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ABSTRACT

In vivo DNA is compacted tightly, via its association with histones and

non-histone proteins , into higher-order chromatin structure. In this state , the

DNA is refractory to the cellular factors that require access to DNA The

repressive nature of chromatin is alleviated in part by the action enzymes that

modify chromatin structure. There are two major groups of chromatin modifying

enzymes: those that post-translationally modify histones by the addition of small

chemical moieties and those that utilize the energy derived from ATP hydrolysis

to physically disrupt chromatin structure. The SWI/SNF enzyme belongs to this

latter group.

The SWI/SNF complex was identified originally in yeast. Several of its

subunits are required for the expression of a subset of inducible genes. The

ATPase activity is provided by the SWI2/SNF2 protein. In mammals , there are

two biochemically separable SWI/SNF complexes that contain either BRG1 or

BRM , both homologs of yeast SWI2/SNF2. The yeast and mammalian SWI/SNF

complexes are able to disrupt the Dnase I digestion pattern of in vitro assembled

mononucleosomes and arrays , as well as facilitate the accessibility of restriction

nucleases and transcription factors. The mechanism by which SWI/SNF

functions has yet to be elucidated.

SNF5 is a component of the yeast SWI/SNF complex. It is required for

sucrose fermentation and mating type switching. The mammalian homolog of
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Snf5 is SNF5/INI1. SNF5/INI1 was identified simultaneously by two groups as a

protein that shares homology with Snf5 and via a yeast two hybrid assay as a

protein that interacts with HIV integrase ( tegrase Interactor). INI1 is a

component of all mammalian SWI/SNF complexes purified to date.

In humans, mutations and/or deletions in INI1 are associated with a

variety of cancers , including malignant rhabdoid tumors , choroid plexus

carcinomas , medullablastomas , primitive neuralectodermal tumors , and some

cases of leukemia. Furthermore , constitutional mutations within INI1 

individuals presenting with these tumors support the role of INI1 as a tumor

suppressor.

In this thesis , we show that Ini1 also functions as a tumor suppressor in

mice. Approximately 20% of mice heterozygous for Ini1 present with tumors.

Most of these tumors are undifferentiated or poorly differentiated sarcomas with

variable rhabdoid features. All tumors examined to date show loss of

heterozygosity at the Ini110cus. We also show that Ini1 is essential for

embryonic development. Mice homozygous-null for Ini1 die between days 4 and

5 post-fertilization due to an inability to adhere to their substratum , form

trophectoderm , and expand their inner cell mass.

We further characterize the function of Ini1 in tumor suppression by

generating mice heterozygous for both Ini1 and either Rb or p53. While

heterozygosity at the Ini110cus appears to have no effect on the rate of

tumorigenesis in Rb-heterozygous mice , many of the tumors arising in compound
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heterozygous mice present with an altered morphology. This finding suggests

that Ini1 may contribute to tumor progression due to loss of Rb. In contrast, mice

compound heterozygous for Ini1 and p53 show a marked reduction in the rate of

tumorigenesis compared to p53-heterozygous mice. Furthermore , the tumor

spectrum is altered in these compound heterozygous mice. These findings

suggest that Ini1 may function normally to repress p53 activity.

Lastly, we show that expression of the Ini1 tumor suppressor itself is

regulated tightly. Tissues and cells heterozygous for Ini1 express roughly

equivalent levels of Ini1 protein and mRNA as their wild-type counterparts. We

further show that this compensation is mediated by an increase in the rate of

transcription from the wild- type Ini1 allele. Moreover, when exogenous Ini1 is

introduced into Ini1- heterozygous cells , expression from the Ini1 promoter is

reduced. These data indicate that a compensatory mechanism exists to ensure

that the steady-state levels of Ini1 are constant.

In summary, research detailed in this thesis has contributed to our

understanding of the regulation of Ini1 as well as the role this protein plays in

mammalian development and tumor suppression.
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Chapter I

Introduction

A Chromatin Structure

The core particle of chromatin structure is the nucleosome. Combined

data obtained from micrococcal nuclease digestion as well as x.:ray and electron

crystallography at 7 A resolution indicate that the nucleosome consists of

approximately 146 base pairs of DNA wrapped in 1.8 helical turns around the

histone octamer (61 , 168 240). The octamer itself has a (H3)2(H4)2 tetramer at

its center with an H2A-H2B dimer at each end of the DNA path. Each histone

has a polypeptide chain fold known as the "histone fold" (9). The histone fold is

formed by a long, central a-helix that is flanked on either side by shorter helices

and loops that interact with DNA At the amino terminal end of each histone are

15-30 residues that comprise the "histone tail". The histone tails appear

unstructured at this resolution.

The 2.8 A resolution crystal structure (Figure 1. 1) shows that the

phosphodiester backbones of the DNA strands on the inner surface of the

superhelix contact the octamer every ten base pairs , where the minor groove of

the double helix faces inward (144). The amino-terminal tails of both H2B and

H3 pass through the gap in the DNA superhelix formed by aligned minor grooves

to the outside of the core particle. The H2A and H4 tails pass across the

superhelix on the flat faces of the particle to the outside as well. The position of



Figure 1.1: 2.8 A resolution crystal structure of nucleosome core

particle (144)



the tails suggests that they are exposed. The 16-25 amino terminal residues of

the H4 tail extend into the adjacent nucleosome to interact with the negatively

charged face of the H2A-H2B dimer. This interaction may mediate higher order

folding.

The 1.9 A resolution x-ray crystal structure of a nucleosome core particle

containing 147 base pairs of DNA shows that water molecules and ions play an

important role in nucleosome structure (45). The water molecules serve as

hydrogen bond bridges between the histone proteins and DNA It has been

suggested that these bonds diminish the requirement for sequence specificity in

nucleosome positioning. Monovalent anions are located in proximity to the DNA

phosphodiester backbone and may partially neutralize the electrostatic

interaction between histones and DNA Divalent cations, bound at specific sites

in the nucleosome, contribute to histone-histone and histone-DNA interactions

between adjacent nucleosomes. As with the histone tail of histone H4 , these

divalent cations may participate in higher order folding.

The DNA between adjacent nucleosomes is called linker DNA The

histone H1 binds to the linker DNA near one end of the core DNA inside the

chromatin fiber (280). Chromatin fibers are composed of arrays of nucleosomes

linker histones , and trans-acting factors. In vitro, nucleosomal arrays adopt an

extended 10nm diameter or 30nm diameter fiber depending on ionic strength of

the medium. Tail- less chromatin fibers can neither fold into 30nm fibers nor form

fiber-fiber associations , suggesting that the tails play an important role in higher
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order chromatin structure (37). The 30nm fiber is the basic component of both

interphase chromatin and mitotic chromosomes; however, the mechanism by

which these fibers are packed into the highly condensed, organized structure of

the mitotic chromosome is not well understood. Recent data indicate that a

macromolecular complex called condensin is required for proper chromosome

condensation , but how this complex functions is unclear (43 224).

Furthermore , the core histone tails , but not histone H1 , also are required for

mitotic chromosome condensation (47).

Chromatin structure generally inhibits the function of transcriptional

machinery. The packaging of promoters in nucleosomes prevents the initiation of

transcription by bacterial and eukaryotic RNA polymerases in vitro (116, 141). 

vivo when H4 synthesis is inhibited , several TAT A-containing promoters are

activated in the absence of their normal activation mechanisms (79).

Furthermore , in DNA microarray analysis , nucleosome loss results in activation

of 15% of yeast genes, not including the -40% of the yeast genome that is

constitutively active (75 , 265).

B. Chemical Modification of Chromatin Structure

The core histone tails , and in some cases the histone H1 tail , are

susceptible to a wide range of post-translational modifications , including

acetylation , methylation , phosphorylation , ubiquitination , glycosylation , and ADP-

ribosylation. The effects of these modifications on gene expression are varied.



While chemical modification of histone tails is not the focus of this thesis, some of

these modifications , including histone acetylation/deacetylation , methylation

phosphorylation , and ubiquitination are discussed in this introduction , with a

particular emphasis on their links to cancer.

1. Histone Acetylation

Hyperacetylation of histone tails has been correlated with increased gene

activity (72 83, 84 221). The regions of the histone tails that are acetylated

are conserved , often invariant , lysine residues. Mutation of acetylatable Iysines

in histone H4 of Saccharomyces cerevisiae shows that these residues are

required for activation of regulated genes. It is believed that the changes in the

charge of histone tails resulting from acetylation either weakens histone:DNA

contacts , alters histone:histone interactions between neighboring nucleosomes

or disrupts histone:regulatory protein interactions, or a combination of all three

(85, 144 , 145, 234 258).

Histone Acetyl Transferases , or HATs , are responsible for the acetylation

of histones. They can be divided into two categories: A-type and B-type. B-type

HATs are cytoplasmic and likely catalyze acetylation events linked to transport of

newly synthesized histones from cytoplasm to nucleus for deposition onto newly

replicated DNA (4 196). A-type HATs include nuclear HATs that likely catalyze

transcription-related acetylation events (25). The A-type HAT proteins can be

divided , based on sequence , into distinct familes that show high sequence



similarity within families but poor to no sequence similarity between families.

These families include the GNAT superfamily, the MYST family, the p300/CBP

family, the basal transcription factors , and the nuclear receptor cofactors (193).

The GNAT superfamily encompasses the GCN5-related N-

acetyltransferases (166). They contain limited sequence homology within four

15-35 residue , motifs (named A-D). This family includes the prototype

GCN5/PCAF , as well as Hat1 , Elp3, and Hpa2. The first description linking

histone acetyltransferase activity to gene activation came in 1996 with the finding

that the Tetrahymena histone acetyltransferase A had homology with the yeast

GCN5, a known transcriptional activator (24 25).

The MYST family is named for the founding members: OZ; bf2/Sas3;

as2; and Iip60. It also includes Esa1 , MOF, and Hb01. Many members of the

MYST family contain chromodomains (chromatin Qrganization difier), protein-

protein interaction domains often found in heterochromatin-associated proteins

(106). It is possible that these domains serve to target members of the MYST

family to chromatin targets. The MYST family has been linked to cancer via the

founding member, MOZ (monocytic leukemia zinc finger protein). As its name

implies MOZ is an oncogene , translocations of which are involved in certain

cases of monocytic leukemia (21 34). MOZis the human homologue of

yeast Ybf2/Sas3 , the catalytic subunit of NuA3 , a yeast HAT complex that

specifically acetylates histone H3 (70 , 105, 187). Though MOZ has not been



demonstrated to possess HAT activity, the sequence similarity to Sas3 suggests

that it is likely a HAT.

P300 and CBP were isolated independently as factors that interact with

adenovirus E1 A protein (p300) or with the phosphorylated form of the

transcription factor CREB (CBP) (41 58). Both share sequence similarities and

their function is interchangeable in vitro , 8, 146). Each contains three putative

zinc finger regions , a bromodomain (a domain that interacts with acetyl- lysine

residues), a HAT domain , and at least two independent regions that interact with

multiple transcription factors. They are transcriptional coactivators; they do not

bind DNA directly. They interact with many factors including, but not limited to c-

jun , c-myb , c-fos , TFIID , MyoD , nuclear hormone receptors , and E2F-1 (12

60, 101 , 102 , 108, 152 , 169, 197 , 273). Their HAT activities are required for their

functions in transcriptional activation (11 , 152 , 170).

The first line of evidence linking misregulation of HAT activity to cancer

came from the finding that the adenoviral E1 A oncoprotein targets p300/CBP (8,

58). Overexpression of E1 A prevents binding of p300/CBP to PCAF and induces

entry of cells into S phase (269). The transforming activity of E1 A depends on its

ability to interact with and sequester p300/CBP , as excess p300/CBP inhibits

E1 A-mediated cell immortilization.

The gene encoding CBP has been shown to be involved in chromosomal

translocations in certain leukemias. In acute myeloid leukemia , the

t(8;16)(p11 ;p13) translocation results in the fusion of CBP to the human



oncogene MOZ(21). This fusion creates a protein with two HAT domains.

Recruitment of this protein by CBP or MOZ cofactors may bring inappropriate

HAT activity to target promoters. In addition , two inversions within chromosome

8 that are associated with leukemia fuse MOZto transcriptional intermediary

factor 2 (TIF2), a p300/CBP interacting protein with intrinsic HAT activity (33, 34).

The resulting fusions retain the HAT domains of both proteins.

The t(11 ;16)(q23;p13) chromosomal translocation , found in many

leukemias , fuses CBPto MLUALL- (209). MLUALL- is the human homologue

of Drosophila trithorax, a protein that functions during development in

maintenance of open chromatin configuration for proper expression of homeotic

genes. Additionally, a MLL-p300 translocation has been described in a patient

with AML (94).

There is evidence suggesting that CBP is a bona fide tumor suppressor.

CBP heterozygosity is associated with Rubenstein- Taybi Syndrome (RTS), a

human disorder characterized by cranial and digital malformation , mental

retardation , hematopoietic abnormalities and higher risk for developing certain

types of cancer (155 180). CBP has been targeted in mouse knock out

experiments (122 , 171). CBP heterozygous mice display various developmental

defects and develop a high incidence of hematological malignancies , including

histiocytic sarcomas and myelogenous and lymphocytic leukemias.

Tumorigenesis is correlated with loss of heterozygosity in transformed cells.



The histone acetyltransferase p300 also may be a tumor suppressor. A

number of human tumors, including glioblastomas , colorectal cancers , and breast

cancer, show loss of heterozygosity of p300 (65 , 160). In a study examining a

variety of primary tumors or tumor cell lines for mutations in p300, ten of 193

were shown to have loss of function mutations (65). P300 has been targeted in

mouse knock out experiments (271). However, there have been no reported

cases of malignancy in p300 heterozygous mice.

Overexpression of some histone acetyltransferases has been correlated

with cancer. The nuclear hormone cofactor ACTR is overexpressed in several

breast and ovarian cancers (5). Though it is unclear if this is a cause or effect of

these cancers , it is possible that overexpression of ACTR leads to increased

activation of target genes which in turn may lead to increased cellular

proliferation. Additionally, the RNA polymerase III transcription factor TFIIIC2

which is an acetyltransferase , is overexpressed in ovarian tumors , contributing to

the abnormal abundance of pol III transcripts in these tumors (257).

2. Histone Deacetylation

While histone acetylation is associated with gene activation , histone

deacetylation is associated with gene repression. In fact, many gene products

that were known to act as corepressors were later found to have deacetylase

activity. The link between histone deacetylation and gene repression first was

demonstrated by the isolation of the human histone deacetylase HDAC1 , which
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has sequence highly similar to the yeast Rpd3 , a known negative regulatory

protein (228). Histone deacetylases (HDACs) are categorized , based on

homology, into two classes. The first class includes the yeast HDACs Rpd3,

Hos1 , and Hos2 as well as the mammalian histone deacetylases HDAC1-3, and

9. The second class consists of yeast Hda1 and mammalian HDAC4- , and 10.

Most HDACs are associated in multisubunit complexes; substrate specificity is

regulated by components of these complexes.

The mammalian HDAC1 and HDAC2 have been shown to play important

roles in cellular growth arrest (46 , 118 , 147). The multiprotein complex SIN3-

HDAC consists of both HDAC1 and HDAC2 , along with the scaffolding protein

SIN3 and at least eight other proteins (3, 86, 162). This co-repressor complex

has been shown to associate with the basic helix-Ioop-helix-zipper protein Mad

and is required for Mad- induced transcriptional repression. The repression

mediated by this complex prevents the activation of target genes such as E2F

and cdc25, leading to growth arrest in a wide range of cells. HDAC activity

appears to be required for the ability of Mad to induce growth arrest , as inhibitors

of deacetylase activity partially overcome this effect.

The SIN3-HDAC complex also plays an important role in retinoblastoma

tumor suppressor protein (Rb)-mediated repression (reviewed in (80)). Rb

controls cellular proliferation by repressing transcription of genes required for

progression through G1 and S of the cell cycle. Rb is recruited to target genes

via its interaction with the E2F family of transcription factors. Rb represses E2F-



mediated transactivation by two mechanisms; it blocks the E2F transactivation

domain and it actively represses E2F promoters. The deacetylase activity of the

SIN3-HDAC complex helps to repress E2F-regulated genes.

