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Human decision-making and self-reflection often
depend on context and internal biases. For instance,
decisions are often influenced by preceding choices,
regardless of their relevance. It remains unclear how
choice history influences different levels of the
decision-making hierarchy. We used analyses grounded
in information and detection theories to estimate the
relative strength of perceptual and metacognitive
history biases and to investigate whether they emerge
from common/unique mechanisms. Although both
perception and metacognition tended to be biased
toward previous responses, we observed novel
dissociations that challenge normative theories of
confidence. Different evidence levels often informed
perceptual and metacognitive decisions within
observers, and response history distinctly influenced
first- (perceptual) and second- (metacognitive) order
decision-parameters, with the metacognitive bias likely
to be strongest and most prevalent in the general
population. We propose that recent choices and
subjective confidence represent heuristics, which inform
first- and second-order decisions in the absence of more
relevant evidence.

Introduction

Human knowledge of the external world and
of internal cognitive processes is often biased and
incomplete (Wilson & Dunn, 2004; Johansson, Hall,

Sikstrom, & Olsson, 2005; Johnson & Fowler, 2011).
When decisions are made about sensory input (i.e., Is a
target present?), we can distinguish between objective
accuracy (perceptual sensitivity) and how accurate one
is in judging their own performance (metacognitive
sensitivity) (Galvin, Podd, Drga, & Whitmore,
2003; Maniscalco & Lau, 2012). Metacognitive
sensitivity can be quantified by comparing subjective
confidence to objective accuracy (Fleming & Lau,
2014). Although accuracy and confidence usually
correlate, metacognitive performance differs widely
across individuals (Johnson & Fowler, 2011; Fleming,
Thomas, & Dolan, 2010; Peters et al., 2017; Shekhar
& Rahnev, 2021) with important consequences in
everyday life. For instance, insight modulates learning,
adaptive decision-making, error monitoring, and
exploration (van den Berg, Zylberberg, Kiani, Shadlen,
& Wolpert, 2016; Desender, Boldt, & Yeung, 2018;
Yeung & Summerfield, 2012; Bahrami et al., 2012;
Folke, Jacobsen, Fleming, & De Martino, 2016). In
fact, impaired metacognition is associated with many
neuropsychiatric disorders (David, Bedford, Wiffen, &
Gilleen, 2012) and sub-clinical symptom dimensions
(Rouault, Seow, Gillan, & Fleming, 2018; Benwell,
Mohr, Wallberg, Kouadio, & Ince, 2022).

Even in healthy individuals, perceptual and
metacognitive decisions not only depend on the
immediately available evidence but also on recent
experiences and choices. For instance, when similar
stimuli are serially presented, perceptual decisions
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are often biased toward responses or stimuli on
preceding trials, a phenomenon known as choice
history bias (Urai, Braun, & Donner, 2017; Braun,
Urai, & Donner, 2018; Bonaiuto, Berker, & Bestmann,
2016; Abrahamyan, Silva, Dakin, Carandini, &
Gardner, 2016; Urai, De Gee, Tsetsos, & Donner,
2019; Fernberger, 1920) or serial dependence (Fritsche,
Mostert, & de Lange, 2017; Fischer & Whitney, 2014;
Bliss, Sun, & D’Esposito, 2017; Liberman, Fischer,
& Whitney, 2014; John-Saaltink, Kok, Lau, & De
Lange, 2016; Pascucci et al., 2019; Pascucci et al., 2023).
Although this mechanism may generally be adaptive
(because recent experience usually predicts upcoming
input), it can also lead to non-veridical decisions
(Fischer & Whitney, 2014; Kiyonaga, Scimeca, Bliss,
& Whitney, 2017; Cicchini, Mikellidou, & Burr, 2018;
Manassi, Liberman, Chaney, & Whitney, 2017).
Interestingly, serial dependence has also been reported
for subjective confidence reports (Rahnev, Koizumi,
McCurdy, D’Esposito, & Lau, 2015; Mei, Rahnev, &
Soto, 2023), and the level of confidence on the preceding
trial has been suggested to modulate perceptual history
bias, with repetition more likely when preceding
confidence was high (Urai et al., 2017; Braun et al.,
2018; Samaha, Switzky, & Postle, 2019; Bosch, Fritsche,
Ehinger, & de Lange, 2020). These reports suggest
the existence of an intimate link between perception
and metacognition in the formation of history biases.
However, the exact nature of this relationship, and
the relative strength and source of each bias, remain
unclear.

Using both model-based and nonparametric
analyses, we observed history biases in both perceptual
responses and ratings of confidence, but we show
that the metacognitive history bias is stronger and
likely to be most prevalent in the general population.
Computational modeling revealed intriguing
dissociations between perceptual and metacognitive
decision-making parameters. For instance, perceptual
choice alternation (disengagement from hysteresis) was
associated with increased perceptual sensitivity but
reduced metacognitive insight. Overall performance
closely matched predictions from recently proposed
computational models of decision-making and
confidence (Kepecs, Uchida, Zariwala, & Mainen,
2008; Sanders, Hangya, & Kepecs, 2016; Hebart,
Schriever, Donner, & Haynes, 2016; Masset, Ott,
Lak, Hirokawa, J., Kepecs, 2020). However, we
crucially demonstrate that both perceptual and
metacognitive decision criteria are not fixed; they
fluctuate from moment to moment and are biased
by recent choices. Accurate models of subjective
confidence must go beyond a normative account to
capture suboptimal metacognitive performance driven
by irrelevant factors such as preceding confidence
reports.

Materials and methods

Participants

Forty-three healthy human observers participated in
the study. All reported normal or corrected-to-normal
vision. The sample size was chosen to ensure statistical
power equal to or higher than previous studies that
detected choice history bias in both perceptual decisions
(Urai et al., 2017; Braun et al., 2018; Bonaiuto et al.,
2016; Abrahamyan et al., 2016) and confidence ratings
(Rahnev et al., 2015). Because of poor psychophysical
performance (explained in the Data Exclusion section),
six participants were excluded from the analysis, leaving
a total number of 37 participants (26 female/11 male
aged from 18 to 38 years [M = 25.23, SD = 3.95]). The
study adhered to the Declaration of Helsinki and was
approved by the Ethics Committee of the College of
Science and Engineering at the University of Glasgow,
and all participants gave their informed consent. No
monetary reward was given to participants for taking
part, although undergraduate students could receive
course credits for their participation.

Stimuli and task

The stimuli were Gabor patches (windowed sine wave
gratings: 96 × 96 pixels [2.54 × 2.45 cm]) presented
at the center of the screen. The Gabor patches had a
peak contrast of 100% Michelson, a spatial frequency
of 3.7 cycles per degree and a 0.3° standard deviation
Gaussian contrast envelope. At a viewing distance of 57
cm (fixed using a chinrest), Gabor patches subtended
2.55° of visual angle. On each trial, the stimulus would
appear at a random angle that ranged from −18° to
18° relative to vertical at intervals of 3° (including 0°).
The monitor used to present the stimuli had a display
refresh rate of 60 Hz and screen resolution of 1920
× 1080 pixels. The software used to implement the
task was E-prime 2.0 and participants made responses
using a QWERTY keyboard. Each trial began with
a fixation point displayed at the center of the screen
for 1000 ms (see Figure 1A). Following this, a Gabor
patch appeared at a random orientation in the center of
the screen for a duration of 16 ms. After the stimulus
disappeared, the participant viewed the fixation point
for 400 ms, before being instructed to indicate whether
they perceived the top of the Gabor patch to be tilted in
a “leftward” or “rightward” direction relative to vertical
(two-alternative forced choice), by responding with the
left and right arrow keys, respectively. Participants were
not informed as to the accuracy of their choice, and no
time limit was enforced. Immediately after responding,
participants were presented with a second decision
regarding their confidence about the perceptual choice
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Figure 1. (A) Behavioral task. On each trial, a Gabor orientation discrimination judgement was made followed by a confidence report
(scale of 1 to 4, where 1 represented “not confident at all” and 4 represented “highly confident”). (B) Computational model of
decision making and confidence in a 2-AFC task. The probability density functions represent distributions of internal responses
(decision variables (DV)) across repeated presentations of the generative stimulus. On each trial, the DV is drawn from one of these
distributions and compared with a decision criterion (c’: solid black vertical line) to reach a binary choice. The level of confidence in
the choice is then reflected in the absolute distance of the DV from c’. When a discrete confidence rating scale is employed, the level
of reported confidence is defined by where the DV falls with respect to the type-2 criteria (c2ʹ1, c2ʹ2, … c2ʹ(N−1): dashed vertical black
lines), where N indexes the number of possible ratings. The type-2 (or confidence) criteria (c2ʹ) govern how far the DV must be from cʹ
before an individual is willing to report a given level of confidence. A confidence rating of k will be given if the DV falls in the interval
(c2ʹk−1, c2ʹk). The relative separation on the x-axis of the two distributions indexes the level of evidence available for the decision. The
model is plotted for three levels of overall decision evidence: none (left panel), weak (center panel) and strong (right panel).
(C)Model-based prediction of the relationship between decision accuracy and evidence strength as a function of confidence level.
(D) Predicted relationship between decision confidence and evidence strength as a function of accuracy. (E) Predicted relationship
between response time and evidence strength as a function of accuracy. These model-based predictions were all confirmed in the
data. (F) Relationship between decision accuracy and absolute Gabor orientation as a function of confidence level. Note that data are
not presented for the 0° orientation because there was no correct response here. (G) Relationship between decision confidence and
absolute Gabor orientation as a function of accuracy. (H) Relationship between response time and evidence strength as a function of
accuracy.
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they had just made. Participants were asked to rate their
confidence on a scale of 1 to 4, where 1 represented “not
confident at all” and 4 represented “highly confident,”
using the corresponding digit keys on the keyboard.
Immediately after making this response the central
fixation point reappeared indicating the beginning
of the next trial. A short practice block (12 trials),
including only the most extreme angles (−18°, 18°) and
with accuracy feedback on each trial, was performed
to familiarize participants with the task. In the full
experiment, each of the 13 orientations was presented
32 times in a randomized order, amounting to 416 trials
in total. The experimental session lasted approximately
30 minutes.

