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ABSTRACT 

 
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells 

activates and “licenses” the APCs to prime CD8+ T cell responses. While other stimuli, 

such as TLR agonists, can also activate APCs, it is unclear to what extent they can 

replace the signals provided by CD40-CD40L interactions. In this study, we used an 

adoptive transfer system to re-examine the role of CD40 in the priming of naïve CD8+ T 

cells. We find an approximately 50% reduction in expansion and cytokine production of 

TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in 

particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop 

endogenous CTL responses after immunization and are not protected from a tumor 

challenge. Surprisingly, the role for CD40 and CD40L are observed even in the absence 

of CD4+ T cells; in this situation, the CD8+ T cell itself provides CD40L. Furthermore, 

we show that although TLR stimulation improves T cell responses, it cannot fully 

substitute for CD40.  

We also investigated whether CD40-CD40L interactions are involved in the 

generation, maintenance, and function of memory CD8+ T cells. Using a virus infection 

system as well as a dendritic cell immunization system, we show that the presence of 

CD40 on DCs and other host APCs influences the survival of activated effector cells and 

directly affects the number of memory CD8+ T cells that are formed. In addition, memory 

CD8+ T cell persistence is slightly impaired in the absence of CD40. However, CD40 is 

not required for reactivation of memory CD8+ T cells. It seems that CD40 signals during 



 viii 

priming also contribute to memory CD8+ T cell programming but this function can be 

independent of CD4+ T cells, similar to what we showed for primary responses. 

Altogether, these results reveal a direct and unique role for CD40L on CD8+ T 

cells interacting with CD40 on APCs that affects the magnitude and quality of primary as 

well as memory CD8+ T cell responses.  
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CHAPTER I. 

INTRODUCTION 

 

 Immunity refers to the ability of an individual to detect the presence of foreign 

antigens (Ag) and mount a protective response against them. The immune system is an 

organized mechanism of proteins, cells, tissues, and organs and it is divided into two 

arms. Innate immunity is immediate and non-specific; it functions as the first line of 

defense during an infection. In contrast, adaptive immunity takes a longer time to develop 

but is characterized by having specificity, diversity, and memory. Its principal mediators 

are lymphocytes, which express receptors that are specific for virtually any antigen. 

Adaptive immunity is made up of humoral and cell mediated components. Humoral 

immunity is mediated by B cells, which primarily make antibodies that bind to intact 

extracellular antigens including whole bacteria, viruses, and cells and their products. Cell 

mediated immunity is mediated by T cells, which only recognize processed peptide 

antigens that are bound to cell surface glycoproteins called major histocompatibility 

complex (MHC) molecules.  

T cells can be further sub-divided based on their expression of the CD4 or CD8 

co-receptors. CD4+ T cells mainly secrete cytokines that activate other cells and induce B 

cells to produce antibodies and undergo class switching; hence they are also called helper 

T (TH) cells. TH1 cells primarily secrete IFN−γ and induce class switching to IgG2 and 

IgG3 isotypes. They are also involved in macrophage activation and clearance of 

intracellular pathogens as well as delayed-type hypersensitivity reactions. TH2 cells on 
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the other hand secrete IL-4, IL-5, and IL-13, which promote class switching to IgG1, IgE, 

and IgA. These cells play an important role in the immune response to helminth 

infections and are also involved in allergy and asthma. Recently, TH17 cells, which 

secrete IL-17 were identified. They constitute a separate lineage of TH cells and they are 

involved in the pathogenesis of some autoimmune diseases such as experimental 

autoimmune encephalomyelitis (EAE) and type II collagen-induced arthritis (Harrington 

et al., 2005; Park et al., 2005). CD4+ T cells can also differentiate into CD25+ regulatory 

T cells (TREG cells), whose main function is to inhibit the response of other T cells 

(Kronenberg and Rudensky, 2005).   

CD8+ T cells are primarily distinguished by their cytotoxic activity. These cells 

are able to directly kill target cells by secreting lytic substances such as perforin and 

granzymes or by expressing Fas ligand, which induces apoptosis in cells expressing the 

Fas receptor. CD8+ T cells also secrete IFN−γ and TNF−α, which promote antigen 

presentation, macrophage activation, and target cell killing. They are therefore critical 

players in the immune response against infectious agents as well as tumors.  

A. T cell development  

 In the bone marrow and fetal liver, pluripotent hematopoietic stem cells give rise 

to common lymphoid progenitors, which in turn give rise to T cells (Shortman and Wu, 

1996). These progenitors subsequently migrate to the thymus, which is the primary site of 

T cell development (Carlyle and Zuniga-Pflucker, 1998). The progenitors start out as 

being negative for the T cell marker CD3 as well as the CD4 and CD8 co-receptors 

(Petrie et al., 1990). These cells, which are also referred to as double-negative (DN) cells, 
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can be further divided into four groups based on their expression of the cell surface 

molecules CD44 and CD25 (Shortman and Wu, 1996). DN1 cells are CD44+CD25-, DN2 

cells are CD44+CD25+, DN3 cells are CD44-/loCD25+, and DN4 cells are CD44-/loCD25-. 

Rearrangement of the T cell receptor (TCR) β chain starts at the DN3 stage. Upon 

successful rearrangement, the β chain pairs with a surrogate α chain and forms a pre-

TCR, which is expressed on the cell surface (von Boehmer and Fehling, 1997). The cells 

are called pre-T cells at this stage and they are positive for CD3 but they are still double 

negative for CD4 and CD8. The cells then differentiate into pro-T cells, which are double 

positive (DP) for CD4 and CD8. Two important processes occur at this stage of 

development (Starr et al., 2003). Positive selection ensures that only those T cells that 

recognize self-antigen and self-MHC survive (Guidos, 1996; Starr et al., 2003). A large 

number of T cells are not able to recognize self-antigen/MHC and these die by apoptosis 

(Huesmann et al., 1991). Negative selection in turn removes T cells that have an 

extremely high affinity for self-antigens and which could potentially cause autoimmunity 

(Nossal, 1994; Starr et al., 2003). The latter constitutes the major mechanism of 

establishment of central tolerance. T cells that have successfully undergone both positive 

and negative selection subsequently mature into single positive (SP) CD4+ or CD8+ T 

cells and migrate into the periphery as naïve or antigen-inexperienced cells (Singer et al., 

1999). CD4+ T cells recognize peptides bound to MHC class II molecules while CD8+ T 

cells recognize peptides bound to MHC class I molecules (Germain, 1994). These co-

receptors are important because they associate with the tyrosine kinase Lck, which 
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increases the sensitivity of the TCR antigen stimulation and is also involved in signal 

transduction (Collins et al., 1993). 

B. MHC class I molecules 

 As mentioned above, CD8+ T cells recognize a complex formed by peptide 

antigens bound to MHC class I molecules. MHC class I molecules are polygenic; they are 

encoded by several genes that are located within the major histocompatibility complex 

locus found in chromosome 6 in humans and chromosome 17 in mice (Janeway and 

Travers, 1997). MHC class I molecules are also polymorphic and furthermore, they are 

codominantly expressed. MHC class I molecules are constitutively expressed by almost 

all nucleated cells, but they are most highly expressed on lymphocytes and specialized 

antigen presenting cells. In addition, MHC class I molecule expression can be 

upregulated by cytokines such as Type I and Type II interferons (IFNs) (York and Rock, 

1996). 

 MHC class I molecules are made up of a heterodimer consisting of a large 

transmembrane α chain and invariant β2 microblobulin, which are non-covalently 

associated. The α chain has three domains, α1, α2, and α3. The polymorphisms in MHC 

class I molecules are confined mainly to the α1 and α2 domains, which hold or bind the 

peptides. These domains fold into a pocket-shaped structure called peptide binding 

groove or cleft that consists of two α helices lying on a sheet of eight antiparallel β 

strands (Garcia et al., 1998). It is closed at both ends and therefore can only 

accommodate short peptides generally 8-10 amino acids long (Bouvier and Wiley, 1994). 

Meanwhile, the α3 domain, which is responsible for binding to CD8, is relatively 
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constant and associates with β2 microglobulin, forming a structure that is similar to the 

constant region of immunoglobulins. In the absence of β2 microglobulin, the α chain is 

not stabilized and no MHC class I molecules are expressed on the cell surface.  

C. Antigen processing and presentation to CD8+ T cells 

 In general, the antigenic peptides that are bound to MHC class I molecules and 

presented to CD8+ T cells are derived from intracellular protein antigens, which are 

endogenously synthesized in the cytoplasm (Rock et al., 2002). These can include self-

proteins undergoing normal turnover, mutated proteins from tumor cells, and viral or 

bacterial products. Recently, it has been hypothesized that defective ribosomal products 

(DRiPs) are the major source of antigens for MHC class I presentation. DRiPS are 

defined as prematurely terminated polypeptides and misfolded polypeptides produced 

from translation of bona fide mRNAs in the proper reading frame (Yewdell et al., 1996).  

Protein degradation takes place in the cytoplasm through the proteasome (York et 

al., 1999). It is a large barrel-shaped multicatalytic protease complex composed of 28 

subunits arranged in four stacked rings, each containing seven subunits. Interferons can 

induce the expression of three other subunits that can displace constitutively expressed 

subunits and change the specificity of the proteasome. Two of these, LMP2 and LMP7, 

are encoded within the MHC locus while the third, MECL-1, is not. Proteasomes 

containing these subunits are referred to as immunoproteasomes. They preferentially 

cleave after hydrophobic and basic residues while reducing cleavage after acidic residues.  

Proteins targeted for degradation are polyubiquitinated in the cytoplasm. After 

ubiquitination, the proteins are unfolded and the ubiquitin is removed. The proteins are 
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then threaded through the hollow core of the proteasome, which contains the active sites, 

and are subsequently chopped into products 6-30 amino acids long (York et al., 1999). 

Proteasomal cleavage results in the generation of carboxyl-terminal residues containing 

the preferred anchor residues for transport to the endoplasmic reticulum (ER) and binding 

to MHC class I molecules (Craiu et al., 1997). In contrast, it is thought that the generation 

of appropriate amino-terminal residues requires the activity of cytosolic or ER 

aminopeptidases (Craiu et al., 1997). In fact, it has recently been discovered that an ER-

localized aminopeptidase, ERAP1, acts as a molecular ruler by trimming peptides in the 

ER into 8-9-mers (Saric et al., 2002; York et al., 2002). Peptide trimming by ERAP1 has 

been shown to be important in establishment of immunodominance during a viral 

infection (York et al., 2006).  

Peptides generated in the cytosol are translocated into the ER by a specialized 

transporter called Transporter associated with Antigen Processing (TAP) (Uebel and 

Tampe, 1999). TAP is a heterodimer composed of TAP1 and TAP2 subunits, which are 

also encoded within the MHC locus and upregulated by interferons. Newly synthesized 

MHC class I molecules are unstable and cannot be transported to the cell surface until 

bound by a peptide. During translation, the α chain is first associated with a membrane-

bound protein called calnexin. Upon binding to β2 microglobulin, it dissociates from 

calnexin and binds to a complex formed by the TAP-associated protein tapasin and the 

chaperones calreticulin and Erp57 . When peptide enters the ER via TAP and binds to the 

peptide binding groove, the folding of the MHC class I molecule is stabilized and the 
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peptide-MHC complex exits the ER and is transported to the cell surface through the 

Golgi complex and exocytic vesicles (York et al., 1999).  

 Exogenous or extracellular antigens such as soluble protein, particulate Ag, and 

even whole cells can also be presented on MHC class I molecules through a process 

called cross-presentation (Shen and Rock, 2006). These antigens are acquired mainly 

through phagocytosis and peptides are generated through several different pathways. In 

the phagosome-to-cytosol pathway, the protein antigens in the phagosome are transported 

to the cytoplasm through a mechanism that is yet to be defined (Guermonprez and 

Amigorena, 2005). The proteins then get degraded by the proteasome and the peptides 

are transported to the ER via TAP, in a manner similar to that for endogenous antigens. In 

the vacuolar pathway, the phagocytosed protein antigens are targeted to endosomes, 

where they are degraded by the cysteine protease cathepsin S (Rock and Shen, 2005). 

This pathway is proteasome-independent and TAP-independent; it is still unclear how the 

peptides generated through this mechanism are able to bind MHC class I molecules (Shen 

et al., 2004).  Cross-presentation is a function that is uniquely performed by a specialized 

subset of cells called professional antigen presenting cells (APCs).  

D. Antigen presenting cells 

 Naïve CD8+ T cells require at least three signals in order to be fully activated. 

Signal 1 is the antigenic signal and it is mediated by the peptide-MHC class I complex 

binding to the cognate T cell receptor (TCR) (Janeway and Bottomly, 1994). Signal 2 is 

the costimulatory signal and it is mediated by the B7 family molecules CD80 and CD86 

(also called B7-1 and B7-2, respectively) binding to the CD28 receptor (Bugeon and 
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Dallman, 2000; Sharpe and Freeman, 2002). It is important for enhancing T cell 

responsiveness and survival. Signal 3 is the inflammatory signal and it is mediated by the 

cytokines IFN-α/β or IL-12 (Curtsinger et al., 2005; Kolumam et al., 2005; Valenzuela et 

al., 2002).  It promotes the full differentiation of naïve T cells into effector cells and 

memory cells.  

Almost all cells express MHC class I molecules and can present signal 1 to CD8+ 

T cells. However, the ability to provide signals 2 and 3 is restricted to the so-called 

professional antigen presenting cells (APCs) (Garza et al., 2000; Sprent and Schaefer, 

1990; Steinman and Young, 1991). These specialized cells are derived from the bone 

marrow and they are highly efficient at capturing extracellular antigens through 

phagocytosis or endocytosis. APCs secrete chemokine as well as chemokine receptors 

that enable them to migrate to lymphoid organs and interact with naïve T cells. They 

express adhesion as well as costimulatory molecules constitutively and they can 

upregulate the expression of these molecules upon further activation. In addition, they 

can also secrete inflammatory cytokines upon receipt of appropriate stimulation. APCs 

are primarily defined by their expression of MHC class II molecules. As such, they are 

also the only cells that are capable of presenting antigens to CD4+ T cells (Sprent, 1995).  

The term professional APC was originally used to describe dendritic cells (DCs). 

However, two other cells are now also considered as professional APCs, B cells and 

macrophages (MΦ) (Sprent, 1995). B cells are very effective at presenting antigens 

recognized by their B cell receptor (BCR) however they are relatively inefficient at 

phagocytosing and presenting other antigens (Rodriguez-Pinto, 2005). MΦ are abundant 
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in peripheral as well as lymphoid tissues and they are extremely proficient in 

phagocytosing extracellular pathogens as well as apoptotic cells (Underhill et al., 1999). 

However, they are also relatively inefficient at presenting antigens to CD8+ T cells. 

Nevertheless, they have recently been shown to prime naïve CD8+ T cells in vivo (Pozzi 

et al., 2005). Dendritic cells (DCs) are considered as the most potent APCs for priming of 

naïve CD8+ and CD4+ T cells (Banchereau and Steinman, 1998). This is mainly because 

of their high levels of expression of costimulatory molecules and their ability to acquire 

antigens from the environment and migrate to lymphoid organs. Since naïve T cells only 

recirculate through the blood and lymphatic system, they are largely unable to detect 

infections or tumors in parenchymal tissues. Therefore, the ability of APCs to transport 

antigens from peripheral tissues into lymphoid organs is crucial to the initiation of 

immune responses. 

E. Dendritic cells 

Dendritic cells (DCs) are bone marrow derived cells with branched or dendritic 

morphology that are located in lymphoid and non-lymphoid tissues (Steinman and Cohn, 

1973). Their main function is the acquisition, processing, and presentation of antigens to 

T cells (Banchereau and Steinman, 1998). They also interact with other immune cells 

such as NK cells, NK cells, B cells, monocytes, and MΦ in order to elicit effective T cell 

responses (Degli-Esposti and Smyth, 2005). DCs continuously sample the local 

environment for foreign antigens but they also present self-antigens. This latter function 

is important for the establishment and maintenance of tolerance (Smits et al., 2005). DCs 

were first described in the late nineteenth century by Paul Langerhans (Langerhans cells) 
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but their antigen presenting function was only recognized in the 1970s (Steinman and 

Witmer, 1978). 

 There are several subsets of DCs, which can be distinguished based on expression 

of cell surface markers, anatomical location, or function (Adams et al., 2005; Ardavin, 

2003; Shortman and Liu, 2002). In mice, DCs express CD11c  (integrin−α chain) and 

there are at least six different subsets based on the expression of CD4, CD8, CD205 

(multilectin domain molecule DEC205), and CD11b (integrin αM chain of Mac-1). 

These are the “myeloid-like” CD4+CD8-CD205-CD11b+, CD4-CD8-, CD205-CD11b+, 

and CD4-CD8-CD205+CD11b+, the “lymphoid-like” CD4-CD8hiCD205hiCD11b-, the 

Langerhans CD4-CD8loCD205hiCD11b+, and the plasmacytoid B220+. In humans, DC 

precursors express CD34 but do not express CD8. There are least four different subsets: 

Langerhans DCs, interstitial DCs, monocyte-derived DCs, and plasmacytoid DCs. Mouse 

and human plasmacytoid DCs serve a unique function in that they are the major 

producers of type I interferons upon virus infection. The generation of these functionally 

distinct DCs has been proposed to occur through two alternative models (Ardavin, 2003; 

Shortman and Liu, 2002). In the functional plasticity model, it is thought that all DCs 

arise from a single hematopoietic lineage and the different subsets develop according to 

local environmental cues. In the specialized lineage model, it is thought that the different 

DC subtypes derive from multiple hematopoietic precursors.  

 Some of the earliest studies on antigen presenting ability by DCs showed that they 

are very potent stimulators of mixed lymphocyte reactions (MLR) and further, compared 

to B cells and MΦ, they are the only cells that can induce significant allogeneic T cell 
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proliferation in vitro (Reis e Sousa, 2006). Subsequently, it was shown that DCs pulsed 

with peptides, proteins, RNA, or DNA can be used to prime cytotoxic CD8+ T cells 

(CTLs) in vivo (Hamilton and Harty, 2002; Porgador and Gilboa, 1995). DCs pulsed with 

or constitutively expressing epitopes from viruses such as influenza, Sendai virus, 

lymphocytic choriomeningitis virus (LCMV), hepatitis B virus (HBV), and human 

immunodeficiency virus (HIV) have been shown to induce virus-specific CTLs and 

protective immunity (Ludewig et al., 1998). Furthermore, immunization with DCs pulsed 

with tumor-associated antigens has been shown to result in the induction of tumor-

specific CD8+ T cells and protection against tumorigenesis (Celluzzi et al., 1996; Paglia 

et al., 1996). Finally, there are a number of studies that show that DCs are the only cells 

capable of cross-presenting exogenous antigens (Melief, 2003). One study in particular 

made use of transgenic mice in which the diphteria toxin receptor (DTR) was expressed 

under the control of the CD11c promoter (Jung et al., 2002). Administration of diphtheria 

toxin resulted in the depletion of CD11c+ DCs and failure to generate CD8+ T cell 

responses to cell-associated antigens and intracellular pathogens. The highly potent 

antigen presenting ability by DCs has made them attractive immunotherapeutic 

candidates. DC vaccination has proven to be an effective strategy in inducing anti-tumor 

immunity, control of autoimmunity, and prevention of transplant rejection (Figdor et al., 

2004). 

F. Role of DC maturation in CD8+ T cell responses 

 It is now well established that antigen presentation by DCs is important not just 

for the induction of immune responses to infectious agents but also for the establishment 
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of tolerance to self-antigens (Garza et al., 2000). For a long time, this dichotomy was 

attributed to functional differences in distinct DC subsets. For example CD8- DCs have 

been shown to direct TH2 responses while CD8+ DCs have been implicated in cross-

presentation of MHC class I-restricted peptides as well as suppression of T cell responses 

(Miller et al., 2003). However, there is also evidence that whether the outcome of antigen 

presentation will be immunity or tolerance is largely determined by the maturation or 

activation state of DCs (den Boer et al., 2001; Reis e Sousa, 2006).  

Under steady-state conditions or in the absence of infection or inflammation, most 

DCs exist in an immature or quiescent state (Adams et al., 2005; Reis e Sousa, 2004a; 

Tan and O'Neill, 2005). Immature DCs are highly endocytic; they are very active in 

sampling antigens from the environment through micropinocytosis, receptor-mediated 

endocytosis, or phagocytosis. However, they express relatively low levels of MHC class I 

and class II molecules as well as the costimulatory molecules CD80 and CD86. 

Moreover, they can only present antigens bound to MHC class I molecules and are 

unable to process antigens for MHC class II presentation. It is worth noting that since 

there is no infection, immature or quiescent DCs mostly present self-antigens that come 

from apoptotic cells undergoing physiologic turnover. They are somehow able to migrate 

to lymphoid organs but because they present only signal 1 and very little or no signals 2, 

and 3, they fail to induce productive immunity and instead induce peripheral tolerance 

(Redmond and Sherman, 2005). T cell activation in the presence of signal 1 but the 

absence of signals 2 and 3 only results in a brief period of proliferation and suboptimal 

development of effector function. Ultimately, this leads to either deletion of the activated 
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T cells or the induction of anergy, which is a state of functional unresponsiveness (Tan 

and O'Neill, 2005). In some cases, antigen presentation by immature or quiescent DCs 

also induces the development of regulatory T cells (Smits et al., 2005). 

 Upon maturation, there is a reduction in the ability of DCs to capture antigen but 

the efficiency of antigen processing and presentation on both MHC class I and class I 

molecules is increased, leading to enhancement of cross-presentation (Adams et al., 2005; 

Tan and O'Neill, 2005). In addition, there is also increased expression of MHC 

molecules, cell adhesion molecules such as lymphocyte function-associated antigen 1 

(LFA-1) and costimulatory molecules CD80 and CD86. Mature DCs produce 

chemokines such as TARC, MDC, IP-10, RANTES, MIP-1α, and MIP-1β, which recruit 

other cells including monocytes, DCs, and T cells into the local environment. They also 

downregulate expression of the chemokine receptors CCR1 and CCR5 and upregulate the 

expression of CCR7 (Adams et al., 2005). This enables them to migrate to lymphoid 

organs through the chemokines CCL19 and CCL21. DC maturation is likewise 

accompanied by secretion of cytokines such as IL-2, IL-12, and type I IFNs (Morelli et 

al., 2001). Finally, DC maturation is associated with increased survival through the 

induction of anti-apoptotic proteins belonging to the Bcl-2 family (Hou and Van Parijs, 

2004). Because mature DCs express the complete repertoire of signals 1, 2, and 3, they 

are able to efficiently induce productive immune responses (Reis e Sousa, 2006).   

 DC maturation can be induced by inflammatory cytokines such as TNF−α, 

microbial products such as lipopolysaccharide (LPS) that bind to Toll-like receptors, 

endogenous adjuvants such as uric acid (Gallucci et al., 1999; Shi et al., 2003), or T cell-
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derived signals such as CD40 ligand that bind to CD40. The specific cytokine and 

chemokine profiles and the levels of costimulatory molecules induced are all dependent 

on the nature of maturation stimulus.  

G. CD40 and CD40 Ligand (CD40L) 

CD40 is a 48 kDa type I transmembrane glycoprotein cell surface receptor. It 

belongs to the TNF receptor family, which includes TNFRI, TNFRII, CD95, CD27, 

CD30, OX40, and 4-1BB (Croft, 2003). CD40 was first discovered as the receptor 

responsible for the full activation, differentiation, and survival of B cells upon interaction 

with activated CD4+ T cells (van Kooten and Banchereau, 1997).  Subsequently, it was 

shown to be constitutively expressed on all APCs, and it is upregulated upon infection or 

inflammation. It is also expressed in T cells, basophils, eosinophils as well as non-

hematopoietic cells such as thymic epithelial cells, vascular endothelial cells, smooth 

muscle cells, keratinocytes, and fibroblasts. (Quezada et al., 2004; Schonbeck and Libby, 

2001; van Kooten and Banchereau, 2000).  

CD40 binds to CD40 ligand (CD40L/CD154/gp39), a 32-39 kDa type II 

transmembrane glycoprotein. It is a member of the TNF family, which includes the 

cytokines tumor necrosis factor-α (TNF-α) and lymphotoxin-α/β (LTα and LTβ), and 

the ligands for Fas (FasL), CD30 (CD30L), CD27 (CD27/CD70), OX40 (OX40L), and 4-

1BB (4-1BBL) (Croft, 2003). CD40L was first identified in activated CD4+ T cells and 

its expression is very tightly regulated unlike that of its receptor (Ford et al., 1999; 

Hermann et al., 1993; Roy et al., 1993). Surface expression is absent in naïve T cells but 

is induced as early as five minutes and reaches peak levels six hours post-activation with 
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antigen, anti-CD3, pro-inflammatory cytokines, or PMA and ionomycin (Casamayor-

Palleja et al., 1995; Quezada et al., 2004; Schonbeck and Libby, 2001; van Kooten and 

Banchereau, 2000). Although CD40L is primarily expressed in CD4+ T cells, it can also 

be found in CD8+ T cells, B cells, NK and NKT cells, peripheral blood monocytes and 

phagocytes, platelets, epithelial cells, endothelial cells, and smooth muscle cells 

(Schonbeck and Libby, 2001).  

The regulation of CD40 and CD40L gene expression is not well understood. 

