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Abstract 

Cancer is the second leading cause of death among men and women after heart 

disease. Though our knowledge associated with the complexities of the cancer network 

has significantly improved over the past several decades, we have only recently started to 

get a more complete molecular understanding of the disease. To better comprehend 

signaling pathways that prevent disease development, we focused our efforts on 

investigating endogenous tumor suppression networks in controlling effectors of cancer 

cell survival and proliferation. Survivin is one such effector molecule that controls both 

cell proliferation and survival. In order to identify how this protein is overexpressed in 

cancer cells as opposed to normal cells, we looked at signaling molecules that negatively 

regulate this inhibitor of apoptosis protein. PTEN and caspase 2 are two of the identified 

proteins that utilize their enzymatic activity to suppress tumor growth by inhibiting 

downstream cell survival effectors, namely survivin. PTEN uses its phosphatase activity 

to suppress the PI3K/AKT pathway and maintain cellular homeostasis. In the absence of 

AKT activity, FOXO transcription factors are able to target downstream gene expression 

and regulate cell proliferation and survival. Here we have identified survivin as a novel 

gene target of FOXO, which binds to a specific promoter region of survivin and 

suppresses its transcription. Alternatively, caspase 2 uses its catalytic activity to suppress 

survivin gene expression by targeting the NFκB pathway. Caspase 2 acts by cleaving a 

novel substrate known as RIP1 that prevents NFκB from entering the nucleus, thus 

inhibiting target gene transcription. Interestingly, survivin is known to be a direct gene 

target of NFκB that controls cancer cell survival. In our investigation, we found that 

survivin is downregulated upon caspase 2 activation via the NFκB pathway, resulting in 
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decreased cell cycle kinetics, increased apoptotic threshold and suppressed tumor growth 

in mice. These studies conclude that survivin is a common effector molecule that is 

regulated by tumor suppressors to maintain cellular homeostasis. However, upon 

deactivation of the tumor suppressor pathway, survivin is deregulated and contributes 

significantly to disease progression. These observations may lead to potential therapeutic 

implications and novel targeting strategies that will help eradicate harmful cancer cells 

and spare surrounding healthy cells; often the most persistent problem of most 

conventional chemotherapy. 
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Chapter 1. Introduction 

One of the hallmarks of cancer involves deregulated cell death pathways, making 

it difficult to kill tumor cells. A common problem encountered during treatment by 

chemotherapy or radiation therapy is resistance of transformed cells to programmed cell 

death, or apoptosis, which results in poor prognosis and increased tumor recurrence 

(Viktorsson et al., 2005). Apoptosis can be initiated by the mitochondria pathway 

(intrinsic) or by the death receptor pathway (extrinsic). Upon receiving an apoptotic 

stimulus, cells undergo a series of changes associated with cell death signaling that 

ultimately results in caspase activation, substrate cleavage, and finally phagocytosis of 

the apoptotic cell. Treatment options that implement radiation therapy utilize high energy 

ionizing radiation to cause DNA double strand breaks that eventually result in cell death 

via the intrinsic apoptotic pathway. However, many cancer cells are able to evade 

treatment by exploiting alternate pathways for cell survival and therefore are able to 

override cell death signals. The two main gene families that regulate apoptosis include 

the Bcl-2 and the inhibitors of apoptosis (IAPs) family of proteins (Altieri, 2003).  The 

Bcl-2 family can be subdivided into pro- and anti-apoptotic proteins that are 

characterized by 1 to 4 copies of Bcl2 homology (BH) domain and a C-terminal 

hydrophobic region. The pro-apoptotic molecules include Bax, Bad, Bak and Bid that 

increase mitochondria permeability upon apoptotic stimulation. Alternatively, anti-

apoptotic molecules that resist mitochondria permeability include Bcl-2 and Bcl-xL. The 

central feature of Bcl-2 proteins is to homodimerize or heterodimerize at the 

mitochondrial membrane leading to the transition from cell survival to cell death 

depending on the differential recruitment of these proteins (Altieri, 2003). Among the 
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Bcl-2 family members that contain BH domains 1-3 are Bax and Bak that seem to initiate 

most of the mitochondria mediated apoptosis. In contrast, the IAP family members inhibit 

apoptosis by targeting caspases and downstream Bcl-2 proteins (Altieri, 2003). The IAPs 

are characterized by containing 1-3 copies of a 70 amino acid zinc finger fold known as 

the baculovirus IAP repeat (BIR). Some of them also contain a caspase recruitment 

domain (CARD) that helps in caspase binding and inhibition. These IAPs include, XIAP, 

c-IAP1, c-IAP2 and survivin. With the exception of XIAP, all the other IAPs inhibit 

apoptosis independent of direct caspase inhibition (Altieri, 2008). Survivin in particular, 

associates with XIAP increasing its stability against degradation and synergistically 

inhibits caspase-dependent apoptosis (Dohi et al., 2004b). Moreover, proteins released by 

the mitochondria during permeability transition include pro-apoptotic Smac/DIABLO 

that can relieve the inhibition effect of IAPs on caspases, leading to apoptosis (Altieri, 

2003). Other mechanisms of IAP regulation of apoptosis also involve activation of TGFβ 

or c-Jun kinase signaling pathway (Altieri, 2003). The role of IAPs in mediating the 

balance between cell survival and cell death is one of the essential features of these 

proteins making them important molecules in the study of tumor progression. 

 

Survivin in Cancer 

The ability of transformed cells to evade apoptosis and favor cell survival is a 

hallmark of tumor progression and resistance to therapy (Luo et al., 2009). IAPs are 

highly expressed in tumor cells and can block apoptosis by inhibiting effector caspases 

(Dohi and Altieri, 2005). Survivin, in particular, is overexpressed in many different 
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cancers, but remains undetectable in most normal tissues (Altieri, 2008). The differential 

expression of survivin can be attributed to deregulated gene expression in cancer cells. 

Survivin is an evolutionarily conserved protein that plays an essential role in both mitosis 

and inhibition of cell death. Moreover, survivin is indispensable during embryonic and 

fetal development since survivin knockout mice are embryonic lethal at day 3.5 with 

clear defects in mitosis (Uren et al., 2000). Understanding the multiple functional roles of 

survivin in cancer, including resistance to cancer therapy, promoting angiogenesis and 

preventing cells from apoptosis makes this a relevant target protein for cancer biologists 

to comprehend (Altieri, 2008; Tran et al., 2002). 

Survivin plays a critical role in regulating cell division and proliferation by 

interacting with members of the chromosomal passenger complex (Altieri, 2008). 

Survivin facilitates chromosomal alignment during mitosis by targeting molecules of the 

chromosomal passenger complex such as Aurora kinase B (AURKB), inner centromere 

protein (INCENP), and borealin to kinetochores (Jeyaprakash et al., 2007). Proper 

microtubule attachment to the aligned chromosomes is essential for mitotic checkpoint, 

however, mislocalization of the chromosome passenger complex causes mitotic failure 

resulting in aneuploidy and missegregation (Altieri, 2008). Thus, survivin plays a role in 

spindle checkpoint as it is indicated as a sensor for kinetochore to microtubule 

attachement and tension that is prerequisite for chromosomal segregation. Moreover, 

some survivin localizes on the microtubules during spindle formation and plays a role in 

stabilizing microtubule dynamics (Rosa et al., 2006). Survivin depletion by siRNA results 

in increased incidence of microtubule nucleation and catastrophe, whereas 

overexpression of survivin results in suppressed microtubule dynamics (Rosa et al., 
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2006). The regulation of microtubule dynamics by survivin also overlaps with the role of 

survivin in cell death. Survivin is phosphorylated on Thr34 by CDK1, or checkpoint 

dependent kinase 1 (O'Connor et al., 2002) that allows survivin to be stabilized and 

counteract apoptosis during cell division. Loss of phosphorylation on Thr34 by CDK1 

results in dissociation of survivin from a caspase 9 complex resulting in mitotic failure 

and subsequent apoptosis (O'Connor et al., 2000). Thus, upon DNA damage or exposure 

to certain mitotic inhibitors, like nocodazole, survivin is able to prevent apoptosis when 

phosphorylated by CDK1 (O'Connor et al., 2000). 

Survivin‟s role as an inhibitor of apoptosis in tumor cells comes from the 

observation that acute lowering of its expression by small interfering RNA (siRNA), 

ribozyme or dominant negative treatment results in apoptosis (Altieri, 2008). Therefore, 

upstream factors that regulate survivin gene expression and protein stability are crucial in 

understanding its cytoprotective function. Several tumor suppressor genes that regulate 

survivin expression at the transcriptional level include p53 (Hoffman et al., 2002; Mirza 

et al., 2002), adenomatous polyposis coli APC (Zhang et al., 2001), histone deacetylase 

SIRT1 (Wang et al., 2008b), and fragile histidine triad gene (FHIT) (Semba et al., 2006). 

On the other hand, oncogenic factors that control survivin gene expression include 

TCF4/β catenin (Kim et al., 2003), signal transduction and activator of transcription 

(STAT3) (Gritsko et al., 2006), and E2F transcription factors (Jiang et al., 2004). 

Survivin is also regulated by post-transcriptional mechanisms by stabilizing survivin 

mRNA or protein levels. Post-transcriptional regulators include mammalian target of 

rapamycin (mTOR) (Vaira et al., 2007), phosphatidylinositol-3-kinase-AKT pathway 

(PI3K/AKT) (Asanuma et al., 2005), CDK1 (O'Connor et al., 2000), and heat shock 
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protein 90 (HSP90) (Kang and Altieri, 2006) just to name a few. Thus, survivin acts as a 

nodal protein in cancer progression as many of these proteins or pathways are modified 

or mutated resulting in deregulated survivin expression and increased cell survival 

threshold. 

The mechanism behind survivin induced cytoprotection relies both on 

intermolecular interactions as well as mitochondrial dynamics. One of the key features of 

survivin as an inhibitor of apoptosis protein is its ability to bind to XIAP, another 

member of the IAP family. Dohi et al. have shown that a mitochondria specific survivin 

pool is released from the intermembrane space of the mitochondria to the cytosol in 

response to DNA damage (Dohi et al., 2004a). As a consequence, survivin is able to 

prevent apoptosis by forming a complex with XIAP that enhances protein stability and 

synergistically inhibits caspase 9 activation (Dohi et al., 2004b). Survivin binding to 

XIAP can be regulated by phosphorylation of survivin on Ser20 by protein kinase A 

(PKA), that prevents complex formation and caspase inhibition (Dohi et al., 2007). In 

addition, survivin is regulated by chaperone molecules such as heat shock protein 90 

(HSP90) which is involved in survivin import to the mitochondria (Kang et al., 2007). 

Inside the mitochondria, survivin is able to bind SMAC, a pro-apoptotic molecule that is 

known to inhibit XIAP‟s effect on caspase inhibition. Thus, by sequestering SMAC away 

from XIAP, survivin promotes an anti-apoptotic environment (Altieri, 2008).   

Numerous studies have correlated increased survivin levels with poor prognosis 

and cancer progression. Survivin expression has been associated with increased cancer 

recurrence and poor survival rate in a variety of cancer types including neuroblastoma, 

lung and breast cancer (Ito et al., 2005; Shinohara et al., 2005; Yamashita et al., 2007).  
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More specifically, nuclear staining of survivin in tissue samples correlated with increased 

risk for recurrence and death among nonsmall cell lung carcinoma patients (Shinohara et 

al., 2005). Thus, molecular targeting of the survivin network in these patients may benefit 

disease outcome, by limiting cell proliferation and promoting cell death. In fact, several 

antagonists have already emerged over the past several years as potential therapeutic 

strategy to target survivin as a nodal protein that links cell death and cell division 

mediators (refer to Fig. 1-1). These include an antisense molecule, LY2181308, that 

specifically targets survivin, and a small molecule inhibitor of survivin transcription, 

YM155 that have both completed phase I clinical trials and are currently undergoing 

phase II clinical trials (Altieri, 2008). Our lab has also synthesized a peptidomimetic, also 

known as Shepherdin that serves as a HSP90 and survivin antagonist by interfering with 

the ATPase pocket of HSP90 and destabilizing its client proteins (Plescia et al., 2005). 

Preliminary studies with shepherdin showed promising anticancer activity and low 

toxicity in mice with human PC3 xenografts (Plescia et al., 2005). Although, many of 

these anticancer treatments are still in the preliminary stage of testing, there is great 

promise for future drug discovery efforts that target survivin and its client proteins. 

Further elucidating how survivin is regulated in cancer cells and identifying additional 

functions that it may have as a nodal protein, may point to better drug discovery efforts 

and understanding of survivin dynamics.   
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Figure 1-1 Survivin network 

Survivin network linking cell death and cell division functions for overall tumor 

maintenance. (Altieri, 2008) 
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Tumor Suppression Network 

Characteristics of cell transformation often involve the ability of cells to evade 

apoptosis, escape checkpoint controls and proliferate without restraints. Fortunately, 

evolution has installed innate tumor suppression mechanisms that keep cells in check 

despite being constantly exposed to DNA damaging factors from environmental stresses 

(Lowe et al., 2004).  These tumor suppression mechanisms oppose cell proliferation and 

transformation by inducing either apoptosis or senescence. Senescence occurs when cells 

go into a state of permanent and irreversible cell-cycle arrest (Campisi, 2001) . This 

happens as a result of activation of certain oncogenes, such as Ras, that may trigger 

untransformed cells to undergo senescence. Therefore, endogenous tumor suppressors 

and cell cycle checkpoints are at play to prevent cells from being susceptible to 

oncogene-mediated transformation. These tumor suppressors include the classic Rb and 

p53 known regulators of senescence (Lowe et al., 2004). Escape from oncogene-induced 

senescence is one of the prerequisites of tumor progression when cells undergo 

transformation and bypass checkpoint controls that allow them to survive and proliferate, 

also known as immortalization (Lowe et al., 2004). Similarly, p53 is also known to 

induce apoptosis in response to a variety of cell stresses including DNA damage, hypoxia 

and nutrient deprivation. Apoptosis can be induced by oncogenic lesions both by the 

intrinsic and extrinsic pathways that ultimately lead to cell suicide. The intrinsic form of 

cell death involves permeabilization of the mitochondria that results in the release of 

several pro-apoptotic factors, such as cytochrome C, that forms a complex with Apaf-1 to 

activate caspase 9 (Li and Yuan, 2008). This leads to the caspase cascade involving 

downstream activation of effector caspases, such as caspase 3 and caspase 7. On the other 
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hand, the extrinsic apoptotic pathway involves the activation of cell-surface death 

receptors that rely on death ligands, such as TNFα, FasL and TRAIL. Upon interaction of 

the ligands to their respective receptors, a „death-inducing signaling complex‟ (DISC) is 

formed that activates caspase 8. Recruitment of caspase 8 to the DISC complex then 

initiates autocatalysis of the enzyme leading to the caspase cascade and subsequent 

apoptosis (Li and Yuan, 2008). The focus of this dissertation involves elucidating 

apoptosis control that is regulated by the tumor suppression network. We have identified 

two important tumor suppressors that target survivin as one of the main effectors of this 

pathway to regulate cancer cell survival. Caspase 2 and PTEN are two such upstream 

regulators that drive tumor suppression in two completely independent pathways that 

ultimately converge on survivin as their main effector molecule.  
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Caspase-dependent Apoptosis 

Caspase 2 is an evolutionarily conserved caspase, or cysteine protease that is 

predominantly known to mediate apoptosis (Zhivotovsky and Orrenius, 2005). The 

enzyme is associated with a p53-induced death domain containing protein, or 

PIDDosome complex, but its exact form of activation and downstream target proteins 

remain poorly understood (Tinel and Tschopp, 2004). Caspase 2 belongs to the Ich 1 

subfamily and shares homology with initiator caspases involved in stress-induced 

apoptosis (Zhivotovsky and Orrenius, 2005). The enzyme contains a CARD domain or 

caspase recruitment domain that is closely related to that of caspase 9. One of the unique 

features of caspase 2 is that it resembles both upstream and downstream caspases. There 

are two mRNA species of caspase 2 – a long caspase-2L and a short caspase-2S. 