Quantifying the psychometric function

To model Gabor orientation discrimination
performance, cumulative logistic PFs were fit to the
data using a Maximum Likelihood criterion (Prins
& Kingdom, 2018). The dependent measure was the
proportion of trials on which the participant indicated
that the Gabor appeared to be oriented “rightward”,
and the independent measure was the true orientation
of the Gabor. The logistic function is described by the
following:

f (x; δ, α) = γ + (1 − γ − λ) ×
(

1
1 + e(−1δ(x−α))

)

where x is the tested Gabor orientation, δ is
the subjective threshold (location on the x-axis
corresponding to 50% “left”/50% “right” responses),
and α is the slope of the rising curve (indexing visual
sensitivity). Both λ and γ represent the probability of
stimulus independent lapses and were fixed at 0.02.

Data exclusion

The PF threshold and slope parameters were used to
formally detect outliers in the dataset. Any participant
who met any one of the following two criteria for the
overall PF fit to their entire dataset was excluded from
further analysis: (1) a threshold value over 3 median
absolute deviations from the overall group median or
(2) a slope value over 3 median absolute deviations
from the overall group median. This led to a total of six
participants being excluded, and, hence, 37 participants
were entered into the final inferential analyses.

Quantifying perceptual choice history bias

To measure perceptual choice history bias, the
data within each participant were split into two bins:

one containing all trials that followed a leftward
orientation response on the previous trial (“post left
response”) and the other containing trials that followed
a rightward orientation response on the previous trial
(“post right response”). The PF was fit separately
to data from these subsets of trials (Figure 2A).
From the resulting fits, the threshold and slope were
retrieved. This was done separately for trial lags of
1, 2, and 3. The difference in PF threshold between
“post left” and “post right” responses indexed the
strength and direction of perceptual choice history
bias (Figure 2B). If positive choice history bias (i.e.,
tendency to repeat previous choices) heavily influences
the orientation judgements, then the group-averaged
psychometric curves conditioned separately on “post
left response” and “post right response” trials will be
shifted horizontally on the x-axis in relation to one
another. To formally test this, a repeated-measures t test
was performed to compare the PF thresholds between
“post left response” trials and “post right response”
trials. This analysis was also performed separately for
“post high confidence” and “post low confidence”
trials, respectively (Supplementary Figure S1: see
SDT parameter analyses section below for division of
confidence bins).

Quantifying metacognitive choice history bias

Measuring history bias of metacognitive decisions
required a different analytical approach. If positive
metacognitive choice history bias occurs (Rahnev et
al., 2015), then confidence ratings will be more likely
to be high after a high confidence rating and low after
a low confidence rating, regardless of the level of
external evidence (i.e., absolute Gabor orientation)
(see Figure 2C). To statistically test this, linear
regression was performed between absolute Gabor
orientation and mean confidence ratings separately
for post 1, 2, 3, and 4 rating trials in each participant.
Subsequently, linear regression was then performed
between the previous confidence rating (1, 2, 3, 4) and
the intercepts of the orientation-confidence regressions,
and the resulting within-participant regression slope
represented our measure of history bias. At the group
level, a one-sample t test (vs. 0) was performed on the
resulting regression slopes to examine whether they
were statistically different from zero (i.e., whether they
showed a systematic directionality across participants).
This was done separately for trial lags of 1, 2, and
3 (Figure 2D). This analysis was also performed
separately for trials in which the previous perceptual
choice (i.e., “left” or “right”) was “repeated” versus
trials in which the perceptual choice was “alternated”
(Figures 5A, 5B). A paired-samples t test was used to
compare the regression slopes between “repetition” and
“alternation” trials.
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Figure 2. (A) Choice history biases perceptual decisions. Group-averaged PFs across all trials and conditioned on the previous
perceptual choice. (B) Scatterplot of single-participant differences in PF threshold between “post left choice” and “post right choice”
trials at trial lags of 1, 2 and 3 (black filled dots represent the group means). Positive values index a bias in favor of repeating the
previous choice and negative values index a bias in favor of alternating the previous choice. Note that the perceptual bias was no
longer statistically significant at trial lag +4. (C) Choice history biases confidence ratings. Group-averaged confidence ratings as a
function of absolute Gabor orientation on the current trial and rating on the previous trial. The size of the dots indexes the relative
number of trials contributing to the group average as this was not uniform across orientations and previous ratings. (D) Scatterplot of
single-participant regression coefficients for the linear relationship between confidence on the previous and current trials at lags of 1,
2 and 3. Positive values index that “high”/“low” confidence ratings were more likely following “high”/“low” ratings respectively. Note
that the confidence bias remained statistically significant up to trial lag 25. (E) Non-parametric within-participant MI analysis
quantified the dependence between evidence presented on each trial (i.e., the orientation of the Gabor) and the perceptual
responses/confidence ratings and, on the same effect size scale, the choice history biases in both perceptual responses and
confidence ratings. (F) The relationship between perceptual choice history bias and the trial-by-trial influence of evidence on the
perceptual decision. The influence of evidence was stronger in most participants (green dots) than the influence of choice history
(blue dots). (G) The relationship between metacognitive choice history bias and the trial-by-trial influence of evidence on confidence
ratings. There were relatively even sub-groups of participants for whom current evidence dominated confidence judgements (pink
dots) vs those for whom choice history dominated confidence judgements (orange dots). Solid black lines represent least-squares
regression slopes. All error bars represent within-subject ± standard error (SEM). ***p < 0.001.

Quantifying choice history biases and
estimating population prevalence using mutual
information (MI)

Mutual Information (MI) is a measure of statistical
dependence between two random variables that places
no assumption on the form of the dependence. For
two discrete variables X and Y that are distributed

according to a joint probability distribution P(X,Y)
the MI is defined as:

I (X ;Y ) =
∑
x,y

P (x, y) log2P (x, y)/
P (x)P (y)

When the probability distributions are estimated
from observed data the resulting MI estimate suffers
from a limited sampling bias, which causes the
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expectation of the estimate to be systematically larger
than the true value. We correct this by subtracting
the Miller-Madow bias estimate (Miller, 1955),
which is given by (|X |−1)(|Y |−1)

2 Ntrl ln 2
, where |X|, and |Y| are,

respectively, the number of discrete values taken by the
variables X and Y, and Ntrl is the number of trials used
for the calculation. Statistical inference was performed
via permutation testing. The relationship between X
and Y was shuffled, and the resulting MI values were
stored. This was repeated 1000 times (separately for
each participant). The ninety-fifth percentile of the
resulting permutation value was used as the threshold
for inference on the MI value obtained from the
unshuffled data.