Certain forms of leukemia are associated with misregulation of SIN3-

HDAC activity. RAR is a transcriptional regulator that responds to retinoids and

is important for the differentiation of cells into many lineages , especially myeloid

lineages (39). RARs recruit the SIN3-HDAC complex, via N-CoR (nuclear

receptor corepressor) or SMRT (silencing mediator for retinoid and thyroid

receptors), to promoters containing RARE (retinoic acid response element)

sequences. In the presence of retinoic acid (RA), the SIN3-HDAC complex is

released from RAR allowing the TIF2-CBP HAT complex to bind to a domain on

RAR that is masked in the absence of ligand (3, 86, 162 , 163). In this manner

retinoic acid is able to induce genes containing RARE sequences.

Chromosomal trans locations resulting in the fusion of the RAR gene to the

gene encoding PML have been associated with some cases of human acute

promyelocytic leukemia (APL) (71 , 137). The normal function of PML is unclear;

however, it is known to homodimerize and to interact with HDACs (153). PML-

RAR fusion proteins retain the regions of RAR required for DNA and ligand

binding, as well as the regions of PML required for HDAC interaction and

homodimerization. Leukemogenesis is believed to result from the dimerization of

the fusion proteins and subsequent stronger association with HDACs. HDAC

association is maintained at physiological levels of RA, but released at high



levels of ligand. Patients with PML- RAR translocations often go into remission

after treatment with pharmacological doses of retinoic acid. In other forms of

APL RAR is fused to PLZF (promyelocytic leukemia zinc finger) (71 , 137). The

normal function of PLZF is not known , though it is able to homodimerize and

interacts with SIN3-HDAC. The PLZF-RAR fusion protein retains these known

abiliies of PLZF. The SIN3 protein is not released from PLZF-RAR even at high

concentrations of RA , and patients with this translocation are resistant to

treatment with pharmacological does of retinoic acid. Interestingly, inhibitors of

histone deacetylase activity have been shown to dramatically potentiate retinoid-

induced gene activation of RA-sensitive and restore retinoid response of RA-

resistant APL cell lines (71 , 137). This finding suggests that the RAR fusion

proteins mediate leukemogenesis through aberrant chromatin acetylation.

3. Histone Methylation

Lysine histone methyltransferases contain a conserved methyltransferase

domain termed a SET (Su(var)3- , Enhancer-of-zeste , Trithorax) domain

(reviewed in (119, 200). To date , not all SET-domain containing proteins have

been shown to have methyltransferase activity, though lack of detectable activity

may be due to inappropriate assay conditions. The effect of histone methylation

on gene activation is varied. The lysine histone methyltransferases are divided

into four families: SUV39, SET1 , SET2 , and RIZ (119, 200).



The SUV39 subfamily includes: Suv39h1 , Suv39h2 , EuHMTase1 , G9a,

ESET, and CLLL8. Su(var)3-9 originally was identified in a genetic screen as a

suppressor of position effect variegation in Drosophila melanogaster. The SET

domain of Su(var)3-9 is the founding member of the SUV39 subfamily of SET

domains. The mouse homologues are Suv39h1 and Suv39h2 (186). Though

mice deficient for either gene are phenotypically normal , double knockout mice of

Suv39h1/h2display dramatic genomic instability (176). They are predisposed to

cancer and approximately one-third of the mice develops late-onset B-cell

lymphoma. A common feature of these tumors is non-segregated chromosomes

that are linked via acrocentric regions. These knockout mice have a greatly

reduced level of H3 K9 methylation , suggesting that the methyltransferase

activity of Suv39h1/h2 is important for suppressing tumorigenesis. The human

SUV39H1/2 methyltransferase has been linked to oncogenesis via its interaction

with Rb (167). This interaction is required for correct regulation of the gene

encoding cyclin E , which is important in cell cycle regulation (172). Many human

cancers have mutations in Rb and some of these Rb mutants fail to bind

SUV39H1 (167). It is possible that the interaction between Rb and SUV39H1

plays a significant role in tumor suppression.

The SET1 subfamily includes hSET7 and ySET1 , both of which have been

shown to possess a H3 K4-specific methyltransferase activity (191 , 249, 268).

Other members of this subfamily have not been shown to have methyltransferase

activity. These include the polycomb (PcG) proteins EZH1 and EZH2. Polycomb



genes are a group of genes required to repress homeotic (hox) gene activity.

MLL 1-3 and ALR , trithorax (trxG) genes that are required to maintain hox gene

activity, also belong to the SET1 subfamily. There are many links between

members of the SET1 subfamily and cancer. MLL 1 is translocated in many

leukemias (10, 275, 281). In fact, over 30 different chromosomal fusions of this

region have been observed and all of these fusions lack the SET domain.

Additionally, deletions in exon 8 of MLL 1 have been observed in acute

lymphoblastic leukemias (138). A partial duplication of MLL 1 has been

documented in acute myeloblastic leukemia and gastric carcinoma cell lines

(198). It is unclear if these mutations in MLL 1 result in tumorigenesis due to loss

of function of the normal MLL 1 product, a gain of function of the fusion proteins

or a combination of both. Another MLL gene product , MLL2 is amplified in some

solid tumor cell lines (93). Chromosomal aberrations of the third MLL gene

MLL3, are associated with hematological neoplasia and holoprosencephaly, a

congenital malformation of the brain and face (225). The polycomb gene EZH2

is upregulated in tumor cell lines (247). It is localized to a region crucial for

malignant myeloid disorders (35), and its SET domain interacts with XNP , which

is mutated in different inherent disorders , including ATR-X syndrome (36).

The SET2 subfamily includes NSD1- , HIF1 , AND ASH1. The founding

member of this subfamily, the S. cerevisiae SET2 protein , has intrinsic histone

methyltransferase activity specific for H3 K36 (217). Members of the mammalian

nuclear receptor-binding SET-domain containing (NSD) family contain a SET



domain that is highly related to that of ySET2; however, NSD proteins have yet to

be shown to possess methyltransferase activity. NSD1 can enhance androgen

receptor (AR)-mediated transactivation in prostate cancer, though it is unclear if

this is a cause or result of oncogenesis (254). In the t(5, 11 )(q35;p15.

translocation in acute myeloid leukemia NSD1 is fused to the NUP98 gene

which encodes a nucleoporin that plays a role in nuclear trafficking (100). In

addition , truncations in the SET domain of NSD1 have been identified in

individuals with Sotos syndrome , a familial disorder linked with a predisposition to

cancers such as Wilm s tumor, hepatocarcinomas , mixed paratoid tumors , and

osteochondromas (123). NSD2 maps to a region deleted in the Wolf-Hirschhorn

syndrome (WHS) critical region (212). Deletions in this region cause WHS

which is characterized by mental retardation and developmental defects. NSD2

often is found fused to the IgHgene in multiple myeloma (149, 212). The third

member of the NSD family, NSD3, is amplified in several breast cancer cell lines

and in primary breast carcinomas (211). In addition , this gene also is found

fused to NUP98 in acute myeloid leukemia (192).

The RIZ subfamily includes RIZ, BLlMP- , MEL 1 , PFM1 , and MDS1-EVI1.

The SET domain of the RIZ protein was the founding member of this subfamily.

None of the proteins in this subfamily have been shown to possess

methyltransferase activity. The RIZ gene encodes for two proteins , RIZ1 and

RIZ2 , via the use of two alternative promoters (1). RIZ2 is identical to RIZ1

except that it lacks the first 200 amino acids , including the SET domain. RIZ1



expression is reduced or lost in many types of cancer including breast cancer

lung cancer, osteosarcomas , hepatoma , neuroblastoma , and colorectal cancer

, 92). Frameshift mutations in RIZ have been found in 37% of primary tumors

of the colon , stomach , endometrium and pancreas (29, 183). Furthermore , mice

deficient for RIZ1 are prone to develop diffuse B-ceillymphomas and a broad

spectrum of unusual tumors (213). It is interesting to note that RIZ1-deficient

mice present with similar tumors as mice deficient for the Suv39h1/h2

methyltransferases. The MDS1-EVI1 gene encodes for two products: the SET-

domain-containing MDS1-EVI1 and the EVI1 protein that lacks the SET domain

(59). Certain chromosomal rearrangements cause disruption of the MDS-EVI1

protein and activation of the EVI1 protein leading to myeloid leukemia.

Furthermore , EVI1 is overexpressed in solid tumors and leukemia (59). Another

RIZ subfamily member BLlMP- is deleted in B-cell-non-Hodgkin lymphoma

(109, 157). MEL 1 is transcriptionally activated by translocation in acute myeloid

leukemia (156). Lastly, PFM1 maps to a tumor suppressor locus on

chromosome 12 (270).

Clearly, a large number of the SET-domain-containing proteins play an

important role in cell cycle regulation. In fact, misregulation of a number of these

proteins has been linked to a variety of cancers. In some cases , tumorigenesis

has been linked to the diminished methyltransferase activity of the disrupted

gene products. However, not all of the SET-domain proteins have been shown

to possess methyltransferase activity. As such , it is not clear if a



methyltransferase activity of all of the described factors is required for their

normal activity.

4. Histone Phosphorylation

The core histones and histone H1 undergo phosphorylation on specific

serine and threonine residues. Phosphorylation of H3 and H1 are cell cycle

regulated , with the highest level of phosphorylation occurring during M-phase

(68, , 175, 255). Phosphorylation of H1 has been associated with

transcriptional activation of the MMTV promoter (130). Phosphorylation of H3

also has been shown to playa role in the transcriptional induction of immediate

early genes in mammalian cells (38 , 148). H3 residues within the promoter of c-

fos and c-myc are rapidly phosphorylated in serum starved cells when the Ras-

mitogen activated protein kinase (MAPK) pathway is stimulated by growth

factors. Furthermore , the mitotic phosphorylation of H3 also is associated with

chromosomal condensation. The condensation of chromosomes during mitosis

is essential for the proper transmission of parental genetic information to

daughter cells. The aurora kinase family is involved in histone H3

phosphorylation (91). Members of the aurora kinase family are overexpressed in

a variety of cancers including colorectal cancers and invasive ductal carcinomas

of the breast (18, 226, 227 , 279). The mechanism by which overexpression of

aurora kinase family members leads to tumorigenesis is unclear; however, this



finding points to the importance of proper regulation of histone phosphorylation in

maintaining normal cellular proliferation.

5. Histone Ubiquitination

Histones H2A, H2B , H3, and the linker histone H1 can be reversibly

ubiquitinated. The carboxyl-terminus of the ubiquitin molecule is covalently

attached via an isopeptide bond to the e-amino group of lysine. Approximately

five to fifteen percent of total H2A and - 1 . 5% of total H2B present in mammalian

cells are monoubiquitinated (114 , 135 , 136, 256). Ligation of ubiquitin moieties

to short- lived proteins tags them for degradation by the 26S proteasome;

however, mono-ubiquitinated histones do not appear to be tagged for

degradation in vivo (201 264). The biological significance of histone

ubiquitination is unclear. Studies suggesting that ubiquitinated histone H2A is

associated with transcriptional activation are contrasted by those that suggest

ubiquitination of histone H2A result in gene repression (for review see (104)). 

date, only one tentative link between misregulation of histone ubiquitination and

cancer has been published. The levels of ubiquitinated H2A were found to be

highly upregulated in SV-40 transformed human fibroblasts and keratinocytes

suggesting that this modification may play an important role in cell cycle control

(242).



C. ATP-dependent Chromatin Remodeling

ATP-dependent chromatin remodeling complexes use the energy of ATP

hydrolysis to alter chromatin structure. Every ATP-dependent chromatin-

remodeling complex contains an ATPase subunit that is highly conserved across

species. Each of the ATPase subunits belongs to the SWI2/SNF2 superfamily of

proteins. Based on the homology of the ATPase subunit, these complexes can

be classified into three subfamilies: the SWI2/SNF2 subfamily; the ISWI

subfamily; and the CHD subfamily (Figure 1.2). While some attention is given to

each of these subfamilies , the bulk of discussion concentrates on SWI/SNF, the

focus of this thesis.

1. CHD Subfamily

CHD (!!hromo-helicase- NA-binding) proteins have a SWI2/SNF2- like

helicase/ATPase domain , a DNA-binding domain , and a chromodomain. This

subfamily includes S. cerevisiae Chd1 , human NURD complexes , Xenopus Mi-

complex, and Drosophila Mi-2 complex.

The yeast Chd1 has not been found to assemble into a complex , but

rather appears to dimerize (232). Chd1 has an ATPase activity that is stimulated

by DNA and nucleosomes. Chd1 is able to alter, to some extent, the DNase I

digestion pattern of in vitro assembled mononucleosomes. Yeast strains bearing

chd1-null deletions are viable; however, chd1-null mutants are synthetically lethal
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with swi2-null mutants, suggesting that Chd1 and SWI/SNF may share redundant

functions. In human cells , a complex possessing both ATP-dependent chromatin

remodeling activity and histone deacetylase activity was purified simultaneously

by three groups. These complexes were named NURD ( cleosome remodeling

and histone geacetylation), NuRD , and NRD ( cleosome remodeling and

geacetylating) (231 , 267 , 277). It is unclear whether these are identical

complexes or separate , highly related complexes. They contain one or both of

two human CHD proteins , CHD3/Mi-2a and/or CHD4/Mi- . CHD3/Mi-2 a and

CHD4/Mi- are highly related proteins that are autoantigens in

dermatomyositis , a human disease that predisposes 15-30% of those afflicted to

cancer (66 202). Recombinant Mi-2 protein was found to have ATPase activity

similar to that of intact NuRD complex (250). The histone deacetylase activity of

these complexes is provided by HDAC1 and HDAC2. These complexes also

contain either MTA1 or MTA2 ( e!astasis-,Sssociated protein), expression of

which correlates with the metastatic potential of several human cancer cell lines

and tissues (230). The NuRD complex has been shown to contain two

alternatively spliced forms of MBD3 (Methyl-CpG Binding Domain). Furthermore

this complex interacts with MBD2 , a protein that is believed to link NuRD to

methylated DNA MBD2 also has been identified as NY-CO- , a human cancer

antigen that is recognized by autoantibodies from some colon cancer patients

(248).
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2. ISWI Subfamily

Members of the ISWI subfamily contain a subunit that shares homology

with the Drosophila ISWI (Imitation Switch) protein. These subunits are

homologous to Swi2/Snf2 only in their ATPase domain. The ATPase activity is

stimulated by nucleosomal DNA

In Drosophila three ISWI-containing complexes have been identified:

NURF (nucleosome remodeling factor), CHRAC (chromatin accessibility

complex), and ACF (ATP-utilizing chromatin assembly and remodeling factor)

(98, 235 , 237 , 241). Aside from ISWI , the constituents of these complexes vary.

All share the ability to regularly space nucleosome arrays in an ATP-dependent

fashion; however, only CHRAC has been shown to increase the accessibility of

restriction enzymes to chromatin templates. Drosophila ISWI is essential for cell

viability. Interestingly, null and dominant-negative mutations in ISWI resulted in

alteration of the structure of the male X-chromosome , suggesting that this factor

plays a role in higher order chromatin structure (53).

Two homologues of Drosophila ISWI , Isw1 p and Isw2p, have been

identified in yeast cells (67 , 236). These two subunits are present in distinct

complexes. Like Drosophila ISWI , Isw1p and Isw2p possess an ATPase activity

thpt is stimulated by nucleosomal DNA. Isw1 p- and Isw2p-containing complexes

have an A TP-dependent nucleosome remodeling and spacing activity.

In humans , the Drosophila ISWI-homologue , hSnf2H , has been purified in

four, apparently distinct, complexes: RSF (remodeling and spacing factor),



WCRF , ACF , and hCHRAC (19, 133, 134 , 184). Like their homologues , these

complexes have an ATPase activity that is stimulated by nucleosomal DNA

Furthermore , they remodel and space nucleosomes in an ATP-dependent

manner. The RSF complex also has been shown to stimulate transcriptional

initiation from a promoter within a nucleosome template. The WCRF and ACF

complexes contain WSTF (Williams syndrome transcription factor) protein , which

has been found to be mutated in the developmental disorder Williams syndrome.

