-590 region of Hsp90. Additionally, negative epistasis appears to be 

negatively correlated with mutational promiscuity while additive interactions are 
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positively correlated, indicating potential avenues for proteins to navigate fitness 

‘valleys’. 

 

In summary, the work presented in this dissertation is focused on applying 

experimental context to the theory-rich field of evolutionary biology. The development 

and implementation of a novel methodology for the rapid and accurate assessment of 

organismal fitness has allowed us to address some of the most basic processes of 

evolution including adaptation and protein expression level. Through the work presented 

here and by investigators across the world, the application of experimental data to 

evolutionary theory has the potential to improve drug design and human health in 

general, as well as allow for predictive medicine in the coming era of personalized 

medicine. 
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Forward: From Darwin to DNA 

 

Evolution by means of natural selection is the single cohesive logical framework 

in which all biological processes may exist simultaneously. From the original abiogenic 

event giving rise to life as we understand it, to the most complex and highly regulated 

signaling pathway, selection for the most fit species (chemical or biological) is central. It 

seems peculiar then that the outline and rationale of such a basic concept underlying life 

itself would have relatively little concrete mechanistic detail. Although the earliest traces 

of evolutionary thought can be attributed to the Greeks1, Romans2, and Chinese3; it was 

not until the 19th century that Charles Darwin, Alfred Wallace, and Thomas Henry 

Huxley fundamentally shifted observations away from supernatural intervention and 

towards the thesis of gradual improvement of species over immense time scales. The 

immeasurably important work “The Origin of Species”, synthesized from Charles 

Darwin’s time in the Galapagos4, and the letters of Alfred Wallace, generated during and 

after his observations in the Amazon River Basin and Malay Archipelago5, formed the 

genesis of what we know today as evolutionary biology. 

 

The earliest delineations of the process of evolution posit that organisms subject 

to the selective pressures of life (scarceness of resources, predation, abiotic stress, etc…) 

will change in incremental steps over numerous generations to adapt to these selective 

pressures4, 5. The result of natural selection, therefore, is the fittest individuals 

experiencing greater reproductive success and survivability, while less fit individuals are 
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less reproductively successful leading to eventual extinction. This method of describing 

the mutability of species is not only groundbreaking by its own accord, but astonishing 

considering the heritability of traits through the central dogma of molecular biology was 

not known until nearly a century later.  

 

From the publication of “The Origin of Species” until the turn of the 20th century, 

little progress was made in the field as Darwin’s theory was still controversial and the 

debate remained highly contentious. However, in 1900 Hugo de Vries, Carl Correns, and 

Erich von Tschermak rediscovered the work of the Augustinian friar and botanist Gregor 

Mendel regarding the inheritance of phenotypic traits in the pea plant (Pisum sativum)6-8 . 

Mendel’s work, originally performed between 1856 and 1863, addressed the inheritance 

of several phenotypic traits in the pea plant, and showed that inheritance was a 

reproducibly discrete phenomenon with statistically predictive powers instead of the 

widely held belief that inheritance was an average of parental traits (blending 

inheritance)9. American geneticist William E. Castle was the earliest biologist to 

recognize the importance of synthesizing Mendelian genetics with Darwinian selection, 

and among other achievements, Castle was able to show selection in mice could be based 

on small variations10. Combining Mendel’s work within the framework of natural 

selection, the field of evolution began to move towards a more encompassing theory of 

inheritance within populations, or what is now known as the field of population genetics. 
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The early 1900’s gave rise to some of the most influential evolutionary biologists 

of the 20th century including R. A. Fisher and Sewall Wright. The goal of these 

investigators was to combine the ideas presented by both Darwin and Mendel into a 

quantitative scaffold in order to make statistical inferences into the inherited 

characteristics of populations. The first addition to the modern synthesis movement was 

by R.A. Fisher in 1918 titled ‘The correlation between relatives on the supposition of 

Mendelian inheritance’11. The most striking conclusion of Fisher’s work was that his 

model could explain the continuous variation (more simply, the probability distribution) 

of traits in a population by invoking Mendelian inheritance of these traits as discrete units 

(which we now know as genes). During this time, Sewall Wright (a student of William E. 

Castle) was attempting to apply the same logic to a different set of assumptions based on 

natural observation.  

 

In 1930 and 1932 Fisher and Sewall respectively published their culminating 

works merging the ideas of Mendelian inheritance and Darwinian natural selection. In 

Fisher’s compendium, ‘The Genetical Theory of Natural Selection’, he was able to 

illustrate that the ideas of both Darwin and Mendel were not only compatible, but 

occurred at a predictable tempo12. Perhaps most relevant to the work described in this 

dissertation is Fisher’s explanation of adaptive evolution whereby a population with a 

given (high) fitness and distance from an optimal fitness can be thought of as a point in 

multidimensional space (hitherto referred to as Fisher’s Geometric Model or FGM). From 

the current fitness ‘point’, vectors (mutations) are generated in random directions and 
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with random magnitudes from the optimum. Vectors which bring the current phenotype 

closer to the optimum are considered adaptive, whereas vectors increasing distance from 

the optimum are deleterious. To come to these conclusions, Fisher assumed genetic 

interactions were additive in nature and species under his model were of relatively high 

fitness13.  

 

Meanwhile Sewall Wright had come to a similar but distinct conclusion about the 

basis of population inheritance and adaptation in what he termed an ‘adaptive landscape’ 

in “The roles of mutation, inbreeding, crossbreeding and selection in evolution"14. 

However, Wright worked under a distinctly different set of assumptions including 

pervasive genetic interaction, as well as low fitness populations attempting to ascend 

fitness peaks13. The adaptive landscape model places populations not in multidimensional 

space, but on a topographical surface of fitness hills and valleys. Through processes of 

fitness changes generated by mutation, populations could navigate the local fitness terrain 

from high fitness hills to lower fitness valleys and, in turn, allow for adaptive mutations 

to push populations back up to higher fitness14.  

 

Where Fisher and Wright had made phenomenal leaps in the understanding of 

genetic behavior within populations at the mathematical level, the next generation of 

evolutionary biologists including Theodosius Dobzhansky, Edmund Ford, and Ernst 

Mayr differed from their predecessors by realizing population genetic theory was not 

always consistent with natural observations15-17. Studies during this time period were 
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broadly focused on defining variation within populations, observing natural selection in 

nature, and characterizing the emergence of new species through genetic isolation and 

selection with the goal of placing natural events in the framework of mathematical 

theories developed by Fisher and Wright. Significant debates raged during this time as 

experimental data became available. Whereas Fisher’s ideas of selection were based on 

the forces of Darwinian selection, Wright recognized the importance of genetic drift. This 

difference, in light of the mechanisms of genetic inheritance, set the stage for 

investigators such as Kimura and Ohta to address the relative importance of drift and 

selection in their theories regarding the distribution of fitness effects18, 19.  
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Chapter I - Introduction 

 

Molecular Aspects of Evolution 

Evolutionary Biology in the Molecular Biology Era 

 The elucidation of the structure of DNA is among the greatest scientific 

achievements of the 20th century. DNA forms an anti-parallel double stranded polymer of 

a sugar-phosphate backbone covalently linked by phosphodiester bonds. Extending from 

each backbone sugar is one of four nitrogenous bases which interact with a base from the 

opposite strand through hydrogen bonding, as well as sequentially between bases within 

the same strand through stacking interactions20, 21. Interestingly, of the four possible bases 

of DNA, only two combinations of base pairing exist; Adenine to Thymine and Cytosine 

to Guanine, indicating each strand in the helix is a cognate of the other. The beauty of 

this structure is the simplicity, modularity, and functionality which was most certainly not 

lost on the discoverers who immediately suggested a mechanism for replication20. Not 

only did the solved structure of DNA result in the birth of the field of molecular biology, 

but gave a new fundamental insight into the heritability of traits. 

 

 For evolutionary biologists, the mechanistic explanation of the origin of 

polymorphism, genetic linkage, variation, and a genes-to-protein mechanism allowed for 

a new focus in the formation of the fields of molecular genetics and molecular evolution. 

With the knowledge of the chemical structure of bases, the organization of these bases 

into genes, and genes into genomes, it was now possible to formulate testable hypotheses 
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regarding the transmission of traits within and between populations. Although formal 

experimental evolution predated the discovery of the structure of DNA by nearly a 

century22, and non-formal selection (domestication) for desirable traits for thousands of 

years before that, the chemical basis of inheritance allowed for more focused mechanistic 

studies of the loci and basis of heritable traits.  

 

In Vivo Experimental Evolution 

Experimental evolution attempts to directly address questions in the field of 

population genetics and bridge the gap between theoretical models and observed 

phenomena. The first recorded evidence of controlled experimental evolution was in 

1880 when William Dallinger, apparently inspired by Darwin, applied gradual thermal 

stress to a population of protists over the course of approximately seven years22, 23. He 

found that non-adapted organisms would be killed by a temperature of 60°C, whereas 

organisms which had been slowly pre-adapted were capable of tolerating temperatures as 

high as 70°C. Although Dallinger’s experiments were nearly identical to modern 

laboratory evolution experiments, the lack of knowledge in heredity and molecular 

biology made it nearly impossible to draw any mechanistic conclusions as to the thermal 

adaptation he witnessed.  

 

Long term growth and adaptation experiments conceptualized in light of 

molecular biology emerged in 1981 when two early pioneers of experimental evolution, 

Michael Rose and Brian Charlesworth, were among many to understand the importance 
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of studying multiple parallel experimental lineages over evolutionarily relevant 

timescales. By selecting for age-specific fecundity24, time to senescence25, 26, and stress 

response27 in D. melanogaster, it became clear that experimental evolution was a 

powerful tool for understanding the genetic basis for fundamental processes of life28. In 

the same vein as Rose, Richard Lenski began the largest evolution experiment recorded 

to date. Since 1988, a laboratory strain of E. coli has been grown and diluted in a 24 hour 

cycle under different environmental conditions. At the time of writing, the experimental 

lineage has surpassed 50,000 generations and allowed for experimental observation of 

adaptation29, epistasis between deleterious and beneficial mutations30, and estimates of 

the rate of the ‘molecular clock’31. Most notably, these long term experiments resulted in 

the generation of a novel adaptive event, allowing E. coli to metabolize citrate under oxic 

conditions.  

 

One physiological characteristic of the E. coli genus is the inability to metabolize 

citrate in aerobic conditions. Upon growth of Lenski’s ancestral lineage for ~30,000 

generations in low glucose and high citrate medium, a citrate metabolizing phenotype 

(cit+) was realized29. Genomic analysis of cells with a cit+ phenotype revealed a 

requirement for both a duplication of the anoxic citT operon, in conjunction with altered 

regulation characteristics and at least one single nucleotide polymorphism to refine the 

cit+ phenotype32. These findings were the first experimental analyses to lend evidence to 

several important evolutionary observations including mechanisms of adaptation, 
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neofunctionalization of duplicated genes, epistasis, and background potentiation of new 

phenotypes. 

 

 Yeast, including S. cerevisiae, has also become the focus of experimental 

evolution due to their genetic malleability, eukaryotic cellular machinery, and utility in 

heterologous protein expression. Due to extensive post-translational processing and 

secretion, yeast have been utilized to produce active or precursor human biologic 

pharmaceuticals including insulin33, interferon alpha A34, interleukin-1 β35, lysozyme36, 

macrophage colony stimulating factor37, and human serum albumin38. Although yeast do 

not harbor or produce infectious agents or pyrogens which could contaminate human 

biologics, the ability to optimize and genetically canalize heterologous protein expression 

is challenging. For this reason, long term experimental evolution of strains expressing a 

protein of interest have allowed investigators to determine the genetic characteristics 

influencing protein expression and secretion to aid in protein production as well as how 

to overcome expression obstacles33.   

 

Even mammals with relatively long generation times have become the focus of 

long term experimentation. Garland et.al has successfully selected a population of mice 

for voluntary running behavior for over 50 generations to study the physiological and 

genetic basis for complex traits. Physiologically, mice which have been selected for 

increased voluntary running have developed several new musculoskeletal phenotypes, as 

well as alterations in stress response such as a decrease in Sod-2 and increase in Hsp70 



5 
 

 
 

levels39-42. Selection for the ‘high runner’ phenotype has also become a valuable model 

for human ADHD treatment as the mice selected for running behavior display atypical 

dopaminergic responses that can be altered by treatment with psychoactive drugs such as 

Ritalin, Prozac, canabanoids and apormorphine43, 44. Currently, these traits are being 

mapped to specific loci to determine the underlying genetic and epigenetic changes to 

better understand the link between genotype and phenotype in mammals45. 

 

In Vitro Selection and Directed Evolution 

The molecular biology ‘revolution’ led to the development of numerous 

technologies which are now invaluable to the field of experimental evolution. Polymerase 

chain reaction (PCR)46, 47, cassette mutagenesis48, 49, error prone PCR50, 51, DNA 

shuffling52, and Gateway cloning53, increased the ability to generate mutational diversity 

of parental libraries to maximize the likelihood of discovering an improved protein 

variants. Meanwhile systems for linking genotype to phenotype for enhanced selection 

including phage display54, ribosome display55, SELEX56, cell surface display57, and high 

speed FACS analysis improved screening throughput. The advent of highly diverse 

libraries and means of selecting mutants for properties of interest has a variety of 

practical applications, as well as offering a more highly controlled system to study 

molecular evolution. 

 

Mutational studies of proteins are utilized by numerous scientific disciplines to 

study the biophysical details of residues within a protein. Historically, mutational 
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analysis has been used to assess the defect introduced by a mutation and characterize 

residues contributing to stability58-60, catalytic domains61-63, binding interfaces64, 65 and 

function by phosphomimicry66, 67. Mutations are first incorporated into the gene of 

interest and then introduced into a model organism or purified system to study the 

resulting protein properties. An organismal assessment of fitness may be desirable 

because the mutant protein will experience biologically relevant trafficking and 

modification steps which may not otherwise be apparent by biophysical measurement. 

However, purified protein systems are desirable when biophysical, biochemical, or 

structural analyses are the focus of the work. An increased throughput method of 

screening proteins for essential residues, known as alanine scanning, attempts to isolate 

positional importance by iteratively replacing residues with alanine, or glycine. Alanine 

scanning has been successfully applied in the characterization of numerous protein 

structure-function relationships including human growth hormone binding68, 69, essential 

cyclotide structure70, and sodium ion channel transport71. 

 

Although mutagenesis approaches have been widely successful for characterizing 

a variety of biological and biochemical processes, single codon substitution approaches 

possess some inherent disadvantages. The most obvious disadvantage is the lack of site 

specific biophysical requirements based on only a single residue substitution. Although 

alanine is chosen for many mutagenic approaches due to its inert side chain, modest 

volume, and secondary structural properties, the methyl group of alanine represents only 

a small fraction of potential amino acid chemical characteristics. For this reason, false 
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negatives for essential residues are common, especially when replacing chemically 

similar residues such as valine. Alanine also exhibits strong helical propensity which may 

bias results based on the local sequence in which it is placed. Ideally, each residue would 

be replaced with all other possible substitutions to gain insight into requirements such as 

charge, volume, hydrophobicity, and contribution to secondary structure.  

  

 Directed evolution (DE) is a logical extension of the fields of evolutionary 

biology and protein engineering used to create and select for improved variants over a 

wide range of mutational changes. By starting with a protein of interest, introducing 

mutations, and selecting for improved protein variants based on predetermined criteria, 

investigators have harnessed DE to improve stability72, 73, catalytic activity74, 75, and even 

neofunctionalize enzymes to recognize new substrates76, 77. DE is most fundamentally an 

in vitro selection experiment where a library of protein variants is generated and 

competed, but instead of passively observing changing populations over time, the 

investigator selects a protein property of interest to improve, and screens mutant libraries 

by biochemical assays. Improved variants (as defined within the experiment) are then 

subjected to several ‘generations’ of diversification and selection until no further 

improvement is possible or the protein is judged sufficiently improved. By linking a 

phenotype or protein property to a genetic construct, it is also possible to infer the 

underlying interactions between residues as well as the basis for broader biophysical 

properties such as stability and specific activity. However, the protein of interest is not 
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linked to organism fitness, so drawing broader evolutionary conclusions can prove 

difficult.  

 

Nucleic Acid Sequencing Technology  

Mutations are aptly referred to as the ‘raw material’ on which selection can act to 

allow for adaptive evolution, and the ability of a population to adapt is of fundamental 

biological interest. To understand how adaptation occurs, it is necessary to elucidate the 

underlying mutations which give rise to fitness changes by analyzing the linear nucleic 

acid sequence. Chain termination sequencing (also referred to as Sanger sequencing) was 

the first widely utilized technology to generate whole genome data from phage to human 

beings and was the state of the art from 1977 until the first accurately sequenced human 

genome in 2003 (see genome.gov for an in depth timeline). Briefly, Sanger sequencing 

relies on the stochastic incorporation of dideoxynucleotides (ddNTPs) during in vitro 

DNA dependent DNA synthesis followed by size analysis of terminated fragments. By 

sequentially analyzing the identity of the incorporated ddNTP at each position, the linear 

DNA sequence can be solved78. Chain termination sequencing has the advantage of being 

simple and accurate for single reads of less than 1,000 base pairs, and is still extensively 

utilized in molecular cloning and quality control prior to higher throughput methods of 

sequencing. The drawback of this technology is the low throughput in comparison to the 

size of complex genomes as well as the cost per megabase of raw DNA sequence79. Even 

with significant automation and improved processing power, chain termination 

sequencing is still sub-optimal for large and complex sequence identification. 
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The second or ‘next’ generation of sequencing technology has resulted in new 

methodologies to exploit the unique properties of the DNA molecule. By sequencing 

small fragments in parallel (usually 20-250 base pair fragments), sequence analysis has 

now been linked to numerous DNA specific processes such as base incorporation during 

synthesis (Illumina, Helicos, and SMRT technologies), pyrophosphate or hydrogen ion 

release upon base incorporation (454 and Ion Torrent technologies), and base pair 

hybridization/ligation (SOLiD and Nanoball). All of these technologies share a 

parallelized work flow which allows for enormous numbers sequence reads (from 35,000 

for SMRT to approximately 3,000,000,000 for the Illumina Hi-Seq platform) and nearly a 

five order of magnitude cost reduction over chain termination per megabase of raw 

sequence79, 80.  

 

Experimental Fitness Measurement  

 One of the most fundamental values in evolutionary biology is fitness (W), yet 

fitness estimation continues to be a challenge for experimentalists. Originally derived by 

J.B.S. Haldane in 1927 to describe the probability of a phenotype to appear in the next 

generation, fitness can either be defined as absolute or relative81. Absolute fitness is a 

direct measurement of number of individuals possessing a genotype (N) in a population 

both before and after selection, or Wabs = Nafter/Nbefore. On the other hand, relative fitness 

(which is the fitness term used in this dissertation) is not a direct measurement of 

individuals, but the fitness of an individual in a single generation compared to the 
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populations average fitness. Relative fitness can therefore be an ensemble measurement 

which mitigates many technical challenges of defining the start and end of selection as 

well as counting all individuals. 

 

 Even in the context of relative fitness, there are many challenges that impede the 

accurate and precise quantification of fitness. The first major technical hurdle is the 

accurate measurement of specific genotypes within an experimental population82. Many 

early experiments attempted to measure the frequency of an allele by sampling a 

population for phenotypic traits such as coat color83. By recording phenotypic 

characteristics over several generations, investigators were able to make an estimate of 

the distribution of an allele in a population and apply these data back to theoretical 

models. Yet, considering what has been previously discussed regarding the molecular 

mechanism of inheritance, many mutations within a single loci do not observably impact 

phenotype either due to synonymous substitution with no impact on the protein, or 

mutation within a region of a gene with no functional role in coat color. Therefore, by 

measuring only the phenotypic distribution of traits, many spontaneously occurring 

mutations remain unobserved due to lack of sensitivity in the assay or canalization of a 

trait. 

  

To overcome the technical shortcomings of phenotypic observation, physical 

measurement of the genotype at a given locus is preferable. However, genotypic analysis 

has only been possible since the advent of nucleic acid sequencing technology (circa 
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1970). Since its development, DNA sequencing has progressed from sequencing 

hundreds of bases a day to current methods resulting in over 1 billion base calls in a 

single run84. It is now common practice to sequence entire genomes to look for 

polymorphisms between many populations to establish evolutionary lineage85, 86, link 

phenotypes to genotypes87, 88, and estimate the selective advantage or disadvantage of a 

mutation over evolutionary time89, 90. Now, not only are observable traits apparent to 

scrutiny, but also the underlying molecular mechanism. 

  

The second major challenge to accurately calculating fitness is the potential 

interference of epistasis through drifting background mutations, especially during long 

term experimentation. It has been understood since the time of Wright’s work that 

mutational interdependence between the genetic background and a new mutation may 

affect fitness. Ideally, a stable and isogenic line of organisms would be used to calculate 

fitness. However, the reality is that any biological system will accumulate random 

mutations over time due to imperfect replication and repair processes. One way to 

mitigate the problem of changing genetic background is to choose an organism which is 

known to have a low per genome mutation rate per replication. For example, H. sapien 

has an estimated per genome mutation rate of 0.49 bases per genome replication whereas 

D. melanogaster is nearly an order of magnitude lower at 0.058/replication or S. 

cerevisiae which is 2 orders of magnitude lower at 0.002791.  
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Switching experimental systems is often not a viable solution to alter the 

background mutation rate, so other methods are necessary to mitigate epistatic 

interference. The ability to propagate large populations forward during an experiment can 

prevent systematic background changes which may occur due to bottlenecks in the 

population. It is also important to consider that alterations made to the system to decrease 

background effects may have their own selective advantage or disadvantage, so controls 

must be designed appropriately to account for these fitness differences. 

 

The final major technical challenge to experimental fitness calculation that will be 

addressed here is that the fitness effect of mutations can vary with environmental 

changes. The effects of the environment on the gradual improvement of species was one 

of the founding principles from Darwin’s work in ‘The Origin of Species’, and 

environmental influences on adaptation were considered by both Fisher and Wright in 

their models of adaptation. In the FGM, environmental perturbations take the form of a 

shifting optimum relative to the current phenotype which changes the probability of a 

random mutation being beneficial. In Wright’s adaptive landscape, environmental 

changes resulted in the landscape itself shifting, relocating a stationary population to a 

new local fitness landscapes92.  

 

Controlling the environmental milieu between experiments is perhaps the single 

most challenging aspect of accurately and reproducibly measuring fitness. Factors such as 

metabolite composition and concentration, temperature, pH, and atmosphere are all 
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potential fitness considerations which may or may not be easy to control. In the case of 

microbes such as E. coli and S. cerevisiae, placing populations into the same vessel 

ensures all members of that population experience the same extracellular environment. 

The same is true for D. melaongaster, where temperature and humidity controlled 

incubators are used for climate control. The reproducibility of fitness measurements can 

be high, but likely never perfect because it is not physically possible to control all 

variables in a biological system. The ability of an investigator to recognize sources of 

environmental variability and maximize reproducibility is key to successful fitness 

measurements. 

 

 Bacteria and yeast are extraordinary systems to study evolution in a controlled 

environment because of their unique physiology and genetic malleability. Most 

importantly, in laboratory conditions, microbes have a very short generation time relative 

to more complex organisms. Whereas mice have a generation time of 10 weeks93, wild 

type E. coli double in approximately 30-40 minutes and wild type S. cerevisiae in 2-3 

hours. This point is experimentally important because numerous generations can be 

propagated over relatively short timeframes. To counter variation introduced by genetic 

exchange, both yeast and bacteria can be genetically modified to prevent sexual 

reproduction and horizontal gene transfer respectively94. The fact that these organisms 

grow exponentially by binary fission allows fitness measurements to be proportional to 

the rate of division, and as growth rate is the most commonly affected phenotypic trait, 

growth rate is a broad mutational target95, 96. In terms of growth rate, highly fit alleles will 
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allow for faster growth rates whereas less fit alleles will experience slower growth rates. 

When populations of differential fitness are parsed over time, the ratio of the abundance 

of a mutant to a highly fit allele (usually wild type) allows for the calculation of fitness.  

  

Calculation of growth rate for microbial evolution experiments is performed by 

several methods depending on sensitivity, efficiency, and cost effectiveness. The general 

theme for determining growth rate is by estimating the proportion of a specific allele over 

time during log phase growth of a culture (for cellular organisms). This can be 

accomplished by microscopic visualization (hemocytometry or flow cytometry), colony 

forming unit (CFU) calculation (plaque forming units in viruses), biomass measurement, 

but most commonly by spectroscopic analysis of turbidity (usually by absorbance near 

600nm). Relative fitness of a monoculture has more recently been performed by 

measurement of the diameter of a yeast or bacterial colony as a proxy for growth rate96, 97. 

In yeast, colony size resulting from the dissection and growth of tetrads is commonly 

used for fitness analysis. According to the laws of independent assortment, half of the 

tetrads will be wild type with the other half harboring the mutant of interest due to 

segregation during reductive cell division. Colony size determination is also a very 

sensitive method to detect fitness differences because the mutant and wild type haploids 

are nearly isogenic97.  

  

Monoculture growth is not always an optimal method for fitness determination 

because although individuals may be highly isogenic and the measurements can be 
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automated, wild type and mutant isolates may not experience identical environmental 

conditions over the course of genetic manipulation and growth. To overcome this 

technical challenge, the use of binary competitions has become a method of choice for 

many applications because the genetic variant of interest and wild type strain are grown 

in the same vessel to mitigate environmental fitness effects. The challenge of this 

technique is performing an accurate quantification of the ratio of mutant to wild type cells 

at different times. The relative proportion of each population can be calculated by 

expressing variant fluorophores in the mutant and wild type strains and counting the ratio 

by flow cytometry or ensemble bulk fluorescence measurement (performed in chapter 

III)98, 99. Paired growth fitness measurements have been demonstrated to be exceedingly 

accurate, and this methodology has been utilized to accurately measured selection 

coefficient below 10-3 82. It is important to consider in binary competition experiments 

that expressing protein variants or incorporating exogenous nucleotide sequences is 

potentially not selectively neutral, and proper controls are necessary to account for 

background growth defects introduced by manipulating the system. 

 

More recently, high throughput methods to calculate fitness have been introduced 

to allow for the screening of hundreds to thousands of genetic and environmental 

parameters in a single experiment. By automating population management and growth 

measurement in small scale monoculture, Jarosz et al. were able to measure the fitness of 

102 genetically distinct wild and lab strains of yeast in 100 different conditions with and 

without reduction of the endogenous Hsp90 pool (>20,400 individual fitness 
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measurements) to determine the relationship between genetic and phenotypic variation100. 

The invention of synthetic genetic arrays (SGAs) has also contributed greatly to 

automated high throughput fitness measurement. SGAs seek to assess the interaction 

between a query mutation and the yeast gene deletion library by assessing the fitness of 

many genetic crosses in parallel101. By mating the query to the library and sporulating 

yeast to iteratively select for double mutants, synthetic lethal phenotypes can be detected 

by colony growth analysis and be used to uncover synthetic lethal genetic interactions. 

The SGA method has also been employed as a screening technique for a library of query 

mutations generated by random mutagenesis102. SGA methodology can also be applied to 

other model systems including the fission yeast S. pombe and E. coli103, 104.  

 

The Distribution of Fitness Effects (DFE) of New Mutations 

 In a microbial systems, the growth rate of a mutant compared to a highly fit 

reference is a quantitative measure of fitness. If a mutant growth rate is identical to the 

growth rate of wild type, W=1, if the mutant growth rate is higher than wild type, W>1, 

and if the mutant growth rate is lower than wild type, W<1. Fitness can also be defined in 

terms of selection coefficient (s) which represents the viability difference between a 

mutant and wild type and the conversion between W and s is a mathematical 

manipulation where W=1+s . In this mathematical construct wild type s=0, mutations 

more fit than wild type are positive, and mutations less fit than wild type are negative 

with a minimum of -1105. The conversion to selection coefficient has simple practical 

value because: (i) the slope of a line generated by plotting log2(mutant/wild type) over 
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generation time is by definition the selection coefficient, which makes it experimentally 

more useful and, (ii) the selection coefficient is a parameter of many population genetics 

models and (iii) the positive and negative values scheme is intuitive and valuable for 

communication. 

  

In the mid 1900s, new empirical data became available regarding amino acid 

substitution rates105 and the background mutation rate (molecular clock), and these results 

were not entirely consistent with the standing model of natural selection. In the 1950s and 

1960s, many believed that new mutations had strong advantageous or deleterious fitness 

costs, with very few mutations being selectively neutral due to natural selection for high 

fitness individuals driving Darwinian evolution. To address the discontinuities between 

theory and observation, Dr. Motoo Kimura, armed with knowledge of genetic drift from 

the work of Wright’s, proposed a mathematical construct where randomly occurring 

mutations would be either strictly fitness-neutral and be acted on only by genetic drift, or 

have a strongly deleterious or advantageous fitness effect and therefore be acted upon by 

natural selection. Under this logical scaffold, strongly deleterious mutations would be 

quickly eliminated from the population, and therefore Kimura assumed the primary 

source of genetic variation was through neutral mutations, and dictated by genetic drift18. 

This new model of molecular evolution was termed neutral theory. 

 

One fundamental problem in the field was that neither neutral theory nor natural 

selection could fully account for the experimental evidence gathered regarding mutation 
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rate and substitutions at synonymous sites. In 1971 Dr. Tomoko Ohta, a student of 

Kimura, included a third category of mutations which were only very slightly deleterious 

or advantageous to fitness, and could therefore be acted on by both genetic drift and 

natural selection depending on the effective population size. This explanation of the 

distribution of fitness effects (DFE), called near-neutral theory, describes the relationship 

of selection and genetic drift on opposite ends of a continuous spectrum of allele fixation 

events depending on the effective population size and the fitness effect of a mutation19. 

As more experimental measurements of fitness become available (including Chapter III), 

mutational effects seem consistent with Ohta’s near-neutral theory and remains an 

excellent example of the more general relationship between theory and data. 

 

Molecular Adaptation 

An organism’s environment is constantly in flux, and the ability of an organism to 

adapt to changing environmental conditions and physiochemical insults is essential to 

fitness. Consequently, mutations which increase survivability and reproducibility of an 

organism are also propagated at an increased frequency within a population. Therefore 

adaptation to new environments is heritable through adaptive mutation, and broad 

theories regarding the distribution of beneficial mutations including frequency and 

magnitude have been hypothesized since Fisher and Wright, and more currently in the 

context of extreme value theory106. 
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Adaptive mutations may be broadly defined as a mutation which causes increased 

fitness in a particular environment over wild type (or highly fit reference strain). 

Beneficial mutations vary in fitness effect and occur in populations of varying size, but 

the average fitness benefit and frequency of beneficial mutations are still largely 

unknown. Current methods for inferring selection coefficients from phylogenetic data 

have indicated strong disagreement of up to four orders of magnitude for the average 

magnitude of new beneficial mutations107, 108, and these analyses are not necessarily 

highly quantitative in terms of frequency due to the assumption of neutral fitness effects 

of synonymous substitutions. 

 

Conversely, experimental evolution techniques which measure the underlying 

fitness effects of mutations have been informative as to the proportion of beneficial 

mutations occurring in a population, but not necessarily the magnitude of their fitness 

effects. Currently, the most sensitive experimental fitness measurement allows for 

calculations of s >10-4 whereas current estimations predict selection coefficients of s >10-

7 to be acted upon by selection (as opposed to drift)82. As previously mentioned, mutant 

accumulation experiments are the main source of data for the proportion of observed 

fitness effects, but do not shed light on the entire DFE of new mutations. Only relatively 

fit mutations that remain in the population for many generations are measured, and this 

broad focus may be advantageous for studying beneficial mutations even though only a 

small proportion of all mutagenic events are detected. The main findings from mutant 

accumulation experiments indicate previous theoretical predictions may be correct in 
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assuming beneficial mutations are rare due to gradual improvement over evolutionary 

timescales109, 110, but quantitative analysis of beneficial mutant frequency remains 

unknown. 