There is evidence that transcription of CD40 and CD40L genes is regulated by the AT-

hook transcription factor AKNA in human B cells, T cells, NK cells and DCs (Siddiqa et 

al., 2001). In mice, CD40 gene transcription has been shown to be mediated by STAT1 

(signal transducer and activator of transcription 1) and NF-kB (Schonbeck and Libby, 

2001). On the other hand, transcription of the CD40L gene has been shown to involve 

nuclear factor of activated T cells (NFAT) and is inhibited by cyclosporin (Fuleihan et 

al., 1994; Tsytsykova et al., 1996). CD40L is predicted to exist as a homotrimer and it 

also triggers trimerization of CD40 upon binding (Peitsch and Jongeneel, 1993). This 

leads to the recruitment of adaptor proteins belonging to the TNF receptor-associated 

factor (TRAF) family, which contain a conserved C-terminal TRAF domain (Pullen et 

al., 1998). There are six members of the TRAF family and all of them have been shown 

to associate with the cytoplasmic domain of CD40 upon stimulation (Pullen et al., 1998; 

Schonbeck and Libby, 2001; van Kooten and Banchereau, 2000). However the specific 

TRAFs that are recruited are dependent on the cell type expressing CD40 (Mukundan et 

al., 2005; Nguyen et al., 1999). For example, TRAF2 and TRAF3 mediate 
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phosphorylation of JNK and p38 kinases in B cells and play a role in class switching 

(Jabara et al., 2002). In DCs, phosphorylation of JNK and p38 kinases and subsequent 

production of the IL-12 p40 subunit require TRAF6 (Mackey et al., 2003). TRAFs 

regulate gene transcription through the MAPK and NF-κB pathways. Some of the target 

genes induced upon CD40 stimulation include inflammatory cytokines and the anti-

apoptotic proteins Bcl-2 and BcL-xL (Dallman et al., 2003; Quezada et al., 2004). In 

human monocyte-derived DCs, it has also been shown that CD40 stimulation induces 

Janus kinase 3 (JAK3) phosphorylation and signal transducer and activator of 

transcription 5a (STAT5) transactivation (Saemann et al., 2002).  

H. Role of CD40-CD40L interactions in immune responses 

The pivotal role of CD40-CD40L interactions in the generation of productive 

immune responses is highlighted by mutations in either the CD40 or CD40L genes, 

which result in a primary immunodeficiency in humans called hyper IgM syndrome 

(HIGM) (Allen et al., 1993; DiSanto et al., 1993; Ferrari et al., 2001). HIGM patients 

have defective antibody production and are susceptible to recurrent opportunistic 

infections with pathogens such as Cryptosporidium and Pneumocystis carinii. CD40-

deficient and CD40L-deficient mice have also been generated and they likewise exhibit 

defects in both humoral and cellular immunity (Borrow et al., 1996; Castigli et al., 1994; 

Cayabyab et al., 1994; Grewal et al., 1996; Grewal et al., 1995; Kawabe et al., 1994; 

Oxenius et al., 1996; Renshaw et al., 1994; van Kooten and Banchereau, 2000; Xu et al., 

1994). CD40-CD40L interactions have been shown to be required in the control of 

intracellular pathogens such as Leishmania, Toxoplasma gondii, and Salmonella, which 
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mostly rely on TH1 responses (al-Ramadi et al., 2006; Grewal et al., 1997; Noelle, 1996; 

Soong et al., 1996). They are also important in the induction of CD8+ T cell responses to 

non-inflammatory antigens such as soluble proteins and tumors (Mackey et al., 1998a; 

Mackey et al., 1997; Toes et al., 1998).  

Administration of agonistic anti-CD40 Ab can increase the clonal expansion and 

delay the deletion of CD4+ and CD8+ T cells (Maxwell et al., 1999). This has been shown 

to result in enhancement of tumor protection, conversion of steady-state tolerance into 

immunity, and generation of memory T cells (Bonifaz et al., 2002; Clarke, 2000; Diehl et 

al., 1999; French et al., 1999; Lefrancois et al., 2000; Mackey et al., 1998a; Staveley-

O'Carroll et al., 2003; Toes et al., 1998; van Mierlo et al., 2002). However, ligation of 

CD40 can also induce severe immunopathology or autoimmunity in the presence of self-

reactive CD8+ T cells (Cheng and Schoenberger, 2002; Ichikawa et al., 2002; Roth et al., 

2002). Conversely, blockade of CD40 signaling, mainly through anti-CD40L Ab, results 

in inhibition of T cell activation, deletion of alloreactive CD8+ T cells, or induction of 

anergy (Iwakoshi et al., 2000; Quezada et al., 2005; Wells et al., 1999). CD40L blockade 

has been shown to be an effective immunointervention strategy for inducing peripheral 

tolerance, e.g. to transplants, and control of some autoimmune diseases (Diehl et al., 

2000; Hanninen et al., 2002; Homann et al., 2002; Phillips et al., 2003).  

I. Role of CD40 stimulation in DCs and CD8+ T cell responses  

CD40 stimulation mediates one of the most effective signals for inducing DC 

activation and priming of CD8+ T cell responses (Clarke, 2000; Diehl et al., 2000; 

Mackey et al., 1998a; Toes et al., 1998). Stimulation of CD40 can be achieved through 
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activated CD4+ T cells, soluble CD40L or activating anti-CD40 antibody (Ab). This 

upregulates expression of costimulatory molecules CD80 and CD86, enhances production 

of cytokines (most notably IL-12), and promotes cross-priming to exogenous antigens 

(Ag) (Cella et al., 1996; Ridge et al., 1998; Schuurhuis et al., 2000; Yang and Wilson, 

1996). It has been shown that the generation of protective tumor-specific CD8+ T cell 

responses requires CD40 stimulation on DCs (Mackey et al., 1998a; Mackey et al., 

1998b; van Mierlo et al., 2004).  CD40 stimulation also converts tolerogenic CD8+ DCs 

into immunogenic DCs (Grohmann et al., 2003; Grohmann et al., 2001). It can also 

restore the cross-priming ability of Rel-deficient DCs (Mintern et al., 2002a). There is 

evidence that ligation of CD40 on immature DCs renders them resistant from suppression 

by CD4+CD25+ TREG cells (Serra et al., 2003). CD40-CD40L interactions between DCs 

and NKT cells have been implicated in the priming of naïve CD8+ T cells (Fujii et al., 

2004; Nishimura et al., 2000).  

The generation of primary CD8+ T cell responses to non-inflammatory antigens 

such as peptides, soluble proteins, particulate Ag, and cell-associated Ag, including 

peptide-pulsed DCs are largely dependent on help by CD4+ T cells (Behrens et al., 2004; 

Clarke, 2000). CD4+ T cells are important for “licensing” of DCs and this process is 

mediated by CD40 (Guerder and Matzinger, 1992; Smith et al., 2004; Sporri and Reis e 

Sousa, 2003). There are two models for how CD4+ T cell help occurs. One model 

involves a sequential two-cell interaction, first, between CD40L-expressing CD4+ T cells 

and CD40-expressing DCs leading to DC activation, and then between the activated DCs 

and CD8+ T cells (Bennett et al., 1998; Prilliman et al., 2002; Ridge et al., 1998; 
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Schoenberger et al., 1998). An alternative model involves a direct interaction between 

CD40L-expressing CD4+ T cells and CD40-expressing CD8+ T cells (Bourgeois et al., 

2002). In either case, CD4+ T cell help and CD40 activity are often considered to be 

identical because CD40 stimulation can restore CD8+ T cell responses primed in the 

absence of CD4+ T cell help (Bennett et al., 1998; Ridge et al., 1998; Schoenberger et al., 

1998). However there is also evidence that CD4+ T cells can provide help to CD8+ T cells 

through CD40-independent pathways (Lu et al., 2000). 

J. Toll-like Receptors (TLRs) 

 Toll-like receptors (TLRs) comprise a subset of germline-encoded pattern-

recognition receptors (PRRs) that recognize conserved structural motifs derived from 

microbial products (Janeway and Medzhitov, 2002; Medzhitov and Janeway, 2000). 

There are at least 11 TLRs in mice and 10 in humans, each with a different specificity. 

The ligands they recognize include molecules such as lipopeptides (TLR1 and TLR6), 

zymosan (TLR2), double-stranded RNA (TLR3), lipopolysaccharide (LPS) (TLR4), 

flagellin (TLR5), single-stranded RNA (TLR7 and TLR8), bacterial DNA (CpG) (TLR9), 

and a profilin-like protein (TLR11) (Akira and Takeda, 2004; Yarovinsky et al., 2005). 

These molecules are also collectively referred to as pathogen associated molecular 

patterns (PAMPs).  However there is also evidence that TLRs may recognize endogenous 

ligands released by damaged or stressed cells (Akira et al., 2001). TLRs are differentially 

expressed in various cell types, but more importantly, they are expressed on APCs 

particularly DCs (Degli-Esposti and Smyth, 2005; Reis e Sousa, 2004b). The distribution 

of TLRs in the different subsets of human and mouse DCs is shown in Table 1. Aside 
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Table 1
Expression of TLRs among primary human and murine DC subsets

N/AN/AN/AN/A+ / −++TLR10

++++++++++++−TLR9

++++++++−+TLR8

++++−+++++TLR7

++++++++++++TLR6

+++++++++ / −++TLR5

++++−++TLR4

+ / −++++++−+++TLR3

+++++++++ / −++TLR2

+++++++++++++TLR1

PDCDNCD8α+CD4+PDCCD11c+

Mouse spleenHuman blood

Adapted from Reis e Sousa, 2004b
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from differential cellular expression, the sub-cellular localization of TLRs also varies. 

While TLR1, TLR2, TLR4, TLR5, and TLR6 are expressed on the cell surface, TLR3, 

TLR7, and TLR 9 are expressed mainly on endosomes (Takeda and Akira, 2005).  

TLRs are Type I integral membrane glycoproteins with an extracellular region 

containing leucine-rich repeat (LRR) motifs. Their cytoplasmic domain is homologous to 

that of the IL-1 receptor and they share a conserved region called the Toll/IL-IR (TIR) 

domain. TLR stimulation induces the recruitment of the TIR-containing cytoplasmic 

adaptor molecule MyD88, which, through its death domain recruits the serine-threonine 

kinases IRAK4 and IRAK1. This leads to the association of another adaptor molecule, 

TRAF6, which activates MAPK kinases (MKKs) and the IKK complex. Ultimately, NF-

kb is activated and translocated to the nucleus, where it induces the expression of target 

genes such as TNF, IL-6, and IL-1β (Akira and Takeda, 2004). The MyD88-dependent 

pathway is used by all TLRs except for TLR3. Additionally, TLR2 and TLR4 use another 

TIR-containing adaptor, TIRAP, in the MyD88-dependent pathway (Horng et al., 2002). 

TLR3 uses the adaptor molecule TRIF in the MyD88-independent induction of IFN-β 

(Hoebe et al., 2003). Meanwhile, TLR4 uses a fourth adaptor molecule, TRAM, in the 

MyD88-independent/TRIF-dependent induction of IFN-β (Oshiumi et al., 2003). Both 

TRIF and TRAM also contain a TIR domain.   

TLRs directly mediate innate immune responses by stimulating the release of 

inflammatory cytokines, phagocytosis and direct microbicidal effects (Akira et al., 2001). 

However, they also serve as a crucial bridge between innate and adaptive immunity. This 

is mainly because TLR stimulation directly activates APCs, particularly DCs, and 
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enhances their ability to induce T cell activation and differentiation (Pasare and 

Medzhitov, 2005; Reis e Sousa, 2004b; Schwarz et al., 2003). TLR stimulation has been 

shown to induce the rapid differentiation of monocytes into MΦ and DCs (Krutzik et al., 

2005). It also rapidly upregulates the levels of CD80 and CD86, as well as CD40 on DCs 

(Manickasingham and Reis e Sousa, 2000; Reis e Sousa, 2004b). In addition, TLR 

stimulation induces the secretion of cytokines such as IL-6, IFN−α, TNF−α, and IL-12 

(Edwards et al., 2002). Moreover, TLR stimulation facilitates DC migration by inducing 

secretion of chemokines and expression of chemokine receptors such as CCR2, CCR5, 

and CCR7 (Janeway and Medzhitov, 2002; Pasare and Medzhitov, 2005; Reis e Sousa, 

2004b). Finally, it promotes cross-priming to exogenous antigens as well as DC cell 

survival (Datta and Raz, 2005; Datta et al., 2003; Wilson et al., 2006). TLR stimulation 

also reverses CD8+ T cell tolerance induced by TREG cells (Yang et al., 2004). These 

effects are similar to those that are induced upon CD40 stimulation. 

K. Primary CD8+ T cell responses 

 After exiting the thymus, naïve CD8+ T cells circulate in peripheral lymphoid 

organs where they sample antigens presented by DCs. In uninfected mice, the precursor 

frequency of naïve antigen-specific CD8+ T cells is estimated to be about 1 in 2 x 105 

cells (Blattman et al., 2002). This translates to about 100-200 cells, and they have a 

spectrum of affinities for cognate antigen owing to expression of different TCR chains. 

These cells have a relatively slow turnover rate and they have a half-life of about 30 days 

(McDonagh and Bell, 1995; Tough and Sprent, 1994).  
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The generation of a highly effective CD8+ T cell response is largely determined 

by its interaction with appropriately activated DCs, which present all the signals that are 

necessary for full activation and differentiation of T cells (Banchereau and Steinman, 

1998). Some of the parameters that have been shown to be important in regulating CD8+ 

T cell activation include the strength and duration of TCR stimulation and the presence of 

costimulation and inflammation. Upon encounter with antigen, CD8+ T cell responses 

can be divided into four phases: activation, expansion, contraction, and memory 

generation. In vitro, it has been shown that a short stimulation period (two hours) can 

induce naïve CD8+ T cells to undergo autonomous clonal expansion and develop into 

functional effectors (van Stipdonk et al., 2001). However, a four hour stimulation led to 

abortive CD8+ T cell responses in vivo and a longer stimulation (20 hours) was required 

for full T cell differentiation (van Stipdonk et al., 2003). Using two-photon intravital 

microscopy, it has been shown that the interaction between antigen-bearing DCs and 

specific CD8+ T cells in lymph nodes occurs in three distinct stages. The first stage is 

characterized by multiple transient encounters leading to T cell activation, the second 

stage is characterized by stable long-lasting contacts that result in cytokine production, 

and the third stage is characterized by resumption of rapid T cell migration and brief DC 

contacts coinciding with T cell proliferation (Cahalan and Parker, 2005; Hugues et al., 

2004; Mempel et al., 2004). 

A number of studies have demonstrated that the generation of primary CD8+ T 

cell responses requires CD4+T cell help (Behrens et al., 2004; Clarke, 2000; Kalams and 

Walker, 1998; Wang and Livingstone, 2003).  Initially, CD4+ T cells were thought to 
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provide IL-2 for stimulating CD8+ T cell expansion. However, it is now well established 

that the CD4+ T cells are important for activation or licensing of APCs so they can 

efficiently stimulate naïve CD8+ T cells (Smith et al., 2004). APC licensing occurs when 

CD40L expressed by activated CD4+ T cells binds to and stimulates CD40 on APCs 

(Bennett et al., 1998; Ridge et al., 1998; Schoenberger et al., 1998). Nonetheless, the 

primary CD8+ T cell response against some pathogens including lymphocytic 

choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), and Listeria 

monocytogenes are unimpaired in the absence of CD4+ T cells or CD40 (Andreasen et al., 

2000; Clarke, 2000; Hamilton et al., 2001; Ruedl et al., 1999; Shedlock et al., 2003; 

Whitmire et al., 1999). These pathogens are thought to bypass the need for CD4+ T cell 

help in part because of their ability to directly activate DCs. 

 CD8+ T cell activation is accompanied by marked changes in expression of 

several cell surface receptors. For example, naïve CD8+ T cells have high levels of TCR 

and CD62L (leukocyte adhesion molecule), have low levels of CD44 (adhesion 

molecule), and do not express CD25 (IL-2R a chain), CD69 (early activation marker), 

and CD43 (anti-adhesion molecule). Upon activation, they downregulate TCR and 

CD62L and upregulate CD25, CD69, and CD43; the timing of expression of the above 

markers has been shown to correlate with cell division and acquisition of effector 

function (Oehen and Brduscha-Riem, 1998). Activated CD8+ T cells undergo an intense 

period of proliferation or clonal expansion wherein their numbers increase up to 105-fold 

(Butz and Bevan, 1998). It has been shown that there is an upper limit to the size of the 
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effector CD8+ T cell pool and it is controlled by clone-specific regulatory mechanisms 

(Kemp et al., 2004).  

CD8+ T cell expansion is also accompanied by the differentiation of CD8+ T cells 

into cytotoxic effectors (CTLs) that are able to migrate into non-lymphoid sites of 

infection or inflammation (Westermann et al., 2001). CTLs are characterized by their 

ability to secrete IFN−γ and TNF−α, which have direct anti-viral activity and are also 

able to activate other immune cells. More importantly, they express FasL and secrete 

lytic granules containing perforin and granzymes. All of these molecules are critical for 

inducing target cell apoptosis (Griffiths, 1995; Janeway and Travers, 1997; Watanabe-

Fukunaga et al., 1992). Perforin forms pores in target cell membranes while granzymes 

and FasL induce apoptosis through activation of caspases (Henkart and Catalfamo, 2004). 

The release of cytotoxic molecules by CTLs occurs in a directed manner; therefore CTL 

killing is very specific (Westermann et al., 2001). Depending on the infection or priming 

model, the expansion phase of CD8+ T cell responses can last for 7-12 days. Once the 

antigen has been cleared, the vast majority (> 95%) of effector CD8+ T cells undergo 

apoptosis (Badovinac and Harty, 2006). This contraction phase is important for 

preventing immunopathology brought about by excessive T cell activation. It is also 

important for restoring homeostasis of different T cell populations. 

L. CD8+ T cell memory 

 Those effector CD8+ T cells that survive the contraction phase subsequently give 

rise to a stable pool of memory cells. Memory T cells are characterized by having the 

ability to mount a faster and stronger response upon secondary challenge (Farber, 2003). 
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This is mostly because they have a higher frequency and affinity to their cognate antigen 

compared to naïve T cells. In addition, they are able to secrete effector cytokines much 

faster compared to naïve CD8+ T cells (Badovinac et al., 2003; Liu and Whitton, 2005; 

Zimmermann et al., 1999). Memory CD8+ T cells have a longer lifespan as well as a 

faster turnover rate compared to naïve T cells (Surh et al., 2006; Tough and Sprent, 1994; 

Tuma and Pamer, 2002). They are also capable of antigen-independent survival (Murali-

Krishna et al., 1999). In general, the number of memory CD8+ T cells that are generated 

is directly proportional to the number of primary effector cells (Whitmire et al., 2000).  

 Recently, it was demonstrated that there are two types of memory CD8+ T cells 

based on phenotype, function, and anatomical location (Jabbari and Harty, 2006; Roberts 

et al., 2005). Central memory T cells (TCM) are CD62Lhi and CCR7hi and they mainly 

reside in lymphoid tissues as well as the bone marrow (Mazo et al., 2005). TCM are able 

to rapidly proliferate upon secondary encounter with antigen however they lack 

immediate effector functions. On the other hand, Effector memory T cells (TEM) are 

CD62Llo and CCR7lo and they preferentially home to non-lymphoid tissues. Upon 

reencounter with antigen, TEM are able to rapidly secrete cytokines and exert cytotoxic 

function, however they are unable to proliferate extensively. The lineage relationship 

between TCM and TEM and the exact signals that induce their development are still 

unclear (Huster et al., 2006; Tough, 2003; Wherry et al., 2003). It has been shown that 

the strength of stimulation as well as the frequency of antigen specific cells can influence 

the commitment of memory cells into the TCM or TEM subtypes (Marzo et al., 2005; 

van Faassen et al., 2005). The initial encounter of naïve CD8+ T cells with antigen has 
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been demonstrated to induce an instructional program for memory development 

(Badovinac and Harty, 2006; Kaech and Ahmed, 2001; Wherry and Ahmed, 2004). 

However full memory differentiation is a gradual process that is accompanied by stable 

changes in gene expression and takes several weeks to complete (Kaech et al., 2002). 

 It has long been known that CD4+ T cells are required for the generation of 

effective CD8+ T cell memory (Bevan, 2004; Bourgeois and Tanchot, 2003). The absence 

of memory CD8+ T cell activity in mice lacking functional CD4+ T cells was attributed to 

inefficient priming of naïve CD8+ T cells. However, several studies have demonstrated 

that CD4+ T cell help is required for the long-term maintenance and secondary expansion 

of memory CD8+ T cells (Janssen et al., 2003; Masopust et al., 2004; Shedlock and Shen, 

2003; Sun and Bevan, 2003; Sun et al., 2004; Williams et al., 2006a). The exact 

mechanism by which CD4+ T cells promote memory generation and maintenance is still 

unknown. It is thought that it involves direct CD40-CD40L interactions between CD4+ T 

cells and CD8+ T cells as well as the induction of antigen-specific Ab in the case of acute 

virus infections (Andreasen et al., 2000; Bachmann et al., 2004; Borrow et al., 1998; 

Bourgeois et al., 2002; Thomsen et al., 1998). However, the requirement for CD4+ T cells 

in long-lasting CD8+ T cell memory is not absolute, as fully functional memory CD8+ T 

cells can be detected in some systems despite the absence of CD4+ T cells or B cells (Di 

Rosa and Matzinger, 1996; Marzo et al., 2004).  

Various cytokines have been implicated in generation and maintenance of 

memory CD8+ T cells. For example, inflammatory cytokines such as IL-12 and Type I 

IFNs have been shown to increase the expansion of effector CD8+ T cells and also 
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enhance their differentiation into memory cells (Curtsinger et al., 2005; Kolumam et al., 

2005; Mescher et al., 2006; Valenzuela et al., 2002). Three members of the γ-chain 

family of cytokines, IL-2, IL-7, and IL-15 are also important for CD8+ T cell memory. 

IL-2 signals both during priming and reactivation are required for secondary expansion of 

memory CD8+ T cells (Blachere et al., 2006; Williams et al., 2006b). Meanwhile, IL-15 

is critical in the generation as well as homeostasis of memory CD8+ T cells (Prlic et al., 

2002). Finally, the maintenance of memory CD8+ T cells is also dependent on IL-7 (Fry 

and Mackall, 2005; Prlic et al., 2002). In connection with this, it has been shown that IL-

7 receptor (IL-7R) is expressed in memory CD8+ T cell precursors as well as long-lived 

memory CD8+ T cells (Bachmann et al., 2005; Huster et al., 2004; Kaech et al., 2003). 

M. Rationale 

Naïve T cells require contact with appropriately activated APCs in order to be 

primed (Banchereau and Steinman, 1998; Reis e Sousa, 2006; Schuurhuis et al., 2000). 

CD40-CD40L interactions mediate one of the most effective APC activating signals. 

Stimulation of CD40 on APCs, particularly on DCs, upregulates expression of 

costimulatory molecules CD80 and CD86, enhances production of cytokines (most 

notably IL-12), and promotes cross-priming to exogenous Ag (Cella et al., 1996; Ridge et 

al., 1998; Schuurhuis et al., 2000). CD40 stimulation is also the mechanism by which 

CD4+ T cells provide help for the generation of CD8+ T cell responses in a process called 

APC licensing (Bennett et al., 1998; Ridge et al., 1998; Schoenberger et al., 1998).  

However, APCs can be activated by a number of other stimuli. Recent studies 

show that DCs and other APCs express TLRs that are able to bind microbial components 
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such as LPS, CpG, double-stranded RNA and some viral proteins, e.g. respiratory 

syncytial virus (RSV) fusion protein (Kurt-Jones et al., 2000; Reis e Sousa, 2004b; 

Takeda and Akira, 2005). Ligation of TLRs with these pathogen associated molecular 

patterns (PAMPs) induces similar effects as that of CD40 stimulation, e.g., activation of 

NF-κB, up-regulation of costimulatory molecules, production of cytokines, and 

promotion of cross-priming (Janeway and Medzhitov, 2002; Pasare and Medzhitov, 

2005; Reis e Sousa, 2004b). It has even been shown recently that TLR agonists can 

abrogate tolerance induced by CD40L-blockade (Thornley et al., 2006). However, it is 

still not clear whether CD40- stimulated or TLR-stimulated DCs have identical CD8+ T 

cell priming capability in vivo. 

 Given the different pathways by which DCs can be activated, we re-examined the 

requirement for CD40-CD40L interaction in vivo. We asked what is its natural role in the 

priming of naïve CD8+ T cell responses in the absence or presence of microbial PAMPs. 

We also asked in what cells is CD40 expression important and what cells provide CD40L 

for CD40 stimulation. Finally, we asked whether CD40-CD40L interactions are involved 

in the generation, maintenance, and recall responses of memory CD8+ T cells. 
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CHAPTER II. 