3. SWI2/SNF2 Subfamily

The SWI2/SNF2 subfamily includes S. cerevisiae SWI/SNF , RSC

(remodels the structure of chromatin), and IN080. com; Drosophila Brahma; and

mammalian SWI/SNF. The activity of the ATPase subunit of each of these

complexes is stimulated by both DNA and nucleosomes (31 56, , 124

182). The ATPase subunits also share a C-terminal bromodomain and two other

conserved regions of unknown function (260).

a. In080.com

The In080 protein was identified in yeast based on its homology to the

Swi2/Snf2 ATPase (207). In080 also has homologues in Drosophila (dIN080)

and humans (hIN080). The yeast In080 associates with approximately 12

proteins in a complex called In080.com. This complex possesses a 3' to 5' DNA

helicase activity, though it has yet to be determined if Ino.com is able to alter



chromatin structure. In080-null mutants are viable but are sensitive to

hydroxyurea, methyl methanesulfonate , ultraviolet light, and ionizing radiation

suggesting a role for In080.com in DNA damage response.

b. RSC Complex

The yeast RSC complex contains the ATPase Sth1 , a protein that shares

high homology with Swi2/Snf2 (31). This complex consists of 15 subunits , some

of which share homology with other members of the yeast SWI/SNF complex.

Rsc8/Swh3, Rsc6 , and Sfh1 are homologs to SWI/SNF subunits Swi3 , Swp73,

and Snf5, respectively. Unlike the yeast SWI/SNF constituents, members of the

RSC complex are required for mitotic growth (32). The RSC complex catalyzes

the transfer of histone octamers from one strand of DNA to another (142). It is

also able to increase the accessibilty of restriction nucleases to nucleosomal

templates (140). The remodeled state persists after removal of RSC and ATP

and can be reversed upon re-addition of RSC and A TP.

It is unclear if mammalian cells contain a complex homologous to yeast

RSC. The BAF180 subunit of the SWI/SNF-B complex shares homology with

three yeast RSC complex subunits , Rsc1 , Rsc2 , and Rsc4 (266). This has led

some to propose that SWI/SNF-B is the mammalian homologue of yeast RSC

(164). Furthermore , the mammalian SWI/SNF-B complex localizes to the

kinetochores of mitotic chromosomes , suggesting that this complex may playa

similar to RSC in cell cycle progression.



c. SWI/SNF complexes

The SWI/SNF complex first was identified in yeast (30 , 177). It is

comprised of 11 subunits , with the core ATPase subunit encoded by the

SWI2/SNF2 gene. None of the members of the yeast SWI/SNF complex are

required for viability; however, several of its components originally were isolated

as being required for mating type switching (SWI) and sucrose fermentation

(SNF) (23 , 165, 214). These phenotypes are due to the fact that SWI/SNF is

required for induction of the mating type switch gene, HO as well as the SUC2

invertase that is required for sucrose fermentation. The first hint that SWI/SNF

plays a role in chromatin remodeling came from the discovery that several

mutations that suppressed swi/snfphenotypes corresponded to genes encoding

histones and non-histone components of chromatin structure (89, 120, 121).

SWI/SNF later was shown to alter the DNase I digestion pattern of in vitro

assembled mononucleosomes , giving credence to the idea that it could directly

alter chromatin structure. In addition , the activity of SWI/SNF can faciltate the

binding of a number of transcription factors and accessibilty to restriction

nucleases to nucleosomal DNA templates (28 , 42 , 139, 239). Data obtained

from DNA microarray expression analysis indicate that approximately 5% of

yeast genes that are constitutively expressed are dependent on the ATPase

activity of SWI/SNF. Interestingly, SWI/SNF appears to be involved in the

repression of just as many genes as it activates (90, 222). Recently, SWI/SNF

was shown to directly repress transcription of the yeast gene SER3 (151).



Mammalian SWI/SNF complexes contain one of two SWI2/SNF2 ATPase

homologues , BRM (SNF2a) or BRG1 (SNF2f3) (252). The mammalian SWI/SNF

complex is composed of 8-12 subunits , with its composition differing slightly

between cell types. Like the yeast counterpart, mammalian SWI/SNF complexes

are able to disrupt the DNase I digestion pattern of in vitro assembled

mononucleosomes and increase the accessibiliy of some transcription factors to

nucleosomal templates (97 , 124).

The mechanism by which SWI/SNF alters chromatin structure is unclear.

There is data that have led some to suggest that SWI/SNF either removes or

rearranges the H2A-H2B dimers to facilitate remodeling (42 , 89, 131 , 144 , 178,

210). Other studies demonstrate that SWI/SNF is able to induce nucleosome

sliding or octamer transfer (103, 181). Lastly, experiments utilizing cross- linking

reagents demonstrate that the octamer need not be perturbed in order for

SWI/SNF to alter the DNase I cleavage pattern or restriction enzyme accessibility

of in vitro assembled mononucleosomes or arrays (6 , 22).

Components of mammalian SWI/SNF complexes have been implicated in

a variety of cellular processes. SWI/SNF complexes are involved in gene

activation events associated with nuclear hormone receptors , environmental

stress, and viral infection (2 , 13 40, 48, 159 174). Mammalian SWI/SNF

components also playa role in gene repression events; the repression of c-fos

and some E2F-regulated genes are mediated in part by SWI/SNF (161 , 233,

251). Furthermore , members of the SWI/SNF complex are targets of viral



regulatory proteins of Epstein-Barr virus , adenovirus , human papilloma virus , and

human immunodeficiency virus (HIV) (107 , 127 , 128, 154 , 262).

SWI/SNF complexes playa role in several developmental processes. The

induction of genes necessary for muscle differentiation in vitro require SWI/SNF

activity (49). Functional SWI/SNF complexes were shown to be required for the

alteration of chromatin structure , concomitant with muscle differentiation , in the

promoter region of myogenin , a muscle specific transcription factor required for

the differentiation process. Mouse knock-out experiments have demonstrated

that the SWI/SNF components Brg1 , Ini1 , and Srg3 play an essential role in

murine development, as mice homozygous-null for any of these factors are early

embryonic lethal (27 , 76 , 112 , 115 , 188).

SWI/SNF constituents associate with a number of known tumor

suppressors. Both BRG1 and BRM have been shown to interact with the Rb

tumor suppressor and facilitate the repression of certain gene expression events

required for entry into S-phase. In fact , BRG1 or BRM is required for Rb-

dependent G1 arrest (57 , 218, 276). SWI/SNF also has been shown to interact

with the breast cancer susceptibility gene product , BRCA1 (20). The ATPase

activity of BRG1 is required for the ability of BRCA 1 to stimulate p53-mediated

transcription , suggesting that SWI/SNF may function in recombination and repair

pathways. Ini1 also has been shown to interact with , and facilitate the function

, the growth arrest and DNA-damage inducible protein GADD34 , providing

another link between SWI/SNF and recombination and repair (263). Moreover



BRG1 and INI1 interact directly with the p53 tumor suppressor in co-

immunoprecipitation experiments (126). This interaction appears to facilitate

activation of some p53-responsive genes.

Misexpression of BRG 1 and BRM has been found in a number of human

tumor cell lines and primary tumors. Expression of BRG1 and BRM is down-

regulated or absent in tumor cell lines derived from various tissues, including

prostate , lung, and breast (259). In another study, both alleles of BRG1 were

found to be mutated in 2 out of 22 breast carcinoma cell lines examined (50). On

the contrary, BRG1 was found to be overexpressed in approximately 60% of

gastric carcinomas examined (203).

Results from mouse knock-out experiments reveal variable roles for Brg1

and Brm in tumorigenesis. Mice lacking Brm are viable but show mild

proliferative effects , suggesting a role for Brm in the control of cellular

proliferation (188). Mice lacking Brg1 are early embryonic lethal (27).

Furthermore , a small percentage of mice heterozygous for Brg1 develop

apocrine tumors. However, loss of heterozygosity in the tumors has yet to been

demonstrated.

SNF5/INI1 is a core subunit of all mammalian SWI/SNF complexes

purified to date (252). It originally was identified based on its homology to the

yeast Snf5 protein and by a yeast two-hybrid screen as a protein that interacts

with HIV-1 integrase ( INteg rase !nteractor 1) (107 , 158). Bi-allelic deletions or

truncating mutations of INI1 have been shown to be associated with most cases



of malignant rhabdoid tumor, a rare but aggressive pediatric cancer of the soft

tissues (16, 17 , 51 , 194 , 238, 245). Mutations in INI1 also have been found in

other neuronal tumors such as choroid plexus carcinomas , medullablastomas

and central primitive neuroectodermal tumors (15, 204). Furthermore , deletions

of INI1 have been reported in chronic phase and blast crisis of chronic myeloid

leukemia (69). Recent studies indicate that germ- line mutations in INI1

predispose afflicted individuals to some of these cancers (204 , 229).

Mice lacking Ini1 , like those lacking Brg1 , are early embryonic lethal (76,

115, 190). Approximately 30% of mice heterozygous for Ini1 develop

undifferentiated or poorly differentiated sarcomas , with variable rhabdoid

features , of soft tissues. In these cases , tumor occurrence has been correlated

with loss of heterozygosity at the Ini110cus. Furthermore , almost 100% of mice

bearing a reversibly inactivating conditional allele of Ini1 present rapidly with

tumors. While many of these tumors have variable rhabdoid features , the vast

majority are CD8+ T-cell lymphomas (189).

The INI1 protein has no known conserved motifs that may provide insight

into its function. While its exact function is not clear, INI1 is able to facilitate HIV

proviral DNA integration (107). INI1 also has been shown to repress expression

of cyclin 01 in INl1-deficient tumor cells to induce cell cycle arrest (278). Other

studies utilizing similar cell lines show that INI1 induces p16ink4a to induce cell

cycle arrest (14). INI1 has been shown to interact with ALL- , translocations of

which are involved in human acute leukemias (195). The Drosophila homolog of



ALL- , trithorax, likewise has been shown to interact with the INI1 homolog snr1.

Trithorax is a member of the trithorax-polycomb gene family that is required to

maintain proper expression of Antennapedia and Bithorax complexes throughout

embryogenesis (110). Like Ini1-null mice, homozygous snr1 mutants die early

during embryogenesis (54). These similarities between snr1 and INI1 hint at the

possibility that INI1 may playa role in homeotic gene regulation early in

mammalian development.

It is unclear if BRG1 and INI1 function independently as tumor

suppressors or function cooperatively via an activity of the SWI/SNF complex.

Heterozygous disruption of Brg1 and Ini1 in mouse models results in divergent

phenotypes. However, while disruption of Ini1 may affect both Brg1 and Brm-

containing complexes, it is possible that Brm is able to partially compensate for

Brg1-deficiency. Clearly, Brm is unable to compensate for the absence of Brg1

in early development. This may be due to the fact that during early mouse

embryonic development , Brg1 and Brm show differences in their levels of

expression as well as localization at the blastocyst stage (132). On the contrary,

the level of Brm message is comparable to that of Brg1 in adult tissues and many

cell lines. In human tumor cell lines lacking BRG1 , BRM is able to compensate

for BRG1 function in cell cycle arrest mediated by Rb (219). Thus , it is possible

that the presence of Brm in Brg1-heterozygous mice is sufficient to maintain the

putative tumor suppressor function of SWI/SNF.



While it is possible that the ability of BRG1 and INI1 to function as tumor

suppressors depends on their role in the SWI/SNF complex, recent data suggest

that INI1 has functions distinct from those of BRG1 and BRM. As mentioned

above , cell cycle arrest mediated by Rb depends on the presence of functional

BRG1 or BRM. On the contrary, INI1 is not required for the ability of Rb to

induce arrest (14 , 244). When a constitutively active Rb is introduced into human

tumor cell lines lacking INI1 , the cells arrest in G1. Therefore , it is possible that

the tumor suppressor function of Ini1 is distinct from its function as a member of

the SWI/SNF complex. However, before the biological roles of INI1 can be

compared to those of BRG1 or BRM , it is first necessary that the functions of INI1

be elucidated.

D. Thesis Aims

The focus of this thesis was the murine SWI/SNF subunit Ini1 , with

particular emphasis on its role in development and tumorigenesis. Chapter II

details the generation and characterization of a murine model deficient for Ini1.

The research described in this chapter demonstrated an essential role for Ini1 in

murine development , as mice null for Ini1 died early in embryogenesis.

Furthermore , mice heterozygous for Ini1 were predisposed to undifferentiated or

poorly differentiated tumors , suggesting that Ini1 also plays an important role in

tumor suppression.



Chapters III and IV present data aimed at understanding the mechanism

by which Ini1 functions as a tumor suppressor. As detailed above , Ini1 has been

linked to the tumor suppressors Rb and p53. Results from crosses of Ini1-

heterozygous mice to Rb-heterozygous mice (Chapter III) and p53-heterozygous

mice (Chapter IV) are described. We show that introduction of Ini1-

heterozygosity on a Rb-heterozygous background does not alter the tumor curve

from that observed for mice deficient solely for Rb. However, some of the tumors

that arose in compound heterozygous mice presented with histology

characteristic of more aggressive tumors. Mice heterozygous for Ini1 and p53,

however, showed a decreased rate of tumorigenesis compared to p53-

heterozgyous mice. In addition , the observed tumor spectrum was skewed.

In Chapter V , the regulation of Ini1 itself is examined. While Ini1 has been

shown to play an important role in a diverse set of processes , little has been

published as to its regulation. We show here that Ini1 is upregulated in cells and

tissues heterozygous for Ini1. This upregulation is mediated by an increase in

the rate of transcription from the Ini1 promoter, such that the steady level of Ini1

RNA from one allele in heterozygous cells approximately doubles that from wild-

type cells. Furthermore , we provide evidence suggesting that Ini1 is involved in

its own regulation.

Lastly, Chapter VI provides a brief discussion , with the aim of tying

together the sum of these results to provide a better understanding of the

regulation and function of Ini1.



Chapter II

Disruption of Ini1 Leads to Peri- Implantation Lethality and Tumorigenesis in Mice

Introduction

The compact nature of chromatin structure presents a barrier to cellular

processes that require access to DNA A number of multiprotein complex

have been identified that share the ability to modify chromatin structure. These

include the histone acetyl-transferases and deacetylases , complexes which

chemically modify the amino-terminal tails of histones by the addition or removal

of acetyl groups , respectively, as well as a group of enzymes that utilize the

energy derived from ATP-hydrolysis to alter nucleosome structure (96 , 113, 215,

216, 246). Included among these ATP-dependent chromatin remodeling

enzymes is the SWI/SNF family of chromatin modifiers.

SWI/SNF enzymes are large multisubunit enzymes of - 2 MDa. Yeast

SWI/SNF genes were originally identified as being required for mating type

switching or sucrose fermentation (23, 165, 214). Later work determined that

SWI/SNF genes were required for the induction of a subset of yeast genes and

that the SWI2/SNF2 protein possessed a DNA-stimulated ATPase activity (30,

117 125, 177 179 272). Mutations in SWI/SNF genes could be suppressed by

mutations altering histone gene expression , histone structure , or non-histone

chromatin proteins leading to the suggestion that these gene products facilitated

transcriptional activation by altering chromatin structure (89 , 120, 121).



1 .

Human SWI/SNF (hSWI/SNF) complexes contain either the human BRM

(hSNF2a) or BRG1 (hSNF2 ) homologues of the yeast SWI2/SNF2 ATPase (40,

111 , 159). Both yeast and human SWI/SNF complexes have been shown to

possess nucleosome remodeling activity in vitro (42 , 124). Components of

mammalian SWI/SNF complexes have been implicated in a variety of cellular

processes, including gene activation and repression , development and

differentiation , recombination and repair, and cell cycle control. There is

evidence supporting a role for SWI/SNF in gene activation events mediated by

nuclear hormone receptors , environmental stress , and viral infection (2 , 40, 48

, 159). In contrast, SWI/SNF components also were shown to be involved in

repression of c-fos and some E2F-regulated genes (161 233). Both BRG1 and

hBRM can interact with the retinoblastoma oncoprotein and induce cell cycle

arrest, an effect that is abrogated by the association of BRG1 with cyclin E (57

206 , 218 , 276). Evidence suggesting a role for hSWI/SNF in recombination and

repair was provided by studies demonstrating an interaction of components of

the hSWI/SNF complex with BRCA 1 which is thought to be involved in DNA

damage and repair pathways (20). Furthermore , members of the SWI/SNF

complex are targets of viral regulatory proteins upon infection of cells by

adenovirus , Epstein-Barr virus, human immunodeficiency virus , and human

papillomavirus (107 , 128, 154 261).

The role of SWI/SNF enzymes in whole organisms is unclear. While

homozygous disruption of Brg1 in mouse embryonic carcinoma cells resulted in



lethality, disruption of Brm expression in mice produced only mild proliferative

effects (188 , 223). The upregulation of Brg1 in the Brm-deficient mice may

provide a compensatory effect; however, one can not rule out the possibility that

these differences are due to distinct functions of Brm or Brg1-containing

complexes.