 

Although beneficial mutations are commonly isolated in studies of antibiotic 

resistance111, antiparasitic resistance112, antiretroviral resistance113, and chemotherapeutic 

resistance114, the results are convoluted by inherent measurement problems. Under strong 

selection such as that of drug resistance, the wild type genotype is very unfit, therefore 

the calculation of fitness compared to wild type may yield misleading values as the 

fitness of wild type approaches zero. The fitness of the wild type allele must also be 

scrutinized when choosing an analytical framework, because as mentioned previously, 

Fisher’s Geometric model and Wright’s adaptive landscape make distinctly different 

predictions regarding the initial fitness of a population. 

 

Fitness in the Context of Expression Level  

A central paradox in mammalian evolutionary biology became evident in the 

1970s when several investigators concluded the genetic difference between chimps and 

humans was likely too small to account for the gross phenotypic differences between the 

species115. Work by King et al. demonstrated that not only were changes in protein 

coding region contributing to species differences, but relative expression levels played a 

key role in evolutionary processes. More recent analyses of expression differences 

indicate expression level variation in coat color proteins in mice act to drive adaptive 
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evolution by changing predation patterns116. The study of expression level tuning to 

generate optimal fitness as well as how expression level acts in conjunction with new 

mutations has become of central importance to evolutionary biology. 

 

The fitness contribution of a protein is dependant both on biochemical properties 

which are dictated by the amino acid composition and protein structure, as well as the 

number of protein molecules expressed in the cell. Previous analyses suggest that protein 

expression level is optimized for maximal fitness117-120 and experiments investigating 

tuning of the Lac operon of E. coli have demonstrated that expression level can be 

quickly optimized to meet cellular metabolic needs121. However, these results seem to 

contradict findings that many essential proteins can be significantly reduced in expression 

without significant fitness defects122, 123. To address the question as to why proteins are 

expressed at a particular level, the relationship between fitness and expression has been 

previously characterized into the framework of a cost-benefit relationship121. The energy 

and materials necessary to transcribe and synthesize a nascent polypeptide represents a 

cost to the cell whereas the fitness improvement garnered through function per molecule 

represents a benefit to the cell. Additionally, the fitness cost of gene duplication events 

has been estimated at s >10-5 124 , and a fitness defect of this magnitude is predicted to be 

subject to selection as opposed to drift in large microbial populations, making expression 

level changes a key to understanding molecular evolution125. 

 



22 
 

 
 

 Just as mutations within coding regions can fix in a population either by drift or 

by selection depending on the population size and fitness effect, changes in protein 

expression can be fixed by either process. Mechanistically, this is because protein 

expression is modulated by mutations in promoter regions126, NTRs127, transcriptional 

regulators128, gene duplication or deletion events124, and epigenetic factors129, 130. In 

broader terms, any mutation in the genome is subject to the same evolutionary forces as 

mutations within a coding region depending on fitness effect, including mutations which 

affect expression level. Therefore the fitness cost of gene expression changes, may be 

vastly different between genes and the relationship between expression, fitness, and 

mutation is of obvious interest. 

 

Epistatic Interaction  

With the advent of systems biology, it has become apparent that phenotypic traits 

are often due to the interaction of multiple genes, and therefore complex mutational 

landscapes. The interdependence of mutations, or epistasis, is most generally classified as 

the observation of interdependent fitness effects from multiple mutations131. In a 

mathematical framework, a non-zero difference between the observed fitness of a double 

mutant and the product of independent fitness of each individual mutation defines both 

the magnitude and directionality of epistatic interactions. Epistasis between two or more 

mutations within or between genes can fundamentally alter fitness distributions by 

suppressing or exacerbating the fitness effects of secondary mutations, and this 

phenomenon is of particular relevance to human disease132.  
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Epistasis is a multidimensional process, and the magnitude of epistasis is not 

necessarily informative without directionality. Unidimensional epistasis (also known as 

mean epistasis or directional epistasis) is a description of double mutant fitness within the 

null hypothesis of purely independent fitness effects. In this framework, mutations which 

interact to produce a smaller fitness effect than the independent prediction are termed 

negatively epistatic, whereas larger-than-predicted fitness effects are termed positively 

epistatic. However, the positive or negative denotation of epistasis makes no assumption 

as to overall fitness in the system. For example, two mutations can be defined as 

negatively epistatic yet result in a net beneficial fitness effect, or be defined as positively 

epistatic and result in a deleterious fitness effect. Multidimensional descriptions of 

epistasis are an essential tool to assess magnitude, sign, and fitness effect of genetic 

interactions to draw more relevant evolutionary conclusions131, 133. Combined with 

ancestral reconstruction techniques, it is possible to ‘rewind the tape of life’134 to assess 

accessible evolutionary intermediates and discover the root biochemical causes of 

epistasis135-137.  

 

Epistatic interactions appear frequently in biological systems ranging from viruses 

to humans138-144. Epistasis may occur between two genes, known as intergenic epistasis, 

or within a single gene, known as intragenic epistasis. The causes of intergenic epistasis 

include differential regulation by transcription factors145, direct protein interaction 

changes146, and redundancy introduced by gene duplication events147 whereas intragenic 
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epistasis is best explained in the context of biophysical properties produced by protein 

engineering, rational design, and directed evolution.  

 

Intergenic and intragenic epistatic interactions may occur by distinct mechanisms, 

but both processes can be realized in the context of fitness. Previous studies of intergenic 

epistasis indicate the majority of interdependent fitness effects are negative, whereas 

intragenic epistasis has been characterized as having a greater preponderance of 

synergistic positive epistasis148. The difference in directionality of intragenic epistasis is 

interesting not only from the viewpoint of directed evolution and the creation of more 

active or more stable enzymes, but because compensatory secondary mutations have been 

shown to rescue the fitness defect introduced by a conditionally adaptive primary 

mutation under chemotherapeutic regamines149-152. 

 

The mechanisms of intragenic epistasis bridge the fields of molecular evolution 

and biochemistry due to the mechanisms by which protein properties change with 

mutation, and how multiple mutations in redundant genes neofunctionalize to produce 

new protein functions. In biochemically oriented literature, the study of non-additive 

effects on protein function has previously been studied as ‘double mutant cycles’153. In 

this experimental framework, two mutations are made independently as well as together 

in the same molecule. The biophysical properties of each of these three species are 

analyzed to search for non-additive biochemical changes, and therefore indicate 

interdependence between two residues. Double mutant cycles have been used to detect 
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numerous structural interactions including critical functional residues154, long-range 

interactions155, exposed and buried salt bridges156, 157, and hydrogen bond networking158 

as well as protein-protein interactions159.  

 

Mechanistically, intragenic epistasis may alter the stability of a protein molecule 

by either exacerbating stability defects past a molecule specific stability threshold, or 

through suppression of stability defects160. In the absence of stability perturbations, 

conformational epistasis of binding or protein docking sites may alter the specificity, rate, 

or maximal activity of an enzyme. Conformational epistasis has been observed in the 

divergence of specificity between the mineralocorticoid receptor and glucocorticoid 

receptor through several mutations of the ancestral corticoid receptor161. Of potential 

explanatory power discussed within chapter V, multiple mutations may alter both 

stability and conformation of a protein (coined intramolecular pleiotropy162). The 

relationship between stability and conformation has best been described in directed 

evolution experiments in systems such as β-lactamase163, cytochrome P450164, Tre 

recombinase165, and lipase A166. The common thread linking these studies is the tradeoff 

between protein stability and specific activity through mutational pathways that may not 

always be accessible in vivo. 

 

In vitro systems such as directed evolution are capable of sampling nearly all 

possible protein variants regardless of their impact on organism fitness. However, natural 

systems are constrained to mutational pathways which support viability and reproduction. 
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Ancestral reconstruction studies of β-lactamase are a prime example for the hypothesized 

vs. realized potential of adaptive evolution. Five mutations in the bacterial β-lactamase 

gene are necessary to increase cefotaxime resistance by a factor of ~100,000  and the 

same five mutations are capable of combining through 120 mutational pathways167. 

However, Weinreich et al found many of these pathways to be inaccessible to adaptive 

evolution due to the inability of most mutant combinations to increase cefotaxime 

resistance. Not only is this an interesting example of the importance of epistasis in 

evolutionary trajectories, but additionally highlights the considerations which must be 

made when deciding between methodologies to study evolution experimentally. 

 

The Hsp90 Molecular Chaperone 

Rationale 

 The work presented in this dissertation is focused on a nine amino acid region in 

the yeast Hsp90 protein. This region was chosen based on a variety of interesting 

evolutionary and biochemical characteristics. For instance, two aromatic residues 

projecting into solvent separated by a glycine residue immediately led us to the 

hypothesis that the amino acid 582-590 region could be a putative docking interface 

when combined with the knowledge of extremely high phylogenetic conservation of 

these energetically unfavorable residue positions. Additionally, Hsp90 has long been 

known to participate in an ensemble of protein-protein interactions, but little biochemical 

characterization of these interactions exists in the literature, with no studies of the amino 
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acid 582-590 region to date. In short, an unstudied and biochemically interesting region 

of a highly conserved protein is an extremely interesting target for investigation.  

 

Structure, Function and Biochemistry 

 Heat shock protein 90kDa (Hsp90, Hsp82 in yeast) is a conserved, highly 

expressed, and thoroughly networked protein chaperone. In yeast, Hsp90 is expressed in 

the cytosol as two nearly identical isoforms from two loci which are ~97% identical: 

Hsp90 and Hsc90. Whereas Hsc90 is constitutively expressed, Hsp90 is inducible under 

conditions of proteotoxic stress123. Hsp90 is one of the most highly expressed proteins in 

the cell, constituting 1-2% of all cytosolic protein under normal growth conditions, and 5-

6% under conditions of cellular stress168. Expression regulation of Hsp90 occurs through 

interaction with the transcription factor Hsf1which is normally associated with chaperone 

machinery including Hsp40/70 as well as Hsp90 as an inactive monomer. Under 

conditions of cellular stress, Hsf1 dissociates from Hsp90, homotrimerizes, and 

translocates to the nucleus where it drives expression from three heat shock element 

(HSE) motifs in the Hsp90 promoter169, 170. The Hsf1 response is also negatively 

regulated by the re-association of Hsf1 to Hsp90 when proteotoxic conditions subside, 

indicating an interesting biochemical link between Hsf1 and the proteins it induces. 

  

Structurally, yeast Hsp90 (also referred to as Hsp82) is a C-terminal homodimer 

composed of two 709 amino acid (81.4kDa) monomers. Each monomer can be 

subdivided into three distinct domains referred to as the N-terminal domain (N), middle 
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domain (M), and C-terminal domain (C) (Figure 1.1)171. The N-domain of Hsp90 is the 

most thoroughly studied due to its potential clinical relevance and known interacting 

partners. The N-domain contains an ATP binding pocket, and in conjunction with 

conformational changes of the dimer, slowly hydrolyzes ATP (relative to other 

characterized ATPases) to perform indispensible intracellular functions172, 173. The 

conformational changes along with ATP hydrolysis is referred to as the “ATPase cycle”. 

Although mechanistic detail of the ATPase cycle is still a topic of study, the general 

features of this process are ATP binding (residue D79 is essential), closing of the “ATP 

lid”, N-terminal dimerization and intramonomer N-M contact, compaction of the Hsp90 

dimer and ATP hydrolysis (residues Glu33 and Arg380 are essential), and finally ADP 

release174. 

 

Besides being conformationally dynamic, Hsp90 is also highly interactive. By 2-

hybrid and SGA analysis, Hsp90 has been shown to interact with approximately 3% of 

the yeast proteome, leading the classification of an interaction hub175-177. However, the 

mechanistic detail and biological relevance of the majority of these interactions remains 

an open question in the field. One challenge to studying the interactome of Hsp90 by 

standard biochemical methods is not only the large number of identified interacting 

partners, but the transient nature with which many substrates bind178. For this reason, in 

vivo assays have been developed to investigate well characterized functions of Hsp90 

including kinase activation and hormone receptor maturation179. A limited number of in  
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Figure 1.1 Yeast Hsp90 solved structure171. The yeast Hsp90 homodimer divided by 

domain where the N-domain is represented in blue, the M-domain in green, and the C-

domain in red. Subdued colors indicate the second monomer domains. 
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Figure 1.1 
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vitro assays have also been developed to assess the chaperone activity of Hsp90 including 

aggregation assays178, 180, 181 and ATPase rate measurement182. 

 

Hsp90 interacts with numerous other proteins which can be broadly characterized 

as either co-chaperones or clients (substrates). Briefly, co-chaperones interact with Hsp90 

to modulate ATPase activity, client specificity, or chaperone complex formation183, 

whereas clients are acted upon by Hsp90 to aid in refolding, become activated in the case 

of kinases, or mature into substrate binding conformations in the case of steroid hormone 

receptors. The association of Hsp90 with oncogenic kinases as well as pathogenic 

proteins is particularly interesting to biomedical science because the ATP binding site of 

Hsp90 has become a target for chemotherapeutics to augment cancer therapy and 

antimicrobial treatment. It also stands to reason that during treatment with Hsp90 specific 

inhibitors, adaptive mutations conferring resistance to these inhibitors will develop, so an 

advanced understanding of the mutations which may confer such resistance is the logical 

next step to the work presented in this dissertation. 

 

 The M-domain of Hsp90 spans residues 253-524 and is connected to the N-

domain through a flexible and transferable charged linker171, 180. The M-domain has been 

shown to interact with several clients and co-chaperones including Akt, eNOS, and 

Aha1184, 185 as well as self-associations with the N-domain to putatively stabilize closed 

complexes for ATP hydrolysis. The ATPase activity of Hsp90 has been described as 

‘split’ because residues in the M domain, including Arg380 and Gln384, appear to make 
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contacts with the N-domain ATP binding pocket in the closed conformation, and 

mutation of these residues does not support growth in yeast and reduces ATPase activity 

in vitro174, 186. An amphipathic loop containing residue Trp300 does not exhibit ATPase 

activity defects when mutated, but causes severe growth defects in yeast indicating this 

loop is potentially involved in client binding186. Additionally, the ATPase modulator 

AhaI binds a large portion of the M-domain (and portions of the N-domain) to stabilize 

an ATP hydrolysis competent state, and stimulate ATP hydrolysis184.  

 

As previously stated, Hsp90 predominantly exists as a dimer in which C-domains 

from two monomers strongly associate (Kd=60nM) to assume a dynamic molecular 

‘pincer’187. Furthermore, dimerization of full length monomers is essential for yeast 

viability as well as in vivo and in vitro functionality188. The most C-terminal residues of 

Hsp90 are MetGluGluValAsp (MEEVD), and this polypeptide sequence has been well 

characterized as a recognition peptide for tetratricopeptide repeat (TPR) protein 

interaction domains. Hsp90 has been shown to bind to a variety of proteins including 

FKBP51/54, FKBP52, Cyp40, p60, and others through interactions between the TPR 

domain of these proteins and the MEEVD of Hsp90189. 

  

The C-domain of Hsp90 also contains the region with which this dissertation is 

primarily concerned. The region of amino acids 582-590 forms a solvent exposed loop 

with two aromatic residues projecting into solvent (Phe583 and Trp585) indicative of a 

putative protein binding interface171, 180. Furthermore, residue Ser586 projects into the 
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core of the protein where the γ-hydroxyl of serine comes within close proximity to main 

chain atoms and may participate in a stabilizing hydrogen bond (see Figure S3.4). This 

region was first characterized as significant for Hsp90 functionality during mutational 

studies which showed mutations to Ala587 caused slight temperature sensitivity as well 

as defects in glucocorticoid receptor maturation179. The following chapters seek to extend 

our knowledge of this region of Hsp90 as well as apply mutational studies of this region 

to evolution biology and population genetics. 

 

Hsp90 and Evolution 

Originally discovered as a protein upregulated after heat shock of D. 

melanogaster cells190, Hsp90 has recently been implicated as a capacitor and potentiator 

of molecular evolution. Stocks of D. melanogaster heterozygous with lethal Hsp83 (D. 

melanogaster Hsp90) mutations have a much higher prevalence of phenotypic 

abnormalities compared to wild type stocks. Interestingly, the frequency of 

morphological defects can be reproduced not only in mutants of Hsp90, but by elevating 

thermal stress or treatment with an Hsp90 specific inhibitor which have the same effect of 

lowering the available pool of functional Hsp90191. This initial work concludes that large 

pools of functional Hsp90 are capable of suppressing underlying genetic variation, 

whereas conditions of stress may lead to decreased canalization (expression of a 

phenotype despite mutation) due to expression of cryptic genetic variation (CGV). 
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The role of Hsp90 as an evolutionary capacitor has since been described in 

yeast100, plants192, worms193 , and fish194. Current mechanistic hypotheses posit genetic 

variation in Hsp90 clients will generally cause protein destabilization, but the chaperone 

activity of Hsp90 will suppress misfolding and allow CGV to accumulate. When 

environmental conditions shift significantly enough to warrant response from Hsf1, the 

pool of Hsp90 is depleted, releasing misfolded protein variants to generate a range of new 

phenotypic effects. This release of cryptic genetic variation and subsequent expression of 

new traits may be a novel mechanism for organisms to ‘sense’ environmental 

perturbations, and respond with novel and potentially adaptive phenotypes which can be 

acted on by selection. 

 

Conversely, Hsp90 has also been found to act as a potentiator of adaptive 

evolution by promoting genomic instability195. Aneuploidy is a known mechanism by 

which eukaryotes can generate adaptive potential under acute stress196, 197, and is also 

frequently observed in human cancers. Hsp90 contributes to aneuploidy by interacting 

with kinetochore proteins in a conserved mechanism to ensure high fidelity chromosome 

segregation, and depletion of the Hsp90 pool under stress perturbs the fidelity of 

segregation, leading to aneuploidy195, 198, 199. Aneuploid cells may then be able to adapt to 

a particular stress, or become sensitized to perturbations, making Hsp90 a viable drug 

target in the treatment of cancer.  
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Due to its role as both a capacitor and potentiator of adaptive evolution, Hsp90 

has become a logical target for chemotherapeutic intervention. Treatment with Hsp90 

specific inhibitors alone have produced only modest clinical results, however, due to 

numerous interactions with known oncogenic proteins, combinations of small molecule 

inhibitors with standard chemotherapeutic regimes has the mechanistic potential to 

fundamentally change cancer treatment200, 201. Cancer is a disease characterized by 

genomic instability and increased mutation rate, so depleting the cellular pool of Hsp90 

has the potential to both to expose deleterious mutations in cancer cells while acting in a 

capacitor role and potentiate hyper-instability in cancer genomes to effectively sensitize 

cells to broad spectrum chemotherapy.  

 

 

Standing Questions and the Scope of this Dissertation 

 

The field of evolutionary biology has historically been rife with theoretical 

literature, but scarce in experimental evidence to support it. The overarching goal of my 

work has been to experimentally examine theoretical questions in evolutionary biology 

asked as early as 1930. The field of experimental evolution has the potential to answer 

questions ranging from the origins of life to the treatment of disease. As whole genome 

sequencing becomes faster and cheaper, polymorphism based personalized medicine is 

likely to give individuals in depth knowledge of genetic factors affecting their own health 

and wellness. However, without a foundational knowledge of the effects of mutations, the 
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interaction of these mutations, and how mutational fitness effects are perturbed by 

environment, personalized medicine by sequence analysis can be little more than a 

predictive tool.  

Chapter II and III 

To address standing questions regarding the distribution of fitness effects of new 

mutations, we have developed a technique coined Exceedingly Methodical and Parallel 

Investigation of Randomized Individual Codons (EMPIRIC) which allows us to 

accurately measure the fitness effects of all possible codon substitutions in regions of 

genes in yeast (method described in detail in Chapter II). Utilizing the EMPIRIC 

technique in the context of amino acids 582-590 of Hsp90, Chapter III addresses 

predictions made by Ohta and Kimura18, 19 regarding the distribution of fitness effects in 

the context of the near neutral model of evolution. Although a bimodal distribution of 

fitness effects has been presented for a limited number of single mutations in vesicular 

stomatitis virus90 and other organisms, the EMPIRIC technique has allowed us to 

iteratively saturate this region of Hsp90 with new mutations. By introducing systematic 

mutant libraries instead of sporadic mutagenesis or mutant accumulation, we are also able 

to extend these findings to the use of phylogenetic conservation a predictive tool for 

mutational fitness effects as well as the optimization of the genetic code.  

 

Chapter IV 

 An essential but experimentally elusive property of biological systems is the 

relationship between environmental perturbations and the strength and nature of 
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selection. Since Fisher and Wright, there have been extensive disagreements about the 

frequency and magnitude of new beneficial mutations. Two central models to describe 

adaptation have been central to this debate: Fisher’s Geometric Model and Wright’s 

Adaptive Landscape. In Chapter IV, I present findings to address the distribution of 

fitness effects under non-optimal environmental conditions to calculate the frequency and 

magnitude of beneficial mutations under non-optimal conditions. This study is unique 

because the environmental perturbations (and therefore selection) are relatively modest as 

demonstrated by high fitness of the wild type sequence. We then address the relationship 

of Fisher’s Geometric Model to the studied environmental perturbations, the quantitative 

cost of adaptation, and the magnitude and frequency of new beneficial mutations. 

 

Chapter V 

 One substantial difference between the theories of Fisher and Wright was the 

assumptions each made regarding epistasis. Whereas Fisher essentially ignored epistasis, 

Wright considered epistatic interactions to be frequent and of substantial importance to 

adaptive evolution. In chapter V, I discuss the fact that the EMPIRIC technique allows us 

to logically extend our understanding of epistasis by probing perturbations in the fitness 

landscape due to differing genetic backgrounds. Due to the comprehensive nature of our 

mutagenesis technique, we are able to examine the full distribution of intragenic 

epistastic effects of seven non-wild type backgrounds. This approach to epistasis is not 

only relevant to evolutionary biology because, to my knowledge, a comprehensive 
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distribution of epistatic effects has not been reported, but it allows us to deconstruct the 

biochemical details of intragenic epistasis in this region.  
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Chapter II – Fitness Analyses of All Possible Point Mutations for 

Regions of Genes in Yeast 

Alternatively: Broadly Applicable Materials and Methods for the 

EMPIRIC Technique 

 

This work has been published previously as Hietpas R.*, Roscoe B.*, Jiang L., Bolon 

DNA. “Fitness analyses of all possible point mutations for regions of genes in yeast.” 

Nat Protoc. 2012 Jun 21; 7(7): 1382-96. 

 

 The work presenting in the following chapter was a collaborative effort. I, 

Benjamin P. Roscoe, Li Jiang and Dr. Daniel N. A. Bolon all contributed to the 

development and optimization of the protocol as well as preparing the manuscript. I 

prepared the initial draft for the section regarding generating mutant libraries. Benjamin 

P. Roscoe prepared the initial draft for the section on growth competition. Benjamin P. 

Roscoe and Li Jiang prepared the initial draft for the section on preparing samples for 

deep sequencing. Dr. Daniel N. A. Bolon prepared the initial draft for the section on 

processing sequencing data. Dr. Daniel N. A. Bolon supervised the work and prepared 

the final version of the manuscript. 
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Abstract 
 

Deep sequencing can accurately measure the relative abundance of hundreds of 

mutations in a single bulk competition experiment, which can give a direct readout of the 

fitness of each mutant. Here we describe a protocol that we previously developed and 

optimized to measure the fitness effects of all possible individual codon substitutions for 

10-aa regions of essential genes in yeast. Starting with a conditional strain (i.e., a 

temperature-sensitive strain), we describe how to efficiently generate plasmid libraries of 

point mutants that can then be transformed to generate libraries of yeast. The yeast 

libraries are competed under conditions that select for mutant function. Deep-sequencing 

analyses are used to determine the relative fitness of all mutants. This approach is faster 

and cheaper per mutant compared with analyzing individually isolated mutants. The 

protocol can be performed in ~4 weeks and many 10-aa regions can be analyzed in 

parallel. 
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Introduction 
 

Evolution is a critical principle for interpreting and understanding biology. 

Evolutionary processes have shaped life in its present state and continue to mediate future 

population trajectories. The basic rule of evolution is competition, and fitness is the 

measure of individual competitive advantage/disadvantage. Genetic mutations are a 

dominant mechanism impacting fitness. The relationship between genetic mutations and 

fitness describes the raw evolutionary potential available to organisms. Here we describe 

a method that we refer to as EMPIRIC (Exceedingly Methodical and Parallel 

Investigation of Randomized Individual Codons) to systematically generate all possible 

point mutations in regions of important genes and quantify the fitness effect of each 

mutant202. 

 

Many previous methods have been utilized to analyze the fitness effects of 

mutations. These methods fall broadly into two classes: population-genetic based 

inferences from sequence analyses of naturally-evolving populations203, 204, and direct 

fitness measurements of mutants99, 100. Population genetic models combined with 

polymorphism data provide routes to understand recent selection in all current organisms. 

However, mutations that cause a selectable fitness effect can be challenging to 

distinguish from hitchhiking mutants at linked genetic loci205. In contrast, experimental 

fitness competitions have the benefit of directly measuring fitness effects of specific 

mutations, though they cannot be applied to all organisms. 
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Experimental fitness measurements often involve isolating specific mutants and 

following their growth properties for multiple generations. These analyses are ideally 

suited for organisms that can be easily manipulated genetically and that have short 

generation times such as microbes. Indeed, the ability to genetically manipulate S. 

cerevisiae enabled systematic analyses of the fitness of single gene knockouts and the 

identification of essential genes206. The yeast deletion strains were generated with a 

unique DNA sequence or barcode bracketed by common primer sites for each gene 

knockout. These bar codes enable the relative abundance of each mutant to be monitored 

using PCR and sequencing. This approach enables quantitative analyses of relative fitness 

from bulk cultures of knockout strains. The fitness effects of knockouts provides useful 

insights, but the knockout approach does not provide direct information on the fitness 

effects of many types of mutations that occur during natural evolution including point 

mutations. 

 

Analyzing the fitness effects of point mutations is relevant to biology because 

they are a common form of mutation in evolution. Point mutations that lead to drug 

resistance have been extensively analyzed167. Drug-resistance mutations can be readily 

identified from both natural/clinical isolates and from laboratory selection experiments. 

The fitness effects of mutations in drug-resistant genes are frequently analyzed based on 

a dose-response curve. The large magnitude of growth changes associated with drug-

resistant mutations facilitates their analysis and represents a stringent selection pressure.  
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Many genes are involved in adaptation to less stringent selection pressures207 than 

drug-resistance. Because the fitness changes are small relative to drug-resistance 

mutations, analyzing mutant fitness effects in the majority of genes requires accurate 

measurements of relative growth, and careful control of genetic background. Both growth 

curves of individual strains100 and binary competition experiments between fluorescently-

labeled strains99 enable accurate measurement of the fitness effects of one mutant per 

culture. Using isolated individual mutations, alanine scanning has been used to identify 

hot-spots for protein function208. 

   

We developed the EMPIRIC approach to monitor the relative abundance of 

saturation point-mutants in a single bulk culture (Figure 2.1) with very high signal to 

noise202. This sequencing approach is similar in concept to the bar coded knockout 

collection206, as well as methods developed to analyze binding function of larger and 

more complex libraries using affinity isolation approaches209-211. In all three of these 

approaches, sequencing is utilized to monitor the relative abundance of mutants after the 

application of a selective pressure. In the knockout collection, mutants are identified by a 

unique barcode between universal primer binding sites. The affinity isolation approaches 

have been able to interrogate larger mutant libraries including many double mutants209, 

and are well-suited where broad sampling of double mutants are desired.  

 

In the EMPIRIC approach, the libraries are constructed to contain only point-

mutants that are quantified directly using focused deep sequencing of mutated regions.  
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Figure 2.1 Bulk competition of libraries of point mutants in yeast. (a) Plasmid libraries 

are transformed into yeast. (b) Yeast that have taken up plasmid are selected for and 

amplified. (c) Selection pressure is applied to the library copy of the mutated gene and 

samples are collected over time in bulk competition. 
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Figure 2.1 
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This approach results in a strong sequencing signal for all possible point mutants, and it is 

ideally suited for applications where accurate and systematic measurements of point-

mutant function or fitness are desired. While the initial application of EMPIRIC was 

analyzing the effect of mutants in Hsp90 on yeast growth202, the protocol could be 

modified to analyze growth in other genetically tractable systems (i.e. cancer cells and 

viruses) as well as for in vitro function utilizing display approaches209. In addition, we 

have found that throughput can be dramatically increased by analyzing multiple regions 

in parallel. We have performed parallel analyses of 8 separate 10-aa regions in the same 

four week time period required to analyze one region212. The maximum size of region 

that we have analyzed by EMPIRIC is currently 10 amino acids. The size of a region that 

can be accurately analyzed is constrained by sequencing read-length and accuracy 

 

Overview of the EMPIRIC method  

The EMPIRIC method is designed to measure the competitive advantage or 

disadvantage of point mutants in high-throughput. Efficient analyses of mutants are 

facilitated by three main components: a rapid strategy to generate saturation mutants at 

consecutive amino acid positions in a gene; synchronized application of selection 

pressure to all mutants in a mixed competition experiment; and accurate measurement of 

the relative abundance of each mutant using deep-sequencing. We use a cassette ligation 

strategy to efficiently generate mutant libraries. This stage involves DNA manipulations 

including PCR, ligations, and bacterial transformations. In order to synchronize selection 
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pressure, we use a conditional yeast strain such as a temperature-sensitive strain. This 

stage involves yeast microbiological techniques, including transformation and growth in 

liquid culture. We use a deep-sequencing approach to measure the abundance of each 

mutant. This stage involves isolation of DNA from yeast, DNA manipulations including 

PCR to generate focused libraries for sequencing, and bioinformatic analyses of the 

resulting sequencing data. 

 

Experimental design  

In order to accurately measure the relative abundance of all possible point mutants 

for regions of genes using deep-sequencing, the EMPIRIC approach was developed with 

careful consideration of signal-to-noise. Signal is the relative abundance of a mutant in a 

library. Noise comes from misreads that distort the measured abundance of a mutant from 

its actual abundance in the library. In library generation, the goal is to have all mutants 

present at similar abundance. In the growth competition, the goal is to rapidly analyze 

mutants under selection while minimizing the potential for secondary adaptive mutations. 

In library analysis, the goal is to minimize noise from misreads. 

 

Mutant abundance  

The primary factor that can be manipulated to maximize signal is the relative 

abundance of each mutant in the starting plasmid library. Ideally, all mutants will be 

present at a relative abundance well above the noise that comes from misreads. We 

optimized a cassette ligation strategy (Figure 2.2) that can be applied iteratively and in  
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Figure 2.2 Steps to generate plasmid libraries of point mutants. (a) Whole-plasmid PCR 

to generate inverted BsaI vector. (b) Digestion of this vector to generate directional sticky 

ends. (c) Cassette ligation to introduce point mutants. 
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Figure 2.2 
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parallel to generate libraries of point mutants in which all variants are present at similar 

relative abundance. Alternative methods exist to generate point mutant libraries, 

including Quickchange mutagenesis and gene synthesis, but in our experience the 

cassette ligation strategy has resulted in the most efficient and reproducible results. 

