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Abstract 

 Haemophilus influenzae encounters niches within the human host that are 

predicted to differ in availability of oxygen and reactive nitrogen species (RNS: nitrite 

and nitric oxide), which influence the environmental redox state. Previously reported data 

has indicated that an altered redox condition could serve as a signal recognized by H. 

influenzae to optimize its survival within host microenvironments.  To elucidate the role 

of redox signaling in virulence, we examined regulation by the FNR homolog of H. 

influenzae, whose counterpart in E. coli has been reported to be a direct oxygen sensor 

and a regulator of genes responsible for RNS metabolism and resistance.  Many members 

of the FNR regulon are subject to coordinated transcriptional control by NarP, a regulator 

in E. coli that is activated by cognate sensor NarQ in response to environmental nitrite.  

To study the regulatory activities of FNR and NarQ-NarP in H. influenzae, I targeted a 

gene predicted to be FNR-regulated, nrfA, which encodes nitrite reductase, a periplasmic 

cytochrome-c involved in anaerobic respiration. The fnr, narP and nrfA mutants were 

assayed for nitrite reduction, which implicated the roles of FNR, NarP and NrfA in RNS 

metabolism. Using Western blot detection of an epitope-tagged reporter protein fused to 

the endogenous nrf promoter (Pnrf-HA), I demonstrate that FNR and NarP, but not NarQ, 

are required for full activation of the nrf promoter.  Additionally, Pnrf-HA expression 

increases as oxygen becomes depleted and decreases when exposed to high 

concentrations of nitrite, implying that the nrf promoter is modulated by environmental 

redox signals. 
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 FNR of E. coli has been implicated in regulation of resistance mechanisms to a 

reactive nitrogen species, nitric oxide (NO), which is produced by innate immune cells 

during infection as a host defense mechanism. A mutant lacking FNR is more sensitive to 

NO exposure and killing by activated macrophages than wild type H. influenzae after 

anaerobic pre-growth.  Mutants of nrfA and narP have been tested and initial experiments 

have shown both mutants have a lesser NO sensitivity phenotype as compared to the fnr 

mutant, suggesting that other factors could be involved in FNR-mediated NO resistance 

in H. influenzae.   Upon examination of potential factors that might be involved to this 

phenotype, we discovered FNR-regulated gene, ytfE, which contributes to defense against 

nitrosative stress.  The fnr and ytfE mutants are more susceptible to killing by activated 

macrophages indicating that FNR regulation of ytfE might be important for in vivo 

infection.  



v 

 

Acknowledgements 

 

I received a piece of advice a few years ago that I attribute to my successes in 

graduate school:  When going through a rough patch in the lab and nothing is working, 

keep at it.  When experiencing a good science day filled with exciting results, work even 

harder.  These are words from my very wise mentor, Dr. Brian Akerley, who has 

provided excellent scientific training.  I feel privileged to have the opportunity to work 

with such a brilliant individual who has an endless supply of creative approaches to 

experimental design and amusing analogies to interpret results. I also accredit my science 

accomplishments to the tremendous amounts of assistance I have received from my 

fellow lab members: Dr. Sandy Wong, Dr. Jeffrey Gawronski, and Charles Rosadini.  

Sandy directly assisted in the progress of my project by providing many of the strains 

used in this thesis.  Jeff and Charles have always been constant sources of advice, 

encouragement and of course, affectionate teasing. 

I would like to extend my appreciation to my thesis advisory committee, Dr. John 

Leong, Dr. Chris Sassetti, Dr. Victor Boyartchuk and Dr. Jon Goguen, who have 

provided helpful scientific guidance when I needed it most.  The chair of my committee, 

Chris, has been an exemplary chairperson and has always been available to give positive 

feedback!  I especially would like to thank Victor and his postdoctoral fellow, Oleg 

Garifulin for assisting me with macrophage experiments.  I have also received significant 

encouragement from Dr. Tony Carruthers, the Dean of GSBS, who has been a wonderful 

inspiration for the type of scientific mind I aspire to develop.   



vi 

 

On a more personal note, there are so many people who have supported me 

throughout my graduate career that I could fill a book with their names. Tammy Brailey, 

MGM secretary, has been a caring leaning post these past few years and I could express 

my gratitude in words.  My graduate school friends are the greatest friends ever and 

we‟ve had so much FUN even when science was driving us nuts!  Dr. Kathryn Lipson, 

my best friend, surrogate sister, has been by my side from day 1 at recruitment weekend, 

and I can‟t imagine getting through it all without her.   

My family has also been amazing with their encouragement and I appreciate the 

unconditional love of my brother Ben Harrington, sister-in-law Andrea Haag, step-father 

Dennis Dahmes, and darling nephew Joey Pintucci. My mommy Mary Jane Dahmes is 

the best mom as girl could ask for and I am so grateful to have a person in my life that I 

can call anytime and she‟s always on my side!  I would also like to acknowledge my love 

and thanks to my father Jerry and my baby sister Sara, who will be watching me graduate 

from the heavens.   

Finally, I have to express how appreciative I am to have such a wonderful, 

supportive, caring, loving parter, Ian Holyoak.  Between accompanying me on Sunday 

nights to inoculate, bringing food when I‟m too focused on work, and hugging me when 

I‟m discouraged with bad results, he has been supportive of me every second of every 

day since he came into my life.   Ian believes in me whole-heartedly and I know that I 

would not have come this far without his love.   



vii 

 

                         Table of Contents 

Abstract .............................................................................................................................. iii 

Acknowledgements ............................................................................................................. v 

Table of Contents .............................................................................................................. vii 

List of Tables ..................................................................................................................... ix 

List of Figures ..................................................................................................................... x 

Preface................................................................................................................................. 1 

CHAPTER I  Introduction .................................................................................................. 2 

CHAPTER II  FNR is required for nrfA expression and nitrite reductase expression under 

low oxygen growth conditions. ......................................................................................... 11 

Summary ....................................................................................................................... 11 

Introduction ................................................................................................................... 13 

Materials and Methods .................................................................................................. 18 

Results ........................................................................................................................... 26 

Discussion ..................................................................................................................... 40 

CHAPTER III  Two-component regulatory system, NarP-NarQ, modulates RNS 

metabolism and nrfA expression. ..................................................................................... 43 

Summary ....................................................................................................................... 43 

Introduction ................................................................................................................... 45 

Materials and Methods .................................................................................................. 50 

Results ........................................................................................................................... 53 

Discussion ..................................................................................................................... 71 

CHAPTER IV  FNR and YtfE are required for resistance to nitrosative stress                                  

via anaerobic induction of ytfE by FNR. .......................................................................... 75 



viii 

 

Summary ....................................................................................................................... 75 

Introduction ................................................................................................................... 76 

Materials and Methods .................................................................................................. 80 

Results ........................................................................................................................... 82 

Discussion ................................................................................................................... 982 

CHAPTER V  Discussion and Perspectives ................................................................... 102 

Appendix ......................................................................................................................... 107 

Bibliography ................................................................................................................... 112 

 



ix 

 

List of Tables 
Table 1: Strains used in this study .................................................................................... 22 

Table 2: Plasmids used in this study ................................................................................. 24 

Table 3: Genes with predicted FNR binding sites ............................................................ 25 

 



x 

 

 List of Figures 

CHAPTER II 

Figure 2.1: Effect of fnr mutation on expression of anaerobic reductases. ...................... 27 

Figure 2.2: Effects of fnr mutation on nitrite and nitrate reductase expression. ............... 29 

Figure 2.3: Effect of fnr mutation on nitrite reductase expression in a non-typeable          

H. influenzae strain. .......................................................................................................... 31 

Figure 2.4: Effects of nrfA and napA mutations on nitrite and nitrate reductase activities.

........................................................................................................................................... 33 

Figure 2.5: Effect of fnr mutation on Pnrf-HA expression. .............................................. 35 

Figure 2.6: Effect of oxygen availability on Pnrf-HA expression. ................................... 38 

Figure 2.7: Proposed model of FNR regulation in H. influenzae. .................................... 39 

CHAPTER III 

Figure 3.1: Model of NarQ-NarP and NarX-NarL regulation in E. coli. .......................... 47 

Figure 3.2: Effect of narP mutation on nrfA transcript levels. ......................................... 54 

Figure 3.3: Effect of narP mutation on nitrate and nitrite reductase expression. ............. 55 

Figure 3.4: Effect of narP mutation on Pnrf-HA expression. ........................................... 57 

Figure 3.5: Effect of narQ mutation on nitrate and nitrite reductase expression. ............ 59 

Figure 3.6: Effects of narP and narQ mutations on nitrite reductase activity in a non-

typeable H. influenzae strain. ............................................................................................ 61 

Figure 3.7: Effects of napA mutation and NO2
-
 availability on Pnrf-HA expression. ...... 63 

Figure 3.8: Effects of napA mutation and NO3
-
 availability on Pnrf-HA expression. ...... 64 

Figure 3.9: Effects of narP and narQ mutations on Pnrf-HA expression in the presence of 

exogenous NO2
-
 and NO3

-
. ................................................................................................ 66 

Figure 3.10: Effects of narQ mutation and 2 mM NO2
-
 on Pnrf-HA expression. ............ 69 

Figure 3.11: Model of NarQ-NarP regulation in H. influenzae. ....................................... 70 



xi 

 

CHAPTER IV 

Figure 4.1: Effects of fnr mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. .................................................................................................. 83 

Figure 4.2: Effects of narP mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. .................................................................................................. 85 

Figure 4.3: Effects of nrfA mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. .................................................................................................. 87 

Figure 4.4: Effect of fnr and narP mutations on ytfE transcript levels. ............................ 89 

Figure 4.5: Effects of ytfE mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. .................................................................................................. 90 

Figure 4.6: Effect of fnr mutation on survival by co-infection with activated 

macrophages. .................................................................................................................... 92 

Figure 4.7: Effects of ytfE mutation and L-NAME on survival by co-infection with 

activated macrophages. ..................................................................................................... 93 

Figure 4.8: Effects of ytfE mutation in non-typeable H. influenzae strain and nitric oxide 

inhibitor, L-NAME, on killing by IFNγ activated macrophages. ..................................... 96 

Figure 4.9: Proposed roles of FNR, NarP, NrfA and YtfE for RNS resistance in              

H. influenzae. .................................................................................................................... 97 



1 

 

Preface 

 
Portions of this dissertation have appeared in: 

Harrington, J.C., Wong, S.M.S., Garifulin, O., Boyartchuk, V., and Akerley, B.J. (2009) 

Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma 

interferon (IFN-γ) stimulated macrophages requires the FNR activated ytfE gene. 

Infect Immun (In review). 



2 

 

CHAPTER I 

 Introduction 
 

Haemophilus influenzae is Gram negative pathogen found only in the human host 

and lives primarily asymptomatically in the nasopharynx of healthy individuals.  

Although a vaccine exists specific to the type B strain, non-typeable H. influenzae strains 

(NTHi) remain a significant health concern for children and immune compromised 

adults, manifesting as otitis media, meningitis, septicemia, and respiratory infections 

(Foxwell et al., 1998).  NTHi is a significant medical concern for reoccurring bacterial 

exacerbations seen with patients suffering from chronic obstructive pulmonary disease 

and cystic fibrosis (Moller et al., 1995; Murphy et al., 2000; Sethi, 2000).   How the 

bacteria can survive in very distinct anatomical locations (lungs, blood, brain, etc.) and 

cause such diverse diseases is not well understood. The ability of H. influenzae to 

specifically express the appropriate genes that are optimal for survival and virulence 

under these dramatically different microenvironments is critical for persistence. There is 

building evidence that modulation of gene expression by global regulators is important 

for H. influenzae pathogenesis and experimental data suggests that redox signaling leads 

to altered gene regulation in vivo.   

Oxygen: Environmental Conditions in the Host 

Although relative oxygen tension has been measured in human tissue with 

bacterial infections (Boekstegers et al., 1994; Sair et al., 2001), the oxygen availability 
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that H. influenzae directly encounters remains undefined. Bacteria were isolated from 

infection sites shared with H. influenzae, which indicates that low oxygen environments 

are likely experienced.  Obligate anaerobic bacteria have been isolated from respiratory 

infections (Brook, 2007a), septicemia (Brook, 2007b), and cerebrospinal fluid (Brook, 

2002).    Pseudomonas aeruginosa requires anaerobic respiration to survive in sputum 

from a cystic fibrosis patient (Palmer et al., 2007) and oxygen measurements 

demonstrated that P. aeruginosa biofilms are anaerobic (Borriello et al., 2004).    Oxygen 

is not only important for metabolism and signaling of bacteria but also for host cells as 

oxygen influences metabolism (Simon et al., 1973) and gene regulation (Murdoch et al., 

2005) of immune effector cells such as macrophages.  Effects of anaerobiosis on bacterial 

virulence were also examined with Salmonella typhimurium and results indicate that 

bacteria cultured anaerobically were more virulent than aerobic cultures, yielding a lower 

LD50 with in vivo mouse infection and increased survival in murine macrophages (Singh 

et al., 2000).   Oxygen availability also changes host-pathogen interactions demonstrated 

with the decreased susceptibility of Candida albicans to killing by immune effector cells 

under anaerobic conditions (Thompson and Wilton, 1992).   

Reactive oxygen species (ROS) are produced by immune effector cells as an 

antimicrobial defense mechanism utilized by the host.  In response to detection of 

bacterial infection via TLR signaling, macrophages produce superoxide from NADPH 

oxidase (Laroux et al., 2005).  TLR signaling in macrophages also leads to upregulation 

of inducible nitric oxide synthase (iNOS), which generates the reactive nitrogen species 

(RNS), nitric oxide, using arginine as a substrate (Stuehr et al., 1991).  Oxygen is 
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required for this reaction, but under conditions of high oxygen, nitric oxide is 

spontaneously oxidized to another RNS, nitrite (Lewis and Deen, 1994).  The resulting 

composition of ROS and RNS after production of nitric oxide and superoxide from 

phagocytes is very complex, contingent on oxygen availability within 

microenvironments. Therefore, the appropriate expression of resistance genes for 

nitrosative versus oxidative stress is additionally complex and is believed to shift for 

relative importance over the course of infection with Salmonella enterica (Vazquez-

Torres and Fang, 2001).   

 Consequently, bacteria have evolved diverse defense responses to protect against 

host-derived oxidative and nitrosative stress and equally elaborate regulation of these 

mechanisms.  Oxygen-modulated regulation of oxidative stress resistance has been 

demonstrated to be important for H. influenzae pathogenesis (Wong et al., 2007); 

however, RNS signaling and resistance to nitrosative stress have not been previously 

studied in H. influenzae.   

Reactive Nitrogen Species: Environmental Conditions in the Host 

Nitric oxide (NO
.
) produced from macrophages is highly unstable, spontaneously 

forming nitrogen intermediates (NO
+
, NO

-
); nitric oxide can also react with hydrogen 

peroxide to form peroxynitrite (ONOO
-
), free thiols (ex. glutathione) to form S-

nitrothiols (ex. S-nitroglutatione, GSNO) or oxygen to form nitrite (NO2
-
), which is more 

stable molecule. For this thesis, these compounds are collectively referred as reactive 

nitrogen species (RNS).  Because NO is highly reactive, NO2
-
 is frequently used to 
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indirectly measure NO production with in vivo infection.  Elevated NO2
-
 levels in 

cerebrospinal fluid of rats (Buster et al., 1995) and human infants (Tsukahara et al., 1996; 

Tsukahara et al., 1998) with H. influenzae meningitis suggest that NO is generated during 

bacterial infection. NO2
-
 is also considered a “storage pool” for NO, also call a NO donor, 

as it reverts back to NO under acidic conditions (Dejam et al., 2003), which is potentially 

relevant to H. influenzae infection given that mucus in cystic fibrosis patients is acidic 

(Yoon et al., 2006).  Because high concentrations of NO can also be toxic to the host, it is 

advantageous for nitrosative stress to be specifically targeted to bacteria, such as NO 

generated from NO2
-
 in the acidic phagosome compartment of macrophages (Haggie and 

Verkman, 2007). Another source of RNS in the human host is by dietary ingestion of 

nitrate (NO3
-
).   NO3

-
 is reduced to NO2

-
 (Gladwin, 2004), thus changing the 

concentrations of RNS in tissues and blood, which has been demonstrated in rats (Bryan 

et al., 2005).  Bacteria metabolize NO3
-
 and NO2

-
 for anaerobic respiration when oxygen 

is depleted, so these terminal electron acceptors can also serve as signals for gene 

regulation. 

Oxygen: Bacterial Metabolism and Signaling 

When oxygen is no longer available, a bacterium must alter gene expression 

profiles to utilize alternative electron acceptors for respiration. Gene expression is 

modulated by regulators that respond to changes in environmental redox conditions, 

including anaerobically-active regulator ArcA and cognate sensor ArcB.  Regulation by 

ArcA is significant for H. influenzae infection as the arcA mutant is attenuated in vivo 
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(De Souza-Hart et al., 2003; Wong et al., 2007). Microarray data examining ArcA 

regulation in H. influenzae indicates that that ArcA represses genes involved in aerobic 

metabolism under low oxygen conditions (Wong et al., 2007).  Studies conducted with S. 

enterica and H. influenzae demonstrated that the arcA mutant is hypersensitive to 

oxidative stress after challenge with hydrogen peroxide, an intermediate of superoxide, 

thus assigning another role to ArcA regulation significant for bacterial virulence (Lu et 

al., 2002; Wong et al., 2007).  Increased levels of oxygen radicals, including hydrogen 

peroxide, have been measured in middle ear fluid of patients with chronic otitis media 

from H. influenzae infection versus healthy individuals (Takoudes and Haddad, 1999), 

indicating this molecule is generated during H. influenzae infection.  Further examination 

of the ArcA regulon led to the identification of dps as an ArcA-regulated gene that 

confers resistance to oxidative stress and expression of dps is differentially expressed in 

response to changes in oxygen availability.  ArcA induces dps expression in low oxygen 

conditions, but not high oxygen conditions, to preemptively protect the bacteria from 

oxidative stress caused by superoxide production from immune effector cells (Wong et 

al., 2007).   Additional experimental evidence further supports that oxygen is important 

for modulation of virulence factors in H. influenzae, specifically the phosphorylcholine 

(PC) epitope of lipooligosaccharide (LOS) (Wong and Akerley, 2005).  The presence of 

the PC-epitope aids in bacterial attachment; however, the PC-epitope is highly 

immunogenic so constitutive expression is likely disadvantageous to the bacteria.  H. 

influenzae has adapted to exhibit PC-epitope presentation under conditions where oxygen 

is low, which correlates with reduced expression of galU, a gene involved in synthesis of 
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LOS (Wong and Akerley, 2005). A homolog of FNR, another regulator that has been 

reported to be oxygen-responsive in other bacteria, is present in H. influenzae and has not 

been previously characterized. 

Reactive Nitrogen Species: Bacterial Metabolism and Signaling 

Bacteria that can survive in aerobic and anaerobic environments, facultative 

aerobes like H. influenzae, generally employ a repertoire of mechanisms to utilize 

alternative terminal electron acceptors when oxygen is depleted.  Microarray data 

examining differential gene expression in H. influenzae showed that anaerobic respiration 

genes are up-regulated under microaerobic conditions versus aerobic conditions (Wong 

and Akerley, 2005).   FNR has been identified as a global regulator of anaerobic 

respiration, controlling an estimated 10% of the E. coli genome under low oxygen 

conditions (Constantinidou et al., 2006), including genes responsible for RNS 

metabolism and resistance. Unlike the oxygen-sensing mechanism of ArcA, which is 

modified by ArcB sensing changes in the quinone pool, FNR of E. coli is considered a 

direct oxygen sensor and its activity is modulated by redox state of its iron-sulfur (Fe-S) 

cluster (Lazazzera et al., 1996). Under low oxygen conditions, FNR is active as a dimer, 

binding to consensus sequences in promoter regions and inducing transcription of 

operons involved in anaerobic respiration, including the nap and nrf operons, encoding 

nitrite and nitrate reductases, respectively (Constantinidou et al., 2006; Salmon et al., 

2003; Shalel-Levanon et al., 2005).  These operons are subject to additional 

transcriptional control by dual two-component systems, NarX-NarL and NarQ-NarP.  In 
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general, two component regulation systems consist of a sensor kinase, NarX or NarQ in 

this case, that is autophosphorylated in the presence of an inducing signal and a response 

regulator, NarL or NarP, that modulates gene expression when phosphorylated by the 

activated sensor kinase (reviewed in(Laub and Goulian, 2007)).  Both NarX and NarQ 

can be activated by either NO3
-
 or NO2

-
 and each can subsequently phosphorylate NarL 

and NarP, resulting in regulation of the nap and nrf operons, which illustrates an example 

of a complex regulation mechanism in response to environmental cues (Stewart, 1994a).  