MATERIALS AND METHODS 

 

A. Mice  

C57BL/6J (WT), B6.129P2-Cd40tm1Kik/J (CD40-/-), and B6.129S2-Cd40lgtm1Imx/J 

(CD40L-/-) mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and 

used from 5-10 weeks of age. CD40-/- mice were also obtained from Dr. Dale Greiner 

(UMass Medical School, Worcester, MA). P-14 and OT-I TCR-Tg breeders were 

originally obtained from Dr. Raymond Welsh (UMass Medical School) and Dr. Stephen 

Jameson (University of Minnesota, Minneapolis, MN), respectively. These were bred 

with C57BL/6-Igha thy1a Gpi1a mice (Jackson Laboratory) to yield TCR-Tg Thy1.1+ T 

cells. Additionally, P-14 mice were bred with B6.SJL-Ptprca Pep3b/Boy mice to yield 

TCR-Tg CD45.1+ T cells. Lastly, P-14/Thy1.1+ mice were bred with CD40L-/- mice to 

yield CD40L-deficient, Thy1.1+ P-14 T cells. P-14 mice were typed by staining blood 

cells with Vα2 and Vβ8.1/8.2 Ab while OT-I mice were typed using Vα2 and Vβ5.1/5.2 

Ab; samples were analyzed by flow cytometry. All mice were bred and housed in specific 

pathogen-free conditions at the UMass Medical School animal facility. 

B. Generation of Dendritic cells and Macrophages  

Bone marrow cells were flushed from the femurs and tibias of the indicated mice 

and depleted of red blood cells using ACK lysis buffer. The cells were re-suspended in 

complete media (RPMI-1640 containing 10% FCS, 2mM L-glutamine, 100mM HEPES, 

100µM nonessential amino acids, 1X antibiotic/antimycotic and β-mercaptoethanol; 
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Gibco, Grand Island, NY) and plated in non-tissue culture treated Petri dishes. After an 

overnight incubation at 37°C in a 5% CO2 incubator, the non-adherent progenitor cells 

were collected, washed, and re-suspended in complete media at a concentration of 0.5 x 

106 cells/mL.  

To make DCs, 7.5 x 106 progenitors were cultured in complete media containing 

10 ng/mL GM-CSF and 5 ng/mL IL-4 (Corixa, Seattle, WA). To make macrophages 

(MΦ), the same number of progenitors were instead cultured in complete media 

containing 10% M-CSF. Supernatant from confluent DAP cell cultures was used as the 

source of M-CSF. The cells were cultured in 100 mm tissue culture dishes and fresh 

cytokines were added on day 4. Cells were harvested on day 7; by this time the DC plates 

contained adherent and non-adherent cells while the MΦ plates contained only adherent 

cells.  

In vivo generated DCs were obtained by first injecting the indicated mice s.c. with 

B16 tumor cells that secrete FLt-3 ligand (Flt-3L). After 10-14 days, spleens were 

harvested and at this point, their cellularity had increased up to 7-fold and they contained 

25-50% CD11c+ cells (N418; BD Pharmingen, San Diego, CA). To determine the DC 

subset composition, the cells were stained with Ab against CD11b (M1/70), CD8 (53-

6.7), B220 (RA3-6B2), and a pan-NK marker (DX5).  

DCs and MΦ were pulsed with the minimal immunodominant MHC class I 

epitope from LCMV glycoprotein (KAVYNFATC; gp33 peptide) (Hudrisier et al., 1997) 

or chicken ovalbumin (SIINFEKL; OVA peptide) (Rotzschke et al., 1991) at a 

concentration of 1 µg per 5 x 106 cells for 2-4 hours at 37°C. When wild type and CD40-

31



 

 
 

deficient DCs were pulsed with OVA peptide under these conditions they had the same 

levels of SIINFEKL-Kb complexes as quantified with the 25D1 monoclonal Ab (mAb). 

In some experiments, DCs and MΦ were also pulsed with different concentrations of 

OVA-conjugated Biomag beads. 

For the experiments looking at the role of TLR stimulation, 1 µg purified LPS 

(obtained from Eicke Latz and Tom Thornley, UMass Medical School), 5 µg CpG 2395 

(Coley Pharmaceutical Group, Ontario, Canada), or 5 µg polyI:C (Amersham, 

Piscataway, NJ) was added per 5 x 106 cells during peptide pulsing. The cells were 

washed once with complete media and twice with Hanks’ Balanced Salt Solution (HBSS; 

Invitrogen/GIBCO, Carlsbad, CA) prior to immunization. 

C. Phenotypic analysis of APCs 

Prior to their use, DCs and MΦ were stained with different combinations of the following 

Ab: FITC-anti-CD80 (16-10A1), PE-anti-CD86 (PO3.1), PE-anti-IAb (AF6-120.1), 

FITC-anti-H-2Kb (AF6-88.5), PE-anti-IL-12 p40 (C15.6), and PE-anti-CD40 (HM40-3). 

The cells were also stained with 25D1 Ab to quantify the amount of SIINFEKL-Kb 

complexes. The cells were stained in the presence of 2.4G2 supernatant to block Fc 

receptors. Flow cytometry was done using a FACSCalibur (BD Biosciences, Mountain 

View, CA) and data were analyzed using FlowJo software (Tree Star, Ashland, OR). 

D. Cell lines 

The fibroblast cell line L cell (DAP) transfected with full-length OVA and TfR-

OVA fusion constructs were made by Lianjun Shen and have been described previously 

(Shen and Rock, 2004). Briefly, DAP cells were transfected with the indicated constructs 
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using FuGene6 (Roche Diagnostics, Indianapolis, IN) and cloned by limiting dilution. 

The C57BL/6 derived B16 tumor cells expressing Flt-3L (B16-Flt3L) were obtained from 

Dr. Ulrich von Andrian (CBR, Harvard Medical School, Boston, MA). These cells were 

originally made in the lab of Dr. Glen Dranoff by retroviral-mediated gene transfer into 

B16-F10 melanoma cells (Mach et al., 2000). The gene for murine Flt-3L was cloned into 

the pMFG vector. B16 melanoma cells stably expressing OVA (MO5) have also been 

previously described (Falo et al., 1995). 

E. Analysis of T cell responses in vitro 

 Spleen and lymph node (LN) cells from the indicated TCR-Tg mice were depleted 

of red blood cells and re-suspended in complete media. They were then plated in 96-well 

tissue culture plates and mixed with WT or CD40-/- APCs that have been pulsed with the 

indicated Ag (peptide or OVA-beads). The cells were cultured in triplicates at an E:T 

ratio of 1:1. They were then incubated at 37°C in a 5% CO2 incubator for 1-3 days. 3H-

Thymidine was added to the wells during the last 16-20 hours of culture, and T cell 

proliferation was measured by determining the amount of 3H-Thymidine incorporation 

into DNA. 

F. Adoptive transfer  

Spleen and LN cells from P-14/Thy1.1+, P-14/CD45.1+, P-14/Thy1.1+/CD40L-/-, 

or OT-I/Thy1.1+ mice that have been depleted of red blood cells were labeled with 1 µM 

carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, Eugene, OR) for 10-20 

min at 37°C. After two washes with HBSS, 2 x106 total cells containing 30-50% TCR-Tg 

T cells were injected i.v. into the indicated hosts.  
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In experiments comparing WT and CD40L-deficient P-14 T cells, the proportion 

of TCR-Tg T cells was first determined by FACS so that identical numbers of TCR-Tg T 

cells could be injected into hosts.  

In experiments analyzing the effect of precursor frequency on CD8+ T cell 

responses, decreasing numbers of spleen and LN cells from OT-1 mice, starting from 1 

x106 cells, were transferred into the indicated hosts. 

G. Immunizations 

One day after adoptive transfer, hosts were immunized i.v. with one of the 

following: a 13-mer peptide containing the LCMV gp33 epitope (KAVYNFATCGIFA; 

LCMV 13-mer), peptide-pulsed APCs, or OVA-transfected cells. The number of APCs 

and the amount of peptide injected into mice were ones that gave reproducibly strong but 

not maximal responses. Non-immunized mice or mice immunized with APCs that were 

not pulsed with Ag were used as negative control. 

In some experiments 30-50 µg LPS, 100 µg CpG 2395, 50 µg polyI:C, or 25-100 

µg agonistic anti-CD40 mAb (FGK45; Bioexpress, West Lebanon, NH) was injected i.p. 

per mouse at the time of peptide immunization. In some experiments hosts deficient in 

CD4+ T cells and/or NK1.1+ cells were used. CD4+ T cells were depleted with anti-CD4 

mAb (GK1.5; Taconic, Germantown, NY, Bioexpress or obtained from Dr. Dale Greiner, 

UMass Medical School), which was injected i.p. two consecutive days (150 µg/dose) 

prior to adoptive transfer. This consistently resulted in greater than 99% CD4+ T cell 

depletion as verified by flow cytometry. NK1.1+ cells were depleted with anti-NK1.1 Ab 

(obtained from Dr. Dale Greiner, UMass Medical School), which was injected i.p. one 
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day before adoptive transfer. This resulted in greater than 99% NK1.1+ cell depletion. In 

some experiments, hosts that received the anti-CD40L Ab MR1 (obtained from Dr. Dale 

Greiner, UMass Medical School) were also used. 

H. Analysis of TCR-Tg CD8+ T cell responses 

Except when indicated, spleens and LN were harvested on day 4 since the peak of 

the responses occurred at this time point. Single-cell suspensions were then stained with 

different combinations of the following Ab: PerCP-anti-CD8 (53-6.7; BD Pharmingen), 

APC-anti-Thy1.1 (HIS51), APC-anti-CD45.1 (A20; eBioscience), PE-anti-CD62L 

(MEL-14), PE-anti-CD44 (IM7), PE- or APC-anti-CD127 (A7R34), PE-anti-CD43 

(1B11), PE-anti-CD25 (PC61.5). Samples were analyzed by flow cytometry. The Ab 

were purchased from either BD Pharmingen or eBioscience (San Diego, CA). 

I. Intracellular cytokine staining 

Spleen and LN cells were incubated with the indicated peptide in the presence of 

Brefeldin A (Golgi Plug; BD Pharmingen) and recombinant IL-2 for 5 hours at 37°C. The 

samples were stained with anti-CD8 and anti-Thy1.1 or anti-CD45.1 (A20) Ab, fixed and 

permeabilized using Cytofix/Cytoperm buffer (BD Pharmingen), and stained with anti-

cytokine Ab diluted in Perm/Wash buffer (BD Pharmingen) according to manufacturer’s 

instructions. Anti-IFN-γ (XMG1.2), anti-TNF-α (MP6-XT22), and anti-IL-2 (JES6-5H4) 

were purchased from BD Pharmingen or eBioscience. The samples were washed twice 

with Perm/Wash buffer and analyzed by flow cytometry. 
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J. In vivo CTL assay 

The in vivo CTL assay was performed as described previously (Barber et al., 

2003). Briefly, splenocyte targets were pulsed with relevant or irrelevant peptide and 

labeled with different concentrations of CFSE. The targets were then mixed at a 1:1 ratio 

and injected i.v. into immunized and unimmunized control mice. After 2-20 hrs spleens, 

LN, or blood samples were collected and analyzed by flow cytometry. The % target cell 

killing was calculated using the formula: 100 − {[(% rel. peptide-pulsed in immunized/% 

irrel. peptide-pulsed in immunized)/(% rel. peptide-peptide pulsed in control/% irrel. 

peptide-pulsed in control)] × 100}. 

K. Assessment of endogenous CD8+ T cell responses 

In one set of experiments, WT, CD40-/-, and CD40L-/- mice were immunized s.c. 

on one flank with 4-5 x 106 TfR-OVA cells. One week later, the mice were given 

peptide-pulsed target cells for an in vivo CTL assay.  

In a second set of experiments, WT mice were immunized i.v. with 1 x 106 WT or 

CD40-/- DCs pulsed with OVA peptide. On day 7, some mice received targets for an in 

vivo CTL assay while some mice were sacrificed for in vitro re-stimulation of spleen 

cells. In some of the experiments, CD4+ T cell-depleted hosts were used. 

L. In vitro re-stimulation 

Splenocytes from DC-immunized mice were depleted of red blood cells and 

plated at 5 x 106 cells per well in a 24-well plate and stimulated with 1 µg OVA peptide. 

After 4 to 6 days, OVA-specific CD8+ T cell responses were evaluated by intracellular 

IFN−γ staining. 
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M. Tumor protection  

WT, CD40-/-, and CD40L-/- mice immunized 10-14 days previously with TfR-

OVA cells were inoculated with 2 x 106 MO5 cells s.c. Tumor growth was monitored 

twice a week until the tumors reached a diameter of 2 cm, after which the mice were 

sacrificed. 

N. Analysis of CD40L expression by CD8+ T cells 

 Splenocytes from WT or CD40L-deficient P-14 mice were incubated with 1µg 

gp33 peptide or PMA/Ionomycin. Cells were collected every two hours starting from the 

beginning of culture and stained with PerCp-anti-CD8, FITC-anti-CD4 (RM4-5), and PE-

anti-CD69 (H1.2F3) Ab. The cells were then washed and permeabilized with 

CytoFix/Cytoperm buffer, and then stained with biotinylated anti-CD40L (MR1) Ab 

followed by Steptavidin-APC. Samples were analyzed by flow cytometry. 

O. Adoptive transfer and virus infection 

Spleen and LN cells from P-14/CD45.1+ mice were depleted of red blood cells 

and labeled with 1 µM CFSE (Molecular Probes) for 10-20 min at 37°C. After two 

washes with HBSS, 2 x106 total cells containing 30-50% TCR-Tg T cells were injected 

i.v. into WT or CD40-/- hosts. One day later, the mice were infected i.p. with 1 x 105 pfu 

of LCMV (Armstrong strain). P-14 responses were monitored in the blood at the 

indicated time points. Samples were depleted of red blood cells and then stained with 

different combinations of the following Ab: PerCP-anti-CD8, PE- or allophycocyanin-

anti-CD45.1, Annexin V-PE (BD Pharmingen), APC-anti-CD127, PE-anti-CD44, and 

PE-anti-CD62. Samples were analyzed by flow cytometry. 
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P. Assessment of memory CD8+ T cell maintenance 

Spleens from WT and CD40-/- mice containing P-14 cells were collected 11-13 

days after LCMV infection. Single cell suspensions were then depleted of red blood cells, 

labeled with CFSE, and injected i.v. into new, uninfected WT and CD40-/- hosts. The 

proportion of CD8+/CD45.1+ P-14 T cells from the donor spleens was determined by 

FACS prior to adoptive transfer to ensure that the hosts received similar number of P-14 

T cells. Host mice were bled at the indicated time points and stained with anti-CD8 and 

anti-CD45.1 Ab to determine the number of P-14 cells remaining.  

Q. Assessment of memory CD8+ T cell function 

WT and CD40-/- hosts containing memory P-14 cells were challenged i.p with 5 x 

106 pfu of vaccinia virus expressing the LCMV glycoprotein (Vac-gp). Memory 

responses were evaluated by looking at the expansion and IFN-γ production of the P-14 

cells on day 4 post-challenge. 

WT mice containing memory P-14 cells were also challenged i.v. with WT or 

CD40-/- DCs pulsed with the gp33 peptide. Again memory P-14 expansion and IFN-γ 

production were analyzed on day 4 post-challenge.  

R. DC immunization and assessment of endogenous CD8+ T cell memory 

WT mice were immunized i.v. with 1 x 106 WT or CD40-/- DCs pulsed with OVA 

peptide. In some experiments the mice were depleted of CD4+ T cells with the GK1.5 Ab 

(Bioexpress) during immunization. After at least 6 weeks, the mice were challenged i.v. 

with 1 x 106 OVA peptide-pulsed WT or CD40-/- DCs. Memory responses were evaluated 

on day 4 post-challenge through in vivo CTL assay and intracellular IFN-γ staining.  
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S. Statistical analysis 

Data for the primary CD8+ T cell responses were analyzed for statistical significance 

with a two-tailed Student’s t test using Microsoft Excel software. Differences in T cell 

responses were considered significant when a probability value of p < 0.05 was obtained. 

Data for the memory CD8+ T cell responses were analyzed for statistical significance by 

performing an analysis of variance with a mixed model.  
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CHAPTER III. 

CD40 SIGNALING IS IMPORTANT FOR INDUCTION OF MAXIMUM 

PRIMARY CD8+ T CELL RESPONSES 

 

Most of the previous studies showing a role for CD40 in APC activation and 

CD8+ T cell responses in vivo relied on exogenous stimulation of the receptor with 

agonistic Ab (Bonifaz et al., 2002; Diehl et al., 1999; French et al., 1999; Lefrancois et 

al., 2000; van Mierlo et al., 2004). Two major limitations of these studies are the non-

physiologic nature of Ab-mediated stimulation and the possibility of non-specific effects 

because of the numerous cell types that can express CD40. We therefore took the 

opposite approach and examined the priming of TCR-Tg CD8+ T cells upon adoptive 

transfer into CD40-deficient animals. In this system, all APCs lack CD40 while the 

responding T cells express both CD40 and CD40L. In addition, we used peptide or 

transfected cells as Ag instead of viruses or bacteria; this is to avoid the potential 

complication of TLR stimulation, which might bypass a CD40 requirement. 

 

RESULTS 

A. Reduced P-14 T cell accumulation and effector function in CD40-/- hosts 

 We injected WT B6 and CD40-/- hosts with cells from the spleen and lymph nodes 

of P-14 mice, whose CD8+ T cells express a transgenic TCR that recognize the LCMV 

gp33 peptide bound to H-2Db (Fig. 1). In addition, we labeled the cells with CFSE, which 

is a dye that gets equally divided into daughter cells upon cell division and is therefore a 
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Figure 1. Experimental set-up for examining the role of CD40 expression on host 

APCs in primary CD8+ T cell responses. WT and CD40-/- hosts were adoptively 

transferred with CFSE-labeled spleen and lymph node cells from P-14 TCR-Tg mice and 

immunized with a 13-mer peptide containing the LCMV gp33 epitope. Spleens and lymph 

nodes were harvested on day 4 and examined for the above parameters. In this system all 

the host APCs are either expressing or not expressing CD40. 
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useful tool for monitoring proliferation. One day later we immunized the hosts i.v. with a 

13-mer peptide containing the minimal MHC class I epitope from LCMV gp33 (LCMV 

13-mer). This Ag requires cross-presentation by host APCs in order to stimulate naïve T 

cells even without adjuvant (Ciupitu et al., 1998). On day 4 post-immunization, more 

than 95% of the P-14 T cells in both the WT and CD40-/- hosts had divided, as evidenced 

by the dilution of CFSE (Fig. 2B). The P-14 T cells in the WT hosts made up ~24% and 

~15% of the total CD8+ T cells in the spleen and LN, respectively (Fig. 2C). In contrast, 

the P-14 T cells in the CD40-/- hosts only comprised ~10% of the splenic and ~5% of LN 

CD8+ T cells. When compared to the unimmunized control mice, there was 12-fold vs. 5-

fold expansion of T cells in the spleens, and 7-fold vs. 3-fold expansion in the LN of WT 

and CD40-/- hosts, respectively.  

 We next examined whether the transgenic T cells became functional effectors by 

assaying for cytokine secretion. The percentage of P-14 T cells making IFN-γ in the 

spleen and LN of CD40-/- hosts is ~10-fold less than in the WT hosts (Fig. 2D). The same 

difference was observed for TNF-α and IL-2 production (data not shown).  

B. Reduced numbers of P-14 T cells remaining in CD40-/- hosts at the end of the 

response  

The effector CD8+ T cell population undergoes extensive contraction upon 

resolution of the response.   By day 12 post-immunization, the number of P-14 T cells 

had decreased significantly, making up 1.7% vs. 0.4% of CD8+ T cells in the spleen and 

0.5% vs. 0.1% of CD8+ T cells in the LN of the WT and CD40-/- hosts, respectively (Fig. 

3A). These data indicate that up to 98% of the effector cells at the peak of the response 
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Figure 2. Reduced P-14 T cell response in CD40-/- hosts on day 4. WT and CD40-/- hosts

containing  adoptively  transferred  CFSE-labeled  Thy1.1+  P-14  T cells were immunized

i.v. with 5 µg  LCMV  13-mer peptide or left  unimmunized.  Four days later,  spleens and

lymph nodes  were harvested,  stained with anti-CD8 and anti-Thy1.1 Ab, and analyzed by
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flow cytometry. (A) Gating strategy. (B) CFSE profiles of transferred T cells from 

representative mice. The shaded histogram represents P-14 T cells in an unimmunized 

mouse. (C) Overall accumulation of P-14 T cells was determined by calculating the 

percentage of Thy1.1+ cells in the total CD8+ T cell population. The data are presented 

as mean + SD. (D) Effector function was assayed by looking at IFN-γ production after a 5 

hr incubation with gp33 peptide in the presence of Brefeldin A (GolgiPlug). 

Representative FACS plots gated on Thy1.1+ P-14 T cells are shown. The numbers above 

indicate the percentage of IFN-γ-secreting P-14 T cells in the total CD8+ T cell 

population while the numbers in parenthesis indicate the percentage of P-14 T cells 

secreting IFN-γ.  In unimmunized mice the frequency of IFN-γ producing P-14 T cells 

was typically < 0.1%. The results shown are representative of three independent 

experiments with two to three mice per group. *, p < 0.05. 
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Figure 3. Reduced P-14 T cell numbers in CD40-/- hosts on day 12. WT and CD40-/-

hosts containing adoptively transferred CFSE-labeled Thy1.1+ P-14 T cells were

immunized as in Fig. 1 and responses were analyzed in the spleen and lymph nodes on

day  12.   (A)  Percentage  of  P-14  T  cells  in  the  total  CD8+  T  cell  population.  (B)
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Percentage of IFN−γ+ P-14 T cells. (C) MFI of IFN−γ staining. (D) In vivo CTL activity. 

Immunized mice were injected with a 1:1 mixture of gp33 peptide-pulsed and OVA 

peptide-pulsed splenocytes. The data are presented as the mean + SD of specific target 

killing. The results shown are representative of two independent experiments with two to 

three mice per group. *, p < 0.05. 
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Figure 4. In vivo cytolysis assay. Splenocyte targets are pulsed with relevant peptide 

while control targets are pulsed with irrelevant peptide or left unpulsed. The targets are 

then labeled with different concentrations of CFSE, mixed at a 1:1 ratio, and injected i.v. 

into experimental animals. In unprimed animals, there is no antigen-specific killing and 

the proportion of CFSEhi and CFSElo cells is equal. In contrast, the CFSEhi cells will be 

reduced or disappear altogether in animals that have been primed. 
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have died. Interestingly, because the P-14 T cells expanded to a greater extent in the WT 

hosts, the number of P-14 T cells that remained at the end of the response was also 

greater compared to the CD40-/- hosts. This implies that the greater the magnitude of the 

primary response, the greater the number of memory cells that can be possibly formed. 

While the percentage of IFN−γ+ P-14 T cells in the spleens of WT and CD40-/- 

hosts was equal, there were more IFN−γ producing P-14 T cells in the LN of the WT 

hosts (Fig. 3B). Moreover, the P-14 T cells in the WT hosts secreted higher levels of 

IFN−γ (Fig. 3C). Furthermore, when we examined in vivo CTL activity (Fig. 4), we 

found that the P-14 T cells in the spleens and LN of the WT hosts still exhibited 

significant target cell killing (Fig. 3D). In contrast, we did not observe target cell killing 

in either the spleen or LN of the CD40-/- hosts (Fig. 3D).  

C. Reduced OT-I T cell accumulation and effector function in CD40-/- hosts  

We also tested the response of adoptively transferred OT-I TCR-Tg T cells, which 

are specific for the OVA peptide SIINFEKL bound to H-2Kb, to make sure that the 

effects we observed were not confined to the P-14 TCR-Tg T cells. Instead of peptide, we 

immunized the hosts i.v. with a stable OVA-transfected cell line that also gets cross-

presented by host DCs (Shen and Rock, 2004; Fig. 5). On day 4 of the response, almost 

all of the OT-I T cells in both the WT and CD40-/- hosts had divided more than 8 times 

(data not shown). However, the OT-I T cells accumulated to a lesser extent in the spleens 

and LN of CD40-/- compared to the WT hosts (Fig. 6A). The proportion, as well as the 

absolute number of IFN-γ-secreting cells, was also reduced by as much as 50% in the 

CD40-/- hosts (Fig. 6B and data not shown). Furthermore, the killing of SIINFEKL-
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pulsed target cells  was reduced in the CD40-/- hosts compared to the WT hosts (94% vs. 

56%; Fig. 6C).  

Upon s.c. immunization of the OVA-transfectants, the main difference we 

observed was that the OT-I response was greater in the draining LN compared to the 

spleen. There was still a similar reduction in the accumulation as well as IFN-γ 

production of OT-I cells in CD40-/- hosts (Fig. 7A and 7B). Surprisingly however, there 

was comparable in vivo CTL activity between the WT and CD40-/- hosts  (Fig. 7C). 

 Altogether, these results demonstrate that although CD40 on APCs is not 

absolutely required to initiate naïve CD8+ T cell priming, it is important in inducing T 

cells to undergo maximum expansion and differentiation into effectors.  
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Figure 5. Experimental set-up to determine the role of CD40 on APCs in the induction 

of primary OT-I T cell responses. WT and CD40-/- hosts were adoptively transferred 

with CFSE-labeled cells from the spleens and lymph nodes of OT-I mice and immunized  

with OVA-transfected cells either i.v. or s.c..  In this system all host APCs are either 

expressing or not expressing CD40. 
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Figure 6. Reduced OT-I T cell response in CD40-/- hosts after i.v. immunization. WT

and CD40-/- hosts containing adoptively transferred CFSE-labeled Thy1.1+ OT- I T cells

were immunized i.v. with 1 x 106 OVA-transfected cells or left unimmunized. Spleens and

lymph nodes were harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of OT-1 T

cells  in   the  total   CD8+  T  cell  population.  (B)   Spleen  and  lymph  node  cells  were

stimulated   for  5  hours   in  vitro  with  OVA  peptide.   The  absolute  number  of  IFN-γ
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producing OT-I T cells is shown. Each circle in (A) and (B) represents an individual 

mouse; the lines represent the means. The numbers in parenthesis below indicate the 

percentage of OT-I T cells secreting IFN-γ. (C) In vivo CTL activity in the blood. 