 

Design of oligonucleotides for generating vectors with inverted type IIS restriction 

sites  

Oligonucleotides should be designed as primers for whole-plasmid PCR in order 

to generate vectors with inverted type IIS (i.e., BsaI) restriction sites for cloning (Figure 

2.2a and Table 2.1 – vector forward (for) and vector reverse (rev)). We have used this 

approach to amplify vectors up to 10 kb. Whole-plasmid primers should have ~20 bases 

that are complementary to the target plasmid and 5’ extensions to encode restriction site. 

The inclusion of additional unique restriction sites in the 5’ extensions (immediately 

upstream of the BsaI site) can be used to reduce background during subsequent cassette 

ligations (i.e., SphI in Figure 2.2). For this strategy to succeed, it is important to have a 

parental plasmid construct that lacks BsaI sites. We generated a minimal yeast and 

bacterial shuttle plasmid that we refer to as pRNDM with a KanMX4 marker220, which 

confers kanamycin resistance in bacteria, confers G418 resistance in yeast, and lacks BsaI 

sites (Supporting Figure S2.1).  

 

 

 



51 
 

 
 

Table 2.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oligo name Oligo sequence (5'-3') Key features 

Vector for 

Vector rev 

Cas for 

Cas rev 

PCR1a for 

PCR1a rev 

PCR1b for 

PCR1b rev 

Adapt for 

Adapt rev 

ggtggtggtgcatgcggtctc 
aATTACTCAGTTGATGAGTTT 

gcagcagcagcatgcggtctca
CATAGTATTCTATITTTCTC 

tatgNNNagtgaaactttt
gaatttcaagctgaa 

taatttcagcttgaaat
tcaaaagtttcactNNN 

AAGACGGTAGGTATTGATTGT 

Capitals represent nucleotides com
plemental)l to plasmid sequence, bold 
letters represent Bsal overhangs, and 
italics indicate Bsal restriction site 

Capitals represent nucleotide comple
mental)l to plasmid sequence, bold 
letters represent Bsal overhangs and 
italics indicate Bsal restriction site 

Underlined text represents the ten
codon region of interest. N indicates a 
mixture of A,C,T,G at the randomized 
codon. Bold text indicates overhangs 
complemental)l to Bsal sites 

Underlined text represents the ten
codon region of interest. N indicates a 
mixture of A,C, T,G at the randomized 
codon. Bold text indicates overhangs 
complemental)l to Bsal sites 

Complemental)l to the promoter region of 
the libra !)I version of the gene of inter
est. This primer is specific to the vector 

GGGACCTAGACTTCAGGTTGTC Complemental)l to t he 3' UTR region of 
the libra !)I version of the gene of inter
est. This primer is specific to the vector 

gggaccaccacctccgacACAC
CCCAATCATGTTGCAG 

N,.
GATAAAGACATTAATGGTTG 

N, -ACGTag 

ACGT-N
25 

Capitals indicate nudeotides comple
mental)l to the template. The Mmel site 
is indicated in bold 

Capitals indicate nucleotides comple
mental)l to the template. N

25 
indicates 

25-nt binding site for a 3' deep-sequenc
ing primer- check with sequencing pro
vider for current recommendations 

Capitals indicate a bar code and N
25 

indicates binding site for a 5' deep
sequencing primer- check with 
sequencing provider for current recom
mendations. l owercase nucleotides are 
complemental)' to the Mmel site 

Capitals indicate a bar code and N,. 
indicates binding site for a 5' deep
sequencing primer- check with 
sequencing provider for current recom
mendations 

Modifications 
required Purpose 

5' phosphol)lla- Used with 'Vector rev for whole· 
tion (Step 1) plasmid PCR (Steps 1-9) 

5' phosphol)lla- Used wit h 'Vector fo( for whole-
tion (Step 1) plasmid PCR (Steps 1-9) 

Annealed wit h 'Cas rev' and 
ligated to vector to create a satu
ration libral)l (Steps 10-22) . Need 
a different oligo for each codon 
to be randomized 

Annealed with 'Cas fo( and 
ligated to vector to create a 
sat uration library by ligation 
(Steps 10- 22). You need a differ
ent oligo for each codon to 
be randomized 

Used wit h 'PCR1a rei/ to amplify 
the li bral)l version of the gene of 
interest (Step 43) 

Used with 'PCR1a fo( to amplify 
the library version of t he gene of 
interest (Step 43) 

Used wit h 'PCRl b rei/ to amplify 
randomized region. Designed to 
add an upstream Mmel site to the 
amplicon (Step 44) 

Used wit h 'PCR1b fo( to amplify 
randomized region. Designed to 
add a downst ream primer bind
ing site to the amplicon for deep 
sequencing (Step 44) 

Annealed wit h 'Adapt rei/ and 
ligated to Mmel-digested PCR1b 
product to add a bar code and an 
upstream (5') primer binding site 
for deep sequencing (Step 46) . 
A different oligo with a unique 
bar code is needed for each 
sequencing sample 

Annealed with 'Adapt for' and 
ligated to Mmel-digested PCR1b 
product to add a bar code and an 
upstream primer binding site for 
deep sequencing (Step 46). 
A different oligo with a unique 
bar code is needed for each 
sequencing sample 
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Figure S2.1 Features and sequence of bacterial-yeast shuttle plasmid pRNDM. This 

plasmid was derived from pRS414 with the tryptophan marker replaced by KanMX4 and 

the beta-lactamase gene removed. 
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Figure S2.1 

 

pRNDM 

MB1 ori 
hi copy (200/cell) 

E. col i ori 

2526-311 1 

Sequence: 

Sacl Asci 
(34) (46) 

\I 
3.2 kb 

CEN6/ARS 
2490 to 1889 

1500to 68 

Resistance marker in E. col i: Kanamycin 
marker in yeast :G418 resistant 

mTIACGGTICCTGGGAACAAAAGCTGGAGCTCgtttaaaccgGCGCGCffiAGCTC
GTITICGACACTGGATGGCGGCGTIAGTATCGAATCGACAGCAGTATAGCGACCAGCATTCACATACGATIGACGCATGATATIACTTICTGCGCAffiAAffiCGC 
ATCTGGGCAGATGATGTCGAGGCGAAAAAAAATATAAATCACGCTAACATTTGATIAAAATAGAACAACTACAATATAAAAAAACTATACAAATGACAAGTiffiGA 
AAACAAGAATffiffiATIGTCAGTACTGATIAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATIATCAATACCATATTTTTGAAAAAG 
CCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTICCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATICCGACTCGTCCAACATCAATACAACCTATIA 
AffiCCCCTCGTCAAAAATAAGGTIATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGmATGCATTICTTICCAGAffiGTICA 
ACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTIATICATICGTGATIGCGCCTGAGCGAGACGAAATACGCGATCGCTGTIAAAAG 
GACAATIACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTICACCTGAATCAGGATATiffiCTAATACCTGGAATGCTGT 
ffiGCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGffiGATGGTCGGAAGAGGCATAAATICCGTCAGCCAGTITAGTCTGACC 
ATCTCATCTGTAACATCATIGGCAACGCTACCTTIGCCATGTTTCAGAAACAACTCTGGCGCATCGGGffiCCCATACAATCGATAGATTGTCGCACCTGATIGCCCG 
ACATIATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAAACGTGAGTffiTICCTIACCCATGGTIGTTTATGTICGGA 
TGTGATGTGAGMCTGTATCCTAGCMGATTTIMAAGGMGTATATGAMGMGMCCTCAGTGGCMATCCTMCCTmATATTTCTCTACAGGGGCGCGGCGT 
GGGGACAATICAACGCGTCTGTGAGGGGAGCGTTTCCCTGCTCGCAGGTCTGCAGCGAGGAGCCGTAAmTIGffiCGCGCCGTGCGGCCATCAAAATGTATGG 
ATGCAAATGATIATACATGGGGATGTATGGGCTAAATGTACGGGCGACAGTCACATCATGCCCCTGAGCTGCGCACGTCAAGACTGTCAAGGAGGGTATICTGGGC 
CTCCATGTCGCTGGCCGGGTGACCCGGCGGGGACGAGGCAAGCTAAACAGATCGGCCGCGTTCTATAGTGTCACCTAAATCGTATGTGTATGATACATAAGGTIATG 
TATIAATIGTAGCCGCGTICTAACGACAATATGTCCATATATGCGTATATATACCAATCTAAGTCTGTGCTCffiCffiCGTiffiCffiCTGTICGGAGATIACCGAATC 
AAAAAAATTTCAAGGAAACCGAAATCAAAAAAAAGAATAAAAAAAAAATGATGAATIGAAAAGGTGGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCA 
TAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGffiGTCTGCTCCCGGCATCCGffiACAGACAAGCTGTGACCGTCTCCGGGAGC 
TGCATGTGTCAGAGGTTTICACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTAmTIATAGGTIAATGTCATGATAATAATGGffiffiAG 
ACGGATCGffiGCCTGTAAffiACACGCGCCTCGTATCTTTIAATGATGGAATAATTIGGGAATTTACTCTGTGTTTATTTAmTIATGTTTIGTATTTGGATITIAGA 
AAGTAAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAATTTCAACAAAAAGCGTACTTIACATATATATTTATIAGACA 
AGAAAAGCAGATIAAATAGATATACATICGATIAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAATICGGC 
ATIAATANNGAGAGCAGGAAGAGCAAGATAAAAGGTAGTATTTGTTGGCGATCCCCCTAGAGTCTmACATffiCGGAAAACAAAAACTATITTTICTTIAATTTC 
mTTTIACTTICTAmTIAATTTATATATTTATATIAAAAAATTTAAATIATAATIATITTTATAGCACGTGATGAAAAGGACCCAGGTGGCACTITTCGGGGAAATGT 
GCGTICCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATffiCTIGAGATCCTTITTTICTGCGCGTAATCTGCTGffiGCAAACAAAAAAACCACCGCTAC 
CAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTffiffiCCGAAGGTAACTGGffiCAGCAGAGCGCAGATACCAAATACTGTiffiCTAGTGTAGCCGTA 
GTIAGGCCACCAffiCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTIACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTffiACCGGGT 
TGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTICGTGCACACAGCCCAGffiGGAGCGAACGACCTACACCGAACTGAG 
ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAG 
GGAGCTTCCAGGGGGAAACGCCTGGTATCTTIATAGTCCTGTCGGGTTTCGCCACCTCTGAffiGAGCGTCGAmTIGTGATGCTCGTCAGGGGGGCGGAGCCTA 
TGGAAAAACGCCAGCAACGCGGCC 



54 
 

 
 

Design of oligonucleotides cassettes with individual codons randomized  

 Oligonucleotides for the cassette mutagenesis step (Cas for and Cas rev in Table 

2.1) should have cohesive ends that are complementary to the BsaI 5’ overhangs in the 

vector. These oligos will be annealed to each other to form a double stranded cassette – 

they are not used for priming amplification/mutagenesis. For each amino acid position 

that you would like to randomize, design a cassette with a degenerate codon (i.e., NNN) 

on both strands. We have obtained consistent results using cassettes where each 

oligonucleotide is 40 bases in length (30 bases for the 10 amino acid region, 3 bases on 

either side of this region that improve ligation efficiency for the randomization of edge 

positions, and the 4-base 5’ overhangs).  

 

Design of oligonucleotides to amplify the library gene  

PCR1a primers (Figure 2.3a, PCR1a for and PCR1a rev in Table 2.1) should be 

designed to specifically amplify the library version of the gene of interest (and not the 

conditional genomic copy also present in cells). The optimal size range of the amplicon is 

250 bases. Standard primer design approaches should be used. PCR1a primers should be 

18-22 bases and anneal uniquely to the library plasmid (i.e. to unique regions upstream 

and downstream of the gene of interest). These are primers are gene-specific.  

 

Design of oligonucleotides to focus sequencing on the randomized region  

PCR1b primers (Figure 2.3b) should be designed to amplify the randomized 

region, add an upstream MmeI site (the purpose of the MmeI site is to provide a site for 
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Figure 2.3 Steps to prepare DNA for deep sequencing. (a) PCR amplify mutant library 

using primers specific to the plasmid library. (b) Perform a second PCR step to add an 

MmeI site to the 5’ end and an Illumina universal primer sequence to the 3’ end. (c) 

Perform MmeI digestion to create a sticky end adjacent to the randomized region of the 

mutant library. (d) Ligate an adapter to the 5’ end containing a bar code. (e) PCR with 

universal deep-sequencing primers. (f) Parallel analyses of a wild type plasmid provides 

information on misreads. 
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Figure 2.3 
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adapter ligation), and add a downstream Illumina sequencing site. The MmeI PCR1b 

primer (PCR1b for in Table 2.1) should have 20 bases of complementarity to the region 

immediately upstream from the randomized region (gene specific) and a 5’ extension 

encoding a restriction site for MmeI. The downstream PCR1b primer (PCR1b rev in 

Table 2.1) should have 18-22 bases of complementarity that target binding 200 bases 

downstream of the randomized region (in order to generate a 200 base amplicon) and a 5’ 

extension of 25 bases complementary to Illumina sequencing primers.  

 

Design of bar coded adapter oligonucleotide cassette  

Oligonucleotides should be designed that when annealed form a double stranded 

adapter. This adapter cassette should have a double stranded region including 25 bases 

complementary to Illumina sequencing primers and a barcode of 3-4 bases followed by a 

two-base single-stranded 3’ overhang complementary to the overhang created by MmeI 

digestion of the PCR1b PCR product (Figure 2.3d). Care should be taken in designing 

barcodes such that all samples in a sequencing reaction can be uniquely identified. A 

single sequencing sample represents uniquely barcoded timepoint samples for a library of 

10 randomized codons, as single-codon libraries are pooled prior to analysis. Ideally, 

each barcode will differ from all other barcodes at multiple positions to minimize the 

potential for mis-reads to cause barcode switching. With Illumina sequencing, the base 

composition at each position in the sequencing library is an important parameter because 

it impacts the ability to distinguish the position of individual clusters. For this reason, it is 

valuable to blend samples such that each position in the sequencing mix, including the 
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barcode region, has a broad distribution of bases. This challenge can also be mitigated by 

further blending with other sequencing samples or generating a lower density of clusters 

during sequencing and should be discussed with your sequencing provider. 

 

Conditional strain  

It is important to have a conditional strain that grows robustly on its own under 

permissive conditions, and whose growth rapidly slows or stalls in non-permissive 

conditions unless provided with a rescue copy of the gene of interest. In our proof-of-

principle studies202, we utilized a temperature sensitive Hsp90 strain. This strain grows 

robustly at 25°C, which allowed all possible point mutants in our library to be 

transformed into cells and propagated under this condition. This strain rapidly stalls 

growth at moderately elevated temperature (36°C), which was used to synchronize 

growth competition dependent on the function of the library version. Before starting 

competition experiments with libraries, it is important to identify appropriate permissive 

and non-permissive conditions. A wild type rescue plasmid and a null rescue plasmid can 

be used to determine these conditions. Ideally, you want the permissive condition to 

support equivalent growth rates for strains harboring either the wild type or the null 

rescue plasmid. For the non-permissive condition, cells harboring the wild type rescue 

plasmid should grow robustly (i.e. similar to the parental strain), while cells harboring the 

null plasmid should stall in growth. 
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Sources of noise  

The primary cause of noise is mis-reads that can be caused by either PCR steps in 

processing samples, or in the sequencing reaction itself. We have found it extremely 

useful to include internal controls to assess the mis-read noise in each EMPIRIC 

experiment and sequencing run (these controls are described in the Procedure). In our 

experience, ~90% of Illumina sequencing runs have resulted in data quality sufficient to 

accurately assess the relative abundance of all point mutants in EMPIRIC experiments. 

The careful generation of point mutant libraries causes the majority of mis-reads to 

appear as double-mutants that are readily filtered out of datasets, dramatically reducing 

noise in subsequent analyses. 

 

Genetic background is another potential source of noise that is important to 

consider in EMPIRIC experiments. In order to control for genetic background, we design 

entire experiments such that all required libraries are transformed into the same batch of 

yeast, thus minimizing potential secondary genetic differences. If secondary mutations of 

strong benefit sweep through a mutant population, it will cause a bi-phasic trajectory in 

the fitness data that can be readily identified. In this case only time-points prior to this 

sweep should be analyzed. If appropriate, secondary mutations of strong benefit can be 

minimized by pre-adapting the parental strain to the desired environmental conditions. 

We have also found that eliminating the 2µ plasmid that is endogenous in most yeast 

strains213 can reduce the frequency of secondary adaptive genetic changes. 
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Materials 
Reagents 

▲CRITICAL: All media and reagents are prepared by standard methods214, and are 

stored as recommended by the manufacturers. All enzymes are stored at -20°C. SAM and 

chemically competent bacteria are stored at -80 °C. Unless otherwise noted, all reagents 

are stored at room temperature. 

 A conditional yeast strain (i.e. a temperature sensitive or shutoff strain) whose 

growth can be rescued by a plasmid-borne copy of the gene of interest. 

Conditional yeast strains can be generated de novo, or located in previously 

published work and requested. 

 A starting plasmid to generate libraries that does not contain sites for the type IIS 

endonuclease that you plan to use for the cassette ligation strategy, such as 

pRNDM (Figure S2.1). The pRNDM plasmid will be provided on request. 

 T4 DNA ligase (New England Biolabs, cat. no.M0202) 

 T4 DNA Ligase Buffer 10x (New England Biolabs, cat. no. B0202S) 

 T4 Polynucleotide Kinase (New England Biolabs, cat. no. M0201) 

 Deoxyribonucleotide triphosphates (dNTPs; 10 mM each nucleotide; New 

England Biolabs, cat. no. N0447) 

 DpnI restriction endonuclease (New England Biolabs, cat. no. R0176) 

 Taq polymerase (New England Biolabs, cat. no. M0273) 

 Phusion® High-Fidelity DNA polymerase (New England Biolabs, cat. no. 

M0530S)  
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▲CRITICAL – a high-fidelity polymerase should be used for amplification 

products intended for use in downstream deep-sequencing to limit PCR errors. 

 BsaI restriction endonuclease (New England Biolabs, cat. no.R0535) 

 SphI restriction endonuclease (New Englan Biolabs, cat. no.R0182) 

 MmeI restriction endonuclease (New England Biolabs, cat. no. R0637L) 

 S-adenosyl methionine (SAM; New England Biolabs, cat. no. B9003S) 

 NEB3 buffer (10x with 100x BSA; New England Biolabs, cat. no.B7003) 

 NEB4 buffer (10×; New England Biolabs, cat. no. B7004S) 

 Agarose, PCR grade (Fisher Bioreagents, cat. no. 9012-36-6) 

 Ethidium bromide (Sigma, cat. no. E1510)  

! CAUTION Ethidium bromide is toxic and a DNA mutagen; handle properly 

and avoid contact using appropriate Personal Protective Equipment. 

 SYBR Green I (10000×; Invitrogen, cat. no. S-7563) 

 Tris Base (Fisher Bioreagents, cat. no. BP152-500) 

 Acetic acid, glacial (Fisher Scientific, cat. no. A38-500)  

 Bromophenol Blue (Sigma-Aldrich, cat. no. B0126) 

 Ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich, cat. no. E6758) 

 DNA ladder – 1 KB (New England Biolabs, cat. no. N3232) 

 DNA ladder – 100 BP(New England Biolabs, cat. no. N3231) 

 Zymoclean Gel DNA Recovery Kit (Zymoresearch, cat. no. D4001) 

 ZR Plasmid Miniprep Kit (Zymoresearch, cat. no. D4015) 

 OmniMax competent E. coli strain (Invitrogen, cat. no. C854003)  
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 Kanamycin-A monosulfate (or bacterial antibiotic matching vector 

marker)(Sigma-Aldrich, cat. no. K4000) 

 Ampicillin sodium salt (Sigma-Aldrich, cat. no. A9518-100G) 

 G418 disulfate salt (Sigma-Aldrich, cat. no. A1720) 

 Polyethylene Glycol 3350 (PEG 3350; Hampton Research cat. no. HR2-591) 

 Lithium acetate dihydrate (Sigma-Aldrich, cat. no. L4158) 

 Salmon Sperm DNA (Sigma-Aldrich, cat. no. D1626)  

 Yeast nitrogenous base without Amino Acids (VWR, cat. no. 61000-200) 

 Ammonium Sulfate (Sigma-Aldrich, cat. no. A5132) 

 Sodium Chloride (Fisher Bioreagents, cat. no. 5271-3) 

 Zymolyase (Zymoresearch, cat. No E1004) 

 Bacto- Tryptone (Becton Dickison, cat. no. 211705) 

 Bacto- Peptone (Becton Dickison, cat. no. 211677) 

 Bacto- Yeast Extract (Becton Dickison, cat. no. 212750) 

 Bacto- Agar (Becton Dickison, cat. no. 214010) 

 Adenine Hemisulfate (Sigma-Aldrich, cat. no. A9126-100g) 

 Glucose (Sigma-Aldrich, cat. no. G7528-5kg) 

 L-Aspartic acid (Sigma-Aldrich, cat. no. A8949) 

 L-Arginine (Sigma-Aldrich, cat. no. A5006) 

 L-Valine (Sigma-Aldrich, cat. no. V0513) 

 L-Glutamic Acid (Sigma-Aldrich, cat. no. G1251) 

 L-Serine (Sigma-Aldrich, cat. no. S4311) 



63 
 

 
 

 L-Threonine (Sigma-Aldrich, cat. no. T8625) 

 L-Isoleucine (Sigma-Aldrich, cat. no. I2752) 

 L-Phenylalanine (Sigma-Aldrich, cat. no. P2126) 

 L-Tyrosine (Sigma-Aldrich, cat. no. T8566) 

 L-Histidine (Sigma-Aldrich, cat. no. H8000) 

 L-Methionine (Sigma-Aldrich, cat. no. M5308) 

 L-Leucine (Sigma-Aldrich, cat. no. L8000) 

 L-Lysine (Sigma-Aldrich, cat. no. L5501) 

 Oligonucleotides (IDT DNA Technologies) see Table 2.1 for oligonucleotides 

used to study a 10 amino acid sequence of Hsp90 (DNA sequence: 5’ 

GCTAGTGAAACTTTTGAATTTCAAGCTGAA 3’) in pRNDM Hsp82  

 Custom bio-informatics software (available from 

www.labs.umassmed.edu\Bolonlab). 

 

Equipment 

 Incubator set to 37°C (Fisher Scientific, Model 655D) 

 1.7 ml microcentrifuge tubes (Sorenson Biosciences, cat. no. 16070) 

 Microcentrifuge (Beckman Coulter, Microfuge 18) 

 UV trans-illuminator (UVP, Model M-15) 

 Razor blades (VWR, cat. no. 55411-050) 

 Heatblock set to 42°C (VWR, cat. no. 13259-030) 

 Shaking incubator (Infors HT, Multitron Standard) 
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 Spectrophotometer capable of measuring absorbance at 600 nm. (Cary, 50 UV) 

 Thermocycler for PCR (Applied Biosystems, cat. no. 2720) 

 -80°C freezer for storage of yeast pellets (Sanyo, cat. no. MDF-U76VC) 

 Heat block set at 50°C (VWR, cat. no. 13259-030) 

 Autoclave (Brinkmann, cat. no. 023210100) 

 100x15mm Petri dishes (VWR, cat. no. 25384-088) 

 125ml flasks (Corning, cat. no. 29136-048) 

 BD Falcon 14ml culture tubes (BD Falcon cat. no.352057) 

 Tabletop centrifuge capable of spinning 14ml culture tubes at 3000g (Sorvall, 

Legend RT) 

 Electrophoresis power supply (Fisher Scientific, cat. no. FB300Q) 

 Agaraose gel system (Hoefer, cat. no. HE33) 

 Nanodrop spectrometer (Thermo Scientific, Nanodrop2000) 
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Reagent Setup 
PEG 3350 50% (w/v) solution – dissolve 50 grams of solid powder in water to a final 

volume of 100 ml. Sterilize by vacuum filtration and store at room temperature for up to 

one year. 

Lithium acetate 1.0 M solution – dissolve 102 grams into water to a final volume of 1 

L. Sterilize by vacuum filtration and store at room temperature for up to one year. 

Salmon Sperm DNA, 2 mg/ml solution in TAE – dissolve 100 mg of lyophilized 

powder in 50 ml of TAE. Make 1.0 ml aliquots, place in boiling water bath for 10 min, 

place on ice for 10 min, and store at -20°C for up to one year. 

G418 antibiotic, 250X solution – dissolve 500 mg of G418 in water to a final volume of 

10 ml. Filter sterilize and store at -20°C for up to one year. 

Kanamycin stock solution – dissolve 250 mg of Kanamycin in 10 ml of water and filter 

sterilize. Store at -20°C for up to one year. 

LB medium -dissolve 10 g of Trytpone, 5 g of Yeast Extract, and 5 g of Sodium 

Chloride in 1 L of water and autoclave. Store at room temperature for up to one year. 

LB+Kanamycin medium – Add 1.2 ml of Kanamycin stock solution to 1 L of LB and 

store at 4°C for up to one week. 

LB+Kanamycin plates - prepare 1 L of LB, add 15 g of Bacto agar and autoclave. Cool 

to 60°C and add 1.2 ml of Kanamycin stock solution. Pour into petri dishes and cool to 

solidify. Store at 4 °C for up to two months. 

40% Glucose (w/v) – dissolve 400 g of Glucose in water to a final volume of 1 L. Filter 

sterilize and store at room temperature for up to one year. 
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YPDA medium – dissolve 10 g of Yeast Extract, 20 g Bacto Peptone, and 0.1 g of 

Adenine Hemisulphate in 1 L of water. Autoclave and allow to cool to room temperature. 

Add 50 ml of 40% glucose. Store at 4°C for up to one month. 

G418 stock solution – dissolve 500 mg of G418 in water to a final volume of 10 ml. 

Filter sterilize and store at -20°C for up to one year. 

YPDA+G418 medium – add 4 ml of G418 stock solution to 1 L of YPDA. Store at 4°C 

for up to one month. 

2X YPDA medium – dissolve 20 g of Yeast Extract, 40 g Peptone, and 0.1 g of Adenine 

Hemisulphate in 1 L of water. Autoclave and allow to cool to room temperature. Add 50 

ml of 40% glucose. Store at 4°C for up to one month. 
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Procedure 

Generating Plasmid Libraries of Point Mutants ●TIMING ~1 week 
 

 1 | Add 5’ phosphates to each whole plasmid PCR primer (e.g. ‘Vector for’ and ‘Vector 

rev’ primers in Table 2.1): Dissolve primers in water to 100 µM and setup an 

individual phosphorylation reaction for each primer as tabulated below. Incubate for 

30 min at 37°C. No further purification is necessary.  

Component Amount per reaction (µl) Final 
Water 41  
T4 DNA Ligase Buffer (10X) 5 1X 
Primer (100 µM) e.g. ‘Vector for’ or 
‘vector rev’ in Table 2.1 3 6 µM 

T4 Polynucleotide kinase (10 U µl-1) 1 10 U 
          ■ PAUSE POINT The primers can be stored at -20°C for up to 1 year. 

 
  
 2 | Perform whole-plasmid PCR: Setup a PCR reaction with the following components. 

 
Component Amount per reaction (µl) Final 
Water 27  
Phusion HF buffer (5X) 10 1X 
Phosphorylated Primers (6 µM) e.g. 
‘Vector for’ or ‘vector rev’ in Table 2.1 5 of each 0.6 µM 

dNTP mix (10 µM) 1 0.2 µM 
Plasmid template (200 ng µl-1) 1 200 ng 
Phusion polymerase (2 U µl-1) 1 2 U 

 
 

 3 | Run the samples in thermocycler with the following conditions: 
 

Cycle number Denature Anneal Extend 
1 95°C, 2 min   
2-16 95°C, 30 s 55°C, 30 s 72°C, 1 min per kb 
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 4 | When the PCR is finished, cool to room temperature (23°C) and add 1 μl DpnI 

restriction endonuclease to degrade the template plasmid. Incubate at 37°C for 1h. 

 

 5 | Run the PCR reaction on an agarose gel, visualize with UV/EtBr, and excise the 

appropriate fragment and purify. We utilize Zymoclean Gel DNA Recovery Kit (see 

REAGENTS) and follow the manufacturer’s instructions.  

    ? TROUBLESHOOTING 

 

 6 | Circularize the gel-purified fragment vector by performing a unimolecular blunt-

ended ligation with the following components and incubating at room temperature for 

1 h: 

Component Amount per reaction (µl) Final 
Water 4  
T4 DNA Ligase Buffer (10X) 1 1X 
Gel purified PCR product (from step 5) 4 Varies 
T4 DNA Ligase (400 U µl-1) 1 400 U 

 
 

 7 | Transform the ligation reaction into a cloning strain of Escherichia coli (E. coli) by 

mixing 100 µl of competent cells with 5 µl of the ligation reaction and incubating on 

ice for 15 min. Subsequently, heat-shock the mixture at 42°C for 45 s, cool for one 

min on ice, add 1 ml of LB broth (stored at room temperature), and then incubate it at 

37°C for 1 h. Finally, spread 100 µl of cells onto LB-kanamycin plates, and let 

colonies grow at 37°C for 16 h.  
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 8 | Pick two individual colonies and grow each in liquid culture (LB-kanamycin) for 16 h 

at 37°C. 

 

 9 | Isolate plasmid DNA using a ZR plasmid miniprep kit and Sanger sequencing. One or 

both plasmids usually have the appropriate sequence and can be used in subsequent 

steps. 

  

 10 | Prepare cassettes containing saturation mutants. Dissolve the forward and reverse 

oligonucleotides (e.g. ‘Cas for’ and ‘Cas rev’ in Table 2.1) in water to a final 

concentration of 100 µM. Combine 50 µl of forward and 50 µl of reverse 

oligonucleotides so that the final cassette concentration is 50 µM. 

  

 11 | Anneal cassettes by boiling followed by slow cooling: Boil 1 liter of water, float 100 

µl of the cassettes in boiling water, remove the water from heat and allow the entire 

water bath to cool naturally to ambient temperature (~1 h). 

  

 12 | Dilute annealed cassettes to 0.5 µM in water. 

 

 13 | Digest the vector to generate cohesive ends complementary to the cassettes. Set up a 

BsaI digest as tabulated below and incubate at 50°C for 2 h. 

 
Component Amount per reaction (µl) Final 
Plasmid from step 9 (200 ng µl-1) 3 600 ng 
NEB buffer 3 (10X) 5 1X 
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Bovine Serum Albumin (10 mg/ml – 
sterile filtered) 0.5 0.1 

mg/ml 
Water 36.5  
BsaI enzyme (10 U µl-1) 5 50 U 

 
▲ CRITICAL STEP Sequential digestion with BsaI followed by a second 

enzyme that cuts between the BsaI sites (i.e. SphI in Figure 2.2) reduces undesired 

ligation products and improves library quality. 

 

 14 | Allow sample to cool to room temperature. Add 1 μl SphI enzyme and incubate at 

37°C for 1 h. 

 

 15 | Column-purify the digested plasmid using a Zymoclean gel DNA recovery kit. The 

small BsaI and SphI fragments will not bind efficiently to silica columns, thereby 

reducing background ligation products. 

 

 16 | Setup a separate ligation reaction for each cassette containing the following reagents 

and incubate at room temperature for 1 h. 

Component Amount per reaction (µl) Final 
Digested plasmid from step 15 (~10 nM) 2 ~ 1 nM 
Annealed cassette from step 12 (0.5 µM) 2 100 nM 
T4 DNA Ligase buffer (10X) 1 1X 
Water 4  
T4 DNA Ligase (400 U µl-1) 1 400 U 
 

 17 | Place tubes from step 16 into an ice bath for 5 min.  
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 18 | Add 100 µl of chemically competent E. coli to each tube. Incubate the tubes on ice 

for 15 min.  