SNF5/INI1 is a member of both BRG1 and BRM-containing SWI/SNF

complexes (158 , 253). INI1 was shown to interact with ALL- , translocations of

which are associated with several types of human acute leukemias (195).

Furthermore IN/1 has been found to be altered in malignant rhabdoid tumors

choroid plexus carcinomas , medullablastomas , and central primitive

neuroectodermal tumors (17 , 51 , 204, 205, 245). Identification of constitutional

mutations in a subset of these tumors indicates that the INI1 is a tumor

suppressor (17 205). In an attempt to generate a mouse model that would allow

further characterization of the mechanisms of Ini1 in tumorigenesis as well as to

determine the role of the mammalian SWI/SNF complexes in development, we

generated mice deficient for Ini1 expression. We show that Ini1:deficient mice

die early in embryogenesis , likely due to an inability of the blastocysts to hatch

implant in the uterus, and continue development. In addition , we report that a

subset of the Ini1- heterozygous mice present with a variety of tumors in the soft

tissues of the head and neck and that loss of heterozygosity at the Ini1locus 

correlated with tumor formation.



Materials and Methods

Ini1 targeting

ES cells (omnibank # OST32815) bearing a retroviral promoter trap that

functionally inactivates one allele of Ini1 were generated as described previously

(274). RACE analysis also is described. Site of insertion was determined using

sequence analysis.

Creation of Ini1-null mice

Ini1- targeted ES cells were injected into 3.5 d. c. C57BU6 blastocysts.

Male chimeric mice were mated with wild-type C57BU6 or 129 females.

Germline transmission of the mutant allele was determined by PCR analysis of

tail genomic DNA using the following primers: for Ini1 , 5'

GCAAGCGCTCTGCCAA TTG ACC- , 3' CACACCCT ATTGTCACTCTGGAA-

for pgeo CGGTATCGATA AGCTTGATGATC- , 3'

GTCAACGCGTCGGACTTACCGC- Ini1- heterozygous mice were intercrossed

to generate Ini1-null mice. Embryos 6.5 d. c. and younger were prepared for

genotyping by PCR as described previously(88). Nested PCR was done using

the above primers for the first round of PCR (29 cycles) and the following intron

3-nested primers for the second round (29 cycles): 5'

GCGTGCGCCACCATGCCTGG- , 3' CTTCTGGAGACTTCACTT AC GTCC-



Blastocyst culture

Blastocysts from heterozygous intercrosses were flushed from the uterus

of Ini1 in3
females 5 d. c. with M15 media (DMEM , 15% fetal calf serum , 100

JlM -mercaptoethanol , 2 mM glutamine , and 1 X penicillin/streptomycin) and

cultured in tissue culture plates for 96 hr. Embryo cultures were genotyped 

described above.

Galactosidase staining of cultured ES cells

Wild-type AB2. 2 ES cells and Ini1 in3

/+ 

ES cells were grown to near

confluency and fixed in 0.5% Glutaraldehyde. Cells were then rinsed with PBS

and stained overnight in the dark at room temperature in a solution containing

5mM Potassium Ferricyanide , 5mM Potassium Ferrocyanide , 2mM MgCI , and

1 mg/ml X-gal.

Whole mount staining of embryos for galactosidase activity

Embryos were harvested at indicated time points post fertilzation and

fixed in 4% paraformaldehyde for 20 min at 4 C. Embryos were washed and

then stained in X-gal histochemical reaction mix (4mM Potassium Ferrocyanide

4mM Potassium Ferricyanide , 2mM MgCI , 1 mg/ml X-gal) overnight at room

temperature. Following staining, embryos were rinsed in PBS and cleared in

30% sucrose.



Western analysis of tumor samples

Control tissues and tumor samples were homogenized in lysis buffer

containing 50 mM tris-HCI , pH 7. 150 mM NaCI , 0.5% NP- , 20% glycerol , 1

mM DTT, 1 J.g/mL pepstatin A , 4 J.g/mL leupeptin , and 1 mM PMSF. Extracts

were resolved by SDS-PAGE and western analysis for Ini1 protein was

performed as described previously(48).

Histologic analysis of tumors in mice

Tumor samples and selected tissues were fixed in 10% buffered formalin

phosphate and processed for paraffin embedding as described previously(81).

Sections were prepared and stained with haematoxylin and eosin and examined

under a microscope.

Results and Discussion

Mouse embryonic stem (ES) cells bearing a retroviral promoter trap that

functionally inactivates one allele of Ini1 were constructed as described

previously (274). Sequence analysis revealed that the promoter trap inserted

within intron 3 of Ini1 (Figure 2. 1). The beta-galactosidase-neomycin (f3-geo)

gene fusion cassette within the retroviral insertion has a 5' splice acceptor site;

thus f3-geo expression is regulated by the native Ini1 promoter. We were able to

utilze the f3-geo gene cassette in a colorimetric assay to determine if Ini1 



retroviral
trap

PGK-Puro

Figure 2.1: Schematic of targeted Ini1 allele

sa and sd represent splice acceptor and splice donator sites, respectively

TR(del) are the retrovirallong terminal repeat promoters with inactivating deletions

gal/neo is a galactosidase/neomycin gene fusion cassette

PGK-puro is a puromycin cassette under control of a PGK promoter

carets denote site of alternative splicing within the Ini1 gene



normally expressed in ES cells. Ini1- targeted cells stained positive for /3-gal

activity, indicating that Ini1 is expressed in ES cells (Figure 2.2). Northern

analysis of ES cell total RNA confirmed Ini1 expression (data not shown).

Furthermore , sequence data obtained from 5' RACE analysis of the Ini1-/3-gal

fusion mRNA revealed that transcripts utilizing either splice donor site in exon 2

spliced into the trap, indicating that both splice variants of Ini1 were inactivated

(26).

To determine the role of Ini1 in mammalian development and

tumorigenesis , we used the targeted ES cells in blastocyst injection experiments

to generate Ini1-heterozygous (Ini1 in3 mice. In order to monitor expression of

Ini1 during embryogenesis , we performed whole mount staining for /3-

galactosidase activity in embryos harvested from Ini1 in3l matings at various times

during development. We found that Ini1in3

/+ 

embryos stained positive in all

tissues at all time points examined , including 6.5, 8.5, 9. , and 10.5 d.

indicating that Ini1 is ubiquitously expressed during embryogenesis (Figure 2.3).

Ini1 expression was also detected by northern analysis in a wide range of adult

tissues (188) (and data not shown).

Chimeric mice generated from C57BU6 strain blastocyst injections of the

129 strain-derived ES cells were bred to wild-type C57BU6 or 129 mice in order

to obtain Ini1 in3

/+ 

mice on either a mixed (C57BU6 x 129) or pure (129)

background. Intercrosses of Ini1 in3

/+ 

mice in both backgrounds yielded Ini1 in3

offspring and wild-type offspring at a 2: 1 ratio (63:26 in the mixed background
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Figure 2.2: Mouse embryonic stem (ES) cells expres Ini1

Wild-type and Ini1-targeted ES cells were stained for f3gal activity. Because

l3-gal is under control of the Ini1 promoter, cells that express fni1 wil stain

blue.

.......
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Figure 2.3: Ini1 is ubiquitously expressed throughout embryonic

development

Embryos from Ini1-heterozgyote intercrosses were harvested at indicated

times and stained for I3gal activity. Targeted cells wil stain blue, while

wild-type cells wil not.



34:17 in the pure background), and no Ini1-null offspring, indicating that

disruption of Ini1 induces embryonic lethality (Figure 2.4). Timed matings of

Ini1 in3

/+ 

mice were performed and embryos harvested at various time points in

gestation for genotyping via PCR. Ini1-null embryos could be isolated at 3.

c. and were normal in appearance. However, no Ini1 in3/in3 embryos were

detected at 6.5 d. c. or later (Figure 2.5). Dissection of maternal diciduas at 6.

5 d. c. revealed no significant increase in the number of embryo

reabsorptions , suggesting that Ini1 in3/in3
lethality occurred between day 3.5 and

5 of gestation. These results indicate that Ini1-null embryos either failed to

implant into the uterine wall or implanted and were reabsorbed shortly thereafter.

In order to examine further the developmental defect of Ini1 in3/in3 embryos , we

analyzed the ability of blastocysts from Ini1 in3

/+ 

intercrosses to expand in vitro.

When 3.5 d. c. blastocysts were plated in culture , wild-
type and 

Ini1 in3

blastocysts hatched from the zona pellucida and implanted onto the tissue

culture plastic. Both wild-type and Ini1 in3
implanted embryos formed

trophectoderm and expanded their inner cell mass (ICM). In contrast, no

Ini1 in3/in3 blastocysts hatched and implanted in culture (Figures 2.5 and 2.6). The

results of these experiments suggest that the peri-implantation embryonic

lethality of Ini1-null mice may be due to a defect in hatching of the blastocyst

from the zona pellucida , an obligate step for implantation of the embryo into the

wall of the uterus during normal development. Manual disruption of the zona
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Figure 2.4: Ini1-null mice are embryonic lethal

Ini1- heterzygous mice were intercrossed and progeny genotyped

by PCR. As shown above theWT allele generates a 700 bp band

while the targeted allele generates a 250 bp band. No Ini1-null

mice were obtained from these crosses.
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13.

Figure 2. 5: Ini1-null embryos die between days 4 and 5.5 post-

ferti I ization

Embryos from InH- heterozygote intercrosses were harvested at

indicated times and genoyped by PCR. While Ini1-null embryos were

obtained at day 3.5 post-fertilization , no Ini1-null embryos were obtained

at day 6.5 and beyond.
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Figure 6: Ini1-null blastocysts fail to expand in culture

Blastocysts were harvested from Ini1- heterozygote intercrosses at 3.5 days post

fertilization and plated in culture as described in the materials and methods. 

96 hours after culturing, outgrowths were harvested and genotyped by PCR.

Unlike their wild-type and Ini1-heterozygous counterpart, Ini1-null blastocysts

failed to attach to the substratum , form trophectoderm, and expand their inner

cell mass.



pellucida of 19 (C57BU6 x 129) blastocysts harvested from Ini1 in3

/+ 

intercrosses

did not result in expansion of Ini1-null trophectoderm or ICM during in vitro

culture , suggesting that growth of these tissues also is compromised (Figure 2.7).

Expression of Ini1 in ES cells , which are derived from the ICM of 3.5 d.

blastocysts , is consistent with a gene crucial to the peri- or pre- implantation stage

of embryogenesis.

In humans , loss of INI1 is correlated with a variety of tumors , the vast

majority of which are neuronal or renal in nature. To date , most human

malignant rhabdoid tumors and choroid plexus carcinomas examined have

deletions and/or mutations in INI1 as do a subset of central primitive

neuroectodermal tumors and medullablastomas (204). In mice , we found that

approximately 20% of Ini1 heterozygotes in both the mixed F1 (C57BU6 x 129)

or pure 129 backgrounds presented with tumors (Figure 2.8). All of these tumors

arose in the head or neck region of the mice , particularly in the soft tissue of the

face (Figure 2.9). While 2 of the 15 mouse tumors analyzed had varying degrees

of rhabdoid- like cells , characterized by their eosinophilic cytoplasms containing

speroid perinuclear inclusion bodies and whorls of intermediate filaments , none

had the monomorphous appearance of human rhabdoid tumors. Two Ini1 in3

mice were found to have a Iymphoproliferative disorder or lymphoma originating

in an ill-defined region on the neck (Table 2. 1 and Figure 2. 10). Two-thirds of the

tumors originated on the face of the mice. Interestingly, expression of Ini1

appears to be elevated during development in the branchial arch and in the



Figure 7: Ini1-null blastocysts fail to expand in culture when

manually hatched

Ini1-heterozygous mice were intercrosses and blastocysts harvested at

day 3.5 post-fertilzation. Blastocysts were plated in culture and zona

pellucidas were removed manually with a fine-pulled needle. After 96

hours in culture, outgrowths were harvested and genotyped by PCR.

, trophectoderm; ICM , inner cell mass
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Figure 2.8: Tumor Curve for Ini1..heterozygous mice

Ini1-heterozygous mice on both a purebred and mixed background were

monitored for tumor development. Mice presenting with tumors were graphed

accrding to age in weeks.



Figure 2.9: Ini1-heterozygous mice present with tumors mostly in the

head and neck region

Photograph of Ini1-heterozygous mouse presenting with facial tumor common

in this study.



Table 1: Tumor Occurrence

Mouse Age (weeks) Tumor Site Classification
Ini 119 face undifferentiated sarcoma
Ini 44 face undifferentiated sarcoma
Ini 138 face malignant fibrous histiocytoma
Ini 100 face malignant fibrous histiocytoma
Ini 180 face undifferentiated sarcoma
Ini 26* face malignant fibrous histiocytoma
Ini 262 face malignant fibrous histiocytoma
Ini 29* face malignant fibrous histiocytoma
Ini 13* face/eye liposarcoma
Ini 56 neck lymphoma
Ini 322 brain undifferentiated sarcoma
Ini 10 ventral to brain undifferentiated sarcoma
Ini 95* face malignant fibrous histiocytoma
Ini 127 neck Iymphoproliferative disorder
Ini 328 eye undifferentiated sarcoma

129 Strain

Table 2.1: Representation of tumors from Ini1-heterozygous mice



Figure 



Figure 2. 10: Tumor sections from Ini1-heterozyous mice

Tumor samples were harvested from mice and processed for H&E

staining as described in the materials and methods. Most tumors were poorly

differentiated or undifferentiated sarcomas with the exception of one liposarcoma

(panel 13) and one lymphoma (panel 56). Some tumors show variable rhabdoid

features (see arrow in panel 119). Numbers in figure correspond to mice listed in

Table 2.



frontonasal and maxillary processes (Figure 2.3), structures that contribute to

formation of the face. While the majority of the facial tumors were poorly

differentiated or undifferentiated sarcomas and not neuronal in origin , it is

possible that the tumors arose in cells derived from neural crest progenitors , as

neural crest cells , along with mesodermal cells , coordinate to form the facial

primordia (63, 199).

We have analyzed tumors in three representative mice. Northern analysis

of total RNA harvested from tumor tissue indicated the presence of wild-type-

length Ini1 message (data not shown). However, western blot analysis of

proteins harvested from these tumors revealed absence of Ini1 protein in all three

samples (Figure 2. 11). This indicates that LOH at the Ini110cus is responsible

for tumor formation in the Ini1 in3

/+ 

mice.

The mechanism of Ini1-mediated tumor suppression is unclear. Other

subunits of the Swi/Snf chromatin remodeling complex have been reported to

associate with known tumor suppressors , including Rb and Brca1 (20, 233,

276), and several of the SWI/SNF subunits appear to be molecular targets of

viral regulators of cell proliferation (107 , 128, 154, 261). In addition , one of these

subunits , BRG1 , recently has been reported to be missing or mutated in a variety

of human tumor cell lines , and reintroduction of BRG1 into these tumor cells

reverses their transformed morphology (259). These findings suggest a role for

chromatin remodeling in regulation of cell growth and/or in tumor suppression.
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Figure 2.11: Tumors from In;1-heterolygous mice show los of

heterozygosity

Tumor samples and control tissue were processed for Western

analysis as described in the materials and methods. As shown

above, tumor samples show a marked decrease in expression of Ini1

protein compared to wild-type brain, indicating loss of heterozygosity.

, non-specific band



While this manuscript was in preparation , Roberts et al. and Klochendler-

Yeivin et al. published data consistent with our findings (115, 190). The fact that

these results are reproducible in knock-out lines generated by different targeting

strategies confirms the importance of Ini1 in development and tumorigenesis.

Klochendler- Yeivin et al. further report in their study that Ini1-deficient embryos

can induce the formation of maternal dicidua, suggesting that Ini1-deficient

embryos undergo hatching and implantation prior to their demise. In contrast

Ini1 in3/in3 embryos fail to hatch from the zona pellucida , suggesting that subtle

strain variations may influence the precise timing of embryonic lethality. In

agreement with these other groups , a percentage of the Ini1 heterozygous mice

in our colony presented with tumors that contained variable numbers of rhabdoid

cells. However, we are hesitant to classify these undifferentiated sarcomas as

true rhabdoid tumors , which are described as monomorphous tumors in the

human population. Discrepancies between tumor types associated with

disruption of Ini1 in humans and mice may be due to differences in species-

specific differentiation pathways. Regardless , the Ini1 heterozygous mice should

provide a useful model for studying the general mechanisms involved in tumor

suppression by Ini1.