Overexpression of caspase-2L induces cell death while overexpression of caspase-2S 

suppresses cell death (Wang et al., 1994; Zhivotovsky and Orrenius, 2005). Both mRNA 

variants are differentially expressed in various tissue types and selectively expressed 

during different stages of embryonic development (Zhivotovsky and Orrenius, 2005). 

This indicates that caspase 2 has essential roles in both survival and programmed cell 

death and can vary from one cell type to another.   

Localization of caspase 2 within the cell has also been found to be important in 

regulating its apoptotic function. Caspase 2 is found in the nucleus, Golgi complex, and 

soluble cytoplasm. There are two nuclear localization signals (NLS) in the prodomain of 

caspase 2 that regulates its nuclear import. Activation of the nuclear pool results in 

mitochondrial dysfunction, indicating a potential existence of a nuclear-mitochondria 

apoptotic pathway (Paroni et al., 2002; Robertson et al., 2002). However, overexpression 
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of a cytosolic form of caspase 2 with mutated NLS was also able to induce apoptosis. 

Therefore the role of caspase 2 in the nucleus has still been unclear. Caspase 2 

localization in the Golgi complex has been attributed to cleavage of golgin-160 that 

disassembles this organelle during apoptosis (Mancini et al., 2000). Lastly, caspase 2 

abundance in the cytosol is attributed to its ability to interact with several death adaptor 

molecules such as RAIDD, RIP1 and TRADD, thus suggesting a potential role in death 

receptor-mediated apoptosis (Lamkanfi et al., 2005; Zhivotovsky and Orrenius, 2005). 

Caspase 2 is the most apical caspase involved in the intrinsic apoptotic pathway. 

Upon DNA damage, the enzyme is activated by autocatalysis and recruited to the 

PIDDosome complex (Gao et al., 2005; Tinel and Tschopp, 2004). Activated caspase 2 

acts upstream of mitochondrial events and induces the release of cytochrome c and other 

proapoptotic proteins resulting in cell death (Guo et al., 2002; Lassus et al., 2002; 

Robertson et al., 2002). Other key players in this pathway include BH3 motif-only 

proapoptotic Bcl-2 family members that have been shown to be cleaved by caspase 2 and 

mediate the mitochondrial apoptotic pathway (Gao et al., 2005). A recent study revealed 

that Bid cleavage by caspase 2 is essential for cytochrome c release and that other Bcl-2 

family members are important in regulating caspase 2 induced apoptosis (Gao et al., 

2005). Finally, cyclin D3, a cell cycle regulator and the E2F1 transcription factor have 

also been implicated in mediating caspase 2- induced cell death during cell cycle 

progression (Mendelsohn et al., 2002; Nahle et al., 2002).  Overexpression of cyclin D3 

showed increased caspase 2 cleavage that contributes to cell death during S-phase entry 

(Mendelsohn et al., 2002). Similarly, E2F1 expression results in accumulated caspase 2 

by a direct transcriptional mechanism that leads to cell death upon cell cycle re-entry 
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(Nahle et al., 2002). Although many proteins have been implicated in activation of 

caspase 2, it is now clear that caspase 2 is activated by dimerization and not processing of 

the zymogen (Krumschnabel et al., 2009). Thus a close proximity model for caspase 2 

activation seems to be sufficient for its catalytic activity and subsequent processing and 

removal of the prodomain. In fact, the catalytic site of caspase 2, cysteine 320, was found 

to be essential for autoprocessing of the protein, consistent with the „initiator‟ status of 

caspase 2 (Krumschnabel et al., 2009). 

Caspase 2 activation in response to DNA damage, including UV radiation, 

cytokine deprivation and administration of TNF or TRAIL seems to be a prerequisite for 

apoptosis onset. One study showed that TNFα sensitizes cancer cells to chemotherapeutic 

agents by a mitochondrial apoptotic pathway that requires caspase 2 activation (Schmelz 

et al., 2004). It appears that caspase 2 activation is necessary for translocation of BAX to 

the mitochondria and release of pro-apoptotic proteins such as Smac/DIABLO and 

cytochrome C. Moreover, studies using recombinant caspase 2 showed that the processed 

enzyme was capable of outer mitochondrial membrane permeabilization and subsequent 

release of pro-apoptotic factors like cytochrome C (Robertson et al., 2004). Therefore, 

loss of caspase 2 may account for deregulated apoptosis in cancer and resistance to 

chemotherapy. Surprisingly, caspase 2-/- mice are viable and show limited phenotypic 

changes. Defects include excessive germ cells in the female ovaries and resistance to 

apoptosis following chemotherapeutic treatment of oocytes and lymphocytes (Morita et 

al., 2001). This indicates the existence of compensatory mechanisms that render the 

caspase 2 knockout mouse viable with very little defects. Recently however, caspase 2 

has been indicated to play a role in tumor suppression as caspase 2 knockout mouse 
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embryonic fibroblasts (MEFs) induced tumor growth in vivo (Ho et al., 2009). These 

caspase 2-null  MEFs showed increased resistance to apoptotic stimulus and cell cycle 

checkpoint defects upon gamma-irradiation (Ho et al., 2009). Despite activation of 

caspase 2 upon DNA damage, there still remains the question whether caspase 2 plays a 

role in cell survival mediated through NFκB or whether it contributes to cell death. 

Secondly, the mechanism of caspase 2 activation in vivo is still not well characterized. 

Thirdly, the physiological function of caspase 2 still remains to be clarified as mice 

deficient in caspase 2 are viable. And lastly, very few studies have addressed the 

participation of caspase 2 in human disease and the mechanism by which it regulates 

cancer cell survival. The objective of this study will be to elucidate some of the unknown 

pathophysiological functions of caspase 2 in vivo and to determine how this protein 

contributes to disease progression.   

 

RIP1 regulation of NFκB 

A protein that is known to interact with caspase 2, also known as receptor 

interacting protein, or RIP1 kinase, is a crucial regulator of cell death and cell survival 

via the NFκB signaling axis. RIP kinases are classified as serine/threonine kinases based 

on sequence similarities and substrate specificities (Festjens et al., 2007). RIP1 in 

particular contains a C-terminal domain that resembles the death domain (DD) 

superfamily and a caspase recruitment domain (CARD) allowing its recruitment to 

protein complexes following stimulation by a variety of stress signals (Festjens et al., 

2007). RIP1 acts as an adaptor protein by binding to death receptors such as tumor 

necrosis factor receptor, TNF-R1, and TNF-related apoptosis-inducing ligand, TRAIL-
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R1, and TRAIL-R2 (Hsu et al., 1996). The function of RIP1 in cellular homeostasis was 

confirmed by the fact that RIP1
-/- 

mice appear normal at birth, but die at the age of 1-3 

days (Kelliher et al., 1998). These mice display extensive apoptosis in both lymphoid and 

adipose tissue, thus making RIP1 indispensable in maintaining cellular integrity. 

Moreover, several studies have shown a role of RIP1 in activating a survival signaling 

pathway mediated by the nuclear transcription factor, NFκB (Festjens et al., 2007).  

NFκB signaling pathway can be initiated by binding of TNFα to its receptor, 

TNF-R1, which induces the formation of two signaling complexes, one of which involves 

RIP1 and TNF receptor associated factor 2, or TRAF2. Recruitment of this complex 

(complex I) to the receptor results in the activation of NFκB survival signaling that leads 

to the subsequent induction of several anti-apoptotic genes, including c-FLIP, cIAP1 and 

cIAP2 (Festjens et al., 2007). Moreover, Kelliher and group showed that RIP1 deficient 

cells were unable to induce NFκB activation following stimulation by TNFα (Kelliher et 

al., 1998). RIP1 also links TNFR1 to the caspase cascade, forming a second complex that 

is involved in pro-apoptotic signaling. In this parallel signaling pathway, both caspase-8 

and Fas associated death domain, or FADD, are recruited as part of complex II, leading to 

the consequent initiation of apoptosis (Festjens et al., 2007). In this caspase cascade, 

NFκB activation is blocked following TNFα mediated signaling by direct caspase 8 

cleavage of RIP1 (Lin et al., 1999). Therefore complex II results in apoptosis when 

complex I-mediated activation of NFκB is weak. Thus, the cleavage of RIP1 is a major 

regulator of TNFα-induced apoptosis by determining a cell‟s fate to live or die.  

The mechanism by which RIP1 induces NFκB activation is dependent on RIP1 

ubiquitination and activation of an intermediate IκB signaling complex. Upon TNFα 
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stimulation, RIP1 becomes autophosphorylated and polyubiquitinated on both Lys48 and 

Lys63 (Festjens et al., 2007). Lys48 polyubiquitination leads to degradation of the protein 

by proteasomes, while Lys63 linkages result in the activation of the IκB kinase. In fact, 

Lys 63 polyubiquitination of RIP1 is required for the TNFα-induced activation of NFκB 

survival signaling (Ea et al., 2006). Moreover, a point mutation of RIP1 on Lys377 

(K377R) blocks polyubiquitination by K63-linked polyubiquitin chains and prevents the 

recruitment of IκB kinase, IKK and TAK1 complex to the TNF receptor, thereby 

inhibiting NFκB activation (Ea et al., 2006).  Therefore, polyubiquitination of RIP1 is 

essential for the activation of IKK that phophorylates IκB, an inhibitor of NF-κB, and 

targets it for degradation by the proteasomal pathway. NFκB is then liberated from the 

inhibitory complex and is translocated to the nucleus where it initiates target gene 

transcription involved in immunity, inflammation and survival (Chen, 2005).   

 

PTEN/PI3K signaling in cancer 

The second part of this thesis focuses on an alternate tumor suppressor pathway 

that helps regulate effector molecules of tumor growth. Over the past decade, the 

PTEN/phosphatidylinositol 3-kinase (PI3K) signaling pathway proved to be one of the 

most deregulated pathways in human cancers (Engelman et al., 2006). Constitutive 

activation of this pathway leads to genomic instability, increased cell proliferation and 

cell survival. PI3Ks consist of heterodimers composed of a regulatory subunit, known as 

p85, and a catalytic subunit known as p110 (Engelman et al., 2006). Activation of PI3K 

is initiated by binding to growth factor receptor tyrosine kinases (RTKs) or G-protein 

coupled receptors (GPCRs). Once activated, PI3K converts its substrate, also known as 
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PI(4,5)P2 to PI(3,4,5)P3, by adding a phosphate group to the „3‟ position of the inositol 

ring (Osaki et al., 2004). PTEN, a tumor suppressor protein, reverses this process by 

acting as a lipid phosphatase and thereby negatively regulating the PI3K pathway (refer 

to Fig. 1-2). When PI(3,4,5)P3 (PIP3) is in abundance, proteins with plekstrin homology 

(PH) domain are able to bind PIP3 and initiate downstream signaling. Such proteins 

include the serine/threonine kinase, AKT, and the 3‟-phosphoinositide-dependent kinase, 

PDK1 (Osaki et al., 2004).  AKT translocates to the membrane and interacts with PIP3 

via its PH domain, enabling it to be phosphorylated by PDKs at two critical residues, 

Thr308 and Ser473 (refer to Fig. 1-2). There are three AKT isoforms also known as 

protein kinase B (PKB), AKT1 (PKBα), AKT2(PKBβ), and AKT3(PKBγ) that are 

differentially expressed in various tissues with AKT1 being most abundant in brain, heart 

and lung (Osaki et al., 2004). Phosphorylation of AKT by PDK leads to its active 

conformation and stabilization. AKT is then translocated to the cytoplasm where it can 

initiate cell survival and cell proliferation by targeting numerous downstream substrates 

of AKT.  

The phosphatase and tensin homologue deleted on chromosome 10, or PTEN, is 

perhaps the most important negative regulator of the PI3K pathway. In fact, PTEN is the 

second most mutated tumor suppressor gene in human cancers just after p53 (Yin and 

Shen, 2008). In many human cancers, PTEN is deleted or mutated leading to activation of 

the PI3K/AKT pathway and subsequent increase in cell proliferation and resistance to 

apoptosis. In addition, germline mutations of PTEN were found to occur in 80% of 

patients with Cowden Syndrome, a disease that is associated with cancer predisposition 

(Eng, 2003). More importantly, somatic mutation or allelic deletion of PTEN is a 
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common event in glioblastomas, melanomas, and cancers of the prostate and 

endometrium (refer to Table 1-1) (Engelman et al., 2006). While mice homozygous for 

PTEN are embryonic lethal, mice heterozygous for PTEN develop neoplasia of the 

endometrium, which correlates well with 50% of human endometrial cancers that also 

harbor PTEN mutations (Stambolic et al., 2000).  

 PTEN acts as a powerful tumor suppressor having important roles in 

chromosomal stability, cell cycle progression, cell survival and motility (Yin and Shen, 

2008). One of the first studies linking PTEN to genomic instability was done by Parson‟s 

group showing PTEN-null embryonic stem cells exhibiting checkpoint defects in 

response to ionizing radiation (Puc et al., 2005). PTEN silencing results in AKT 

activation that triggers phosphorylation of the checkpoint protein, CHK1, and subsequent 

sequesteration and degradation of CHK1 in the cytoplasm (Puc et al., 2005). This impairs 

the ability of cells to undergo DNA repair and results in double-strand chromosomal 

breaks. On the other hand, overexpression of nuclear PTEN has been associated with cell 

cycle arrest at the G0/G1 phase. Among AKT substrates that play a role in cell cycle are 

Forkhead transcription factors (FOXOs) and glycogen synthase kinase3 (GSK3) (Sansal 

and Sellers, 2004). Activation of AKT, or loss of PTEN, also results in cell survival since 

FOXO transcription factors target pro-apoptotic genes such as FAS and Bim (Brunet et 

al., 1999). Lastly, PTEN also effects cell migration and invasion by utilizing its protein 

phosphatase activity. Focal adhesion kinase (FAK) has been identified as a direct 

substrate of PTEN and known to be a mediator of cell surface interactions (Tamura et al., 

1998). By reducing FAK tyrosine phosphorylation, PTEN regulates cell motility by 
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inhibiting cell migration and invasion, thus promoting tumor suppression (Tamura et al., 

1998).  

Crosstalk between p53 and PTEN occurs at multiple nodes and loss of both of 

these tumor suppressor functions results in malignancy in a synergistic manner. The 

tumor suppressor p53 binds to the promoter region of PTEN and activates its gene 

transcription, thereby functioning as a negative regulator of PI3K signaling (Stambolic et 

al., 2001). Moreover, upon DNA damage induction of p53 in tumor cells with wild type 

p53 resulted in increased PTEN mRNA levels. Increased PTEN level participates in a 

positive feedback loop by protecting p53 from mdm2-mediated degradation (Li and Ross, 

2007). PTEN does so by binding to p53 and preventing mdm2 from ubiquitination and 

degradation of p53 (Mayo et al., 2002). PTEN also regulates p53 stability by negatively 

regulating PI3K and AKT activity leading to decreased phosphorylation of mdm2 (Mayo 

and Donner, 2002). Dephosphorylation of mdm2 sequesters the protein in the cytoplasm 

and prevents ubiquitination of nuclear p53. An increased level of p53 in the nucleus 

interacts and increases PTEN levels, thus contributing to the positive feedback loop. 