 

 19 | Place the tubes in a 42°C water bath for 45 s, and then place them back on ice for 1 

min. Add 1 ml of LB broth to each tube (maintained at room temperature) and incubate 

the tubes at 37°C for 1 h. 

 

 20 | To analyze transformation efficiency, plate 10 μl of the transformed E. coli onto 

selective plates (e.g LB+kanamycin).  

 ▲ CRITICAL STEP The library size of a single randomized codon is 64. The 

probability of sampling each possible library member is related to the number of 

transformants in this step. A good rule of thumb is to have tenfold or greater coverage, 

meaning 640 or more total transformants and at least six colonies from the 10 µl that 

was plated. This procedure routinely produces 2,000 – 8,000 total transformants. 

 ?TROUBLESHOOTING 

 

 21 | Inoculate the remaining 990 μl of recovery mixture from step 20 into a sterile flask 

containing 10 ml of selective liquid growth medium (e.g. LB+kanamycin) and grow the 

cultures overnight at 37°C on an orbital shaker at 180 r.p.m. 

 

 22 | After overnight growth of the cultures, prepare plasmid libraries. Libraries can be 

readily combined at this step. To prepare a library of ten different amino acid positions, 
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combine equal volumes of saturated culture for each position and prepare plasmid DNA 

from this combined culture using a ZR plasmid miniprep kit. We typically prepare a 

miniprep from 3 ml of culture and discard the remaining culture. We have found that 

growing cultures larger than 3 ml from bulk transformations is necessary for consistent 

yields in DNA preparations. 

 ▲ CRITICAL STEP To assess the quality of the library, it is useful to prepare at least 

one library with a single randomized codon. Sanger sequencing of this sample should 

show incorporation of all four nucleotides at the randomized codon and homogeneous 

sequencing at all other positions. 

 

Generating Libraries of Yeast ●TIMING ~1 week 

 23 | From a frozen stock, streak out the conditional yeast strain to be transformed at least 

72 h before transformation. The media used must be permissive to your strain and will 

vary depending on the conditional strain used. Throughout this protocol we will provide 

example media that assume the use of a temperature sensitive strain202. This strain can 

be propagated on YPDA plates at 30°C. 

 

 24 | Allow individual colonies to grow to between 1 and 2 mm in diameter. Twenty 

hours before transformation, inoculate a single yeast colony into 3 ml of appropriate 

liquid medium (e.g., YPDA). Grow cultures overnight on an orbital rotator set at 180 

r.p.m., at the appropriate permissive temperature for the conditional strain. 
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 25 | When overnight cultures reach near-saturation, determine cell density by counting 

with a hemocytometer. Add 2.5 X 108 cells to a flask containing 50 ml of rich medium 

(e.g., 2x YPDA), which is sufficient for up to ten transformations. Incubate the cells on 

an orbital shaker at 180 r.p.m. for at least two cell doubling times, which is from 4 to 8 h 

depending on the strain.  

 

 26 | Prepare competent yeast from the cultures using the lithium acetate method215, 216.  

▲ CRITICAL STEP It is important to use freshly prepared competent cells in order to 

achieve efficient transformation. 

 

 27 | Add 1 µg of library plasmid DNA (from Step 22) to 360 µl of competent yeast and 

vortex briefly to mix.  

 ▲ CRITICAL STEP Plasmid transformation into yeast should be performed to 

maximize independent transformed cells while minimizing the number of cells that 

acquire more than one plasmid217. 

▲ CRITICAL STEP In addition to the transformation of plasmids with point mutant 

libraries, you should also transform a negative control (vector without the gene of 

interest), as well as a positive control (vector with a wild type copy of the gene of 

interest). These controls enable you to monitor selection pressure in your experiment. 

When switched to selective conditions, the negative control strain should stop growing 

and the positive control should continue to grow robustly. 
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 28 | Incubate the yeast-DNA mixture while rocking at room temperature for 30 min, and 

transfer it to a 42°C water bath for 30 min. 

  

 29 | Pellet the cells at 6,000g for 1 min at room temperature. Discard supernatant and re-

suspend the cells in 1 ml of permissive medium (e.g., YPDA).  

 ▲ CRITICAL STEP For the transformation of G418-resistant plasmids it is important 

to outgrow yeast under permissive conditions for at least 6 h at room temperature before 

exposure to G418 in Step 31. 

 

 30 | This step can be done overnight. Resuspend yeast transformation in 5 ml of medium 

lacking G418. Ampicillin can be added to a final concentration of 0.05 μg ml-1 at this 

stage and all subsequent yeast growth steps to hinder bacterial contamination. Grow at 

25°C for 6-18 h to allow transformed cells to develop antibiotic resistance to G418.  

 

 31 | Spread 50 ul of each yeast transformation onto a plate containing G418. Incubate 

plates at 30°C for 48-72 h. A library of single codon variants for a 10-aa region contains 

640 possible variants. Tenfold coverage or better is desired for sampling and represents 

6,400 independent yeast transformants. Typical yeast plasmid transformations yield 

20,000 – 100,000 independent transformants. 
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 32 | Take the remaining yeast transformation from step 30 (~4.95 ml) and pellet at 

3,000g for 5 min at 4°C. Aspirate supernatant and resuspend the pellet in 15 ml of 

permissive medium. Repeat for a total of five washes. 

 ▲ CRITICAL STEP Extracellular plasmid will contribute noise in subsequent analyses 

and should be thoroughly washed away. 

 

 33 | Add the washed cells to 50 ml of sterile culture medium (e.g., YPDA) with G418 

under otherwise permissive conditions. 

 

Bulk Yeast Competitions ●TIMING ~1 week 

 

 34 | By using a cuvette (1 cm path length) in the Cary spectrophotometer (Cary, 50 UV), 

measure the optical density of the yeast cultures at 600 nm (OD600) immediately after 

inoculation and record the measurement. Measure the OD600 periodically (e.g. every 12 

h) to determine when the culture enters mid-logarithmic growth (usually between 12 and 

48 h). When the culture enters mid-log phase (OD600=0.4-1), dilute it as needed into 

fresh medium to maintain an OD600 between 0.1 and 1. Maintain cultures in log growth 

for a total of at least 48 h, targeting a final OD600 of 0.8. 

 ? TROUBLESHOOTING 

 

 35 | Collect ~20 ml of cells of OD600 = 1.0 and place them in a 50-ml conical tube. This 

sample represents your yeast library before selection for mutational function. Adjust the 
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collected volume relative to the actual measured OD600. For example, if the OD600 is 0.5, 

collect 40 ml of cells. Centrifuge the collected cells for 5 min at 3,000g at 4°C. Aspirate 

off the supernatant and wash with 25 ml of water. Centrifuge again, aspirate off 

supernatant, and then store pellet at -80°C. 

 

 36 | Pellet the remaining culture and resuspend in medium conditions that select for the 

function of the library gene. For example, if you are using a temperature sensitive 

strain202, transfer the culture to the nonpermissive temperature. If you are using a shutoff 

strain218 with your library constitutively expressed, transfer the culture to shutoff 

conditions. Record the OD600 every 2 h for the initial 12-h period and then every 8 h. 

Collect samples as described in Step 35 every 3-4 h for the first 12 h of growth and then 

every 8 h thereafter. Dilute samples to maintain the OD600 between 0.05 and 1. Continue 

growth experiments for about 20 generations of the wild type control. Growth of the 

negative control should stall. This time course has provided useful results for the 

analysis of essential yeast genes, including Hsp90, under multiple growth conditions in 

our laboratory. This time course could be adjusted to account for the desired fitness 

resolution (i.e., shorter time courses and fewer points would result in less-precise fitness 

measurements, but they could be used to distinguish null mutants from viable mutants), 

as well as for potential gene-specific and condition-specific effects.  

 ▲ CRITICAL STEP Record all dilutions to accurately generate a growth curve for 

library, positive control, and negative control cells. During dilutions, always pass at least 

1 x 107 cells to avoid population bottlenecks. 
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Preparation of DNA from yeast competitions ●TIMING ~1 week 

 

 37 | Remove the yeast pellets from -80°C freezer and resuspend them in 200 µl of P1 

buffer containing RNAse (ZR plasmid miniprep kit).  

 

 38 | Add 5 µl of Zymolyase (150 units ml-1) to each resuspended pellet and mix by 

pipetting. Incubate for 1.5 h at 37°C. 

 

 39 | Add 300 µl of P2 buffer to the suspension and invert ten times to mix. Incubate at 

room temperature for 5 min. 

 

 40 | Add 420 µl of P3 buffer. Invert ten times to mix. 

 

 41 | Centrifuge for 10 min at 18,000g at room temperature. 

 

 42 | Purify the DNA from the supernatant using a silica column. 

 

 43 | PCR amplify the DNA using primers specific to the library version of the gene (e.g., 

‘PCR1a for’ and ‘PCR1a rev’, Table 2.1) and purify the resulting product on an agarose 

gel. Performing this step reduces sequencing of the conditional copy of the gene (i.e., the 

temperature-sensitive or shutoff version), which would otherwise be the dominant read 
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in the sequencing reaction. This can be accomplished using primers targeted to regions 

upstream and downstream of the coding region that are unique to the library plasmid. 

Component Amount per reaction (µl) Final 
Water 27  
Phusion HF buffer (5X) 10 1X 
Primers (50 µM) e.g. ‘PCR1a for’ and 
‘PCR1a rev’ in Table 2.1 0.5 of each 0.5 µM 

dNTP mix (10 µM) 1 0.2 µM 
Template DNA (from step 42) 10 Varies 
Phusion polymerase (2 U µl-1) 1 2 U 

 
Cycle number Denature Anneal Extend 
1 95°C, 2 min   
2 to ~21 95°C, 30 s 55°C, 30 s 72°C, 1 min per kb 

 
          ▲ CRITICAL STEP To limit errors that contribute noise to subsequent fitness 

analyses, use a high-fidelity polymerase and minimizing PCR cycles. Typically, 

18-22 cycles are sufficient to produce a strong PCR product at this stage, and care 

should be taken to avoid unnecessary PCR cycles throughout the rest of the 

protocol. To assess processing errors, include a control sample at this stage, 

consisting of a plasmid of homogeneous sequence. For example, use a plasmid 

encoding the wild type gene and perform the same PCR steps and manipulations. 

By using this control, we have found that the number of misreads from the entire 

processing procedure is compatible with reproducible fitness measurements that 

correlate with traditional fitness analyses of individual mutants202. 

 

 44 | Perform PCR to add MmeI restriction site and 3’ Illumina universal primer sequence 

(Figure 2.3) and purify the resulting product on a silica column. 
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Component Amount per reaction (µl) Final 
Water 27  
Phusion HF buffer (5X) 10 1X 
Primers (50 µM) e.g. ‘PCR1b for’ and 
PCR1b rev’ in Table 2.1 0.5 of each 0.5 µM 

dNTP mix (10 µM) 1 0.2 µM 
Template (PCR product from step 43) 10 varies 
Phusion polymerase (2 U µl-1) 1 2 U 

 
Cycle number Denature Anneal Extend 
1 95°C, 2 min   
2 to ~11 95°C, 30 s 55°C, 30 s 72°C, 30 s 

 
         ▲ CRITICAL STEP Typically 8-12 cycles are sufficient to produce a strong PCR 

product at this stage. 

 

 45 | Digest the PCR product from Step 44 with MmeI enzyme using the following setup. 

Incubate the PCR product at 37°C for 1 h, and then heat inactivate it at 80°C for 20 min. 

 

Component Amount per reaction (µl) Final 
PCR product (20 ng µl-1, from step 44) 10 200 ng 
NEB buffer 4 (10X) 2 1X 
SAM (1 mM) 1 50 µM 
Water 5  
MmeI enzyme (2 U µl-1) 2 4 U 

 
          ▲ CRITICAL STEP Freshly prepare 1 mM SAM in water by diluting the 

concentrated stock solution. SAM is unstable in water and the 1 mM solution 

should be used immediately.  

 

 46 | Ligate adapters containing a binding site for 5’ universal deep-sequencing primers 

and a barcode to the MmeI-digested DNA. Mix the components tabulated below and 
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incubate the mixture at room temperature for 30 min, and then heat-inactivate it at 65°C 

for 10 min. 

Component Amount per reaction (µl) Final 
MmeI digested DNA (10 ng µl-1, from 
step 45) 15 150 ng 

T4 DNA Ligase buffer (10X) 2 1X 
Adapter (6 µM) e.g. ‘Adapter for’ and 
‘Adapter rev’ in Table 2.1 2 600 nM 

T4 DNA Ligase (400 U µl-1) 1 400 U 
         ▲ CRITICAL STEP Use adapters whose overhangs are complementary to the 

overhangs from the MmeI digestion in Step 45. If you are planning to pool samples 

for sequencing, use bar codes that differ by at least 2 nucleotides from all other bar 

codes in order to minimize bar code switching from misreads.  

 
 47 | Separate the ligation reaction on an agarose gel, excise the ligated band, and purify it 

on a silica column. 

 ▲ CRITICAL STEP At this step, the goal is to deplete adapter dimers from your 

sample. These dimers will readily separate from the product of interest. However, the 

MmeI digestion and adapter ligation reactions typically go to about 70% completion, 

which produces a complex banding pattern. However, neither the undigested nor 

unligated products PCR amplify in subsequent steps. 

 

 48 | Perform PCR on the gel-purified products (from Step 47) with Illumina universal 

primers. Separate the PCR product on an agarose gel, excise the appropriate band, and 

then column purify it. This sample is ready for deep sequencing. 
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Component Amount per reaction (µl) Final 
Water 26  
Phusion HF buffer (5X) 10 1X 
Illumina Universal primers (10 µM) 1 of each 0.2 µM 
dNTP mix (10 µM) 1 0.2 µM 
Template (from step 47) 10 varies 
Phusion polymerase (2 U µl-1) 1 2 U 
 
Cycle number Denature Anneal Extend 
1 95°C, 2 min   
2 to ~11 95°C, 30 s 55°C, 30 s 72°C, 30 s 
 

          ▲ CRITICAL STEP PCR cycles should be minimized. This step typically 

requires 8-14 cycles of PCR. Samples representing different time-points can be 

pooled if they are distinctly bar coded and amplified with similar numbers of PCR 

cycles. 

          ▲ CRITICAL STEP Misreads from deep-sequencing are highly variable and 

should be internally assessed in every run. This can be accomplished by generating 

a plasmid containing universal deep-sequencing primer sites, which can be utilized 

to generate a sequencing control with minimal PCR cycles (about eight) and hence 

minimal sequence heterogeneity. This sample should be mixed in with time point 

samples at about a 1/100 molar ratio in all analyses. This sample should ideally be 

distinct from all other samples in the sequencing reaction. 

 

Analyzing the Sequencing Data: Approximately 1 day 

▲CRITICAL All data analysis is performed as outlined (Figure 2.4) with custom 

programs (http://labs.umassmed.edu/Bolonlab). Knowledge of Linux, Perl, and deep-

sequencing are required for the analysis steps. 
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Figure 2.4 Analysis pipeline for measuring fitness effects of mutations from deep-

sequencing data. (a) Sequences that pass quality filtering at all positions in the read are 

stored in a sequence-only file. (b) The occurrence of each unique sequence read is 

summed, resulting in a substantial compression of file size. (c) At each time point, 

calculate the relative abundance of each point mutant in the library. For the control 

samples, calculate the misread rate per base. (d) Calculate the fitness of each point mutant 

on the basis of its change in relative abundance over time. 
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Figure 2.4 
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49 | Perform quality filtering. By using the FASTQ file (the output file from sequence 

analysis) as input, check the quality score at all nucleotide positions for each read219. 

Define a threshold (we frequently use PHRED score of >20, which corresponds to >99% 

confidence). Create a new output file that contains sequences for which all base calls 

pass this threshold.  

  

 50 | Enumerate the unique sequence reads and how often they were observed. This 

serves to compress the data dramatically and speeds subsequent analyses. 

 

 51 | Generate an input mask file that describes the experiment, including the 

correspondence between bar code sequence and time-point, and the wild type sequence. 

 

 52 | Tabulate the number of reads of each possible single-codon variant at each time 

point. Notably, this step removes all sequences that contain apparent codon changes at 

two or more positions. This filtering step removes many misread events and improves 

signal-to-noise ratio. 

 ▲ CRITICAL STEP Analyze the internal sequencing and processing controls 

(described in Steps 44 and 49). Sequencing and PCR/processing errors will appear as 

mutations in these samples. We have typically observed processing misread rates of ~2 

in 1,000 base calls. Taking into account that ~90% of misreads will be filtered out as 

apparent double mutants in library samples, this translates to an effective noise per base 

called of ~2 in 10,000. With this misread rate, the vast majority of 36-base reads 
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(~0.999836 = 99.2%) will be accurate over each base. Because the remaining misread 

noise is distributed over multiple mutants, the average signal-to-noise ratio for each 

mutant is ~100:1. The non-linear relationship between per-base misread rates and 

mutant noise makes it valuable to have low misread noise. If the processing per base 

misread rate is above 1 in 100, we typically perform a second sequencing analysis. By 

having an independent control for processing (including all PCR steps) and sequencing 

(without most PCR steps), it is possible to determine where problems occurred and go 

back to the appropriate step: re-doing processing and/or sequencing. Of note, misread 

errors are not random and can vary from run to run. Having internal controls should 

enable improved error handling in future work. In addition, misread errors are dependent 

on the sequencing platform being used. We have utilized Illumina sequencing in all of 

our analyses to date.  

 ? TROUBLESHOOTING 

 

 53 | For each possible single-codon variant, calculate the mutant-to-wild type ratio at 

each time point. Of note, the abundance of wild type sequence reads in our plasmid 

libraries is typically between 1-4%, about tenfold higher than each point mutant because 

it is generated independently at each amino acid position. If each codon randomization is 

completely random, the wild type sequence would be present at 1.5% (1/64). This 

provides improved counting accuracy of the wild type sequence, which is used as the 

reference for calculating the relative abundance of all point mutants. 
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 54 | Determine the slope of log2(mutant/wild type) versus time in wild type generations. 

This is a direct measure of fitness called the selection coefficient (s). For neutral 

mutations, s=0; whereas deleterious mutations have s<0 and beneficial mutants s>0. Of 

note, other groups have developed software for analyzing more complex mutant libraries 

that include multiple mutations220, 221. 
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? TROUBLESHOOTING (Table 2.2) 
 
Step Problem  Possible reason Solution 
5 Multiple bands Non-specific primer binding Increase annealing 

temperature and/or identify 
appropriate band by 
running single-cut plasmid 
in adjacent lane. 

20 Poor 
transformation 
efficiency 

Ratio of cassette to vector, 
or mismatched overhangs. 

With phosphorylated vector 
overhangs and non-
phosphorylated cassette 
overhangs a molar ratio of 
50 cassette to 1 vector 
works well. Occassionally 
(< 5%) BsaI may cut non-
canonically – in this case 
make a new vector with the 
BsaI sites moved by 1 
nucleotide. 

34 Yeast with 
negative control 
plasmid do not 
halt growing in 
selective 
conditions. 

Yeast strain contains 
another copy of the gene, or 
the gene is not essential. 

Re-check or re-make 
conditional strain.  

52 High noise level 
from sequencing 
misreads 

Poor quality filtering and/or 
poor sequencing data. 

Re-run the analysis with a 
more stringent quality 
cutoff or re-sequence. 
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Anticipated Results 
 

Generating plasmid libraries of point mutants 

The cassette ligation strategy generally produces 2,000-8,000 transformants. 

Background transformants (from ligations without any insert cassette) can vary 

depending on the overhangs left after BsaI digestion. The perfect match between the 

cassette and vector overhangs usually outcompetes background vector self-ligation. For 

this reason control transformants (from ligations performed without any insert) do not 

necessarily indicate a problem. Sanger sequencing of an individually randomized codon 

library is required to assess quality. If the Sanger chromatogram shows all four bases at 

randomized positions and homogeneous sequence before and after, then the library is 

appropriate for further use. 

 

Generating libraries of yeast and bulk competitions 

Plasmid transformations into yeast generally produce 20,000-100,000 

independent transformants. Upon transfer to conditions that select for mutant function, 

growth of library cultures typically slow briefly compared to the growth of the positive 

control culture (because the average mutation in the library is deleterious relative to wild 

type). Growth of the negative control culture should plateau.  

 

Preparation of DNA for sequencing 

 All samples should amplify by PCR, digest, and ligate to adapters with similar 

efficiency.  
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Analyzing the sequencing data 

The quality of deep-sequencing data varies markedly from run-to-run. Internal 

sequencing and processing controls should be included in every sequencing sample. If 

necessary, quality filtering should be adjusted so that the internally determined miscall 

rate is well below the signal (abundance of mutants in the library). Within libraries, 

internal positive controls (i.e., silent mutations) should have near-neutral fitness effects 

(s≈0) and internal negative controls (i.e., stop codons) should have null-like fitness (s≈-

1). Because mutants with null-like fitness rapidly decrease in abundance, they can only 

be observed in early time-points. The switch to selective conditions during these early 

time points is not perfectly synchronized across all cells in the culture (i.e., in a shutoff 

experiment, variations in initial protein levels result in variation in shutoff timing in 

individual cells). This can result in apparent selection coefficients of null mutants that are 

>-1 (typically <-0.5, though). True nulls (i.e., internal stop codons) can be used to define 

a range of apparent fitness measurements that correspond to null fitness. Mutants that 

support yeast growth persist in the culture beyond the point where selection 

synchronization impacts fitness analysis. 

 
 
 
 
 
 
 
 
 
 



90 
 

 
 

Acknowledgements 

This work was supported in part by grants from the National Institutes of Health 

(R01-GM083038) and the American Cancer Society (RSG-08-17301-GMC) to D.N.A.B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



91 
 

 
 

Chapter III – Experimental Illumination of a Fitness Landscape 

 

This chapter has been published previously as Hietpas RT, Jensen JD, Bolon DNA. 

“Experimental illumination of a fitness landscape.” Proc Natl Acad Sci U S A. 2011 May 

10; 108(19):7896-901. 

 

 The following chapter was a collaborative effort. I and Dr. Daniel N. A. Bolon 

designed the research and I performed the yeast growth competitions, DNA isolation, 

sequencing preparation, and binary competitions. I, Dr. Jeffrey D. Jensen and Dr. Daniel 

N. A. Bolon analyzed the data. I, Dr. Jeffrey D. Jensen, and Dr. Daniel N. A. Bolon 

prepared the manuscript. 
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Abstract 

The genes of all organisms have been shaped by selective pressures. The 

relationship between gene sequence and fitness has tremendous implications for 

understanding both evolutionary processes and functional constraints on the encoded 

proteins. Here, we have exploited deep sequencing technology to experimentally 

determine the fitness of all possible individual point mutants under controlled conditions 

for a nine-amino acid region of Hsp90. Over the past five decades, limited glimpses into 

the relationship between gene sequence and function have sparked a long debate 

regarding the distribution, relative proportion and evolutionary significance of 

deleterious, neutral and advantageous mutations. Our systematic experimental 

measurement of fitness effects of Hsp90 mutants in yeast, evaluated in the light of 

existing population genetic theory, are remarkably consistent with a nearly neutral model 

of molecular evolution. 
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Introduction 

The results of  greater than 150 years of biological research has demonstrated that 

selection pressures shape the evolution of organisms4. The relationship between gene 

sequence and selective advantage/disadvantage provides the fundamental link between 

genotype and fitness. Until now, it had not been feasible to systematically measure this 

relationship because of the challenge of constructing and monitoring all possible genetic 

variants. Two classes of experiments have provided glimpses of the fitness landscape and 

inferences into the relationship between gene sequence and fitness: directed evolution135, 

152, 222 and microbial experimental evolution207, 223. In both of these approaches, the 

fitness landscape can only be inferred - either because the pool of starting mutations is 

unknown, or because mutational sampling is limited. Thus, the question remains: what 

does the fitness landscape look like for all possible point mutants? 

 

Determining the fitness landscape of point mutations in a gene is conceptually 

simple: measure the fitness of organisms with each possible point mutation in a specific 

gene in an otherwise identical genetic background. To accomplish this in practice, there 

are two major technical challenges: generating high-quality systematic mutant libraries, 

and measuring fitness in high-throughput both accurately and with a large dynamic range. 

To address these challenges, we developed an approach that we call “extremely 

methodical and parallel investigation of randomized individual codons” (EMPIRIC) 

fitness (Figure 3.1). 
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Figure 3.1 EMPIRIC approach to experimentally determine fitness landscapes. 

Randomized individual codon libraries are introduced into a host cell whose only other 

copy of the gene is regulatable. The fitness of each individual codon mutation is 

determined by measuring its abundance in the mixed culture as a function of time under 

selective conditions. 
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Figure 3.1 
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Results 

We used the EMPIRIC approach to analyze yeast Hsp90, an essential chaperone 

in eukaryotes123 required for the maturation of many kinases200. Of note, analyzing an 

essential gene maximizes the potential fitness range of mutants and the signal of the 

analysis. The amino acid sequence of Hsp90 is highly conserved among eukaryotes with 

45% of the amino acids identical between the human and S. cerevisiae proteins. Based on 

the sequence and structure171 of Hsp90, we focused on a nine amino acid region that 

contains a diversity of different amino acids with positions that vary in both their level of 

phylogenetic conservation among diversely related eukaryotes and their physical 

environment (solvent exposed and buried) in the structure of Hsp90 (Figure 3.2A). In 

addition, two solvent-exposed aromatic side chains (Phe583 and Trp585) were 

structurally intriguing for a chaperone based on their potential to bind to hydrophobic 

regions on binding partners. The randomization of this nine amino acid region resulted in 

the parallel analyses of 180 amino acid substitutions and >500 different codon variants – 

a task that would be daunting by traditional approaches. 

 

Our analysis method monitors plasmid abundance that we expect to parallel with 

cell growth such that selective pressure begins to impact plasmid abundance at about the 

same time that it impacts cell growth. When cells with null rescue plasmids were 

switched to nonpermissive conditions, growth began to retard noticeably after 8 h and 

was stably slowed after 12 h (Figure 3.2B). At this time we also observed the effects of 

selective pressure on the relative abundance of our point mutant plasmid library as  
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Figure 3.2 Hsp90 region analyzed and application of selection pressure to point mutants 

of Hsp90 in yeast. (A) Positions 592-600 are highlighted in yellow in the dimeric 

structure of S. cerevisiae Hsp90. (B) Growth of an Hsp90 temperature sensitive yeast 

strain at 36ºC is rescued with a wild type Hsp90 plasmid. (C&D) Deep sequencing 

analysis of a library of single-codon mutants of Hsp90 from amino acids 582-590 grown 

in mixed culture. (C) Relative abundance of wild type sequence as a function of time in 

selective conditions where the only other copy of Hsp90 is inactivated. (D) The ratio of 

TAG stop codons to wild type codons decreases steeply over time in selective conditions. 

(E) Observed fitness of leucine synonyms at positions 582, 583, and 584. 
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Figure 3.2 
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monitored by deep sequencing (Figure 3.2C and D). Starting at 12 h, the relative 

abundance of wild type sequence reads starts to increase consistent with the wild type 

sequence having better fitness relative to the average point mutant (Figure 3.2C). Because 

we generate our libraries with mixtures of all four nucleotides at each codon position, 

stop codons are included in our library and provide an internal monitor of selection 

pressure. Stop codons at all of the positions that we analyzed rapidly decrease in relative 

abundance starting at 12 h in selective conditions (Figure 3.2D) consistent with the 

known requirement of sequences C-terminal to this region for Hsp90 function188. From 

these results, we conclude that our deep sequencing approach is an effective means to 

monitor selective pressure. 

 

The inclusion of wild type sequences in our libraries serves as an internal 

benchmark to calculate the competitive fitness of each mutant. Under our experimental 

conditions, the doubling time of a homogeneous culture of yeast harboring wild type 

Hsp90 plasmid was 4 h (Figure 3.2B). By measuring the change in the ratio of a mutant 

to wild type sequence reads as a function of this wild type generation time (Figure 3.2E), 

we calculate the relative fitness of the mutant as a selection coefficients (s)99. Because 

fitness is related to the change in abundances as a function of time, it does not require 

equal abundance of each variant at the beginning of the experiment. Thus, biases in the 

mutational process (i.e., from oligonucleotide synthesis) did not preclude the analysis of 

fitness of any mutants. The selection coefficients represent the difference in fitness 

between the mutant and wild type. For yeast, fitness is proportional to the inverse of the 
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doubling time, and by definition wild type fitness is 1. Thus, a selection coefficient of 

zero (no change in mutant to wt ratio over time) means that a mutant is as fit as wild type, 

a negative selection coefficient means that a mutant is less fit than wild type (-1 if a 

mutant does not support any proliferation), and a positive selection coefficient means that 

a mutant is more fit than wild type.  

 

We calculated selection coefficients from our EMPIRIC fitness measurements for 

each codon mutant in our library (Table A1). For six mutants, we compared the 

EMPIRIC measured fitness effects to those measured by traditional two strain 

competition using strains with different colored fluorescent proteins (Figure S3.1). 

EMPIRIC and the bistrain competitions both parse wt-like and null-like mutants 

similarly, and for strains that persist in the cultures and that are therefore monitored with 

higher signal, we observe a strong positive correlation (R2= 0.92, P=0.003 for two-tailed 

Student’s t test) between EMPIRIC and biculture fitness measurements. Of note, one 

advantage of EMPIRIC measurements is that all mutants experience identical 

environmental conditions because they are physically located in the same flask compared 

with bistrain fitness competitions where each mutant is grown in separate flasks. To 

examine the reproducibility of EMPIRIC measurements, we repeated the EMPIRIC 

experiment (Figure S3.1) and observe a strong correlation (R2=0.82, P=10-67 two-tailed 

Student’s t test).  
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Figure S3.1 Validation of EMPIRIC measurements. A strain with wt Hsp90 labeled with 

YFP was grown in competition with strains labeled with CFP under identical growth 

conditions to those in the EMPIRIC analyses. CFP strains included the following Hsp90 

genes: wild type, G584S, G584Q, S586A, S586G, A587Y, and E590W (Panel A). For 

Hsp90 mutants that persist in the CFP/YFP competition and whose fitness could be 

accurately determined by this method the correlation with EMPIRIC fitness values (Panel 

B) is very strong (R2 = 0.96) and is statistically significant (p = 0.003). The EMPIRIC 

growth competition and deep sequencing were repeated (Panel C). Fitness measurements 

from the repeat experiment are based on three time points (corresponding to 0, 3, and 6 

generations of selection pressure). There is a clear correlation between the fitness effects 

measured in these independent experiments (linear relationship has an R2 of 0.82 - fit not 

shown and a p-value of 10-67 two-tailed student T test). The relationship is also distinctly 

non-linear, likely indicating slight differences, such as media composition or temperature 

in the environmental conditions of the repeat experiment. The agreement between these 

experimental replicates indicates that EMPIRIC measurements are reproducible. 
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Figure S3.1 
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The average selection coefficient for all codons for all codons from our EMPIRIC 

analyses was s=-0.42 (P=10-170 using two-tailed Student’s t test compared with null 

hypothesis that the mean s=0), indicating that the average mutation in this region is of 

deleterious effect. For comparison, the average selection coefficient of all stop codons 

was -0.75. The fitness of stop codons is greater than a true null (s=-1), indicating that the 

relative plasmid abundance of these nonsense mutations falls off rapidly with time in 

selective conditions, but that slow plasmid replication may persist in some fraction of 

these cells. 