.14



Chapter II

Disruption of Ini1 on a Rb-heterozygous Background in Mice Alters Tumor

Morphology but Not Tumor Rate

Introduction

INI1 functions as a tumor suppressor in humans and mice. It originally

was identified in mammals based on its homology to the yeast Snf5 protein as

well as via a yeast two hybrid assay as a protein that interacts with the HIV

integrase protein (107 158). INI1 is a member of all SWI/SNF chromatin

remodeling enzymes purified to date (252). The identification of bi-allelic

mutations in INI1 in malignant rhabdoid tumors , an aggressive tumor of the soft

tissues , provided the first evidence that INI1 plays a role as a tumor suppressor

(245). Mutations in INI1 were found subsequently in other tumors , such as

choroid plexus carcinomas , medullablastomas , central primitive neuroectodermal

tumors , and a few cases of leukemia (15- 69, 205). The fact that a subset of

patients presenting with these tumors had constitutional mutations further

supported the role of INI1 as a tumor suppressor in humans (17 , 205).

Gene targeting experiments confirmed that Ini1 also functions as a tumor

suppressor in mice (76 , 115 , 190). While Ini1-null mice are embryonic lethal , 15-

30% of mice heterozygous for Ini1 present with tumors , all of which are poorly

differentiated or undifferentiated tumors with variable rhabdoid features. All

tumors examined show loss of heterozygosity at the Ini110cus. Furthermore



almost 100% of mice bearing a reversibly inactivating conditional allele of Ini1

present rapidly with tumors. While many of these tumors have variable rhabdoid

features , the vast majority are CD8+ T-cell lymphomas (189).

Despite the fact that INI1 plays a role in tumor suppression , the

mechanism by which it does so has yet to be elucidated. BRG1 and BRM

ATPases that constitute biochemically distinct SWI/SNF complexes , both playa

role in growth arrest mediated by the retinoblastoma (Rb) tumor suppressor (57

218 , 276). When Rb is hypophosphorylated (active), it is bound by the histone

deacetylase HDAC1and BRG1/BRM , thereby repressing E2F activity (276). E2F

is a transcription factor responsible for inducing the expression of a number of

genes required for DNA synthesis , such as ribonucleotide reductase

topoisomerase II , DNase polymerase ex, and proliferating cell nuclear antigen

(PCNA) (52). At the onset of S-phase , coordinated phosphorylation events result

in the release of HDAC1 and BRG1/BRM , allowing for the activation of E2F and

progression through S-phase.

Unlike wild-type cells , SW13 cells derived from an aprocine tumor lacking

BRG1 and BRM do not arrest when a constitutively active form of Rb is

introduced (220). Furthermore , a constitutively active form of Rb is not able to

arrest 3T3 mouse fibroblasts that express an ATPase-defective BRG1 (221).

These data suggest that functional SWI/SNF is required for Rb-mediated arrest.

Like BRG1 and BRM , the ability of INI1 to arrest cells depends on the presence

of functional Rb (244). However, a constitutively active form of Rb is able to



arrest a variety of INl1-deficient cell lines derived from malignant rhabdoid

tumors. It is unclear if the observed difference in Rb activity is due specifically to

absence of INI1 versus BRG1/BRM , or if other differences between the various

cell lines utilized may be responsible.

To determine if Rb participates in INl1-mediated tumor suppression , we

crossed Ini1- heterozygous mice to Rb-heterozygous mice and monitored the

offspring for tumor formation. We found that the tumor curve for mice

heterozygous for both Rb and Ini1 was virtually indistinguishable from that for

Rb-heterozygous mice. Like Rb-heterozygous mice , almost all of the compound

heterozygous mice succumbed to pituitary adenomas. However, approximately

one half of the tumors from the compound heterozygous mice had an atypical

histology. These data suggest that loss of Ini1 may contribute to the

aggressiveness of pituitary adenomas associated with loss of Rb.

Materials and Methods

Mouse strains

Ini1- heterozygous mice on a mixed (C57/BI6 X 129) background and Rb-

heterozygous mice were described previously (76, 129). Tail DNA from mice

was genotyped for Ini1 as described. Rb genotyping was done by PCR using the

following primers: 5'aattgcggccgcatctgcatcatctttatcgc , 5'cccatgttcggtcctag, and

gaagaacgagatcagcag. An annealing temperature of 53 C was used.



Histologic analysis of tumors in mice

Mice were sacrificed when they presented with visible tumors or signs of

wasting. Tumor samples and selected tissues were fixed in 10% buffered

formalin phosphate and processed for paraffin embedding as described

previously (81). Sections were prepared and stained with haematoxylin and

eosin and examined under a microscope.

Results and Discussion

We previously described the generation and characterization of Ini1-

heterozygous mice (76). These Ini1- heterozygous mice were mated to Rb-

heterozygous mice (described in (129)) and compound heterozygous progeny

were intercrossed. Resultant progeny were genotyped for Ini1 and Rb. No Ini1-

null or Rb-null mice were obtained (Table 3.1), regardless of the genetic

background , indicating that loss of Rb does not rescue lethality due to absence of

Ini1 and vice-versa.

Because Ini1-null and Rb-null mice are embryonic lethal (77, 131), only

four Ini1/Rb genotypes were available for tumor analysis: wild-type

(Ini1+/+Rb+/+), Rb-heterozygous (Ini1+/+Rb+/-), Ini1-heterozgyous (Ini1+/-

Rb+/+), and compound heterozygous (Ini1+/-Rb+/-). As reported previously (77),

wild-type mice did not present with tumors during the course of this study. Also

described previously (131), all mice heterozygous for Rb and wild-type for Ini1

presented with pituitary adenomas by 80 weeks of age. Furthermore



Genotype Expected Actual

Ini1 +/+Rb+/+
Ini1 +/+Rb+/-
Ini1 +/+Rb-
Ini1 +/-Rb+/+
Ini1 +/-Rb+/-
Ini1 +/-Rb-
Ini1- Rb+/+
Ini1- Rb+/-
Ini1- Rb-

Table 3. 1: Absence of Rb does not rescue In;1-null embryonic

lethality and vice-versa

Mice compound heterozygous for Ini1 and Rb were intercrossed

and their progeny were genotyped as described in materials and

methods. As shown , no Ini1-null or Rb-null mice were obtained.



approximately 20% of mice heterozygous for Ini1 and wild-type for Rb presented

with poorly differentiated or undifferentiated sarcomas with variable rhabdoid

features. These tumors were described in our previous study (77). Interestingly,

the tumor curve for Ini1+/-Rb+/- mice was similar to that observed for Rb+/- mice

(Figure 3. 1). The vast majority of the compound heterozygous mice (24 of 25)

presented with tumors by 80 weeks of age. Most of these tumors were pituitary

adenomas , with the exception of one tumor, which presented in the neck (Table

2 and data not shown).

Upon histological analysis of a number of the tumors from Ini1+/-Rb+/-

mice , it became clear there were morphological differences from the typical

pituitary adenomas that Rb+/- mice develop. All of the 12 pituitary adenomas

examined from Ini1 +/+Rb+/- mice had a histology that was uniform in

appearance (Figure 3.2). The tumor cells were small with centric nuclei and an

apparently low mitotic index. While many of the pituitary adenomas from the

Ini1+/-Rb+/- mice were indistinguishable from those from Rb+/- mice,

approximately one half (8 of 15 analyzed) of the tumors from the Ini1+/-Rb+/-

presented with an altered phenotype. As shown in Figure 3. , these tumors had

a less uniform appearance. There were many large cells with acentric nuclei. In

addition , the gross mitotic index appeared higher than tumors from the Rb+/-

counterparts. Often , these tumors appeared to have 2-3 different populations

cells: one population that resembled a typical pituitary adenoma and one or more

with an atypical histology.



Rb+/-

Rb+/- lni1 +1 (n=25)

Ini1 +/-

Age (weeks)

Figure 3. 1: Heterozygosity of In;1 does not alter tumor curve of Rb-

heterozygous mice

Survival curve for Ini1+/-Rb+/- mice was generated during this study. Tumor

curve for Ini1 was described previsouly (77). Data for Rb+/- mice of same

strain as compound heterozygous mice were provided by Andrew Koff.

..i



Mouse Age Tumor Characterization
(weeks)

RI133e 104 c/w pituitary adenoma

R255 c/w necrotic pituitary adenoma

R214 cellular poorly differentiated malignant tumor (malignant
pituitary adenoma)

R235 probable pituitary adenoma with foci of atypical or
malignant histology (i nuclear size , pleomorphism
apoptotic cells, mitoses)

R212 c/w pituitary adenoma with slightly atypical histology
(pleomorphism , apoptotic cells)

RI24 pituitary adenoma, and 2) malignant tumor with foci of large
tumor cells with rhabdoid features

RI112e probable pituitary adenoma with focally atypical or
malignant histology

R210 c/w pituitary adenoma

RI18 small aggregates of tumor cells with slightly atypical
histology

RI1 c/w pituitary adenoma

RI25 c/w necrotic pituitary adenoma

Table 2: Representation of tumors from Ini1 +/-Rb+/- mice

Tumors showing atypical morphology are noted



Figure 3.2: Approximately one half of pituitary adenomas from Ini1+/-

Rb+/- mice have an altered morphology

Tumor samples from Ini1 +/-Rb+/- mice were processed for H&E staining as

described in the materials and methods. H&E stained tumor slides for Rb+/-

mice were provided by Andrew Koff. Arrows denote large, rhabdoid-like cells.



We were interested in determining the state of Ini1 in these atypical tumors. 

has been well documented that pituitary adenomas from Rb+/- mice show loss of

heterozygosity at the Rb locus (131 , 175); therefore, loss of Rb alone could not

account for the altered phenotype in the tumors from the compound

heterozygous mice. To date , no pituitary adenomas have been described in

Ini1+/- mice. One possibility is that the pituitary tumors arose when the wild-type

Rb allele was lost and the subsequent loss of Ini1 in some of the tumors resulted

in the development of a distinct tumor type. To determine if the more aggressive

population of tumor cells arose due to loss Ini1 , we are in the process of doing

immunohistochemistry for Ini1 in the atypical tumors.

Discussion

Rb and Ini1 are tumor suppressors required for viability and prevention of

oncogenesis. While Rb and Ini1 have been linked to cell cycle arrest via the

SWI/SNF chromatin remodeling complex , the direct interactions between Ini1

and Rb are less clear. Functional BRG1 is required for the ability of a

constitutively active form of Rb to arrest cells; however, INI1 is dispensable for

this function of Rb (218, 244). On the contrary, the ability of INI1 to arrest cells is

dependent on the presence of functional Rb. These data present conflicting

conclusions as to whether or not Rb and Ini1 are functionally linked. In an

attempt to discern the biological significance of any potential interactions

between these two tumor suppressors , we crossed Ini1- heterozygous and Rb-



heterozygous mice. As mice homozygous null for Ini1 or Rb are embryonic

lethal , we were able to characterize tumor progression only in the compound

heterozygous mice.

Mice that are deficient for Rb and either p27 or p53 , two tumor

suppressors that are on intersecting pathways with Rb , develop tumors at a

faster rate than mice deficient for either tumor suppressor alone (82 , 173). We

report here that the tumor rate in mice heterozygous for both Rb and Ini1 was

unaltered from that for Rb-heterozygous mice. This finding suggests that neither

Rb nor Ini1 require the other to mediate tumor suppression.

Interestingly, approximately one half of the pituitary adenomas that

develop in the Ini1+/-Rb+/- mice have a morphology that is uncharacteristic of

those that normally develop in Rb+/- mice. As mentioned above , these tumors

appear to have two to three subpopulations of cell types. At least one population

is similar to that which is seen in typical pituitary adenomas. In contrast, the

other population(s) has a morphology that is similar in appearance to tumors that

develop in Inn- heterozygous mice. Specifically, large cells reminiscent of

rhabdoid cells are visible in these tumors (Figure 3. , arrow).

To date , we have yet to identify any pituitary adenomas from Rb-

heterozygous mice that have an altered morphology similar to that described for

some of the tumors that arose in Ini1 +/-Rb+/- mice. Furthermore , we never

observed any pituitary tumors , or neuronal tumors , in mice heterozygous for only

Ini1. Therefore , it is likely that Rb and Ini1 are both disrupted in the altered



pituitary adenomas. We are currently trying to determine if Ini1 is indeed lost in

these tumors.

The significance of the altered morphology of the pituitary adenomas in

Ini1+/-Rb+/- mice is unclear. While their non-uniform morphology suggests that

these tumors are more aggressive, there is no correlation in this study between

tumor morphology and the age of the mouse at the time of sacrifice. Of course

as it is not feasible to visually monitor progression of these tumors , it is possible

that they proliferated more quickly after developing the altered morphology. It will

be interesting to determine if any of the tumor cells lost Ini1 expression and

whether or not absence of Ini1 expression correlates with morphology.

Regardless , though absence of both Ini1 and Rb does not appear to accelerate

tumorigenesis , Ini1 does contribute to the tumor morphology associated with loss

of Rb.

As mentioned above , BRG1 is required for the ability of Rb to growth

arrest cells. Brg1-null mice are early embryonic lethal; however, a small

percentage of mice heterozygous for Brg1 present with tumors (27). It would be

interesting to determine if loss of Brg1 alters the rate of tumorigenesis in Rir

heterozygous mice. Such experiments may determine if Ini1 functions

independently of SWI/SNF.

;.:.;



Chapter IV

Heterozygosity at the Ini1 Locus Inhibits Tumor Formation in p53-heterozygous

Mice and Alters Tumor Spectrum

Introduction

INI1 is a component of all SWI/SNF chromatin remodeling enzymes

purified to date. It originally was identified in mammals based on its homology to

the yeast Snf5 protein as well as via a yeast two hybrid assay as a protein that

interacts with the HIV integrase protein (107 158). INI1 has been well

established as a tumor suppressor in humans and mice. 
INI1 is mutated in a

number of human tumors , including rhabdoid tumors, choroid plexus carcinomas

medullablastomas , central primitive neuroectodermal tumors , and a few cases of

leukemia (15- 69, 205). Furthermore , constitutional mutations in INI1 have

been identified in some of these tumors (17 , 205).

Ini1 also functions as a tumor suppressor in mice (76, 115, 190). While

Ini1-null mice are embryonic lethal , 15-30% of mice heterozygous for Ini1 present

with tumors , all of which are poorly differentiated or undifferentiated tumors with

variable rhabdoid features. All tumors examined show loss of heterozygosity at

the Ini110cus. Furthermore , almost 100% of mice bearing a reversibly

inactivating conditional allele of Inn present rapidly with tumors. While many of

these tumors have variable rhabdoid features , the vast majority are CD8+ T-cell

lymphomas (189).



While it is apparent that INI1 is a potent tumor suppressor, the mechanism

by which it exerts its effect is unclear. The p53 tumor suppressor is one of the

most studied transcription factors to date. It is mutated or deleted in a wide

variety of human tumors , including those of the head and neck (143).

Interestingly, most of the tumors that present in Ini1- heterozygous do so in the

head and neck region. Furthermore , Ini1 has been linked indirectly to p53 via the

SWI/SNF complex , which has been shown to co-purify from human cells with the

breast cancer susceptibility protein BRCA1 (20). An ATPase-active BRG1 is

required for the ability of BRCA 1 to transactivate a p53-dependent reporter

construct. A more recent study demonstrated that BRG1 and INI1 interact with

p53 via co- immunoprecipitation assays (126). This study also presented data

from transfection experiments that suggested SWI/SNF is necessary for the

activation of p53-mediated transcription.

To determine if Ini1 and p53 cooperate to suppress tumorigenesis , we

crossed mice heterozygous for Ini1 to mice heterozygous for p53 and monitored

the progeny for tumor progression. To our surprise , mice heterozygous for both

tumor suppressors presented with significantly fewer tumors than mice

heterozygous for p53 alone. In addition , the tumor distribution in compound

heterozygous mice was different from that in p53-heterozygous mice. These

data suggest that Ini1 and p53 functionally interact in vivo; however, contrary to

previously published work, it appears that Ini1 may be involved in the repression

of p53-responsive genes.



Materials and Methods

Mouse strains

Ini1- heterozygous mice on a mixed (C57/BI6 X 129) background and p53-

heterozygous mice were described previously (76, 99). Ini1 genotyping was

done on tail DNA as described (77). Genotyping for p53 was done by Southern

blot on EcoRI digested tail DNA (100).