NO3
-
 is the most prevalent anaerobic terminal electron acceptor in the human host, 

concentrations ranging from ~0.1 mM in serum to 2 mM in saliva after digestion of 

nitrate rich food (Iijima et al., 2002) (Lundberg and Govoni, 2004).  NO3
- 
appears to be 

significant electron acceptor for E. coli and S. enterica given they possess three nitrate 

reductases (NarG, NarZ and Nap), that can reduce NO3
-
 to NO2

-
, which is further 

metabolized to ammonia by two nitrite reductases (NrfA and NirB) (reviewed in (Simon, 

2002; Stolz and Basu, 2002)).   The presence of NO3
- 
and NO2

-
 metabolism pathways is 

highly varied among bacterial species as are the relative importance of each enzyme in 

virulence.  The genome of P. aeruginosa encodes only two nitrate reductases, NarG and 

NapA; however, NarG is required for survival in sputum from patients with cystic 

fibrosis under anaerobiosis, but Nap is not required (Palmer et al., 2007).   The napG 

mutant in P. aeruginosa was attenuated for infection in Caenorhabditis elegans and the 

narG  mutant was fully virulent (Van Alst et al., 2007).   Reduction of NO3
-
 or NO2

-
 can 

produce toxic NO in S. enterica and E. coli so these bacteria possess enzymes such as 

nitric oxide reductase, NorV (norV), that can utilize NO as a terminal electron acceptor 
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(Corker and Poole, 2003; Gilberthorpe and Poole, 2008).  Metabolism of NO is also 

critical for the bacteria to defend against toxic levels generated from immune cells.  In 

addition to NorV, many RNS resistance mechanisms that detoxify NO have been 

identified in E. coli and S. enterica, including flavohemoglobin (hmp) and nitrite 

reductase (nrfA) (Mills et al., 2008; Poole et al., 1996; Stevanin et al., 2002; van 

Wonderen et al., 2008).  Other genes have been identified in E. coli that confer RNS 

resistance by repairing damage caused by NO including the di-iron protein, YtfE (ytfE), 

that can restore iron-sulfur clusters (Justino et al., 2005; Justino et al., 2006; Justino et 

al., 2007). NO oxidizes Fe-S clusters and heme groups, which are present in many 

enzymes involved in respiration, thus nitrosative stress disrupts respiration.  When YtfE 

is present, it can repair NO-damaged Fe-S clusters, and restore enzymatic activity of 

proteins involved in respiration (Justino et al., 2007).  Additionally some transcriptional 

regulators possess an Fe-S cluster that is sensitive to nitrosative stress(Crack et al., 2008), 

such as FNR which regulates genes involved in RNS resistance in S. enterica, N. 

gonorrhea and E. coli (Constantinidou et al., 2006; Fink et al., 2007; Whitehead et al., 

2007), thus YtfE could also repair NO-damaged regulators, resulting in induction of NO 

resistance genes. 

Regulation of RNS metabolism and resistance is a complex mechanism of 

coordination between multiple regulators, dependent on environmental cues including 

availabilities of oxygen and RNS (reviewed in (Spiro, 2007)). Transcription of norV is 

dependent on induction by NO-responsive NorR in E. coli (Tucker et al., 2006; Tucker et 

al., 2008).   Oxygen is another signal that can dictate which defense mechanism is 
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appropriate for the conditions: hmp requires oxygen and is repressed by anaerobically-

active global regulator FNR when oxygen is low (Poole et al., 1996).  Over-expression of 

hmp can be detrimental to the cell so it is also repressed by another regulator, NsrR, 

which is inactivated by oxidation of Fe-S cluster in the presence of NO(Tucker et al., 

2008), thus leading to induction of hmp (Bang et al., 2006; Gilberthorpe et al., 2007; 

Stevanin et al., 2007).    The hmp promoter is subject to modulation by yet another 

regulatory mechanism through regulators, NarP or NarL, whose activity is controlled by 

nitrate/nitrite-responsive cognate sensors, NarX or NarQ (Poole et al., 1996).  Regulation 

of hmp promoter is the best characterized transcriptional control of a RNS resistance 

mechanism; however, H. influenzae does not possess a predicted homolog of hmp. To 

investigate the RNS defense mechanisms employed by H. influenzae, the sequenced 

genome was queried to identify homologs of genes predicted to encode regulators 

involved in RNS resistance.  This search yielded regulators, FNR and NarP, and RNS 

resistance factors, NrfA and YtfE.  This thesis identifies mechanisms for metabolism of 

terminal electron acceptors, NO3
-
 and NO2

-
, and RNS resistance and elucidates the role of 

FNR and NarP regulation of RNS metabolism and resistance.   
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CHAPTER II 

FNR is required for nrfA expression and nitrite reductase expression 

under low oxygen growth conditions. 
 

Summary 

 

Anaerobically-active ArcA regulates an oxidative stress resistance mechanism 

and is essential for in vivo H. influenzae infection, implicating that redox signaling in low 

oxygen environments is important for virulence.  The genome of H. influenzae encodes 

an FNR homolog, which has been identified as an oxygen-responsive regulator of genes 

required for RNS metabolism and resistance in other bacteria; therefore, I sought to 

characterize FNR regulation in H. influenzae.  Based on computational predictions from 

multiple sources, a comprehensive list of genes in H. influenzae strain Rd KW20 with 

putative FNR binding sites was compiled.  Using RT-qPCR, transcript levels in wild type 

and fnr mutant strains that were cultured in depleted oxygen conditions were evaluated 

for differential abundance of potential FNR targets, nrfA, napA, dmsA and bisC, which 

encode predicted reductases of anaerobic terminal electron acceptors.  To elucidate the 

role of FNR regulation in expression of nitrate and nitrite reductases, wild type, fnr, nrfA 

and napA mutant strains were assayed for the ability to reduce NO3
-
 and NO2

-
.   The fnr 

mutation results in lower nrfA transcript levels and impaired ability to reduce NO2
-
.  To 

further characterize FNR regulation, a nrf promoter reporter fusion, Pnrf-HA, was 

constructed.  In the fnr mutant strain, Pnrf-HA expression was undetectable under 

microaerobic growth conditions; whereas, a distinct Pnrf-HA band was visible with 
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immunoblotting in Fnr+ strains cultured microaerobically.  Additionally, an increase in 

Pnrf-HA expression correlates to a decrease in oxygen availability in the media, 

suggesting that the nrf promoter is modulated by oxygen signals. 
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CHAPTER II 

 Introduction 

 

H. influenzae, a facultative anaerobe, can survive in the presence or absence of 

oxygen; however, it must alter its gene expression profile to adapt for respiration 

appropriate to the aeration conditions. ArcA, an anaerobically-active regulator, modulates 

gene expression in response to changes in oxygen (Georgellis et al., 2001; Wong et al., 

2007).  H. influenzae posses a predicted homolog of another anaerobically-active 

regulator, FNR, that controls genes involved in anaerobic respiration in other bacteria.  

FNR (formate-dependent nitrite reductase regulator) is a conserved protein present in 

many human pathogens including E. coli, H. influenzae, Vibrio cholerae, P. aeruginosa, 

Salmonella enterica, Klebsiella pneumoniae, Yersinia pestis, Pasteurella multocida, 

Neisseria meningitidis and Neisseria gonorrhoeae (reviewed in (Gerasimova et al., 2001; 

Spiro, 1994)).  Microarray data with E.coli wild type and fnr mutant strains cultured in 

aerobic and anaerobic growth conditions implicate approximately 100 operons predicted 

to be members of the FNR regulon, revealing that FNR acts as a global regulator when 

the bacteria transition from conditions of high oxygen to low oxygen (Constantinidou et 

al., 2006; Salmon et al., 2003; Shalel-Levanon et al., 2005).  The FNR of E. coli is a 250 

residue protein composed of domains for dimerization, DNA binding and an iron-sulfur 

“sensing” cluster (Crack et al., 2004). When oxygen is present, the Fe-S cluster of FNR is 

oxidized and the protein is monomeric and inactive.  When oxygen levels are low, the Fe-

S cluster is reduced, causing a conformational change that exposes the dimerization and 
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DNA binding domains, resulting in the active dimeric form (Crack et al., 2006; Crack et 

al., 2007; Crack et al., 2008).   FNR is primarily monomeric in aerobic cultures and 

dimeric holoprotein in anaerobic cultures (Dibden and Green, 2005; Sutton et al., 2004).   

Mutations of the critical cysteine residues that make up the Fe-S cluster (C20, C23, C29, 

C122) yield forms of FNR that failed to induce transcription of FNR-regulated genes, 

dmsA or frdA (Lazazzera et al., 1996; Melville and Gunsalus, 1990).   Additional 

residues, leucine 28 and aspartic acid 154, are involved in oxygen sensing as mutations 

result in an FNR protein that is active under conditions of high oxygen (Lazazzera et al., 

1996).    In vitro biochemical characterization of oxygen sensing by FNR has been further 

verified by in vivo examination of expression of FNR-dependent promoters  in E. coli  

cultured under aerobic and anaerobic growth condition (Dibden and Green, 2005; Jervis 

and Green, 2007).    

Homologs of FNR in S. enterica  and N. meningitidis have been identified as 

essential virulence factors based on the evidence that fnr mutants were attenuated for in 

vivo infection; fewer viable colonies of the fnr mutant were recovered from in vivo 

mouse infection model as compared to the wild type strains (Bartolini et al., 2006; Fink 

et al., 2007). Evaluation of gene expression profiles with a microarray conducted with 

cultures of N. meningitidis shifted from oxygen-rich to oxygen-limited conditions 

indicated that 175 genes are differentially expressed with the change of oxygen 

availability and confirmed that 11 operons are positively regulated anaerobically by FNR, 

6 of which are involved in anaerobic metabolism (Bartolini et al., 2006).  Microarray data 

comparing the anaerobic transcriptome of wild type S. enterica to the fnr mutant listed 
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311 genes that have altered expression in the fnr mutant, including genes important for 

metabolism, motility, RNS defense and virulence (Fink et al., 2007), which would likely 

account for the attenuation of the fnr mutant.    

The role of FNR regulation H. influenzae virulence has not been previously 

characterized.  FNR of H. influenzae is 79% identical to FNR of E. coli and contains the 

critical residues C20, C23, L28, C29, C122, and D154; therefore, I hypothesize that FNR 

of H. influenzae senses oxygen in a similar fashion as FNR of E. coli.  Residues found at 

the DNA binding helix are highly conserved between the two species, suggesting that 

promoter sequence recognition might be similar (Spiro and Guest, 1990).  Computational 

predictions analyzing the promoter regions in H. influenzae of operons shown to be FNR-

regulated in E. coli support similarity of the FNR binding box between the two species, 

TTGAT (N4) ATCAA (Gerasimova et al., 2001; Ravcheev et al., 2007; Tan et al., 2001).  

Although the lists of genes in the H. influenzae putative FNR regulon differ based on the 

computational criteria used, many of the genes are responsible for anaerobic respiration 

in other bacteria.  Under conditions in which oxygen is no longer available for 

respiration, FNR is activated and upregulates operons associated with enzymes encoded 

by napA, nrfA, frdA, dmsA and bisC that can utilize alternative terminal electron 

acceptors like nitrate, nitrite, fumarate, dimethyl sulfoxide (DMSO) and triethylamine-N-

oxide (TMAO), respectively.   Microarray studies examining gene expression in H. 

influenzae cultured under aerobic and microaerobic conditions show that nrfA and dmsA 

are up-regulated under low oxygen growth conditions (Wong and Akerley, 2005), which 
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is consistent with the prediction that genes important for anaerobic respiration are 

induced when oxygen is depleted.  

Many species of -Proteobacteria contain redundant pathways that reduce NO2
-
 to 

ammonia including the NrfA and NirB protein complexes of E. coli and S. enterica 

(reviewed in (Simon, 2002)).   H. influenzae is predicted to contain only a single 

periplasmic nitrite reductase encoded by the nrfABCD operon, which I hypothesized to be 

an essential component of the NO2
-
 ammonification pathway, given that the putative 

enzymes in H. influenzae are 68%, 34%, 64%, and 48% similar to NrfA, NrfB, NrfC and 

NrfD of E. coli, respectively (Hussain et al., 1994).  The six-electron reduction of NO2
-
 

by Nrf of E. coli is linked to formate dehydrogenase as an electron source via membrane 

quinones, generating a proton gradient.  NrfA, the enzymatically-active subunit, is a 

penta-heme cytochrome-c and directly receives electrons from membrane-associated 

NrfB, also a penta-heme cytochrome-c (Bamford et al., 2002).  Membrane-bound NrfC 

has an Fe-S center and is partnered with NrfD, a transmembrane protein, to shuttle 

electrons from the quinones to NrfB (Hussain et al., 1994).    Some human bacterial 

pathogens also have multiple enzyme systems that reduce nitrate, suggesting the 

evolutionary importance of utilizing a substrate ubiquitous in the human host (reviewed 

in (Stolz and Basu, 2002)).  E. coli possess three such enzymes encoded by operons: 

napFDAGHBC, narGHJI and narZYWV (reviewed in (Cole, 1996)). NarG and NarZ 

complexes, both found in the cytoplasm and considered functionally redundant, are not 

predicted to be present in H. influenzae, whose genome does include a homologous 

napFDAGHBC operon.  The Nap enzyme complex is localized to the periplasm with 
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NapA, NapB and NapC, identified as the essential components for nitrate reduction in E. 

coli (Stewart et al., 2002).  NapA, the enzymatically active subunit that contains an Fe-S 

cluster and molybdenum co-factor, reduces NO3
-
 to NO2

-
 with the transport of two 

electrons (Jepson et al., 2007).  Based on the characterized functions in E. coli, the 

predicted reduction of NO3
-
 and NO2

-
 by Nap and Nrf enzymes in H. influenzae is 

summarized by this biochemical pathway:        

The enzymatic activity of Nap in H. influenzae has not been previously examined; 

however, the regulation of the H. influenzae napF promoter (napFHi) was studied in E. 

coli. The regulatory elements in the napF promoter of E. coli (napFEc) were too complex 

to clearly define the interactions between FNR, NarL and NarP and the napFHi promoter 

appeared to be activated by all three proteins (Stewart and Bledsoe, 2005).  The 

regulation differences observed between the two different napF promoters in this one 

study support that FNR regulation needs to be directly studied in H. influenzae.   
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CHAPTER II  

Materials and Methods 

 

Pre-Growth Conditions: For anaerobic pre-growth, strains were cultured at 35C for 16 

hours in brain heart infusion broth (BHI) supplemented with 2.5mM xylose, 10 g/ml 

hemin and 10 g/ml NAD (sBHI), standing in anaerobic chamber (BD Anaerobic GasPak 

EZ) to an optical density at 600 nm (OD600) of 0.5-0.6. For microaerobic pre-growth, 

strains were cultured at 35C for 16 hours in sBHI, exposed to ambient air to optical 

density at 600 nm (OD600) of 0.7-0.8. 

Generation of putative FNR targets list and FNR binding consensus sequence: Sources of 

computational predictions of potential FNR regulated operons in H. influenzae were 

compared and a complete list, including all possible targets, was assembled 

(http://www.ccg.unam.mx/Computational_Genomics/tractorDB) (Gerasimova et al., 

2001; Tan et al., 2001).  Putative FNR binding sites were identified upstream of nrfA, 

napA, dmsA and ytfE based on previously reported FNR binding sequences for H. 

influenzae.  The resulting sequences were used to generate a binding logo diagram using 

(http://weblogo.berkeley.edu/logo.cgi/). 

Strain construction: Strains Rfnr, RfnrV, RfnrC, RHA, RHAfnr, RHAfnrV, RHAfnrC, 

and plasmid pXTfnrC were constructed as described previously (Harrington, 2009). 

Strain RnapA containing a transposon insertion mutation in napA was generated by 

targeted in vitro transposon mutagenesis of the napA locus with the Himar1 derivative 

magellan1, followed by identification of the desired mutant by screening for its loss of 

http://www.ccg.unam.mx/Computational_Genomics/tractorDB/
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nitrate reductase activity (Akerley and Lampe, 2002).  A pool of transformants containing 

the transposon insertion were cultured on sBHI agar plates for single colony formation 

and individual isolates were patched a sBHI agar plate and into 200µl sBHI broth 

containing 1 mM NaNO3 in a 96-well dish and incubated at 35°C for 2 hours.  

Supernatants were assayed for the presence of NO2
-
 with Griess reagents (as described 

below) and isolates that were impaired in the ability to reduce NaNO3, as indicated by the 

absence of detectable NO2
-
 in the supernatant, were colony purified and verification of 

the transposon insertion in the napA open reading frame was determined by PCR. 

To generate strain NTfnr, a fragment consisting of 1.4 kb upstream of the transposon 

insertion in fnr to 1.3 kb downstream of the insertion was amplified by colony PCR using 

Rfnr as a template with primers 5'FNRupstreamCK (5‟- 

GCGGCAAGAATGGCAGCGTTATCC-3‟) and 3'FNRdownstreamCK (5‟- 

ACCTGTGCGTCCCACTGTGCC-3‟). The resulting product was used to transform 

strain NT127 resulting in strain NT127. Kanamycin resistant recombinants were selected 

on sBHI agar and the resulting mutation was verified by PCR. 

 

Real-Time Polymerase Chain Reaction: Anaerobic cultures were used to inoculate 40 mL 

sBHI with an initial density of OD600 0.01, and were subsequently incubated at 35C 

shaking at 120 rpm (ThermoForma Orbital Shaker) in anaerobic chamber (BD Anaerobic 

GasPak EZ) for 5.5 hours to mid-log growth (OD600 0.3-0.4).  Cultures were placed 

immediately on ice and total RNA was isolated using TRIzol Reagent (Invitrogen).  

Generation of cDNA and real time cycler conditions were as described previously 

(Rosadini et al., 2008; Wong and Akerley, 2005). One tenth of the cDNA reactions were 
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used as a template for qRT-PCR with primers for nrfA (HI1069-5‟ and HI1069-3‟), dmsA 

(HI1047-5‟ and HI1047-3‟), napA (5'napA-RT and 3'napA-RT), bisC (5'bisC-RT and 

3'bisC-RT), and rpoA (HI1047-5' and HI1047-3‟).  Approximate transcript values were 

calculated from a standard curve of each primer set.   

NO2
-
 Depletion Assays: Microaerobic cultures were used to inoculate 30 mL MIc (Barcak 

et al., 1991) in a 25 ml flask with an initial density of OD600 0.02, and were subsequently 

incubated at 35C shaking at 250 rpm (ThermoForma Orbital Shaker) for 3 hours to mid-

log growth (OD600 0.3-0.4).  Cultures were normalized to 7.5 OD600 units by 

centrifugation (Eppendorf Centrifuge 5415D) at 5000 x g for 5 minutes and the pellets 

were resuspended in 24 ml MIc plus 1 ml defined containing 6.25mM NaNO2 or NaNO3 

for final concentrations of 0.25mM NaNO2 or NaNO3 and OD600 0.3. Cultures were 

incubated 35C shaking at 200 rpm and aliquots (200l) were taken at indicated time 

points and stored on ice in a 96-well dish until completion of the enzyme assay.  The 96-

well dish was centrifuged at 5000xg, 4C for 5 minutes to pellet cells.  The supernatant 

(50 l) was assayed for NO2
-
 concentrations with Griess reagents: 50 l of Solution A 

(5% phosphoric acid, 1% sulfanilamide) & 50 l of Solution B (0.1% N- N-1-

napthylethylenediamine dihydrochloride) and measured on VersaMax spectrophotometer 

at 540 nm (Misko et al., 1993).  When NO2
-
 is present, it covalently reacts with 

sulfanilamide and NED to form a pink Azo compound, allowing for colorimetric 

detection (see diagram below). For each plate, a standard curve with 0.25, 0.125, 0.0625 

& 0.03125 mM NO2 in MIc was assayed and NO2
-
 concentrations in the supernatants 
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were calculated from the slope of the standard curve. Summary of Griess Reaction: 

 

Immunoblotting: Microaerobic cultures were used to inoculate 30 mL MIc in 25 ml flask 

with an initial density of OD600 0.02, and were subsequently incubated at 35C shaking at 

250 rpm (ThermoForma Orbital Shaker) for 3.5 hours to mid-log growth (OD600 0.3-0.4). 