 

We examined selection coefficient differences between synonymous codons, 

which code for identical protein sequences. Synonymous codon substitutions among 

homologous genes are widely used in population genetic analysis as a measure of the 

neutral mutation rate224 with the underlying assumption that these substitutions do not 

impact fitness and their dynamics are governed by genetic drift. This assumption is 

imperfect because species have distinct codon preferences within coding regions, 

indicating that selective pressure may in fact distinguish between synonymous codons225. 

Our experimental data enabled us to analyze the variation in fitness between synonymous 

substitutions. We observe increased fitness variability between synonymous substitutions 

where the average synonym fitness was null-like (Figure S3.2), which is likely caused by 

sampling noise (due to the low abundance of these codons in the competing culture). To 

minimize this noise, we calculated the variability among selection coefficients for  
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Figure S3.2 Variability in experimental fitness among synonymous codons as a function 

of the fitness of the synonym average. Amino acid substitutions with poor fitness 

decrease rapidly in abundance and are therefore sequenced with reduced frequency, 

increasing the noise in their measurement. 
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Figure S3.2 
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synonymous codons with high fitness (s>-0.05, n=151) as a root mean square deviation 

(rmsd=0.018 compared to the synonym mean). For comparison we observe an rmsd of 

0.35 when all possible substitutions including those that result in an amino acid change 

are considered. Thus, synonymous substitutions caused fitness changes that pale in 

magnitude to amino acid changing substitutions consistent with the expectation of 

neutrality at synonymous sites226. 

 

We averaged the observed EMPIRIC selection coefficient of synonymous codons 

to generate fitness profiles of each amino acid at each position (Figure 3.3A and 

Supporting Figure S3.3). The fitness of the hydrophobic amino acids exhibited less 

variability within a position than polar amino acids (rmsd of selection coefficients for 

VILMFYW of 0.15 compared to 0.26 for KRHDENQST). From a fitness perspective, the 

specific geometry of hydrophobic amino acids had a smaller impact compared to the 

varied physical properties of polar amino acids. To compare geometrical sensitivity 

among amino acids with similar physical properties, we compared selection coefficients 

at each position between the following pairs: D/E, K/R, N/Q, V/I, L/M, W/Y. The three 

polar pairs differ more than the three hydrophobic pairs (selection coefficient rmsd of 

0.23 and 0.10 respectively), indicating that the fitness of polar amino acids is more 

sensitive to geometry than the fitness of hydrophobic amino acids. The relative 

insensitivity of amino acid substitutions between hydrophobic amino acids is consistent 

with the finding that hydrophobic cores of proteins can be efficiently repacked with 

different hydrophobic sequences227-229. All polar amino acids can form hydrogen bonds  
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Figure 3.3 Amino acid profile in phylogenetic alignment poorly predicts EMPIRIC 

fitness profile. (A) Heat map representation of the EMPIRIC fitness profile with the wild 

type amino acids outlined in red. (B) Information content logos generated from amino 

acids with wt-like EMPIRIC fitness (B) and a phylogenetic alignment of 448 Hsp90 

protein sequences (C). (D) The dominant genetic code is optimized for single-base 

substitutions between codons with wt-like fitness compared to randomly simulated codes 

(+2.4σ). (E) Distribution of tolerated and phylogenetically observed amino acids 

expressed as an entropy where zero corresponds to a frozen position and 3 corresponds to 

unrestrained positions. (F) Relationship between tolerated amino acid profile from 

EMPIRIC fitness measurements and phylogenetic alignment. Linear regression indicates 

a very weak correlation with R2 of 0.15. (G) EMPIRIC fitness analyzed as a function of 

amino acid prevalence in the phylogenetic alignment. Most amino acids observed in the 

phylogenetic alignment are well tolerated when made in the yeast homologue. 
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Figure 3.3 
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Figure S3.3 Selection coefficients measured for each amino acid substitution at positions 

582-590 of Hsp90. The wild type sequence is: Q582, F583, G584, W585, S586, A587, 

N588, M589, E590. 
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Figure S3.3 
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whose thermodynamic energy varies sharply with distance and angle230, providing a 

rationale for the greater variability of the fitness of polar amino acids. 

 

Based on the distribution of observed fitness effects, we classified mutants as wt-

like if they had a selection coefficient within 5% of wild type or better (s>-0.05). We 

chose this cutoff value because it is three times the rmsd between synonyms and, thus, 

represents a 99% confidence interval. We generated a logo of amino acids with wt-like 

fitness to analyze the patterns for underlying physical requirements for fitness at each 

position (Figure 3.3B). Two of the nine positions analyzed exhibited a clear and 

consistent physical requirement for wt-like fitness: large hydrophobic side chains for 

position 585 and a gamma-hydroxyl group for position 586. The physical properties for 

the preferred amino acids at these positions enable mechanistic predictions. The fitness 

preference for large hydrophobic amino acids of varied geometry (tryptophan, leucine, 

phenylalanine) at position 585, which is located on the surface of the Hsp90 structure, is 

consistent with involvement in loose contacts with hydrophobic partner molecules. The 

preference for only serine or threonine at position 586 indicates that the hydroxyl group 

common to both of these amino acids is important for function. In the structure of Hsp90, 

this hydroxyl group forms hydrogen bonds to two main-chain amide groups (Figure 

S3.4). Although many hydrogen bonds are not important for protein function231, our 

fitness measurements indicate that the hydrogen bonds formed at position 586 are critical 

for the function of Hsp90. Indeed, although tremendous strides have been made in 

understanding the relationship between protein structure and stability228, 232, the ability to  
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Figure S3.4 Structural images of the amino acids in yeast Hsp90 analyzed by EMPIRIC. 
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Figure S3.4 
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predict from structure the most important stabilizing contacts remains an unmet 

challenge. EMPIRIC fitness measurements provide a high-throughput approach to 

identify these important interactions experimentally and, hence, a route to develop and 

train predictive algorithms with improved accuracy. 

 

Most of the other positions analyzed exhibit a preference for amino acids with 

varied physical properties. For example, at position 584, both glycine (the wild type 

amino acid) and phenylalanine result in wt-like fitness. These amino acids differ 

dramatically in their physical properties: phenylalanine is large and hydrophobic, and 

glycine is the smallest amino acid and imparts flexibility on the protein main-chain. 

Despite their disparate physical properties, these two amino acids are clearly 

distinguished in fitness from all others. This type of physical plasticity illustrates the 

degenerate relationship between physics and biology: biology is governed by physical 

interactions, but biological requirements can have multiple physical solutions. The 

observed absence of phenylalanine at position 584 in a broad phylogenetic alignment 

(Figure 3.3C) is consistent with the genetic code requiring two base substitutions to make 

this amino acid transition and the deleterious fitness effects of any of the single base 

substitutions. 

 

Indeed, the fitness landscape combined with the genetic code may have broad 

impacts on evolutionary processes. The EMPIRIC approach provides a long-sought route 

(via larger datasets) to accurately examine the influence of the genetic code on evolution. 
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For example, it makes it possible to determine whether the dominant genetic code is 

optimized for sampling evolutionarily neutral/favorable mutations. To address this issue 

in our dataset of the fitness effects of >500 codon replacements, we counted the number 

of single-base substitutions that result in transitions between two codons with wt-like 

fitness for the dominant genetic code and for 1,000 randomly simulated genetic codes 

(Figure 3.3E). We find that the genetic code is highly optimized (+2.4 σ) to favor single-

base substitutions between codons with wt-like fitness compared with randomly 

generated codes as predicted from theoretical considerations of amino acid similarity233. 

Thus, the genetic code generally permits single-base substitution pathways between 

codons with wt-like fitness. 

 

To assess the EMPIRIC fitness profile against the evolutionary record, we 

compared our experimental results against the Hsp90 species tree (Figure 3.3C). For 

almost every position, the amino acid entropy is higher for EMPIRIC fitness (Figure 

3.3E), indicating that more amino acid substitutions are compatible with high fitness in 

yeast Hsp90 than are observed in the phylogenetic alignment of Hsp90. Indeed, the 

relative amino acid entropy from the phylogenetic alignment was a poor predictor of the 

EMPIRIC entropy (Figure 3.3F). The number and distribution of substitutions in the 

phylogenetic alignment did not accurately indicate the number of amino acids that would 

be compatible with high fitness experimentally. Many factors could contribute to this 

observation, including distinct fitness profiles under environmental conditions 

experienced in natural selection, and fitness differences beyond our ability to differentiate 
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resulting in meaningful selection pressures in nature. Importantly, the genes in the 

phylogenetic alignment vary widely in their codon usage and hence their nucleotide 

sequence (Figure S3.5), indicating that mutational sampling occurred in this region and 

were subject to distinct evolutionary pressures in different organisms owing to varying 

selection intensities and/or effective population sizes. 

 

Although the absence of a substitution in the phylogenetic alignment was a poor 

prognosticator of fitness effects, we find that all 17 amino acid substitutions observed at 

least twice in the phylogenetic alignment had wt-like (s>-0.05) experimental fitness 

(Figure 3.3G). We do note that five amino acid substitutions that were observed only 

once in the phylogenetic alignment fall below this fitness cutoff, but only one is null-like 

(s<-0.5). In contrast, of the amino acid substitutions absent from the phylogenetic 

alignment, only 20% had wt-like experimental fitness (Figure S3.6). Thus, the presence 

of an amino acid in a phylogenetic alignment was predictive that the corresponding point 

mutation in the yeast protein will be biochemically functional and evolutionarily nearly 

neutral. These observations indicate the important role of drift in the fixation of 

equivalent substitutions, and highlight the dominant role of purifying selection in 

suppressing deleterious fixations 24. 
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Figure S3.5 Nucleotide conservation (Panel A) among Hsp90 genes from an 

evolutionarily broad distribution of eukaryotes compared to protein alignment (Panel B) 

from the same region (amino acids 582-590). The variation observed at the nucleotide 

level indicates that mutational sampling has occurred within this dataset of Hsp90 

sequences. Protein alignment from six species (C. posadasii, A. irradians, C. japonica, E. 

gracilis, B. rapa, and S. cerevisiae) separated by similar evolutionary distance (Panel C). 

The similarity of the amino acid profiles in Panels B and C indicate that the parental set 

of sequences is representative of the diversity of Hsp90 sequences in natural populations. 
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Figure S3.5 
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Figure S3.6 EMPIRIC fitness of amino acids both observed and unobserved in a wide 

phylogenetic alignment. Fraction of amino acids with EMPIRIC fitness similar to wild 

type (s>-0.05) and poorly fit (s<-0.05) parsed by their observation or lack thereof in the 

phylogenetic alignment. 
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Figure S3.6 
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Discussion 

The overall distribution of EMPIRIC fitness is bimodal (Figure 3.4) with a 

clustering of amino acids with fitness similar to wild type (s≈0), and a broader 

distribution of mutations of deleterious effect. Based on this distribution, we classified 

the first mode as 'nearly neutral', and the second as 'deleterious'. Evaluating this directly 

measured distribution of fitness effects for >500 codon variants against the rich field of 

predictions from population genetics is of tremendous interest. Indeed, understanding this 

underlying distribution of selection coefficients has been a central focus of evolutionary 

biology over the past five decades107. Contrary to recent inference made in Drosophila 

favoring models of frequent recurrent and strongly positive selection107, but similar to 

inferences from genome-wide analyses of polymorphisms from S. cerevisiae and S. 

paradoxus234, our direct observations in yeast are remarkably consistent with a nearly 

neutral model of molecular evolution19, in which a large proportion of new mutations are 

strongly deleterious and are eliminated via purifying selection, whereas the great majority 

of remaining mutations are nearly neutral, with dynamics largely dictated by genetic drift 

(Figure 3.4). Importantly, these initial results pertain to a conserved region of a highly 

conserved gene under a single growth condition. Examining and comparing the 

distribution of fitness effects for regions of variable levels of conservation, and under 

variable growth conditions, will be of extreme interest and should be a subject of future 

investigation. 

 

 



122 
 

 
 

Figure 3.4 Distribution of fitness effects of mutations from population genetic models 

and EMPIRIC measurement. For each model, the relative abundance of each type of 

fitness effect is illustrated by the length of the bar segment. The experimentally measured 

selection coefficients were binned in 0.05 increments. 
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Figure 3.4 
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As with the first techniques of protein electrophoresis allowing biologists to glimpse the 

extensive protein-level variation80, 235 spurring the development of the neutral18, 236 and 

nearly neutral theories of molecular evolution19 - as well as the introduction of DNA 

sequencing technology allowing for inference to be drawn from nucleotide-level 

variation237 - the EMPIRIC technique provides another layer of understanding, enabling 

direct measure of the distribution of selection coefficients by considering each possible 

point mutation at each site. In doing so, the EMPIRIC approach exposes a broad range of 

long-standing questions in population genetics to experimental examination including the 

effects of environmental conditions and genetic background on fitness landscapes. 
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Specific Materials and Methods 

 

Library construction 

In EMPIRIC fitness measurements, high-quality single codon substitution 

libraries that avoid multiple mutations are important for two reasons: enabling fitness 

changes to be directly attributed to distinct mutations, and providing a library size that 

can be accurately monitored in high-throughput. To generate these point mutant libraries, 

we optimized a cassette ligation strategy to rapidly generate plasmids containing single 

codons fully randomized to generate all 64 possibilities (Figure S3.7).  

 

We constructed a plasmid with a self-encoded removable fragment (SERF) 

composed of inverted BsaI restriction sites, such that treatment with this enzyme results 

in directional sticky ends and removal of the BsaI sites. To reduce background ligation 

products, an SphI site, introduced between the BsaI sites was also digested in these 

vectors. We introduced a silent HpaII restriction site adjacent to the randomized region in 

order to facilitate adapter ligation required for deep sequencing. We generated the SERF 

vector by PCR from a yeast 417 shuttle plasmid containing a KanMX marker and the 

HSP82 (systematic name of yeast Hsp90) gene driven by a GPD promoter that expresses 

Hsp90 to endogenous levels67. The HSP82 region of the SERF vector was fully 

sequenced to ensure the fidelity of the entire gene. Annealed oligonucleotide cassettes 

with a single codon randomized as NNN were ligated into the vector and transformed  
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Figure S3.7 Mutagenesis strategy. (A) Vectors are prepared with inverted BsaI sites, 

such that digestion removes the enzyme binding site and provides directional sticky ends 

for the efficient ligation of an oligonucleotide cassette. (B) Sanger sequencing 

chromatogram of an experimentally generated single-codon randomized library. The 

homogeneous peaks in the constant regions demonstrates that the procedure does not 

result in detectable levels of undesired ligation products such as vectors lacking insert. 

(C) Solexa sequencing indicates that all 64 codons are well-sampled for the randomized 

position. (D) simulated sampling of randomized codons demonstrates that the 

experimentally achievable sampling of 8,000 independent transformants results in small 

codon variability from sampling. 
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Figure S3.7 
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into Excherichia coli. Transformants were grown in mixed liquid culture from which 

plasmid DNA was isolated. 

 

Growth Competition 

We used iG170D S. cerevisiae cells179 engineered with a temperature-sensitive 

chromosomal copy of Hsp90. This yeast strain grows robustly at the permissive 

temperature of 25°C, rapidly slows growing at the non-permissive temperature of 36°C. 

Growth at the non-permissive temperature is rescued with a plasmid bearing wild type 

Hsp90 (Figure 3.2B). Plasmid libraries for each randomized position were transformed 

into using the lithium acetate method. Transformants were grown in mixed liquid culture 

with G418 selection at 25°C. After growing to saturation (2 d), cultures were outgrown 

overnight at 25°C and an equal number of cells for each randomized position combined 

into a single culture. This culture was then heated in a water bath to 39°C for 15 min to 

rapidly inactivate G170D Hsp90 and subsequently grown at 36°C. These cultures were 

diluted every 8 h to maintain a culture density less than <107 cells/ml. Samples for 

analysis corresponding to ≈ 2×108 cells were harvested at different time points. All yeast 

growth was performed in synthetic dextrose medium with 200 μg/ml G418 and 50 μg/ml 

ampicillin. Growth rates were determined for a strain with a wild type Hsp90 rescue 

plasmid under identical conditions (doubling time of 4 h at 36°C). 

 

To validate our EMPIRIC approach, we experimentally determined the fitness 

effects of six point mutants through binary competition of strains fluorescently labeled 
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with either CFP or YFP as described. Briefly, the CFP and YFP genes were 

chromosomally integrated into the iG170D parental yeast strain used in the EMPIRIC 

measurements. Plasmids containing either the wild type yeast Hsp90 gene or a panel of 

six mutants was introduced into each strain. Individually, CFP-labeled strains with either 

wild type or one of the six mutants were grown in competition with a YFP-labeled strain 

containing wild type Hsp90 under experimental conditions identical to the EMPIRIC 

experiment, and fluorescent measurements were made as a function of time. 

 

DNA preparation and sequencing 

Yeast pellets were lysed with Zymolyase and total DNA was purified using a 

silica column. A region containing all of the randomized codons was PCR amplified with 

primers that added a 3’ Illumina sequencing primer binding site. After purifying the PCR 

product on a silica column, a sticky end was created adjacent to the randomized region by 

digestion with the enzyme HpaII. This sticky end was ligated to an oligonucleotide 

cassette that included a three base barcode with a Hamming distance238 of two between 

any two codes (used to distinguish each time-point sample) and a 5’ Illumina sequencing 

primer binding site. The ligation reactions for each time-point were column purified, 

combined and amplified in a single reaction with Illumina genomic sequencing primers. 

This PCR product was separated on an agarose gel and purified prior to 36-base Illumina 

sequencing. 
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Data analysis 

Illumina sequencing resulted in fastq file from which 2.6×107 reads were used for 

time-dependent analysis based upon stringent accuracy requirements (greater than 99% 

confidence across all 36 bases). The occurrence of each point mutant at each time-point 

was tabulated. Ten of the randomized codon sequences resulted in the formation of 

internal HpaII sites and were removed from further analysis. The ratio of each single-

codon mutation relative to the wild type sequence was calculated for each time point on a 

log2 scale. Selection coefficients (s) for each mutation were determined as the slope of 

this ratio to time in wt generations. Selection coefficients for all stop codons were 

determined from the 12, 24, and 36 h time-points. Selection coefficients of mutants 

within three standard deviations of the stop codon mean (s<-0.50) were considered null-

like and analyzed in the same manner. For all other mutations, selection coefficients were 

determined from the 12, 24, 36, 48, 60, 72, and 84 h time-points. To check for systematic 

influences of codon bias on fitness, we calculated the fitness difference between a codon 

and the average for all synonymous codonsand compared this difference to the relative 

abundance of the codon in highly expressed yeast genes. For this analysis, we chose the 

13 genes with the highest experimentally observed expression in S. cerevisiae239. We 

averaged over all synonymous codons to calculate amino acid fitness and used the 

standard deviation to estimate noise in our system. Amino acids were considered wt-like 

if their amino acid selection coefficient was greater than -0.05. Fitness logos of wt-like 

amino acids were generated by creating sequences with an equal number of each wt-like 

amino acid and the program weblogo240. A similar logo was produced for the 448 
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sequences obtained using BLASTP with the full-length yeast Hsp82 protein that aligned 

fully within this region. 

 

Simulations of alternate genetic codes 

Genetic codes were chosen randomly for the twenty amino acids plus stop codons 

with the requirement that each of these twenty one possible classes be encoded by at least 

one codon. The EMPIRIC fitness measurements were then searched using these codes for 

all single-base substitutions between codons with wt-like fitness. The simulation was run 

for 1000 iterations and compared to the dominant biological code. 
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Chapter IV – Shifting Fitness Landscapes in Response to Altered 

Environments 

 

This work has been submitted, reviewed, and resubmitted to Evolution as Hietpas RT*, 

Bank C*, Jensen JD¥, Bolon DNA¥. “Shifting fitness landscapes in response to altered 

environments” 
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and the Jeffrey D. Jensen lab. I performed the yeast growth competitions, DNA 
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134 
 

 
 

Abstract 

 The role of adaptation in molecular evolution has been contentious for decades. 

Here, we shed light on the adaptive potential in Saccharomyces cerevisiae by presenting 

systematic fitness measurements for all possible point mutations in a region of Hsp90 

under four environmental conditions. Under elevated salinity, we observe numerous 

beneficial mutations with growth advantages up to 7% relative to the wild type. All of 

these beneficial mutations were observed to be associated with high costs of adaptation. 

We thus demonstrate that an essential protein can harbor adaptive potential upon an 

environmental challenge, and report a remarkable fit of the data to a version of Fisher's 

geometric model that focuses on the fitness trade-offs between mutations in different 

environments. 
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Introduction 

 As multiple whole genome projects come to fruition, the presence of whole 

genome data within and between populations and species has spurred the development of 

a large class of test statistics aimed at describing the distribution of fitness effects (DFE), 

or some aspect of the distribution, using polymorphism and divergence data107, 108, 171, 241-

244. Yet, the abundance of empirical, theoretical, and computational study has led to 

contentious findings. Turning to perhaps the best-studied organism in population 

genetics, Drosophila melanogaster, estimates are far from consistent, and reconciling 

results with one another is often challenging. For example, considering polymorphism 

data, Li & Stephan171 and Jensen et al243 estimate the mean beneficial selection 

coefficient (s) at 0.002, whereas Macpherson et al.107 estimate at 0.01, and Andolfatto108 

at 0.00001. 

 

 Considering other avenues for illuminating the DFE apart from statistical 

inference, we come to the rich field of experimental evolution. These studies have often 

come in the form of mutation accumulation experiments, with most results recapitulating 

the basic expectations of Timofeeff-Ressovsky245 and Muller246 that most mutations 

which affect phenotype must be strongly deleterious owing to billions of years of gradual 

improvements. However, one of the main limitations of such experiments derives from 

the structure of the experiments themselves. Observations are limited to considering only 

mutations that happen to spontaneously occur, and are generally focused upon 

characterizing the rate of accumulation of deleterious variants. In recent years, panels of 
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tens to hundreds of spontaneous or engineered247 mutants have been investigated for their 

impacts on fitness under variable conditions in both bacteria111, 248-250 and viruses251, 252. 

These studies have provided important insights into the environmental dependence of 

mutant fitness effects. However, precise measurement of fitness effects for large panels 

of mutants in an otherwise identical genetic background and under distinct environmental 

conditions remains an arduous challenge.  

 

 In order to overcome many of these limitations, Hietpas et al.202 recently proposed 

a methodology coined ‘extremely methodical and parallel investigation of randomized 

individual codons’ (EMPIRIC), which generates high quality systematic mutant libraries 

and measures fitness with a large dynamic range. The EMPIRIC approach enables the 

investigation of all possible point mutations (and their effect relative to wild type) for a 

given region. This approach has the advantage of mutation accumulation experiments, 

inasmuch as the DFE of new mutations may be directly observed, rather than inferred 

from the distribution of segregating and fixed mutations, but has the additional benefit of 

allowing for a systematic exploration of the full mutational landscape for regions of 

genes. We developed EMPIRIC to provide precise and reproducible measurements of 

individual mutations including performing experiments with yeast rapidly expanded from 

a single colony to provide a homogeneous genetic background, maintaining large 

populations throughout to minimize stochastic fluctuations in mutant frequencies, and 

including the wild type sequence in our competitions to provide a direct reference. Thus 

our approach avoids pitfalls common to previous bulk competitions253. Given the 
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experimental procedure, a given identical mutation (on an identical genetic background) 

may be readily compared across multiple environments. This benefit however comes at 

the cost of two distinct trade-offs: 1) we here focus on a specific genomic region, rather 

than the whole-genome search associated with mutation accumulation experiments, and 

2) the experimentally controlled environment is not necessarily related to the complex 

and variable environmental pressures experienced by natural populations. 

 

 We focused our analyses of environmental conditions on two parameters 

(temperature and salinity) expected to affect the biophysical and biochemical properties 

of multiple proteins and hence to place distinct pressures on the Hsp90 chaperone system. 

As its name indicates, heat shock protein 90 is a chaperone that is up regulated in 

response to elevated temperature190. Heat-induced expression of Hsp90 in yeast is 

required for efficient growth at temperatures above 37ºC123. Genome-wide analyses of 

mRNA abundance indicate that Hsp90 is transiently up regulated upon heat shock at 37ºC 

with a maximum 8-fold response after 10 min, but in steady state growth at this 

temperature it is not significantly up regulated254. In addition, Hsp90 regulates the global 

transcriptional response to elevated temperature by binding to Heat Shock Factor 1 

(HSF1). Under normal conditions, Hsp90 binds to HSF1 keeping it in an inactive state. 

Elevated temperature causes Hsp90 to release HSF1 that triggers the main transcriptional 

response to heat shock199. 
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 In contrast to Hsp90’s central role in the response to heat stress, it plays a more 

modest role in the response to osmotic stress. For example, elevated salinity (0.7 or 1 M 

sodium chloride) does not cause a statistically significant change in Hsp90 mRNA levels 

in yeast over either short or long time periods254-256. While Hsp90 is not up regulated in 

response to elevated salinity, its basal function is required for robust growth under 

hyperosmotic conditions257. Indeed Hsp90 and its co-chaperone Cdc37 are both required 

for activation of the high osmolarity glycerol pathway258, 259 that yeast require for growth 

under conditions of elevated salinity260. While Hsp90 function is intimately linked to the 

yeast response to elevated temperature, it plays a more indirect role in the yeast response 

to elevated salinity. 

 

 In the initial study202, considering a strongly conserved region of a strongly 

conserved gene (Hsp90, an essential chaperone in eukaryotes123 required for the 

maturation of many kinases200), results were quite clear – with a strong bimodal 

distribution containing mutations nearly equivalent to wild type, mutations that were 

strongly deleterious, and no observed beneficial mutations. We made the case that this 

observation was remarkably consistent with Ohta’s19 expectation under the nearly neutral 

model. However, this first proof-of-principle study may in some ways be regarded as the 

most likely scenario for replicating the predictions of the nearly neutral model, in that - 

given the gentle growth conditions and the evolutionary importance of this region - it 

might be considered unlikely to identify mutations more fit than wild type for the reasons 

argued by Muller246. 
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 One valuable approach for interpreting unique data of this type is within the 

context of Fisher’s geometric model (FGM)12 – a widely utilized framework for 

interpreting adaptation to novel environments – which yields expectations of the 

proportion of beneficial to deleterious mutations, as well as the mutational steps sizes and 

distances characterizing adaptive walks261, 262. The comparison of evolutionary models 

with experimental measures has a rich tradition (e.g. examining the underlying causes of 

epistasis263). For interpreting our data, the FGM provides an intuitive framework for 

quantifying the cost of adaptation. The model itself is straightforward (see also Figure 1 

in Orr 1998262). For a given environment, the fitness of an individual is characterized by 

its position in an n-dimensional phenotype space. Fitness is assumed to decrease radially 

from a single phenotypic optimum. Hence, the Euclidean distance to the optimum 

determines the fitness of an individual. Random vectors originating from the current 

phenotype represent new mutations. Those mutations that decrease the distance to the 

optimum are considered beneficial and can hence contribute to adaptation, whereas those 

that increase the distance to the optimum are considered deleterious. The better the 

current phenotype is adapted to the environment, the closer it is to the phenotypic 

optimum. Thus, for a population near optimum, fewer mutations are expected to be 

beneficial, because, by solely geometrical arguments, the probability that a randomly 

occurring mutation will decrease the distance to the optimum becomes lower as the 

optimum nears. Different environments correspond to differently located optima in 

phenotype space. The position of each of these optima (relative to one another, and the 

current phenotype) determines the number and magnitude of beneficial mutations and the 
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expected cost of adaptation between different environments. Of note, the FGM inherently 

proposes (potentially high) costs of adaptation: as soon as the phenotypic optimum is 

relocated upon a change in environment, subsets of the phenotype space arise in which 

mutations are beneficial in one environment while deleterious in the other. 

  

 Continuing to exploit the EMPIRIC high throughput approach, we examine 

changes in the DFE for a region of the Hsp90 gene in associated with novel selective 

pressures – here in the form of variations in temperature and salinity. We uniquely 

address two general and long-standing points of both theoretical and empirical interest: i) 

the applicability of Fisher’s geometric model12 for populations facing adaptive 

challenges, and ii) a characterization of the relative cost of adaptation. 
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Results and Discussion 

 To facilitate fitness analyses of Hsp90 mutants under varied temperature and 

salinity, we created the DBY288 shutoff strain. In this strain, the only chromosomal copy 

of Hsp90 is driven by a strictly galactose-dependent promoter. In galactose (Gal) medium 

this strain expresses Hsp90 to a level similar to the parental strain, but in dextrose (Dex) 

medium Hsp90 expression is fully shutoff (Figure 4.1A). Transformation of this strain 

with a plasmid that constitutively expresses Hsp90 rescues growth in dextrose compared 

to a control plasmid lacking Hsp90 (Figure 4.1B). This conditional strain allows libraries 

of Hsp90 mutants to be amplified in Gal medium, and then competed in Dex medium 

where growth depends on the function of the library Hsp90 variants. Importantly, these 

bulk competitions can be performed under conditions of varied temperature and salinity. 

 

 We analyzed mutants in a region encompassing amino acids 582-590 of Hsp90. 

This region forms a hydrophobic patch on the surface of the Hsp90 structure including 

Phe583 and Trp585 that forms a putative substrate binding site80, and that we speculate 

has the potential to impact client maturation as a function of distinct environments. We 

transformed a systematic library of mutations including all possible point mutations in 

this region into the DBY288 strain, amplified the resulting yeast library in Gal medium, 

and performed a bulk competition in Dex medium (Figure 4.1C) under four different 

conditions (30ºC, 36ºC, 30ºC+S, 36ºC+S, where +S indicates elevated salinity). For cells 

harboring wild type Hsp90, both elevated temperature and salinity reduced growth rate  
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Figure 4.1 EMPIRIC fitness analyses in a shutoff strain. The yeast strain DBY288 was 

engineered to express Hsp90 at endogenous levels when grown in galactose medium, and 

shutoff in dextrose medium, confirmed by Western analysis in (A). Growth of DBY288 

yeast in dextrose was rescued with a plasmid that constitutively expresses Hsp90 (B). To 

measure fitness effects of mutants, systematic point mutant libraries were competed in 

bulk with deep sequencing used toreadout the abundance of each mutant (C). The time-

dependent change in mutant frequency provided a direct examination of relative growth 

(D). This approach provided precise and reproducible measurements of fitness effects 

(E). 
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Figure 4.1 
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with the combined 36ºC+S condition causing the greatest reduction (Supporting Figure 

S4.1), indicating a greater joint stress. 

 

 The relative abundance of each mutant in bulk competition was determined by 

focused deep sequencing of samples extracted from the culture over time (Figure 4.1C). 

The change over time in relative abundance of an amino acid substitution relative to the 

wild type amino acid (Figure 4.1D) yields a direct readout of the relative fitness effect of 

each point mutant in the library. Importantly, each point mutant is analyzed with precise 

control over genetic background and environmental sampling relative to all other mutants 

because the library is transformed into the same batch of yeast, and the bulk competitions 

are performed in the same flask where rapid mixing ensures that all mutants experience 

identical conditions. The ability to standardize genetic background and environmental 

conditions results in measurements of fitness effects that are highly reproducible (Figure 

4.1E). The precision of these measurements enables unique systematic exploration of the 

distribution of fitness effects that we have analyzed with regard to expectations from 

Fisher's geometric model (FGM). 