Blastocyst culture

Blastocysts from Ini1 +/-p53-

/- 

intercrosses were flushed at 3.5 days post

fertilization with M15 media (DMEM , 15% fetal calf serum , 100 JlM 

mercaptoethanol , 2 mM glutamine , and 1 X penicillin/streptomycin) and cultured

in tissue culture plates for 96 hr. Outgrowths were genotyped for Ini1 

described previously (76).

Histologic analysis of tumors in mice

Mice were sacrificed when they presented with visible tumors or signs of

wasting. Tumor samples and selected tissues were fixed in 10% buffered

formalin phosphate and processed for paraffn embedding as described

previously (81). Sections were prepared and stained with haematoxylin and

eosin and examined under a microscope.

Western analysis of tumor samples
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Control tissues and tumor samples were homogenized in lysis buffer

containing 50 mM tris-HCI , pH 7. 150 mM NaCI , 0.5% NP-40, 20% glycerol , 1

mM DTT , 1 J1g/mL pepstatin A , 4 J1g/mL leupeptin , and 1 mM PMSF. Extracts

were resolved by SDS-PAGE and western analysis for Ini1 protein was

performed as described previously(48). The p53 western was performed using

Ab-7 from Oncogene.

Results

The generation and characterization of Ini1- heterozygous mice and p53-

heterozgyous mice has been described previously (76, 99). We crossed the

individual heterozygous mice to generate mice heterozygous for both Ini1 and

p53. It has been established that p53-null mice are viable , while Ini1-null mice

are early embryonic lethal. To determine if loss of p53 rescues embryonic

lethality due to absence of Ini1 , compound heterozygous mice were intercrossed.

No Ini1-null mice were obtained , indicating that absence of p53 is not sufficient to

rescue Ini1-nulllethality (Table 4. 1).

Mice null for the breast cancer susceptibility gene Brca1 are early

embryonic lethal. However, in the absence of p53 , the day of lethality for Brca 1-

null embryos is extended from days 7.5 post-fertilization to days 9.5 post-

fertilzation (78). As mentioned above , functional BRG1 is required for the ability

of BRCA 1 to transactivate a p53-dependent reporter construct, providing a link



Genotype Expected Actual

Ini1 +/+p53+/+
Ini1 +/+p53+/-
Ini1 +/+p53-
Ini1 +/-p53+/+
Ini1 +/-p53+/-
Ini1 +/-p53-
Ini1- p53+/+
Ini1- p53+/-
Ini1- p53-

Table 4. 1: Absence ofp53 does not rescue Ini1-null

embryonic lethality

Ini1+/-p53+/- mice were intercrossed and resultant progeny

genotyped. As shown , no Ini1-null mice were obtained.



between p53 and SWI/SNF pathways (128). To determine if absence of p53 also

allows for an extended survival of Ini1-null embryos Ini1+/-p53-

/- 

mice were

intercrossed and the embryos harvested at day 3.5 post fertilization. These

blastocysts were plated in culture and outgrowths were genotyped 72 hours later.

Ini1+/+p53-

/- 

and Ini1+/-p53-

/- 

blastocysts adhered to the tissue culture

substratum , formed trophectoderm , and expanded their inner cell masses (data

not shown). In contrast Ini1- p53-

/- 

blastocysts did not undergo these

processes , indicating that Ini1-

/- 

embryos are unable to progress beyond the

blastocyst stage in vitro even in the absence of p53.

Because p53-null mice present with tumors particularly fast (100), a

change in the rate of tumor progression is better observed in Ini1-heterozygous

mice on a p53-heterozygous background rather than a p53-null background.

Therefore , we followed Ini1+/- p53+/- mice for tumor development and compared

this rate to those obtained for Ini1- heterozygous mice and p53-heterozygous

mice. To our surprise , the rate of tumorigenesis was reduced in the compound

heterozygous mice compared to p53-heterozygous mice. While all of the

Ini+/+p53+/- mice presented with tumors by 125 weeks of age, only 12 of the 48

Ini1 +/-p53+/- mice presented with tumors (Figure 4. 1). Furthermore , as shown in

Figure 4. , the distribution of tumor spectrums in compound heterozygous mice

was altered relative to p53-heterozygous mice.

Two lymphomas that presented in different Ini1 +/-p53+/- mice were

harvested for Western analysis. As shown in Figure 4.3, both of these tumors



100

p53+/-lni1 +/. (n=48)

p53+/-

Ini1 +/-

Figure 4. 1: Ini1+/-p53+/- mice present with fewer tumors than p53+/-

mice

Mice showing signs of tumorigenesis or wasting were sacrificed and

graphed according to age in weeks. Curves for p53+/- mice and Ini1 +/-

Age (weeks)

mice are consistent with those published (77 100)
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Figure 4. 2: Altered tumor spectrum in Ini1+/-p53+/- mice

The percentage of tumor types was graphed for p53+/- mice and Ini+/-

p53+/- mice. Each color represents the same tumor type in both pie

graphs.
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Ini1

p53

Figure 4.3: Analysis of Ini1 and p53 protein levels in tumors from

Ini1+/.p53+/. mice

Tumor samples and cells were processed for Western analysis as

described in the materials and methods. A204 is an Ini1-deficient cell line

derived from a human malignant rhabdoid tumor. Ini117 is a tumor

sample derived from an Ini1- heterozygous mouse.



lost expression of p53 protein , while only one showed loss of Ini1. Interestingly,

the mouse that presented with the lymphoma devoid of both p53 and Ini1 also

had the onset of a lymph tumor in the mandible region , similar to tumors

described previously in Ini1- heterozygous mice.

Discussion

We crossed Ini1- heterozygous mice to p53-heterozygous mice in an

attempt to dissect a potential mechanism by which Ini1 suppresses

tumorigenesis. We show here the occurrence of a significant latency in the rate

of tumorigenesis in mice heterozygous for both Ini1 and p53 compared to mice

heterozygous for p53 alone. We further show an alteration in the spectrum of

observed tumors. Though we examined only a few tumor samples from the

compound heterozygous mice , both lost expression of p53, while only one lost

expression of Ini1.

Heterozygosity for the tumor suppressor p53 is sufficient to result in tumor

formation in mice without the need for loss of heterozygosity (243).

Tumorigenesis likely is due to the fact that cells heterozygous for p53 have

reduced levels of p53 protein , and hence reduced p53 activity. Our findings

suggest that Ini1 may be involved in the repression of p53 activated genes , such

that cells heterozygous for Ini1 are better able to cope with the reduced levels of

p53. Accordingly, p53 would have to be lost in order for tumorigenesis to occur.

This hypothesis appears to be inconsistent with data published previously, in



which SWI/SNF was shown to be involved in the activation of p53-mediated

transcription (126). However, those studies entailed transfection assays in

transformed cells and the mode of action of SWI/SNF in vivo may be different.

It will be interesting to determine the rate of tumorigenesis in mice

heterozygous for Ini1 and null for p53. These results would indicate whether or

not the presence of p53 is required for the observed suppression of

tumorigenesis. Additioanlly, we are interested in characterizing the biochemical

interactions between Ini1 and p53. Studies are currently underway utilizing Ini1

and p53-targeted mouse embryonic fibroblasts to examine the growth

characteristics and DNA damage response of cells heterozygous for both of

these tumor suppressors.



Chapter V

Compensation of the Ini1 Tumor Suppressor

Introduction

Tumor suppressors play important roles in regulating cellular proliferation

and preventing oncogenesis in higher eukaryotes. Gene targeting experiments

in mice have facilitated the identification and further study of a number of tumor

suppressors. Generally, when mice heterozygous or homozygous-null for a

specific gene present with tumors, the factor encoded by that gene is classified

as a tumor suppressor.

INI1 is a component of the mammalian SWI/SNF chromatin remodeling

enzymes. It was identified simultaneously by two groups as a protein that shares

homology to the yeast Snf5 protein as well as via a yeast two hybrid assay as a

protein that interacts with the HIV integrase protein (107 , 158). The first

evidence implicating INI1 as a tumor suppressor arose when Versteege et al.

identified bi-allelic mutations in IN/1 in malignant rhabdoid tumors, an aggressive

tumor of the soft tissues (245). Mutations in INI1 were found subsequently in

other tumors , such as choroid plexus carcinomas , medullablastomas , central

primitive neuroectodermal tumors , and a few cases of lymphomas (15- , 69,

205). Identification of constitutional mutations in a subset of these tumors further

supported the role of INI1 as a tumor suppressor in humans (17 205).



Gene targeting experiments confirmed that Ini1 also functions as a tumor

suppressor in mice (76 , 115 , 190). While Ini1-null mice are embryonic lethal , 15-

30% of mice heterozygous for Ini1 present with tumors , all of which are poorly

differentiated or undifferentiated tumors with variable rhabdoid features. All

tumors examined show loss of heterozygosity at the Ini110cus. Furthermore

almost 100% of mice bearing a reversibly inactivating conditional allele of Ini1

present rapidly with tumors (189). The vast majority of these tumors have been

classified as CD8+ T-cell lymphomas.

It is interesting to note the difference in tumor penetrance between Ini1-

heterozygous mice and the conditionallni1 mice. These findings indicate that

Ini1 must be lost for tumorigenesis to occur. It has been documented that

heterozygosity for the tumor suppressor p53 is sufficient to result in tumor

formation in mice without the need for loss of heterozygosity (243).

Tumorigenesis likely is due to the fact that cells heterozygous for p53 have

reduced levels of p53 protein. Furthermore , other tumor suppressors , such as

p53, Caveolin- , Fhit, TaR- II (Transforming Growth Factor-a Type II Receptor),

and Sno, also exhibit a marked reduction in protein and/or RNA levels in

heterozygous mice (55 , 62 , 95 , 185, 208). In these cases , haploinsufficiency is

correlated with developmental defects and/or tumorigenesis. In contrast, we

report here that mouse tissues and cells heterozygous for Ini1 had levels of Ini1

protein and RNA equivalent to those in WT tissues and cells. It is possible that



this compensation of Ini1 is responsible for the low tumor penetrance in Ini1-

heterozygous mice.

Because regulation of Ini1 plays an important role in mammalian viability,

we were interested in further characterizing the method by which Ini1 message is

compensated. We show here that the rate of transcription from the Ini1 promoter

is increased in Ini1- heterozygous cells , accounting for the increase in steady-

state message levels. Furthermore, we find that exogenous expression of Ini1

results in a decrease in expression from the endogenous Ini1 promoter

indicating that Ini1 plays a role in the regulation of its own promoter. These

findings extend our current knowledge of the regulation of this tumor suppressor.

Materials and Methods

RT-PCR

Indicated tissues were harvested from one WT mouse and two Ini1-

heterozygous mice and homogenized in Trizol (Life Technologies). RNA was

isolated following manufacturer s protocol. Reverse transcription was performed

using random hexamers and Mu-MLV RT (Invitrogen) with 2 Ilg of RNA for each

tissue. The following oligos were used for amplification: Ini1

gcgtcaagtttcagctggagg and 5'caccagcacctcaggctgtgacgc; GAPDH

gcagtggcaaagtggagattgt and 5'cacggccatcacgccacagctt; 18S rRNA

acttggataactgtggtaattc and 5'aattaccgcggctgctggcacc. Sample amplifications
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were done by real-time PCR to ascertain the linear range for each primer set.

Band intensities were quantitated utilizing ImageQuant software.

Northern analysis

RNA was isolated from WT and Ini1- heterozygous mouse ES cells and

MEFs using Trizol. For each sample, 10 Ilg of mRNA was electrophoresed on a

formaldehyde gel and transferred to GeneScreen plus membrane. Hybridization

was performed at 50 C in 10% Dextran Sulfate, 1.5X SSPE , 1 % SDS, 0.5% Milk

and 625 1l9/mL yeast RNA extract. Blots were washed twice, 20 minutes each

with 10%SDS, 2X SSC at 50 C and once 15 minutes with %SDS, 0.2X SSC at

C. Blots were then exposed to a Phospholmage screen and quantitated

using ImageQuant softare.

Western analysis

Indicated tissues were homogenized in NP-40 Lysis Buffer (50 mM Tris-

HCI , pH 7. 150 mM NaCI , 0.5% NP-40, 20% Glycerol containing 1 mM DTT , 4

1l9/mL leupeptin , 1 1l9/mL pepstatin A, and 1 mM PMSF) and briefly sonicated.

Samples were centrifuged at 4 C for 10 minutes at 10000 X g. Protein extracts

were transferred to fresh Eppendorf tubes and 50 Ilg of each sample was

electrophoreses on SDS-polyacrylamide gels , then transferred to nitrocellulose

membranes. Antibodies against Ini1 , Brg1 , Brm , and Tubulin have been

described previously (48 , 76). Blots were developed using Amersham ECL



reagent, exposed to autoradiograph film , which were then scanned and

quantitated using ImageQuant software.

Half-Life Assays

WT and Ini1- heterozygous MEFs were grown to 80% confluency prior to

addition of 10 ug/mL Actinomycin D (Sigma). Cells were harvested at 2 hour

intervals between 0-12 hours after addition of Actinomycin 0 and again for a final

time-point at 24 hours. Samples were processed for RNA using Trizol reagent

(Life Technologies) following manufacturer s protocol. Reverse transcription was

performed using random hexamers and Mu-ML V RT (lnvitrogen) with 2 ug of

RNA for each time-point. Ini1 , GAPDH , and 18S rRNA were amplified utilizing

real-time PCR (MJ Research) with Qiagen SYBR-green reagents. Primers used

are described above. The quantity of starting material for each product at each

time-point was determined using software provided with real-time PCR machine.

Ini1 and GAPDH are graphed relative to 18S rRNA Results shown are the

average of two experiments done in triplicate for each time-point. Time 0 was

arbitrarily set to 1 , and the remaining time-points were adjusted accordingly.

Nuclear runon transcription assay

Nuclear runon transcription assays were done as described previously by

Schubeler and Bode (ww.biomednet.com). Wild-type and Ini1-heterozygous

mouse embryonic fibroblasts (-4 X 10 ) were collected by trypsination into 10 mL



conicals and centrifuged at room temperature at 200 X g for 5 minutes. Cell

pellets were washed once with phosphate-buffered saline and collected by

centrifugation at 200 X g for 5 minutes at 4 C. 5 mL of cold lysis buffer (10 mM

Tris- HCI , pH 7.4 , 10 mM NaCI , 3 mM MgC!2, 0.5% NP40) were added to the cell

pellets , which then were vortexed at low speed and incubated on ice for 3

minutes. Nuclei were collected by centrifugation at 500 X g for 5 minutes at 4

These lysis steps were repeated three more times. The final nuclear pellets were

resuspended in 100 J.L nuclear freezing buffer (50 mM Tris-HCI , pH 8.3, 40%

glycerol S mM MgCI , 0. 1 mM EDTA) and either used directly or frozen in liquid

and stored at

Nuclei suspensions were mixed with 30 J.L of 5X runon buffer (25 mM

Tris-HCI , pH8, 12.5 mM MgCI , 750 mM KCI , 1.25 mM each of ATP , GTP , and

CTP , and 100 J.Ci a- UTP) and incubated at 30 C for 30 minutes. DNA was

digested by the addition of 15 units of RNase-free DNasel and incubation at 30

for 15 minutes. RNA was isolated using Trizol reagent. Reaction mixtures (- 150

J.L) were transferred to 2 mL Eppendorf tubes containing 1.5 mL of Trizol and

shaken for 2 minutes. Then , 300 J.L CHCIa were added and the mixtures were

shaken for another 5 minutes. Samples were centrifuged at 12000 X g for 15

minutes at 4 C. The aqueous phase was transferred to a fresh Eppendorf tube

containing 800 J.L of isopropanol , mixed for 5 minutes at room temperature , and

RNA pelleted by centrifugation at 12000 X g for 15 minutes at 4 C. RNA pellets



were washed twice with 75% ethanol , air dried , and dissolved in 100 ilL water.

Incorporation of p was determined by Cerenkov counting on a 1 ilL aliquot.

For hybridization , plasmid fragments of interest were dot blotted manually

to GeneScreen plus membrane. NaOH and EDT A were added to linearized

cDNAs corresponding to exons 1-3 of Ini1 , full- length GAPDH , and empty vector

control to a final concentration of 0.4 M and 10 mM , respectively. Samples were

boiled for 10 minutes , chilled on ice and then added in 2 ilL aliquots to

membrane that had been cut to size and wetted in dH20. The membrane then

was rinsed in 2X sse and DNA cross- linked using a Stratalinker.