Another model that looks at p53 and PTEN interactions involves studies that were done 

in mice prostate tumors. Conditional disruption of p53 alone in the mouse prostate did 

not result in tumorigenesis, whereas PTEN inactivation resulted in progressive prostate 

cancer after about a period of 10 months (Chen et al., 2005). Interestingly, loss of both 

p53 and PTEN resulted in synergistic tumorigenesis that led to lethality as early as 7 

months. Chen and group concluded that complete loss of PTEN resulted in senescence 

induced by p53. On the occasion that p53 is also inactivated together with PTEN, mice 
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no longer displayed senescence, but instead developed invasive prostate carcinoma in situ 

(Chen et al., 2005).  
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Figure 1-2 PI3K signaling pathway  

Schematic of PI3K signaling pathway showing PTEN mediated negative 

regulation of the PI3K pathway by converting PI(3,4,5)P3 to PI(4,5)P2. PI3K is 

comprised of a regulatory p85 subunit and p110 catalytic subunit that mediates PI3K 

activity. AKT translocates to the cell membrane and interacts with PI(3,4,5)P3 via its PH 

domain and is phosphorylated at two critical residues (Thr308 and Ser473). (Osaki et al., 

2004) 
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Table 1-1 Frequency of mutations in PTEN and PI3K in cancers 

(Engelman et al., 2006)
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 Forkhead transcription factors 

The forkhead transcription factors are DNA binding proteins that promote the 

expression of several apoptotic and cell cycle genes in the mammalian system (Engelman 

et al., 2006). The forkhead family of proteins contains about 100 members that are 

divided into various subclasses, of which members of the O subclass are direct substrates 

of AKT signaling pathway. The FoxO subfamily is known to mediate a diverse range of 

cellular functions involving differentiation, metabolism, proliferation and survival (Accili 

and Arden, 2004). One of the main mechanism by which FOXOs are regulated involves 

AKT phosphorylation of FOXO1 (FKHR), FOXO3a (FKHRL1), and FOXO4 (AFX) at 

three critical residues (i.e. T24, S256, S319 on FOXO1) enabling these transcription 

factors to be exported out of the nucleus, thus preventing target gene 

activation/repression (Manning and Cantley, 2007). Upon phosphorylation and nuclear 

exclusion, these FOXO proteins are sequestered by 14-3-3 scaffold proteins that lead to 

the inhibition of several cellular processes mediated by FOXO target genes (refer to Fig. 

1-3). AKT blocks FOXO-mediated transcription of genes that result in apoptosis, induce 

cell-cycle arrest and regulate metabolism (Manning and Cantley, 2007). Among target 

genes that regulate apoptosis include the cytokine Fas ligand (FasL) and the proapoptotic 

BH3-only protein, BIM.  FOXO target genes that regulate cell cycle include the cyclin 

dependent kinase inhibitor, p27
KIP1

 and the retinoblastoma-like 2, RBL2 (Engelman et al., 

2006). In PTEN-deficient cells, FOXO factors are constitutively phosphorylated by AKT 

and predominantly localized in the cytoplasm. In fact, FOXO1 has been linked as a tumor 

suppressor due to its ability to repress D-type cyclins that are involved in cell cycle 

progression (Ramaswamy et al., 2002). In this context, FOXO1 mediated repression of 
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D-type cyclins induced G1 arrest leading to the inhibition of cell proliferation and 

transformation (Ramaswamy et al., 2002). On the other hand, PTEN loss of function in 

prostate cancers showed increased apoptosis upon overexpression of FOXOs (Modur et 

al., 2002). This was due to FOXO mediated transcriptional activation of TRAIL, the 

proapoptotic member of the TNF family of death receptors (Modur et al., 2002).  

Moreover, microarray analysis showed a number of other genes that are differentially 

regulated upon induction of a constitutively active FOXO1 virus (FOXO-TM)  in 

HUVEC cells as listed in Table 1-2 (Daly et al., 2004). Among them is survivin, a target 

gene that is predicted to be repressed upon FOXO-TM expression. FOXO transcription 

factors are one of the several AKT substrates that contribute to the activation of many 

cellular processes that are essential for cancer cell survival (refer to Fig. 1-3). Hence upon 

AKT activation, cancer cells are able to control the expression of several target genes in 

order to evade apoptosis and enhance cell proliferation, thereby promoting tumorigenesis. 

In this study we identified the molecular basis of FOXO mediated transcriptional 

regulation of survivin in the context of human cancers. 
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Figure 1-3 AKT substrates and their functions 

(Manning and Cantley, 2007) 
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Table 1-2 Genes regulated by FKHR in endothelial cells  

(Daly et al., 2004) 
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Chapter 2. Caspase 2- Mediated Tumor Suppression 
Involves Survivin Gene Silencing 

Minakshi Guha, Fang Xia, Christopher M. Raskett, and Dario C. Altieri 

The work done in this chapter represents experiments, observations and analysis 

conducted primarily by myself. Fang Xia contributed by cloning truncated RIP1 

constructs. Christopher Raskett helped conduct the xenograft studies in mice. Dario 

Altieri contributed to the design of the experiments and writing of the manuscript. 

Members of the lab helped me discuss and troubleshoot many of the experiments 

represented below. I would like to thank Drs. Bert Vogelstein (John Hopkins) for 

providing human colorectal p53
+/+

 and p53 
-/-

 HCT 116 cells, Michelle Kelliher (UMass 

Medical School) for providing the RIP1 cDNA, and Neal Silverman (UMass Medical 

School) for providing NFκB p65 cDNA and p65 mutant (S529).     

 

Abstract 

Disabling cell survival mechanisms is a hallmark of tumor suppression, but the 

molecular circuitries of this process are not well understood. Here, we show that caspase 

2, a death effector with largely unknown functions, represses survivin gene transcription, 

a general regulator of cell division and cytoprotection in tumors. This pathway involves 

the catalytic site of caspase 2 that induces the proteolytic cleavage of the NF B activator, 

RIP1. In turn, loss of RIP1 abolishes transcription of NF B target genes, including 

survivin, resulting in deregulated mitotic transitions, enhanced apoptosis, and suppression 
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of tumorigenicity in vivo. Therefore, caspase 2 functions as an endogenous inhibitor of 

NF B-dependent cell survival, and this mechanism contributes to tumor suppression. 

 

Introduction 

The process of malignant transformation is almost always associated with 

heightened cell survival threshold (Luo et al., 2009), which contributes to disease 

progression, metastatic spread, and resistance to conventional or targeted therapy. 

Bypassing cell death under these conditions involves deregulated expression of anti-

apoptotic mechanisms mediated by Bcl-2 or IAP family proteins, resulting in the 

inhibition of mitochondrial cell death (Cory and Adams, 2002), or antagonizing caspase 

function (Srinivasula and Ashwell, 2008), respectively. These cytoprotective processes 

are balanced by intrinsic pro-cell death signals, which silence the expression of anti-

apoptotic protein(s) (Accili and Arden, 2004), antagonize their function (Du et al., 2000), 

or result in the activation of cell death effectors (Vogelstein et al., 2000). The 

contribution of these endogenous cell death pathways to cellular homeostasis is not 

entirely clear, but their integrity is likely to provide an important barrier against 

malignant transformation, as various tumor suppression mechanisms execute a pro-

apoptotic program to remove an acquired cell survival advantage (Lowe et al., 2004). 

One of the effectors of this process in transformed cells is survivin (Altieri, 2008), a 

unique IAP protein with essential roles in the control of mitosis and protection from 

apoptosis. Survivin is also sharply differentially expressed in tumors, compared to normal 

tissues. In this context, strategies to mimic or (re)activate the endogenous cell death 

machinery are now actively pursued for novel cancer therapeutics (Fesik, 2005), and 
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targeting survivin may provide an attractive approach to lower a global anti-apoptotic and 

proliferative capacity in tumor cells (Mita et al., 2008). 

Caspases are critical effectors of the intrinsic cell death machinery that has been 

linked to their ability to dismantle the cellular architecture (Shi, 2002). However,  many 

of these molecules have been recently found intercalated in various signaling 

mechanisms of cell proliferation, migration and differentiation (Li and Yuan, 2008) that 

may also contribute to cell death regulation.  There is correlative evidence that, at least in 

some cases, caspase signaling may be important to antagonize tumor growth, in vivo.  In 

fact,  loss or inactivation of a number of effector or upstream caspases, including caspase 

3 (Soung et al., 2004), caspase 10 (Shin et al., 2002), or caspase 8 (Stupack et al., 2006) 

has been observed in several types of human tumors, and potentially associated with 

disease dissemination and unfavorable outcome.  In this context, caspase 2 is an 

evolutionary conserved apical caspase (Krumschnabel et al., 2009), whose multiple 

signaling properties have been associated with endoplasmic reticulum stress (Upton et al., 

2008), cytoskeletal disruption (Ho et al., 2008), mitotic catastrophe (Castedo et al., 2004), 

p53-dependent DNA damage (Baptiste-Okoh et al., 2008), and, more recently, 

endogenous tumor suppression, in vivo (Ho et al., 2009).  In line with this conclusion, 

and despite the lack of an overt phenotype of caspase 2 knockout mice (Bergeron et al., 

1998), recent data have shown that caspase 2
-/-

 fibroblasts are more easily prone to 

oncogenic transformation, resist apoptosis, and exhibit accelerated tumor growth in mice 

(Ho et al., 2009).  However, the pathophysiological requirements of caspase 2 activation, 

in vivo (Krumschnabel et al., 2009) have remained largely elusive, and the mechanistic 
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underpinning of its potential function as a tumor suppressor (Ho et al., 2009) have not 

been identified.  

In this study, we investigated mechanisms of cell death regulation in tumor cells.  

We found that caspase 2 tumor suppression function is centered on acute silencing of the 

survivin gene, and this pathway involves inhibition of NF B signaling via caspase 2 

proteolytic cleavage of the upstream NF B activator, RIP1 (Lin et al., 1999).  

 

Materials and Methods 

Cells and culture conditions 

Human colorectal p53
+/+

 and p53
-/- 

HCT116 cancer cells were kindly provided by 

Dr. Bert Vogelstein (Johns Hopkins University, Baltimore, MD).  For generation of 

stable clones, HCT116 p53
+/+

 cells were transfected with wild type (WT) HA-tagged 

caspase 2 or caspase 9 cDNA, and selected in 1 mg/ml G418 (GIBCO).  Colonies were 

picked after 2 weeks, and confirmed for expression of HA or caspase 9 by Western 

blotting.  Breast adenocarcinoma MCF-7 cells stably transfected with survivin were 

described previously (Ghosh et al., 2008). 

 

Plasmids and antibodies 

A full length wild type caspase 2 cDNA (Invitrogen) was amplified by PCR with 

primers 5‟-ATATACTCGAGTAAGCGGGAAATGGCGGCGCCG-3' (forward) and 5'-

ATAGAGTCTAGATCATGTGGGAGGGTGTCCTGG-3' (reverse), digested with XbaI 
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and XhoI and inserted in HA-tagged pcDNA3.1.  For recombinant protein expression, a 

full length caspase 2 cDNA was cloned into pGEX-4T vector (Amersham Biosciences) 

using SmaI and XhoI restriction sites.  Primers used for amplification of recombinant 

caspase 2 (C2) were 5‟-ATATACCCGGGTAAGCGGGAAATGGCGGCGCCG-3‟ 

(forward) and 5‟-ATAGAGCTCGAGTCATGTGGGAGGGTGTCCTGG-3‟ (reverse).  

A constitutively active caspase 2 cDNA (Casp.2 152 Ac) was generated by PCR by 

removal of the prodomain to mimic the processed caspase using primers 5‟-

GCCTGTCGACAGATACTGTGGAACACTCC-3 (forward) and 5‟-

ATAGAGCTCGAGTCATGTGGGAGGGTGTCCTGG-3‟ (reverse).  Full length or 

truncated caspase 2 mutants were generated by replacing the active site Cys320 to Ala 

(C320A) using site-directed mutagenesis (Stratagene).  The catalytic activity of the 

various caspase 2 constructs was determined using a colorimetric assay kit (Calbiochem) 

in the presence of VDVAD-pNA as a substrate. 

An 830 nt mouse survivin promoter construct fused upstream of GFP (ms-830-

GFP) was characterized previously (Xia and Altieri, 2006).  A putative NF B consensus 

site at position -150 nt in ms-830-GFP was mutated using forward primer 5‟-

GGCGTGGGGCctGACTaTCCCGGCTCG-3‟ (NFκBΔ).  A RIP1 cDNA was the gift of 

Dr. Michelle Kelliher (University of Massachusetts Medical School).  Wild type or 

mutant (S529A) p65 NF B cDNA was the gift of Dr. Neil Silverman (University of 

Massachusetts Medical School).  A truncated RIP1 NH2 fragment (residues 1-350) was 

generated using primers 5‟-GGATCCCCGGAATTCAGAATGCAACCAGACATG-3‟ 

(forward) and 5‟-TTACTCCTCGAGAGGACCCTACCCAAGTCCCTG-3‟ (reverse).  

Similarly, a RIP1 –COOH terminus fragment (residues 351-672) was generated using 
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primers 5‟-TCCCAGGAATTCGGGATGGGTCCTGTGGAGGAG-3‟ (forward) and 5‟-

CGGCCGCTCGAGTTAGTTCTGGCTGACGTAAAT-3‟ (reverse).  Both RIP1 

fragments were amplified and digested with EcoR1 and XhoI and inserted into pcDNA3.1 

vector.  The antibodies against caspase 2, 3, 8 and 9 were from Cell Signaling.  

Antibodies to the p65 subunit of NF B (Santa Cruz), or RIP1 (BD Biosciences) were 

used.   

 

Protein and RNA analysis 

Recombinant caspase 2 fused to GST was expressed in BL-21 E.coli strain, as 

described (Kang and Altieri, 2006). Caspase 2 conjugated to GST beads was used for 

RIP1 cleavage assay due to partial thrombin digestion of caspase 2 from GST beads. A 

RIP1 cDNA was transcribed and translated in vitro using T7, TNT coupled rabbit 

reticulocyte lysate system (Promega).  Aliquots of 
35

S methionine-labeled RIP1 was 

incubated with recombinant caspase 2 at 37ºC for 1 h, and analyzed by SDS gel 

electrophoresis. RIP1 cleavage products were viewed by autoradiography. 

Changes in survivin mRNA were analyzed by semi-quantitative RT-PCR using 

primers for survivin, 5‟- GCATGGGTGCCCCGACGTTG-3‟ (forward) and 5‟-

GCTCCGGCCAGAGGCCTCAA-3‟ (reverse) and GAPDH as described (Xia and 

Altieri, 2006), or real time PCR (QR-PCR), using fluorescent TaqMan and Applied 

Biosystem‟s gene expression assays Hs00153353_m1BIRC5 (survivin) and 

Hs9999905_m1GAPDH. Total RNA was extracted using RNeasy (Qiagen), and reverse 
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transcribed using first strand cDNA synthesis kit (Invitrogen). Analysis of gene 

expression was done using relative quantification ddCt method.   

 

Transfections and Reporter assays 

-galactosidase-normalized survivin promoter (pLuc-1430c, pLuc-649c, pLuc-

441c, and pLuc-230c) luciferase activity was quantified as described (Li and Altieri, 

1999).  Differential ms-830-GFP expression in transfected cells was analyzed by 

fluorescence microscopy and Western blotting, as described (Xia and Altieri, 2006).  