For varied aeration conditions, RHA was cultured in 5, 10, 20 or 30 ml sBHI in 25 ml 

flask, with the identical starting densities. Appropriate volumes to yield a pellet of 0.5 

OD units were centrifuged for 5 minutes at 15700 x g and resulting pellets were 

resuspended in 50 l MIc. Samples (0.4 OD600 equivalents per lane) were lysed with 

SDS-PAGE sample loading buffer, boiled for 5 minutes, centrifuged for 1 minute at 

15700 x g, then resolved on SDS-PAGE gels for 14 hours at 12 mAmps (Gibco BRL 

vertical gel apparatus).  Gels were electrotransferred to Immobilon-P (Millipore 

Corporation, Billerica, MA), blocked with 1% dry milk (Carnation) in 1% TBS – 0.1% 

Tween, probed with anti-HA1.1 (1:1000; Covance, Berkeley CA) for 60 minutes, washed 

then probed with secondary antibody goat anti-mouse immunoglobulin G-horseradish 

peroxidase conjugate (1:5000, Upstate, Lake Placid, NY) for 30 minutes and visualized 

with West-One Chemiluminescent Solution (Sigma Aldrich). 
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Table 1: Strains used in this study 

Strain        Freezer Vial         Genotypes, Description and/or Relevant Features                           Reference 

Rd           CH2 Wild type: H. influenzae capsule deficient type d (Wong et 

al., 2007) 

RHA CH55 Rd nrfA∆::helha; Pnrf-HA reporter strain and nrfA deletion mutant 

carrying Pnrf-HA reporter construct driven by nrfA promoter and 

replacing nrfA 

(Harrington 

et al., 2009) 

RnapA CH60 Rd napA’::nptII; napA mutant strain with Km
r
 transposon insertion in 

napA 

This study 

Rfnr CH123 Rd fnr’::nptII; fnr mutant with Km
r
 transposon insertion in fnr (Harrington 

et al., 2009) 

RfnrV CH105 Rfnr xylA∆4-804::tetAR; fnr mutant carrying empty Tet
r
 vector sequence 

from pXT10  

(Harrington 

et al., 2009) 

RfnrC CH110 Rfnr xylA∆4-804::fnr;  fnr mutant complemented with fnr expressed via 

the fnr promoter from pXTfnrC  

(Harrington 

et al., 2009) 

RHAfnr CH92 RHA fnr’::nptII; Pnrf-HA reporter strain and fnr mutant with Km
r
 

transposon insertion in fnr 

(Harrington 

et al., 2009) 

RHAfnrV CH149 RHAfnr xylA∆4-804::tetAR; Pnrf-HA reporter strain and fnr mutant 

carrying empty Tet
r
 vector sequence from pXT10  

(Harrington 

et al., 2009) 

RHAfnrC CH153 RHAfnr xylA∆4-804::fnr Pnrf-HA strain and fnr mutant complemented 

with fnr expressed via the fnr promoter from pXTfnrC  

(Harrington 

et al., 2009) 

RnarP CH67 Rd ∆narP::aacCI; narP mutant with gentamicin cassette replacing narP This study 

RnarPV CH157 Rd ∆narP::aacCI, xylA∆4-804::tetAR; narP mutant carrying empty Tet
r
 

vector sequence from pXT10  

This study 

RnarPC CH161 Rd ∆narP::aacCI, xylA∆4-804::narP; narP mutant complemented with 

narP expressed via narP promoter from pXTnarPC  

This study 

RnarQ CH70 Rd ∆narQ::aacCI; narQ mutant with gentamicin cassette replacing 

narQ 

This study 

RHAnapA CH63 RHA napA’::nptII; Pnrf-HA reporter strain and napA mutant with Km
r
 

transposon insertion in napA 

This study 

RHAnarP CH72 RHA ∆narP::aacCI; Pnrf-HA reporter strain and narP mutant with 

gentamicin cassette replacing narP 

This study 

RHAnarPV CH189 RHAnarP xylA∆4-804::tetAR; Pnrf-HA reporter strain and narP mutant 

carrying empty Tet
r
 vector sequence from pXT10  

This study 

RHAnarPC CH193 RHAnarP xylA∆4-804::narP; Pnrf-HA reporter strain and narP mutant 

complemented with narP expressed via the narP promoter from 

pXTnarPC  

This study 

RHAnarQ CH74 RHA ∆narQ::aacCI; Pnrf-HA reporter strain and narQ mutant with 

gentamicin cassette replacing narQ 

This study 

RHAnarPV CH201 RHAnarQ xylA∆4-804::tetAR; Pnrf-HA reporter strain and narQ mutant 

carrying empty Tet
r
 vector sequence from pXT10  

This study 

RHAnarPC CH205 RHAnarQ xylA∆4-804::narQ; Pnrf-HA reporter strain and narQ mutant 

complemented with narQ expressed via the narQ promoter from 

pXTnarQC  

This study 

RV CH252 Rd xylA∆4-804::tetAR; wild type carrying Tet
r
 vector sequence from 

pXT10 

(Wong and 

Akerley, 

2005) 

RytfeV CH254 Rd ∆ytfE::aacCI, xylA∆4-804::tetAR; ytfE mutant carrying empty Tet
r
 

vector sequence from pXT10  

(Harrington 

et al., 2009) 
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Strain        Freezer Vial         Genotypes, Description and/or Relevant Features                           Reference 

RytfeC CH259 Rd ytfE∆::aacCI, xylA∆4-804::ytfE; ytfE mutant complemented with ytfE 

expressed via ytfE promoter from pXTPytfeC  

(Harrington 

et al., 2009) 

NT127 CH83 Non-typeable H. influenzae clinical isolate from human cerebrospinal 

fluid  

This study 

NTV CH301 NT127 xylA∆4-804::tetAR; wild type carrying Tet
r
 vector sequence from 

pXT10  

(Harrington 

et al., 2009) 

NTfnr CH101 NT127 fnr’::nptII; fnr mutant with Km
r
 transposon insertion in fnr This study 

NTnarP CH84 Rd ∆narP::aacCI; narP mutant with gentamicin cassette replacing narP This study 

NTnarQ CH88 Rd ∆narQ::aacCI; narQ mutant with gentamicin cassette replacing 

narQ 

This study 

Nytfe CH302 NT127 ytfE∆::aacCI, xylA∆4-804::tetAR; ytfE mutant carrying empty Tet
r
 

vector sequence from pXT10 replacing xylA 

(Harrington 

et al., 2009) 

NytfeC 

 

CH306 NT127 ytfE∆::aacCI, xylA∆4-804::ytfE; ytfE mutant complemented with 

ytfE expressed via xyl promoter from pXTytfeC 

(Harrington 

et al., 2009) 

RfnrnarP CH97 Rfnr∆narP::aacCI ; fnr mutant strain and narP mutant with gentamicin 

cassette replacing narP 

This study 

RfnrytfeC.1 CH270 Rfnr  fnr’::nptII, xylA∆4-804::ytfE; fnr mutant strain with ytfE expressed 

via xyl promoter from pXTytfeC 

This study 

RfnrytfeC.2 CH271 Rfnr  fnr’::nptII, xylA∆4-804::ytfE; fnr mutant strain with ytfE expressed 

via xyl promoter from pXTytfeC 

This study 

RfnrytfeC.3 CH272 Rfnr  fnr’::nptII, xylA∆4-804::ytfE; fnr mutant strain with ytfE expressed 

via xyl promoter from pXTytfeC 

This study 
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Table 2: Plasmids used in this study 

 

Plasmid       Freezer Vial       Description and Relevant Features                                                 References 

pXT10 CH122 Delivery vector for chromosomal expression at the xylose locus of H. 

influenzae containing xylF, xylB, xylA∆4-804, and the tetAR tetracycline 

resistance cassette 

(Wong and 

Akerley, 2003) 

pXTfnrC CH121 pXT10 carrying fnr expressed from the fnr  promoter (Harrington et 

al., 2009) 

pBNheltag CH22 pBR322 vector carrying Pnrf-HA reporter construct (nrf promoter-hel ORF-

HA tag-nrfB homology) 

(Harrington et 

al., 2009) 

pXTnarPC 

 
CH124 pXT10 carrying narP expressed from the narP  promoter This study 

pXTnarQC 

 
CH131 pXT10 carrying narQ expressed from the narQ  promoter This study 

PXTPytfeC 

 
CH250 pXT10 carrying ytfE expressed from the ytfE  promoter (Harrington et 

al., 2009) 

pXTytfeC CH251 pXT10 carrying ytfE expressed from the xylA  promoter (Harrington et 

al., 2009) 
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Table 3: Genes with predicted FNR binding sites  

Locus Tag   Operon          Predicted Function            Locus Tag   Operon       Predicted Function 
HI0001 

 
gapdH 

 

glyceraldehyde-3-phosphate 

dehydrogenase  

HI0932 

 
Eno 

 

phosphopyruvate hydratase 

 

HI0006 fdnGHI formate dehydrogenase HI1031 hypo unknown function 

HI0017 yfiD Hypothetical HI1032 hypo unknown function 

HI0018 Ung uracil-DNA glycosylase  HI1047 dmsABC DMSO reductase 

HI0050 Hypo unknown function HI1069 nrfABCD nitrite reductase 

HI0055 uxuA mannonate dehydratase  HI1076 cydAB cytochrome d oxidase 

HI0075 

 
nrdD 

 

anaerobic ribonucleoside 

triphosphate reductase HI1077 pyrG CTP synthase  

HI0146 Hypo unknown function HI1078 hypo unknown function 

HI0164  Hypo unknown function HI1088 sodA superoxide dismutase 

HI0190 

 
fur 

 

ferric uptake regulation 

protein HI1089 ccmABCD heme exporter protein A 

HI0225 nhaA sodium/proton antiporter  HI1104 hypo unknown function 

HI0348 napFDAGHBC nitrate reductase HI1116 deoCABD deoxyribose-phosphate aldolase 

HI0390 

 
fadD 

 

long-chain fatty acid transport 

protein HI1117 comM competence protein  

HI0401 

 
fadL 

 

long-chain fatty acid transport 

protein  HI1125 talB Transaldolase 

HI0520 Hypo unknown function HI1209 argR arginine repressor  

HI0534 aspA aspartate ammonia-lyase  HI1210 Mdh malate dehydrogenase 

HI0605 glpABC 

glycerol-3-phosphate 

dehydrogenase  HI1218 lctP L-lactate permease  
HI0621 Hypo unknown function HI1219 cmkA cytidylate kinase  

HI0643 bisC/torYZ  biotin sulfoxide reductase HI1348 pepT peptidase T 

HI0686 

 
glpT 

 

glycerol-3-phosphatase 

transporter  HI1350 cdd cytidine deaminase  
HI0690 

 
glpFK 

 

glycerol uptake facilitator 

protein HI1356 
malQ-

glgBXCAP 4-alpha-glucanotransferase 

HI0726 

 
narP 

 

nitrate/nitrite response 

regulator protein HI1379 phoB 

transcriptional regulatory protein 

PhoB 

HI0744 Hypo unknown function HI1385 rsgA Ferritin 

HI0745 ansB L-asparaginase II HI1398 fumC fumarate hydratase 

HI0746 

 
dcuB 

 

anaerobic C4-dicarboxylate 

transporter 

HI1425 

 
fnr 

 

fumarate/nitrate reduction 

regulatory protein 

HI0747 Ndh NADH dehydrogenase 

HI1448 

 
moeAB 

 

molybdopterin biosynthesis 

protein 

HI0757 gpmA phosphoglyceromutase  HI1550 bioD dithiobiotin synthetase  

HI0809 

 
pckA 

 

phosphoenolpyruvate 

carboxykinase 

HI1659 

 
nrdAB 

 

ribonucleotide-diphosphate 

reductase alpha subunit 

HI0835 frdABCD fumarate reductase HI1662 sucABCD 2-oxoglutarate dehydrogenase 

HI0836 genX lysyl-tRNA synthetase  

HI1676 

 
moaABCD 

 

molybdenum cofactor biosynthesis 

protein A 

HI0884 

 
arcA 

 

aerobic respiration control 

protein ArcA 

HI1677 

 
ytfE 

 

NO resistance factor 

 

 

(http://www.ccg.unam.mx/Computational_Genomics/tractorDB, Gerasimova et al., 2001; 

Tan et al., 2001) 

http://www.ccg.unam.mx/Computational_Genomics/tractorDB/
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CHAPTER II  

Results 

 

FNR is a positive regulator of genes predicted to metabolize anaerobic terminal 

electron acceptors under low oxygen growth conditions.  In many bacteria, FNR acts 

as a global regulator of anaerobic respiration and positively regulates genes involved in 

utilization of alternative electron acceptors, such as NO3
-
 and NO2

-
.  Previous 

computational predictions have generated a list of  potential FNR regulated targets in     

H. influenzae, based on FNR consensus sequences identified in other bacteria 

(http://www.ccg.unam.mx/Computational_Genomics/tractorDB, Gerasimova et al., 2001; 

Tan et al., 2001)  A complete list of all the genes with putative FNR binding sites from 

the three different sources was assembled (Table 3) and 10 of 52 genes on this list have 

been previously linked to anaerobic respiration. To study the regulatory role of FNR in H. 

influenzae, transcript levels were examined of napA, nrfA, dmsA and bisC, which encode 

nitrate, nitrite, DMSO, and TMAO reductase, respectively.  Total RNA was obtained 

from cultures of parental strain (Rd), the fnr mutant with vector sequences in the xyl locus 

(RfnrV), and the fnr mutant complemented with the fnr gene provided at the xyl locus 

(RfnrC) grown in the oxygen-depleted condition. Real-time PCR was used to measure 

transcript levels of each gene normalized to the housekeeping gene, rpoA (Fig. 2.1).  

Transcript abundance of each of the candidate FNR regulated genes was decreased in the 

fnr mutant, and restored to wild-type levels in the complemented strain. 

http://www.ccg.unam.mx/Computational_Genomics/tractorDB/
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Figure 2.1: Effect of fnr mutation on expression of anaerobic reductases. 

Total RNA was extracted from Rd, RfnrV (fnr-, empty vector) and RfnrC (fnr 

complemented) cultured in triplicate (duplicate for bisC) to log phase in an oxygen-

depleted condition and expression of nrfA, napA, dmsA and bisC was examined with 

qRT-PCR.  All transcripts were normalized to rpoA expression. Statistics were calculated 

using one-way ANOVA with Tukey’s multiple comparison test (*p<0.001). 
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 A 70-fold decrease in nrfA mRNA levels was observed in the fnr mutant relative to the 

parent strain. The dmsA and bisC transcript levels were similarly affected, exhibiting a 

decrease of 23-fold and 16-fold in the fnr mutant, respectively.  The napA gene was only 

moderately influenced, and its expression was decreased by 3-fold in the fnr mutant.  

These data are the first reports of FNR regulation in H. influenzae and the results are 

consistent with the prediction that FNR is an anaerobically-active regulator.   

FNR is essential for nitrite reductase expression, but not nitrate reductase 

expression. Once it was demonstrated that nrfA and napA transcript levels were lower in 

RfnrV, I postulated that their respective enzyme expression might also be altered in the 

fnr mutant. To determine whether FNR is required for reduction of nitrate (NO3
-
) or 

nitrite (NO2
-
), wild type, Rd, Rfnr (fnr disruption mutant), RfnrV, and RfnrC were 

compared for the ability to reduce nitrate and nitrite from culture supernatants over time.  

NO2
-
 was steadily depleted from supernatants of Rd and RfnrC cultures during the first 

45 minutes, at which time NO2
-
 levels were below the level of detection (Fig. 2.2A). In 

contrast, concentrations of NO2
-
 were not depleted in culture supernatants of the fnr 

mutants (Rfnr and RfnrV), providing evidence that FNR is required for expression of 

nitrite reductase under these conditions.   When the media is supplemented with NO3
-
, 

formation of NO2
-
 can be quantified as an indirect measure of nitrate reductase activity. 

After the addition of exogenous NO3
-
, supernatants of Rfnr and RfnrV had similar levels 

of NO2
-
 present as compared to Rd and RfnrC between 5 and 20 minutes (Fig. 2.2B).  

After 25 minutes, NO2
-
 was depleted from supernatants of Rd and RfnrC but the levels of  
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Figure 2.2: Effects of fnr mutation on nitrite and nitrate reductase expression. 

Rd, Rfnr (fnr-), RfnrV (fnr-, empty vector) and RfnrC (fnr complemented) were cultured 

microaerobically (filled 25mls flask) to mid-log growth and standardized to 0.3 OD600 in 

defined. After addition of (A) NaNO2 or (B) NaNO3 (final concentrations 0.25 mM), 

aliquots of the cultures (200µl) were taken at indicated time points and kept on ice. Upon 

completion of the assay, samples were centrifuged and nitrite concentrations in 

supernatants were monitored with Griess reagents.  
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NO2
- 
remained steady in the supernatants of the fnr mutants, Rfnr and RfnrV, suggesting 

that FNR is required for expression of nitrite reductase, but not nitrate reductase. The 

results of this assay are consistent with the differences observed between Rd and RfnrV 

with transcript levels of nrfA (700-fold) and napA (3-fold); indicating that nrfA 

expression is dependent on FNR but napA is expressed in the absence of FNR. 

  To test if nitrite reductase expression is dependent on FNR in a clinical isolate, 

the fnr mutation was moved into a non-typeable H. influenzae clinical isolate, NT127, 

and assayed for nitrite reductase activity (Fig. 2.3).  NT127 depleted the supplemented 

NO2
- 
to undetectable levels by 45 minutes.  The fnr mutant, NTfnr, was impaired in its 

ability to reduce the exogenous NO2
-
, suggesting that the role of FNR in regulation of 

NO2
-
 metabolism is conserved between H. influenzae strains.  

The napA and nrfA genes of H. influenzae are required for reduction of nitrate and 

nitrite, respectively.  I initially demonstrate that nitrite assays are a simple, valid assay 

to examine regulatory effects of FNR on enzymatic activity.  I modified this assay as a 

genetic screening method to isolate mutants of nrfA and napA.  Previous observations that 

a strain with a transposon insertion in nrfD was unable to deplete supplemented NO2
-
 

from growth media suggested that the nrf operon is essential for NO2
-
 metabolism in H. 

influenzae (data not shown).  Wild type H. influenzae, Rd, was transformed with a linear 

PCR product that resulted in a nonpolar deletion of nrfA after homologous 

recombination. Transformants were plated on sBHI agar with no selection, inoculated in  
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Figure 2.3: Effect of fnr mutation on nitrite reductase expression in a non-typeable      

H. influenzae strain. 

Wild type, NT127, and fnr mutant strain (NTfnr) were cultured microaerobically (filled 

25mls flask) to mid-log growth and standardized to 0.3 OD600 in MIc. After addition of 

NaNO2 (final concentration 0.25 mM), aliquots of the cultures (200µl) were taken at 

indicated time points and kept on ice. Upon completion of the assay, samples were 

centrifuged and nitrite concentrations in supernatants were monitored with Griess 

reagents.  
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sBHI broth containing 1 mM NO2
-
 and incubated for 14 hours. The presence of NO2

-
 was 

detected in the cultures using the Griess reagents and the nrfA mutant, termed RHA, was 

isolated based on the loss of ability to deplete exogenous NO2
-
.  From this outcome, I 

conclude that nrfA is required for NO2
-
 reduction and the nitrite assay is a novel, effective 

method for nonselective screening for an unmarked mutant.  A scan of the genome 

indicated only one predicted homolog of a nitrate reductase complex napFDAGHBC, so I 

postulated that napA is required for NO3
-
 reduction and used the NO2

- 
assay as a 

screening tool to isolate a napA mutant from a pool of transformants with targeted 

transposon mutagenesis Himar1 derivative magellan1 (Akerley and Lampe, 2002). 

 After isolating napA and nrfA mutants, the strains were evaluated for NO3
-
 and 

NO2
-
 reduction in the same assay as used to examine the effects of the fnr mutation (Fig. 