We calculated the following MI values (Figure 2E):
I (Orient; Resp), I (Resp-1; Resp), I (Orient; Conf),
I (Conf-1; Conf). In these calculations, the number
of bins for the orientation is reduced by considering
neighboring levels of evidence together (e.g., seven
discrete bins corresponding to the following presented
angles: [−18° to −15°] [−12° to −9°] [−6° to −3°]
[0°] [3°–6°] [9°–12°] [15°–18°]). Perceptual response is
always represented with two discrete values (left or
right). Confidence was represented with three or four
discrete values (some participants never used one of
the four confidence response values). For the choice
history calculations, the variable Resp-1/Conf-1 is given
by all trials excluding the last, the variable Resp/Conf is
formed from all trials excluding the first.

Modelling perceptual and metacognitive
sensitivity and bias

Computational models of perceptual decision-
making and confidence judgements, grounded largely
in statistical decision theory and SDT, have successfully
accounted for a range of confidence related empirical
data (Kepecs et al., 2008; Sanders et al., 2016; Pouget et
al., 2016; Pleskac &Busemeyer, 2010). Here, wemodeled
perceptual decisions and confidence ratings within an
extended SDT framework (Maniscalco & Lau, 2012).
This model assumes that, during yes/no detection or
2-AFC discrimination tasks, binary decisions are made
by the comparison of internal evidence (indexed by a
noisy decision variable [dv]) with a decision criterion (c).
Across trials, evidence generated by each stimulus class
(i.e., noise/signal, choice A/choice B) is sampled from
a stimulus-specific normal distribution. The relative
separation between the distributions (in standard
deviation units) indexes the overall level of evidence
available for the decisions (dʹ) and, hence, how well the
observer can discriminate between noise and signal or
between choice A and choice B. On a given trial, the
probability that the choice is correct is indexed by the
absolute distance between dv and c (in an unbiased
observer), and, hence, statistically optimal confidence

judgements should reflect this computation (Sanders
et al., 2016; Pouget et al., 2016). When a discrete
confidence rating scale is used, the rating on a given
trial is defined by where the dv falls with respect to the
so-called “type-2” criteria (c2). The c2 are response
conditional, with separate criteria for the 2 possible
choices (i.e., noise/signal, choice A/choice B). Overall,
there are (k-1) × 2 c2, where k equals the number of
confidence ratings available. Figure 1B presents the
model schematically for three differing levels of decision
evidence: no evidence (left panel), weak evidence
(middle panel), and strong evidence (right panel). The
distributions and predicted effects in Figure 1B–E were
produced using code developed by Urai et al., (2017)
(https://github.com/anne-urai/pupilUncertainty). The
x-axis ranges from −15 to 15 in these examples, and
dʹ was set to 0.1 (no evidence), 1.58 (weak evidence),
and 3.17 (strong evidence), whereas c was always set to
0 (unbiased observer). The flanking c2 were set at ±3
(conservative) and ±6 (liberal) for each. To formalize
the predicted relationships between evidence strength,
accuracy, and confidence (Figure 1E), we simulated a
normal distribution of dv for one response (i.e., μ > 0)
at each level of evidence strength. All samples from the
simulated distribution were split into correct and error
“choices” based on their position relative to c. For each
combination of evidence strength and choice, the level
of confidence is

Confidence = 1
n

×
n∑

i=1

f (|dvi| − c|)

where f is the cumulative distribution function of the
normal distribution

f (x) = 1
2

[
1 + er f

(
x

σ
√
2

)]

which transforms the distance between dv and c into the
probability of a correct response (Urai et al., 2017; Lak
et al., 2014). Ten million trials were simulated, and for
each iteration a binary choice was computed along with
its accuracy and corresponding level of confidence.
Because response times are often taken as a proxy of
decision confidence (with response times increasing
as a function of decreasing confidence) (Urai et al.,
2017; Sanders et al., 2016) the response time prediction
(Figure 1E) represents an inversion of the confidence
prediction (Figure 1D).

To quantify both type-1 and type-2 performance
parameters (i.e., sensitivity and bias) across different
levels of evidence strength (absoluteGabor orientations)
in the real data, we adopted the meta-dʹ approach (see
Maniscalco & Lau, 2012, Fleming 2017 and Sherman
et al., 2018 for extended description and discussion)
as implemented using single-subject Bayesian model
fits within the “HMeta-d” toolbox (Fleming, 2017:
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https://github.com/metacoglab/HMeta-d). Meta-dʹ
characterizes type-2 sensitivity as the value of dʹ that a
metacognitively optimal observer, with the same type-1
response bias (c), would have required to produce
the observed type-2 (confidence) data (Maniscalco &
Lau, 2012). If an observer has perfect metacognitive
insight (i.e., they are always high in confidence when
correct and low in confidence when incorrect) then dʹ
will be equal to meta-dʹ. Importantly, because meta-dʹ
is expressed in the same units as dʹ, the two can be
compared directly to quantify the level of metacognitive
efficiency. If the metacognitive efficiency score (meta-dʹ
− dʹ) �= 0, then the type-2 responses (confidence ratings)
are either more (positive value) or less (negative value)
sensitive to the task-related evidence than the type-1

perceptual responses. We note that (meta-dʹ/dʹ) is often
used to quantify metacognitive efficiency as a ratio
of type-1 performance (Morales et al., 2018) and
so we replicated our correlation analyses involving
(meta-dʹ − dʹ) using (meta-dʹ/dʹ) (see Supplementary
Figure S5). The same pattern of results was found.
The metacognitive criteria (meta-cʹ) represent type-2
bias (c2) calculated within the meta-dʹ framework:
the tendency to give high or low confidence ratings
regardless of evidence strength. We calculated the
absolute distance between meta-cʹ and type-1 cʹ (|meta-c
− c’|) to isolate the metacognitive response bias from the
perceptual response bias (Sherman et al., 2018). Lower
values of |meta-c’ − c’| indicate an overall response bias
in favor of higher confidence ratings. As mentioned,

Figure 3. Modeling the influence of perceptual decisions on subsequent perceptual and metacognitive performance (see Methods
for details). (A) Group-averaged dʹ as a function of absolute Gabor orientation and perceptual choice on the previous trial.
(B) Group-averagedmeta-dʹ as a function of absolute Gabor orientation and perceptual choice on the previous trial.
(C) Group-averagedmeta-dʹ− dʹ as a function of absolute Gabor orientation and perceptual choice on the previous trial.
(D) Group-averaged c as a function of absolute Gabor orientation and perceptual choice on the previous trial. (E) Group-averaged
|meta-c − c| for “left” responses as a function of absolute Gabor orientation and perceptual choice on the previous trial.
(F) Group-averaged |meta-c − c| for “right” responses as a function of absolute Gabor orientation and perceptual choice on the
previous trial. Note that data are not presented for the 0° orientation because meta-dʹmodeling cannot be applied when there is no
veridical response. All error bars represent within-subject ± standard error (SEM).
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Figure 4. Modelling the influence of metacognitive decisions (confidence ratings) on subsequent perceptual and metacognitive
performance. (A) Group-averaged dʹ as a function of absolute Gabor orientation and confidence on the previous trial.
(B) Group-averagedmeta-dʹ as a function of absolute Gabor orientation and confidence on the previous trial. (C) Group-averaged
meta-dʹ− dʹ as a function of absolute Gabor orientation and confidence on the previous trial. (D) Group-averaged c as a function of
absolute Gabor orientation and confidence on the previous trial. (E) Group-averaged |meta-c − c| for “left” responses as a function
of absolute Gabor orientation and confidence on the previous trial. (F) Group-averaged |meta-c − c| for “right” responses as a
function of absolute Gabor orientation and confidence on the previous trial. Note that data are not presented for the 0° orientation
because meta-dʹmodeling cannot be applied when there is no veridical response. All error bars represent within-subject ± standard
error (SEM).

meta-c’ (c2) values are calculated separately for each of
the possible perceptual responses (i.e., “left” or “right”
orientation judgements in the current study) and for
each of N-1 confidence ratings available to choose
from (4 in the current experiment). To streamline the
analysis, we averaged over the 3 |meta-c’ − c’| values
for each response (“left” or “right”) separately to gain
a single estimate of overall metacognitive response
bias.