Immunized mice were injected with a 1:1 mixture of OVA peptide-pulsed and gp33 

peptide-pulsed splenocytes. The data are presented as the mean + SD of specific target 

killing. Representative histograms are also shown. The results shown are representative 

of three independent experiments with three mice per group. *, p < 0.05; **, p < 0.01. 
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Figure 7. Reduced OT-I T cell response in CD40-/- hosts after s.c. immunization. WT

and CD40-/- hosts containing adoptively transferred CFSE-labeled Thy1.1+ OT- I T cells

were immunized s.c. with 1 x 106 OVA-transfected cells or left unimmunized. Spleens and

lymph nodes were harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of OT-1 T

cells in the total CD8+ T cell population. (B) Absolute number of IFN-γ producing OT-I T

cell.  Each  circle  in  (A)  and  (B) represents an individual mouse; the lines represent the
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means. (C) In vivo CTL activity in the blood. The results shown are representative of 

three independent experiments with three mice per group. *, p < 0.01; **, p < 0.05. 
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CHAPTER IV. 

CD40 SIGNALING ON APCs, PARTICULARLY DCs, IS IMPORTANT FOR 

INDUCING MAXIMUM PRIMARY CD8+ T CELL RESPONSES 

 

The preceding experiments examined T cell responses in which all APCs in the 

host are either expressing or not expressing CD40. DCs are thought to be the most potent 

APC for inducing naïve T cell responses (Banchereau and Steinman, 1998), however our 

lab has shown previously that MΦ are also capable of stimulating naïve CD8+ T cells in 

vivo (Pozzi et al., 2005). Therefore we sought to investigate how CD40 signaling affects 

the ability of these APCs to prime naïve CD8+ T cells. 

 

RESULTS 

A. Ability of CD40-stimulated APCs to activate naïve CD8+ T cells in vitro 

 We first obtained bone marrow derived DCs and MΦ from WT (CD40-sufficient) 

mice and analyzed their phenotype upon stimulation with LPS, a classical APC activator, 

or anti-CD40 Ab. Both LPS and anti-CD40 Ab were able to induce up-regulation of the 

costimulatory molecules CD80 and CD86 on DCs (Fig. 8A). However, only LPS was 

able to induce CD80 and CD86 up-regulation on MΦ (Fig. 8A). LPS stimulation resulted 

in increased levels of CD40 on the surface of both DCs and MΦ (Fig. 8A). We then 

pulsed the APCs with OVA-conjugated beads and used them to stimulate OT-I T cells in 

vitro. DCs stimulated with LPS or anti-CD40 Ab induced much higher levels of T cell 

proliferation compared to DCs containing Ag alone (Fig. 8B). Addition of MR1 Ab,
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Figure 8. Phenotype of DCs and MΦ. (A) Bone marrow derived DCs and MΦ from WT

mice  were  incubated  overnight  with peptide  +/-  LPS  or agonistic anti-CD40 Ab. The

cells were then stained with Ab against CD80, CD86, and CD40 to analyze their

phenotype. (B) BMDCs and MΦ were pulsed with 5 µg OVA-beads overnight and used to

stimulate OT-I T cells in vitro. 1 µg LPS, 5 µg anti-CD40 Ab, or 5 µg MR1 Ab was added
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to some of the wells. T cell proliferation was measured on day 3 of culture. APCs pulsed 

with control beads were used as negative control. The results shown in (B) are 

representative of two independent experiments with each sample done in triplicate. 
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which blocks CD40L, to the DC/T cell cultures resulted in lower proliferation. On the 

other hand, MΦ in general induced lower T cell proliferation compared to DCs. 

However, while T cell proliferation increased upon stimulation of MΦ with LPS, there 

was no change in proliferation when the MΦ were stimulated with anti-CD40 Ab (Fig. 

8B). Nevertheless, addition of MR1 Ab to the MΦ/T cell cultures also resulted in lower 

levels of proliferation compared to Ag alone (Fig. 8B). This suggests that the MΦ 

respond to CD40 stimulation but that the T cells are able to provide as much CD40L as 

needed. Thus, while the T cell response did not increase with anti-CD40 Ab, it was 

reduced when CD40L was blocked. We obtained similar results when the APCs were 

pulsed with either 5 µg or 1 µg of OVA-beads (data not shown). These results indicate 

that DCs are more responsive to CD40 stimulation compared to MΦ.  

B. Ability of CD40-deficient APCs to activate naïve CD8+ T cells in vitro 

To determine whether different APCs have an absolute requirement for CD40 in 

order to induce naïve T cell responses, we next examined bone marrow derived DCs and 

MΦ from CD40-/- mice. Upon stimulation with LPS, WT and CD40-/- DCs had similar 

levels of CD80, CD86, and H-2Kb; the same was true for WT and CD40-/- MΦ (Fig. 9A). 

As expected, stimulation with anti-CD40 Ab resulted in up-regulation of CD80, CD86, 

and H-2Kb only in WT but not in CD40-/- DCs. In contrast to what we saw previously, 

stimulation with anti-CD40 Ab also resulted in up-regulation of CD80 and CD86 in WT 

MΦ but not in CD40-/- MΦ (Fig. 9A). WT and CD40-/- DCs pulsed with gp33 peptide 

induced the same level of P-14 proliferation in vitro (Fig. 9B). LPS stimulation increased 

the amount of T cell proliferation, and again, the WT and CD40-/- DCs induced the same
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Figure 9. Phenotype of WT and CD40-/- APCs. (A) Bone marrow derived DCs and MΦ

from WT or CD40-/- mice were incubated for 2 hours with gp33 peptide alone or gp33

peptide + 1 µg LPS or 5 µg agonistic anti-CD40 Ab. The cells were then stained with Ab

against CD80, CD86, and H-2Kb to analyze their phenotype. (B) BMDCs and MΦ from

(A) were used to stimulate P-14 T cells in vitro. T cell proliferation was measured on day

3 of culture. 5 µg MR1 Ab was added to some of the wells and APCs that were not pulsed

with peptide were used as negative control.
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responses (Fig. 9B). As expected, CD40 stimulation resulted in increased proliferation of 

the P-14 cells that were incubated with WT but not CD40-/- DCs (Fig. 9B). Addition of 

MR1 Ab resulted in a slightly lower T cell proliferation but only of those cells that were 

stimulated with WT DCs (Fig. 9B).  

We observed the same general reduction in P-14 proliferation when they were 

incubated with MΦ. Nevertheless, the pattern was similar to that of the DCs in that WT 

and CD40-/- MΦ induced equal T cell proliferation (Fig. 9B). LPS stimulation resulted in 

increased proliferation of P-14 cells incubated with either WT or CD40-/- MΦ, while 

CD40 stimulation increased the proliferation of P-14 cells that were incubated with WT 

but not CD40-/- MΦ (Fig. 9B). Addition of MR1 Ab also resulted in slightly lower 

proliferation of T cells that were stimulated with WT but not CD40-/- MΦ (Fig. 9B). 

Altogether, these results indicate that activation of naïve CD8+ T cells in vitro does not 

depend on CD40 signaling on APCs.  

C. CD40-/- BM-derived APCs induce suboptimal T cell responses in vivo 

We next analyzed how CD40-deficiency affects the ability of DCs and MΦ to 

prime naïve CD8+ T cells in vivo. To do this, we immunized WT mice containing 

adoptively transferred P-14 T cells with DCs or MΦ from WT or CD40-/- mice pulsed 

with LCMV gp33 peptide. We used peptide as Ag in order to avoid possible 

complications that could be caused by a role of CD40 in antigen processing. In this 

situation the only cells that lack CD40 are the immunizing DCs or MΦ; at the time of 

immunization, the WT and CD40-deficient APCs had the same activation phenotype 

based on the expression of CD80, CD86, and MHC class II (data not shown). We used a 
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Figure 10. CD40-deficient APCs induce sub-optimal T cell responses in vivo. WT mice

containing adoptively transferred CFSE-labeled Thy1.1+ P-14 T cells were immunized

i.v. with 1 x 106 gp33 peptide-pulsed or unpulsed DC or MΦ from WT or CD40-/- mice.

The percentage of P-14 T cells in the total CD8+ T cell population in the spleens (A) and

LN (B) on day 4 of the response is shown. The results shown are representative of two

independent experiments with two to three mice per group. *, p < 0.05.
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single dose of 1 x 106 APCs based on previous experiments that showed this number of 

cells stimulated reproducibly good responses. Nevertheless, compared to the previous 

immunizations with peptide or cell-associated Ag, immunization with peptide-pulsed 

DCs or MΦ generally resulted in lower CD8+ T cell responses. Interestingly, CD40-/- 

DCs and MΦ induced less P-14 accumulation compared to their WT counterparts. The 

reduction in P-14 cell numbers was about two-fold in both the spleen and LN (Fig. 10A 

and 10B).  

  We then performed a time course study, and for this, as well as all subsequent 

experiments we decided to focus on DCs because they are considered as the most 

important APC for priming of naïve T cells in vivo (Fig. 11). WT DCs induced expansion 

of P-14 T cells in the spleen and LN as early as day 2 after immunization; peak P-14 

expansion was observed at day 4 post-immunization (Fig. 12A). On the other hand, 

CD40-/- DCs also induced P-14 expansion by day 2 post-immunization. However, at all 

time points, the P-14 expansion induced by CD40-/- DCs was significantly weaker 

compared to that of the WT DCs (Fig. 12A). Analysis of CFSE profiles also revealed that 

CD40-/- DCs induced less P-14 proliferation compared to WT DCs across all time points 

(Fig. 12B and data not shown). We compared the phenotype of the activated, CFSE-

negative P-14 T cells that were simulated by WT or CD40-/- DCs and found that both of 

them were CD44hi, CD69hi, CD43+, CD25+, CD62Llo, and CD127lo (data not shown). In 

contrast to effector cells, the naïve, CFSE-positive P-14 T cells were CD44lo, CD69lo, 

CD43-, CD25-, and CD62Lhi (data not shown). We next examined effector function and 

found that again, at all time points, CD40-/- DCs induced a lower percentage of IFN−γ 
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Figure 11. Experimental set-up to determine the role of CD40 expression on DCs in 

the priming of naïve CD8+ T cell responses. WT hosts adoptively transferred with CFSE-

labeled P-14 T cells were immunized with DCs derived from the bone marrow or spleen 

of WT or CD40-/- (KO) mice that have been pulsed with gp33 peptide. Spleens and lymph 

nodes were harvested at different time points and analyzed for the above parameters. In 

this system CD40 deficiency is restricted to the immunizing DCs. 
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Figure 12. Time course of P-14 T cell responses in vivo. WT mice containing adoptively

transferred CFSE-labeled Thy1.1+ P-14 T cells were immunized i.v. with 1 x 106 gp33

peptide-pulsed or unpulsed DC from WT or CD40-/- mice. (A) Mean percentage of P-14 T

cells in the total CD8+ T cell population in the spleen and LN at different time points

after immunization. (B) Percentage of P-14 T cells that have divided based on CFSE

staining. The results shown are representative of two independent experiments with two

to three mice per group. *, p < 0.01.
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Figure 13. Time course of P-14 T effector function in vivo. (A) Mean percentage of

IFN-γ producing P-14 T cells in the total CD8+ T cell population in the spleen and LN at

different time points after immunization. (B) In vivo CTL activity against gp33 peptide-

pulsed targets. The results shown are representative of two independent experiments with

two to three mice per group. **, p < 0.01; *, p < 0.05.
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producing P-14 cells compared to WT DCs in both the spleen and LN (Fig. 13A). The 

reduced T cell response induced by the CD40-/- DCs led to a corresponding decrease in 

the ability of the immunized hosts to eliminate peptide-pulsed targets during the peak of 

the response (Fig. 13B). By day 12, however, there is very little CTL activity left 

regardless of the immunizing DC. This is most probably due to the low numbers of 

effector cells that remain at this point. 

D. In vivo generated CD40-/- DCs induce sub-optimal T cell responses in vivo 

Up to this point, we have only used APCs that were derived in vitro from bone 

marrow cells. It is possible that the environment in which APCs are generated could 

affect their function. Therefore, we also analyzed the ability of APCs, specifically DCs, 

which were generated in vivo, to induce naïve CD8+ T cell responses. Because there is 

only a small population of DCs in the spleen and they are difficult to isolate in large 

numbers, we first injected WT and CD40-/- mice with B16 tumor cells that secrete Flt-3 

ligand. Flt-3L has previously been shown to induce the differentiation and expansion of 

functionally mature DC subsets in vivo (Mach et al., 2000; Maraskovsky et al., 1996). In 

our case, injection of B16-Flt3L cells resulted in up to 50-fold expansion of CD11c+ cells 

in the spleen (data not shown). We initially compared the in vivo priming ability of WT 

bone marrow derived DCs (BMDC) and Flt-3L induced splenic DCs (Flt-3L DCs) that 

were pulsed with different concentrations of peptide. We found that immunization with 

either BMDCs or Flt-3L DCs resulted in similar levels of P-14 expansion (Fig. 14).  

We then obtained WT and CD40-/- Flt-3L DCs and used them to immunize hosts 

containing adoptively transferred P-14 T cells. The Flt-3L DCs from WT and CD40-/- 
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Figure 14. P-14 T cell responses upon immunization with BMDC or Flt-3L DCs. WT

mice containing adoptively transferred CFSE-labeled Thy1.1+ P-14 T cells were

immunized i.v. with 1 x 106 BMDC or Flt-3L DCs that have been pulsed for 2 hours with

1.0, 0.3, 03 0.1 µg gp33 peptide. The mean percentage of P-14 T cells in the total CD8+ T

cell population in the spleen on day 4 of the response is shown. The results shown are

representative of to independent experiments with two to three mice per group.
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mice contained similar proportions of the different splenic DC subsets (Fig. 15A). In 

addition, they also had the same activation phenotype (Fig. 15B). Similar to the in vitro 

derived BMDCs, CD40-/- splenic DCs induced much less P-14 T cell accumulation on 

day 4 of the response (Fig. 16A). Moreover, the proportion as well as the absolute 

number of IFN−γ+ P-14 cells was significantly reduced in mice immunized with CD40-/- 

Flt-3L DCs (Fig. 16B and 16C). Furthermore, the P-14 cells stimulated with CD40-/- Flt-

3L DCs also made less IFN−γ compared to those that were stimulated with WT Flt-3L 

DCs (Fig. 16D). 

 All of the results using CD40-deficient APCs are concordant with the data we 

obtained using CD40-deficient hosts. Moreover, they directly demonstrate a key role for 

CD40 on APCs, particularly on DCs, in inducing maximal naïve CD8+ T cell responses 

since they are the only cells lacking this receptor in these experiments. 
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Figure 15. Phenotype of Flt-3L DCs from WT and CD40-/- mice. Spleens were

harvested from WT and CD40-/- mice injected with B16-Flt-3L tumor cells 12-14 days

previously. Single-cell suspensions were stained with Ab against CD11c, CD11b, B220,

CD8, and a pan-NK marker (A) or CD86 (B). Samples were analyzed by flow cytometry.

The data shown in (A) are from either total splenocytes or gated on CD11c+ cells while

the data in (B) is gated on CD11c+ cells.
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Figure 16. Flt-3L DCs from CD40-/- mice induce sub-optimal P-14 T cell responses in

vivo. WT mice containing adoptively transferred CFSE-labeled Thy1.1+ P-14 T cells

were immunized i.v. with 1 x 106 Flt-3L DCs from WT or CD40-/- mice that have been

pulsed with gp33 peptide. Spleens were harvested on day 4 and analyzed as in Fig. 1. (A)

Mean percentage of P-14 T cells in the total CD8+ T cell population in the spleen. (B)

Percentage of IFN-γ+ P-14 T cells. (C) Absolute number of IFN-γ producing P-14 T

cells. (D) MFI of IFN-γ staining. Each circle represents an individual mouse; the lines

represent the means. The results shown are representative of three independent

experiments with three mice per group. *, p < 0.01.
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CHAPTER V. 

CD40-DEPENDENT CD8+ T CELL RESPONSES IN THE ABSENCE OF  

CD4+ T CELL HELP 

 

CD8+ T cell responses to non-inflammatory Ag such as peptides, soluble proteins, 

particulate Ag, and cell-associated Ag, including peptide-pulsed DCs are largely 

dependent on CD4+ T helper cells (Behrens et al., 2004; Clarke, 2000). It is believed that 

CD40L on activated CD4+ T cells is needed to stimulate CD40 on APCs and trigger 

licensing, and that this is the mechanism by which CD4+ T cells provide help for CD8+ T 

cell responses. In our experimental systems, it is possible that CD4+ T cells might be 

generated to bovine serum proteins presented by cultured BMDCs or if the LCMV 13mer 

peptide contained a MHC class II epitope. Therefore we sought to investigate whether the 

data we have so far on the importance of CD40 signaling reflects the role of CD4+ T cell 

help in generation of CD8+ T cell responses. 

 

RESULTS 

A. Help-independent CD8+ T cell responses to peptide or peptide-pulsed DCs 

A previous study from our lab showed that the strength of antigenic stimulation 

determines whether a primary CD8+ T cell response will be help-dependent or help-

independent (Rock and Clark, 1996). Thus, immunization with a low concentration of a 

particulate Ag resulted in priming of CTLs in WT but not MHC II-/- mice while 

immunization with a higher concentration of Ag resulted in priming of CTLs in both WT 
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Figure 17. P-14 T cell responses in WT or CD4+ T cell-deficient hosts. CFSE-labeled

Thy1.1+ P-14 T cells were adoptively transferred into WT mice, which were depleted of

CD4+ T cells or left untreated. One day later the mice were immunized i.v. with 1.0, 0.3,

or 0.1 µg LCMV 13-mer peptide. Spleens were harvested on day 4 and analyzed as in

Fig. 1. The mean percentage of P-14 T cells in the total CD8+ T cell population is shown.

Each circle represents an individual mouse; the bars represent the means.  The results

shown are representative of two independent experiments with two to three mice per

group.
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Figure 18. Helper-independent CD8+ T cell responses to peptide-pulsed DCs. CFSE-

labeled Thy1.1+ P-14 T cells were adoptively transferred into WT mice, which were

depleted of CD4+ T cells or left untreated. One day later the mice were immunized i.v.

with 1 x 106 gp33 Flt-3L DCs that were pulsed with 1.0, 0.3, or 0.1 µg gp33 peptide or

left unpulsed. Spleens were harvested on day 4 and analyzed as in Fig. 1. The mean

percentage of P-14 T cells in the total CD8+ T cell population is shown. Each circle

represents an individual mouse; the bars represent the means. The results shown are

representative of two independent experiments with two to three mice per group.
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and MHC II-/- mice. We asked if our experimental systems using peptide or peptide-

pulsed DCs are subject to the same concentration-dependent requirement for CD4+ T cell 

help. To answer this, we adoptively transferred WT and CD4+ T cell-deficient mice with 

P-14 T cells and immunized them with different concentrations of LCMV 13-mer or DCs 

pulsed with different concentrations of gp33 peptide. We chose to do acute CD4+ T cell 

depletion with GK1.5 Ab because this gives the most complete elimination of these cells, 

with the cells starting to disappear as early as one day after injection of the Ab. 

Surprisingly, we found that the P-14 T cell response to LCMV 13-mer is independent of 

CD4+ T cell help. Regardless of the amount of peptide injected, similar levels of P-14 

proliferation and expansion were observed in WT and CD4+ T cell-deficient mice (Fig. 

17). The P-14 T cell response to DCs pulsed with different concentrations of peptide is 

likewise similar in WT and CD4+ T cell-deficient hosts (Fig. 18).  

Altogether, these results indicate that the CD8+ T cell response to peptide or 

peptide-pulsed DCs can occur independently of CD4+ T cell help, in contrast to some 

earlier studies.  

B. CD40-/- DC induce suboptimal responses in the absence of CD4+ T cells 

We next determined whether CD4+ T cells are the sole source of CD40L that is 

needed to stimulate CD40 in our system. To do this, we immunized WT and CD4+ T cell-

deficient hosts containing P-14 T cells with WT or CD40-/- DCs pulsed with gp33 peptide 

(Fig. 19). Again, we found that WT DCs stimulated equivalent P-14 T cell responses with 

or without CD4+ T cells (Fig. 20A and 20B). Depletion of CD4+ T cells even resulted in a 
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Figure 19. Experimental system to determine whether CD40L is being provided by 

CD4+ T cells. WT hosts were either depleted or not depleted of CD4+ T cells using the 

GK1.5 Ab. They were then adoptively transferred with CFSE-labeled P-14 T cells and 

immunized with DCs from WT or CD40-/- (KO) mice that have been pulsed with gp33 

peptide. Spleens and lymph nodes were harvested on day 4 and examined for the above 

parameters.  
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Figure 20. Helper-independent CD8+ T cell responses induced by WT and CD40-/- DCs.

CFSE-labeled Thy1.1+ P-14 T cells were adoptively transferred into WT mice, which were

depleted of CD4+ T cells or left untreated. One day later the mice were immunized i.v.

with 1 x 106 gp33 peptide-pulsed or unpulsed DCs from WT or CD40-/- mice. Spleens were

harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of P-14 T cells in the total

CD8+ T cell population. (B) Absolute number of IFN-γ producing P-14 T cells. Each

circle represents an individual mouse; the bars represent the means. The numbers in

parenthesis below indicate the percentage of P-14 T cells secreting IFN-γ. The results

shown are representative of three independent experiments with three mice per group. *,

p < 0.01.
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slight increase in the absolute number of IFN−γ producing cells, perhaps suggesting a 

possible effect of depletion of the natural regulatory T cell (TREG) population, which also  

express CD4. However, the difference we observed was not statistically significant. 

Interestingly, CD40-/- DCs still induced weaker P-14 T cell priming in the absence of 

CD4+ T cells (Fig. 20A and 20B). This implies that CD4+ T cell and CD40 activity are 

not always equivalent. Moreover, it suggests that CD4+ T cells are not the only cells 

capable of activating CD40 on APCs during an immune response. To investigate this 

further, we did most of our subsequent experiments in CD4+ T cell-depleted hosts.  

C. OT-I T cell responses in CD4+ T cell-deficient hosts 

In order to make sure that the effects we observed were not confined to P-14 T 

cells, we again performed experiments using adoptively transferred OT-I cells and DCs 

pulsed with OVA peptide. Intriguingly, there was no difference in OT-I expansion upon 

immunization with WT or CD40-/- DCs (Fig. 21A). Nevertheless, the percentage of IFN−

γ+ OT-I cells was slightly lower in mice immunized with CD40-/- DCs (Fig. 21B). There 

is evidence that the precursor frequency of Ag-specific CD8+ T cells affects whether their 

response will require CD4+ T cell help (Mintern et al., 2002b). Therefore, one possible 

explanation for the above result is that the precursor frequency of the OT-I cells was high 

enough that their response became independent of CD4+ T cells and even CD40. To test 

this, we titrated the number of OT-I T cells that we adoptively transferred into the CD4+ 

T cell-deficient hosts. We then immunized the mice with WT or CD40-/- DCs pulsed with 

OVA peptide. This time, both the OT-I T cell expansion and IFN−γ production were 

lower in mice that were immunized with CD40-/- DCs (Fig. 22A and 22B). These data 
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indicate that CD40 signaling on APCs is important in the response of CD8+ T cells with a 

different specificity. Furthermore, they suggest that CD40 signaling may not be as 

important when the frequency of Ag-specific CD8+ T cells is high enough.  
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Figure 21. OT-I T cell responses induced by WT versus CD40-/- DCs. 2 x106 CFSE-

labeled Thy1.1+ OT-I T cells were adoptively transferred into WT mice, which were

depleted of CD4+ T cells. One day later the mice were immunized i.v. with 1 x 106

OVA peptide-pulsed or unpulsed DCs from WT or CD40-/- mice. Spleens were

harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of OT-I T cells in the

total CD8+ T cell population. (B) Percentage of IFN-γ producing OT-I T cells. The

results shown are representative of two independent experiments. Each circle

represents an individual mouse; the bars represent the means.
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Figure 22. Reduced OT-I T cell responses induced by CD40-/- DCs. Mice depleted of

CD4+ T cells were adoptively transferred with 1 x106, 1 x105, 1 x 104, or 1 x 103

CFSE-labeled Thy1.1+ OT-I T cells. One day later the mice were immunized i.v. with 1

x 106 OVA peptide-pulsed or unpulsed DCs from WT or CD40-/- mice. Spleens were

harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of OT-I T cells in the

total CD8+ T cell population. (B) Absolute number of IFN-γ producing OT-I T cells.

Each circle represents an individual mouse; the bars represent the means.
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CHAPTER VI. 

PIVOTAL ROLE OF CD40-CD40L INTERACTION IN ENDOGENOUS CD8+ T 

CELL RESPONSES 

 

Up until this point we have been analyzing the response of TCR-Tg CD8+ T cells. 