2.4).  When cultures were supplemented with 0.25 mM NO2
-
, RHA failed to deplete the 

exogenous NO2
-
 (Fig. 2.4A).  When the media was supplemented with NO3

-
, levels of 

NO2
- 
accumulated by 15 minutes and remained steady (Fig. 2.4B), indicating that RHA is 

able to reduce NO3
-
 but not NO2

-
.   These data indicate that the nrf operon likely encodes 

the only nitrite reductase of H. influenzae. The napA mutant, RnapA, was additionally 

evaluated for its ability to reduce NO3
-
 and NO2

-
 under the same culture conditions.  

RnapA was able to deplete exogenous NO2
-
 as effectively as Rd (Fig 2.4C). After 

addition of exogenous NO3
-
, levels of NO2

-
 accumulated in the media of Rd cultures and 

NO2
-
 was below the levels of detection in the media of RnapA cultures (Fig. 2.4D), which 

indicates that RnapA is unable to reduce NO3
-
. I conclude that the nitrate reductase 

activity of H. influenzae is dependent on napA expression.
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Figure 2.4: Effects of nrfA and napA mutations on nitrite and nitrate reductase 

activities. 

Rd, RHA (nrfA-, A and B) and RnapA (napA-, C and D) were cultured microaerobically 

(filled 25mls flask) to mid-log growth and standardized to 0.3 OD600 in MIc. After 

addition of (A and C) NaNO2 or (B and D) NaNO3 (final concentrations 0.25 mM), 

aliquots of the cultures (200µl) were taken at indicated time points and kept on ice. Upon 

completion of the assay, samples were centrifuged and nitrite concentrations in 

supernatants were monitored with Griess reagents.  
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FNR is required for expression of nrf promoter reporter fusion, Pnrf-HA.  

Data from the nitrite assays and transcript analysis implicated nrfA as a gene that is 

tightly controlled by FNR; therefore, to further study FNR activity, we characterized 

regulation of the nrf promoter. To facilitate studies of gene expression driven by the nrf 

promoter, we generated a reporter fusion construct, Pnrf-HA, in which the nrf promoter, 

including sequences up to the ATG start codon of nrfA open reading frame, was cloned to 

the coding sequence of the hel gene encoding a surface expressed H. influenzae protein 

P4. Sequence encoding an influenza virus hemagglutanin epitope (HA) was also added to 

the 3‟ end of the hel gene to allow immunological detection of the resulting reporter 

protein, Pnrf-HA, with monoclonal antibody HA.11.  To examine promoter elements 

controlling nrfA expression, the reporter was designed to replace the native nrfA by 

homologous recombination at its endogenous locus.  A markerless allelic exchange 

procedure was used to introduce this construct into H. influenzae to create strain, RHA 

(method described above), thereby avoiding the need for antibiotic resistance genes and 

facilitating subsequent strain construction.  

  The reporter strain was used to assess whether FNR is required for expression of 

the nrf promoter reporter fusion, Pnrf-HA. The fnr insertion mutation, complementation 

construct, or „empty vector‟ sequences were introduced into RHA to generate derivatives 

containing the fnr insertion mutation (RHAfnr), fnr mutation and „empty vector‟ 

sequences at the xyl locus (RHAfnrV), or fnr mutation and a wild-type copy of fnr at the 

xyl locus (RHAfnrC).  Rd, RHA, RHAfnr, RHAfnrV, and RHAfnrC were then assayed  
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Figure 2.5: Effect of fnr mutation on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1), RHA (Lanes 2 and 3), RHAfnr (Lanes 4 and 5), 

RHAfnrV (Lanes 6 and 7) and RHAfnrC (Lanes 8 and 9), cultured in low oxygen 

conditions in MIc, were resolved with SDS-PAGE and analyzed by αHA 

immunoblotting.  The arrow indicates 29 kDa band, corresponding to the Pnrf-HA fusion 

protein. 
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for levels of the Pnrf-HA fusion protein by immunoblotting after growth under low 

oxygen conditions where FNR is predicted to be active (Fig. 2.5).  Pnrf-HA was not 

present in lysates of the parental Rd strain, which served as a negative control; however, 

Pnrf-HA was readily detectable as an ~29kDa band in lysates of RHA and RHAfnrC, 

consistent with the size of the predicted fusion protein. Lysates of fnr mutants, RHAfnr 

and RHAfnrV, contained no detectable Pnrf-HA, suggesting that Pnrf-HA expression 

requires activation by FNR.   Verification that FNR is essential for expression of the 

fusion protein from the nrf promoter supports our hypothesis that expression of fusion 

reporter is a valid indication of FNR activity. 

Pnrf-HA expression is modulated in response to different oxygen availabilities.     

The dependence of the Pnrf-HA reporter fusion on FNR for its expression suggested that 

this fusion could be used to obtain information concerning the environmental signals 

influencing FNR activity in H. influenzae.  Because FNR activation has been shown to be 

contingent on low oxygen levels in E. coli and other species (Dibden and Green, 2005; 

Jervis and Green, 2007), Pnrf-HA expression was evaluated in response to altered 

aeration conditions. A range of oxygen conditions was generated by varying the volume 

of culture media in a series of flasks of the same size. As culture volume increases the 

liquid/air interface decreases, thus yielding lower rates of oxygen supply (D'Mello et al., 

1997).  Genomic transcription profiling experiments with H. influenzae have shown that 

altering aeration conditions modulates expression of nrfA and other genes predicted to be 

controlled by FNR (Wong and Akerley, 2005).  The effect of these conditions on oxygen 

levels was verified by measuring dissolved oxygen levels in cultures at the time of 
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sample harvesting (Fig. 2.6).  In parallel, Pnrf-HA levels in lysates from the same 

cultures were monitored by immunoblotting.  As shown in Figure 2.6, increased 

expression of Pnrf-HA correlated with decreased oxygen availability. Although the 

intracellular oxygen exposure of FNR is related to a complex function of the oxygen 

consumption rate and other factors not measured here, the results demonstrate that 

activation of the nrf promoter occurs under a low oxygen condition but induction does 

not require complete anaerobiosis. These results indicate that FNR of H. influenzae 

increases nrfA expression in response to conditions of decreased culture oxygen 

concentrations. 
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Figure 2.6: Effect of oxygen availability on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1) and RHA (Lanes 2-9), cultured in sBHI in a 25 ml 

flask with a range of media volumes to equivalent optical density, were resolved with 

SDS-PAGE and analyzed by HA immunoblotting.  Percent oxygen saturation was 

determined in parallel with a Clark-type probe (model DO-166, Lazar Research labs). 

The arrow indicates 29 kDa band, corresponding to the Pnrf-HA fusion protein. 
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Figure 2.7: Proposed model of FNR regulation in H. influenzae.  

Under aerobic growth conditions, FNR (green circle) is monomeric and inactive; when 

oxygen is depleted, FNR can dimerize and recognize a binding sequence in promoters. 

The putative FNR binding sites (numbers denote basepairs relative to the predicted 

transcriptional start sites) are labeled in the nrf and nap promoters and conserved residues 

are denoted with capital letters.  Based on homology to Nap and Nrf protein complexes in 

E. coli, the nap and nrf operons encode periplasmic nitrate and nitrite reductases, which 

can reduce NO3
-
 and NO2

-
, respectively. 
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CHAPTER II  

Discussion 

 Prior to these experiments, FNR regulation of anaerobic respiration in H. influenzae had 

not been characterized. Studies of NO2
-
 reduction have proven to be simple methods to identify 

genes required for nitrite reduction and to characterize FNR regulation.  Nitrite assays are an 

effective method to 1) measure reduction of NO2
-
 and NO3

-
, 2) study the regulation of the nitrate 

and nitrite reductase activities, and 3) non-selectively screen for genetic mutations.  The fnr 

mutant was impaired for nitrite reductase activity in both Rd and non-typeable backgrounds, 

suggesting that FNR regulation of NO2
-
 metabolism is conserved between strains, consistent with 

observations made in other bacteria.  Based on studies using other bacteria and a report on 

regulation of the napF promoter of H. influenzae (Stewart and Bledsoe, 2005), I predicted 

disruption of fnr would result in an altered phenotype for nitrate reduction; however, the fnr 

mutant converted NO3
-
 to NO2

-
 as efficiently as wild type, implying the nitrate reductase 

expression occurs in the absence of FNR. With this assay, essential components for nitrate and 

nitrite reduction were identified through a non-selective screen. The nrfA mutant was 

successfully isolated without the use of an antibiotic marker, thus nrfA is required for nitrite 

reduction under the conditions tested.  

Results from transcript analysis were consistent with the nitrite assay observations with 

the fnr mutant: FNR is required for nrfA expression, but not as important for napA expression.  

Considerably less nrfA transcript was measured in the fnr mutant as compared to wild type; 

whereas, only slightly less napA transcript was detected in the fnr mutant.   If expression of the 
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nap operon is independent of FNR activity, nitrate reductase might be constitutively expressed at 

low levels when oxygen is present so the bacteria can continue to respire when quickly shifted 

from conditions of high to low oxygen, now utilizing NO3
-
 as an electron acceptor.  Upon 

activation of FNR under microaerobic conditions, the nrf operon is induced, leading to the 

reduction of NO2
-
, the product of nitrate reduction.  This sequential utilization of the specific 

anions corresponds to the relative reduction rates of each anion observed in the nitrite assay. 

Previous data showed that nrfA of H. influenzae is expressed at high levels under 

microaerobic conditions as compared to aerobic conditions as determined by global expression 

profiling (Wong and Akerley, 2005).  Expression of the nrf reporter fusion, Pnrf-HA, is 

dependent on FNR so the effects of oxygen availability on Pnrf-HA expression were 

investigated.  High levels of Pnrf-HA were detected in the crude extracts of cultures grown with 

decreased oxygen availability, indicating that the nrf promoter is more strongly induced when 

oxygen levels are lower.  The results of this experiment indicate that absolute anaerobiosis is not 

required for upregulation of the nrf promoter and that expression of the fusion is modulated by 

oxygen.  The differential expression of the Pnrf-HA reporter strain cultured in varied aeration 

conditions is supportive of the model that FNR regulates the nrf promoter and that FNR activity 

is dependent on low oxygen conditions.   

 From these results, along with previous data from other bacteria, I can formulate a model 

of regulation of the nrf and nap operons by FNR in H. influenzae (Fig. 2.7).  The napF promoter 

has been mapped in the E. coli background and the FNR binding box (TTGATCTATAACAA) is 

centered at basepair -81.5, relative to the transcriptional start site (Stewart and Bledsoe, 2005).  

The FNR binding consensus is conserved between different bacterial species (Gerasimova et al., 
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2001), allowing us to generate a predicted FNR binding motif in H. influenzae.  A putative FNR 

binding box (TTGATCAACGTCAA) is present in the nrf promoter, centered at basepair -45.  

The proximity of the FNR site to the transcriptional start site might account for the differences of 

observed with nrfA and napA transcript levels in the fnr mutant and the effects of the fnr 

mutation on nitrate and nitrite reductase activities.  Because expression of the nrf promoter is 

responsive to changes in oxygen, the expression of the napF promoter under different aeration 

conditions is of interest for future studies.  Additionally, the importance of nitrite and nitrite 

reduction and FNR regulation during H. influenzae infection has yet to be determined.  
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CHAPTER III 

Two-component regulatory system, NarP-NarQ, modulates RNS 

metabolism and nrfA expression. 

Summary 

 

Genes responsible for anaerobic respiration are induced by FNR when oxygen is 

limited.  Many of these genes, including nrfA, are differentially expressed in response to 

changes in concentrations of NO3
-
 and NO2

- 
in the environment.  NO3

-
/NO2

- 
signaling is 

controlled by a two component signal transduction system, composed of a 

transmembrane sensor, NarQ, and cognate regulator, NarP. Although NarQ-NarP 

activities have been characterized in E. coli, the role of NarQ-NarP regulation of nitrate 

and nitrite reduction and NO3
-
/NO2

- 
signaling have not been previously demonstrated in 

H. influenzae.   

To initially characterize NarP regulation of nrfA, nrfA transcript levels in a narP 

mutant strain were compared to transcripts in a wild type strain and a slight, but not 

significant, decrease was observed when narP was mutated. The narP and narQ mutants 

were assessed for the ability to reduce NO3
-
 and NO2

- 
and the narP mutant was delayed 

for nitrate and nitrite reduction, as compared to wild type or the narQ mutant.  Lower 

transcript levels of nrfA and delayed NO2
-
 depletion by the narP mutant suggest that 

NarP is a positive regulator of nrfA.  Additionally, less Pnrf-HA reporter protein was 

detected in lysates of NarP- strains than in lysates of NarP+ strains, supporting that NarP 
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positively regulates the nrf promoter.   Pnrf-HA expression was examined in response to 

altered NO3
-
 and NO2

- 
concentrations to determine if either of these anions serves as a 

signal for redox regulation.  Pnrf-HA expression appeared to be repressed when cultured 

in the presence of high NO2
-
 and this repression was dependent on NarQ.  NarQ-NarP is 

reported to only positively regulate the nrf promoter and the results presented in this 

thesis indicate that regulation by NarQ-NarP of H. influenzae is different than regulation 

by NarQ-NarP of E. coli.     
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CHAPTER III  

Introduction 

 

Under anaerobic conditions, FNR upregulates genes encoding enzymes that can 

utilize alternative electron acceptors like NO3
-
, NO2

-
, fumarate, DMSO, and TMAO. 

Depending on the availability of each anion bacteria have evolved a second method of 

regulation to ensure that the most effective enzyme is expressed.  The activation state of 

some regulators, such as FNR, is directly influenced by environmental signals; whereas 

with two component regulation systems, the activation state of the response regulator is 

modified by a sensor kinase that responds to environmental signals
 
 (reviewed in (Laub 

and Goulian, 2007)).  In addition to regulation by FNR in response to low oxygen, many 

facultative anaerobic bacteria modulate anaerobic respiration genes in response to 

changes in NO3
-
 and NO2

- 
in the environment via the two-component regulation system, 

NarQ-NarP (Rabin and Stewart, 1993; Stewart, 1994b).  As outlined below, regulation in 

response to NO3
-
 and NO2

- 
is exquisitely complex in some enteric bacteria such as E. coli 

(summarized in Fig. 3.1) and S. enterica, which possess a functionally redundant system, 

NarX-NarL (reviewed in Stewart, 1993).   The NarX-NarL of E. coli is the most 

frequently studied nitrate/nitrite response-regulatory system; however, most γ-

proteobacteria human pathogens only possess homologs of NarP and NarQ, including H. 

influenzae (Ravcheev et al., 2005) and signaling by NarQ-NarP in these organisms is 

poorly characterized.  Observations that the napF promoter of H. influenzae is regulated 

differently in an E. coli cell (activated by NarL) than the napF promoter of E. coli 
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(repressed by NarL) suggest that regulation by NO3
-
/NO2

-
 signaling differs between 

species (Stewart and Bledsoe, 2005). 

 NO2
-
 signaling and RNS metabolism has been examined in N. gonorrhoeae, a 

human pathogen that encodes NarQ-NarP, but not NarX-NarL. The narP mutant of N. 

gonorrhoeae had a slight growth defect under conditions of low oxygen; aniA, was which 

encodes a nitrite reductase that reduces NO2
- 
to  NO, was shown to be NarP-regulated 

(Lissenden et al., 2000). Examination of NO2
-
 reduction in narP and narQ mutants 

implicated NarP and NarQ as positive regulators of aniA as both mutants had decreased 

nitrite reductase activity (Lissenden et al., 2000), a phenotype also observed in narQP 

double mutant of N. meningitidis (Rock et al., 2005).  More extensive analysis of NarQ-

NarP regulation verified that aniA is directly activated by NarP and is upregulated in 

response to NO2
-
, similar to E. coli regulation of nrfA (Overton et al., 2006a).   

Comparisons of regulation by NarQ-NarP in E. coli and N. gonorrhoeae imply that these 

bacteria employ different mechanisms of NO2
- 
signaling as NarQ of N. gonorrhoeae is 

reported to be insensitive to the NO2
- 
signal (Overton et al., 2006b; Whitehead and Cole, 

2006).    

The predicted homologs of NarP and NarQ of H. influenzae are 59% and 38% 

identical to NarP and NarQ of E. coli.  NarQ of H. influenzae shares all the critical 

residues that have been demonstrated as essential for NO2
- 
and NO3

- 
sensing by NarQ in 

E. coli (Stewart, 2003); therefore, the mechanisms of NarQ-NarP and NarX-NarL 

signaling in E. coli  were considered (summarized in Fig. 3.1).  The anions are sensed via  
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Figure 3.1: Model of NarQ-NarP and NarX-NarL regulation in E. coli.  

Transmembrane sensor kinases, NarQ (blue square) and NarX (purple square), can detect 

environmental NO3
-
 or NO2

-
, leading to autophosphorylation of a conserved histidine 

residue (H). The phosphate is transferred to an aspartate residue followed by the cognate 

regulators, NarP (orange circle) or NarL (yellow oval).  NarP and NarL recognize 

heptameric sites in promoter regions (numbers correspond to the center of the binding 

site in basepairs relative to transcriptional start site and orientation is denoted with 

directional arrows). Putative NarP/NarL binding sites are listed below the directional 

arrows and residues shared with the consensus sequences are denoted with capital letters. 

Resulting regulation (activation or induction) is determined by interactions with FNR 

(green circle) and the sequence and locations of the binding sites. 
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the periplasmic P-box domain of transmembrane sensors of E. coli, NarQ and NarX, 

(Cavicchioli et al., 1996; Chiang et al., 1997), causing autophosphorylation of a 

conserved histidine in the cytoplasmic domains (Cavicchioli et al., 1995; Noriega et al., 

2008; Schroder et al., 1994).  Although NarQ and NarX can both sense NO2
-
 and NO3

- 

and activate either NarP or NarL, unique differences have been observed with the specific 

signaling pathways.  NarX responds to the NO3
- 
signal more robustly than to NO2

-
 and 

phosphorylates NarL, which both activates and represses genes (Lee et al., 1999).  NarQ 

targets NarP in response to the NO2
-
 signal and NarP primarily acts as a positive regulator 

(Rabin and Stewart, 1993).   

 Examination of expression of NarL and NarP regulated genes demonstrate 

another layer of regulatory complexity as both proteins can act on a single promoter with 

opposing signals, dictated by the arrangement and relative affinities of the DNA binding 

sites (Darwin et al., 1997).   The nrfA promoter of E. coli, an example of differential 

regulation by NarP and NarL, is repressed by NarL and activated by NarP at unique 

binding sites (Browning et al., 2002; Darwin et al., 1997; Tyson et al., 1994). NarP 

activates the nrfA promoter by binding to divergent sites consisting of 7 nucleotide 

residues and separated by 2 base pairs (7-2-7), centered at sites -79 and -70 relative to the 

transcription start site, located 30 base pairs upstream of the FNR binding site 

(summarized in Fig. 3.1); whereas, NarL can activate the nrfA promoter by binding to the 

divergent sites, but NarL also causes repression when bound to single heptameric sites at 

base pairs -50 and -22 (Browning et al., 2002).  When low levels of NarL are 

phosphorylated, the response regulator only binds to the heptameric site with high 
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basepair match to the NarL consensus sequence.  Increasing the concentration of 

phosphor-NarL results in binding to lower affinity sites -50 or -22, which have fewer 

matches the consensus sequence (Darwin et al., 1997). 