Gene silencing experiments by small interfering RNA (siRNA) directed to Caspase 2/3/8 

or RIP1 (Dharmacon) were carried out as described (Lee et al., 2008).  A non-targeted 

siRNA characterized previously (Lee et al., 2008) was used as control.  

 

Flow cytometry 

Transfected HCT116 cells were treated with the apoptotic stimulus, staurosporine 

(STS, 0.8-1 ), and analyzed by multiparametric flow cytometry using CaspaTag 

caspase 3 activity kit (Intergen).  In some experiments, transfected cells were treated with 

STS and analyzed for nuclear morphology of apoptosis after 14-16 h, by fluorescence 

microscopy.  Cell cycle analysis was carried out in thymidine-synchronized HCT116 

cells, and quantified by propidium iodide and flow cytometry. 

 



33 

Electrophoretic mobility shift assay (EMSA)   

Nuclear fractions were purified from TNFα- treated HCT116 cells using 

NucBuster kit (Novagen).  DNA probes were synthesized using the survivin promoter 

sequence containing the NF B site (5‟-GTGGGGCGGGACTTTCCCGGCTC-3‟) and 

end-labeled with [γ-
32

P] deoxyadenosine triphosphate, 1 μl T4 kinase, and 2.5 μl PNK for 

15 min at 37°C and then 15 min at 65°C.  The labeled probes were purified using nucleic 

acid purification columns (Bio-Rad), and incubated with 15 μg of nuclear extract as 

described (Lee et al., 2008). To determine binding specificity, 100-fold excess of 

unlabeled competitor, mutant competitor or antibody to p65 subunit of NF B (Santa 

Cruz) was used as indicated.  The reactions were resolved on a 5% non-denaturing 

polyacrylamide gel and visualized by autoradiography.  

 

Analysis of tumorigenicity 

Stably transfected HCT116 cells were cultured in soft agar for 14 days at 37°C, 

and colonies (>50 cells) were counted by light microscopy.  All experiments involving 

animals were
 
approved by an Institutional Animal Care and Use Committee at the 

University of Massachusetts Medical School.  HCT116 transfectants were injected (2x10
6
 

in 100 l of PBS) subcutaneously into the flanks of 6 to 8 week-old female CB17 severe 

combined immunodeficient (SCID)/beige mice (3 mice per group, 2 tumors per mouse, 2 

independent experiments).  Tumor growth was monitored every other day, and tumor size 

was calculated with a caliper according to the formula L x W2
/2 (mm

3
). 

 



34 

Statistical analysis 

Data were analyzed using the unpaired t test on a GraphPad software package for 

Windows (Prism 4.0).  A p-value of 0.05 or less was considered as statistically 

significant. 

 

Results  

Caspase 2 activity represses survivin gene expression in 

tumor cells 

We began this study by testing the effect of anticancer agents on caspase activity, 

and focused on caspase 2 for its role at the interface between signaling and apoptosis 

(Troy and Shelanski, 2003).  Treatment of HCT116 colorectal cancer cells with the small 

molecule Heat Shock Protein-90 (Hsp90) inhibitor, 17-allylaminogeldanamycin (17-

AAG), or the DNA-damaging agent, cisplatin (CDDP), resulted in concentration-

dependent increase in caspase 2 activity (Fig. 2-1A).  To determine whether this response 

affected cell survival pathways, we next transfected HCT116 cells with a caspase 2 

cDNA, and looked at a potential modulation of IAP family proteins (Srinivasula and 

Ashwell, 2008).  Consistent with earlier observations (Troy and Shelanski, 2003), forced 

expression of caspase 2 in cells produced an active enzyme, potentially via 

autoproteolysis by induced proximity (Troy and Shelanski, 2003).  In these studies, 

transfection of caspase 2 in HCT116 cells did not significantly reduce cell viability (see 

below).  Conversely, caspase 2-expressing cells exhibited concentration-dependent loss 
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of endogenous survivin levels (Fig. 2-1B), whereas the expression of a related IAP, XIAP 

(Srinivasula and Ashwell, 2008), was not affected (data not shown). 

We next asked whether caspase 2 modulation of survivin involved a 

transcriptional response, so we transfected HCT116 cells with the proximal 830 nt of the 

mouse survivin promoter fused to a GFP reporter gene (ms-830-GFP) (Xia and Altieri, 

2006).  In the presence of a control plasmid, or no plasmid, transfected cells expressed 

GFP under the control of the survivin promoter, by fluorescence microscopy (Fig. 2-1C).  

In contrast, transfection of caspase 2 abolished the GFP
+
 population in HCT116 cells 

(Fig. 2-1C-D), suggesting that the survivin gene was transcriptionally repressed under 

these conditions.  Consistent with this model, transfection of caspase 2 in HCT116 cells 

abolished transcription of several human survivin promoter constructs extending up to -

1430 nt from the transcription start site(s), by luciferase reporter assay, as compared with 

control transfectants (Fig. 2-1E).  We next asked whether this property was specific for 

caspase 2, or whether other caspase(s) also suppressed survivin gene expression.  

Consistent with the data above, transfection of caspase 2 abolished survivin promoter-

luciferase activity in HCT116 cells, whereas expression of caspase 3 had no effect on 

either p53
+/+

 or p53
-/-

 HCT116 cells (Fig. 2-1F).  Because p53 is a known repressor of the 

survivin gene (Hoffman et al., 2002; Mirza et al., 2002), we further characterized a 

potential participation of this pathway in caspase 2 gene regulation.  In these 

experiments, caspase 2 induced silencing of the survivin gene indistinguishably in p53
+/+

 

or p53
-/-

 HCT116 cells (Fig. 2-1D, F), thus ruling out a requirement of p53 in this 

response. 
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Caspase 2 targeting modulates endogenous survivin 

expression in tumor cells 

To use a complementary approach, we next acutely silenced caspase 2 expression 

in HCT116 cells by small interfering RNA (siRNA), and examined potential changes in 

endogenous survivin levels.  Transfection of these cells with a caspase 2-directed siRNA 

efficiently suppressed caspase 2 levels, as compared with control siRNA transfectants 

(Fig. 2-2A).  Acute knockdown of caspase 2 under these conditions was associated with 

upregulation of endogenous survivin expression, by Western blotting (Fig. 2-2A), and 

semi-quantitative and quantitative PCR (Fig. 2-2B).  Conversely, caspase 2 silencing did 

not affect the expression of XIAP (Srinivasula and Ashwell, 2008), in HCT116 cells (Fig. 

2-2A).  To further validate the specificity of caspase 2 in this response, we next silenced 

effector caspase 3 (Fig. 2-2C), or initiator caspase 8 (Fig. 2-2D), and looked at potential 

changes in survivin levels.  Transfection of HCT116 cells with caspase 3 (Fig. 2-2C) or 

caspase 8 (Fig. 2-2D)-directed siRNA efficiently silenced the expression of the 

corresponding caspase, by Western blotting, but had no effect on endogenous survivin 

levels.  As control, transfection of HCT116 cells with non-targeted siRNA was also 

ineffective (Fig. 2-2C, D). 

 

Requirement of caspase 2 catalytic activity for survivin 

gene silencing 

To test whether the enzymatic activity of caspase 2 was required for survivin gene 

regulation, we next generated caspase 2 variants lacking the prodomain, thus mimicking a 
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constitutively active enzyme (Casp.2 152 Ac) (Li et al., 1997a), or carrying an Ala 

substitution of the active site Cys320 (C320A), which produces a catalytically dead 

enzyme (Fig. 2-3A).  Consistent with these predictions, p53
+/+

 or p53
-/-

 HCT116 cells 

transfected with full length caspase 2 exhibited a 2-fold increase in enzymatic activity, 

whereas prodomain-deleted caspase 2 was considerably more active, and a C320A 

caspase 2 mutant had no activity (Fig. 2-3B).  Under these conditions, wild type caspase 

2 or constitutively active caspase 2 suppressed survivin promoter-directed GFP 

expression in HCT116 cells, by fluorescence microscopy (Fig. 2-3C, D), and Western 

blotting (Fig. 2-3E).  In contrast, active site caspase 2 mutant did not affect survivin 

promoter activity, as determined by GFP expression in HCT116 cells (Fig. 2-3C-E).  In 

addition, transfection of HCT116 cells with active caspase 2 did not affect the expression 

of an unrelated plasmid, i.e. pEGFP (Fig. 2-3F), thus confirming the specificity of this 

response.  Taken together, these data indicate that the catalytic activity of caspase 2 is 

required to suppress survivin gene transcription. 

 

Caspase 2 targeting of NFκB activity 

To identify the mechanisms(s) by which caspase 2 specifically antagonizes 

tumorigenicity via repression of survivin, we next focused on its signaling properties, and 

in particular the link to NF B regulation (Tinel et al., 2007).  In a first series of 

experiments, a radiolabeled DNA probe containing a consensus NF B site in the 

proximal survivin promoter (Fig. 2-4A) bound nuclear extracts of tumor cells, in a 

reaction supershifted by an antibody to the p65 subunit of NF B (Fig. 2-4B).  Confirming 
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the specificity of this reaction, wild type, but not mutant unlabeled NF B consensus 

sequence inhibited the formation of a survivin promoter-NF B complex, by EMSA (Fig. 

2-4B). 

Next, we mutated one of the consensus NF B sites in the survivin promoter used 

for the ms-830-GFP construct (Fig. 2-4A), and tested a potential effect on survivin gene 

expression.  In these experiments, full length caspase 2 indistinguishably abolished the 

expression of GFP, whether driven by wild type or NF B mutant ms-830-GFP, as 

determined by fluorescence microscopy of GFP
+
 cells (Fig. 2-4C, D), and Western 

blotting of cellular GFP levels (Fig. 2-4E).  Transfection of these cells with catalytically 

dead caspase 2 restored the expression of GFP driven by the wild type survivin promoter 

(Fig. 2-4C-E).  In contrast, this mutant only partially rescued the activity of the NF B 

mutant ms-830-GFP promoter (Fig. 2-4C-E).  Taken together, these data suggest that 

caspase 2 functions as an upstream negative regulator of NF B, in a pathway that 

requires at least one NF B site in the proximal survivin promoter.  Consistent with this 

model, active caspase 2 abolished NF B reporter activity in TNF -stimulated HCT116 

cells, whereas catalytically dead caspase 2 had no effect (Fig. 2-4F). 

 

Caspase 2 cleavage of RIP1 

Because the catalytic activity of caspase 2 is required for modulation of survivin 

gene expression and NF B activity, we next searched for upstream activator(s) of this 

pathway that may be potentially cleaved by caspase 2. We focused on RIP1 (Festjens et 

al., 2007) for its role in TNF  (Micheau and Tschopp, 2003)-, and DNA damage 



39 

(Janssens et al., 2005)-induced NF B activation, as well as its interaction with caspase 2 

in a large inducible protein complex (Lamkanfi et al., 2005).  In these experiments, 

incubation of unconjugated or bead-conjugated recombinant caspase 2 with 
35

S-labeled 

recombinant RIP1 in vitro resulted in the appearance of RIP1-derived proteolytic 

fragments of approximate molecular weight of 56 and 20 kDa, respectively (Fig. 2-5A).  

Addition of the caspase 2 inhibitor, z-VDVAD-fmk nearly completely prevented RIP1 

cleavage by caspase 2, in vitro (Fig. 2-5A). Moreover, caspase 2 cleaved a 
35

S-labeled–

COOH terminus RIP1 fragment comprising residues 351-672, whereas a RIP1 NH2 

fragment comprising residues 1-350 was not cleaved by caspase 2 (Fig. 2-5B). To test 

whether a similar response occurred in vivo, we next looked for changes in RIP1 

expression upon transfection of caspase 2 in HCT116 cells.  In these experiments, 

transfection of constitutively active caspase 2 nearly completely abolished the expression 

of endogenous RIP1, whereas XIAP levels were not affected (Fig. 2-5C).  In contrast, 

expression of catalytically dead caspase 2 had no effect on endogenous RIP1 levels in 

HCT116 cells (Fig. 2-5C), thus confirming the specificity of this response. 

In parallel experiments, NF B activation by TNF , or transfection of HCT116 

cells with the p65 subunit of NF B (p65-NF B), resulted in increased expression of 

endogenous survivin (Fig. 2-5D).  Conversely, transfection of a S529A dominant 

negative mutant of p65-NF B (Wang and Baldwin Jr, 1998) abolished endogenous 

survivin expression (Fig. 2-5D), thus confirming a role of NF B in survivin gene 

expression.  Therefore, we next tested a potential requirement of RIP1 in this pathway.  

Silencing of RIP1 by siRNA in HCT116 cells abolished the increase in endogenous 

survivin mediated by TNF  stimulation (Fig. 2-5D). However, this pathway is operative 
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only when stimulated with TNFα, as other pathways may compensate for survivin 

expression upon RIP1 knockdown in the absence of TNFα (Fig. 2-5D).  In addition, 

under conditions of RIP1 silencing in TNFα treated cells, transfection of wild type p65-

NF B restored endogenous survivin levels in HCT116 cells, whereas expression of 

S529A p65-NF B had no effect (Fig. 2-5E). 

 

Mitotic defects and apoptosis induced by caspase 2 

silencing of survivin 

Previous studies have shown that survivin is required for tumor maintenance, and 

acute lowering of its levels in tumor cells results in cell cycle defects, inhibition of cell 

proliferation, and induction of apoptosis (Altieri, 2008).  To test whether caspase 2 

downregulation of survivin mirrored this phenotype, we next generated clones of 

HCT116 cells that stably express caspase 2, or a control plasmid.  Generation of stable 

caspase 2 HCT116 transfectants was feasible (Fig. 2-6A), and resulted in significant 

repression of survivin gene transcription, by fluorescence microscopy of ms-830-GFP 

expression (Fig. 2-6B), and luciferase reporter assay (Fig. 2-6C).  Cell cycle-

synchronized HCT116 cells transfected with control plasmid exhibited a periodic 

increase in survivin expression, coinciding with entry into the G2/M phase of the cell 

cycle 8 h after thymidine release, and persisting throughout the completion of mitosis, 10 

to 12 h after release (Fig. 2-6D, top) (Altieri, 2008).  In contrast, HCT116 caspase 2 

transfectants showed no increase in survivin expression at mitosis under the same 

conditions (Fig. 2-6D, bottom).  Functionally, HCT116 cells expressing caspase 2 
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exhibited significantly slower mitotic transitions, with 21% and 40% of these cells re-

entering G1, 10 and 12 h after thymidine release, respectively, as opposed to 30% and 

51% of control transfectants (Fig. 2-6E). 

To explore a potential link between caspase 2 and apoptosis, we next looked at a 

potential degree of spontaneous cell death in caspase 2 HCT116 transfectants.  In the 

absence of cell death stimuli, expression of caspase 2 in synchronized cultures did not 

result in detectable apoptosis at any cell cycle phase tested, as compared with pcDNA 

transfectants, by hypodiploid DNA content and flow cytometry (Fig. 2-6E).  Similarly, 

using an independent experimental approach, caspase 2 HCT116 transfectants were not 

associated with nuclear morphology of apoptosis, by DAPI staining and fluorescence 

microscopy (Fig. 2-7A), further ruling out a direct effect of caspase 2 on cell viability.  In 

contrast, exposure of these cells to the broad cell death stimulus, staurosporine (STS), 

resulted in a two-fold increased sensitivity to apoptosis, as compared with control 

HCT116 transfectants (Fig. 2-7A).  Cell death under these conditions was characterized 

by increased caspase 3 activity and loss of plasma membrane integrity, by 

multiparametric flow cytometry of DEVDase activity and propidium iodide staining (Fig. 