 

 Experimental competitions under each environmental condition were managed to 

provide robust fitness measurements (Figure 4.2). In order to limit stochastic fluctuations, 

population sizes were maintained in gross excess to the diversity of our libraries at all 

steps. In addition, cells were analyzed rapidly once subject to selective conditions in 

order to limit the influence of potential secondary mutations. With these safeguards in  
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Figure S4.1 Growth of wild type Hsp90 in the four investigated environmental 

conditions. Growth of yeast harboring wild type Hsp90 were monitored by OD600 under 

experimental propagation identical to those used in the bulk competitions. The apparent 

doubling times under each condition are indicated in parentheses. 
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Figure S4.1 
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Figure 4.2 Population management during bulk competition experiments. (A) Complete 

experimental outline from initial transformation. The number of independent 

transformants and minimum population sizes during all phases of growth were in gross 

excess to the diversity of our library containing 567 mutants. (B) Trajectories indicating 

population sizes during the selection phase in each environmental condition. Dashed lines 

indicate dilutions, arrowheads indicate time points harvested and used for calculation of 

fitness. 
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Figure 4.2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Plasmid Transformation 
1 -100,000 
+ indl'pendmt cells 

OUtgrowth (-13 generations) 

.j.. -1 x 101 cells 

Shutoff Conditions(- 3 generations) 

.1. -sx lol cells 

EIMronmental EquHibration (-2 generations) 

-J- -lx lol cells 

Growth Competition (1 1-22 generations) 
>7 >< roJ cells 

B 9 

8 

7 
9 

7 
9 

8 

7 

'" y ' 'f ' 

1;/v 
30"C 

" ' ' ' ' • • 

/V/V 
30"C + S 

'' ' ' ' ' 
IV vv : Vi i 

3tfC 

• • •• • • • 

/VVV 
36"C + s 

0 40 80 
Time in Sllutoff lhr.) 



149 
 

 
 

place we analyzed the fitness effects of mutations under conditions of elevated 

temperature and/or elevated salinity (Figure 4.3, Supporting Table A2). Compared to the 

standard condition (0 mutations with s>0.01; smax=0.007), we observe a dramatic increase 

in the number and magnitude of beneficial mutations in Hsp90 under conditions of 

elevated salinity (in 30ºC+S: 38 mutations with s>0.01,smax=0.083; in 36ºC+S: 24 

mutations with s>0.01; smax=0.044). 

 

 As recent studies have observed that the adaptation of yeast to new conditions can 

be dramatically influenced by standing mutations264, and mutations to multiple adaptive 

mutational pathways have been reported for yeast in elevated salinity265, we took 

additional steps to ensure that the observed beneficial fitness effects (Figure 4.3) were 

caused by the specifically induced amino acid changes in Hsp90. Firstly, we analyzed 

synonymous substitutions underlying the identified beneficial amino acid, as most were 

encoded by multiple codons (e.g. N588P is encoded by four separate nucleotide variants). 

During transformation, each codon variant should enter a distinct pool of cells. If 

adaptation were primarily driven by secondary mutations within the genomes of these 

pools of cells, we would expect to observe highly variable fitness measurements among 

codons of the same amino acid. In contrast, if adaptation is primarily due to the Hsp90 

amino acid substitution, then synonymous substitutions should have a narrow 

distribution. Among the beneficial amino acids that we observe, the distribution of fitness 

effects for synonymous codons is indeed narrow (Supporting Figure S4.2), indicating that  
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Figure 4.3 Fitness of mutants in different environments. (A) Histogram of mutant fitness 

in 30ºC+S. In order to exemplify the costs of adaptation to elevated salinity, the fitness 

effects of the beneficial (dark blue area) and wild type like (light blue area) mutations 

identified in 30ºC+S are indicated as dark and light blue bars in the corresponding 

histograms in 30ºC (B), 36ºC (C), and 36ºC+S (D). The selection coefficients of three 

independently validated beneficial mutations in 30ºC+S and their corresponding selection 

coefficients in the other environments are indicated by black triangles. (Two overlapping 

triangles in (D) are marked with a star). (E) Proportions of beneficial, wild type like, 

deleterious and strongly deleterious mutations in the different environments. 
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Figure 4.3 
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Figure S4.2 Fitness effects of synonymous substitutions for the ten amino acid 

substitutions with the greatest benefit in elevated salinity. Independently measured 

synonymous mutations were consistently beneficial, indicating that the amino acid 

sequence was a dominant cause of the observed fitness benefit. Only one of the top ten 

substitutions was due to an amino acid change encoded by a single codon (M589W). 

These analyses indicate that the majority of observed beneficial amino acid substitutions 

are caused by the protein sequence. 
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Figure S4.2 
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the induced mutations in Hsp90 are the primary determinant underlying the experimental 

observation. 

 

 Secondly, we performed a follow-up 30ºC+S study with two experimental 

replicates using independent transformations. In these experiments we observe a similar 

number of beneficial mutations and a strong correlation between each independent 

replicate (Supporting Figure S4.3). Thirdly, we developed a qPCR based binary 

competition assay (Supporting Figure S4.4) that we used as an alternative strategy to 

measure fitness effects of six individual mutations (Supporting Figure S4.5). The fitness 

effects observed by binary competition correlate well with those measured by EMPIRIC 

bulk competitions. From this collection of experiments, we conclude that our fitness 

measures are primarily owing to the induced amino acid changes. 

 

 We studied the distribution of fitness effects along two environmental axes 

comprising elevated temperature and elevated salinity. These are associated with 

different expectations concerning the potential for adaptation and the distance to the 

optimum in the FGM. As a heat shock protein, Hsp90 is per definition suited to cope with 

elevated temperature, and its function becomes even more essential upon heat stress as 

discussed above. Hence, we hypothesize that the endogenous sequence is close to the 

phenotypic optimum under high temperature and beneficial mutations rare. In contrast, 

we hypothesize that elevated salinity may pose a novel environmental challenge that is  
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Figure S4.3 Correlation between biological replicates at elevated salinity (30°C+S). To 

examine potential influences of variations among populations of transformed cells in 

promoting adaptation to elevated salinity, additional bulk competitions were performed 

starting with two independent transformations. We observed a strong correlation for all 

mutants that persist in the bulk culture (s>-0.2), including mutations with an adaptive 

benefit relative to wild type under this condition. 
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Figure S4.3 
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Figure S4.4 Schematic of qPCR based analyses of selection coefficients. (A) On the left 

is the parental plasmid used in bulk competition (Plasmid A), and on the right is a nearly 

identical construct (Plasmid B) with a 50 base pair insert in a non-functional region of the 

plasmid. Distinct primers were designed in order to distinguish these plasmids by qPCR. 

(B) Plasmid A and Plasmid B were amplified with both the match and mismatch primers 

to determine the dynamic measurement range and specificity of each primer. (C) 

Representative standard curve generated with both match and mismatch template/primer 

sets indicate that PCR efficiency is robust for match pairs, but that mismatch pairs require 

many more cycles in order to generate measureable PCR product. (D) Plasmid abundance 

was calculated for both the match and mismatch template/primer pairs with an input of 

approximately 0.1 ng of template. Match plasmids were readily detected with minimal 

noise from mismatch plasmids. (E) Analyses of a binary competition between yeast 

harboring either wt or N588P Hsp90. These two strains of yeast were competed as in the 

bulk experiments with samples isolated at different time points under selection. Lysates 

from these samples were amplified with plasmid specific primers to determine the 

abundance of each plasmid in the lysate. (F) The change in mutant to wild type 

abundance over time in wild type generations was analyzed to determine the selection 

coefficient as in the bulk competitions. 
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Figure S4.4 
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Figure S4.5 Fitness measurements made by binary competition correlate with EMPIRIC 

results. (A) Binary competitions were performed between wild type Hsp90 and six 

different point mutants in four distinct environmental conditions and fitness effects of the 

mutants determined using a qPCR approach. Bar graphs represent the average selection 

coefficient from three independent qPCR analyses with error bars representing the 

standard deviation. Competition between two wild type coding sequences results in 

indistinguishable growth, indicating that the non-coding changes made to distinguish 

plasmids by qPCR do not perturb fitness. (B) Correlation between fitness measurements 

made by binary competition and EMPIRIC. 
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not directly associated with the function of Hsp90. Therefore, we expect a relocation of 

the phenotypic optimum that yields increased potential for adaptation. 

 

 The above expectations are clearly supported by our results: both under standard 

conditions (30ºC) and under elevated temperature (36ºC) we find no beneficial mutations, 

indicating that the current phenotype is close to the phenotypic optimum (cf. Figure 

4.3B,C). In contrast, we find numerous beneficial mutations under elevated salinity 

(30ºC+S) and under combined elevated temperature and salinity (36ºC+S, cf. Figure 

4.3A,D). As hypothesized, the proportion of deleterious mutations grows with increased 

heat stress in the 36ºC and 36ºC+S environments as compared with 30ºC (Figure 4.3E). 

In addition, Figure 4.3E shows that the proportion of beneficial mutations under high 

salinity is reduced upon increased heat stress, indicating that the current phenotype is 

closer to the phenotypic optimum in 36ºC+S than in 30ºC+S – which is supported by the 

estimated distances to the optimum under the assumption that the DFE follows a shifted 

gamma distribution. We further observe high costs of adaptation. In particular, mutations 

that were found to be beneficial in 30ºC+S (represented by dark blue background in the 

histogram in Figure 4.3A) are very likely to be deleterious in the low-salinity 

environments (as indicated by dark blue bars in Figure 4.3B,C). 

 

 We were interested in the question of whether the observed costs of adaptation are 

corresponding with the predictions of an FGM that is extended to more than one 

environment. Roughly, this idea has been sketched in Martin and Lenormand 2006b, 
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Figure 7 (but see also Figure 4.4): if different phenotypic optima characterizing the 

fitness peaks for different environments are drawn in a phenotype space according to the 

FGM, subsets of the phenotype space arise in which mutations are deleterious in one but 

beneficial in the other environment. Hence, as soon as two environments have differently 

located optima, costs of adaptation are predicted. Moreover, this is necessarily true for 

every choice of two environments that represent different distances between the current 

phenotype and the optimum (e.g., standard environment vs. adaptive challenge). Here, we 

do not fit explicit distributions to the DFEs for individual environments. Instead, we use a 

simplified FGM that reduces the information for each mutant to the sign of its selection 

coefficient – which indicates its rough location in phenotype space as compared with the 

current phenotype and the optimum. By comparing this location between environments 

we can test whether there is a configuration of the FGM (i.e., an arrangement of the 

current phenotype and the four different optima) that is in accordance with our observed 

costs of adaptation (which is determined by the sign effect of a mutation in all four 

environments).  

 

 In order to determine the effective number of dimensions of the phenotype space, 

we utilize the results of Martin and Lenormand266. Our data for the standard environment 

yielded ne=1.08, which is in concordance with previously published genome-wide values 

for S. cerevisiae266. In addition, we estimated the distances to the optimum under the 

assumption that the DFE (neglecting the deleterious mode with s<=-0.5) follows a shifted 

gamma distribution as suggested by Martin & Lenormand 2006b (further detailed in  
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Figure 4.4 Graphical representation of the fit of the FGM. The horizontal black solid line 

represents the one-dimensional phenotype space, whereas the vertical solid black line 

indicates the position of the current phenotype. For each environment, a colored circle 

(evocative of the original two-dimensional picture of the FGM (cf. Figure 1, Orr 

1998262)) is drawn tangential to the current phenotype with its radius corresponding to the 

distance to the phenotypic optimum (indicated as indexed black dot) of the respective 

environment. The interval corresponding to the projection of each circle onto the one-

dimensional phenotype space represents the area into which mutations have to fall 

according to the FGM in order to decrease the distance to the optimum and hence to be 

beneficial in a particular environment. 181 of 189 analyzed mutations are in agreement 

with a one-dimensional FGM, in which the distance of the current phenotype to the 

optimum for each environment in phenotype space is assumed to rank according to the 

selection coefficient of the most beneficial mutation (here, the radius of the circles is 

drawn proportional to the selection coefficient of the best mutant). This yields 5 

categories of mutations that are characterized by the overlap of the projected circles (cf. 

also Figure 4.5): (D) Deleterious in all environments, (1) s>0 in 36ºC only, (2) s<0 in 

36ºC only, (3) s<0 in 30ºC and 36ºC; s>0 in 30ºC+S and 36ºC+S, (4) s>0 in 36ºC+S only. 

Arrows represent exemplary mutations for each of these categories, indexed with the 

respective observed number of such mutations per category. Gray triangles indicate the 

projection of these categories onto the respective interval in phenotype space (see also 

Figure 4.5). 
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Figure 4.4 
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Methods). Mutations were categorized according to the sign of their selection coefficient 

in each of the four environments, resulting in 16 possible categories of mutations – 

however, any possible geometric arrangement according to a one-dimensional FGM as 

defined for our purpose contains only 5 categories of mutations, which are determined by 

the ranking of the distances to the optimum (which we fixed according to the estimated 

distances) and the arrangement of the optima in phenotype space (cf. Figure 4.4). This 

resulted in 8 possible models that are consistent with the FGM (cf. Figure 4.5). A 

particular FGM arrangement harbors a chosen mutation if it includes the mutation’s 

category.  

 

 Despite the restriction on the dimensionality (i.e., on the number of mutational 

categories allowed), our best fit pursuant to our simplified version of the FGM 

(graphically represented in Figure 4.4) harbors 95.8% of all mutations (99.5% if the sign 

of mutations that were previously categorized as wt-like are neglected). In addition, we 

compared the 8 models that are compatible with an arrangement according to our 

definition of the FGM (cf. Figure 4.5) with fits to all 4,368 possible subsets containing 5 

out of 16 mutational categories (i.e., all alternative models with the same complexity, but 

not compatible with an FGM-like geometrical arrangement). We find that our best fit 

ranks second among all models, where the overall best model harbors 97.4% of all 

observed mutations. Furthermore, all eight models that are in concordance with the FGM 

are within the best 5% of all models, harboring between 79.9% and 95.8% of mutations. 
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Figure 4.5 All possible realizations of the FGM in a one-dimensional phenotype space. 

Horizontal black solid lines represent the phenotype space, whereas the vertical solid 

black line indicates the position of the current phenotype. For each environment, an 

interval (representing the one-dimensional version of what is commonly drawn as a circle 

in the two-dimensional FGM) is drawn as a colored line that spreads from the current 

phenotype along the phenotype space to twice the distance between the current phenotype 

and the phenotypic optimum (indicated as indexed black dot) for that environment. This 

interval represents the area in which mutations have to fall according to a one-

dimensional FGM in order to decrease the distance to the optimum and hence to be 

beneficial. All 8 combinatory possibilities to realize this model are shown, with the 

second one (highlighted in yellow) representing the best fit that is elaborated in Figure 

4.4. Every realization contains 5 categories of mutations (D, 1-4) that are characterized 

by the overlap of colored intervals. 

 

 

 

 

 

 

 

 

 



167 
 

 
 

Figure 4.5 
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Conclusions 

 Many of the greatest accomplishments of the genomic era come from the 

empirical evaluation of the fundamental theoretical models of evolution proposed nearly 

a century ago by the founders of the field – Fisher, Haldane, and Wright (for an excellent 

overview of the early field, see Crow 1987267). It is in this vein which we have evaluated 

Fisher’s geometric model. We have experimentally observed many of Fisher’s 

expectations regarding adaptive step sizes as they relate to the distance from an optimum 

state. 

 

 Our observations suggest a number of noteworthy implications. First, we observe 

a striking number of beneficial mutations in a small region of an essential protein. This 

demonstrates that genomic regions under high constraint harbor hitherto unrecognized 

potential for adaptation upon environmental change. Interpreting these identified 

beneficial mutations in light of the known biology of Hsp90 suggests that biochemical 

context well predicts adaptive response, implying an important role of regulators in 

dictating adaptive potential. Although this region of Hsp90 is strongly conserved in 

eukaryotes202, some of the salt beneficial mutations that we observed experimentally 

(e.g., S586T and N588H) are also found in nature. Second, the simple framework of the 

FGM is sufficient to explain important aspects of our data. In particular, the observed 

costs of adaptation and the number of shared beneficial mutations between the two high-

salinity environments are remarkably consistent with a one-dimensional FGM. And while 

it is far from conclusive, the repeated observation that beneficial mutations in one 
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environment tend to be mildly to strongly deleterious in all other environments, ought to 

serve as a note of caution against recent arguments234, 268, 269 for the pervasive role of 

standing variation in adaptation. Third, we observe that the potential for adaptation is 

reduced in the combined high-temperature-and-salinity as compared with the high-

salinity environment. Combined with the experimental observation that this joint 

environment also results in the greatest reduction in growth rate, this result is shown to be 

consistent with the expectation of the FGM. Further, this observation echoes the notion of 

Haldane81, who suggested the difficulty inherent in simultaneous selection for multiple 

traits.  
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Specific Materials and Methods 

 

Plasmid library construction 

 Saturative single codon substitution libraries of amino acids 582-590 were 

generated in plasmid p417GPD that constitutively expresses Hsp90 as previously 

described202. 

 

Yeast transformation and selection 

Constitutively expressed libraries of Hsp90 mutants were introduced into a 

shutoff strain, amplified in galactose medium, and then competed in dextrose medium. 

These studies used the DBY288 yeast strain (can1-100 ade2-1 his3-11,15 leu2-3,12 trp1-

1 ura3-1 hsp82::leu2 hsc82::leu2 ho::pgals-hsp82-his3) where expression of the only 

Hsp90 gene in these cells strictly depends on galactose. A single colony of DBY288 was 

picked from a synthetic raffinose/galactose (Gal) plate and inoculated into 25 ml 2xYPA 

Gal medium (20 g yeast extract, 40 g peptone, and 0.2 g adenine hemisulphate per liter 

with 1% (w/v) raffinose and 1% galactose) and grown at 30ºC on an orbital shaker to late 

log phase. The culture density was calculated by hemocytometry and 108 cells were 

inoculated into 50 ml of fresh 2xYPA Gal medium. The culture was grown for 5 h at 

30ºC with agitation, harvested by centrifugation at 3,000g for 5 min and transformed by 

the standard lithium acetate protocol215, 216 with plasmid (either mutant libraries, a 

positive control with wild type Hsp90, or negative control lacking Hsp90). The 

generation time of cells harboring wild type Hsp90 was determined by following the 
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change in optical density over time (Supporting Figure S4.1).To examine measurement 

precision, replicate competition experiments were performed under the 30ºC condition 

with cultures split after transformation (Figure 4.1E).  

 

 After heat shock at 42ºC for 30 min, the cells were pelleted at 3,000g for 5 min 

and washed twice with 500 μl Gal medium (1.7 g yeast nitrogen base without amino 

acids, 5 g ammonium sulfate, 0.1 g aspartic acid, 0.02 g arginine, 0.03 g valine, 0.1 g 

glutamic acid, 0.4 g serine, 0.2 g threonine, 0.03g isoleucine, 0.05g phenylalanine, 0.03g 

tyrosine, 0.04g adenine hemisulfate, 0.02g methionine, 0.1g leucine, 0.03g lysine, 0.01g 

uracil per liter with 1% raffinose and 1% galactose) and recovered in 5 ml Gal medium 

for 16 h. The cells were pelleted by centrifugation at 3,000g for 5 min and inoculated into 

50 ml Gal medium with 200 μg/ml G418. The culture was then allowed to grow at 30ºC 

on an orbital shaker to near-saturation (about 48 h). 20 ml of this culture was washed 

with fresh Gal medium and the pellet was inoculated into 100 ml synthetic Gal medium 

containing 100 μg/ml ampicillin. This culture was grown for 12 h in log phase, diluting 

when necessary. The log phase cells were then inoculated to an OD600 of ~0.1 in 150 ml 

of synthetic Dextrose (Dex) medium (identical composition to Gal medium except with 

2% dextrose as the sugar source) with 100 μg/ml ampicillin that were grown at 30ºC on 

an orbital shaker. After 8 h, the culture was split into four different environmental 

conditions (30ºC, 36ºC, 30ºC+S, 36ºC+S; where S represents the addition of 0.5 M 

sodium chloride). The culture was then grown for 12-20 generations in log phase 
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(diluting when needed). Samples were reserved at different time points throughout the 

experiment by pelleting 109 cells and storing the pellets at -80ºC. 

 

DNA preparation, sequencing, and analysis 

 Yeast lysis, DNA preparation and sequencing was performed as described270. 

Sequencing was performed by the UMass deep sequencing core facility, and generated 

~30 million reads of 99% confidence at each read position as judged by PHRED 

scoring271, 272. The relative abundance of each mutant relative to wild type was calculated 

at each sampled time point. The slope of the logarithm of relative mutant abundance 

versus time in generations was used as a direct measure of relative fitness. To account for 

sequencing noise, an outlier detection based on the boxplot rule was performed for each 

mutant’s trajectory – hence, data points outside the range spanned by the 50% confidence 

interval extended by 1.5 times the interquartile range on each side were excluded from 

the linear regression. In order to obtain normalized selection coefficients for each data set 

such that wild type fitness represents s=0, we selected all mutants that result in wild type 

synonyms as a reference set and calculated its mean and standard deviation. To account 

for potential outliers of the distribution of synonyms, we neglected those mutations 

further than two standard deviations away from the mean, and defined the resulting new 

mean as the normalization constant representing s=0. Hence, each selection coefficient on 

the nucleotide level is calculated as the slope of its absolute read numbers minus the 

normalization constant. The selection coefficient of each amino acid is thereupon 

obtained as a weighted average of the selection coefficients of all synonymous codons. 
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Weights are assigned after outlier detection (according to the boxplot rule) on the time-

point level to account for the effect of low read numbers in the initial library. For Figure 

4.2, mutations were categorized as indistinguishable from wild type (“wt-like”) if 

|s|<0.01, beneficial if s>0.01, deleterious if -0.01>s>-0.5 and strongly deleterious if s<-

0.5.The threshold for the wt-like category represents a strongly conservative choice to 

assure that beneficial mutations are truly advantageous – however, we observed no 

qualitative differences in the results when this threshold is set to |s|<0.005. 

 

Reproducibility of fitness effects in a bulk competition replicate 

 To further investigate potential fitness contributions from background mutations 

in pools of transformed cells and to vet the reproducibility of bulk fitness measurements, 

we performed a subsequent full experimental replicate under 30ºC+S conditions that 

included separate transformations. DBY288 cells were transformed and selected as in the 

original experiment at 30ºC+S. Mutants with fitness effects s>-0.2 were compared 

between full experimental replicates (Supporting Figure S4.3) and exhibited a high level 

of reproducibility (R2=0.98). 

 

Confirmation of mutant fitness effects by binary competition 

 To confirm the fitness measurement generated by the EMPIRIC approach, we 

developed an independent qPCR based assay to measure the fitness of a subset of mutants 

by binary competition (Supporting Figure S4.4 and S4.5). The binary competition assays 

competed cells bearing a single point mutant against cells bearing wild type plasmid. A 
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50 base pair region was inserted into a non-coding region of the wild type plasmid in 

order to distinguish mutant from wild type. This insertion did not alter the growth 

property of the host strain, but did enable quantification of the relative abundance of wild 

type and mutant cells in binary competitions. Wild type and point mutant plasmid were 

mixed at a 1:1 molar ratio and co-transformed into DBY288 cells. Growth, selection and 

lysis procedures were identical to the EMPIRIC experiment. For qPCR analysis, a 

common reverse primer and a wild type or mutant specific forward primer was used 

produce a 300 base pair amplicon. The qPCR reactions consisted of the following: 1X 

SYBR Green I gel stain, 500 nM each forward and reverse primer, 50 µM each dNTP, 

1X Phusion HF buffer, 0.5 mM additional magnesium chloride, 0.5 μl Phusion DNA 

polymerase, in a final volume of 50 μl. PCR conditions were as follows: 94ºC for 2 min; 

40 cycles of 94ºC for 30 s, 59.5ºC for 30 s, 72ºC for 30 s. Standard curves were generated 

by analyzing dilution series (1 to 10-4 ng) of wild type and mutant plasmids with both 

primer sets in triplicate. Experimental samples contained 1-2 μl of lysate as template with 

equal volumes amplified with each primer set. Selection coefficient measurements were 

repeated in triplicate in order to assess measurement precision. 

 

Correspondence with the fitness trade-offs predicted by the FGM 

 Given four environments and a straightforward distinction of two classes of 

mutations (beneficial if s>0, deleterious if s<0) in each environment, there are 24=16 

possible categories of mutations, ranging from “deleterious in all environments” to 

“beneficial in all environments”. From Martin and Lenormand273, Eq. 4a, one can 
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determine the effective number of phenotypic dimensions in the FGM as ne=2E(s)2/V(s), 

where E(s) and V(s) are the mean and the variance of the distribution of deleterious (but 

not lethal) mutation effects in a population that is close to the optimum (in our 

experiment corresponding to all mutations with -0.5<s<0 from 30ºC). We obtain ne≈1.08, 

clearly supporting a one-dimensional phenotype space. Despite being restricted to a small 

region of a single protein, our data is in agreement with whole-genome estimates from 

mutation accumulation experiments266. Even though the theory was developed for 

populations close to the optimum, we obtain similar numbers for the high salinity 

environments (30ºC+S: ne=0.80; 36ºC+S: ne=1.40), whereas the result from the high-

temperature environment would indicate a higher complexity of its phenotype space 

(36ºC: ne=2.79). 

 

 We estimated the distance to the optimum in each environment by fitting a shifted 

gamma distribution following Martin & Lenormand 2006b (see Equation 5), by 

neglecting the strongly deleterious mode of the distribution. Its location parameter s0 

determines the distance to the optimum. We obtain s0=0.007 for 30ºC,s0=0.002 for 36ºC, 

s0=0.087 for 30ºC+S, and s0=0.045 for 36ºC+S. Notably, the same ranking and similar 

proportions are obtained if the mean, median, or the maximum of all beneficial mutations 

are taken as reference for the distance to the optimum. For combinatorial reasons, there 

exist eight different geometric arrangements of the 4 optima in phenotype space that each 

contain 5 categories of mutations (cf. Figure 4.5). We identify the best fit in accordance 

with the FGM (shown in Figure 4.4) to harbor 181/189 (=95.8%) of all mutations. The 
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189 amino acid substitutions represent all twenty amino acids plus stop codons at nine 

positions. Fitness measurements of amino acid substitutions were averaged over 

synonymous substitutions resulting in independent measures of the wild type amino acid 

at each position. Classifications according to the best fit are shown in the last column of 

Supporting Table A2, labeled as indicated in Figure 4.4 (additionally, the label “I” 

represents incongruous mutations). Note that all but one of the incongruous mutations 

can be classified if the sign of wt-like mutations is neglected (hence, incongruity is likely 

explained by the limits of accuracy of the experiment).  

 

 

 

 

 

 

 

 

 

 

 

 



177 
 

 
 

ACKNOWLEDGEMENTS 

 This work was supported in part by grants from the National Institutes of Health 

(R01-GM083038) and the American Cancer Society (RSG-08-17301-GMC) to D.N.A.B., 

and by grants from the Swiss National Science Foundation and a European Research 

Council (ERC) Starting Grant to J.D.J. We would like to thank vital-IT and the Swiss 

Institute of Bioinformatics (SIB) for computational resources. The authors declare no 

conflict of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 



178 
 

 
 

Chapter V – Experimental Characterization of Intragenic Epistatic 

Effects 

 

This work is in preparation for submission as Hietpas RT, Bank C, Jensen JD, Bolon 

DNA. “Experimental characterization of intragenic epistatic effects” 

 

This work was a collaborative effort. I designed and performed yeast growth 

competitions, DNA isolation and preparation, initial data analysis, and structure-function 

analysis of epistatic effects. Dr. Claudia Bank applied her Bayesian MCMC approach to 

the initial sequencing data and applied rigorous mathematical analyses to give the data 

statistically meaningful cutoffs. I, Dr. Claudia Bank, Dr. Jeffrey D. Jensen, and Dr. 

Daniel N. A. Bolon prepared the manuscript. 
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Abstract 

Mutations are the source of evolutionary variation, and the interactions of 

multiple mutations can have profound effects on fitness and evolutionary trajectories. We 

have recently described the distribution of fitness effects of all single mutations for a nine 

amino acid region of yeast Hsp90 (Hsp82) implicated in substrate binding. Here, we 

present a distribution of intragenic epistatic effects within this region in seven Hsp90 

point mutant backgrounds to gauge the frequency and magnitude of epistatic effects. We 

find negative epistasis between substitutions common, and positive epistasis to be 

relatively rare. Structural analyses indicate a correlation between local residue 

environment and the predominant type of epistasis. Negative epistasis was mainly 

associated with mutations at solvent inaccessible positions. In contrast, all observations 

of positive epistasis involved at least one mutation at a solvent exposed position, and 

commonly also involved a second mutation at a solvent inaccessible position. These 

observations suggest that the interplay between mutations that impact main chain 

conformation and the biophysical properties of solvent facing side chains frequently have 

complex fitness effects. 
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Introduction 

Mutation is the source of evolutionary variation, and over immense timescales, 

the cumulative effects of mutations have given rise to an enormous diversity of life. New 

mutations may be grouped into three general categories based upon their effect on 

organismal fitness; deleterious, neutral, and beneficial. Previous experimental studies 

indicate that the majority of new mutations are slightly to strongly deleterious with a vast 

minority conferring a fitness benefit202, 252, consistent with population genetic theory18. 

Single nucleotide substitutions are the most common form of new mutation, and are 

frequently observed in human disease274. While the simultaneous occurrence of two or 

more new mutations within a single gene is extremely rare, over many replicative events 

multiple mutations can accumulate in the same gene with important consequences. The 

potential interdependence of mutations can have a tremendous impact on evolutionary 

trajectories. This was first recognized by Bateson275, who coined the term epistasis in 

what was one of the first joint considerations of Darwinian evolution with Mendelian 

genetics. 

 

The interdependence or epistasis of mutations can be assessed by comparing the 

fitness effects of a combined mutant with the fitness effects of each individual mutant. 

Here, we consider mutations independent if the fitness of the combined mutant equals the 

product of the fitness of each individual mutant. Combinations of mutations that deviate 

from this rule are considered interdependent or epistatic. The interdependent fitness 

effects of epistatic mutations are directional and can result in combined mutants with 
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fitness that is increased (referred to as positive epistasis) or decreased (negative epistasis) 

relative to independence. Epistasis can have a dramatic impact on the accumulation of 

mutations within populations including the probability of fixation276-278. While epistasis is 

central to evolution, for most experimental systems it is challenging to investigate 

because of combinatorial complexity162.  

 

Compensatory mutations represent a form of epistasis with many biologically and 

medically important ramifications. Compensatory mutations rescue fitness defects of 

primary mutations, but are of little fitness consequence in the parental background. For 

example, many studies demonstrate that compensatory mutations play an important role 

in the adaptation of microbes and viruses to antibiotic or antiviral treatment149-151, 279, 280. 

In many of these cases, the primary drug resistance mutation was found to be deleterious 

in the absence of drug, but a secondary mutation that had a neutral fitness effect in the 

parental genotype increased the fitness of the primary mutation, promoting the 

persistence of the primary mutation to in the absence of drug treatment. A recent meta-

analysis indicates that 83% of all compensatory mutations occur within the same gene as 

the primary mutation, which emphasizes the relevance of intragenic epistasis in 

evolution281. 

 

Intragenic epistasis has a rich history of investigation in the framework of protein 

structure-function relationships. Double mutant cycles compare the biochemical 

properties of combined mutants to individual mutants and have proven a powerful 
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approach to investigate the interdependence of mutations on protein stability or 

activity153. Double mutant cycles have been utilized to investigate a variety of intra-

protein interactions including functional residues154, long-range structural interactions155, 

exposed and buried salt bridges156, 157, and hydrogen bond networks158 as well as protein-

protein interactions159. While double mutant cycles provide valuable biophysical and 

biochemical insights282, measuring the biochemical properties of many protein variants 

can be laborious and the connections between biochemical function and fitness 

complex283-285.  