Studies conducted with nrfA promoter expression in response to altered NO2
- 
and 

NO3
-
 signals correlate with the proposed NarP and NarL binding model.  PnrfA-lacZ 

expression was highest upon addition of 1 mM NO2
- 
, dependent on induction by NarP 

and PnrfA-lacZ expression was lowest in the presence of concentrations of NO3
-
 greater 

than 2 mM, due to repression by NarL (Wang and Gunsalus, 2000).  Increased 

concentrations of the inducing signal lead to activation of the sensor kinase, NarX, and 

phosphorylation of the response regulator, NarL.  High amounts of phosphor-NarL 

results in repression of the nrfA promoter by phospho-NarL binding to the low affinity 

sites (Darwin et al., 1997).  The nap operon is activated by NarP and repressed by NarL, 

depending on the availability of NO3
-
 and NO2

- 
(Stewart et al., 2002) (see Fig. 3.1). The 

binding sequences are additionally important for NarL and NarP regulatory activities as 

the napF promoter of H. influenzae, which also has divergent heptamer sites at base pairs 

-49 and -40, was activated by both NarL and NarP when expressed in an E. coli cell 

(Stewart and Bledsoe, 2005).  The significant complexities of NarX-NarL and NarQ-

NarP regulation in E. coli make it difficult to dissect the exact mechanisms for response 

to environmental NO2
-
 and NO3

-
.  H. influenzae is a good model organism to study this 

redox responsive regulation because only one sensor, NarQ, and one regulator, NarP, are 

present.  
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CHAPTER III  

Materials and Methods  

 

Strain construction: A nonpolar, in-frame deletion of HI0727 (narP) was created by 

replacement of the protein coding sequences with the aacC1 gentamicin resistance 

cassette to create strain RnarP by overlap extension PCR as follows: A 1002 bp PCR 

product containing the 5‟ flanking region of HI0727 was amplified from Rd with primers 

5‟narPKO up (5‟atggctcgtaagaaaaaaac) and 3‟narPKOup/gent (5‟ 

ATTCGAGAATTGACGCGTAATTAGCTCAATAGATTTAATATC). A 1453 bp PCR 

product containing the 3‟ flanking region of HI0727 was amplified from Rd with primers 

5‟narPKO down/gent (5‟ CTTCCCGGCCGACGCGTAATTTCTCCTTTAGTGGTTAG) 

and 3‟narPKO down (5‟ atgaatttcttccaatataaac). A 800 bp fragment containing the aacC1 

gentamicin resistance cassette was amplified with primers 5‟pBLZA-G (5‟ 

ACGCGTCAATTCTCGAATTGACAT) and 3‟pBLZA (5‟ 

TTAAGGCCTACGCGTCGGCCGGGAAGCCGATCTC) from pBSL182 (Alexeyev et 

al., 1995). The 1002 bp, 1453 bp, and 800 bp products were combined in a PCR reaction 

with primers 5‟narPKO up and 3‟narPKO down. The resultant 3.2 kb product was 

introduced into Rd and GmR transformants were selected on sBHI agar containing Gm to 

create strain RnarP.  The mutation was verified by PCR. 

RnarPC was generated by cloning the narP gene including its native promoter amplified 

by PCR using Rd as template with primers 5‟pnarPC (5‟- 

TTTGCTTCTATGCCATCAATAAACCTACCTCAAATAGTAAG 3‟) and 3‟narPC.II 
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(5‟-TTTGCTCTTCTTTAACGATTTTGTTCAAAAAATAATACCGTTG -3‟), which 

introduce SapI restriction sites flanking narP and its predicted promoter region. The 

resulting 1.4 kb product was digested with SapI and cloned into SapI digested pXT10. 

The resulting plasmid, pXTnarPC, was linearized with ApaLI and transformed into RnarP 

with selection for TcR.  

To generate strain RHAnarP, the narP mutation was amplified from template RnarP, 

using primers 5‟narPKOup and 3‟narPKOdown and the resulting PCR product was 

transformed into strain RHA. Transformants were selected on sBHI plates containing 

Gm. pXT10 and pXTnarPC were linearized with ApaLI and transformed into RHAnarP 

with selection for TcR to create strains RHAnarPV and RHAnarPC, respectively. 

To generate strain RHAnapA, the napA mutation was amplified from template RnapA, 

using primers 5‟0340-ORF (atgacacaaacttttgcc) and 3‟0347-ORF (gtttccgtaacctttcatc) and 

the resulting PCR product was transformed into strain RHA. Transformants were selected 

on sBHI plates containing Km.   

A nonpolar, in-frame deletion of HI0267 (narQ) was created by replacement of the 

protein coding sequences with the aacC1 gentamicin resistance cassette to create strain 

RnarP PCR as follows: A 1241 bp PCR product containing the 5‟ flanking region of 

HI0267 was amplified from Rd with primers 5‟narQKO up (5‟ 

GTAATAATACTAAAGTGAGTGTT) and 3‟narQKO up/gent (5‟ 

ATTCGAGAATTGACGCGTAGGAAACTCCAGTGGAAATTTAG). A 1051 bp PCR 

product of the 3‟ flanking region of HI0267 was amplified from Rd with 5‟narQKO 

down/gent (5‟GCTTCCCGGCCGACGCGTACATCAAAATGCAAAATTTAC) and 
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3‟narQKO down (5‟ cgtgataatttgctcactatttac). The 1241 bp and 1051 bp products were 

combined with the 800 bp aacC1 gentamicin resistance cassette in a PCR reaction with 

primers 5‟narQKO up and 3‟narQKO down. The resultant 3.0 kb product was introduced 

into Rd and GmR transformants were selected on sBHI agar containing Gm to create 

strain RnarQ. The mutation was verified by PCR To generate strain RHAnarQ, the narQ 

mutation was amplified from template RnarQ, using primers 5‟narQKOup and 

3‟narQKOdown and the resulting PCR product was transformed into strain RHA. 

Transformants were selected on sBHI plates containing Gm.  Plasmid pXTnarQC was 

generated by cloning the narQ gene including its native promoter amplified by PCR 

using Rd as template with primers 5‟pnarQc (5‟- 

TTTGCTCTTCTATGCATTCAACGCTTATGGCGTGGTCAAG-3‟) and 3‟narQC.II 

(5‟-TTTGCTCTTCTTTAATATAATGTATGTGGCAAGGTAATTTTG-3‟), which 

introduce SapI restriction sites flanking narQ and its predicted promoter region. The 

resulting 2.5 kb product was digested with SapI and cloned into SapI digested pXT10. 

pXT10 and pXTnarQC were linearized with ApaLI and transformed into RHAnarQ with 

selection for TcR, resulting in strains RHAnarQV and RHAnarQC, respectively. 

Immunoblotting growth conditions: Microaerobic cultures were used to inoculate 7.5 mL 

sBHI ml supplemented with 0.1, 0.5, 1.0 or 2.0 mM NaNO2 or NaNO3, in 8 mL glass 

vials with an initial density of OD600 0.02, and were subsequently incubated at 35C 

shaking at 250 rpm for 3.5 hours to mid-log growth (OD600 0.3-0.4). For varied aeration 

conditions, RHA was cultured in 5, 10, 20 or 30 ml sBHI in 25 ml flasks. Immunoblotting 

procedures were as previously described above in Chapter II. 
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CHAPTER III  

Results 

 

NarP positively regulates nrfA expression and contributes to expression of nitrate 

and nitrite reductases.  In E. coli, NarP regulates nrfA expression through recognition of 

NarP binding sites in the promoter region (Browning et al., 2006).  Predicted NarP-

binding motifs are also present in the nrf promoter region of H. influenzae, thus similar 

regulation via NarP may influence nrfA expression.  To address NarP regulation of nrfA, 

transcription profiles and nitrite reductase activities were examined in wild type and narP 

mutant genetic backgrounds.  Using qRT-PCR, nrfA transcript levels were quantified 

from cultures grown under oxygen depleted conditions (Fig. 3.2).  In comparison to wild 

type Rd strain, the narP mutant strain, RnarPV, had ~20% less nrfA transcript.  Second, 

nitrite reductase activities were monitored for Rd, narP mutants, RnarP, RnarPV, and the 

narP complemented strain, RnarPC (Fig. 3.3A). RnarP and RnarPV reduced NO2
-
 at 

slower rates.  Nevertheless, both strains were able to deplete NO2
- 
to below detectable 

levels after 45 minutes.  NarP appears to enhance nrfA expression, leading to higher 

levels of nitrite reductase in the cell.   

The ability of RnarP to reduce NO3
-
 was compared to that of Rd to determine if 

NarP influences nitrate reductase expression (Fig. 3.3B).  When exogenous NO3
-
 was 

added to the media, lower amounts of NO2
-
 had accumulated in the media of RnarP 

cultures (0.15 mM) than in Rd cultures (0.20 mM) by 15 minutes, implying that less NO3
-
 

had been reduced by RnarP. 
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Figure 3.2: Effect of narP mutation on nrfA transcript levels.  

Total RNA was extracted from Rd and RnarPV (narP mutant) cultured in triplicate (Rd) 

or duplicate (RnarPV) to log phase in an oxygen-depleted condition in sBHI and 

expression of nrfA was examined with qRT-PCR.  All transcripts were normalized to 

rpoA expression.  
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Figure 3.3: Effect of narP mutation on nitrate and nitrite reductase expression. 

Rd, RnarP (narP-), RnarPV (narP-, empty vector), RnarPC (narP complemented), RHA 

(nrfA-), RHAnarP (narP-/nrfA-) were cultured microaerobically (filled 25mls flask) to 

mid-log growth and standardized to 0.3 OD600 in MIc. After addition of (A) NaNO2 or (B 

and C) NaNO3 (final concentrations 0.25 mM), aliquots of the cultures (200µl) were 

taken at indicated time points and kept on ice. Upon completion of the assay, samples 

were centrifuged and nitrite concentrations in supernatants were monitored with Griess 

reagents (see methods in Chapter II).  
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To separate the differential activities of NO3
-
 and NO2

-
 reduction, the narP 

mutation was moved into a strain background that could not reduce NO2
-
, RHA, resulting 

with the strain, RHAnarP (nrfA/narP double mutant) and the two strains were compared 

for NO3
-
 metabolism (Fig. 3.3C).   RHAnarP was impaired in its ability to reduce NO3

-
, 

quantified by less NO2
-
 in the supernatants (0.15 mM) than in the RHA cultures (0.22 

mM) by 15 minutes, which was very similar to the results observed with nitrite reductase 

activities of Rd and RnarP.  NO2
-
 concentrations continued to accumulate in the 

supernatants until reaching steady levels that were comparable in the two cultures, 

verifying that RHAnarP is unable to reduce NO2
-
.  Under these culture conditions, NarP 

positively contributes to the nitrate reductase expression. 

NarP is a positive regulator of Pnrf-HA expression.  Observations that NarP positively 

regulates nitrite reductase activity prompted the investigation of the role of NarP in 

regulation of the nrf promoter, using the Pnrf-HA reporter fusion. RHAnarP, used in the 

NO2
-
 assay described above, was transformed with “empty” vector or complemented with 

narP at the xyl locus to generate strains RHAnarPV and RHAnarPC, respectively. Strains 

were examined for relative Pnrf-HA expression by detection of Pnrf-HA by 

immunoblotting (Fig. 3.4).  Lysates of RHAnarP and RHAnarPV had significantly less 

Pnrf-HA present than in lysates of parental strain, RHA; complementation of narP in 

strain, RHAnarPC, restored Pnrf-HA expression.  Consistent with previous results with 

transcript analysis and nitrite assays, NarP is required for full induction of the nrf 

promoter in H. influenzae. 
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Figure 3.4: Effect of narP mutation on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1), RHA (Lanes 2 and 3), RHAnarP (Lanes 4 and 5), 

RHAnarPV (Lanes 6 and 7) and RHAnarPC (Lanes 8 and 9), cultured in low oxygen 

conditions (filled 25 ml flask) in MIc, were resolved with SDS-PAGE and analyzed by 

αHA immunoblotting.  The arrow indicates 29 kDa band, corresponding to the Pnrf-HA 

fusion protein. 

 



58 

 

NarQ exerts an inhibitory effect on nitrate reductase expression, but not nitrite 

reductase expression.  Previous studies conducted with NarP and NarQ in E. coli 

propose the model that NarP activation is dependent on phosphorylation via NarQ 

(Cavicchioli et al., 1995; Chiang et al., 1997).  In contrast to the results observed with 

NO2
-
 reductase activity of RnarP, the narQ mutant, RnarQ, reduced NO2

-
 as efficiently as 

Rd (Fig. 3.5A). Strains were pre-cultured in MIc, which does not contain anions known 

to stimulate NarQ activity.  NarQ is not required for full nitrite reductase activity under 

these growth conditions.   

The narQ mutant, RnarQ, was additionally assayed for NO3
- 
reductase activity 

(Fig. 3.5B).  When supernatants were assayed for NO2
- 
concentrations at 10 minutes, 40% 

more NO2
-
 was present in the media of RnarQ cultures than in the media of Rd cultures, 

which indicates that RnarQ reduced NO2
-
 more rapidly than Rd. he specific influences of 

the narQ mutation on NO3
-
 reduction cannot be determined when NO2

- 
is simultaneously 

reduced. The narQ mutation was transformed into the RHA strain background, 

generating strain RHAnarQ (nrfA/narQ double mutant).   When the two strains were 

compared for NO3
- 
reduction, ~20% more NO2

-
 had accumulated by 10 minutes in the 

supernatants of RHAnarQ versus RHA (Fig. 3.5C).  The narQ mutant strains, RnarQ and 

RHAnarQ, are able to reduce NO3
- 
more efficiently than strains with wild-type narQ 

allele, Rd and RHA, thus the presence of NarQ results in an inhibitory effect on nitrate 

reductase expression. 

To ascertain whether NarQ and NarP regulate nitrite reductase expression in a 
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Figure 3.5: Effect of narQ mutation on nitrate and nitrite reductase expression. 

Rd, RnarQ (narQ-), RHA (nrfA-) and RHAnarQ (narQ-/nrfA-) were cultured 

microaerobically (filled 25mls flask) to mid-log growth and standardized to 0.3 OD600 in 

MIC. . After addition of (A) NaNO2 or (B and C) NaNO3 (final concentrations 0.25 mM), 

aliquots of the cultures (200µl) were taken at indicated time points and kept on ice. Upon 

completion of the assay, samples were centrifuged and nitrite concentrations in 

supernatants were monitored with Griess reagents.  
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non-typeable strain, narP and narQ were deleted in the NT127 background and the 

resulting strains, NTnarP and NTnarQ, were assayed for NO2
- 
reduction (Fig. 3.6).  Wild 

type, NT127, and NTnarQ reduced exogenous NO2
- 
with comparable efficiencies and 

NTnarP was delayed in its ability to reduce NO2
-
.  These results indicate that the 

functions of NarP and NarQ, in regard to nitrite reductase activity, are conserved between 

Haemophilus strains. 

Pnrf-HA expression is modulated by NO2
-
 availability in the media.  NarQ of E. coli 

recognizes environmental nitrite and nitrate and triggers activation of NarP (Schroder et 

al., 1994).  Given the observation that NarP induces Pnrf-HA expression, the roles of 

NO2
-
 and NO3

-
 were investigated as potential signals for regulation of Pnrf-HA 

expression in RHA. The inability of RHA to reduce NO2
-
 is beneficial for examining the 

regulatory impact of NO2
-
, without the complication of changes in concentrations due to 

reduction of NO2
-
.  However, when cultures of RHA are supplemented with NO3

-
, the 

strain is able to reduce NO3
-
 to NO2

-
 and any changes in Pnrf-HA expression might be 

due to the exogenously added NO3
-
 or the endogenously generated NO2

-
. To circumvent 

this issue, the napA mutation from RnapA was moved into the RHA strain background to 

generate RHAnapA (nrfA/napA double mutant), which is unable to reduce either NO2
-
 or 

NO3
-
.  Pnrf-HA expression was examined in RHA and RHAnapA under conditions with 

increasing concentrations of NO2
-
 or NO3

-
.   
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Figure 3.6: Effects of narP and narQ mutations on nitrite reductase activity in a 

non-typeable H. influenzae strain. 

NT127, NTnarP (narP-) and NTnarQ (narQ-) were cultured microaerobically (filled 

25mls flask) to mid-log growth and standardized to 0.3 OD600 in MIc. After addition of 

NaNO2 (final concentration 0.25 mM), aliquots of the cultures (200µl) were taken at 

indicated time points and kept on ice. Upon completion of the assay, samples were 

centrifuged and nitrite concentrations in supernatants were monitored with Griess 

reagents.  
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Based on previous results examining conditions that induce Pnrf-HA expression (Fig. 

2.6), RHA and RHnapA were cultured in sBHI under a low oxygen condition to stimulate 

FNR-dependent transcription of the nrf promoter and the media was supplemented with 

different NO2
-
 concentrations.  The concentrations of NO2

-
 were selected based on a 

previous study done with the nrf promoter of E. coli, which reports that expression is 

highest with 1 mM exogenous NO2
- 

 under microaerobic growth conditions (Wang and 

Gunsalus, 2000).  Visualized by immnoblotting, the Pnrf-HA band intensities were 

similar in lysates of RHA and RHAnapA cultured in sBHI without supplemented NO2
-
, 

suggesting that the napA mutation does not affect activation of the nrf promoter under 

these conditions (Fig. 3.7).  Additionally, the expression of Pnrf-HA in lysates of RHA 

and RHAnapA exposed to 0.1 mM NO2
-
 were comparable to Pnrf-HA levels observed in 

lysates of cultures without additional NO2
-
.  However, as NO2

-
 concentrations were 

increased to above 0.5 mM, less Pnrf-HA was detected in lysates of RHA.  Decreased 

Pnrf-HA band intensities were also observed in lysates of RHAnapA cultured with 0.5 

mM and 1.0 mM NO2
-
 versus without supplemented NO2

-
. These results implicate NO2

-
 

as a modulatory signal for regulation of the nrf promoter at concentrations greater than 

0.5 mM. 

 To determine if NO3
-
 is an additional signal for modulation of the nrfA promoter, 

cultures of RHA and RHAnapA were supplemented with increasing concentrations of 

NO3
-
 (Fig. 3.8).   At low concentrations (0.1 mM), NO3

-
 did not noticeably effect Pnrf-

HA expression; Pnrf-HA band intensities were comparable in lysates of RHA and 

RHAnapA, similar to Pnrf-HA detected in cultures without NO3
- 
supplementation. 
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Figure 3.7: Effects of napA mutation and NO2
-
 availability on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1), RHA (nrfA-, Lanes 2-11), and RHAnapA (nrfA-/napA, 

Lanes 12-19) cultured in low oxygen condition (7.5 ml in 8 ml sealed glass vial) with 

sBHI supplemented with varying concentrations of NO2
-
 (0.1 mM lanes 4, 5, 14, 15; 0.5 

mM lanes 6, 7, 16, 17; 1.0 mM lanes 8, 9, 18, 19; 2.0 mM lanes 10, 11) to equivalent 

optical density, were resolved with SDS-PAGE and analyzed by HA immunoblotting.  

The arrow indicates 29 kDa band, corresponding to the Pnrf-HA fusion protein. 
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Figure 3.8: Effects of napA mutation and NO3
-
 availability on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1), RHA (nrfA-, Lanes 2-11) and RHAnapA (nrfA-/napA-, 

Lanes 12-19) cultured in a low oxygen condition (7.5 ml in 8 ml sealed glass vial) with 

sBHI supplemented with varying concentrations of NO3
-
  (0.1 mM lanes 4, 5, 14, 15; 0.5 

mM lanes 6, 7, 16, 17; 1.0 mM lanes 8, 9, 18, 19; 2.0 mM lanes 10, 11) to equivalent 

optical densities, were resolved with SDS-PAGE and analyzed by HA immunoblotting.  

The arrow indicates 29 kDa band, corresponding to the Pnrf-HA fusion protein. 
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In lysates of RHA cultured in the presence NO3
-
 greater than 0.5 mM, less Pnrf-HA was 

detected than in lysates of cultures without exogenous NO3
-
, which was analogous to the 

Pnrf-HA expression pattern observed in RHA with NO2
-
 supplementation.  In contrast, 

regardless of the concentrations of NO3
-
 present, relative amounts of Pnrf-HA in lysates 

of RHAnapA were indistinguishable. Supernatants of the immunoblotted lysates were 

assayed for NO2
-
 concentrations prior to collection of lysates (data not shown).  In 

cultures of RHA, NO2
-
 concentrations were equal to the initial amount of NO3

- 
added, 

verifying that RHA had reduced NO3
- 
to

 
NO2

-
; whereas, NO2

- 
levels were below the limit 

of detection in supernatants of RHAnapA, as this strain is unable to reduce NO3
-
.  Nitrate 

reductase activity is likely to account for the differences seen with Pnrf-HA expression in 

RHA and RHAnapA with NO3
-
 addition.  Because repression of Pnrf-HA expression was 

observed in RHA cultures when NO2
-
 is present in the media (from exogenous sources or 

reduction of NO3
-
) and no repression was observed in RHAnapA cultures supplemented 

with NO3
-
, it is likely that high concentrations of NO2

-
 modulates expression of the nrf 

promoter under the conditions tested. 