Statistical analyses on SDT parameters

We compared overall perceptual sensitivity (dʹ) to
metacognitive sensitivity (meta-dʹ) across all levels of
evidence strength using a 2 (sensitivity measure: dʹ,

meta-dʹ) × 6 (absolute Gabor orientation: 3°, 6°, 9°,
12°, 15°, 18°) repeated-measures ANOVA. To assess the
extent to which the type-1 and type-2 SDT performance
parameters were influenced by both perceptual and
metacognitive choice history, trials were binned in three
different ways (1. “post left”/“post right” choice trials
(Figure 3); 2. “post high”/“post low” confidence trials
(Figure 4); 3. “repetition”/“alternation” trials (Figure
5)) and the parameters (dʹ, meta-dʹ, meta-dʹ − dʹ, c,
|meta-cʹ − cʹ|: “left” responses, |meta-cʹ − cʹ|: “right”
responses) were calculated for both bins separately at
each of the six levels of evidence strength. Note that
the SDT parameter analyses were only performed for
trial lags of −1, therefore ensuring that trials were only
ever binned according to behavior on the immediately
preceding trial. Additionally, the trial binning (i.e.,
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Figure 5. Choice history bias in confidence ratings as a function of perceptual choice hysteresis. (A) Group-averaged confidence
ratings as a function of absolute Gabor orientation and rating on the previous trial for perceptual choice repetition trials. The size of
the dots indexes the relative number of trials contributing to the group average as this was not uniform across orientations and
previous ratings. (B) Group-averaged confidence ratings as a function of absolute Gabor orientation and rating on the previous trial
for perceptual choice alternation trials. (C) Group-averaged dʹ as a function of absolute Gabor orientation and perceptual choice
relative to previous choice. (D) Group-averagedmeta-dʹ as a function of absolute Gabor orientation and perceptual choice relative to
previous choice. (E) Group-averagedmeta-dʹ− dʹ as a function of absolute Gabor orientation and perceptual choice relative to
previous choice. (F) Group-averaged c as a function of absolute Gabor orientation and perceptual choice relative to previous choice.
(G) Group-averaged |meta-c − c| for “left” responses as a function of absolute Gabor orientation perceptual choice relative to
previous choice. (H) Group-averaged |meta-c − c| for “right” responses as a function of absolute Gabor orientation and perceptual
choice relative to previous choice. Note that data are not presented for the 0° orientation because meta-dʹmodeling cannot be
applied when there is no veridical response. All error bars represent within-subject ± standard error (SEM).

Downloaded from jov.arvojournals.org on 05/24/2023



Journal of Vision (2023) 23(5):14, 1–21 Benwell, Beyer, Wallington, & Ince 10

according to high versus low confidence on the previous
trial) was performed based on the data across all
trials of the experiment within each participant prior
to separate analyses of meta-dʹ parameters at each
level of absolute Gabor orientation. This ensured
that high- versus low-confidence trials were defined
according to the participant’s behavior across the full
experiment rather than a reduced subset of trials.
Repeated measures ANOVAs (2 [choice history bin]
× 6 [absolute Gabor orientation: 3°, 6°, 9°, 12°, 15°,
18°]) were performed separately for each parameter.
Significant interaction terms were followed up using
paired samples t tests of the difference between the
choice history bins separately at each level of evidence
strength. To split the trials into relatively equal “post
high” and “post low” confidence bins across all
trials within each participant, the number of trials
immediately following each of the 4 confidence ratings
(i.e., post “1”, “2”, “3”, “4” ratings) was calculated
and bins were assigned that minimized the difference
in trial number between the high and low bins (median
difference between bins = 69 trials [min = 7, max
= 251]). This led to 10 participants having “low”
bin = “1”, “2”, and “3” ratings, “high” bin = “4”
ratings, 14 participants (“low” bin = “1” and “2”
ratings, “high” bin = “3” and “4” ratings) and 13
participants (“low” bin = “1” ratings, “high” bin =
“2”, “3”, and “4” ratings). Note that four participants
were excluded from the analysis of the influence of
previous confidence level on perceptual choice history
bias (Supplementary Figure S1) because they had
PF slope values over 3 median absolute deviations
from the overall group median in at least one of the
conditions here. This was due to biased perceptual or
confidence decisions leading to a small number of trials
being available for PF fitting after binning for these
participants.

For all t tests and correlations (see below), we
calculated the BF10 obtained from paired-samples
Bayesian t tests (Rouder et al., 2009) or correlation
hypothesis tests (Wetzels & Wagenmakers, 2012), with
a prior following a Cauchy distribution and a scale
factor of 0.707. BF10 quantifies the evidence in favor of
the null or alternative hypotheses, where BF10 below
1/3 indicates evidence for the null hypothesis, above
3 indicates evidence for the alternative hypothesis
and between 1/3 and 3 indicates that the evidence is
inconclusive (potentially because of a lack of statistical
power) (Rouder et al., 2009).

Between-subject correlations

Both Pearson and Spearman correlation coefficients
were calculated for each of the between-subject
correlations of interest. Only Pearson’s r values are
shown in the corresponding figures.

Results

Overall performance exhibited signatures
predicted by computational models of
decision-making and metacognition

Thirty-seven human observers performed a
two-alternative forced choice (2-AFC) orientation
discrimination task (Figure 1A). Participants judged
whether a briefly presented Gabor patch was tilted
leftward or rightward of the vertical plane and reported
the level of confidence they felt in their decision (on
a scale of 1 – “Not confident at all” to 4 – “Highly
confident”). The true orientation (and, hence, task
difficulty) was manipulated from trial to trial. This
design allowed us to test predictions arising from a
recently proposed computational model of perceptual
decision-making and metacognition based on Bayesian
statistical confidence and signal detection theory (SDT),
as defined in Figure 1B (and Methods). Briefly, human
decisions have been modeled as the comparison of
an internal decision variable (DV), representing the
evidence in favor of one or other choice in 2-AFC tasks,
against a decision criterion (C). Under this model,
confidence in the decision is given by the distance of
the DV from C (Galvin et al., 2003; Maniscalco & Lau,
2012; Urai et al., 2017; Kepecs et al., 2008; Sanders et
al., 2016; Hebart et al., 2016; Masset et al., 2020). When
a discrete confidence rating scale is used, the level of
confidence is defined by where the DV falls with respect
to the so-called type-2 criteria (c1, c2, … cN−1)), where
N indexes the number of possible ratings. A confidence
rating of k will follow if the DV falls in the interval
(ck−1, ck).

This model gives rise to several predictions regarding
the relationships between stimulus evidence, accuracy
and decision confidence (Urai et al., 2017; Sanders
et al., 2016; Hangya, Sanders, & Kepecs, 2016;
Drugowitsch, 2016; Fleming & Daw, 2017; although
see Adler & Ma, 2018 for criticism of this model):
(1) Accuracy should scale with evidence strength
(Figure 1C); (2) Conditioning type-1 performance
on high or low confidence ratings should change the
slope of the relationship between stimulus evidence
and accuracy, with a steeper slope for high relative
to low confidence trials (Figure 1C); (3) Confidence
should increase with evidence strength for correct trials,
but decrease with evidence strength for incorrect trials
(Figure 1D); (4) Even when there is no veridical
evidence in favor of one response or other, confidence
should be above 0 (Figure 1D). These predictions
were all confirmed in our data. Accuracy increased as
a function of evidence strength, but the slope of the
stimulus evidence-accuracy relationship was steeper
for high- relative to low-confidence trials (Figure 1F).
Confidence increased with evidence strength for correct
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trials but decreased with evidence strength for incorrect
trials (Figure 1G). Accordingly, response time decreased
as a function of evidence strength for correct trials
but increased for incorrect trials (Figure 1H). Finally,
participants reliably reported some level of confidence
in decisions even when the Gabor patch was vertically
aligned, and, hence, there was no informative evidence
(Figure 1G).

Choice history bias occurs in both perceptual
and metacognitive decisions but is stronger in
metacognition

Next, we investigated the degree to which choice
history biases both perceptual and metacognitive
responses. Across all trials, no systematic group-level
bias in favor of either choice was apparent (t test of
psychometric function [PF] thresholds versus 0°: t(36)
= 0.1497, p = 0.8818, Bayes factor (BF10) = 0.179)
(Figure 2A). However, in line with previous studies
(Urai et al., 2017; Braun et al., 2018; Bonaiuto et
al., 2016; Abrahamyan et al., 2016; Urai et al., 2019;
Fernberger, 1920), group-averaged PFs conditioned on
the previous response were shifted toward the previous
response (“left”/“right” responses were more likely
after “left”/“right” responses, respectively) despite
randomly-ordered presentations (Figure 2A). Post-left
PF thresholds were significantly biased away from
veridical 0° (t(36) = 3.1295, p = 0.0035, BF10 = 10.462),
as were post-right PF thresholds, but in the opposite
direction (t(36) = −2.5466, p = 0.0153, BF10 = 2.9235).
Accordingly, post-left thresholds were significantly
different from post-right thresholds (t(36) = 4.2498, p
< 0.001, BF10 = 177.4). The effect remained significant
for trial lags of two (t(36) = 5.9966, p < 0.001, BF10 =
2.3930e + 04) and three (t(36) = 5.91, p < 0.001, BF10 =
1.8667e + 04) (Figure 2B) but was no longer significant
for trial lag four (t(36) = 1.7667, p = 0.086, BF10 =
0.7217). It has been suggested that confidence on a
given trial modulates the likelihood of the perceptual
choice being subsequently repeated (Urai et al., 2017;
Samaha et al., 2019; Bosch et al., 2020). However, we
did not find any influence of preceding confidence on
perceptual history bias, with the bias occurring when
confidence was both low and high on the previous trial
(Supplementary Figure S1).