2-7B).  To test the specificity of this response, we first silenced caspase 2 in HCT116 

cells by siRNA.  Caspase 2 knockdown largely reversed STS-induced cell death, as 

compared with control siRNA (Fig. 2-7B), whereas the background level of cell death in 

the absence of STS was indistinguishable in control or caspase 2-silenced cultures (Fig. 

2-7B).  Next, we asked whether survivin could rescue the increased sensitivity to 

apoptosis mediated by caspase 2.  In these experiments, acute expression of caspase 2 in 

breast adenocarcinoma MCF-7 cells resulted in increased cell death, as compared with 
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control transfectants, by fluorescence microscopy of nuclear morphology of apoptosis 

(Fig. 2-7C).  Conversely, stable expression of survivin in MCF-7 cells completely 

reversed apoptosis induced by caspase 2 to background levels of control cultures (Fig. 2-

7C). 

 

Caspase 2 suppression of tumorigenesis 

We next asked whether caspase 2 silencing of survivin, with the associated dual 

phenotype described above affected tumorigenicity, in vitro and in vivo.  In a first series 

of experiments, HCT116 cells stably expressing caspase 2 exhibited significantly reduced 

cell proliferation over a 5-d interval, as compared with control cultures transfected with 

pcDNA (Fig. 2-8A).  In addition, caspase 2 transfectants failed to form colonies in soft 

agar over a 2-week interval, indicating loss of anchorage-independent cell growth (Fig. 2-

8B).  In contrast, control HCT116 cells formed extensive colonies in soft agar under the 

same conditions (Fig. 2-8B).  Lastly, we injected control or caspase 2 HCT116 

transfectants in the flanks of immunocompromised mice, and examined the kinetics of 

tumor growth over a 4-week interval.  Under these conditions, HCT116 cells transfected 

with pcDNA formed exponentially growing superficial tumors (Fig. 2-8C).  In contrast, 

stable expression of caspase 2 in HCT116 cells completely abolished tumor growth, in 

vivo (Fig. 2-8C), further supporting a role of caspase 2 in endogenous tumor suppression. 

Moreover, when we looked at human tissue samples from colon cancer patients, we 

observed very little caspase 2 staining as compared to normal matched counterparts (data 

not shown). Thus, loss of caspase 2 may contribute to increased tumorigenesis, 

potentially due to elevated survivin levels.   
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Specificity of caspase 2 regulation of survivin expression 

and tumorigenicity 

To validate the specificity of these findings, we next generated stable clones of 

HCT116 cells expressing comparable levels of caspase 9 (Fig. 2-9A).  Similar to caspase 

2, caspase 9 is a long prodomain-containing apical caspase (Shi, 2002), which can also be 

activated by induced proximity and overexpression, in vivo.  Differently from caspase 2, 

however, HCT116 caspase 9 transfectants exhibited no modulation of endogenous 

survivin expression, by Western blotting (Fig. 2-9A), and no reduction in survivin 

promoter-dependent GFP expression, by fluorescence analysis of ms-830-GFP (Fig. 2-

9B), or survivin promoter luciferase activity (Fig. 2-9C).  Functionally, caspase 9-

expressing HCT116 cells exhibited no defect in colony formation in soft agar (Fig. 2-

9D), and their kinetics of cell proliferation was indistinguishable from that of pcDNA 

transfectants (Fig. 2-9E). 

 

Discussion  

In this study, we have shown that caspase 2, an apical caspase with still largely 

unknown functions (Krumschnabel et al., 2009), actively represses survivin gene 

transcription in tumor cells.  In turn, acute loss of survivin causes mitotic defects, 

increased sensitivity to apoptosis and complete loss of tumorigenicity, in vitro and in 

vivo.  Mechanistically, this pathway involves caspase 2 cleavage of RIP1, an activator of 
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NF B (Festjens et al., 2007), which results in blocking the expression of NF B-

responsive antiapoptotic genes, including survivin (Kawakami et al., 2005). 

Apart from a well-characterized mechanism of caspase 2 activation in response to 

DNA damage through a multimolecular PIDDosome complex (Tinel and Tschopp, 2004), 

other pathophysiological activation platforms for this caspase have been far less clear 

(Krumschnabel et al., 2009).  Here, conventional (CDDP), or targeted (17-AAG) 

anticancer agents produced concentration- and time-dependent increase in caspase 2 

activity, in agreement with the results obtained with docetaxel (Mhaidat et al., 2007), or 

bortezomib (Yeung et al., 2006).  Caspase 2 activation under these conditions occurred at 

about the same kinetics as compared to caspase 3 activity (our unpublished observations), 

which can activate caspase 2 by removing its long prodomain (Van de Craen et al., 1999), 

suggesting that at least certain anticancer regimens may activate caspase 2 independent of 

effector caspase(s) (Yeung et al., 2006). 

Identified here as one of the critical downstream targets of caspase 2, but not 

caspase 9, survivin is now viewed as a “nodal” IAP family protein (Srinivasula and 

Ashwell, 2008), intersecting multiple signaling pathways in the control of mitosis, 

inhibition of apoptosis, and modulation of the cellular stress response, especially in 

cancer (Altieri, 2008).  In this context, a role of caspase 2 as a novel repressor of survivin 

gene expression adds to a broad array of signaling pathways that finely regulate survivin 

levels in tumor cells. These include transcriptional mechanisms by a host of activators 

and repressors (Altieri, 2008), mTOR regulation of survivin mRNA translation (Vaira et 

al., 2007), or post-transcriptional phosphorylation by mitotic kinases (O'Connor et al., 

2000; Wheatley et al., 2007).  Similar to the phenotype induced by antagonizing 
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transcriptional activators of survivin, such as Wnt/ -catenin (You et al., 2004), Stat3 

(Zhou et al., 2009), or Notch (Lee et al., 2008), heightened caspase 2 activity resulted in 

acute loss of endogenous survivin levels, with ensuing mitotic defects, reduced cell 

proliferation, and sensitization to spontaneous or stimulus-induced apoptosis (Altieri, 

2008).  Mechanistically, this reflects the ability of survivin to control chromosomal 

segregation (Lens et al., 2006) and mitotic spindle formation (Xia et al., 2008), as well as 

antagonize mitochondrial cell death via regulated binding to cofactor molecules, such as 

XIAP (Dohi et al., 2007). 

Functionally, caspase 2 silencing of survivin gene expression resulted in nearly 

complete ablation of tumorigenicity, with loss of colony formation in soft agar, and 

suppression of tumor formation in immunocompromised mice.  This phenotype mirrors 

the effect of genetic deletion of caspase 2 (Ho et al., 2008), which caused delayed 

apoptosis in response to certain stimuli, increased rate of cell proliferation, enhanced 

cellular transformation, and accelerated tumor growth in vivo (Ho et al., 2009). Though 

there has been some speculation that caspase 2 has a role in cell cycle (Castedo et al., 

2004), our study shows that caspase 2 overexpression can lead to deregulation of the cell 

cycle prior to stimulus-induced apoptosis. Taken together, these data fit well with a 

model of caspase 2 as a novel tumor suppressor, and identify acute survivin gene 

silencing as one of the pivotal effectors of this pathway. Moreover, this is consistent with 

correlative evidence linking increased expression of caspases to more favorable prognosis 

in cancer (Estrov et al., 1998; Faderl et al., 1999), or, conversely, loss of caspase to 

disease progression (Stupack et al., 2006). 
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Although the overexpression of survivin seen in most human cancer likely reflects 

activation of multiple oncogenic pathways converging on the survivin gene (Altieri, 

2008), there is also evidence for a reciprocal process that aims at keeping the levels of 

survivin low in normal cells.  Accordingly, pivotal tumor suppressor pathways, mediated 

by p53 (Hoffman et al., 2002; Mirza et al., 2002), Rb (Jiang et al., 2004), SIRT1 (Wang 

et al., 2008b), or PTEN (Guha et al., 2009) have been shown, similarly to caspase 2 (this 

study), to acutely silence the survivin gene, either directly, or via promoter regulation.  

Whether these mechanisms are responsible for the low to undetectable levels of survivin 

observed in most normal adult tissues remains to be elucidated (Altieri, 2008).  However, 

it is possible that transcriptional silencing of the survivin gene provides a requisite 

mechanism for effective tumor suppression (Lowe et al., 2004), and, conversely, 

unrestrained transcriptional expression of survivin may play a role in the steps leading to 

the establishment of transformed clone(s). 

The mechanistic requirements of how caspase 2 antagonizes tumor growth was 

not elucidated in a recent study (Ho et al., 2009).  Here, we provide evidence that this 

pathway involves inhibition of NF B signaling, via direct cleavage of the upstream 

NF B activator, RIP1 (Festjens et al., 2007), in vitro and in vivo.  Consistent with this 

model, the catalytic activity of caspase 2 was required for survivin gene silencing, and 

differential expression of RIP1 or NF B was sufficient to modulate endogenous survivin 

levels in tumor cells.  RIP1 has long been recognized as an ubiquitin-regulated 

component of a TNF -induced multimolecular protein complex, which controls the 

activation of survival pathways via NF B and MAPK signaling (Festjens et al., 2007). 

Whether caspase 2 also participates in these responses has been debated, and a non-
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catalytic mechanism of caspase 2-mediated NF B activation has been proposed 

(Lamkanfi et al., 2005).  The findings presented here are at variance with this model 

(Lamkanfi et al., 2005), but in agreement with a prevailing consensus that caspase 2 

functions as a pro-apoptotic effector antagonizing NF B-mediated cell survival (Tinel et 

al., 2007). In this context, the possibility that caspase(s) may target RIP1 for degradation, 

and thus interrupt NF B-mediated cell survival, has been postulated.  Similar to the data 

presented here with caspase 2, caspase 8 cleavage of RIP1 at Asp324 has been implicated 

in suppressing NF B-dependent survival in tumor cells (Lin et al., 1999), and during 

macrophage differentiation, in vivo (Rebe et al., 2007).  Although caspase 2 cleavage of 

RIP1 was not observed in an earlier study (Lamkanfi et al., 2005), we have shown 

cleavage of the full length RIP1 protein that was largely reversed by the caspase 2 

inhibitor, z-VDVAD-fmk (Krumschnabel et al., 2009), suggesting that an Asp-directed 

substrate recognition may also be involved in this cleavage reaction. 

Functionally, inhibiting NF B signaling by caspase 2 is expected to remove a 

broad cell survival mechanism, that involves transcriptional regulation of multiple 

antiapoptotic molecules, including survivin (Kawakami et al., 2005).  Accordingly, an 

NF B dependence of survivin gene expression has been demonstrated in various cell 

types (Anand et al., 2008; Makishi et al., 2008), and the identification of a functional 

NF B consensus binding site in the proximal survivin promoter (this study), is consistent 

with these observations.  The participation of other predicted NF B consensus binding 

sites on the survivin promoter remain to be identified and their regulation by other 

potential pathways, in addition to caspase 2, remain to be elucidated.  However, the loss-

of-function phenotype, although partial, associated with mutagenesis of the single NF B 
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site identified here suggests that, at least in certain tumor cell types, a basal level of 

survivin gene transcription is mediated by steady-state NF B activity (Anand et al., 2008; 

Makishi et al., 2008). 

In summary, we have found that caspase 2 functions in a broad tumor suppression 

network, lowering a general anti-apoptotic threshold via interruption of NF B signaling 

(Karin, 2006), and abrupt silencing of survivin gene expression (Altieri, 2008).  Among 

the portfolio of apoptosis modifiers, strategies to restore caspase activity in tumors are 

being pursued as viable therapeutic opportunities (Fesik, 2005).  Based on the data 

presented here, restoring caspase 2 activity may be beneficial in tumors with elevated 

NF B activity and high levels of survivin, thus potentially “addicted” to this general 

cytoprotective pathway (Karin, 2006). 
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Figures 

 

Figure 2-1 Caspase 2 represses survivin gene expression. 

  (A) Caspase 2 enzymatic activity in p53+/+ HCT116 cells treated with 17-AAG 

(0.1, 1 or 10 μM) or cisplatin (CDDP, 10, 30 μM or 50 μM) for 48 h.  (B) Western 

blotting of HCT116 cells transfected with pcDNA or HA-tagged caspase 2.  (C) 

Fluorescence microscopy of GFP expression in HCT116 cells transfected with ms-830-

GFP plus pcDNA or caspase 2.  Representative fields are shown.  (D) The conditions are 

as in C, and the number of GFP+ cells were counted for p53+/+ or p53-/- HCT116 cells.  

(E) β-galactosidase-normalized survivin promoter (pLuc1430, pLuc441, pLuc230) 

luciferase activity in transfected HCT116 cells.  (F) Analysis of survivin promoter 

luciferase activity in transfected p53+/+ or p53-/- HCT116 cells.  RLU, relative luciferase 

units.  For panels E and F, data are representative of at least two independent 

experiments.
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Figure 2-2 Transcriptional regulation of survivin by caspase 2. 

(A) Western blotting of HCT116 cells transfected with control (Ctrl) or caspase 2-

directed siRNA. *, non-specific.  (B) Semi-quantitative (left), or quantitative (right) real 

time PCR amplification of survivin or GAPDH mRNA in transfected HCT116 cells.  

Right, GAPDH-normalized quantification of survivin mRNA expression.  (C, D) Western 

blotting of HCT116 transfected with control (Ctrl), caspase-3 (C)- or caspase-8 (D)-

directed siRNA. 
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Figure 2-3 Requirement of caspase-2 catalytic activity for survivin gene repression. 

 (A) Schematic diagram of caspase 2 constructs used in this study.  Casp.2 FL, 

full length; Casp.2 152 Ac, prodomain deleted, constitutively active caspase 2, Casp.2 

C320A, catalytically inactive caspase 2.  The position of an HA tag is indicated.  (B) 

Analysis of caspase 2 activity in transfected p53
+/+

 or p53
-/-

 HCT116 cells using a caspase 

2 colorimetric assay substrate.  Data are representative of at least two independent 

experiments.  (C) Fluorescence microscopy of ms-830-GFP expression in HCT116 cells 

transfected with the indicated caspase 2 constructs.  Representative fields are shown.  (D) 

Quantification of GFP
+
 cells.  The experimental conditions are as in C.  Data are the 

mean SD of two independent experiments.  (E) Western blotting of GFP expression in 

transfected HCT116 cells.  The experimental conditions are as in C.  (F) Fluorescence 
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microscopy of GFP expression in HCT116 cells transfected with ms-830-GFP or pEGFP 

plus pcDNA or active caspase 2 (C2 152 Ac). 



53 

 

Figure 2-4 Caspase 2 targets NFκB-mediated survivin gene expression. 

 (A) Position and mutagenesis of an NF B consensus binding site in the survivin 

promoter (ms-830-NF B ).  (B) EMSA of 
32

P-labeled survivin (SVV) or NF B 

consensus probes.  Reaction mixtures contained unlabeled excess competitor of a generic 

NF B consensus sequence (C), or wild type (S), or mutant (M) survivin.  (C) 

Fluorescence microscopy of ms-830-GFP expression in transfected HCT116 cells.  (D) 

Quantification of GFP
+
 cells.  The experimental conditions are as in C.  **, p=0.0028.  