Repression of the nrf promoter by NO2
-
 is dependent on NarP and NarQ.              

The observations that the nrf promoter is regulated by NarP and is differentially 

expressed in response to altered NO3
- 
and NO2

- 
concentrations led to the investigation of 

the effects of the narQ and narP mutations on Pnrf-hel expression in the presence of the 

two anions.  The band intensities were less in lysates of RHA cultured in the presence of 

2 mM NO2
- 
or 2 mM NO3

- 
than in the lysates of RHA cultured in the absence of either 

anion (Fig 3.9, lanes 2-7).  In comparison to RHA cultures, the levels of Pnrf-HA were  
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Figure 3.9: Effects of narP and narQ mutations on Pnrf-HA expression in the 

presence of exogenous NO2
-
 and NO3

-
. 

Whole cell lysates of Rd (Lane 1), RHA (nrfA-, Lanes 2-7), RHAnarP (nrfA-/narP-, 

Lanes 8-13) and RHAnarQ (nrfA-/narQ-, Lanes 14-19) cultured a low oxygen condition 

(7.5 ml in 8 ml sealed glass vial) with sBHI supplemented with 2 mM NO2
-
 (Lanes 4, 5, 

10, 11, 16, 17) or 2 mM NO3
-
 (Lanes 6, 7, 12, 13, 18, 19) to equivalent optical densities, 

were resolved with SDS-PAGE and analyzed by HA immunoblotting.   The arrow 

indicates 29 kDa band corresponding to the Pnrf-HA fusion protein.  
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less in lysates of all RHAnarP cultures, regardless of the presence of either anion (Fig. 

3.9, lanes 8-13), which was previously demonstrated in Figure 3.4.   Relative levels of 

Pnrf-HA from lysates of RHAnarP cultured with NO2
-
 (Fig. 3.9, lanes 10 and 11) or NO3

-
 

(Fig. 3.9, lanes 12 and 13) were similar to levels of Pnrf-HA from lysates of RHAnarP 

cultured without either anion (Fig. 3.9, lanes 8 and 9), indicating that Pnrf-HA expression 

was not differentially expressed in response to environmental signals when NarP is not 

present.  I additionally tested effects of the narQ mutation on Pnrf-HA expression to 

address the hypothesis that nitrite-responsive signaling occurs through NarQ.   In contrast 

to the effects of the narP mutation, the Pnrf-HA band intensities in RHAnarQ cultures 

(Fig. 3.9, lanes 14 and 15) were comparable to those observed in RHA cultures with no 

anion added (Fig. 3.9, lanes 2 and 3), which indicates that the nrf operon does not require 

NarQ for expression, consistent with the results obtained with the NO2
-
 reduction assays.. 

Furthermore, no differences were apparent in Pnrf-HA band intensities in lysates of 

RHAnarQ cultured with NO2
-
 (Fig. 3.9, lanes 16 and 17) or NO3

-
 (Fig. 3.9, lanes 18 and 

19) which were comparable to RHAnarQ cultured without either anion (Fig. 3.9, lanes 14 

and 15), suggesting that modulation of the nrf promoter expression in response to the 

NO2
-
 signal is dependent on NarP and NarQ.  Complementation of narQ verified that 

NarQ mediates repression of the nrf promoter in response to high concentrations of NO2
-
 

(Fig. 3.10).   In the absence of NO2
-
, the band intensities of Pnrf-HA were comparable in 

lysates of the NarQ- strains, RHAnarQ and RHAnarQV (Fig. 3.10, lanes 6 and 7, lanes 

10 and 11), and in lysates of the NarQ+ strains, RHA and RHAnarQC (Fig. 3.10, lanes 2 

and 3, lanes 14 and 15).  However, in the presence of 2 mM NO2
-
, Pnrf-HA expression 
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was significantly lower in cultures of RHA (Fig. 3.10, lanes 4 and 5) and RHAnarQC 

(Fig. 3.10, lanes 16 and 17), but not in cultures of RHAnarQ (Fig. 3.10, lane 9) and 

RHAnarQV (Fig. 3.10, lanes 12 and 13), indicating that NarQ does influence expression 

of the nrf operon in the presence of the regulatory signal, NO2
-
.   
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Figure 3.10: Effects of narQ mutation and 2 mM NO2
-
 on Pnrf-HA expression. 

Whole cell lysates of Rd (Lane 1), RHA (nrfA-, Lanes 2-5), RHAnarQ (nrfA-/narQ-, 

Lanes 6-9),  RHAnarQV (nrfA-/narQ-, empty vector, Lanes 10-13) and RHAnarQC 

(nrfA-/narQ-, narQ  complemented, Lanes 14-17) cultured in a low oxygen condition 

(filled 25 ml flask) with sBHI supplemented with 2 mM nitrite (Lanes 4, 5, 8, 9, 12, 13, 

16, 17) to equivalent optical density, were resolved with SDS-PAGE and analyzed by 

HA immunoblotting.  The arrow indicates 29 kDa band, corresponding to the Pnrf-HA 

fusion protein. 
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Figure 3.11: Model of NarQ-NarP regulation in H. influenzae. 

When NO2
- 
is absent from the media, acetyl-phosphate can phosphorylate low amounts of 

NarP (orange circle with yellow phosphate, which denotes phosphorylation from acetyl-

phosphate), resulting in induction of gene expression by phospho-NarP binding to sites 

with high sequence matches to the consensus sequence. Transmembrane kinase sensors, 

NarQ (blue square) can detect environmental NO2
-
 and phosphorylate cognate regulator, 

NarP (orange circle with grey phosphate, which denotes phosphorylation from NarQ). 

High amounts of phospho-NarP can recognize heptamer sites in the nrf and nap promoter 

with fewer matches to consensus sequence, leading to repression.  Putative NarP binding 

sites are listed below the directional arrows (bp relative to the predicted transcriptional 

start site) and residues shared with the E. coli NarP consensus sequence are denoted with 

capital letters.  The sequences of the -38 binding site of the nrf promoter is compared to 

the -79 NarP binding site (in italics) from the nrf promoter of E. coli.  
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Discussion 

The results of these studies are the first demonstration of NarQ-NarP regulation 

and NO2
- 
signaling in H. influenzae, which appears to be different than NarQ-NarP 

regulation in E. coli.   Characterization of NO3
-
/NO2

- 
signaling in E. coli is complicated 

by redundancy of three nitrate reductases, two nitrite reductases, two nitrate/nitrite-

responsive sensors and regulators (Stewart, 1994b).  The relative simplicity of the RNS 

metabolism in H. influenzae makes it a desirable organism to study NO3
- 
and NO2

-
 

signaling and metabolism, given that only one nitrite reductase, nitrate reductase, 

nitrate/nitrite sensor and regulator are present in H. influenzae.  Based on the results with 

nitrite assays, RT-qPCR and immunoblotting, NarP contributes to induction of nrfA 

expression and increased nitrite reductase activity, which is consistent with previous 

reports of NarP regulation of nrfA in E. coli (Browning et al., 2002; Wang and Gunsalus, 

2000).   If the activity of NarP was reliant on signaling by NarQ, a narQ mutant would 

likely have the same phenotype as a narP mutant, resulting in delayed reduction of NO2
-
.  

To the contrary, the narQ mutant strain was not impaired for nitrite reductase activity.  In 

the absence of a cognate sensor, a response regulator can be phosphorylated non-

specifically by acetyl-phosphate (reviewed in (Wolfe, 2005)), which might be a possible 

mechanism of NarP activation, independent of NarQ.   The observation that the narQ 

mutant strain reduced NO3
-
 more rapidly than the wild type strain implicated that NarQ 

does play a role in regulation of genes involved in RNS metabolism, through a 

mechanism different than that reported in E. coli.  
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Examination of regulation of the nrf promoter using the Pnrf-hel reporter strain 

cultured with different anion concentrations further supported the hypothesis of NarQ-

NarP signaling. Comparisons of Pnrf-HA expression after supplementation with 

increasing anion concentrations indicate that NO2
-
 can be an inhibitory signal leading to 

repression of the nrf promoter and that NO2
- 
repression is dependent on NarQ. Because 

NarQ-dependent repression of the nrf promoter requires high concentrations of NO2
-
, the 

narQ mutation would have no effect on nrf expression in cultures used in the NO2
- 

assays, which were pre-incubated in MIc.  To determine if NarQ can inhibit nitrite 

reductase activity, the assay must be repeated with sBHI supplemented with NO2
-
. 

Using the information on NarP-NarQ and NarX-NarL signaling mechanisms in E. 

coli, a model of NarP-NarQ regulation in H. influenzae can be postulated (summarized in 

Fig. 3.11). A possible mechanism of nitrite-response regulation is that NarQ-NarP 

signaling is a “toggle” switch for activation and repression of the napF and nrfA 

promoters. The napF promoter of H. influenzae has been mapped and two divergent NarP 

sites, centered around basepairs -47 and -38 relative to the transcription start site, 

downstream of the FNR binding site (Stewart and Bledsoe, 2005).  The relative affinities 

of each site can be speculated based on conserved residues when compared to the E. coli 

NarP consensus sequence, TACC(C/T)CT (Darwin et al., 1997).  The NarP site at -47 

shares 6 of the 7 basepairs; whereas, the divergent site at -38 only has 4 of the 7 

conserved basepairs.  In H. influenzae, NarP may not require NarQ phosphorylation and 

is phosphorylated by acetyl-phosphate at basal levels when NarQ is absent or inactive. 

When low concentrations of phosphor-NarP are present in the cell, NarP only binds to 
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highly conserved sites with lower affinity to induce expression of the nap promoter and 

NarP positively regulates nitrate reductase activity.  When NarQ is present, it can 

phosphorylate more NarP.  When concentrations of phospho-NarP are increased in the 

cell, NarP can bind to sites with sequences that have fewer sites shared with the binding 

consensus, leading to repression of the nap operon, which would explain why NO3
-
 

metabolism is accelerated in the narQ mutants. 

Even though the nrf promoter has not been mapped, the results presented in this 

thesis provide more information regarding NarP and NarQ regulation.  Three putative 

NarP binding sites were identified in the nrf promoter region based on the NarP 

consensus sequences and a comparison of the nrf promoter of E. coli (Darwin et al., 

1997).  Two divergent heptameric sites are located at -79 and -70, relative to the 

predicted transcriptional start site, which is the same positioning of the NarP binding sites 

in the nrf promoter of E. coli.  The -79 site is an exact match to the NarP consensus 

sequence and the -70 site has 5 out of 7 matching basepairs.  When the -79 and -70 NarP 

binding sites in the nrf promoter of E. coli were compared to sequences in the H. 

influenzae promoter, a third putative NarP site was identified, centered at basepair -38, 

which overlaps the FNR binding site.  The -38 binding site has 5 matches to the 

consensus sequence and it highly resembles the -79 NarP site E. coli.  Full induction of 

the nrf promoter requires NarP, deduced from transcript analysis, NO2
- 
assays and Pnrf-

HA expression, which might be mediated by NarP binding to the sequence that shares the 

greatest match to the consensus sequence when NarP is phosphorylated at low levels. 

Repression of the nrf promoter appears to be dependent on NarQ and high concentrations 
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of NO2
-
, implying that NarQ senses NO2

-
 and possibly phosphorylates more NarP, thus 

higher concentrations of phosphor-NarP present in cell leads to bind to lower affinity 

sites with fewer sequence matches with the consensus sequence.  In E. coli, repression of 

the nrf promoter occurs at high concentrations of NO3
-
 and NO2

-
 while the nirB promoter 

is induced (Wang and Gunsalus, 2000) so the cell can metabolize greater amounts of 

NO2
-
 by the cytoplasmic nitrite reductase, NirB.   Because H. influenzae does not possess 

a homologue of NirB, it is unclear why NarQ would repress the nrf promoter under 

conditions with high amounts of NO2
-
.  In E. coli, there is suggestive evidence that nitric 

oxide, which is toxic to bacteria, is a product of nitrite reduction by NrfA (Corker and 

Poole, 2003).  If NrfA of H. influenzae also produces nitric oxide, repression of the nrf 

promoter when high concentrations of NO2
-
 were encountered in the environment would 

likely protect the cell from the toxic effects of endogenously made nitric oxide. The 

demonstration that NarP and NarQ influence regulation of the nap and nrf operons likely 

implicates that H. influenzae senses environmental signals like NO2
- 
to alter gene 

expression; however further characterization of the nrf and nap promoters is required to 

develop this model.  Additionally, the mechanism of NarP activation in the absence of 

NarQ remains undefined and warrants more extensive investigation of the phophorylation 

of the predicted amino acid residues of NarP. 
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CHAPTER IV 

FNR and YtfE are required for resistance to nitrosative stress                                  

via anaerobic induction of ytfE by FNR. 

Summary 

 

During infection, H. influenzae likely encounters macrophages, which generate 

oxidative and nitrosative stress by production of ROS and RNS when activated by 

inflammatory cytokines.  FNR has been identified as a regulator of genes involved in 

RNS defense in other pathogenic bacteria but its potential role in regulation of RNS 

resistance mechanisms in H. influenzae has not been previously characterized.  The 

results presented in this thesis show that the fnr mutant is significantly more sensitive 

than wild type to nitrosative stress when exposed to ASN or GSNO in vitro, suggesting 

that regulation is important for RNS resistance. The narP mutant was additionally tested 

for sensitivity to in vitro NO donors and displayed a hypersensitive phenotype, but more 

resistant to challenge with the NO donors than the fnr mutant.  After evaluation of the list 

of predicted FNR regulated genes, nrfA and ytfE were identified as a likely targets as they 

has been previously identified as RNS defense mechanisms.  Enumeration of viable 

colonies recovered after challenge with ASN and GSNO verified that nrfA and ytfE is 

required for resistance to in vitro nitrosative stress from NO donors.  Comparison of 

survival rates of the fnr and ytfE mutants to the wild type strain cultured with activated 

macrophages led to the conclusion that FNR and YtfE are important for resistance to in 

vivo host-derived nitrosative stress. 
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CHAPTER IV 

Introduction 

 

 The results presented in this thesis demonstrate that FNR and NarP both exert 

regulation of nrfA in response to environmental signals.  Regulation of nitrite reduction is 

important for anaerobic respiration; this regulation has also been shown to be involved in 

protection against nitrosative stress in other pathogenic bacteria. Another consideration 

when exploring RNS resistance in H. influenzae is the different microenvironments 

encountered during infection as it is likely that RNS concentrations are varied in the 

upper respiratory tract, lung, blood and brain.  Microarray studies in other species 

indicate that genes important for defense against reactive nitrogen species (RNS) are 

differentially regulated in response to changes in oxygen, nitrate and nitrite 

(Constantinidou et al., 2006; Overton et al., 2006a).    It has been reported that under low 

oxygen conditions,  FNR of E. coli upregulates RNS defense mechanisms, nrfA and hcp, 

yet represses other genes hmp and ytfE that confer resistance to nitrosative stress 

(Constantinidou et al., 2006).  Exposure to NO oxidizes the Fe-S cluster in FNR, 

inactivating the regulator thus leading to upregulation of hmp. Many RNS defense genes 

are induced by addition of nitrate and nitrite including hmp, ytfE, hcp, nrfA and norV 

(Constantinidou et al., 2006), which implicates control by nitrate/nitrite responsive 

regulators NarP or NarL. NarL regulation of one NO defense mechanism, hybrid cluster 

protein of E. coli, has been verified by gel retardation assay with NarL binding to the hcp 

promoter (Filenko et al., 2007).  NarL is not present in H. influenzae; however, a 

predicted homolog of NarP has been identified in the H. influenzae genome and likely 
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regulates nrfA, which has been previously been identified as an NO detoxification 

mechanism in other bacteria (Mills et al., 2008; Poock et al., 2002).  Therefore, the role 

of NarP in RNS resistance was additionally investigated. 

The conserved biological role of NrfA in RNS defense is unclear as results are 

conflicting in different organisms. One study reports that nrfA mutant of E. coli is 

hypersensitive to NO gas and nitric oxide donor, SNAP (Poock et al., 2002); whereas, the 

nrfA mutant of S. enterica displayed the same growth rates as wild type when exposed to 

NO unless norV was additionally mutated (Mills et al., 2008). However, a nrfA mutant of 

S. enterica was slightly attenuated for in vivo infection in the mouse model (Bang et al., 

2006).  NrfA is proposed to contribute to RNS resistance in E. coli by detoxification of 

NO as the purified enzyme is able to reduce NO in vitro (Clarke et al., 2008; van 

Wonderen et al., 2008).  Conversely, another study reports that wild type E. coli produces 

NO as a product of nitrite reduction by NrfA and the nrfA mutant failed to produce NO 

after nitrite addition (Corker and Poole, 2003).  In S. enterica, a nrfA mutant produces as 

much NO as wild type grown in media supplemented with nitrite (Gilberthorpe and 

Poole, 2008), but the nrfA mutant displayed impaired NO consumption as compared to 

wild type (Mills et al., 2008). The significance of nrfA in NO resistance is likely 

dependent on conditions and coordination with other NO defense mechanisms. 

  When screening for RNS defense mechanisms in E. coli with microarray analysis, 

ytfE was highly up-regulated after nitric oxide exposure and the ytfE mutant strain 

displayed a growth defect when cultured anaerobically in the presence of NO gas (Justino 

et al., 2005).  The E. coli ytfE mutant is also defective for growth when cultured 
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anaerobically, but not aerobically, in MIc supplemented with nitrate, nitrite, DMSO or 

fumarate as terminal electron acceptors, which correlates with the ytfE mutant impaired 

reductase activity for these anions (Justino et al., 2007).  Nitrate, nitrite, DMSO and 

fumarate reductases contain Fe-S clusters, which led to the hypothesis that YtfE is 

involved in maintenance of Fe-S formation.  A comparison of wild type E. coli and the 

ytfE mutant with over-expressed fumarase A and aconitase B, both enzymes that contain 

Fe-S clusters, showed that after NO stress, the ytfE mutant had impaired enzyme activity 

and an altered electron paramagnetic resonance (EPR) signal (Justino et al., 2007). 

Proteins with reduced Fe-S clusters [4Fe-4S]
2+

 do not produce an EPR signal; however, 

proteins oxidized Fe-S clusters [3Fe-3S]
1+

 generate an EPR signal of g~2.02.  After 

exposure to oxidative stress, cells with overexpressed fumarase A and aconitase B 

yielded an g~2.02 EPR signal, which disappeared after 30 minutes in the wild type cell, 

but not in the ytfE mutant cell, indicating that the ytfE mutant failed to repair the Fe-S 

clusters (Justino et al., 2007).  Enzyme activity of fumarase A and aconitase B were 

restored in the ytfE mutant when cultures were supplemented with purified YtfE (Justino 

et al., 2007).   Characterization of the YtfE protein of E. coli identified a non-heme di-

iron center that is sensitive to oxidation by oxygen or nitric oxide, implicating a 

mechanism of Fe-S cluster repair (Todorovic et al., 2008).  Studies conducted with ytfE 

homologs (ytfE of S. enterica, dnrN of N. gonorrhoeae, scdA of S. aureus) suggest that its 

role in defense against nitrosative stress is conserved (Gilberthorpe et al., 2007; Overton 

et al., 2008).  When cells are exposed to NO anaerobically, ytfE is one of the most highly 

expressed genes in E. coli (Pullan et al., 2007).  Similar to hmp, ytfE is predicted to be 
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repressed by FNR as increased transcript levels are observed in the fnr mutant 

(Constantinidou et al., 2006; Justino et al., 2006; Overton et al., 2006a). Microarrays 

comparing wild type and fnr mutant of N. gonorrhoeae showed that more dnrN (ytfE 

homolog) transcript was observed in fnr mutant (Whitehead et al., 2007). In addition to 

FNR regulation, a NarL binding site is predicted in the ytfE promoter, indicating that 

expression of this gene is modulated by nitrate/nitrite responsive regulation (Bodenmiller 

and Spiro, 2006).  The specific growth conditions also dramatically impact the regulation 

of the RNS resistance mechanisms.  Using microarray analysis, cultures exposed to NO 

donor, GSNO, displayed an altered global transcription profile than cultures exposed to 

another NO donor, NOC-5 (Flatley et al., 2005; Pullan et al., 2007).  Because H. 

influenzae does not have many of the regulators (NsrR, NorR) and enzymes (Hmp, HCP, 

NorV) that contribute to RNS resistance in E. coli, H. influenzae likely employs 

alternative patterns of regulation to protect itself from host-derived nitrosative stress.    
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CHAPTER IV 

Materials and Methods 

 

Strain construction: Strains RV, RytfeV, RytfeC, NTV, NytfeV and NytfeC and plasmids 

pXTPytfeC, pXTytfeC  were constructed as described previously (Harrington, 2009). 