These cells have a relatively high affinity for their cognate MHC-peptide and are present 

at high frequencies in the host mice. We next sought to extend our analysis of naïve 

CD8+ T cell priming to a non-transgenic (non-Tg) system, in which host mice have 

normal T cell frequencies. In addition, the Ag-specific CD8+ T cells in these mice are 

polyclonal and are therefore composed of cells with different affinities.  

 

RESULTS 

A. Reduced CTL activity in immunized CD40-/- and CD40L-/- mice  

We immunized WT, CD40-/-, and CD40L-/- mice with OVA-transfected cells and 

evaluated naïve CD8+ T cell priming by performing an in vivo CTL assay one week later 

(Fig. 23). As expected, non-immunized WT, CD40-/-, and CD40L-/- mice were unable to 

lyse OVA peptide-pulsed targets (Fig. 24A and data not shown). Immunized WT mice 

exhibited strong CTL responses, being able to lyse as much as 80% of targets (Fig. 24A 

and 24B). In contrast, both the immunized CD40-/- and CD40L-/- mice showed much 

weaker CD8+ T cell priming, with target cell killing in these mice being reduced to ~20% 

(Fig. 24A and 24B). We then inoculated the mice with a melanoma cell line that stably 
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Figure 23. Experimental set-up to determine the role of CD40-CD40L interactions on 

the priming of endogenous CD8+ T cells. WT, CD40-/-, and CD40L-/- mice were 

immunized s.c. with stable OVA-transfectants (D2F3). Primary responses were evaluated 

one week later using an in vivo CTL assay. Following this, the mice were inoculated with 

melanoma cells expressing OVA (MO5-OVA) and observed for tumor growth. In this 

system all host cells are either sufficient or deficient in CD40 or CD40L. Moreover, since 

there is no adoptive transfer, the responses are those of the endogenous CD8+ T cells, 

which are not only polyclonal but also present at physiological frequencies.   
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Figure 24. Endogenous CD8+ T cell responses are compromised in the absence of CD40

or CD40L. WT, CD40-/-, and CD40L-/- mice were immunized s.c. with 5 x106 OVA-

transfected   cells  or  left  unimmunized.   One  week   later,  OVA   peptide-specific  CTL
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responses were assessed using an in vivo CTL assay. (A) FACS data showing lysis of 

CFSE-hi target cells. (B) Specific target cell killing from the different mice in (A) are 

presented as mean + SD. (C) Indicated mice were immunized as in (A) and injected s.c 

10-14 days later with 2 x106 MO5 cells. Tumor growth was monitored twice a week and 

mice were sacrificed when the tumors reached a diameter of 2 cm. The results shown are 

representative of 3 independent experiments with 3 to 5 mice per group. (Data provided 

by Lianjun Shen) 

84



 

 
 

expresses OVA (MO5; Fig. 23). Whereas no tumor growth was observed in immunized 

WT mice, immunized CD40-/- and CD40L-/- mice eventually succumbed to tumors (Fig. 

24C and data not shown). These results indicate that although naïve CD8+ T cells can be 

primed in the absence of CD40-CD40L interaction, the lower magnitude of the response 

leads to responses are not protective. 

B. CD40-/- DCs induce sub-optimal endogenous CD8+ T cell responses  

We also examined endogenous CD8+ T cell responses in WT hosts upon 

immunization with WT or CD40-/- DCs pulsed with OVA peptide (Fig. 25). WT DCs 

induced a very strong CTL response, resulting in almost complete elimination of target 

cells (Fig. 26A and 26B). In contrast, CD40-/- DCs induced more modest CTL activity 

and this weaker response was observed whether or not CD4+ T cells were present (Fig. 

26A and 26B). We could not detect cytokine production by CD8+ T cells directly ex vivo 

in either WT DC or CD40-/- DC immunized mice (data not shown). Upon in vitro re-

stimulation, we found that only CD8+ T cells from mice immunized with WT DCs were 

able to secrete IFN-γ (Fig. 26C). Interestingly, we observed a reduction in the number of 

IFN−γ producing cells in the absence of CD4+ T cells. This appears to be a difference 

between the TCR-Tg versus the endogenous (polyclonal) T cell response and could be 

due to differences in T cell affinity and/or precursor frequency. However, it is important 

to note that in spite of the reduced number of endogenous IFN−γ producing CD8+ T cells 

in CD4-depleted hosts, the response remains CD40-dependent.  

 Overall, the above results indicate that the CD40-CD40L interaction is required to 

generate a highly effective and protective primary response from an endogenous 
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polyclonal CD8+ T cell population. This requirement is observed even in the absence of 

CD4+ T cell help. 
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Figure 25. Experimental set-up to determine the role of CD40 on DCs in the priming 

of endogenous polyclonal CD8+ T cell responses. WT or CD4-depleted mice were 

immunized with BMDC from WT or CD40-/- (KO) mice that have been pulsed with OVA 

peptide. After one week, in vivo CTL assay was performed and spleen cells were 

restimulated in vitro with OVA peptide. Intracellular cytokine staining was performed 

after six days of culture. In this system CD40 deficiency is restricted only to the 

immunizing DC. 
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Figure 26. Endogenous CD8+ T cell responses upon immunization with WT or CD40-/-

DCs. CD4-depleted or undepleted WT mice were immunized i.v. with 1 x 106 OVA

peptide-pulsed or unpulsed DCs from the indicated mice. In vivo CTL activity against

OVA peptide-pulsed targets was determined one week later. (A) Representative FACS

data showing lysis of CFSEhi target cells. (B) Specific target cell killing from the different

88



 

 
 

mice in (A) are presented as mean + SD. (C) CD4-depleted or undepleted mice were 

immunized as in (A). On day 7, splenocytes were harvested and restimulated in vitro with 

1 µg/mL OVA peptide. After six days, intracellular IFN-γ production was assessed 

following an additional 5-hour incubation with OVA peptide. Representative plots are 

shown, with the numbers indicating the percentage of CD8+ T cells producing IFN-γ. The 

frequency of IFN-γ+ cells in mice immunized with unpulsed DCs was ~ 0.5%. The results 

shown are representative of two independent experiments with three mice per group. 
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CHAPTER VII. 

CD40L EXPRESSION BY CD8+ T CELLS CONTRIBUTES TO  

MAXIMUM RESPONSES  

 

CD4+ T cells are considered to be the primary source of CD40L for stimulating 

CD40 on APCs. However, our observations that CD40 signaling is important in inducing 

maximum primary CD8+ T cell responses even in the absence of CD4+ T cells implies 

that CD40L is coming from a different source. Some of the cells that can express CD40L 

include CD8+ T cells, B cells, NK cells, NKT cells, and platelets (Schonbeck and Libby, 

2001). We sought to identify which among these candidates is responsible for providing 

CD40L. 

 

RESULTS 

A. CD8+ T cells express CD40L 

We hypothesized that in the absence of CD4+ T cells, CD40L might be provided 

to DCs by the responding CD8+ T cells themselves. To test this, we first bred the P-14 

mice to the CD40L-/- background to obtain CD40L-deficient P-14 T cells. In vitro, the 

response of the CD40L-deficient P-14 T cells to peptide, peptide-pulsed DCs, and 

PMA/Ionomycin was comparable to that of WT P-14 T cells (Fig. 27). 

 We next confirmed that the WT P-14 T cells are capable of expressing CD40L. 

To do this, we stimulated the cells in vitro with either gp33 peptide or PMA/Ionomycin. 

By 4 hours after incubation, we could detect CD40L expression on the WT P-14 T cells, 
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Figure 27. In vitro response by CD40L-deficient P-14 T cells. Spleen and LN cells from

WT or CD40L-deficient P-14 mice were incubated with DCs pulsed with 1 µg gp33

peptide, 1 µg gp33 peptide, or PMA and Ionomycin. T cell proliferation, measured by

CPM, was determined after three days of culture.
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Figure 28. CD8+ T cells express CD40L. Spleen and LN cells from WT or CD40L-

deficient P-14 mice were incubated with gp33 peptide or PMA and Ionomycin. At the

indicated time points, the cells were stained for both surface and intracellular CD40L as

well as CD8 and CD4. Samples were analyzed by flow cytometry. (A) CD40L expression

at 4 hours. (B) CD40L expression at 8 hours. The shaded histogram represents staining

with control Ab.
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albeit at much lower levels than in CD4+ T cells incubated with PMA/Ionomycin (Fig. 

28A). By 8 hrs, there was a slight increase in CD40L expression on the WT P-14 T cells, 

but the levels were still much lower compared to that of the CD4+ T cells (Fig. 28B). We 

used CD40L-deficient P-14 T cells as a control and as expected, these cells did not 

express CD40L. 

B. Reduced responses by CD40L-deficient CD8+ T cells in vivo 

We then analyzed the response of CD40L-deficient P-14 T cells in WT hosts after 

immunization with the LCMV 13-mer peptide. In this system all the host APCs express 

CD40 and all the host T cells express CD40L; only the adoptively transferred T cells are 

unable to express CD40L (Fig. 29). CD40L-deficient P-14 T cells proliferated about 2-

fold less compared to WT P-14 T cells upon immunization with two different 

concentrations of peptide (Fig. 30A and 30B). The proportion and absolute number of 

CD40L-deficient P-14 T cells secreting IFN−γ was also significantly decreased (Fig. 30C 

and 30D). We also examined the response of CD40L-deficient P-14 T cells in WT versus 

CD4+ T cell-deficient hosts. We found a similar 2-fold reduction in the CD40L-deficient 

P-14 T cell response in the presence or absence of CD4+ T cells (Fig. 31A-31C). These 

results are reminiscent of the WT P-14 T cell response upon immunization with CD40-/- 

DCs. 

C. CD40L-deficient CD8+ T cells are not inherently defective 

We next investigated whether the reduced P-14 T cell response was due to 

deficient activation of the CD40-positive host APCs and not to an inherent defect of the
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Figure 29. Experimental set-up to determine whether CD40L is being provided by 

antigen-specific CD8+ T cells. P-14 TCR-Tg mice were bred to CD40L-/- mice to obtain 

CD40L-deficient P-14 T cells. WT or CD4-depleted hosts were then adoptively 

transferred with either WT or CD40L-deficient P-14 T cells and immunized with LCMV 

13-mer. Spleens and lymph nodes were analyzed on day 4. In this system all of the host 

cells are CD40 and CD40L sufficient; the only variable is CD40L expression on the 

transferred TCR-Tg CD8+ T cells. 
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Figure 30. Reduced responses by CD40L-deficient CD8+ T cells. WT mice were

adoptively transferred with CFSE-labeled Thy1.1+ WT or CD40L-deficient P-14 T cells.

One day later the mice were immunized i.v. with 0.1 µg or 1.0 µg LCMV 13-mer or left

unimmunized. Spleens were harvested on day 4 and analyzed as in Fig. 1. (A) P-14 T cell

expansion. (B) Percentage of P-14 T cells that have divided. (C) Percentage of IFN−γ

producing P-14 T cells. (D) Absolute number of IFN−γ producing P-14 T cells. (A) and

IFN-γ production (B) were analyzed as in Fig. 1. Each circle in (A), (C), and (D)

represents an individual mouse; the bars represent the means.
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Figure 31. WT and CD40L-deficient P-14 T cell responses in WT and CD4+ T cell-

deficient hosts. CD4+ T cell-depleted or undepleted WT mice were adoptively transferred

with CFSE-labeled Thy1.1+ WT or CD40L-deficient P-14 T cells. One day later the mice

were   immunized   i.v.  with  1  µg   LCMV  13-mer  or  left  unimmunized.   Spleens  were
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harvested on day 4 and analyzed as in Fig. 1. (A) P-14 T cell expansion. (B) Percentage 

of IFN-γ producing P-14 T cells. (C) Absolute number of IFN−γ producing P-14 T cells. 

were analyzed as in Fig. 1. Each circle in (A) to (C) represents an individual mouse; the 

bars represent the means. The results shown are representative of three independent 

experiments with three mice per group. *, p < 0.01. 
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CD40L-deficient P-14 T cells. To do this we injected the mice with agonistic anti-CD40 

Ab at the time of immunization. This should result in activation of host APCs, thereby 

eliminating their need for CD40L. Indeed, treatment with agonistic anti-CD40 Ab 

increased the CD40L-deficient P-14 T cell response to WT levels (Fig. 32A-32C). This 

increased response was not observed when CD40-/- mice were used as hosts (Fig. 33). 

This rules out the possibility that the increased responses were caused by the antibody 

directly activating the transferred T cells, which can express CD40.  

D. WT CD8+ T cells can provide help to CD40L-deficient CD8+ T cells 

To further investigate whether the reduced response by CD40L-deficient P-14 T 

cells is not due to an intrinsic defect, we performed adoptive transfers using a 1:1 mixture 

of WT and CD40L-deficient P-14 T cells (Fig. 34). This resulted in equal expansion and 

IFN-γ production of both T cell populations (Fig. 35A-35C). Injection of the anti-CD40L 

blocking Ab MR1 inhibited the ability of the WT P-14 T cells to rescue the response of 

the CD40L-deficient P-14 T cells (Fig. 35D). Therefore, the CD40L-deficient T cells 

were fully functional when the WT CD8+ T cells provided the CD40L signal, presumably 

to the CD40-expressing APCs. 

E. Other CD40L-expressing cells do not contribute to the CD8+ T cell response 

Our experiments thus far do not address whether other CD40L-expressing cells 

from the host might be providing “help” to the adoptively transferred T cells. To address 

this issue, we used CD40L-/- mice, which are completely unable to express CD40L, as 

hosts.  The magnitude of T cell expansion was very similar in WT and CD40L-/- hosts, 
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Figure 32. Agonistic anti-CD40 Ab boosts WT and CD40L-deficient P-14 T cell

responses. CD4-depleted or undepleted WT mice containing WT or CD40L-deficient P-

14 T cells that have been labeled with CFSE were immunized i.v. with 1µg LCMV 13-mer

and injected i.p. with 50 µg of the agonistic anti-CD40 Ab FGK45. Spleens were

harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of P-14 T cells in the total

CD8+ T  cell population.  (B)  Percentage of IFN-γ producing P-14 T cells.  (C) Absolute

A.

B. 

C. 

0

10

20

30

40

50

60

70

80

%
 IF

N-
γ+

 

0
5

10
15
20
25
30
35
40
45
50

IF
N-
γ+

 (x
 1

03 )
  

0
5

10
15
20
25
30
35
40
45
50

P-
14

/C
D8

+  
T 

ce
lls

 (%
)

WT 
CD40L-/-

99



 

 
 

number of IFN−γ producing P-14 T cells. Each circle in (A) to (C) represents an 

individual mouse; the bars represent the means. The results shown are representative of 

two independent experiments. 
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Figure 33. Agonistic anti-CD40 Ab does not directly activate P-14 T cells. WT or CD40-

/- mice were adoptively transferred with CFSE-labeled Thy1.1+ WT or CD40L-deficient

P-14 T cells. One day later the mice were immunized i.v. with 1 µg LCMV 13-mer

together with 50 µg of the agonistic anti-CD40 Ab FGK45 injected i.p.. Spleens were

harvested on day 4 and the percentage of P-14 T cells in the total CD8+ T cell population

was determined. Each circle represents an individual mouse; the bars represent the

means.
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Figure 34. Experimental set-up to determine whether CD8+ T cells can provide CD40L 

for CD40 stimulation. WT or CD4-depleted mice were adoptively transferred with WT or 

CD40L-deficient P-14 T cells mixed at a 1:1 ratio. The mice were then immunized with 

LCMV 13-mer in the presence or absence of the anti-CD40L blocking Ab MR1. This 

system tests whether CD40L-deficient CD8+ T cells can respond normally in the presence 

of other CD40L-expressing CD8+ T cells that can activate CD40 on APCs. 
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Figure 35. WT P-14 T cells can rescue the response of CD40L-deficient P-14 T cells.

CD4-depleted WT hosts were divided into two groups and adoptively transferred with

either CD45.1+ WT or Thy1.1+ CD40L-deficient P-14 T cells alone or a 1:1 mixture of

WT and CD40L-deficient P-14 T cells. One day later the mice were immunized i.v. with 1
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µg LCMV 13-mer in the presence (D) or absence (A-C) of MR1 Ab and the spleens were 

harvested on day 4. (A) Percentage of P-14 T cells in the total CD8+ T cell population. 

(B) Percentage of IFN−γ producing cells. (C) and (D) Fold expansion was calculated by 

dividing the percentage of WT or CD40L-/- P-14 T cells in the spleens of immunized mice 

by the percentage in unimmunized mice. The data are presented as mean + SD. The 

results shown are representative of two independent experiments with three mice per 

group.
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but more importantly, the CD40L-deficient P-14 T cells still exhibited ~2-fold reduction 

in accumulation compared to the WT P-14 T cells (Fig. 36A and 36B). In preliminary 

experiments, we also obtained similar results using RAG-/- hosts, which lack both 

endogenous CD4+ and CD8+ T cells (data not shown).  

 Additionally, we found that upon depletion of NK1.1+ cells, the proliferation of 

CD40L-deficient P-14 T cells was still reduced compared to that of WT P-14 T cells (Fig. 

37). Furthermore, in hosts that have been depleted of NK1.1+ cells, the proliferation of 

WT P-14 T cells stimulated with CD40-/- DCs was also still reduced compared to those 

that were stimulated with WT DCs (Fig. 38). Depletion of platelets did not affect the 

ability of mice immunized with OVA-transfected cells to mount a primary CTL response 

(data not shown) 

 All of these results show that there is no inherent defect in the ability of the 

CD40L-deficient CD8+ T cells to be primed and that their reduced response can be 

attributed to their inability to activate APCs. These data also provide functional evidence 

that CD40L expression by the responding CD8+ T cells contributes to the generation of a 

maximal primary response in the presence or absence of CD4+ T cells. 
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Figure 36. WT and CD40L-deficient P-14 T cell responses in CD40L-/- hosts. CFSE

labeled WT or CD40L-deficient P-14 T cells were adoptively transferred into CD40L-/-

hosts, which were immunized one day later with 1 µg LCMV 13-mer peptide. Spleens

were harvested four days later and analyzed as in Fig. 1. (A) Percentage of P-14 T cells

in the total CD8+ T cell population. (B) Absolute number of IFN−γ producing P-14 T

cells. The results are representative of two experiments with two to three mice per group.
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Figure 37. Response of WT and CD40L-deficient P-14 T cells in hosts depleted of

NK1.1+ cells. WT mice were injected with GK1.5 Ab to deplete CD4+ T cells or with a

combination of GK1.5 and anti-NK1.1 Ab to deplete CD4+ T cells as well as NK and NKT

cells. They were then adoptively transferred with CFSE-labeled WT or CD40L-deficient

P-14 T cells and immunized the next day with 1 µg LCMV 13-mer peptide. Spleens were

harvested on day 4 and the percentage of P-14 T cells out of the total CD8+ T cell

population was determined. The results shown are representative of two independent

experiments with two to three mice per group.
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Figure 38. P-14 T cell responses induced by WT versus CD40-/- DCs in hosts depleted of

NK1.1+ cells. WT mice were injected with GK1.5 Ab to deplete CD4+ T cells or with a

combination of GK1.5 and anti-NK1.1 Ab to deplete CD4+ T cells as well as NK and NKT

cells. They were then adoptively transferred with CFSE-labeled P-14 T cells and

immunized the next day with 1 x 106 DCs from WT or CD40-/- mice pulsed with gp33

peptide. Spleens were harvested on day 4 and the percentage of P-14 T cells out of the

total CD8+ T cell population was determined. The results shown are representative of two

independent experiments with two to three mice per group.
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CHAPTER VIII. 

TLR STIMULATION DOES NOT COMPENSATE FOR CD40 OR CD40L 

DEFICIENCY 

 

Toll-like receptors (TLRs) comprise a subset of innate receptors that recognize 

pathogen associated molecular patterns (PAMPS) (Takeda and Akira, 2005). There are 

11 TLRs in mice and 10 in humans, each with a different specificity.  They are expressed 

on various cell types, but more importantly, they are expressed on APCs. It is thought 

that TLRs serve as the bridge between the innate and adaptive arms of the immune 

response (Akira et al., 2001). This is because TLR stimulation activates APCs and 

enhances their ability to induce T cell activation and differentiation (Pasare and 

Medzhitov, 2005; Reis e Sousa, 2004b). TLR stimulation induces similar effects as that 

of CD40 stimulation, e.g., activation of NF-κB, up-regulation of costimulatory 

molecules, production of cytokines, and promotion of cross-priming (Janeway and 

Medzhitov, 2002; Pasare and Medzhitov, 2005; Reis e Sousa, 2004b). Hence, we 

determined whether TLR stimulation could replace CD40 function in naïve CD8+ T cell 

priming. 

 

RESULTS 

A. Reduced P-14 T cell responses in CD40-/- hosts even with TLR stimulation 

 We immunized WT and CD40-/- hosts containing adoptively transferred P-14 T 

cells with LCMV 13-mer alone or LCMV 13-mer plus the representative TLR agonists 
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Figure 39. Experimental set-up to determine whether TLR stimulation can substitute 

for CD40 activation. WT or CD40-/- hosts were adoptively transferred with CFSE-

labeled P-14 T cells and immunized with LCMV 13-mer alone or with representative TLR 

ligands LPS, CpG, or polyI:C. In this system, all host APCs are either expressing or not 

expressing CD40. Furthermore, because the TLR ligands are injected into the mice, they 

could stimulate TLRs on cells other than APCs.  
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Figure 40. Reduced CD8+ T cell responses in CD40-/- mice immunized with peptide in

the presence of TLR agonists. WT and CD40-/- mice were adoptively transferred with

CFSE-labeled P-14 T cells. One day later the mice were immunized i.v. with 1 µg LCMV

13-mer peptide alone or together with the indicated TLR agonist injected i.p. Spleens

were harvested on day 4 and analyzed as in Fig. 1. (A) Percentage of P-14 T cells in the

total CD8+ T cell population. (B) Absolute number of IFN-γ producing P-14 T cells in the

spleen. Each circle represents an individual mouse; the bars represent the means. The

results shown are representative of three independent experiments with two to three mice

per group.
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LPS (TLR4), CpG (TLR9), or polyI:C (TLR3) (Fig. 39). As we have seen previously, P-

14 T cell responses were reduced in the absence of CD40 signaling (Fig. 40A and 40B). 

In the presence of LPS, CpG, or polyI:C, in WT hosts there was a significant increase in 

P-14 T cell expansion as well as IFN−γ production (Fig. 40A and 40B). However, the P-

14 T cell responses in the CD40-/- hosts were still reduced compared to the WT hosts in 

the presence of LPS or CpG (Fig. 40A and 40B). Interestingly, immunization in the 

presence of polyI:C induced a marked increase in the number of P-14 T cells in CD40-/- 

hosts. Nonetheless, when compared to the P-14 T cells in WT hosts, their number was 

still reduced approximately two-fold. These results indicate that in the absence of CD40 

signaling, TLR stimulation is not sufficient to induce maximal primary CD8+ T cell 

responses.  

B. Phenotype of TLR-stimulated DCs 

In the above experiment, all the APCs in the host are either CD40-sufficient or 

CD40-deficient. Since we showed that DCs are the major APCs that mediate CD40 

signaling, we next examined whether TLR stimulation can substitute for the effect of 

CD40 stimulation on DCs. First, we analyzed the phenotype of WT and CD40-/- DCs that 

were incubated with peptide in the presence or absence of LPS, CpG, or polyI:C. There 

was no difference in activation status between WT and CD40-/- DCs incubated with 

peptide alone, similar to what we have shown before. Addition of TLR agonists resulted 

in up-regulation of CD80, CD86, I-Ab, H-2Kb, and IL-12, but again the WT and CD0-/- 

DCs had similar levels of these molecules (Fig. 41 and Fig. 42). We also quantified the 

number of peptide-MHC complex on DCs pulsed with SIINFEKL peptide using the 

112



Figure 41. Phenotype of WT and CD40-/- DCs stimulated with TLR agonists. WT and

CD40-/- DCs were incubated overnight with peptide and the TLR agonists LPS, CpG, and

polyI:C and stained with Ab against CD80, CD86, MHC class I (H-2Kb), and MHC class

II (I-Ab). Representative FACS profiles are shown for DCs stimulated with peptide alone

or peptide + LPS. Staining of DCs that were not pulsed with antigen is indicated by the

solid histograms.
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Figure 42. IL-12 production in WT and CD40-/- DCs stimulated with TLR agonists. WT

and CD40-/- DCs were incubated overnight with peptide and the TLR agonists LPS, CpG,

and polyI:C and stained with Ab against the IL-12 p40 subunit. Representative FACS

profiles are shown. Staining of DCs that were not pulsed with antigen is indicated by the

solid histograms.
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Figure 43. MHC-peptide levels in WT and CD40-/- DCs stimulated with TLR agonists.

WT and CD40-/- DCs were incubated overnight with the OVA peptide SIINFEKL and the

TLR agonists LPS, CpG, and polyI:C. The cells were then stained with the 25D1 Ab,

which recognizes SIINFEKL-Kb complexes. Representative FACS profiles are shown.

Staining of DCs that were not pulsed with antigen is indicated by the solid histograms.
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25D1 Ab and found no difference between the WT and CD40-/- DCs (Fig. 43). These 

results show that there are no overt phenotypic differences in the markers examined 

between WT and CD40-/- DCs even with TLR stimulation. 