(E) Western blotting of transfected HCT116 cells.  The experimental conditions are as in 

C.  Right, densitometric quantification of protein bands.  (F) NFκB luciferase reporter 
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activity in HCT116 transfectants in the presence or absence of TNF .  RLU, relative 

luciferase units, *, p=0.04. 
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Figure 2-5 Caspase 2 cleavage of RIP1 

(A) Autoradiography of caspase 2 cleavage of 
35

S-labeled RIP1.  z-VDVAD-fmk 

was used as a caspase 2 inhibitor.  FL, full length.  (B) Caspase 2 cleavage of 
35

S-labeled 

RIP1 constructs, including full length (FL), NH2-terminus (residues 1-350) or –COOH 

terminus (residues 351-672) fragments.  Arrows, cleavage products visualized by 

autoradiography. (C) Western blotting of transfected HCT116 cells transfected with 

active (C2 152Ac), or mutant (C2 152 C320A) caspase 2.  *, non specific.  (D) Western 

blotting of HCT116 cells transfected with control (Ctrl) or RIP1-directed siRNA, or, 

alternatively, wild type or mutant (S529A) p65-NFκB in the presence or absence of 

TNF .  (E) Western blotting of TNF -stimulated HCT116 cells transfected with control 

(Ctrl) or RIP1-directed siRNA, in the presence of wild type or mutant p65-NF B. 
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Figure 2-6 Characterization of caspase 2 HCT116 transfectants 

(A) Western blotting of HCT116 stably transfected with caspase 2.  Clone #9 was 

used in subsequent experiments.  (B) Fluorescence microscopy of ms-830-GFP 

expression in stably transfected HCT116 cells.  Right. Quantification of GFP
+
 cells, 

***p<0.0001. (C)  -galactosidase-normalized survivin promoter (pLuc 1430) luciferase 

activity in stably transfected HCT116 cells.  Data are representative of at least two 

independent experiments.  RLU, relative luciferase units.  (D) Western blotting of cell 

cycle-synchronized HCT116 transfectants expressing pcDNA (top, control) or caspase 2 

(bottom).  (E) Cell cycle profile of synchronized HCT116 cells.  The percentage of cells 

in the G1 or G2/M phase of the cell cycle is indicated per each clone.  Ctrl, Control. 
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Figure 2-7 Regulation of caspase 2-induced apoptosis 

(A) Fluorescence microscopy of nuclear apoptosis in HCT116 transfectants.  

Representative images are shown.  STS, staurosporine.  Right, quantification of apoptotic 

cells, **p=0.003.  (B) Multiparametric flow cytometry analysis of DEVDase (caspase) 

activity and DNA content (propidium iodide) of transfected HCT116 cells treated with 

vehicle or staurosporine (STS).  The percentage of cells in each quadrant is indicated.  

(C) Nuclear morphology of apoptosis in parental MCF-7 cells or MCF-7 cells stably 

expressing survivin (MCF-7 SVV) after transfection of caspase 2 or pcDNA.  Left, DAPI 

staining of representative microscopy fields.  Magnification, x200.  Right, Quantification 

of cell death.  Mean SEM of replicates representative experiment of at least two 

independent experiments. 
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Figure 2-8 Caspase 2 suppression of tumorigenesis 

(A) Proliferation of stable HCT116 transfectants, *, p=0.034.  (B) Colony 

formation of HCT116 transfectants.  Left, representative microscopy fields per cell type 

are shown.  Right, quantification of colony formation, ***, p<0.0001.  (C) Xenograft 

tumor growth of HCT116 transfectants.  Mean tumor volume in mm
3
 is shown for each 

time point.  Representative of two independent experiments.  
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Figure 2-9 Characterization of HCT116 caspase 9 stable transfectants 

(A) Western blotting of transfected HCT116 cells.  Clone #9 was used in 

subsequent experiments.  (B) Fluorescence microscopy of ms-830-GFP expression in 

HCT116 transfectants.  (C) Analysis of survivin promoter luciferase activity in HCT116 

transfectants.  RLU, relative luciferase units.  (D) Colony formation of HCT116 

transfectants.  (E) Cell proliferation of HCT116 transfectants.  For panels C and E, data 

are the mean SEM of replicates representative of at least two independent experiments. 
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Abstract 

Endogenous tumor suppression provides a barrier against malignant 

transformation, but the molecular circuitries of this process are not well understood.  

Here, we show that the dual specificity phosphatase PTEN, a gene almost universally 

inactivated in human tumors, silences the expression of survivin, an essential regulator of 

cell division and apoptosis in cancer.  This pathway is independent of p53, involves 
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active repression of survivin gene transcription, and is mediated by direct occupancy of 

the survivin promoter by FOXO1 and FOXO3a transcription factors.  Conditional 

deletion of PTEN in the mouse prostate causes deregulated induction of survivin before 

full blown transformation, in vivo, whereas expression of survivin and PTEN is inversely 

correlated in cancer patients.  Therefore, silencing the survivin gene is one of the 

essential requirements of PTEN mediated endogenous tumor suppression. 

 

Introduction 

The dual specificity phosphatase PTEN (Phosphatase and Tensin homolog deleted 

from chromosome Ten) functions as a nodal regulator of multiple signaling pathways that 

control cell proliferation, cell survival, and cell size (Keniry and Parsons, 2008).  By 

removing the D3 phosphate from the lipid second messenger phosphatidylinositol 

triphosphate, PTEN shuts off growth factor receptor stimulation, and interrupts 

downstream signaling mediated by AKT and PDK1 kinases (Manning and Cantley, 

2007).  This pathway provides a broad network of tumor suppression, not only by 

antagonizing cell proliferation and promoting apoptosis, but also by maintaining 

chromosomal integrity (Shen et al., 2007), and directly cooperating with p53-dependent 

responses (Semba et al., 2006).  In this context, the PTEN pathway is almost universally 

disabled in human cancer (Keniry and Parsons, 2008), often involving deletion of the 

PTEN gene in common malignancies of prostate, brain, breast, and colon (Li et al., 

1997b).  Although Forkhead transcription factors of the FOXO subfamily have been 

shown to contribute to PTEN signaling (Calnan and Brunet, 2008), the downstream gene 
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targets that cooperate to mediate tumor suppression have not been conclusively identified 

(Accili and Arden, 2004). 

Survivin is a unique member of the Inhibitor of Apoptosis (IAP) gene family with 

essential roles in mitosis, the cellular stress response, and inhibition of cell death (Altieri, 

2008).  These properties are exploited in cancer, where survivin is universally over-

expressed, and promotes unfavorable outcome (Altieri, 2008).  Although several 

signaling pathways, including AKT (Wang et al., 2008a), have been associated with 

elevated survivin levels in cancer, the interplay between oncogenic mechanisms and 

tumor suppression networks in controlling survivin gene transcription has remained 

largely unclear. 

In this study, we investigated the impact of the PTEN pathway on survivin gene 

expression. We show that loss of PTEN activates survivin gene transcription in a FOXO-

dependent pathway. This involves active AKT to inhibit FOXO1 and FOXO3a binding to 

the survivin promoter region, thus turning on survivin promoter activity and gene 

transcription.    

 

Materials and Methods 

Cells and antibodies 

Breast adenocarcinoma MCF-7 and MDA-MB-231, and prostate adenocarcinoma 

PC3 cells were obtained from the American Type Culture Collection (ATCC).  p53
+/+

 or 

p53
-/-

 colorectal cancer HCT116 cells were kindly provided by Dr. Bert Vogelstein 



63 

(Johns Hopkins University, Baltimore, MD).  MCF-7 cells stably expressing survivin 

(MCF-7 SVV) were described previously (Ghosh et al., 2008).  MDA-MB-231 cells 

stably transfected with the proximal 830 nt of the mouse survivin promoter fused to GFP 

(ms-830-GFP) were as described (Xia and Altieri, 2006).  A lentiviral plasmid encoding 

control pLKO or PTEN-directed short hairpin RNA (shRNA, Open Biosystems) was 

transfected into 293T packaging cells together with pCMV∆8.9 and pMDG to generate 

lentiviruses.  MCF-7 cells were infected with control or PTEN-directed lentivirus, and 

positive clones were selected in 1 g/ml Puromycin (Sigma)-containing medium.  

Antibodies to PTEN, phospho-AKT (S473), cleaved caspase 3 (Cell Signaling), XIAP, 

GFP (BD Biosciences), FOXO1, FOXO3a, 14-3-3  (Santa Cruz Biotechnology), RNA 

Polymerase II, IgG (Active Motif), survivin (Novus Biologicals), or -actin (Sigma) were 

used. 

 

RNA and protein analysis 

Total RNA was extracted from HCT 116 cells (Qiagen) and was reverse-

transcribed using 1
st
 strand CDNA synthesis by Oligo (dT) (Invitrogen). The cDNA was 

amplified with primers for survivin, 5‟-GCATGGGTGCCCCGACGTTG-3‟ (forward) 

and 5‟-GCTCCGGCCAGAGGCCTCAA-3‟ (reverse); GAPDH, 5'-

ACGGATTTGGTCGTATTGGGCG-3‟ (forward) and
 
5'-

CTCCTGGAAGATGGTGATGG-3‟ (reverse); FOXO1, 5‟-

AAGAGCGTGCCCTACTTCAA-3‟ (forward) and 5‟-

AGGCCATTTGGAAAACTGTG-3‟ (reverse); FOXO3a, 5‟-
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GCAAGCACAGAGTTGGATGA-3‟ (forward) and 5‟-

CTGGCGTAGGGAGTTCAGAG-3‟ (reverse).  The amplified product was resolved on a 

1% agarose gel by electrophoresis. Protein expression was analyzed by Western blotting. 

 

Transfections 

-galactosidase-normalized survivin promoter luciferase activity (pLuc-3000, 

pLuc-1430, pLuc-649, and pLuc-441) was quantified as described (Li and Altieri, 1999).  

Cells were transfected with SMARTpool siRNA directed to PTEN, FOXO1 or FOXO3a 

(Dharmacon), or non-targeted siRNA (Ghosh et al., 2008).  LY294002 (Calbiochem) was 

used as a PI3 kinase inhibitor.  MDA-MB-231 cells stably transfected with ms-830-GFP 

were transduced with adenoviruses encoding FOXO variants at 30-50 multiplicity of 

infection (MOI) for 8 h, and harvested after 24-48 h. 

 

Analysis of apoptosis 

Cells transfected with pEGFP or PTEN-GFP were analyzed after 24 h by 

multiparametric flow cytometry using PE-Annexin V and 7-AAD staining (BD 

Biosciences) (Ghosh et al., 2008), or, alternatively, for DNA content by propidium iodide 

staining and flow cytometry. 
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Chromatin immunoprecipitation

Colorectal adenocarcinoma HCT116 cells (4.7x10
7
) were fixed in 1% 

formaldehyde for 10 min at 22 C, lysed, and nuclear fractions were isolated prior to 

DNA shearing (fragment size of 200 to 600 nt) by sonication.  Samples were incubated 

with protein G magnetic beads and various antibodies for 5 h at 4 C.  The beads were 

pelleted, reverse-crosslinked, treated with proteinase K, and DNA was amplified by PCR 

using primers for regions in the human survivin promoter containing putative FOXO 

binding sites (-1428 nt): 5‟ -TGAGCTGAGATCATGCCACT-3‟ (forward), and 5‟-

CTGGTGCCTCCACTGTCTTT-3‟ (reverse), or devoid of FOXO binding sites (-2269 

nt): 5‟-TTGTTCCTTTCCTCCCTCCTGAG-3‟(forward), and 5‟-

GTCAACTGGATTTGATAACTGCA-3‟(reverse).  Primers to amplify FOXO binding 

sites in the p27
Kip1

 promoter (Li et al., 2008), or RNA polymerase II binding sites in the 

GAPDH promoter were used as control.  

 

Oncomine Analysis

Oncomine data were reviewed for microarray analysis of differential gene 

expression in cancer versus matched normal tissues.  Raw gene expression data were 

extracted for both PTEN and survivin from the same studies, and comparative analysis 

was performed using GraphPad Software (Prism 4.0).  A p value was calculated using 

Spearman rank correlation test. 

 



66 

Histology 

Five m sections cut from prostate tissues of 20-24 week old prostate-specific 

PTEN conditional knockout mice (Wang et al., 2003) were stained with antibodies to 

survivin or control IgG by immunohistochemistry, as described (Xia and Altieri, 2006). 

 

Analysis of tumorigenicity 

Stably transfected MCF-7 cells with PTEN shRNA were cultured in soft agar for 

14 days at 37°C, and colonies (>50 cells) were counted by light microscopy.  All 

experiments involving animals were
 
approved by an Institutional Animal Care and Use 

Committee at the University of Massachusetts Medical School.  MCF-7 PTEN shRNA 

transfectants were injected (2x10
6
 in 100 l of PBS) subcutaneously into the flanks of 6 

to 8 week-old female CB17 severe combined immunodeficient (SCID)/beige mice (3 

mice per group, 2 tumors per mouse, 2 independent experiments).  Tumor growth was 

monitored every other day, and tumor size was calculated with a caliper according to the 

formula L x W2
/2 (mm

3
). 

 

Results  

PTEN regulation of survivin gene expression  

Transfection of breast adenocarcinoma MCF-7 cells with PTEN-directed siRNA 

efficiently suppressed PTEN expression, by Western blotting (Fig. 3-1A).  This was 

associated with increased levels of endogenous survivin, as compared with cultures 
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transfected with non-targeted siRNA (Fig. 3-1A).  XIAP, another IAP family protein 

stabilized by survivin (Altieri, 2008), was also increased in MCF-7 cells after PTEN 

knockdown, whereas the levels of 14-3-3  were unchanged (Fig. 3-1A).  siRNA 

silencing of PTEN indistinguishably increased survivin expression in p53
+/+

 or p53
-/-

 

HCT116 cells, indicating that p53 was not required for this response (Hoffman et al., 

2002) (Fig. 3-1A).  Consistent with a transcriptional mechanism, PTEN knockdown 

resulted in a two-fold increase in survivin mRNA, by RT-PCR (Fig. 3-1B), and increased 

survivin promoter activity, by luciferase reporter assay (Fig. 3-1C).  Accordingly, MCF-7 

cells transfected with the proximal 830 nt of the survivin promoter fused to GFP (ms-

830-GFP) exhibited an increased number of GFP-expressing cells after PTEN silencing, 

by fluorescence microscopy (Fig. 3-1D).  In contrast, PTEN siRNA did not affect the 

expression of control pEGFP, and a non-targeted siRNA was ineffective (Fig. 3-1D). 

 

Transcriptional repression of survivin by PTEN signaling 

In complementary experiments, transfection of a PTEN cDNA in PTEN-null 

breast adenocarcinoma MDA-MB-231 or prostate adenocarcinoma PC3 cells resulted in 

nearly complete suppression of Akt phosphorylation on Ser473 (Fig. 3-2A).  This was 

associated with concentration-dependent reduction in endogenous survivin levels, by 

Western blotting (Fig. 3-2A), and repression of survivin gene transcription, by luciferase 

promoter assay (Fig. 3-2B).  Similarly, downstream targeting of the PI3 kinase pathway 

with the pharmacologic inhibitor LY294002, or after transfection of a dominant negative 

(DN) mutant of the p85 regulatory subunit (p85 ), suppressed survivin promoter-directed 
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GFP expression in HCT116 cells (Fig. 3-2C), and reduced endogenous survivin protein 

levels in MCF-7 cells (Fig. 3-2C, D), respectively. 

 

FOXO silencing of survivin gene transcription 

The FOXO family of Forkhead transcription factors function as potential effectors 

of PTEN signaling (Accili and Arden, 2004).  Accordingly, transduction of MDA-MB-

231 cells with an adenovirus encoding a FOXO1 DN mutant increased endogenous 

survivin levels, as compared with cultures transduced with wild type (WT) FOXO1 (Fig. 