NO-donor sensitivity assays: Anaerobic cultures were used to inoculate 5 mL sBHI with an 

initial density of OD600 0.02, and were subsequently incubated at 35C shaking at 120 rpm 

(ThermoForma Orbital Shaker) in an anaerobic chamber (BD Anaerobic GasPak EZ) for 5.5 

hours to mid-log growth (OD600 0.4-0.5).  To determine sensitivity to nitric oxide donors, 5x10
5
 

cells in 50 l sBHI were transferred to a 96-well dish containing 130 l sBHI/pH6.5 and 20 l 

PBS +/- 125 mM NaNO2 or 130 l sBHI/pH7.5 and 20 l PBS +/- 50 mM GSNO (S-

nitrosoglutathione, Sigma).  Cultures were sealed in anaerobic BD GasPak EZ & grown for 14 

hours at 35°C.  Overnight cultures were diluted into sBHI pH7.5 and plated for viable bacterial 

counts.  For transient exposure to ASN, anaerobic cultures were standardized to a culture density 

of 0.01 OD600 in sBHI pH5.5 and 180 l of each culture in triplicate was transferred to 96-well 

dishes containing 150 mM NaNO2 in 20 l PBS.  The 96-well dishes were either sealed in 

individual anaerobic BD GasPak EZ or exposed to ambient air and incubated at 35°C for 30, 60, 

90 or 120 minutes.  Cultures were diluted into sBHI pH7.5 and plated for viable bacterial counts. 

Macrophage bactericidal assay: Bone-marrow derived macrophages (BMM) were 

generated by differentiating C57BL/6J bone marrow cells in a complete BM medium 

(DMEM, 10% heat-inactivated FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, and 
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10% L929 fibroblast-conditioned medium as a source of M-CSF) for 6 days in 10-cm 

Petri dishes. Prior to exposure to bacteria, BMM were washed in antibiotic free BM 

medium and incubated with or without 100 U/mL IFN-γ for 24 hours, 100 μM Nω9 -

nitro-L-arginine methyl ester HCL (L-NAME) for 24 hours, or 100 ng/ml LPS for 2 

hours. Anaerobic bacteria cultures were used to inoculate 5 mL sBHI with an initial 

density of OD600 0.02, and were subsequently incubated at 35C shaking at 120 rpm 

(ThermoForma Orbital Shaker) in anaerobic chamber (BD Anaerobic GasPak EZ) for 5.5 

hours to mid-log growth (OD600 0.4-0.5).  Cultures were serially diluted to 2.5x10
5
 cells 

in 50 ul DMEM and added to wells containing adherent 5x10
4
 bone-marrow derived 

macrophages (BMM) from C57BL/6J mice.  The 96 well dish was centrifuged for 5 

minutes at 200 x g, 4°C then sealed in a BD BBL Anaerobic GasPak and incubated for 30 

minutes at 36°C, 5% CO2.  250uL of 0.12% saponin in DMEM was added to the wells 

and vigorously pipetted to lyse macrophages & release bacteria.  Dilutions of the samples 

were plated on sBHI plates & grown overnight at 35° to determine bacterial survival. 
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CHAPTER IV  

Results 
 

FNR confers resistance to in vitro nitric oxide donors. To investigate the potential role 

of FNR in RNS resistance in H. influenzae, the sensitivity of the fnr mutant was 

evaluated to two NO donors that are present in the human host, S-nitrosoglutathione 

(GSNO) and nitrite (Lu et al., 2002; Rassaf et al., 2004). GSNO, acts by slow release of 

NO causing bacterial damage or indirect damage by nitric oxide through transnitrosation, 

a covalent transfer of a NO group to free thiol groups of bacterial proteins (Singh et al., 

1996). When conditions are acidic, nitrite becomes a nitric oxide donor, commonly called 

ASN acidified sodium nitrite (Dejam et al., 2003). Strains Rd, RfnrV and RfnrC were 

compared for survival after challenge with GSNO in an anaerobic condition for 14 hours 

(Fig. 4.1A). Recovery of CFU for the fnr mutant strain, RfnrV, was decreased by 600-

fold relative to that of parental strain, Rd, and complementation with fnr in strain, RfnrC, 

restored resistance to that of Rd. Treatment of cultures with GSNO in the presence of 

oxygen resulted in no measurable growth inhibition of any of the strains (data not 

shown), consistent with the instability of nitric oxide in the presence of oxygen (Singh et 

al., 1996).  Exposure to ASN for 14 hours yielded results comparable to those obtained 

with GSNO (Fig. 4.1B). The fnr mutant, RfnrV, exhibited a 40-fold decrease in recovered 

CFU compared to that of Rd, and complementation with the wild-type fnr in strain RfnrC 

fully restored resistance to parental levels.   
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Figure 4.1: Effects of fnr mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. 

A. and B. 5.0 x 10
4
 cells of Rd, RfnrV and RfnrC, cultured in triplicate in a depleted 

oxygen condition, were treated with 5 mM GSNO in sBHI, pH7.5 (A) or 10 mM NaNO2 

in sBHI, pH6.5 (B) for 14 hours. Statistics were calculated using one-way ANOVA with 

Tukey‟s multiple comparison test (*p<0.01 or **p<0.001). 

C. 5 x 10
5
 cells of Rd, RfnrV and RfnrC, cultured in triplicate in a depleted oxygen 

condition, were treated with 15 mM NaNO2 in sBHI, pH5.5, sealed in BD GasPak
TM

 EZ 

Anaerobic Chamber and viable colony counts were enumerated at indicated time points.  
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 To accelerate the rate of NO production from ASN, the pH of the growth medium 

was lowered to 5.5, allowing assessment of decreased in CFU counts over a relatively 

short period of time (Samouilov et al., 1998). Cultures of strains Rd, RfnrV, and RfnrC 

were incubated in acidified medium under oxygen-depleted conditions in the presence or 

absence of ASN and monitored for recoverable CFU for 120 minutes (Fig. 4.1C). 

Cultures incubated in the absence of ASN exhibited no growth and no loss of viability 

over the course of the assay (data not shown), suggesting that decreases in recoverable 

CFU in the assay reflect loss of viability, and that strain differences are not the result of 

pH sensitivity. The fnr mutant exhibited a dramatic decrease in CFU by 60 min, dropping 

by 161 or 81-fold relative to that of the parental or complemented strains (Fig. 4.1C), 

which were only marginally affected at this time (1.4 or 2.5 fold less than starting CFU). 

By 90 minutes, the parental and complemented strains began to exhibit sensitivity, 

whereas RfnrV remained 69 and 28-fold more sensitive than these strains.  Similar to 

GSNO exposure, cultures exposed to ASN in an oxygen rich condition exhibited no 

appreciable decreases in CFU, consistent with the rapid oxidation of NO to nitrite 

expected to occur under this condition (Wink et al., 1993). Together, these results 

indicate that FNR is required to promote resistance of H. influenzae to RNS under low 

oxygen conditions. 

NarP contributes to resistance to challenge by in vitro nitrosative stress. Previous 

data obtained with nitrite assays and Pnrf-HA expression indicates that at least one gene 

in H. influenzae is dually regulated by NarP and FNR.  Because NarP has been reported 

to regulate RNS defense mechanisms in other organisms and these genes are highly  
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Figure 4.2: Effects of narP mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. 

Rd, RnarPV (narP- plus empty vector) and RnarPC (narP complemented) were cultured 

in triplicate in a depleted-oxygen condition. A. 5.0 x 10
4
 cells from each culture were 

treated with 5 mM GSNO for 14 hours.  B. 5.0 x 10
5
 cells were treated with 15 mM 

NaNO2 in sBHI, pH5.5, sealed in BD GasPak
TM

 EZ Anaerobic Chamber and enumerated 

for viability at indicated time points. Statistics were calculated using one-way ANOVA 

with Tukey‟s multiple comparison test (*p<0.01). 
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up-regulated when exposed to nitrate or nitrite, Rd, RnarPV (narP-) and RnarPC (narP 

complemented) were challenged with nitric oxide donors, ASN or GSNO, then assayed 

for survival (Fig. 4.2A and 4.2B).  The previous conditions used for the assay with RfnrV 

were repeated to test for the effects of the narP mutation on nitrosative stress.  RnarPV 

was only slightly more sensitive to GSNO as compared to Rd or RnarPC by 3.7-fold or 4-

fold, respectively (Fig. 4.2A).  The differences between NarP+ and NarP- strains are 

statistically significant but the narP mutant did not display as dramatic a phenotype as 

RfnrV, which had 600-fold fewer colonies recovered than Rd. Similar results were 

obtained when strains were cultured for 14 hours with ASN; there were 13.0-fold and 

7.9-fold fewer viable cells of RnarPV in comparison to Rd and RnarPC (Fig. 4.2B).  

NrfA plays a role for RNS resistance in vitro. Purified NrfA of E. coli can reduce NO 

(van Wonderen et al., 2008) and a nrfA mutant of E. coli has a growth defect when 

cultured in the presence of NO (Poock et al., 2002), suggesting that nrfA can act as an 

RNS defense mechanism.  FNR is required for nrfA expression and nitrite reductase 

expression so I hypothesized that nrfA is an FNR target that accounts for the 

hypersensitivity of the fnr mutant to nitrosative stress. The nrfA mutant, RHA, was 

compared to wild-type strain, Rd, for resistance to NO generated by ASN or GSNO (Fig. 

4.3). After exposure to GSNO or ASN, recovery of CFU for the nrfA mutant strain was 

decreased relative to wild-type by 5.8-fold and 4.2-fold, respectively, which was only a 

moderate difference, in contrast to the dramatic phenotype of the fnr mutant.  Although 

nrfA potentially contributes to the FNR-mediated resistance to RNS, it likely is not the 

only defense mechanism responsible.
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Figure 4.3: Effects of nrfA mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. 

Rd and RHA (nrfA-) were cultured in triplicate in a depleted-oxygen condition. A. 5.0 x 

10
4
 cells from each culture were treated with 5 mM GSNO for 14 hours.  B. 5.0 x 10

5
 

cells were treated with 15 mM NaNO2 in sBHI, pH5.5, sealed in BD GasPak
TM

 EZ 

Anaerobic Chamber and enumerated for viability at indicated time points. Statistics were 

calculated using t test (*p<0.05). 
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FNR and NarP are positive regulators of ytfE under low oxygen conditions.  The ytfE 

of E. coli encodes a di-iron protein that repairs nitrosative damage (Justino et al., 2006).  

HI1677, a putative homolog of ytfE in H. influenzae, encodes a predicted protein with 

57% amino acid identity to that of the E. coli YtfE. The presence of a potential FNR 

binding site in the promoter region of ytfE in H. influenzae suggested that it could play a 

role in FNR-mediated RNS resistance. Transcript levels of ytfE were examined in Rd, 

RfnrV and RfnrC after anaerobic growth to determine if FNR regulates ytfE (Fig. 4.4A). 

In contrast to the E. coli ytfE, which is negatively regulated by FNR (Justino et al., 2006), 

H. influenzae ytfE mRNA levels decreased by 8.8 fold in the fnr mutant relative to wild-

type, indicating that FNR is required for positive control of ytfE under low oxygen 

conditions in this species.  Putative NarP binding sites are present in the ytfE promoter 

regions, so ytfE transcripts were quantified in RnarPV and were slightly reduced in the 

narP mutant (Fig. 4.4B). 

YtfE is required for resistance to in vitro nitric oxide donors, ASN and GSNO.          

The FNR dependent transcription of ytfE that was detected in H. influenzae, together with 

previously reported roles in defense against nitric oxide of ytfE in E. coli (Justino et al., 

2005), suggested that this gene is likely to be involved in FNR-mediated resistance to 

RNS in H. influenzae. The ytfE deletion mutant, RytfeV, exhibited a 25-fold decrease 

relative to parental strain RV after exposure to GSNO, and complementation restored its 

resistance to parental levels (Fig. 4.5A).  Similarly, after 60 minutes of exposure to ASN,  
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Figure 4.4: Effect of fnr and narP mutations on ytfE transcript levels.  

Total RNA was extracted from Rd, RfnrV (fnr-, empty vector), RfnrC (fnr 

complemented) and RnarPV (narP-, empty vector) cultured in triplicate (or duplicate for 

RnarPV) to log phase in an oxygen-depleted condition and expression of ytfE was 

examined with qRT-PCR.  All transcripts were normalized to rpoA expression. Statistics 

were calculated using one-way ANOVA with Tukey’s multiple comparison test 

(**p<0.01, ***p<0.001 ) or t-test (*p<0.02). 
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Figure 4.5: Effects of ytfE mutation on susceptibility of H. influenzae to nitric oxide 

donors, GSNO and ASN. 

Parental strain (RV), RytfeV (ytfE-, empty vector) and RytfeC (ytfE complemented) were 

cultured in triplicate in a depleted-oxygen condition. A. 5.0 x 10
4
 cells from each culture 

were treated with 5 mM GSNO for 14 hours.  B. 5.0 x 10
5
 cells were treated with 15 mM 

NaNO2 in sBHI, pH5.5, sealed in BD GasPak
TM

 EZ Anaerobic Chamber and monitored 

for viability at indicated time points. Statistics were calculated using one-way ANOVA 

with Tukey‟s multiple comparison test (*p<0.001). 
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25-fold fewer CFU were recovered from cultures of RytfeV relative to the wild type 

strain, RV, and complementation restored resistance (Fig. 4.5).  Under low oxygen 

conditions, FNR is required for ytfE expression and the ytfE deletion mutant exhibits 

hypersensitivity to RNS exposure. The sensitivity to nitric oxide donors of the nrfA 

mutant RHA was less striking than that of RytfeV, indicating that although nrfA may 

contribute to RNS resistance, the requirement for ytfE is greater under these conditions. 

FNR and YtfE are required for resistance to killing by activated macrophages. 

These results indicate that fnr and ytfE are important for in vitro nitric oxide (NO) 

resistance during conditions when oxygen is limiting. Previous reports suggest that H. 

influenzae may encounter low oxygen conditions during infection where macrophages 

and other immune effector cells are sources of NO. To examine if FNR is important for 

defense against RNS produced by macrophages, strains were exposed to bone marrow-

derived macrophages (BMM) from C57BL/6J mice after growth in low oxygen 

conditions where FNR is most active. The wild type strain, RV, and the fnr mutant, 

RfnrV, exhibited 70% survival when incubated with BMMs for 30 minutes, however no 

significant difference in survival was observed between these two strains (Fig. 4.6). 

Exposure to BMMs pre-stimulated with IFN or LPS, both previously shown to increase 

NO production in BMMs (Lorsbach and Russell, 1992), resulted in significant decrease 

in survival for both strains. The percent survival for RfnrV was 1.3 and 1.4 fold lower 

than RV when exposed to IFN or LPS stimulated macrophages. Previous data suggests  
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Figure 4.6: Effect of fnr mutation on survival by co-infection with activated 

macrophages. 

A. Wild type RV and RfnrV were cultured to mid-log growth in oxygen-depleted 

condition, then added at an MOI of 5:1 to bone-marrow derived macrophages from 

C57BL/6J mice pretreated with media alone, 100 U/ml IFN for 24 hrs or 100 ng/ml of 

purified LPS for 2 hrs. Plates were incubated with rocking at 37°C for 30 min. in an 

anaerobic chamber. Macrophages were lysed with 0.1% saponin, a concentration that 

does not influence bacterial viability, and surviving bacteria enumerated by plating 

dilutions for CFU. Percent survival represents the ratio of CFU recovered in the presence 

of macrophages versus incubation in medium alone. Statistics were calculated from 

ANOVA with Tukey‟s multiple comparison test (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 4.7: Effects of ytfE mutation and L-NAME on survival by co-infection with 

activated macrophages. 

Parental strain, RV, RytfeV (ytfE-, empty vector) and RytfeC (ytfE complemented) were 

cultured to mid-log growth in oxygen-depleted condition, then added at an MOI of 5:1 to 

bone-marrow derived macrophages from C57BL/6J mice cultured with media alone, 100 

U/ml IFN, 100 µM L-NAME or IFN plus L-NAME for 24 hrs. Plates were incubated 

with rocking at 37°C for 30 min. in an anaerobic chamber. Macrophages were lysed with 

0.1% saponin, a concentration that does not influence bacterial viability, and surviving 

bacteria enumerated by plating dilutions for CFU. Percent survival represents the ratio of 

CFU recovered in the presence of macrophages versus incubation in medium alone. 

Statistics were calculated from ANOVA with Tukey‟s multiple comparison test 

(*p<0.01, **p<0.001). 
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 that up-regulation of ytfE is essential for NO resistance in low oxygen so the ytfE mutant 

strain was also examined.  RytfeV (ytfE mutant) and RytfeC (ytfE complemented) were 

co-cultured with macrophages from different treatment conditions (Fig. 4.7). As with the 

previous experiment, un-stimulated BMMs reduced survival of all H. influenzae strains to 

approximately 73-80%. However, after exposure to IFN stimulated macrophages, 

percent survival of RytfeV was 1.2 and 1.3 fold lower compared to RV and RytfeC, 

respectively. To establish that NO specifically participates in killing of H. influenzae in 

this assay, bacteria were co-cultured with IFN stimulated and un-stimulated BMMs pre-

treated with L-NAME, a specific inhibitor of iNOS (Tsai et al., 1997). Un-stimulated 

BMMs treated with or without L-NAME killed all strains with similar efficiency 

suggesting that L-NAME has no apparent effect on viability of H. influenzae in this 

assay. Stimulation of BMMs with IFN plus L-NAME yielded similar results as un-

stimulated macrophages, indicating that increased killing of H. influenzae strains was 

likely mediated through a nitrosative-dependent mechanism. The increased susceptibility 

of the fnr and ytfE mutants to killing by activated macrophages compared to wild type H. 

influenzae is consistent with previous data showing these mutants are sensitive to in vitro 

generated NO. 

The role of YtfE in resistance to activated macrophages is conserved in a clinical 

isolated non-typeable H. influenzae strain, NT127.  Results with Rd strains indicate 

that up-regulation of ytfE is an important defense mechanism for H. influenzae upon 

encountering macrophages. Therefore, I investigated if this mechanism is conserved in 

pathogenic non-typeable H. influenzae strains. To do this, the ytfE mutation and 
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complementing construct and empty vector were moved into a clinical strain, NT127, 

resulting in strains, NytfeV, NytfeC and NTV, which were tested for differential 

susceptibility to un-stimulated or stimulated macrophages (Fig. 4.8).  Wild type and ytfE 

complemented strains, NTV and NytfeC were resistant to killing by all macrophages in 

this assay. However, the ytfE mutant strain, NytfeV, exhibited 22% to 17% lower 

survival compared to the WT strain and complemented strains when exposed to un-

stimulated BMMs, respectively. When co-cultured with BMM that were pre-activated 

with IFN, NytfeV was dramatically more sensitive to macrophages killing, 50% and 

52% more than NTV and NytfeC.  This effect was abolished when BMMs were treated 

with L-NAME in addition to IFN, indicating that NO was likely responsible for the 

increased killing of the ytfE mutant. 
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Figure 4.8: Effects of ytfE mutation in non-typeable H. influenzae strain and nitric 

oxide inhibitor, L-NAME, on killing by IFNγ activated macrophages. 

NTV, NytfeV (ytfE-, empty vector) and NytfeC (ytfE complemented) were cultured to 

mid-log growth in oxygen-depleted condition and added at an MOI of 2:1 to bone-

marrow derived murine macrophages pretreated with media alone, 100 U/ml IFN or 

IFN plus L-NAME for 24 hrs. Macrophages were lysed with 0.1% saponin and 

surviving bacteria enumerated by plating dilutions for CFU. Percent survival represents 

the ratio of CFU recovered in the presence of macrophages versus incubation in medium 

alone. Statistics were calculated from ANOVA with Tukey‟s multiple comparison test 

(*p<0.01, **p<0.001). 
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Figure 4.9: Proposed roles of FNR, NarP, NrfA and YtfE for RNS resistance in      

H. influenzae. 

A. Under low oxygen condition, dimerized FNR (green circle) binds to putative FNR 

binding sites in the nrf and ytfE promoters centered at base pairs -45 and -91, 

respectively. These are additionally regulated by NarP (orange circle). Residues that 

match the predicted FNR and NarP consensus sequences are denoted with capital letters. 