Next, we investigated the degree of metacognitive
history bias. Confidence increased as a function of
absolute orientation (i.e., sensory evidence) but, in line
with previous research (Rahnev et al., 2015; Mei et al.,
2023), was also shifted toward previous trial ratings
(i.e., “high”/“low” were more likely after “high”/“low”
ratings, respectively) (Figure 2C). A regression analysis
confirmed that confidence was positively predicted by
ratings on the previous trial across participants (t test
of slopes versus 0: t(36) = 11.7028, p < 0.001, BF10

= 9.3215e + 10) (Figure 2D). The effect remained
statistically significant for all trial lags up to 25 (all ps
< 0.05), thereby considerably outlasting the perceptual
bias. Note that both the perceptual and confidence
history biases were also present when we restricted
the analyses to trials after correct responses only
(see Supplementary Figure S2) and, hence, were
independent of potential error awareness mechanisms.

To calculate within-participant significance and
estimate population prevalence of the observed
biases, we performed additional analyses using mutual
information (MI) (Ince et al., 2017; Ince, Paton, Kay,
& Schyns, 2021). MI provides an assumption free
measure of dependence with effect sizes on a common
meaningful scale (bits) across variables with different
characteristics (i.e., different dimensionality and/or
number of samples). Hence, to our knowledge for the
first time, we could quantify and compare how strongly
both perceptual and metacognitive responses of each
participant were related to the objective evidence at
hand versus recent choices. First, we quantified the
strength of dependence between stimulus evidence
(orientation of the Gabor [Orient]) and both perceptual
responses and confidence ratings (Figure 2E). We
then quantified, on the same scale, the choice history
biases in both confidence ratings and perceptual
responses (see Method for details). Supplementary
Figure S3 highlights how the MI measures relate to
the model-based bias measures displayed in Figures 1B
and Figure 1C.

As expected, the highest dependence was found
between objective evidence (Orient) and perceptual
responses (Resp) (Figure 2E). Interestingly, this was
stronger than the dependence between objective
evidence and confidence ratings (t(36) = 11.6448, p <
0.001, BF10 = 8.1307e + 10), suggesting suboptimal
metacognitive performance. The confidence history
bias was stronger than the perceptual history bias
(t(36) = 6.25, p < 0.001, BF10 = 4.9486e + 04) and
in fact had roughly the same influence on confidence
as current trial evidence (t(36) = 0.384, p = 0.7032,
BF10 = 0.1894). Statistical inference was performed
nonparametrically within individual participants based
on 1000 permutations of the data. In our sample,
13/37 participants showed significant perceptual
history bias (at p = 0.05). Therefore the population
prevalence (Ince et al., 2021; Donhauser, Florin, &
Baillet, 2018; Allefeld, Görgen, & Haynes, 2016) of
perceptual history bias detectable in our experiment
is 31.7% (14.6%-48.8%; maximum likelihood estimate
with 95% bootstrap confidence interval). The majority
of those showing significant perceptual history bias
tended to repeat their previous responses (N = 10),
with only three tending to alternate (Urai et al., 2017;
Abrahamyan et al., 2016; Urai et al., 2019). Across
participants, perceptual history bias was inversely
related to the effect of evidence on perceptual responses
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within trials (Figure 2F: Pearson’s r = −0.55, p < 0.001,
BF10 = 64.297). However, the influence of evidence was
stronger in most participants (MI [Orient; Resp] > MI
[Resp-1; Resp], 35/37 participants) than the influence of
choice history (MI [Resp-1; Resp] > MI (Orient; Resp],
2/37). Thirty-four of 37 participants showed significant
metacognitive history bias (at p = 0.05), which implies
a population prevalence of 91.4% (80.1%–100%). All
participants showing significant metacognitive history
bias tended to repeat previous confidence ratings.
Across participants metacognitive history bias was
inversely related to the effect of evidence on confidence
within trials (Figure 2G: Pearson’s r = −0.53, p <
0.001, BF10 = 29.059), with relatively even subgroups
of participants for whom current evidence dominated
confidence judgements (MI [Orient; Conf] > MI
[Conf-1; Conf], 16/37) versus those for whom rating
history dominated judgements (MI [Conf-1; Conf] >
MI [Orient; Conf], 21/37).

Uncovering the influence of choice history on
perceptual and metacognitive decisions with
computational behavioral modeling

To explore the relationship between perceptual
and metacognitive choice history biases, we returned
to the decision-making model (defined in Methods
and Figure 1B) to formally test which aspects of
both perceptual (type-1) and metacognitive (type-2)
performance were affected by previous choices. Type-1
performance encompasses traditional measures of
perceptual sensitivity (dʹ) and bias (c), whereas type-2
performance encompasses measures of metacognitive
sensitivity (meta-dʹ) and bias (meta-c) (Maniscalco
& Lau, 2012; Fleming, 2017). Meta-dʹ represents the
type-1 dʹ value expected to give rise to the observed
confidence data under the assumption that the observer
has perfect metacognitive sensitivity (i.e., dʹ = meta-dʹ
when confidence is always high when correct and low
when incorrect). To quantify metacognitive efficiency
(or in other words how much of the information present
in the type-1 performance participants make use of
in their type-2 decisions), we can subtract dʹ from
meta-dʹ. If meta-dʹ − dʹ �= 0, then confidence ratings are
either more (positive) or less (negative) sensitive to the
task-related evidence than the perceptual responses.
The metacognitive criteria (Meta-c) index the tendency
to give high/low confidence ratings regardless of
evidence (metacognitive response bias). Their absolute
distance from type-1 c (|meta-c − c|) represents the
level of evidence needed to increase confidence ratings
from low to high (Sherman, Seth, & Barrett, 2018).
Unlike type-1 c, meta-c values are calculated separately
for each possible perceptual response (“left”/“right”
orientation judgements). Additionally, there are N-1
meta-c for each response, where N indexes the number
of possible ratings (four in the current experiment). To

simplify the analysis, we averaged over the 3 |meta-c −
c| values for each response (“left”/“right”) separately
(see Methods).

First, we assessed whether overall metacognitive
sensitivity (meta-dʹ) systematically deviated from
perceptual sensitivity (dʹ). Across orientations,
confidence judgements were less reflective of
the evidence than perceptual judgements, with
mean meta-dʹ being lower than mean dʹ (compare
Figures 3A and 3B). A repeated-measures analysis of
variance (ANOVA: 2 [sensitivity measure: dʹ, meta-dʹ]
× 6 [absolute orientation {evidence}: 3°, 6°, 9°, 12°,
15°, 18°]) revealed that meta-dʹ was significantly lower
than dʹ (main effect: F(1, 36) = 58.818, p < 0.001), and
the difference increased as a function of orientation
(Figure 3C) (interaction: F(5, 180) = 13.614, p < 0.001).
Hence, participants were generally unable to make use
of all information available for perceptual judgements
when estimating their confidence (suboptimal
metacognition (Shekhar & Rahnev, 2021)), in line with
the MI results. To investigate the influence of previous
perceptual choices, we calculated the type-1 and
type-2 model parameters separately for “post-left” and
“post-right” decision trials across each level of evidence
strength. We then performed repeated-measures
ANOVAs (2 [previous choice: “left”/“right”] × 6
[absolute orientation: 3°, 6°, 9°, 12°, 15°, 18°]) for each
parameter.