3-3A).  Conversely, a constitutively active FOXO1 construct (ADA) slightly reduced 

survivin expression in MDA-MB-231 cells (Fig. 3-3A).  In control experiments, 

expression of FOXO1 ADA induced spontaneous apoptosis in transduced cultures, 

whereas FOXO1 WT or DN mutant had no effect, by DNA content analysis and flow 

cytometry (Fig. 3-3A).  In complementary experiments, siRNA silencing of FOXO1 or 

FOXO3a (Fig. 3-3B) increased the expression of endogenous survivin in HCT116 cells, 

by Western blotting (Fig. 3-3B), and enhanced survivin promoter luciferase activity (Fig. 

3-3C), as compared with non-targeted siRNA.  When analyzed in chromatin 

immunoprecipitation studies, FOXO1 and FOXO3a physically associated with a segment 

of the proximal survivin promoter (-1428 nt) containing putative FOXO binding sites, 

whereas an upstream region (-2269 nt) in the survivin gene was ineffective (Fig. 3-3D).  

In control experiments, FOXO1 and FOXO3a also bound to the p27
Kip1

 promoter, which 

is regulated via FOXO-dependent transcription (Li et al., 2008), but not to an unrelated 

promoter, GAPDH (Fig. 3-3D).  Finally, stable shRNA silencing of PTEN in MCF-7 

cells resulted in increased survivin expression (not shown), and reduced formation of 
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FOXO3a complexes with the survivin promoter, whereas FOXO1 interactions were less 

prominently affected (Fig. 3-3E). 

 

Survivin modulation of PTEN tumor suppression 

Transfection of a PTEN cDNA in MCF-7 cells minimally affected cell viability, 

whereas the combination of PTEN expression plus the broad cell death stimulus, 

staurosporine (STS), caused approximately a 2-fold increase in apoptosis, by 

multiparametric flow cytometry (Fig. 3-4A).  Stable expression of survivin in MCF-7 

SVV cells reversed apoptosis induced by expression of PTEN plus STS to background 

levels of untreated cells (Fig. 3-4A), and reduced the extent of effector caspase 3 

cleavage, by Western blotting (Fig. 3-4B).  When analyzed in vivo, the expression of 

survivin and PTEN was inversely correlated in published microarray datasets of patients 

with glioblastoma (Sun et al., 2006) (p<0.0001), or colon cancer (Ki et al., 2007) 

(p=0.0017) (Fig. 3-4C).  In addition, conditional deletion of PTEN in the mouse prostate 

resulted in a dramatic increase in survivin expression at the earliest stages of prostatic 

tumorigenesis, i.e. atypical hyperplasia, which persisted in more advanced disease phases 

of carcinoma in situ and invasive carcinoma, in vivo (Fig. 3-4D). 

 

Pten regulation of tumorigenicity 

To further characterize the MCF-7 cells stably expressing PTEN shRNA, we 

performed several in vitro and in vivo studies to determine the effects of PTEN silencing 

on tumorigenicity. Transfection of these cells with ms-830-GFP showed a remarkable 
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increase in the number of GFP-expressing cells (Fig. 3-5A, left). This correlated with the 

increase in phosphorylated AKT and survivin expression in the PTEN shRNA clone as 

compared to the empty vector control, plko (Fig. 3-5A, right). Similarly, MCF-7 shPTEN 

clone also showed an increase in survivin promoter-driven luciferase activity for both 

pluc 649 and pluc 441 as compared to control shGFP transfectants (Fig. 3-5B). To 

determine whether stable silencing of PTEN affects anchorage-independent growth, we 

performed soft agar colony formation assay over a period of 14 days. MCF-7 stably 

expressing PTEN shRNA showed a 10-fold increase in the number of colonies as 

compared to empty vector or GFP shRNA control transfectants (Fig. 3-5C). Moreover, 

the proliferative capacity of MCF-7 shPTEN cells exceeded that of MCF-7 shGFP cells 

by the 6
th

 day of cell counting (Fig. 3-5D). Lastly, we injected the stable transfectants 

into the flanks of immunocompromised mice and monitored tumor growth over a period 

of 3 weeks. Under these conditions, PTEN silencing in MCF-7 cells showed similar 

growth kinetics to the control group up to day 12 of tumor growth (Fig. 3-5E). However, 

MCF-7 shPTEN xenografts started to diverge from the control group on an increasing 

exponential after a latency period of about two weeks (Fig. 3-5D).     

 

Discussion  

The purpose of this study was to identify downstream gene targets of PTEN null 

tumors that contribute to tumorigenicity and resistance to therapy. Here we show that 

survivin, a member of the Inhibitor of Apoptosis (IAP) family, is a downstream effector 

of the PI3K/AKT pathway that is transcriptionally upregulated upon PTEN knockdown 

in both breast and colorectal cancer cells. Moreover, stable knockdown of PTEN by 



71 

lentiviral siRNA delivery in breast cancer cells results in increased survivin promoter 

activity, increased colony formation in soft agar and accelerated tumor growth in mice 

xenografts. Conversely, expression of a mutant form of PI3K (p85Δ), pharmacologic 

inhibition of PI3K by LY294002 or PTEN overexpression results in survivin 

downregulation and increased apoptosis. Reintroduction of survivin in PTEN-transfected 

cells partially rescues the apoptotic phenotype. In addition, we show by chromatin 

immunoprecipitation and luciferase reporter assays that forkhead transcription factors, 

FOXO1 and FOXO3a, which are excluded from the nucleus upon AKT phosphorylation, 

bind to the survivin promoter and negatively regulate its transcription. Accordingly, 

overexpression of a non-phosphorylable FOXO1 mutant (Foxo1ADA) that localizes to 

the nucleus promotes cell death via downregulation of survivin gene expression. 

Conversely, siRNA knockdown of both FOXO1 and FOXO3a results in increased 

survivin promoter activity and protein expression. These data point to a novel mechanism 

by which PTEN suppresses survivin levels via FOXO1 and FOXO3a-dependent 

transcriptional repression.  

A funtional role for PTEN in tumorigenesis has been difficult to comprehend due 

to a cooperative role of the p53 tumor suppressor protein. Complete loss of PTEN in a 

mouse prostate cancer model resulted in senescence induced by p53 (Chen et al., 2005). 

Similarly, in our xenograft studies we did not observe a dramatic increase in tumor 

growth, perhaps due to the presence of p53 in the MCF-7 stable transfectants. Complete 

loss of PTEN in vivo does not lead to proliferative cell growth due to the role of p53 in 

promoting cellular senescence. Therefore, tumor growth kinetics may largely depend on 

the p53 status of PTEN-null tumors. On the occasion both tumor suppressor functions are 
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lost, tumor proliferation and carcinogenesis can proceed without having to deal with 

endogenous barrier mechanisms.  

  Tumor suppression mediated by PTEN may contribute to the differential 

expression of survivin in many disparate types of cancer (Altieri, 2008), given that 

defects in the PTEN pathway, or deregulated Akt signaling, occur in nearly every human 

tumor (Keniry and Parsons, 2008).  Similar to PTEN (this study), other pivotal tumor 

suppressors, including p53 (Hoffman et al., 2002; Mirza et al., 2002), APC (Zhang et al., 

2001), and BRCA1 (Wang et al., 2008b) have been shown to acutely silence the survivin 

gene, by different mechanisms.  This suggests that maintaining low to undetectable levels 

of survivin is a general mechanism of an endogenous tumor suppression network, and 

provides a requisite to effectively antagonize neoplastic transformation. Moreover 

survivin-based therapeutics currently available in the clinic may be advantageous to 

restore apoptosis and inhibit cell proliferation in PTEN-null human tumors. 
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Figures 

 

 Figure 3-1 PTEN regulation of survivin gene expression. 

  (A) The indicated cell types were transfected with control (Ctrl) or PTEN-

directed siRNA, and analyzed by Western blotting.  *, non specific.  (B)  siRNA-

transfected HCT116 cells were analyzed by RT-PCR.  Numbers correspond to 

densitometric quantification of mRNA bands.  (C) PTEN siRNA-silenced HCT116 cells 

were transfected with a survivin promoter luciferase construct (pLuc-441), and analyzed 

for luciferase activity.  RLU, relative luciferase units.  *, p=0.025.  (D)  HCT116 cells 

expressing pEGFP or ms-830-GFP were transfected with the indicated siRNA, and 

analyzed by fluorescence microscopy.  Right, quantification of GFP-expressing cells.  **, 

p=0.0061.  For panels C and D (right), data are the mean SEM of replicates from a 

representative experiment out of at least two independent determinations. 
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 Figure 3-2 Transcriptional repression of survivin by PTEN 

 (A) The indicated cell types were transfected with pEGFP or increasing 

concentrations of PTEN cDNA, and analyzed by Western blotting.  *, non specific.  (B)  

HCT116 cells expressing pEGFP or PTEN cDNA were transfected with a survivin 

promoter luciferase construct (pLuc-649), and analyzed for luciferase activity.  RLU, 

relative luciferase units.  **, p=0.0048.  Data are the mean SEM of replicates of a 

representative experiment out of at least two independent determinations.  (C)  HCT116 

cells were transfected with ms-830-GFP, treated with vehicle or LY294002 (30 M), and 

analyzed by fluorescence microscopy.  Right, Western blotting.  (D)  MCF-7 cells were 

transfected with pcDNA or PI3 kinase p85  DN mutant and analyzed by Western 

blotting. 
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 Figure 3-3 FOXO regulation of survivin gene transcription 

 (A) MDA-MB-231 cells stably expressing ms-830-GFP were transduced with the 

indicated FOXO1 adenoviruses (pAd), and analyzed by Western blotting.  WT, wild 

type; ADA, constitutively active; DN, dominant negative.  Right, DNA content analysis 

of transduced cells.  The percentage of cells with sub-G1 DNA content is indicated.  (B)  

HCT116 cells transfected with control (Ctrl) or FOXO1- (left) or FOXO3a (right)-
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directed siRNA were analyzed by RT-PCR (top) or Western blotting (bottom).  (C)  

HCT116 cells silenced for FOXO1 or FOXO3a were transfected with survivin promoter 

luciferase constructs (pLuc-1430 or pLuc-3000) and analyzed for luciferase activity.  

RLU, relative luciferase units.  Data are the mean SEM of replicates of a representative 

experiment out of at least two independent determinations.  (D)  Nuclear extracts of 

HCT116 cells were immunoprecipitated (IP) with the indicated antibodies, and the 

immune complexes were amplified with primers corresponding to survivin, p27
Kip1

 or 

GAPDH promoter sequences.  Top, position of putative FOXO sites in the survivin 

promoter. (E). Nuclear extracts of MCF-7 cells stably expressing control pLKO or 

PTEN-directed shRNA were immunoprecipitated with the indicated antibodies and 

amplified with primers corresponding to survivin. 
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 Figure 3-4 Regulation of PTEN tumor suppression by survivin 

 (A)  MCF-7 or MCF-7 SVV cells were transfected with pEGFP or PTEN with our 

without STS (1 M), and analyzed by multiparametric flow cytometry.  The percentage 

of cells in each quadrant is indicated.  (B)  Transfected MCF-7 or MCF-7 SVV cells were 
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analyzed by Western blotting.  (C)  Microarray datasets of patients with glioblastoma 

(77) or colon cancer (81) were examined for expression of PTEN or survivin by linear 

regression analysis.  (D)  Prostate tissues from 20-24 week-old prostate-specific PTEN 

conditional knockout mice were stained with IgG or antibodies to survivin.  Arrow, area 

of local invasion.  Magnification, x400. 
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 Figure 3-5 Characterization of stable MCF-7 cells expressing PTEN shRNA 

  (A) MCF-7 stable cells expressing empty vector (plko) or PTEN shRNA (shPten) 

were transfected with ms-830-GFP and analyzed by fluorescence microscopy (left) or 

western blotting (right). (B) MCF-7 stable cells were transfected with a survivin promoter 

luciferase construct (pLuc-649 and pLuc 441), and analyzed for luciferase activity.  RLU, 

relative luciferase units. (C) Colony formation of MCF-7 transfectants.  Left, 

representative microscopy fields per cell type are shown.  Right, quantification of colony 

formation. (D) Cell proliferation assay of MCF-7 transfectants over a period of 6 days. 
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(E) Xenograft tumor growth of MCF-7 transfectants.  Mean tumor volume in mm
3
 is 

shown for each time point.  Representative of two independent experiments. 
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Chapter 4. Final Thoughts and Future Directions 

Since the discovery of survivin in 1997, there have been about 2,600 pubmed 

articles on survivin to date. The evolving interest in survivin biology among scientists all 

over the world is the very indication that this protein encompasses essential functions in 

tumor progression and maintenance. In order to translate the burgeoning research into 

promising therapeutic potential, it is crucial to have a complete understanding of the 

functional implications of survivin. Although much is known about survivin‟s role as a 

regulator of cell division and an inhibitor of apoptosis, there is still more to the function 

of survivin that has yet to be discovered. Recent evidence from our lab points to 

survivin‟s role as a transcriptional regulator of fibronectin gene expression that facilitates 

tumor invasion and metastasis. In addition to survivin‟s multiple functional roles, it is 

equally important to understand upstream regulators that control survivin gene expression 

in cancer cells as opposed to normal cells. Our study provides evidence for two novel 

endogenous tumor suppressors that regulate survivin gene transcription, namely caspase- 

2 and PTEN. The loss of function of either of the two proteins results in deregulated 

expression of survivin leading to uncontrolled cancer cell survival and proliferation.  

Despite caspase 2 being one of the first caspases to be discovered, there still 

remains controversial evidence on the exact function of caspase 2 in the cell death 

cascade. Conventionally, caspase 2 plays a role in regulating the intrinsic cell death 

pathway by acting as an initiator caspase involved in mitochondrial permeabilization 

upon DNA damage (Kumar and Vaux, 2002). In our study we provide evidence to 

suggest a novel role of caspase 2 in regulating survivin gene transcription via the NFκB 
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singaling pathway. Upon activation of caspase 2 following DNA damage or 

chemotherapy, caspase 2 cleaves RIP1 thereby suppressing NFκB transcription factor 

from nuclear translocation (Fig. 4-1). In turn, NFκB is unable to initiate target gene 

transcription involved in apoptosis inhibition, including survivin. This leads to 

consequent mitotic arrest and cell death in those cancer cells that are dependent on 

NFκB-mediated survival signaling. Alternatively, TNFα is able to stimulate NFκB 

activity by phosphorylation of IκBα inhibitory protein by the IKK complex, which leads 

to subsequent ubiquitination and degradation of IκBα by the proteasomal pathway. 

Overexpression of active caspase 2 interferes with this pathway by preventing NFκB 

from initiating its transcriptional activity via the intermediary cleavage of RIP1 activator 

kinase as illustrated in the model figure (Fig. 4-1).  

The data represented above gives a new perspective into understanding cancer as 

a disease with multiple pathways that intricately intersect resulting in deregulated gene 

expression, abnormal cell proliferation and resistance to cell death. Previously, colorectal 

cancer was known to expand from colonic crypts to malignant transformation by a 

process involving a complex of the transcription factors T-Cell Factor (TCF-4)/β-catenin. 

Deregulation and stabilization of TCF-4/β-catenin would result in abnormal target gene 

expression, including survivin (Kim et al., 2003). Although, there is some data supporting 

the TCF-4/ β-catenin pathway in colorectal cancer progression, it is important to identify 

parallel pathways that may significantly contribute to disease dissemination.  Caspase 2 

regulation of NFκB pathway provides one such perspective that would allow clinicians to 

better predict disease outcome and allow for combination therapy. Another possibility is 
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to target survivin as a nodal protein in patients with multiple pathway mutations that may 

be a better strategy as opposed to targeting any single deregulated pathway.  