Sites are relative to predicted transcriptional start sites (numbers represent basepairs).  B. 

NrfA enzyme complex potentially contributes to RNS resistance by direct detoxification 

of nitric oxide (NO) in the periplasm.  C. When H. influenzae encounters activated 

macrophages, nitric oxide (NO) can oxidize iron-sulfur clusters (Fe-S) found in FNR, 

NrfA, respiratory proteins and potentially other unidentified RNS resistance proteins. Di-

iron protein, YtfE, repairs Fe-S clusters, thus restoring the activities of FNR, NrfA and 

respiratory proteins.  
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CHAPTER IV 

Discussion 

 

FNR of E. coli and S. enterica regulate many RNS defense mechanisms in 

coordination with NO-responsive regulator NsrR (Filenko et al., 2007; Gilberthorpe et 

al., 2007; Pullan et al., 2007). Unlike nsrR mutants, fnr mutants have not been reported to 

have NO hypersensitivity phenotypes, implicating that FNR regulation is not as critical as 

regulation by NsrR for NO resistance in these organisms. In contrast, H. influenzae does 

not possess a homolog of NsrR and the fnr mutant is more sensitive to nitric oxide 

donors, ASN and GSNO.  The increased killing of fnr mutant by activated, but not un-

stimulated, macrophages as compared to wild type suggests that FNR might be important 

for regulation of RNS resistance in the human host.  Based on the observed effects of the 

narP mutation on resistance to nitrosative stress, NarP potentially assists in regulation of 

these genes, though it appears to be less critical than FNR.   

The results presented in Chapter II of this thesis indicate that that FNR regulates 

nrfA, a gene predicted to aid in NO detoxification.  Although the nrfA mutant was slightly 

more sensitive to NO donors, the phenotype was not as distinct as that observed in the fnr 

mutant.  This observation suggests that although nrfA might contribute to RNS defense, 

another FNR-dependent gene is likely responsible for the observed FNR mediate NO 

resistance, possibly independently or cooperatively with nrfA (Summarized in Fig. 4.9).  

An example of combinatory roles in RNS resistance is evident with nrfA mutant in S. 
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enterica, which only displayed a growth defect after exposure to NO when norV was 

mutated (Mills et al., 2008). 

The observation that nrfA mutant was not as sensitive to nitrosative stress as the 

fnr mutant led to scan of the predicted FNR regulon for an additional RNS resistance 

gene, which prompted investigation of ytfE.  Significantly fewer bacteria were recovered 

from ytfE mutants than wild type cells challenged with GSNO and ASN, thus I conclude 

that ytfE of H. influenzae confers resistance to RNS.  Additionally, ytfE mutants co-

incubated with activated macrophages, which produce more nitric oxide than un-

stimulated macrophages (Lorsbach and Russell, 1992), were more susceptibility to 

killing, most dramatically when ytfE is mutated in the non-typeable H. influenzae strain.  

Analysis of ytfE transcripts in FNR+ and FNR- strains cultured with depleted oxygen 

verifies that FNR regulates ytfE under these growth conditions.  Less ytfE transcript was 

present in NarP- strain as compared to NarP+ strain, suggesting that NarP regulates ytfE, 

thought the fold differences was not as great as the FNR- strain.  The observation that the 

narP mutant is more sensitive to in vitro nitrosative stress than wild type implicates that 

NarP contributes to RNS resistance, potentially through its regulation of ytfE or nrfA. The 

transcript levels of nrfA and ytfE were considerable lower in the fnr mutant, in 

comparison to the narP mutant, which might explain why the fnr mutant displayed a 

more dramatic sensitivity to in vitro nitrosative stress.  

Given that both ytfE and fnr mutants are hypersensitive to nitrosative stress and 

killing by activated macrophages, FNR regulation of ytfE plays a significant role in RNS 
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defense.  Preliminary results with an epistasis experiment support this hypothesis as over-

expression of ytfE from a promoter independent of FNR regulation restores resistance to 

ASN in the fnr mutant (see Appendix).  There is additional evidence that ytfE regulation 

is subject to modulation by changes in oxygen availability.  The ytfE deletion construct 

consists of gentamicin-resistance cassette driven by the ytfE promoter and transformants 

containing the ytfE mutation could only be isolated under anaerobic growth conditions.   

Anaerobic induction of ytfE is a novel regulation model and paradoxical to the model 

proposed for FNR regulation of ytfE and hmp in E. coli and S. enterica.  FNR is reported 

to repress ytfE under low oxygen conditions (Constantinidou et al., 2006; Justino et al., 

2006; Overton et al., 2006a).  When the cell is exposed to nitrosative stress, the Fe-S 

cluster of FNR is oxidized by NO, inactivating the regulator and resulting in induction of 

hmp and ytfE, genes responsible for NO detoxification and repair of damage caused by 

NO (Cruz-Ramos et al., 2002; Justino et al., 2006).  YtfE repairs Fe-S clusters, thus 

restoring FNR activity and repression of hmp and ytfE. In many of the reported studies on 

RNS defense mechanisms, the regulatory activities of FNR examined were in response to 

the nitric oxide signal (Corker and Poole, 2003; Pullan et al., 2007).  I propose that under 

conditions of low oxygen, FNR up-regulates genes critical for RNS resistance, such as 

ytfE, preemptively prior to exposure to NO, which would account for induction of ytfE by 

FNR opposed to repression.  Additionally, the ytfE mutant is reported to have impaired 

nitrite reductase activity and YtfE is proposed to play a role in Fe-S maintenance in NrfA 

(Justino et al., 2007).  If NrfA of H. influenzae does detoxify NO, then deletion of ytfE 

would result in a failure to repair the Fe-S in NrfA under nitrosative stress and contribute 
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to the hypersensitivity phenotype to NO.  Because NarQ-NarP likely responds to NO2
-
, if 

any changes in NrfA activity would alter the regulatory activities of NarQ-NarP because 

of changes in concentrations of the activating signal.  Any modification in NarQ-NarP 

regulation possibly results in changes in ytfE and nrfA expression, thus NrfA indirectly 

impacts ytfE expression through NarQ-NarP.  If YtfE is involved in Fe-S cluster 

maintenance and repair, then expression of ytfE directly affects the activity of NrfA and 

FNR.  The proposed interactions between these factors are fairly complex and warrant 

further investigation of how these interactions might contribute to RNS resistance.  

Further experimentation with double knockouts and epistatic constructs with exposure to 

nitrosative stress would potentially provide information on the interactions between the 

pathways.  Additionally, YtfE likely repairs Fe-S clusters in other proteins that are 

members of the FNR regulon, which are involved in respiration or potentially involved in 

RNS resistance.  Disruption of FNR or YtfE affects the activity of many proteins, either 

through gene expression from FNR activity or through restoration of Fe-S clusters, after 

exposure to NO. I conclude that genes that are subject to redox-modulated regulation play 

a significant role in defense against RNS. 
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CHAPTER V 

 Discussion and Perspectives 

 

 H. influenzae primarily resides in the human nasopharynx asymptomatically with 

up to 80% of the population (Kuklinska and Kilian, 1984).  Physiologically, one would 

speculate that the microenvironments encountered in the lungs (cystic fibrosis) and the 

brain (meningitis) or in the nasopharynx of a healthy individual versus an individual with 

a respiratory infection are drastically different in regards to oxygen availability.   The 

results presented in this thesis validate the hypothesis that H. influenzae modulates its 

gene expression profile in response environmental cues in accordance with observations 

with ArcA regulation (Wong et al., 2007).  The presence of two global regulators that are 

active during anaerobiosis is also indicative that oxygen is a redox signal that is 

encountered during infection; however, the significance of signaling in response to 

environmental RNS during infection has not been studied.  FNR is a stronger activator 

than NarP for nrfA expression based on nitrite reductase activity and Western blot results; 

whereas, fnr mutant were able to efficiently reduce NO3
-
 and narP mutants were impaired 

for NO3
- 
reduction, suggesting that nap operon is less dependent on FNR than NarP for 

expression.   Additionally, the narQ mutants were able to convert NO3
-
 to NO2

-
 at an 

accelerated rate as compared to wild type, narP mutants and fnr mutants without a 

previously reported inducer, NO2
-
, in the pre-growth media to activate NarQ.  The 

relative positioning of the putative binding sites might account for the differences in 

transcriptional control by FNR and NarQ-NarP, which leads to the question of the 
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biological relevance in vivo.   Enteric bacteria, such as E. coli and S. enterica are exposed 

to high concentrations of NO3
-
 (2-5 mM) in the gut, dependent on dietary intake of the 

host (reviewed (Dejam et al., 2004; Gladwin, 2004)). Functionally similar reductases are 

present in the bacteria to reduce NO3
-
 and NO2

-
 and regulation of the genes is coordinated 

so the appropriate enzyme is expressed, dependent on the substrate availability.   At 

lower NO2
-
 levels, periplasmic NrfA is expressed and it uses NO2

-
 as terminal electron 

acceptor for respiration.  When NO2
-
 concentrations are increased, approaching toxic 

levels, the cytoplasmic NirB is expressed to detoxify the substrate (Wang and Gunsalus, 

2000).  NO3
-
 and NO2

-
 are present at different concentrations in the host, depending on 

the anatomical site and state of bacterial infection, but concentrations are sub-micromolar 

(Gladwin et al., 2000).  Repression of the nrf promoter was only observed with 

concentrations of NO2
-
 greater than 0.5 mM. Without a secondary nitrite reductase 

present, what is the advantage of repressing transcription of an enzyme when the 

substrate levels are high?  Differential expression of Pnrf-HA with NO2
- 
supplementation 

was only observed in sBHI growth media, not in MIc. Another redox signal present in 

sBHI might be contributing to NarQ-dependent repression of the nrf promoter and this 

factor might be present in the human host, resulting in regulation in response to much 

lower NO2
-
 concentrations.   Observations that NarP is an activator of nrf expression and 

nitrate reductase activity, yet NarQ yields an inhibitory effect, illustrate the differences of 

NarQ-NarP signaling in H. influenzae in comparison to E. coli.  NarQ-NarP of E. coli 

primarily induces gene transcription and NarX-NarL is responsible for repression 

(Stewart, 2003).  Maintenance of anion homeostasis is a possible physiological basis for 
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this complex regulation to optimize respiration of alternative electron acceptor.  It is of 

interest to further investigate the role of NarQ-NarP regulation during H. influenzae 

infection. 

 Regulation of NO2
-
 metabolism is also potentially relevant to RNS resistance 

given that NO2
-
 can generate NO in acidic conditions and is considered a storage pool in 

the human host (Dejam et al., 2004).  NrfA of E. coli has been identified as a NO 

reductase and is required for RNS resistance in E. coli and S. enterica. Although a minor 

hypersensitivity phenotype of the nrfA mutant was observed when cultured with ASN or 

GSNO, nrfA might contribute to NO detoxification but is not the major FNR-regulated 

mechanism of RNS resistance.  In S. enterica, the nrfA mutant was only dramatically 

more sensitive when norV (nitric oxide reductase) was additionally mutated so it is 

possible that nrfA confers RNS resistance in combination with another factor.  The 

genome of H. influenzae does not encode any other gene predicted to be a nitric oxide 

reductase or any other gene that has been identified as means of NO detoxification, such 

hmp or hcp.  H. influenzae does not possess a homolog of NO-response regulator, NsrR, 

which is present in many human pathogens.  Other γ-proteobacteria species that have 

NsrR-like regulators and Nor-like proteins also have enzymes that generate NO as a 

product, including NirB, NarG, and AniA.  These enzymes are not present in H. 

influenzae, thus an absence of bacteria-derived NO might modify the need for NO 

signaling or a secondary NO reductase. Once again, the environmental conditions 

encountered might also account for this evolutionary difference.  Enteric bacteria will 

experience extensive nitrosative stress when ingested NO2
-
 is acidified to NO in the gut 



105 

 

and intracellular bacteria are subject to high concentrations of NO in the acidic 

phagocytes, which would justify the need for many RNS resistance mechanisms.  H. 

influenzae can efficiently persist by evasion of immune clearance so it is possible the 

bacteria will only encounter relatively low levels of NO that can be detoxified by NrfA 

alone.    

This speculation leads to discussion of the differences observed with that of FNR 

regulation of ytfE.  FNR is reported to be a repressor of ytfE of E. coli  (Constantinidou et 

al., 2006; Justino et al., 2006; Overton et al., 2006a) and dnrN (ytfE homolog) of N. 

gonorrhoeae (Whitehead et al., 2007). De-repression of ytfE occurs after the Fe-S of 

FNR is oxidized by NO, so regulation occurs in response to nitrosative stress. The results 

presented in this thesis show that FNR positively regulates ytfE under low oxygen 

conditions, in the absence of nitrosative stress. Both genes are required for resistance to 

in vitro NO donors or stimulated macrophages.  When the bacteria are in conditions of 

low oxygen in the host, FNR may induce genes involved in RNS resistance under low 

oxygen conditions, as preemptive protection.  When the bacteria encounter activated 

immune cells that generate nitrosative stress, the bacteria can immediately repair damage 

to Fe-S cluster by YtfE.  The results with dramatic susceptibility to killing by activated 

macrophages of the ytfE mutant strain in the non-typeable H. influenzae background 

suggest that YtfE is a significant mechanism of NO resistance.  NT127 was isolated from 

the cerebrospinal fluid of a patient with meningitis, meaning that this particular strain 

originated in the nasopharynx, traversed the epithelial layer to the blood and successfully 

crossed the blood-brain barrier.  The concentration of NO encountered in these drastically 
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different microenvironments is unknown and the significance of RNS resistance 

mechanisms for H. influenzae infection has yet to be determined.  Based on the 

observations that ArcA is required for in vivo infection and resistance to oxidative stress, 

we speculate that FNR is additionally important for in vivo infection. The regulatory 

mechanisms employed by H. influenzae for RNS resistance warrant further investigation.   

In conclusion, H. influenzae modulates its gene expression in response to environmental 

redox signals, likely optimizing its survival and virulence in the human host.    
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Appendix 

 

Title: ASN hypersensitivity screen 

Purpose:   With the intention of isolating an ytfE mutant, Km
r  

transformants from 

Himar1 derivative magellan1 transposon mutagenesis pools were screened for mutants 

that are hypersensitive to ASN.  

Materials and Methods: Freezer stocks of two GAMBIT pools, 342-352d (CH58) and 

447-448 (CH43), were diluted and plated on nonselective sBHI agar plates.  Individual 

colonies were sequentially patched onto new sBHI agar plates and 200 µl sBHI broth 

(pH7.5) in a 96 well dish.  Broth cultures were sealed in an anaerobic baggie and 

incubated at 35°C for 5 hours to reach mid-logarithmic growth.  Aliquots (20 µl) of each 

culture were seeded into a new plate containing 180 µl sBHI broth (pH6.5) supplemented 

with NaNO2 at final concentrations of 15mM , 17.5mM or 20mM. Acidic media with 

PBS alone was used as a positive control for bacterial growth and strain RfnrV was used 

as a positive control for ASN hypersensitivity. Cultures were sealed in an anaerobic 

baggie and incubated at 35°C for ~16 hours. Aliquots (20 µl) of each culture were 

transferred into “recovery media”, 180 µl sBHI broth (pH7.5).  After incubation at 35°C 

for ~20 hours exposed to ambient air, cultures were assayed for growth using 

spectrophotometer, OD600. Transformants that failed to grow in recovery media after 

previous exposure to ASN were colony purified from parallel growth on sBHI agar 

plates.  The approximate location of the transposon insertion was mapped in the resulting 

isolates using the MAROUT primer and GAMBIT 342 primer for isolates from pool 342-

352d or GAMBIT 447 primer for isolates from pool 447-488. 

Data: One transformant from pool 342-352d and 8 transformants from pool 447-448 did 

not grow in recovery media after prior exposure to ASN at concentrations of 15mM , 

17.5mM and 20mM, as indicated by OD600 readings less than 0.01.  Cultures were not 

inhibited for growth in recovery media after prior growth in acidic media with no ASN 

present.  Transposon insertions mapped to HI0344 (napA) in the1 transformant from pool 

342-352d and HI1676 (moaA) the 8 transformants from pool 447-488. 

Conclusion: The results from this screen suggest that napA, encoding nitrate reductase, 

contributes to resistance to nitrosative stress generated from ASN. moaA encodes a 

predicted molybdenum cofactor biosynthesis protein and NapA of E. coli requires a 

molybdenum cofactor.  The hypersensitivity of moaA mutants may be a result of 

impaired nitrate reductase function. 
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Title: GSNO sensitivity assay: fnr/narP and napA/nrfA double mutants  

Purpose:   The sensitivity of single mutants (fnr, narP, napA and nrfA) to GSNO 

exposure was compared to double mutants (fnr/narP and napA/nrfA) to determine if RNS 

resistance mechanisms are related or independent.  

Materials and Methods: To generate strain RfnrnarP, the narP mutation was amplified 

from template RnarP, using primers 5‟narPKOup (5‟ 

GTAATAATACTAAAGTGAGTGTT) and 3‟narPKOdown (5‟ atgaatttcttccaatataaac) 

and the resulting PCR product was transformed into strain Rfnr. Transformants were 

selected on sBHI agar plates containing Gm. Strains were treated as previously described 

for NO-donor sensitivity assays in Chapter IV with the following modifications: 1) 2 mM 

GSNO was used, opposed to 5 mM GSNO, 2) after exposure to GSNO, 20 µl aliquots 

were transferred to 180 µl sBHI broth and monitored for growth using 

spectrophotometer. 
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Data: 

 

Conclusion: Fewer cells were present in the recovery media with cultures from fnr/narP 

and napA/nrfA double mutants after prior exposure to GSNO as compared to the single 

mutants.  FNR and NarP both regulate nrfA, napA and ytfE so mutating both regulators 

likely results in significantly less expression of all three of these genes than in a single fnr 

or narP mutants. 

 

Title: ASN sensitivity assay: fnr mutant and ASN under microaerobiosis 

Purpose:   To determine if the hypersensitivity of fnr mutant was limited to anaerobic 

growth conditions, Rd, RfnrV and RfnrC were cultured with microaerobic growth 

conditions when challenged with ASN.  
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Materials and Methods: Overnight anaerobic cultures were used to inoculate 30 mL sBHI 

(pH5.5) supplemented with NaNO2 (final concentration 15 mM) with an initial density of 

OD600 0.02 in a 25 mL flask, and were subsequently incubated at 35C shaking at 250 

rpm.  Aliquots were taken at indicated time points and viable bacteria were enumerated 

with plating. 

 

Data:

 

Conclusion: Although fnr mutant is more sensitive to ASN challenge under anaerobic 

conditions, the fnr mutant was less sensitive to ASN challenge when the assay was 

conducted under microaerobic conditions, as indicated by more colonies recovered from 

RfnrV at 150 and 180 minutes than from Rd and RfnrC.  FNR might be repressing a RNS 

resistance gene during microaerobiosis, which would be expressed at higher levels in 

RfnrV.   
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Title: ASN sensitivity assay: fnr mutant with copy of ytfE driven by xylA promoter 

Purpose:   To determine if the hypersensitivity of the fnr mutant is due to lack of ytfE 

expression, the fnr mutant was transformed with copy of ytfE driven by the xylA promoter 

from plasmid pXTytfEC and the resulting strains were challenged with ASN. 

Materials and Methods: To generate strains RfnrytfeC.1-3, plasmid pXTytfeC was 

digested with ApaLI, gel purified and transformed into strain Rfnr.  Transformants were 

selected on sBHI agar plates containing Tet. Strains were treated as previously described 

for NO-donor sensitivity assays in Chapter IV. The listed numbers after strains RfnrytfE 

denote individual isolates from transformation of Rfnr with ytfE in the xyl locus. 

Data: 

 

Conclusion: Over-expression of ytfE in the fnr mutant strain background, Rfnr, restored 

resistance to ASN to that of the wild type strain, Rd, which implicates that decreased 

expression of ytfE results in the ASN hypersensitivity phenotype of fnr mutant.  
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