C. Reduced responses induced by TLR-stimulated CD40-/- DCs 

We then examined P-14 T cell responses in CD4-depleted WT hosts upon 

immunization with WT or CD40-/- DCs that were pulsed with gp33 peptide and incubated 

in vitro with the above TLR agonists (Fig 44). Consistent with our previous results, 

CD40-/- DCs pulsed with peptide alone stimulated less P-14 T cell proliferation compared 

to WT DCs (Fig. 45A). As expected, activation of DCs with any one of the TLR ligands 

augmented T cell expansion. However, whereas TLR-activated WT DCs induced a 

tremendous increase in T cell numbers (3 to 4-fold greater compared to peptide alone), 

TLR-activated CD40-/- DCs only induced a more modest increase (2-fold greater 

compared to peptide alone). More strikingly, CD40-/- DCs induced consistently lower P-

14 T cell expansion and IFN-γ production compared to WT DCs (~50% less) despite 

TLR stimulation (Fig. 45A-45C). In other words, in the presence of TLR ligands CD40-

deficient DCs were still inferior to CD40-sufficient DCs in stimulating naïve CD8+ T 

cells.  

D. Reduced responses of CD40L-deficient P-14 T cells even with TLR stimulation 

In similar experiments, we analyzed the response of WT and CD40L-deficient P-

14 T cells in CD4-depleted WT hosts immunized with different concentrations or LCMV 

13-mer peptide with or without LPS as a representative TLR ligand (Fig. 46). In this 

situation all the host APCs express CD40 and CD40L-deficiency is restricted to the 
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Figure 44. Experimental set-up to determine whether TLR stimulation can replace 

CD40 stimulation on the ability of DCs to prime naïve CD8+ T cell responses. WT and 

CD40-/- hosts were adoptively transferred CFSE-labeled P-14 T cells. They were then 

immunized with DCs from WT or CD40-/- mice that have been pulsed with gp33 peptide 

and incubated with or without the representative TLR ligands LPS, CpG, and polyI:C. In 

this system, CD40 deficiency as well as TLR stimulation is restricted only to the 

immunizing DCs. 
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Figure 45. CD40-/- DC stimulated with TLR agonists induce reduced CD8+ T cell

responses. WT mice were depleted of CD4+ T cells and adoptively transferred with CFSE-

labeled Thy1.1+ P-14 T cells. One day later the mice were immunized i.v. with 1 x 106

gp33 peptide-pulsed or unpulsed DCs from the indicated mice that were stimulated with

representative TLR agonists in vitro or left untreated. Spleens were harvested on day 4

and  analyzed  as  in  Fig. 1.  (A)  Percentage  of  P-14  T  cells  in  the  total  CD8+ T cell
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population. (B) Absolute number of IFN-γ producing P-14 T cells in the spleen. (C) 

Percentage of IFN−γ producing P-14 T cells. Each circle in (A) and (B) represents an 

individual mouse; the bars represent the means. Mice immunized with unpulsed DC had 

a background of 2.5 x 103 IFN-γ+ cells. The results shown are representative of three 

independent experiments with two to three mice per group. 
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adoptively transferred P-14 T cells. There was about a 2-fold reduction in proliferation of 

CD40L-deficient P-14 T cells compared to WT P-14 T cells upon immunization with 

either 0.1 µg or 1.0 µg of LCMV 13-mer peptide (Fig. 47A).  Co-injection of LPS 

increased the response of both WT and CD40L-deficient P-14 T cells. Immunization with 

0.1 µg  peptide in the presence of LPS induced responses similar to that induced by 1 µg 

peptide alone. However, there was still a difference in expansion as well as the number of 

IFN−γ producing cells between WT and CD40L-deficient P-14 T cells (Fig. 47A and 

47B).  

We also observed that the CD40L-deficient P-14 T cells accumulated to a lesser 

extent upon co-injection of CpG and polyI:C with peptide (Fig. 48A). The absolute 

number of IFN-γ producing cells was also reduced (Fig. 48B). In these experiments, the 

reduced response of CD40L-deficient P-14 T cells again paralleled that of WT P-14 

stimulated with CD40-/- DCs. Taken together, these results establish that TLR stimulation 

cannot completely compensate for CD40 or CD40L deficiency. Therefore, CD40-CD40L 

signaling has a unique function in inducing maximal primary CD8+ T cell responses. 

E. TLR stimulation fails to provide complete costimulatory repertoire to CD8+ T cells 

Our results indicate that the ability of DCs to prime naïve CD8+ T cells is 

different when they receive TLR stimulation alone or when their stimulation includes 

CD40 ligation. We analyzed P-14 responses upon immunization with TLR-stimulated 

WT or CD40-/- DCs in the presence or absence of anti-CD40L Ab (MR1) (Fig. 49). As 

we have previously shown, although TLR stimulation improved the responses induced by 

CD40-/- DCs, the levels were still lower compared to those induced by WT DCs. When 
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mice immunized with WT DCs were treated with MR1, the responses were reduced and 

became equivalent to those induced by CD40-/- DCs (Fig. 50). 

We also examined the responses of WT and CD40L-deficient P-14 cells in WT 

and CD40-/- hosts immunized with LCMV 13-mer and LPS. As expected, in WT hosts, 

the proliferation and IFN−γ production of CD40L-deficient P-14 cells was impaired 

compared to WT P-14 cells. In contrast, in CD40-/- hosts, the response of both the WT 

and CD40L-deficient P-14 was low and similar to that of CD40L-deficient P-14 cells in 

WT hosts (data not shown).  

Taken together, these data further evidence that DCs are unable to provide a 

complete costimulatory repertoire to naïve CD8+ T cells in the absence of CD40 

signaling, even when there is TLR stimulation. 
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Figure 46. Experimental set-up to determine whether TLR stimulation can compensate 

for the absence of CD40L on CD8+ T cells. WT and CD4-depleted mice were adoptively 

transferred with WT or CD40L-deficient P-14 T cells that have been labeled with CFSE. 

They were then immunized with LCMV 13-mer alone or with the representative TLR 

ligands LPS, CpG, or polyI:C. In this system all the host cells express CD40 and CD40L; 

CD40L-deficiency is restricted only to the transferred TCR-Tg CD8+ T cells. 
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Figure 47. Reduced response by CD40L-deficient P-14 T cells in vivo even upon LPS

stimulation. WT mice were adoptively transferred with CFSE-labeled WT or CD40L-

deficient Thy1.1+ P-14 T cells. One day later the mice were immunized i.v. with 0.1 µg or

1.0 µg LCMV 13-mer alone, or together with LPS, which was injected i.p.. Spleens were

harvested on day 4 and analyzed for (A) Percentage of P-14 T cells in the total CD8+ T

cell population and (B) Absolute number of IFN-γ producing P-14 T cells. Each circle

represents an individual mouse; the bars represent the means. The results shown are

representative of two independent experiments with two to three mice per group.
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Figure 48. TLR agonists fail to completely restore impaired responses by CD40L-

deficient P-14 T cells. CD4-depleted WT mice were adoptively transferred with WT or

CD40L-deficient Thy1.1+ P-14 T cells. One day later the mice were immunized i.v. with 1

µg LCMV 13-mer alone, with LCMV 13-mer plus representative TLR agonists, or left

unimmunized. Spleens were harvested on day 4 and analyzed for (A) Percentage of P-14

T cells in the total CD8+ T cell population and (B) Absolute number of IFN-γ producing

P-14 T cells. Each circle represents an individual mouse; the bars represent the means.

Unimmunized mice had no IFN-γ+ cells. The results shown are representative of two

independent experiments with two to three mice per group.
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Figure 49. Experimental set-up to determine whether CD40L stimulation is providing 

unique signals to DCs to induce naïve CD8+ T cell priming. WT mice were adoptively 

transferred with CFSE-labled P-14 T cells. They were then immunized with WT or CD40-

/- (KO) DC that have been pulsed with gp33 peptide alone or with TLR ligands. In 

addition, immunization was performed in the presence or absence of MR1 Ab in order to 

block CD40L. If stimulation through CD40L is responsible for inducing a complete 

costimulatory repertoire, then the responses induced by WT DC + MR1 and CD40-/- DC 

should both be reduced compared to the responses induced by WT DC.   
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Figure 50. MR1 Ab reduces P-14 T cell proliferation induced by WT DCs. WT mice

were adoptively transferred with CFSE-labeled P-14 T cells. One day later they were

immunized with One day later they were immunized i.v. with 1 x 106 gp33 peptide-pulsed

or unpulsed DCs from the indicated mice that were stimulated with representative TLR

agonists in vitro or left untreated. Additionally, immunization was done in the presence

or absence of MR1 Ab, which was injected i.p.. Spleens were harvested on day 4 and the

percentage of P-14 T cells in the total CD8+ T cell population was determined. A

representative result is shown with DCs treated with polyI:C as TLR agonist.
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CHAPTER IX. 

CD40 SIGNALING AND CD8+ T CELL MEMORY 

 

Following exposure to Ag, naïve CD8+ T cells undergo a proliferation and 

differentiation pathway that culminates in the establishment of memory. However, the 

signals that are required for memory CD8+ T cell development and function are still not 

completely defined. There is evidence that Type I IFNs and/or IL-12 provide a third 

signal to naïve T cells in order to induce maximum proliferation and complete 

differentiation into memory cells (Curtsinger et al., 2005; Kolumam et al., 2005; Mescher 

et al., 2006; Valenzuela et al., 2002). In addition, the common γ-chain cytokines IL-7 and 

IL-15 have been shown to be critically involved in the homeostasis of memory cells (Fry 

and Mackall, 2005; Prlic et al., 2002) . More recently, CD4+ T cells have been found to 

be essential in the programming as well as maintenance of memory CD8+ T cells even 

when the primary response is independent of CD4+ T cell help (Janssen et al., 2003; 

Masopust et al., 2004; Shedlock and Shen, 2003; Sun and Bevan, 2003; Sun et al., 2004; 

Williams et al., 2006a). The exact nature of the key programming and maintenance 

signals provided by CD4+ T cells is however, still unknown.  

In the preceding chapters we showed that CD40-CD40L interactions contribute to 

the induction of maximal primary CD8+ T cell responses independently of CD4+ T cell 

help. In this chapter we ask what role CD40 signaling plays in the generation, 

maintenance and function of memory CD8+ T cells.  
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RESULTS 

A. Decreased numbers of memory cells in CD40-/- hosts 

Similar to what has been reported for CD4+T cells, CD40 signals may also be 

involved not only in the programming/generation of memory CD8+ T cells but also in 

their maintenance and/or function. In order to have a better understanding of what role 

CD40 plays in each of these processes, we again used an adoptive transfer system. We 

injected WT and CD40-/- mice with CFSE-labeled P-14 T cells expressing the CD45.1 

congenic marker and infected them one day later with LCMV (Armstrong strain) in order 

to stimulate strong primary responses. We then monitored the P-14 response by staining 

for CD8+/CD45.1+ cells in the blood of the infected animals at different time points (Fig. 

51). The P-14 cells proliferated robustly in both WT and CD40-/- hosts, with the peak of 

expansion occurring at days 5-6 post-infection. However, in a majority of the 

experiments (5 of 7), even though the P-14 cells expanded considerably in the CD40-/- 

hosts, there was still a greater number of P-14 cells in the WT hosts at the peak of the 

response (Fig. 52A). Nevertheless, there was no difference in the percentage of IFN−γ 

producing cells, indicating that they were able to differentiate into functional effectors 

(Fig. 52B). When we looked at the number of P-14 cells remaining, we found that the P-

14 cells in the CD40-/- underwent a much greater contraction compared to those in the 

WT hosts. While  ~50% of the peak numbers of P-14 still remained in the WT hosts two 

weeks post-infection, only ~30% remained in the CD40-/- hosts. By 4 weeks post-

infection, the P-14 numbers have gone down to 34% and 16% of the respective peak 

responses (Fig. 52C).  
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Figure 51. Experimental set-up to determine whether CD40 is involved in CD8+ T cell 

memory. WT and CD40-/- mice were adoptively transferred with CFSE-labeled P-14 T 

cells and then infected one day later with LCMV-Armstrong. P-14 T cell responses were 

monitored in the blood at different time points. In this system all host APCs are either 

sufficient or deficient in CD40 while the transferred TCR-Tg CD8+ T cells are also 

CD40-sufficient. LCMV infection was used to stimulate a very robust CD8+ T cell 

response; thus, making it more feasible to track the cells into the memory phase. 
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Figure 52. Reduced P-14 T cell accumulation in CD40-/- hosts upon LCMV infection.

WT and CD40-/- mice were adoptively transferred with CFSE-labeled CD45.1+ P-14 T

cells.  One day later the mice were infected with  1 x 105  LCMV Armstrong strain i.p. The
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mice were bled at the indicated time points, and the samples were stained with Ab against 

CD8 and CD45.1. (A) Percentage of P-14 T cells in the total CD8+ T cells in the blood. 

(B) Blood samples were depleted of red blood cells and incubated for 5 hours with gp33 

peptide in the presence of Brefeldin A and IL-2. The cells were stained with Ab against 

CD8 and CD45.1, and intracellular cytokine staining was performed as in Fig. 1. The 

percentage of IFN−γ producing P-14 T cells is shown. (C) Percentage of the peak P-14 T 

cell response remaining at the indicated time points. The results shown are 

representative of five different experiments with 5-10 mice per group. *, p < 0.005; **, p 

< 0.0001. 

131



 

 
 

In some experiments (2 of 7), the initial P14 T cell response was similar in 

magnitude between wild type and CD40-deficient hosts. The basis for this variation 

between experiments is not clear but presumably reflects some difference in the strength 

of the initial stimulation. The P-14 T cells made up as much as 70% of the CD8+ T cells 

in the blood, and in addition, more than 60% of the P-14 cells are producing IFN-γ (Fig. 

53A and data not shown). However, this parity was not maintained and at later time 

points the number of P-14 cells remaining in the CD40-/- hosts was approximately two-

fold less compared to the WT hosts (Fig. 53A). Examination of earlier time points 

revealed that whereas the P-14 population in the WT hosts was still at peak levels one 

week after infection, the P-14 population in the CD40-/- hosts had already started to 

decline (Fig. 53B). Not only was the rate of P-14 contraction faster in the CD40-/- hosts, 

the magnitude of contraction was also greater.  

 The P-14 cells that remained in the WT and CD40-/- hosts had the same phenotype 

– they were CFSE-negative, CD44-hi, and contained both CD62L-hi and CD62L-lo cells 

(data not shown). Moreover, they were able to readily secrete IFN-γ directly ex vivo (Fig. 

54). However, while 40% of the P-14 cells in the WT hosts were able to secrete IFN−γ, 

only 23% of the P-14 cells in the CD40-/- were able to do so. Overall, these results 

indicate that CD40 signaling is not necessary to generate memory CD8+ T cells. 

However, in the absence of CD40 there is a roughly two-fold reduction in the number of 

functional memory cells. This effect seems to be independent of the role of CD40 in 

inducing maximal T cell expansion during a primary response.   
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Figure 53. Equal P-14 T cell responses in WT and CD40-/- hosts upon LCMV infection.

WT and CD40-/- mice were adoptively transferred with CFSE-labeled CD45.1+ P-14 T

cells and infected with 1 x 105 LCMV Armstrong strain i.p. one day later. The mice were

bled at the indicated time points and analyzed as in Fig. 38. (A) Percentage of P-14 T

cells in the total CD8+ T cells in the blood. (B) Percentage of the peak P-14 T cell

response remaining at the indicated time points. The results shown are representative of

two different experiments with 5-10 mice per group. *, p < 0.001.

0

20

40

60

80

100

120

140

%
 P

ea
k 

re
sp

on
se

 re
m

ai
ni

ng

A

B

0

10

20

30

40

50

60

70

80

WT
CD40-/-

   4        6       60      75       90  
Days post-infection

P-
14

/C
D8

+  
T 

ce
lls

 (%
)

WT
CD40-/-

* * *

1 42 10 12

Weeks post-infection

133



Figure 54.  Functional memory CD8+ T cells are generated in CD40-/- hosts. WT and

CD40-/- hosts were adoptively transferred with CFSE-labeled CD45.1+ P-14 T cells and

infected with 1 x 105 LCMV Armstrong strain i.p. one day later. Blood was collected 80

days after infection and stimulated in vitro with gp33 peptide for 5 hours. The percentage

of IFN−γ producing P-14 T is shown. *, p = 0.02.
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B. Reduced memory CD8+ T cells numbers in CD40-/- hosts is not due to differences in 

apoptosis  

We hypothesized that the reduced numbers of memory CD8+ T cell numbers in 

CD40-/- hosts could be due to differences in apoptotic cell death. To test this, we 

performed Annexin V staining. Annexin V is a Ca2+-dependent protein that binds to 

phosphotidylserine (PS), a phospholipid that gets translocated from the inner to the outer 

leaflet of the plasma membrane starting at the earliest stages of apoptosis (Boersma et al., 

2005). On day 4 post-infection, the majority of P-14 cells in both the WT and CD40-/- 

hosts were Annexin V+.  However, there was a small, but statistically significant increase 

in the percentage as well as MFI of Annexin V+ cells in the CD40-/- hosts (Fig. 55A). At 

the same time, we examined the host CD8+ T cells and found that they exhibited very 

little Annexin V binding (Fig. 56). By day 6 post-infection, the percentage as well as the 

MFI of Annexin V+ P-14 cells were similar and had started to go down (Fig. 55A and 

55B). By day 12 post-infection, the percentage as well as MFI of Annexin V+ P-14 cells 

had returned to similar levels as that of the host CD8+ T cells (Fig. 55 and 56). At a later 

time point however, there was a small, but statistically significant difference in the MFI 

of Annexin V+ cells in the WT compared to CD40-/- hosts (Fig. 55B and data not shown). 

Because the proportion of P-14 cells that bind Annexin V as well as the intensity of 

Annexin V binding was the same at all but one of the time points examined, the 

difference in memory CD8+ T cell numbers between WT and CD40-/- hosts is most likely 

not due to an increased rate of apoptosis. However, we cannot exclude the possibility that
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Figure 55. Similar levels of P-14 T cell apoptosis in WT and CD40-/- hosts infected with

LCMV. WT and CD40-/- mice were adoptively transferred with CFSE-labeled CD45.1+ P-

14 T cells and infected with 1 x 105 LCMV Armstrong strain i.p. one day later. The mice

were bled at the indicated time points and stained with Ab against CD8 and CD45.1 as

well as Annexin V-PE. (A) Percentage of Annexin V+ P-14 T cells. (B) MFI of Annexin V

staining.  Each  circle  represents  an  individual  mouse;  the  bars  represent  the  means.
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The results shown are representative of three independent experiments with five to ten 

mice per group. *, p < 0.01; **, p < 0.05.  
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Figure 56. Comparison of Annexin V staining in P-14 vs. host CD8+ T cells.

Representative histogram overlays of Annexin V staining in P-14 vs. host CD8+ T cells at

different time points after LCMV infection of WT and CD40-/- mice.
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differences in the rate of apoptosis that are too small to reliably measure could still 

contribute over time to the differences we observed. 

C. Reduced memory CD8+ T cells numbers in CD40-/- hosts correlates with IL-7R 

expression 

The cytokine IL-7 is important in the homeostasis of naïve and memory CD8+ T 

cells (Fry and Mackall, 2005; Prlic et al., 2002). IL-7 receptor (IL-7R) expression is high 

in naïve CD8+ T cells, is down-regulated in effector cells, and goes back up again in 

memory cells.  There have been recent reports that IL-7R expression serves as a marker 

for identifying effector cells that will develop into memory cells (Bachmann et al., 2005; 

Huster et al., 2004; Kaech et al., 2003). We therefore decided to examine IL-7R 

expression by the P-14 cells. During the peak of the response at day 6, the percentage of 

IL-7R+ P-14 cells was similarly low in the WT and CD40-/- hosts (25% vs. 29%; Fig. 57). 

This finding is consistent with the down regulation of IL-7R expression by effector cells. 

By day 12 however, while the percentage of IL-7R+ P-14 cells in the WT hosts had 

started to increase, the percentage of IL-7R+ P-14 cells in the CD40-/- hosts remained low 

(44% vs. 27%; Fig. 57). Furthermore, whereas ~70% of the P-14 cells in the WT hosts 

had reacquired IL-7R expression by day 25, only ~33% of the P-14 cells in the CD40-/- 

hosts had done so (Fig. 57). Interestingly, this two-fold difference in IL-7R expression 

correlates with the roughly two-fold difference in memory CD8+ T cell numbers between 

WT and CD40-/- hosts.  
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Figure 57. Reduced numbers of IL-7R+ P-14 T cells in CD40-/- hosts. WT and CD40-/-

mice were adoptively transferred with CFSE-labeled CD45.1+ P-14 T cells and infected

with 1 x 105 LCMV Armstrong strain i.p. one day later. The mice were bled at the

indicated time points and stained with Ab against CD8, CD45.1, and IL-7R. The

percentage of IL-7R+ P-14 T cells is shown. Each circle represents an individual mouse;

the bars represent the means. The results shown are representative of three independent

experiments with five to ten mice per group. *, p < 0.00001.

0

10

20

30

40

50

60

70

80
%

 IL
-7

R
+ 

WT

CD40-/-

6 12 25
Days post-infection

*

*

140



 

 
 

D. CD40 is important in memory CD8+ T cell differentiation and survival 

We next investigated whether CD40 signaling is still important once the naïve 

CD8+ T cells have already been activated and are undergoing differentiation into memory 

cells. To do this, we transferred P-14 cells from LCMV-infected mice into new, 

uninfected WT and CD40-/- hosts (Fig. 58). We harvested spleens 11-13 days post-

infection to ensure that the virus has been cleared. We also normalized the number of 

splenocytes that we injected such that they contained equal numbers of P-14 cells. 

 We observed a gradual cell loss upon transfer of P-14 effector cells that have been 

primed in WT hosts into new WT hosts (Fig. 59A). This is expected since the majority of 

effector cells undergo apoptosis and only a small population becomes memory cells. By 5 

weeks post-transfer, the P-14 population had stopped contracting and the number of cells 

remained stable. In contrast, there was a greater cell loss when we transferred the P-14 

effector cells that have been primed in CD40-/- hosts into new WT hosts (Fig. 59A). By 

one week post-transfer, there was an approximately three-fold difference in the number 

of P-14 cells that initially came from the WT compared to the CD40-/- hosts. At later time 

points, there was a further decrease in the number of P-14 cells that came from CD40-/- 

hosts. Therefore, during the primary response CD40 in the host environment appears to 

be necessary to program CD8 T cells for optimal differentiation into long-lived memory 

cells.  

Interestingly, when P-14 effector cells that were activated in WT mice were 

transferred into CD40-deficient hosts, there was also a marked reduction in their cell 

number (Fig. 59B). This indicates that after T cells have been activated and gone through 
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Figure 58. Experimental set-up to determine whether CD40 signals during and/or after 

priming are important for CD8+ T cell memory. Splenocytes were harvested from WT 

and CD40-/- mice containing adoptively transferred P-14 T cells 11-13 days post-

infection with LCMV. The cells were then labeled with CFSE and transferred into new, 

uninfected WT or CD40-/- hosts. Bleeds were collected at different time points to monitor 

the survival of the transferred cells. 
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Figure 59. CD40 signals during and after priming affect CD8+ T cell survival. WT and

CD40-/- mice were adoptively transferred with CFSE-labeled CD45.1+ P-14 T cells and

infected with 1 x 105 LCMV Armstrong strain i.p. one day later. Spleens were harvested

11-13 days after infection, depleted of red blood cells, and labeled with CFSE. They were

then transferred into new uninfected WT or CD40-/- hosts. At the indicated time points the

mice were bled and the survival of transferred P-14 T cells was determined. The data is

presented as the percentage of P-14 T cells out of the total CD8+ T cells in the blood.  The

results shown are representative of three independent experiments with three to five mice

per group. ***, p < 0.05; **, p < 0.01; *, p < 0.001.
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their rounds of proliferation, there continues to be a role for CD40 signaling in the 

continued development and/or maintenance of CD8 memory cells. 

E. CD40 signals are not required during a memory response 

We then sought to address whether CD40 signaling plays a role in the recall 

response of memory CD8+ T cells. To do this, we challenged the WT hosts that initially 

received effector P-14 T cells from either WT or CD40-/- mice with a vaccinia virus 

construct that expresses LCMV glycoprotein (Vac-gp). We performed the challenge 10 

weeks post-transfer, when the effector cells had already differentiated into memory cells 

(Fig. 60). At this time point, the number of memory P-14 cells that were initially primed 

in WT donors was four times more than that of the memory P-14 cells that were initially 

primed in CD40-/- donors. We monitored memory responses by looking at the expansion 

of CD45.1+ P-14 cells in the blood. Four days after challenge, the P-14 cells from WT 

donors comprised ~15% of the CD8+ T cells and ~3% of the total cells in the blood of 

new WT hosts (Fig. 61A and 61B). In contrast, the P-14 cells from the CD40-/- donors 

comprised only ~4% of the CD8+ T cells and ~1% of the total cells in the new WT hosts 

(Fig. 61A and 61B).  Nonetheless, although there was a difference in cell numbers, the 

fold-expansion was similar as well as the percentage of IFN−γ producing cells (Fig. 61A-

61C). Overall, these results indicate that CD40 signaling is not required during memory 

CD8+ T cell responses.  