Previous perceptual choice did not influence either
perceptual or metacognitive sensitivity (Figures
3A–C), neither dʹ, meta-dʹ nor meta-dʹ − dʹ (F
values ≤ 1.086, p values ≥ 0.37). However, type-1 c
was biased toward the previous perceptual choice
across all orientations (Figure 3D: main effect:
F(1, 36) = 20.344, p < 0.001; interaction: F(5, 180)
= 1.619, p = 0.157), in line with the PF analysis.
Metacognitive criteria (|meta-c − c|) were biased in a
response-dependent manner (Figures 3E, 3F). When
participants responded “left,” they displayed higher
meta-criteria when they had also responded “left”
on the previous trial (repetition) compared to when
they had responded “right” (alternation) (main effect:
F(1, 36) = 12.983, p < 0.001; interaction: F(5, 180)
= 1.603, p = 0.162). Accordingly, when participants
responded “right,” they displayed higher meta-criteria
when they had responded “right” on the previous trial
(repetition) compared to when they had responded
“left” (alternation) (main effect: F(1, 36) = 14.52, p <
0.001; interaction: F(5, 180) = 2.427, p = 0.037). The
interaction term in the “right” response analysis was
driven by the effect not being significant for the two
largest orientations. The effect was significant for 3°,
6°, 9°, 12° (t values ≥ 3.164, p values ≤ 0.003, BF10 ≥
11.352) but not 15° (t(36) = 1.775, p = 0.084, BF10 =
0.731) nor 6° (t(36) = 1.972, p = 0.056, BF10 = 1). In
sum, perceptual choices influenced decision criteria
for both perceptual and metacognitive subsequent
choices.
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To investigate the influence of the previous
metacognitive choice, we performed the same analysis
but this time for “post-high” and “post-low” confidence
trials (two bins split as evenly as possible within each
participant: see Methods). Previous confidence did not
influence perceptual sensitivity (Figure 4A: dʹ main
effect: F(1, 36) = 0.076, p = 0.784; interaction: F(5, 180)
= 0.162, p = 0.976), but it did influence subsequent
metacognitive sensitivity (Fig. 4B: meta-dʹ (main effect:
F(1, 36) = 48.972, p < 0.001; interaction: F(5, 180)
= 4.617, p = 0.001)) and metacognitive efficiency
(Fig. 4C: meta-dʹ − dʹ main effect: F(1, 36) = 33.194, p
< 0.001; interaction: F(5, 180) = 2.375, p = 0.041). The
interaction terms in both the metacognitive sensitivity
(meta-dʹ) and efficiency (meta-dʹ − dʹ) analyses were
driven by the effect increasing as a function of
orientation (Figures 4B, 4C). For metacognitive
sensitivity, follow-up t tests showed that the effect was
significant for orientations of 3°, 9°, 12°, 15°, 18° (t
values ≥ 2.413, p values ≤ 0.021, BF10 ≥ 2.239) but
not for 6° (t(36) = 0.457, p = 0.65, BF10 = 0.195). For
metacognitive efficiency, the effect was significant for
9°, 12°, 15°, 18° (t values ≥ 3.368, p values ≤ 0.002,
BF10 ≥ 18.449) but not for 3° (t(36) = 1.737, p = 0.091,
BF10 = 0.689) nor 6° (t(36) = 0.18, p = 0.858, BF10
= 0.179).

In contrast to the perceptual history bias, type-1 c
was not influenced by confidence on the previous trial
(Figure 4D: main effect: F(1, 36) = 1.419, p = 0.241;
interaction: F(5, 180) = 0.645, p = 0.666). However,
|meta-c − c| were significantly reduced after “high”
relative to “low” confidence responses, both for “left”
(Figure 4E) (main effect: F(1, 36) = 43.086, p < 0.001;
interaction: F(5, 180) = 1.481, p = 0.198) and “right”
responses (Figure 4F) (main effect: F(1, 36) = 31.366,
p < 0.001; interaction: F(5, 180) = 3.025, p = 0.012),
indicating that “high”/“low” confidence ratings were
more likely following “high”/“low” ratings, respectively.
The interaction term in the “right” response analysis
was driven by the previous rating effect decreasing as a
function of orientation (Figure 4F: linear contrast F(1,
36) = 6.771, p = 0.013). Follow-up t tests showed that
the effect was significant for orientations of 3°, 6°, 9°,
12°, 15° (t values ≥ 2.739, p values ≤ 0.01, BF10 ≥ 4.37)
but not for 18° (t(36) = 1.066, p = 0.203, BF10 = 0.299).
Hence, we show for the first time that metacognitive
choice history influences all aspects of metacognitive
performance (sensitivity, efficiency, and bias) but does
not influence perceptual sensitivity nor bias.

Choice alternation is associated with increased
perceptual sensitivity but reduced
metacognitive efficiency

Next, we investigated directly whether repeating
(versus alternating) the previous choice was associated

with changes in either perceptual or metacognitive
performance. Figure 5 plots metacognitive history
bias effects separately for “repetition” (Figure 5A) and
“alternation” trials (Figure 5B). For both, confidence
increased as a function of orientation but also tended
to be shifted toward previous ratings. Confidence
was positively predicted by previous ratings for both
repetition (t(36) = 11.88, p < 0.001, BF10 = 1.4145e
+ 11) and alternation trials (t(36) = 6.6953, p <
0.001, BF10 = 1.7697e + 05). However, the effect
was significantly stronger for repetition trials (t(36) =
5.0343, p < 0.001, BF10 = 1.5439e + 03). Intriguingly,
computational modeling revealed a novel dissociation
of perceptual and metacognitive sensitivity induced
by disengagement from choice hysteresis. When
participants alternated from their previous choice, they
were more likely to be correct than when they repeated
(Figure 5C: dʹ main effect: F(1, 36) = 68.841, p < 0.001;
interaction: F(5, 180) = 2.763, p = 0.02). The effect
was significant at all orientations (t values ≥ 2.709,
p values ≤ 0.01, BF10 ≥ 4.1) but increased as a function
of orientation (linear contrast: F(1, 36) = 13.284, p
= 0.001). However, this improvement in perceptual
sensitivity for alternation trials was not reflected in
metacognitive sensitivity (Figure 5D: meta-dʹ (main
effect: F(1, 36) = 1.311, p = 0.26; interaction: F(5,
180) = 0.932, p = 0.462)). Hence, objective accuracy
increased for alternation relative to repetition trials
whereas metacognitive efficiency decreased (Figure 5E:
meta-dʹ − dʹ main effect: F(1, 36) = 27.262, p < 0.001;
interaction: F(5, 180) = 2.321, p = 0.045). The meta-dʹ
− dʹ effect was significant at orientations of 6°, 9°, 12°,
15°, 18° (t values ≤ −2.2, p values ≤ 0.033, BF10 ≥
1.552), but not 3° (t(36) = −1.303, p = 0.201, BF10 =
0.385), and increased as a function of orientation (F(1,
36) = 9.899, p = 0.003).

Choice hysteresis did not influence either perceptual
or metacognitive decision criteria (Figures 5F–H: F
values ≤ 1.685, p values ≥ 0.14). Overall, participants
lacked full insight into the increased likelihood of
being correct when they alternated from their previous
perceptual response.

Choice history biases are associated with
reduced perceptual and metacognitive
sensitivity, but not reduced metacognitive
efficiency, across participants

Finally, we investigated the correlation between
perceptual and metacognitive history biases (Figure 6A)
and whether they contribute to suboptimal perceptual
and metacognitive sensitivity, across participants. The
strength of perceptual bias did not predict the strength
of metacognitive bias (Pearson’s r = 0.1072, p = 0.5278,
BF10 = 0.156). Metacognitive history bias was stronger
in most participants (MI [Conf-1; Conf] > MI[Resp-1;
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Figure 6. Between-subject Pearson correlations. (A) Relationship between perceptual and metacognitive choice history biases.
Metacognitive history bias was stronger in most participants (MI (Conf-1; Conf) > MI(Resp-1; Resp), 36/37 participants) than
perceptual history bias (MI (Resp-1; Resp) > MI (Conf-1; Conf), 1/37 participants). (B) Relationship between perceptual choice history
bias and perceptual sensitivity (dʹ). (C) Relationship between metacognitive choice history bias and metacognitive sensitivity
(meta-dʹ). (D) Relationship between perceptual choice history bias and metacognitive efficiency (meta-dʹ− dʹ). (E) Relationship
between metacognitive choice history bias and metacognitive efficiency (meta-dʹ− dʹ). Solid black lines represent least-squares
regression slopes. ***p < 0.001, **p < 0.01, *p < 0.05, NS p > 0.05.