Prehybridization was done for at least 2 hours at 60 C in 1 % SDS, 10% dextran

sulfate , 1.4 M NaCI , 325 1l9/mL each of salmon sperm DNA and yeast RNA

extract. Equivalent amounts of runon RNA (-3 X 10 counts/min) from WTand

Ini1-heterozygous cell extracts were added to blot and hybridization was

performed for 16-42 hours. Blots then were washed: 2X SSC (2 X 5 min , RT);

2X SSC, 1 % SDS (15 min , 65 C); 2X sse (5 min , RT); 2X sse, 10 1l9/mL

RNase A (10 min , 37 C); 2X SSC (5 min , RT); 0. 1 X SSC (3 X 5 min , RT) and

exposed to Phospholmage screen. Hybridization was quantitated using

ImageQuant software.

Beta-galactosidase assay

BOSC cells were transfected with retroviral pBABE vector or retroviral

pBABE vector encoding a FLAG-epitope-tagged Ini1 using Fugene reagent



according to manufacturer s protocol. After 48 hours, the transfected BOSC cell

supernatants were used to infect Ini1-heterozygous mouse embryonic fibroblasts

at 80%. 48 hours post- infection , blasticidin (10 ug/mL) was added to the MEFs

to select for infected cells. After 48 hours of selection , adherent cells were

washed with 1 X PBS twice. Residual PBS was removed and sufficient volume of

1 X Reporter Lysis Buffer (Promega) to cover the cells. Cells were incubated at

room temperature for 15 minutes and then transferred to an Eppendorf tube.

Tubes were centrifuged at top speed for 2 minutes at 4 C and supernatants

transferred to fresh tubes. An equal volume of 2X assay buffer (200 mM sodium

phosphate buffer, pH 7. 3, 2 mM MgCb, 100 mM -mercaptoethanol , and 1.

mg/mL ONPG) was added to each cell lysate and incubated at room temperature

until the first sample turned a faint yellow. Reactions were stopped with 0.

Sodium Carbonate and absorbances read at 420 nm.

Results

We previously generated mice heterozygous for Ini1 utilizing an

inactivating retroviral insertion vector (76). During the course of this study, we

observed that various tissues from Ini1- heterozygous mice had levels of Ini1

protein equivalent to those from wild-type (WT) tissues (Figure 5. 1 a). 

determine if compensation of Ini1 was occurring at the level of protein regulation

or mRNA regulation , we looked at steady state levels of Ini1 mRNA in various

tissues from WT and Ini1- heterozygous mice by RT-PCR. The number 



amplification cycles used was determined to be in the linear range by real-time

PCR (data not shown). As shown in Figure 5. 1 b , WT and Ini1-heterozygous

tissues contain roughly equivalent levels of Ini1 message , indicating that

modulation of Ini1 mRNA accounts for the observed compensation. We next

looked at the levels of Ini1 protein and message in WT and Ini1-heterozygous

mouse embryonic stem (ES) cells and mouse embryonic fibroblasts (MEFs).

Similar to results obtained for mouse tissues , cells heterozygous for Ini1 had

roughly equivalent levels of Ini1 protein and RNA as WT cells (Figure 5.2).

We hypothesized that compensation of Ini1 mRNA was achieved by either

an increase in the stability of Ini1 mRNA or an increase in the rate of transcription

from the Ini1 promoter. We first compared the half- life of Ini1 mRNA in WT cells

to that of Ini1 mRNA in Ini1- heterozygous cells. Cells were exposed to 10 ug/ml

Actinomycin D and then harvested at various intervals until 24 hours. Ini1 and

GAPDH mRNA decay was monitored by real-time PCR. As shown in Figure 5.

the decay rate of Ini1 message in Ini1- heterozygous cells is the same as that in

WT cells , suggesting that Ini1 compensation is not mediated by an increase in

Ini1 mRNA stability. This is not surprising since Ini1 message appears to be

long- lived in MEFs.

We next looked at the rate of transcription of Ini1 in WT and Ini1-

heterozygous cells by a run-on transcription assay. Newly synthesized RNA

from WT and Ini1- heterozygous cells was labeled in vitro with UTP and used

to probe cDNAs immobilized on a membrane. As described in our previous
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Figure 5.1: Tissues from Ini1-heterozygous mice have similar levels of

protein and mRNA as wild-type mice

Indicated tissues from wild-type mice and Ini1-heterozygous mice were

harvested and processed for Western analysis (A) or RT-PCR (B.) as

described in the materials and methods. The intensity of each protein or

cDNA band was determined using ImageQuant softare.
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Figure 5.2: Ini1-heterozygous cells have similar levels of Ini1 protein and

RNA as wild-type cells

Wild-type and Ini1- heterozygous ES cells or MEFs were processed for Western

analysis (A.) or Northern analysis (B.) as described in the materials and

methods. Intensity of each protein or RNA band was determined using

ImageQuant software.
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Figure 5.3: The decay rate of Ini1 message is not altered in Ini1-heterozygous

cells

Wild-type and Inn- heterozygous cells were exposed to Actinomycin D and harvested at
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various time-points thereafter. Message levels of Ini1 and GAPDH were determined by

real-time PCR and graphed relative to 18 rRNA



manuscript, Ini1-heterozygous cells contain one wild-type allele of Ini1 as well as

an allele of Ini1 that is disrupted by the insertion of a retroviral vector within intron

3. This insertion results in the synthesis of two fusion transcripts: one containing

exons 1-3 of Ini1 fused to 13-galactosidase and another containing puromycin

fused to the remaining exons of Ini1. In order to identify only those transcripts

generated from the Ini1 promoter, a cDNA of Ini1 corresponding to exons 1-

was used in the run-on assay. GAPDH cDNA and empty plasmid vector were

used as controls. After hybridization and extensive washing, blots were exposed

to a Phospho Image screen , scanned, and quantitated utilzing ImageQuant

software. As illustrated in Figure 5.4 Ini1- heterozgous cells contain almost

double the amount of radiolabeled Ini1 RNA as WT cells. Thus , the rate of

transcription from the Ini1 promoter is increased in Ini1- heterozygous cells

accounting for the observed compensation.

To determine if Ini1 plays a role in the regulation of its own transcription

we exogenously expressed Ini1 in the Ini1- targeted MEFs and examined the

effect on Ini1- promoter activity. We utilized the fact that these cells contain a 13-

galactosidase gene cassette under the control of the Ini1 promoter. The activity

of the Ini1 promoter was monitored in Ini1- heterozygous cells infected with either

a retrovirus encoding Ini1 or the empty retroviral vector control by assaying for 13-

galactosidase activity using a spectrophotometric assay described in the

Materials and Methods. We found that cells infected with Ini1 exhibited reduced

13-galactosidase activity as compared to cells infected with empty retroviral vector
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Figure 5.4: The rate of trnscription of Ini1 is increased in In;1-heterozgyous cells

A. Nuclear run-on assays were performed as describe in the materials and methods.

Representative blots demonstrating increased levels of newly synthesized Ini1 RNA in 
Ini1-

heterozygous cells.

B. Graphical representation of two nuclear run-on experiments. The intensity of Ini1

relative to GAPDH was arbitrarily set to 1 for WT samples and the intensity of Ini1/GAPDH

for Ini1-heterozygous samples was set accrdingly.
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Figure 5.5: The expression level of Ini1 is tightly regulated

A. Ini1-heterozygous cells were infected with a retroviral vector encoding Ini1 or an empty

retroviral vector. Relative gal activity was determined as described in the materials and

methods. The graph represents results from two experiments done in triplicate.

B. Expression of FLAG epitope-tagged Ini1 in cells infected with Ini1-encoding retroviral

vector.



(Figure 5.5). Because we measurined activity of the galactosidase protein

which is very stable, it is likely that transcription from the Ini1 promoter is reduced

even further than the reduction observed for galactosidase activity. Thus , it is

clear that Ini1 plays a role , direct or indirect, in the regulation of its own

transcription.

Discussion

Here we report that the mammalian tumor suppressor Ini1 is upregulated

in Ini1- heterozygous cells by an increase in the rate of transcription from the Ini1

promoter. Furthermore , Ini1 appears to playa role in the regulation of its o

promoter as exogenous expression of Ini1 results in decreased activity from the

Ini1 promoter. The observed transcriptional compensation for 
Ini1 heterozygosity

likely contributes to the low tumor penetrance in 
Ini1- heterozygous mice , as the

increase in transcription rate from the single functional allele prevents potentially

deleterious effects due to a decreased level of Ini1.

In Drosophila dosage compensation is achieved by increasing the rate of

transcription of genes on the single X chromosome in males to approximately

double that of genes on each of the two X chromosomes in females. In

mammals, few cases involving a compensating increase in transcriptional rate

have been documented. It has been postulated that dosage compensation of the

X chromosome in Drosophila males originally evolved on a gene to gene basis

(150). As such , it is reasonable that gene dosage compensation in mammals



also exists on a gene to gene basis. It is likely that such events have not been

characterized previously in mammals since phenotypic differences should not be

observed in heterozygous individuals when the targeted gene is upregulated. In

the case of Ini1 , the non-targeted allele must be disrupted before any phenotypic

difference is observed.

Clearly, it would be interesting to determine the exact mechanism by

which the rate of transcription of Ini1 is increased in Ini1- heterozygous cells. To

date, the promoter of Ini1 has not been defined. A database search for known

consensus binding sites of transcription factors within the region upstream of the

Ini1 start site yielded no obvious candidates that may be responsible for the

observed upregulation. It should be noted that while dosage compensation in

Drosophila has been studied extensively, the exact mechanism by which this

compensation occurs has yet to be elucidated.



Chapter VI

Summary

It has become apparent that INI1 plays a critical role in mammalian

development and tumor suppression. Work presented in this thesis has shown

that Ini1 is essential for murine embryogenesis. Mice homozygous-null for Ini1

fail to adhere to substratum , form trophectoderm , and expand their inner cell

mass. Because embryonic lethality occurs so early, it is difficult to determine the

function of Ini1 at this stage of development. Data from another group show that

Ini1 is maternally deposited in oocY)es (115). These maternal stores of Ini1 can

be detected up to day 3.5 post fertilization , near the time at which null embryos

die. It is possible that Ini1 is required for general cell viability rather than for a

specific function at a determined developmental time-point. This is supported

further by the fact that conditionallni1-knockout mice die shortly after inactivation

of Ini1 expression (189).

We also have shown that mice heterozygous for Ini1 are predisposed to

poorly differentiated or undifferentiated sarcomas with variable rhabdoid features.

All of the tumors examined show loss of heterozygosity at the Ini110cus.

Although the Ini- heterozygous mice do not recapitulate completely the human

tumors associated with mutations in Ini1 they have provided a useful model

system for addressing the function of Ini1 in suppressing tumorigenesis.



Ini1 may function as a tumor suppressor by interacting with other known

tumor suppressors. We focused on Rb and p53 because there were existing

data in the literature linking these tumor suppressors to SWI/SNF and/or INI1.

Most of these data , however, were generated using transformed cell lines. We

were able to address the in vivo functions of Ini1 by utilizing the Ini1-

heterozgyous mice in crosses with mice heterozygous for either 
Rb or p53.

Data we obtained suggest that Ini1 and Rb do not cooperate to suppress

tumorigenesis. This is consistent with transfection experiments in which INI1 is

not required for the ability of Rb to growth arrest cells derived from human

malignant rhabdoid tumors (244). However, it appears that Ini1 may contribute to

the progression of Rb-deficient pituitary tumors , as mice heterozygous for both

Rb and Ini1 present with tumors that have a morphology altered from that of

typical pituitary adenomas.

When we generated mice heterozygous for both Ini1 and p53, we were

hoping to discover that these two factors share overlapping pathways in

suppressing tumorigenesis. On the contrary, we found that Ini1 may be involved

in the repression of p53-responsive genes, such that p53 activity is upregulated

in Ini1-heterozygous cells. This was a surprising discovery in lieu of the fact that

previous data suggested that SWI/SNF is required for p53-mediated

transcriptional activation (20, 126). However, it is important to keep in mind that

these previous studies were done using transfection assays in transformed cells.
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It will be interesting to further explore the function of Ini1 on p53 activity in mouse

embryonic fibroblasts with targeted deletions in Ini1 and/or p53.

The promoter of INI1 has yet to be identified and as such , little is known

about the regulation of this gene. As presented in this thesis, we were able to

show that the expression of Ini1 is regulated to ensure that relatively constant

levels of Ini1 are present at a given time. Therefore , when one allele of Ini1 

disrupted, the functional allele is transcriptionally upregulated. Likewise , when

Ini1 is expressed exogenously, the endogenous alleles are down-regulated. The

fact that Ini1 is compensated in heterozygous cells and tissues has implications

on other aspects of this thesis. For instance, this compensation may explain why

only 20% of mice heterozygous for Ini1 present with tumors , as loss of

heterozygosity may be required for tumor development. Furthermore, care wil

have to be given to interpretations of the crosses described above. If the steady-

state levels of Ini1 protein are equivalent in wild-type and Ini1-heterozygous cells

why is there a difference in the rate of tumorigenesis between Ini1 +/+p53+/- mice

and Ini1+/-p53+/- mice? One possibility is that the compensation is not exact. In

fact, we found that Ini1 mRNA levels in Ini1- heterozygous cells were

approximately 85% of those in wild-type cells. Another possibility is that the

compensation of Ini1 is disrupted in p53-heterozygous tissues. Preliminary

Western analysis suggests that this is not the case. Lastly, it is possible that the

mechanism by which Ini1 is upregulated also affects p53 or other factors that

may playa role in stimulating p53 activity.
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Of course , there is much yet to learn about the normal activities of INI1.

Continued research hopefully will dissect the pathways in which INI1 plays a role,

both in cell viability and tumor suppression. It also will be important to determine

if INI1 functions solely in the context of the SWI/SNF complexes , or if it has a

distinct role.
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Appendix A

Preliminary Data

The Role of Brg1 in Early Mammalian Development

In yeast, the activity of the SWI/SNF enzyme is required for the expression

of the mating type switch gene HO and the SUC2 invertase required for sucrose

fermentation (23, 167 216). Not surprisingly, there are no mammalian homo logs

of these genes. As such , one of the major thrusts of our lab has been to identify

the mammalian gene targets of SWI/SNF.

We have been interested particularly in the gene regulation events

occurring during mammalian embryogenesis that may require SWI/SNF activity.

Mice homozygous-null for the ATPase subunit Brg1 of the mammalian

SWI/SNF complex are early embryonic lethal , with death occurring between days

5 and 6.5 post-fertilization (27). Because lethality occurs so early, it is not

possible to generate mouse embryonic fibroblasts lacking Brg1. Likewise Brg1-

null embryonic stem (ES) cells are not viable , precluding the ability to study the 

vitro differentiation of cells lacking Brg1 protein. To circumvent this obstacle , we

generated mouse ES cells that constitutively expressed a dominant negative

version of human BRG1 and examined the ability of these cells to differentiate 

vitro.

Mouse embryonic stem cells are pluripotent cells that can differentiate into

a variety of lineages. When plated in methylcellulose , ES cells wil differentiate
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into the three germ layers (endoderm , mesoderm , and ectoderm), muscle

lineages , hematopoietic lineages , and neuronal lineages. The gene regulation

events that occur throughout the differentiation process can be monitored by RT-

PCR for various lineage-specific factors. We found that mouse ES cells

expressing dominant negative BRG1 were defective in their ability to

differentiate. However, preliminary experiments indicate that the expression of

only a subset of germ layer markers was altered, suggesting that the inability of

these cells to differentiate properly was not due to a global defect in transcription.

Rather, it appears that SWI/SNFactivity regulates the expression of specific

factors required for mammalian development.

Materials and Methods

Generation of Cell Lines

AB2.2 mouse embryonic stem cells were electroporated with a linearized plasmid

bearing a FLAG epitope-tagged , dominant-negative version of BRG1 (K798R)

under control of a retroviral L TR. Puromycin-resistant clones were harvested for

Western analysis for FLAG as described previously (49). Of 85 puromycin-

resistant colonies screened , only one expressed significant levels of dominant-

negative BRG1 protein. 3E3 is a FLAG-expressing clone , while E1 is a clone

that was puromycin resistant but did not express detectable levels of FLAG-

tagged protein.

Differentiation of ES Cells
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ES cells of interest were grown to no more than 60% confluency on mitotically

inactivated fibroblasts engineered to express leukemia inhibitory factor (LlF). 

day 0 of differentiation ES cells were trypsinized and resuspended in DMEM with

15% FCS and 150 J.M monothiolglycerol (MTG). Cells were plated in 1 %

methylcellulose media in DMEM + 15% FCS + 150 J.M MTG at 20 000 cells/ 60

mm Petri dish.