 

Epistasis has also been studied in vivo. For example, in yeast the effects of 

specific mutations on fitness can be rapidly analyzed in the background of thousands of 

individual gene knockouts using the epistatic miniarray profile (E-MAP) approach286, or 

synthetic genetic analysis (SGA)101, 287. While epistasis mapping by these approaches has 

been extremely useful for detecting physiological connections between gene products, it 

is not well suited to investigate intragenic epistasis, or comprehensively screen point 

mutants.  

 

We previously developed an approach that we term EMPIRIC to quantify the 

fitness effects of all possible point mutations in a gene or region of a gene202, 212 and used 

this approach to comprehensively delineate the distribution of fitness effects for a nine 

amino acid region of yeast Hsp90 (also known as Hsp82). Hsp90 is a homodimeric 

protein chaperone that plays an essential role in stress responses, kinase activation, and 
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hormone receptor maturation177, 288, 289. To successfully perform these functions, Hsp90 

binds to numerous co-chaperones during the process of substrate maturation. By 2-hybrid 

and SGA analysis, Hsp90 has been found to interact with ~3% of the yeast proteome. The 

sheer number and transient nature of these interactions makes the elucidation of 

mechanistic detail difficult by standard biochemical methods176, 177.  

 

The region of Hsp90 that is the focus of this work (amino acids 582-590) has 

many hallmarks of a putative substrate binding interface171, 202, 290 including two positions 

with solvent exposed aromatic residues (F583 and W585). In our previous work, we 

observed that yeast fitness requires large hydrophobic amino acids at both of these 

positions202, 285, indicating that they provide a critical hydrophobic docking site. We have 

also observed that a buried intra-molecular hydrogen bond mediated by S586 is critical 

for yeast fitness indicating that the main-chain conformation of this region is important 

for function. Together, these observations lead us to investigate epistasis in this region in 

order to understand how the surface properties and main-chain conformational 

preferences contribute to fitness. To probe relationships between protein structure and 

epistasis in this region of Hsp90 we used EMPIRIC to systematically determine fitness 

effects of point mutants in the background of seven local anchor mutations (Figure 5.1A).  

 

We chose anchor mutations that based on structural inspection were likely to alter 

either the exterior composition or the main-chain conformation of this region of Hsp90, 

but that were well tolerated in the parental background (Table 5.1). We hypothesized that  
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Figure 5.1 Experimental setup. (A) Structure of yeast Hsp90 illustrating the region 

(amino acids 582-590) investigated in yellow. Solvent exposed surface area calculations 

by AREAIMOL to the right of the structure (B) Independent fitness is calculated by 

multiplying the calculated fitness of each point mutant constituent (left). Library 

competition of double mutant libraries was performed to measure observed fitness. 
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Figure 5.1 
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Table 5.1 

 
Fitness Confidence Interval 

    Anchor Mutation 
(codon) 2.5% Median W 97.5% 

F583N (AAC) 0.971 0.981 0.991 

G584F (TTC) 0.977 0.989 1.003 

G584S (TCC) 0.962 0.975 0.988 

W585L (TTG) 0.967 0.976 0.986 

S586G (GGT) 0.964 0.974 0.983 

A587G (GGT) 0.983 0.989 0.994 

N588F (TTC) 0.996 1.006 1.015 
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these non-conservative, but well tolerated substitutions would sensitize Hsp90 to 

secondary mutations and thus provide extensive sampling of the interplay between 

mutations impacting protein conformation and/or exterior composition. We sampled 

anchor mutations at both solvent accessible as well as core solvent inaccessible positions 

because core positions in proteins tend to have a dominant impact on structure and 

dynamics, while positions on the solvent accessible surface tend to play a primary role in 

mediating intermolecular interactions230, 291, 292. There are exceptions to this general trend 

because the impact of a mutation on protein stability, dynamics and function depends on 

detailed atomic interactions that are not perfectly captured by surface/core classification. 

For example, glycine mutations typically increase protein flexibility at any position 

because the lack of heavy atoms in the glycine side chain provides greater access to main 

chain conformations than any other amino acid. To broadly span potential mutant 

structural effects, we chose anchor mutations (Figure 5.1A) at two solvent exposed 

positions (F583N and W585L), two mutations at a glycine position (G584F and G584S), 

and three mutations at solvent inaccessible positions (S586G, A587G, and N588F). 

 

To precisely investigate epistasis it is critical to control the genetic background to 

avoid fitness differences introduced by unintended background mutations. Controlling the 

genetic background is a challenge for approaches that involve isolating potentially fitness 

defective variants as strong selection pressure can rapidly select for secondary mutations. 

However, the EMPIRIC approach is ideally suited to address this challenge because all 

mutants are introduced into the same batch of competent yeast rapidly expanded from a 
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single colony. In addition, cells carrying mutations are initially expanded with the co-

expression of a second copy of wt Hsp90 reducing potential selection pressure. Rapid and 

stringent shutoff of this second copy then enables measurement of the fitness supported 

by each mutant as the sole Hsp90 expressed in yeast, and the introduced Hsp90 mutations 

should be the predominant contributor to fitness differences in these experiments.  

 

The datasets we obtained in this work provide direct measures of the fitness 

effects of 2,866 double amino acid substitutions including the magnitude and frequency 

of epistatic interactions between substitutions. To calculate the epistasis of mutant fitness 

effects, we compared direct measures of the fitness effects of double mutants to the 

predicted independent fitness effect of each individual mutant.  We find epistatic 

interactions are common, and the majority of epistasis is negative in direction. 

Interpretation of these results in light of the structure of Hsp90 indicates a complex 

interplay between mutations that impact conformation and exterior facing composition. 
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Results and Discussion 

 

Experimental quantification of fitness effects 

To ensure continuity between the single site and double mutant data for 

comparison, we examined the reproducibility of fitness measurements and the overall 

distribution of fitness effects in our datasets. To investigate reproducibility, we included 

single site substitutions at the anchor position in our double mutant libraries. We 

compared the fitness effects of these single site substitutions with our previous 

measurements of all single site substitutions in this region (Figure S5.1). The strong 

correlation (R2=0.93) between these full experimental replicates indicate that the 

estimates of fitness effects from bulk competitions are very reproducible, consistent with 

the strict control of both genetic background and environmental conditions in these 

experiments.  

 

Having established the reproducibility of our measures of fitness effects, we next 

investigated the distribution of fitness effects (DFE) of the engineered double mutants. 

Similar to our previous observations of single mutants, we also observe a bi-modal DFE 

for double mutants with peaks at null-like and wt-like fitness (Figure 5.2A). We 

compared the frequency of fitness effects between the wild type background and anchor 

mutant background (Figure 5.2B). In the wild type background, the frequency of both 

null-like and intermediate fitness effects was lower than in the anchor mutant 

background, but of higher frequency in the wt-like category. These results suggest the  
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Figure S5.1 Correlation of selection coefficients. Selection coefficients from a previous 

single site selection experiment was correlated with the abridged single site library 

incorporated into the double mutant libraries. 
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Figure S5.1 
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Figure 5.2 Distributions of fitness and epistatic effects. (A) The distribution of fitness 

effects of all protein coding double mutants. (B) The frequency of fitness effects between 

single site and double mutant libraries. (C) The distribution of epistatic effects for all 

protein coding double codon substitutions based on analysis of 95% confidence intervals.  

Green points indicate positive epistasis, red points indicate negative epistasis, and gray 

points indicate independence. 
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Figure 5.2 
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mutants chosen to occupy the anchor position do, in fact, sensitize the genetic 

background to epistatic effects. 

 

The distribution of epistatic effects   

To categorize epistasis at each measured protein coding double mutant, the 95% 

confidence interval (CI) of fitness was estimated by the MCMC (Figure 5.2C). We 

observe epistatic interactions to be common, with negative epistasis occurring much more 

frequently than positive epistasis. Whereas negatively epistatic and independent 

interactions explained 98.8% of all double mutant data, positive epistasis was observed in 

only 1.2% of all double codon substitutions (Figure 5.3A). In order to evaluate 

commonalities between the type of mutant interaction and the biochemical properties of 

each position, the epistatic category (positive, negative or independent) was separated by 

single mutant position and plotted as a fraction of total interactions at each position 

(Figure 5.3B). 

 

We find that of all interactions containing mutations at position 582, nearly 8% 

were positively epistatic whereas less than 6% were negatively epistatic. Mutations in 

position 590 also produced fewer negatively epistatic events (21% of all interactions), but 

no positively epistatic interactions. Negatively epistatic and independent mutations, on 

the other hand, were more common at positions other than 582 and 590 (45% at position 

588 (lowest) and 62% at position 587 (highest)). The largest fraction of negative epistasis 

occurred in the context of position 585-587 mutations, and this is likely due to crosstalk  
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Figure 5.3 Frequency of epistasis. (A) The epistatic category (positive/negative/additive) 

of double mutants as a fraction of all protein coding double mutants. Values within 

parentheses indicate the number of observations. (B) The fraction of each epistatic 

category by mutant position. 
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Figure 5.3 
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between hydrogen bonding contributing to local destabilization at position 586 and 587, 

and exposed hydrophobic composition at position 585.  

 

Biochemical bases of mutant interactions 

We further probed mutant interactions in terms of the biochemical properties of 

this region in light of a solved crystal structure of Hsp90171. Based on this structure, 

amino acids 582-590 form a loop with two bulky hydrophobic residues projecting into 

solvent as well as several other residues buried and solvent shielded in the structure 

(Figure 5.4A). To probe the structural features of a position and their association with a 

particular category of epistasis, we classified each position as either solvent exposed or 

solvent shielded based on solvent exposed surface area estimation by AREAIMOL 

(CCP4 Software Suite) (Figure 5.1A), and grouped by epistatic category.   

 

Based on the categorization of solvent exposure, we discovered several 

associations between epistasis and solvent exposed surface area. Double mutants 

categorized as negatively epistatic displayed a clear prominence of core mutations with 

90.1% of all negative epistasis involving at least one core residue (Figure 5.4B, top). 

Previous biochemical analyses of stability indicate that solvent shielded mutations make 

evolutionarily conserved energetic contributions to global folding/unfolding293, 294. 

Biophysical analysis of mutants within this region indicate single mutants have very little 

effect on global folding285 but more general studies of protein stability indicate mutations 

are associated with non-additive destabilizing energies295. A likely explanation for the  
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Figure 5.4 Biochemical bases for dependent interactions. (A) Solvent exposed/shielded 

assignment for interrogated positions on an Hsp90 monomer (gray). Cyan spheres 

indicate residues with significant solvent exposure and yellow spheres indicate solvent 

shielded positions. (B) Epistatic interactions classified by fraction exposed/shielded 

composition. 
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Figure 5.4 
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abundance of core mutations contributing to negative epistasis is that the position of 

surface residues plays an important role for the proper function of this loop, and local 

destabilization of the solvent shielded residues in this region alters surface residue 

positioning, and therefore fitness. 

 

To further investigate epistatic interactions in terms of protein structure, we 

applied the same analysis to double mutants exhibiting positive epistasis. Based on the 

previous finding analysis for negative epistasis, we found no mutant combinations 

involved in positive epistasis could be attributed to two solvent shielded interactions, and 

therefore all observations of positive epistasis included at least one solvent exposed 

position. However, the largest fraction of double mutants in the positive epistasis 

category included a combination of one exposed and one shielded position. Within the 

same logical framework as negative epistasis, we hypothesize that the fitness defect 

introduced by altering the local stability of the region with a core mutation can be 

alleviated by a compensatory surface mutation, or vice versa. This region of Hsp90 has 

previously been characterized as a putative protein binding interface due to characteristic 

hydrophobic residues projecting into solvent171, 202, so the overarching explanation for 

fitness effects within this region is based on crosstalk between the hydrophobic character 

of residues solvent exposed positions and the orientation of these residues dictated by 

solvent shielded residue packing. 
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Epistasis and sensitivity to mutation 

Having previously described the mutational sensitivity of this region in terms of 

positional entropy – and finding that this region of interest contains positions of both low 

and high robustness - we examined how tolerance to mutation in the parental background 

correlated with epistasis. Using an entropy term, we quantified tolerance to mutation 

(with 0 representing a frozen position that cannot mutate and 3 representing a position 

that tolerates all 20 amino acids) against the fraction of each epistasis category per 

position (Figure 5.5). Negative epistasis is negatively associated with mutational 

promiscuity, whereas independent mutant combinations are positively associated with 

increased promiscuity. Positive epistasis appears slightly positively correlated with 

mutational robustness, but the limited number of observations may obfuscate this finding. 

These results appear to fit mechanistically into a broader evolution context: a position 

within a protein with stringent biochemical requirements is less able to participate in 

epistatic suppression of deleterious phenotypes than less stringent positions. Based on 

this framework, elucidating the biochemical requirements of a protein through means of 

experimentally determined DFEs may lend significant insight into potential sites of 

compensatory secondary mutations.  
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Figure 5.5 Mutational sensitivity predicts predominant epistasis category. The mutational 

sensitivity of each position (enumerated as entropy) correlated with the fraction of each 

epistatic category as a fraction of all mutations occurring at each position. 
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Figure 5.5 
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Conclusions 

In this study we experimentally determined the distribution of epistatic effects 

between a large panel of closely linked double amino acid substitutions, which allowed 

us to draw both biochemical and evolutionary conclusions about patterns of intragenic 

epistasis. Our experiments indicate that epistasis between these residues of Hsp90 

correlates with the biochemical properties of the region - including residue burial, solvent 

exposed surface area, and intraprotein interactions. These findings also lend experimental 

evidence of frequent negative intragenic epistasis which may not necessarily be observed 

in natural populations due to strong negative selection. Interestingly, among our observed 

interactions that were positively epistatic - the great majority may be attributed to 

surface-core double mutants, possibly owing to compensatory effects. 

 

The interdependence of surface and core mutations in the context of protein 

evolution also has interesting connections to the work presented here. Previous analysis 

of the rate of evolution between surface and core residues indicates the conservation of a 

surface position dictates the conservation of closely associate core residues296. This 

coupling effect is especially visible in the association of positive epistasis most frequently 

occurring in the context of one solvent exposed and one solvent shielded mutation. 

Additionally, studies of protein interaction surfaces indicate more interactive protein 

surfaces are more highly conserved297. These results in combination with our previous 

analysis of mutational sensitivity may also indicate this region is a coevolving sector 

which is generally refractory to substitution, but possesses adaptive potential based on the 
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specific cohort of interacting proteins298. Taken together, this highly conserved loop of 

Hsp90 likely participates in a significant fraction of Hsp90s interaction network, 

explaining the crosstalk between surface and core residues, and further lending evidence 

to the hypothesis that the amino acid 582-590 region is a protein binding interface.  
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Specific Materials and Methods 

Anchored library generation 

Seven Hsp90 point mutations (F583N, G584F, G584S, W585L, S586G, A587G, 

and N588F) previously observed to have wt-like (growth rate within 2.6% of wt) fitness 

under the conditions utilized in these studies were chosen as anchors. Within each of 

these seven anchored Hsp90 backgrounds, systematic site saturation mutagenesis was 

used to introduce second point mutations throughout the amino acid 582-590 region. The 

amino acid position fixed as the anchor was chosen to act as a single site library control 

to determine if the fitness effects of individual mutations were reproducible. In addition, 

one position was held constant to provide an internal estimate of misreads due to 

processing and sequencing of samples. Mutagenesis was carried out as previously 

described270.  

 

Yeast transformation and selection conditions 

Yeast manipulations and growth competitions were performed as previously 

described285. Briefly, mutants were encoded on 417GPD, a plasmid/promoter system that 

closely matches the endogenous expression of Hsp90285, 299. Each anchored library was 

separately transformed into the DBY288 strain of S. cerevisiae (can1-100 ade2-1 his3-

11,15 leu2-3,12 trp1-1 ura3-1 hsp82::leu2 hsc82::leu2 ho::pgals-hsp82-his3). 

Transformed cells were amplified in medium containing galactose (SRGal -H +G418; per 

liter: 1.7g yeast nitrogen base without amino acids, 5g ammonium sulfate, 0.1g aspartic 

acid, 0.02g arginine, 0.03g valine, 0.1g glutamic acid, 0.4g serine, 0.2g threonine, 0.03g 
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isoleucine, 0.05g phenylalanine, 0.03g tyrosine, 0.04g adenine hemisulfate, 0.02g 

methionine, 0.1g leucine, 0.03g lysine, 0.01g uracil 200mg G418, with 1% w/v raffinose 

and 1% galactose) such that wt Hsp82 protein was co-expressed along with each mutant. 

Transformation of the library yielded on average 110,000 individual isolates. Following 

the amplification of transformants, cells were diluted into fresh SRGal –H +G418 

medium and grown to mid log phase. Selection was initiated by transferring cells to 

shutoff conditions consisting of synthetic dextrose medium (SD –H +G418; identical to 

SRGal –H +G418 media but with 2% dextrose in place of raffinose and galactose). Yeast 

cells were diluted periodically (with minimum population sizes in gross excess to library 

diversity) to maintain log phase growth and samples isolated at different time points in 

shutoff conditions (Figure S5.2).  

 

Sequencing and data analysis 

Lysis, sample preparation, and sequencing were performed as previously 

described270. In brief, plasmid DNA was harvested from yeast pellets, and the mutated 

region was selectively amplified by PCR and prepared with Illumina primer binding sites 

and a barcode used to distinguish each time point. Sequencing was performed on the 

Illumina HiSeq platform at the UMass Medical School core sequencing facility. 

Sequencing produced 21.6 million reads of 99% read confidence per base and the relative 

abundance of each mutant at each time point extracted as previously described270. 
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Figure S5.2 Population management. (A) Preparation of cells for library selection. 

Population size was maintained at >107 cells to ensure complete library sampling. (B) 

Growth and dilution scheme for experimental populations. Solid lines indicate growth 

and dashed lines indicate dilutions. 584F competition was performed separately from 

other competitions, therefore dilution and time in selection differs. 
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Figure S5.2 
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Data processing 

In order to correct for sequencing errors, we performed an outlier correction for 

each individual mutant. Outliers are identified based on the residuals of a linear 

regression for each mutant’s trajectory, based on a modified z-score. We use a Bayesian 

Monte Carlo Markov Chain (MCMC) modeling approach to obtain confidence intervals 

for the selection coefficients. The model is based on the assumption that, starting from an 

initial population size, each mutant grows exponentially in the bulk competition. At each 

time point, samples are drawn according to a multinomial distribution, with parameters 

represented by the overall read number (N) and the expected fraction of individuals at 

that time point, given the proposed growth rates (p). We implemented a Metropolis-

Hastings algorithm in R to compute the stationary distribution of the MCMC. A burn-in 

phase of 1,000,000 accepted parameter combinations and a subsequent estimation phase 

of 10,000,000 accepted values ensured convergence of the MCMC for the high number 

of parameters that are estimated simultaneously. Sub-sampling of every 1,000th 

parameter combination resulted in the data sets used for further analysis. The R package 

“coda” was used to ensure convergence of the MCMC. A corrected mean (i.e., discarding 

the contribution of mutants outside two standard deviations on both sides of the mean) of 

the growth rates of all mutations synonymous to the sequence that is similar to the 

original wild type except for the anchored mutation is used as normalization constant that 

determines r=1 (s=0) for each data set, and all growth rates are rescaled accordingly.  
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Classification of mutations 

A combination of mutations was classified as positively epistatic if the lower limit 

of the combined 95% confidence interval (CI) of the product of the double mutant’s 

growth rate and the anchored mutant’s growth rate in the wt background was larger than 

the upper limit of the combined 95% CI of the product of the individual mutant’s growth 

rates in the wt background. A combination of mutations was classified as negatively 

epistatic if the upper limit of the combined 95% CI of the product of the double mutant’s 

growth rate and the anchored mutant’s growth rate in the wt background was smaller than 

the upper limit of the combined 95% CI of the product of the individual mutant’s growth 

rates in the wt background. Combined CIs were obtained by multiplying the individual 

lower and upper limits. 
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Chapter VI - General Discussion 

Summary 

 The basis and necessity of the work presented within this dissertation is generally 

focused on the accurate measurement of the distribution of fitness effects of new 

mutations, and the applicability of these measurements to long-standing models in 

population genetics and molecular evolution. In Chapter II, I present a novel 

methodology for accurate and high-throughput measurement relative fitness in the yeast 

Saccharomyces cerevisiae coined EMPIRIC. Outlined in detail is the methodology 

necessary to examine any essential gene of interest in yeast, from library generation to 

data analysis. Although this dissertation is both ‘yeast-centric’ and focused on a relatively 

small region of the Hsp90 protein, it should be reiterated the EMPIRIC methodology can 

be much more broadly applied to model systems including cancer cells, viruses, and 

bacterium to study processes including drug resistance, structure-function relationships, 

rational design/directed evolution, and others. This method can also be scaled and 

modified to suit the throughput and signal-to-noise necessities of a specific system, as 

well as being linked to other technologies such as cell surface display and FACS analysis.  

 

 As described in chapters III and IV, I presented the distribution of fitness effects 

of new mutations in the amino acid 582-590 region of yeast Hsp90 in the context of 

evolutionarily relevant variables including optimal growth conditions, reduced expression 

level, thermal stress, and osmotic stress. Most directly interpretable from these results is 

the pervasive nature of bimodal DFEs first predicted by Ohta and Kimura. Regardless of 
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environmental or expression level perturbations, we consistently observe mutations 

distributed as either strongly deleterious or near-neutral with a very limited number of 

mutations conferring intermediate fitness effects. Although the relative proportion and 

mean fitness of these maxima change in response to perturbation, the bimodal 

distribution is always retained. Results from Roscoe et. al 212 indicate this finding is not 

simply an artifact of this region of Hsp90, but may be broadly applicable across the 

proteome, although studies of several proteins with diverse structures and functions are 

needed to validate these findings.  

 

 The frequency and magnitude of beneficial mutations is also of central 

importance to our current understanding of evolutionary biology. However, experimental 

characterization of beneficial mutations has lagged behind theoretical predictions because 

beneficial mutations are relatively rare300. Utilizing the EMPIRIC method, we can 

generate an unbiased measurement of not only deleterious and near-neutral mutations, but 

beneficial mutations as well (if they exist in the system). In Chapter III, the initial 

biomodal fitness landscape under thermal stress conditions did not contain any 

significantly beneficial mutations, but this is not necessarily an unexpected outcome as 

the role of Hsp90 at elevated temperature is well characterized, and the protein sequence 

is likely optimized for this condition. However, we did find that phylogenetic 

conservation may be a poor predictor of mutational promiscuity, and the current genetic 

code is highly optimized to sample single mutations of wild type-like fitness.  
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Although our initial study did not identify any beneficial mutations, in Chapter IV 

when environmental conditions were perturbed from optimum to one of three other 

conditions, several beneficial mutations were isolated under elevated salinity with a 

maximum fitness benefit of ~8%, which we find to be consistent with many of Fisher’s 

expectations of adaptive evolution. The observed relationships of fitness between 

conditions was also remarkably consistent with a one dimensional Fisher geometry which 

encompassed 95.8% of all mutations and 99.5% if the sign of wild type-like mutations 

was ignored. Beneficial mutations isolated in one condition also paid a fitness cost in 

alternate conditions (cost of adaptation) indicating environmental specialization of these 

beneficial mutations. Interestingly, the finding that growth rate was most retarded in 

conditions of combined environmental perturbation while producing fewer adaptive 

mutations than osmotic stress alone appears to support Haldane’s predictions of genetic 

interference during selection for multiple traits simultaneously81. 

 

  Epistasis is a vitally important feature of adaptive evolution, especially in the 

context of pathogenesis and drug resistance. Although studied in the context of 

interaction networks and biophysical interactions within proteins, a comprehensive 

distribution of intragenic epistatic effects may allow the EMPIRIC technique to be 

repurposed for use in elucidating functional domains of proteins with no solved structure. 

In chapter V of this dissertation I present a distribution of intragenic epistatic effects in 

the context of seven genetic backgrounds. We find epistatic interactions are common, and 

the majority of epistasis is negative in directionality. However, we also isolate a number 
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of positively epistatic interactions and find negative epistasis to be highly correlated with 

mutations in solvent shielded positions whereas positive epistasis is correlated with 

surface positioning, consistent with the prediction that this solvent exposed hydrophobic 

loop is a docking site for protein-protein interaction. 

 

Future Directions 

Although the work presented here is a comprehensive interrogation of a 

biochemically intriguing region of Hsp90, there are still avenues which have been left 

unexplored. Hsp90 is a highly interactive protein, and the region encompassing amino 

acids 582-590 is of obvious interest as a putative docking site. We and others179 have 

uncovered several interesting features of this loop which are indicative of a protein 

interaction surface, but these studies do not present direct evidence for the nature and 

number of interactions taking place in conjunction with this region. Due to the numerous 

and transient nature of potential interactions, many standard analytical techniques such as 

crystallography, NMR, and various binding studies are not ideal. Utilizing the EMPIRIC 

technique, it may now be possible to study specific interactions in much finer detail by 

combining our genetic approaches with biochemical analyses such as molecular 

dynamics simulations or potentially FACS analysis if a suitably small set of putative 

docking partners can be identified 

 

 In the format presented here, EMPIRIC relies on the ability to link mutations to 

organismal fitness. In the case of classic Hsp90 specific assays for steroid hormone 
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receptor maturation, Hsp90 function relies on clients which are not endogenous to yeast, 

and therefore are not directly linked to fitness. However, through simple genetic 

manipulations placing an essential metabolic or chemotherapeutic resistance gene 

downstream from a steroid hormone receptor response element, it may be possible to 

directly link the ability of Hsp90 to mature these specific clients to growth rate. 

Mutations which cause either partial or wholly defective interactions with a specific 

client would present a phenotype proportional to the defect. By studying the underlying 

structural and biophysical requirements of this and other regions in the context of a 

specific function of Hsp90, it may be possible to biochemically define the interaction 

surface of binding to steroid hormone receptors.  

 

 As well as steroid hormone receptors, Hsp90 interacts with a number of signal 

transduction molecules including a repertoire of kinases. A second well characterized 

assay for Hsp90 function is for the activation of the tyrosine kinase v-src. However, yeast 

do not possess endogenous tyrosine kinases, and when v-src is activated in yeast cells by 

interaction with Hsp90, a fitness defect caused by an undetermined toxic mechanism is 

observed. Since active v-src introduces a fitness cost, it presents an interesting 

opportunity to studying the role of Hsp90 mutations in the activation of kinases in 

general. Instead of the typical fitness readout generated by EMPIRIC in which mutants of 

wild type fitness eventually dominate the culture, in a kinase activation study, mutations 

of wild type fitness would be depleted from culture whereas mutants defective for 

interaction with v-src would eventually dominate culture. With the inverse nature of 
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selection in this system, the readout is complicated by deciphering whether a mutant of 

low fitness is due to a defect in kinase activation or unfit for a myriad of other reasons. 

By comparison of a fitness landscape without v-src present (of which we already have a 

number of examples) to a competition with v-src present, a Venn diagram approach could 

be used to parse general fitness defects from mutations capable of activating kinases, and 

therefore have the potential to illuminate the mechanism of interaction. 

  

Extension of the EMPIRIC Methodology 

 The general EMPIRIC methodology can be logically extended not only to other 

regions of yeast Hsp90, but to a vast number of other proteins to answer questions in 

evolutionary biology, protein biochemistry, and drug design. The most obvious and 

straightforward extension of the work presented here is the systematic analysis of the 

distribution of fitness effects for an ensemble of structurally and functionally diverse 

proteins. Although we observe a bimodal distribution of fitness effects for this region of 

Hsp90, it is only now becoming clear how applicable these findings are to the entire yeast 

proteome. As previously mentioned, Roscoe et al. have determined the DFE for the entire 

ubiquitin gene, and found a bimodal distribution for new mutations212. However, both 

Hsp90 and ubiquitin are highly conserved proteins with pleiotropic roles in the cell. 

Simple extensions to further test the bimodal DFE hypothesis include monofunctional 

metabolic enzymes, structural and cytoskeletal proteins, membrane proteins, and a 

myriad of other functional classes. Perhaps following exhaustive studies of numerous 

proteins, we can begin to generate a database of DFEs for use in evolutionary biology, as 
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well as a library of known mutations and their fitness effects which could be broadly 

applied to biochemical questions. 

 

 Comprehensive mutational analyses may also be of great value to structural 

biology, especially in the context of difficult-to-study systems such as membrane 

proteins. Historically, membrane proteins have been extremely difficult to characterize 

because of their unique native amphipathic microenvironment. Methods such as 

crystallography and NMR have resulted in relatively few solved structures (as compared 

to water soluble proteins) because lipid conditions of the membrane must be accurately 

mimicked to produce refractive crystals with biologically relevant structures. High-

throughput mutational fitness analyses combined with structural modeling and 

biophysical analyses may be able to fill the current gap in structural knowledge by better 

defining the unique residue properties required for both external and internal structures. 

 

 Characterization of chemotherapeutic drug resistance is a rational synthesis of 

evolutionary biology, biochemistry, and drug design. Drug resistance is a commonly 

isolated phenomenon in populations of viruses, bacteria, yeast, protists, and cancer cells 

undergoing chemotherapeutic therapies due to strong selective pressure for mutations 

conferring a fitness benefit in the presence of drug. Practically, the ability of cells to 

adapt to pharmaceutical treatment is a significant economic and medical problem, yet few 

solutions exist to predict resistance mutations before they occur in a population. In the 

EMPIRIC technique, we have the potential to screen all possible point mutations within a 
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pharmaceutically relevant region of a protein under conditions of drug selection. By 

choosing drug concentrations near the half maximal inhibitory concentrations, even small 

fitness advantages conferred by a mutation may be detectible and further studied to 

predict potential routes of drug resistance. Additionally, discovering drug resistance 

mutations before they become clinically relevant may allow for the rational design of 

better drugs with difficult-to-transverse adaptive pathways. 

 

Broader Impact 

 The need for the comprehensive understanding of the mechanistic detail of 

evolution has never been greater in the face of challenges such as sustainable energy, 

world food supply, and climate change. Evolutionary thought is no longer limited to 

biology, but has become an integral component in fields as diverse as sociology and 

anthropology, computer science, and criminal justice301. We find ourselves at a 

monumental time in human history where, for the first time, it is possible to analyze the 

genetic blueprint of every organism on earth to solve problems which seemed intractable 

a generation ago. My hope is that the work presented in this dissertation can act as both a 

tool to understand evolutionary biology as well as an experimental starting point for 

understanding the full distribution of mutational effects on fitness. 

 

The process of evolution is continuous and dynamic as all organisms attempt to 

adapt to new challenges and changing environments. Although the evolutionary biology 

literature is vast, the experimental evidence for many evolutionary processes remains 
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relatively scarce due to our difficulty in adapting logically sound and controlled 

experimental systems to a ~4 billion year old ongoing trial. As we and others develop 

methodologies to understand the mechanisms of evolution, we may potentially not only 

be able to rewind the tape of life to discover our origins, but have the ability to look 

forward. With a more sound understanding of specific genotype to phenotype 

relationships, the ability to make accurate predictions about human health will allow for 

targeted preventative medicine and disease treatment to not only extend the quality and 

quantity of human life, but also address many of the economic and social costs associated 

with disease.  