We next performed experiments wherein we directly challenged the LCMV-

immune WT and CD40-/- mice, which contain memory P-14 cells, with Vac-gp. Four 

days after challenge, the P-14 cells made up ~30% and ~5% of the CD8+ T cells in the 
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blood of WT and CD40-/- hosts, respectively (Fig. 62A). Taking into account the 

differences in initial memory cell frequencies, these numbers represent a ~2-fold vs. 

~1.3-fold expansion of P-14 cells in the respective hosts (Fig. 62A). When the P-14 cell 

numbers were expressed as the percent out of the total cells, the expansion became ~6-

fold vs. ~2-fold in the WT and CD40-/- hosts, respectively (Fig. 62B). Although memory 

cell proliferation was not as robust as we expected, the P-14 cell numbers in the CD40-/- 

hosts were consistently much lower than in the WT hosts. On the other hand, analysis of 

memory effector function revealed that the percentage of IFN−γ+ P-14 cells was the same 

in both hosts (Fig. 62C). Taken together, these results show that CD40 signaling is not 

absolutely required during a memory CD8+ T cell response. However, they suggest that 

CD40 signals influence memory CD8+ T cell programming or development. This is 

because the memory P-14 T cells that were initially activated and maintained in a CD40-

deficient environment had reduced responses. 

Finally, we challenged WT mice that were infected at least 3 months previously 

with LCMV, and which contained memory P-14 cells, with WT or CD40-/- DCs that have 

been pulsed with gp33 peptide (Fig. 63). We detected an increase in memory P-14 cell 

numbers four days after challenge with peptide-pulsed DCs. However, WT and CD40-/- 

DCs induced similar levels of memory P-14 expansion (Fig. 64A). When we looked at 

memory effector function, we found that the percentage of IFN−γ producing P-14 cells 

was the same regardless of whether WT or CD40-/- DCs were used for challenge (Fig. 

64B). These results provide further evidence that CD40 signaling on DCs is not required 

during memory CD8+ T cell responses.    
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Figure 60. Experimental set-up to determine whether CD40 is required during 

reactivation of memory CD8+ T cells. WT and CD40-/- hosts containing P-14 T cells that 

have been previously activated in either WT or CD40-/- hosts were challenged with 

recombinant vaccinia virus expressing LCMV glycoprotein (Vac-gp). Challenge was 

performed at least six weeks post transfer to ensure that the cells have differentiated into 

memory. 
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Figure 61. P-14 T cells primed in CD40-/- hosts are able to respond upon challenge.

Mice in Fig. 38 were challenged with 1 x 106 pfu of recombinant vaccinia virus

expressing the LCMV glycoprotein (Vac-gp). Four days later, blood was collected and

analyzed as in Fig. 38.  (A) Percentage of P-14 T cells out of the total CD8+ T cells in the
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blood. (B) Percentage of P-14 T cells out of the total cells in the blood before and after 

challenge with Vac-gp. The numbers in parenthesis in (A) and (B) indicate the fold 

expansion of the P-14 T cells. (C). Percentage of IFN−γ producing P-14 T cells upon 

challenge. The results shown are representative of three independent experiments with 

two to three mice per group. 

148



Figure 62. Impaired CD8+ T cell memory in LCMV-infected CD40-/- hosts. WT and

CD40-/- hosts containing adoptively transferred CFSE-labeled P-14 T cells were infected

with LCMV. After at lest six weeks, the mice were challenged with 1 x 106 pfu of Vac-gp.

Blood was collected four days later and analyzed as in Fig. 38. (A) Percentage of P-14 T

cells out of the  total CD8+ T cells in the blood.  (B) Percentage  of P-14 T cells out of the
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total cells in the blood before and after challenge with Vac-gp. The numbers in 

parenthesis in (A) and (B) indicate the fold expansion of the P-14 T cells. (C). Percentage 

of IFN−γ producing P-14 T cells upon challenge. The results shown are representative of 

three independent experiments with two to five mice per group. *, p < 0.01. 
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Figure 63. Experimental set-up to determine whether CD40 is required during memory 

CD8+ T cell reactivation. WT mice containing adoptively transferred P-14 T cells were 

infected with LCMV and allowed to rest for more than three months. The mice were then 

challenged with WT or CD40-/- DC that have been pulsed with gp33 peptide. In this 

system CD40 deficiency is restricted only to the challenge DCs.  
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Figure 64. CD40 is not required during recall responses of memory CD8+ T cells. WT

mice containing adoptively transferred P-14 T cells were immunized with LCMV. After

three months the mice were challenged with 1 x 106 WT or CD40-/- BMDCs pulsed with

gp33  peptide.  Spleens  were  harvested  after  four  days  and  analyzed  as in Fig. 1. (A)
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Percentage of P-14 T cells in the total CD8+ T cell population in the spleen. (B) 

Percentage of IFN−γ producing P-14 T cells.  
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CHAPTER X. 

THE ROLE OF CD40 SIGNALING ON DCs IN CD8+ T CELL MEMORY 

 

 We showed that CD40 signaling on APCs, specifically on DCs, is involved in 

maximizing primary CD8+ T cell responses. Because our results also point to a role for 

CD40 signaling on APCs in the generation and maintenance, but not the function of 

memory CD8+ T cells, we examined the importance of CD40 signaling on DCs in the 

above processes. We focused our experiments this time on endogenous polyclonal 

memory CD8+ T cell responses. 

 

RESULTS 

A. Priming with CD40-/- DCs leads to a weaker memory response 

In order to determine whether CD40 signaling on DCs plays a role in CD8+ T cell 

memory, we first asked whether mice that were immunized with CD40-/- DCs can mount 

a recall response (Fig. 65). We injected WT mice i.v. with WT or CD40-/- DCs pulsed 

with OVA peptide and examined in vivo CTL responses one week later to make sure that 

priming occurred (data not shown). We then waited at least six weeks after immunization 

and challenged the mice i.v. with OVA peptide-pulsed WT DCs. Endogenous memory 

responses were evaluated by looking at in vivo CTL activity against OVA peptide-pulsed 

targets as well as IFN-γ production. Mice immunized with WT DCs showed strong 

memory CTL responses, exhibiting as much as 90% target cell killing by day 4 post-

challenge (Fig. 66A). In contrast, mice immunized with CD40-/- DCs mounted 
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Figure 65. Experimental set-up to determine whether immunization with CD40-/- DCs 

can induce the development of endogenous CD8+ T cell memory. WT or CD4-depleted 

mice were immunized with peptide-pulsed DCs from WT or CD40-/- (KO) mice. They 

were then challenged with WT DCs that have been pulsed with the same peptide. In this 

system CD40 deficiency is restricted only to the immunizing DC.  
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Figure 66. CD8+ T cell memory induced upon immunization with WT or CD40-/-

peptide-pulsed DCs. WT or CD4+ T cell-depleted mice were immunized i.v. with 1 x 106

and CD40-/- DCs were pulsed with OVA peptide. After at least six weeks, the mice were

challenged with OVA peptide-pulsed WT DCs injected i.v. (A) On day 4 post-challenge

mice were injected with target cells for an in vivo CTL assay. The percentage of target

cell killing is shown. (B) Spleens were harvested four days after challenge and stimulated

in vitro  with  OVA peptide in the presence of  Brefeldin  A and IL-2.  The  percentage  of

IFN−γ  producing  cells  in the total  CD8+ T cell population is shown.  The results shown
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are representative of three independent experiments with two to three mice per group. *, 

p = 0.003; **, p = 0.01. 
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significantly weaker memory CTL responses, with only ~43% target cell killing (Fig. 

66A). In control mice that were left unimmunized, CTL activity was not observed until 

day 7 post-challenge (data not shown). Analysis of cytokine production by spleen cells 

directly ex vivo also revealed that mice immunized with CD40-/- DCs have less IFN-γ 

producing cells upon challenge compared to mice immunized with WT DCs (Fig. 66B). 

We obtained similar data when we performed the challenge 3 months after immunization 

(data not shown). These results imply that naïve CD8+ T cells primed in the absence of 

CD40 can develop into memory cells; therefore, CD40 stimulation of APCs during 

priming is not absolutely required to induce a memory CD8+ T cell response. However, 

there is an approximately two-fold reduction in memory responses in mice immunized 

with CD40-/- DCs. This parallels what we have observed for primary responses and is 

likely a direct consequence of a reduced number of memory cells arising from a reduced 

number of effector cells.  

B. Memory CD8+ T cell responses in the absence of CD4+ T cell help 

Several groups have reported that the presence of CD4+ T helper cells during 

CD8+ T cell priming is essential in the development of functional CD8+ T cell memory 

while depletion of CD4+ cells during challenge had no effect on memory responses 

(Janssen et al., 2003; Shedlock and Shen, 2003; Sun and Bevan, 2003). These findings 

were obtained using immunization with tumor cells or infection with vaccinia virus or 

Listeria monocytogenes to induce primary responses. We examined whether the CD8+ T 

cell memory induced by DC immunization had a similar dependence on CD4+ T cell 

help. Moreover, because help is thought to primarily occur through activation of CD40, 
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we also determined whether the reduction in memory responses that we observed in 

CD40-/- DC immunized mice was due to the involvement of CD4+ T cells. We 

immunized host mice that were acutely depleted of CD4+ T cells with OVA peptide-

pulsed WT and CD40-/- DCs and challenged them six weeks later with WT DCs. 

Treatment of host mice with the anti-CD4 Ab GK1.5 for two consecutive days prior to 

immunization resulted in loss of CD4+ T cells lasting up to two weeks. Surprisingly, we 

detected memory CD8+ T cell responses even when we depleted the host mice of CD4+ T 

cells during priming. In fact, there was no difference in target cell killing between CD4-

sufficient and CD4-deficient mice (Fig. 66A).  More interestingly, in mice that were 

depleted of CD4+ T cells, the memory CTL activity was still weaker in the mice that were 

immunized with CD40-/- DCs compared to the mice that were immunized with WT DCs 

(Fig. 66A). This result is reminiscent of the data we obtained for primary responses. It 

suggests that the effect of CD40 on memory CD8+ T cell responses can likewise be 

independent of CD4+ T cell help. 

C. Challenge with CD40-/- DCs results in weaker memory responses  

Finally, we asked whether CD40 signaling on DCs is involved in the recall 

response of memory CD8+ T cells. To answer this, we challenged mice immunized with 

either WT or CD40-/- DCs with the indicated DC pulsed with the same peptide (Fig. 67). 

As we have shown in Fig. 66A, mice immunized with CD40-/- DCs exhibited reduced in 

vivo CTL activity compared to mice immunized with WT DCs upon challenge with WT 

DCs (Fig. 68A). In contrast, we observed equally strong memory CTL responses when 

mice that were immunized with WT DCs were challenged with either WT or CD40-/- 
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DCs (Fig. 68A). However, mice that  were both immunized and challenged with CD40-/- 

DCs showed much lower memory CTL activity (Fig. 68A).  

Interestingly, depletion of CD4+ T cells at the time of immunization resulted in 

reduced memory CTL activity even in mice immunized with WT DCs and challenged 

with CD40-/- DCs (Fig. 68B). CD4-depleted mice that were both immunized and 

challenged with CD40-/- DCs had the most striking reduction in memory CTL responses 

(Fig. 68B). Altogether, these results indicate yet again that CD40 signals during priming 

affect the programming of memory CD8+ T cells. And although CD40 signaling is not 

necessary to activate memory CD8+ T cells, it plays a role in maximizing memory 

responses. The requirement for CD40 signals during memory is most evident in situations 

wherein primary responses are weak to begin with, consequently leading to memory T 

cells with reduced frequency and/or function.  
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Figure 67. Experimental set-up to determine whether CD40 is required during 

reactivation of endogenous memory CD8+ T cells. WT or CD4-depleted mice were 

immunized with peptide pulsed DCs from WT or CD40-/- (KO) mice. They were then 

challenged with either WT or CD40-/- DC that have been pulsed with the same peptide. In 

this system CD40 deficiency is restricted only to the immunizing and/or challenge DCs.  
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Figure 68. Role of CD40 and CD4+ T cell help in CD8+ T cell memory. WT or CD4+ T

cell-depleted mice were immunized i.v. with 1 x 106 and CD40-/- DCs were pulsed with

OVA peptide. After at least six weeks, the mice were challenged with OVA peptide-pulsed

WT or CD40-/- DCs injected i.v. In vivo CTL assay was performed on day 4 post-

challenge and the percentage of target cell killing in WT (A) and CD4+ T cell-depleted

(B) mice is shown. The results shown are representative of three independent experiments

with two to three mice per group. *, p < 0.05.
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CHAPTER XI. 

DISCUSSION 

 

CD8+ T cells are critical in protective immunity against various pathogens and 

tumors. Therefore it is important to understand the signals that are necessary for 

induction of a highly effective CD8+ T cell response. It is well established that CD40 

stimulation augments T cell proliferation and effector function, mostly through its effect 

on APC activation. However, there are many other stimuli, including TLR agonists and 

some inflammatory cytokines, which can activate APCs and enable them to efficiently 

prime T cells. The experiments we performed were designed to address whether there is 

in fact, a requirement for CD40 in primary as well as memory CD8+ T cell responses. 

 

A. Role of CD40-CD40L interaction in priming of naïve CD8+ T cells 

We first asked what the consequence of CD40 deficiency is on the magnitude and 

quality of primary CD8+ T cell responses. We found that there is no absolute requirement 

for CD40 in order to generate naive CD8+ T cell responses. However, the proliferation, 

cytokine production, and cytolytic activity of adoptively transferred TCR-Tg CD8+ T 

cells were consistently reduced by as much as 50% when they were primed in CD40-/- 

hosts. One caveat of our adoptive transfer experiments is that we were using total spleen 

and lymph node cells instead of purified CD8+ T cells. However, based on our 

experiments as well as those of other people in the lab, there seems to be no difference in 

the homing of the non-purified cells because we can detect them in the lymphoid tissues 
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of both unimmunized and immunized mice. Moreover, in preliminary experiments, we 

also observed similar responses whether or not the transferred TCR-Tg CD8+ T cells 

were purified (data not shown).  

Another caveat of using an adoptive transfer system is that the frequency of the 

transferred cells is much higher than what is normally found. Several studies have shown 

that having high frequencies of Ag-specific T cells can skew their response. In fact, we 

showed that the response of OT-I T cells is CD40-independent at lower frequencies; 

however, there is a threshold above which their response becomes CD40-independent. In 

order to get around this caveat, we examined endogenous (non-Tg) CD8+ T cell 

responses and found that they were also compromised in the absence of CD40 or CD40L. 

These results, combined with previous studies showing augmented T cell responses upon 

CD40 stimulation by exogenous anti-CD40 Ab, point to an important role for CD40 

signaling in maximizing primary CD8+ T cell responses.  

This finding is in contrast with several earlier studies, which showed that CD40-

CD40L interactions are dispensable for primary CD8+ T cell responses. However, these 

studies were done using CD40L-/- mice that have been infected with viruses (LCMV, 

VSV, or Pichinde) or bacteria (Listeria) (Andreasen et al., 2000; Borrow et al., 1996; 

Shedlock et al., 2003; Thomsen et al., 1998; Whitmire et al., 1999; Whitmire et al., 

1996). These pathogens are able to directly activate APCs, induce inflammation and are 

extraordinarily potent immunogens (potentially overriding CD40’s contribution to 

responses). The main difference in our study is that we used peptide and peptide-pulsed 
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APCs as antigens, which are weaker immunogens because of their non-inflammatory (or 

less-inflammatory) nature.  

Interestingly, there is a more stringent requirement for CD40 in the priming of 

naïve CD4+ T cells, whether the antigens are inflammatory or non-inflammatory. For 

example, Ag-specific CD4+ T cells from CD40L-/- mice fail to expand and differentiate 

into cytokine-producing cells and are also unable to induce autoimmunity in an EAE 

model (Grewal et al., 1996; Grewal et al., 1995). On the other hand, CD40L-/- mice 

infected with LCMV have a ten-fold reduction in virus-specific CD4+ T cells (Whitmire 

et al., 1999). In addition, CD40-/- and CD40L-/- mice have impaired resistance to the 

intracellular parasite Leishmania, which relies on a TH1 response (Soong et al., 1996). 

Furthermore, no CD4+ T cell priming is observed in CD40-/- and CD40L-/- immunized 

with peptide in complete Freund’s adjuvant (CFA) or peptide-pulsed DCs (MacLeod et 

al., 2006). 

We have not determined the exact mechanism(s) for the lower numbers of CD8+ 

T cells that responded in the CD40-/- hosts. CD40 may affect the number of T cells that 

are initially recruited to proliferate, the number of divisions a cell undergoes, and/or the 

survival of activated cells. At the peak of the response, the majority of the cells have 

already divided more than eight times, as evidenced by the loss of CFSE. This suggests 

that the lower overall accumulation of CD8+ T cells in the absence of CD40 may be due 

to a failure of these cells to survive. However, it is possible that the cells stop dividing 

earlier than their wild type counterparts (i.e. sometime after 8 divisions) and we have not 

been able to detect consistent differences in the percent of mutant cells undergoing 
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apoptosis. In future studies it will also be useful to perform a cell cycle progression 

analysis.  

 CD40 is expressed not only by professional APC but also by hematopoietic 

precursors, epithelial cells, endothelial cells, and even activated T cells (Quezada et al., 

2004; Schonbeck and Libby, 2001; van Kooten and Banchereau, 2000). Hence, we next 

asked what cells are important for CD40 function. This issue has not been resolved in the 

many previous studies that have explored CD40 function using agonistic anti-CD40 Ab, 

which bind to all CD40-expressing cells. Our adoptive transfer experiments map the key 

role of CD40 to APCs in the host. Moreover, we demonstrate that when DCs are the only 

APC lacking CD40, the reduction in T cell responses is similar to that observed when all 

host APCs were CD40-deficient. Therefore, CD40 is working at least in part on DCs. In 

an earlier study, it was found that only tumor-loaded CD40+/+ but not CD40-/- DCs can 

restore protective anti-tumor responses in CD40-/- mice (Mackey et al., 1998b). This, 

together with our findings, further supports the notion that DCs are the major initiators of 

naïve T cell activation and that the outcome of a T cell response can be shaped by the 

activation status of DCs. Interestingly, while CD40-/- DCs induced reduced CD8+ T cell 

responses in vivo, they were as efficient as WT DCs in stimulating T cell proliferation in 

vitro. This indicates that the costimulatory requirements for naïve CD8+ T cell activation 

are different in vitro and in vivo. In another study, it was shown that the in vivo priming 

of naive CD4+ T cells by the dendritic cell line JawsII is dependent on CD40, but in vitro 

priming was not (Haase et al., 2004). 
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Nevertheless, it is possible that CD40 also influences the function of other APCs. 

In fact, we showed that although MΦ are not as responsive as DCs to CD40 stimulation 

in vitro, CD40-deficient MΦ also induced reduced CD8+ T cell responses in vivo. Recent 

reports show that activation of B cells through CD40 converts them into efficient 

stimulators of both CD8+ and CD4+ T cells (Ritchie et al., 2004; Rodriguez-Pinto and 

Moreno, 2005). It remains to be tested whether or not CD40-deficient B cells show a 

reduced capacity to stimulate CD8+ T cells in our system. 

It has been proposed that CD40 also plays a role on the responding CD8+ T cells 

themselves. In this alternative model of CD40 function, it is thought that binding of 

CD40L-expressing CD4+ T cells to CD40-expressing CD8+ T cells directly stimulates 

their expansion (Bourgeois et al., 2002). This is unlikely in our system because our 

adoptive transfer experiments show that CD40 expression is critical on host cells. 

Moreover, agonistic anti-CD40 Ab augmented the response of the adoptively transferred 

T cells, which come from a CD40-sufficient background, only in WT but not CD40-/- 

hosts. Therefore, our findings do not support the alternative model of direct CD40 

activation on CD8+ T cells. Rather, they provide further evidence for the importance of 

CD40 in the APC licensing model.  

Another important question was what cell was the source of CD40L that was 

needed to stimulate APCs in vivo. It has generally been thought that CD4+ T helper cells 

are the principal source of CD40L in CD40-dependent responses. However, our finding 

that the absence of helper CD4+ T cells did not affect the CD40-dependence of the CD8+ 

T cell responses indicated that some other cells provided CD40L for APC activation. 
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CD8+ T cells can express CD40L but there are few studies showing any functional 

significance for this expression (Cronin et al., 1995; Hermann et al., 1995; Roy et al., 

1993; Sad et al., 1997; Whitmire et al., 1999). Nevertheless, since they are able to 

directly interact with APCs presenting cognate Ag, we reasoned that they might be able 

to provide their own help. The experiments in which we use CD40L-deficient CD8+ 

TCR-Tg T cells provided the first direct test of this hypothesis. We found that CD40L is 

not absolutely required by the transferred T cells in order to proliferate. However, the 

mutant cells exhibited the same defective responses that were observed when WT T cells 

were stimulated with CD40-deficient APCs in the presence or absence of CD4+ T cells. It 

is possible that the defective response of CD40L-deficient CD8+ T cells is due to a role 

for CD40L in transducing signals to the T cell. However, the WT P-14 T cells were able 

to rescue the P-14/CD40L-/- T cell response. This demonstrates that CD40L is not 

involved in signaling to the CD8+ T cells because if it was, then the WT T cells should 

not have been able to rescue the response of the CD40L-deficient T cells.  This result also 

formally shows that CD8+ T cells can provide help in “trans”. We conclude that antigen-

specific CD8+ T cells can directly activate APCs through CD40L and thereby provide 

their own help in the absence of CD4+ T cells. Nevertheless, it is also possible that the 

WT P-14 T cells could simply have provided IL-2 to promote the proliferation of the 

CD40L-deficient P-14 T cells. This can be tested by looking at whether the addition of 

exogenous IL-2 can also rescue the response of the CD40L-deficient CD8+ T cells.  

 Our data are in contrast with those from another study, which showed that the 

ability of large numbers of CD8+ T cells to overcome the requirement for help is not 
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mediated via CD40L (Mintern et al., 2002b). Nevertheless, they are consistent with and 

extend the findings of earlier studies that suggested that CD40L could be delivered by 

cells other than CD4+ T cells. In the first one, CD40L blockade in conjunction with 

soluble antigen administration inhibited the accumulation of Ag-specific CD8+ T cells in 

mucosal tissues (Lefrancois et al., 1999). Since similar results were obtained using 

CD40L-/- hosts, the authors concluded that CD40L expressed by the responding CD8+ T 

cells was responsible for binding CD40 on the host APCs. In the second study, the CD8+ 

T cell response to VSV was found to depend on CD40L but was unaffected by acute 

CD4+ T cell depletion or MHC class II deficiency (Andreasen et al., 2000). The authors 

took this as indirect evidence of CD8+ T cell “self-help” through CD40L. The third study 

made use of GK1.5-transgenic mice, in which peripheral CD4+ T cells were permanently 

depleted. These mice mounted CTL responses to allogeneic P815 cells that were 

inhibited upon CD40L blockade (Zhan et al., 2000). The authors interpreted this as an 

indication that direct CD40-CD40L interaction between APCs and CD8+ T cells provides 

an accessory signal for CTL induction.  

It has been shown in other systems that CD4+ T cells provide help through 

CD40L (Bennett et al., 1998; Ridge et al., 1998; Schoenberger et al., 1998).  On the other 

hand, we show that CD8+ T cells can also provide “self-help” through CD40L. Our 

results do not suggest that CD4+ T cells play absolutely no role in CD8+ T cell responses. 

Rather, it is likely that CD40L expressed by both CD4+ and CD8+ T cells can activate 

APCs and contribute to the amplification of a normal immune response. It is remarkable 

that we observed CD8+ T cell responses in the absence of help in light of the general 
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requirement for CD4+ T cells in CD8+ T cell responses against non-inflammatory 

antigens. The precursor frequency and affinity of responding CD8+ T cells have been 

shown to affect helper dependence (Franco et al., 2000; Mintern et al., 2002b; Wang et 

al., 2001). However, titrating the number of adoptively transferred T cells still resulted in 

detectable CD40-dependent responses in the presence or absence of CD4+ T cells. 

Moreover, we were able to detect endogenous primary CTL responses; aside from having 

a low frequency, the responders in this case also consisted of a spectrum of affinities. In 

the APC licensing model, CD4+ T cell help is usually equated with CD40 stimulation. 

The fact that we observed CD40-dependent responses despite the absence of helper CD4+ 

T cells indicates that CD40 and CD4+ T cell function are not always equivalent.  

 While it is known that APCs must be activated in order to stimulate naïve T cell 

responses, it has been unclear whether all activating stimuli are similarly effective in this 

process, particularly for responses in vivo. We therefore asked how CD40 stimulation 

compares to microbial (TLR) stimulation for licensing APCs to prime naïve CD8+ T 

cells. Some anti-bacterial and anti-viral CD8+ T cell responses develop in the absence of 

CD4+ T cell help or CD40-CD40L interactions (Andreasen et al., 2000; Clarke, 2000; 

Hamilton et al., 2001; Ruedl et al., 1999; Shedlock et al., 2003; Whitmire et al., 1999). 

This implies that CD40 and TLR signaling may play similar roles in APC activation. 

However, one study has found that only CD40-stimulated, but not LPS-stimulated DCs 

can induce naïve polyclonal CD8+ T cell activation in vitro (Kelleher and Beverley, 

2001). Moreover, HIGM patients, who have no functional CD40L, are more susceptible 

to opportunistic infections (DiSanto et al., 1993; Etzioni and Ochs, 2004). These 
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observations raise the possibility that CD40-CD40L interactions are still necessary even 

when TLR stimulation is present. Indeed, it has been shown that HIGM3 patients, who 

have mutations in the CD40 gene, have functionally defective DCs even after LPS or 

cytokine stimulation (Fontana et al., 2003).  