Resp], 36/37 participants) than perceptual history
bias (MI [Resp-1; Resp] > MI [Conf-1; Conf], 1/37
participants).

History biases have previously been linked to
reduced perceptual (Abrahamyan et al., 2016) and
metacognitive sensitivity (Rahnev et al., 2015), and
we replicated these findings here. The perceptual bias
was inversely related to perceptual sensitivity (dʹ)
(Figure 6B: r = −0.5877, p < 0.001, BF10 = 179.836),
and the metacognitive bias was inversely related to
metacognitive sensitivity (meta-dʹ) (Figure 6C: r =
−0.4315, p = 0.0077, BF10 = 4.353). Perceptual history
bias was not significantly associated with metacognitive
sensitivity (meta-dʹ), and metacognitive history bias was
not significantly associated with perceptual sensitivity
(dʹ) (Supplementary Figure S4).

Previously, a negative correlation was found between
metacognitive history bias and metacognitive sensitivity
(as quantified by the area under the Type-2 receiver

operating characteristic [ROC] curve [Type-2 AUC])
(Rahnev et al., 2015). However, neither type-2 AUC nor
meta-dʹ account for type-1 performance and, hence,
do not represent pure measures of metacognitive
insight/efficiency (Maniscalco & Lau, 2012; Fleming,
2017). Therefore, to establish the relationships between
perceptual and metacognitive history biases and
metacognitive efficiency, we correlated both with
meta-dʹ − dʹ. A weak positive correlation was found
between perceptual history bias and metacognitive
efficiency (Figure 6D: r = 0.3437, p = 0.0373, BF10 =
1.101). The BF10 did not provide strong evidence for
the alternative hypothesis; therefore we do not interpret
this further. However, a one-tailed analysis to test for a
negative relationship revealed strong evidence for the
null hypothesis (BF10 = 0.07). A nonsignificant negative
relationship was observed between metacognitive
history bias and metacognitive efficiency (Figure 6E: r
= −0.1852, p = 0.2726, BF10 = 0.233). Hence, when
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the contribution of type-1 performance to absolute
metacognitive sensitivity was factored out, history
biases were not significantly associated with reduced
metacognitive efficiency across participants. Note that
similar results were found using a ratio measure of
metacognitive efficiency (Supplementary Figure S5).

Using MI to quantify history biases eliminates
information about the bias direction (i.e., “Repeater”
versus “Alternator”). For the sake of completeness, the
same correlation analyses using metrics which retain the
bias direction are reported in Supplementary Figure S6.

Discussion

Human decisions are often influenced by sources
other than the relevant information (Wilson & Dunn,
2004; Johansson et al., 2005; Drugowitsch, Moreno-
Bote, & Pouget, 2014; Rahnev & Denison, 2018).
Understanding suboptimal decision-making represents
a fundamental enterprise in modern psychology and
neuroscience (Wyart & Koechlin, 2016). In line with
previous studies, we show that choice history represents
a source of task-irrelevant choice variability, both for
perceptual decisions (Urai et al., 2017; Braun et al.,
2018; Bonaiuto et al., 2016; Abrahamyan et al., 2016;
Urai et al., 2019; Fernberger, 1920; Pascucci et al.,
2019) and confidence reports (Rahnev et al., 2015).
Most participants displayed positive history biases:
they were more likely to repeat perceptual decisions
and confidence ratings, even though stimuli were
presented in a random order and, hence, previous
choices were of no relevance. Crucially, we quantified
both perceptual and metacognitive history biases on
a common effect size scale (using MI) and estimated
single-subject significance and population prevalence
of the respective effects. Additionally, by using
computational modeling of perceptual decisions and
confidence ratings, we were able to uncover latent
parameters that are influenced by choice history at
different levels of the decision-making hierarchy. Across
participants, perceptual and metacognitive history
biases did not correlate with each other but were
independently associated with reduced perceptual and
metacognitive sensitivity, whereas neither bias predicted
metacognitive efficiency. We show for the first time
that the perceptual and metacognitive biases influence
distinct type-1 (perceptual) and type-2 (metacognitive)
aspects of decision-making, and the metacognitive
bias is stronger, significant over longer trial lags, and
likely to be more prevalent in the general population.
These observations are of fundamental relevance
for contemporary models of decision-making and
confidence, suggesting that recent confidence represents
a mental shortcut (heuristic) that informs self-reflection
when more relevant information is unavailable.

A normative model posits that confidence
computations reflect the probability of being correct
in a statistically optimal manner (Kepecs et al., 2008;
Sanders et al., 2016; Hangya et al., 2016; Pouget,
Drugowitsch, & Kepecs, 2016: Masset et al., 2020),
in line with suggestions that the computation of
confidence arises from the same neural processes as
the decision itself (Gherman & Philiastides, 2015;
Kiani & Shadlen, 2009; Meyniel, Schlunegger, &
Dehaene, 2015; van den Berg et al., 2016). The
normative model relates confidence to the available
evidence through a conditional Bayesian posterior
probability (Braun et al., 2018; Hangya et al., 2016;
Drugowitsch et al., 2014; although see Adler & Ma,
2018 for criticism of this model), and several of the
model predictions were met in the current dataset using
explicit confidence ratings of visual discrimination
performance (see Figures 1B–H). This suggests that
subjective confidence is to some extent consistent with
normative statistical principles, although it should
be noted that a first-order normative model is not
the only model that gives rise to such predictions
(Fleming & Daw, 2017; Adler & Ma, 2018). However,
the influence of choice history on confidence ratings
(see Figures 2C–G) shows that the normative model
alone cannot fully account for subjective confidence.
Rather, the normative computation may be one of
several determinants of confidence (Sanders et al.,
2016), and differential weighting of these determinants
may explain individual differences in the degree of
metacognitive history bias and overall metacognitive
sensitivity. Other factors that have been suggested
to influence confidence judgements include context
(Huettel, Song, & McCarthy, 2005), social pressure
(Bahrami et al., 2012; Bang et al., 2017), attention
(Denison et al., 2018; Rahnev et al., 2011), and fatigue
(Maniscalco, McCurdy, Odegaard, & Lau, 2017). Our
approach allowed us to quantify and compare the
degree to which confidence judgements were driven
by objective evidence versus preceding confidence
ratings. Surprisingly, we found a relatively even split
of participants for whom the objective evidence most
strongly influenced confidence versus participants
for whom previous ratings were a stronger influence
(Figure 2G). In contrast, all but one participant
showed a stronger influence of objective evidence
on perceptual choices than the influence of previous
choices (Figure 2F). Metacognitive judgements are
thus more susceptible to bias from extraneous factors
than perceptual decisions, an observation which may
be of practical relevance in terms of learning, error
monitoring and psychological well-being (van den
Berg et al., 2016; Desender et al., 2018; Yeung &
Summerfield, 2012; Bahrami et al., 2012; Folke et
al., 2016; Rouault et al., 2018; Benwell et al., 2022).
Further research may investigate whether primarily
“history-” versus “evidence-”based metacognitive styles
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meaningfully predict differences in influential traits
such as cognitive flexibility, personality, or psychiatric
symptomology.