RT-PCR

At indicated times , cells were harvested and processed for RNA using Trizol (Life

Technologies), following the manufacturer s protocol. For each time-point , 1 mg

of RNA was subjected to reverse transcription using AMV-RT (Gibco) and oligo

dT. Germ layer and control markers were amplified using the following primers:

Hprt , F , 5' GCTGGTGAAAAG GACCTCTCGAAGTG- , R , 5' ATGGCCACAGG

ACTAGAACACCTGC- , internal (I), 5' CAAAGCCTAAGATGAGCGCAAGTT

, Ta 55 oC; Sox2 , F , 5' GTTACCTCTTCCTCCCACTCCAG- , R , 5' CCCG

CCCTCCCCGCCGCCCTCA G- , I, 5' GAGGGCTGGACTGCGAACTGGAGA

, Ta 58 oC; Brachyury, F , 5' TGCTGCCTGTGAGTCATAAC- , R , 5' ACCA

GGTGCTATATATTGCC- , I , 5' GCTGGGAGCTCAGTTCTTCGAGGC- , Ta

54 oC; Hnf1 , F , 5' TTCTAAGC TGAGCCAGCTGCAGACG- , R , 5' GCTGAGGT

TCTCCGGCTCTTCAGA- , I , 5' TGACACGGA TGACGA TGGGGAAGAC-
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Ta 62 oC; Hnf4 , F , 5' ACACGT CCCCATCTGAAG- , R , 5' CTTCCTTCTTCAT

GCCAG- , I , 5' TCGAGCTGTG ACGGCTGCAAGGGGT- , Ta 55 oC. PCR

products were resolved on 2% agarose gels , transferred to nylon membrane

(GeneScreen), and probed with the indicated , radiolabeled internal primers.

Eryhrocyte markers were amplified using the following primers: major globin

, 5' CACAACCCCAGAAACAGACA- , R , 5' CTGACAGATGCTCTCTTGGG-

i2 globin , F , 5' GGAGAGTCCATTAAGAACCTAGACAA- , R , 5' CTGTCAATTC

ATTGCCGAAGTAC- H1 globin , F , 5' CTCAAGGAGACCTTGCTCA-

, 5' AGTCCCCA TGGAGCT AAAGA- . Products were resolved on 2% agarose

gels and stained with ethidium bromide.

Results

In order to disrupt SWI/SNF activity, a mouse embryonic stem cell line

was generated that constitutively expressed an ATPase-defective form of human

BRG1 (DN-BRG1) under control of a retroviral L TR (Figure A.1). The ATPase-

inactive form of BRG1 previously was shown to interact with other components of

the SWI/SNF complex in 3T3 cell lines (50), suggesting that the mutant protein

depletes functional SWI/SNF complexes.

The DN-BRG1 expressing 3E3 cells were plated in methylcellulose

medium to induce differentiation. As controls , wild-type AB2.2 ES cells as well

as a cell line (1 E1), derived from a clone that had been electroporated but did not

express detectable levels of DN-BRG1 protein , were differentiated. When
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Figure A.1. 3E3 ES cells constitutively express dominant negative BRG1.

A. Comparison of conserved ATPase domain of mammalian BRG1 and yeast SWI2.

lysine boxed is mutated to arginine in the dominant negative BRG1. B. Western

analysis showing expression of FLAG-tagged DN-BRG1 in 3E3 but not 1E1 cell lines.

105(-) is a 3T3 cell line that inducible expressed DN-BRG1.
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differentiated in vitro, ES cells form clusters called embryoid bodies. As shown in

Figure A.2 , WT ES cells and 1 E1 cells formed embryoid bodies that developed

normally with time. However, while 3E3 embryoid bodies were indistinguishable

from those of WT and 1 E1 cells at day 3 post-differentiation , they failed to

develop significantly beyond day 3. The defect was more severe than just a

delay in the differentiation process as the 3E3 cells remained morphologically the

same from day 7 to day 14 post-differentiation.

Embryoid bodies were harvested at days 3, 5, 10, and 12 , and processed

for RNA. The endodermal markers Hnf1 and Hnf4, the mesodermal marker

Brachyury, and the ectodermal marker Sox2 were amplified and subjected to

Southern blot analysis for visualization. Hprt was amplified as a loading control.

As shown in Figure A.3, the expression patterns of Hnf1 and Sox2 in ES cells

expressing DN-BRG1 were similar to those in wild-type ES cells. However, the

expression patterns of Hnf4 and Brachyury were altered in the DN-BRG1 ES

cells. The expression of Brachyury was delayed in the 3E3 cells , suggesting that

SWI/SNF is required for proper kinetics of Brachyury expression. In contrast

Hnf4 was expressed earlier in the 3E3 cells , suggesting that SWI/SNF normally

plays a role in the repression of this gene.

We also examined the ability of the 3E3 cells to differentiate into eryhroid

lineages. In murine cells there are four globin genes: two fetal globins , Ey2 and

j3H1 , and two adult globins , j3-major and j3-minor, all of which are under control of

a common locus control region (Figure A.4). After 12 days of differentiation in
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1E1 3E3

Figure A.2. ES cells expressing dominant negative BRG1 are severely impaired in

their ability to differentiate.

Wild-type AB2.2 ES cells , 1 E1 (negative control) ES cells , and 3E3 (DN-BRG1) ES

cells were differentiated in methylcellulose medium , harvested at indicated time-

points and photographed under phase microscopy.
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Figure A.3. The express of a subset of germ layer markers is altered in the presence of

dominant negative BRG1.

Wild-type and 3E3 ES cells were differentiated in methylcellulose , harvested at

indicated time-points , and processed for RNA. RT-PCR and Southern blot hybridization

were performed for listed markers using primers described in the Materials and

Methods.
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Figure A.4. Murine j3-globin locus.
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Murine f3-globin Locus

Ey2 I3H1 l3- jorH l3- ino+-

Cartoon illustrating murine b-globin locus. LCR: locus control region. HS1-

DNase I hypersensitive sites.
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methylcellulose , embryoid bodies express all four globins. Therefore , we

harvested wild-type and 3E3 embryoid bodies at day 12 of differentiation and

examined the expression levels of E , and -major globins. As shown in

Figure A.5 , the levels of the fetal globins were decreased in the 3E3 cells , while

the adult -major globin was unaltered.

Discussion

Mice homozygous null for Brg1 are embryonic lethal between days 3.

and 6.5 post-fertilization (27). Due to the complexity of harvesting embryos at

these stages in development , it is diffcult to elucidate the pathways in which

SWI/SNF functions in vivo. However, it is possible to utilize in vitro differentiation

of mouse embryonic stem cells to examine more easily the requirement for

SWI/SNF activity in specific gene regulation events. Although Brg1-null ES cells

are not viable , we were able to disrupt SWI/SNF activity by constitutively

expressing a dominant negative version of BRG1. It is interesting to note that

only one of the 85 clones screened expressed DN-BRG1 protein at significant

levels , suggesting that there is a requirement for a basal level of SWI/SNF

activity to ensure cellular viability. In fact, further attempts to generate an ES cell

line that expresses the dominant negative BRG1 have been unsuccessful.

Upon differentiation of the ES cells , we found that there were striking

morphological differences between the embryoid bodies derived from wild-type or

control ES cells and those derived from ES cells expressing DN-BRG1. The
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Figure A.5. The expression of fetall'-globins is inhibited in the presence of

dominant negative BRG1.

Wild-type and 3E3 ES cells were plated in methylcellulose. At day 12 of

differentiation, embryoid bodies were harvested for RNA. RT-PCR was done

using primers described in the Materials and Methods.
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development of embryoid bodies that expressed DN-BRG1 was severely

retarded. We examined the expression pattern of a selection of germ layer

markers in an attempt to equate a defect in SWI/SNF activity to the observed

morphological differences. Interestingly, the expression of a subset , but not all

of the germ layer markers was altered. Specifically, the endoderm marker Hnf4

was expressed at much earlier time-points in the embryoid bodies derived from

DN-BRG1 ES cells compared to those derived from wild-type counterparts. This

finding suggests that SWI/SNF normally functions to inhibit Hnf4 at early time-

points in mammalian development. The possibility that SWI/SNF inhibits Hnf4

expression is not surprising since data obtained from DNA microarray expression

analysis indicate that SWI/SNF appears to be involved in the repression of just

as many genes as it activates (224). Furthermore , mammalian SWI/SNF

components also have been shown to playa role in the repression of c-fos and

some E2F-regulated genes (165, 235, 253).

The expression pattern of the mesoderm marker Brachyury also was

altered. In particular, the expression kinetics of Brachyury appeared to be

delayed in the DN-BRG1 embryoid bodies. The subtle changes in Brachyury

expression may be due to the fact that SWI/SNF activity is inhibited partially and

not completed abrogated. However, it is interesting to consider the possibility

that SWI/SNF may regulate subtle changes in gene expression that have the

potential to lead to drastic phenotypic abnormalities in development when

misregulated.
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We also examined the effect of DN-BRG1 on the expression of the beta-

globin genes E , and -major. It is interesting to note that expression of the

fetal glob ins E1' and f3H1 was inhibited while expression of the adult -major

globin was unaffected in the presence of DN-BRG1. This is particularly intriguing

since all of the beta-globin genes are under the regulation of the same locus

control region. It is unclear how SWI/SNF differentially modulates the expression

of the various globin genes. As depicted in Figure there are several DNase I

hypersensitive (HS) sites located in the beta-globin LCR (73). The HS site that is

more prevalent at a given point in development depends on which beta-globin is

expressed more highly, suggesting that the chromatin structure within the beta-

globin LCR may be differentially remodeled. One of the future aims of this study

will be to examine the effect of DN-BRG1 on the sensitivity of these various sites

to DNase I.

There are several experiments we would like to conduct to complete this

study. First, we would like to generate another clone that expresses dominant

negative BRG1 to corroborate the results presented here. Alternatively, ES cell

lines could be generated that express an inducible DN-BRG1. It also would be of

interest to examine the expression of more germ layer markers to determine if

there is a link between the genes regulated by SWI/SNF. The potential also

exists to enrich the embryoid bodies for eryhrocytes using eryhropoietin in the

differentiation medium , muscle cells using DMSO, and/or neuronal cells using

retinoic acid. By examining the effect of disrupting SWI/SNF activity on the



differentiation of a variety of cell lineages, we will gain a more complete

understanding of the processes in which SWI/SNFfunctions.

138
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Appendix B

Preliminary Results

Hydroxyl Radical Footprinting of SWI/SNF-Remodeled Mononucleosomes

The mechanism by which SWI/SNF alters chromatin structure is unclear.

Early data led some to suggest that SWI/SNF either removes or rearranges the

H2A-H2B dimers to facilitate remodeling (180). More recent studies demonstrate

that SWI/SNF is able to induce nucleosome sliding or octamer transfer (104

183). It has been postulated that SWI/SNF induces nucleosome sliding by first

inducing a twist in the DNA that is then diffused throughout the nucleosomal

DNA. However, experiments utilizing nucleosomes that contain branched DNA

as a steric block to twisting and a nick that allows the dissipation of torsional

stress within the nucleosome indicate that a twist-diffusion mechanism is not

required for remodeling by SWI/SNF (6). Furthermore , cross- linking reagents

demonstrate that the octamer need not be perturbed in order for SWI/SNF to

alter the DNase I cleavage pattern or restriction enzyme accessibility of in vitro

assembled mononucleosomes or arrays (22).

Digestion of in vitro assembled , rotation ally phased mononucleosomes

with DNase I yields a 10 base pair ladder when resolved on a denaturing

polyacrylamide gel. This cleavage pattern is altered when the

monbnucleosomes are pre- incubated with SWI/SNF in the presence of ATP

suggesting a fairly drastic effect of SWI/SNF activity (43, 98 , 126). However
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DNase I is a large enzyme that needs to bind DNA to cleave and as such may

contribute to the alteration of the mononucleosomes in response to SWISNF

activity. In contrast, hydroxyl radicals are small chemical moieties that do not

bind DNA. Therefore hydroxyl radical cleavage may provide a more accurate

depiction of the of SWI/SNF activity on mononucleosomes.

We monitored SWI/SNF activity by utilizing hydroxyl radical digestion of

mononucleosomal templates. Unlike the DNase I digestion pattern , the hydroxyl

radical digestion pattern of rotationally-phased mononucleosomes was unaltered

in the presence of SWI/SNF and ATP. This finding suggests that the mechanism

of remodeling by the SWI/SNF enzymes may be more subtle than currently

believed.

Materials and Methods

Mononucleosome assembly

Mononucleosomes were assembled by salt dilution , as described

previously (98), using a 154 base pair EcoRI/Rsal fragment corresponding to the

Xenopus borealis somatic 5S RNA gene. The assembly reaction included 0.45

g of labeled DNA fragment (end- labeled by Klenow fill- in with (

p)-

dATP at

the EcoRI end), 5 g of Haeill-digested pUC18 DNA, and 8. g of core histone

octamers purified from HeLa cell nuclei. Assembled mononucleosomes were

purified from unincorporated DNA over a 5 mL, 5-30% glycerol gradient

containing 50 mM Tris , pH 7. , 1 mM EDT A, and 0. 1 mg/mL BSA.
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Cleavage reactions

For both DNase I and hydroxyl radical cleavage , 0.3 ng (1.2X1 0-1 0 M) 

labeled nucleosomes were added to reactions of 25 flL total volume containing

12 mM HEPES, pH 9, 60 mM KCL, 7 mM MgCI , 15% glycerol , 0.5 fl9 BSA , 10

mM Tris-HCI , pH 7. 5, 0.6 mM DTT , and 0.06 mM EDTA. Where indicated

reactions also contained 100-400 ng of SWI/SNF purified from HeLa cell nuclei

i '

as described previously (98) and 0.02 mM ATP. Reactions were incubated at

C for 30 minutes. For DNase I cleavage , RQ1 DNase I was added to naked

DNA at 0.01 units and to nucleosomes at 0. 1 units for 2 minutes at room

temperature. Reactions were stopped with 2 flL of 0.5 M EDTA. For hydroxyl

radical digestion , 3.5 flL each of 10 mM (1 mM for naked DNA) Fe-EDTA, 200

mM (20 mM for naked DNA) sodium ascorbate , and 30% (3% for naked DNA)

were added to the sides of the tubes , tapped in , and incubated for 3

minutes at room temperature. Reactions were stopped with 3.5 flL of 50%

glycerol , 10 mM EDT A. Samples were prepared for electrophoresis as described

previously (98) and resolved on an 8% polyacrylamide/urea gel.

Results and Discussion

A 154 base pair 5S rRNA fragment from Xenopus borealis was assembled

into mononucleosomes , incubated in the presence of SWI/SNF +/- ATP , and

digested with DNase I or hydroxyl radicals. While the DNase I cleavage pattern

was altered in the presence of SWI/SNF + ATP , the hydroxyl radical cleavage
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pattern remained unaltered (Figure B. 1). DNase I cleavage was done in the

presence of the hydroxyl radical components to verify that SWI/SNF was not

inactivated (data not shown).

The hydroxyl radical cleavage data suggest that SWI/SNF is not

drastically altering the mononucleosome structure. The nucleosomal DNA

appears to maintain its rotational phasing; however, at this time we cannot rule

out the possibility that the octamer has shifted 10 base pairs , or increments

thereof, along the length of the DNA. Another possibility is that the SWI/SNF

enzyme weakens the histone-DNA contacts. The observed alteration of the

DNase I footprint may be a consequence of the DNase I enzyme itself binding to

the " remodeled" nucleosome further perturbing the nucleosome structure.

Hydroxyl radical digestion of mononucleosomes +/- SWI/SNF in the presence of

a DNase I mutant (H252Q) that is able to bind DNA but is cleavage defective will

be done to determine if binding of DNase I alters the digestion pattern.

Weakening of histone-DNA contacts also would allow the binding of transcription

factors or restriction endonucleases to the altered DNA. However, the

mechanism by which SWI/SNF may weaken the histone-DNA contacts has yet to

be determined.
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Figure B.1. SWI/SNF does not alter hydroxyl radical cleavage pattern of

rotationally phased mononucleosomes.

A 154 base pair fragment from the Xenopus borealis 5S rRNA gene was end-

labeled with p and assembled into mononucleosomes in vitro.

Mononucleosomes were digested with DNase I or hydroxyl radicals after

incubation with SWI/SNF +/- ATP. Purified DNA was resolved on an 8%

denaturing gel.
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