By incubating WT and CD40-/- DCs with TLR ligands prior to immunization, we 

were able to directly show that the two signals have non-redundant effects on the 

stimulatory property of DCs. Although TLR ligands were able to amplify CD8+ T cell 

responses in the absence of CD40 signaling, these responses never reached the levels that 

were induced when CD40 signaling was present. In other words, maximum CD8+ T cell 

proliferation could only be achieved when both CD40 and TLR are stimulated. This 

result is in accord with studies showing that microbial signals are required for CD40-

induced cytokine production by DCs, and that CD40 triggering can amplify TLR-induced 

cytokine production (Edwards et al., 2002; Schulz et al., 2000). It is also consistent with a 

previous report, which showed that the TLR and CD40 pathways synergize to amplify 

CD8+ T cell responses (Ahonen et al., 2004). However, in those studies CD40 stimulation 

was achieved through a pharmacologic agent (agonistic anti-CD40 Ab). Again, it is 

possible that antibody stimulation of other cell types expressing CD40 could have 

contributed to the increased T cell responses. Our studies demonstrate the importance of 

CD40, specifically on APCs. More importantly, we show that in the presence or absence 

of PAMPs, and even without exogenous stimulation, CD40 naturally participates in the 

priming of naïve CD8+ T cell responses. While it has been shown that TLR engagement 

could convert CD8+ T cell autoreactivity into overt autoimmune disease in one system 
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(Lang et al., 2005), in another TLR ligation broke peripheral cross-tolerance to self-

antigens and induced autoimmunity only when CD4+ T cell help was present (Hamilton-

Williams et al., 2005). Since help is presumably needed to stimulate CD40 on APCs, this 

latter study, together with our findings, suggests that CD40 plays a fundamental role in 

the induction of CD8+ T cell responses. 

In vitro stimulation with either LPS, CpG, or polyI:C was able to significantly 

augment the ability of WT DCs to prime naïve CD8+ T cell responses while only having 

little effect on CD40-/- DCs (Fig. 45). Interestingly however, when these TLR agonists 

were injected directly into host mice, only CpG and polyI:C were able to induce a marked 

increase in CD8+ T cell expansion in the WT hosts while only polyI:C induced increased 

CD8+ T cell responses in CD40-/- hosts (Fig. 40). There are at least three explanations for 

this discrepancy. First, it could be due to the single dose of TLR agonists used in the 

experiments. Ideally, a dose response for each of the TLR agonists needs to be performed 

in order to ensure that the inability of TLR agonists to replace CD40 is not just simply 

because the strength of stimulation is too low. Second, it could be that when the TLR 

agonists are directly injected into the hosts, they are stimulating cells other than APCs, 

whereas in the in vitro stimulation system, they are only stimulating the immunizing 

DCs. In vivo, not only are TLRs expressed in non-APCs, but even within different DC 

subsets, they are differentially expressed. Third, it could be due to differences in the 

downstream signaling pathways that the respective TLRs activate. LPS (TLR4) and CpG 

(TLR9) both activate a MyD88-dependent pathway. However, LPS additionally activates 
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a MyD88-independent pathway involving the adaptors TIRAP and TRAM. Meanwhile, 

polyI:C activates a TRIF-dependent pathway that is independent of MyD88. 

How can the difference in the ability of CD40-stimulated and TLR-stimulated 

DCs to induce CD8+ T cell responses be explained? CD40 stimulation of DCs has been 

shown to be important for production of IL-12, which promotes CD8+ T cell expansion 

and differentiation (Cella et al., 1996; Valenzuela et al., 2002). However, we found that 

WT and CD40-deficient DCs made similar levels of IL-12 upon incubation with either 

WT or CD40L-deficient CD8+ T cells (data not shown). In connection with this, there is 

evidence that the ability of CD40-stimulated Langerhans cells to prime CD8+ T cells is 

independent of IL-12 (Gorbachev and Fairchild, 2004). Moreover, we found that with or 

without TLR ligation, there was no difference in MHC-peptide levels as well as co-

stimulatory molecule expression (CD80 and CD86) and IL-12 production between WT 

and CD40-/- DCs. Therefore, the different responses induced by CD40- and TLR-

stimulated DCs are not due to differences in conventional “co-stimulatory repertoire” and 

the underlying molecular mechanism(s) remains to be determined. This is especially 

important in light of recent efforts to distinguish between phenotypically and functionally 

mature DCs (Reis e Sousa, 2006). CD40-matured DCs have been reported to be more 

phenotypically stable compared to TLR-matured DCs (Nakamura et al., 2004). In 

addition, it has also been shown that CD40 induces higher levels of CD70 (CD27L) on 

DCs compared to TLRs and this correlates with increased immunogenicity even in the 

absence of helper CD4+ T cells (Bullock and Yagita, 2005; Taraban et al., 2004). 

Furthermore, CD40 stimulation has been shown to increase the lifespan and antigen-
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presenting capacity of DCs and there is even some evidence that CD40-deficient DC 

have an impaired survival in vivo (Miga et al., 2001).  If the CD40-deficient DCs indeed 

have a survival defect, then the reduced T cell responses could be due to the limited 

period that antigen is getting presented. DCs are able to secrete IL-2, which is crucial for 

T cell proliferation (Feau et al., 2005). It has been reported that CD40-deficient DCs 

produce less IL-2 upon culture with TREG cells (Guiducci et al., 2005). It is possible that 

CD40 is also involved in IL-2 production by DCs upon encounter with Ag-specific CD8+ 

T cells. Whether any of these previously reported mechanisms and/or other ones account 

for the effects we observed will require further studies.  

 

B. Role of CD40 in memory CD8+ T cell responses 

 Several things need to occur in order to have a highly effective T cell memory. 

First, memory T cells that have a much higher frequency and avidity have to be generated 

from a polyclonal pool of antigen-specific naïve T cells. Next, these memory T cells have 

to persist for a long time in the host. Finally, these memory T cells have to rapidly and 

robustly respond by proliferating and exerting effector function upon re-encounter with 

antigen. It is evident that the signals that T cells receive during activation have a huge 

impact in their subsequent differentiation not only into effector cells but also into 

memory cells. Therefore, we asked what is the ultimate fate of CD8+ T cells that were 

primed in the absence of CD40. Specifically, we examined whether CD40 signaling plays 

a role in the generation, maintenance, and function of memory CD8+ T cells.  
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We initially used an infection model using LCMV in order to have an extremely 

potent primary stimulation. We also used an adoptive transfer system so we could easily 

track the responding cells at different stages of the response. Strikingly, we found that 

regardless of how strong the primary response is, CD40 deficiency resulted in lower 

frequencies of functional memory cells. Moreover, it seems that CD40 mostly affected 

the survival of effectors cells that contain memory cell precursors, although there was 

also a small effect on their subsequent maintenance.  

 Several studies have shown that CD40 is dispensable for the development of 

functional CD8+ T cell memory to the bacteria Listeria monocytogenes (Montfort et al., 

2004; Shedlock et al., 2003). However, there are also a number of reports showing that 

CD40 is important for anti-viral CD8+ T cell memory. CD40L-/- mice mount strong 

primary CTL responses to viruses such as LCMV, Pichinde, and VSV (Andreasen et al., 

2000; Borrow et al., 1996; Borrow et al., 1998; Thomsen et al., 1998; Whitmire et al., 

1999; Whitmire et al., 1996). The primary activation, clonal expansion, and 

differentiation of virus-specific endogenous CD8+ T cells were normal in CD40L-

deficient mice (Thomsen et al., 1998). However, there was a rapid impairment of effector 

activity resulting in an inability to permanently control virus replication (Andreasen et al., 

2000; Thomsen et al., 1998). It was eventually shown that the weaker CD8+ T cell 

memory in CD40L-/- mice is caused by the generation of lower numbers of memory cells 

and not due to a problem in memory CD8+ T cell maintenance (Borrow et al., 1998). The 

results we obtained using CD40-/- mice directly complement the findings from the above 

studies. We showed that in the absence of CD40, adoptively transferred CD8+ T cells 
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proliferated robustly upon LCMV infection. Despite this, there was a marked reduction in 

the number of effector cells soon after the peak of the response. Therefore, the absence of 

either CD40 or CD40L leads to the production of fewer memory CD8+ T cells; we 

conclude that CD40-CD40L interaction plays an important role in memory CD8+ T cell 

development.  

 LCMV induces extremely robust CD8+ T cell responses in part because of its 

ability to directly activate DCs as well as stimulate TLRs. In the absence of MyD88, 

there is a defect in both the innate and adaptive immune response to LCMV (Zhou et al., 

2005). Particularly, cytokine production by virus-specific CD8+ T cells is impaired and 

this results in viral persistence. In the absence of CD40, although there is a reduction in 

the number of primary effector cells, these cells nonetheless exhibit no defect in cytokine 

production. Therefore, it seems that even for acute viral infections, CD40 and TLR 

stimulation play unique roles. 

 There is data showing that CD40 expression on CD8+ T cells, and not APCs, is 

important in generation of memory CD8+ T cells (Bourgeois et al., 2002). In this previous 

study, it was found that CD40-deficient TCR-Tg CD8+ T cells fail to proliferate rapidly 

and secrete high levels of cytokines upon in vitro re-stimulation with Ag. However, it is 

unlikely that the defect in CD8+ T cell memory in our study could be attributed to the 

lack of CD40 on CD8+ T cells. This is because the adoptively transferred T cells come 

from a WT, CD40-sufficient background and CD40 deficiency was confined only to the 

host cells. Hence, our results indicate that CD40 signaling on CD8+ T cells is of little or 

no significance to the development of memory. The role of CD40 is most probably on 

176



 

 
 

APCs, similar to what we have shown for primary responses. Two other studies have 

shown that there is no requirement for direct CD40 activation on CD8+ T cells in order to 

generate memory. In the first study, it was found that optimal CD8+ T cell responses to 

influenza are dependent on CD40 expression on hematopoietic cells but not T cells (Lee 

et al., 2003).  Specifically, the proliferation as well as differentiation of endogenous, 

polyclonal CD40+/+ and CD40-/- CD8+ T cells was the same as long as they were primed 

in mice containing CD40+/+ APCs. In the second study, it was likewise found that CD40 

expression on CD8+ T cells was not essential to mount a primary or secondary response 

against an acute viral (LCMV) or bacterial (Listeria) infection (Sun and Bevan, 2004).  

Bone marrow chimeric mice containing CD40+/+ and CD40-/- CD8+ T cells were made, 

and no difference in expansion or trafficking into non-lymphoid tissues was observed 

between the two different cells.  

 We showed that CD40L expression on antigen-specific CD8+ T cells contributes 

to the generation of maximal primary responses. However, it remains unclear whether 

CD40L expression on CD8+ T cells is also important for memory. In one of the studies 

above wherein CD40L-/- mice were infected with LCMV, it was determined that CD40L 

expression by the CD8+ T cells is not essential and that the defective memory was mostly 

due to the absence of CD40L on CD4+ T cells (Borrow et al., 1998). This conclusion was 

derived using bone marrow chimeric mice containing WT and CD40L-/- T cells, which, 

upon infection with LCMV, had similar frequencies of memory T cells of both types. But 

we have shown that WT CD8+ T cells can rescue the in vivo expansion defect of CD40L-/- 

CD8+ T cells. In order to definitively examine the role of CD40L expression on CD8+ T 
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cells in memory, experiments wherein CD40L deficiency is restricted only to CD8+ T 

cells need to be done. For example, the ability of WT versus CD40L-deficient CD8+ T 

cells to differentiate into memory cells can be compared in WT or CD40L-/- hosts.  

 How important are CD40-CD40L interactions in other phases of the immune 

response? Again, in our LCMV infection system, the adoptively transferred T cells 

underwent a much greater contraction in the CD40-/- hosts compared to WT hosts. 

Further, transfer into new CD40-deficient hosts also resulted in a more pronounced loss 

of effector CD8+ T cells compared to transfer into new CD40-sufficient hosts. 

Nevertheless, the population of cells that remained in the CD40-/- hosts that were either 

directly infected or used as recipients was eventually maintained at stable levels and they 

exhibited functional characteristics of memory cells. Therefore, CD40 signaling plays a 

role in the survival of memory CD8+ T cell precursors during the antigen-independent 

contraction phase of the immune response. However, once they are formed, the memory 

CD8+ T cells are not critically dependent on CD40 signaling for survival and 

maintenance of function. 

 CD4+ T cells have been implicated in the programming as well as maintenance of 

memory CD8+ T cells (Janssen et al., 2003; Masopust et al., 2004; Shedlock and Shen, 

2003; Sun and Bevan, 2003; Sun et al., 2004; Williams et al., 2006a). Indeed, while CD4+ 

T cell-deficient mice can mount normal primary CTL responses upon LCMV infection, 

the generation as well as maintenance of memory CTL activity is impaired in these mice 

(Andreasen et al., 2000). It is thought that the effect of CD4+ T cell help occurs mostly 

through CD40 stimulation. However, we unequivocally showed that for CD8+ T cell 
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priming, CD40 and CD4+ T cell help do not always have equivalent function. In our 

LCMV infection system, it is still not clear whether the role of CD40 in CD8+ T cell 

memory can likewise be independent of CD4+ T cells. This is because depletion of CD4+ 

T cells from the WT or CD40-/- hosts would also lead to defective memory and 

complicate the interpretation of the results. 

 Immunization of CD4+ T cell-depleted mice with a helper-dependent antigen, 

adenovirus-transformed mouse embryonic cells (5E1 MECs), has been shown to result in 

failure of “un-helped” CD8+ T cells to undergo secondary expansion upon re-activation 

in vitro or in vivo (Janssen et al., 2003).  Even infection of CD4+ T cell-depleted mice 

with LCMV, a helper-independent antigen, also resulted in defective secondary 

expansion of virus-specific CD8+ T cells (Janssen et al., 2003). Two other studies showed 

that CD4+ T cell-depleted mice acutely infected with either recombinant vaccinia virus or 

recombinant Listeria had impaired recall responses upon challenge. In all of these studies, 

it was found that the CD4+ T cell help was only required during priming and it was 

important for imprinting or programming of memory CD8 + T cells (Shedlock and Shen, 

2003; Sun and Bevan, 2003). However, it was not clear whether help was being mediated 

by direct or indirect CD40-CD40L interactions between CD4+ T cells, CD8+ T cells, and 

APCs.  

Our data reveal that immunization with peptide-pulsed DCs, a non-inflammatory 

antigen, can induce the development of functional memory CD8+ T cells. Remarkably, 

this can occur even in the absence of CD4+ T cell help during priming but more 

importantly, it depends on CD40. Therefore, even for the development of CD8+ T cell 
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memory, the function of CD4+ T cell help and CD40 can be independent of each other. 

Furthermore, because in our experiments CD40-deficiency was restricted only to the 

immunizing DCs, this suggests that CD40-CD40L interactions between DCs and the 

responding CD8+ T cells are also involved in memory generation. Notably, the assay we 

used for evaluating memory only relied on functional activity of memory cells whereas in 

the other studies, the ability of the memory cells to undergo secondary expansion was 

also examined. It is important to quantify the number of responding memory cells in 

order to determine whether CD40-CD40L interactions influence not just the quantity but 

also the quality of the memory CD8+ T cells that are generated. 

The signals that are needed to initiate memory CD8+ T cell responses are not 

clearly understood. It is thought that memory CD8+ T cells are generally less dependent 

on co-stimulatory signals and could thus be efficiently activated by cells other than APCs 

(Bugeon and Dallman, 2000; Gause et al., 1997). However, there is evidence that DCs 

are important for driving maximal memory CD8+ T cell responses to viral or bacterial 

infections (Zammit et al., 2005). In addition, the maturation state of DCs has also been 

shown to affect the activation of influenza-specific memory CD8+ T cells (Larsson et al., 

2000). Since CD40 plays a unique role in stimulating DC maturation, we examined 

whether it is required for memory CD8+ T cell activation. We found that the proliferation, 

cytokine-production, and cytotoxic activity of memory CD8+ T cells does not depend on 

CD40 signaling either on all APCs or only on DCs. However, we found that recall 

responses were reduced when CD40 is absent during both the priming and re-activation 

of CD8+ T cells. Further, the reduction in memory CTL activity is more severe when 
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CD4+ T cells were depleted during priming. There are at least three explanations, which 

are not necessarily mutually exclusive, that could account for these results. First, since we 

and others have shown that CD8+ T cell responses can occur independently of CD40 or 

CD4+ T cell help when the frequency of responders is high enough, it is possible that the 

requirement for CD40 or CD4+ T cells during memory is a direct consequence of the 

lower numbers of memory cells that are formed in the absence of CD40. Depletion of 

CD4+ T cells during priming could have resulted in a more limiting CD40L stimulation, 

thereby further reducing the number of memory cells that are formed. Second, it is 

possible that the CD4+ T cells are delivering some other signal that could not provided by 

CD40 stimulation. Finally, it is also possible that the memory cells generated in the 

presence of CD40 are in fact qualitatively different from the ones that were primed in the 

absence of CD40 in that the former do not need CD40 stimulation again whereas the 

latter do need it. It could be that the CD40-dependent APC to T cell signal needs to have 

been received, but it can be either during priming or at challenge. This implies that the 

fate of antigen-specific CD8+ T cells primed in the absence of CD40 is not fixed or 

irreversible. If this is true, it would be reminiscent of the ability of exogenous IL-2 to 

rescue the proliferative and functional defects of “un-helped” memory CD8+ T cells 

(Janssen et al., 2003). 

What is the mechanism of CD40 function in CD8+ T cell memory? The most 

prominent effect of CD40 is on the frequency of memory CD8+ T cells that are generated. 

At any time, the number of T cells is determined by a balance between proliferation, 

survival, apoptosis, and homeostatic turnover. However, we did not find a difference in 
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the percentage of apoptotic P-14 T cells between WT and CD40-/- hosts. What we did 

find was a correlation between CD40 expression in the host and IL-7R expression in the 

P-14 T cells. IL-7, a γ-chain cytokine, has been implicated in the survival of both naïve 

and memory CD8+ T cells, owing to its ability to induce the expression of the anti-

apoptotic molecules Bcl-2 and Bcl-xL in IL-7R expressing cells (Bachmann et al., 2005; 

Fry and Mackall, 2005; Huster et al., 2004; Kaech et al., 2003; Prlic et al., 2002; Schluns 

et al., 2000). It is not clear at this point how CD40 affects the ability of the responding 

CD8+ T cells to reacquire IL-7R expression. Two other members of the γ-chain cytokine 

family play an important role in CD8+ T cell memory. IL-15 has been shown to be 

critical in the generation as well as homeostasis of memory CD8+ T cells (Prlic et al., 

2002). Meanwhile, IL-2 has been found to be involved in programming memory CD8+ T 

cells to undergo secondary expansion as well as in re-activation of memory CD8+ T cells 

(Blachere et al., 2006; Williams et al., 2006b). Two other cytokines, IL-12 and Type I 

IFNs, have been shown to provide a third signal to naïve CD8+ T cells for activation and 

memory differentiation (Curtsinger et al., 2005; Mescher et al., 2006; Valenzuela et al., 

2002). All of the above cytokines can be produced by DCs, but it is worth noting that 

memory CD8+ T cells can be maintained in the absence of continuous interaction with 

APCs (Murali-Krishna et al., 1999). We have not yet been able to compare the cytokine 

levels in WT versus CD40-/- mice or DCs.  

How do CD8+ T cells compare to CD4+ T cells in terms of their requirement for 

CD40 in order to generate and maintain memory? Because CD40 is strictly required for 

the activation of naïve CD4+ T cells, no memory cells are formed in the absence of 
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CD40, particularly on DCs (Hochweller and Anderton, 2004). Nevertheless, memory 

CD4+ T cells do persist in a CD40-deficient environment and they rapidly proliferate 

upon secondary encounter with antigen (MacLeod et al., 2006). Interestingly however, 

these cells are incapable of producing effector cytokines such as IFN−γ. On the other 

hand, we show that memory CD8+ T cells can be formed in the absence of CD40, 

whether on all APCs or only on DCs. However, CD40 affected the number or memory 

cells that are generated. The maintenance as well as reactivation of memory CD8+ T cells 

is largely independent of CD40.  

 It has been shown that T cell priming in conjunction with CD40L blockade can 

induce deletion of both CD8+ and CD4+ T cells and subsequently, tolerance (Iwakoshi et 

al., 2000). In addition, it has also been found that systemic administration of antigen-

loaded CD40-/- DCs failed to sustain the activation and led to deletional tolerance of 

CD4+ T cells (Hochweller and Anderton, 2004). Why then did we not elicit tolerance and 

instead only observed memory CD8+ T cell responses?  The answer may lie in one or 

more of the following. First, is the nature as well as dose of antigens that were used in our 

study versus the co-stimulatory blockade studies. Second, is the presence of other stimuli 

that can overcome the effect of CD40L. Indeed, virus infection and TLR stimulation have 

both been shown to prevent induction of tolerance by co-stimulatory blockade (Thornley 

et al., 2006; Turgeon et al., 2000). Third, CD40L blockade affects both CD4+ and CD8+ T 

cells, and as we and others have shown, CD4+ T cells are very important in generating 

and maintaining CD8+ T cell memory. Fourth, it is possible that administration of anti-

CD40L blocking Ab acted in ways other than by preventing productive APC-T cell 
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interactions. For example, the Ab could have caused direct T cell lysis through ADCC or 

complement activation. In addition, the Ab could have also blocked binding of CD40L to 

a different receptor. Lastly, there is evidence of CD40L signal transduction by CD40L 

despite the absence of known signaling motifs (van Essen et al., 1995). Therefore, it is 

possible that the anti-CD40L Ab also blocked this signaling function.  

 There are a number of issues that remain to be addressed regarding the role of 

CD40 in CD8+ T cell memory. So far, we have only studied memory responses in the 

blood. It will be important to examine memory responses in other organs to determine 

how CD40 affects central and effector memory T cells, which are differentially localized. 

Also, it is imperative to examine the ability of memory CD8+ T cells that are primed in 

the absence of CD40 to effectively clear virus or bacteria from a recall challenge. Finally, 

it would be interesting to compare the role of CD40 stimulation to TLR stimulation in 

memory CD8+ T cell production and persistence.  
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CHAPTER XII. 

CONCLUSION 

 

We demonstrate that priming of naïve CD8+ T cells in the absence of CD40 

results in reduced T cell expansion as well as development of effector function. Our 

findings also reveal a unique role for CD40 signaling on APC activation that cannot be 

fully replaced by TLR stimulation. Importantly, our data support a new model of CD8+ T 

cell-mediated APC “licensing”, in which CD40L expressed by Ag-specific CD8+ T cells 

interacts with CD40 on APCs, leading to maximal CD8+ T cell responses that can be 

primed in the absence of CD4+ T cell help (Fig. 49).  

A major consequence of reduced primary responses in the absence of CD40 is the 

generation of fewer memory CD8+ T cells. However, once formed, these memory cells 

are not critically dependent on CD40 for survival or maintenance of function (Fig. 50). 

Therefore, stimulation of CD40 is an essential consideration in the development of 

vaccines that can induce large numbers of highly effective and long-lived memory cells. 
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Figure 49. Model for how CD40-CD40L interactions influence the generation of CD8+

T cell responses.  (A)  CD4+ T  cell  mediated  licensing of APCs.  CD40L expressed by
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activated CD4+ T cells binds to CD40 on APCs and stimulates APC activation. (B) 

Direct CD4+-CD8+ T cell interactions. CD40L expressed by activated CD4+ T cells binds 

to CD40 expressed on CD8+ T cells and directly stimulates differentiation. (C) CD8+ T 

cell mediated APC licensing. CD40L expressed by antigen-specific CD8+ T cells binds to 

CD40 on APCs and stimulates activation. CD40-CD40L interactions between CD8+ T 

cells and APCs is important for the generation of maximal primary CD8+ T cell 

responses. 
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Figure 50. Role of CD40-CD40L interactions in naïve and memory CD8+ T cell

responses. Encounter with APCs presenting cognate antigen and appropriate

costimulatory signals stimulates naïve CD8+ T cells to undergo exponential expansion.

This is followed by a contraction phase in which the vast majority of effector cells die by

apoptosis, leaving a population of long-lived memory cells that have a higher frequency

and affinity to antigen. Depending on the antigen, primary CD8+ T cell responses can be

CD4+ T cell help-dependent or independent. However, it has been found that the presence

of CD4+ T cells during priming is critical for programming memory CD8+ T cells to

undergo   secondary  expansion.   Moreover,  CD4+ T  cells   have  also  been  shown  to

188



 

 
 

be important for maintenance of functional CD8+ T cell memory. CD4+ T cell help is 

mediated primarily through CD40-CD40L interactions. In the absence of CD40 or 

CD40L, primary CD8+ T cell expansion is reduced and fewer memory CD8+ T cells are 

generated. Nevertheless, memory CD8+ T cells induced in the absence of CD40 are 

functional and are capable of undergoing secondary expansion upon reencounter with 

Ag. The differential requirement for CD40 and CD4+ T cell help during different phases 

of CD8+ T cell responses suggests that they provide non-redundant signals to CD8+ T 

cells.  
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