The current results align with models positing
that confidence judgements arise from processes that
are to some degree dissociable from the decision
process itself (Maniscalco & Lau, 2012; Fleming &
Daw, 2017; Pleskac & Busemeyer, 2010), with distinct
neural implementations and independent influences.
Evidence supporting such a dissociation has come
from neuroimaging (Fleming, Weil, Nagy, Dolan, &
Rees, 2010; Peters et al., 2017; Hebart et al., 2016;
Morales, Lau, & Fleming, 2018; Fleming et al., 2012;
Bang & Fleming, 2018; Lebreton, Abitbol, Daunizeau,
& Pessiglione, 2015; Murphy, Robertson, Harty, &
O’Connell, 2015; De Martino, Fleming, Garrett, &
Dolan, 2013; Benwell et al., 2017), psychophysics
(Samaha et al., 2019; Zylberberg, Roelfsema, & Sigman,
2014; Ais, Zylberberg, Barttfeld, & Sigman, 2016;
Shekhar & Rahnev, 2021), brain stimulation (Rounis,
Maniscalco, Rothwell, Passingham, & Lau, 2010;
Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012) and
clinical (David et al., 2012; Fleming, Ryu, Golfinos, &
Blackmon, 2014; Del Cul, Dehaene, Reyes, Bravo, &
Slachevsky, 2009; Hoven et al., 2019) studies. Several
aspects of our findings accord with a “second-order”
computation of confidence. First, participants were
generally unable to make use of all the information
available for their perceptual decisions when rating
confidence, which indicates “noise” in the metacognitive
system and suboptimal insight (Maniscalco, Peters,
& Lau, 2016; McCurdy et al., 2013). Additionally,
perception and metacognitive history biases were
uncorrelated across participants (Figure 6A) and
impacted on distinct latent decision-making parameters
(Figures 3, 4). For instance, type-2 (metacognitive)
decision criteria were modulated as a function of
prior confidence ratings independently of the type-1
(perceptual) criteria (Figures 4D–F) and alternating
from choice hysteresis was associated with increased
perceptual sensitivity but reduced metacognitive insight
(Figures 5C–E). This dissociation when disengaging
from choice hysteresis, reported here for the first time,
adds to previous reports suggesting that accuracy
and confidence can be uncoupled even in healthy
participants (Rahnev et al., 2011; Rahnev et al.,
2012; Maniscalco et al., 2016). Biasing of confidence
judgements by factors which do not influence 1st-order
choices (such as previous confidence ratings here)
might partially explain why many studies have observed
sub-optimal metacognitive efficiency (indexed by
measures such as meta-dʹ − dʹ and meta-dʹ/dʹ) even in
healthy participants. Thus confidence computations
must operate, at least partly, on an axis that is
dissociable from type-1 decisions. We did find evidence
for some level of interaction between perceptual and
metacognitive history biases. The metacognitive bias

was strongest for trials in which the perceptual choice
was repeated, though it remained significant also for
alternation trials (Figures 5A, 5B). This suggests that
some level of “shared” hysteresis occurs across both
systems. However, in contrast to previous findings
(Urai et al., 2017; Braun et al., 2018; Samaha et al.,
2019; Bosch et al., 2020), preceding confidence had no
influence on the likelihood of the perceptual choice
being repeated. Subtle but important differences in
experimental designs may explain this discrepancy (see
Supplementary Figure S1).

Why might perceptual and metacognitive decision
processes be dissociable? One possibility is that the
nature of everyday decision-making renders the use
of all type-1 information for metacognitive reflection
either impossible or unnecessary (Maniscalco et al.,
2016). As is known for decision-making, metacognitive
judgements might rely partly on heuristics and
simplifications that result in systematic biases under
specific conditions including laboratory-based tasks
with high levels of uncertainty (Peters et al., 2017;
Maniscalco et al., 2016; Griffin & Tversky, 1992;
Tversky & Kahneman, 1974; Zylberberg, Barttfeld,
& Sigman, 2012). In natural settings, it may generally
be advantageous to assume statistical regularity
of environmental stimuli and to default to this
model/heuristic under conditions of high uncertainty
(Pascucci et al., 2019; Kiyonaga et al., 2017). If the
metacognitive system has less access to objective
evidence than the perceptual system, then stronger
history biases of confidence ratings are likely to occur.
Indeed, here confidence ratings were less sensitive to
the objective evidence than perceptual choices and
were also more strongly biased by previous ratings.
Future studies should investigate whether apparent
dissociation of first-order and confidence history
biases is a phenomenon that can be observed to
the same degree across different decision tasks (i.e.,
discrimination vs. detection), sensory modalities (i.e.,
vision, touch, audition), and cognitive domains (i.e.,
perception vs. memory).

The mechanisms underlying history biases remain
unclear, although neural signatures encoding previous
perceptual choices have been identified across
various sensory, associative, and motor brain regions
(John-Saaltink et al., 2016; Papadimitriou, White,
& Snyder, 2017; Hwang, Dahlen, Mukundan, &
Komiyama, 2017; Akaishi, Umeda, Nagase, & Sakai,
2014; Urai & Donner, 2022). Recent studies have
investigated perceptual history bias within the context
of computational models of decision-making. The
drift-diffusion model (Ratcliff & McKoon, 2008)
represents an extension of classic SDT incorporating
single-trial dynamics of evidence accumulation. Under
this model, biasing of the type-1 criterion by previous
choices (Figure 3D) could occur because of asymmetry
in either the starting point or drift rate of the evidence

Downloaded from jov.arvojournals.org on 05/24/2023



Journal of Vision (2023) 23(5):14, 1–21 Benwell, Beyer, Wallington, & Ince 17

accumulation process. Urai et al. (2019) showed
compelling evidence across six tasks that drift rate
bias provides the best account, in line with persistence
of decisional weights over time/trials (Bonaiuto et
al., 2016; Pascucci et al., 2019), an interpretation that
is in line with our results. However, it is important
to acknowledge that we have not developed process
models of the history biases here and that alternative
mechanisms may have contributed to the observed
effects. For instance, in contrast to trial-by-trial
updating of decision-making parameters such as the
type-1 and type-2 decision criteria, slower drifts over
time may have contributed (Lak et al., 2020; Gupta
& Brody, 2022). This may be particularly relevant
for the metacognitive history bias, which remained
significant up to a trial lag of 25. Further research
should disambiguate trial-by-trial criterion updates
from slow drifts over time (Gupta & Brody, 2022) and
model the temporal dynamics of both type-1 and type-2
decisions (Pleskac & Busemeyer, 2010) to ascertain
the mechanism(s) underlying history induced criterion
shifts (Figures 4E, 4F). Additionally, by combining
such an approach with functional neuroimaging
(Hebart et al., 2016; Kiani & Shadlen, 2009), neural
correlates of model parameters may reveal the neural
implementations underlying both perceptual and
metacognitive choices themselves, along with history
biases.

To our knowledge, this study is the first to report
estimates of the population prevalence of both
perceptual and metacognitive choice history biases. We
used information theoretic statistics to quantify aspects
of decision-making within individual participants
on a common effect size scale. These measures also
enable computationally efficient nonparametric
within-participant inference (Ince et al., 2021).
This approach could be widely applied to different
questions in studies of decision-making. We found that
metacognitive history bias was significant in almost all
our sample (34/37), allowing us to infer an estimate
of the population prevalence of 91.5% (80.1%-100%)
(maximum likelihood with 95% bootstrap confidence
interval). That is, we can expect that at least 80% of the
general population would have an effect detectable with
our experimental design (i.e., statistically significant at p
= 0.05 from 416 trials). The perceptual history bias was
significant at the group level but was only significant in
13/37 of our sample, yielding a population prevalence
estimate of 31.7% (14.6%–48.8%). Statistical inference
in psychology traditionally focusses on population
mean effects, but we argue that it is crucial to determine
the degree to which the effects can be reliably observed
within individuals and the prevalence of these effects in
the population (Ince et al., 2021).

The extent to which these biases negatively influence
everyday decisions remains unclear, although repeating
previous choices in situations of uncertainty may

serve to preserve neural resources associated with
choice alternation and to maintain self-consistency
(Peters et al., 2017). Indeed, activation of a specific
cortical network involving inferior frontal cortex and
the subthalamic nucleus during the decision process is
associated with disengagement from choice hysteresis
(Fleming, Thomas, & Dolan, 2010). This suggests that
switching choices under conditions of uncertainty
comes at a computational cost. It is interesting to
speculate that engagement of this network might
improve performance but not subjective confidence in
the choice, thereby explaining the lack of metacognitive
insight our participants displayed, despite increased
perceptual sensitivity, when alternating from their
previous choice (Figures 5C–E). Furthermore, the
drive for hysteresis/self-consistency may induce
uncertainty when choices are switched and, hence,
distort metacognitive judgements.

It is possible that such biases could have negative
implications in circumstances where significant
decisions must be made under conditions of high
uncertainty (i.e., security scanning, medical imaging
[Bruno, Walker, & Abujudeh, 2015]). Furthermore,
miscalibrated metacognitive judgement (systematic
under- or overconfidence) is likely to impact on
learning, adaptive decision-making, and mental health
(van den Berg et al., 2016; Desender et al., 2018; Yeung
& Summerfield, 2012; Bahrami et al., 2012; Folke et al.,
2016; Rouault et al., 2018; Benwell et al., 2022), and may
be compounded by history and confirmation biases.
The development of behavioral or pharmacological
techniques to reduce such biases can help to optimize
accurate decision-making and self-reflection.

Conclusion

Choice history independently influences both
perceptual decisions and subjective confidence ratings
in humans, resulting in suboptimal perceptual and
metacognitive sensitivity and highlighting dissociation
of decision-monitoring processes from the decisions
themselves.

Keywords: metacognition, history bias, perception,
serial dependence, computational modeling
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