 In chapter 3 we have described a comprehensive mechanism showing PTEN 

regulation of survivin via FOXO transcription factor binding. In this study we concluded 

that PTEN negatively regulates survivin transcription by shutting off the PI3K/AKT 

pathway and allowing FOXO1- and FOXO3a-mediated survivin gene repression (Fig. 4-

2). Since PTEN regulates the PI3K/AKT pathway, it is important to note that survivin has 

also been linked to mTOR signaling, which is also a target of AKT. A previous study 

done in our lab showed IGF-1 stimulation of mTOR signaling increased a translational 

pool of survivin mRNA (Vaira et al., 2007). Translation of survivin was directly 

regulated by p70S6K , a downstream substrate of mTOR that is involved in protein 

synthesis. Thus, survivin is regulated by the PI3K/AKT pathway not only via a FOXO-

dependent transcriptional mechanism, but also a pathway that controls survivin 

translation via p70S6K. In this study we have uncovered novel survivin transcriptional 

mechanisms that add to the list of existing transcriptional and translational regulation of 

survivin, suggesting that a single mechanism is probably not sufficient for maintaining 

survivin levels in cancer cells. Although p53 is a valid transcriptional repressor of 

survivin (Hoffman et al., 2002), we have presented two p53-independent mechanisms for 

survivin gene regulation. Nevertheless, it is important to keep in mind these alternative 

pathways when comparing cancer subtypes and their p53-status.  As with the PTEN 

story, we have shown that survivin is regulated independently of p53 status in vitro. 

However, since there are several reports of crosstalk between PTEN and p53, we cannot 

neglect this possibility. Since we didn‟t observe a difference in tumor growth of PTEN-
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null xenografts as compared to controls, one must speculate that there are alternate 

mechanisms at play. This could be true especially in an in vivo setting, as several other 

p53-driven tumor suppression mechanisms may be turned on that counteract the increase 

in survivin levels upon PTEN silencing. Perhaps, it would be interesting to find a link to 

p53 by using mutant p53 cell lines to conduct some of the PTEN knockdown studies in 

vivo. In this context, it may also be beneficial to study the effects of senescence in 

response to these tumor suppressors. Although there is no literature linking survivin to 

senescence, it would be worthwhile to investigate a potential role for survivin in 

regulating senescence.  

The intricate network of signaling molecules in tumor progression can only be 

understood when all the members involved have been identified and accounted for. In our 

study, we have established part of the tumor suppressor network in controlling survivin 

gene transcription (Fig. 4-3). Although disparate molecules converge on survivin to either 

suppress or activate survivin gene expression, it may be interesting to establish a 

relationship among the various transcription factors that bind to the survivin promoter. In 

other words, it would be worthwhile to determine possible overlap/cooperation of the 

different promoter binding sites. For example, upon AKT activation, FOXO transcription 

factors are excluded from the nucleus, and are unable to initiate their role as a 

transcriptional repressor of survivin gene expression. In this context, it may be possible 

that NFκB transcription factors cooperate with the PI3K/AKT pathway to promote 

survivin transcription in the absence of FOXO factors. Moreover, we could potentially 

determine epigenetic factors such as chromatin modifications involving (de)acetylation of 

the survivin gene locus by histone (de)acetylases (HDAC/HAC). Similarly, we could also 
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investigate CpG island methylation status of the survivin promoter region in controlling 

gene expression. These are just a few ideas that come to mind when studying survivin 

transcriptional regulation in cancer cells.   

Several pharmacological antagonists have been developed to inhibit signaling 

pathways in cancer that are constitutively activated. Though there is ample literature 

describing the mechanism of targeted therapies, it is equally important to determine 

downstream effectors of these canonical pathways. These pathways include PI3K/AKT 

or EGFR signaling that are hyper-activated in most cancers. Drugs that target these 

pathways include LY294002 (PI3K inhibitor) and gefitinib (EGFR inhibitor) that are 

currently undergoing testing for cancer therapy (Vlahos et al., 1994). However, it is 

important to keep in mind that PI3K pathway is also an important regulator of several 

normal cellular functions. Thus targeting this pathway may lead to several side-effects. In 

fact, PI3K pathway has been shown to be involved in insulin signaling and metabolism 

(Cho et al., 2001). Therefore targeting this pathway may lead to reduced insulin 

sensitivity and increased risk for diabetes. However, as opposed to normal cells, tumor 

cells are addicted to PI3K signaling such that the pathway is in a hyperactive state. Thus 

using drugs to normalize PI3K activity in tumor cells can potentially be of therapeutic 

benefit. To validate the efficacy of PI3K inhibitors in eradicating cancer cells and not 

normal cells, one could imagine looking at survivin levels as a potential biomarker. 

Lowering survivin levels in cancer cells together with other inhibitors of apoptosis 

proteins may help validate drug targets. Thus, it is crucial to have a complete 

understanding of the PI3K/AKT signaling pathway in tumors as opposed to normal cells 

in order to design better targeting strategies for anti-cancer therapy.  
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The PTEN/ PI3K/AKT pathway has become an attractive target for drug 

development since these agents induce cell cycle arrest, increase apoptosis and decrease 

resistance to cytotoxic therapy. Inhibitors of kinases involved in the PI3K/AKT signaling 

pathway have been aggressively pursued, and some have also entered clinical trials. 

These drugs include BKM120, BGT226, and BEZ235 that are currently being pursued by 

Novartis, a pharmaceutical company that has invested in phase I/II clinical trials for these 

compounds (NCT00620594; ClinicalTrials.gov). Among these drugs, BEZ235 seems to 

be of particular interest due to its recent popularity among academic scientists and 

industrial professionals at the American Association of Cancer Research (AACR) annual 

conference. This competitive inhibitor was shown to inhibit PI3K and mTOR activity and 

block AKT phosphorylation and activation. Moreover, MCF-7 breast cancer cells were 

sensitive to this drug by inducing caspase 3 and PARP cleavage (known indicators of 

apoptosis). They also noticed that full length caspase 2 was greatly reduced after BEZ235 

treatment, but were unsure of the importance of this finding. Our study provides some 

clues as to what is happening and how this is relevant to understanding the drug‟s 

mechanistic and functional features. As we have learned, caspase 2 is activated and 

undergoes autocatalytic cleavage that would reduce full length caspase 2 and generate 

cleaved fragments. Active caspase 2 can suppress the NFκB signaling pathway by 

cleaving RIP1 and subsequently decreasing survivin gene transcription. Thus, BEZ235 

may act as an upstream activator of caspase 2, that ultimately leads to sensitization of 

tumor cells by lowering an anti-apoptotic threshold by targeting survivin, an IAP protein. 

In addition, investigators at Novartis also found that breast adenocarcinoma MDA-

MB231 and colorectal HCT116 cell lines in particular were insensitive to this drug. 
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Although, we know that many tumors are addicted to PI3K signaling, there are 

alternative pathways that maybe triggered as a compensatory mechanism. In a recent talk 

given by Dr. Lewis Cantley of Harvard Medical School showed that Bez235 does not 

decrease Ras-driven tumors in mice, suggesting that these tumors rely on an alternative 

survival pathway, namely the MEK/Erk signaling pathway downstream of Ras. Perhaps, 

this is true of the MDA-MB231 and HCT116 cells that were not sensitive to BEZ235 

treatment as they may have high levels of phosphorylated Erk. Therefore a better strategy 

for these particular tumors would be to use combination therapy that targets both PI3K 

and MEK, or Bez235 of Novartis combined with ARRY-886 of Array Biopharma. 

Several studies have indicated an activated NFκB gene signature by microarray 

analysis of multiple myeloma patients that make this pathway an attractive drug target 

(Mulligan et al., 2007). Similar to this, two recent studies have pointed to a significant 

role of NFκB in promoting tumorigenesis by the inactivation of a negative regulator of 

NFκB, also known as A20 (Compagno et al., 2009; Kato et al., 2009). This protein 

encodes a ubiquitin-modifying enzyme that is induced upon TNFα stimulation. Genome-

wide analysis showed that A20 was a common genetic lesion in B-cell lymphomas with 

up to 30% of patients displaying somatic mutations of this gene (Kato et al., 2009). The 

second study identified multiple genetic mutations in more than 50% of B-cell 

lymphomas involving genes that converge on the NFκB signaling pathway, ultimately 

leading to its activation (Compagno et al., 2009). Once again, A20 was found to be the 

most commonly mutated gene in these studies, thus characterizing A20 as a tumor 

suppressor involved in negatively regulating NFκB activity. Both studies showed that re-

expressing A20 in a lymphoma-derived cell line with mutant form of the gene resulted in 
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suppression of cell growth and initiation of apoptosis (Compagno et al., 2009; Kato et al., 

2009). Caspase 2 similar to A20 act as upstream regulators of NFκB signaling by 

suppressing its transcription factor activity. However, further studies need to be pursued 

to determine if caspase 2 is also perhaps mutated or downregulated in lymphomas similar 

to A20.  These studies may help provide a rational for targeting tumor-types with 

activated NFκB signaling pathway that encompasses several target genes involved in 

proliferation and survival, including survivin. Targeting tumors with high levels of NFκB 

activity could potentially be a better alternative to conventional cancer therapy. Clinical 

evidence suggests that Bortezomib (Velcade/PS-341; Millenium Pharmaceuticals), a 

reversible 26S proteasome inhibitor, showed efficacy in Phase III clinical trials for 

multiple myeloma patients (Baud and Karin, 2009). Although Bortezomib is not a direct 

inhibitor of NFkB activity, studies indicate that the efficacy of this drug may in part be 

due to inhibiton of the NFκB pathway (Hideshima et al., 2001). 

In chapter 2, we identified caspase 2 as a negative regulator of NFκB activity and 

performed comprehensive studies to show that caspase 2 acts as a tumor suppressor gene. 

Once we established the role of caspase 2, the obvious question was to figure out whether 

this gene was mutated in human tumor specimens. For this, we extracted total RNA from 

frozen tissue sections of 3 colon cancer patients at various grades of the disease 

(Grades1-3). Sequencing analysis showed no relevant mutations of caspase 2 among 

tumor and normal matched tissue specimens. However, sequencing was done for an 800 

nucleotide region spanning the active subunit, based on the hypothesis that the catalytic 

site regulates survivin gene transcription. Although there weren‟t any mutations in this 

region, the prodomain may play a role in tumor suppression mechanism that we have not 
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investigated in this study. In addition, caspase 2 function maybe suppressed due to 

epigenetic modifications and not somatic mutations. To test for such modifications, DNA 

sequencing would not be sufficient to determine the functional role of caspase 2 in these 

tumors. More importantly, it would be necessary to get a significant sample size of 

patient specimens to make any relevant conclusions. The patient sample size for the B-

cell lymphoma study consisted of 238 cases from which they concluded that A20 is a 

relevant mutated tumor suppressor gene in about 30% of these patients (Kato et al., 

2009). Therefore, we were limited with the number of patients available to us (3), and 

perhaps the technique we used for genotyping. A better method would have been to do 

single nucleotide polymorphism (SNP) genotyping microarray analysis that allows for a 

larger sample size analysis and thus more statistically significant results.  

Similar to the lymphoma studies done for A20, Oncomine database has published 

8 different studies of lymphoma cases that show a significant population with 

downregulation of caspase 2 gene expression when compared to normal specimens 

(Table 4-1A). This potentially supports the tumor suppressor role attributed to caspase 2 

from our study which is quite similar to A20 being a negative regulator of NFκB. One 

might speculate that downregulation of caspase 2 in these lymphoma cases may point to a 

less active enzyme that may support a steady-state NFκB activity and support 

transcription of NFκB target genes.  Suprisingly however, only lymphomas are reported 

to have a significant downregulation of caspase 2 expression when compared to other 

cancer types reported on the Oncomine database (Table 4-1A). One of the caveats of 

Oncomine microarray analysis is that it fails to account for tumor variability. In other 

words, these tumors are from multiple patients at different stages of diagnosis as well as 
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treatment. Therefore, gene expression profiles may fluctuate depending on the treatment 

that is received by the individual patient. In fact, upon chemotherapy, we have observed a 

dose-dependent increase in caspase 2 activity as described in Fig. 2-1A. Perhaps, the 

upregulated caspase 2 gene expression profile in most other human tumors is indicative 

of the effects of chemotherapy. Nevertheless, we should not neglect the data represented 

for lymphomas as this particular cancer type may be resistant to conventional 

chemotherapy due to inactivation of A20 and/or downregulation of caspase 2.  

 The overall theme from the studies presented here points to a general tumor 

suppression network that regulates survivin gene expression, primarily through a 

transcriptional network (Fig. 4-3). Together with past regulators of tumor suppression 

that target survivin gene transcription, we have identified two novel pathways that 

converge on survivin to suppress its gene expression. Perhaps, these endogenous tumor 

suppression mechanisms are essential in preventing cells from succumbing to the effects 

of DNA damage or harmful mutations by inducing apoptosis or senescence. Inactivation 

of these tumor suppressors either by mutation or loss of heterozygozity enables malignant 

clones to be established that rely on anti-apoptotic mediators to sustain their survival. In 

fact, deregulation of the cell death program leads to unchecked growth of tumors that 

develop resistance to conventional chemotherapy (Fesik, 2005). Therefore, re-engaging 

the apoptotic program in these cancer cells by novel targeted therapies would enable for 

selective killing of tumor cells. Currently, there are agonist antibodies that target TRAIL 

receptors and TRAIL ligands that are in phase I/II clinical trials for anti-cancer therapy 

(Fesik, 2005). Moreover, Bcl-2 antisense oligonucleotides are in phase III clinical trials, 

and a small molecule Bcl-2 inhibitor, also known as ABT-737 is in early phase I clinical 
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trial (Fesik, 2005). Recently, several small molecule IAP inhibitors have also been 

developed that are currently going through preclinical testing (Fesik, 2005). Since 

survivin is an IAP protein that is differentially expressed in cancer cells as opposed to 

normal cells, targeting pathways that regulate survivin expression may be beneficial in 

future drug discovery endeavors. In parallel to targeting these antiapoptotic regulators, 

there also remains the potential to activate certain tumor suppressors by re-instating their 

enzymatic activity. However, these remain to be explored as one can imagine the caveats 

of developing a drug that may increase PTEN phosphatase activity or mimic caspase 

activity. Although, there may be compensatory mechanisms that may overcome the 

effects of a single drug, there is some hope with new anticancer-therapy that targets 

mutated tumor suppressors in transformed cells. Two such small molecules recently 

discovered include PRIMA1 and RITA that help re-activate the p53 tumor suppressor 

pathway in cancer cells (Fig. 4-3) (Grinkevich et al., 2009; Lambert et al., 2009). 

Although these studies are preliminary, there still remains potential for further research 

and discovery of novel drugs that re-activate tumor suppressor pathways that may have 

been turned off in cancer cells. 
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Figure 4-1 Model for caspase 2 regulation of survivin 
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Figure 4-2 Model for PTEN regulation of survivin
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Table 4-1 Oncomine differential activity map for caspase 2 

Oncomine data summary showing caspase 2 expression analysis in various 

normal and cancer tissue types. Red indicates upregulation of gene expression and blue 

indicates downregulation of gene expression. Numbers correspond to the number of 

independent microarray analysis.  
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Figure 4-3 Tumor Suppression Network Targeting Survivin Gene Expression

Known regulators of the tumor suppression network that mediate survivin gene 

expression. 
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