  

More broadly, many of the findings presented here can be conceptually applied to 

the numerous challenges facing the human race. By uncovering adaptive mutations in 

altered environmental conditions, it may be possible to design better crops to feed a 

growing population in the face of climate change. Likewise, understanding the fitness 

consequences of epistasis may allow for improved design of enzymatic and whole 

organism systems to generate sustainable energy sources such as biofuels, hydrogen cells, 

and solar conversion systems. While I certainly do not claim to have solved the woes of 

humankind, my hope is the results herein presented may one day play a small role in 

addressing some of our species gravest challenges. 
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Appendix 
 

 

Table A1 

    Selection Coefficients 
(Chapter III) 

 
    
    
    position codon aa S 

582 aaa K 0.016527 
582 aac N -0.02585 
582 aag K 0.015981 
582 aat N -0.0237 
582 aca T 0.002578 
582 acc T 0.007921 
582 acg T -0.03388 
582 act T 0.005527 
582 aga R 0.016136 
582 agc S -0.03042 
582 agg R 0.017307 
582 agt S -0.01906 
582 ata I 0.016769 
582 atc I 0.020264 
582 atg M 0.007341 
582 att I 0.026021 
582 caa Q 0 
582 cac H 0.006102 
582 cag Q 0.002206 
582 cat H -0.00059 
582 cca P -0.01214 
582 ccc P -0.01938 
582 ccg P -0.02238 
582 cct P -0.00629 
582 cga R 0.011154 
582 cgc R 0.007826 
582 cgg R 0.009909 
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582 cgt R 0.010772 
582 cta L 0.016014 
582 ctc L 0.009362 
582 ctg L 0.007467 
582 ctt L 0.032177 
582 gaa E -0.01724 
582 gac D -0.25208 
582 gag E -0.02075 
582 gat D -0.23387 
582 gca A -0.00851 
582 gcc A -0.00569 
582 gcg A -0.00384 
582 gct A 0.005481 
582 gga G -0.25513 
582 ggc G -0.58161 
582 ggg G -0.53116 
582 ggt G -0.57639 
582 gta V 0.004786 
582 gtc V 0.004832 
582 gtg V -0.00666 
582 gtt V 0.023479 
582 taa * -0.55396 
582 tac Y -0.01498 
582 tag * -0.64089 
582 tat Y -0.01341 
582 tca S -0.02617 
582 tcc S -0.02193 
582 tcg S -0.02363 
582 tct S -0.01079 
582 tga * -0.67755 
582 tgc C -0.01605 
582 tgg W -0.07939 
582 tgt C -0.01577 
582 tta L 0.019493 
582 ttc F -0.0041 
582 ttg L 0.011481 
582 ttt F -0.00016 
583 aaa K -0.81673 
583 aac N -0.09716 
583 aag K -0.77478 



242 
 

 
 

583 aat N -0.09208 
583 aca T -0.51948 
583 acg T -0.51231 
583 act T -0.24972 
583 aga R -0.7196 
583 agc S -0.24609 
583 agg R -0.7362 
583 agt S -0.53996 
583 ata I -0.69055 
583 atc I -0.64685 
583 atg M -0.22337 
583 att I -0.67122 
583 caa Q -0.59968 
583 cac H -0.04363 
583 cag Q -0.58396 
583 cat H -0.04097 
583 cca P -0.87157 
583 cct P -0.95312 
583 cga R -0.73081 
583 cgc R -0.66025 
583 cgg R -0.77167 
583 cgt R -0.68778 
583 cta L -0.09377 
583 ctc L -0.10196 
583 ctg L -0.10086 
583 ctt L -0.10108 
583 gaa E -0.72999 
583 gac D -0.25137 
583 gag E -0.67106 
583 gat D -0.52989 
583 gca A -0.21489 
583 gcg A -0.22781 
583 gct A -0.23131 
583 gga G -0.14935 
583 ggc G -0.15042 
583 ggg G -0.14884 
583 ggt G -0.13864 
583 gta V -0.66609 
583 gtc V -0.71339 
583 gtg V -0.66352 
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583 gtt V -0.74809 
583 taa * -0.81577 
583 tac Y -0.00044 
583 tag * -0.73482 
583 tat Y -0.00383 
583 tca S -0.52919 
583 tcg S -0.26846 
583 tct S -0.21761 
583 tga * -0.89047 
583 tgc C -0.17124 
583 tgg W -0.0195 
583 tgt C -0.16453 
583 tta L -0.09611 
583 ttc F 0.000216 
583 ttg L -0.09333 
583 ttt F 0 
584 aaa K -0.69371 
584 aac N -0.74702 
584 aag K -0.7005 
584 aat N -0.64762 
584 aca T -0.63215 
584 acc T -0.52621 
584 acg T -0.673 
584 act T -0.65463 
584 aga R -0.68609 
584 agc S -0.10233 
584 agg R -0.71931 
584 agt S -0.10345 
584 ata I -0.96976 
584 atc I -0.76513 
584 atg M -0.13989 
584 att I -0.79547 
584 caa Q -0.28341 
584 cac H -0.60216 
584 cag Q -0.2286 
584 cat H -0.54864 
584 cca P -0.84962 
584 ccc P -0.81987 
584 ccg P -0.86799 
584 cct P -0.8213 
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584 cga R -0.72292 
584 cgc R -0.71147 
584 cgg R -0.71034 
584 cgt R -0.78193 
584 cta L -0.82848 
584 ctc L -0.83588 
584 ctg L -0.90347 
584 ctt L -0.98797 
584 gaa E -0.80147 
584 gac D -0.73838 
584 gag E -0.67962 
584 gat D -0.56308 
584 gca A -0.13226 
584 gcc A -0.13923 
584 gcg A -0.14539 
584 gct A -0.13269 
584 gga G 0.009799 
584 ggc G 0.002484 
584 ggg G 0.008195 
584 ggt G 0 
584 gta V -0.8082 
584 gtc V -0.79434 
584 gtg V -0.90572 
584 gtt V -0.86284 
584 taa * -0.76372 
584 tac Y -0.08638 
584 tag * -0.8213 
584 tat Y -0.07867 
584 tca S -0.10402 
584 tcc S -0.11136 
584 tcg S -0.12124 
584 tct S -0.10176 
584 tga * -0.6444 
584 tgc C -0.1382 
584 tgg W -0.26103 
584 tgt C -0.11224 
584 tta L -0.90505 
584 ttc F -0.04159 
584 ttg L -0.9939 
584 ttt F -0.02812 
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585 aaa K -0.89047 
585 aac N -0.82278 
585 aag K -0.97773 
585 aat N -0.83997 
585 aca T -0.83649 
585 acc T -0.92897 
585 acg T -0.77505 
585 act T -0.85564 
585 aga R -0.83249 
585 agc S -0.99046 
585 agg R -0.72024 
585 agt S -0.95356 
585 ata I -0.08586 
585 atc I -0.08818 
585 atg M -0.08 
585 att I -0.07816 
585 caa Q -0.8668 
585 cac H -0.86811 
585 cag Q -0.77924 
585 cat H -0.84513 
585 cca P -0.22681 
585 ccc P -0.22136 
585 ccg P -0.2291 
585 cct P -0.24077 
585 cga R -0.8028 
585 cgc R -0.77235 
585 cgg R -0.7469 
585 cgt R -0.99128 
585 cta L 0.013211 
585 ctc L 0.013232 
585 ctg L 0.001746 
585 ctt L 0.017239 
585 gaa E -1.13188 
585 gac D -1.04756 
585 gag E -0.94413 
585 gat D -1.35184 
585 gca A -0.85257 
585 gcc A -0.8287 
585 gcg A -0.83873 
585 gct A -0.95586 
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585 gga G -0.9997 
585 ggc G -0.73895 
585 ggg G -0.86272 
585 ggt G -1.09846 
585 gta V -0.25486 
585 gtc V -0.26284 
585 gtg V -0.24048 
585 gtt V -0.2336 
585 taa * -0.77193 
585 tac Y -0.23984 
585 tag * -0.78755 
585 tat Y -0.23315 
585 tca S -0.88104 
585 tcc S -1.3347 
585 tcg S -0.95422 
585 tct S -0.76723 
585 tga * -0.72938 
585 tgc C -0.82415 
585 tgg W 0 
585 tgt C -0.73701 
585 tta L 0.01514 
585 ttc F -0.03212 
585 ttg L 0.00426 
585 ttt F -0.015 
586 aaa K -0.7898 
586 aac N -0.09011 
586 aag K -0.83259 
586 aat N -0.09134 
586 aca T 0.000581 
586 acc T 0.000281 
586 acg T -0.00116 
586 act T 0.003344 
586 aga R -0.79745 
586 agc S 0.014337 
586 agg R -0.81726 
586 agt S 0.011962 
586 ata I -0.69895 
586 atc I -0.86955 
586 atg M -0.79818 
586 att I -0.83024 
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586 caa Q -0.87863 
586 cac H -0.79763 
586 cag Q -0.7834 
586 cat H -0.81918 
586 cca P -0.77746 
586 ccc P -0.86479 
586 cct P -0.68799 
586 cga R -0.78222 
586 cgc R -0.87814 
586 cgg R -1.15212 
586 cgt R -0.6917 
586 cta L -0.81453 
586 ctc L -0.81315 
586 ctg L -0.6917 
586 ctt L -0.72148 
586 gaa E -0.82415 
586 gac D -0.80038 
586 gag E -0.71412 
586 gat D -0.91339 
586 gca A -0.82626 
586 gcc A -0.87496 
586 gcg A -0.96485 
586 gct A -0.91611 
586 gga G -0.24056 
586 ggc G -0.22504 
586 ggg G -0.22493 
586 ggt G -0.22832 
586 gta V -0.78475 
586 gtc V -0.85837 
586 gtg V -0.62253 
586 gtt V -0.83385 
586 taa * -0.82626 
586 tac Y -0.80471 
586 tag * -0.78919 
586 tat Y -0.78012 
586 tca S 0.012029 
586 tcc S 0.005105 
586 tcg S 0.003483 
586 tct S 0 
586 tga * -0.69371 
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586 tgc C -0.96902 
586 tgg W -0.86099 
586 tgt C -0.81918 
586 tta L -0.72381 
586 ttc F -0.80471 
586 ttg L -0.90328 
586 ttt F -0.80038 
587 aaa K -0.83952 
587 aac N -0.83172 
587 aag K -0.79518 
587 aat N -0.83935 
587 aca T -0.79298 
587 acc T -0.92466 
587 acg T -0.75822 
587 act T -0.87962 
587 aga R -0.78658 
587 agc S -0.04622 
587 agg R -0.81541 
587 agt S -0.04786 
587 ata I -0.95662 
587 atc I -0.85326 
587 atg M -0.98696 
587 att I -0.93768 
587 caa Q -0.74588 
587 cac H -0.83084 
587 cag Q -0.78076 
587 cat H -0.813 
587 cca P -0.18369 
587 ccc P -0.17111 
587 ccg P -0.17494 
587 cct P -0.16462 
587 cga R -0.8182 
587 cgc R -0.84603 
587 cgg R -0.83689 
587 cgt R -0.71784 
587 cta L -0.83616 
587 ctc L -0.92175 
587 ctg L -0.86472 
587 ctt L -0.8514 
587 gaa E -0.9686 
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587 gac D -0.91339 
587 gag E -0.91656 
587 gat D -0.73947 
587 gca A 0.006095 
587 gcc A 0.007192 
587 gcg A 0.006495 
587 gct A 0 
587 gga G -0.17382 
587 ggc G -0.17755 
587 ggg G -0.17993 
587 ggt G -0.16436 
587 gta V -0.7358 
587 gtc V -0.75085 
587 gtg V -0.82454 
587 gtt V -0.74979 
587 taa * -0.76087 
587 tac Y -0.67388 
587 tag * -0.73242 
587 tat Y -0.86644 
587 tca S -0.04501 
587 tcc S -0.05302 
587 tcg S -0.05025 
587 tct S -0.04941 
587 tga * -0.83112 
587 tgc C -0.55655 
587 tgg W -0.77813 
587 tgt C -0.60626 
587 tta L -0.85571 
587 ttc F -0.80578 
587 ttg L -0.88832 
587 ttt F -0.91278 
588 aaa K -0.75883 
588 aac N -0.06339 
588 aag K -0.83822 
588 aat N 0 
588 aca T -0.02776 
588 acc T -0.0345 
588 acg T -0.03348 
588 act T 0.004146 
588 aga R -0.0513 
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588 agc S -0.05777 
588 agg R -0.04979 
588 agt S -0.05516 
588 ata I -0.68141 
588 atc I -0.70699 
588 atg M -0.08482 
588 att I -0.71914 
588 caa Q -0.10879 
588 cac H -0.03807 
588 cag Q -0.10843 
588 cat H -0.03537 
588 cca P -0.61983 
588 ccc P -0.66869 
588 ccg P -0.66519 
588 cct P -0.66424 
588 cga R -0.05157 
588 cgc R -0.05189 
588 cgg R -0.04849 
588 cgt R -0.05181 
588 cta L -0.52268 
588 ctc L -0.24561 
588 ctg L -0.53137 
588 ctt L -0.57403 
588 gaa E -0.7724 
588 gac D -0.85634 
588 gag E -0.78413 
588 gat D -0.8234 
588 gca A -0.17524 
588 gcc A -0.16631 
588 gcg A -0.1536 
588 gct A -0.16241 
588 gga G -0.22752 
588 ggc G -0.22963 
588 ggg G -0.23603 
588 ggt G -0.24083 
588 gta V -0.6404 
588 gtc V -0.61361 
588 gtg V -0.62575 
588 gtt V -0.57294 
588 taa * -0.77014 
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588 tac Y -0.02022 
588 tag * -0.7834 
588 tat Y -0.02091 
588 tca S -0.04641 
588 tcc S -0.05029 
588 tcg S -0.04917 
588 tct S -0.04982 
588 tga * -0.78919 
588 tgc C -0.2257 
588 tgg W -0.10194 
588 tgt C -0.22056 
588 tta L -0.56057 
588 ttc F -0.05277 
588 ttg L -0.27224 
588 ttt F -0.02435 
589 aaa K -0.7401 
589 aac N -0.79699 
589 aag K -0.62704 
589 aat N -0.84147 
589 aca T -0.09829 
589 acc T -0.09767 
589 acg T -0.09553 
589 act T -0.09798 
589 aga R -0.70711 
589 agc S -0.72577 
589 agg R -0.67937 
589 agt S -0.71537 
589 ata I -0.06457 
589 atc I -0.06356 
589 atg M 0 
589 att I -0.05861 
589 caa Q 0.039382 
589 cac H -0.58101 
589 cag Q 0.042361 
589 cat H -0.58616 
589 cca P -0.77746 
589 ccc P -0.85779 
589 cct P -0.81347 
589 cga R -0.71654 
589 cgc R -0.66757 
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589 cgg R -0.67932 
589 cgt R -0.66122 
589 cta L -0.0463 
589 ctc L -0.05522 
589 ctg L -0.0509 
589 ctt L -0.04348 
589 gaa E -0.2064 
589 gac D -0.76983 
589 gag E -0.20381 
589 gat D -0.76087 
589 gca A -0.16378 
589 gcc A -0.15879 
589 gcg A -0.15023 
589 gct A -0.15761 
589 gga G -0.79379 
589 ggc G -0.83659 
589 ggg G -0.85038 
589 ggt G -0.90029 
589 gta V -0.08179 
589 gtc V -0.0885 
589 gtg V -0.0856 
589 gtt V -0.07914 
589 taa * -0.78144 
589 tac Y -0.10563 
589 tag * -0.80038 
589 tat Y -0.09661 
589 tca S -0.71132 
589 tcc S -0.80567 
589 tcg S -0.77342 
589 tct S -0.73653 
589 tga * -0.89346 
589 tgc C -0.28105 
589 tgg W -0.04708 
589 tgt C -0.26688 
589 tta L -0.03549 
589 ttc F -0.00598 
589 ttg L -0.0494 
589 ttt F -0.00481 
590 aaa K -0.66504 
590 aac N -0.25564 
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590 aag K -0.72148 
590 aat N -0.2598 
590 aca T -0.00857 
590 acc T -0.01629 
590 acg T -0.01916 
590 act T -0.01987 
590 aga R -0.22836 
590 agc S -0.06668 
590 agg R -0.21841 
590 agt S -0.07495 
590 ata I -0.00098 
590 atc I 0.000312 
590 atg M -0.00083 
590 att I -0.00555 
590 caa Q 0.014282 
590 cac H -0.04995 
590 cag Q 0.013613 
590 cat H -0.04494 
590 cca P -0.66445 
590 ccc P -0.68154 
590 ccg P -0.56887 
590 cct P -0.66532 
590 cga R -0.24954 
590 cgc R -0.23201 
590 cgg R -0.2221 
590 cgt R -0.23542 
590 cta L -0.01024 
590 ctc L -0.02276 
590 ctg L -0.00215 
590 ctt L -0.00841 
590 gaa E 0 
590 gac D -0.20557 
590 gag E 0.006411 
590 gat D -0.04747 
590 gca A -0.03945 
590 gcc A -0.03183 
590 gcg A -0.0429 
590 gct A -0.03589 
590 gga G -0.69263 
590 ggc G -0.6902 
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590 ggg G -0.67493 
590 ggt G -0.67509 
590 gta V -0.03294 
590 gtc V -0.0409 
590 gtg V -0.03146 
590 gtt V -0.05756 
590 taa * -0.58736 
590 tac Y -0.05403 
590 tag * -0.6917 
590 tat Y -0.05514 
590 tca S -0.05612 
590 tcc S -0.06711 
590 tcg S -0.06673 
590 tct S -0.05594 
590 tga * -0.83682 
590 tgc C -0.00906 
590 tgg W -0.02363 
590 tgt C -0.00276 
590 tta L -0.00395 
590 ttc F -0.04645 
590 ttg L -0.00542 
590 ttt F -0.0638 
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Table A2 

Selection coefficients and FGM category of mutations in all conditions 

position aa s_30C s_36C s_30C+S s_36C+S 
FGM 

category 
582 * -0.5 -0.5 -0.5 -0.5 D 
582 A -0.01224 0.002158 -0.01189 -0.01171 1 
582 C -0.01346 -0.06306 -0.0067 -0.01485 D 
582 D -0.03163 -0.14915 -0.00351 -0.04671 D 
582 E -0.00773 -0.02429 0.004305 0.015753 3 
582 F -0.0343 -0.09032 -0.02799 -0.06276 D 
582 G -0.03472 -0.17725 -0.00496 -0.06023 D 
582 H -0.01131 -0.05402 0.012183 -0.00591 4 
582 I -0.01175 -0.01703 -0.02156 -0.02468 D 
582 K 0.005045 -0.00722 -0.02138 -0.00602 I 
582 L -0.01245 -0.02148 -0.02174 -0.02323 D 
582 M 0.006005 -0.01395 0.004018 -0.0097 I 
582 N -0.00998 -0.06597 0.015005 -0.00282 4 
582 P -0.01327 -0.03998 -0.00048 -0.00888 D 
582 Q -0.00739 -0.00472 0.005578 0.019578 3 
582 R -0.00366 -0.0072 -0.01586 0.000861 I 
582 S -0.01939 -0.0459 -0.0098 -0.03863 D 
582 T -0.01196 -0.02037 -0.01044 -0.02317 D 
582 V -0.02009 -0.02226 -0.02361 -0.02881 D 
582 W -0.0155 -0.12535 0.001925 -0.01439 4 
582 Y -0.02348 -0.08402 0.007272 -0.03828 4 
583 * -0.5 -0.5 -0.5 -0.5 D 
583 A -0.03445 -0.14785 0.00512 -0.00776 4 
583 C -0.00737 -0.12409 -0.00723 0.011352 I 
583 D -0.1045 -0.19192 -0.01802 -0.06916 D 
583 E -0.07922 -0.271 -0.05278 -0.09632 D 
583 F -0.00479 -0.00876 0.008448 0.006692 3 
583 G -0.02339 -0.10958 0.005854 0.01809 3 
583 H 0.006401 -0.0447 0.001032 0.032445 2 
583 I -0.04781 -0.24383 -0.02832 -0.07326 D 
583 K -0.09798 -0.36777 -0.02842 -0.05797 D 
583 L -0.01362 -0.12029 -0.00758 -0.00813 D 
583 M -0.03347 -0.17263 -0.00184 -0.01787 D 
583 N -0.02047 -0.09933 -0.01253 0.022973 I 
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583 P -0.16459 -0.5 -0.11419 -0.23745 D 
583 Q -0.04549 -0.21656 -0.01285 -0.0317 D 
583 R -0.04532 -0.27048 -0.02038 -0.03953 D 
583 S -0.04099 -0.17936 -0.01714 -0.02221 D 
583 T -0.03943 -0.18604 -0.00468 -0.00828 D 
583 V -0.04901 -0.25081 -0.03725 -0.07944 D 
583 W -0.0056 -0.02273 0.006744 -0.01678 4 
583 Y -0.00396 0.001385 0.008319 0.007033 I 
584 * -0.5 -0.5 -0.5 -0.5 D 
584 A -0.01569 -0.08038 -0.00351 -0.00173 D 
584 C -0.02555 -0.10933 -0.01966 -0.02548 D 
584 D -0.04778 -0.22323 -0.02931 -0.04788 D 
584 E -0.08672 -0.28291 -0.05731 -0.14805 D 
584 F -0.02057 -0.11275 0.022149 -0.03657 4 
584 G -0.0008 -0.00171 0.005769 0.003098 3 
584 H -0.04469 -0.19955 -0.0168 -0.05146 D 
584 I -0.40934 -0.5 -0.44691 -0.5 D 
584 K -0.12717 -0.46682 -0.09926 -0.22589 D 
584 L -0.15349 -0.5 -0.13585 -0.29897 D 
584 M -0.01989 -0.11223 0.011797 -0.01805 4 
584 N -0.06476 -0.27284 -0.04498 -0.06866 D 
584 P -0.5 -0.5 -0.5 -0.5 D 
584 Q -0.05498 -0.18927 -0.01796 -0.04944 D 
584 R -0.11436 -0.43446 -0.06013 -0.18604 D 
584 S -0.03338 -0.10196 -0.00914 -0.01447 D 
584 T -0.05158 -0.23785 -0.02319 -0.07404 D 
584 V -0.13056 -0.4962 -0.10887 -0.23322 D 
584 W -0.04189 -0.22588 -0.04067 -0.06969 D 
584 Y -0.01797 -0.13258 -0.00999 -0.04737 D 
585 * -0.5 -0.5 -0.5 -0.5 D 
585 A -0.12386 -0.39814 -0.02101 -0.11712 D 
585 C -0.07678 -0.25592 -0.00862 -0.04977 D 
585 D -0.5 -0.5 -0.5 -0.5 D 
585 E -0.5 -0.5 -0.43898 -0.5 D 
585 F -0.02822 -0.10478 0.025971 0.001511 3 
585 G -0.46856 -0.5 -0.48139 -0.5 D 
585 H -0.06628 -0.33793 -0.02354 -0.10342 D 
585 I -0.11381 -0.13018 0.031944 0.02463 3 
585 K -0.46016 -0.5 -0.29476 -0.5 D 
585 L -0.04135 -0.05761 0.009901 0.016114 3 
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585 M -0.01486 -0.07793 -0.01275 -0.00509 D 
585 N -0.11334 -0.48898 -0.08054 -0.18963 D 
585 P -0.08839 -0.18131 0.000677 -0.01422 4 
585 Q -0.12019 -0.49628 -0.02969 -0.18102 D 
585 R -0.22237 -0.5 -0.05943 -0.23534 D 
585 S -0.24551 -0.5 -0.15025 -0.33315 D 
585 T -0.16838 -0.49767 -0.03675 -0.16009 D 
585 V -0.08506 -0.19802 0.016245 0.002716 3 
585 W -0.00739 -0.01156 0.00778 0.021743 3 
585 Y -0.03525 -0.19191 -0.01083 -0.0463 D 
586 * -0.5 -0.5 -0.5 -0.5 D 
586 A -0.13546 -0.5 -0.11889 -0.29349 D 
586 C -0.103 -0.5 -0.08055 -0.23223 D 
586 D -0.5 -0.5 -0.5 -0.5 D 
586 E -0.5 -0.5 -0.5 -0.5 D 
586 F -0.5 -0.5 -0.5 -0.5 D 
586 G -0.02149 -0.17712 0.007943 -0.04805 4 
586 H -0.5 -0.5 -0.5 -0.5 D 
586 I -0.5 -0.5 -0.5 -0.5 D 
586 K -0.43018 -0.5 -0.5 -0.5 D 
586 L -0.5 -0.5 -0.5 -0.5 D 
586 M -0.5 -0.5 -0.5 -0.5 D 
586 N -0.01215 -0.12683 0.03306 -0.01264 4 
586 P -0.40758 -0.5 -0.39387 -0.5 D 
586 Q -0.5 -0.5 -0.5 -0.5 D 
586 R -0.5 -0.5 -0.5 -0.5 D 
586 S 0.000803 -0.00275 0.004988 0.005485 2 
586 T 0.00387 -0.05442 0.022022 0.001847 2 
586 V -0.5 -0.5 -0.5 -0.5 D 
586 W -0.5 -0.5 -0.5 -0.5 D 
586 Y -0.5 -0.5 -0.5 -0.5 D 
587 * -0.5 -0.5 -0.5 -0.5 D 
587 A -0.00225 -0.00104 -0.00124 0.005667 I 
587 C -0.02741 -0.1974 -0.00763 -0.05592 D 
587 D -0.5 -0.5 -0.5 -0.5 D 
587 E -0.5 -0.5 -0.5 -0.5 D 
587 F -0.204 -0.5 -0.23256 -0.39318 D 
587 G -0.01432 -0.11698 0.012992 -0.01257 4 
587 H -0.05952 -0.32964 -0.02841 -0.07717 D 
587 I -0.12082 -0.5 -0.09411 -0.19517 D 
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587 K -0.23686 -0.5 -0.10807 -0.31209 D 
587 L -0.31213 -0.5 -0.04055 -0.29641 D 
587 M -0.14799 -0.5 -0.07629 -0.20424 D 
587 N -0.08463 -0.5 -0.03882 -0.08112 D 
587 P -0.01876 -0.13006 0.022302 -0.01042 4 
587 Q -0.05812 -0.39084 -0.04508 -0.07634 D 
587 R -0.06255 -0.40272 -0.02621 -0.06901 D 
587 S -0.00999 -0.07911 0.008239 -0.01484 4 
587 T -0.09014 -0.5 -0.07723 -0.14694 D 
587 V -0.04077 -0.33561 -0.02589 -0.06097 D 
587 W -0.18531 -0.5 -0.05501 -0.22646 D 
587 Y -0.14569 -0.5 -0.11385 -0.26346 D 
588 * -0.5 -0.5 -0.5 -0.5 D 
588 A -0.00701 -0.11209 0.02637 0.002435 3 
588 C -0.00179 -0.12155 0.007346 -0.00539 4 
588 D -0.22553 -0.5 -0.20239 -0.4372 D 
588 E -0.16553 -0.5 -0.0954 -0.38992 D 
588 F -0.00272 -0.01264 -0.00892 -0.00211 D 
588 G -0.01665 -0.15547 0.01556 -0.01142 4 
588 H -0.00332 -0.06087 0.010716 -0.01964 4 
588 I -0.0623 -0.34296 0.029177 -0.04672 4 
588 K -0.07579 -0.47384 0.004617 -0.05863 4 
588 L -0.03816 -0.18017 0.05063 0.021839 3 
588 M 0.006973 -0.0218 0.022694 0.040277 2 
588 N -0.02279 -0.04396 0.000969 0.011879 3 
588 P -0.14498 -0.35976 0.082948 -0.03179 4 
588 Q -0.00681 -0.0832 0.023413 -0.00329 4 
588 R -0.00741 -0.06371 0.002788 -0.02277 4 
588 S -0.00624 -0.07277 0.009548 -0.01479 4 
588 T -0.00359 -0.03982 0.008354 0.011724 3 
588 V -0.02076 -0.20769 0.012371 -0.02192 4 
588 W -0.00197 -0.07215 -0.00423 -0.06317 D 
588 Y 0.0063 -0.01585 0.005165 0.000399 2 
589 * -0.5 -0.5 -0.5 -0.5 D 
589 A -0.02586 -0.1827 0.0298 -0.00955 4 
589 C -0.02379 -0.19999 0.016351 -0.04681 4 
589 D -0.15511 -0.5 0.037236 -0.365 4 
589 E -0.02115 -0.16865 0.029732 0.005088 3 
589 F -0.00803 -0.04994 0.006575 -0.00612 4 
589 G -0.14055 -0.5 -0.15195 -0.3078 D 
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589 H -0.04067 -0.20662 -0.00102 -0.03243 D 
589 I -0.0016 -0.08708 -0.00133 -0.01906 D 
589 K -0.06801 -0.29016 -0.0087 -0.04032 D 
589 L -0.01099 -0.08445 0.0087 -0.04459 4 
589 M -0.00739 -0.01156 0.00778 0.021743 3 
589 N -0.08671 -0.5 -0.01677 -0.15049 D 
589 P -0.5 -0.5 -0.5 -0.5 D 
589 Q -0.02637 -0.13296 0.043434 -0.01376 4 
589 R -0.05018 -0.27866 -0.01553 -0.05628 D 
589 S -0.04063 -0.32254 0.006106 -0.05327 4 
589 T -0.01098 -0.136 0.029013 -0.00935 4 
589 V -0.00227 -0.12403 0.029669 -0.01013 4 
589 W -0.0099 -0.05895 0.034708 0.044117 3 
589 Y -0.0124 -0.09473 0.012688 -0.00265 4 
590 * -0.5 -0.5 -0.5 -0.5 D 
590 A 0.004616 -0.08104 0.01581 0.009161 2 
590 C 0.004772 -0.02259 0.005824 0.015702 2 
590 D -0.00243 -0.18476 0.00742 -0.02805 4 
590 E -0.00629 -0.00745 0.001658 0.003966 3 
590 F -0.00559 -0.07867 0.019151 0.007374 3 
590 G -0.04763 -0.32026 -0.0309 -0.09234 D 
590 H -0.00095 -0.06659 0.025592 0.011292 3 
590 I 0.001602 -0.01165 -0.01081 0.003191 I 
590 K -0.06483 -0.3473 -0.04435 -0.09504 D 
590 L 0.002429 -0.02131 0.017009 0.030591 2 
590 M 0.003429 -0.01216 0.019073 0.022234 2 
590 N -0.01975 -0.20025 -0.01042 -0.04115 D 
590 P -0.5 -0.5 -0.5 -0.5 D 
590 Q 0.005478 -0.00254 0.01198 0.021362 2 
590 R -0.02277 -0.184 0.004154 -0.02012 4 
590 S -0.0103 -0.10759 0.004801 -0.01189 4 
590 T 0.005986 -0.03725 0.008033 0.02313 2 
590 V 0.005363 -0.03341 0.02496 0.022353 2 
590 W -0.00011 -0.03523 0.022599 0.036124 3 
590 Y 0.003962 -0.06013 0.020846 0.020657 2 

 


	Experimental Illumination of Comprehensive Fitness Landscapes: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page
	Signature Page
	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Preface
	Forward: From Darwin to DNA
	Chapter I: Introduction
	Chapter II: Fitness Analyses of All Possible Point Mutations for Regions of Genes in Yeast
	Chapter III: Experimental Illumination of a Fitness Landscape
	Chapter IV: Shifting Fitness Landscapes in Response to Altered Environments
	Chapter V: Experimental Characterization of Intragenic Epistatic Effects
	Chapter VI: General Discussion
	Bibliography
	Appendix

